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ABSTRACT 

Despite the great prevalence in both research and application of Factor Analysis (FA), 

widespread misinterpretation continues to pervade the psychological community in its 

application for the development and evaluation of psychometric tools. Fundamental 

measurement questions such as the number of response alternatives needed, and the 

power to detect poor model fit in non-normal or misspecified data, still remain in need of 

further investigation. For example, the power of the chi-square statistic used in structural 

equation modeling decreases as the absolute value of excess kurtosis of the observed data 

increases. This issue is further compounded with discrete variables, where increasing 

kurtosis manifests as the number of item response categories is reduced; in these cases, 

the fit of a confirmatory factor analysis model will improve as the number of response 

categories decreases, regardless of the true underlying factor structure or X2-based fit 

index used to examine model fit. Such artifacts have critical implications for the 

assessment of model fit, as well as validation efforts. To garner additional insight into the 

phenomenon, a simulation study was conducted to evaluate the impact of distributional 

nonnormality, model misspecification and model estimator on tests of model fit when 

true factor structure is known. Results indicate that effects of excess kurtosis and number 

of scale categories are exacerbated by model misfit. We discuss results and provide 

substantive recommendations. We also demonstrate an empirical example of how number 

of response options impacts dimensionality assessment through evaluation of the Beck 

Hopelessness Scale (BHS). 
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FOREWORD 

 

“Methods of experimental design and data analysis derive their value from the 

contributions they make to the more general enterprise of science.” – Maxwell & 

Delaney, 2004 

“It is apparent that the common practice of factor analysis lags behind theoretical 

knowledge and the possible uses of it.” – Richard L. Gorsuch, 1983 

 

Statement of problem 

Despite the great prevalence in both research and application of Factor Analysis (FA), 

widespread misuse continues to pervade the psychological community in its application 

for the development and evaluation of psychometric tools. Fundamental measurement 

questions such as the number of response alternatives needed, and the power to detect 

poor model fit in non-normal or misspecified data, still remain in need of further 

investigation. For example, the power of the chi-square statistic used in structural 

equation modeling decreases as the absolute value of excess kurtosis of the observed data 

increases. This issue is further compounded with discrete variables, where increasing 

kurtosis manifests as the number of item response categories is reduced; in these cases, 

the fit of a confirmatory factor analysis model will improve as the number of response 
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categories decrease, regardless of the true underlying factor structure or X2-based fit 

index used to examine model fit. Such artifacts have critical implications for the  

assessment of model fit, as well as validation efforts. To garner additional insight into the 

phenomenon, a simulation study was conducted to evaluate the impact of distributional 

nonnormality, model misspecification and model estimator on tests of model fit when 

true factor structure is known. Results indicate that effects of excess kurtosis and number 

of scale categories are exacerbated by model misfit. We discuss results and provide 

substantive recommendations. We also demonstrate an empirical example of how number 

of response options impacts dimensionality assessment through evaluation of the Beck 

Hopelessness Scale (BHS). 
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CHAPTER 1  

INTRODUCTION 

In its broadest form, psychology as a subdivision of the greater scientific pursuit, seeks to 

study the mind and its functions via description and inference.  In both forms, a 

cornerstone of the endeavor is measurement, which requires that we be able to aptly 

describe phenomena. More precisely, Bollen (1989, pg. 180) defines measurement as 

“the process by which a concept is linked to one or more latent variables, and these are 

linked to observed variables.” Implicit in this, is the independence of ‘concept’ as a 

construct of the human creation. In keeping with this understanding, as well as to align 

with contemporary work, we will use the term ‘construct’ to reference any variable 

captured through measurement. Bollen continues that “the concept [construct] can vary 

from one that is highly abstract… to one that is more concrete,” which for practical 

interpretation can be clarified by the distinction between observed [manifest] and 

unobserved (latent) constructs (p. 180). While the measurement of manifest constructs 

(e.g., height, weight, number of toes) is generally straightforward, latent constructs rarely 

if ever correspond in a 1:1 sense with physically measurable reality.  By definition, the 

scope of psychology extends to unobservable constructs (e.g., intelligence, depression, 

personality) such that neither description nor inference would be feasible in the absence 

of measurement. 
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Bollen’s commentary on the span of the concept (construct) from abstract to concrete 

can also be seen within the development of a single construct. Inextricably bound in the 

idea of measurement is validity, which refers to a measurement’s ability to capture the 

truth of the construct (Bollen, 1989). The conceptualization of validity as applied to latent 

measurement has undergone dramatic transformation(s) over the last several decades, 

moving from a relatively concrete conceptualization involving multiple types of related 

but independent validity, which often had a single validity coefficient (used in much the 

same way as a p-value to reject or fail to reject a measure’s validity; Bollen,1989), to 

more contemporary work which considers a highly context dependent, holistic account 

that does not make quantitative decision rules on the basis of singular coefficients 

(Cronbach, 1980; Cronbach & Meehl, 1955; Lissitz, 2009;  Messick, 1989)1. There is 

also a divergence between the ways in which validity is discussed in an experimental 

context versus a psychometric context2- the concentration of this project is on the latter.  

Despite the lack of unanimity in the field with respect to validity, key aspects critical 

for psychometric application remain largely constant and agreed upon. One such facet is 

that validity cannot be universally proven, but instead must be established on a case by 

case basis for a given use (Bollen, 1989; Cronbach, 1971; Lissitz, 2009;  Messick, 1989). 

Other key constants of validity include our understanding of the functionality of content, 

criterion, and construct validity. Putting aside the relationship of this triad (often in 

contemporary work construct validity is operationalized as subsuming content and 

                                                           
1 For an overview of validities development through the 1980’s see Shepard (1993). 
2 For language on validity utilized in experimental psychology see Maxwell & Delaney (2004).  
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criterion validity) these three elements are generally considered essential aspects of 

validity (Crocker & Algina, 1986).  

 Content validity is the most qualitative of the validity dimensions and is often given 

special consideration in measure development as it seeks to assure that the manifest 

variables are consistent with the construct’s conceptualization (Messick, 1989). Generally 

content validity relies on substantive experts.  Criterion validity, as the name implies 

draws empirical comparisons as to the degree of correspondence between a measure and 

a criterion variable – usually measured by their correlation (Shepard, 1993). In cases 

where the criterion exists in the same temporal space as the measure being validated, it is 

called concurrent validity. In cases where the criterion occurs in the future (such as test 

scores used to predict later achievement) it is called predictive validity. Construct validity 

assesses the degree to which a construct’s measure relates to other manifest variables in a 

way that is consistent with theoretically derived predictions. That is if scores on a 

measure are related to other similar constructs (convergent validity) but independent from 

or unrelated to dissimilar constructs (discriminant validity), an instrument demonstrates 

evidence for good construct validity. Though far from exhaustive, this overview lends 

insight into the most cited definition of validity as “an integrated evaluative judgement of 

the degree to which empirical evidence and theoretical rationales support the adequacy 

and appropriateness of inferences and actions,” which in turn conforms well to the 

understanding of a construct as a human constructed concept (Messick, 1989).  
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Developing a valid measure 

 Bollen (1989) describes the measurement process as consisting of four steps: 1) 

conceptualization, 2) dimensionality identification 3) measure forming, 4) structural 

specification. In turn, recommendations for measure development closely mirror this; 1) 

define the domain of interest so as to assure the manifest variables are representative of 

the construct and come from the corresponding universe of items applicable to the 

construct, 2) examine item analysis, reliability analysis, FA etc. and 3) seek to examine 

the measures’ convergent and discriminant relationships with other established measures 

(Benson & Hagtvet, 1996). After identifying the construct of interest, the most important 

element in these processes is identifying that construct’s dimensionality. As we see, this 

is because its dimensionality is a critical component of all subsequent steps (inclusive of 

measure validation). For example, when you discuss convergent and discriminant 

validity, hypothesized relationships are based directly off of the purported dimensionality 

so that an error in estimated number of dimensions will change the interpretation of those 

dimensions and therefore change the other measures you’re examining for convergence 

and discrimination. In CFA, incorrectly specified dimensionality might compromise 

measurement further by limiting a researcher’s ability to identify poorly functioning 

items, as factor pattern and factor structure weights of a given solution are inextricably 

linked to specified dimensionality, and additional sources of covariation among observed 

measures may not be accounted for by the specified factors and will remain classified as 

unexplained variation.  Finally, and most globally, incorrect dimensionality assessment 

leads to future incorrect model specification, which necessarily compromises substantive 
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inferences made from measures, and has even recently been identified as critical for 

sound substantive inferences. 

