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ABSTRACT

Abnormalities in the vascular pattern of a retina, such as morphologic changes

in vessel shape, branching pattern, width, tortuosity, or the appearance of retinal

lesions, may be associated with the occurrence of retinopathies or cardiovascular

diseases. Thus, an automated quantitative analysis of changes in vessel morphology

may help indicating the clinical signs of aforementioned retinopathies, describing

their early occurrence or severity. The responses obtained from different types of

retinal vessels, i.e., arteries and veins, may be variable to retinopathies and their

measurement may lead to a more precise diagnosis compared to that by the average

response accounted for the entire vessel network.

I propose a set of automated methods in order to analyze the retinal vessel

network and to quantify its morphologic properties with respect to arteries and veins,

in two-dimensional color fundus images. The analytical methods include; 1) Forma-

tion of a well connected vessel network, 2) Structural mapping of a vessel network, 3)

Artery-venous classification, and 4) Blood vessel hemorrhage detection. The quan-

tification methods include vessel morphology analysis based on the measurement of

tortuosity, width, branching angle, branching coefficient, and fractal dimension. The

aforementioned morphologic parameters are measured with respect to arteries and

veins separately in a vessel network. The methods are validated with the manually

annotated retinal fundus images as a ground truth.

The major contribution of this thesis includes the development of automated
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methods for; 1) Identification and separation of retinal vessel trees for individual

vessel analysis, 2) Automated quantification of morphologic characteristics of retinal

vessels for quick and precise measurement, 3) Automated quantification of vessel

morphology with respect to arteries and veins, and 4) Analysis of two datasets, a)

malarial retinopathy subject dataset, b) longitudinal study dataset.

The ability of the automated methods to quantify the retinal vessel specific

properties may enable the individual vessel analysis as an alternative to a time-

consuming and subjective clinical evaluation, or to a quantitative morphology char-

acterization averaged over the entire vessel network. The objective evaluation may

indicate the progression of retinopathies precisely and may help characterizing nor-

mal and abnormal vascular patterns with respect to arteries and veins. This may

enable a quick diagnosis, treatment availability, prognosis, and facilitation of clinical

health-care procedures in remote areas.
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ABSTRACT

Abnormalities in the vascular pattern of a retina, such as morphologic changes

in vessel shape, branching pattern, width, tortuosity, or the appearance of retinal

lesions, may be associated with the occurrence of retinopathies or cardiovascular

diseases. Thus, an automated quantitative analysis of changes in vessel morphology

may help indicating the clinical signs of aforementioned retinopathies, describing

their early occurrence or severity. The responses obtained from different types of

retinal vessels, i.e., arteries and veins, may be variable to retinopathies and their

measurement may lead to a more precise diagnosis compared to that by the average

response accounted for the entire vessel network.

I propose a set of automated methods in order to analyze the retinal vessel

network and to quantify its morphologic properties with respect to arteries and veins,

in two-dimensional color fundus images. The analytical methods include; 1) Forma-

tion of a well connected vessel network, 2) Structural mapping of a vessel network, 3)

Artery-venous classification, and 4) Blood vessel hemorrhage detection. The quan-

tification methods include vessel morphology analysis based on the measurement of

tortuosity, width, branching angle, branching coefficient, and fractal dimension. The

aforementioned morphologic parameters are measured with respect to arteries and

veins separately in a vessel network. The methods are validated with the manually

annotated retinal fundus images as a ground truth.

The major contribution of this thesis includes the development of automated
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methods for; 1) Identification and separation of retinal vessel trees for individual

vessel analysis, 2) Automated quantification of morphologic characteristics of retinal

vessels for quick and precise measurement, 3) Automated quantification of vessel

morphology with respect to arteries and veins, and 4) Analysis of two datasets, a)

malarial retinopathy subject dataset, b) longitudinal study dataset.

The ability of the automated methods to quantify the retinal vessel specific

properties may enable the individual vessel analysis as an alternative to a time-

consuming and subjective clinical evaluation, or to a quantitative morphology char-

acterization averaged over the entire vessel network. The objective evaluation may

indicate the progression of retinopathies precisely and may help characterizing nor-

mal and abnormal vascular patterns with respect to arteries and veins. This may

enable a quick diagnosis, treatment availability, prognosis, and facilitation of clinical

health-care procedures in remote areas.
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CHAPTER 1
INTRODUCTION

1.1 Physiology of a retina

To study the effects of retinopathies and other systemic diseases on the retina

and its vasculature, one needs to understand the detailed architecture of retina and

ocular structures. The schematic (Fig. 1.1(a)) shows different ocular structures and

retina which is positioned on the back side of the eye, covering it from inside. Retinal

membrane consists of nerve cells which are sensitive to light and are classified into

two types, viz., rods and cones. The nerve cells are the mediators between optical

signals received at the retina, and part of the central nervous system dealing with

the visual senses. Rod cells are responsible for black and white vision, the peripheral

vision and the vision in dim lighting conditions, whereas the cone cells deal with both

black/white and the color vision. Cones are present in the ocular structure known as

Figure 1.1: The eye: a) Side view, [1], b) Rear view, [1]
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fovea, which develops the high visual acuity in the central vision [1][13].

The retinal vasculature (Fig. 1.1(b)) and the neuronal network organized on

the retina are responsible for blood circulation in the inner retina and nervous sys-

tem signal transmission, respectively. Development of a vasculature on the retina is

dependent upon the growth of ocular structures and nervous system during the em-

bryonic stage, along with the oxygen requirements and presence of vasoactive growth

factors such as VEGF [14].

The retinopathies or the diseases may affect the retina through the abnormal

blood circulation in the vasculature. These diseases are mainly classified into two

types: Retinal abnormalities which may be accounted as ischemic diseases, vessel oc-

clusions, hemodynamic diseases, retinal stresses, radiation damages and inflammation

[15]. The other type is regarded as the causes of abnormal blood circulation produced

in the retina due to the systemic dysfunctions. Metabolic behaviors which get affected

through diseases such as diabetes, hypertension, cardiovascular diseases, cancers and

blood infections, produce detrimental effects on the entire system including the retina

and its circulation [1][13][16].

1.2 Retinal disorders (Retinopathies)

1.2.1 Diabetic retinopathy

Diabetes mellitus affects large content of population in United States every

year. It is a systemic disease which also affects the retinal vasculature leading to

a retinopathy called diabetic retinopathy (DR). According to recent statistics, the

number of patients affected with DR reached 23 million in year 2007 in United States
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Figure 1.2: Fundus image of a patient with diabetic retinopathy [2]

population. Diabetes is defined as the inability of metabolic system to control the

blood sugar levels appropriately which results into a hyperglycemia. Since the mi-

crovascular structures in the retina are vulnerable to high blood sugar levels, they are

severely damaged. The pericyte cells which support the vessel walls die and vessel

walls become fragile and permeable [1] [2].

There are two stages of diabetic retinopathy. The primary stage is called non-

proliferative DR and the secondary or advanced stage is known as proliferative DR

[16].

During the non-proliferative (NPDR) stage, the retinal blood vessels cannot

withstand the high concentration of glucose and other sugars such as fructose in the

blood, and get damaged. It significantly damages the mural cells which form an

interior lining of vessels, the basement membrane and endothelial cell lining, all of

which help forming a blood retinal barrier and prevent the leakage of blood. Due

to the deterioration of mural cells and endothelial lining, blood vessel walls become
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Figure 1.3: DR: a) Non-proliferative [3], b) Proliferative [3]

fragile and ultimately break down or leak. Leakage from blood vessels may lead

to various pathological conditions like blood hemorrhages, lipid and protein fluid

leakage or deposits known as hard exudates, accumulation of fluid called edema, and

a capillary blockage called cotton wool spots. It may also form tiny capillary wall

swellings known as microaneurysms, which may be a strong indicator of diabetic

retinopathy [3][14]. It may result into a formation of scar tissues which cause retinal

detachment by contraction or retinal traction [1][13][16][17]. Fig. 1.3(a) shows various

conditions resulting from non-proliferative diabetic retinopathy.

Non-proliferative DR conditions advance to a Proliferative DR (PDR) stage,

resulting into retinal ischemia and hence the poor nourishment of retina. Due to the

regulatory responses exhibited by body, the unnourished areas send the nourishment

signals for the oxygen supply, may be in terms of growth factors such as VEGF. It

results into a development of new blood vessels on the retina by the process known

as Neovascularization [3][16][17].
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The new blood vessels formed in this process are not normal but are weak and

fragile. They may form on the retinal surface or sometimes on the ocular structure

known as an iris, in the vitreous humour. These blood vessels may break down, leak

or bleed and may result into a fibrovascular proliferation (Fig. 1.3(b)). It forms the

scar tissues which may cause the retinal detachment. When these vessels form on

the iris (rubeosis) [3], they can block the filter responsible for the fluid drainage from

the eye. It causes the pressure increase inside the eye resulting into a secondary or a

neovascular glaucoma causing blindness [13][14][18].

1.2.2 Retinopathy of prematurity

The retinopathies discussed so far are known to be caused due to the environ-

mental factors. Some of the retinal diseases are congenital which are present on the

retina right at the birth. Retinopathy of prematurity (ROP) or the retrolental fibro-

plasia (RLF), is one of the congenital diseases observed in premature babies. Other

factors which contribute to the progress of ROP are anemia, respiratory problems,

blood transfusions and low birth weight [16].

Normally the retinal development occurs in in-utero and in-term, and the de-

velopment is completed at birth or in couple more weeks after the birth. But in case of

pre-term infants, the retinal development is not completed at the birth time and the

vascularization is hampered before the full growth. The retinal vessel growth is disor-

ganized and then develops abnormally (Fig. 1.4(a)). Since the blood vessel growth is

stopped pre-maturely, the peripheral retina is deficient of oxygen and nutrients, and

the body supports the growth of new blood vessels (neovascularization) as a recovery
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Figure 1.4: ROP: a) ROP signs [4], b) ICROP classification system [1]

mechanism [4]. These blood vessels are abnormal and may result into a fibrovascular

proliferation. They leak or bleed and may produce scars and fibrous tissues on the

retina. These scars may pull the retina out, causing the retinal detachment.

The International Classification of Retinopathy of Prematurity (ICROP) is

the classification system developed for ROP which determines the severity stages of

ROP and its progression. It considers several factors such as the disease location in

zones (I,II,III) (Fig. 1.4(b)), disease severity in stages from 1 to 5, the circumferential

expansion of ROP in terms of clock hours (1-12), and the progression of a plus disease

[16]. The presence of a plus disease can be detected by the increased vessel dilatation

and tortuosity near to the posterior pole of retina, which may suggest the increased

blood flow in the retinal circulation, and confirm the ROP status [1].
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1.2.3 Malarial retinopathy

1.2.3.1 Rationale behind the malarial retinopathy diagnosis

A relatively higher proportion of misdiagnosis of cerebral malaria (CM) and

the associated diseases is the most prevalent cause of mortality in African children

in countries such as Ghana, Gambia, Malawi, Kenya and parts of Asia and Thailand

(Fig. 1.5). It is reported that 90% of mortality cases in African children result from

malaria, which is more than 2 million deaths every year [19][20]. A strong factor

behind the high mortality rate due to CM is the high percentage of its misdiagno-

sis with other concurrent diseases. The malarial cases occur in regions where other

concurrent diseases have equivalent spread. Thus, even if the clinical definitions of

malaria and malarial coma are satisfied, the other causes of coma cannot easily be

excluded. World health organization (WHO) criteria for the diagnosis of malaria

require the detection of parasitemia, severe anemia, respiratory distress, unconscious-

ness and exclusion of other causes, which often becomes difficult due to the following

reasons. A commonly used diagnostic sign of severe malaria, i.e., presence of plas-

modium falciparum parasitemia is insufficient by itself to confirm the presence of CM,

since parasitemia is diagnosed as a sign in other concurrent diseases, (prevalence of

parasitemia is around 70%) and parasitemia may not always be the reason behind

malaria [21][22][23][24]. Other clinical signs of severe malaria are non-specific (respi-

ratory distress, anemia, jaundice) and may overlap with signs for other diseases such

as pneumonia and non-malarial coma [6][24].

In order to increase the sensitivity of the diagnostic test for cerebral malaria
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Figure 1.5: Regions affected with cerebral malaria, Travel Medicine Alliance eUpdate
- health news and information for international travellers, August 2008

the, detection of malarial retinopathy (MR) is proposed in which its presence and

severity are associated with the death risk and the length of malarial coma due to

cerebral malaria. MR distinguishes cerebral malaria from other diseases as well as

the non-malarial comas with the set of unique diagnostic features not observed in

other diseases [6][20][23]. Patients with parasitemia but no MR were reported to

have causes of death other than malaria such as pneumonia, Reye’s syndrome, CNS

injuries and head trauma [21][22][23]. For parasitemic patients, MR increases the

specificity of diagnosis from 60% to 100%, the positive predictive value (PPV) and

negative predictive value (NPV) above 90% [5]. The studies have reported 100%

specificity and 95% sensitivity of MR detection for the diagnosis of cerebral malaria

[21].

The correlation of cerebral pathologies with those occurring on a retina is an

important factor. Retina is a part of a central nervous system in the embryonic aspects

and hence it shares the similar architecture and microcirculation activities as that in
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the cerebral system which is the embryonic extension of a cerebral cortex. Hence

the histological features observed on retina such as sequestration of red blood cells

(RBC) due to mature CM parasites (detected as retinal whitening) may suggest the

similar activities in the brain [5]. The retinal whitening as a result of ischemia, filling

defects, impaired blood retina barrier, capillary non-perfusion, and number and size

of retinal hemorrhages in MR correlate with the cerebral non perfusion and number

of hemorrhages in cerebral circulation (Spearman’s correlation=0.8) [25]. Thus, the

diagnosis based on retinal signs of MR may suggest the parallel activities taking place

in cerebral vessels and hence may confirm the presence or severity of cerebral malaria.

Severe malaria may result into a neurological disability in children, coma and

even death if the timely treatment is not available [19][20]. The secondary reason

behind the high mortality rate due to CM is the dearth of available neurodiagnostics,

ophthalmologists, limited laboratory support, and less electroencephalography use in

the affected regions [21], which results into an inadequate and non-specific treatment

of cerebral malaria. In order to decrease the death risk, the diagnosis and the asso-

ciated treatment must be applied immediately within few hours of indication, when

most of the deaths take place. Therefore a quick and an automated method may help

providing the diagnosis results immediately irrespective of the presence of a specialist

physician or the required laboratory support [19][23]. The automated evaluation of

retinal fundus images may quickly diagnose the cause of the illness and the intensive

supportive interventions such as anti-malarial drugs may be applied immediately to

prevent the death of a patient [23].
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Figure 1.6: Retinal whitening: a: Paired retinal fundus image and FA image [5], b:
retinal fundus image [6]; Retinal whitening (solid black arrows: fig.a), capillary non-
perfusion (white arrows: fig.a) with unaffected foveola, peripheral whitening (white
arrow: fig.b), glare artifact (dashed black arrow: fig.a)

1.2.3.2 Pathologic signs of malarial retinopathy

The retinal whitening may be observed as a patchy opacification of retina

near to macula but sparing the central fovea, called macular whitening, or at the

peripheral retina outside the temporal arcades known as the peripheral whitening

(Fig. 1.6) [19][20][21][23][24][26]. The reason behind its occurrence is mostly due to

the metabolic or hypoxic stress on retina suggesting abnormal tissue perfusion such

as capillary non-perfusion, filling defect and impaired integrity of blood retina barrier

[5][21][22]. The whitening is less brightly white, with no demarcated edges and more

widely distributed as compared to the cotton wool spots. It is similar in appearance

with the ischemic whitening such as that occurring due to the vessel occlusion, with

the sequestration of infected erythrocytes [6][19][27][21][22]. The detection of retinal

whitening resulting from the retinal hypoxia and ischemia suggests the occurrence of

similar activities in the brain, in cerebral malaria [22][23][24]. Therefore, the treat-
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Figure 1.7: Paired retinal fundus image and FA image [5]; White centered hemor-
rhages show the blocked fluorescence and the black and white arrows show the areas
of non-perfusion

ment suggesting a cure to a hypoxia and to improve the tissue perfusion may be

beneficial [5].

The hemorrhages are white centered, intra-retinal blot hemorrhages or flame

and large hemorrhages (Fig. 1.7), which may number more than 120 in severe CM

compared to the number of hemorrhages in non-CM cases [6][22][24][25]. Their num-

ber suggests the fatality and length of coma in malaria, as they correlate with the

number of hemorrhages occurring in cerebral vessels (Spearman’s correlation = 0.8 as

reported in [25]). The retinal hemorrhages are histopathologically similar to the ring

hemorrhages in brain [6][19][22][23][25][27]. Absence of retinal hemorrhages correlates

for 100% of cases with the absence of cerebral hemorrhages [25]. As a result, the ab-

sence of retinal hemorrhages precludes the possibility of MR or cerebral malaria as

reported in [20][25][26][27][28]. MR hemorrhages are often associated with the pres-

ence of a thrombus in a small vessel at the center of a hemorrhage which creates

a white spot (Roth spot) in the middle and these hemorrhages are rarely seen in
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Figure 1.8: Vessel abnormalities: a: Paired retinal fundus image and FA image [5]; b:
retinal fundus image [5]; a) Whitened retinal vessels in the area of retinal whitening
suggest the occlusion of vessels resulting into a non-perfusion. The vessels are red in
color till the point of occlusion, b) Discoloration of vessels with resulting orange/white
color and tramlining on large vessels.

diseases other than CM [22][23]. The plasmodium falciparum parasites become ma-

ture to cause the sequestration of RBCs in endothelial linings of deep capillaries and

venules in organ systems such as cerebral and retinal vascular networks which gives

rise to a thrombus resulting into a blood hemorrhage [22][27].

Vessel abnormalities are observed as the discoloration of peripheral retinal

vessels to orange and white appearance, orange and white tramlining within larger

vessels, corresponding to a narrow blood column in fundus images [21][24][27] or as

a dense mottling in fluorescence angiography images [5], (Fig. 1.8). The segmental

change in color from red to orange/white suggests the presence of dehemoglobinized

RBCs containing mature, pigmented, plasmodium falciparum parasite and the color

pigment represents the by-product of hemoglobin degradation, also called the malaria

pigment [21][22][23][27]. The sequestration may transform into a vessel occlusion

and the resultant non-perfusion or ischemia [29]. The vessel abnormalities are more
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common to veins rather than arteries [5][23]. A statistically significant correlation

exists between the stage of parasitic maturation in fundus and that in the brain

[27][29]. Hence the retinal vessel abnormalities in MR suggest the sequestration of

parasitized RBCs on retina as well as in the brain, in cerebral malaria [27]. The retinal

whitening, roth spot hemorrhages and vessel abnormalities are the pathological signs

unique to MR and CM suggesting a strong correlation between MR and severe cerebral

malaria [6][5][19][24][27][28].

1.3 Retinal imaging

1.3.1 Retinal color fundus imaging

Several imaging techniques are available for imaging the fundus of a patient to

be screened. The choice of an imaging method depends upon the type of pathology

under study. Digital color fundus photography and fluorescence angiography are the

commonly used methods for imaging retinal blood vessels. Fluorescence angiography

is used depending upon the patient’s age and its physical response to it. As there is

a possibility of allergic reactions to the patients, and the reports of mortality rates

of 1:222000 with the use of FA [30], color fundus imaging is most commonly used for

the large population studies.

In color fundus imaging, the images can be obtained with natural dilation of

pupil (non-mydriatic) or the artificial dilation (mydriatic) with a drug called tropi-

camide. Mydriatic images provide better contrast and image quality since sufficient

light is allowed to pass through the pupil, but may be associated with patient dis-

comfort. The camera specifications in terms of resolution and field of view (FOV) are
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used depending upon the requirement of the pathology to be detected, part of the

retina to be imaged and the measurement accuracy required. The FOVs with angular

measurements of 35, 40 or 60 degrees have been reported. Smaller FOV covers rela-

tively less retinal area therefore one may have to image the different parts of retina

from different viewing angles and register them. As the FOV increases, the part of

retina imaged by the camera appears distorted in the image, due to the hemispher-

ical shape of retina, i.e., conversion from three-dimensional hemispherical retina to

two-dimensional image surface.

