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ABSTRACT

In this thesis I argue for in re structuralism in the philosophy of mathematics.

In the first chapters of the thesis I argue that there is a genuine epistemic access

problem for Platonism, that the semantic challenge to nominalism may be met by

paraphrase strategies, and that nominalizations of scientific theories have had ad-

equate success to blunt the force of the indispensability argument for Platonism.

In the second part of the thesis I discuss the development of logicism and struc-

turalism as methodologies in the history of mathematics. The goal of this historical

investigation is to lay the groundwork for distinguishing between the philosophical

analysis of the content of mathematics and the analysis of the breadth and depth of

results in mathematics. My central contention is that the notion of logical structure

provides a context for the latter not the former. In turn, this contention leads to a

rejection of ante rem structuralism in favor of in re structuralism. In the concluding

part of the dissertation the philosophy of mathematical structures developed and

defended in the preceding chapters is applied to the philosophy of science.
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CHAPTER 1

INTRODUCTION

Mathematical philosophy has been deeply influenced by paradox. The bud-

ding mathematician of philosophical mindset is bombarded early on with dizzying

puzzles concerning foundations: the class of classes which are not self-members

(which, impossibly, is and isn’t self-membered), the ordinality of the class of ordi-

nals (not an ordinal), the cardinality of the class of cardinals (not a cardinal), the

smallest natural number that cannot be described in less than twenty words (but

just was). Philosophers and logicians have had much to say about these issues.

My present point is just that it is a somewhat disheartening experience that leaves

many mathematicians wary of any discussion of foundations. Mathematical culture

can thereby exhibit a strong pragmatic streak, cured (some may say) of philoso-

phy. The efforts of Frege, Russell, Whitehead and others may come to be seen as

distractions; that Brouwer’s proof of the fixed point theorem was later recanted

by its author on philosophical grounds may come to be regarded as a cautionary

tale. In practice naive set comprehension is employed while a hand-wavy set/class

distinction may be drawn as an after-thought, even when not necessary to block

the paradoxical constructions: e.g., because the axiom of separation is implicitly

invoked. In more theoretical moments some working mathematicians may defer to

an axiomatic set theory, such as Zermelo-Fraenkel or Gödel-Bernays, feeling sure

that in such a theory all “philosopher’s quibbles” are dealt with.

A working mathematician’s pragmatic attitude attitude toward mathematical

philosophy may be a partial motivation of editor Timothy Gowers’ opening com-

ments in his Princeton Companion to Mathematics (Gowers et al., 2008). There,
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having quoted a passage from Russell’s The Principles of Mathematics (Russell,

1903) expressing the view that pure mathematics is “the class of all propositions of

the form ’p implies q’,” Gowers contrasts the early 20th century “preoccupation”

with logical foundations with the early 21st century proliferation of special subjects

and specialist mathematicians with diverse points of view on the nature of their

inquiries, a diversity surveyed not-even-exhaustively in Gowers’ thick Companion.

To be sure, the health of mathematics as a discipline seems not to depend on the

success or failure of any foundational program.

Faced with the sheer volume of modern mathematics a philosopher trembles

at the hubris it takes to say anything of much generality at all concerning the nature

of the discipline as a whole. A tremble becomes a shudder if a philosopher fears

that, up the hill in the mathematics building, superior intellects are occupied with

solving “real problems,” cud of paradox spat out (swallowed?), metaphysical rumi-

nation ceased. Indeed, one recent trend among philosophers of mathematics has

been to argue that there is little distinctively philosophical to add to mathematics:

e.g., that the existence of abstract mathematical objects is settled by mathemati-

cal proofs of mathematical theorems, which the philosopher has no standing over

the mathematician in assessing. Building on arguments from Quine, Putnam, and

Lewis a naturalized epistemology of mathematics that is thoroughly deferential to

the mathematical community’s epistemic standards for existence claims has been

argued for forcefully by John Burgess and Gideon Rosen in A Subject with no Object

(Burgess and Rosen, 1999), a book which combines the polemic (against method-

ological solipsism, foundational philosophical intuition, grammatical revisionism,

etc.) of naturalized epistemology with logically careful analysis of the acceptability

of nominalist reconstructions.
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The tendency to acquiesce in Platonism is one that I wish to resist. First,

Gowers’ implied pluralism may be turned against Burgess and Rosen in noting that

the mathematical community is not univocal in its embrace of Platonism. First,

there is a division even among those that would endorse the existence of abstract

particulars between set-theoretical reductionists and plenitudinists. That is, some

mathematicians may endorse the reductionist thesis that mathematics is “really” all

about sets, rejecting classical platonic objects such as the number two or the ideal

triangle as sui generis particulars. Others may have no interest in such reduction-

ism. Second, there is a tradition even within mathematics of anti-Platonism that

rejects the existence of abstract particulars. Burgess and Rosen’s polemical labeling

of philosophers as “aliens” and “revolutionaries” stills a modest philosopher’s heart

as he gazes uphill, especially one chastened by frustrated mathematical ambition,

but will the Princeton pair say the same of an algebraist if she insists that number

theory is not about the natural numbers (or integers) at all but rather the structure

of any simply infinite system (or infinite cyclic group)?

To be sure, our algebraist will have her hands full if there is a platonistically

inclined philosopher in the room, but she is a mathematician not a philosopher

and the defense of her philosophical view takes her beyond mathematics proper.

I, on the other hand, am a philosopher, a mathematical one I hope (though still

no mathematician). I view the mathematical philosopher as kindly assistant in

polite, informed speculation engendered by mathematics but beyond the scope of

its methods, not as a meddling outsider or dangerous dissident. Further, I don’t

think a naturalized epistemology of mathematics can be deferential to mathematical

opinion partly because I don’t think that mathematical opinion is univocal on the

interpretation of mathematics. I take Gowers’ pluralism to provide an opening for
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philosophical interpretation of mathematics. Since the mathematical community is

not univocal, a philosopher who is mathematically informed may helpfully introduce

traditional and novel philosophical distinctions in weighing mathematicians’ diverse

points of view concerning questions of mathematical philosophy.

In an often quoted polemic David Lewis casts the philosopher in the role of

meddling, hubristic fool:
I’m moved to laughter at the thought of how presumptuous it would be
to reject mathematics for philosophical reasons. How would you like the
job of telling the mathematicians that they must change their ways...
now that philosophy has discovered that there are no classes? Can you
tell them, with a straight face, to follow philosophical argument wherever
it leads? If they challenge your credentials, will you boast of philosophy’s
other great discoveries: that motion is impossible, that a Being than
which no greater can be conceived cannot be conceived not to exist,
that it is unthinkable that anything exists outside the mind, that time
is unreal, that no theory has ever been made at all probable by evidence
(but on the other hand that an empirically ideal theory cannot possibly
be false), that it is a wide-open scientific question whether anyone has
ever believed anything, and so on, and on, ad nauseam?

Not me! (Lewis, 1991)

I won’t be the first to add: Me neither. For instance, Ockhamite concerns may

have a place, but not in the form of an explicit a priori principle. We don’t know

ontological principles innately, nor by rational intuition. I am with naturalized epis-

temology in that I reject a priori philosophical intuition as a foundational faculty

in matters ontological, and I agree that we can study the relation of knowledge

between knowing-subject and known-subject-matter from within science without

falling into an undermining circularity. I disagree, however, if naturalized episte-

mology is regarded as purely descriptive. A prescriptive component arises within

the context of scientific epistemology when one seeks to reconcile competing norms

of scientific sub-communities.
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Penelope Maddy has made the point, with which I agree, that the mathemat-

ical community is part of the scientific community as a whole. If some epistemic

norms concerning acceptance of existence claims widely accepted by mathemati-

cians are widely rejected by physicists then we face a dilemma. On the one hand we

may divide the two communities and have each defer to the other on claims within

their respective subjects, the approach favored by Burgess and Rosen. Call this the

“ghettoization” response. Following from what I’ve suggested above it threatens

not only to separate the physics community from the mathematical community but

may also put a wall between number theorist and algebraist. Alternatively, the

naturalized epistemologist may seek conciliation, aiming toward a unified scientific

epistemology. It is in the context of conciliating competing epistemic norms that

arise within science, especially norms relating to existentially committing proposi-

tions, that I position the revisionist role of mathematical philosophy.

Consider the attitude toward foundations Jean Dieudonne attributes to the

influential group of French mathematicians known as Bourbaki, of which he was a

prominent member:

On foundations we believe in the reality of mathematics, but of course
when philosophers attack us with their paradoxes we rush to hide behind
formalism and say: “Mathematics is just a combination of meaningless
symbols,” and then we bring out Chapters 1 and 2 on set theory. Finally
we are left in peace to go back to our mathematics and do it as we
always done, with the feeling that each mathematician has that he is
working with something real. This sensation is probably an illusion, but
it is very convenient. That is Bourbaki’s attitude towards foundations
(Dieudonne, 1968).

The bewildering expression of belief in the reality of what is “probably an illu-

sion” suggests that there is work for philosophers in sorting reality from illusion in

mathematics. A motivation for doing philosophy of mathematics in a naturalistic
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way is to avoid framing this work as an attack from an independently motivated

foundational standpoint. My primary concern is not to attack mathematicians with

paradox or impede mathematical progress by imposing philosophical constraints on

their work. I do not want to rob anyone of their “convenient illusions,” if this means

impeding the progress of mathematical research, nor does any nominalistically in-

clined philosopher of mathematics that I know of. As Wittgenstein remarked, a

philosopher of mathematics should leave the practice of working mathematicians

untouched. However, notwithstanding the embarrassing Lewisian litany of philos-

ophy’s “great discoveries,” it does seem to me that one important philosophical

achievement is that we philosophers recognize that one cannot very well attest “be-

lief in the reality” of what is “probably an illusion.” So the goal of mathematical

philosophy is just to sort reality from illusion in mathematical experience, and while

I am sure that this is a worthy, though speculative, project of interest to philoso-

phers and philosophically inclined mathematicians it need not be undertaken in a

spirit of hostility, neither to the pragmatic tolerance of diverse attitudes toward

foundations of the mathematical community nor to the “working Platonism” that

many mathematical researchers find, at least heuristically, indispensable.
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CHAPTER 2

EPISTEMOLOGY AND PLATONISM

2.1 Epistemology and semantics

Paul Benacerraf’s 1974 paper “Mathematical Truth” (Benacerraf, 1973) has a

focus of much recent discussion in the philosophy of mathematics. Google Scholar

shows nearly 400 citations. The importance of the paper no doubt stems from

Benacerraf’s clear identification of competing motivations for the interpretation of

mathematics in philosophy:

1. the desire for a homogeneous semantic theory, and

2. the desire for reasonable epistemology of mathematics.

It is philosophically problematic that, as Benacerraf argues, the satisfiability of

these desiderata has seemed to relate by inverse proportion. Add me to the long

list of those that find the tension troubling. In my view, we have good reason to

regard the surface grammar of mathematical assertions as an artifact of our need for

workable computational techniques, a practical concern that over-rides any default

presumption in favor of the grammatical transparency of truth conditions. Since

a plausible, unified scientific epistemology is desirable, we should be permissive of

paraphrase in mathematics if a fruitful resolution of the tension between semantics

and epistemology is in the offing for grammatically transformed mathematics.

Benacerraf rightly points out that philosophies of mathematics arising from

the semantic motivation often take for granted that semantic theory outside of math-

ematics is a settled matter. It is perhaps debatable whether semantic theory is really

so settled, but the philosopher motivated by semantic homogeneity feels that enough
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is settled to place considerable constraints on a treatment of truth and reference in

mathematics, if its semantics is to be homogeneous with non-mathematical seman-

tics. In particular, a homogeneous account will respect Tarskian formal constraints

on a truth predicate. As a consequence, the demand for homogeneous semantics

indicates minimally that mathematical assertions be interpreted in terms of satis-

faction of formulas by objects in a domain of interpretation.

Benacerraf’s homely example illustrates the point well. Consider:

• cities There are at least three large cities older than New York.

• numbers There are at least three perfect numbers greater than 17.

Put bluntly, the proponent of semantic homogeneity holds that it’s numbers and

their properties that make numbers true, just as it’s cities and their properties that

make cities true.

Why object? One consideration is the thought that there’s some connection

between the questions “What makes it true?” and “How is it verified?”. On the

one hand, cities gets verified by measuring cities, a process of verification in

which cities are unmistakably involved. On the other, numbers gets verified by

mathematical proof, a process of verification in which numbers, as abstract objects,

play a doubtable role. That is, if abstract objects play a role at all in mathematical

verifications, it is a role rather unlike the role of cities in demographic verifications.

The point here is not to call on a verificationist theory of truth. One need not

demand that all truths be verifiable nor hold that verification conditions are identical

with truth conditions to think that verification, in at least these significant cases,

involves checking truth conditions, so that different answers to “How is it verified?”

can suggest different answers to “What makes it true?”.
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How does the practice of mathematical verification differ from the practice

of empirical verification? What to make of the difference? One direction that

reflections motivated by this consideration might take would be to emphasize formal

derivability as the truth condition of claims like numbers. Benacerraf considers two

views.

The first view, attributed to Hilbert, identifies mathematical truth with facts

about concrete calculations in suitable formal systems; apparent quantification over

infinite domains in arithmetic is regarded as merely instrumental toward proving

theorems of intuitive, finitely verifiable arithmetic. Accordingly, numbers is an ex-

ample of a finitely verifiable arithmetic statement, one demonstrable by calculation.

The proposition that there are infinitely many prime numbers is an example of a

claim quantifying over an infinite domain, which for each n has the consequence,

verifiable by finite calculation, that there is a prime p such that p > n.

The Hilbertian point of view, as characterized by Benacerraf, may be extended

by the claim that the finitely verifiable core of mathematics itself is true in virtue

of rule-governed computations (i.e., states facts about computations not about ab-

stract objects), not realist, descriptive fidelity to an intended domain. Benacerraf’s

gloss on Hilbert raises interpretive questions and philosophical challenges that aren’t

relevant to pursue in the present context. The important point is to see that it is an

initially plausible view that arises from the thought that how we verify a statement

might tell us something about what makes it true, but which undermines semantic

homogeneity.

The second view, labeled ”combinatorial”, treats truth simply as a synonym

for derivability in a formal axiom system. When the axioms of number theory (e.g.,

Peano’s axioms) are taken as analytically or stipulatively defining singular terms
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for numbers and truth of sentences containing such terms is recursively defined, as

syntactic consequence of the axioms, the realist notion of fidelity to an intended do-

main of objects again may go by the wayside. The question whether the Hilbertian

and combinatorial conceptions constitute distinct proposals is an interesting one,

which would require close historical and philosophical analysis to more than briefly

address. Benacerraf treats them separately, and the distinction seems to hinge on

whether an account of the cognitive content of an intuitionist, finitist core of arith-

metic can be given that does not turn on some version of contextual definition.

There is much, also, to say about how precisely to understand non-reference fixing

contextual definitions, but I wish for the present to remain focused on the epistemo-

logical point that the two proposals each arise from the thought that “What makes

it true?” is a question whose answer may be informed by the answer to the answer

to “How is it verified?”.

2.2 The access problem

It’s noteworthy that in the first half of “Mathematical Truth” Benacerraf

makes no reference to a conceptual analysis of knowledge. It is only in the second

half of the paper that he invokes the causal theory of knowledge and the causal re-

moteness of abstracta to present a direct challenge to Platonism. The motivations

that are suggested for the Hilbertian and combinatorial views don’t obviously, how-

ever, arise from commitments by their early 20th century proponents to the causal

analysis of knowledge. They arise, rather in the spirit of naturalized epistemology,

from looking at the ways in which mathematics gets verified in practice. Many

have argued, and I agree, that it was a mistake for Benacerraf to have presented

his eponymous dilemma as in any way resting on a causal analysis rather than on
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prima facie considerations arising directly from mathematical practice. However, I

also agree with those who have sought to articulate a problem of epistemic access

to mathematical abstracta based on consideration of their causal inertness.

The alleged dependence of epistemological challenges to Platonism on the

causal analysis of knowledge has provided an plausible out for platonists. This is

not the place for a thorough discussion of the causal analysis and its shortcomings,

except to note that one of its most influential early proponents, Alvin Goldman, has

been persuaded to adopt the reliabilist position according to which a reliable belief

forming process can provide knowledge without a causal link between the belief and

the fact that makes it true (Goldman, 1976). Bully for platonists, many of whom

now argue that the processes whereby we form beliefs in mathematics are reliable

without involving any kind of causal link to mathematical facts or the suitably

related abstract objects that comprise those facts.

Indeed, the epistemological concern about Platonism is often called the “access

problem”, suggesting that the problem amounts to a challenge to provide an account

of our access to causally remote abstracta, and it would be right to downgrade the

significance of this problem if it relied specifically on a causal analysis of knowledge.

The nominalist’s worry is, somewhat lampooningly, stereotyped by Burgess and

Rosen:

We nominalists hold that reality is a cosmos, a system connected by
causal relations and ordered by laws, containing entities ranging from
the diverse inorganic creations and organic creatures that we daily ob-
serve and with which we daily interact, to the various unobservable
causes of observable reactions that have been inferred by scientific theo-
rists (and perhaps to the First Cause postulated by religious thinkers).
Anti-nominalists hold that outside, above, and beyond all this [and here
one gestures expansively to the circumambient universe] there is an-
other reality, teeming with entities radically unlike concrete entities–
and causally wholly isolated from them. This amounts to an especially
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unattractive variety of supernaturalism, somewhat like Epicurean the-
ology. Compared with more traditional creeds, it offers no promise
of reward to the faithful, since between them and the other world in
which anti-nominalists there is a great gulf fixed; but it requires as
much in the way of faith to provide evidence of things unseen. Surely
anti-nominalists owe us a detailed explanation of how anything we do
here can provide us with knowledge of what is going on over there, on
the other side of the great gulf or great wall. However difficult it may
be to formulate precisely what is wrong with anti-nominalism, one need
only consider how anti-nominalists depict reality (flesh-and-blood sub-
jects on one side, ethereal objects on the other, a causally impenetrable
great wall in between) in order to see at once that something is wrong
(Burgess and Rosen, 1999).

Indeed, nominalism, understood as the view that there are no abstract objects, is

partly guided by the sorts of puzzling pictures here described. And, yes, philosophers

should be wary of the grip of misleading pictures. The question is just who is

mislead by this particular picture, and who is responsible for it. Burgess and Rosen

are correct to point out that when we try to cash out what seems objectionable

about this picture it does look like we tacitly rely on a causal analysis of knowledge

to translate from picture to syllogism. However, in the most general terms, all the

nominalist is asking for is an account. When we point out that if the account is

to be given on analogy with perception that there are considerable disanalogies we

may rely on the kinds of pictures in the stereotype passage to drive the point home.

However, expressing puzzlement is not giving an argument and denying a causal

theory of knowledge does not resolve our puzzlement.

Hartry Field places the access problem in a reliabilist frame by arguing Pla-

tonism provides no means of accounting for reliable belief forming processes, even

if it is strictly consistent with the reliability criterion as stated (Field, 1991). One

sees that the minimal presumption of reliabilism is not even necessary to motivate

a problem for Platonism if the requirement of having an account of the satisfaction
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of any given epistemic principle or condition one may propose. If an account is

required, the naturalized epistemologist may appeal to the going concerns of nat-

ural philosophy, but the metaphysics of Platonism precludes causal inquiry into

knowledge generating causal processes. The history of unsatisfying accounts begins

with Plato himself, who in Meno has Socrates confessing dissatisfaction with the

doctrine of anamnesis (remembering) of the forms. More recently, Gödel appealed

to a perceptual analogy in maintaining that a kind of intellectual seeing might be

required for the justification of new axioms in mathematics; however, the analogy

is broken unless some account of intellectual seeing in Gödel’s sense analogous with

our understanding of actual, visual seeing as a neuro-physically grounded, causal

process is in the offing. Here it may seem that I am relying tacitly on a causal anal-

ysis, but I am not. The sort of platonist account under consideration appeals to an

analogy with perception and the role of physical causation in ordinary perceptual

processes is appealed to in order to point out the shortcomings of that analogy but

not as a conceptually necessary condition for knowledge. In fact, I don’t think that

the access problem gains its force by depending specifically on a causal analysis of

knowledge, or any analysis of knowledge. It depends on the supposition that the

conditions of satisfaction of epistemic principles be subject to intelligible inquiry.

2.3 Factive mental states and mathematics

According to Timothy Williamson knowledge is a “factive mental state” (Williamson,

2002). A factive mental state is defined as a propositional attitude, the obtaining of

which safely entails the truth of its propositional content: “safely” in the sense that

one could not easily have come to believe the same proposition falsely. The con-

dition “could not easily have come to believe” is given a modal analysis. It means
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that in all “nearby” (assuming an intuitive modal metric) possible worlds in which

I maintain belief in the proposition, it is true. For example, seeing that there is a

pillow on the couch nearby is a factive mental state because you cannot “see that

p” (in one important sense) unless p, but also because in all nearby possible worlds

(i.e., scenarios differing only slightly from the actual world) in which I believe p

it is true that p. On the other hand, although “luckily guessing that p” is factive

because a guess isn’t lucky unless p, it is not safe because in nearby worlds I guess

wrongly. Williamson’s favored examples of factive mental states all seem to involve

causation, but this is not a necessary feature of knowledge revealed by conceptual

analysis. That is, even if all factive mental states involve a causal connection in fact,

Williamson need not maintain that they must as a matter of conceptual necessity.

The application of Williamson’s framework to knowledge of mathematics is,

however, problematic. As I have indicated, the typical examples given by Williamson

seem to involve causal processes, the invariability of which under slight modal per-

turbations guarantees safety. This is not, again, to attribute a causal analysis, or

any analysis, to Williamson but to emphasize his particularist method. However, a

particularist method starting from cases like perception or memory is problematic

in dealing with mathematics precisely because mathematics is in so many respects

disanalogous with perception and memory. It would be a joke to write “anamnesis”

to fill a gap in a proof on a mathematics exam.

The nearest to an epistemology of mathematics that Williamson provides is

contained in his chapter on knowledge as the norm of assertion. For this reason it

would be misleading to present the view as a considered epistemology of mathemat-

ics, since it is put forward with the narrow aim of elucidating and defending the

knowledge norm of assertion and not presented as a comprehensive epistemology of
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mathematics. However, the problems with the account of section 11.6 of “Knowl-

edge and its Limits” draw out the problems epistemology of mathematics poses for

his account, which I have a hard time seeing how to address from his point of view.

There, Williamson writes:

In mathematics, the distinction between warranted and unwarranted
assertions is striking. Count the propositions that are axiomatic for
working mathematicians as having one-line proofs. Then, to a first ap-
proximation, in mathematics one has warrant to assert p if and only if
one has a proof of p. On the knowledge account, that is so because, to
a first approximation, one knows that p if and only if one has a proof of
p (Williamson, 2002).

As I have mentioned, this account occurs in the context of a discussion of the knowl-

edge account of assertion. So the subsequent development of the example and its

implications deals with cases where we, plausibly, have warrant to assert mathe-

matical truths without, personally, having grasped their proof (e.g., the Poincaré

Conjecture was proved by Perelman, a proof confirmed by the mathematical com-

munity but which I have yet to grasp) and with cases where we grasp a proof but

have a psychological defeater (e.g., imagine one proves P=NP but can’t believe her

own work or is convinced by a faulty refutation from a perceived epistemic superior).

Williamson deals ably with mathematical knowledge as an objection to the

knowledge norm of assertion, but I think his connection of knowing with having

a proof raises more fundamental problems. In particular, Williamson is lead by

this connection to suppose that axioms are one-line proofs and, importantly, by the

connection to assertability that “this notion is not relativized to an arbitrary formal

system; if it were, the connection with (unrelativized) assertability would be lost.”

He justifies the status of axioms as one-line proofs by reference to their “special place

in the practice of mathematics.” However, treating axioms as one-line proofs in this
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way leads to immediate difficulties with established results in mathematical logic.

For, if axioms are proofs of themselves then we have proofs of axiom systems such as

2nd-order Peano Arithmetic and Zermelo-Frankel Set Theory, and if we have proofs

that these systems are true then we have proofs that they are consistent (assuming,

as I do, that truth entails consistency). But, by Gödel’s 2nd theorem, the existence

of a proof of the consistency of such systems, in those very systems, entails their

inconsistency. This is not to imply that there are no proofs, acceptable by normal

mathematical standards, of con(PA). There are such proofs, for example Gentzen’s,

but they are precisely not the sort of one-line “proofs” suggested by Williamson.

Thus, while the epistemic acceptability (whatever that may consist in) of axiom

systems strong enough to provide a foundation for mathematics may indeed, I agree,

be vouchsafed by their special place in the practice of mathematics, this cannot be

articulated by holding that axioms are self-proving in a non-relativized sense.

So, it should be clear that axioms cannot be considered as one-line proofs and

that proof, as such, cannot be a foundation for mathematical knowledge. Proof, of

course, has an absolutely important role for the expansion of mathematical knowl-

edge, but foundational axioms (if there are any) are, precisely, what are not proved

but rather assumed by provers. On the traditional view, axioms state self-evident

truths about an intended domain. For instance, presumably knowing already what

lines and points are, we state axioms describing their properties or, knowing already

what numbers are, we do the same for them. The point to emphasize here is just

that the traditional view presupposes prior cognitive access to the objects of mathe-

matical study, as well as their properties and relations, and considers axiomatization

as a canonical description of those properties from which all others may be derived.

Accordingly, we come to know the axioms are true by having in mind the objects
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and properties they describe, not by proof. Hence, we may come to know that the

axioms are consistent without having a consistency proof. So, the traditional view

is consistent with our lack of consistency proofs.

However, the traditional view requires an account of cognitive access that,

from a contemporary point of view, strikes us as elusive. If by points and lines we

mean constituents of perceptual (or physical) space then, in light of non-Euclidean

geometry, whatever access we do have under-determines our choice of axioms. Fur-

thermore, should empirical evidence somehow uniquely determine the geometric

structure of our world, we will be left with a surplus of axiomatic systems, which

though perhaps empirically unimportant remain quite important to mathemati-

cians, that can’t be vouchsafed by direct cognitive access to (non-abstract) points

and lines.

This is not the place to present a thorough discussion of the traditional view

of axioms, a topic on which I will have plenty to say in due time. The point is that

a proponent of the traditional view of axioms, which Williamson tacitly assumes

in regarding axioms as assertions, cannot regard them as one-line proofs. Hence,

“grasping a proof that p” cannot be regarded as the factive mental state on which

to ground an account of mathematical knowledge, if axioms are understood to be

assertions. It remains available to Williamson to offer a different account of our

knowledge of axioms, of course, and maybe something along the lines of “intuiting

that p” or “mentally constructing that p” will work. However, the appeal to the

“special place of axioms in mathematical practice” suggests that Williamson avoids

these choices for a reason. Contemporary mathematics relies on axiom systems for

which appeals to intuition and construction are implausible. Williamson’s appeal

to mathematical consensus suggests weariness about the alternatives to proof.
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However, it is difficult to see how a grounding of mathematical knowledge

on a mathematical consensus fits into the factive mental state account, a difficulty

which, perhaps, presses Williamson to put his chips on proof and only appeal to ax-

ioms’ “special place” in passing. A more likely understanding, one that more closely

(from my point of view) matches mathematical practice, is that foundational ax-

ioms are accepted as consistent by working mathematicians not because they are in

some mental state directed toward some objects (whether objects of pure reason,

imagination, perception, or physical) which they are describing, but simply because

they provide an adequate basis for working mathematics, because no contradiction

is known, and because they are girded by construction of partial, intuitive models.

Such models are, however, necessarily partial, incomplete, and though finitely char-

acterized often have undecidable properties. Again, this is a topic on which it would

be premature to offer a full treatment, and the present point is just to show the

limitations of Williamson’s approach to epistemology as applied to mathematics.

Indeed, whatever its virtues as a response to the Gettier problem or to the

skeptic, the application of Williamson’s epistemology to the sciences in general is

rather hazy. It would appear that on Williamson’s knowledge=evidence view we

do not obtain knowledge of scientific theories, so we do not know, for instance,

that the earth revolves around the sun. Perhaps this is an acceptable, if initially

counter-intuitive, implication of Williamson’s view. Theories may be well supported

by evidence/knowledge but not themselves known in the strict sense that the obser-

vation reports on which we base our theories may be known. Unfortunately, these

matters are left unaddressed by Williamson.

Theories may, perhaps, be rendered highly likely by evidence, but Williamson’s

appeal to evidential probability is itself highly problematic for reasons that have lead
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many philosophers concerned with probability to accept subjectivism about prior

probabilities. While the identification of knowledge as a factive mental state and

the rejection of the classical analytic project for epistemology are in some sense

naturalistic turns, Williamson’s epistemology is in many ways in the Fregean, anti-

psychologistic, anti-naturalist philosophical tradition. He is attempting to rescue

an epistemology for that tradition from the wreck of Gettier, without appealing to

a causal theory or psychologistic understanding of knowledge. Note that the central

notion of a “factive mental state” is approached through language and logic rather

than empirical psychology. However, he does not seem to me to even attempt a

response to the most substantive limitations of the broadly Fregean approach: viz.,

the problems arising from the foundational crisis in mathematics and the limita-

tions of formal theories of scientific confirmation. Williamson’s epistemology of

mathematics misleadingly extends the plausibly factive operator “having proved

that x” to axiomatic knowledge and his distinction between evidential and subjec-

tive probability comes without resolution of the basic challenges in the foundations

of probability theory.

These problems, within science, have been “solved” largely by pragmatist

and conventionalist means which have allowed scientific research and discovery to

proceed despite a lack of consensus in epistemology. If philosophy is to have a

role then it may be by distinguishing the scientific “context of discovery” from

the philosophical “context of justification,” but having made this distinction we

need not conduct inquiries into the latter in complete ignorance of what has been

discovered. In this respect, my naturalism is moderate naturalism (or, perhaps,

“Russellian naturalism” on the model of The Analysis of Mind and The Analysis

of Matter) which aims to reconstruct an epistemology and metaphysics of science
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drawing from what has been discovered, aims to identify and correct the distortions

of convention, but which guards against falling into skepticism.

2.4 The epistemic problem for Platonism

We may accept that knowledge, in the minimal sense of true belief, may ad-

vance without a philosophical reconstruction either of the content and nature of

belief or of its justification; i.e., without an account. The task of those seeking

philosophical knowledge is, then, to provide such an account, though we may not

be required to do it with both hands behind our backs. That is, our task need

not be to provide something like a Cartesian reconstruction from first principles.

It may be guided by scientific discoveries themselves as well as by critical exami-

nation of processes of scientific discovery. For this reason, history of mathematics

is indispensable to my present philosophical project. By better understanding the

development of modern mathematics we can come to better understand what has

been developed and how it can be justified.

The epistemic challenge has recently been articulated by Joshua Thurow in

terms of defeaters (Thurow, 2011). The term “defeater” is used by epistemologists

for experiences or propositions which, when had or believed by an agent justified

in believing a proposition p, rebut or undercut p. A rebutting defeater is one

that justifies belief that p, while an undercutting defeater merely undermines the

grounds for believing that p. For instance, the existence and pervasiveness of evil is

a rebutting defeater for theism, while the plurality of religious experience (combined

with modest epistemic parity commitments) may be only an undercutting defeater.1

Accordingly, we may understand Field’s way of pressing the access problem as

1Thurow references Michael Bergmann for a discussion of some subtle, but for his purposes
tertiary, modifications required of these definitions (Bergmann, 2005).
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holding that the absence of an account of the reliability our knowledge of abstract

objects constitutes an undercutting defeater. But a defeater for what proposition?

There is a clarifying point to be made here. Field and Thurow seem to take this to be

an undercutting defeater for mathematical knowledge itself, and in fact Field reso-

lutely embraces the position that mathematics is, strictly speaking, false: e.g., since

there are no abstract objects there are no numbers and hence prototypical math-

ematical propositions like “there are infinitely many primes” are strictly speaking

false. If the access problem presents an undercutting defeater for mathematics itself,

then it must be that the propositional justification for mathematics derives from the

adequacy of Platonism as a semantic and epistemological account for mathematics.

Alternatively, one may hold that the access problem only undercuts the pla-

tonist philosophy of mathematics, which more plausibly depends on a demonstration

of epistemological adequacy. We may take the epistemic challenge to simply provide

an undercutting defeater for one philosophical account of the content of mathemat-

ical knowledge, and no as undercutting that content itself. To be sure, this presses

us into a semantically “revisionary” project, according to which the surface gram-

mar of mathematics may not clearly indicate the genuine content of mathematical

knowledge. I am more willing to say that some mathematicians may poorly un-

derstand the content of their knowledge, because heuristic and conventions distort

their view, than that they have literally false beliefs. Hence, I seek to show by an

examination of the actual historical development of mathematics that mathematical

knowledge is knowledge of logical relations between predicates indicating structural

possibilities rather than knowledge of actual structures of abstract objects, but I

see this as a project of revealing rather than revising.



22

We have digressed a bit in this discussion of the epistemic problem for Pla-

tonism, but it was necessary to say some things about epistemology more generally

to motivate my perspective on that problem. My perspective, then, is just that the

ontology of mathematics suggested by platonist semantics for mathematics renders

it mysterious how we might reconstruct a justification for our mathematical knowl-

edge. That is, as philosophers we turn to the context of justification and we are

owed an account, one which platonists have struggled to provide. This perspective

doesn’t depend on any particular analysis of knowledge; it simply locates a lacuna

in the platonist philosophy of mathematics. In this respect, it is perhaps better

to call the concern with which we are presently occupied the epistemic challenge

to Platonism, rather than the epistemological challenge, because we do not call on

any specific theory in epistemology. In due course we will consider some attempts

by platonists to respond to the epistemic challenge, but for now the point is just

that there’s no easy answer to the challenge to be had in the pretense that the

nominalist’s puzzlement arises only by her being in the grip of misleading pictures

or theoretically problematic epistemological views.
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CHAPTER 3

NOMINALIST RECONSTRUCTION

3.1 Nominalism and paraphrase

In the contemporary philosophy of mathematics discourse “nominalism” is

the position that there are no abstract objects. It may be noted that this sort

of nominalism is consistent with some positions on the metaphysics of properties

that traditionally should not qualify as nominalist. Universals may be abstract

objects, in which case the nominalism of philosophy of mathematics discourse and

the nominalism of traditional metaphysical discourse may overlap. The notion of

a universal as a one-over-many suggests that universals are objects. If universals

are understood to have both an individual and a predicable aspect then they may

be understood to be abstract objects. Stewart Shapiro’s ante rem structuralism

is a view of this sort. The objects that are the subject matter of mathematics,

according to that view, turn out to be object-places and relation-places in purely

abstract structural universals, places which are themselves universals. However, a

theory of universals that have only a predicable nature is consistent with a rejection

of abstract objects and hence with nominalism in the narrow sense intended here.

Often, especially in the metaphysics as opposed to philosophy of mathemat-

ics literature, the term “nominalist” is applied to one who rejects the existence

of universals. Thus, according to this usage, many “nominalists” are proponents

of replacing universals by extensions/classes in providing a semantics of predica-

tion. This position is referred to as “class nominalism.” That sort of nominalist

accepts abstract objects, further confusing usage. In fact, the question of universals
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is mostly orthogonal to the question of the existence of abstract particulars. Al-

though I generally find acceptable only those theories of universals that treat them

as immanent, I will not argue for a general position on universals. I am just arguing

against the necessity of positing abstract particulars as referents of mathematical

terms, but there may be reasons for treating empirical properties differently than

structural properties and there is no paradox (known to me) in treating empirical

properties as both predicable and individual. I will take it as clear that “nominal-

ism” is herein intended in the narrow sense of rejecting abstract objects, and hence

consistent with at least some kinds of realism about universals.