Difficulties of validating latent constructs 

Even in the case of manifest constructs, validity can only be “proved” to the extent (in 

a given context) that its operational definition can be agreed upon. The classic example of 

this is temperature; that a thermometer is a valid instrument of measurement for the 

manifest construct of temperature is true insofar as it truly aligns with the construct of 

temperature.  Evaluating validity evidence for latent constructs – the validation of which 

must necessarily still concern itself with properties of measured variables – is a more 

precarious process. Inherent challenges in dealing with latent constructs include the need 

to set a meaningful scale for the variable (Bollen, 1989), as well as incorporating latent 

variables into statistical analysis. Without explicitly including latent variables, one is left 

to assume that correlations – which are not a measure of validity – accurately reflect 

associations that involve latent constructs.  Bollen presents this difficulty and primes his 

answer, FA, by rhetorically asking “What if we could estimate the relationship between a 

latent variable and its measure?” (p. 195). 

Factor Analysis  

FA refers to a subset of covariance structure analysis in which latent variables are 

used to formally operationalize measurement of latent constructs. Confirmatory factor 

analysis (CFA), also called restricted factor analysis, can be subsumed under the greater 

scope of structural equation modeling, while exploratory factor analysis (EFA), also 

called unrestricted factor analysis contributes only indirectly to measurement 
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operationalization.  That is, in the context of EFA, the models are used primarily to help 

determine the number of dimensions that a latent construct comprises. More generally, 

FA analyzes construct dimensionality of a given instrument via an evaluation of the 

variation and covariation among a set of manifest variables associated with the measure 

(Brown & Cudeck, 1993). In short, FA presumes that a latent construct underlies the 

shared variation in a set of manifest variables. In this way, FA can be seen as providing a 

more parsimonious representation of relationships between the manifest variables.   

Originally conceived by Spearman (1904) and further developed by Thurstone 

(1947), FA is an extension of the general linear model which states that each manifest 

variable consists of the variance of one or more common factor(s) and one unique factor 

(Brown & Moore, 2012). That it is an extension of the general linear model means that 

each manifest variable can be defined by a weighted additive function of the factors. FA 

differentiates itself from principal components analysis (PCA) in two key ways: 1) FA 

aims to reproduce covariance matrices while PCA only aims to maximize explained 

variance, and 2) FA includes an error term, implicitly acknowledging measurement error 

rather than presuming error-free instrumentation.  Put more simply, even the best selected 

manifest variables will not be perfectly representative of their constructs, PCA is not 

measurement, it is data reduction and can be very useful when data simplification is 

desired (or when collected variables have high collinearity), but not when actual 

dimensionality assessment is the goal. 

While the distinctions between PCA and FA are relatively clear, those between EFA 

and CFA are subtler; EFA and CFA aim to reproduce the observed relationships among a 

set of manifest variables with a more parsimonious and causally explanatory set of latent 
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variables. However, as their secondary titles of unrestricted and restricted suggest, their 

differences are both theoretical and practical, and manifest most clearly in the underlying 

assumptions made on the measurement model (Brown & Moore, 2012). In EFA the 

researcher generally attempts to determine the number of dimensions and evaluate 

manifest variables without a priori hypotheses about the underlying pattern of 

relationships among the variables. In CFA, the construct dimensionality is explicitly 

specified (on the basis of past work or strong theoretical rationale), and a corresponding 

pattern of manifest variables is posited. Furthermore, the evaluation of fit in CFA 

(explicated below) places it squarely in a SEM framework in a way traditional EFA 

cannot.  

Evaluating model fit in CFA 

Evaluation of model fit in CFA is concerned with both global fit and local fit. 

Generally, global model fit involves examining the difference between the covariance 

matrix of the sample and model-predicted covariance matrix. Much of overall model fit is 

done by examining the residual covariance matrix – which equals 0 under the null 

hypothesis, where a positive residual means that the model underpredicts the covariance 

between two variables, and a negative one means the predicted covariance is too high 

(Bollen, 1989). In evaluating global fit, the X2 statistic is often used as a measure of 

absolute model goodness of fit.  In this context, the X2 measures the discrepancy between 

the observed sample covariance matrix (𝑆) and the model implied covariance matrix 

(∑𝜃). The X2 provides a proportion-based test of the proposed, theoretical model against 

a saturated, just-identified model wherein variable correlations are thought to be zero, or 

close to zero and more arbitrary in nature (Bentler & Bonnet, 1980). Goodness of fit is 
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described relative to perfect fit through the minimization a discrepancy function, 𝐹 =

[𝑆, ∑𝜃]. Fit is assessed via one of several estimation algorithms (e.g., WLS, ML, etc.) 

that converge to similar solutions under idealized conditions. While overall model fit is 

an important component of model fit evaluation, it does not necessarily reflect all the 

components of a model – for example, parameter estimates may not reach statistical 

significance, or conform with the predicted directionality. Given the large samples 

necessary in factor analysis to obtain accurate parameter estimates and satisfy 

assumptions, the generalized test of exact fit has limited utility as a stand-alone statistic 

(MacCallum, Browne & Sugawara, 1996).   

Another issue lies in the logic of null-hypothesis statistical testing; in 

confirmatory factor analysis, the goal is to find support for the model as being a reliable 

representation of the data, such that failure to reject the null hypothesis is desired. Such a 

desire cannot generally be justified philosophically or practically. The logic of a 

hypothesis test dictates that failure to reject the null is not equivalent to confirmation of 

the null.  Practically, in testing the hypothesis that population covariance matrix is equal 

to the model implied covariance matrix, χ2 is defined as the minimum value of the fit 

function multiplied by (n-1) (Bentler & Bonnet, 1980).  

Additional measures of absolute fit, such as the RMSEA, are often used to 

complement understanding of model fit in conjunction with the model X2. Many of these 

measures are simple modifications of the X2. For example, the RMSEA is:  √
λ̂

(𝑛−1)(𝑑𝑓)
  , 

where  λ̂  is the estimated noncentrality parameter. The X2 statistic only follows a central 

X2 distribution if the proposed model is correct in the population; in the presence of 
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model misspecification, the test statistic follows a noncentral X2 distribution. The 

noncentrality parameter informs the extent of discrepancy between 𝑆 and ∑𝜃. Other 

measures of absolute fit, such as the standardized root mean squared residual (SRMR), do 

not consider the model X2 in their calculation. Rather, the measure considers the square 

root of the average squared residuals on a standardized, correlation metric.  

Previous literature has mentioned how distributional nonnormality can impact 

parameter estimates and statistical inferences derived from different model fit indices. 

Building on the work of Muthén and Kaplan (1985), Cudeck and Browne (1992) 

discussed how sample estimates of the discrepancy function were attenuated in the 

presence of nonnormality, such that model fit improved. Though their focus centered on 

how the ADF fit function is impacted by kurtosis, Olsson, Foss and Troye (2003) more 

generally conveyed that fit functions respond undesirably to aberrations from normality 

and indicated that, “a low chi-square may point not only to good fit, but also to lower 

power” (p. 301). Curran, West and Finch (1996) also noted decreased power to detect 

model misfit with increased values of kurtosis. Finally, Yuan, Bentler and Zhang (2005) 

described the bias that arises in goodness of fit estimators with increased skewness and 

kurtosis. Despite the attention given to these aspects of nonnormality and their influence 

on model fit estimators, previous work has not formally connected the moments to 

varying scale coarseness nor discussed the implications of these findings with respect to 

compromised validity. Moreover, previous related research did not consider the Satorra 

Bentler chi-square statistic in its evaluation. This is a notable difference as the statistic is 

intended to give estimates of standard error and goodness-of-fit which are robust to 

distributional non-normality. 



  

12 

CHAPTER 2 

EFFECT OF THE NUMBER OF RESPONSE ALTERNATIVES 

Previous methodological work has demonstrated that reducing the number of 

response alternatives on a set of items decreases the probability of rejecting an incorrect 

one-factor model using X2-based fit indices (e.g., Green, Akey, Fleming, Hershberger, & 

Marquis, 1997; Maydeu-Olivares, Kramp, Garcia-Forero, Gallardo-Pujol, & Coffman, 

2009). Maydeu-Olivares et al. (2009) conducted a repeated-measures experiment to 

investigate this phenomenon with real data. In the study, two questionnaires intended to 

measure a single construct were each administered to individuals with 2, 3, and 5 

response alternatives. Maydeu-Olivares et al. observed that as they reduced the number of 

response alternatives in the questionnaires, the fit of a one factor model generally 

improved. Because it could be argued that such results were simply due to the inaccuracy 

of applying a common factor model to discrete responses (McDonald & Ahlawat, 1974), 

they also fit a one dimensional ordinal factor model to the data under the same conditions 

and examined results: findings held, such that fit improved as the number of response 

alternatives decreased.  

This methodological artifact has critical implications for the validity of model fit 

assessment as a means to examine instrument dimensionality. This should be plain from 

the first section of this paper, but can be highlighted by the example of unscrupulous, or 

merely ill-informed researchers, who can improve the fit of their structural equation 
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models (SEMs) by reducing the number of response categories for items (e.g., converting 

5-point or 7-point ratings into 3-point ratings). This issue is of particular concern as 

factor analysis remains the psychometric workhorse for theory construction in a number 

of social sciences, and it seems essential that we have confidence that our tools for model 

testing base support for a given theory on germane content rather than construct-

irrelevant anomalies.   