The images obtained from different sites, captured with different FOVs, can

be resized to the standard FOV by a method such as cubic spline interpolation

[31][32][33]. Resolution of a camera can vary from, e.g. low-768x576 to high-2948x1536

values for different cameras. High resolution camera images are recommended for de-

tecting pathologies with increase in specificity [34]. They are important especially for

an application of size measurements such as vessel width measurement [35]. The high

resolution images require significantly large storage space which may limit the data

transmission capabilities. Therefore a data compression technique such as a JPEG

compression is applied to the image. JPEG compression causes the loss of data and

may produce significant errors in the parameter measurements such as vessel width

or in vessel segmentation by producing the jagged/distorted appearance of vessels

[33][35]. Therefore, the JPEG compression parameters should be adjusted so as to

compromise between storage/transmission requirements and the image quality.

The color fundus images are obtained using a predefined protocol. Commonly,
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Figure 1.9: Fluorescence (through vessels) captured during FA [1]

for the retinopathy screening, four images are obtained for each patient, two images

each eye, one with optic disc (OD) at center and the other with fovea at center. The

clinically accepted standard for retinal imaging is known as seven standard-field fun-

dus photographs obtained by certified photographers. The photographs are captured

with seven fields on the fundus marked according to their clinical significance. This

method is highly accurate, however it may not always be used for large screening

population.

1.3.2 Fluorescein angiography

Fluorescein angiography (FA) is a standard imaging technique used on a large

scale for retinal imaging (Fig. 1.9). FA is a valuable imaging modality due to its

property to detect even a minute leakage in the retinal blood vessel wall. Unbound

fluorescein cannot permeate the blood retinal barrier due to the impermeability prop-

erty of the barrier. Whenever the unbound fluorescein content is imaged outside the

blood vessel barrier, the leakage in the barrier can be detected. This is how the FA

stands important in diagnosing the neovascularization in choroidal layer and ischemic
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regions on the retina, e.g., at macula [7].

FA is used for a diagnostic purpose in which the conclusions are based on

the presence of hypofluorescence or hyperfluorescence [1][16]. Hypofluorescence is

observed in case of vessel occlusion, hemorrhage, vessel blocking such as capillary

blockage, whereas the hyperfluorescence occurs due to the leakage, abnormal blood

vessel growth (neovascularization), aneurysm formation, staining, and transmission

problems.

FA may be used for functional imaging as the fluorescein dye is in motion with

the blood flow. It may show the blood movement, blood perfusion and leakage, if

any. Hence it can be used to determine the dynamic changes such as defects in the

blood flow or circulation. It can determine the blood accumulation at the occlusion

site and if synchronized with time, it can detect approximately the blood flow per

unit time at the same site. FA can also be utilized to determine the fluid balance in

circulation, which may not be obtained with other techniques.

FA may not provide accurate results in detecting retinal swelling/thickening

which is prominently observed on the damaged retina than in the area of fluid accumu-

lation. As the FA results get affected with the interference from fluid accumulation,

it may not be a good choice for detecting the retinal thickening.

1.3.3 Optical Coherence tomography

Optical coherence tomography (OCT) is based on optical imaging, used specif-

ically for optically scattering media. It is mostly used for three dimensional imaging

giving quality images with high resolution up to micrometers (axial resolution: 1 to
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Figure 1.10: OCT: a) Setup [1] b) Imaging protocols

15 micrometer) and relatively high penetration depth (millimeter). As the retinal

structures are of minuscule sizes, they require a high resolution imaging system to

acquire desired quality images. OCT is a commonly used, highly reliable diagnos-

tic imaging method used for geometrical measurements of retinal structures such as

retinal thickness in diabetic edema and retinal swelling [7].

The principle of OCT is based on optical reflecting properties of the specimen

to be imaged (ocular structure). The light is projected on the specimen and the

time of flight of the reflected light is measured to determine the location of various

structures in the specimen. Since the time of flight cannot be measured directly due

to the minuscule specimen dimensions and high velocity of light, OCT employs a low

coherence interferometry technique (Fig. 1.10(a)). The beam of light to be projected

on the specimen is split into two parts with the help of a beam-splitter. Part of
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Figure 1.11: OCT images: a) OCT of a normal retina [7], b) OCT for detecting the
retinal swelling [7]

the light is projected on the true specimen and the other part is projected on the

reference mirror, also known as reference arm. The light rays get reflected back from

the specimen of interest (at different optical interfaces), and also from the reference

arm. Both the light rays combine to form an interference pattern only when the light

rays travelling on both the paths are coherent, i.e. optical path difference between two

light rays is very small or close to zero. This gives the modulated interference pattern

for which the amplitude is dependent upon the optical path difference between the

two light rays. OCT setup uses the low coherence interferometer such as Michaelson’s

interferometer [1].

OCT measures the time of flight of a light ray reflected from different optical

interfaces in the specimen. Measuring this time interval gives the spatial dimension

such as location or depth of the interface (structures) in the specimen, called the

A-scan. Position of the A-scan gives the location and its strength gives the reflecting

properties of the interface. A lateral combination of consecutive, axial A-scans gives

the two-dimensional (cross-section) image called the B-scan. Next step is to register
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number of B-scans to construct a three-dimensional structure of the specimen. C-scan

is the cross sectional image of the specimen at the desired depth (Fig. 1.10(b)). OCT

measurements are carried out either in time domain or frequency domain [1][16][7].

Fig. 1.11(a) shows the B-scan for a normal retina and Fig. 1.11(b) shows the B-scan

for abnormal retinal swelling [7].

1.4 Organization of the Thesis

This thesis is divided into 4 chapters. The rest of the thesis is organized as

follows:

Chapter 2 presents the background on the retinal image analysis using variety

of automated and semi-automatic techniques. It includes the description of crucial

steps in retinal image analysis, such as image preprocessing, image quality analysis,

vessel segmentation, detection of retinal anatomic features, retinal lesion detection,

and vessel morphology analysis. It also discusses pros and cons of variety of methods

proposed in the literature. This chapter also describes the significance of thesis work

through the development of new methods in order to advance the field of retinal image

analysis.

Chapter 3 presents the automated methods developed for the research thesis

for retinal vessel structure analysis and morphology measurement. For each method,

the section describes algorithm development, validation dataset, results, its contri-

bution over previous methods and its limitations. It also presents the results of the

longitudinal study dataset analysis. Chapter 3 presents the methods published or in

the process of publication as follows:
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1. Joshi, V., Garvin, M.K., Reinhardt, J.M., Abramoff, M.D.: Identification and

reconnection of interrupted vessels in retinal vessel segmentation. In IEEE,

ISBI, Image Segmentation Methods, FR-PS3a.7, Chicago (2011) 1416-1420

1. Joshi, V., Garvin, M.K., Reinhardt, J.M., Abramoff, M.D.: Automated method

for identification and artery-venous classification of vessel trees in retinal vessel

networks. Submitted to IEEE Transactions on Medical Imaging (2012)

1. Joshi, V., Reinhardt, J.M., Abramoff, M.D.: Automated measurement of retinal

blood vessel tortuosity. In Proc. SPIE Medical Imaging, Computer-Aided

Diagnosis, 7624, 76243A, San Diego (2010)

1. Joshi, V., Tang, L., Garvin, M.K., Reinhardt, J.M., Maude, R.J., Abramoff,

M.D.: Automated detection of malarial retinopathy associated retinal hemor-

rhages. Submitted to Investigative ophthalmology and Visual science (2012)

Chapter 4 concludes the thesis and proposes some interesting aspects of the

future research.
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CHAPTER 2
BACKGROUND

2.1 Automated retinal image analysis

The retinal abnormalities are the precursors of various retinopathies as well as

cardiovascular diseases. With routine eye-checkup, early diagnosis of the retinopathy,

and the on-schedule treatment may prevent its development. Very first stages of the

disease may be clinically asymptomatic and hence the early diagnosis is required to

refer the patients with the high probability of retinopathy for the further diagnosis,

and screen out the patients with no pathologies detected. The retinopathies such as

diabetic retinopathy (DR) are identified based on the measurement of morphologic

changes in retinal vessels or by the presence of retinal lesions. In the routine checkup,

it is done manually by an ophthalmologist. But considering the large population of

patients to be screened and non-uniform availability of eye specialists in the country

(remote areas), an alternative to this problem is required. With the use of various

image processing algorithms, I make an effort to find an automated, optimal, highly

accurate, and relatively less time consuming solution to this problem. An image pro-

cessing method for the assessment of retinopathies consists of a step by step procedure

described as follows considering diabetic retinopathy as an illustration (Fig. 2.1).
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Figure 2.1: A flow-chart explaining a stepwise procedure for an automated retinal
image analysis

2.1.1 Image preprocessing

Image preprocessing includes the image enhancement procedures such as con-

trast enhancement, image sharpness enhancement, correction of non-uniform illumi-

nation, standardization of the images obtained from different sources (FOV stan-

dardization), FOV/background matching, and resizing of the image to a standard

size. The contrast enhancement technique using adaptive histogram equalization is

suggested in [36][37]. For low quality/degraded images due to non-uniform illumina-

tion, shade correction using average/median filter or the image restoration techniques

have been proposed in [38][39][40][41]. Different noise removal techniques have been

reported such as morphological opening or filtering [42].
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2.1.2 Image quality analysis

The image datasets for DR screening are obtained from different locations,

image capturing sites, with different cameras and photographers with varied levels

of skills, and it produces a large variation in the images obtained in terms of illu-

mination scheme, sharpness, contrast, focus and FOV. For an automated analysis of

such images, one needs to determine the quality of each image in order to obtain

reliable and robust estimates of pathological signs. The method reported in [43] de-

termines the image quality based on the detection of relatively darker structures such

as blood vessels by matched filtering and by K-means clustering, which is claimed be

related to the image focus and image sharpness. The image quality also depends upon

the contrast and the color saturation which is not considered in this work. Another

method presented in [44] uses global edge and intensity information forming a mean

template histogram from a small set of good quality images, and the histogram of

each image under analysis is compared with the template to determine its quality,

however it fails to account for large variation in images. A method [45] represents

segmentation of vessels to quantify the detection of small vessels around macula and

to detect other retinal sub-structures to estimate the image quality. It is based on

the assumption that the small vessels near to the macula become hardly visible even

with little degradation of image quality. A technique proposed in [31] named as image

structure clustering, determines the image quality based on the presence of significant

sub-structures and their respective positions on the retina, using a set of Gaussian

filters. The filter responses are taken into account to classify the image as low quality
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or a good quality image. This method is limited in identifying the image as a low

quality image if any of the retinal structures is not detected, such as undetected fovea

due to low contrast or its occlusion by pathologic lesions, and the non-standard pho-

tography. The method [45] sounds reasonable as it detects the image quality based

on smaller vessels near to the macula irrespective of the contrast level at the macula

and in addition it implements the notion described in [31] to determine the relative

ratios and distance constraints of the retinal sub-structures which cannot completely

be occluded by pathologies or photographic defects.

2.1.3 Vessel segmentation

Segmentation of a vascular structure is the heart of retinal image analysis sys-

tem and important for many purposes such as sub-structure detection (optic disc and

fovea), lesion detection (especially for red lesions as they are often confused with the

vessels), and morphology measurements. Choosing the best segmentation algorithm

is a critical task and it is application dependent. The accuracy of morphologic mea-

surements is highly dependent upon the accuracy of the vessel segmentation method

and is often affected by vessel segmentation noise and vessel interruptions, especially

for width and tortuosity measurements. The choice of vessel segmentation method is

based on the diagnostic application, morphologic parameters to be evaluated, accu-

racy requirement, and tolerance to imaging defects.

Several methods were reported for vessel segmentation based on the prop-

erty of a vessel cross section that approximates the Gaussian profile [35][46]. The

method [35] utilizes the maximum likelihood model fitting approach using the Gaus-
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sian model, but may need manual editing and the technique may fail for the vessels

with higher or lower width for which the constant Gaussian standard deviation is

approximated. A method proposed by [46] uses matched filtering with the convolu-

tion kernel at each point on the vessel at different orientations, but happens to be

highly sensitive to standard deviation and kernel parameters. The method is slow

as it includes the convolution for 12 different orientations. It also suffers from in-

terrupted vessel segmentation and false detection of vessels with varying widths and

orientation. A method proposed in [47] uses scale space analysis based features such

as first and second derivative of the intensity image, and segments with the region

growing approach. The topological information deals well with the low contrast and

non-uniform intensity images ensuring the vessel connectivity and the scale space

representation handles the varying widths of vessels. A supervised method such as

[48] and the one using pixel classification with Gaussian filter set and kNN classifier

[33] have been proposed which show promising segmentation results. They need a

large training dataset and work with statistical probabilities rather than the objective

reasoning base. The other supervised method based on ridge detection is proposed,

which extracts the ridges in the image approximating the vessel centerlines [49]. This

method is based on identification of a ridge based line elements and their classification

as vessel or non-vessel. Due to the probabilistic nature of classifying elements based

on a feature vector, this method does not ensure the connectivity of vessels.

The methods based on mathematical morphology (MM) work out to be faster

and noise resistant compared to the supervised methods, as the vascular shape is
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known a priori, which is piecewise linear [42][50]. The method [50] based on MM

and cross-curvature evaluation gives encouraging results, but the results are based on

the fluorescence angiograms rather than the color images. A method [51] uses vessel

centerline extraction based on differential directional operators and the region grow-

ing scheme. This method suffers from vessel interruptions and undersegmentation

of vessels due to low contrast and non-uniform illumination. A method reported in

[30] uses MM techniques to extract the linear shapes of vessel along with the deriva-

tive operators to utilize the Gaussian profile information. The disadvantage of MM

methods is its dependency upon the choice of structuring elements, neighborhoods

and window sizes which are constrained by the vessel features such as tortuosity and

noise [30][50].

Several vessel tracking methods were reported. The article [52] proposes the

intensity based Gaussian model fitting approach for vessel tracking. A method [53]

uses a vessel tracking based on Canny edge detection, whereas Cree et al. [54] estimate

the two-dimensional non-linear least squares fit model to track the vessels. Kochner

et al. [55] propose a use of steerable filters to develop the tracking algorithm. These

methods may suffer from low contrast, vessel interruption, model break-down at the

junction of vessels, and may produce erroneous results for small vessels or tortuous

vessels. The article [56] detects the branching and crossing points and corrects the

false vessel detections. Many of the vessel tracking methods may not be able to

deal with vessel interruptions properly and they either result into false detections or

discontinuous vessel segments, though method [56] solves this problem up to some
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extent. The vessel interruption problem may be solved with the ridge detection based

graph search approach described in the thesis [57], as explained in chapter 3. Tracking

methods cannot differentiate between an artery and a vein and hence may not help

determining the vessel type specific properties such as arterial tortuosity or venous

width [58]. These methods may not be able to identify vessel generations, i.e., the

parent vessel for every bifurcation and vice versa, hence cannot map a vessel tree in

which all the branches correspond to a single parent vessel. The vessel analysis may

be improved by a method proposed in the thesis [59] known as structural mapping,

as explained in chapter 3. Using the vessel structural mapping method, the parent

vessel and its branches could be identified separately and labeled. The artery-vein

separation may thus be obtained by analyzing the vessel trees separately, as proposed

in the thesis [59], explained in chapter 3. The color features extracted from each

vessel tree and the fuzzy C-means clustering algorithm used for classification, provide

two separate classes describing the vessels as arteries or veins, as will be explained

later.

2.1.4 Detection of retinal anatomic features

The detection of anatomic features in the eye, i.e., optic disk (OD), fovea, and

retinal vasculature, is an important step due to various reasons:

1) To analyze the clinical significance of the lesion location with respect to the retinal

sub-structure, e.g., the distance of a lesion from fovea may indicate the severity or

threat to the vision [60][61].

2) To assess the image quality by detecting the anatomic structures and confirming
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the field definition [45].

3) To assess the image clarity, contrast and intensity variations [45].

4) To prevent the false vessel detection during the vessel segmentation, the sub-

structures should be detected and masked.

5) The OD, fovea and vasculature detection may possibly be used for registration of

images at coarser levels, for the same patient over successive visits [62]. The OD can

also be used as a calibrator for determining the image dimensions.

In summary, this step is an automated image grading algorithm to decide whether or

not the image can be used for further analysis [63].

Several methods were proposed for sub-structure detection based on the in-

tensity information, such as contrast or brightness of the optic disk, and the low

intensities at fovea. Few methods propose the detection of sub-structures based ex-

clusively on their geometry such as shape, e.g., using the Hough transform [55][64].

A method for OD detection at the highest concentration of endpoints of blood vessels

has been proposed, but the highest concentration can occasionally be found some-

where else than at the OD [41]. A recently proposed method detects the elliptical

vascular arch and identifies the OD near to one of the vertices of the major axis of

ellipse and the fovea at the approximate location between the OD center and the

ellipse center [63][65]. It is insensitive to the local feature changes and invariant to

the image rotation. A method presented in [32] uses a set of points which are fit to

the retinal image and their distribution model is analyzed to locate the anatomical

structures. To position the points correctly, the model estimates the global properties
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based on vascular arch and local properties based on the neighborhood structure at

that point. The other method presented by the same group [66] has described the

detection of optic disc location by k-nearest neighbor regression method based on vas-

culature detection which defines the local feature measurements. The performance of

the methods [32][63][66] is encouraging and the choice of a method depends upon the

application at hand.

2.1.5 Retinal lesion detection

The retinal lesions in case of DR can be classified into two types depending

upon their appearance, viz., bright lesions and red lesions. Bright lesions are further

classified into three types, viz., hard exudates, cotton wool spots, whereas the red

lesions are classified into microaneurysms, hemorrhages and microvascular abnormal-

ities. For the literature evaluation, I focus on the methods for the detection of retinal

hemorrhages as a background on new hemorrhage detection algorithm I propose.

2.1.5.1 Red lesion detection

The lesions are red in color appearance. They are classified into three types,

viz., microaneurysms, hemorrhages and microvascular abnormalities. Microaneurysms

are known to be the explicit signs of DR and their presence directly confirms the oc-

currence of DR without the identification of any other lesions [67]. Microaneurysms

are formed due to the dilatations of the blood vessel capillaries, which appear as small

and round red dots.

Hemorrhages are formed due to the blood leakage in vessels and could be
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classified into dot, blot, and flame hemorrhages. A technique based on RRGS and

binary thresholding detects the microaneurysms, hemorrhages and vasculature from

the green color channel and removes the vasculature afterwards. Remaining structures

in the image are considered to be the red lesions [68]. These methods work solely

with the intensity based approach [67] and may lack in differentiating between the

red lesions and nearby nerve fibers, interrupted blood vessels, especially the smaller

blood vessels [69]. Few supervised algorithms were reported for red lesion detection,

based on a neural network approach [48] or based on pixel classification with selected

features [38]. The feature set includes intensity, shape, and size based features for

vasculature and lesions. The vasculature detection is of foremost importance and it

should be accurately identified so as not to miss any red lesions when the vasculature

is removed. The unique technique [38] utilizes is the hybrid approach for red lesion

detection which compares and combines the results from mathematical morphology

based methods [39][68][70][71] and a supervised learning method.

2.1.6 Vessel morphology analysis

For the retinal vessel analysis, I select five morphologic properties which may

undergo modification in the presence of a retinopathy or a systemic disease. In order

to describe its significance, we proceed with the example of diabetic retinopathy (DR)

and the morphologic changes it may bring to the retinal vessel structure.

DR may be identified by the presence of retinal lesions or the morphologic

modifications in retinal vessels. The features utilized for differentiation and detection

of retinal lesions are often based on their luminance, local contrast and intensity



31

properties [62]. These features may be affected by the imaging defects such as noise,

low contrast, non-uniform illumination and low intensity. Furthermore, the lesions

may be confused with other retinal structures by image processing algorithms. The

nerve fibers, interrupted blood vessels, laser treatment scars, optic disc dots can be

falsely detected as red lesions or exudates and result into false positives [69][67].