A bit more clarification of terminology is in order. I use “singular term” and

“predicate term” (or just “predicate”) as linguistic vocabulary. They stand for lin-

guistic items. I use “object” and “individual” for what is indicated by singular

terms and “property” for what is indicated by a predicate term. The terms “par-

ticular” and “universal” indicate that there is a metaphysical theory of individuals

or properties, respectively, under consideration. The terms “entity” and “thing”

may be used schematically for entities of any ontological type. I will try to reserve

“concept” for its specifically Fregean theoretical usage, for an entity that is strictly

predicable: i.e., that cannot strictly speaking be the subject of a thought. Inevitably

there will be some slippage, particularly with “concept” which I may sometimes use

in its colloquial psychologistic sense, and I beg the reader’s indulgence and charity.

The main thing to keep in mind is that when I use “singular term” or “predicate” I

am talking about linguistic items. Also, often when I use “synthetic” and “analytic”

I mean to indicate the contrast between synthetic and analytic geometry, which is

far clearer than the quarreled over eponymous philosophical distinction.

Nominalism seems to imply anti-realism in the philosophy of mathematics. We
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should be careful, however, to distinguish anti-realism about mathematical ontology

from anti-realism about mathematical truth. As we shall see, the two positions may

come apart. Significantly, one may be an anti-realist about mathematical ontology

but a realist about mathematical truth if one accepts that the surface grammar

of mathematical assertions should not be taken as transparently indicating their

truth conditions, and hence should not be taken as transparently indicating onto-

logical commitment to objects corresponding to each evidently singular term. For

example, it has been proposed that many of the apparently singular thoughts of

mathematics, thoughts which are expressed in a grammar apparently indicating an

assertion about some particular objects, should be understood as disguised general

thoughts. In particular, consider the mathematical formula 7 + 5 = 12. In this for-

mula, the numerals appear as singular terms. Some have maintained that we should

understand the content of 7 + 5 = 12 by (∀X)(7Xs + 5Xs ≡ 12Xs) (or perhaps

(∀X)((7+5)Xs ≡ 12Xs), where the variable “X” ranges over sortal concepts. 1 Re-

calling the above note about what we mean herein by “nominalism”, the paraphrase

of 7 + 5 = 12 by (∀X)(7Xs + 5Xs = 12Xs) is a step in the nominalist direction.

The numerals in the latter formula no longer occur in subject position. Instead,

they occur as predicates of predicates, and depending on one’s account of the se-

mantics of such predicates carry no commitment to abstract objects. According

to Frege predicates of predicates indicate second-order concepts, which are entities

but not objects, and singularized grammatical forms of predicate expressions do not

denote concepts; hence, “the concept horse is not a concept” because “the concept

horse” is a singular term and hence denotes an object. Frege himself attempted a

1A sortal concept divides its domain into individuals, like *rabbit* but unlike *water* which
is a mass concept. “2 rabbits” makes sense, but “2 waters” does not, unless it is taken in context
to mean “2 glasses of water”; so *glass of water* is a sortal concept, but just *water* is not.
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logical theory of the objects denoted by singularized grammatical forms of predi-

cate expressions. However, we may also consider a theory that paraphrases away

such grammatical forms, according to which numbers just are concepts of concepts.

On such a view we, the most perspicuous grammar would rewrite arithmetic state-

ments in a form requiring the only appearance of mathematical terms as predicates

of predicates.

It has been maintained, however, that the project of paraphrase indicated

above distorts mathematics as practiced and experienced. Who are we to tell mathe-

maticians what they “really mean” by their expressions? The paleo-Fregean account

of numbers as second-level concepts (rather than objectual correlates thereof) was

not ultimately endorsed by Frege. Since, according to the Fregean view, second-

level concepts are not objects they cannot be the subject of a singular thought.

However, mathematical thoughts are taken for granted as singular thoughts, and

a phenomenological intuition bolsters the surface grammar. Hence, mathematics

must have a domain of objects which are its subject matter. So goes the line of

thinking that Frege himself endorsed. Accordingly, mathematics is a science in the

classical sense, a body of knowledge with a distinctive subject matter. For geometry,

Frege endorses the Kantian view that the objects of mathematical thought are given

in the synthetic a priori intuition of space, that the terms “point” and “line” desig-

nate objects constituting the spatial manifold of appearances. For arithmetic, Frege

breaks with the Kantian tradition identifying mathematical objects as constituents

of our forms of spatio-temporal intuition but crucially does not abandon the suppo-

sition that arithmetic is a science. Hence, his account of concept-correlates, objects

which are correlated to but not identified with concepts, provides the subject matter

of arithmetic.
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There will be much more to say about Frege’s analysis of the content of math-

ematics, but the present point is to emphasize that the conviction that mathematics

is a science, a conviction based on the reflectively apparent singularity of mathe-

matical thought, has been a major motivation for the rejection of paraphrase strate-

gies. It remains so. Much of the motivation arises from the “Who are we to tell

them what they think?” feeling that philosophers should be deferential to math-

ematicians. However, mathematicians are experts about mathematics, not about

thought, its form, and its content. If there are experts about thought, its form, and

its content they are philosophers, and philosophers have challenged the assumption

that the form of thought (i.e., whether it is singular or general) is transparent to a

thinker.2 Bertrand Russell’s contention that ordinary proper names are disguised

definite descriptions introduces the idea that the grammar of a thought’s expression

may disguise its form, but Russell seems to have held that upon proper reflection

the form will be evident (Russell, 1927). According to Gareth Evans, one may be

mistaken whether one is having a genuine singular thought, if one for instance un-

knowingly employs an empty term (Evans, 1982). I will argue below that one can

be mistaken whether one is having a singular or general thought, and that math-

ematical thought provides a paradigm instance of this illusion. Although I may

be mistaken about that, because after all philosophical truths about the form and

content of thought are notoriously elusive, no amount of specifically mathematical

expertise can settle the issue without further recourse to philosophical reflection

and speculation.

2Such expertise may require a broad knowledge base in cognitive science, linguistics, and logic
as well as interest specifically philosophical concerns, but it is characteristically philosophical for
one to apply such breadth to very general questions about thought. So we should not conclude that
the relevant experts are cognitive scientists, linguists, and logicians, even though we philosopher
acknowledge that their expertise is relevant.
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3.2 Field’s Program

Hartry Field is perhaps the most bullet-biting of contemporary nominalists.

He is mostly unwilling to enter into the business of paraphrase outlined above. For

that reason, when he rejects an ontology of abstract objects he concludes that the

propositions asserted by mathematicians are strictly false. Since there are no num-

bers, there are no prime numbers, and hence a prototypical mathematical assertion

like “there are infinitely many prime numbers” is false. To be sure, Field accepts “if

there are numbers then there are infinitely many prime numbers” as a consequence

of logic and definitions, but the antecedent is not a necessary truth. In a number

of places Field expresses the conviction that existence is a contingent matter, and

it is certainly true that there is no logical inconsistency in stating the possibility of

an empty universe.

Field forthrightly proceeds from his anti-realism about abstracta to anti-

realism about mathematical truth. This position presents a philosophical challenge.

After all, if mathematics is not true then why should it be so widely applicable. That

is, Field must explain the scientific application of what he takes to be false proposi-

tions of mathematics. One approach to this challenge is to adopt instrumentalism,

maintaining that the physical world just behaves as if the abstract objects of math-

ematics exist and mathematical theories are true. This approach, however, is not

amenable to one who, like Field, wishes to match his mathematical anti-realism with

some degree of scientific realism. That is, one may worry that once you “go instru-

mentalist” about mathematics it will be hard to put a stop to the instrumentalism.

Why not go a step further and hold that the empirical phenomena just behave as

if the physical objects of science exist and scientific theories are true? Is there a

principled limitation of instrumentalism to mathematical objects and mathematical
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theories?

So Field is not just an as if instrumentalist about abstract objects and theories

of them. Rather, he takes on the challenge of providing an explanation of the

instrumental value of mathematics in terms of the relationship between language

and inference and the intrinsic physical properties of things. In particular, he argues

that the extension of a language to include mathematical terms, which are non-

referring, is conservative with respect to the physical facts. The idea is, roughly,

that mathematics is a tool for making inferences about the physical world, but

that the physical facts are describable in terms of intrinsic physical properties.

Importantly, mathematics is supposed to be a conservative tool. It makes inference

easier, but it allows us to infer no more about the physical world than we could

infer without it.

As a demonstration, Field constructs a “nominalistically acceptable” formal

theory of Newtonian mechanics and shows that classical analysis is conservative with

respect to that system. The theory is synthetic, in the sense of synthetic geometry

as opposed to analytic in the sense of analytic geometry. To illustrate the strategy

Field offers a synthetic theory of mass density and gravitational fields and their

interactions, with a synthetic reconstruction of the Poisson equation describing the

relation between the fields (Field, 1982). The method builds on Hilbert’s axioma-

tization of geometry and, especially, Tarski’s work on synthetic axiomatizations of

geometrical spaces (Burgess, 1984). The task is as follows, with Lx indicating the

signature (primitive signs) of a language, Tx for a theory expressible in a given lan-

guage Lx, CTx for the closure under logical consequence of a theory Tx, and CTx∩Ly

for the sentences in CTx expressible in a language Ly
3:

3CTx
∩ Ly is a bit of an abuse of notation. It is an abuse of ∩ insofar as it’s not really the

intersection/overlap with the signature but rather with the sentences. Alternatively, it may be
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• nominalization Articulate a nominalized theory Tn in a language Ln.

• representation Show that the platonist theory Tp in language Lp are ex-

tensions of Tn and Ln, respectively.

• conservativeness Show that CTn includes CTp ∩ Ln.

The proofs of conservativeness in “Science Without Numbers” are “platonist proofs”

in the sense that they employed a model theoretic semantics assuming set theory.

The idea is that such proofs show, by the platonist’s own lights, that the platonist

vocabulary and theory conservatively extends the nominalist vocabulary. Respond-

ing to critics’ demands that the nominalist should have a nominalist proof of con-

servativeness Field has turned to a modest system of modal logic to capture the

logical consequence relation and has provided a proof of the conservativeness of set

theory that does not make use of the apparatus of model theory (Field, 1992)

Field sometimes describes his view as “fictionalism,” assuming an elimina-

tivist, as opposed to artifactualist, metaphysics of fictional entities. That is, he

takes the position that the sentences comprising a fiction are literally false, as op-

posed to true of fictional entities. Hence, the primary task of his philosophy of

mathematics has been cast as elaborating on the unique applicability of the math-

ematical fiction in the empirical sciences, as opposed to the tales of Tom Sawyer.

There are some objections to Field’s project that I find trifling. The axiom-

atization of synthetic mechanics and proof of the representation theorem require

a substantivalist, as opposed to relationalist, space-time manifold constituted by

uncountably many points and lines. It has been objected that such commitments

seen as an abuse of Ly, treating it as equivocal between the signature and sentences of a language.
In either case, it is a nice condensed notation for the restriction of the consequences of a theory
to some language.
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are not nominalistically acceptable. Recall, however, that nominalism, as we’re

understanding it, is just a minimal sort of anti-platonist attitude toward abstract

objects. That certainly leaves room for a very richly structured physical ontol-

ogy. What strikes me as important and interesting about Field’s effort is not its

fidelity to the strictures associated with the prior nominalist views, but the suc-

cessful demonstration of a representation theorem for a synthetic theory. It’s most

important that that theory is synthetic, that it describe the physical domain by its

intrinsic properties and relations. This is more interesting than whether it satisfies

some prior conception of nominalism that requires finitism, predicativism, severe

anti-modalism, etc.

Slightly less trifling is the suggestion that the demonstration project under-

taken by Field is not adequate to conclude general applicability of the method.

For instance, we are said to lack synthetic axiomatizations of general relativity or

quantum mechanics. Sometimes it is suggested that there are special obstacles to

this. The major obstacle appears to be whether what can be done for affine spaces

can be done for the variable curvature spaces of general relativity and the Hilbert

spaces of quantum mechanics. Progress on this technical project has been made

by Mark Belauger (Belauger, 1996), assuming propensities as metaphysical prim-

itives of synthetic quantum mechanics, and by Frank Arntzenius and Cian Dorr

(Dorr and Arntzenius, 2011), assuming tangent bundle substantivalism as a general

framework for synthetic field theories. I will not attempt to review the literature

supporting and criticizing these efforts or to offer an assessment, except that I find

the approach of Arntzenius and Dorr completely in harmony with what I under-

stand of differential topology. Still, the task of formulating synthetic theories and

then proving Tarskian representation theorems and deductive conservativeness is a
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going concern requiring expertise in philosophy, mathematics, and physics. Some

scientifically deferential philosophers have inferred from this that it is hopeless, but

the inference from the difficulty and incompleteness of an inquiry to its hopelessness

is distinctively unscientific.

A somewhat different objection is that, even if it is not hopeless, the task is

pointless. Some philosophers have maintained that we should have no reason to

believe a “nominalistically acceptable” theory even is one were available. Because

scientific inquiry, operating by its internal standards of theory acceptance, has pro-

duced non-nominalistically acceptable theories, those are the theories we ought to

believe regardless of the available alternatives. The general idea is that, just as we

believe in electrons because they are implied by our simplest, most empirically ac-

ceptable theories, so too are numbers. If theories that are ontologically leaner in the

sense of dispatching abstract objects were simpler in regards to the methodology

of science then we would find scientists, not philosophers, working on nominalist

reconstructions. This line of argument can be found in Burgess and Rosen’s critique

of nominalism (Burgess and Rosen, 1999).

I find this particular line of criticism unacceptable. Indeed, the notion that

a synthetic description of smooth manifold structure underlies the application of

differential equations to physical phenomena is prosaically suggested by Richard

W Sharpe in his textbook Differential geometry: Cartan’s generalization of Klein’s

program:

Smooth manifolds are sufficiently rigid to act as a support for the struc-
tures of differential geometry while at the same time being sufficiently
flexible to act as a model for many physical and mathematical circum-
stances that allow independent local perturbations. Perhaps this smooth
“substance” may be regarded as a mathematical model for Aristotle’s
materia prima or the Hindu prakriti (Sharpe, 1997).
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Sharpe is refreshingly speculative and that such metaphysical thoughts may occur

in the introduction to very seriously mathematical works should warn philosophers

off from insisting on an overly rigid demarcation of science from philosophy. Meta-

physical speculation is engendered by science and especially by reflection on the

relationships between sciences, and in the academy’s division of labor the philoso-

phers should not shy from their place. I would propose to understand Sharpe’s

provocative statement as indicating a role for a synthetic description of manifold

structure as a theory of the common support, an idea that is a bit subtler than what

many philosophers take to the the paradigm of mathematical description: viz., the

analytic description of a physical domain by direct mapping to number fields.

3.3 Holism and nominalization

Previously we dismissed the easy instrumentalist line that physical objects

just behave as if the abstract objects of mathematics exist as unmotivated for one

who wishes to restrict her instrumentalism to the philosophy of mathematics. Our

dismissal implied a sort of holistic outlook that I know wish to briefly scrutinize.

The supposition was that whatever we might have to say about the instrumental

relationship between mathematical theories and observation would transfer equally

to the relationship between scientific theories in general and observation. Such a

supposition may be supported by a commitment to confirmational holism, the view

that, in its boldest Quinean statement, it is the entirety of science that “faces the tri-

bunal of experience in any given experiment.” This initially implausible claim gains

some support from reflection on the fact that any individual theoretical hypothesis

may be held “come what may” (as they say) provided adequate adjustments are
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made to other auxiliary hypotheses. So, for example, according to the holist epicy-

cles, and along with them geocentrism, have not been refuted by the accumulation

of evidence in the age of the telescope. We just preferred to abandon geocentrism to

whatever changes to auxiliary hypotheses might have been required in preserving it.

In the context of holism, the empirical content of our web of beliefs is understood

to be distributed and hence it is more difficult to provide a motivated disparity

between mathematical and scientific theories.

Field’s nominalist project accepts a broadly Quinean framework. There is

a prior bias against excess metaphysical commitment that motivates a default

predilection to nominalism, an Ockhamite tendency Quine calls a “preference for

desert landscapes.” There is also a commitment to holism, which blocks the easy

path to nominalist reconstruction. Recall the worry that one intending to be a

realist about physical theories and an instrumentalist about mathematical theories

must motivate the disparity. We find in Quine:

[Sets are], from the point of view of a strictly physicalistic conceptual
scheme, as much a myth as that physicalist conceptual scheme itself is
for phenomenalism. This higher myth is a good and useful one, in turn,
in so far as it simplifies our account of physics. Since mathematics is an
integral part of this higher myth, the utility of this myth for physical
science is evident enough (Quine, 1948).

The tendency of this line of thinking is toward either an encompassing idealism,

treating all objects as myths of our world-making minds, or a plenitudinous realism,

accepting all ontological commitments as they are. The source of this is holism,

which disallows us to treat our prima facie ontological commitments disparately.

A formulation of a nominalistically acceptable physical theory purports to provide

for the permissibility of breaking parity. A nominalized theory is simpler not only

because it posits fewer kinds of entities but also because it requires no theory of the



35

relations between physical and abstract entities.

Both historical and formal studies of scientific confirmation have challenged

holism. First, the distinction between empirical and non-empirical content appears

to be accepted in scientific practice. Penelope Maddy has argued that the epis-

temic norms governing existential commitment in the physical sciences are distinct

from the norms governing surface existential commitment in mathematics. As an

illustrative example she has cited the Milligram oil drop experiments, which em-

ployed Einstein’s calculation of Brownian motion to confirm the atomic hypothesis

(Maddy, 2000). Elliott Sober has argued, from the standpoint of Bayesian confir-

mation theory, that observation cannot confirm mathematics because mathematics

does not favor any observation over any other (Sober, 1993). Even Quine eventu-

ally backed off his boldest statements of comprehensive holism accepting a more

modest holism, still rejecting the early positivist ideal of uniquely factorable empir-

ical content while acknowledging that considerably less comprehensive collections

of propositions than the whole of science may be considered empirically contentful,

and there is a general consensus among philosophers that the original examples

of auxiliary revisability attributed to Duhem do not support the most comprehen-

sive thesis of holism, nor do Bayesian reconstructions of historical scientific belief

revision (Howson and Urbach, 2006).

We won’t herein settle the deep issues in confirmation theory which bear on

the issue of holism and empirical content. The point at present is just that rejec-

tion of holism is a live option for the naturalized philosopher, and that if holism

is rejected there are a number of consequences that make the nominalist project

considerably easier. First, any case for Platonism based on empirical applications

loses much of its bite. Second, and consequently, the dialectical requirements for
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nominalism may get a bit easier. That is, if you give up holism the case for instru-

mentalist parity is undermined. For a non-holist or even a moderate holist, realism

about, say, the content of physics but not of pure set theory is just a metaphysical

reflection of epistemological differences in the norms and methods of confirmation.

The nominalist Chihara, for instance, doubts that set theorists can be said to be

discovering facts about mind-independent objects while sitting in their arm chairs,

a method of inquiry in sharp contrast to the search for the Higgs boson.

The rejection of holism may open an easier road for the nominalist. Rather

than fulfilling the requirements of nominalization, representation, and con-

servativeness, why not just formulate the nominalist language Ln then skip right

over the process of Tarskian reduction as required by Field’s program by just letting

Tn =df CTp ∩ Ln. To be sure, this way of specifying Tn differs significantly from

a specification by finitely presented axioms characterizing the intrinsic properties

thought to be physically fundamental. To be sure, this approach has an air of cheat-

ing to it, in violation of Russell’s Victorian admonishment to “honest toil” that has

weighed so heavily on the psyche of Anglophone mathematical philosophy.

Joseph Melia calls this the “trivial strategy” and finds it attractive but offers a

refinement (Melia, 2000). To motivate his refinement, Melia provides an example of

a mereological theory with infinite atoms Tm in Lm that is deductively complete but

has models in which no region is both infinite and coinfinite. Since Tm is complete

there must be no sentence of Lm expressing the property of a region being both

infinite and coinfinite. However, Melia notes that Tm may be extended to form Ts,

which adds ZF set theory and the (formal statements of) following mixed axioms:

(1) There are infinitely many atoms that are not sets, (2) There is a set containing all

and only the atoms, (3) All instances of mereological comprehension (i.e. for regions)
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expressible in Ls. In virtue of (3), every model of Ts has regions that are both

infinite and coinfinite. Yet, because Tm is a complete theory, Tz+∩Lm = Tm, which

has models including regions that are not infinite and coinfinite. Melia concludes:

It follows from the properties of Tm and Ts that a body of mathematics
can be added conservatively to a nominalist theory, and the resulting
theory can have consequences for the nominalist world which the initial
theory does not. For Ts just is Tm plus a body of mathematics. Yet, as
we have seen, Ts entails no new sentence in the nominalist vocabulary.

Field has conceded that mathematical entities do have some theoret-
ical utility, but he argues that their theoretical utility is quite unlike
the theoretical utility of concrete entities (Field 1980, Ch. 1) (Field,
1982). He argues that mathematics is conservative over theories while
are formulated nominalistically, and that therefore they add nothing to
the nominalist theory. The above result shows that this simply does not
follow. Ts is indeed conservative over Tm, but Ts has implications for
the nominalist part of the world which Tm simply does not have (Melia,
2000).4

Forgoing the trivial strategy of just letting Tn =df CTp ∩Ln, Melia then argues for a

“weaseling” strategy. To precisely characterize the position is a bit tricky. Melia has

the weasel asserting “Ts but there are no sets” to express the weaseling belief. This

is a contradictory assertion, but does not express a contradictory belief. It is meant

to express what can be said about the entities denoted by terms and predicates

of the signature of the mereological language Lm using Ls while withholding the

full commitments of the extended theory Ts. The weasel uses the expressiveness

of the expanded comprehension principle of Ts to characterize definable regions

but restricts ontological commitment to the mereological atoms and defined regions

of them. It will be convenient to write T p
n for the theory obtained by a weaseling

expressive expansion of a nominalist theory Tn by the resources of a platonist theory

Tp.

4Quote adapted to preferred notation.
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In a recent paper Chris Daly and Simon Langford object to the weak compre-

hension principle in the mereological language used to make the case against the

trivial strategy (Daly and Langford, 2011). They suggest a stronger mereological

comprehension principle allowing infinitary formulas and, thereby, obtain a more

expressive system whereby Melia’s criticism of the trivial strategy is blocked. It

is relevant to consider this dispute in light of what is intended by Field’s original

appeal to conservativeness. If conservativeness is defined formally in terms of first-

order logical consequence of axiomatized first-order theories then Melia’s example

can hardly be objected to in the way that Daly and Langford object to it (Melia,

2010). However, if the restriction to first-order consequence is weakened then the

expressiveness of logic itself is at issue. Logic may itself provide a strong compre-

hension principle. If one’s intent is to evaluate the conservativeness of a nominalist

theory Tn with respect to a platonist theory Tp but with a strong notion of conse-

quence already assumed, then the predicates definable by the logical comprehension

scheme are available in the definiens of regions definable by the mereological com-

prehension scheme. In this context, Daly and Langford’s inclusion of properties

defined by infinitary formulas in the comprehension principle for regions amounts

to an inclusion of infinitary formulas in logic. Additionally one may consider strong

2nd order comprehension to be included in logic based on either substitutional or

plural reference semantics.

We should make explicit the logical commitments in our symbol for the con-

sequences of a nominalist theory Tn. Let C0
Tn

indicate the first-order consequences,

C1
Tn

indicate the consequences in the expressive expansion to include infinitary sen-

tences, and C2
Tn

indicate second order consequences. Then:

• C0
Tn
⊂ C1

Tn
⊂ C2

Tn
for all platonist theories Tp expressively expanding Tn to
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form T p
n , and

• C2
Tn
≡ C0

T p
n

for some platonist theory Tp expressively expanding Tn to form

T p
n .

The substance of dispute between the trivialist and the weasel is what to make

of the situation that C2
Tn
≡ C0

T p
n
. The trivialist must hold that C2

Tn
≡ C0

T p
n

just

shows that the apparent expressiveness gained by T p
n over Tn is just a first-order

encoding of the expressiveness of logic itself when it is not restricted to first-order

consequence. The weasel will, on the other hand, press the objection that C2
Tn
≡ C0

T p
n

apparently implicates 2nd order logic in the first order ontological commitments of

Tp while maintaining that the implication may be deflated by reflecting that the

terms of Lp appear only in the definiens of predicates occurring in T p
n . That is,

the weasel takes the “set theory in disguise” objection to 2nd order logic but only

takes it so far before taking it back and ditching platonist commitments that occur

only incidentally in defining of nominalist terms. Of course, Daly and Langford’s

proposal does not immediately face the “set theory in disguise” objection if C1
Tm

is

not equivalent to C0
T z+
m

, but if not then C1
Tm

may turn out to be subject to the same

problems Melia identifies for C0
Tm

.

Melia is correct to conclude in his response to Daly and Langford the following:

It is a reasonable, respectable and well known nominalist strategy to
counter indispensability claims by looking for new languages that con-
tain new expressive resources which are capable of formulating theses
that were otherwise inexpressible. It is always an option for a nomi-
nalist to claim that the operators there-are-denumerably-many, there-
are-aleph-one-many, there-are-non-measurably-many, and the Fs form
a Mandelbrot-shaped region can be taken as nominalistically acceptable
primitives (with the appearance of mathematical words in these terms
being a linguistic accident, not reflective of any deep structure), and
nothing in my paper rules out, at a stroke, the legitimacy of new de-
vices. But this is not the strategy that I claimed failed to provide a
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quick and trivial fix to the problem of indispensability (Melia, 2010).

However he fails to note the tension that arises for his strategy. Truly, if the trivial

fix is restricted to first-order consequence of first-order theories then it is shown

to be a failed strategy. However, if the weaseling strategy is to be distinguished

from a not-so-restricted trivial strategy then the weasel has C2
Tn
≡ C0

T p
n

as prima

facie committing to Tp (e.g., in pressing a “set theory in disguise” objection to the

unrestricted trivialist with 2nd-order comprehension), but then weasels out of those

very disguised commitments. Why not just think that commitments you can weasel

out of are no commitments at all and reject that C2
Tn
≡ C0

T p
n

implicates second order

logic in platonist commitments in the first place?

The Tarskian reduction required by Field’s program starts with a mixed the-

ory, one mixing nominalist and platonist terms, articulates a nominalist language

Ln, provides an explicit theory Tn, then shows to that theory be represented in

and conservatively extended by a platonist theory Tp. It is articulated and explicit.

The trivial strategy, on the other hand, articulates the nominalist language Ln but

does not present the theory Tn by recursively specifiable axiomatization, so it is

articulated but the theory is only implicit. The weaseling strategy given by Melia

may be said to be neither articulated nor explicit. To be sure, in providing an

example to motivate his objections to conservativeness Melia articulates Lm and

Tm. However, the theory T s
m arrived at by the weasel strategy is not expressible

in Lm, since T s
m includes the truth that there are infinite regions that are not cofi-

nite. So the weasel strategy may be said to be unarticulated and inexplicit. Hence,

we have three versions of nominalist reduction: (1) articulated, explicit reduction,

(2) articulated, implicit reduction, and (3) unarticulated, implicit reduction. As we

have seen, between the implicit reductions the case for unarticulated reduction rests
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on an understanding of conservativeness that assumes weak comprehension in the

background logic against which logical consequence is defined.

I have argued that a significant motivation for providing an articulated, ex-

plicit reduction arises from accepting holism while wishing to argue for scientific

realism and mathematical anti-realism. According to holism generally stated the

ontological commitments of theoretical mathematics and theoretical physics are on

a par. Each provide a scheme for organizing empirical knowledge. The holist who

wishes to argue for scientific realism (presently restricting attention to unobserv-

able entities posited by physics) and mathematical anti-realism should not adopt

the trivial strategy of defining a nominalist physical theory from a platonist theory

by the CTp ∩Ln (resp., T p
n) because she will have no resources to break parity with

the trivially formed CTp ∩Lo (resp., T p
o ), where Lo is a language restricted to terms

for observables. However, if Tn may be given explicitly while To may not then the

path, by epistemic parity, to instrumentalism (or, more modestly) constructive em-

piricism may be blocked. On the other hand, if a prima facie case against holism is

granted then there is a prima facie reason to draw disparate philosophical lessons

from the easy road strategies.

It may yet be objected that, notwithstanding the trivialist/weaseling detour,

the easy roads to nominalism suffer from a general shortcoming of instrumentalist

philosophical accounts. For most of the tools of daily life we have not just a ca-

pacity to use the tool but also an understanding of how it works. In many cases,

concerning complex technology for instance, our understanding must extend beyond

the ready-to-hand, embodied understanding of tools like hammers and wrenches to

include descriptive/propositional knowledge of how the tool operates. This marks

a distinction between use of tools by non-human animals and humans. It may be
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objected that the easy-road nominalist still owes a theory of the instrument, and

Field’s program appears to provide something like that. It provides an account

of how mathematical language expands the representational resources of a strictly

physical theory over which it is still deductively conservative. And, while Field’s

demonstration project may be impressive, it is still true that we don’t have such

an account for all of science. In the extensive practice of mathematical applica-

tion there may be a general feel for the tool, but the easy road nominalist leaves

mathematics a complex and completely mysterious machine. To comprehend the

workings it is back to the hard road.

This leaky plank is a concern to all parties, however. That is, the explanatory

demand pressing the nominalist to provide synthetic theories may be analogously

pressed against the platonist. Just as the nominalist ought to give an account of how

mathematical language functions as an instrument of empirical science, so too must

the platonist give an account of how mathematical objects function as an instrument.

Both parties must give an account of application. But what sort of account can

the platonist give? A platonist may appeal to the semantic, or model theoretical

account of theories, according to which scientific theories are identified with the class

of their, typically set theoretical, models. The semantic view of theories contrasts

with the syntactic view, according to which theories are sets of sentences. The

platonist will surely favor the semantical theory of theories. The platonist’s easy

road is to say that explanation stops with the statement of an analytic theory. By

parity of explanatory demands, the platonist is obliged to unwind just how asserting

formal modeling relations the between domain of application and the abstract model

informs us of intrinsic properties of the domain. The platonist who does provide an

analysis of the modeling relation implicit in analytic theories does so by giving an
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account connecting the structure of intrinsic properties and relations of the domain

to the structural properties of the set model. So the platonist has a hard road too,

and full Tarskian reductions should be of broad philosophical interest.

3.4 In defense of paraphrase

It is true that mathematical reasoning frequently takes a singular form. That

is, it takes the form of intentional thought directed at an object, at least if the gram-

mar of its expression is indicative of the logical form of the underlying thought. For

instance, the simple equalities of arithmetic appear to express facts about numbers.

Notable theorems, such as “π is a transcendental number” also seem to express not

general but singular facts, facts about an object.

On the other hand, mathematics is, with equal or greater frequency, explicitly

quantificational. The singular expression of the propositions of pure number theory

or set theory gives way to more plausibly general/hypothetical expression in abstract

algebra and topology. In topology, the modal structuralist interpretation seems

entirely natural. In a typical development of a first course in topology the student

will learn separation axioms that define properties. Central results are explicitly in

quantificational/hypothetical form, and modality is clearly contextually indicated

insofar as nobody considers the theorems to assert material conditionals.

Consider the following definition and theorem taken from Michael Gemignani’s

Elementary Topology.

Definition of T3 and regular spaces. A space X, τ is said to be T3 if given any

closed subset F of X and any point x of X which is not in F , there are open sets U

and V such that x ∈ U , F ⊂ V , and U ∩ V = ∅. A space X, τ is said to be regular

if X is both T3 and T1 (Gemignani, 1990).
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Regularity is preserved by products.. Suppose Y =
∏

i∈I Xi is the product

space of the (countable) family of non-empty spaces 〈Xi, τi〉i∈I . Then Y is regular

if and only if each 〈Xi, τi is a regular space (Gemignani, 1990).

Note that the language of set theory is used in the point/set development

of topology. Hence, it may be insisted, this example illustrates dependency on

singular referents after all. In the basic development of topology, standard in in-

troductory graduate courses, the point/set framework is an important convention,

enabling application of a Boolean algebra to the mereological parts of space, which

are represented as sets. Topologists are interested in algebras of sets because the

parts of space form a Boolean lattice and so do the subsets of a space. In standard

treatments applications of topology to the development of analysis, real numbers

are the points of a space on which the open subsets form a topology generated by

the open intervals. Oddly, if points are parts of space and so are subsets then the

parthood relation is the subset relation; points then are singletons, not urelements.

Nothing of much mathematical significance turns on it, but in the set theoretical

development of the standard topology on R singletons of reals are the points of

the topological space considered, not real numbers themselves. The distinction be-

tween membership and subset presents certain complications for point/set topology,

a major area of progress in topological research in the later 20th century has the

point/set framework falling away from lattice theoretical approach of locale theory.

Intuitively, locale theory is an algebra of mereological relations between parts of

space and is applicable even to spaces considered as comprised entirely of regions

that are themselves extended. Locale theory calls into question the centrality of the

point-set approach to topology, with which most philosophers are familiar, in favor

of an algebraic lattice of regions, and this may have implications that are yet to be
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widely appreciated.

For a prototypical theorem of abstract algebra consider the following result in

group theory from Thomas Hungerford’s Algebra:

Cyclic Groups Theorem. Every infinite cyclic group is isomorphic to the additive

group Z and every infinite cyclic group of orderm is isomorphic to the additive group

Zm (Hungerford, 1996).

That the term Z is used in algebra may seem to implicate Platonism, but

here it is used in such a way as to express a general fact about cyclic groups. A

proof of this theorem relies only on the formal properties encoded in the rules in-

ternally governing the use of integer signs. That is, it depends in no way on what

Z are; it is employed schematically. Following a suggestion of Richard Pettigrew’s,

the schematic use invites interpretation of Z as a parametric constant, at least in

this context: i.e., it is only an apparent constant, akin to a term introduced by

existential instantiation in natural deduction (Pettigrew, 2008). To the extent that

the introduction of parametric constants requires an antecedent existence (or pos-

sible existence) claim, we may avail ourselves of the lean ontological commitments

of game formalism if we wish, just by inventing a formal system that itself wit-

nesses the desired structure, or we may appeal to mental constructions. We may

also consider paraphrasing in such a way as to eliminate the schematic form of the

theorem, and with it the apparent dependence on constant introduction, in favor

of a universally quantified modal form, yielding: Necessarily, any two infinite cyclic

groups are isomorphic.

From an algebraic point of view, the ontological commitments of pure set the-

ory and number theory are ancillary to the general structural relations identified by

mathematical theorems. Hence, paraphrase may be seen as offering a paraphrase
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or analysis of colloquial mathematical usage that is motivated by a distinctively

mathematical perspective. There remains the reflectively evident singularity of set

theoretical and number theoretical thought. My own view is that this appearance

of singularity is a persistent illusion fostered by the use of rule-governed computa-

tional systems that, under the game formalist interpretation, witness the structures

they are used schematically to represent. However, the general use of numerals

in so many diverse settings indicates a dimension of meaning that undercuts the

presumption of fixed formal referents. Wittgenstein’s consideration of a grocer’s

counting may suggest an understanding of numeration that is more schematic than

referential (Wittgenstein, 2001). When paraphrased reconstructions successfully

translate schematic use of parametric constants into quantified forms, they may

succeed in revealing an aspect or condition of mathematics’ meaning-in-use which

is not clearly transparent to reflection and is subject to subtle distortion.