Consider competing frameworks for personality theory as an example. Eysenck 

and colleagues (Eysenck, Eysenck, & Barrett, 1985) suggest that there are three basic 

dimensions of human personality. In contrast the Big Five model of personality posits, as 

its name indicates, that five dimensions account for human personality. Looking at the 

instrumentation underlying these theories with the aforementioned discussion in mind 

begs several questions; specifically, the questionnaire typically associated with Eysenck's 

model consists of binary response options, whereas Big Five questionnaires generally 

consist of five-point item responses (e.g., Costa & McCrae, 1985; 1992).  Is it possible 

that the different substantive conclusions across these competing theoretical frameworks 

are due in part to the differential number of response alternatives used to measure their 

respective constructs of personality? The answer is likely multi-faceted and we are not 

championing one theory over another in this paper. Rather we simply want to emphasize 

that the different number of response options these researchers employed in their 

instrumentation cannot be ruled out as one of the possible reasons contributing to the 

differential substantive conclusions of these theories.  
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Model fit generally improves in CFA when response categories are merged 

 The most straightforward way to examine the effect of reducing the number of 

scale categories in ratings is to collapse the extreme categories in items with an odd 

number of categories. For instance, merging adjacent extreme categories in 5-point item 

response options so that they become 3-point response items, or turning 7-point item 

response options into 5-point or even 3-point response items. We demonstrated the effect 

of merging response categories on subsequent model fit in CFA using real data from two 

widely used questionnaires: the NEO Five Factor Inventory ( NEO-FFI; Costa & 

McCrae, 1985) and the Social Problem Solving Inventory-Revised (SPSI-R; D’Zurilla, 

Nezu, & Maydeu-Olivares, 2002). Data (N=794) were taken from Maydeu-Olivares et al. 

(2000).  In both cases, the questionnaires used 5-point item response options: 0, 1, 2, 3 

and 4. We fit a one factor model to each questionnaire in their original form, then again 

fit a one factor model after collapsing the extreme categories to turn the data into 3-point 

response option items (i.e., 0 & 1 = 0; 2 =1; 3 & 4=2). Both variants were examined 

under two conditions: (a) the common factor model where items were treated as 

continuous, and (b) an ordinal factor model where the items were treated as discrete. 

Under the common factor model, maximum likelihood (ML) estimation was used with a 

mean and variance adjusted X2 test statistic. For the ordinal factor model, unweighted 

least squares (ULS) estimation was used, again with a mean and variance adjusted X2 test 

statistic based on polychoric correlations. Results are shown in Table 2.1 We provide the 

mean and variance adjusted X2, the Root Mean Squared Error of Approximation 

(RMSEA, Browne & Cudeck, 1993; Steiger, 1990) and the Standardized Root Mean 

Squared Residual (SRMR, Bentler, 1995).  
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 We see in this table that regardless of response categories or estimator employed, 

there is a wide range of model misspecification when fitting a one factor model to these 

scales. This bolsters the notion that neither the NEO-FFI nor the SPSI-R inventory satisfy 

a one factor structure. For the purposes of our illustration, however, a more interesting 

pattern is also apparent. We see that when a common factor model is used, the X2 statistic 

and all associated absolute goodness-of-fit indices improve when the 5-point NEO-FFI 

items are turned into 3-point items. The same findings hold true for the SPSI-R scales, 

with the exception of the AS scale. We obtain similar results when applying an ordinal 

factor analysis model, such that the X2 and all X2-based absolute goodness-of-fit indices 

improve for the scales when categories are collapsed. The SRMR, however, (i.e., the one 

absolute fit index employed that is not based on the X2) only improves in 4 out of the 10 

scales analyzed.   

The remainder of this work demonstrates how these determinants manifest in a 

confirmatory factor analysis setting to provide context for the simulation study, and then 

we report results of the simulation study in which we examine power of both the common 

factor and ordinal factor models to reject a one-factor model with increasing levels of 

model misspecification as the number of response options (and hence skewness and 

kurtosis) increases. We show that when the observed data are discrete, kurtosis depends 

on scale coarseness such that the fewer number of response options, the more likely the 

items demonstrate excess kurtosis. This excess kurtosis engenders loss of power in 

subsequent model fitting. Moreover, we illustrate that there is a synergistic relation 

between model misfit and kurtosis on the power to reject incorrect models such that as 

model misspecification and kurtosis increase, power decreases even when using robust 
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estimators to accommodate non-normality (Muthén, 1993; Satorra & Bentler, 1994). 

Finally, we demonstrate that there is an additional impact of scale coarseness on 

goodness of fit indices apart from the effect of kurtosis alone. 
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Table 2.1 Goodness of fit results for applying a one factor model to subscales of the NEO-FFI and SPSI-R inventories 

 

 

Model K 
Fit 

index 

  NEO-FFI    SPSI-R   

N E O A C NPO PPO RPS AS ICS 

(df=54) (df=54) (df=54) (df=54) (df=54) (df=35) (df=5) (df=170) (df=14) (df=35) 

Common 

Factor 

Model 

 X2 254.85 333.04 353.13 227.82 268.16 422.95 11.08 630.55 46.980 280.91 

5 RMSEA .068 .081 .084 .064 .071 .120 .040 .059 .055 .095 

 SRMR .044 .061 .056 .058 .054 .066 .021 .048 .025 .061 

 X2 175.65 275.38 320.48 152.38 152.91 274.64 7.84 556.48 49.32 180.10 

3 RMSEA .053 .072 .079 .048 .048 .094 .027 .054 .057 .073 

 SRMR .039 .057 .056 .050 .040 .057 .017 .046 .028 .051 

Ordinal 

Factor 

Model 

 X2 387.44 502.04 290.68 351.05 544.69 912.68 20.49 1163.98 102.23 490.72 

5 RMSEA .088 .102 .074 .083 .107 .180 .063 .087 .090 .130 

 SRMR .051 .071 .063 .073 .072 .077 .026 .056 .025 .071 

 X2 219.99 278.91 206.89 189.23 189.99 515.45 8.44 593.73 68.14 269.33 

3 RMSEA .062 .072 .060 .056 .056 .133 .030 .057 .071 .093 

 SRMR .053 .079 .076 .084 .069 .077 .026 .064 .033 .072 

 

Note. K = number of response alternatives. df are unchanged by the number of response categories and model considered (i.e., 

common vs. ordinal factor model). Five subscales were examined for each inventory: N, E, O, A and C for the NEO-FFI; C, NPO, 

PPO, RPS, AS and ICS for the SPSI-R. 
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CHAPTER 3 

SIMULATION STUDY 

Given our findings with real data, we sought to further investigate how the 

number of categories impacted the behavior of X2 goodness of fit statistics in a 

controlled, statistical simulation where population parameters were known. We evaluated 

the impact of fitting a one-factor model to generated data under several conditions, 

inclusive of varying degrees of departures from normality, choice of model estimator as 

well as degree of model misspecification. Mplus (Muthén & Muthén, 2011) was used for 

the simulations.  

Data generation 

We generated multivariate normal data with mean zero and an independent 

clusters, two factor model covariance structure. Population factor loadings and error 

variances were set to .7 and .51 across parameter combinations, and the number of items 

per factor was set to 5 to correspond to a 10-item questionnaire. Sample size was set to N 

= 500 observations for all conditions, to ensure that parameter estimates were accurately 

estimated but that power had not reached an asymptote so that differences in power could 

be observed (Forero & Maydeu-Olivares, 2009; Hu & Bentler, 1995). Observed item 

responses were obtained by discretizing the multivariate normal continuous data via 

threshold parameters. Threshold values were chosen such that the underlying population 
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probabilities associated with a given threshold corresponded to desired levels of item 

skewness and kurtosis.  

Population parameters 

 We varied five factors in the simulation study: (a) three levels of number of item 

categories (K= 2, 3 and 5 response categories), (b) two levels of item kurtosis (0 and 

excess kurtosis; excess values of kurtosis were differentially defined corresponding to 

level of scale coarseness; see Table 3.1), (c) two levels of item skewness (0 and high 

skew; values of high skew were differentially defined corresponding to level of scale 

coarseness; see Table 3.1), (d) three levels of model misspecification ( = .8, .9, 1, where 

 = 1 is commensurate with a one-factor solution, and thus defines no model 

misspecification), and (e) two levels of model estimation (the common factor model, 

where item responses were treated as continuous data and the ordinal factor model, where 

item responses were treated as discrete data). Maximum likelihood estimation with robust 

standard errors and a mean and variance adjusted X2 test statistic (i.e., MLMV; Satorra & 

Bentler, 1994) was used to estimate the common factor model. Unweighted least squares 

(ULS; Jöreskog, 1977) was used to estimate the ordinal factor analysis model from 

polychoric correlations with a mean and variance corrected X2 goodness of fit statistic 

(Muthén, 1993). This estimator was chosen instead of WLSMV (i.e., the default 

estimator in Mplus for discrete data) as it has been shown to yield slightly better results 

(Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). 

