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ABSTRACT

Optical coherence tomography (OCT) is becoming an increasingly important

modality for the noninvasive assessment of a variety of ocular diseases such as glau-

coma, diabetic macular edema, and age-related macular degeneration. Even though

individual layers of the retina are visible on OCT images, current commercial quan-

titative assessment is limited to measuring the thickness of only one layer. Because

each intraretinal layer may be affected differently by disease, an intraretinal layer

segmentation approach is needed to enable quantification of individual layer proper-

ties, such as thickness or texture. Furthermore, with the latest generation of OCT

scanner systems producing true volumetric image data, processing these images using

3-D methods is important for maximal extraction of image information.

In this thesis, an optimal 3-D graph search approach for the intraretinal layer

segmentation of OCT images is presented. It is built upon the optimal 3-D multiple

surface graph-theoretic approach presented by Li et al. (K. Li, X. Wu, D. Z. Chen, and

M. Sonka, “Optimal surface segmentation in volumetric images – a graph-theoretic

approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,

no. 1, pp. 119–134, 2006). In this method, multiple surfaces can be found simulta-

neously by transforming the 3-D segmentation problem into finding a minimum-cost

closed set in a corresponding vertex-weighted geometric graph. However, the orig-

inal formulation of this approach did not incorporate varying feasibility constraints

or true regional information, two extensions that would aid in the intraretinal layer

segmentation of OCT images.

Thus, the major contributions of this thesis include: 1) extending the optimal

3-D graph-theoretic segmentation approach to allow for the incorporation of varying

feasibility constraints and regional information, 2) developing a method for learning

varying constraints and cost functions from examples for use in the approach, 3) de-

veloping and validating a method for the 3-D segmentation of intraretinal layers in
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both time-domain and spectral-domain OCT images (achieving error rates compara-

ble to that of multiple human experts), and 4) analyzing layer thickness properties

in normal subjects and in patients with anterior ischemic optic neuropathy (AION).
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CHAPTER 1
INTRODUCTION

Since its first introduction in 1991 [1], optical coherence tomography (OCT) has

become an increasingly important modality. One of its greatest impacts has been

within the ophthalmic community where the high-resolution cross-sectional images

resulting from OCT scanners are being used for the diagnosis and management of

a variety of ocular diseases such as glaucoma, diabetic macular edema, and age-

related macular degeneration. Currently used time-domain commercial scanners (e.g.,

Stratus OCT-3, Carl Zeiss Meditec, Inc., Dublin, CA) provide the ability to scan up

to six cross-sectional slices of the retina, each with an axial resolution of 8–10 µm.

The rapid progress of OCT technology, such as the development of Fourier-domain

acquisition schemes [2], has enabled the latest generation of commercial scanners to

acquire many more slices in a similar time-frame, thus allowing the acquisition of true

volumetric image data.

With increasing image data becoming available to ophthalmologists, the need and

potential impact of image analysis methods is high. Although intraretinal layers

are visible on such images, current quantitative analysis typically only focuses on

measuring the thickness of one layer of the retina, thus leaving potentially clinically

important information unexplored. For example, in cases where the layers may be

affected differently by disease processes (e.g., one layer may thin due to neuron loss

while another may thicken due to edema), it would make the most sense to be able

to quantify the properties of the layers individually.

Furthermore, with volumetric data available, taking advantage of contextual in-

formation and performing the intraretinal layer segmentation in 3-D (as opposed to

repeatedly performing a 2-D segmentation approach) will be important. However, as

is well known in the medical imaging community for applications in other imaging

modalities such as computed tomography (CT) or magnetic resonance imaging (MRI),
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the ability to efficiently and accurately segment images in 3-D or 4-D remains a chal-

lenging problem. For example, in order to make many 3-D segmentation approaches

practical, optimality of the resulting segmentation is often not guaranteed because of

the computational demands in searching a large solution space [3–5]. Nevertheless,

Li et al. [6] recently presented a low-polynomial time graph-based approach for the

optimal multi-surface segmentation of 3-D or higher dimensional data. This was an

extension of the approach for the optimal detection of single surfaces presented by

Wu and Chen [7] to the multiple surface case.

Such a 3-D graph search method [6, 7] is well-suited for the intraretinal layer

segmentation for a variety of reasons. Perhaps the most important include: 1) the

ability to find an optimal set of surfaces with respect to a cost function in 3-D and 2)

the ability to find multiple surfaces simultaneously. However, as originally presented,

the optimal graph search approach did not allow for the incorporation of true re-

gional image information or varying constraints. Such extensions would be important

for flexibility in the cost function design and incorporating prior shape knowledge,

respectively.