Let us emphasize again that a motivation for taking Field’s hard road to

nominalism stems from epistemological holism. The famous Quine-Putnam indis-

pensability argument contends that we ought to believe in abstract objects because

quantification over abstracta is indispensable from our empirically confirmed scien-

tific theories. Hence, the warrant for believing mathematics, considered as a body

of facts about abstract objects, derives from empirical evidence, according to the

view. Although the indispensability argument has been a topic of much philosoph-

ical discussion it is worthwhile, especially if we are to be naturalists who take our

lead from scientific methods as practiced, to note how strange a claim it is that

the evidence for mathematical theories consists principally in their (alleged) indis-

pensability from well formulated scientific theories. That is, after all, not at all

the sort of argument one finds in mathematics journals. If the sort of philosophical
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support that one can provide for believing Platonism as a philosophical account of

mathematics does depend on empirical support derived from applied mathematics,

then what we ought to conclude is that the sorts of arguments one finds in mathe-

matics journals do not justify belief in platonic particulars and we should search for

reformulations treating singular terms as parametric or schematic to reveal what

propositions may be justified by mathematical activity.
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CHAPTER 4

LOGIC, STRUCTURE, METHOD

4.1 History of mathematics

I have concluded that perhaps we should, after all, turn to paraphrase to

express the sorts of propositions that may be supported by the sorts of arguments

one does find in mathematics texts and journals. In chapter 6 we will consider views

that paraphrase mathematics into modal logical formulas. Before that, however, I

would like to lay some groundwork for the plausibility of paraphrase strategies

by reflecting on the history of mathematics that has given rise to two significant

programs, logicism and structuralism, in the philosophy of mathematics.

Some may object that the history of mathematics cannot be directly rele-

vant to the philosophy of mathematics. That is, one may view the primary task

of philosophy of mathematics to be providing an account of the security of some

timeless foundation of mathematics, or at least to identify which principles are fun-

damental. Certainly, this is a legitimate project for logicians superior to myself.

I must, however, content myself to a more modest project for which genetic con-

siderations are relevant. The views about logical structure that I find attractive

for resolving the tension between epistemology and semantics may be motivated by

consideration of the historical development of modern mathematical methodologies.

Not entirely coincidentally, by somewhat more historicist means I arrive at views

very close to those arrived at by Russell through more foundationally motivated

philosophical analysis. Indeed, my “historicism” does not reflect a commitment to

historical considerations as more fundamental or relevant than foundational consid-

erations. Rather, it is an attempt to defend foundationally motivated views against
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the criticism that they are inadequate to the history or practice of mathematics by

showing how those views arise from mathematical methodology. To be sure, I will

also call into question the relevance of certain foundational motivations based on

historical considerations, but this is because I see historicism and foundationalism

as mutually informing in the philosophy of mathematics, not because I take one to

be prior to the other.

In his stimulating, though on many points disagreeable, essay “The Pernicious

Influence of Mathematics on Philosophy” Gian-Carlo Rota, a mathematician and

philosopher known for work in combinatorial mathematics and artificial intelligence,

wrote:

Every mathematician will agree that an important step in solving a
mathematical problem, perhaps the most important step, consists in
analyzing other attempts, either attempts that have been previously car-
ried out or else attempts that one imagines might have been previously
carried out, with a view to discovering how such “previous” attempts
were misled. In short, no mathematician will ever dream of attacking
a substantial mathematical problem without first becoming acquainted
with the history of the problem, whether the real history or an ideal
history that a gifted mathematician might reconstruct. The solution of
a mathematical problem goes hand-in-hand with the discovery of the
inadequacy of previous attempts, with the enthusiasm that sees through
and does away with layers of irrelevancies inherited from the past, which
cloud the real nature of the problem. In philosophical terms, a mathe-
matician who solves a problem cannot avoid facing up to the historicity
of the problem. Mathematics is nothing if not a historical subject par
excellence (Rota, 1991).

It is not entirely clear to me how constructing an imagined history of failed attempts

to solve a problem differs from just beginning work on the problem by thinking

about what might or might not lead to a solution. That is, I’m not clear how

allowing what Rota calls “ideal history” into the picture permits him to conclude

that mathematics is a historical subject (par excellence, no less!). Nevertheless,
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Rota’s reflections strike me as a useful corrective to the mathematical philosopher

who, taking mathematics as a quintessentially ahistorical subject, hopes to proceed

similarly in philosophy. Perhaps in both mathematics and philosophy, or even in

any intellectual endeavor, we might proceed ahistorically if we were ideal reasoners.

However, we are less than ideal and I have found that my efforts to gain philosoph-

ical insight into the nature of mathematics, as a human endeavor, benefit greatly

from reflection on the temporally situated development of human mathematical

knowledge and understanding.1 Our goal then is to survey some of the method-

ological developments leading up to contemporary mathematics and to see what

philosophical insights are appropriate to glean from them.

4.2 Methodological logicism

Until about the 15th century, the Aristotelian finitistic standard of rigor stood

as a barrier to progress toward the calculus. Wider acceptance of infinitary reason-

ing, particularly the crucial acceptance of limits of infinite sequences, grew gradually

from the practical successes of medieval mystic mathematicians. Ad hoc solutions of

slope and area problems gradually lead to increased codification of solution meth-

ods. Finally, Newton and Leibniz independently discovered the inverse relationship

between differentiation and integration, a development placing apparently ad hoc

methods in a unified framework which we now call “discovering” the calculus. How-

ever, the relaxation of rigor that lead up to this discovery left things in a bit of

disarray. From the empiricist epistemological standpoint the appeal to infinitesi-

mals used to justify algebraic methods for taking derivatives appeared suspect, and

1Speaking of “the development of mathematics” in this sense should not be taken to imply,
by itself, anti-realism in the sense that there is no sense of mathematical discovery as opposed
to invention; there are many aspects of mathematical practice, from specific notations to broad
methodological trends that may clearly be seen to develop over time.
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the discovery of calculus the notions of function and continuity remained to be

generalized and clarified.2

Logical analysis in mathematics emerged in the 19th century partly from the

effort to put calculus on a firm foundation and partly from a drive toward proving

more general results and provide more general definitions. I wish to emphasize these

as two distinct impulses, although their influence is surely mixed together due to

the fact that in striving for rigor by filling in proof gaps one may uncover the key to

increased generality. A paradigmatic case is the intermediate value theorem, along

the way to proving the fundamental theorem of calculus. The intermediate value

theorem is a lemma appealed to in the course of proving the fundamental theorem

and needed to be articulated to provide a gapless proof, but in articulating the

intermediate value theorem it was required to develop a deeper understanding of

the topological properties of the continuum, which contributed to the subsequent

development of general topology.

The fundamental theorem of calculus states precisely the inverse relationship

between integration and differentiation:

Fundamental Theorem of Calculus. If a real valued function F (x) on an interval

[a, b] is defined by: F (x) =
∫ x

a
f(t)dt. Then F ′(x) = f(x).

That integrals may be solved by finding antiderivatives is a corollary of this

theorem. To prove this theorem one needs the intermediate value theorem.

Intermediate Value Theorem. Given any continuous real valued function f :

[a, b]→ R such that f(a) < u < f(b) or f(b) < u < f(a), there exists x ∈ [a, b] such

that f(x) = u.

2See Boyer’s “The history of the calculus and its conceptual development” (Boyer, 1949),
which is very good even if some of the way things are framed should be rethought in light of the
consistency of infinitesimal analysis.
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That is, pick any two points in the plane. Divide the plane into two parts by

any line so that each point is in a different part. You cannot define a continuous

function from one point to the other that doesn’t cross the line.

But what does “continuous” mean? High school calculus teachers may give

informal definitions: a line that can be drawn without picking up your pen and

without corners is continuous. Or one may appeal to an experienced spatial sense

of smoothness and unbrokenness. Standardized testing has operationally identified

a cognitive capacity we may call “spatial sense.” This capacity may be grounded

either empirically or transcendentally and its expression may be more or less ge-

netically governed, but it has been singled out operationally well enough to speak

sensibly of.

The theorem is intuitively obvious in the sense that it accords strongly with

spatial sense. A Kantian proponent of spatial intuition may have held that the

intermediate value theorem cannot be epistemically justified beyond its obviousness.

What’s to prove? Bolzano (1817) and Cauchy (1821) provided proofs that relied

on logical definitions of continuity rather than intuitive obviousness. To call these

definitions “logic” may give rise to verbal disputes. What I mean to suggest by

calling them logic definitions is that attention should be given and homage paid

to the crucial importance of the order of quantifiers in the definition. It all comes

down to the pattern of overlapping scopes, and nothing could be more canonically
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logical than the structure implied by such patters. To be sure, neither Bolzano

nor Cauchy used modern logical notation. They nevertheless were thinking about

a logical structure characterizing an intuitive spatial property, and the step they

took lead them to the familiar ε − δ definition of continuity, clearly displaying the

pattern of quantification, eventually given by Weierstraß.3

Continuity. A function f : [a, b] ⊆ R → R is said to be continuous at x when

(∀ε ∈ R)(∃δ ∈ R)(|x− y| < δ ⊃ |f(x)− f(y)| < ε)

Note that if we substitute into this definition Q for R we won’t be able to

prove the intermediate value theorem because, speaking loosely, we can make the

function jump at the irrational gaps, so proofs of the intermediate value theorem

tacitly assumed the topological completeness of R. The axiomatization of analysis

resulted from the filling in the gaps in such proofs by filling in the gaps in Q.

Importantly, a byproduct of this activity is a deeper understanding of topological

structure obtained by the required distinction between density and completeness.

Logical analysis seemingly free calculus from the requirement that spatial con-

cepts like continuity be founded exclusively in intuition. Spatial concepts may be

primitively instantiated in spatial sense, but they are capable of independent logi-

cal definition. Alberto Coffa presents the history of the idea of continuity and its

relationship to logic in terms of skepticism about Kantian forms of intuition, which

he uses to frame the work of Frege, writing that “Bolzano and his followers maneu-

vered pure intuition out of analysis and into arithmetic where Frege finally finished

it off” (Coffa, 1982). Coffa’s perspective is complicated by consideration of Cauchy’s

motivations and the differing conceptions of rigor that may have been motivating

3See (Grabiner, 1983) for a more history, but also (Barany).
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methodological logicism. Close historical readings reveal that Cauchy was no arith-

metizer, and indeed regarded geometry as a standard of rigor, yet his contributions

to the foundation of analysis were more influential than Bolzano’s (Barany). While

Coffa emphasizes skepticism about the reliability of geometric intuition, historically

matters were more subtle, for geometry was for many the corrective to skeptical

worries about the meaningfulness of arithmetic and algebraic formalisms, precisely

because it presented a determinate content to the mind. In this context definitions of

continuity and continuum may be seen as a logical vindication of intuitive concepts

of geometry in the face with formalistic attacks, such as examples of continuous

functions on non-dense domains that violate the intermediate value theorem. It is

well to keep in mind that the history of mathematics very often reveals more dissent

and more subtlety than many philosophers allow in the neat narratives they devise.

In a subsequent section I will be discussing Hilbert’s contribution to the foun-

dation of geometry and his dispute with Frege over the foundations of geometry, but

it serves present purposes to pause briefly to discuss Coffa’s placement of Hilbert.

As Coffa has it, Hilbert’s treatment of axioms as constitutive definitions of geo-

metric concepts, an approach shared by Poincaré, marks a coup dé gras against

Kantian intuition. Yet Hilbert choses Kant for the epigraph: “All human knowl-

edge begins with intuitions, then passes to concepts, and ends with ideas.” While

Constance Reid regards this choice “as a graceful tribute to Kant, whose a priori

view of the nature of the geometrical axioms had been discredited by the new view

of the axiomatic method” (Reid, 1996), but it is possible to read Hilbert as re-

garding axiomatization, which since Euclid marked the geometric ideal of rigor, as

defining concepts in the service of vindicating geometric intuition, not of banishing

it. Ironically, though neither finds the patience for the other to realize it, Hilbert
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and Frege may not have been too far apart in their overall outlook, each closer to

Cauchy and Riemann than to Bolzano and Weirstrauß in their outlook on geometry.

Indeed, making matters worse for the view of logicism as emerging through a

retreat from intuition, Frege’s outlook on geometry itself preserves a place for intu-

ition in mathematics. Coffa refers to “Frege’s fly swatter” as the slayer of Kantian

intuition, yet Frege remains broadly Kantian concerning geometry. Clearly Coffa’s

narrative of skeptical retreat from intuition is an over-simplification. From the point

of view of Coffa and many others, methodological logicism has been seen as pointing

toward a displacement of the generally Kantian philosophical framework in which

19th century scientific research took place, particularly in Germany. Hence the goals

of methodological logicism are distinctively philosophical. Alternatively, however,

logical analysis may be seen as complementing the Kantian point of view. The

formalist objections to the intuitive correctness of the Intermediate Value Theorem

are answered by articulating logical definitions of topological properties presented

in the intuited manifold, definitions which provide conditions of intuited validity.

That is, the Kantian may think that the intuitive concepts are in perfectly good

order and independent of logic. What the logical analysis provided, from this point

of view, is an account of how to relate those concepts to the number systems. That

is, the intuitive notion of continuity should only be applied to those number systems

which form a continuum.

Whether the anti-Kantian narrative surrounding the methodological and math-

ematical development of logical analysis is accepted or rejected, however, the method

of logical analysis can readily be seen to provide articulation of a concept. That

is, what was implicit in intuitive spatial reasoning becomes explicit and generally

applicable in analytic derivations and proofs that justify them. Furthermore, logical
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analysis lead to fruitful generalization of concepts and theorems. Methodological

logicism should therefor be seen as independent of philosophical logicism, as it is ex-

ercised in both arithmetic and geometric contexts. The logicism of Frege depended

on a specifically philosophical thesis that the subject matter of arithmetic is logical.

Frege’s logicism goes beyond methodological logicism because it not only uses the

tools of logical analysis to produce “gapless proofs” and “fruitful definitions” but

makes the further claim to have identified a specifically logical subject matter as

the subject matter of arithmetic. Hence Frege’s logicism, in particular, depends on

a claim that the exercise of methodological logicism does not commit one to: viz.,

the existence of logical objects.

So far I have been emphasizing the role of methodological logicism in the

foundations of analysis: i.e., in stating axioms and deriving proofs of fundamental

theorems, such as the Fundamental Theorem of Calculus and its crucial lemma the

Intermediate Value Theorem. It bears emphasizing, and is sometimes overlooked

by philosophers, that the primary concerns of mathematicians are often not founda-

tional. Mathematicians are often only interested in foundational matters as a means

to solving problems. Furthermore, many of the problems that drive mathematical

research are problems in applied mathematics. The rigorization of analysis, indeed,

followed on its development and application in physics in the 18th century as much

from a wish to understand and extend applied techniques as from the more epis-

temic concern of providing justification. As I wish to emphasize this point because

the question of the content of mathematical assertions is of central philosophical

concern, and because I do think that a historical/genetic outlook can inform that

concern.

Typical narratives of the development of the foundations of analysis in the
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19th century emphasize an epistemological revolt against Kant’s transcendental

aesthetic, initiated by concerns that spatial and temporal intuition are deficient

sources of knowledge then reinforced by the discovery of the consistency of non-

standard axiomatic systems of geometry. It is surely correct that Bolzano, Cauchy,

and Weierstrauß all were concerned to establish calculus according to standards of

rigor and that abuses of appeal to spatial intuition are characteristically unrigor-

ous. However, throughout the development of calculus there were geometric and

arithmetic conceptions of rigor in competition and speaking of the modern standard

of rigor is just rhetorical claims-staking. The very project of seeking to prove the

parallel postulate suggests not an elimination of spatial sense from the foundation

of geometry but rather a refinement of its scope and proper application, and this

holds whether a transcendental or empirical theory of spatial sense is adopted.

Appeal to any epistemic source may be abused. A principle safeguard again

abuse may be inter-subjective accountability, and it may be thought that the appeal

to synthetic a priori sources violates this safeguard. However, good transcendental

arguments are not simple appeals to private, subjective intuitions but rather to inter-

subjectively invariant conditions for knowledge. Hence, in a Kantian framework of

concept acquisition spatial and temporal intuition are every bit as inter-subjectively

accountable as logic. For a contemporary empiricist, adopting a Lockean framework

of concept acquisition, the parallel postulate is either a candidate for convention or

subject to a posteriori modality. If the Lockean slate is blank and also of finite

extension, then to consider finite segments as representations of infinite lines we

must either stipulate that parallel, non-intersecting segments may be indefinitely

extended so as not to intersect to obtain Euclidean geometry as an empirically

based conventional construct or we must take finite segments to establish reference
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to infinite physical lines even as incomplete representations. In the latter case, the

modal status of “parallel lines do not intersect” may be he same as that of “water is

H20.” Whether given a Kantian or Lockean cognitive basing, however, spatial sense

need not be rejected for not settling the parallel postulate. What it does settle, it

settles, and the point of the geometric standard of rigor, in the deductive tradition

going to Euclid, is just to deduce what spatial sense does not settle from what it

does. A geometric standard of rigor may drive methodological logicism without en-

gaging with an encompassing skepticism concerning spatial sense, including Kantian

intuition.

I do not doubt, however, that epistemological concerns significantly moti-

vated the logical analysis of proofs that is characteristic of what I have been calling

methodological logicism. I do wish to emphasize that this may be a limiting perspec-

tive. The techniques of applied mathematics were not all settled by the discovery of

the inverse relationship between integration and differentiation. It is true that this

discovery unified many ad hoc techniques of previous mathematicians and scientists

but there remained, and still remain, limitations in computing specific integrals

and solving specific differential equations. To illustrate this point, consider that

Weierstrauß’ objection to the use of Dirichlet’s principle is not only in the service of

rigor but also in the service of a specific program for complex analysis. Moreover,

the later efforts by Hilbert and his students to formulate an acceptable version of

Dirichlet’s Principle and prove the Jordan Curve Theorem cannot be simply chalked

up to a desire for rigor for its own sake, or else they may have simply adopted Weier-

strauß’ approach. Rather, they hoped to vindicate what they took to be a more

intuitive and conceptually motivated approach; rigor itself was not the motivator

but lack of rigor was a defeater to be overcome. Furthermore logical analysis of
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proofs could serve the end of rigor for its own sake, or even of answering objections,

but also may serve the end of logically analyzing and articulating the intuitive

concepts of informal mathematical reasoning. Constance Reid’s biography Hilbert

contains numerous anecdotes supporting the contention that increasing the depth of

mathematical understanding and expansiveness of mathematical results were driv-

ing motivations for Hilbert (Reid, 1996). I think this reflects a broader current in

19th century mathematics that may be overlooked in the narratives focused on the

modern standard of rigor that fail to distinguish arithmetic and algebraic ideals of

rigor from geometrical ideals. Demands for rigor, then as now, must be answered,

but many mathematicians, then as now, did not harbor doubts about informal rea-

soning and methods; many were, then as now, more interested in logical analysis

to the extent that it could contribute to the breadth and depth of mathematical

understanding.

Indeed, there is even an interpretation of Frege according to which his moti-

vations for adopting philosophical logicism are not exclusively epistemological and

are not exclusively motivated by a rejection of the transcendental aesthetic as a

foundation of knowledge about space and time as contents of human experience.4

Accordingly, there is nothing epistemically deficient about our synthetic intuition

of space as a continuous manifold, in the sense that there is no doubt about the

synthetic a priori that is not based on a skepticism so severe that it would un-

dermine any logical analysis that might purport to assuage it. The deficiency is

rather that the epistemologically reliable synthetic sources of knowledge obscure

logical dependencies between propositions, which when revealed may provide depth

4See Paul Benacerraf’s “Frege: The Last Logicist” and William Demopoulos’ “Frege and the
Rigorization of Analysis” for a development of this interpretation and Joan Weiner’s “The Philoso-
pher Behind the Last Logicist” for moderate dissent (Benacerraf, 1981; Demopoulos, 1994; Weiner,
1984).
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of understanding and lead to discovery of new theorems and techniques. On this in-

terpretation, Frege’s initial motivation for logicism is not to shore up the foundations

of mathematical knowledge, but rather to demonstrate the generality of arithmetic

through its reduction to logical propositions with the purpose of extending and ex-

plaining the application of analytic techniques. That is, on this interpretation we

would have Frege not especially worried to make geometrical knowledge that has

been based on intuition more secure, but rather to provide resources for the expan-

sion of geometrical knowledge by methods not founded on spatial intuition. In this

case, the Kantian foundation of arithmetic in the transcendental aesthetic is not

problematic because it provides a source of knowledge that we can doubt but rather

because it confines arithmetic to a specific subject matter and leaves its conditions

of applicability to other domains obscure.

4.3 Methodological structuralism

Methodological structuralism emerged alongside methodological logicism but

in response to different pressures in the development of mathematics, pressures

which are in many ways of more immediate concern to the mathematicians. That is,

while methodological logicism contributes to the conceptual development of math-

ematics and advances the epistemic justification of mathematics, it is well to keep

in mind that mathematicians are, in a large number of cases, problem solvers. The

structural method in mathematics first arose from concerns specifically tied to clas-

sical mathematical problem solving. The structural method helped to solve specific

problems, although the notion of abstract structure that developed gained general

significance. In contrast logical methods discussed in the previous section, on the

other hand, aimed to justify and understand existing solutions to problems.
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To illustrate the point, recall the familiar quadratic formula. Any given

quadratic equation ax2+bx+c = 0 has the solutions
−b−

√
b2 − 4ac

2a
and
−b+

√
b2 − 4ac

2a
.

This general formula for finding roots of quadratics may be derived as follows:

ax2 + bx+ c = 0

x2 +
b

a
x = − c

a

x2 +
b

a
x+ (

b

2a
)2 = − c

a
+ (

b

2a
)2

(x+
b

2a
)2 = − c

a
+

b2

4a2

x+
b

2a
=

√
− c
a

+
b2

4a2

x =

√
− c
a

+
b2

4a2
− b

2a

x =

√
−4ac+ b2

4ac2
− b

2a

x =
−b±

√
b2 − 4ac

2a

One obtains an “algebraic” expression; i.e., an expression in terms of algebraic op-

erations (including roots) on the coefficients: i.e., a “solution by radicals”. One

can see that the formula derives from a general algorithm for obtaining a factorable

quadratic equation. Note that the question whether there is a general formula ex-

pressing roots by radicals (i.e., algebraically) corresponds exactly to the question

whether there is an algorithm for providing a solution to polynomial equations of a

given degree because the operations on coefficients in the expression of the formula

correspond exactly to the steps in the algorithm. One moves constant terms to the

right hand side of of the equality, then “completes the square” on the left hand side

by adding the required term to both sides of the equation to preserve the equality.

Although cubics (as well as quartics) do have algebraic solutions, there is no

exactly analogous process of “completing the cubic”. In the special case of cubics
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ax3 + bx2 + cx+ d = 0 a similar process can be obtained if ∃n : 3n =
b

a
∧ 3n2 =

c

a
.5

In this case:

ax3 + bx2 + cx+ d = 0

x3 +
b

a
x2 +

c

a
x =

d

a

x3 + 3nx2 + 3n2x =
d

a

x3 + 3nx2 + 3n2x+ n3 =
d

a
+ n3

(x+ n)3 =
d

a
+ n3

x = 3

√
d

a
+ n3 − n

It would be nice to have an algorithm for polynomials in general, but the method of

completing the square does not obviously generalize. Special relationships between

coefficients may be assumed for any degree polynomial to obtain an algebraic so-

lution. In the 16th and 17th centuries it was shown how to do so to find general

algebraic solutions to cubic and quartic polynomials, using clever substitutions and

churning through monstrous algebraic manipulations. In the 18th century, in an ef-

fort to solve the quintic, Lagrange gave an exhaustive analysis of the methods used

to solve cubic and quartic that provided crucial insight into the general analysis of

polynomial equations. It was then shown, first by Ruffini then in a more refined

proof by Abel, that no general solution to quintic polynomials could be derived

and finally, using fundamental insights provided by Galois, a general method for

determining whether a polynomial is solvable by radicals was obtained in the 19th

century.

A key insight into the question of general, strictly algebraic solutions to poly-

nomials originates from formulas attributed to Vieta. It is possible to express the

5One may, of course, consider this condition as a property of triples 〈a, b, c〉 and may also, of
course, introduce predicate terms in one’s language for such properties.
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coefficient of a polynomial as a function of roots. That is, if you’re given a list of

roots it is possible to find the polynomial of which they are roots. We’ll consider

the quadratic case, given r1 and r2 as roots, but first lets introduce a little stan-

dardization. First, we only need to consider polynomials with leading coefficient of

1, because every polynomial is equivalent to one of these just by dividing through

by the leading coefficient. Second, let’s standardize coefficients by writing the (non-

leading) terms of a polynomial as aix
n−i. This lets us have polynomials written

like this: P (x) = xn + a1x
n−1 + a2x

n−2 + ... + an. Now, in general, the quadratic

x2 + a1x+ a2 with roots r1 and r2 is found by computing coefficients:

(x− r1)(x− r2) =

x2 − (r1 + r2)x+ r1r2

So that a1 = −(r1 + r2) and a2 = r1r2.

For a cubic x3 + a1x
2 + a2x+ a3 with roots r1 and r2 and r3:

(x− r1)(x− r2)(x− r3) =

x3 − (r1 + r2 + r3)x
2 + (r1r2 + r2r3)x− r1r2r3

So that a1 = −(r1 + r2 + r3), a2 = r1r2 + r2r3 and a3 = −r1r2r3.

Given the roots of a polynomial, there is a simple, general formula providing the

coefficients. If you see the pattern you’ve got the idea and need not get too bogged

down in the indexing of the general statement for polynomials of higher degree.

However, it is worth noting the importance of using good notation to be able to

express things generally.6 In general given n roots ri we have

a1 = (−1)1
∑

1≤i≤n ri

6I think this is worth noting as an example of a mathematical technique using numerals, but
not presupposing a theory of numbers. In my view such techniques are justified in practice not in
theory and this is important to keep in mind in assessing justifications of theoretical foundations
for mathematics. Contrary to criticisms mounted by Poincaré, a logicist may use numeral indexing
techniques freely without falling into circularity.
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a2 = (−1)2
∑

1≤i<j≤n rirj

...

an = r1r2...rn.

Generally expressed, am = (−1)m
∑

1≤i1<...<im≤n ri1ri2 ...rim : i.e., the mth coefficient

is the sum of all products of m distinct (up to multiplicity) roots. This falls directly

out of the rules for expanding polynomials from their factorized expression.

Vieta’s formulas provide a perspective on the question of solvability by radi-

cals. We can now ask whether a polynomial P (x) has an algebraic solution by asking

whether P (x) is generated from Vieta’s formulas by algebraically expressible num-

bers. Of course, this is generally not easier to do than getting a general algebraic

solution in the first place. However, reflection on the formal properties of Vieta’s

formula’s points toward a general theoretical perspective that bears on the question

of the existence of solutions by radicals. Vieta’s formulas are symmetric functions.

That is, if the variables are permuted in the expression of any formula then, by the

commutativity of multiplication and addition, the original (i.e., pre-permutation)

formula may be recovered. There is an immediate relationship between symmet-

ric functions and permutation groups, which are also called “symmetric groups”

because a symmetric function just is a function whose value is the same for all per-

mutations of a sequence of arguments. For example, in the formula x1+x2 swapping

x1 and x2 gives x2 + x1 which by the commutativity of addition is equivalent to the

original formula. In the general case the formula for the mth coefficient of an n de-

gree polynomial is a symmetric function. Notice that the symmetry here is formal,

in the sense that it can be demonstrated by formal operations. It is obvious that a

function providing coefficients of a polynomial provided its roots must be symmetric

because we should get the same polynomial no matter what order we list the roots
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in, and the formal symmetry of the Vieta formula verifies this obvious fact.

The precise statement of the central theorem of Galois Theory requires more

definitions and lemmas than are possible to present in this context.7 The general

idea draws from the relationship between solutions to polynomials, symmetric func-

tions, and symmetric groups. The results pertain an extension E of an algebraic

field F , which may be denoted E/F . Given an algebraic field F an extension of

the field may be provided by adding to it roots of a given polynomial (or polynomi-

als). For example, the irrational numbers ±
√

2 can be added to Q to form a field

extension, which may be denoted Q
√

2/Q. The Galois group of a field extension is

the automorphisms of E/F that leave F fixed. A central result of Galois Theory is

that there is a one to one correspondence between subgroups of the Galois group of

E/F and the fields intermediate between F and E/F . Importantly, we can derive

the Galois group of a field extension by the roots of a polynomial P (x) without

having an algebraic expression of those roots in terms of the field from which the

coefficients of the polynomial are taken. The result that Galois obtained showed

that a polynomial has a “solution by radicals” only if its Galois group is solvable

(a property of groups I will not define). In general, we can get information about

how E/F may be built up from F by obtaining information about the intermediate

fields from algebraic properties of the Galois group.

Galois Theory very clearly illustrates the Hilbertian idea that mathematics

develops by “internal necessity,” showing how the analysis of well-defined problems

and solution algorithms leads to more general structural insight:

We are not speaking here of arbitrariness in any sense. Mathematics
is not like a game whose tasks are determined by arbitrarily stipulated

7See Melvin Kiernan’s “The Development of Galois Theory from Lagrange to Artin” for more
detail on both the history and the mathematics and Thomas Hungerford’s Algebra for a textbook
presentation (Kiernan, 1971; Hungerford, 1996).
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rules. Rather, it is a conceptual system possessing internal necessity
that can only be so and by no means otherwise (Hilbert, 1919).

The concept of a group arose naturally in the study of field extensions and solutions

to polynomial equations. The necessity attached to this concept may be said to be

internal to mathematics because of its connection to a concrete, characteristically

mathematical problem solving task. Although Hilbert contrasts his conception of

mathematics as a conceptual system with formalism, the case of Galois Theory helps

to establish a relationship between a game formalist understanding of mathematical

problem solving and the conceptualization of mathematics in terms of logical struc-

ture. It should be noted, as Hilbert did note in his first response to Frege’s letters on

Hilbert’s Grundlagen der Geometrie, that the rules governing the well-definedness

of the problem solving games giving rise to pure mathematics are not arbitrary, but

arise initially by the connection of pure mathematics to its applications (Frege and

Hilbert, 1980a).

In the case of Galois Theory, the problem of finding solutions by radicals looks,

in isolation, like a sort of game. The higher mathematics of algebraic structure,

relating field extensions to group theory emerges from an analysis of the game

itself. In isolation, again, the inquiry whether there is a general method for solving

quintic polynomials by radicals that drove much mathematical research in the 19th

century and gave rise to the axiomatic definition of algebraic structures like groups

and fields may appear to be analogous to an inquiry whether there is a winning

strategy in tic-tac-toe. The point of this analogy is not, however, that polynomial

equations are meaningless signs or that the rules for arithmetic operations governing

the “game” of finding solutions by radicals are arbitrary. Rather, as the subject of

mathematical inquiry they may be treated as such; it makes no difference to the
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results of abstract algebra that a given polynomial equation is contentfully applied,

for example, in mechanics. Relative to a restricted problem-solving context, the

polynomial equations themselves are the content (in the sense that the problem of

finding solutions by radicals is the subject of inquiry), not the medium for expressing

content. This much at least, philosophical formalism gets right about mathematics.

As Hilbert surmised:

As we saw, the abstract operation with general concept-scopes and con-
tents has proved to be inadequate and uncertain. Instead, as a pre-
condition for the application of logical inference and for the activation
of logical operations, something must already be given in representa-
tion [in der Vorstellung]: certain extra-logical discrete objects, which
exist intuitively as immediate experience before all thought. If logical
inference is to be certain, then these objects must be capable of being
completely surveyed in all their parts, and their presentation, their dif-
ference, their succession (like the objects themselves) must exist for us
immediately, intuitively, as something that cannot be reduced to some-
thing else. Because I take this standpoint, the objects [Gegenstände] of
number a theory are for me —in direct contrast to Dedekind and Frege
—the signs themselves, whose shape [Gestalt] can be generally and cer-
tainly recognized by usindependently of space and time, of the special
conditions of the production of the sign, and of insignificant differences
in the finished product [footnote: In this sense, I call signs of the same
shape the same sign for short.] The solid philosophical attitude that I
think is required for the grounding of pure mathematics —as well as for
all scientific thought, understanding, and communication —is this: In
the beginning was the sign.8

Notably the concern is not only that operation with “general concept-scopes” is

uncertain but also that it is inadequate. Hilbert’s hope of reducing uncertainty

in conceptual mathematics by appealing to axiomatic proof theory developed on

a finitistic basis cannot be achieved in the strictest sense. It has happened that

the extension of mathematics, through axiomatic definitions of concepts, through a

broadly proof-theoretic program has required principles of transfinite induction on

8Quoted from Hilbert’s 1922 “The new grounding of mathematics” in (Zach, 2001).
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logical formulas that undermine the original finitist vision. To my mind, because

transfinite induction projects from a finitist basis of directly grasped symbolic forms,

it maintains epistemic advantages over versions Platonism that employ primitive and

unexplained epistemic principles in response to the access problem. Whether epis-

temic advantages are gained by adopting a modified version of Hilbert’s program

has been widely debated. However, the notion of adequacy invoked has not been as

fully analyzed by philosophers. In the present context I wish to emphasize that the

proper place of formalism in the philosophy of mathematics is in adequately char-

acterizing the content of mathematical reasoning concerned with concrete problems

that are well-defined only when stated within rule-governed systems of symbolic

forms.

The goal of Hilbert’s program, as it pertains to mathematical concepts, was

not to eliminate the conceptual in favor of the formal, but rather to give a formalist

grounding for the introduction of the concepts occurring in the structural theorems

of pure mathematics. Recall the discussion of mathematical freedom and the role

of existence theorems in chapter 2. In that context, I was contrasting mathematical

from empirical standards for accepting existence claims. The idea originating in

Dedekind was that for mathematics consistency was the norm governing the posit-

ing of mathematical entities. In Dedekind’s treatment of the real numbers, the

consistency of an axiomatic description of a continuum of points endowed with an

algebraic structure was established by appeal to the natural numbers and certain

principles of construction. However, artifacts from the construction of proxy real

numbers by Dedekind cuts need not be imputed to the real numbers themselves, as

free creations of the mind. That is, the point of Dedekind cuts is not to identify the

real numbers but to prove that they are possible and hence permissible to create.
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However, the set theoretical principles employed in the sorts of constructions that

may be appealed to in Dedekind’s approach to consistency introduce circularity into

Dedekind’s approach. Hilbert’s program sought to provide, through proof theory,

a way to prove consistency indirectly, without exhibiting or constructing a model.

This modifies Dedekind’s approach, but in a way that serves to ground rather than

abandon the idea of conceptual mathematics. Accordingly the concepts secured by

consistency proofs may be reliably employed in the analysis and solution of con-

crete mathematical problems. Hilbert’s formalism was in the service of conceptual

mathematics based on axiomatically described structures, not in opposition to it.

To demonstrate the importance of conceptual/structural mathematics in pro-

viding general theorems applicable to diverse concrete problems, consider that the

structural theorems of abstract algebra provided the resources for proving the im-

possibility of some of the oldest problems in constructive geometry: trisecting the

angle and squaring the circle. In the context of Galois theory these theorems pertain

to proving that some polynomial equations cannot be solved by radicals, but they

also provide insight into classical geometric problems. There is a broad analogy

between the two sorts of problems. To get a solution by radicals we must obtain

the roots of a polynomial by performing arithmetic operations on the coefficients.

To get a solution by ruler and compass we must obtain the figure by performing

ruler and compass operations from the given figures. A more direct, though some-

what inexact, idea of the correspondence between the two sorts of problems can

be obtained by thinking of rational numbers as relations of magnitudes and arith-

metic operations as constructions of magnitudes from some that are given. It is

sometimes said that the fact that π is transcendental (i.e., not the solution of any

polynomial with rational coefficients) explains the impossibility of constructing a
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square with area identical to that of a given circle. For, the problem amounts to

letting the radius of the given circle be 1 and constructing a magnitude of length π,

which shall be the base of the square to be constructed. Historically, it was shown

that the circle cannot be squared by showing first that it cannot be squared if (and

only if) π is transcendental before showing that π is transcendental. However, I

do not see that there is a clear direction of explanation reflected in the historical

order. Given the biconditional, one may just as well say that the impossibility of

squaring the circle explains why π is transcendental. Indeed, it strikes me that both

the impossibility of expressing π as the root of a polynomial in rational coefficients

and the impossibility of squaring the circle receive a common conceptual/structural

explanation in abstract algebraic terms.