A partial factorial design was used as fully crossing all parameter combinations 

would have yielded conditions that were not viable. For example, with binary data it is 
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not possible to have high kurtosis and no skew, nor excess kurtosis and high skew (this 

case represents 12 conditions). Note that we factor both item skewness and kurtosis in the 

design so as to be able to disentangle the effects of item skewness from those of item 

kurtosis. Additionally, we included undiscretized multivariate normal data (to be 

estimated by factor analysis with the above 3 levels of misspecification) to provide a 

benchmark for the remaining conditions. As a result, the number of conditions 

investigated was 72 – 12 + 3 = 63. For each condition, r=1000 replications were used.  

Simulation outcomes 

 We evaluated the power to reject incorrect factor models in CFA, as defined by 

the proportion of simulation replications where the model X2 was rejected across 

parameter combinations. In parameter combinations where  = 1 (i.e., correct model 

specification), this rejection rate reflects a Type 1 error estimate. Results were evaluated 

against the nominal 1-β=.80 and α=.05 criteria, respectively (Cohen, 1988). We report 

two additional absolute fit criteria: (a) the RMSEA and (b) the SRMR, to comment on 

their performance with respect to levels of population parameters. 

Relationship between item kurtosis and scale coarseness - choice of population item 

skewness and kurtosis values  

In designing the simulation study, probability values underlying the threshold 

parameters where chosen so that maximum values of skewness and kurtosis were 

obtained for K = 2, 3, 5 with the restriction that population probabilities were larger than 

.02. This restriction was imposed to ensure accurate estimation in ordinal factor analysis, 

given that when population probabilities are too small, sample contingency tables may 
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present empty cells and thus hinder estimation of polychoric correlations. The population 

values of item skewness and kurtosis used in the simulation are displayed in Table 3.1. 

We see in this table that larger values of kurtosis and skewness were specified when a 

coarser response scale was examined. This is due in part to the relationship between item 

skewness and kurtosis and the number of response options for the item, as shown below.  

Let the item responses be coded as 0, 1, …, K – 1, where K denotes the number of 

responses alternatives, and 0 1 1, , , K     denotes the item population probabilities with 

the constraint that 0 1 11 ( )K       , as probabilities must add up to one. Also, let  

          1

0

K

k

k

k


               (1) 

and 
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1

0

m
i

j k

k

k




    
  ,  j = 2, …, 4. (2) 

The population item mean and variance are 1 and j, respectively. The 

population item skewness and kurtosis are (e.g., Maydeu-Olivares, Coffman, & 

Hartmann, 2007)  

3

3/2

2

skewness





   (3) 

 and 

                                  4

2

2

kurtosis





.  (4) 

The kurtosis of a normal random variable is 3. For that reason, some authors use excess 

kurtosis instead, where excess kurtosis = 3 – kurtosis and can take negative values.  
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 An item’s mean, variance, skewness and kurtosis are not mathematically 

independent, however. When K = 2, item kurtosis can be expressed as a function of the 

item’s variance: 2

2

excess kurtosis
 




. When K > 2, the relationship also depends on 

the item probabilities.  For instance, when K = 3, 
2

2 0 2 2

2

2

12 6
excess kurtosis

6

    



, 

whereas when K = 4, 
2

3 0 3 1 2 0 2 2

2

2

12 12 6
excess kurtosis

          



. To 

illustrate these relationships, for K = 2 we computed the values of item kurtosis for every 

possible value of 1 = .1, .2, …, .9 in increments of .1. Similarly, for K = 3 we computed 

the values of item kurtosis for every admissible combination of 1 = .1, .2, …, .9, and 2 

= .1, .2, …, .9. For K = 5, we computed item kurtosis for every possible admissible 

combination 1, 2, 3, and 4 in increments of .1. The resulting kurtosis values are 

presented graphically as a function of item variance in Figure 3.1.  For these probability 

arrays, higher values of kurtosis are obtained the coarser the response scale. On average, 

kurtosis values for K = 2, 3, and 5 are 3.27, 2.40 and 2.03, respectively. Most 

importantly, the maximum values that kurtosis attains for these probability arrays are 

lower the finer the response scale. This demonstration informs our choice of chosen 

population skewness and kurtosis values for the simulation. 

Simulation results 

 All replications converged across conditions.  No improper solutions (i.e., 

Heywood cases) were obtained.  Results are presented in Table 3.2 for both the common 

factor and the ordinal factor models.  
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 Results demonstrate that when the factor structure is correctly specified (i.e.,  = 

1), the rejection rates of the mean and variance adjusted X2 are generally accurate when 

fitting a one-factor model to the data; estimates ranged from .02 to .07 (see Table 3.2). 

Notably, there was not an increased Type 1 error rate associated with fitting the common 

factor model to the data, however. This would be expected given the data were generated 

according to an ordinal factor analysis model; the common factor analysis model is 

misspecified for item responses, as the relationship between the items and the common 

factors cannot be linear (McDonald, 1999). These findings demonstrate that the X2 test 

statistic lacks power to detect this aspect of model misspecification (Maydeu-Olivares, 

Cai, & Hernández, 2011). A comparison of the rejection rates across the ordinal and 

common factor models illustrate that distinctions between the two solutions are nominal, 

with differences in rejection rates centered at zero and predominately < |.03| in 

magnitude.  

When the model is incorrectly specified (i.e.,  = .8 or  = .9), rejection rates 

become inaccurate in certain circumstances. Figures 3.1 through 3.3 demonstrate these 

results for the common factor model (note that continuous data conditions were 

arbitrarily assigned a value of K = 10 for display purposes in the figures). The left panel 

of Figure 3.2 illustrates rejection rates of the model X2 as a function of number of 

categories, item skewness, item kurtosis and degree of model misspecification. We see in 

this figure that the main drivers of rejection rates are model misspecification, kurtosis and 

number of categories, in this order. Skew has little impact on results. Holding model 

misspecification constant, rejection rates are higher for low kurtosis parameter 

combinations. Holding model misspecification and kurtosis constant, rejection rates are 
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higher (and thus more powerful) as the number of response categories increases. 

However the relationship between kurtosis and rejection of the model X2 is non-

monotonic; higher power is observed in instances where the value of kurtosis is further 

from the kurtosis of a normal variable.  For instance when skewness = -.2.67, kurtosis = 

8.11,  = .8 and K = 2, the rejection rate at α=.05 is .41; but when skewness = -2.53, 

kurtosis = 8.39,  = .8, and K = 3, the rejection rate is .66 when a common factor model 

is fitted. Adequate power is observed once skewness = -1.94, kurtosis = 6.18,  = .8, and 

K = 5, such that the rejection rate is .90. When skewness = 0, kurtosis ~ 3 and  = .9, the 

rejection rate of the model X2 at α=.05 fitting a common factor model is .48 for K = 3, .79 

for K = 5, and .93 for continuous data; the latter demonstrates that all else equal, greater 

degree of model misspecification yields more accurate rejection rates. 

The right panel of Figure 3.2 illustrates rejection rates of the model X2 as a 

function of item standard deviation, item skewness, item kurtosis and degree of model 

misspecification. We see that a similar pattern of rejection rates emerges in this graph as 

compared to the left panel, demonstrating that the increased rejection rates of the model 

X2 are not simply a function of the increased kurtosis associated with decreasing the 

number of scale categories. Rather, there remains a discernible effect of inaccurate 

rejection rates when holding the value of kurtosis constant across varying item standard 

deviation. This speaks to the fact that there is not a one to one relationship between item 

standard deviation and kurtosis. Further, in some sense the number of scale categories 

appears to act as a proxy for item standard deviation, such that there is an additional 

impact of scale coarseness on rejection rates above and beyond that associated with level 

of kurtosis.     
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 We conjectured that the effects of degree of model misspecification, kurtosis and 

scale coarseness on the power of the statistic would carry over to any goodness of fit 

statistic that are a function of the X2 test statistic, such as the Comparative Fit Index (CFI, 

Bentler, 1990), the Tucker-Lewis Index (TLI, Tucker & Lewis, 1973) or the Root Mean 

Squared Error of Approximation (RMSEA, Browne & Cudeck, 1993; Steiger & Lind, 

1980). In this simulation we have only examined the effects of these drivers on the 

RMSEA, as the index represents an absolute (rather than comparative) measure of model 

misfit. Results are shown graphically in Figure 3.3 for the common factor model, where 

average values of the model RMSEA are illustrated as a function of number of 

categories, item skewness, item kurtosis and degree of model misspecification. As with 

reference to Figure 3.2, results are also plotted as a function of item standard deviation to 

bolster demonstration of the additional impact of scale coarseness relative to kurtosis 

alone.  