Similarly, the red lesions connected or near to the vasculature represent the false

negatives. Since the fundus photography only samples a small part of retina (One-

field and two-field photography) it may miss the localized presence of lesions [45].

The pathological factors associated with diabetes such as diabetes duration,

high A1C levels, high blood pressure affect the microvascular structure irrespective

of occurrence of DR which suggests the presence of microvascular abnormalities even

before the occurrence of clinical pathologies such as lesions [10]. Potentially, the

vessel abnormalities may be the precursors of diabetic retinopathy lesions that are

commonly detected.

Therefore, we focus on the following properties of retinal vessels which describe

the morphology of individual vessel as well as that of a vessel network.

1) Vessel tortuosity

2) Vessel width

3) Branching angle

4) Branching coefficient

5) Fractal dimension
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Figure 2.2: Increased vessel tortuosity and vessel dilatation in a patient with severe
NPDR [8]

2.1.6.1 Vessel tortuosity

The physiological relationship between diabetic retinopathy and vessel tortu-

osity may be described as follows. The retinal vessel tortuosity may be defined as a

measure of curvature and twists or kinks produced in the vessel course (Fig. 2.2). It

may be associated with the average internal transmural blood pressure (BP) [72], but

it does not show significant increase till the critical pressure is reached, and shows

highly proportional increase after the critical point [72]. Therefore at higher trans-

mural pressures, vessel tortuosity is a more sensitive indicator of the increased BP

and related hemodynamic changes in retinal vessels. These pressure ranges are often

obtained in diabetes due to its relation with hypertension [72][73][74], with systolic

BP above 140 mm Hg. and dystolic BP above 90 mm Hg.

The tissue perfusion and the peripheral resistance are the two major factors

responsible for structural changes in vasculature leading to a vessel tortuosity [75]. It

responds to the adaptive changes due to the hemodynamic and metabolic stimuli. The
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formation of artery-venous collaterals, anastomosis and angiogenesis as a response to

ischemia may result into a tortuous course opted by vessels. Vessel occlusion and

inflammation may affect the retinal blood circulation and produce tortuosity. The DR

is associated with the degeneration of retinal vessel walls and changes in their elastic

properties, which can lead to a vessel tortuosity [76]. The study [73] reports that even

a single inhomogeneity occurring at the blood vessel wall triggers the tortuosity which

increases with the inner pressure. Thus the presence of hypertension [74], and vessel

wall inhomogeneity resulting from microvascular degeneration and atherosclerosis,

may suggest the estimation of the retinal vessel tortuosity for DR diagnosis (Fig. 2.2)

[73].

The clinical studies describing the relation between diabetic retinopathy and

vessel tortuosity are as follows. The vessel tortuosity, specifically the arteriolar (small

vessels) tortuosity increases with the high blood flow, angiogenesis, vessel occlusion

and hypertension which accompany DR [77][78][79]. The studies also report the

changes in vessel tortuosity due to the presence of diabetes related factors like HbA1c

levels (disturbed endothelium) and disease duration [10][80]. Article [81] focuses on

the effects of oxygen tension on the venous tortuosity, and concludes that the diabetic

veins adapt more easily and frequently to the oxygen tension and blood flow changes,

compared to the normal veins. The smaller vessels often get affected by blood flow,

blood pressure and toruosity for which I propose to include the entire vessel network

into analysis with no bias for larger vessels or the bias for region of interest.

The previous approaches explored for the quantification of retinal vessel tortu-
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osity may be described as follows. The quantitative analysis of changes in geometric

or morphologic pattern followed by the vessel course, determines the numerical mea-

sure of tortuosity of a vessel, called the tortuosity index (TI). Few of the methods

proposed for the tortuosity estimation may be limited in considering the important

parameters involved in tortuosity measurement, i.e., curvature sign change and the

magnitude of curvature of the vessel. These methods are based solely on the conven-

tional arc to chord ratio technique [30][82], solely on the number of direction changes

in vessel course [83], or solely on the integral curvature estimation [84] to measure

the tortuosity. They may not be able to imitate the clinical perception of tortuosity.

Therefore, a metric formulating these individual parameters together may improve

the measurement performance [85]. A method proposed in literature estimates the

vessel tortuosity according to the Fourier analysis of segments perpendicular to the

vessel centerline [86], or the other one which uses the polynomial spline fitting [79].

However, the techniques based on global tortuosity measurement do not correlate well

with the human perception, as compared to the techniques considering contributions

of the local tortuosities [82]. A method presented in [87] considers the arc to chord

ratio and the curvature sign change based on the local tortuosity contributions but

does not take into account the magnitude of curvature of the vessel. This method

correlates well with the human perception of tortuosity, but falls short in determining

the appropriate tortuosity for constant curvature vessels and vessels with equal arc

to chord ratios. A method proposed in [76] is based on estimating the tortuosity of

vessels in proportion with the local thickness of the vessel. This method estimates
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the average of the two curvature values obtained at two boundary points at the cross

section of the vessel.

2.1.6.2 Vessel width

The physiological relationship between diabetic retinopathy and vessel width

may be described as follows. The structural modification in retinal vessels occurs due

to the hemodynamic and metabolic stimuli which change the blood flow dynamics

producing number of stresses on vessel walls and may destroy the auto-regulatory

mechanisms [77]. The vessel width increases with wall shear stress (blood flow) and

the vessel wall thickness increases with the circumferential wall stress (intravascular

pressure). The blood flow and pressure ranges related to the vascular width increase

are often obtained in DR due to its relation with the hypertension [72][73][74]. The

smaller vessel (venules) dilatation and elongation in DR resulting into an increase in

hydrostatic pressure (Starling’s law) has been reported causing the diabetic edema

[81]. The width increase has also been reported in diabetes for carotid artery [77]

and the vessels of conjunctiva [78] as the effect of increased transmural pressure. The

dilatation of blood vessels in these ocular structures suggests the need of investigation

of changes in width of retinal vessels in presence of diabetes and DR.

The clinical studies describing the relation between diabetic retinopathy and

vessel width are as follows. The studies reported in [10][80][88][89] analyze the geo-

metric changes in retinal microvasculature in type 1 diabetes. They report the smaller

venous length to width ratio (LDR) or increased venous width with increased systolic

BP, and higher arteriolar LDR or decreased arteriolar width with increased choles-
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terol level. Both the factors are related to the disturbed auto-regulation function of

arterioles due to diabetes and higher blood pressure observed in hyper-perfusion and

hypertension. The tissue hypoxia and ischemia increase the venular width and de-

crease the arteriolar width [90]. The hypertensive vascular changes and atherosclerotic

changes are related to narrower arteries, endothelial dysfunctions and inflammation

changes with wider veins, all of which are indicators of incident DR [91]. The studies

in [91][92][93] report the increase in the venular width and decrease in mean arterial

width with the duration and severity of diabetes. The study in [90] with 3368 par-

ticipants reports the association of severe non-proliferative DR (NPDR) with wider

venular widths and incident/mild NPDR with wider arterial widths as compared to

non-diabetics or diabetics without DR. The dilatation and elongation of smaller ves-

sels at the onset of diabetic macular edema has also been reported in [81]. This

study also reports the constriction of arterioles and venules on the photocoagulation

treatment of edema, i.e., the reverse effect which may be of a prognostic significance.

The previous approaches explored for the determination of retinal vessel width

may be described as follows. A width measurement can be obtained by measuring

the standard deviation of Gaussian model fit at the vessel cross section or by us-

ing the measure of isotropic contrast at the vessel centerline and at the edges [82].

These methods require adequate contrast between the vessel and the background and

may suffer from non-uniform illumination. A method proposed in [30] measures the

minimum of the widths computed at different orientations at a point on a vessel

centerline, between the vessel edges. An algorithm proposed in [94] determines the
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vessel width as the distance between points at which the one dimensional intensity

profile marks half of the maximum intensity value to both sides of the center point.

Lowell et al. proposed a method based on two-dimensional difference of Gaussian

model optimized to obtain a fit to the two-dimensional intensity profile of a vessel

segment [95]. A method [96] reports the vessel width as the width of the rectangle fit

to the one-dimensional vessel profile so that the rectangle area becomes equal to the

profile area. The method reported by Al-Diri et al. uses a growing ribbon of twins

active contour model with two pairs of contours for estimating the vessel edges [97].

A recently proposed method by our group estimates the vessel width by means of a

two-slice three-dimension surface segmentation problem and determines an optimal

surface by a graph search [98].

2.1.6.3 Branching angle

The physiological relationship between diabetic retinopathy and branching

angle may be described as follows. Retinal branching/ bifurcation angle is defined

as (Θ1 + Θ2), as an angle between two daughter vessels at the bifurcation (Fig.

2.3(a)) [80][88][99]. The optimum bifurcation angle between the vessel branches is

formed so as to achieve the fastest transport of blood for the least amount of work.

Branching angles are related to energy spent in blood transport, the diffusion distance

and the efficiency of flow, for which the optimum value of angle is 72 ◦ [10][88]. This

efficiency reduces if the bifurcation angles become too large. The vessel bifurcation

occurs mostly as a result of retinal ischemia and the requirement of a tissue perfusion

[88]. The deviation of branching angle measurement from the optimum may suggest
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Figure 2.3: Branching angle and branching coefficient: a) Measurements [9] , b)
deviation from optimal branching angle measurement in normal (72 ◦), to higher
branching angle measurement (130 ◦) in DR [10]

the abnormalities in the branching architecture caused by a disease (Fig. 2.3(b))

[10][92][93].

The clinical studies describing the relation between diabetic retinopathy and

branching angle are as follows. Branching angles often get impaired in hypertension

and disturbed blood flow such as in diabetes and DR [10]. The studies report an

increase in the number of obtuse angles formed at the branching, i.e., increase in

the average bifurcation angle in a network with the diabetes severity [92][93]. Larger

bifurcation angles are related to the decreased blood flow and smaller bifurcation an-

gles with aging and hypertension [80][88][100]. Another study reports larger arteriolar

branching angles suggesting the disturbed blood flow, endothelial dysfunction and hy-

poxia with longer diabetes duration in type 1 diabetes and DR [10]. As highly severe

stages of NPDR are related to increased blood flow and the hypertension, decreased

bifurcation angles are also reported with it [10].
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2.1.6.4 Branching coefficient

The physiological relationship between diabetic retinopathy and branching

coefficient may be described as follows. The diametric measurements obtained from

the fundus images at different magnifications, with different imaging defects and

resolutions may not be able to provide an accurate estimation of a width, hence the

use of dimensionless quantity called branching coefficient is proposed. The relative

widths of parent and the daughter vessels are compared in terms of quantitative

metrices such as Area ratio or Expansion factor β = [(d21+d22)/d
2
0] and the Asymmetry

ratio α = [d22/d
2
1] [9][99], where d0 is a parent vessel width, d1 is larger width of one

of the daughter vessels and d2 is smaller width of the other daughter vessel, as shown

in (Fig. 2.3(a)). The optimum value of β is determined as 1.0082, as the optimum

width of daughter vessel is estimated as 71% of the parent vessel in a healthy blood

vessel system, according to the laws of fluid dynamics [101].

The vascular structure is organized in such a way that the shear stresses and

work done due to the blood flow are minimized [80]. The vessel network arrangement

is based on Murray’s law (Murray, 1926) such that the maximum circulatory efficiency

with minimal energy losses across the vascular network can be achieved if the width

of blood vessel is proportional to the cube root of the blood flow [9][10][88][102][103].

Due to the variation in hemodynamic parameters in diseases, the modified network

structure deviates from its geometric ideal and the measurement of such parameters

may provide the quantitative assessment of the deformed vessel structure. The en-

ergy expenditure increases or efficiency decreases with too large or too small width of
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daughter vessels with respect to the parent vessel [10][80][88]. A suboptimal (abnor-

mal) branching geometry is associated with increased work done for blood transport,

energy loss, and uneven shear stresses observed in DR [9][10]. The vessel width

changes with blood pressure and the peripheral resistance, which in a way changes

the branching coefficient [88]. Therefore, the deviation of branching coefficient is as-

sociated with endothelial dysfunctions as well as the increased transmural pressure,

as observed in diabetes [88].

The previous approaches explored for the determination of branching coef-

ficient are as follows. The retinal branching coefficient (also known as bifurcation

optimality or measured in terms of a junction exponent) is defined as dx1 + dx2 = dx0

where d1 and d2 are the widths of daughter vessels and d0 is width of a parent vessel

at the bifurcation, with junction exponent x [10][99]. Arterial widths conform to the

optimality coefficient (junction exponent with optimal value x=3) at the branching

point to optimize the circulatory efficiency and to maintain the constant shear stress

in case of healthy subjects [10][88], but it deviates for subjects with hemodynamic

abnormalities such as hypertension, atherosclerosis and peripheral vascular diseases

related to the abnormal endothelial function which are commonly observed in DR

[10][80][88][89]. High cholesterol in type 1 diabetes also affects the venular branch-

ing coefficient [10]. As a common procedure, the junction component is calculated

from the iterative measurements of parent and daughter vessel widths and the lookup

tables, and hence it may be considered sensitive to bias, image quality and width

measurement noise [89].
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A new parameter, optimality ratio γ = [(d31 + d32)/2 ∗ d30]0.33) has been defined

in [89] equivalent to the junction exponent, which is significantly less sensitive to

the diametric measurement noise and bifurcation asymmetry. The article also states

that the deviation from optimality ratio value for arterial bifurcations (for symmet-

rical optimal bifurcation γ = 0.7937 or x=3) predicts the endothelial dysfunction in

diabetes [89][104]. The study reported in [88] derives another branching optimality

measurement parameter given as ρ = [(d30 − (d31 + d32))
0.33]/d0 which measures the

deviation of optimality parameter from normal value of zero [88]. Use of ρ minimizes

the error produced in the width measurements, as compared to the junction exponent

x.

2.1.6.5 Fractal dimension

Fractal dimension (Df ) is determined for the vascular structure which main-

tains the pattern of self-similarity despite of the magnification level or the scale, in

which higher values (between 1 and 2) reflect more complex and dense vessel structure

[11][102][105][106][107]. The complexity of retinal vessel network cannot be quantified

accurately using Euclidean geometric parameters and hence its characteristic dimen-

sions are determined in terms of fractional powers which describe the non-Euclidean

shapes [106][107]. The natural fractals deviate from the ideal fractals and their fractal

behavior is limited to a definite scale range. In other words, the Df estimates not only

the filling of the embedding space but the degree or the kind of vascular branching

with which the space is filled up [107]. This also allows the comparison of different Df

values as they lie in the same scale range [108]. The scale range of vascular structure
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is based on the image resolution, FOV, and method of vessel segmentation.

The clinical studies describing the relation between diabetic retinopathy and

fractal dimension are as follows. Fractal dimension significantly increases with the

occurrence of hyperglycemia in type 1 diabetes and hence with the severe NPDR

or the neovascularization (NV) in severe PDR [11][102][106][107], which suggests the

increased complexity of retinal vascular structure. The severity of neovascularization

can be quantified more accurately in terms of fractals instead of determining the

width or the retinal area covered by the NV vessels [107][108]. A study suggests that

the increased Df is not necessarily the result of proliferative changes (NV) but may

be due to the NPDR. Thus, Df is sensitive to early DR even before the occurrence

of PDR [106]. The increased Df may also suggest the artery-venous differentiation

in hypoxic demand to increase the blood flow and tissue perfusion in the network

[106]. The studies reported in [10][105][108][109][110], suggest the probability of DR

occurrence due to the presence of smaller fractal dimensions with which effectively

less area of the retina is covered by the microvasculature leading to the increased risk

of occurrence of proliferative retinopathy due to ischemia. Thus, the result explains

the relation between Df and early occurrence of the incident retinopathy. This may

suggest that the fractal dimension deviation from normal in both directions, may

predict either the cause of the incident retinopathy or its resulting effect. A study

[108] also suggests the reduction in Df as the after-treatment effects.

The previous approaches explored for the determination of fractal dimension

are as follows. For the fractal dimension measurement, box-counting method [11][106],
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Figure 2.4: Df analysis: a) Box counting, b) Df is a slope Db of graph of log2(Ns)
vs. log2(s) [11]

sandbox method [108], density-density correlation method [107][108], and the mul-

tifractal analysis [110] is used. Initially, image noise, image artifacts, and isolated

non-vascular lesions are removed from the vessel segmentation image [33]. The ves-

sel reconnection algorithm is applied to the vessel segmentation image to obtain a

connected vessel network [57], as explained in chapter 3. The studies [108][109][110]

report that the Df calculation is independent of the vessel thickness, and the vessel

skeleton is more sensitive to the variation in Df . Therefore, the vessel skeletonization

is applied [11][106].

In the box-counting method, the image is divided into number of boxes with

equal sizes s (Fig. 2.4(a)). The number of boxes which contain any vessel section

is counted as Ns. The procedure is repeated for box sizes from 1 to 2k pixels where

k=0,1,2,3. . . and 2k ≤ size of the image and the corresponding Ns are obtained. For

the regression plot of log2Ns vs. log2 s, a straight line is fitted to the scattered data

points using linear regression (Fig. 2.4(b)). According to the Mandelbrot’s power
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law Ns = K ∗ s−D for each element in the set [11] [107], the slope of the fitted

line is determined which gives the fractal dimension of the vascular structure as,

Db = lims→0
log2 Ns
log2 s

.

2.2 Application and Significance of Thesis Work

Retinal vessel network is the only micro-circulation network in a human body

which may be imaged non-invasively as a part of an in-vivo analysis. The aforemen-

tioned retinopathies and the cardiovascular dysfunctions affect structural as well as

the morphologic configuration of the retinal vessel network. Therefore, the automated

assessment of morpholoy of retinal vascular beds may help diagnosing the early occur-

rence or the severity of retinal diseases. The two-dimensional retinal images obtained

by color fundus imaging may be utilized for the computer-aided diagnosis using the

automated methods described in this research thesis.

The most valuable contribution of this research is the method developed for

structural mapping of retinal vessel network [59], as explained in chapter 3. It sepa-

rates the interwined retinal vessel trees into vessel structures with primary vessel and

the corresponding branches. This mapping may be highly useful in the morphologic

analysis of individual vessel trees and their classification into arteries and veins. The

morphologic changes may be prominent to the arteries or to the veins which may

necessitate the classification of vessels into arterial and venous trees with the respec-

tive assessment [59], as explained in chapter 3. In our knowledge, this aspect is the

very first effort towards the vessel specific structural analysis of retinal blood vessel

network.
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The vessel segmentation of retinal vessels may not completely segment the

entire vessel and as a result a single vessel is split into two or more vessel segments.

Such segmentation errors may occur due to shortcomings in the image processing

algorithms, and can be exacerbated by image acquisition defects such as imaging

noise, low contrast and artifacts [33][49][111]. The quantitative assessment of the

interrupted vasculature may produce measurements that are not representative of the

underlying anatomy, especially for measurements describing the vessel shape such as

tortuosity or those describing the structure such as branching angles. Therefore, the

method developed for identification and reconnection of retinal vessel interruptions

may allow the formation of a connected vessel network and the measurement of a true

morphology of vessels [57], as explained in chapter 3.

The diseases such as diabetic retinopathy (DR) may be identified by the pres-

ence of retinal lesions. The features utilized for differentiation and detection of le-

sions are often based on luminance, local contrast and intensity properties [62]. These

features may be affected by imaging defects such as noise, low contrast, non-uniform

illumination, and low intensity. Furthermore, the pathological factors associated with

diabetes such as diabetes duration, high A1C levels, high blood pressure affect the

microvascular structure irrespective of occurrence of DR which suggests the presence

of microvascular abnormalities even before the occurrence of lesions [10]. Potentially,

the vessel abnormalities may be the precursors of diabetic retinopathy lesions that are

commonly detected. Thus, I develop a set of algorithms measuring the morphologic

properties of retinal vessels which includes a newly proposed method for tortuosity es-
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timation [112] as explained in chapter 3, and quantitative assessment of other factors

such as vessel width, branching angle, branching coefficient, and fractal dimension.