I have been emphasizing that the structural methodology, which provides ax-

iomatic definitions of structural predicates like “is a group”, “is a solvable group”,

“is a field”, etc. arose partly from an inquiry driven by a specific, formally isolat-

able, problem solving inquiry. This is an incomplete story. For, algebraic structures

also found application outside of the strictly algebraic setting in which Galois theory

emerged. In the work of Sophus Lie and Felix Klein group theory was applied to the

study of differential equations and geometry (respectively). Lie’s study of algebraic

groups that also possess the differentiable structure of a manifold was a conscious

effort to extend Galois Theory from the study of polynomial equations and their

solutions to the study of differential equations and their solutions. Felix Klein’s ap-

plication of group theory in his Erlangen program was an effort to classify geometric

spaces using groups of symmetry transformations preserving invariants character-

izing each kind of space. In each case, the conceptualization of structure provides

for a deeper understanding of the logical relations between the concrete symbolic
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forms of abstract algebra and the intuitive spatial forms of geometry. I understand

the relevant relations to be logical because they employ concepts defined by the

axiomatic method and I consider such definitions to be part of logic. This shows

how logic, understood broadly, contributes to the structural analysis of breadth

and depth in mathematics, combining methodological logicism and methodological

structuralism.

4.4 Two methods

We may contrast methodological logicism from methodological structuralism

by the fact that the structural analysis of concrete problems like solutions by rad-

icals and figure constructions is a predecessor to providing any proof at all of the

relevant possibility/impossibility results. There are no proofs with gaps to be filled,

and indeed the concern for rigor takes a back seat to the desire for a general struc-

tural analysis providing theorems that give insight into the concrete problems. Of

course, there is overlap and ambiguity in speaking broadly about methodological

trends. Certainly, the clarification of properties of density and topological com-

pleteness obtained by logical analysis, filling the gaps in proofs, provides definitions

of structural predicates in the service of methodological logicism and the aim of ar-

ticulating the presuppositions and conditions for the validity of informal proofs. So

the structuralist and logicist trends may be seen as broadly distinct but overlapping

and reinforcing.

Methodological logicism does not arise from viewing logic as the subject matter

of mathematics, not by taking logical objects to be the subject matter or otherwise.

In fact, methodological logicism is consistent with the classical conception of logic

as without its own characteristic content. Likewise methodological structuralism
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is not motivated by a metaphysics of structures. In the case of Galois theory it

may even be applied from a formalist standpoint, viewing solutions by radicals as

a strictly formal task.9 We may seek for more rigorous reasoning about any given

subject matter, and indeed the development of calculus based on the ε−δ definition

of limit, and derived definitions of continuity, convergence, etc. does not require in

any way that the subject matter be physical, geometric, numerical, platonic, mental

or anything else. The analysis of rigor, we may say, is separate from the analysis of

content. As we shall see in our discussion of Frege, however, the analysis of rigor

in proof by mathematical induction did lead him to the thesis that the content of

arithmetic was the same as the content of logic, but this is a philosophical thesis

arising out of but also distinct from the internal development of modern standards

of rigor in mathematics.

Neither methodological logicism nor methodological structuralism is a philo-

sophical or foundational program. They are methods employed by mathematicians,

which lead to the discovery of mathematical concepts and axioms. The practitioner

of methodological logicism examines purported proofs of mathematical propositions

and identify logical gaps in reasoning. The gaps are then filled by identifying an

assumed, but yet not universally applicable, property of the subject of the proof

or an assumed general principle (axiom) that is required for the proof to be valid.

Methodological structuralism seeks a general conceptualization of structure that

can be applied to diverse concrete problems. There is a minimal philosophical in-

sight to be had from examining these methodologies: viz., that many significant

mathematical concepts are non-arbitrary in the sense that they are forced upon us

by the gaps in proofs which they are employed to fill or the problem solving and

9This is not to endorse formalism but to make a point about the applicability of methodological
structuralism.
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categorization tasks for which they are introduced. This illustrates a significant

sort of realism about mathematical concepts, a minimal sense of non-arbitrariness.

Philosophical logicism may be developed in two distinct directions, one which takes

the non-arbitrariness of mathematical concepts as evidence for strong realism (i.e.,

entity realism/Platonism). Quine characterized logicism as committed to strong

realism:

Realism, as the word is used in connection with the medieval controversy
over universals, is the Platonic doctrine that universals or abstract en-
tities have being independent of the mind; the mind may discover but
cannot create them. Logicism, represented by Frege, Russell, White-
head, Church, and Carnap, condones the use of bound variables ranging
over abstract entities known and unknown, specifiable and unspecifiable,
indiscriminately (Quine, 1948).

That methodological logicism and structuralism characterize a non-arbitrary con-

ceptual development of mathematics may be taken as evidence for concept “discov-

ery” over concept “creation.” As indicated above, the notion of limit employed in

the foundations of analysis is non-arbitrary. Likewise, the conceptual development

of abstract group theory and field theory arises non-arbitrarily from the problem

of finding solutions to polynomial equations. Hence, we might say that the con-

cepts of continuity, group, field, etc. are discovered as non-arbitrary products of

the respective methodologies. However, new means of representing such concepts

may nevertheless be invented, either as a result or in the process of discovery. For

example, Cayley diagrams or word presentations of groups are a kind of invention.

So are the Arabic numerals. A philosophical resolution of the discovery/creation

antinomy may be had by reflection on the feedback processes between the invention

of concrete symbolic forms and the discovery of abstract concepts, and an adequate

philosophy of mathematics may employ the resources of logicism, formalism, and
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intuitionism in characterizing those processes.

To clarify, when one says a “concept is discovered” one seems to say that some

entity (a concept) is somehow revealed or apprehended. But this will not express

the minimal sense of non-arbitrariness I am seeking to isolate as grounding the sort

of realism I take to be implied in the methodological developments described in this

chapter. In relating the issue to the discovery/invention dichotomy I am merely

adopting the idiom “discovering a concept” for the non-arbitrary acquisition of new

capacity for meaningful application of new predicates. For now let us remain fo-

cused on the minimal sense in which mathematical concepts are discovered through

methodological logicism or structuralism and the question whether this is evidence

for Platonism. It seems to me that there is an alternative direction of philosophical

development to be considered. Rather than providing evidence for Platonism, the

non-arbitrariness of concept formation shows how minimal realism is consistent with

nominalism. That is, when we see how concepts are defined in mathematics we are

shown how those concepts may be non-arbitrary without requiring commitment to

universals corresponding to said concepts. Furthermore, the logical, as opposed to

ostensive, definition of such concepts shows how they may be real, in the sense of

objective and non-arbitrary, while not corresponding to an entity.

Provided the discovery of new mathematical concepts (or rather the non-

arbitrary introduction of new predicates), there remains an open question whether

anything exists (whether an entity is denoted by the predicate). To illustrate,

consider the concept of a hyperbolic geometry. One reaction to the discovery that

the parallel postulate was independent of the rest of Euclid’s axioms, and hence

the discovery of a new concept, was to distinguish mathematical spaces as abstract

existents from physical (or phenomenal) space as a concrete existent. Another
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reaction is to simply take on the new language introduced in light of the discovery of

the consistency of non-Euclidean axiomatizations as providing structural description

of a logical possibility, not as describing actual abstract spaces but as characterizing

the possible structure that any given concrete manifold may or may not possess.

Here again we may make the present point while remaining neutral on the question

whether concrete manifolds are presented empirically or transcendentally.

From this latter point of view, whether an instance exists is an open question

subsequent to the logical/axiomatic characterization of a structure. To illustrate

with another example, consider the definition of an infinite domain as one for which

there is a bijection to a proper part. We may adopt this as a definition of the pred-

icate “is infinite” without committing ourselves to the further empirical claim that

there are any infinite domains. The emergence of the general axiomatic approach to

mathematics gives rise to the possibility that in mathematics, to put it somewhat

prosaically, essence (i.e., axiomatization) precedes existence. This point of view is

adopted by Hilbert and it is the primary motivation for his program for the founda-

tions of mathematics. Hilbert, following Dedekind, appears to accept postulational

freedom according to which we may freely create mathematical objects constrained

only by the consistency of axiomatic characterization. It is possible to be a more

restrained essentialist by regarding consistency as a condition of mind-independent

possibility not postulational existence, but the present point I wish to emphasize

is that the emergence of axiomatics made possible a radical change of perspective

from existentialism, for which the consistency of axioms was a trivial result of the

existence of the system of which they were self-evident truths, to essentialism, for

which axiomatizations do not assert truths at all but rather characterize concepts

(or, minimally, introduce predicates); this strikes me as the most philosophically
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profound development arising from methodological logicism and structuralism.
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CHAPTER 5

LOGIC, STRUCTURE, PHILOSOPHY

We turn now to more explicitly philosophical programs arising from the method-

ological developments of 19th century mathematics. In my study of Frege’s philos-

ophy of mathematics I have sought to not simply retread the well worn paths of

other commentators. For this reason, I begin with a discussion of the origins of his

philosophy of mathematics in his approach to geometry. One of the fundamental

problems of 19th century mathematics was the relationship between algebra and

geometry. Algebra seems an abstract symbolic game, while geometry seems imbued

with intuitive content. Why is the game so productive of contentual results? To

answer this question Frege’s early work sought attach geometric meaning to the

symbols of the game. This approach to algebra extends an approach to assigning

reference to geometric terms themselves, and helps to make plain the relationship

between Frege’s understanding of the application of algebra and logic in the con-

text of a Kantian philosophy of geometry, and introduces the motivation for and

execution of his logicist philosophy of arithmetic. In opposition to formalism, Frege

sought to establish arithmetic as a contentful science of logical objects introduced

as concept-correlates. I find that, besides being inconsistent and hence epistemo-

logically flawed in its technical development, this view of logic and its relation to

arithmetic is inadequate for characterizing the relationship between algebra and ge-

ometry, but that the failure of Frege’s ontologically reductive logicism should not
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displace logicism, construed more broadly, from the philosophy of mathematics.

5.1 Frege: geometry, representation, and refer-
ence

In recent years there’s been new focus on the mathematical context in which

Frege’s logical and philosophical ideas emerged, with particularly insightful and

important papers on influences on Frege’s approach to projective geometry hav-

ing been published by Mark Wilson (Wilson, 2006) and Jamie Tappenden (Tap-

penden, 2005). Before he was a logicist, Frege was a geometer, one particularly

interested in the application of geometry to complex analysis, and a Kantian. A

basic mathematical/philosophical problem arising from this combination was, for

Frege, the introduction of ideal elements to projective geometry. This was the topic

of Frege’s dissertation On a Geometric Representation of Imaginary Forms in the

Plane (Frege, 1984). The dissertation begins with an analogy between “points at

infinity” and ”Imaginary Forms”.

Frege offers an account of “points at infinity”. The notion, he says, is techni-

cally nonsense since it “would be the end of a distance which had no end.” How-

ever, Frege follows by saying that we may identify points at infinity with “what

is common to all parallels”: viz., their direction. Here, those familiar with the

Fregean tradition in philosophy of mathematics will immediately recognize a pat-

tern of explanation. The puzzling “points at infinity” are identified with directions.

Directions are are not given immediately in intuition, but are mediately accessed

by definitions mentioning objects and relations that are intuitionally given: i.e., the

equivalence relation of parallelism between lines. By calling directions “points”, two

ways of describing a line are unified. The statement “a line is determined by a point

and a direction” becomes a special case of “a line is determined by two points”: viz.
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the case where one point lies “at infinity” (Frege, 1984). Notably, however, our

mediate, definitional access to directions/points at infinity under-determines what

sort of thing a direction is. Is it, as I have it from the (admittedly small) sample of

modern geometry texts I looked at, just a set of parallel lines? Or is it something,

to speak loosely, more ontologically continuous with a intuited geometrical point?

The abuse of language “point at infinity” is quite expedient. Kepler, in his

work on conic sections, assimilates the parabola to the ellipse by:

In the parabola one focus lies within the curve, while the other is repre-
sented either outside or within it on its axis at an infinite distance from
the first, so far that a line drawn from that blind focus [at either end]
to every point of the curve is parallel to the axis.1.

Kepler is inspired, not confused. If conic sections are taken as a function of ec-

centricity (fixing the main focus and the directrix) the second focus of the ellipse

approaches infinity as the eccentricity approaches 1. At 1 the section is a parabola.

Past eccentricity 1 the section is a hyperbola and the second focus is found on the

opposite side of the directrix from the major focus. The notion of the second fo-

cus of the parabola being located “at infinity” is naturally suggested. Indeed, it

is inviting to “picture” the second focus racing toward infinity as the eccentricity

approaches 1, then passing through infinity to the opposite side of the plane.

To take Frege’s dissertation point of view to say that the second focus of a

conic section is “at infinity” is perhaps just to say that, strictly speaking, the conic

becomes asymptotic between two parallel lines, identifying the point at infinity with

the shared direction of the asymptotes. But, again, what is the direction? If it is

the set of parallel lines the sequence of second foci, all of them spatial points, seem

to converge by motion through space to a non-spatial object. This is the ontological

1Quoted from Davis ”Systems of Conics in Kepler’s Work” (Davis, 1975)
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discontinuity alluded to above. The matter may be nicely illustrated by consider-

ing the Riemann sphere as a representation of the extended real plane (extended

to include points at infinity). On the Riemann sphere, points at infinity are rep-

resented by the apex of the sphere, and sequences convergent to infinity converge

to the apex of the Riemann sphere in the inverse projective image. This endows

the representation with ontological continuity. Convergent sequences of points on

the sphere converge to points on the sphere, not to something of a fundamentally

different logical type (e.g., a set of lines). Frege does not directly attempt to resolve

in his dissertation, which I think remains influential throughout his later thought:

Is the Keplerian (unpicturable) “picture” birthed by Caesarian?

Whatever Kepler birthed, Desargues brought to maturity.2 Desargues sys-

tematically employed points at infinity in geometric reasoning. In addition to thor-

oughly adopting the approach to conics–the use of points at infinity–glimpsed at by

Kepler, Desargues also did important work in the study of involutions. An invo-

lution is a mapping or function that is its own inverse. Negation is an involution.

Reflection about an axis is an involution, but translation is not; 180 degree rota-

tion is the only involutive rotation. Consider the group of permutations of three

elements: the permutations i (the identity), (12), (13) and (23) are involutions, but

(123) and (132) are not.3

One interest of Desargues was involutive homographies. A homography is

a mapping such that the image of each circle is a circle. Lines are considered

2Poncelet, too, is often mentioned as a major developer of this approach
3Think of this group as all the ways of re-ordering three items: e.g., a stack of three cards. You

could leave them all in the same place: i (the identity permutation). You could switch the first
and second item and leave the third in place: (12). Or switch only the first and third. Or only the
second and third. To perform the any one of the aforementioned permutations consecutively is
the same as the identity permutation. However, (123) composed with itself is equivalent to (132).
In general, in Abelian (i.e., commutative) groups the involutive elements form a subgroup: if e1
and e2 are involutive elements of and Abelian group then e1.e2.e1.e2 = e1.e1.e2.e2 = i.i = i.
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generalized circles, passing through infinity. For example, the lines (in Cartesian

coordinates) y = mx + b are mapped to the line y = -mx - b by reflection about the

y axis, which similarly mirrors other circles and is an involutive homography. Note

that reflection about any line in the plane is similarly an involutive homography.

Another important example: involution through the unit circle maps points at

infinity to the origin and each point at distance d from the origin along a ray r to

the point at distance 1/d along the same ray. For a flavor of the results Desargues

obtained, consider:

Desargues Involution Theorem. Let l be a line and A,B,C,D points. The

ordered pairs {〈X, Y 〉|∃E s.t.X, Y ∈ l ∩ conic(A,B,C,D,E)} define an involution

on l.

In the real plane, there are some pairs of non-intersecting lines and conic

sections. This geometric fact corresponds to the lack of solutions to the system

comprised of the real equations for some pairs of line and circle. However, in the

complex plane solutions exist for all such pairs of equations, which yield complex

conjugate expressions. We should be clear. As a real line is defined by two real

variables, a complex “line” is defined by two complex variables. So, a figure in the

complex plane is in C2 not in C (which is sometimes thought planar because it is

homeomorphic to R2). Notably, the points where circles and lines in R2 intersect

are also identifiable as the points of the line that are fixed on the involution defined

by the circle. This fixed point property is inherited by the generalized notion of

intersection of complex linear and circular forms. Still, how are we to understand,

geometrically, the analytically soluble intersection of, intuitively, non-intersecting

figures?
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These topics provide motivation for Frege’s dissertation. The title On a Ge-

ometric Representation of Complex Forms in the Plane is reasonably summative.

Pairs of complex numbers are intuitably represented as lines between parallel planes

labeled “real” and “imaginary”, each of which have an intuitive planar geometry. A

complex line determines a mapping relation between the real and imaginary planes.

By a subtle manipulation of the coordinates for the real and imaginary planes, Frege

obtains from the mapping relation a representation of the complex line by pairs of

“guide lines” located above and below the real and imaginary planes. This gen-

eral strategy is repeated for complex figures beside lines and the study of complex

lines by their representative guide lines is generalized to a study of complex forms

by guide surfaces. Basically, complex numbers are represented as ordered pairs,

so that a binary complex geometrical form is represented as a quaternary (non-

intuitable) real form, which is in turn represented by its ternary (intuitable) real

projective image, which image can be made nicely graspable by clever coordinate

transformations.

To work through the finer points of Frege’s approach to constructing represen-

tations of complex forms would be toilsome, and I will not attempt to summarize

beyond the admittedly inadequate account just given. Here are some “big picture”

matters worth emphasizing in service of understanding Frege’s concerns upon read-

ing Hilbert’s GdG. First, one of Frege’s intellectually formative struggles was with

the meanings of terms introduced into projective geometry, terms that while facil-

itating inference seem to lack even a sense when taken literally. Second, Frege’s

approach to this problem is to represent the complex plane, and figures in it, in

three dimensional intuition, representing a complex point by a line intersecting
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parallel planes. In this representation, non-intuitive complex relations are repre-

sented as intuitive relations between guide lines. Finally, it is the existence of such

representations that licenses the application of intuitive geometry to analytically

defined complex forms: i.e. the relationship between algebra and geometry is only

understood through honest toil.

I have been emphasizing that in attempting to give the reference of terms like

“point at infinity” there is a choice to be made. Mark Wilson has made clear that

Frege is provided with options by his contemporaries: viz., von Stadt and Plücker

(Wilson, 2006). The approach taken by von Stadt is to identify equivalence classes

as the objects reference to which is secured by what are now called abstraction

principles. The example of present concern would be the identification of points at

infinity (i.e., directions, as Frege prefers) with collections of parallel lines. Plücker’s

alternative approach is more in line with the hope for what I have called “ontological

continuity”.

As Wilson has nicely recounted, Plücker uses homogeneous coordinates to

introduce names of points and lines. The incidence relation may be treated as

a binary truth-valued function taking points and lines as arguments. Evaluating

just one argument yields either a unary function taking points or a unary function

taking lines as values. Within this broader context, Wilson argues, expressions

in homogeneous coordinates for points at infinity take on a meaning. Wilson’s

contention is that this is the proper context for Frege’s famed context principle,

that Frege endorses Plücker, and that Frege’s later reticence over adopting BLV is

to be understood as motivated by a hope for something more Plücker-like and less

von Stadt-like.

I have not found Wilson entirely convincing in his contention that Frege
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endorses Plücker’s approach. Here is an alternative point of view that I think

Wilson has not ruled out. Rather than holding that the context principle estab-

lishes Plücker-like referents for points at infinity and imaginary points in geometri-

cal reasoning, the context principle merely plays the role of showing how identity

statements involving such objects restate equivalent judgments about intuitionally

present objects. For example, the context principle gets us to look at the geomet-

ric context to understand that lines A and B “share a point at infinity” or “have

identical directions” expresses the same judgment as that they “are parallel”. The

context principle does not, however, settle whether points at infinity/directions are

to be understood in the manner of Plücker or of von Stadt. On Wilson’s under-

standing the context principle provides a way out of the Caesar objection in the

context of geometry but not in the context of arithmetic. I understand the context

principle to supply, in each context, the path to understanding an identity statement

as (sometimes) expressing the same judgment as an attribution of an equivalence

relation, but is no help in settling reference in any context; it is a guide to stating

abstraction principles but not to establishing the referents of the terms flanking the

identity on the left-hand-side.

Furthering this point, I concur with Thomas Ricketts’ point about “logical

segmentation”:

To have defined “the direction of line a” so as to give content to genuine
equations of the form

The direction of line a = the direction of line b,

is to recognize

The direction of line a = X

as a genuine concept-designating predicate, which in turn must yield
a true or false sentence, when its argument position is filled by any
designating proper name, “Julius Caesar” for example. Our definition,
however, gives no content to this predicate. I noted that on Frege’s
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view of logical segmentation, definitions must respect logical categories
by in effect introducing ’new’ names as abbreviations for compound
names. The definiendum is then a logically unstructured unit. At best,
the proposed definition of direction defines only a simple, unstructured
two place predicate, “the direction of a = the direction of b”, and so
does not yield an analysis of the concept direction. In the resolutely
nontechnical setting of Grundlagen, this is the point of Frege’s Julius
Caesar objection, period (Ricketts, 2010).

Frege’s concerns thus arise within an investigation of the relationship between ex-

pedient uses of language and definite geometric thoughts. This concern leads to the

analysis of thought and language that defines his career as a logician and philoso-

pher. Immediately in his dissertation, for example, equality of “points at infinity” is

analyzed by equality of direction and equality of direction is analyzed by the equiv-

alence relation of parallelism. This analysis of the language of projective geometry

suggests a related analysis of number through the familiar Hume’s principle.

5.2 Frege: logic and analysis

As we have seen in a previous section, the rigorization of analysis was a major

project of 19th century mathematics from which the logicist method of examining

proofs for gaps in reasoning emerged. Paul Benacerraf has argued that Frege’s work

on the foundations of arithmetic must be understood in this primarily mathematical

context, as opposed to the philosophical context of later logicists (viz., Bertrand

Russell, Hans Hahn and Rudolph Carnap) who saw, in the reduction of mathematics

to logic, hope for an empiricist account of analyticity (Benacerraf, 1981). Benacerraf

interprets Frege as more oriented to the mathematical project of analyzing the

dependency between mathematical propositions and not as principally concerned

to press a philosophical agenda. Indeed, as Grundlagen 101-2 clearly indicates,

Frege was no critic of the synthetic a priori and was after all a Kantian about
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geometry (Frege and Austin, 1980). As Demopoulos emphasizes, Frege may be

well understood by relating the origins of his project to methodological logicism

(Demopoulos, 1994).

In particular, Frege’s analysis of mathematical induction in Begriffsschrift is

a natural starting place for such a project. Mathematical induction had become a

significant tool, especially in the study of summations of infinite series but also in

providing proof of general formulas (e.g, the binomial theorem which shows how to

expand formulas of the form (x + c)n). Frege cites Jakob Bernoulli’s Ars Conjec-

turi as a source, and Bernoulli is commonly accepted as developing mathematical

induction into a rigorous method. Prior to Bernoulli, John Wallis employed proofs

per modum inductionis that proceed from inspection of cases and intuitive pattern

recognition.4. Wallis, for instance, reasons as follows:
02 + 12

12(1 + 1)
=

1

3
+

1

1× 6
02 + 12 + 22

22(2 + 1)
=

1

3
+

1

2× 6
02 + 12 + 22 + 32

32(3 + 1)
=

1

3
+

1

3× 6
02 + 12 + 22 + 32 + 42

42(4 + 1)
=

1

3
+

1

4× 6
02 + 12 + 22 + 32 + 42 + 52

52(5 + 1)
=

1

3
+

1

5× 6
02 + 12 + 22 + 32 + 42 + 52 + 62

62(6 + 1)
=

1

3
+

1

6× 6

Therefor,

∑
1≤i≤n i

2

n2(n+ 1)
=

1

3
+

1

6n

Needless to say, Wallis’ “incomplete induction” clearly depends on a sort of intu-

ition that the pattern recognized in the first six cases will continue indefinitely for

all n. We may prove the same proposition by “complete” mathematical induction

4See (Cajori, 1918) for some history. I could not find a comprehensive history of mathematical
induction. Some proofs in classical mathematics appear to implicitly employ induction, but the
strict approach of proving a specific base case followed by a general inductive case seems to have
begun to become standard only in the 18th century
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in order to illustrate the method. The schematic formula
∑

1≤i≤n i2

n2(n+1)
= 1

3
+ 1

6n
ex-

presses a property of natural numbers. The case 02+12

12(1+1)
= 1

3
+ 1

6
shows that the

natural number 1 possesses this property. This is the “base case” of mathematical

induction. The “inductive step” is to suppose that an arbitrary natural number n

has the property and derive that n + 1 has the property. Suppose n is such that:∑
1≤i≤n i2

n2(n+1)
= 1

3
+ 1

6n
. Then∑

1≤i≤n+1 i
2

(n+ 1)2(n+ 1 + 1)
=

∑
1≤i≤n i

2 + (n+ 1)2

(n+ 1)2(n+ 2)
=

∑
1≤i≤n i

2

n2(n+ 1)
+

(n+ 1)2

n2(n+ 1)

(n+ 1)2(n+ 2)

n2(n+ 1)

=

(
1

3
+

1

6n
+

(n+ 1)2

n2(n+ 1)
)× n2(n+ 1)

(n+ 1)2(n+ 2)
=

2n2(n+ 1) + n(n+ 1) + 6(n+ 1)2

6n2(n+ 1)
× n2(n+ 1)

(n+ 1)2(n+ 2)
=

2n2(n+ 1) + n(n+ 1) + 6(n+ 1)2

6(n+ 1)2(n+ 2)
=

2n2 + 7n+ 6

6(n+ 1)(n+ 2)
=

2(n+ 1)(n+ 2) + (n+ 2)

6(n+ 1)(n+ 2)
=

2(n+ 1) + 1

6(n+ 1)
=
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1

3
+

1

6(n+ 1)

Notice that the incomplete induction is, perhaps, the more psychologically com-

pelling demonstration. Questions of what is more psychologically compelling are

necessarily subjective. The working mathematician, as opposed to the skeptical

epistemologist, may be convinced of a result by informal and incomplete reason-

ing subject to skeptical challenge. Certainly, incomplete induction in the manner

of Wallis is open to skeptical challenges that may be closed off by the complete

inductive proof. However, one with the capacity and willingness to recognize and

project patterns required for mathematical insight may find skeptical worries about

that capacity to be on par with skeptical worries about the ability to follow a proof,

which requires not only checking inferences stepwise but also remembering what

has been checked. To prove the proposition by rigorous mathematical induction

requires a bit of cleverness in seeing how to apply the inductive hypothesis followed

by a series of trivial but detailed algebraic reductions. One blinks ones eyes several

times before “grasping” the rigorous proof that the pattern recognized by inspection

of cases does indeed continue. Indeed there may be no gain against the skeptic in

the transition from the incomplete inductive proof to complete mathematical in-

duction if our faculties for recognizing and retaining in memory valid inferences are

as up for grabs as our faculty for recognizing and projecting in imagination finite

patterns. This illustrates a point made by Frege. In seeking after the propositions

on which mathematical truths depend we are not concerned with how they are dis-

covered, with fidelity to mathematicians’ reasoning. We may not even be interested

in improving our epistemic standing with respect to the skeptic; the epistemological

project of evaluating the justificatory status of our belief in a proposition is just not



89

the same as the logical project of discovering the inferential relationships among

propositions. Indeed, we even justifiably may be more convinced, based on spe-

cific recognition and projection of a pattern in incomplete induction, of the narrow

proposition proved by Wallis than of the quite strong general principle of induction

required to validate all instances of complete induction. Hence, showing that a cate-

gory of propositions depend on some one logical principle need not be understood as

in the service of epistemology. Indeed, Russell even sometimes wrote as if to suggest

that the justification for logical principles derives from their consequences, rather

than the other way around. The point that logical analysis does not directly serve

the justification or intuitive understanding of mathematics, as clear as it should

be, eluded later critics of logicism, such as Poincaré and Wittgenstein, the latter of

whom quipped that, in the notation of Principia, mathematical propositions walk

about shrouded and unrecognizable (Wittgenstein, 1983).

Frege is readily seen in Begriffsschrift as engaged in a project of developing

a logical apparatus to be applied in the practice of methodological logicism, an

application which he illustrates by deriving a principle of induction from what he

has identified as logical truths plus definitions (Frege, 1967). However, a number of

scholars argue that the limitation of Frege’s context to the mathematical is mislead-

ing. In “The Philosopher Behind the Last Logicist” Joan Weiner points out that

it is difficult to motivate Frege’s Grundlagen if its author is only concerned with

proving unproven propositions of arithmetic. Indeed, not only in Grundlagen but

throughout Frege’s corpus there seems to be a demarcation between mathematical

and philosophical works. One way to frame the relationship between Frege’s math-

ematical and philosophical concerns is to emphasize that the result Frege obtains

in Begriffsschrift may well have struck even its author as surprising. The Kantian
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framework suggests an account of the warrant obtained through inductive proof.

Specifically, the Kantian will suspect that the warrant obtained through mathemat-

ical induction is grounded on a temporal intuition of the continuation of a series in

time. In discovering a logical definition of the ancestral of a relation Frege replaces

temporal intuition with a logical definition, which is a striking and surprising result

of logical analysis. It need not, however, have been Frege’s motivation or goal in

undertaking that analysis, despite the view of some that Frege was driven to ex-

punge intuition from mathematics. Rather, intuition finds its own way out through

a logical analysis tied more directly to the mathematical concerns methodological

logicism. But then Frege is left with arithmetic reduced to logic, while still holding

the Kantian thesis that arithmetic is the science of a determinate class of objects.

So Frege’s philosophical logicism takes on the ontological project of identifying the

logical objects that are the content of arithmetic and the epistemological project

of explaining how we come to know them; this is the context for the foundational

program based on Basic Law V.

5.3 Frege: logic and arithmetic

In §56 his Die Grundlagen Der Arithmetic Frege rejects the proposal that

numbers be defined by direct logical abstraction on equivalence relations, raising

the infamous Caesar Objection. To understand the objection we need to develop

some of the core ideas of Frege’s logicism.

The higher-order relation of equipollence holds between concepts φ and ψ

when there is a bijective relation (i.e., function) between them. Equipollence is

an equivalence relation. Reflexivity and commutativity are easily confirmed, and

transitivity is proved by composing bijections. The results are obvious to most
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mathematicians and analogues exist in more familiar formal set theories as well as

informal mathematical language.

Equipollence. φ ≈ ψ =df (∃F ) such that

• [(∀x)(φ(x) ⊃ (∃y)(ψ(y) ∧ F (x) = y)∧

• (∀x)(∀y)(∀z)(φ(x) ∧ φ(y) ∧ ψ(z) ∧ F (x) = z ∧ F (y) = z. ⊃ .x = y)∧

• (∀x)(ψ(x) ⊃ (∃y)(φ(y) ∧ F (y) = x)]

Hume’s Principle introduces a term forming operator # mapping concepts to

objects by the following abstraction principle:

Hume/Cantor Principle. #xφ(x) = #xψ(x) ≡ φ ≈ ψ

It is customary to speak the left-hand side and right-hand side of the bi-

conditional in so-called logical abstraction principles. On the left-hand side the

expressions are singular terms (denoting objects) flanking an identity sign. On the

right hand side the expressions are predicate terms (indicating concepts) flanking a

higher order equivalence relation. With due attention to the concept/object distinc-

tion in Fregean ontology Hume’s Principle is easily seen as a non-trivial principle,

whereby the obtaining of a third order logical relation between concepts guarantees

the existence of some first-order, individual objects.

Frege’s Theorem. The 2nd-order Peano Axioms are satisfied by the natural num-

bers if Hume’s Principle defines them.

If referents of the terms introduced by the # operator exist, they provide a

model of PA2. Frege deserves to have his name attached to this important result in

what has come to be called the logic of abstraction.5 Frege’s Theorem is the focus

5See Crispin Wright’s Frege’s Conception of Numbers as Objects and Kit Fine’s The Limits of
Abstraction (Wright, 1983; Fine, 2008).
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of the neo-Fregean abstractionist project. If Frege had taken Hume’s Principle as

primitive, rather than the notorious Basic Law V, defined below, then Russell’s

Paradox would have been avoided and arithmetic successfully developed on the

plausibly analytic basis of logic plus definitions. Additional abstraction principles

have been proposed to develop the program beyond arithmetic.

The status of the Hume’s Principle as an analytic truth has been a focus of

much philosophical discourse since Wright’s manuscript was published. In contrast

to typical examples of analytic truths, such as the well worn “all bachelors are

unmarried men,” Hume’s Principle has logically non-conservative content. That

all bachelors are unmarried men is consistent with there being no bachelors, but

Hume’s Principle implies the existence of numbers and not merely that if they exist

that they have certain stipulatively defined properties. The proponents of neo-

Fregeanism have had to overcome Quinean skepticism about the philosophical ana-

lytic/synthetic distinction, derived from Quine’s famed critique (Quine, 1951). Even

a Quinean skeptic about careless philosophical invocation of the analytic/synthetic

distinction may accept stipulation as introducing a kind of “truth in virtue of mean-

ing,” as even Quine acknowledged while doubting the general philosophical and

scientific importance of stipulative definitions as well as our reflective capacity to

distinguish linguistic dispositions learned through stipulative correlation from those

learned through empirical regularity (Quine, 1991).

However, quite apart from Quinean considerations, it is difficult to accept

that stipulative definitions should be accepted which have non-conservative deduc-

tive consequences. Neo-Fregeans have retreated from a robust defense of Hume’s

Principle as an analytic truth to the position that the analysis of the logic of ab-

straction reveals the permissibility of introducing such principles and accepting the



93

implied objects only as “metaphysically thin” entities, providing legitimation of the

internal existence of numbers on the basis that the language game of Neo-Fregean

arithmetic is in good order, following on the general approach of Carnap in “Empiri-

cism, Semantics, and Ontology” (Carnap, 1950).6 In that article, Carnap sought to

dissolve ontological disputes in philosophy by maintaining that all existence claims

are relative to a linguistic framework and that to ask whether a category of objects

exist independently of a linguistic framework can only sensibly be to ask a strictly

pragmatic question about the usefulness of a form of language. Accordingly, the

Neo-Fregean takes Hume’s Principle and its kin as constitutive of a language, in-

ternal to which the question of the existence of numbers is settled, and answers the

external question about the pragmatic desirability of adopting the abstractionist

language by demonstrating the recoverability of a significant body of mathematics.

However, the suggestion that Neo-Fregean objects are metaphysically thin

suggests a contrast with linguistic forms for which a thick, realist answer to the

external question may be provided. Furthermore, Hume’s Principle does not treat

numbers as isolated entities but rather provides a constitutive link between numbers

as objects and numerical predicates of sortal concepts drawn from non-numerical

discourse. In this regard, the Neo-Fregean program provides resources for answer-

ing a prominent Quinean critique of the Carnapian program. The mathematical,

semantic, and physical linguistic frameworks are not so neatly separated as Carnap

seems to suggest. Recalling Frege’s applicability constraint on an adequate phi-

losophy of mathematics, Hume’s Principle and its kin may have the advantage of

connecting pure number-talk to applied number-talk. Because of the constitutive

6I have not, unfortunately, thoroughly tracked the development of Neo-Fregean views in the
literature. I write here of what I have gathered, hopefully without too much misunderstanding,
from a conversation I was fortunate to have with Prof. Wright.
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link to applications provided by abstraction principles, the neo-Fregeans program

may be considered in the light of the discussion in chapter 2 of indispensability.