 Figure 3.3 demonstrates that the main drivers of RMSEA values are model 

misspecification, number of categories, and kurtosis, in that order. RMSEA increases as 

model misspecification and number of categories increase. However, the relationship 

between kurtosis and RMSEA is non-monotonic; lower values of the goodness of fit 

index are observed in instances where the value of kurtosis is further from the kurtosis of 

a normal variable. The value of the RMSEA is highest at kurtosis equal 3 (i.e., excess 

kurtosis equal to 0, the kurtosis of a normal random variable), and results generally 

follow the pattern of those observed in evaluating rejection rates of the model X2.  

 Figure 3.4 illustrates average values of the model SRMR as a function of number 

of categories, item skewness, item kurtosis and degree of model misspecification. The 
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relationship between the SRMR and number of categories is more complex than either 

model X2 rejection rates or average value of the RMSEA. First, we notice that the range 

of values of the average SRMR obtained in the simulation is smaller than either for the 

model X2 or for the RMSEA. The largest SRMR obtained is .046, whereas the largest 

RMSEA is .080. Also, unlike the RMSEA, the sample SRMR is non-zero even when the 

model is correctly misspecified (Maydeu-Olivares, 2017). As a result, the effect of the 

number of categories on the SRMR is smaller than on the RMSEA generally, and the 

effect of using continuous data relative to 5-point items is marginal. The results for the 

ordinal factor analysis model are similar, but the SRMR has a larger range than in the 

case of the common factor model (see Table 3.2).  

To examine more closely the relationship between model fit and number of 

response categories, we fitted a general linear model to the rejection rates, RMSEA, and 

SRMR obtained using as factors skewness (high, low), kurtosis (high, low), and model 

misspecification (.8, .9, 1). We excluded the conditions involving continuous data in 

these analyses. A model with main effects and all two-way interactions yielded an R2 of 

90% for rejection rates, 89% for RMSEA and 92% for SRMR. In all three cases, the 

skewness effects were not statistically significant at the 5% level. For rejection rates and 

RMSEA none of the two-way interactions was statistically significant; for the SRMR 

none of the interactions involving model misspecification was significant. Next, we 

examined the effects of including the number of categories as an additional predictor. 

Thus, we used skewness, kurtosis, model misspecification as factors, mean centered 

number of categories as covariate, and all their two-way interactions. We obtained an R2 

of 98% for rejection rates, and over 99% for RMSEA and SRMR. The number of items’ 
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response categories predicts fit beyond what is explained by items’ skewness and 

kurtosis. This is an unexpected finding. In predicting rejection rates, skewness was not 

statistically significant and the only significant interactions were kurtosis  correlation 

level and number of alternatives  correlation level; in predicting RMSEA only the 

interactions between number of alternatives  skewness and number of alternatives  

kurtosis were not significant; in predicting SRMR, only the interactions between number 

of alternatives  skewness, number of alternatives  kurtosis, and skewness  correlation 

level were not significant. 

We obtained similar results in the ordinal factor analysis case. A model with 

skewness, kurtosis, model misspecification main effects and all two-way interactions 

yielded R2 of 87% and 85% for rejection rates and RMSEA. For SRMR, R2 was only 

70%. In all three cases, the main effect of skewness was not statistically significant, nor 

any associated interactions. When we examined the effect of including the number of 

categories as an additional predictor, we obtained an R2 of 98% for rejection rates, over 

99% for RMSEA and 99% for SRMR. Again, the number of items’ response categories 

predicts fit beyond what is explained by items’ skewness and kurtosis in all three cases. 

In predicting rejection rates, skewness and its interactions were not statistically 

significant; in predicting RMSEA, skewness and the interaction of skewness  number of 

categories were not statistically significant; and in predicting SRMR, none of the 

interactions involving skewness and correlation levels were statistically significant.  

Why does number of categories predict fit beyond what is explained by items’ 

skewness and kurtosis, and degree of model misspecification? Pending future work, we 
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conjecture that it is because number of categories acts as a proxy for items’ standard 

deviation.  Their relationship is remarkably linear and their correlation for the values in 

our simulation is .87. More generally, we computed the correlation between item 

standard deviation and number of categories (K = 2, 3, 4, 5) for every possible admissible 

combination of probabilities in increments of .1 (see remarks above on relationship 

between item kurtosis and variance), the correlation is .88.  

To investigate this conjecture, we estimated general linear models as above 

replacing number of categories by (mean centered) item standard deviation as a covariate. 

For the common factor model, R2 for rejection rates, RMSEA and SRMR were 98%, 

>99%, and 99%, respectively. In predicting rejection rates, the kurtosis main effect was 

not significant and the only significant interaction was item standard deviation  

correlation level.  In predicting RMSEA, the skewness and kurtosis main effects were not 

statistically significant nor was the item standard deviation  kurtosis interaction. Finally, 

in predicting SRMR the kurtosis main effect was not statistically significant, and the only 

significant effects were correlation level  standard deviation and skewness  kurtosis. 

For the ordinal factor model we obtained very similar results. R2 for rejection rates, 

RMSEA and SRMR were again 98%, >99%, and 99%, respectively. In predicting 

rejection rates, the kurtosis and skewness main effects were not significant and the only 

significant interaction was item standard deviation  correlation level.  In predicting 

RMSEA, the kurtosis main effect was not statistically significant nor were the item 

standard deviation  correlation level and kurtosis  skewness interactions. Finally, in 

predicting SRMR the kurtosis main effect was not statistically significant, and the only 

significant effects were correlation level  standard deviation and skewness  kurtosis.
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Table 3.1 Population probabilities and thresholds used to generate simulation data, with corresponding mean, variance, skewness 

and kurtosis parameters 

 

K Mean Variance Skewness Kurtosis 1 2 3 4 5 1 2 3 4 

5 3.48 .89 H -1.94 H 6.18 .02 .04 .08 .16 .70 -2.05 -1.55 -1.08 -.52 

5 2.00 .60 L .00 H 5.00 .05 .10 .70 .10 .05 -1.64 -1.04 1.04 1.64 

5 3.01 1.45 H -1.05 L 3.01 .05 .10 .12 .25 .48 -1.64 -1.04 -.61 .05 

5 2.00 .88 L .00 L 3.00 .06 .20 .48 .20 .06 -1.55 -.64 .64 1.55 

3 1.80 .26 H -2.53 H 8.39 .05 .10 .85   -1.64 -1.04   

3 1.00 .16 L .00 H 6.25 .08 .84 .08   -1.41 1.41   

3 1.55 .55 H -1.28 L 3.03 .15 .15 .70   -1.04 -.52   

3 1.00 .33 L .00 L 2.99 .17 .67 .17   -.97 .97   

2 .90 .09 H -2.67 H 8.11 .10 .90    -1.28    

2 .60 .24 L -.41 L 1.17 .40 .60    -.25    

 

Note. K = number of response alternatives,  = probability,  = threshold; H = high, L =  low. Excess kurtosis = kurtosis – 3.        

Empty cells reflect conditions that were not considered in the simulation design.
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Table 3.2 Simulation Results 

 

Population Parameters Common factor model Ordinal factor model 

K Skewness Kurtosis  1-β RMSEA SRMR 1-β RMSEA SRMR 

 .00 3.00 .80 1.00 .080 .044 -- -- -- 

∞ .00 3.00 .90 .93 .044 .027 -- -- -- 

 .00 3.00 1.0 .05 .009 .017 -- -- -- 

 .00 3.00 .80 1.00 .068 .026 1.00 .075 .050 

 .00 3.00 .90 .79 .036 .026 .81 .038 .032 

 .00 3.00 1.0 .04 .009 .027 .05 .008 .022 

 .00 5.00 .80 .99 .052 .039 1.00 .058 .053 

5 .00 5.00 .90 .47 .027 .028 .49 .028 .037 

 .00 5.00 1.0 .05 .009 .022 .03 .007 .029 

 -1.05 3.01 .80 1.00 .060 .043 1.00 .069 .051 

 -1.05 3.01 .90 .64 .032 .029 .72 .035 .034 

 -1.05 3.01 1.0 .05 .009 .022 .05 .009 .024 

 -1.94 6.18 .80 .90 .043 .039 .98 .054 .055 

 -1.94 6.18 .90 .38 .024 .033 .48 .027 .039 

 -1.94 6.18 1.0 .04 .009 .027 .05 .009 .031 

 .00 2.99 .80 .99 .053 .037 .99 .056 .054 

 .00 2.99 .90 .48 .027 .026 .47 .027 .038 

 .00 2.99 1.0 .05 .009 .021 .03 .008 .030 

 .00 6.25 .80 .73 .035 .037 .65 .033 .064 

3 .00 6.25 .90 .20 .018 .030 .11 .013 .050 

 .00 6.25 1.0 .05 .010 .027 .02 .005 .044 

 -1.28 3.03 .80 .94 .046 .042 .96 .050 .057 

 -1.28 3.03 .90 .36 .023 .031 .39 .024 .041 

 -1.28 3.03 1.0 .04 .009 .026 .04 .008 .034 

 -2.53 8.39 .80 .66 .033 .046 .74 .035 .066 

 -2.53 8.39 .90 .19 .018 .038 .19 .018 .053 

 -2.53 8.39 1.0 .04 .010 .034 .04 .009 .046 

 -.41 1.17 .80 .93 .044 .038 .94 .047 .059 

 -.41 1.17 .90 .34 .022 .029 .36 .023 .044 

2 -.41 1.17 1.0 .07 .010 .025 .05 .009 .037 

 -2.67 8.11 .80 .41 .025 .045 .41 .025 .079 

 -2.67 8.11 .90 .14 .014 .039 .11 .013 .067 

 -2.67 8.11 1.0 .05 .009 .037 .03 .008 .061 

 