These methods when implemented on the structurally mapped artery-venous net-

work, may provide a set of morphologic measurements specific to vessels types and

vessel generations in a network. This automated tool may provide a set of numerical

values representing the present anatomic state of retinal vasculature.

A strong factor behind the high mortality rate due to cerebral malaria (CM)

is the high percentage of its false and delayed diagnosis, and inadequate treatment

facilities. The clinical definitions of malarial retinopathy (MR), such as retinal hem-

orrhages may be highly correlated with the signs of cerebral malaria. However, the

diagnosis of malarial retinopathy is based on clinical or visual signs and subjective

evaluation of patient’s retina. Therefore, I develop an automated algorithm which

detects the presence and severity of hemorrhage formation specific to the malarial

retinopathy [113], as explained in chapter 3. The hemorrhage detection system may

be the first effort towards the development of an automated tool providing quick and

specific diagnosis of MR irrespective of the available laboratory facilities.

I apply the aforementioned methods on two datasets, viz., a longitudinal study

dataset and a malarial retinopathy subject dataset. In the longitudinal study dataset,

I measure the vessel morphology properties in fundus images of subjects, available

across four time intervals. The behavior of morphologic changes is observed across

four time-points with respect to the vessel types (arteries and veins), as well as the

vessel generations. The malarial retinopathy subject dataset is utilized to detect
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the presence of blood hemorrhages by the automated method. The results of the

experiments are presented.

The major contribution of this thesis includes the development of automated

methods for; 1) Identification and separation of retinal vessel trees for individual

vessel analysis, 2) Automated quantification of morphologic characteristics of retinal

vessels for quick and precise measurement, 3) Automated quantification of vessel

morphology with respect to arteries and veins, and 4) Analysis of two datasets, a)

malarial retinopathy subject dataset, b) longitudinal study dataset.

The ability of the automated methods to quantify the retinal vessel specific

properties may enable the individual vessel analysis as an alternative to a time-

consuming and subjective clinical evaluation, or to a quantitative morphology char-

acterization averaged over the entire vessel network. The objective evaluation may

indicate the progression of retinopathies precisely and may help characterizing nor-

mal and abnormal vascular patterns with respect to arteries and veins. This may

enable a quick diagnosis, treatment availability, prognosis, and facilitation of clinical

health-care procedures in remote areas.
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CHAPTER 3
METHOD AND MATERIALS

3.1 Research objectives and a rationale

Abnormalities in the vascular pattern of a retina such as morphologic changes

in vessel shape, branching pattern, width, tortuosity, or the appearance of retinal

lesions may be associated with the occurrence of retinopathies or cardiovascular dis-

eases. Thus, an automated quantitative analysis of changes in vessel morphology

may help indicating the clinical signs of aforementioned retinopathies, describing

their early occurrence or severity. The responses obtained from different types of

retinal vessels, i.e., arteries and veins, may be variable to retinopathies and their

measurement may lead to a more precise diagnosis compared to that by the average

response accounted for the entire vessel network. The objective of this research thesis

is to develop a set of automated methods for analyzing the retinal vessel network to

provide its morphologic description. Specifically, I propose to measure automatically

the vessel specific geometric descriptors of the retinal vasculature, and to detect the

presence of retinal lesions, in order to characterize normal and abnormal vascular

patterns describing the retinopathy signs.

3.1.1 Specific Aims

A1. To develop a set of automated methods to correct for interrupted vessel

segmentation, identification, and artery-venous classification, of retinal vessels.



49

A2. To develop a set of automated methods to measure the morphologic properties

of retinal vessels such as width, tortuosity, branching pattern, and fractal dimension

to aid the procedure for the retinopathy diagnosis.

A3. To develop an automated method describing the presence of blood vessel hemor-

rhages, in order to differentiate between normal subjects and those with high proba-

bility of malarial retinopathy.

A4. To evaluate the accuracy of proposed algorithms on respective datasets, con-

sisting of subjects with a longitudinal study data, and subjects previously diagnosed

with malarial retinopathy.

I propose a set of automated methods in order to analyze the retinal vessel

network and to quantify its morphologic properties with respect to arteries and veins,

in two-dimensional color fundus images. The analytical methods include; 1) Forma-

tion of a well connected vessel network, 2) Structural mapping of a vessel network, 3)

Artery-venous classification, and 4) Blood vessel hemorrhage detection. The quan-

tification methods include vessel morphology analysis based on the measurement of

tortuosity, width, branching angle, branching coefficient, and fractal dimension. The

aforementioned morphologic parameters are measured with respect to arteries and

veins separately in a vessel network. The methods are validated with the manually

annotated retinal fundus images as a ground truth. The ability of our methods to

quantify the vessel specific properties may enable the individual vessel analysis as an

alternative to a time-consuming and subjective clinical evaluation, or to a quantitative

morphology characterization averaged over the entire vessel network.
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3.2 Identification and reconnection of interrupted

vessels in retinal vessel segmentation

3.2.1 Introduction

Morphologic assessment of the retinal vessel network has the potential to

provide insight into retinal diseases. Clinicians visually inspect the eye fundus for

the diagnosis and assessment of retinal dysfunctions such as diabetic retinopathy,

retinopathy of prematurity and systemic abnormalities such as cardiovascular dis-

eases [30],[104]. Several important morphologic characteristics of retinal vessel struc-

ture have been described in the literature including vessel width, tortuosity, branching

angle and the artery to vein diameter ratio [112],[86],[114].

Identifying the vessel network in retinal fundus images usually involves the fol-

lowing steps: The first step in such an analysis is vessel segmentation [33][49][51][54].

This step may not completely segment the entire vessel and as a result a single vessel

is split into two or more vessel segments as illustrated in (Fig. 3.1). Such segmenta-

tion errors may occur due to shortcomings in the image processing algorithms, and

can be exacerbated by image acquisition defects such as imaging noise, low contrast

and artifacts [33][49][111]. The quantitative assessment of the interrupted vasculature

may produce measurements that are not representative of the underlying anatomy,

especially for measurements describing the vessel shape such as tortuosity or those

describing the structure of vessel network such as branching angles.

There is a dearth of methods for reconnecting the interrupted vessel segments

to obtain a connected vessel structure. A method described in [56] identifies the
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Figure 3.1: Interrupted vessel segmentation

disconnected vessel segments which are assumed to be facing each other and have

similar morphologic properties at the respective end points, viz. diameter, direc-

tion, intensity and distance between two end points. The algorithm connects the

vessel segment end points based on scoring functions that exceed a certain thresh-

old. A supervised method presented in [111] uses two separately trained classifiers

for segmenting narrow and large width vessels. It utilizes dynamic programming to

connect the interrupted vessels and determines the validity of connection based on a

supervised cost function. The reconnection method for cerebral vessel segmentation

in three-dimensional MRA images is explained in [115]. The primary vasculature

and the interrupted vessel segments are identified and are reconnected using a graph

search based on vesselness parameters. The final segmentation is obtained using a

level set method. However, the method is tested on only 2 MRA images.

The methods [111][56] may be limited by the parameters utilized for the iden-

tification of vessel interruption location. The distance parameter may limit the extent
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of region inside of which two end points are considered eligible for reconnection and

may not be able to reconnect two segments interrupted with longer gaps. It may

also restrict the connection of two end points belonging to the same vessel but with

differing properties such as abrupt direction change at the interruption, change in

diameters or intensities at two end points due to low contrast or non-uniform illumi-

nation effects, which may result in the end points of vessel segments eligible for the

true reconnection, to be matched incorrectly or vice versa.

A method could be developed based on finding the connecting vessel path

which exists with low gray scale pixel intensities on the vessel segmentation image,

and therefore shows the interruption when the image is thresholded for binarization.

This method may be able to find a connecting path independent of the matching

criteria between two end points at the location of interruption.

Therefore, I develop an automated method for identification of vessel inter-

ruptions in two-dimensional vessel segmentation images and propose a graph search

algorithm for the reconnection process. I introduce the method and evaluate it on

a dataset of 25 retinal vessel segmentation images. I present the results in terms of

a performance index that measures the reconnection performance of the automated

method with respect to the manual reconnection process.
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Figure 3.2: Image preprocessing: a) Vessel segmentation, b) Vessel network skeleton

3.2.2 Method

3.2.2.1 Identification of the primary vasculature and

interrupted vessel segments.

The retinal blood vessel segmentation is obtained from the color fundus image

using a previously published method developed by our group [33]. This is a supervised

method based on a pixel classification approach that uses a Gaussian filter set for

feature extraction. Each pixel in the fundus image is classified with a kNN classifier

to produce vessel segmentation in terms of a gray level vessel probability map. In the

vessel segmentation image (Fig. 3.2(a)) the region of optic disc is masked to avoid

morphologic complications due to irregular and highly tortuous blood vessels at the

optic disc.

The vessel probability map is binarized using Otsu thresholding method [116].

The binarized image is processed using morphologic operations, viz., skeletonization,

thinning, and spur removal to produce a vessel network skeleton [117] (Fig. 3.2(b)).
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Figure 3.3: Separation of vessel network: a) Primary vessel network, b) Interrupted
vessel segments with end points marked in yellow

The primary vasculature and the interrupted vessel segments are identified as

follows. A depth first search (DFS) approach is used to traverse the skeletonized

vessel tree completely, in order to identify the primary vessel network, as shown in

(Fig. 3.3(a)). Once the primary vessel network is identified, it is masked from the

vessel network skeleton (Fig. 3.2(b)), to obtain the vessel segments not connected

to the primary structure. A connected component analysis is utilized to filter out

the disconnected vessel segment skeletons with size less than 10 pixels. This opera-

tion not only filters the noise out but also removes small vessel segments which are

clinically insignificant. The end point of each disconnected skeletonized vessel seg-

ment is detected if a skeleton pixel contains one and only one foreground pixel in its

3x3 neighborhood. It finds all end points for each of the interrupted vessel segments

(marked yellow in Fig. 3.3(b)).
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3.2.2.2 Reconnection of interrupted vessel segments

to the primary vasculature.

The first step in the reconnection procedure is to identify the end point of

a vessel segment which is to be reconnected back to the primary structure. The

disconnected vessel segment may have two or more end points (considering possible

bifurcations). From the empirical observation, it appears that the end point of the

segment to be reconnected is the one which is nearest to the center of optic disc

(OD). Thus, the Euclidean distances of the end points belonging to a single vessel

segment, from the OD center are determined and the end point closest to the OD

center is selected for segment reconnection. In case of a vessel segment with two end

points (E1, E2) at similar distances from the OD center (e.g., for a segment which is

radially parallel to OD), the algorithm maintains a threshold value for the difference

between such distances. If the absolute difference between two distances (OD-E1 and

OD-E2) is below the threshold, i.e., the segment is radially parallel to OD, the end

point which is nearest to the primary vessel structure is selected for the reconnection

purpose. The threshold was empirically determined to be 20 pixels.

I use Dijkstra’s graph search algorithm (See Appendix) in order to find the

connecting path between the disconnected segment and the primary vasculature. The

use of shortest path search algorithm to find the connection path is based on a the-

oretical assumption that the retinal vessels in the segmentation image consist of an

intensity ridge at the vessel centerline and the tapering intensity response towards

the vessel edges (Gaussian approximation) [30]. Therefore, I propose to find a mini-
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Figure 3.4: Connecting path

mum cost path corresponding to the vessel ridge, starting from the segment end point

selected for reconnection, to the destination point on primary vasculature (Fig. 3.4).

The centerline of a vessel consists of a ridge or the high intensity pixels as

compared with the pixels at vessel edges. Therefore I choose the highest intensity

pixel in 7x7 neighborhood of the selected end point pixel of the disconnected segment.

This highest intensity pixel becomes a source pixel for the graph search algorithm (Fig.

3.4). The vessel segmentation image structure is converted into a graph G(V,E) in

which the source pixel forms a source node (Vs) and other pixels form other nodes

(Vn) of the graph. The edge cost of an edge (E) between any node of the graph and

a node in its 3x3 neighborhood (forming a node pair), is given by the normalized

addition of intensity cost and direction cost. The intensity cost is defined as the

absolute difference of intensities of two pixels represented by two respective nodes.

The direction cost is defined as the absolute difference between the vector directions

of two pixels with respect to the direction of the vessel segment tracked until that



57

point. Therefore, considering (Vs) as one of the nodes in a pair and the other node in

its 3x3 neighborhood, the least edge cost would be represented by an edge connecting

the source node (Vs) and a node (in the 3x3 neighborhood), which has the smallest

addition of intensity and direction costs. In other words, this node among all the

neighborhood nodes, represents the most similar intensity and similar vector direction

with respect to the source node (Vs).

For the Dijkstra’s algorithm, I define the minimum cost path to be consisting

of edges which represent the smallest total cost of the path starting from source node

to destination node which is a pixel on the primary vessel structure (Fig. 3.4). Thus,

the Dijkstra’s algorithm starts at the source node and goes on adding the nodes which

represent most similar intensity with respect to the source node and the most similar

direction with respect to the vessel segment connection tracked until that point. The

algorithm terminates when the latest node added, represents the pixel on primary

vessel structure.

The vessels are segmented in such a way that the high intensity pixels define

a ridge along the vessel, i.e., the approximate vessel centerline. Thus, the minimum

cost path (consisting of high intensity pixels) obtained by the graph search algorithm

represents the ridge pixels on the vessel connecting the end point of the disconnected

vessel segment to the primary vessel structure (Fig. 3.4). Therefore, the algorithm

is able to reconnect the interrupted vessel segment as long as the connecting path

between the segment and the primary structure exists on the vessel segmentation

image (i.e., the pixel intensities on the connecting path lie between 1 to 255, for 8-bit
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Figure 3.5: Reconnection: a) Input vessel segmentation image, b) Reconnected vessel
network

image), irrespective of the low pixel intensities on the path. Such a path always exists

(may be with lower intensities) unless there is no real vessel, with rare exceptions.

The algorithm connects each of the interrupted vessel segments to the primary vessel

structure with the connecting path as shown in (Fig. 3.5(b)), marked in red, and in

(Fig. 3.6).

The connecting path is evaluated and confirmed if both of the following con-

straints are met:

Tortuosity constraint is evaluated as follows. Based on a theoretical assumption that

a connecting path obtained over a short distance does not possess a highly tortu-

ous course, I measure and compare the tortuosity [112] of connecting path with an

empirically determined tortuosity threshold, such that the reconnection path with

tortuosity greater than 1.5 is rejected.

Connection strength constraint is evaluated as follows. The connection strength of

the path is measured as the average intensity of pixels from the segmentation image,
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present on the connecting path. I determine the connection strength and compare it

with an empirically determined intensity threshold, such that the path with connec-

tion strength below the average intensity of 15 (for 8-bit images) is rejected.

If the connecting path possesses the tortuosity below the tortuosity threshold

and the connection strength above the average intensity threshold, the connection is

confirmed. If any of the criteria is not satisfied, the algorithm rejects this connection

and the corresponding end point of the vessel segment. The algorithm then performs

the reconnection and evaluation procedure with respect to another end point of the

same vessel segment, which exhibits the second shortest distance from the OD center.

If none of the end points of the given vessel segment and its respective connection is

confirmed, the vessel segment is disqualified for the reconnection and remains discon-

nected.

3.2.3 Results

I applied the proposed method to a dataset of 25 vessel segmentation images

(Image size: 1000x800) selected randomly from a population of normal and diabetic

retinopathy subjects. To obtain the ground truth, the interrupted vessel segments

were connected back manually to their point of origin at the primary vessel struc-

ture, by a medical expert. The quantitative analysis was performed by comparing

the true vessel segment connections obtained by the automated method and those

obtained by the ground truth. The number of independent, connected vessel trees

along with the interrupted vessel segments was 695 for the set of 25 interrupted vessel

segmentation images. For manually connected images and automatically connected
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Figure 3.6: Input vessel segmentation image and a reconnected vessel network
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images this number reduced down to 205 and 295 respectively, considering only the

true vessel reconnections obtained by the automated method when compared with

the ground truth. I define a performance index as the ratio of number of true vessel

reconnections obtained by the automated method to the number of true vessel re-

connections obtained by the ground truth. The performance index of 81.63% shows

the reconnection performance achieved by the automated method compared to the

ground truth. An average of 2 false positives was obtained per image.

To analyze the effect of automated vessel reconnection procedure on the mea-

surement of morphologic parameters of vessels, mean vessel tortuosity of each of the

25 images was measured using a method developed in the thesis [112], as described in

chapter 3. The set of 25 images was graded by two masked ophthalmologists and the

images were ranked from 1 to 25 representing the lowest tortuosity image by rank 1

and the highest tortuosity image by rank 25. The standard ranking was determined as

the average of corresponding rankings obtained from two ophthalmologists. The mean

tortuosity values measured for the set of 25 images obtained from interrupted vessel

segmentation, those from automated vessel reconnection procedure, and those from

manual reconnection procedure (ground truth), were ranked according to the tortuos-

ity indices (TI). Three Spearman’s ranking correlation coefficients were obtained for

correlations between ophthalmologist’s standard ranking and the ranking obtained

from interrupted vessel images (rs=0.58), automatically reconnected vessel images

(rs=0.68), and manually reconnected vessel images (rs=0.72), respectively. Results

show the improvement in the correlation coefficient for automated reconnection pro-
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cedure which approaches the coefficient for the ground truth, over the coefficient for

interrupted vessel segmentation.

The average running time per image starting at the readily available vessel

segmentation to the completion of vessel reconnection process was 3 minutes, when

processed in MatLab environment on a standard personal computer with Intel core 2

Duo processor, running at 3 GHz.

3.2.4 Discussion

The results show that the number of interruptions in the automatically con-

nected vessel images is reduced significantly and it approaches the value obtained for

manually connected vessel images. It not only enhances the accuracy of segmentation

but also provides a connected vessel structure that may represent an improvement in

measurement of morphologic properties, such as vessel tortuosity.

The method in this paper utilizes the existing vessel segmentation path for the

vessel reconnection, irrespective of the low valued pixel intensities on the connecting

path, vessel segment intensities, directions and diameters. The connecting path is

not constrained by the distance between the interrupted vessel segment and the pri-

mary vessel structure, which makes the algorithm able to connect the vessel segment

disconnected even by a longer gap.

The method of Forkert et al. [115] may not be able to find the end point of the

segment in advance which is to be reconnected, and may lead to an erroneous path

formation between two anatomically separate vessels. The other source of erroneous

connection may be the possibility of finding two end points eligible for the connection
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based on a cost function, which are anatomically disconnected from each other. As

the method identifies the end point to be reconnected in advance, and finds the

connecting path based on the existing vessel segmentation, the path formation may

logically be more appropriate. Forkert’s method does not provide any automated

means of verifying the resultant connecting path as provided by our method based

on measures of tortuosity and connection strength. Such a procedure is required in

order to discard erroneous connections.

Potential drawbacks are the following: the vessel segments are reconnected

only if completely disconnected from the primary structure and not those vessels

segments which are connected with the primary structure at any one of the segment

ends but not the other, as such reconnections may produce erroneous vessel linkages. I

hope to investigate such vessel interruptions i.e., one possible solution is to obtain the

branching and crossing (B/C) point information from the fundus image and driving

the connecting path propagation towards the B/C point as a heuristic.