This may be developed in two directions. First, a neo-Fregean may endorse an

indispensability argument for the existence of numbers based on the constitutive

link between number-talk and physical object-talk. In this case, however, it be-

comes less clear why we should consider abstraction principles to be introducing

thin particulars, so that their status as stipulative analytic is called into question.

Alternatively, a Neo-Fregean may adopt a version of Melia’s weaseling strategy by

accepting the thick existence of (let’s say) physical objects and asserting of them

all that can be said by positing the thin existence of abstract objects established

by the left-hand sides of Hume’s Principle and like abstraction principles. In this

latter case, however, there seems to be little in the way of simply identifying “thin”

existence with non-existence and fully adopting the weaseling strategy for full-blown

nominalism. So, the Neo-Fregean faces the following antinomy: Either thicken up

and face a “no entities by stipulation” objection or thin out a face parity with an

analogous form of nominalism. The thin/thick distinction, as applied to objects,

leads to a cul de sac in the philosophy of mathematics.

Frege does not adopt Hume’s Principle as a stipulative or analytic truth be-

cause for him there may only be metaphysically thick particulars and abstraction

principles under-determine which thick particulars are denoted by the singular terms

occurring on the left-hand sides of abstraction principles. Instead, Frege proceeds,

in essence, by deriving Hume’s Principle from Basic Law V as a lemma toward the

wider aim of deriving arithmetic from truths of logic alone.

Basic Law V. {x|φ(x)} = {x|ψ(x)} ≡ (∀x)(φ(x) ≡ ψ(x)

Frege’s Lemma. The natural numbers as defined by Frege’s method using Basic
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Law V satisfy Hume’s Principle.

Since he felt obliged to prove this lemma rather than taking Hume’s Principle

as primitive, we see that Frege was not a neo-Fregean. Why not? The Caesar

Problem is raised by Frege as an objection to the acceptability of Hume’s Principle

as a definition of natural number. It is granted that Hume’s Principle shows, at

least in principle, how to settle the truth of identities between singular terms formed

by applying the # operator to terms for concepts: i.e., the truth conditions for

statements in the form of Hume’s Principle’s left-hand side. Kit Fine has labeled

the identity statements with truth-conditions given by Hume’s Principle “internal

identities” (Fine, 2008). External identity statements–i.e., relating terms formed

by # to terms not so formed–are given no truth conditions by Hume’s Principle.

For example, an external identity statement like “the number of Jupiter’s moons =

Julius Caesar” is left unsettled.

The Caesar problem arises, then, from a commitment on Frege’s part that an

adequate definition of number should identify the numbers in a manner that set-

tles external as well as internal identity statements. Ascribing such a commitment

to Frege sits well with his general metaphysical realism, his unwavering commit-

ment to assertoric foundations for both geometry and arithmetic, and suggests a

sense/reference account of the role Hume’s Principle plays in Frege’s Lemma. That

Frege held that the foundations of mathematics should be assertoric is uncontrover-

sial. We have seen, that Frege resolutely opposed Hilbert’s notion the axioms for

synthetic geometry constitute a formal, uninterpreted characterization of a geomet-

ric structure rather than foundational assertions about the points and lines given

in spatial intuition. Although not a Kantian about arithmetic, Frege was no less

insistent that the the axioms of (PA2) ought to be understood as assertions about
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a definite, logically scrutable domain.

According to this interpretation, Frege’s Lemma is understood by Frege as

connecting the definite (i.e., immediately accessible to cognition) domain of courses

of value, given as logical objects, to (PA2) using Hume’s Principle, and it is crucial

that Hume’s Principle not be taken as primitive. Without proving Hume’s Principle

from Basic Law V we would be able to show by Frege’s Theorem only that (PA2)

are satisfiable, but it could be any series that satisfies them. Notwithstanding the

fall of the empire, it might have been the series of Roman emperors. Furthermore,

and this is a greater consideration for Frege, whatever satisfies them would bear no

connection to the application of counting in determining cardinal number attributes.

To show that (PA2) are true assertions about the numbers they must be shown to

be satisfied in their canonical interpretation, to do this the domain of interpretation

must be definitively singled out, and that means internal as well as external identities

must be settled.

I’ve been puzzled by the move to Basic Law V because of the similarity of

form between Hume’s Principle and Basic Law V; each is presentable as a logical

abstraction principle, in which identity conditions for singular terms formed by a

defined operator are given using a logically defined equivalence relation on concepts.

Why would Frege be so confident that Basic Law V uniquely determines the domain

of the course-of-value operator (as a nominalizing function on concepts), while the

domain of the number operator defined by Hume’s Principle is under-determined?

Further, why when confronted with the inconsistency of Basic Law V did Frege not

even consider introducing Hume’s Principle as a primitive definition of numbers,

proceeding roughly as do the neo-Fregeans? Frege recognizes this difficulty in a

letter to Russell, following Russell’s discovery of the inconsistency of Basic Law V:
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I myself was long reluctant to recognize the existence of value-ranges
and hence classes; but I saw no other possibility of placing arithmetic
on a logical foundation. But the question is, How do we apprehend
logical objects? And I have found no other answer to it than this, We
apprehend them as extensions of concepts, or more generally, as value-
ranges of functions. I have always been aware that there were difficulties
with this, and your discovery of the contradiction has added to them;
but what other way is there? (Frege and Hilbert, 1980b).

The doubts expressed by Frege reinforce the point that the logical foundation of

arithmetic is not primarily motivated by epistemological concerns with the synthetic

a priori. That is, our apprehension of classes as value-ranges of functions was, taking

Frege at his word, a source of “difficulties” for him even before he became aware of

the paradox. We might think that the difficulties he mentions concern epistemic and

semantic access that are analogous to the Caesar problem, and that the justification

for Basic Law V derives not from its immediate solution to these difficulties but from

its, hoped for, service to broader explanatory and unifying aims.

Accepting Hume’s Principle as a primitive definition of the natural numbers

would, by a parity argument, commit one to the acceptability of similarly structured

definitions by logical abstraction. This generates a family of technical problems

known as the “bad company” objection (Boolos, 1998). Furthermore, accepting

Hume’s Principle as a primitive definition may commit one to accepting creative

definition in general. A set/class-theoretical reductionist avoids these pitfalls of

plenitudinism but gains the burden of explaining how our definitions of sets/classes

are to be set apart as determinate. Set-theoretical reductionists have offered a

variety of accounts of set apprehension: appeal is sometimes made to collection as a

operation that constructs the iterative hierarchy (e.g., (Potter, 2004)), to direct (i.e.,

non-constructive) intuition (e.g., Gödel as often caricatured, but see (Potter, 2001)

and (Tait, 2010)), sometimes to ordinary sense perception of finite sets conceived
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as quasi-concrete rather than purely abstract (e.g., (Maddy, 1980), a view since

abandoned). In all of these accounts the common theme is to set sets apart from the

classical platonic realm by claiming a kind of cognitive access that gives determinacy

of apprehension (hence of reference) to sets but not other objects. That is, the set-

theoretical reductionist holds that the Caesar problem can be solved for sets but

offers no solution for other mathematical objects.

Frege holds a broadly Kantian line on geometry, according to which the ob-

jects of study described by axioms are given in spatial intuition. For arithmetic,

Frege, like the set-theoretical reductionist, holds to a homogeneous domain of logi-

cal objects. Unlike contemporary set-theoretical reductionists Frege is not operating

with a strictly first-order system. So, Frege has available an account of apprehen-

sion that appeals to higher-order entities: viz., concepts. Concepts are, according

to Frege, as constituents of thoughts, cognitively accessible entities par excellence

and it is through them alone that we apprehend logical objects. Basic Law V rather

than an implicit definition of concept extensions is regarded as an fundamental

truth about them. Despite the doubts Frege expressed retrospectively to Russell,

Frege held that we apprehend logical objects through the concepts of which they

are extensions. While the contrast between classes as extensions of concepts and

the iterative hierarchy of sets in leading axiomatizations of set theory is evident, the

general course of setting apart a domain of putatively logical objects characterized

by extensionality is shared by Frege and by set theoretical reductionism.

5.4 The Frege-Hilbert correspondence

The correspondence between Frege and Hilbert (Frege and Hilbert, 1980a)

over Hilbert’s understanding of axioms, and specifically of geometrical axioms in his
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Grundlagen der Geometrie (Hilbert, 1950), has been widely discussed by philoso-

phers. Three issues dominate the discussion:

1. differences over the relations between definitions and axioms

2. differences over consistency and existence (Fregean existentialism vs Hilber-

tian essentialism?), and

3. the extent to which Hilbert anticipates and Frege is blind to semantic concep-

tions of theories.

Duly so. These issues are ripe for philosophical reflection and pertain directly to

our understanding of mathematical representation in thought, and they arise imme-

diately from the ambiguity between “axiom” and “definition” that Frege criticizes

and Hilbert boldly embraces. But I wish to call attention to a fourth issue that

arises in the correspondence, which is a central concern of Hilbert’s in particular:

the issue of mathematical explanation. Frege and Hilbert had distinct, though re-

lated, explanatory projects, distinctly framing their respective metamathematical

and philosophical projects. My modest purpose is to recall and clarify their explana-

tory aims and to relate them to their famous correspondence; more boldly we may

hope to gain from this recollection better perspective on the philosophical implica-

tions of the Frege-Hilbert controversy as it pertains to questions of recent interest,

pointedly raised by Stewart Shapiro, in the philosophy of mathematics literature

concerning the philosophical import of category theory and categorial techniques in

recent mathematics research.

Notably, Frege’s worries in the 27.12.1899 letter addressing Hilbert’s manuscript

are not just about treating axioms as implicit definitions rather than intuited truths,
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but also specifically about Hilbert’s explanation of his use of axioms to implicitly

define “between”:

Let me start with something Thomae said about your explanation of
sect. 3. His words were roughly: “That is not a definition; for it does
not give a characteristic mark by which one could recognize whether the
relation Between obtains.” You evidently use the words “explanation”
and “definition” to designate different things, but the difference is not
clear to us. The explanations of sect. 4 seem to be of exactly the same
kind as your definitions: we are told, e.g., what the words ”lie on a line
a on the same side as point 0” are supposed to mean, just as we are told
in the following definition what the word “line section” is supposed to
mean. The explanations of sects 1 and 3 are apparently of a very different
kind, for here the meanings of the words “point”, “line”, “between” are
not given, but are assumed to be known in advance. (Frege and Hilbert,
1980a)

Hilbert divides his axioms into several groups: (I) Axioms of Connection, (II)

Axioms of Order, (III) Axiom of Parallels (Euclid’s Axiom), (IV) Axiom of Con-

gruence, and (V) Axiom of Continuity. Hilbert has called some passages of the

expository text surrounding his presentation of each group of axioms “Erklärung”

(explanation). It seems to me that Frege has looked to the “Erklärung” for defini-

tions of the terms appearing in the axioms. The passage marked “Erklärung” in sect.

3, rather than defining “between”, simply notes the motivation, which arises from

intuitive geometry, for including axioms of order and for grouping them together.

As Frege rightly points out, however, Hilbert’s use of “Erklärung” is equivocal. The

passages in sect. 4 expand the vocabulary introduced by implicit definitions by

giving explicit definitions of some convenient terms, and Hilbert is far from clear

about the different kinds of definitions he has given.

It is tempting to let the notion of explanation off the scene, based on the

thought that Hilbert has merely used “Erklärung” loosely and for different purposes.

Indeed, in the English translation by E.J. Townsend “Erklärung” is simply dropped
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from sect. 3 and is translated as “definition” in sect. 4. The issue of philosophical

import (as opposed to editorial detail) seems to be that of the status of Hilbert’s

implicit definitions, and indeed this issue is the focus of Frege’s follow-up letters

and subsequent essays on the issue. However, Hilbert’s reply to Frege mentions

substantive explanatory projects as the basis for the program of research founded

on his approach in Grundlagen der Geometrie. Also, Frege’s core concerns about

definitions and their relationship to mathematical thought (and its objects) trace to

his own explanatory project. The relationship between these explanatory projects

and the Frege-Hilbert controversy is not a matter of editorial detail.

5.5 Hilbert’s explanatory project

Hilbert was educated at Königsberg under the mentorship of fellow peripatetic

Adolph Hurwitz. Hurwitz had studied at Berlin, which with the ascendancy of

Weirstaß had eclipsed post-Gauß Götingen in prominence as a center of mathemat-

ical research in Germany. The Berlin school was combinatorial, computational, and

reductionist, an approach captured in the statement attributed in unverifiable lore

to Kronecker that “God made the natural numbers; all else is the work of man”.

There’s, perhaps, a danger of exaggerating the dogmatism of the Berlin school, but

the caricature serves present purposes.

Finding the environment in Berlin stifling, Hurwitz left for Munich where he

studied under Klein in the proud Gauß -Riemann tradition. Later, due to the oppo-

sition of anti-Semites in the German academy, Klein was unsuccessful in his efforts

to find a position for Hurwitz at Göttingen but did later succeed in hiring Hilbert

(Rowe, 2007). Hurwitz’ influence on Hilbert must have been great, and Minkowski

recounts that discussions on Königsberg walks ranged over all of mathematics.
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In his early career Hilbert, following Dedekind’s example, applied the Rieman-

nian method of conceptual mathematics based on general definitions rather than

computational wizardry to the study of abstract algebra, displacing Paul Gordan as

“king of invariants”. Hilbert’s Basis Theorem, proved non-constructively by Hilbert,

subsumed important results painstakingly computed by Gordan as special cases of

a general theorem, eliciting from Gordan the admiring, irreverent comment “This is

not mathematics; it is theology.” 7 Hilbert’s early algebraic work thereby achieved

the miraculous goal stated by Dedekind of predicting the results of computations

without having to perform them. In full generality, Hilbert’s basis theorem shows

that an ideal in a polynomial ring generated over any Noetherian ring may be pre-

sented by a finite basis, bypassing the computational slogging employed by Gordan.

8

This narrative is familiar, but it bears emphasizing that Hilbert, though influ-

enced by the Berliners (viz., in his finitist conception of contentual mathematics) was

a Göttingen-style mathematician from the start, and that, having been influenced

mathematically and philosophically by Hurwitz, Hilbert’s formative problems con-

cerned the relationship between concrete computational mathematics and abstract

conceptual mathematics. In this regard the work on algebraic invariant theory

begins a program aimed at conciliating the Berlin-Göttingen/Weirstraß-Riemann

divide.

Hilbert’s commitment to the unity of mathematics was a driving motivation

for his research and he clearly had an understanding of mathematical progress as

7It is by now widely noted that since Gordan eventually advised Emmy Noether, herself a master
of the algebraic techniques of conceptual mathematics, it is hard to read Gordan’s comment as
hostile.

8Joon Fang’s account of this period of Hilbert’s career has been informative for me (Fang,
1970).
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consisting in uncovering logical relationships between seemingly disparate topics.

In the conclusion of his famous problems lecture, the call is clarion:

Mathematical science is in my opinion an indivisible whole, an organism
whose vitality is conditioned by the connection of its parts. For, in
spite of all variety in single cases of mathematical knowledge, we are
still clearly aware of the equality in logical devices, the relationship
in idea-formation in mathematics as a whole, and numerous analogies
in its different areas of knowledge. We notice, too, that the farther a
mathematical theory is developed, the more harmoniously and uniformly
does its construction proceed such that unsuspected relations are found
between hitherto separate branches of knowledge. So it happens that,
with the expansion of mathematics, its organic character is not lost but
manifests itself all the more clearly. (Hilbert, 1900)

Illustratively, Hilbert’s work on the foundations of geometry concerns concepts

applicable to core problems in complex analysis and the calculus of variations. Con-

temporaneous with his work on geometry, Hilbert was working to state and prove

a suitable form of what Riemann had called the Dirichlet principle; which had an

important role for Riemann’s method and was generally employed in (and intu-

itively applicable to) problems in mathematical physics; but which was cast into

doubt by an example which Weierstraß was, according to lore, particularly proud

to have discovered. It is sometimes said that Weierstraß found a “counter-example”

to the Dirichlet principle, but this is not precisely right. Weierstraß showed that an

assumption Riemann uses for a specifically defined functional does not hold in full

generality by showing that it does not hold for a different functional.9

For present purposes we must elide a detailed discussion of Dirichlet’s princi-

ple, except to note that the relevance of boundary conditions is complicated by the

9Thanks are due to the Wikipedia and Math Overflow communities for helping me
come to what understanding I have of the calculus of variations and its history: Math
Overflow: http://mathoverflow.net/questions/42176/what-was-weierstrasss-counterexample-to-
the-dirichlet-principle. See also Gray’s informative history of the Riemann Mapping Theorem
(Gray, 1994).
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discovery of monstrous closed curves in the plane. Indeed, Hurwitz in 1897 noted

that space-filling curves defined by Peano and Hilbert greatly complicated Rie-

mann’s approach to complex functions (Gray, 1994). It is not, I think, coincidental

that Hilbert’s student, Max Dehn, worked on a proof of the Jordan curve theorem

employing only the incidence and order axioms. Surprisingly Dehn’s proof went

unpublished, but the work demonstrates a success in applying Hilbert’s approach

to geometry in a topological problem of relevance to the Riemannian approach to

complex analysis (Guggenheimer, 1977).

Again eliding detail we may also note two other fundamental theorems related

to the Riemannian approach to analysis: the Riemann mapping theorem and the

uniformalization theorem. The former asserts the existence of conformal (i.e., angle

preserving) mappings between simply connected regions of the complex plane. The

latter, the uniformalization theorem, concerns classification of surfaces by conformal

equivalence. These matters cannot have been far from Hilbert’s mind in developing

the conceptual foundations for an investigation of the properties of triangles in the

elliptical, parabolic, and hyperbolic planes.

This is one of the topics that Hilbert mentions to Frege as motivating the

axiomatic approach taken in GdG.

I wanted to make it possible to understand and answer such questions
as why the sum of the angles in a triangle is equal to two right angles
and how this fact is connected with the parallel axiom. That my system
of axioms allows one to answer such questions, and that the answers to
many of these questions are very surprising and even quite unexpected
is shown in my Festschrift as well as by the writings of my students
who have followed it up. Among these I will refer only to Mr. Dehn’s
dissertation which is to be reprinted shortly in Mathematische Anallen
(Frege and Hilbert, 1980a).
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Dehn’s dissertation work on Legendre’s theorem is an exemplary instance of a math-

ematical method that employs a conceptual analysis of structure, a factoring of the

logical structure of a domain of inquiry. Such analysis is pertinent to problems

internal to a field of mathematics, to relations among traditionally distinct fields of

mathematics, and to the relation of mathematics to physical science.

Legendre’s own work in geometry had been aimed at finding a proof of the

parallel postulate. Hilbert’s concerns were therefor internal to geometry, in the

sense that it resolves issues directly pertinent to a core geometric research program

by mapping the interdependencies of core concepts. But it is a method that also

contributes to the second explanatory project. As I have already noted, conformal

mappings and their role in the Riemannian approach to analysis could not have

been far from Hilbert’s mind in his and Dehn’s investigation of angle properties

on surfaces. Moreover, there is a blindly prospective motivation for understanding

the axioms algebraically, because their multiple interpretability makes possible an

explanation of the application of geometrical concepts to putatively non-geometric

domains. This provides an account of the generality of geometry that is not depen-

dent on the kind of labor Frege undertook. Also, as Hilbert adds, this same multiple

interpretability contributes to a structural account of applied mathematics.

5.6 Hilbert: content, breadth, and depth

Hilbert’s project is therefor best seen as an effort to explain the generality of

concepts that originate from specific, geometric intuition. That is quite independent

from determining the primitive denotation of geometric terms. That is, Hilbert is

engaged in an analysis of breadth and depth as opposed to an analysis of content.10

10In an essay that has greatly influenced my point of view Saunders Mac Lane contrasted the
analysis of breadth and depth with the analysis of rigor (Mac Lane, 1981). I add the analysis of
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The success of this analysis is evidenced by the mathematical results produced by

it. However, Hilbert fails to provide adequate philosophical grounding for his new

approach to definition, which Frege rightly points out. Unlike Frege, we have the

advantage of hindsight and can see that the Hilbertian insight requires philosophical

articulation even though, in light of its substantive success, its lack of articulation

in Grundlagen der Geometrie is not cause for philosophical objection.

Although each was motivated by related problems arising within mathematics,

the explanatory programs of Frege and Hilbert were distinctly oriented. Frege’s con-

cerns led him toward what we may call an analysis of content, one concerned with

properly identifying the intentional contents of mathematical thought, and he was

thus driven into an inquiry into logic, language, and thought that became increas-

ingly distant from the concerns of research mathematicians. Hilbert’s axiomatic

method contributed substantively to research mathematics as a prolegomena to the

analysis of breadth and depth, a project which has been carried out largely within

mathematics. Hilbert is at pains to express to Frege the advantages of this approach

and Frege is at pains to emphasize that this approach would have geometry inherit

the problems Frege identifies for formalism. Although Hilbert is somewhat dismis-

sive of Frege’s concerns, the distinction Hilbert later makes between contentual and

ideal mathematics shows an increased sensitivity to the sorts of concerns that mo-

tivated Frege. Some progress can be made toward defending an in re structuralist

philosophy of mathematics by making clear the distinction between the analysis of

content and the analysis of breadth and depth and by properly understanding the

relation of the axiomatic method to each project.

The definition of structural predicates by axiomatic definitions is best seen in

content to the division of tasks for mathematical philosophy, and use the idea of these distinct
tasks as a central recurring theme for the remainder of the dissertation.
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the context of an analysis of breadth and depth rather than of content. Structural-

ism arises from the methodological necessity of comparing the concrete and quasi-

concrete intuitions and forms that are a significant content of pure mathematical

thought. Frege’s development of higher-order logic and the principle of comprehen-

sion implicit in his rule of uniform substitution provides a linguistic framework for

a theory of structural predication, but his fixation on the analysis of content ap-

pears to be the reason his inconsistent Basic Law V appears explicitly in his system

while the principle of comprehension is unexplicated. I take Frege to have failed to

recognize what was most philosophically significant about his technical work, and

it is a shame that he did not recognize and suggest to Hilbert a connection between

logical comprehension and axiomatic definition in connection with the analysis of

breadth and depth.

Both Frege’s and Hilbert’s projects arise from critical reflection on mathemat-

ical methods, Frege’s from what I have called “expedient abuses of language” and

Hilbert’s from deep reflection on the relationship between analytic and synthetic

methods. In this sense, both projects are philosophical, though for two reasons

Hilbert’s project is less often recognized as philosophy. First, Hilbert was not ex-

plicit about his philosophical commitments, which led him to obscure what was

revolutionary in his understanding of definition and its role in explanation. Sec-

ond, unlike Frege, Hilbert and his students produced fundamental mathematical

advances. Hence, Frege’s objections can be seen as philosophical objections to good

mathematics. This divides scholars into camps: the defenders of philosophy’s rel-

evance and the protectors of mathematics’ autonomy. However, that successful

philosophy is often not fully articulated in or is quickly appropriated by successful

science does not make it less philosophical. Hilbert’s analysis of breadth and depth
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arises from a radical change in our understanding of definition, and the nature of

definition is one of the oldest questions in philosophy. Hence, we may agree with

Frege that the commitments of this radical change require fuller explication than

Hilbert provides while, in hindsight, understanding that this need for explication is

required by the explanatory success of Hilbert’s project, rather than an objection

to that project.

The treatment of axioms as definitions presents a novel mode of predicate

introduction, characterizing structural predicates. Our task as philosophers is to

articulate the semantical and ontological commitments of the introduction of such

predicates. One approach, that of the ante rem structuralist is to provide that ar-

ticulation in a robustly realist framework. Structural predications assert similarity

between the subject of predication, which is a system of “concrete” objects struc-

tured by “concrete” relations, and an abstract entity, a structural universal that

is comprised of object-places and relation-places which are themselves universals

instantiated by the concrete objects and relations comprising the system of which

the structural predicate is asserted. The ante rem structuralist thereby provides

a simultaneous analysis of breadth and depth and of content, claiming that the

content of pure mathematics is the structural universals themselves.

My preference is for an ontologically leaner structuralism, according to which

structures occur in re: i.e., only in their concrete instances. Accordingly, the se-

mantics for structural predications must be given inferentially, based not on their

designation of structural universals, which may or may not exist, but on the conse-

quences derivable from their axiomatic definitions, similar to inferentialist semantics

for logical connectives. I consider my view, structural logicism, to be in opposition

to varieties of structuralism and logicism which are committed to structure or logic
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providing an “assertoric foundation” or analysis of content, such as Fregean logi-

cism, neo-Fregean logicism, and ante rem structuralism, and my understanding of

structural predicates as non-designating linguistic terms traces to Russell’s view of

propositional functions as “logical fictions.” Structural predicates contribute to the

sense of a sentence without designating an entity. Although ontologically lean with

respect to structural universals, structural logicism is, strictly speaking, consistent

with so-called “plenitudinous Platonism”, as well as with set theoretical reduction-

ism. As an analysis of breadth and depth it is orthogonal to the analysis of content.

However, I think that it is best paired with an analysis of content that treats intu-

itionism, formalism, and postulational fictionalism as complementary alternatives

to platonist realism about mind-independent abstract particulars. What I take to

be made clear by the Hilbertian axiomatic method is that the analysis of breadth

and depth and the analysis of content do not require simultaneous treatment.

5.7 Essence and existence

Mathematical practice is characteristically independent of empirical constraint,

which is to say that mathematicians do not do experiments. A contentious reader

might start thinking of counter-examples. For instance, the use of computers to

perform large calculations, run simulations or generate sample data for statistical

analysis may be viewed as a kind of experiment. However, even in these cases

they are not experiments run with the purpose of establishing the existence of some

entity or type of entity. There is no epistemology of detection in mathematics.
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The contrast between mathematics and experimental science that I am stress-

ing is well captured by the theme of mathematical freedom, captured in the canon-

ically cited claim of Dedekind’s that numbers are “free creations” of the human in-

tellect. However, the freedom of which Dedekind speaks is not entirely unbounded.

Postulational freedom has the obvious constraint of consistency, and consistency

may be established by proof of existence; there is toil even for the thief. Dedekind

is perhaps best known among philosophers for the Dedekind cuts, which “construct”

the non-rational real numbers from the rationals, as pairs of sequences. It is be-

coming equally well known that Dedekind didn’t really think he was constructing

the reals (any more than he thought his algebraic ideals were identical with Kum-

mer’s ideal numbers), but rather that his constructs demonstrated the consistency

of postulating the reals as the canonical topologically complete ordered field.

Methodologically, Dedekind’s real interest lay in obtaining good definitions

of properties like “topological completeness” and “ordered field”, and he is firmly

allied with conceptual/structural mathematics against the limitations of computa-

tional/combinatorial approaches (as reductionist programs). As has been empha-

sized in the historical literature on Dedekind, his approach to the foundations of

arithmetic should be seen in the context of his work in algebraic number theory.

In particular, Dedekind’s fundamental contribution to algebra consists in his devel-

opment of the theory of ideals and his verification that they have the arithmetic

properties of Kummer’s ideal numbers. This pattern is then applied as a foun-

dational program, with the postulation integers, rationals, and reals vouchsafed

by constructions from natural numbers, and postulation natural numbers them-

selves vouchsafed by an argument for the existence of a simply infinite system (i.e.,

a “model”, as we would now say, of the Dedekind-Peano axioms) comprised of
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thoughts (Gedanke). However, the cuts are no more to be identified as the real

numbers than the Gedanke of section 66 of Was sind und was sollen die Zahlen?

are to be identified as the natural numbers (Dedekind et al., 1995). In each case

the point is to provide an existential argument for the consistency of descriptions

of characteristic mathematical structures, not to identify referents of mathemati-

cal terms. The subsequent development of structuralism by Hilbert aimed to treat

consistency directly, but even in Dedekind consistency of structural descriptions is

the primary interest and the psychologistic argument of section 66 as well as the

construction of ideals and cuts are instrumental.

As, Wilfried Sieg and Dirk Schlimm have emphasized there is no tension be-

tween Dedekind’s use of the genetic method (i.e., his constructions from natural

numbers) and his structuralist alignment with conceptual mathematics (Sieg and

Schlimm, 2005). The former is merely a check on the coherence of the latter. Fur-

thermore, Dedekind is not engaged in the reductionist program of arithmetization,

especially as that program is associated with an ideal of mathematical rigor based

on arithmetic computation. The point I wish to emphasize is that the role of the

genetic method, for Dedekind, is epistemic rather than semantic, and that once the

coherence of a mathematical concept or structure is secured, sui generis mathe-

matical objects, stripped of their genetic baggage, may be simply assumed to exist

without further ado. Eventually, Hilbert would find, in the systematization of logic

together with the axiomatic method, hope for a shortcut past the genetic method.

This is the origin of his slogan that consistency precedes existence in mathematics

and his program to find consistency proofs for systems of axioms. However, al-

ready in Dedekind there is a kind of precedence for consistency over existence as a

semantic question because of the strictly epistemic role of the genetic constructions.
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Hilbert’s approach to the axiomatic method in mathematics is founded on an

inversion of epistemic order. According to the old order one obtains a true descrip-

tion of an object by observing or detecting its properties then correctly describing

it. This epistemic order follows a cognitive order according to which prior cogni-

tive access precedes posterior linguistic description. Even according to descriptivist

accounts of cognitive access to objects, descriptions are given in terms of proper-

ties and relations to which access is immediate. The old order is access first. Put

prosaically, existence (access) precedes essence (axiomatization). If the old order is

existentialist the new order is essentialist. The Hilbertian maxim is that consistency

precedes existence in mathematics. The rigorous, finitist program based on that

maxim famously failed; as Russell was to the existentialist Frege, Gödel was to the

essentialist Hilbert. However, even without the finitary consistency proofs desired

by Hilbert, mathematical practice has fallen back on a modification of Dedekind’s

epistemic use of the genetic method, wherein set theory is referenced as a “foun-

dation” in which to provide models to vouchsafe the consistency of axioms, with

the consistency of set theory taken as primitive. This, again, is an epistemic rather

than semantic foundation, and except for those working in set theory it is not my

impression that many mathematicians take themselves to be studying pure sets,

even if they appeal to set theoretic foundations when pressed. Hence, despite the

failure of Hilbert’s program for finitistically grounded consistency proofs treating

axioms directly, a legacy of essentialism remains.

5.8 Russell: no classes

In separating the analysis of breadth and depth and the analysis of content

I believe it is possible to maintain a kind of logicist position which nevertheless
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grants to mathematics an autonomous content. Accordingly, logic is not limited to

the analysis of rigor but further provides the means for an analysis of breadth and

depth, and the generality of mathematics is understood in terms of logical struc-

ture. However, on my view, mathematics provides its own distinctive content, not

reducible to logic, by creating formal computational systems and representations.

As we have seen, for Frege the analysis of breadth and depth and of content were

combined. That is, Frege was led through his examination of arithmetic induction

to the position that arithmetical objects are logical objects, and this provided, for

him, an account of the generality of arithmetic as opposed to geometry. If we are

to separate generality and content, then, logic must be able to provide an account

of generality that does not require positing logical objects. To this end I draw on

Russell’s “no classes” theory.

According to the no classes theory our use of terms for classes (or sets) may be

eliminated in favor of higher order quantification. Thus if we have x : φx as a term

for the set defined by a property φ, occurrences of this term in sentential contexts

may be eliminated by the definitions:

• *20.01 f{ẑψz} =df (∃φ)(φ!x ≡x ψx.&.f{φ!ẑ})

• *20.02 x ∈ (φẑ) =df φ!x (Whitehead and Russell, 1997)

The definition says that the class x : φx has the property f just when some ψ

coextensive with φ has the property f .11 The definition is a bit complicated by

the necessity of providing a definition that allows class extensionality to be derived,

but the general idea is just to emulate classes in a simple type theory through

a contextual definition. It is sometimes presented as if Russell’s primary motive

11These are definitions for the substiuents for terms for classes of entities. *20.07, *20.071,
*20.08, *20.081 provide the same for classes of classes.
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for this were to avoid the paradox of classes, but of course Russell also knew of

paradoxes of properties and of propositional functions.12 It is clearly stated in the

prefatory remarks to Principia Mathematica that classes are not positively denied

but are simply an unnecessary hypothesis.

According to some interpreters Russell and Whitehead’s project is perhaps

more reductionist than eliminativist. That is, many read PM as replacing ex-

tensional classes with intensional propositional functions, having the latter do the

work of the former. In a recent paper titled “The Resolution of Russell’s Paradox

in Principia Mathematica” Bernard Linsky has defended a realist interpretation

of the ontological status of propositional functions in PM. Linsky holds that Rus-

sell’s ontology is best understood as a tiered system related by successive stages of

abstraction:

What results is a three tiered ontology with objects and universals (or
qualities and relations) and the facts they make up at the bottom, then
propositions which are abstracted from some of the facts about judg-
ments, and finally functions which are abstracted from those proposi-
tions. Functions are not to be taken as “linguistic” on this interpreta-
tion, as simply predicates. Rather they have real objects and qualities
as ultimate constituents, as the result of an abstraction process of a
uniquely logical sort (Linsky, 2002).

The abstraction process Linsky envisions begins with objects possessing qualities

(properties) and standing in relations. This is textually supported as characterizing

Russell’s basic ontology. The further tiers are not, Linsky maintains contrary to his

use of the language of “process,” obtained by construction but are genuine abstract

entities related to the basic ontology in a hierarchy of logical dependence. Although

he makes some proposals, no definitive account of the nature of the abstraction

12See Kevin Klement’s recent paper “The Origins of the Propositional Functions Version of
Russell’s Paradox” for some discussion of this (Klement).
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process is given. In particular, Linsky does not say whether propositional functions

(e.g. x is wise) are to be abstracted from propositions by removing an entity (e.g.,

by removing Socrates from the proposition that Socrates is wise) or by forming the

class of all propositions that anything whatsoever is wise. For his purposes, he is

content to articulate the idea of a hierarchy.

His purpose is, in particular, to respond to a famous objection to the system

of PM first raised by Gödel (Gödel, 1944). The objection presents a dilemma. If

the system of PM is understood as a theory of real entities then the “vicious circle

principle” appears hard to justify. That principle dictates that an entity cannot

be defined by reference to a totality of which it is a part. The famous, and quite

simple, counter-example is “the tallest man in the room.” It is only if we take the

entity be constructed by the definition that we may motivate the idea that it should

not be defined by reference to a totality of which it is a part. For, in this case the

totality is, prior to the construction of the entity in question, incomplete. So it

would seem that the presence of the vicious circle principle implies constructivism

or anti-realism concerning the definitions which it limits. On the other hand, Russell

and Whitehead are understood to have included an “axiom of reducibility” in their

system. The type of a propositional function is determined by the types of its

arguments. Individuals are type ι, unary functions of individuals are type (ι),

binary functions of individuals are (ι, ι), etc. This is simple type theory. The order

of a propositional function is determined by the types of the functions mentioned

in its definition. Hence, a function on individuals that is defined by reference to a

function on functions of individuals will have type:order (ι) : 2 while a function of

individuals that is defined only by reference to other functions on individuals will

have type:order (ι) : 1, etc. This is ramified type theory. Reducibility asserts that
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every propositional function is extensionally equivalent to a function of the lowest

possible order. This existential assertion, in turn, suggests a realist interpretation

of the hierarchy of types.

So which is it, the constructivism seemingly implied by the vicious circle prin-

ciple or the realism seemingly implied by reducibility? Linsky embraces the latter.