Note. 1-β is condition-level rejection rate of the X2 was evaluated at α=.05.  = factor 

correlation. RMSEA and SRMR are condition-level estimates, averaged across replication. 
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Figure 3.1 Plot of item kurtosis as a function of item variance and number of response alternative 
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Figure 3.2 Common factor model results: Plot of rejection rates at  = .05 of the mean and variance corrected X2 statistic as a 

function of skewness and kurtosis levels, degree of model misspecification, and number of response alternatives or item standard 

deviation 
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Figure 3.3 Common factor model results: Plot of average RMSEA values as a function of skewness and kurtosis, degree of model 

misspecification and number of response alternatives or item standard deviation 
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Figure 3.4 Common factor model results: Plot of average SRMR values as a function of skewness and kurtosis, degree of model 

misspecification and number of response alternatives or item standard deviation 
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CHAPTER 4 

VARYING THE NUMBER OF RESPONSE ALTERNATIVES IN THE BECK 

HOPELESSNESS SCALE 

Given the implications of our work extend into the validity of many measures 

used in applied research which have historically relied on low scale point response 

options, we were interested in investigating an additional substantive example.  We 

conducted an empirical examination of the 20 item Beck Hopelessness scale (BHS) in its 

original two scale point form, as well as in a nine scale point form.  We expected to 

observe empirical findings in line with simulation results, predicting fit indices indicative 

of better fit for models stemming from dichotomous response option data.  As in the 

simulation, we utilized a maximum likelihood estimation with robust standard errors and 

a mean and variance adjusted X2 test statistic (MLMV: Satorra & Bentler, 1994) for 

instances where we treated the data as continuous, and unweighted least squares (ULS; 

Jöreskog, 1977) with a mean and variance adjusted X2 test statistic based on polychoric 

correlations, where the data were treated as discrete. Additionally, we included two 

popular comparative indices of model fit, the Tucker-Lewis Index (TLI: Tucker & Lewis, 

1973), and the Comparative Fit Index ( CFI: Bentler, 1990).  This allows us to examine 

our early assertion where we hypothesize that the above demonstrated effects of degree 

of model misspecification, kurtosis and scale coarseness on the power of the statistic will 

carry over to any goodness of fit statistic which are a function of the X2 test statistic.  
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Finally, we predicted there would be only small differences in χ2 based fit indices when 

contrasting our treatment of the data as continuous versus discrete.  

Selection of scale 

For the purposes of this study, there was a desire to select a measure whose 

dimensionality has been the subject of controversy, and whose original response format 

was dichotomous. The BHS met both of these criteria as well as complementing past 

work by Maydeu-Olivares et al., (2009) which examined empirical changes in apparent 

fit within the domain of personality research.  Their work included two, three, and five 

response option alternatives in relatively short measures (5-12 items).  This provided 

additional rationale to select the BHS, as it was outside of the personality domain, and 

included a greater number of items.  Past work also provided the incentive for utilizing a 

scale which included more possible response options than five, prompting our selection 

of the nine response option format.  

Participants 

The participants consisted of 952 undergraduate students at a large public 

university in a southeastern state who volunteered to participate in these studies. Age of 

our participants ranged from 18 to 25 years (M =19.75, SD = 1.57), and gender was 

primarily female (77%). Data were collected online using SurveyMonkey software 

(SurveyMonkey Inc., Palo Alto, California, USA, www.surveymonkey.com), as part of a 

larger instrument battery of measures unrelated to the current work. All procedural 

methods were approved by the University of South Carolina Institutional Review Board. 
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The students were divided into two samples which received the same battery of 

measures with the sole exception being the order in which they received the measures of 

interest for the present study.  As indicated by Maydeu-Olivares et al., (2009) when 

examining scale coarseness, it is possible to use either a randomized one-way design or a 

repeated measure design. The latter approach (implemented here) allows us to capture 

intra-individual effects due to the adjustment of scale coarseness, provides us with 

increased precision, and therefore is a more powerful design. However, the repeated 

measure design must be carefully screened for testing effects. To address this, Study A (n 

= 503) whose age ranged from 18 to 25 years (M =19.94, SD = 1.55), and were 80% 

female received the 9-response option form of the BHS first, and the dichotomous form 

of the BHS later in the battery.  Study B (n = 449) whose age ranged from 18 to 25 years 

(M =19.59, SD =1.57), and were 74.4% female received the dichotomous option form of 

the BHS first, and the 9-response form of the BHS later in the battery. In both cases, the 

two forms of the measure were separated by three unrelated measures.    Different labels 

were used for the two response options (0 = True, 1 = False), and the nine response 

options (1 = Strongly agree, 5 = Neither agree nor disagree, 9 = Strongly disagree). 

Screening invalid responses  

We utilized a three-step process to screen and remove invalid responses from the 

data.  First, participants who completed the entire battery (consisting of approx. 500 

items) in five minutes or less were removed. This step was done prior to calculating the 

descriptive statistics presented above.  Second, data from the nine response option was 

discretized by creating a new variable which recoded responses less than or equal to four, 

as zero, and responses greater than or equal to six, as one.  These new values were then 
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subtracted from the participant’s dichotomous response, and the square of that value was 

summed.  This provided us with a count for the number of times each participant’s nine-

outcome response substantially differed from their dichotomous response.  Participants 

whose count was greater than five were removed (this amounted to the removal of 41 

participants).  Finally, given our desire to use the estimator MLMV and the generally low 

prevalence of missingness in the remaining data, participants with one or more missing 

value were removed (this amounted to four participants) and left us with our final 

participant total to be factor analyzed (N = 907). 

Evaluating potential order response bias 

The final step in our preliminary evaluation of our data was to look for potential 

order effects that might invalidate our within-subject design.  Examining the respective 

demographics of our two response orders (A and B) from above, we can see that the 

range, average, and standard deviation for age, as well as the gender breakdown are very 

similar.  Additionally, we conducted t-tests for each item between A and B and after 

adjusting α for multiple comparisons, had only one significant finding.  This significant 

difference (t = 4.64) was for the dichotomous form of item 12, “I don’t expect to get what 

I really want,” where participants in A had an estimated mean difference between the two 

groups of .12. This corresponds to a 32% endorsement in A compared to a 19% 

endorsement in B. Additionally, one unfortunate limitation of this current work is that a 

data collection error necessitated the complete removal of item number 10 from both 

forms.  Despite the aforementioned limitations, we proceeded with our data analysis plan.  
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Beck Hopelessness scale   

As it was originally conceived, the construction of the Beck hopelessness scale 

(BHS) was drawn from two sources to represent two theoretical dimensions of 

hopelessness (Beck & Weissman, Lester & Trexler, 1974).  The first dimension was 

comprised of 11 items reflecting pessimistic statements, and includes items such as “I 

might as well give up because I can’t make things better for myself.”  The second 

dimension had 9 items concerning optimistically framed future expectations, an example 

item read “I look forward to the future with hope and enthusiasm.”   Despite this 

operationalization Beck et al., (1974) eventually concluded that their measure – and 

subsequently the construct of hopelessness as they had operationalized it – consisted of 

three dimensions; “affectively toned association” which labeled feelings about the future, 

“loss of motivation,” and “future expectations”.  It should be noted that this decision 

appears to simply split future oriented optimism into “feelings about the future” and 

“future expectations,” and was based off of eigenvalue greater than 1 criterion in a 

principal component (PC) analysis, which was mistakenly identified as factor analysis.  

 Subsequent research into hopelessness settled into a consistent debate between a 

one and two dimensional form. Scheier and Carver (1985) posited that positive and 

negative outcome expectancies comprised two extremes of a unidimensional construct. 

Dember et al. (1989) on the other hand considered hopelessness as two dimensions 

representing positive and negative life outlook.  Chang, Maydeu-Olivares, and D’Zurilla 

(1997) considered hopelessness through a more methodologically rigorous series of 

measurement work, and concluded that there was FA evidence to suggest two highly 

correlated but partially independent dimensions. This was further supported through an 
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examination of the concurrent and discriminant validity of the separate dimensions where 

they found that in a two factor form, pessimism but not optimism was related to 

depressive symptoms. Purported factor structures tested in this work can be seen in Table 

4.1.  