3.2.5 Conclusion

I have developed an automated method for identifying the interruptions in

retinal vessel segmentation and means of reconnecting the vessel segments to the pri-

mary vessel structure to obtain a connected retinal vessel network. The application

of the algorithm to a dataset of 25 vessel segmentation images resulted into a reduc-

tion in vessel interruptions suggesting that the method has potential in providing a

connected vessel network for presenting a true and a consistent morphologic analysis.
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3.3 Automated method for identification and

artery-venous classification of vessel trees in

retinal vessel networks

3.3.1 Introduction

The connected vessel segmentation network obtained in the previous step [57]

enables the morphologic analysis of retinal vessel network as well as the individual

vessel trees. Several automated techniques were reported to quantify the changes in

morphology of retinal vessels (width, tortuosity) indicative of retinal or cardiovascular

diseases. Some of the techniques measure the vessel morphology as an average value

representing the entire vessel network, e.g., average tortuosity [42]. However recently,

the vessel morphology measurement specific to arteries or veins was found to be

associated with the disease occurrance. A plus disease may result into increase in

arterial tortuosity relative to that of veins indicating the onset of retinopathy of

prematurity (ROP). [58]. The arterial narrowing, venous dilatation and resulting

decrease in artery-to-venous width ratio (AVR) may predict the future occurrence of

a stroke event or a myocardial infarct. [114]. Unfortunately, the detection of minute

changes in vessel width or tortuosity specific to arteries or veins may be difficult in

a visual evalution by an ophthalmologist or by a semi-automated method, which is

laborious in clinical practice. Therefore, an automated identification and separation

of individual vessel trees and the subsequent classification into arteries and veins may

be required for vessel specific morphology analysis [118].

Vickerman et al. presented a method for identification and separation of reti-
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nal artery and venous trees from fluorescence angiogram images where arteries are

filled first before veins [118]. This AV separation is propagated into the entire vessel

network using morphologic and connectivity features of retinal vessels. A method for

structural analysis of intra-cranial vessels from three-dimensional computed tomog-

raphy (CT) and magnetic resonance angiogram (MRA) volumes has been reported

by Aylward et al. [119]. It provides a spatial mapping of vessels known as spa-

tial graphs, using blood vessel structure, vessel positions, and vessel paths. Several

arterio-venous (AV) classification methods have been proposed based on the analysis

of localized vessel structure. Rothaus et al. proposed a semi-automatic constraint

optimization approach based on artery-venous crossing properties and anatomic char-

acteristics [120]. The central light reflex of retinal arteries was used as a distinguishing

factor by Tramontan et al. [121]. Grisan et al. suggested a method based on the

division of the posterior pole into four regions of interest (ROI) and the classifica-

tion of blood vessels in each region using the color properties of the vessels [122].

Vazquez et al. presented a clustering approach based on the feature sets obtained

from retinal vessels[123]. A method by Kondermann et al. extracts a feature set from

vessel profiles and local image intensities with respect to the vessel centerlines [124].

This method uses a support vector machine and neural networks for classification.

A supervised classification approach was demonstrated by Niemeijer et al. in which

the algorithm was trained on annotated vessel segments for feature extraction and

the trained classifier was used to separate arteries from veins in a test dataset [114].

However, so far these automated methods only allow AV classification constrained to
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Figure 3.7: Overview of the steps in proposed method

a small region around the optic disc but not the entire retinal image. [114][122].

An automated method is introduced for structural mapping of retinal vessels

by modeling the vessel segmentation into a vessel segment map and identifying the

vessel trees based on graph search. Artery-venous classification then use color fea-

tures. I evaluated the method on a dataset of 50 fundus color images from 50 subjects

and compare the results to manual annotations.

3.3.2 Method

An overview of the approach is described in (Fig. 3.7). Each of the steps is

explained in detail as follows.
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Figure 3.8: Input images: a) Fundus image b) Green channel image c) Hue channel
image
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Figure 3.9: Preprocessing a) Vessel probability image b) Binary image

3.3.2.1 Vessel segmentation and image preprocessing

Two-field fundus images of the same eye are registered by mosaicing [125]

(Fig. 3.8(a)). The corresponding green channel image (Fig. 3.8(b)) and hue channel

image (Fig. 3.8(c)) are shown. The retinal vessels are segmented using the standard

approach (supervised pixel classification approach using a Gaussian filter set and

classification by a k-nearest neighbor classifier [33]). The resulting vesselness image

represents the likelihood of each pixel belonging to a vessel (Fig. 3.9(a)). The optic

disc (OD) region is masked manually using standard size mask to reduce ambiguities

from the highly tortuous and intertwined vessel patterns at the OD region.In order to

trace the vessel path and obtain structural mapping, a connected binary vessel image

is required which may be obtained using a previously developed method for vessel

reconnection based on graph search [57].

The binary vessel image (Fig. 3.9(b)) is generated from the vessel probability

image using Otsu’s thresholding method [116]. The Otsu threshold minimizes the



69

Figure 3.10: Branch, crossing, and end points: a) Vessel network b) Vessel tree [Vessel
width is enlarged for visualization]

intra-class variance for the foreground (vessel) and the background (non-vessel region)

classes. Next, the vessel skeleton is obtained by applying mathematical morphology

reducing the vessel to a centerline of single pixel width. [117].

3.3.2.2 Localization of branch points, crossing points

and end points

In order to represent the vessel structure in terms of a graph, the vessel skele-

tons have to be converted into vessel segments separated by interruptions at the

branch- and crossing points. Their start and end positions are determined as follows.

Each of the centerline pixels on the vessel skeleton is analyzed for its 3x3 neighbor-

hood, and branch and crossing points are detected as centerline pixels with more than

2 neighbors. The detection of vessel end points is required for the graph search and

they are determined as the centerline pixels with only one neighbor.

The Fig. 3.10(a) (vessel network), and Fig. 3.10(b) (vessel tree), show the end
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Figure 3.11: Graph formation: a) Vessel segment map [Vessel width is enlarged for
visualization] b) Representative graph structure

points (red), branching points (yellow), and crossing points (blue).

3.3.2.3 Graph based description of a retinal vessel network

In order to construct a graph, the vessel segment map (Fig. 3.11(a)) is obtained

by removing branch and crossing points on vessels in a binary image (Fig. 3.9(b)),

resulting in a group of discrete vessel segments representing a vessel tree.

A vessel consists of number of smaller vessel segments linked together [126].

Three attributes, i.e., orientation, width, and intensity of vessel segments correspond-

ing to a single vessel, have similar characteristics [127] within a vessel tree. The

distribution of the orientation between the neighboring segments follows a smooth

continuous function. The adjacent vessel segments exhibit fine continuous variation

in widths, with some exceptions such as microaneurysms and vessel beading. Simi-

larly, there is a gradual intensity transition between the neighboring segments.

A vessel subtree is identified by selecting a group of segments from the vessel
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segment map (Fig. 3.11(a)), based on the similarity between these segments. Three

features are used 1) segment orientation, 2) segment width, and c) segment intensity

(in the green channel), and these are the costs associated with each segment: segment

orientation cost, segment width cost, and segment intensity cost. The features are

measured at the end regions of each vessel segment, with skeletal length of 15 pixels

from each end. Specifically, orientation is expressed as the angle (in radian) the seg-

ment end region makes with the positive direction of X-axis, a measurement between

[0,π]. The width (in pixel) is measured as a median value of 15 measurements of

diametric length between the vessel edges, and passing through the skeleton pixels

of the end region. The intensity is measured as a median value of green channel

pixel intensities at the segment end region. The median value of the width and that

of the intensity measured for each vessel segment are normalized by the respective

maximum values obtained across the vessel tree.

To convert the vessel segment map (Fig. 3.11(a)) into a connected graph

structure, connecting neighboring vessel segments are identified using the branch and

crossing-point information. In the derived graph structure G(V,E) (Fig. 3.11(b)),

nodes V represent the corresponding vessel segments from the vessel segment map,

and each edge E connecting any two nodes, represents the costs with respect to ab-

solute difference in orientation (EO), absolute difference in width (EW ), and absolute

difference in intensity (EI), at the end regions of two vessel segments represented by

two nodes. At any instant during the graph search, only one of the three difference

costs is assigned to the edge, as explained in algorithm 1. In fig. 3.11(a) three vessel
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segments are colored in yellow, green, and red as an example. The end regions con-

necting the three segments are marked in blue. The corresponding graph structure

(Fig. 3.11(b)) shows a seed node ‘s’ in yellow, identified as the node which represents

the root vessel segment in a vessel tree (a vessel segment nearest to the optic disc,

marked yellow in (Fig. 3.11(a))). Two other nodes ‘p’ (green), and ‘r’ (red) are

marked in respective colors representing the vessel segments. The edge (marked in

blue) connecting any two nodes (e.g., ‘s’ and ‘r’) represents the costs with respect

to three parameter differences associated with two respective vessel segments. For

an illustration, the orientation of yellow segment is more similar to that of green

segment than the red segment (Fig. 3.11(a)). Therefore, the orientation difference

cost of the edge between yellow and green node (EO(s, p)=3) is lower compared to

the orientation difference cost of the edge between yellow and red node (EO(s, r)=8)

(Figure not to scale).

3.3.2.4 Dijkstra’s graph search

Dijkstra’s algorithm is utilized to identify a vessel subtree. Equation 3.1 ex-

plains the operation of Dijkstra’s algorithm which searches for a minimum edge cost

path ‘dist[t]’ that connects any node ‘t’ with the seed node ‘s’ by minimizing the sum

of edge costs ‘E’ between intermediate nodes ‘q’ on the path (e.g., E(q, t)).

dist[t] = min
q∈S

[dist[q] + E(q, t)] (3.1)
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3.3.2.5 Structural separation of vessel trees

The Dijkstra’s algorithm determines the minimum edge cost path (smallest

sum of edge costs on the path) ‘dist[e]’ from seed node ‘s’ to each of the end point

nodes ‘e’ representing vessel end point segments (marked red in (Fig. 3.10(b))), by

selecting the intermediate nodes ‘q’ which minimize the sum of edge costs on the

path (Eqn. 3.2), i.e., the intermediate vessel segments which minimize the parameter

differences along the path. The value of ‘dist[e]’ for each ‘e’ is normalized by the

number of nodes (vessel segments) on the path, given as ‘distnorm[e]’.

dist[e] = min
q∈S

[dist[q] + E(q, e)] (3.2)

The theoretical assumption is that the true vessel path is governed by the low-

est edge cost path ‘distnorm[e’]’ among all the edge cost paths ‘distnorm[e]’ determined

for the respective end point nodes ‘e’ (Eqn. 3.3). In other words, the path with lowest

sum of edge costs ‘distnorm[e’]’ along the total path length, from seed node ‘s’ to one of

the end point nodes (e′), would be the path with least parameter differences between

the vessel segments, i.e., most similar segments on the path (segments marked in red

(Fig. 3.12(a))), comprising a true vessel. The pseudocode for the structural mapping

using Dijkstra’s graph search is given in algorithm 1. The graph edges are initialized

with ‘EO’, due to a higher robustness in the ‘orientation measurement’ irrespective

of image resolution and image noise.

distnorm[e′] = min (distnorm[e]) (3.3)
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Figure 3.12: Structural mapping: a) Vessel segment map showing the true vessel path
b) True vessel path with branches

Utilizing the branch and crossing point information (Fig. 3.10(b)) along with

the selected true vessel path, the branches and sub-branches are determined using

the same principle, as above. A true or primary vessel path (marked in red), the

branches and the sub-branches (marked in green) in a vessel tree are mapped as

shown in Figure (Fig. 3.12(b)). The primary vessel, its branches and sub-branches

in each vessel tree may be identified by numerical or color labels as shown in (Fig.

3.13(b)).

3.3.2.6 Identification of artery-venous crossing and color

properties specific to arteries and veins

I propose an automated AV separation algorithm based on structural mapping,

which classifies the vessel trees into arteries and veins, using vessel color features as

well as the anatomic property of artery-venous (AV) crossing. This property proposes

that the crossing of two retinal blood vessels imaged on a two-dimensional fundus
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Algorithm 1 Structural mapping using Dijkstra’s graph search
1: Given a graph ‘G’, with any pair of nodes a and b ∈ ‘V ’, and edge ‘E’ of the form E(a, b) = EO(a, b) or EW (a, b) or
EI(a, b). The seed node = ‘s’, and each end point node = ‘e’.

2:
3: for i = each end point node e do
4: S = set of explored nodes in G, Q = set of unexplored nodes in G
5: For each node u∈S, dist[u] = minimum distance from s, and previous[u] = parent node, are stored.
6: for each node V in G do
7: dist[V ] = infinity, previous[V ] = undefined
8: Initially, S=s, and dist[s] = 0
9: while u 6= i: do

10: u := node in Q with at least one edge from S, and with smallest dist[]; remove u from Q, and add u to S
11: for each neighbor v of u: do
12: Comment: Initialization of edge costs with ‘EO’
13: Initialize E(u, v)=EO(u, v)
14: if dist[v] > dist[u] + E(u, v) then
15: dist[v] := dist[u] + E(u, v)
16: previous[v] := u
17: Comment: Compare width differences, if 2 child nodes (at bifurcation) possess equal orientation differences
18: with parent node
19: for each neighbor v’ (6= v) of u: do
20: if abs[E(u, v)-E(u, v′)] < 0.35 radian then
21: if E(u, v) ≤ E(u, v′) then
22: m=E(u, v)/EW (u, v)
23: else
24: m=E(u, v′)/EW (u, v′)

25: Comment: Scale matching of width difference cost to orientation difference cost
26: Initialize E(u, v)=EW (u, v) * m and E(u, v′)=EW (u, v′) * m
27: dist[v] := dist[u] + E(u, v)
28: dist[v’] := dist[u] + E(u, v′)
29: Comment: Compare intensity differences, if 2 child nodes (at bifurcation) possess equal width
30: differences with parent node
31: if abs[E(u, v)-E(u, v′)] < 0.35 radian then
32: if E(u, v) ≤ E(u, v′) then
33: n=E(u, v)/EI(u, v)
34: else
35: n=E(u, v′)/EI(u, v

′)

36: Comment: Scale matching of intensity difference cost to orientation difference cost
37: Initialize E(u, v)=EI(u, v) * n and E(u, v′)=EI(u, v

′) * n
38: dist[v] := dist[u] + E(u, v)
39: dist[v’] := dist[u] + E(u, v′)

40:
41: Comment: Nodes on the path from end point node i to s = previous[], path cost = dist[i]; for i
42: Comment: Path cost normalized by number of nodes on path, distnorm[i] = dist[i]/length(previous[]); for i
43: return distnorm[i], previous[]; for i
44:
45: Comment: True vessel path = path from e′ to s which has minimum of all distnorm[e]
46: distnorm[e’] = min(distnorm[e])
47: True vessel path = previous[]; for e′



76

Figure 3.13: Structural mapping: a) Vessel probability map b) Structural mapping
of vessel network

image, signifies high probability of one vessel being an artery and the other one being

a vein. In other words, at a vessel crossing, there is very low probability of both vessels

being of the same kind; i.e., both being arteries or both being veins. Therefore, as an

initial task, the vessel trees are separated into those with (Fig. 3.14(b)), and those

without (Fig. 3.14(c)) artery-venous crossing.

The vessel segments (Fig. 3.14(a)) are skeletonized to obtain the vessel cen-

terlines. For the centerline extraction, significantly large vessel width segments in a

vessel tree are selected to avoid the inclusion of smaller, peripheral or single pixel

width segments. It may prevent the effect of noisy centerlines on color feature extrac-

tion. A significantly large vessel width is defined for a particular vessel tree locally,

and is determined as the width more than 60% of the maximum vessel width obtained

in that vessel tree.

A feature vector consisting of four features, viz., mean (MG) and standard
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Figure 3.14: Vessel network: a) Vessel segment map b) Vessel trees with artery-venous
crossing c) Vessel trees without artery-venous crossing
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Figure 3.15: Clustering: a) Cluster formation b) Comparison of mean green channel
intensity

deviation (SG) of green channel (from RGB color space) (Fig. 3.8(b)), and mean

(MH) and standard deviation (SH) of hue channel (from HSV color space) (Fig.

3.8(c)), from the 3x3 neighborhood (region of interest) of each vessel centerline pixel

is acquired. The choice of particular color features has been shown to be capable of

distinguishing between arteries and veins [114][122]. Arteries appear brighter (higher

green channel intensity: MG) than veins because oxygenated hemoglobin is less ab-

sorbent than the de-oxygenated blood between 600-800 nm [128].

3.3.2.7 Artery-Venous classification of retinal vessels based

on fuzzy C-means clustering

The centerline pixels obtained from any two vessel trees are collected and

classified to detect the AV status of respective vessel trees. Based on the associ-

ated feature vector, the algorithm classifies the centerline pixels obtained from a pair

of vessel trees, into two clusters/classes (with respective centroids) using the fuzzy
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C-means clustering algorithm (See Appendix). Each centerline pixel is assigned a

degree of belonging to each of the two clusters (a number between 0-1), based on Eu-

clidean distance measurement between the cluster centroid and the pixel in feature

space. The two degrees assigned to a centerline pixel always sum to 1. A center-

line pixel with difference between two degrees, higher than 0.2 (e.g., 0.39 vs. 0.61),

is assigned to the higher degree cluster. The use of fuzzy C-means clustering helps

eliminating the centerline pixels with difference between two degrees of less than 0.2,

i.e., having more or less equal affinity (e.g., 0.45 vs. 0.55) towards both clusters.

These indeterminate pixels are treated as noise pixels and are removed from further

analysis. Fig. 3.15(a) shows the formation of two clusters in a three-dimensional

view with axes represented by MG, SG, and MH, and centroids marked with a

black star (?) symbol. The centroid of each of the two clusters is a co-ordinated

vector of average values of 4 feature properties associated with centerline pixels in

that cluster [MGmean,SGmean,MHmean,SHmean]. The clusters are labeled as arterial

or venous, based on the numerical comparison of averages of mean green channel

intensity (MGmean) of two centroids. Fig. 3.15(b) shows the projection of clusters

in (Fig. 3.15(a)) on a two-dimensional plane formed by MG and MH, with MG

represented on Y-axis. The cluster with higher average value of mean green channel

intensity (MGmean) is labeled as arterial cluster and the other cluster as the venous

cluster, since arteries appear brighter relative to veins.

For a pair of vessel trees with AV crossing (with prior knowledge of them being

of different types), the vessel tree with higher proportion of arterial class centerline
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Figure 3.16: AV classification: a) Structural mapping b) Artery-Venous Classification

pixels compared to the other vessel tree is labeled as an arterial tree, and the other

one is labeled as a venous tree. For the vessel trees with no AV crossing, I use the

following method for classification. A group of single vessel trees in a localized region

are analyzed together which may prevent the non-uniform illumination effects, as

shown in (Fig. 3.14(c)) for groups A, B, and C. The vessel trees in any one group

at a time, are organized in pairs such that the mutual comparison is possible, e.g.,

Vessels 1,2,3 and 4 in group A are compared in pairs such as 1-2,1-3,1-4,2-3,2-4 and

3-4. If a group consists of only one single vessel (e.g., group B), this vessel is merged

into spatially nearest group of vessels (e.g., group C) for analysis. For each pair of

vessels, the most probable class of centerline pixels is identified for each vessel; i.e.,

the class pixels (arterial or venous) occupying in higher proportion of centerline pixels

on that vessel. As the statuses of both the clusters/classes are already determined,

each vessel in a pair is soft-labeled with the corresponding high probability class

label. This procedure is followed for all the vessel pairs in a group and each vessel
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in a group is soft-labeled number of times depending upon the number of vessels in

that group. A hard label is assigned to each vessel as the median value of all the soft

labels received for that vessel. The vessels without AV crossing are classified based

on the most probable class of centerline pixels but with mutual comparison between

vessel pairs and a voting procedure (i.e., median of soft labels). The AV classification

results are shown in (Fig. 3.16(b)), with arteries marked in red and veins marked in

blue.

3.3.3 Materials

I evaluated the dataset of 50 digital color fundus images of 50 subjects selected

randomly from EYECHECK database. More information about the dataset can be

found elsewhere [8]. The dataset consists of standard two-field registered fundus

images (768x512, 45 ◦ FOV) with normal subjects and subjects with some form of

diabetic retinopathy. The images were deidentified and patient’s personal information

was encapsulated from the research team. The proposed method was applied to the

dataset and the images used to design and implement the algorithm were excluded

from the evaluation data. The fundus images were processed to obtain the vessel

segmentation and the vessel segment map as shown in (Fig. 3.14(a)). In order to

validate the structural mapping and the AV classification produced by the automated

method, the vessel segment map (Fig. 3.14(a)) was annotated manually by a trained

human grader using color labels for structural mapping, whereas red (artery) and blue

(veins) labels for AV classification. I used previously validated Java based Truthseeker

desktop application for expert annotation of vessel trees [129].
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Figure 3.17: Quantitative results: a) Proportion of mis-classified vessel segments, b)
Percentage mis-classification per image

3.3.4 Results

A copy of the vessel segment map (as above) was also labeled using the au-

tomated method by preserving the respective color code followed by the grader. To

evaluate the accuracy of the proposed method, the automated labeling was compared

with the expert annotation in terms of a segment color value. A segment marked

with equal color value by both automated method and expert annotation was treated

as accurately classified segment, and vice versa.