He argues that the notion of a hierarchy of entities based on logical dependency can

resolve the tension between constructivism and realism. Rather than saying that no

entity can be constructed by reference to a totality of which it is a part, Linsky in-

sists that the vicious circle principle merely articulates the sort of dependency that

separates propositional functions into a hierarchy. However, this is consistent with

holding that there are extensionally equivalent functions for which the dependency

in question does not hold. Linsky concludes:

Gödel is right that the vicious circle principle does introduce a con-
structivist element into the theory of types. He is wrong, however, to
find that element to be incompatible with realism about functions, in
particular the sort of realism represented by the axiom of reducibility.
Quine is wrong to claim that ramification only reflects features of how
functions are specified. The “definition” of a function reflects its ac-
tual dependencies. The ramification does not result from a use/mention
confusion. This is further shown by the fact that the theory can allow
for definite descriptions to pick out functions, and that the expressions
used in those descriptions do not impact on the type of the function so
described (Linsky, 2002).

Hence, Linsky concludes that by reflecting real dependencies between entities the

vicious circle principle may be upheld and used to dodge the paradoxes, but at

the same time reducibility can be asserted and provide the resources for the logical

reconstruction of mathematics.

Gregory Landini has dissented strongly from the line of logicist apologetic
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pressed by Linsky.13. First, the approach that Linsky takes violates what Lan-

dini identifies as a core Russellian philosophical commitment to the unrestricted

variable. This would appear at first glance to be clearly violated already by the

commitment to quantification over higher types, but Landini has argued that a

nominalist, strictly substitutional semantics can be provided for the higher-order

quantifiers. This interpretation is supported by a close syntactical reconstruction

of the system of PM according to which apparent quantification over higher-order

entities is resolved by interpreting apparent predicate variables φ as schematic sym-

bols for open formulas of the object language to which the system of logic is to be

applied, while quantification in the object language is unrestricted over the objects

and universals (qualities and relations) comprising the world.

The dispute between Landini and Linsky, and others, is a subtle and technical

one and I do not find it relevant in the present context to reproduce the details. I

am, presently, more interested in the proposal that higher-order quantification may

be provided with a “nominalist” semantics (where, “nominalist” is not understood

as opposed to universals so long as they are existents in the range of first-order

quantification). For, whatever the intentions of Russell and Whitehead, I wish

to propose that properties or universals corresponding to structural predicates in

mathematics are not necessary to posit in accounting for mathematical truths and

applications. The idea of a propositional function as a matrix, to my mind, recalls

the Hilbertian view of axioms. For Hilbert, recall, a generalized axiom system

defines a concept but does not make assertions about an intended domain. The

singular terms and relation terms contained in the axiom system are schematic, and

the structure or concept so defined can therefor be thought of as a form or matrix.

13Most recently and forcefully in “Principia Mathematica: 100 Years of (Mis!)Interpretation”
(Landini, 2011).
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Although the sections of PM dealing with geometry were never written we may gain

some insight into Russell and Whitehead’s plans by examining Whitehead’s 1906

The Axioms of Projective Geometry which generalizes projective structure from

geometric spaces to generalized classes of “points”:

The geometrical statements are statements about relations between points;
but they are not statements about particular relations between partic-
ular points. The class of points and their relations are not otherwise
specified than by the supposition that the axioms are true propositions
when they are considered as referring to them.

Thus the points mentioned in the axioms are not a special determinate
class of entities; but they are in fact any entities whatever, which happen
to be inter-related in such a manner, that the axioms are true when they
are considered as referring to those entities and their inter-relations.
Accordingly–since the class of points is undetermined–the axioms are
not propositions at all: they are propositional functions (Whitehead,
1906).

The connection between axioms as understood by Hilbert and the propositional

functions of Russell and Whitehead is here nearly explicit, and it seems to me that

this is an important aspect of propositional functions, as structural predicates, that

has been overlooked by commentators who have focused on their importance as

proxies for classes. Furthermore, Whitehead’s focus in this passage may help to

shed light on the questions whether to impute a realist ontology of propositional

functions as entities to Russell and Whitehead or to treat them as eliminable through

a substitutional semantics. The role of a propositional function, in the context of

projective geometry, is to assert that some system of inter-related entities has a

projective structure. Then the theorems of projective geometry may be treated as

schematic forms to be interpreted by determining reference to the system of which

that structure is asserted. We may consider that when reference is determined

and genuine propositions are asserted, propositional functions are eliminated by
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substitution of genuinely referring terms and that ontological commitment may be

restricted to the objects, qualities, and relations mentioned in genuine propositions.

While the affinity to Hilbert in considering axioms as characterizing proposi-

tional functions rather than asserting propositions is evident, Whitehead expresses

some reservations about Hilbert’s approach to consistency. Continuing in the intro-

duction of his text on projective geometry, Whitehead writes:

An axiom (in this sense) since it is not a proposition can be neither true
nor false. The Existence Theorem for a set of axioms is the proposition
that there are entities so inter-related, that the axioms become true
propositions, when the points are determined to be these entities and the
relations between points are determined to to be these inter-relations.
An Existence Theorem may be deduced from purely logical premises;
it is then a theorem of Pure Mathematics; or it may be believed as
an induction from experience, it is then a theorem of Physical Science.
There is a tendency to confuse axioms with existence theorems owing to
the fact that, rightly enough, geometry in its elementary stages is taught
as a physical science... The deductions do not assume the existence
theorem: but if the existence theorem is untrue, the protasis [i.e., the
hypothetical component] in the deduction is false whatever entities the
points are determined to be. The proposition is then true but trivial
(Whitehead, 1906).

It is clear in the ensuing discussion that Whitehead considers logical proofs of ex-

istence theorems for all consistent systems of axioms to establish consistency for

the purposes of pure mathematics and considers Hilbert’s position that consistency

precedes existence in mathematics to be based on an “rash reliance on a particular

philosophical doctrine respecting the creative activity of the human mind.” Al-

though neither Hilbert nor Dedekind is mentioned by name, the target is obvious.

Whitehead acknowledges that, as a practical matter, the practice of projec-

tive geometry may be founded on a primitive intuition of consistency, but for strict

justification a logical or inductive/empirical existence theorem should be proved,

and the prospects for a logical existence proof based on the theory of numbers
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is forwarded. Hence, Whitehead appears committed to the existence of numbers

as logical objects. This, in turn, suggests that there must be an ontological real-

ism about logical objects to Russell and Whitehead’s logicism, if the views about

existence and possibility expressed by Whitehead are indeed programmatic commit-

ments. However, the relationship between the views of Whitehead in 1906, which

references Russell’s Principles of Mathematics, and the evolving views of Russell

on logicism deserves more careful attention than I have given it. In particular,their

ultimate reliance on a putatively non-logical axiom of infinity undermines the plau-

sibility of a program to prove strictly logical existence theorems. If one considers

the empty domain to be a logical possibility the view that existence theorems may

be established on a purely logical basis is unacceptable, and there seems to be some

tension between the view that existence theorems may be established on a logical

basis and the attitude toward ontology Russell summarized as his “robust sense

of reality.” Accordingly, my view is that existence theorems can only be estab-

lished on empirical, formal, intuitive, or practical grounds, and that logic should be

separated from the analysis of content altogether. However, it is noteworthy that

this separation preserves a considerable role for propositional functions understood

as structural descriptions in the analysis of breadth and depth, and that over and

above the analysis of rigor this is an important contribution of logicism in both the

Frege-Russell-Whitehead strain and the Dedekind-Hilbert strain.
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CHAPTER 6

STRUCTURES AND SETS

6.1 Sets and Models

Set theory provides a common language for mathematical researchers. That

is, set membership and inclusion became standard modes of speaking, even in cases

where they could be paraphrased away by less ontologically committing approaches.

Most “working mathematicians” cannot be bothered with the nominalistically in-

clined philosopher/logician’s insistence that talk of sets, which ontologically com-

mits to the set as an abstract particular existing “over and above” its members, may

be in most ordinary cases be replaced by a theory of collections or pluralities as an

interpretation of second order logic which does not commit to an expanded range

of the first-order quantifier. Nor could they be bothered to recast their canonical

uses of subset inclusion by the part/whole relation. This “foundational” role for

set theory is perhaps best illustrated by the case of point/set topology, in which

the intuitively conceived manifold is represented as a set of points and a topo-

logical structure on a manifold is specified by indicating a class of “open” sets

that is closed on arbitrary unions and finite intersections. The standard theorems

of point/set topology, however, do not make use of higher set theory and some

progress has been made reconstructing them in an ontologically leaner mereotopol-

ogy. Indeed, though for practical rather than ontological reasons, mathematicians

have developed locale theory as a “pointless topology”, recapturing many theo-

rems of point/set topology in a framework emphasizing the lattice structure of the

“open sets” without consideration of points as primitive elements or membership

as a primitive relation. On my very elementary understanding of locale theory it
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seems perfectly acceptable to view the lattice relation as a mereological part relation

rather than as a set theoretical inclusion relation, and the theory of locales is often

developed category theoretically. Hence, the idea of topological structure may be

understood as only indirectly developed in the language of sets but not reductively

identified in the ontology of sets. However, to the mathematician steeped in set the-

ory as a working language of mathematics, who learned standard patterns of proof

such as “to show S ⊆ T let a ∈ S and show a ∈ T”, any philosophical justification

for alternative approaches will strike the ear as arbitrary dissent in an Esperanto

utopia. The motivation for locale theory is not philosophical, but rather arises from

the practical benefits of viewing the lattice structure of the topology directly. Yet,

it remains reasonable for those who do have philosophical motivations to draw from

developments in topology the lesson that the prominence of set theory as a linguistic

framework should not preclude reflection on its potential eliminability from the core

structural content of topology.

In “Set Theory as a Foundation” Maddy argues that set theory is less impor-

tant to mathematics as an ontologically reductive theory and more important as

a representational domain. That is, for mathematics in practice the ontologically

reductive idea that all mathematical objects “are really just sets” is less important

than the less reductionist idea that all mathematical objects and structures can be

“faithfully represented” as sets. Maddy writes:

The force of set theoretic foundations is to bring (surrogates for) all
mathematical objects and (instantiations of) all mathematical structures
into one arena —the universe of sets —which allows the relations and
interactions between them to be clearly displayed and investigated. Fur-
thermore, the set theoretic axioms developed in this process are so broad
and fundamental that they do more than reproduce the existing mathe-
matics; they have strong consequences for existing fields and produce a
mathematical theory that is immensely fruitful in its own right. Finally,
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perhaps most fundamentally, this single, unified arena for mathematics
provides a court of final appeal for questions of mathematical existence
and proof: if you want to know if there is a mathematical object of a
certain sort, you ask (ultimately) if there is a set theoretic surrogate
of that sort; if you want to know if a given statement is provable or
disprovable, you mean (ultimately), from the axioms of the theory of
sets.

In providing surrogates and instantiations, set theory provides an important domain

in which mathematics can (not must) be interpreted. Recall Whitehead’s discussion

of existence theorems. We may understand Maddy’s point in those terms by saying

that set theory provides a domain of interpretation for the proof of existence the-

orems; of course, however, this leaves unsettled the consistency of set theory itself.

Whereas Whitehead held that, as canons of reasoning itself, the axioms of logic were

not subject to proof, the same cannot be said of set theory because it is possible to

adopt canons of reasoning that do not imply the existence of sets. So, contrary to

Maddy’s assertion of the importance of set theory as a domain of interpretation it

does not seem that any epistemological gain is made by proving an existence theo-

rem in set theory. After all, the consistency of axiomatic descriptions of standard

structures in algebra and geometry may be more intuitive than the consistency of

set theory.

Moreover, the language of membership and subset is deployed freely by math-

ematicians even where the ontology of sets as objects is not strictly required. Al-

though it is of great practical significance, the role of set theory as a lingua franca

for mathematics is of less clear philosophical significance for understanding the

logical structures expressed by and represented in set theory. Indeed, as I have

suggested, in a large number of cases the language of membership and inclusion,

even in point/set topology, is in contexts that are readily amenable to paraphrase
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in less committing frameworks. The potentially more significant role for set theory,

then, is as a rigorization of mathematics employing the language of sets. That is,

standard mathematical reasoning using the language of sets may be seen as “backed

up by” the possibility of translation of “informal” proofs into derivations in a first-

order axiomatic system such as ZFC. In this case, the use of set theoretical language

indicates the pattern of proof to be so translated. One may think that the implicit

formal proof provides a kind of epistemic underwriting for the standard reasoning.

However, it is possible to doubt the strictly epistemological motivation for “for-

malization” in the sense of translation into and derivation in ZFC, or even a weaker

system such as Peano arithmetic. Such formalizations may indeed more deeply in-

form us of the logical relations between mathematical theorems. This seems to me

to be the greatest insight to be gleaned from Harvey Friedman’s work on “reverse

mathematics”, and a perfectly worthwhile project for those with such an interest.

Notwithstanding the relevance of formalization to that project, to warrant a claim

that formalization yields epistemic gains would seem to require that the system in

which informal reasoning is represented should be more secure. For example, we

should have more epistemic security in the truth of ZFC, or at least its consistency,

than we have in soundness of typical mathematical reasoning. Hilbert’s program for

the foundations of mathematics aimed to provide just that, by providing a finitistic

consistency proof for Peano Arithmetic and proceeding to consistency proofs for

other systems from there. Gödel demonstrated that this could not be done in the

strictest sense. That is, con(PA) cannot be demonstrated in any system X such that

con(X) may be established by strictly finitary methods. By adopting transfinite in-

duction on formulas, Gentzen showed, however, that con(PA) can be established

in a system that is proof theoretically weaker than PA but not finitistic. This is
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an important and under-appreciated result, but although proof theoretically weaker

than PA, Gentzen’s system is not obviously epistemically more secure. Hence, while

it may be said that there is a formal proof of con(PA) in a formal system that is

acceptable by “ordinary mathematical standards,” it is for this very reason that

such a proof does not provide any epistemic gain for those standards. This does not

mean that formalization is without value for mathematics, only that its value does

not consist in gaining the sort of absolute epistemic security for infinitary reasoning

that Hilbert sought to derive from a basis of finitary consistency proofs.1

Although I have personally come to doubt the strange ontology of the iterative

hierarchy of sets (that there are such things as singletons existing as distinct objects,

that the empty set is an object, etc.) it is not necessary to accept the anti-realist

conclusion that sets and classes are best understood as logical fictions to see that set

theory does not provide a uniquely important subject matter for the philosophy of

mathematics. In particular, we do not need to understand “structures” as sets, and

indeed it is misleading to do so. Sets, related by membership and inclusion, may

instantiate structures but this leaves open all interesting philosophical questions

about what (and whether) structures are and how complexes instantiate structures.

Furthermore, set theory provides no especially important epistemic support for

ordinary mathematics through actual or in principle formalization, even though it

does provide an important formal framework for the study of the proof theoretical

strength of logical principles and mathematical hypotheses.

1See http://www.cs.nyu.edu/pipermail/fom/2011-May/thread.html for a lively discussion
among specialists in the foundations of mathematics on proofs of con(PA) and (von Plato) for
a detailed account of Gentzen’s work.
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6.2 Bourbaki: pragmatic foundations

Concerning the Bourbaki group’s approach to foundations, Yuri Manin re-

cently had the following exchange with Michael Gelfand:

Manin: Cantor’s theory of the infinite had no basis in the older mathe-
matics. You can argue about this as you like, but this was a new math-
ematics, a new way to think about mathematics, a new way to produce
mathematics. In the final analysis, despite the arguments, the contra-
dictions, Cantor’s universe was accepted by Bourbaki without apology.
They created “pragmatic foundations”, adopted for many decades by all
working mathematicians, as opposed to ”normative foundations” that
logicists or constructivists tried to impose upon us.

Gelfand: It seems that mathematicians writing about Bourbaki in Rus-
sian have different points of view. There are rather harsh critics of all
this set-theoretic foundational work, who criticize Bourbaki’s isolation
from the physicists and the wonderful possibilities they can open for us.

Manin: There is nothing special in this. The fact that they curse at
Bourbaki shows that they don’t know how things are now done. What
Bourbaki did was to take a historical step, just what Cantor himself
did. But this step, while it played an enormous role, is very simple.
It was not creating the philosophical foundations of mathematics, but
rather developing a universal common mathematical language, which
could be used for discussion by probabilists, topologists, specialists in
graph theory or in functional analysis or in algebraic geometry, and by
logicians as well.(Gelfand et al., 2009)

As Gelfand notes, some will find the characterization of the Bourbaki approach

as “pragmatic foundations” a bit puzzling. Bourbaki, after all, seem to embrace

a foundational, set-theoretical reductionism, following in the footsteps of Zermelo

and others. Furthermore, to call them pragmatists seems in tension with Saunders

Mac Lane’s comment that “[Bourbaki] dogma can be stifling” (Mac Lane, 1981).

Pragmatists or dogmatists? Both? There are several strains to be sorted in resolving

the tension between Manin’s comments and attitudes like that expressed by Mac

Lane.
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First, Mac Lane’s comment pertains to the question of the “analysis of breadth

and depth” as opposed to the “analysis of rigor”. The latter he takes to have been

fairly well achieved by the logical, axiomatic tradition stretching from Euclid to

Hilbert and significantly passing through Frege and Russell. Mac Lane’s comment

regards the influence Bourbaki held in the mathematics community with respect to

the choice of interesting problems. As Bourbaki’s influence has waned, some math-

ematicians have returned to working more closely with physicists, a trend that has

especially influenced recent category theoretic developments in algebraic geometry

and differential topology.2 Historically, pure mathematics has grown out of applied

mathematics through rigorization and generalization. 3 Bourbaki made pure math-

ematics an independent research program, and their ideas about what results are

deep enough with broad enough application exerted considerable influence.

Mac Lane’s comment may be read as more sociological than epistemological

or metaphysical, therefor. Indeed, as Bourbaki’s members rose to prominence in

the hierarchical French academy and gained global influence over the course of

mathematics research there was inevitable resentment of their power, resentment

not diminished by the Bourbaki predilection for inside jokes and irreverent tone,

which though initially meant as a mockery of power changed significance when its

members rose to the top of the hierarchy.4 Bourbaki members Cartan, Dieudonne,

and Borel all contradict the view of Bourbaki as hegemon, arguing in particular

that the project of Elements had always been to summarize and organize existing

mathematics with the goal of providing tools of structuralist analysis to specialist

2See John Baez and Aaron Lauda’s “A Pre-History of n-Categorical Physics” for an overview
of these developments (Baez and Lauda).

3Penelope Maddy’s recent discussion very nicely recounts this relationship between pure and
applied mathematics (Maddy, 2008).

4Liliane Beaulieu discusses some of this dynamic in a nice paper on the culture of Bour-
baki(Beaulieu, 1999).
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mathematicians, not of imposing their vision of research in pure mathematics on all

mathematicians(Cartan, 1958; Dieudonne, 1968; Borel, 1998). Still, intention and

effect may have come apart to some extent, and Mac Lane’s call for an analysis of

breadth and depth relates more to the effect of Bourbaki than their intention.

Manin’s comment, in contrast, does not pertain to the issue of problem choice,

nor to the related issues of breadth, depth and the sociology of mathematics. Rather,

Manin focuses on the claimed Bourbaki success in “developing a universal common

mathematical language.” What ”historical step” did Bourbaki take? Dieudonne

described the Bourbaki approach to foundations thusly:

On foundations we believe in the reality of mathematics, but of course
when philosophers attack us with their paradoxes we rush to hide behind
formalism and say: “Mathematics is just a combination of meaningless
symbols,” and then we bring out Chapters 1 and 2 on set theory. Fi-
nally we are left in peace to go back to our mathematics and do it as
we always done, with the feeling that each mathematician has that he
is working with something real. This sensation is probably an illusion,
but it is very convenient. That is Bourbaki’s attitude towards founda-
tions.(Dieudonne, 1968)

We may chalk up the puzzling profession of belief in what is “probably a convenient

illusion” to the fact that this is an impromptu reply, likely a bit glib; though it

will be worth noting that the philosopher who aspires to be more than a paradox-

mongering gnat has work in sorting reality from illusion. More interesting is the

separation of set theory from the mathematics of primary interest and the over-all

attitude that worries about foundations are a philosophical distraction from topics

of greater mathematical interest. The quote tends to confirm Corry’s argument

that the formal set-theoretically defined of structures of Theory of Sets are not to

be identified with the informal notion of structure that guided the development of

subsequent chapters of Elements (Corry, 1992).
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The pragmatic, “historic step” of Bourbaki might in this light be seen thusly:

It doesn’t matter what background ontology one employs in the study of the informal

notion of mathematical structure so long as it’s rich enough to contain models of

all interesting axiomatic structures. So just choose any “language” and proceed

as if its terms refer. This is not an unproblematic interpretation, however. As we

shall see, the relationships between set theory, category theory, and mathematical

structure give rise to complications.

Philosophers Erich Reck and Michael Price describe the relationship between

set theory and structuralism in the philosophy of mathematics:

Set theory provides, then, a general framework in which all the other
parts of mathematics can be unified and treated in the same way. That
is to say, in set theory one can construct various groups, rings, fields, ge-
ometric spaces, topological spaces, as well as models for PA2, for COF2,
etc. (see Section 2); and one can study them all in the structuralist
way described above... such a structuralist approach to mathematics,
within the framework provided by set theory, is then made canonical,
at least for large parts of 20th century mathematics, with the influen-
tial, encyclopedic work of Bourbaki and his followers. Consequently it is
with the name of Bourbaki that “structuralism in mathematics” is most
often associated in the minds of contemporary mathematicians (Reck
and Price, 2000).

Following Corry’s conclusion, and as the quote from Dieudonne seems to suggest,

the role of set theoretical constructions for Bourbaki is perhaps not as central as is

suggested here. This is not to doubt the central importance of certain set-theoretical

methods of proof in diverse mathematical settings, nor to question the historical

importance of Bourbaki’s standardization of mathematical language and notation

in a generally set-theoretic setting. Rather, I wish to point out that set-theoretical

constructions come with baggage that can be inessential to structures of primary

interest to the mathematician.
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One can have the methods and the language without firm commitment to the

constructions. For example, the Kuratowski ordered pair (a, b) =df {a, {a, b}}is:

(1) an arbitrary convention since (a, b) =df {b, {a, b}} would serve just as well, and

(2) implies that every ordered pair has an element of cardinality 2, a fact irrelevant

to the intended order structure. Similar comments would apply to set-theoretical

constructions of group, ring, and field operations. Notably, in Theory of Sets Bour-

baki take the ordered pair as primitive. In fact, where set theory is most at home,

in point set topology, Dieudonne notes that Bourbaki included “the least possible”

(Dieudonne, 1968). On this understanding of Bourbaki’s approach, axiomatic defi-

nitions of structures therefore should take center stage over set-theoretical construc-

tions of models, which provide perhaps nothing more than a convenient ontological

illusion. 5 Accordingly, we could understand Bourbaki’s pragmatic foundations as a

conventionalism, which under girds approximately three decades of very productive

mid-twentieth century normal science (in approximately Kuhn’s sense) following

the so-called foundational crisis.

Conventions, however, may be set down with awareness of a pragmatic choice

being made or not. They may be recognized as pragmatic choices or not. Fur-

thermore, alternative paths may emerge only after decisions have been made. A

more moderate version of Mac Lane’s comment is apt to the extent that Bourbakis

(i.e., members of Bourbaki) and Bourbakists (i.e., followers) failed to recognize con-

ventional aspects, perhaps ultimately limiting, of their research program. Grant-

ing Corry’s point that the formal set-theoretical structures of Theory of Sets are

marginalized in later books, and granting the arguments given above relating to

5My argument here is complicated by the fact that Bourbaki include the Kuratowski definition
in a later edition of Theory of Sets. However, that they were willing to proceed without a reductive
definition in the first place remains relevant. Furthermore, axiomatics take center stage in
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definitions of ordered pairs and algebraic operations does not entail that Bourbaki

viewed the later work as entirely independent. Indeed, there is plenty of evidence

that Bourbaki, especially the early generation, was committed to the view that

everything could in principle be done in the Theory of Sets. Third generation

member Pierre Cartier claims that Bourbaki members became less dogmatic with

each generation and notes the “monstrous endeavor to formulate categories without

categories” in Bourbaki’s final chapter on set theory(Senechal and Cartier, 1998).

Although category theoretical ideas emerged naturally from Bourbaki research

—indeed, founding category theorists Eilenberg and Grothendiek were members

—difficulties relating the small/large category distinction to the set/class distinction

made it difficult to force category theoretic approaches into the Theory of Sets

framework, thus frustrating Grothendiek’s ambitious proposals for sequels to the

Books I-IV and leading him to leave the group.6 Commenting on Andre Weil’s

resistance to Grothendiek’s proposals Ralf Krömer writes:

Weil’s refusal may have an ontological background since Bourbaki as-
signs a certain ontology to mathematical objects (an ontology which
comprises functors only with difficulty). But the Bourbaki ontology is
subject to some criticism: what is claimed on the one hand is that struc-
tures are the real objects; on the other hand, this assertion asks for a
definition of structure, which Bourbaki in truth gives ultimately in rely-
ing on sets again. From the pragmatist point of view, such an ontological
debate is empty since ontology is “wrapped up” in epistemology: and if
one has no access to structures but via sets (as Bourbaki seems to be-
lieve), then the stressing of an ontological difference between structures
and sets is useless, for lack of means of cognition enabling us to grasp
the difference(Krömer, 2007).

The picture that emerges is of increasing awareness among Bourbaki members in

later generations of alternative paths in the investigation of mathematical structure,

6I do not claim to know all of his reasons and don’t wish to suggest this the only or a primary
reason or that his departure was acrimonious.
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and of conflicts over the desirability of revisiting set-theoretical foundations.7

Borrowing from Reck and Price’s scheme for classifying philosophical struc-

turalist views it is inviting to categorize Bourbaki as “relativist structuralists.” The

point of calling a version of philosophical structuralism “relativist” is just that while

the focus is on the study of mathematical structure no particular instance of a given

structure is considered to be the intended structure. Any instance will do. Reck

and Price demur from claiming that Bourbaki take any philosophical position at all,

characterizing their structuralism as “methodological”; viz., as principally suggest-

ing the method of looking for similar structures in diverse mathematical settings

without definite metaphysical commitment concerning the nature of structure. I

join Reck and Price, however, in resisting the temptation to attribute specific philo-

sophical commitments to Bourbaki. Furthermore, I would hasten to add that the

members of Bourbaki cannot be expected to be univocal on the issues discussed

herein.

6.3 Ante rem structuralism

Bourbaki’s first volume provides mathematics with a domain of structures

instantiated by the “concrete” relations of set membership and inclusion (Bourbaki,

2004). The specification of a fixed relation provides an “assertoric foundation”

for mathematics: i.e., a domain of objects and a relation on them about which

mathematics may be taken to be making assertions. My use of “concrete” in this

context may be idiosyncratic for philosophers, since sets are typically thought to be

a paradigm of abstract objects and relations on them will be taken to be equally

abstract. To clarify, then, by “concrete” I just mean metaphysically determinate.

7Of course, despite these unresolved conflicts Bourbaki produced some of its most influential
works, such as their widely read work on Lie algebras.
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To be a realist about sets is to hold that set theory describes the structure of some

specific relation on some determinate entities.8

Setting aside the success or failure of these accounts, there are further worries

about Bourbakism, if it is philosophically understood as a reductionist program for

mathematics rather than as a more pragmatic foundation. An image of mathemat-

ics as the study of facts about structures of sets will be ill suited to account for

mathematicians’ selective interest in such facts. Indeed, Leo Corry has argued per-

suasively that Bourbaki’s own work is guided by an informal notion of structure that

is not reducible to set theory (Corry, 1992). Furthermore, it is by now common-place

to point out, following Benacerraf, the peculiarities of “excess structure” obtained

in set theoretical constructions (Benacerraf, 1965). This worry is analogous to the

one raised against Chihara’s reconstruction of mathematics as a theory of the con-

structibility of open sentences; the role of sets in foundational research is, like the

role of sentences in Chihara’s program, more formal than intensional.

Stewart Shapiro’s ante rem structuralism is an effort to provide philosophical

resolution of the problems with set theoretical reductionism, while maintaining the

realist conviction that mathematics has an intended interpretation and that struc-

tures are complex things that mathematicians study (Shapiro, 2000). Shapiro’s view

is that structures are complex universals which are instances of themselves. They

are complex universals because, as instances of themselves, they are comprised of

objects and relations. Those objects and relations, which Shapiro characterizes as

“places in a structure” are themselves universals: i.e., they are determinable over

8Recall that realist accounts of the determinacy of sets and set theoretical relations have made
appeal to collection as a operation that constructs the iterative hierarchy (e.g., (Potter, 2004)),
to direct (i.e., non-constructive) intuition (e.g., Gödel as often caricatured, but see (Potter, 2001)
and (Tait, 2010)), sometimes to ordinary sense perception of finite sets conceived as quasi-concrete
rather than purely abstract (e.g., (Maddy, 1980), a view since abandoned).
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specific, “concrete” objects and relations (which may be physical or abstract).

An example will perhaps be helpful. Consider, again, the Dedekind-Peano

Axioms for arithmetic. They characterize a simple, infinite sequence up to isomor-

phism. There are many interpretations specifying some objects and a relation on

them which satisfy the axioms. Among those interpretations is, Shapiro maintains,

a canonical interpretation in which the ordered items are the thing-places in the

structure itself and the ordering relation is the relation-place in the structure itself.

Shapiro has sometimes described his view as if it were that there were some objects,

places-in-structures, which have only relational properties. So he has been taken to

presuppose a relation that is ontologically prior to its relata, but (whether coher-

ent or not) this is not the position he holds. Rather, as he has recently clarified,

both the relata and the relation of an ante rem structure are to be understood as

places in a structural universal (Shapiro, 2008). Shapiro’s metaphysical account is

meant to provide mathematics with objects and relations that are fixed, insofar as

they may be referred to in specifying an interpretation, but not concrete even in

the minimal sense of being determinate. This account of ante rem structures as

structural universals involves an account of structural predication. A concrete (i.e.,

determinate) instance of a structural universal is an instance (or interpretation)

in which some concrete particulars and relations instantiate the places in the ante

rem structure. Structural predicates contribute to the meanings of propositions

by naming structural universals and depicting their instantiation in a determinate

structure.

As, perhaps, enticing as Shapiro’s metaphysical picture is, in the case of struc-

tural predicates that attribute categorical structural properties, it should be noted
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most structural predicates, understood as propositional functions or matrices de-

rived from axiomatic characterizations of algebraic and geometric structure, do not

attribute categorical structural properties. Hence, Shapiro’s ante rem structuralism

may be subjected to a criticism analogous to Berkeley’s objection to Locke concern-

ing the abstract idea of a triangle. For example, consider “being a group” as a

structural predicate of systems of objects under a relation. There are, of course,

non-isomorphic groups, so the axioms of group theory are non-categorical. An

account of structural predicates as designating structural universals and of struc-

tural universals as complex entities comprised of object-places and relation-places

is not clearly applicable to predicates defined from non-categorical axioms. In par-

ticular, there are groups of differing cardinality. If “being a group” designates a

complex universal in the same way that, on Shapiro’s view, “being a simple se-

quence” (satisfying PA2) does then it will designate a complex universal possessing

an indeterminate number of thing-places. However, it is not clear what this could

amount to. So, even if we do accept that structural predications have meaning by

designating structural universals it is not clear that structural universals are the

kinds of complex entities that Shapiro envisions.

Observations made in Jean-Pierre Marquis recent work aiming to show that

what he calls the extensional form of mathematics, as based on set theory, that has

dominated philosophers’ image of mathematics may be marshaled in objection to

Shapiro’s form of structuralism (Marquis, 2011). The extensional form of mathe-

matics is based on the idea of identity of mathematical form as characterized by

equivalence up to isomorphism. Marquis argues that the importance of weaker forms

of equivalence, specifically emerging from algebraic topology, should decenter the

extensional form from philosophical images of mathematics (but not force it out of
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the picture). Marquis’ approach is heavily mathematical and historical and much of

the article is devoted to development of examples to illustrate his idea (but without,

in my opinion adequate philosophical articulation of the implications). The central

examples are notions of categorical equivalence and homotopy equivalence that are

non-extensional to the extent that they do not require domain and codomain to

have the same cardinality. I wish to focus on the example of homotopy, and recom-

mend Marquis’ article for exposition of the example. It may be argued that these

examples raise broad issues for structuralist philosophy of mathematics, which no

doubt has been motivated by the idea of isomorphism as completely preserving

structure. There is an immediate problem for ante rem structuralism because of its

dependence on categoricity for the determinateness of ante rem structures. For me,

the example of homotopy types is not concerning in the same way. I am no more

concerned that two spaces having the same homotopy type should be equipollent

than I am concerned that two groups should be equipollent. To give a concrete

analogy, two suspension bridges may have, broadly speaking, similar structures but

may have different numbers of bolts.

Further objections may be raised to Shapiro’s account. In particular, consider

some of the uses of structures discussed in the preceding chapters. The structuralist

methodology arose to deal with mathematical problems, which precede the emer-

gence of the axiomatic method on which Shapiro’s philosophical structuralism is

based. For instance, the problem of solutions by radicals lends itself well to a for-

malist understanding of algebraic practice.9 The axiomatic definitions of groups,

fields, rings, ideals, etc. and the basic theorems of abstract algebra arise as a means

9This is, again, not meant to imply formalism as an encompassing philosophy of mathematics,
only that the problem of finding solutions to polynomials that may be expressed algebraically is a
formal task.



137

of studying a given subject matter, not as introducing a new subject matter. To be

sure, Shapiro would resist the implication that pre-axiomatic mathematics is not in-

terpretable in his terms. Indeed, he holds that formal presentation of a structure is

a step toward obtaining epistemic access, as we will discuss in the following section.

However, the criticism may be pressed by considering the application of structural

predicates to geometry, as with Klein’s Erlangen program and Lie algebras. In this

context what is important is that an algebraic structure can be used to characterize

geometric spaces and differentiable manifolds. The ante rem view treats the alge-

braic structures as prior in being to their instantiation in the transformation groups

that preserve geometric and differentiable structure, and while this metaphysical hy-

pothesis is not refuted by reflection on the genesis and application of structuralism

in mathematics the view that the subject matter of mathematics is characterized

by this metaphysical account is rendered less plausible in my estimation.

Shapiro hopes that ante rem structuralism can solve the access problem by

accounting for knowledge of mathematical structures through stages, from (1) ab-

straction, to (2) projection, to (3) description. In the first stage, concrete finite

structures are encountered which are instances of abstract structures. For instance,

the figure |is an instance of the cardinality one structure, ||of the cardinality two

structure, |||of the cardinality three structure. From such instances we extract a

pattern. The next stage is projection, in which it is recognized how new structures

may be formed from old ones. For instance we see how a greater finite cardinality

pattern may be arrived at by conjoining a further object. Abstracting from the

succession formed by the projection of this conjoining operation we may arrive at

the structure of the natural numbers. Finally, we reach the stage of mature mathe-

matics: description. Here we obtain axiomatic characterizations of structures, such
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as the Peano axioms for arithmetic, or structural properties, such as Dedekind’s

definition of infinity (a set which is in one-one correspondence with a proper sub-

set). Shapiro’s account has the appealing feature that mathematical phylogeny

recapitulates mathematical ontogeny. That is, individuals grow into mathematical

knowledge in a way that mirrors the growth of mathematical knowledge itself.

In a paper objecting to Shapiro’s reply to the access problem, Fraser MacBride

holds that Shapiro has not satisfactorily answered the questions:

• (1) What guarantee do we have that even coherent categorical descriptions

are not empty, failing to denote actually existing structures?

• (2) How do we know that descriptions are coherent and categorical? (MacBride,

2008).

MacBride questions whether, even if Shapiro’s account of access via abstraction

is allowed, we may reliably project from the concrete small cardinality structures

that we encounter in experience even to large finite cardinalities, let alone to a

hierarchy of transfinite cardinalities. MacBride presses an empiricist skepticism.