Thus, after extending the graph search approach to allow for varying constraints

and the incorporation of regional image information, this thesis is concerned with

developing and validating a 3-D method for the intraretinal layer segmentation of

OCT images. In addition, the developed approach is utilized in applications of clinical

interest to help show how an intraretinal analysis may provide additional clinical

information over that of the traditional method of analyzing only one layer of the

retina.

1.1 Specific aims

In particular, the specific aims of the work described in this thesis were as follows:
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• Aim 1: Develop a method for the incorporation of regional information and

varying constraints into the optimal 3-D graph search.

• Aim 2: Develop a method for learning cost functions and varying constraints

from examples for use in the 3-D graph search.

• Aim 3: Develop and validate a method for the 3-D segmentation of intraretinal

layers from OCT images.

• Aim 4: Use the intraretinal layer segmentation approach to (a) help determine

which macular layers show significant changes in thickness in unilateral ante-

rior ischemic optic neuropathy (AION) subjects and (b) perform pilot analysis

of localized thickness and thickness variability of individual layers in normal

subjects.

Note that in addition to the contributions to the ophthalmic community provided

by all the aims, the medical image analysis community will also be particularly in-

terested in Aims 1 and 2 because of the ability to apply the graph search extensions

to other applications as well.

1.2 Thesis overview

This thesis is divided into 8 chapters. An overview of each of the remaining

chapters follows:

• Chapter 2 provides additional background information, including a discussion of

age-related eye diseases, optical coherence tomography, the layers of the retina,

and prior approaches for the segmentation of OCT images.

• Chapter 3 provides a review of optimal graph search concepts and describes

two extensions to the optimal 3-D graph search: the incorporation of varying

constraints and the incorporation of regional information.

• Chapter 4 provides a summary of the methods and validation completed for

segmenting time-domain OCT images.
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• Chapter 5 provides a summary of the methods and validation completed for

segmenting spectral-domain OCT images.

• Based on the segmentation approaches described in Chapters 4 and 5, Chapter

6 provides a regional analysis of localized thickness measurements in unilat-

eral AION subjects and a pilot study of the localized thickness and thickness

variability in normal subjects.

• Chapter 7 provides a general discussion and future directions.

• Chapter 8 provides some concluding remarks.

In addition, the appendix provides some additional background on relevant graph-

theoretic concepts.
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CHAPTER 2
BACKGROUND AND SIGNIFICANCE

2.1 Age-related eye diseases

Based on demographics from the 2000 US Census, 1 in 28 Americans older than

40 years are currently affected by blindness or low vision, with the prevalence ex-

pected to increase markedly in the next 20 years as the population ages [8]. The

four leading causes of blindness and visual impairment affecting older Americans are

age-related macular degeneration (AMD), cataract, diabetic retinopathy, and glau-

coma [9]. While cataract affects the front of the eye (clouding of the lens), the

remaining three major eye-related diseases affect the retina and/or optic nerve head

at the back of the eye. An important difference between cataract and the other three

eye diseases is that cataract is usually noticed by the patient early enough for ade-

quate treatment, while the early forms of AMD, glaucoma, and diabetic retinopathy

are usually not noticed by the patient, causing substantial damage unless diagnosed

early.

Fig. 2.1 provides a simulated view of a scene as might be observed by a patient

with each of these three diseases. As illustrated Fig. 2.1(b), age-related macular

degeneration (AMD) often affects the area of central vision. There are actually two

forms of AMD: dry AMD and wet AMD. Dry AMD is the chronic, usually slowly

progressive form, while wet (exudative, neovascular) AMD is the less common, but

more acute and severe form of the disease. Wet AMD, if diagnosed too late and/or

left untreated, will rapidly progress to major visual loss. This process, known as

choroidal neovascularization, involves the growth of abnormal, leaking blood vessels

under the macula (part of the retina responsible for central vision – see Fig. 2.2),

ending with atrophy and scarring of the macula.

Diabetic retinopathy (Fig. 2.1(c)) is a complication of diabetes, which if undiag-

nosed or left untreated, can lead to hemorrhage, scarring and atrophy in the retina
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through vascular damage and ischemia. In proliferative diabetic retinopathy, abnor-

mal blood vessels lead to hemorrhages and destruction of retinal tissue. Diabetic mac-

ular edema (DME) occurs when the abnormal blood vessels leak, leading to swelling

of the macular tissue and damage to photoreceptors.

Glaucoma (Fig. 2.1(d)) is an optic neuropathy, involving gradual damage to the

retinal ganglion cells and their axons that lead into the optic nerve and further into

the visual areas of the brain. Because of the redundancy of the human visual system,

which is more pronounced in central vision, this initially leads to peripheral vision

loss.