Two metrics were utilized to quantify the accuracy of the method. The first

metric calculates the mis-classification rate (%) for vessel segments as a function of

vessel segment width, over the dataset (Fig. 3.17(a)). The red bar in the histogram

shows the total number of vessel segments (Y-axis) within a particular width interval

(X-axis), whereas the respective blue bar shows the number of mis-classified vessel

segments in the same interval. The number shown on top of each red bar represents

the mis-classification rate (%) for vessel segments within that width interval. The mis-
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Vessel size Vessel width (Pixel) Vessel segment mis-classification (%)
Small/Peripheral 1≤width<4 4.07

Medium 4≤width≤6 3.78
Major 6<width≤9 0.00

Table 3.1: Proportion of mis-classified vessel segments

classification rates (%) for various vessel segment sizes were categorized in Tab.3.1.

The average mis-classification rate (%) for vessels with width above 4 pixels was

3.58%. Thus, given a randomly selected medium sized or major retinal vessel, it

would be classified correctly in 96.42% of cases.

The second metric (Fig. 3.17(b)) shows the histogram of pixel mis-classification

(%) per image, in the dataset. The Y-axis shows the number of images for which the

pixel mis-classification (%) was within the interval represented on (X-axis). For each

image, the pixel mis-classification (%) was calculated as the fraction of total number

of vessel pixels which was mis-classified, representing its impact on the vessel network.

The average mis-classification of 8.56% or the accuracy of 91.44% correctly classified

vessel pixels was obtained over the dataset.

The average mis-classification rate (%) for single vessel trees (without AV

crossing) was obtained as 17.07%, whereas the average mis-classification rate (%)

for paired vessel trees (with AV crossing) was determined as 4.96%. The difference

between the mis-classification rates for single and paired vessel trees was statistically

significant (p-value<0.05).

The average running time per image starting at the readily available vessel
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Figure 3.18: Results: a) Fundus image b) Vessel probability map c) Structural map-
ping d) AV Classification
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segmentation to AV classification was 8 minutes including 7 minutes for structural

mapping and 1 minute for subsequent AV classification, when processed in MatLab

environment on a standard personal computer with Intel core 2 Duo processor, run-

ning at 3 GHz. The algorithm was not optimized for speed. The automated structural

mapping and AV classification of retinal vessel trees has been demonstrated in Fig.

3.18.

3.3.5 Discussion

I developed an automated method for identifying and separating the retinal

vessel trees in color fundus images, which provides the mapping of primary vessels,

and their branches. The strategy of modeling the vessel segmentation into vessel

segments, characterizing their properties, i.e., orientation, width and intensity, and

minimizing the difference between these properties to identify a true vessel, may

work well for structural mapping. Furthermore, I described the mapped vessel trees

in terms of arteries and veins.

The results demonstrate that the automated method is capable of separating

and classifying the retinal vessel trees with the accuracy comparable to that of expert

annotation performance. The first metric reports the average mis-classification rate

below 5% for vessel segments. This mis-classification rate decreases further to 3.58%

if only medium sized and major vessels are considered, as a clinician may find their

diagnostic importance higher compared to smaller or peripheral vessels. Therefore,

the diagnostically relavent vessels may be classified correctly 96.42% of the times.

The second metric provides the average accuracy of 91.44% correctly classified vessel
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Figure 3.19: Results: a) Fundus image b) Structural mapping c) Manual AV labeling
d) Automated AV Classification

pixels (vessel network area), and enables the determination of the overall impact of

mis-classification on the vessel network. The results (Fig. 3.17(b)) show six outliers

representing images with more than one-third of the vessel region classified falsely.

The image with highest mis-classification of 44.26% is shown in (Fig. 3.19), which

was partially contributed by both false structural mapping and false AV classification,

as will be discussed later. On an average, the proposed method may be capable of

classifying at least 90% of the vessel network accurately.
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The structurally separated vessel trees were classified using color properties

that distinguish between an artery and a vein. The classification based on localized

color features along with mutual comparisons and a voting procedure may have re-

duced the effect of intensity variations across the image, and across different subjects.

The artery-venous crossing property determined the vessel pairs with a high proba-

bility of vessels being of different types, and enhanced the classification performance.

It is evident from the smaller contribution of paired vessel trees (4.96%) in mis-

classification relative to that of single vessels (17.07%), and statistically significant

difference between the mis-classification rates for both vessel types.

The AV classification methods [114][122] reported previously, depend upon

the color features obtained from vessels to discern between an artery and a vein.

For the feature extraction, the vessel segments are selected from a definite region of

interest (ROI), which may exclude the posterior pole as well as the peripheral region

of retina. This region selection constraint may limit the strength of a feature set as the

features are extracted only from the selected ROI. Furthermore, since these methods

classify the vessels only inside the ROI, it may become complicated to propagate the

classification results outside the ROI. This may constrain the measurement of AV

parameters such as AVR to a limited region. However, the proposed method provides

structural mapping of the entire vessel network which may enable the AV feature

extraction without the region constraint and AV classification over the complete vessel

network.

The proposed method provides the separation of vessel trees into arteries and
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veins as well as into primary vessels, and their branches, which may reduce the inter-

twining complexity of the retinal vessel structure that normally prevents the accurate

measurement of individual vessel properties. This analysis may enable the automated

measurement of morphologic parameters viz., branching angle and branching coeffi-

cient which get altered during retinopathies such as diabetic retinopathy [10][9]. The

added advantage may be the inclusion of smaller and peripheral vessels into the mea-

surement system without following the constraint over the vessel size as in [88], or

the specified ROI of the fundus as in [104].

The method reported by Aylward et al. estimates the mapping of intra-cranial

vessels imaged in three dimensions, in terms of spatial graphs [119]. However, the

proposed method utilizes the structural properties of retinal vessels imaged in two

dimensions, which may recover for the loss of third dimensional data, for simplifying

the mapping procedure. Few other methods developed for retinal vessel tracking in

two dimensions [56][55], may track the vessel without a control over its individual

structural propagation. Therefore, they may not provide the identification and the

separation of individual vessel trees. To the best of knowledge, the proposed method

may be a novel research describing the structural mapping and AV classification of

retinal vessel trees imaged in two-dimensional color fundus images.

Though a novel approach towards the retinal vessel analysis, some limitations

of this method are worth mentioning. The method requires clean and connected vessel

segmentation image for the structural mapping. Therefore, poor and interrupted

vessel segmentation may result into inconsistent and false mapping. I previously
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developed a method for identifying and reconnecting the interrupted vessels using

graph search which may be able to provide a connected vessel structure [57]. The other

limitation is its inability to identify and separate two vessels overlapping or touching

each other in a parallel course (Fig. 3.19(b):Yellow arrow), which may be improved

using methods presented elsewhere [130]. The AV classification method is based

on color features of vessels and therefore limited by the non-uniform illumination

effects and low contrast in the fundus image. It may result into a false classification

of arteries and veins due to the localized illumination effect. Fig. 3.19(c) shows

the AV classification by a trained grader, and Fig. 3.19(d) shows the automated AV

classification where artery in a local darker region is classified as a vein (Green arrow).

In summary, I developed the automated method for identification and AV

classification of retinal vessel trees in fundus color images. The properties of a vessel

structure, i.e., orientation, width and intensity, were utilized to identify the vessel tree,

and its color as well as crossing properties classified it as an arterial or a venous vessel

tree. The proposed method was validated on a fundus color image dataset showing

results that match well with the expert annotations. The preliminary version of this

method was published in [131][132].

3.3.6 Conclusion

The research presents a novel method for identification and AV classification

of retinal vessel trees in color fundus images. A fundus image and the corresponding

vessel segmentation image are processed to obtain the separation of intertwined vessel

trees, and their description in terms of arteries and veins. The structural mapping and
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the AV classification results match well with the expert annotations. This approach

has the potential to have major impact on the diagnostically important morphologic

analysis of individual retinal vessels.

3.4 Automated measurement of retinal

blood vessel tortuosity

3.4.1 Introduction

Morphologic analysis of retinal vessels was proven to be of primary importance

in gaining an understanding about future complications, either in the eye or in other

parts of the body. The methods proposed in the previous step [59] enable the mea-

surement of morphologic parameters with respect to arteries and veins, as well as the

different branching generations.

The vessel tortuosity is of high clinical significance and may be measured using

the method proposed below. Fluctuations in physiological parameters such as blood

volume, blood flow, or blood pressure, due to the above mentioned disorders, change

the structural properties of the retinal blood vessel network, such as geometry and

the shape of blood vessels (blood vessel morphology), contributing to vessel tortuosity

(Fig. 3.20). In eye and systemic diseases the arteries, veins, or both change their

shape in terms of curvature and twists, the changes which are collectively described

by clinicians as tortuosity [133][30][72][83].

Ophthalmologists analyze vessel tortuosity visually, using qualitative assess-

ments of curvature and changes in the vessel course or direction, such as winding

and twisting. Visual assessment and qualitative grading of vessel tortuosity suffers
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Figure 3.20: Fundus image: a) normal and, b) with tortuous blood vessels

from inter-observer and intra-observer variations [133]. Thus a quantitative index

of vessel tortuosity may provide a more sensitive and reproducible measure of vessel

characteristics. Some methods describing the vessel tortuosity are based solely on the

measurement of vessel arc to chord ratio or the vessel curvature analysis which may

not conform to the clinically acceptable tortuosity characteristics [84] [134]. A review

of such methods has also been presented in the literature [87].

Grisan et al. proposed a method to measure retinal blood vessel tortuosity in

mathematical terms [87], and I will compare their approach to the new method.

I propose an automated method to assess vessel tortuosity using geometric

properties of the vessel structure as extracted from digital fundus images of the retina.

The vascular structure can be extracted using the previously developed methods

[135][136][49][51]. I calculate a tortuosity index (TI) which presents a numerical

assessment of vessel tortuosity, and test the method using the available dataset [137].
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3.4.2 Method

3.4.2.1 Description of Tortuosity

In order to propose a method to estimate the numerical index describing vessel

tortuosity, one needs to understand the notion of tortuosity and the parameters which

affect its measurement. Ophthalmologists visually judge blood vessel tortuosity based

on an assessment of total curvature and/or local curvature and changes in the vessel

course or direction. A metric that provides a numerical index for tortuosity mea-

surement, needs to determine the parameters affecting the tortuosity, according to

the opthalmologic conventions and should conform to the clinical definition of vessel

tortuosity.

In the proposed metric, tortuosity is assessed by measuring the curvature of a

vessel, length of a curved vessel over chord length, and the number of curvature sign

changes along the vessel course, which conform to the clinically accepted properties for

describing the vessel tortuosity. I define a tortuosity index (TI) combining the above

mentioned properties to differentiate between normal or abnormal blood vessels.

3.4.2.2 Algorithm overview

The proposed method can be summarized as consisting of three tasks.

1) Vessel segmentation.

2) Assessment of the geometric features of a vessel, affecting the TI.

3) Calculation of final TI.

The retinal blood vessel segmentation is obtained from the color fundus image
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(Fig. 3.21(a)) using a previously published method developed by our group [33].

It is a supervised method based on pixel classification that uses a Gaussian filter

set for feature extraction. Each pixel in the fundus image is classified with a k-

Nearest Neighbor classifier to produce vessel segmentation in terms of a gray level

vessel probability map (Fig. 3.21(b)). The blood vessels which have been used in

the implementation of the proposed method were extracted manually from the vessel

probability map (Fig. 3.21(c)). For each subject, the blood vessels were preprocessed

to determine the centerlines by skeletonization [117]. The vessel centerline was used

for further analysis.

In order to quantify the tortuosity of the entire blood vessel, algorithm sums

up the local tortuosity measures of its individual segments. For this purpose, the

centerline data corresponding to the entire vessel course is decomposed into consecu-

tive individual segments, marking the centerline at regular intervals. For each vessel

segment, the method determines the following parameters (discussed in detail in the

next section) in order to estimate the local tortuosity.

1) Arc to Chord Ratio

2) Number of changes in Curvature sign/Frequency

3) Angle of Curvature

The algorithm sums up the local tortuosity measures from all segments to determine

the tortuosity index, as compared to the methods which estimate the vessel tortuosity

on global measures. A brief review of such methods is presented in the literature [87].
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Figure 3.21: Preprocessing: a) Fundus Image b) Vessel probability map c) Segmented
vessel
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Figure 3.22: Ratio of vessel arc to vessel chord for 3 individual segments in the vessel

3.4.2.3 Assessment of the geometric features

1) The arc to chord ratio is determined as follows. Considering the ophthal-

mologist’s description of tortuosity, the first parameter I include in the metric is based

on the distance measures. It is defined as the ratio of length of a vessel arc to length

of the corresponding vessel chord (Fig. 3.22) [138][139][134][140]. In other words, the

given parameter measures the normalization factor for the curved length of the vessel

segment per unit shortest (straight-line) distance between the two ends of the vessel

segment.

2) The number of changes in the curvature sign is determined as follows. Using

only the distance based metric explained above, may not be sufficient in providing

the ophthalmologist’s perception of tortuosity, as this metric alone is unable to dif-

ferentiate between the tortuosities of blood vessels with equal arc to chord ratios but

different number of vessel twists or turns, i.e., frequency [87] .
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Figure 3.23: Frequency or number of curvature sign changes

Retinal disorders affect the vessel course by producing twists and windings.

Retinopathy of prematurity is one of the disorders which affects the vessel course with

twists, near to the posterior pole of retina [141] [83][142]. A method which is based

on calculating the number of inflection points (change in curvature sign) in the vessel

course, estimates the tortuosity inclusive of frequency parameter [143]. The limitation

of this method is the lack of normalization procedure which may differentiates between

vessels of different lengths.

The proposed method includes a parameter which determines the number of

changes in the sign of a curvature of a vessel, or the number of sign changes when

a vessel turns to change its course, through its length. Figure (Fig. 3.23) shows the

sign convention for the left turn as negative and the one for the right turn as posi-

tive. This parameter determines the total number of events when the vessel changes

its direction of course from negative to positive and vice versa. Sometimes the poor

vessel segmentation or the image processing noise, affects the data containing the
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centerline of the vessel, which may result into detecting an undesired curvature sign

change even with very small angles of curvature (clinically insignificant), in a local

tortuosity calculation. This introduces more than the true number of sign changes

in the determination of tortuosity, which does not conform to the ophthalmologist’s

notion of frequency in tortuous vessels. To avoid this, the algorithm works with a

hysteresis criterion in which all the angle of curvature measures (θ) below the pre-

defined threshold value of θ = 20 ◦ (empirically determined), are treated as due to

a noise and discarded, and the angle of curvature measures above the threshold are

accounted for the calculation of curvature sign changes.

3) The angle of curvature is determined as follows. To maintain the count

of how many times the vessel changes its course is required but may not always be

sufficient. The measure of angle through which the vessel segment changes the course

is also an important aspect. The third factor I estimate is based on the measure of

curvature of the vessel segment. This factor stands to be valuable and I am going to

show in discussion section, how it helps overcoming the limitations presented in the

literature method [87].

It determines the magnitude or the measure of angle of curvature through

which the vessel segment changes its course. More the angle through which the vessel

turns, more is the tortuosity of the vessel. Figure (Fig. 3.24) shows the increasing

tortuosity measures of the vessel turning through larger angles.
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Figure 3.24: Angle of curvature

4) The final task accomplished by the algorithm is the determination of the

tortuosity index. The aforementioned factors affecting the tortuosity of a vessel are

normalized and are formulated to derive the tortuosity index (TI), given as,

TI =
(n+ 1) ∗ (

∑m
i=1 Θi) ∗ (

∑m
i=1(Lci/Lxi))

Lc ∗m ∗m (3.4)

where, TI is a tortuosity Index, n is the number of changes in curvature sign,

m is the number of segments in the vessel, Θi is the magnitude of angle of curvature,

Lci is the length of the respective arc, Lxi is the length of the respective chord, and

Lc is the total length of the vessel. The parameters with subscript i describe the

values for ith segment. Factor ’n’ (Frequency) has been normalized over the total

length of the vessel (Lc), so that it gives equal tortuosity perceptions for two vessels

with equal frequencies per unit length but different lengths over the course. Factor
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’Θ’ (Angle of curvature) calculated for each segment is summed up over all segments

and is normalized with the number of individual segments in the vessel (m), so that it

gives equal tortuosity perceptions for two vessels with approximately equal curvatures

but different lengths over the course. Factor Lci/Lxi (Arc to chord ratio) calculated

for each segment is summed up over all segments and is normalized with the number

of individual segments in the vessel (m), so that it gives equal tortuosity perceptions

for two vessels with approximately equal ’arc to chord ratio’ but different lengths over

the course. The given metric (Eqn.3.4) shows the formulation in which the numerator

enlists the three parameters and denominator enlists the normalization factors for the

corresponding parameters.

3.4.3 Results

The proposed algorithm was applied to a case study consisting of 15 fundus

images (Image size: 3150x2696) of 8 patients with facioscapulohumeral muscular

dystrophy (FSHD), a congenital disease that was recently described by us to display

retinal arterial tortuosity related to severity [137]. Fundus photographs were obtained

with the Zeiss fundus camera with the pupil in a dilated position. Three masked

ophthalmologists graded the vessel tortuosities based on a Likert severity scale from

1 to 4 with 1 indicating lowest and 4 indicating highest tortuosity (ground truth). To

compare the TI with the ground truth, the following tables summarize the correlation

between the TI values obtained by the method and the grading obtained by the

experts for arteries (Tab.3.2) and veins (Tab.3.3). Second column represents the

numerical average of severity grading given by 3 ophthalmologists, combined for both
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Patient ID Average grading by 3 experts TI by method TI ranking
C 1.00 4.82 1
H 1.33 32.41 2
B 2.00 33.52 3
G 2.00 35.78 4
F 2.66 46.64 5
E 3.33 63.86 6
D 4.00 65.00 7
A 4.00 141.82 8

Table 3.2: Correlation between the TI and
the manual grading, for arteries

Patient ID Average grading by 3 experts TI by method TI ranking
B 1.00 3.47 1
F 1.00 3.51 2
E 1.00 4.07 3
C 1.33 5.10 4
G 1.00 8.55 5
D 1.33 10.72 6
A 1.33 11.78 7
H 1.33 20.58 8

Table 3.3: Correlation between the TI and
the manual grading, for veins

eyes and the fourth column represents the tortuosity (TI) rankings from 1 to 8 with 1

indicating lowest tortuosity and 8 indicating highest tortuosity. This correlation has

been emphasized graphically for arteries (Fig. 3.25) and for veins (Fig. 3.26).

The Spearman’s ranking correlation coefficient between the tortuosity index

(TI) by method and manual tortuosity grading was calculated for arteries as rs=0.98,

and for veins as rs=0.77. The average running time per vessel, starting with manually

extracted vessel segment from the readily available vessel segmentation to the tortu-

osity index determination was 10 seconds, when processed in MatLab environment
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Figure 3.25: Correlation between the results obtained by the method and that by
manual grading, for arteries, FSHD dataset. Circles represent the tortuosity ranking
by the method for the corresponding ranking by the experts and the 45 line represents
the ideal correlation between the two rankings

Figure 3.26: Correlation between the results obtained by the method and that by
manual grading, for veins, FSHD dataset. Circles represent the tortuosity ranking by
the method for the corresponding ranking by the experts and the 45 line represents
the ideal correlation between the two rankings. The maximum disagreement of 1 rank
at the outlier (4,5)
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on a standard personal computer with Intel core 2 Duo processor, running at 3 GHz.