Shapiro’s response to MacBride emphasizes his epistemological naturalism and em-

ploys Wright’s notion of epistemic entitlement to answer the charge of circularity

(Shapiro, 2011). In particular, he appeals to entitlement to the following epistemic

principles derived from mathematical practice: that the ability to coherently dis-

cuss a structure is evidence that it exists and that abstraction, projection, and

description are means of acquiring that ability. I do not, in fact, think that we have

the naturalistic entitlements that Shapiro claims for us, and I will want to engage

Shapiro on naturalistic grounds. First, though, let us consider whether it is really

necessary to brush the skeptic off entirely.
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For the classical empiricist one source of skeptical concern is semantic rather

than epistemic. Indeed, a central skeptical problem for the moderns was whether

we have any idea at all of substance, self, god, infinitesimals, or even chiliagons.

An account of idea-formation is primarily a problem of semantics not epistemology.

For us to express and understand determinate thoughts about large finite quantities,

according to the strictest empiricism, we must possess a inherently distinct idea cor-

responding to each numeral. Shapiro does not have this semantic problem because

he does not have an empiricist semantics; it should not matter for him whether we

have an idea, in the empiricist’s visual sense, of large cardinality structures but only

whether we succeed in referring to them. For Shapiro, the task is just to establish

that there are cardinality structures beyond those having concrete instances with

which we are acquainted, not that we possess an idea of such structures, and cer-

tainly not that we possess an idea that is some kind of visualizable copy. Hence,

it is no objection to Shapiro to claim, in Berkeleyan spirit, something like “others

may have such determinate ideas of large cardinalities (or for that matter infinites-

imal magnitudes) but I am acquainted with no such extraordinary mental images.”

With this in mind, skeptical ultrafinitism loses its inherently semantical motiva-

tion. Without that motivation it is not clear to me why, having granted to Shapiro,

as MacBride does, that abstraction may ground the capacity to meaningfully de-

ploy structural vocabulary we should withhold the extendability of that vocabulary

beyond the small finite.

Perhaps to shore up the skeptic’s position MacBride appeals to Wittgen-

steinian concerns about rule following. How do we access the structure of an infinite

simple sequence?

Presumably Shapiro will answer that first we abstract an initial array
of numeral types from the tokens shown to us by our teachers; then we
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project the series of numeral types beyond the tokens perceived. But,
as Wittgenstein famously pointed out when he raised the rule-following
considerations, consistent with the evidence supplied to the mathemat-
ical novice there are indefinitely many ways of interpreting the sign +.
Similarly, there are indefinitely many ways of projecting the series of
numerals indefinitely many rules for constructing numerals which are
consistent with the evidence supplied by an initial finite sequence ar-
rived at by abstraction, rules which fail to generate systems of numerals
isomorphic to the natural numbers. It therefore remains a mystery how
we succeed in isolating the natural number structure and making it an
object of thought (MacBride, 2008).

We may imagine an insistent modularizer, for example. Writing out sums, she adds 1

as expected until she reaches some previously unencountered numeral n, then writes

0. Corrected, she now does the same up to n+ 1, before again writing 0. Corrected

again, she again does the same up to n+ 2, before again writing 0. No matter how

large of an initial sequence of numerals she is confronted with she always interprets

the system as mod n arithmetic, where n is the largest numeral so far encountered.

What should Shapiro make of this infinity of possible interpretations? I think he

should make of it that there is a finite cyclic group structure accessed for each way

of going on, just as there is an infinite cyclic group structure accessed under the

typical way of going on. Again, I dont see how this skeptical worry gains footing

against Shapiro. Which structure is abstracted depends on which interpretation

one takes. That much is obvious, but it does not seem to me to follow that one

who does interpret the rule in the usual way has, in virtue of the other possible

interpretations, some special problem, at least not if, again, we are granting the

basic supposition of access to small finite structures (with or without relations).

Furthermore, Shapiro need not take the formalistic, rule-following path to ac-

cessing the first transfinite order structure. If his account of access and projection
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of finite cardinal structures is granted, and I have argued that since he is not com-

mitted to classical empiricist semantics there is no obvious barrier to projection

once abstraction has been allowed, then he need not fall back on the sequence of

stroke-pattern types or of Arabic numeral types, for the sequence of finite cardinals

itself exhibits the required order structure. This would not be, on Shapiro’s view,

to identify the natural numbers with the finite cardinality structures; the former are

mere places in the structure abstracted from the sequential ordering of the latter.

The point is, rather, that the account of projection of the cardinals, stripped of

commingling intuitions, does not involve the sort of rule-following considerations

that may arise in regarding a formal system like the systems of stroke patterns or

of Arabic numerals as the basis for abstraction.

To the second question MacBride objects that Shapiro illicitly employs no-

tions of coherence (having a model) and categoricity (models are unique up to

isomorphism) to underwrite the third, epistemic phase of description. Shapiro is

committed to the thesis that every coherent description of a structure is satisfied

at least once by an ante rem structure and that each categorical description of a

structure is satisfied at most once by an ante rem structure. MacBride alleges that

the claims to knowledge of existence theorems for all coherent axiomatic definitions

of structures and to uniqueness of abstraction theorems for all categorical axiom-

atizations involves an unacceptable circularity. The explication of coherence and

categoricity of such definitions seemingly requires model theoretical notions that

rely directly on set theory (or perhaps one may follow Quillen’s category theoretical

approach). MacBride objects that if one is not already acquainted with a sub-

stantial body of mathematics, namely, set theory or something else equivalent, like

category theory, one will be unable to settle the question of whether a description
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is empty, or whether it denotes an existing structure. Our prior grasp of theoretical

notions requires our knowing some truths of set/category theory. In the book to

which MacBride is responding, Shapiro anticipates the circularity charge, offering

an appeal to practice:

In mathematics as practiced, set theory is taken to be the ultimate
court of appeal for existence questions ... the thesis that [set-theoretic]
satisfiability is sufficient for existence underlies mathematical practice....
Structuralists accept this presupposition and make use of it like everyone
else, and we are in no better (and no worse) a position to justify it.
The presupposition is not vicious, even if it lacks external justification
(Shapiro, 2000).

Here then is Shapiro’s fundamental response to the access problem, and MacBride

finds it unconvincing. The process of abstraction, projection, and description gives

way to a strictly descriptive naturalized foundationalism, one lacking external jus-

tification.

However, coherence and consistency claims, understood model theoretically,

arise only at the descriptive phase as very minimal restrictions on postulational

practice. Hence an objection to Shapiro’s account enters only at the third stage of

epistemic development. Accordingly, Shapiro may appeal to abstraction and pro-

jection of primitive stages of the iterative hierarchy of sets as grounding access prior

to axiomatization, which in no way depend on terms defined model theoretically.

Indeed, a primitive, generic logical notion of consistency suffices as a substitute for

coherence (= “has a model”) and, in fact, Oswald Veblen first defined categoric-

ity using the primitive, generically logical notion of a complete axiomatization (i.e.,

one which cannot be non-redundantly extended). Huntington, following Veblen sug-

gested that categoricity may be understood by deductive completeness. Following
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Gödel we know that deductive completeness is an inadequate definition of cate-

goricity (Aspray and Kitcher, 1988). These “incorrect” (from our point of view),

pre-model theoretical definitions nevertheless provide approximate notions of coher-

ence and categoricity, which may be applied to the iterative hierarchy, and which,

it may yet be insisted, provide an account of access by faculties of abstraction and

projection alone. Set theory, once established by abstraction and projection would

therefor be available in the third stage in the role of canonical domain of interpre-

tation for the standard, model-theoretical definitions.

Now, it may be maintained from our current standpoint that this will be

hopelessly inadequate. There is no categorical axiomatization of set theory, even in

Veblen’s sense, and many will be unconvinced that abstraction and projection from

initial stages of the hierarchy is adequate to determine cardinality properties such

as the continuum hypothesis or large cardinals. Indeed, much current research in

set theory takes an explicitly “multi-verse” view of sets (e.g., Joel David Hamkins).

Still, the notion that the basic structure of a unique universe of sets is implied by the

initial stages captured by constructive intuition of an iterative hierarchy combined

with broad, axiological principles is not entirely dead either, and I only wish to

make the point that Shapiro may say more than he does. It is, indeed, odd that

he proposes the abstraction-projection-description framework but then acquiesces

in an utterly descriptive epistemological appeal to practice in the end.

I wish now to clarify the role of the stroke patterns in Shapiro’s account.

Shapiro does not wish to emphasize the abstraction from concrete tokens to, borrow-

ing a term from Charles Parsons, the “quasi-concrete” types which may depend on

the regularity/rule-governedness of token formation. Rather, he wishes the strokes

to be instances of a cardinality pattern and for the abstraction to be abstraction of
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that pattern. However, the use of strokes to illustrate the point Shapiro wishes to

make obscures matters somewhat, because our philosophical guesses about learn-

ing processes purportedly grounding the ante rem solution to the access problem

should not be influenced by intuitions derived from association with our ready-to-

hand mastery of token formation for arithmetic systems. I do not think that such

mastery is irrelevant to the epistemology of mathematics, but that it is irrelevant to

the ante rem structuralist’s epistemology. Our understanding that, notwithstanding

physical constraints, it should always be possible to append a further stroke might

warrant that every stroke pattern type has a successor stroke pattern type, but if it

does this should not be confused with warranting that there are ante rem structural

universals instantiated by each stroke pattern, each of which have a successor. This

is, I think, a more central objection than those raised by MacBride. That is, once

access by abstraction to small finite ante rem universals is granted I think that

Shapiro is given considerable ground to provide a philosophical grounding through

the use of modern axiomatic mathematics for access to infinitary structures.

The objection that Shapiro commingles intuitions about quasi-concrete types

of rule governed systems and pure abstract structures is non-trivial. Shapiro’s struc-

turalism is distinguished from other structuralist philosophies of mathematics pre-

cisely by the fact that he is committed to the thesis that there are no unrealized,

merely possible structures. Every structure type, according to the view, has an

instance, the ante rem structure itself. But how can epistemic support for this

distinguishing claim be piggybacked upon our grasp of the stroke patterns? For,

the in re structuralist agrees that the stroke pattern presents an instance of a small

finite structure, but only disagrees that this is any evidence for the existence of

another, to her mind metaphysically peculiar, complex entity that is structurally
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similar. Even if one grants stroke pattern types as quasi-concrete particulars, one

has entities which depend on the existence of a particular system of sign making and

conventions for that system, but ante rem structures were meant to be discovered,

not invented, abstract objects. So Shapiro must not mean for our grasp of ante

rem structures to depend integrally on something like the passage from tokens to

types. Contrary to Shapiro, abstraction does not provide an account of access to

even small finite ante rem structures, projection makes more sense of the relation

between tokens and types, and so-called “description” is better understood as a

means of introducing structural predicates into the language of logic, as axiomatic

definition of propositional functions, than as describing a purely abstract structure

itself.

6.4 Structuralism without structures

Hoping to avoid the problems engendered by the metaphysical reification of

structures, we might consider a view according to which structural predicates re-

ceive an inferential semantics, according to which they may be seen to contribute

to the meaning of a sentence without designating an entity. Accordingly terms for

propositional functions functioning as structural predicates may be understood on

a par with logical connectives, which may be taken to be defined by the inference

rules governing them and not by ostending a peculiar sort of entity. Likewise, pred-

icates like “is a group” and “is a projective space” may be defined by the deductive

inferences afforded by their axiomatic definitions, rather than by ostending abstract

entities. This sort of view is suggested by thinking of structural predicates as short-

hand for structural descriptions and by sharply distinguishing the real, concrete

objects and relations constituting the world from the strictly formal properties that
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may supervene on a given concrete system. According to this view, we are guaran-

teed meaningful predications by consistent axiom systems but are not guaranteed

the existence of a canonical model (or indeed any model). That is, we may take from

Hilbert the algebraic conception of axioms while embracing Russell’s “robust sense

of reality” according to which matters of existence remain contingent. On this view,

we neither accept the Hilbertian view that existence follows automatically from con-

sistency, in virtue perhaps of what Dedekind characterized as the creative powers

of the human mind, nor the view that rational acceptance of consistency requires

demonstration of an existence theorem.10

According to Hellman’s modal structuralism it is a contingent question whether

any given structural description obtains in the world (Hellman, 1989). According

to this and related views, occurrences of structures are “in re”, which is to say that

the existence of a structure is dependent on the determinate objects and relations

that instantiate it. As such, in re structuralism is compatible with both platonist

and anti-platonist views about mathematics. For instance, in re structuralism is

compatible with the existence of structures comprised of abstract particulars, pro-

vided they are related by a determinate relation. However, it is typically a view

most attractive to anti-platonists as an account of concrete structures in the physi-

cal world. Limiting our attention just to structural descriptions of finite cardinality,

to the extent that Russell held that the cardinality of the universe is a contingent

matter his view is exclusively compatible with in re structuralism; however, even if

logical existence theorems are accepted for structures of arbitrary cardinality it is

consistent with in re structuralism to the extent that logical objects are determinate

objects standing in determinate inter-relations. Indeed, in a recent article Hellman

10However, short of a logical proof of an existence theorem we may require, and mathematics
as practiced seemingly does require, other defeasible grounds for accepting consistency claims.
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traces “hints of” his version of structuralism in Russell’s philosophy of mathematics

(Hellman, 2004).

We have reflected that the term “nominalism” has been associated with re-

jection of universals as well as abstract objects. Our concern is with the latter

and we’re using “nominalism” in a very narrow and unhistorical sense that is con-

sistent with, at least, understanding concrete qualities and relations as immanent

universals. Our limited sense is also consistent with modality, a third bugaboo the

rejection of which “nominalism” has sometimes named. If modality is to be un-

derstood in terms of a realist semantics based on possible worlds, then there may

be some connection between the rejection of abstract objects and the rejection of

modality. There is, for instance, an epistemic access problem for possible worlds.

It would be inconsistent, of course, to reject abstract objects and accept possible

worlds construed as entities that are comprised of abstracta. Still, the realist about

possible worlds may consider possible worlds to be comprised of concrete entities so

it is strictly consistent to reject abstract objects and accept possible worlds. Fur-

thermore, there are a number of actualist, combinatorialist, and logicist conceptions

of possibility and necessity that do not seem to require ontological commitment to

abstract objects. Hence, as with universals there are views on modality that are

consistent with nominalism construed narrowly as the rejection of abstract objects.

Recall from chapter 3 that Hartry Field’s approach to nominalizing scientific

theories makes minimal use of modality, but even he has found use for modalities

concerning what mathematicians know. Forthright as he is, he does not claim to

be paraphrasing grammatically singular assertions of mathematics into a quantified

modal logic. Mathematics is false because it is committed to abstract objects and
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there aren’t any, on Field’s view. Still, according to the view, although mathemati-

cians do not know mathematics, they do know a lot about what follows from what

(Field). That is, they know a lot of logic; perhaps only tacitly, without knowing that

they know it. Hence, Field accepts a sort of “if-thenism”, a view with Russellian

lineage, shored up by a primitive logical modality captured by a relation of logical

implication; this, again, is put forward an account of what mathematicians know

but not of what they assert.

The greatest pressure for introduction of modality into the philosophy of math-

ematics comes from reflection on the standards and practices of pure as opposed to

applied mathematics. Mathematics presents itself as concerned with possibility and

necessity. As Wittgenstein noticed and emphasized, it is characteristic of math-

ematics that a demonstration is not considered as an experiment (Wittgenstein,

1983). One way to regard the significance of this observation is as an indication

that mathematics, however it is to be understood, stands outside of empirical ver-

ification and falsification. If we just look at how mathematics is demonstrated,

by mathematicians to other mathematicians, its non-contingency and independence

from observation is clear. Incidentally, this observation alone ought to be enough

to put the philosophical naturalist on guard against confirmational holism.

Hence, apart from the Platonism/nominalism dispute, there are strong reasons

arising directly from mathematical practice to think that philosophy of mathemat-

ics ought to articulate an account of the modalities involved in what mathematical

demonstrations establish. For the platonist, this gives rise to the challenge of pro-

viding an account of the necessary existence of abstract objects that over-rides the

first-order logical possibility that nothing whatsoever exists. For the nominalist,

it gives rise to the challenge of providing an account of possibility and necessity



149

that does not involve quantification over abstract models, and this typically means

taking logical modality to be primitive.

Furthermore, apart from the case to be made for the importance of necessity

in pure mathematics, as Hilary Putnam has argued there is a clear case to be made

for the importance of possibility in mathematical applications:

From classical mechanics through quantum mechanics and general rela-
tivity theory, what the physicist does is to provide mathematical devices
for representing all the possible —not just the physically possible, but
the mathematically possible —configurations of a system. Many of the
physicist’s methods (variational methods, Lagrangian formulations of
physics) depend on describing the actual path of a system as that path
of all the possible ones for which a certain quantity is a minimum or
maximum. Equilibrium methods in economics use the same approach.
It seems to us that possible has long been a theoretical notion of full
legitimacy in the most successful branches of science. To mimic Zer-
melo’s argument for the axiom of choice, we may argue that the notion
of possibility is intuitively evident and necessary for science (Putnam,
1998).11

So, whether or not a philosophy of mathematics is explicitly modalist, some account

of modality appears to be central to the philosophy of mathematics.

Charles Chihara, like Field, rejects the existence of abstract objects. For

this reason he is a “nominalist” in our narrow sense, although he is clear that his

nominalist commitments are quite minimal:

I do not call my present theory nominalist. My reasons for eschewing
this label are connected with the fact that there are two key ideas un-
derlying nominalism. One is ideological; the other is ontological. From
the ideological point of view, only certain notions of mathematics are
permitted by the nominalist. For example, the membership relation
of classical set theory is regarded as illegitimate. From the ontological
point of view, only certain sorts of objects are permitted into the ontol-
ogy of the nominalist’s theories. Historically speaking, those who have
been ontological nominalists have also been ideological nominalists, but

11Quoted in (Chihara, 1991)
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one can be an ontological nominalist without being an ideological one.
Thus, my constructibility system is, from the ideological point of view,
not nominalist —after all, the idea of satisfaction being presupposed by
the system is a very strong one, being little different in strength from
the classical set theorist’s idea of membership. Still abstract objects are
not asserted to exist in my system (Chihara, 1991).

Like Field, Chihara accepts the surface grammar of mathematics. He does not,

therefor, intend his analysis as a correct paraphrase of mathematical assertions.

However unlike Field, modality holds a central place in Chihara’s image of math-

ematics, a view according to which mathematical demonstrations of existentially

quantified propositions are translatable into statements about what it is possible to

“construct” in a given system.

The basic idea of the approach to be taken in this work is to develop
a mathematical system in which the existential theorems of traditional
mathematics have been replaced by constructibility theorems: where, in
traditional mathematics, it is asserted that such and such exists, in this
system it will be asserted that such and such can be constructed. Now
it is clear that I will need a more powerful notion of constructibility
than that of the Intuitionists if I am to obtain anything like classical
mathematics (Chihara, 1991).

I will not duplicate the technical details of the system Chihara devises to accomplish

this goal. The general idea is to develop a theory of constructible open sentences by

transforming the higher order quantifiers of simple type theory into constructibility

quantifiers. That is, the range of the higher order quantifiers are not proposi-

tional functions considered as independently existing entities (whether identified

with classes or intensional entities) but rather are associated with open sentences

which may or may not have been constructed. Hence, such quantifiers are not con-

sidered straightforwardly as existential quantification (∃...) but only as existential

quantification prefixed by a possibility operator (♦∃...). The reconstruction of math-

ematics in this system is therefor higher-order. That is, we don’t get constructibility
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of numbers as objects. We do get constructibility of open sentences corresponding

to cardinality properties, and Chihara makes a detour through Frege and Russell

that makes this clear, endorsing Russell’s no classes theory. Although his books

are somewhat long on technical detail, Chihara’s system is just a reinterpretation

of a simply typed set theory: existence becomes constructibility, sets become open

sentences, and membership becomes satisfaction.

Chihara shows how his system allows us to substitute statements about the

constructibility of open sentences for existential theorems of mathematics. There

is no “access problem” for propositions about what is constructible because there

are no entities to access. We have, of course, direct access to the open sentence

tokens that we have constructed, and to what it is for such sentences to be satisfied.

Furthermore, we have knowledge of how to produce new open sentences. Chihara

appeals to our common sense intuitions about the modality of construction using

the example of tangrams, a children game in which rigid figures are combined to

construct various shapes. We may see the figures arranged to form a square and

understand perfectly well the proposition that they may possibly be rearranged to

construct a different shape. Hence, the epistemic grounding of his modalist philos-

ophy of mathematics derives from our actual experience of actual open sentences.

Recall Shapiro’s abstraction-projection-description account of epistemic access

to ante rem structures. I objected that even at the stage of abstraction there

may not be any reason to think that an independently existing abstract structure

exists. However, I did not object to abstraction and projection as an account of

our conceptualization of potentially infinite formal systems, including of untokened

types such as very large numerals or very long open sentences, and it seems to

me that when description of infinitary conjunctions is permitted based on recursive



152

specifications there are resources available to develop a very strong system based on

constructible open sentences with an epistemology based on abstraction-projection-

description. It may be objected that types of sentences are required as abstract

objects, but the inaccessibility usually implied by abstractness is diminished by the

dependence of types on concrete tokens and their grammar. Types of open sentences

qualify for what Charles Parsons has termed “quasi-concreteness” (Parsons, 2008).

Although Chihara does not claim to be providing an account of the actual

content of mathematical assertions, we may question whether the epistemic gain

associated with quasi-concreteness comes with unacceptable costs. I think that it

might. It would come as a terrific surprise, I think, to many mathematicians to

find out that the demonstrations they have been providing are best understood as

supporting claims about what open sentences are constructible and what logical

relations would hold between them if they were constructed. This point has been

raised, for instance, by Geoffrey Hellman (Hellman, 2001). Coming from one nom-

inalist to another, this worry is a delicate one. No nominalist wants to accept the

argument that mathematicians have the final say in ontology. It has been pressed

by some philosophical platonists that mathematicians accept Platonism, that we are

in no position to question them, and all nominalists are interested in resisting this

inference from naturalized epistemology to platonist ontology. So Hellman, whose

views we will turn to shortly, should not wield a bludgeon that will be turned on

his own skull.

In fact, a subtler version of the objection that a nominalist reconstruction

should have plausibility is available. First, we should re-emphasize the point that

mathematicians are not univocal on matters of ontology. In my experience the

full spectrum of philosophies of mathematics may be endorsed by mathematicians
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working productively, and even cooperatively, on mathematical problems. Some

mathematicians who speak of their “emotional Platonism” (a term attributed to

the highly regarded mathematician Yuri Manin) go on to endorse strict formalism.

It seems clear that mathematicians do not, univocally, accept that the platonist

expression of their theorems requires a platonist philosophical interpretation. How-

ever, this should not prohibit us from requiring that the interpretation we do give

must have some connection with actual mathematical reasoning that is plausible.

This is what seems to be missing from Chihara’s reconstruction of mathematical

theorems as assertions about the constructibility of open sentences. Whether tech-

nically adequate or not, we should require an articulation of a plausible connection

between sentences and the content of mathematical reasoning. What is required is

to say more about what may be expressed by such sentences, rather than to treat

the sentences themselves as a subject matter.12

To see whether Hellman fairs any better we should, of course, first present

his view. Although Hellman’s motivation does not arise merely by addressing the

shortcoming he identifies for Chihara, an objection which he has raised well after

each developed and argued for their views, it is useful to present Hellman in the

present context as responding to this shortcoming. Accordingly, we may see Hellman

as being motivated by the thought that it is not open sentences themselves which

ought to be the subject matter of reconstructed mathematical theorems, but rather

the properties, specifically the structural properties, predicated of those domains

which satisfy such sentences. Hence, Hellman presents what he calls a “modal

structuralist interpretation” of mathematics (Hellman, 1989).

The framework for Hellman’s system is second-order modal logic. Thus, he

12Which is not to preclude taking a formalist stance for certain restricted purposes but to insist
that for philosophical purposes more should be said.
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introduces, in addition to first-order quantification over individual objects, distinct

quantifiers ranging over properties and relations. Hellman’s nominalism is strict

enough that it extends beyond the mere rejection of abstract objects to include

a concern that the second-order variables range only over properties and relations

in extension, and hence indicate no commitment to intensional entities. To resist

the contention that such a system is a mere notational variant of first-order set

theory, Hellman originally insisted that his commitment to extensional properties

and relations should be distinguished from the view of sets as objects in an itera-

tive hierarchy characterized by the Zermelo-Frankel axioms (Hellman, 1989). Later

he endorses Boolos’ plural quantification account of predicate terms and a related

technical apparatus for relation terms (Hellman, 2001).

A prototypical application of the modal structuralist interpretation to an

arithmetical formula A involves conditionalizing on the axioms of second order

Peano arithmetic PA2, quantifying over domains potentially interpreting the nu-

merals and functions potentially interpreting the successor relational predicate (i.e.,

interpreting the singular and predicate terms of the language of Peano arithmetic

L(PA2)), and prefixing a necessity operator, giving in Hellman’s notation: �[(∀X)(∀f)[PA2 ⊃

A]X(s/f). This says that necessarily if some domain X and function f satisfy PA2

under an interpretation then they satisfy the arithmetical formula A under the same

interpretation.

In short, where Chihara has a modal reconstruction of mathematics according

to which its subject matter is the possible constructions of open sentences, Hellman

has a reconstruction of mathematics according to which its subject matter is the

structural properties expressed by such sentences. The latter seems to make for a

more plausible reconstruction of the structural component of mathematics. For a
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given formula A we sacrifice its surface grammatical singularity, but gain in two

respects that are relevant to mathematical practice. First, we gain by explicitly

including an account of necessity. Second, distinguishing Chihara from Hellman,

we gain by adopting the view of axioms as schematic definitions, subject to mul-

tiple interpretation, which has been important since Hilbert. Accordingly, we see

the grammar of A as suppressing a more complicated modal/quantificational log-

ical form. That is, the modal structuralist, as opposed to the modal sentential

constructivist, can claim some connection to mathematical reasoning.

6.5 Structural predicates

I wish now to return to some of the themes of earlier chapters and show how

they support my view of mathematics. In chapter 3, we were concerned mostly

with the applications of mathematics and with whether prototypical scientific uses

of mathematics could be nominalized. I argued that nominalization projects are

a going concern: i.e., a legitimate and thriving area of research in philosophy,

even in naturalized philosophy that does not assume an epistemological “view from

nowhere.” The naturalistic motivation for nominalization projects comes from a

consideration of the unity of science, according to which philosophers may be con-

cerned to conciliate epistemic principles for existential commitment among disparate

(but interacting) scientific fields. I argued that there is an easy road to nominal-

ism and a hard road, that of providing articulated, explicit Tarskian reductions of

scientific theories. The easy road is supportive of anti-Platonism in two cases: (1)

its proponent doesn’t care to argue for scientific realism and is unconcerned with

broader instrumentalist implications of the strategy, or (2) its proponent thinks

there are independent grounds for rejecting confirmational holism.
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However, there are advantages to the toilsome project of providing articulated,

explicit reductions even for those who do not, like Field, embrace the awkward com-

bination of holism, mathematical anti-realism, and scientific realism. Articulated,

explicit reductions may provide insight into the structure of the intrinsic relations

comprising a physical system that is not, clearly, provided by more convention

laden descriptions. Indeed, I maintained that description of the intrinsic structure

of physical systems is a concern to anyone, platonist and anti-platonist alike, hoping

to provide a robust philosophical account of mathematical applications. For, the

platonist would seem to be committed to an account of applications in terms of

mapping relations between physicalia and abstracta, and in terms of structural sim-

ilarity between the domain and range of such mappings, hence requiring a structural

description of the target domain. So, from my point of view structural descriptions–

i.e., ascriptions of structural predicates–are indeed indispensable, but they must, for

both platonist and anti-platonist, be directly applicable to physical domains.

In chapter 4, I surveyed some of the historical development of mathematics

hoping to lay groundwork for establishing the adequacy of eliminative structuralism

based on the idea of logical structure. I tried to show that methodological logicism

arose to fill gaps in proofs, not to provide a distinctively logical subject matter for

mathematics. I hold that the comprehension principle implicit in Frege’s rule of

uniform substitution, itself a reflection of mathematical practice in the conduct of

inductive proof, is his most profound contribution to the philosophy of mathematics

but that his Basic Law IV is a philosophical as well as a technical mistake. The com-

prehension schema shows how 2nd order (and higher) predicates are contextually

defined from open logical formulas.
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I also attempted in chapter 4 to make some points about what I called method-

ological structuralism. First, structuralism in mathematics arose in reasoning about

concrete mathematical problems. Here, I use the term “concrete” in the loose sense

of mathematicians, not in the metaphysical sense opposed to “abstract.” My point

is that methodological structuralism does not arise out of a mathematical inter-

est in pure abstract structures for their own sake but rather because of interest in

intuitive and formal systems, such as geometric spaces and polynomial equations.

Indeed, structural mathematics generates insights into the relationship between the

intuitive (i.e., geometric spaces) and the formal (i.e., number systems) by proving

general results about any structure, concrete or otherwise, possessing a given form.

That is, the abstract structural theorems of mathematics are explicitly quantifica-

tional and are only gerrymandered by Shapiro into providing singular statements

about an intended domain of ante rem structures.

In this chapter, I have turned to presenting and contrasting various structural-

ist views in the philosophy of mathematics. For the reasons just indicated, and for

others discussed in the preceding sections, I have rejected Shapiro’s view of struc-

tures as ante rem universals. My considered view, following Hellman and others, is

that there are no structures, not as independently existing entities over and above

their concrete instances.Again, I use “concrete” in a slightly atypical sense here.

The rejection of the ontology of set theory is not central to my view of mathemat-

ical structure. For, the ontology of set theory is, by contrast with the ontology of

ante rem structures proposed by Shapiro, in a sense concrete; it concerns some de-

terminate entities with some determinate relation on them. I am, indeed, skeptical

of the ontology of set theory for independent reasons, but this should not be mixed

up with my rejection of Shapiro’s view of structures. If sets exist, structures exist
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in re in them.

However, although in re structuralism is tolerant of determinate abstracta.

I do not think that the ontology of sui generis abstract particulars suggested by

a face-value semantic interpretation of much ordinary mathematics is required for

an adequate philosophy of mathematics. An adequate philosophy of mathematics

should, I think, provide an analysis of rigor, an analysis of content, and an analysis

of breadth and depth. Although, I have not given a focused discussion of the anal-

ysis of rigor, Saunders Mac Lane writes that this analysis was accomplished at the

turn of the 20th century in the work of the logicists (Mac Lane, 1981). Concerning

the content of mathematics I have had a little more to say. To the extent that

mathematics has a distinctive subject matter, over-and-above the subject matter

of the natural sciences to which it is applied, it is in the formal systems created

by mathematicians as presentations of structures. For instance, the natural num-

ber system arose initially hand in hand with its application in counting physical

objects; hence the Fregean thought that a philosophical account of the natural

numbers should begin with the number attributes of sortal concepts. According

to the strictest logical grammar, however, number attributes do not occur in sub-

ject position. Accordingly, Frege posited concept-correlates, objects corresponding

to but not identical with the higher-order entities. However, combined with unre-

stricted comprehension, concept-correlates lead to contradiction. Frege’s opposition

to formalism is well known and widely discussed, but I wish to make the sacrilegious

suggestion that the Fregean, higher-order logic account of mathematical application

is best combined with a formalist conception of mathematical objects. According

to my view, it is a mistake to seek the first-order content of mathematics in a the-

ory of logical objects. However, it is not a mistake to understand the applicability
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of mathematics by reference to higher-order attributes. Mathematical objects, ac-

cordingly, are formal presentations of higher-order attributes and the attributes of

interest to mathematicians are the structural attributes definable by the axiomatic

method. For instance, the positive numerals less than or equal to 4 (i.e., 1, 2, 3, 4)

present the cardinal 4 attribute; this is why reciting the numerals is a reliable way of

determining what cardinal number attribute applies to a given sortal concept. One

may recall Wittgenstein’s grocer, taking the lesson that the role of reciting number

terms in the language is not to name some abstract objects (Wittgenstein, 2001).

It is, notably, characteristic of mathematics that the formal system itself may

become an object of study and the conceptual development of mathematics requires

the definition of further structural attributes. These definitions are governed by

what Hilbert called the “internal necessity” of mathematics and hence are charac-

terizable, in a minimal sense, as the discovery of new structures. The characteristic

application of numerals is in the determination of cardinality attributes, but they

themselves exhibit a sequential (i.e., ordinal) structure. It is the structure of a

simple sequence (i.e., progression) that is characterized by the Peano Axioms for

arithmetic. However, from my point of view those axioms are not to be understood

as assertions about the numerals or any other objects. There are no numbers. The

Peano axioms describe a structure and the numerals provide a formal presentation

of that structure. The same relationship, incidentally, holds between the axiomatic

description of the group structure and its formal presentation by listing generators

and relators. The invention of formal presentations of mathematical structures and

their study is an aspect of mathematical practice that has received little attention

from philosophers of mathematics, but it seems to me to be a significant aspect of
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the analysis of content which provides some support for the view that a consider-

able portion of mathematics as practiced does not require a semantic interpretation

positing abstract referents.

The vision of mathematics as concerned with facts about abstract objects ob-

scures the formal character of much mathematical reasoning and problem solving,

but even from the point of view I have been developing and defending there re-

mains the matter of structural attributes. The cardinal number attributes obtain

of pluralities of concrete objects, usually individuated and specified by some sortal

concept. When operations or relations on objects are added, more complex struc-

tural attributes arise. For example, when the objects are related in a rich enough

Boolean lattice, as regions of space related by inclusion are, rich geometric and topo-

logical structures arise. Or, when they are related by an operation having certain

(axiomatically definable) properties, certain algebraic structures arise. Beginning

in the 19th century and blossoming in the 20th, the derivation of general structural

theorems has provided mathematical philosophy with the resources for an analysis

of breadth and depth. Formal mathematics is widely applicable because it gives a

presentation of basic structures that may arise in a variety of applied and theoretical

contexts. Theorems concerning basic structures lead to deep results, providing a

theoretical basis for the solution to classical mathematical problems.

Hence, the question of realism about structural attributes, not as objects but

as higher-order entities, arises from the analysis of breadth and depth, even within

a logical framework that does not provide for concept-correlates, either explicitly

through a correlation axiom or tacitly through a predicate nominalization device.

I have defended a minimal realism about structural attributes. Accordingly, the

definition of structural predicates is non-arbitrary, but the non-arbitrariness is of a
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logical rather than metaphysical character. That is, what basic structural predicates

are available in characterizing the structure of the world, as a domain of objects

having certain qualities and bearing certain relations to one another, is not a matter

of what abstract structures exist outside of the world. It is, rather, a matter of what

predicates are possible to define using the resources of logic.

There may not be infinitely many objects, but we can provide a definition

of the predicate “infinite” applied to a totality of objects under a condition of

individuation, truly or falsely, because we can define “infinite” as a logical notion.

The definition is typically given using the notion of sets. A set is infinite when

there is a bijective function to a proper subset. However, set theory can be avoided

by developing second-order logic as a logic of pluralities and relations. Against the

contention that such a maneuver presents “set theory in disguise” it may be noted

that the different style of variable reflects the ontological dependence of pluralities

on the objects that comprise them. If an object ceases to exist all pluralities of which

it is a part cease, but a plurality can cease while some objects comprising it endure.

Accordingly, the primary ontological commitments of a theory in second-order logic

may be read off of the range of its first-order variables, while the range of the

second-order variables is considered derivative or dependent. Indeed, when locution

is especially careful, more careful than I have just been in speaking of pluralities

as having even a dependent ontic status and in reifying them grammatically, it can

be seen that second-order quantification carries no new ontological commitment

whatsoever. Indeed, “there are some philosophers who do not care for metaphysics”

commits us only to careless (or perhaps carefree?) philosophers, while “there is the

set of philosophers who do not care for metaphysics” may commit us to careless
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philosophers and the set of them (but may only commit us to the empty set).13

The apparatus of second-order logic provides a strong system in which to de-

velop a structuralist interpretation of mathematics. However, the plural account

of monadic predicates alone does not seem adequate, to me, to provide an account

of structural predication as I understand it. For, a plurality is itself unstructured.