 Based on past research, we expected to observe a decrease in reliability as the 

number of response options decreased (Maydeu-Olivares et al., 2009). However, due to 

the length of our test we expected these reliability gains to be mitigated compared to what 

has been observed in shorter measures. In the dichotomous data α = .84 while for the nine 

response data α = .93.  

Results 

 Both Pearson’s and Spearman’s correlations along with 95 percent confidence 

intervals among the BHS scale scores using dichotomous and nine response options are 

displayed in Table 4.2.  The correlations for Pearson’s estimates are considerably higher 

than those from Spearman’s estimates, ranging from .405 to .704 and .317 to .722 

respectively. Item correlations were surprisingly low, compared to past research by 

Maydeu-Olivares et al., (2009) which examined 2, 3, and 5 response alternatives in the 

personality and affect domains which had correlations ranging from .62 to .78; given the 

higher magnitude of change in the number of scale points as well as the use of a measure 

in a different domain we did anticipate the possibility of finding correlations significantly 

different than 1, however we did not anticipate this degree of attenuation.  

  



 

41 

Factor Analysis  

 Results for evaluating χ2 based likelihood ratio, RMSEA, CFI, and TLI fit indices 

in continuous as well as ordinal models with one, two, and three factors are presented in 

Table 4.3.  Our results demonstrate that there is substantial variability in apparent model 

fit between the dichotomous and nine response conditions, and to a lesser but non-trivial 

extent between conditions that treat the data as continuous and discrete.  For the 

dichotomous response data, χ2 based likelihood ratio fit appears to improve slightly when 

treated as discrete data. In the case of the nine response data, using χ2 based likelihood 

ratio, fit appears to improve considerably when treated as continuous.  Likewise, when 

examining RMSEA between two and nine response conditions we observe that the two 

response format appears better in every case regardless of whether the data were treated 

as continuous or discrete.  As concerns the continuous or discrete treatment of our 

response option conditions, RMSEA shows a trivial improvement when treated as ordinal 

in the two response condition, and a substantial improvement when treated as continuous 

in the nine response condition.  For CFI and TLI treating the data as discrete results in 

greater improvement than treating the data as continuous, however the relationship 

between response option condition and fit reveals an interaction where the two response 

condition treated as continuous indicates an apparent decline in fit when compared with 

the nine response condition treated as continuous, but the two response condition treated 

as discrete shows improvement over the  nine response condition when treated as 

discrete.     
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Model selection  

 In the preceding section, care was taken to describe the fit indices in relative 

terms of improvement or decline, rather than in model selection terms of “good” or 

“adequate” fit.  This was done to highlight the subjective fit criteria used for model 

selection in substantive fields, where interpretation of dimensionality is often based 

exclusively off of global fit indices.  Specifically, such decisions are generally centered 

around subjective cut points that have been recommended in the literature.  One such 

recommendation is that an RMSEA < .05 indicates close fit, RMSEA < .08 indicates a 

fairly close fit, and RMSEA > .1 indicates poor model fit (Hu & Bentler, 1999).  

Relatedly, Hu and Bentler, (1999) also suggest that CFI and TLI should both be greater 

than .95, interpretable as saying that the specified model is at least 95% better than a 

model which assumes all variables are uncorrelated. As concerns the likelihood ratio test, 

difficulties have been discussed earlier in this work, but in the applied literature, a p-

value greater than .01 is often said to indicate good fit.  In our current work, our sample p 

was less than .001 for every model examined, therefore the χ2 is only useful in examining 

the magnitude of change between models.  With this noted, we can now provide model 

selection evaluation based primarily off of RMSEA, CFI, and TLI.  

  In examining the adequacy of model fit based on RMSEA, we observe that in the 

case of the dichotomous data, a one-factor model appears to have reasonably good fit.  In 

the case of the nine response option, a one-factor model appears to have poor model fit, 

while a two factor model (if treated as continuous) appears to have relatively good fit.  

Interestingly, while model fit for two and three factor models appear roughly equal under 

the two response condition, when we examine them under the nine response option 
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condition, a three-factor model appears to fit considerably worse than a two factor model.  

In regards to our hypothesis, as predicted, differences in RMSEA between continuous 

and discrete treatment in the two response condition are trivial, however, in the nine 

response condition they are large enough where one might realistically change their 

substantive conclusion regarding model adequacy. This is because in the two-factor 

solution of the nine response condition, treating the data as continuous results in an 

RMSEA of .061 which may very well be considered adequate, while the discrete 

treatment produced an RMSEA of .098 which would likely be rejected as not indicative 

of adequate model fit. 

More interesting still, when examining CFI and TLI as the primary basis for 

evaluation of model fit, a slightly different and much more pronounced pattern appears. 

Here, contrary to our expectation, the more important consideration is whether the data 

are treated is continuous or discrete; in both conditions treating the data as discrete results 

in dramatic improvement over continuous.  None of the models for the two or nine 

response condition would be considered adequate where the data is treated as continuous, 

whereas all of the models might be said to have approximate fit if treated as ordinal. If 

adhering strictly to the .95 cutoff discussed above, only the two factor solution would be 

accepted for either the two response condition or the nine response condition.  However, 

where treated as discrete, both the CFI and TLI are still higher for every case in the two 

response condition than in their nine response condition counterpart, and an applied 

researcher looking to confirm their one factor solution would very likely conclude that it 

was adequate (particularly if they were working with the two response condition.   
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In considering the empirical model fit of dichotomous and nine response 

confirmatory factor models on the Beck Hopelessness scale, we can see how a range of 

different conclusions about the factor structure of the BHS might be reached as a 

consequence of insufficient power to reject poor fitting one and three factor solutions.  

The purpose of the present demonstration was to examine how the number of response 

options on an instrument impacts the relationship between reliability and model fit in a 

measure outside of the personality domain, with a relatively large number of items and a 

large difference between the number of possible response options. Despite the increased 

number of items used (as compared to the simulation) in this study, substantive 

conclusions towards factor structure continue to be effected by increased scale 

coarseness.  As predicted, model fit in almost every condition appeared worse for the 

nine response option condition than in the two response condition.  Interestingly with the 

increased magnitude of the scaling difference observed we did notice non-trivial changes 

in apparent fit between data treated as ordinal and continuous.   Specifically, despite nine 

response categories still being discrete data, treating it as continuous resulted in much 

improved apparent model fit with the exception of the TLI and CFI.    

Other considerations  

Though the focus of this applied example has been on the effect of scale 

coarseness on power to reject incorrectly specified factor models, we can also use our 

empirical example to demonstrate our simulation findings about the effects of skewness 

and kurtosis.   In Table 4.4 we can see skewness and kurtosis for each item between the 

two response and nine response condition. The average skewness for the two response 

condition was -2.05 (1.14) as compared to -1.08 (.62) for the nine response condition. 
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More importantly, the average excess kurtosis (where no kurtosis is indicated by 0) for 

the two response condition was 3.45 (4.03) as compared to .85 (1.63) for the nine 

response condition.  Further, as can be seen, for every item in the case of kurtosis, and all 

but two items in the case of skewness, the two response condition has more extreme non-

normality.  As described earlier in this work, this is a mathematical necessity – it’s 

impossible for a dichotomous response variable to be normally distributed, however the 

degree of non-normality also reflects a fundamental difficulty in applied measures of this 

sort in general. Namely, clinical measures of psychological constructs are generally 

intended to detect extremes. In the case of the BHS, it may be argued that an 

undergraduate population fails to reflect the intended clinical population of interest, 

however, even as administered in a clinical population we would expect the 

overwhelming majority of individuals to have scores which reflected low to moderate 

levels of hopelessness. Clearly, our reliance on parametric statistics can have great 

consequences in terms of substantive conclusions if we are unaware of the results that 

stem from violating assumptions of normality.  A final note on this applied example, an 

intentional focus has been on considering model fit exclusively through fit indices which 

we postulate comprises the entire evaluative process for some substantive researchers.  
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Table 4.1 Purported factor structures and item loadings  

 

Number of Factors Dimension Name Associated Items 

1-Factor  Hopelessness  1, 2, 3, 4, 5, 6, 7, 8, 9, 11 ,12, 13, 14, 15, 16, 

17, 18, 19, 20 

2-Factor Optimism  

Pessimism  

1, 3, 5, 6, 8, 13, 15, 19  

2, 4, 7, 9, 11, 12, 14, 16, 17, 18, 20 

3-Factor  Affect 

Motivation 

Expectations 

1, 5, 6, 13, 15, 19 

2, 3, 9, 11, 12, 16, 17, 20 

4, 7, 8, 14, 18  
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Table 4.2 Correlations Between Different Number of Response Format 

Options for Beck Hopelessness Scale (BHS) 

 

Item Pearson ρ (95%CI) Spearman’s ρ (95%CI) 

1 .545 (.465, .611) .408 (.346, .464) 

2 .405 (.296, .507) .317 (.234, .390) 

3 .482 (.410, .553) .410 (.350, .459) 