With reference to tables (Tab.3.2) and (Tab.3.3), it is observed that the pa-

tients can be conveniently graded for tortuosity based on the numerical indices (third

column) rather than merely distinguishable manual grading patterns (second column).

The tortuosity index (TI) obtained by the proposed method and the qualitative grad-

ing of tortuosity by the ophthalmologist’s evaluation are highly correlated.

3.4.4 Discussion

A method presented in the literature [87], proposes an algorithm to determine

a tortuosity index for retinal blood vessels. It gives the tortuosity index as:

TI =
(n

′ − 1) ∗ (
∑n

′

i=1(Lci/Lxi) − 1)

n′ ∗ Lc

(3.5)

The metric proposed here has the same legend for variables as used in (Eqn.3.4),

except for n
′
which is the number of turn curves. Analyzing this metric, I may address

some of its limitations, and propose the solutions.

For a vessel with constant curvature sign, or with no twists or turns throughout

its course, the algorithm (Eqn.3.5) produces the number of turn curves as n
′
=1, which

yields the TI=0, meaning the method provides equal TI (TI=0) values for all the

vessels with constant curvature sign or no turns. Hence, it provides equal tortuosity

estimates for all the vessel structures presented in (Fig. 3.27(a)) from a straight line

to a high curvature vessel. The index TI=0 may fit well for the vessels having a

course close to the straight line (small curvature), but may not be appropriate for the
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Figure 3.27: Retinal vessels: a) Vessels with constant curvature sign (no turns) from
straight line to high curvature vascular pattern, b) Theoretical vessels with equal n

′

and equal arc to chord ratios, e.g. (arc1=arc2, chord1=chord2)

vessels with higher curvature. TI value of ’zero’ does not suit the clinical perception of

tortuosity of high curvature vessels. This high curvature value may be of a significant

clinical importance as a retinopathy sign, especially when calculating the tortuosity

of the entire vessel network.

By the proposed algorithm (Eqn.3.4), the number of curvature sign changes

n=0, which formulates TI=1*Angle of curvature*Arc to chord ratio, and produces ap-

propriate tortuosity estimates for all the constant curvature sign vessels, with higher

TI value corresponding to higher curvature vessels and vice versa. For vessels with

n=0, the tortuosity is determined by the product of angle of curvature and arc to

chord ratio.

For the vessels with equal frequency and arc to chord ratio, the TI is deter-

mined by two metrices differently. The metric presented in (Eqn.3.5), is based on

two parameters, i.e., Frequency and Arc to chord ratio. Hence, it provides equal
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tortuosity index values for vessels with equal frequencies (n
′
) and equal Arc to chord

ratios. (Fig. 3.27(b)) shows two theoretical vessels which may have equal frequencies

and equal arc to chord ratios, and hence equal TI according to the metric (Eqn.3.5),

but different clinical tortuosity perceptions in the ophthalmologist’s evaluation.

The proposed metric (Eqn.3.4) has one more parameter based on the angle of

curvature of a vessel. For the vessels shown in (Fig. 3.27(b)), the metric produces

appropriate tortuosity values corresponding to their Θ or the angle of curvature such

that, TI=k*Angle of curvature, where k = constant determined by equal frequency

and equal arc to chord ratios.

The proposed method estimates the parameters such as angle of curvature and

number of curvature sign changes, which overcomes the shortcomings introduced in

the vessel tortuosity determination when considering solely the arc to chord ratio, or

the curvature [84][134].

3.4.5 Conclusion

The method presents a quantitative index of tortuosity by analyzing the factors

affecting the local tortuosity values of a retinal blood vessel, and formulates them to

provide a tortuosity index (TI). The TI may offer an automated tool giving the user

an objective and reproducible measure of vessel tortuosity which may overcome the

challenges experienced in the qualitative assessment of vessel tortuosities. The high

correlation with expert’s subjective estimates shows that the proposed algorithm has

potential in the automated tortuosity evaluation.
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3.5 Automated detection of malarial retinopathy

associated retinal hemorrhages

3.5.1 Introduction

Malarial retinopathy (MR) is characterized by retinal hemorrhages of varying

size and shape, often showing as Roth-spots, retinal whitening, papilloedema and

vessel discolouration [19][22][23][24][6][25][27][144] and has been shown to be highly

sensitive and specific in differentiating cerebral malaria (CM) from other causes of

coma in pediatric [21] and adult patients [145]. The hallmark of CM is sequestration

of parasites in the vessels of the central nervous system (CNS), but post-mortem

studies have shown that many patients are misdiagnosed [146]. Reasons for this in-

clude incidental parasitaemia in high transmission settings and a lack of imaging,

laboratory, and electroencephalography facilities in malaria endemic areas. Oph-

thalmological expertise that is crucial in diagnosing malarial retinopathy is often also

lacking. Malarial retinopathy has great potential as a surrogate marker for adjunctive

therapies but current methods of quantification and scoring severity of retinopathy

are subjective and not evidence-based [19][20][5][28].

The number of retinal hemorrhages in CM correlates with the number of cere-

bral hemorrhages, so the detection of hemorrhages in MR is a logical first step [25].

Therefore, this article primarily focuses on the development of a method for auto-

mated detection of MR hemorrhages.

We have recently developed, studied, and validated retinal image analysis algo-

rithms that are capable of detecting retinal hemorrhages, exudates, microaneurysms,
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drusen, and cottonwool spots, as well as measure retinal arterial and venous pa-

rameters in retinal color fundus images, with performance comparable or superior to

that of ophthalmologists [147][148][38][149][112][131]. We proposed a supervised pixel

classification and red lesion detection method based on the analysis of features that

include color, shape, and the response of a Gaussian filter-bank [38]. Sinthanayothin

et al. [68] used a recursive region growing segmentation method accompanied by

a binary thresholding which detects hemorrhages, microaneurysms and vasculature

from the green channel image and removes vasculature from the final segmentation

result. Remaining structures in the image were considered to be hemorrhages and

microaneurysms. Gardner et al. presented a supervised algorithm in which a neural

network was utilized for the classification of image regions containing hemorrhages

and exudates [48]. However, these algorithms were targeted towards detection of

diabetic retinopathy and age-related macular degeneration retinal phenotypes.

The purpose of the present pilot study is to evaluate an automated method for

detecting MR associated retinal hemorrhages of varying size in retinal fundus color

images on a dataset of 14 patients (200 images) previously diagnosed with MR.

3.5.2 Method

3.5.2.1 Subjects

Patients were enrolled at Chittagong Medical College Hospital, Chittagong,

Bangladesh. Adult patients diagnosed with severe P. falciparum malaria [145] based

on the presence of asexual stage parasites in microscopy of their peripheral blood, and

MR including retinal hemorrhages were included consecutively. All patients or their
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Figure 3.28: Image of a patient with MR with hemorrhages, notice the Roth spot

attending relatives provided written informed consent for participation in a larger

study of malarial retinopathy from which the images used in the present study were

taken. Retinal images were obtained from (both) eyes of all patients using a Kowa

Genesis D handheld retinal camera through dilated pupils. Image resolution was

1200x1600. After imaging, images were deidentified and shared with the University

of Iowa. The research team at University of Iowa did not have access to any patient

identifiable information. The study was therefore declared exempt by the IRB of the

University of Iowa. Ethical approval for the larger study on malarial retinopathy was

obtained from the Bangladesh Medical Research Council ethics committee and the

Oxford Tropical Research Ethics Committee (OXTREC).

3.5.2.2 Overview of the method

The following block diagram (Fig. 3.29) shows the key steps in the method

for detecting MR associated retinal hemorrhages.
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Figure 3.29: Block diagram showing the overview of the method

3.5.2.3 Reference standard

A fellowship trained retinal specialist (MDA), masked to the algorithm results,

manually segmented all hemorrhages in all images, using the iPad app Truthmarker

that has been previously validated [12]. Fig. 3.30(a) shows the retinal fundus image

and (Fig. 3.30(b)) shows the manual segmentation in action.

3.5.2.4 Hemorrhage detection algorithm

The approach is a splat classification method, which we used previously for

retinal image analysis [147][114], described as follows.

1) Division of a retinal image into splats: The method performs a watershed

segmentation procedure (called ’tobogganing’) to generate splats, which initially de-

termines the gradient magnitudes of a grayscale version of a color image, at multiple

scales and then utilizes their maximum for segmentation [150][151]. The maximum



109

Figure 3.30: Reference standard: a) Fundus image, b) Expert annotation using Truth-
marker [12]

of the gradient magnitudes over scales represents a boundary between the contrast

structures. The gradient magnitude at lower scale gives more response at the bound-

aries of smaller structures, and at higher scale gives more response at the boundaries

of larger structures. Based on the boundaries formed, the image pixels are classified

into catchment basin regions by grouping together the pixels with paths of steep-

est descent terminating at the same local minimum. Thus, the fundus image (Fig.

3.31(a)) is divided into a number of regions called ’splats’ based on region homo-

geneity. I used a ’marker-controlled watershed segmentation method’ in which the

homogeneous regions in the image are initially marked by foreground markers (single

pixel or a group of pixels) using morphological image reconstruction [152]. The re-

gional maxima of the reconstructed image are used to obtain the foreground markers.

The background markers are determined from the distance-transform of the binary

version of the morphologically reconstructed image. The previously computed gradi-

ent magnitude image is modified so that it has regional minima only at the positions
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Figure 3.31: Splat formation: a) Fundus image, b) Image divided into splats

of foreground and background markers. Finally, the watershed segmentation of the

modified gradient magnitude image is performed. The size of the structuring ele-

ment selected for the morphological reconstruction controls the size of the marker

and hence the splat size. To over-segment, I selected a ’disk’ shaped structuring el-

ement of radius 1 pixel. The splats generated by the watershed segmentation of the

fundus image (Fig. 3.31(a)) are shown in terms of splat boundaries overlaid on the

image, in (Fig. 3.31(b)). The parameter settings result in approximately 4000 splats

per image on average.

2) Splat feature extraction and classification: For each splat, a set of 43 features

was calculated from the pixels within the splat (Tab.3.4). I chose features which

represent the color as well as its variation across the fundus image. Some of the

features in this set were used previously [147]. A subset (features: 1-6) of the feature

set accounts for the mean color within a splat in RGB and HSV channels. The other

subset (features: 7-42) characterizes the intensity variations across the fundus image
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Feature number Feature description
1-6 (6 features) Mean of pixel values in a splat, for red, green, blue (RGB),

and hue, saturation, value (HSV) channels
7-42 (36 features) Mean of pixel values at the splat boundary for difference of

Gaussian image: (Ig - Io), Ig= Gaussian smoothing with
σ=1, 2, 4, 6, 8, 10, Io= Original image, for each of RGB
and HSV channels.

43 (1 feature) Mean of pixel values in a splat for Adaptive histogram
equalization image

Table 3.4: Features used for MR hemorrhage detection

in terms of difference of Gaussians at various scales (σ). I introduced a feature (43)

of the mean intensity within a splat in adaptive histogram equalization image, which

brings out the structural details due to the local contrast, at various scales.

A classifier was then trained on the feature set of each splat from a train-

ing set of images. I used a linear k-nearest neighbor (kNN) classifier [153][154] (See

Appendix) based on Euclidean distance measurement for the supervised splat classi-

fication. The feature set of 43 features extracted from each of the splats in a training

image, as above, represents the position of that splat in a forty three-dimensional

feature space (training data point). The classifier is trained by associating the fea-

ture set with the label associated with the splat (hemorrhage or non-hemorrhage),

derived from the reference standard created by the expert, as above. In the reference

standard, a splat was labeled as a hemorrhage splat if more than 50% of the splat

area was segmented manually.

In the testing phase, a feature set is extracted as above, from each splat in
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Figure 3.32: Hemorrhage detection: a) Fundus image with the overlaid splat bound-
ary, b) Hemorrhage likelihood map: bright pixels indicate higher likelihood of the
splat being a hemorrhage

the test image. The previously trained kNN classifier is then queried with the feature

set, and provides the labels of ’k’ nearest neighbors in the 43 dimensional feature

space in return. The fraction of the ’k’ nearest neighbors labeled as hemorrhage

splat provides the likelihood, which is assigned to the test splat. This likelihood, a

number between 0-1 is then assigned to all pixels belonging to the test splat, and a

hemorrhageness map can thus be created, indicating how likely each splat is to be a

part of hemorrhage, (Fig. 3.32(b)). The likelihood map can be thresholded at various

values between 0 and 1, producing different system sensitivities and specificities, and

thus producing a receiver operating characteristic (ROC) curve. The optimal value

of ’k’ for kNN classifier was determined based on area under the ROC curve (AUC).

For this experiment, the maximum AUC was found corresponding at k=181.
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3.5.2.5 Analysis

Performance of the algorithm was measured in a cross-over design experiment.

The dataset of all patients was partitioned into two complementary subsets, 2 patients

for testing and the remainder for training the classifier, and this process was then

repeated 13 times for different permutations of the training set.

The performance was determined for splat-based as well as hemorrhage lesion-

based analysis. The splat-based analysis measures how well the system can classify

a splat as a part of hemorrhage or non-hemorrhage region, whereas the lesion-based

analysis measures system performance in terms of classifying a retinal lesion as a

hemorrhage or non-hemorrhage.

The following metrics were used:

1. True positive splats (or lesions) (TP): The number of splats (or lesions) marked

by both the algorithm and the expert as hemorrhage.

2. False negative splats (or lesions) (FN): The number of splats (or lesions) marked

as hemorrhage by the expert but not by the algorithm.

3. True negative splats (or lesions) (TN): The number of splats (or lesions) marked

as non-hemorrhage by both the algorithm and the expert.

4. False positive splats (or lesions) (FP): The number of splats (or lesions) marked

by the algorithm as hemorrhage but not by the expert.

Sensitivity =
TP

TP + FN
(3.6) Specificity =

TN

TN + FP
(3.7)
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Total hemorrhage splats 454581
False negative splats 87143

Total non-hemorrhage splats 1862830
False positive splats 62032

Table 3.5: Performance in terms of splats,
at likelihood threshold of 0.12

Sensitivity (%) 80.83
Specificity (%) 96.67

Area under the curve (AUC) 0.9148
95% Confidence interval for AUC 0.8254 to 0.9842

Table 3.6: Performance in terms of splats,
at likelihood threshold of 0.12

Sensitivity was defined as the fraction of hemorrhage splats (or lesions) marked

by the expert (TP+FN), that were detected as hemorrhage splats (or lesions) by

the algorithm (TP) (Eqn.3.6), while specificity was defined as the fraction of non-

hemorrhage splats (or lesions) marked by the expert (TN+FP), that were detected as

non-hemorrhage splats (or lesions) by the algorithm (TN) (Eqn.3.7). The hemorrhage

lesion was considered ’detected’ if at least one of the hemorrhage splats marked by

the expert, was detected by the algorithm.

The total number of TP, FN, TN, and FP values for 14 test sets, and the

respective sensitivity and specificity measures were evaluated by varying the threshold

on the hemorrhage likelihood map. The sensitivity and specificity values obtained

at the likelihood threshold of 0.12 are reported in Tab.3.6 for splat-based analysis,
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Total hemorrhage lesions 917
False negative lesions 139
False positive lesions 1079

Table 3.7: Performance in terms of lesions,
at likelihood threshold of 0.38

Sensitivity (%) 84.84
False positive lesions/ Image 3
Area under the curve (AUC) 0.9030

95% Confidence interval for AUC 0.8724 to 0.9325

Table 3.8: Performance in terms of lesions,
at likelihood threshold of 0.38

whereas the sensitivity and false positive values obtained at the likelihood threshold of

0.38 are reported in Tab.3.8 for lesion-based analysis. For the splat-based analysis, a

receiver operating characteristic (ROC) curve was determined (Fig. 3.33(a)), whereas

for the lesion-based analysis, a free-response operating characteristic (FROC) curve

was obtained (Fig. 3.33(b)), using an online ROC analysis tool [155]. The FROC

curve describing the actual performance of hemorrhage lesion detection, plots the

sensitivity of the proposed method with respect to all hemorrhage lesions in the test

set against the average number of false positives detected per image.

The ROC and area under the ROC curve (AUC) were reported for the sample

of 14 patients included in the study. The AUC value is not a true value but the sample

value with statistical error, and may vary for different samples [156]. Therefore, a
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Figure 3.33: Performance: a) ROC curve: splat-based analysis, b) FROC curve:
lesion-based analysis

range of AUC values (confidence interval: CI) is reported within which a true value

lies with a certain degree of confidence. I included 95% confidence interval with the

ROC curve representing the range of values in which the true value lies.

3.5.3 Results

For the splat-based analysis, the sensitivity and specificity values obtained

from the ROC curve at the likelihood threshold of 0.12 are 80.83% and 96.67% re-

spectively (see Tab.3.6). For the lesion-based analysis, the FROC curve shows the

sensitivity of 84.84% against the average of 3 false positives detected per image, at

the likelihood threshold of 0.38 (see Tab.3.8). The respective ROC and FROC curves

are shown in Fig. 3.33. The AUC and the associated 95% CI on splat-basis are 0.9148

and [0.8254 to 0.9842] respectively, and that on lesion-basis are 0.9030 and [0.8724

to 0.9325] respectively. The average number of hemorrhages per patient detected by
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the system was estimated to be 4 or more out of every 5 hemorrhages annotated in

the reference standard. The running time required per image, was 10 minutes when

processed on a standard personal computer with Intel core 2 Duo processor, running

at 3 GHz.

3.5.4 Discussion

The results demonstrate that the automated method is capable of detecting

retinal hemorrhages on retinal fundus color images, and match well with the reference

standard as shown by area under the FROC curve (AUC=0.9030). The FROC curve

and the corresponding AUC indicate the ability of the system to distinguish between

hemorrhage and non-hemorrhage regions. This means that, given a randomly selected

retinal region in the image, the automated system will correctly detect in 90.3% of

cases the presence or absence of a hemorrhage in that region. Note that the reported

lesion detection sensitivity of 84.84% is obtained at the cost of an average of 3 false

positives (FP) per image, which may be a high FP rate for the application where the

automated system is used to assist image analysis by a human.

Potentially, the use of automated techniques such as this, providing quan-

titative estimates of the signs of MR with good reproducibility may improve the

objectivity of scoring and classification of malarial retinopathy. This technique has

potential for assisting with assessment of malarial retinopathy in both research and

clinical settings [157].

The varying shapes and sizes of hemorrhages were modeled in terms of splats,

which enabled the splat specific feature extraction and classification. This decreases
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the computation time required by pixel based classification and may prevent the

inclusion of pixel level noise into the feature set.

This study has a few limitations worth mentioning. The technique is currently

limited only to retinal hemorrhages, and when used alone these have poor specificity

for severe malaria [145]. This is likely to be because they are not a result of the

core pathological process of microvascular obstruction in severe malaria [157]. Future

expansion of automated image assessment to the other features of retinal whitening,

vessel discoloration and papilloedema, is ongoing.

The running time of the system may be considered high due to the small splat

size. I chose the splat size depending upon the smallest hemorrhage size in the dataset.

The smaller the size of a splat compared to that of the smallest hemorrhage, the more

accurate may be the detection performance of the system. This is due to the ability

of smaller splats to demark the hemorrhage boundaries more accurately compared

to the larger ones. If the average splat size is greater than the hemorrhage size, it

may include the surrounding background features into a feature space and may be

classified erroneously. As the splat size decreases, the average running time increases

due to increase in the number of splat feature extractions and classifications. Most

of the running time was spent in the splat classification process. Future refinements

to reduce this running time are needed so it can deal with large numbers of images

rapidly.

Finally, training and test datasets consisted of images exclusively containing

retinal hemorrhages. Though the system specificity for non-hemorrhage regions is
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high, it may be advisable to include more test images with no hemorrhages, in order

to avoid bias in the dataset. The future efforts will focus on analyzing larger datasets

to provide a more robust assessment.

In summary, I developed an automated MR hemorrhage detection method

based on splat classification and validated it on a dataset of patients previously diag-

nosed with MR. The results were validated with the reference standard showing the

potential of the method in providing diagnostic assistance in detection of MR.