That is, the things which are referred to collectively by plural quantification are not

thereby understood as being in any relation to one another such that they may be

said to form a structure. Hence, we need a means to define structural predicates.

Conveniently, we may locate this in the axiomatic method as developed within

mathematics through the development of methodological structuralism culminating

in Hilbert’s axiomatization of geometry. Accordingly, the plural quantifiers or sec-

ond order logic (extended to treat relations) should be extended to include definition

of structural predicates. The schematic axiomatization itself may be considered as

providing an inferentialist semantics for such predicates. The model for inferen-

tialist semantics derives from a standard treatment of the logical connectives. The

connectives do not derive meaning by designating an entity but rather from the

inferential rules used to introduce them. We may understand the use of schematic

axioms to define structural predicates as introducing strictly logical predicate terms

defined by the axioms, together with the inference rules of logic, by which they are

introduced. This proposal provides context for Hilbert’s assertion that a change

in an axiom is a change in a concept (Frege and Hilbert, 1980a) and vindicates

Russell and Whitehead’s contention that a significant portion of mathematics may

be defined from the resources of logic alone.

13Boolos’ article “To Be is to be a Value of a Variable (or to be Some Value of Some Variables)”
is the locus of a large literature on the ontological commitments of second-order logic under the
plural interpretation (Boolos, 1984).
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There remain technical details for working out the inferentialist interpreta-

tion of structural predicates in the context of second-order logic under a plural

interpretation. In particular, I have not given an explicit systematization of my

proposed framework and have not determined whether distinct quantifiers and dis-

tinct comprehension principles should be used for plural and structural predicates.

Furthermore, I have not yet fully come to terms with the nominalist semantics for

Russellian type theory under the substitutional interpretation uncovered by Landini

or with its relationship to my proposed inferentialist semantics for structural predi-

cates based on Hilbert’s approach to axioms. I do, still, take myself to have provided

historical and philosophical motivation for continuing to develop and systematize

these ideas.
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CHAPTER 7

STRUCTURE AND SCIENCE

7.1 Motivations for scientific structuralism

In this concluding chapter, I turn my attention to structuralism in the phi-

losophy of science. There have been many motivations for adopting structuralist

views in the philosophy of science. One initial motivation comes from the obser-

vation that much of our scientific knowledge is expressed mathematically. Hence,

if one understands mathematics as a science of structure one understands much of

our scientific knowledge as knowledge of the world’s structure. This perspective

also strikes a balance with the philosophical skeptic. Whereas perception presents

the world by qualitative appearances, we may be agnostic whether the objects so

perceived intrinsically possess like qualitative properties and relations when unper-

ceived while holding that we nevertheless obtain knowledge of the structure of the

world if not its intrinsic properties and relations.

Structuralism has also found motivation in the context of general philosophy

of science. Many philosophers of science have sought to defend a progressive view of

science, according to which scientific knowledge has accumulated through scientific

inquiry. The strongest criticisms of the progressive view of science arise from the

Kuhnian paradigms paradigm, according to which scientific theory change occurs

in radical shifts (Kuhn, 1996). The most radical Kuhnian views assert that dis-

tinct scientific paradigms are incommensurable, that they give rise to conceptual

schemes to radically different that they cannot be directly compared. Paradigms

are said to condition the very standards by which evidence is assessed, so that there

is no independent standpoint from which to compare paradigms themselves with
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respect to evidence. More modestly, some philosophers of science have argues for

anti-realism about scientific theories, in various forms related to but often subtly

distinguished from instrumentalism, on the basis of a pessimistic meta-induction,

according to which the failure of past scientific theories provides inductive evidence

against the truth (as opposed to instrumental or empirical adequacy) of present the-

ories. Realists counter with their own meta-scientific arguments. For instance many

maintain that it would be miraculous for scientific theories to be instrumentally and

empirically adequate without possessing some degree of truth 1

A crucial issue that that has emerged in recent years that promises to break

the war of attrition fought on meta-scientific grounds is structuralism in the philos-

ophy of science. The notion of structure may be appealed to as a way of pointing

out continuity of scientific content through paradigm shifts by providing partial em-

beddings of discarded theories in successor theories and to give a rigorous analysis

of graded notions of truth. Furthermore, some philosophers of science have argued

that (some version of) structural realism is motivated by arguments appealing to

physical theories themselves. For instance, it is maintained that because the observ-

able characteristics of a physical system are invariant on permutation of subatomic

particles our knowledge of such systems is only “structural.”

The forgoing issues have given rise to a broad technical literature on structural

commensurability, verisimilitude, and special topics in the philosophy of science.

My purpose is not to settle all the issues that arise for structural realism, but

rather to trace its historical provenance in the views of Russell and to suggest

the most promising form of scientific structural realism in light of my views of

1See the Stanford Encyclopedia of Philosophy entry “Scientific Realism” for an overview of
these and related arguments (Chakravartty, 2011).
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mathematical/logical structure.

7.2 Russell’s scientific structuralism

The structuralist tendency in Russell’s philosophy stemmed from his appli-

cation of mathematical logic to the problems of epistemology as he saw them. He

was particularly concerned to provide a foundation in perceptual evidence for our

common sense and scientific knowledge of the external world and was convinced

that the logic which had demonstrated the analyticity of mathematics could be

applied fruitfully to the analysis of knowledge. Russell shares with contemporary

structuralists a broadly “naturalist” approach to philosophy. That is, he conceives

of philosophical reflection as continuous with and drawing from science. This is

evident in his engagement with relativity theory in physics and with behaviorism

in psychology. However, Russell’s work retains a clear connection with traditional

problems of philosophy and retains some traditional epistemological commitments.

In contrast, current structuralist positions in the philosophy of mathematics

and science are motivated by current topics and trends in philosophy, mathematics,

and science. As a result, philosophers of science and philosophers of mathematics

sometimes have very different ideas and assumptions about structure. The vari-

ous structuralist positions in the philosophy of mathematics and science have been

motivated by more naturalized epistemological projects, with discipline-specific con-

cerns, and it has not always been clear how the philosophical problems in explicating

contemporary structuralist programs relate to the problems of philosophy as Rus-

sell saw them. The modest goal of this essay is just to make that relationship more

plain. More ambitiously, I hope to motivate a broadly Russellian project in the

philosophy of mathematics and science.
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The development of mathematics in the 19th century had resolved some of

the significant problems for empiricism. The status of geometry after the develop-

ment of analysis had been at the core of the problems that arose in the modern

era concerning the relationship between experience and science. For example, the

Berkeleyan challenges to analytic geometry and differential calculus seem to have

been resolved by the logical foundation of calculus in a theory independent of a

supposed intuition of infinitesimal magnitudes or a dynamic concept of fluxion and

by the logical definition of infinity. Also, the development of non-Euclidean geome-

try freed geometry from intuition by showing how pure geometry may be subsumed

under the logical analysis of structure, while at the same time showing how the

question of the geometry of physical space may be synthetic. This is a particularly

nice resolution for the empiricist. On the one hand, the study of non-Euclidean

geometry introduces a level of abstraction that makes possible the extension of logi-

cism beyond arithmetic, reinforcing the foundations of analyticity in logical truth.

On the other hand, empiricism about geometry obtains new relevance, as the study

of concrete physical and perceptual spaces become matters of contingent inquiry.

Although logical structure plays a major role in Russell’s account of our scien-

tific knowledge, Russell does not, I wish to emphasize, have a primarily structuralist

refutation of idealism. From the mid-teens on, Russell’s refutation of idealism con-

sists principally in a philosophical position: viz., his denial of the metaphysical

import of the distinction between mental and physical events. While accepting

Berkeley’s rejection of the primary/secondary quality distinction, he maintains that

we have a primary awareness of concrete spatial and temporal relations. In response

to Berkeley, Russell is amending Locke by rejecting the Cartesian assumption of a
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fundamental mental/physical divide, and not by accepting the divide but employ-

ing an account of structural similarity between the sensible world and the world

of I-know-not-what. Importantly, when Russell indicates that our scientific knowl-

edge is structural knowledge he should, I will argue, be taken to mean that it is

knowledge about the structure of spatial and temporal relations we are aware of as

holding between percepts.

William Demopoulos has suggested that Russell’s structuralism fills a gap

in a generally Kantian philosophical framework by using structural similarity to

provide an account of the kind of correlation that can hold between phenomena and

noumena:

Russell’s picture of how this application to Kant should go seems to
have been something like this: The noumenal world, not being given in
intuition, cannot, apparently, be required to have properties in common
with the phenomenal world. This leaves us with the problem of under-
standing how to formulate any conception of what the noumenal world
is like, and of understanding how it can fail to be unknowable. But
because structural similarity has a purely logical characterization, it is
independent of intuition. The noumenal world thus emerges as an iso-
morphic copy of the phenomenal world, one which we may suppose has
the requisite similarity with the world of phenomena without thereby
committing ourselves to the idea that it shares any intuitive properties
of the phenomenal world (Demopoulos, 2003).

As Demopoulos points out, this account is limited by the important point that “a

claim of structural similarity is a significant claim only when the relations being

compared are given independently of the mapping which establishes their similar-

ity.” I think this is a point of which Russell was never unaware. For example, in

“The Relation of Sense Data to Physics” (1914) he acknowledges the following gen-

eral argument concerning any sort of correlation, structural similarity presumably

included, between percepts and an essentially imperceptible world:



169

But how is the correlation itself ascertained? A correlation can only be
ascertained empirically by the correlated objects being constantly found
together. But in our case, only one term of the correlation, namely the
sensible term, is ever found : the other seems essentially incapable of
being found (Russell, 1919).

It is for exactly this reason that Russell insists, in that essay, that “Whenever possi-

ble, logical constructions are to be substituted for inferred entities.” The procedure

is not one of discovering first that some structure obtains among percepts, then

inferring, by transcendental or abductive argument, that there is an isomorphic

imperceptible correlate. Rather, Russell begins with the convictions of common

sense and established science, abstracts their propositional structure, then aims to

construct, from percepts, classes which satisfy that structure, thereby explaining,

he hopes, how our convictions can be empirically verified. I think that the details

of this program are modified in subsequent writings, but I don’t think Russell ever

forgets the core motivation.

Russell, in my view, would not have been interested in providing an account

of a transcendental or abductive inference that directly refutes idealism. Indeed,

Russell would not have accepted the need for a “refutation of idealism” in exactly

Kant’s sense because he has already rejected the Berkeleyan presupposition of esse

es percipi. That is, while acknowledging a physiological argument that percepts de-

pend causally on the processes of perception, he rejects the conclusion that percepts

are non-physical objects that depend logically on the existence of minds and, in-

deed, he rejects a metaphysically fundamental distinction between mind and matter

altogether.

The dictum to replace inferred entities with constructs is respected in later

works (viz., “The Analysis of Matter” (1927) and “Human Knowledge” (1948)) even
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where it is perhaps sometimes obscured. For instance, one finds statements like the

following in “Human Knowledge”:

If physical events are to suffice as a basis for physics, and, indeed, if we
are to have any reason for believing in them, they must not be totally
unknown, like Kant’s things-in-themselves. In fact, on the principle
which we are assuming, they are known, though perhaps incompletely,
so far as their space-time structure is concerned, for this must be similar
to the space-time structure of their effects on percipients. E.g. from
the fact that the sun looks round in perceptual space we have the right
to infer that it is round in physical space. We have no right to make
a similar inference as regards brightness, because brightness is not a
structural property. (Russell, 2009) (p. 254)

Passages such as these certainly look like the sort of flatfooted abduction to which

Demopoulos objects and which Russell ought to have known to avoid. Furthermore,

in “Human Knowledge” there is inadequate emphasis on the dictum that such infer-

ences are provisional, and to be replaced by constructions. However, aspects of the

earlier program remain quite clear. For example, in later chapters Russell sets out

a program of construction of points, instances, and particles. One way we may un-

derstand passages like this one about the sun in perceptual and physical space is as

presenting inferences that are to be replaced by constructions in the final analysis.

Alternatively, and I think this is perhaps an equally promising reading, we

may emphasize that Russell specifies not only that we know the abstract structure

of things-in-themselves but that we know, specifically, their space-time structure.

This presupposes cognitive access to objective spatio-temporal relations. Now, an

account of such access may be confounded for Russell by his acceptance of the dis-

tinction between inner/subjective space-time and outer/objective space-time, but

we may set aside the epistemic issue in order to emphasize the metaphysical com-

mitments of the position. According to this alternative Russell is committed to
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holding that the concrete relations constituted in the manifold of events in imper-

ceivable physical space are known perceptually. The view that we rightly may infer

the structure of known relations is to be distinguished from the flatfooted abduc-

tion that we infer the existence of an unknown relation possessing a given structure.

Moreover, admitting structural inferences about known relations will not commit

one to any inferred entities, so it is consistent with the dictum to replace inferred

entities with logical constructions. I think we should sharply distinguish between

structural inferences about some fixed relation from abductive inference to the ex-

istence of an inferred relation, and in fact I think that the former sort of inference

actually better supports Demopoulos’ understanding of Russell’s structuralism as

deriving an “absolute” description of the world from perspective descriptions.

For Russell the problems that arise with jettisoning the primary/secondary

quality distinction were never supposed to be solved simply by putting structural

properties in the place of primary qualities. As he puts it in “The Analysis of

Matter”:

The problem has two parts: to assimilate the physical world to the world
of perceptions and to assimilate the world of perceptions to the phys-
ical world. Physics must be interpreted in a way which tends toward
idealism, and perception in a way which tends toward materialism. I
believe that matter is less material, and mind less mental, than is com-
monly supposed, and that, when this is realized, the difficulties raised
by Berkeley largely disappear (Russell, 2007).

It must be acknowledged that Russell does not clearly make the sort of distinction

between structural inference about a fixed relation and abduction to the existence

of an inferred relation that I am now pressing. However, I think that the primacy

of this metaphysical dissolution of the Berkeleyan problems makes plain that it is

misleading to characterize Russell as employing the notion of abstract structural
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similarity in something like a refutation of idealism in Kant’s sense.

Furthermore, note that it would have been obvious to Russell that a purely

structural description could not be assured to single out some particular concrete

structure. Structural descriptions can, at most, be said to obtain categoricity: i.e.,

uniqueness up to isomorphism. Propositions expressed in purely structural terms,

therefor, have cognitive significance only in a given interpretation. For example,

the Dedekind-Peano axioms are a kind of purely structural description, which Rus-

sell maintains are most importantly interpreted in the succession of Frege-Russell

cardinals but which are also true of any number of ordered domains. Analogously,

also in “The Analysis of Matter”, Russell emphasizes the application of geometry

to physical space as its “important” interpretation.

However, passages in “The Analysis of Matter” seem to contradict this in-

terpretation. In a chapter titled “Importance of Structure in Scientific Inference”

Russell writes:

There is a space into which all the percepts of one person fit, but this
is a constructed space, the construction being achieved during the first
months of life. But there are also perceived space-relations, most ob-
viously among visual percepts. These space-relations are not identical
with those which physics assumes among the corresponding physical
objects, but they have a kind of correspondence with those relations
(Russell, 2007).

We should first note that Russell, shortly after this passage, makes the claim that

the time-relations of perceptual and physical time are identical, thus holding to the

fixity of time relations, at least. Furthermore, it is possible to regard the above

passage as indicating token non-identity, and therefor consistent with type-identity

of the relations. We may reinforce this interpretation by noting that the implied

type-identity of the relations of perceptual and physical space can be read into the
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identification of each as space relations. Indeed, the type-identity of inner and outer

space relations seems to be required by Russell’s assertion in a later chapter that

“the whole of our perceptual world is, for physics, in our heads, since otherwise

there would be a spatio-temporal jump between stimulus and percept which would

be quite unintelligible” (Russell, 2007). To be sure, it is clear that this is an issue

that Russell struggled for much of his intellectual life, and passages may likely be

found to support multiple readings.

It will be clarifying to say what makes a description strictly structural. By

a description, I just mean an open formula (the sort of thing made definite by

appending the definite article). A description will be structural when the only terms,

singular or relational, it contains have strictly logical definitions. Along with free

variables, a structural description may include relation terms for formal properties

of relations, like transitivity or reflexiveness, but not terms for concrete relations

like simultaneity, set membership, or love. Understood as structural descriptions as

opposed to assertions, the axioms of Peano or Euclid are open to interpretation. As

Hilbert famously quipped “It must always be possible to substitute ’table’, chair’

and ’beer mug’ for ’point’, line’ and ’plane’ in a system of geometrical axioms.”

Interpretations, then, are given in fixed terms. Accordingly, structural descriptions

adapt the Hilbertian, algebraic understanding of axioms to the Fregean program of

mathematical logic by treating the axioms as defining structural predicates.

Structurally similar relations may satisfy the same structural descriptions un-

der different interpretations. In this case they have the same “relation number”,

which is Russell’s term for a generalization of the the Frege-Russell cardinals. In a

paper, whose influence has recently been increased by a work of Demopoulos and

Friedman, the mathematician M. H. A. Newman took Russell’s project in “The
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Analysis of Matter” to be to provide a description of the world using only “relation

numbers”: i.e. a structural description of the world. Newman’s objection amounts

to the observation that it is unclear how a description in purely structural terms

can be said to be of the world, since such a description will not determine a unique

model even when defined from categorical axioms (Demopoulos and Friedman, 1985;

Newman, 1928).

First, the bare claim that there exists a relation structurally isomorphic to a

given relation between percepts holds trivially in any domain of adequate cardinal-

ity, because given a large enough domain it is possible to simply define a relation

satisfying the relevant structural description. Second, it is in fact possible to define

multiple relations satisfying the modest formal constraints of any given structural

description.

Newman takes Russell to have replaced the primary/secondary quality dis-

tinction by a quality/structure distinction, summarizing Russell as follows:

Briefly: of the external world we know its structure and nothing more.
We know, about things that are not percepts, the kinds of things a
blind man could be told about a picture, as opposed to the additional
knowledge of intrinsic quality that we have of percepts (Newman, 1928).

I think that careful reading of the passage from “The Analysis of Matter” that

Newman thus summarizes leaves room for interpretation. Russell says that we

may infer from qualitatively presented perceptual events and their relations that

there are qualitatively unknowable events constituting the stimulus. He does not

also say that the relations holding between qualitatively unknowable events are

also inferred entities, nor that the relations between percepts and non-percepts are

inferred entities.
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We may more clearly understand the matter at hand by considering the pro-

posal that Russell’s structuralism can be made more precise by adopting the Ramsey

sentence approach outlined in Ramsey’s “Theories” Ramsey (1990). That approach

supposes a distinction between observation and theoretical terms in a language. A

theory’s Ramsey sentence is an existential generalization over its theoretical terms.

Recall, from “Our Knowledge of the External World”, the dictum to replace inferred

entities with constructs. We were to begin with the inferences of common sense,

abstract the propositional structure of the inferred theory, then provide empirically

based constructions satisfying that structure. Crucially, the last step is to be con-

strained by a notion of empirical importance. If the final, constructive step were

simply an abstract verification of the Ramsey sentence formed from the inferred

theory then any construction would suffice, and it would be hard to see how this

is a process of empirical verification or how Russell is providing an account of the

foundation of our knowledge of physics in perception.

This points to a fundamental shortcoming of the constructive approach. If

Russell’s program is to be distinguished from Carnap’s more conventionalist project

(according to which theories become “quasi-analytic”) there must be some way of

specifying some construction as the “important” one, but this specification looks

like it can only be done by specifying the very inferred entities that were to be

replaced by the constructs. Either we can’t specify what makes a given construction

important or we can specify, but if we have (already) the vocabulary to specify the

interpretation, and we have knowledge of the propositional structure that must hold

in the interpretation, then the constructions are unnecessary. We may very much

doubt the value of honest toil when we can only state the goal of our labor with

stolen words.
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The distinction we have drawn between what I have called the “flatfooted

abduction” and the potentially more legitimate structural inference about known

relations will be helpful. It is by regarding the process of arriving at the propo-

sitional structure to be modeled as a flatfooted abduction that we arrive at the

problem that any construction will suffice. If, instead, we understand structural

inference as an inference about the structure of a relation to which we have prior

cognitive access rather than an inference to inferred entities, then the problem does

not arise. This, essentially, is Russell’s point in responding to Newman’s objection

that he had “always assumed” co-punctuality and compresence as relations that

hold among percepts as well as among physical events that are not percepts.

Discussing Russell’s response to Newman, Christopher Pincock in his essay

“Carnap, Russell, and the External World” has noted (the constant E denotes the

external world):

The view described in the letter would adequately respond to Newman’s
objections as long as Russell could either explain how co-punctuality
was perceptible or define his key relation of co-punctuality in terms of
the clearly perceptible relation of compresence. For, on this amended
view, scientific knowledge is not merely “There is some relation R and
formal properties S1, ..., Sn such that S1(R) ∧ ... ∧ Sn(R) ∧ R(E)” but
rather “S1(C)∧ ...∧Sn(C)∧C(E),” where C is a definite relation whose
intrinsic properties we are aware of in experience. This non-structural
claim is no longer trivial. It remains to a certain extent structural, as it
is consistent with our ignorance of some of the intrinsic properties of E,
but the fixed relation C blocks Newman’s set theoretical construction
(Pincock, 2007).

By adopting a fixed relation, however, the role of construction is significantly di-

minished. If we understand Russell, that is, as embracing an inference about a

space-time structure constituted by relations holding among physical events from

perceptual knowledge of the same relations when they hold between events that
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perceived then it is not entirely clear what is to become of inferred entities and

their replacement by construction. This interpretation, however, now allows us to

take Russell seriously in regarding points, instants, and particles as logical fictions

and reconcile this with theoretical realism. He will be a realist about the inferred

space-time structure, while the constructed fictions will be eliminable.

The most serious difficulty for this Russellian project arises from Russell’s

acceptance of the distinction between inner, subjective space and time and outer,

objective space-time. The identity of relations inhering in qualitatively distinct

spaces must be accounted for non-structurally. A commitment to methodological

solipsism, even a perhaps weak version, and semantic internalism considerably re-

strict the resources for a fully Russellian grounding of cognitive access to such fixed

relations. It may be fruitful to explore structuralism within less imprisoned inter-

pretations of epistemology, but my purpose for now is just to point out the role of

the fixed relation as non-structural component.

According to my interpretation, Russell never accepts a flatfooted abduction

from the structure of perception to the structure of an otherwise unencountered

world of things-in-themselves, nor does he accept an analogous inference from the

propositional structure of our common sense commitments and scientific theories

to the structure of some inferred entities. His first idea is to replace inferred en-

tities with constructions, but this approach tends toward positivism, as Newman

(and later Putnam) pointed out. However, a reading of Russell’s subsequent works

that emphasizes the growing role of structural inference about a fixed relation pro-

vides an understanding of Russell’s structuralism that preserves a core motivation

of his constructivism (viz., the rejection of inferred entities). Furthermore, since

Russell’s primary “refutation of idealism” consists in his denial of a metaphysically
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fundamental distinction between mind and matter and his denial of esse es percipi,

the possibility of a fixed relation, which may hold between physical events that are

percepts as well as between those that are not percepts, is salient throughout his

writings on the relation of sensation to our knowledge of physics. Finally, we may

note that this reading of Russell allows for a combination of theoretical realism

about the structure of space-time with eliminitivism about inferred entities.

7.3 Varieties of structural realism

The recent debate over structuralism in the philosophy of science has cen-

tered around the distinction between epistemic and ontic structural realism. The

epistemic structural realist holds that structuralism expresses a limit of knowledge

to structural properties that requires skepticism about the intrinsic qualities of the

entities comprising the structure. The ontic structural realist denies the existence

non-structural properties of physical systems. Epistemic structural realism has been

developed as a proposed middle ground in the philosophy of science that accepts a

no miracles argument for realism about structure but which accepts a pessimistic

meta-induction for skepticism concerning the fundamental natures of things (Wor-

rall, 1989). Ontic structural realism also accepts a no-miracles inference, but hopes

to incorporate motivations from the philosophy of physics, such as the invariance of

measurable properties of quantum states under permutation of like particles, and a

program of scientific conciliation to make the abduction less flatfooted (Ladyman

and Ross, 2007). The epistemic structuralist holds that we know only of the struc-

ture of the world. Ontic structuralism wonders what sense it makes to think there

is more to know.
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It is immediately clarifying to raise the issue of commitment to a fixed rela-

tion. The epistemic structural realist who does not allow specification of a fixed

relation cannot distinguish between competing models. In that case, it is hard to

say what distinguishes the view from constructive empiricism. But if the epistemic

structural realist accepts a fixed relation then we are due an epistemology of this

non-structuralist component of her view. Epistemic structural realism either de-

pends on a non-structural component or becomes indistinguishable from non-realist

alternatives, but to account for the non-structural component the epistemic struc-

turalist incurs the epistemic burden of traditional realism, to which it was meant as

an alternative. Worrall, in fact, endorses Ramsification. In a comprehensive survey

of attempts to refine the Ramsey sentence approach to epistemic structural realism

in a way that overcomes this dilemma, Peter Ainsworth has recently concluded:

It has been argued that none of the attempts that have been made
to evade Newman’s objection is successful. Consequently, Newman’s
objection remains a very serious problem for the ESRist. Of course, one
cannot rule out the possibility that ESRist may in the future come up
with a satisfactory reply, but in the absence of such a reply it seems
that the sensible attitude towards his position is one of considerable
scepticism (Ainsworth, 2009).

Because ontic structural realism is motivated by the permutation invariance

argument for the under-determination of individuation of particles in physics, the

position has been articulated in terms of a structure/object dichotomy. The lesson

taken from the permutation argument has been that structure is ontologically prior

to the objects/individuals comprising the structure. Ladyman and Ross’s widely

discussed book “Every Thing Must Go” clarifies the status of relations in structures

as conceived by the ontic structural realist. First, they reject an “extensional ac-

count of relations, thereby hoping to block the construction of arbitrary relations
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that drives the Newman objection.

Worrall’s approach to structural realism with its emphasis on the Ram-
sey sentence of a theory and the distinction between observational and
theoretical terms is thoroughly embedded in the syntactic view of theo-
ries that adopts first-order quantificational logic as the appropriate form
for the representation of physical theories. Since ontic structural realism
is not formulated in these terms, the Newman problem does not arise
for ontic structural realism. In particular, we will eschew an extensional
understanding of relations without which the problem cannot be formu-
lated. According to Zahar (1994, 14) the continuity in science is in the
intension not the extension of its concepts (Ladyman and Ross, 2007).

Second, they adopt the metaphysical thesis that relations may be prior to their

relata:

To be an alternative to both traditional realism and constructive em-
piricism, structural realism must incorporate ontological commitment
to more than the empirical content of a scientific theory, namely to the
structure of the theory. We have argued that relational structure is on-
tologically subsistent, and that individual objects are not. However, the
idea that there could be relations which do not supervene on the proper-
ties of their relata runs counter to a deeply entrenched way of thinking.
The standard conception of structure is either set-theoretic or logical.
Either way it is assumed that a structure is fundamentally composed of
individuals and their intrinsic properties, on which relational structure
supervenes. The view that this conceptual structure reflects the struc-
ture of the world is called particularism by Teller (1989) and exclusive
monadism by Dipert (1997). 35 It has been and is endorsed by many
philosophers, including, for example, Aristotle and Leibniz (Ladyman
and Ross, 2007).

A considerable part of the structural realism literature is given over to debating

the thesis of “Humean supervenience”: the thesis that relata and their intrinsic

properties are ontologically prior to relations. Ontic structural realists reject this

thesis.

However, setting aside the controversy over Humean supervenience, we may
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object to the first point that an intensional account of relations will rule out arbi-

trary extensional constructions because it still does not rule out the possibility of

numerically distinct isomorphic structures. Furthermore, while rejection of Humean

supervenience may be well motivated, asserting the ontological priority of relations

over relata is not the same as asserting the priority of structures themselves over

both relations and relata. That is, the debate over Humean supervenience is orthog-

onal to the question of commitment to what we have been calling a fixed relation as a

non-structural component. In a recent paper Michael Esfeld and Vincent Lam have

developed a view they call moderate structural realism (Esfeld and Lam, 2006).

Following ontic structural realism, they reject Humean supervenience. However,

they specify that their structural realism is a realism about the structure of spatio-

temporal and nomological relations, therefor accepting a non-structural component

of structural realism.

Ladyman and Ross argue that only structure is real and that it is ontologically

basic. They make no distinction distinction between physical and mathematical

structure, refusing to answer the question how such a distinction is grounded. Yet,

they seem to rely on the distinction no less. After all, they distinguish empirical,

physical science from mathematics. Physics is interested in the physical structures,

not any coherent mathematical structure. Those are what mathematicians study.

One position to take would be to hold that the physical structures are just one

slice of the mathematical structures. A sort of neo-Pythagoreanism is suggested

by Ladyman and Ross, and defended as plausible speculative cosmology by MIT

physicist Max Tegmark. Tegmark is admirably clear and precise in stating directly

what he means by structure:

A mathematical structure is precisely this: abstract entities with re-
lations between them. Familiar examples include the integers and the
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real numbers. We review detailed definitions of this and related mathe-
matical notions in Appendix A. Here, let us instead illustrate this idea
of baggage-free description with simple examples. Consider the mathe-
matical structure known as the group with two elements, i.e., addition
modulo two (Tegmark, 2008).

Admirably clear thought this definition may be, I find it a bit problematic from the

standpoint of the algebraic conception of structure.

First let me reiterate a point about the use of the terms “concrete” and “ab-

stract”. Mathematicians use the terms “concrete” and “abstract” for different pur-

poses than philosophers. The mathematician asks for a concrete example when she’s

asking for a familiar setting to fix intuitions, typically arithmetic or geometric. In

this sense, the integers are paradigmatic concrete objects. The philosopher is not

as focused as working mathematicians’ psychological expedients, however. To the

philosopher, integers, if they exist, are paradigmatic abstract objects. We shall

mark the metaphysical distinction by the terms abstracta and concreta. When the

mathematician asks for a concrete example, then, we shall understand her as asking

for concrete abstracta. It has been contended that the philosopher’s metaphysical

distinction between abstracta and concreta in the philosophy of mathematics and

science literature is blurry.2 For instance, are the points of a substantivally under-

stood manifold abstract or concrete? Some have objected that the matter is not

entirely clear. I’m more interested in noting that mathematical structure is, in an

important sense, doubly abstract (both mathematically and metaphysically) in a

manner that should lead us to question the claims of neo-Pythagorean structural

realism.

A natural setting for a request of a concrete example is in the algebraic study of

2Indeed, one way to understand the motivation for the fully articulated and explicit reductions
required by Field’s program, as opposed to the trivial and weaseling strategies, discussed in chapter
3 is to demonstrate that the abstracta and concreta can be clearly separated.
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groups. One mathematical structure is the dihedral group D4. A (mathematically)

concrete interpretation of this structure is the symmetry group of the square. The

(mathematically) concrete interpretation involves putatively (metaphysically) ab-

stract entities: viz., the square’s symmetries. However, the algebraist interest isn’t

purely and simply geometric in considering the structure at hand. A structure is an

abstract abstractum in the sense that it can “pop up” in more than one “place.” A

trivial example: the rotational symmetries have the structure of the integers mod 4.

Structures, in the mathematical context, exhibit multiple-instantiability. We may

further develop our worry by consideration of the problem of multiple reductions

for reductionist set theory, an argument for the view philosophers call structuralism

put forth most famously by Paul Benacerraf (Benacerraf, 1965). According to the

set-theoretical reductionist, the only abstracta are sets. What we have been calling

concrete abstracta, the natural numbers for instance, should therefor be identified

with some sets. The multiple-reductions problem is just the underdetermination of

interpretation of the Dedekind-Peano axioms in the realm of sets. The structuralist

philosophy of mathematics suggested by Benacerraf opposes the reductionist path

leading to the pseudo-question which sequence of sets are the natural numbers.

According to my favored version of mathematical structuralism, the impor-

tant topic of mathematico-logical inquiry is the in re structure shared by all models

of the Dedekind-Peano axioms. The important point presently is that the algebraic

structuralist understanding of axioms like the Dedekind-Peano axioms considers

them not as assertions about some intended domain (e.g., the natural numbers, the

von Neumann sequence, the Zermelo sequence) but rather as an algebraic, logical

characterization of a structural predicate. According to the platonist realist (reduc-

tionist and plenitudinist alike), systems having such structures include both systems
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of abstracta and systems of concreta. According to the physicalist, there are only

systems of concreta. The physicalist thinks some structures have no instances, and

for this reason bears some philosophical burdens in explaining the subject matter

and objectivity of mathematics. The platonist avoids that burden by giving each

coherent structure at least one instance, among the abstracta if not the concreta.

Both will agree that structures may be multiply instantiated, however.

I may now put my objection to Tegmark succinctly. When he says “A mathe-

matical structure is precisely this: abstract entities with relations between them”, it

begets the question which entities with what relations is the structure in question.

To the Pythagorean who tells us the physical world is a slice of mathematical struc-

ture (but not the whole structure, lest physics become empirically detached) we

are now lead to inquire which concrete abstracta having the structure they have in

mind. Put another way: an algebraic structure defines an equivalence class of con-

crete abstracta. When our Pythagorean interlocutors tell us that the physical world

literally is this structure do they mean that the world just is the entire equivalence

class? Or what? It isn’t at all made clear.

The neo-Pythagoreans that we have been discussing owe, it seems to me,

a much clearer account of just what they mean when they say the world just is

a structure as opposed to saying that the world has a certain structure. Surely

there are philosophical maneuvers available to neo-Pythagoreans, such as appeal to

the ontological category of universals from traditional metaphysics, but the views

I’ve encountered do not, from what I’ve seen, avail themselves of this philosophical

machinery. Ladyman and Ross, in particular, adopt a neo-positivist eagerness to

avoid traditional metaphysics. While I share their scientistic spirit, I think there’s
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nothing to fear in being informed by analytic metaphysics.

7.4 Russell’s legacy

Russell’s views are most commonly associated with epistemic structural real-

ism, but this is not entirely clear. It must be acknowledged that there are passages

which, taken in isolation, seem to express an epistemic version of structuralism.

However, the metaphysics that Russell developed in opposition to idealism allow

him to speak of a fixed relation holding between percepts and non-percepts. If we

take him at his word in responding to Newman that he had always assumed comp-

resence and co-punctuality as fixed relations, his legacy is perhaps more accurately

found in the moderate structural realism of Esfeld and Lam. In a passage quoted

in Landini’s book “Russell” (Landini, 2009), Russell writes:

[Quantum] theory requires modifications in our conception of space, of
a sort not yet quite clear. It also has the consequence that we cannot
identify an electron at one time with an electron at another, if in the
interval, the atom has radiated energy. The electron ceases altogether
to have the properties of a thing as conceived by common sense; it is
merely a region from which energy may radiate (Russell, 1927).

Hence, while reading Russell as a realist about space-time structure we can also

find in his constructivist/eliminitavist views about instances, points, and particles

anticipation of the ontic structural realist’s views on quantum particles.

The legacy of Russell’s structuralism has not always been entirely clear. Rus-

sell clearly struggled with the problems of interest to contemporary proponents

of structuralist programs in the philosophy of mathematics and science, and he

should not be too hastily dismissed as adopting the flatfooted abduction of epis-

temic structural realism and the Ramsey sentence approach to theories. On my

view, the prospect is very good for securing a Russellian legacy in the philosophy
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of mathematics and science through a program of moderate structural realism, ar-

ticulated with an in re metaphysics of structures, while incorporating eliminitivism

about some of our theoretical constructs.
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R. Krömer. Tool and Object: A History and Philosophy of Category Theory.
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