4 .658 (.618, .698) .658 (.611, .695) 

5 .646 (.602, .690) .633 (.591, .674) 

6 .428 (.350, .500) .353 (.300, .400) 

7 .686 (.620, .744) .496 (.442, .553) 

8 .714 (.679, .748) .722 (.690, .751) 

9 .522 (.451, .587) .442 (.380, .499) 

11 .608 (.513, .687) .412 (.344, .481) 

12 .579 (.521, .638) .529 (.472, .582) 

13 .433 (.367, .496) .393 (.336, .443) 

14 .645 (.596, .686) .622 (.578, .633) 

15 .596 (.538, .644) .507 (.457, .555) 

16 .571 (.489, .645) .420 (.363, .477) 

17 .482 (.389, .576) .357 (.282, .423) 

18 .704 (.666, .739) .699 (.657, .737) 

19 .404 (.324, .487) .336 (.258, .399) 

20 .559 (.464, .635) .412 (.343, .467) 

Sum  .864 (.840, .885) .778 (.743, .813) 
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Table 4.3 CFA model fit 

 

 Two Response Nine Response 

 1 factor  2 factor  3 factor   1 factor  2 factor  3 factor  

CFA 

Continuous 

 

Χ2 = 676.98 

RMSEA = .062 

CFI = .737 

TLI = .705 

Χ2 = 466.64 

RMSEA=.048 

CFI = .842 

TLI = .821 

Χ2=419.32 

RMSEA=.049 

CFI = .849 

TLI = .824 

 Χ2 =1315.50 

RMSEA=.093 

CFI = .769 

TLI = .740 

Χ2 =652.63 

RMSEA=.061 

CFI = .900 

TLI = .887 

Χ2 =782.31 

RMSEA=.075 

CFI = .866 

TLI = .845 

        

        

CFA  

Ordinal  

Χ2 = 670.05 

RMSEA = .060 

CFI = .936 

TLI = .929 

Χ2 =431.58 

RMSEA=.045 

CFI = .966 

TLI = .961 

Χ2 = 399.97 

RMSEA=.047 

CFI = .940 

TLI = .930 

 Χ2 =2977.39 

RMSEA=.141 

CFI = .902 

TLI = .890 

Χ2 =1509.85 

RMSEA=.098 

CFI = .953 

TLI = .947 

Χ2 =2274.07 

RMSEA=.132 

CFI = .925 

TLI = .913 
 

Note. Estimator for continuous data MLMV, estimator for all discrete data = ULS  

 



 

49 

Table 4.4 Skewness and kurtosis 

 

Item Two Response 

Skewness 

Nine Response 

Skewness 

Two Response 

Excess Kurtosis 

Nine Response 

Excess Kurtosis 

1 -3.194 -1.407 8.218 1.467 

2 -3.340 -2.139 9.178 4.204 

3 -2.550 -1.030 4.514 .351 

4 -.071 -.098 -1.999 -1.118 

5 -.782 -.337 -1.392 -.886 

6 -3.218 -1.041 8.376 .612 

7 -2.683 -1.720 5.210 2.324 

8 -.320 -.159 -1.902 -.943 

9 -1.912 -.953 1.660 -.081 

11 -2.810 -1.835 5.908 2.721 

12 -1.086 -.798 -.822 -.448 

13 -2.209 -.723 2.888 .247 

14 -.713 -.519 -1.494 -.697 

15 -2.059 -.861 2.245 .166 

16 -2.949 -1.654 6.712 2.380 

17 -2.830 -1.771 6.023 2.673 

18 -.221 -.415 -1.956 -1.003 

19 -3.001 -1.169 7.021 1.047 

20 -3.026 -1.840 7.175 3.081 
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CHAPTER 5 

DISCUSSION 

In considering the utility of factor analysis as a means to enhance our 

understanding of theoretical constructs, as well as of validity evidence for associated 

scales of those constructs, attention to issues that give rise to statistical artifacts in model 

assessment has been underemphasized. A foundational example of this concerns item 

scaling and the influence it imparts on making judgments regarding scale dimensionality.  

When designing measures, there is often an unwarranted willingness to choose and/or 

transform scale coarseness at will, without consideration for how these choices impact 

model fit. Though others have noted that increasing the number of response options 

generally improves the reliability of a scale (with gains optimized somewhere between 5-

9 scale categories; Green et al., 1997; Lissitz & Green, 1975; Symonds, 1924), little 

discussion has been held on how scale coarseness affects structural validity of any kind.  

This thesis has shown that choice of scale coarseness and the resultant 

distributional properties critically influence results of confirmatory factor analysis (a tool 

for assessing structural validity evidence) at different levels of measure discretization. 

Additionally, scale coarseness impacts the power of the X2 test statistic beyond what is 

explained by the items' kurtosis alone, such that an increase in the number of categories 

used for an item response scale yields greater power to detect incorrect models. 

Additional measures of absolute model fit (i.e., the RMSEA and the SRMR) were also 
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affected. We conjecture that this influence is initiated by the association between an 

item's standard deviation and its number of categories. We further surmise that the 

SRMR was less influenced than either the X2 or the RMSEA as it is a standardized 

statistic that does not invoke the use of a weighted mean in its computation (the X2 and 

RMSEA are both weighted and unstandardized).   

The contents of this research are weakly related to the old literature conducted on 

difficulty (i.e., spurious) factors in an exploratory factor analysis setting, which 

demonstrated that factor analysis of categorical data faces the problem that items with 

similar distributional properties tend to correlate based solely on this distributional 

similarity and result in spurious factors (Green et al., 1997). Item difficulty can be 

understood in the same way as variability in item means, such that when items differ 

widely in difficulty level (i.e., in item means), 'spurious' factors, in addition to 'genuine' 

factors of content, are obtained. McDonald and Ahlawat (1974, p.84) indicate that "These 

[factors] have been attributed to: a) 'attenuation' of a correlation coefficient below what it 

'should' be if the difficulty levels were the same, [and] b) non-linear relationships of items 

on the factors of content.”  

Gorsuch (1974) argued that spurious factors are likely to appear because the 

magnitude of coefficient is inappropriately sensitive to differences in difficulty levels 

between items (Green, 1983). Much of the literature that has explored spurious factor 

extraction used the common factor model, with non-optimal estimators and eigenvalue-

based methods for determining the number of factors. More recent research (Bernstein & 

Teng, 1989; Green, Akey, Fleming, Hershberger, & Marquis, 1997), however, has 

investigated this topic in confirmatory factor analysis using maximum likelihood 
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estimation and the likelihood ratio test statistic (without Satorra-Bentler corrections to 

account for non-normality).  

This article differentiates itself from the difficulty factor literature in several ways. 

First, we streamlined our examination by considering the case where all the items within 

a condition have the same item mean (i.e., item difficulty in classical test theory 

language). Second, we examined conditions under which true multidimensionality can be 

hidden behind underpowered test statistics influenced by model misspecification, 

kurtosis, and number of categories, rather than examining when spurious factors suggest 

a multidimensional structure. Finally, in addition to investigating results under the 

common factor model, we also evaluated results using the true model that was used to 

generate the data (i.e., the ordinal factor model), and thus took into account the discrete 

nature of the data using non-linear functions between the items and latent traits as 

suggested by McDonald and Ahlawat (1974). We have shown that even in this case there 

is strong evidence suggesting that decreasing the number of response options decreases 

power. In other words, even when all items had the same item mean and the ordinal 

factor model is used, reducing the number of categories will increase the likelihood of 

finding spurious factors (more factors that those used to generate the data are needed to 

provide a good fit).  We believe following Bernstein and Teng (1989) and Green et al. 

(1997) that the problem may be compounded by including within a condition items of 

different characteristics. Hence, we feel that additional research is needed in which both 

the average item variance/kurtosis (as in the present study) are manipulated along with 

the composition of items within a condition to investigate which of these two aspects is 

the main driver of power in item factor analysis as well as in ordinal factor analysis.  
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Concluding remarks  

 In closing, the common factor model –and its cousin, structural equation 

modeling with latent variables- is a cornerstone of psychometrics and as such it is often 

used for theory building in a number of social sciences. Yet, we have shown that the 

ability of these methods to reject incorrect models is seriously hampered when the 

number of response options used in items decreases. With the aforementioned in mind, 

we recommend that researchers use a large number of response options (i.e., a finer scale) 

when constructing items and overall instrumentation for use in evaluating constructs of 

interest. Not only does employing a finer response scale increase reliability as 

demonstrated in previous research, but it also increases the power of test statistics to 

reject incorrect substantive models and thus crucially contributes to developing effective 

validity evidence for construct measurement.  Future directions for this research may be 

to consider these issues in an EFA context. Though often discounted by methodologists, 

exploratory factor analysis remains in regular use by substantive researchers to assess 

dimensionality of novel instrumentation. While we would expect to find similar results to 

those seen in a confirmatory context, such research (to our knowledge) has yet to be 

examined.  
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