3.6 Analysis of a longitudinal study dataset

3.6.1 Introduction

The structural mapping of a retinal vessel network and its classification into

arteries and veins was obtained [59], as explained in chapter 3. The morphology

of a vessel network was quantified in terms of tortuosity, width, branching angle,

branching coefficient, with respect to arteries and veins, and fractal dimensions. The

morphologic parameters were measured with respect to each bifurcation across a vessel

tree at seven vessel generations, for each vessel tree in a network. The vessel network

analysis and morphology measurement were applied to a dataset of 70 subjects imaged

over four time intervals (a longitudinal study). The statistical analysis results were

presented to assess the possible correlation between the changes in vessel morphology

and disease progression, or demographic parameters such as age.
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Figure 3.34: Four images captured at each of the four intervals and respective vessel
segmentation:
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3.6.2 Methods and Materials

A digital fundus color image dataset consists of 1120 images of 70 subjects se-

lected randomly from a longitudinal study dataset. The four fundus images captured

at each of the four intervals and the respective vessel segmentation, for one subject

is shown in (Fig. 3.34). Referring to the figure, the data for one subject consists

of four standard one-field fundus images (Image size: 768x576), one with optic-disc

centered and one with fovea centered for each eye (first two columns: left eye, last

two columns: right eye), captured at any one interval. The subject was imaged at 4

different intervals of time (fundus images in rows 1,3,5,7 in figure) but removed from

the dataset as soon as any signs of diabetic retinopathy were observed. The average

length of time interval between any two imaging instances was 1.14 years with the

standard deviation of 0.28 years. The images were deidentified and patient’s personal

information was encapsulated from the research team. The retinal blood vessels were

segmented (vessel segmentation in rows 2,4,6,8) using a previously validated segmen-

tation method [33].

The structural mapping as well as artery-venous classification methods [59]

were applied to the vessel segmentation obtained in the previous step, and five

morphologic properties of a vessel network, viz., tortuosity, width, branching an-

gle, branching coefficient, and fractal dimensions were measured. The measurement

started at the root vessel segment (part of the vessel nearest to the optic disc) as first

generation, and each of the vessel segments generated further at each bifurcation were

labeled as successive generations, as shown in (Fig. 3.35). The first seven generations
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Figure 3.35: First seven vessel generations of a retinal vessel tree

of the vessel tree were considered for the analysis. The morphologic measurements for

the vessel trees were averaged over the vessel network and over the images captured

at any one interval. In the first pass of averaging procedure, the measured parameters

were averaged for each generation over all the vessel trees across the vessel network.

The second pass consisted of averaging the means of measured parameters in the first

pass, over four images (four vessel networks) captured at any one interval. The mea-

surement and averaging procedure was followed for arterial and venous vessel trees

separately.

The tortuosity measurement was based on [112], whereas the measurements of

width and branching angle were obtained as measured during the structural mapping

process [59], explained in chapter 3. The branching coefficient was determined by the

optimality ratio γ = [(d31 +d32)/2∗d30]0.33) defined in [89]. The fractal dimensions were

measured using a box-counting method. Therefore, each morphologic property except
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fractal dimension, was measured at first seven generations of the vessel network,

separately for arteries and veins, yielding total of 14 measurements at each interval.

The process was repeated for all the 4 intervals giving a set of 56 measurements of

each property for a subject. The fractal dimension measurements for four images

at an interval were averaged, and four average measurements were obtained at four

respective intervals.

3.6.3 Results

I applied the proposed method to a dataset of 70 subjects each with images

obtained at four time intervals. The measurement of morphologic parameters such

as tortuosity, width, branching angle, and branching coefficient yielded 4 averaged

measurements at respective time intervals, at each generation separately for arteries

and veins. The ’analysis of variance (ANOVA)’ test was carried out to analyze the

possible statistically significant changes in a morphologic parameter across four time

intervals. The ANOVA tests for tortuosity, width, branching angle, and branching

coefficient were not statistically significant for arteries or veins. The graphical results

are shown in the appendix section.

The fractal dimension measurement presented 4 measurements for vessel net-

works at respective time intervals (Fig. 3.36). The ANOVA test for fractal dimension

analysis was statistically significant with (F=15.75 ≥ Fcrit), where Fcrit=2.64 and

p-value ≤ 0.05 (α=0.05). Furthermore, Tukey post-hoc [HSD(q)] test results for 70

subjects, were presented in (Tab.3.9) at α=0.05 and critical value of q=3.63. The

second row of the table represents the mean fractal dimension at respective interval,
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Figure 3.36: Fractal dimension, X-axis: 0 to 6 years, Y-axis: 1.2 to 1.9

over 70 subjects. Referring to the same table, intervals 1,2, and 3 (rows 4,5,6) present

the HSD(q) values in relation with the respective intervals 1,2,3,4 (columns 2,3,4,5).

The higher HSD(q) values compared to the critical value of q may conclude that

the differences between all of the intervals were statistically significant except those

between interval 1 and interval 2.

3.6.4 Discussion

The set of automated image analysis and morphology measurement algorithms

was applied to the dataset. The retinal vessels were separated and classified into ar-

teries and veins, and were measured for the changes in morphologic properties across



125

Tukey post-hoc Interval 1 Interval 2 Interval 3 Interval 4
Mean 1.6889 1.6824 1.6401 1.5973

Tukey HSD(q)
Interval 1 0 0.7140 5.3611 10.0630
Interval 2 0 4.6470 9.3489
Interval 3 0 4.7019

Table 3.9: Tukey post-hoc test results,
at the critical value of q=3.63

four time intervals. The results show that the morphologic parameters, viz., tortuos-

ity, width, branching angle, and branching coefficient measured across 4 intervals of

time did not change significantly. The possible reasons could be the following:

1. The image quality and image resolution may not be high enough to capture

relatively minute changes in anatomy of vessels, which may be reflected in higher

resolution images.

2. The field of view of the images across the same interval as well across different

intervals for the same subject may be different. The field of view for different images

may cover different retinal regions and hence the consistency of morphology measure-

ment on the same set of vessels across intervals may be compromised.

3. The subjects were removed on the onset of diabetic retinopathy, i.e., as soon as

any sign of diabetic retinopathy was observed. Thus, the vessel morphology might

not have changed significantly which could be observed under the effect of moderate

or severe retinopathy.

4. The accuracy of vessel segmentation is crucial as the success of vessel analysis and
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measurement algorithms is based on vessel segmentation. Therefore, it may need a

more accurate vessel segmentation to capture minute changes in the vessel morphol-

ogy such as small changes in width and branching angle.

5. It may need more accurate morphology measurement algorithms which can capture

even a minute change in vessel anatomy from fundus images.

As evident from the statistical analysis, the differences in fractal dimensions

across four intervals were statistically significant, except that between interval 1 and

interval 2. Although the observed differences were quantitatively different, it appeared

from the visual inspection of images that the source of these differences may not be

the anatomic change in vessel fractal properties. The set of images obtained at some

intervals may be affected by the imaging defect which was either the effect of imaging

device limitations in terms of focus and illumination, or due to the anatomic changes

in subjects eye such as cataract which may have prevented the illumination of retina

[158]. This may also be the effect of collecting images at different intervals from

different imaging sites, captured with different cameras, imaging specifications, and

variably skilled imaging specialists. The aforementioned effects are shown in (Fig.

3.37). The defects in the fundus image were carried forward in the segmentation

of vessels, and vessels were segmented either with interruptions or with the loss of

smaller vessel segments (≤4 pixels width). The fractal dimensions not only measure

the ability of vessel network to fill the embedding space but also the degree or the kind

of vascular branching with which the embedding space is filled up [107]. Therefore,

the presence or absence of smaller vessel segments may affect the measurement of
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Figure 3.37: Effects of imaging process or anatomic changes in the eye (e.g., cataract)
on images captured at each of the four intervals and respective vessel segmentation
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fractal dimension. Due to the imaging defects or the anatomic changes leading to

imaging limitations, the true changes in the anatomy of vessels may not be measured,

but may lead to statistically significant results which do not correspond to the true

morphologic changes.

3.6.5 Conclusion

I developed a set of automated retinal image analysis methods and applied it

to a longitudinal study dataset to quantify the possible changes in vessel morphology

under the effect of a disease or a demographic factor such as age. The morphologic

characteristics such as tortuosity, width, branching angle, and branching coefficient

did not change significantly across four time intervals. The fractal dimensions changed

significantly across four time intervals, but the true reason behind this change may

not be the anatomic changes in vessel fractals but the possible imaging defects. The

morphologic analysis of individual vessel trees in terms of arteries and veins, and that

of a vessel network may be implemented with the set of methods proposed in this

thesis. The automated retinal image analysis has potential in providing vessel specific

as well as network specific morphologic measurements for the automated diagnosis of

retinopathies.
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CHAPTER 4
DISCUSSION AND CONCLUSION

In this chapter, I discuss results and conclude the thesis.

4.1 Summary of Results

In this thesis, I proposed and validated the set of mathods for automated

morphology analysis of retinal blood vessel network. The thesis consisted of methods

analyzing the retinal structure such as structural mapping, reconnection of inter-

rupted vessels, artery-venous classification, and the methods measuring or detecting

the morphologic changes in the retinal structure such as vessel tortuosity measure-

ment and malarial retinopathy hemorrhage detection. In this section I summarize

the results followed by the discussion.

4.1.1 Identification and reconnection of interrupted vessels

in retinal vessel segmentation

An automated method for identifying the interruptions in retinal vessel seg-

mentation, and means of reconnecting the vessel segments to the primary vessel struc-

ture was reported. Dijkstra’s graph search algorithm determines the minimum cost

path that connects the disconnected vessel segment to its primary vessel, based on

intensity and direction matching. The path is verified by applying the tortuosity

and connection strength constraints. The application of algorithm to a dataset of 25

vessel segmentation images resulted into 81.63% of reduction in vessel interruptions
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obtained by the manual reconnection process. The results show that the number of

interruptions in the automatically reconnected vessel images reduced significantly and

approached the value obtained for manually reconnected vessel images. The tortu-

osity measurement based analysis compared with the experts tortuosity assessment,

resulted into the automated reconnection method showing improvement in the cor-

relation coefficient (rs=0.68) compared with that showed by the interrupted network

tortuosity (rs=0.58). It suggests that the method may provide a connected vessel

network for presenting true and consistent morphologic analysis.

4.1.2 Automated method for identification and artery-venous

classification of vessel trees in retinal vessel networks

A novel approach for identification and separation of retinal vessel trees in

a retinal color image, and their classification into arteries and veins was reported.

The automated method models a vessel segmentation image as a vessel segment map

and identifies the individual vessel trees by a Dijkstra’s graph search algorithm. The

structurally separated vessel trees are utilized for color feature extraction and AV

crossing detection, and vessel trees are classified into arteries and veins by a fuzzy

C-means clustering algorithm. I applied the method to a dataset of 50 fundus images

from 50 subjects. Structural mapping based AV classification method resulted in an

accuracy of 91.44% correctly classified vessel pixels in a vessel network. The accuracy

of correct classification of diagostically important major vessel segments was 96.42%.

The results demonstrate that the automated method is capable of separating and

classifying the retinal vessel trees with the accuracy comparable to that of experts
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annotation performance, and may provide a reliable source of structural information

for retinal vessel characterization and the respective morphologic assessment.

4.1.3 Automated measurement of retinal

blood vessel tortuosity

A new quantitative metric for vascular tortuosity measurement was reported.

It measures vessel’s angle of curvature, length of the curved vessel over its chord

length (arc to chord ratio), number of curvature sign changes, and combines them

into a quantitative metric called tortuosity index (TI). I applied this method to a

dataset of 15 digital fundus images of 8 patients with facioscapulohumeral muscular

dystrophy (FSHD), of which the arterial and venous tortuosities have also been graded

by blinded experts (ophthalmologists). Spearmans correlation between the tortuosity

index by the method and that by manual tortuosity grading for arteries was rs=0.98,

and that for veins was rs=0.77. The results show high correlation with expert’s

subjective estimates suggesting that TI has potential to detect and evaluate abnormal

retinal vascular structure in terms of tortuosity measures.

4.1.4 Automated detection of malarial

retinopathy associated retinal hemorrhages

Automated MR hemorrhage detection method based on splat classification was

reported and validated on a dataset of 14 patients previously diagnosed with MR. A

pattern recognition based algorithm was developed which extracts a feature set from

the image watershed regions called splats (tobogganing) and trains a linear k-nearest
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neighbor classifier to distinguish hemorrhages from non-hemorrhage regions in a test

dataset. The results were validated with the reference standard and hemorrhage

detection sensitivities in terms of splats and in terms of lesions were reported as

80.83% and 84.84% respectively. The splat-based specificity was 96.67%, whereas

for the lesion-based analysis an average of 3 false positives was obtained per image.

The area under the receiver operating characteristic curves was reported as 0.9148

for splat-based, and 0.9030 for lesion-based analysis. The results demonstrated that

the automated method may be capable of detecting retinal hemorrhages on retinal

fundus color images, and matched well with the reference standard. With further

development, this technique has its potential in providing automated assistance to

screening for and quantification of malarial retinopathy.

4.2 Conclusion

This thesis presents automated image analysis approach which consists of set of

methods to analyze and to measure the morphology of retinal blood vessel structure.

These methods were validated on respective datasets resulting into a performance

comparable to retinal experts.

The basis for the automated analysis of vessel structure is a vessel segmentation

image which gives a likelihood of each pixel in the image being inside the vessel. The

accuracy and consistency of vessel segmentation is a backbone of the automated

methods presented in the thesis and any errors in the segmentation may be carried

forward through the analysis pipeline, though the method for reconnecting interrupted

vessels partially corrects for the segmentation errors.



133

The advantages of the proposed methods include complete automation of the

vessel network analysis, automation of the morphologic characterization and mea-

surement, quantification of results compared to the subjective assessment by an oph-

thalmologist, and quick analysis relative to the time-consuming work by a retinal

expert.

In this thesis, I propose to evaluate the association between morphologic

changes in retinal vasculature and the occurrance or progression of retinopathies

and systemic diseases. I describe the automated image analysis methods in order

to quantify the morphologic properties of retinal vessel network that may provide

an objective evaluation of retinopathies such as diabetic retinopathy and malarial

retinopathy.

4.3 Future Work

Here, I discuss some directions for the future research to analyze retinal vessel

structure and measure its morphologic characteristics.

4.3.1 Automated retinal image analysis

software package

Currently, a set of methods has been proposed which analyzes and measures

the retinal vessel morphology. These methods are based on the vessel segmentation

and form a pipeline leading to a set of quantitative indices describing the retinal vessel

morphology which include tortuosity, branching angle, branching coefficient, vessel

width, and fractal dimensions. In the future work, the methods may be combined to



134

Figure 4.1: Automated retinal image analysis software

form a software package or an executable package which accepts an input as retinal

color fundus image and outputs a set of numerical indices describing the current

status of the vessel morphology, as shown in (Fig. 4.1).

4.3.2 Automated diagnostic system

based on clinical input

The aforementioned software package may further be developed into a sys-

tem to accept an accessory input from clinical analysis of a vessel morphology. An

extensive clinical evaluation of a certain retinopathy may be used to train the auto-

mated system to set thresholds on each numerical index measuring the morphologic

property. Once trained, the system may be able to compare the current numerical

measurement status of each morphologic property with the respective threshold to

provide the diagnosis in terms of detection or progression of the retinopathy.
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APPENDIX A
APPENDIX

In this chapter, I describe the graph algorithm methods as well as the classi-

fication methods utilized in the thesis.

A.1 Dijkstra’s graph search

Dijkstra’s graph search algorithm [159] determines the minimum cost path to

each node in the graph from the source node S. It maintains the list of ’explored’

nodes (q) (previously visited nodes) for which the minimum cost path is determined

(d(q)). Furthermore, it adds ’unexplored’ nodes (p) to the list of ’explored’ nodes by

determining the minimum cost path (d(p)) from the source node S. The Dijkstra’s

algorithmic function may be explained by eqn. A.1. It searches for a minimum edge

cost path that connects the node p with the source node S, by minimizing the sum

of edge costs E between intermediate nodes (q) on the path.

d(p) = min
q∈S

[d(q) + E(q, p)] (A.1)

A.2 k Nearest Neighbor classifier (kNN)

kNN classifier is a supervised classifier which calculates the probability for a

test data of its belongingness to a particular class, based on the class of training

data samples in its neighborhood [153][154]. The classifier is trained with the feature

vectors obtained from the training data samples and the labels associated with the
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Figure A.1: Fuzzy C-means clustering

respective training samples obtained from the reference standard (ground truth).

Once trained, the classifier may be able to distinguish between the samples of different

classes. For an unseen data (test data) sample, the classifier extracts the feature

vector and determines the position of the test data sample in the feature space.

Based on the experiments performed on the training data (e.g., maximum area under

the receiver operating characteristic curve), the optimal number of nearest neighbors

(k) is determined. The classifier searches the ’k’ nearest neighbors of the test data

sample in the feature space formed by the training samples, and assigns a probability

to the test sample which is the fraction of ’k’ nearest neighbors (training samples)

belonging to a particular class. The ’k’ nearest neighbors are searched based on their

Euclidean distance from the test sample.

A.3 Fuzzy C-means clustering

Clustering is an unsupervised method of dividing the data samples into definite

number of non-empty groups, such that the data in a group possess relative closeness
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in terms of a defined distance function. Fuzzy C-means clustering allows a data

sample to be associated with number of clusters (groups) with a defined degree of

association based on its distance from the cluster centroid [160][161] (Fig. A.1).

Any data sample has a set of coefficients giving the degree of belongingness to

each cluster. Each cluster centroid is determined by the average of all data samples

in a cluster, weighted by their degree of belongingness. The degree of belongingness

Degreek(x) is determined by eqn. A.2, where Ck is a cluster centroid, Cj are other

cluster centroids, x is a data sample, m is a level of fuzziness, and distance between

any centroid and x is determined by Euclidean or other distance metrices.

Degreek(x) =
1

Σj[(Distance(Ck, x)/Distance(Cj, x))(2/(m−1))]
(A.2)

A.4 Results: Longitudinal study dataset

I applied the proposed methods to the longitudinal study dataset of 70 sub-

jects each with images obtained at four time intervals. The measurement of morpho-

logic parameters such as tortuosity, width, branching angle, and branching coefficient

yielded 4 averaged measurements at respective time intervals, at each generation sep-

arately for arteries and veins as shown in Fig. A.2, Fig. A.3, Fig. A.4, Fig. A.5, Fig.

A.6, Fig. A.7, Fig. A.8, Fig. A.9, Fig. A.10, Fig. A.11, Fig. A.12, Fig. A.13.



138

Figure A.2: Tortuosity index, X-axis: 0 to 6 years, Y-axis: 1 to 2.7
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Figure A.3: Tortuosity index, X-axis: 0 to 6 years, Y-axis: 1 to 2.7
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Figure A.4: Tortuosity index, X-axis: 0 to 6 years, Y-axis: 1 to 2.7
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Figure A.5: Width, X-axis: 0 to 6 years, Y-axis: 3 to 10 pixels
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Figure A.6: Width, X-axis: 0 to 6 years, Y-axis: 3 to 10 pixels
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Figure A.7: Width, X-axis: 0 to 6 years, Y-axis: 3 to 10 pixels
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Figure A.8: Branching angle, X-axis: 0 to 6 years, Y-axis: 50 to 100 degrees
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Figure A.9: Branching angle, X-axis: 0 to 6 years, Y-axis: 50 to 100 degrees
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Figure A.10: Branching angle, X-axis: 0 to 6 years, Y-axis: 50 to 100 degrees
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Figure A.11: Branching coefficient, X-axis: 0 to 6 years, Y-axis: 0.7 to 1
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Figure A.12: Branching coefficient, X-axis: 0 to 6 years, Y-axis: 0.7 to 1
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Figure A.13: Branching coefficient, X-axis: 0 to 6 years, Y-axis: 0.7 to 1
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