2.1.1 Current clinical management

The three eye diseases mentioned in the previous section are usually managed with

a combination of early diagnosis, medical and surgical treatment, and close follow-

up. For AMD, new effective treatments have recently become available in the form

of anti-VEGF (VEGF = vascular endothelial growth factor) treatments. A combi-

nation of fundus photography, indirect ophthalmoscopy, stereo biomicroscopy of the

macula, fluorescein angiography, and optical coherence tomography are used to make

the diagnosis and manage the patient with anti-VEGF drugs as well as laser surgery.

For diabetic retinopathy, fundus photography, indirect ophthalmoscopy, stereo biomi-

croscopy of the macula, fluorescein angiography, and optical coherence tomography

are used to diagnosis and manage the patient. While proliferative diabetic retinopa-

thy is usually managed by laser and vitreoretinal surgery, DME is usually managed

by laser surgery, anti-inflammatory drugs, and anti-VEGF drugs.

In glaucoma, intraocular pressure (IOP) measurements (tonometry), examining

the optic nerve head at the back of the eye using indirect ophthalmoscopy and optic

disc stereo biomicroscopy, examining the front of the eye using anterior segment

slit lamp biomicroscopy, checking whether the angle between the iris and cornea is

“open” or “closed” using gonioscopy, and measuring visual fields using static or kinetic
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(a) (b)

(c) (d)

Figure 2.1: Simulated view of a scene as might be perceived with patients with
age-related eye diseases. (a) Normal view. (b) View from the perspective of someone
with wet age-related macular degeneration. (c) View from the perspective of someone
with diabetic retinopathy. (d) View from the perspective of someone with glaucoma.
(Images courtesy of National Eye Institute, National Institutes of Health.)
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Figure 2.2: The eye. (a) 3-D illustration of the eye (obtained courtesy of Mark
Erickson from JirehDesign.com). (b) Fundus photograph with labeled macula and
optic nerve.

perimetry are used, as well as retinal never fiber layer imaging techniques including

scanning laser polarimetry (e.g., GDx), confocal scanning laser ophthalmoscopy (e.g.,

Heidelberg Retinal Tomography or HRT), and optical coherence tomography (OCT).

Most of these conventional techniques are based on en-face examination of the

retina. However, all three diseases affect the thickness of structures as well, such as

macular thickening in diabetic macular edema and AMD, and retinal nerve fiber and

ganglion cell layer thinning in glaucoma. Though stereo biomicroscopy can result in

a subjective assessment of thickness differences of retinal structures, only with the

advent of scanning laser polarimetry, confocal SLO and especially OCT, objective

measurements of the thickness of retinal structures are now clinically achievable [10].

More importantly, evidence is now available that these objective measures are clini-

cally relevant.
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2.2 Optical coherence tomography

With its ability to obtain high-resolution cross-sectional views of the retina or

optic nerve head (Fig. 2.3), optical coherence tomography is becoming an increasingly

important modality for assessing ocular diseases such as AMD, DME, and glaucoma.

Until recently, all commercial systems were time-domain systems (Fig. 2.4(a)). Now

spectral-domain systems (Fig. 2.4(b)) have also become available, thus allowing the

acquisition of substantially more data. A brief overview of each of these systems is

provided in the next few sections.

2.2.1 Time-domain OCT

The retinal images of most current commercial OCT systems such as the Stratus

OCT-3 (Fig. 2.4(a)) of Carl Zeiss Meditec are acquired in the time-domain. The

acquisition speed of such systems limits the number of slices that can be reasonably

acquired in a scanning sequence to about six. As illustrated in Fig. 2.5, the two

regions of the retina commonly scanned are the macula and the peripapillary region

(region near the optic disc). One common scanning protocol for acquiring scans in the

macular region involves the acquisition of six linear radial scans in a “spoke pattern”

centered at the fovea (e.g., the Fast Macular protocol on the Stratus OCT-3). When

acquiring scans surrounding the optic disc, it is common to use a number of circular

scans. An example set of six radial images from a macular OCT series can be found

in Fig. 2.6.

2.2.2 Spectral-domain OCT

The latest generation (available in late 2007) of commercial scanners are spectral

OCT scanners [2], thus allowing true volumetric data to be acquired. An example

spectral-domain OCT machine (Cirrus, from Carl Zeiss Meditec, Inc., Dublin, CA) is

shown in Fig. 2.4(b). For example, while a typical time-domain OCT image from a

current commercial scanner might have dimensions of 6× 128× 1024 pixels, a typical
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(a)

(b)

Figure 2.3: Cross-sectional views of the retina and optic nerve head using OCT. (a)
Slice of macula using Spectralis (Heidelberg Engineering). (b) Slice of optic nerve
head using Spectralis (Heidelberg Engineering).
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(a) (b)

Figure 2.4: Example OCT scanner systems. (a) Stratus OCT-3 (time-domain system
by Carl Zeiss Meditec, Inc., Dublin, CA). (b) Cirrus (spectral-domain system by Carl
Zeiss Meditec, Inc., Dublin, CA).

spectral OCT image might have dimensions of 200 × 200 × 1024 pixels (Fig. 2.7).

Other enhancements to OCT systems, such as the use of adaptive optics [11] and the

use of better light sources for producing “ultrahigh-resolution” images [12], have also

been reported in the literature.

2.3 The layers of the retina

Covering the inside of most of the eye (Fig. 2.8), the retina is a multilayered

structure responsible for transforming light energy into neural signals for further use

by the brain. In very general terms, the processing of light starts with the light-

sensitive photoreceptor cells (rods and cones), which are actually located in the outer

portion of the retina (away from the incoming light). These cells convert the light

signal into action potentials that are transmitted by the bipolar neurons in the central

layers of the retina to the ganglion cells of the inner retina. It is the axons of the

ganglion cells that eventually exit the eye to form the optic nerve. Other cells in

the retina, such as horizontal cells, amacrine cells and interplexiform neurons, also

help in the processing of the neural signal at a local level. Neuroglial cells (such as
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Figure 2.5: Schematic view of the macular (a–c) and circular (d–f) scanning protocols
on the Stratus OCT-3. (a) Scans in macular series on the right eye. (N = nasal, T =
temporal.) (b) Scans in macular series on the left eye. (e) Visualization of acquired
macular scans for one eye in 3-D. Each color represents a different 2-D scan. (d)
Scans in peripapillary circular series on the right eye. (e) Scans in peripapillary
circular series on the left eye. (f) Visualization of acquired circular scans for one eye
in 3-D.

Figure 2.6: Example six raw scans in a macular scan series. Note that the colored
borders correspond to those found in Fig. 2.5(a)–(c).
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time2 mm

6 mm

6 mm

200 slices

Figure 2.7: Example dimensions of a 3-D spectral OCT image. A typical spectral
OCT images covers a volume of 6× 6× 2 mm3 (200× 200× 1024 cubic voxels) using
one of the protocols on the Cirrus machine by Carl Zeiss Meditec.

Müller cells) provide structure and support [13]. Many of the cells of the retina are

illustrated in Fig. 2.8(a).

Based on its appearance from light microscopy (Fig. 2.8(b)), the retina is tradi-

tionally considered to be composed of the following ten major “layers” (starting with

the outermost layer) [13]:

• Reginal pigment epithelium (RPE): single layer of pigmented hexagonal cells.

• Photoreceptor layer: the outer (containing the light-sensitive discs) and inner

segments of rods and cones.

• External (or outer) limiting membrane (ELM or OLM): intercellular junctions

between photoreceptor cells and between photoreceptor and Müller cells (not

an actual membrane).

• Outer nuclear layer (ONL): rod and cone cell bodies.

• Outer plexiform layer (OPL): synapses between photoreceptor cells and cells

from the inner nuclear layer.

• Inner nuclear layer (INL): cell bodies of bipolar cells, horizontal cells, amacrine

cells, interplexiform neurons, Müller cells, and some displaced ganglion cells.

• Inner plexiform layer (IPL): synaptic connections between bipolar cell axons

and ganglion cell dendrites.
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Figure 2.8: Different views of the retina. (a) Schematic illustration of cellular layers
of retina (copied with permission from Helga Kolb [14]). (b) Light micrograph of
a vertical scan through central human retina (copied with permission from Helga
Kolb [15]) (c) Cross section of the eye with illustration of the retina (modified with
permission from Helga Kolb [15]) (d) OCT view of macular retina.
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• Ganglion cell layer (GCL): mostly ganglion cell bodies.

• Nerve fiber layer (NFL): ganglion cell axons.

• Internal limiting membrane (ILM): innermost membrane of retina separating

the retina from the vitreous.

Intraretinal layers are also visible from optical coherence tomography images as shown

in the example image of Fig. 2.8(d). Note that the precise anatomical correspondence

of the layers visible in OCT images is not known. The anatomical labels are our

current presumption based on comparisons with histology and images from higher-

resolution OCT scanners published in the literature [16].

2.4 Clinical motivation for intraretinal layer
segmentation

One general clinical motivation for the availability of an intraretinal layer seg-

mentation approach is to enable the creation of better quantitative tools for helping

ophthalmologists diagnose and monitor ocular diseases. Because of the large amounts

of information provided within the images, the potential impact of such a 3-D segmen-

tation approach for many different applications is high. Some example applications

include:

1. Earlier detection of ganglion cell loss in cases of concurrent optic nerve swelling:

In cases of optic disc edema (as is often associated with acute stages of optic

neuropathies), the thickness of the retinal nerve fiber layer on peripapillary

scans (i.e., circular scans surrounding the optic disc) may not reflect the true

neural loss. It is possible that information in the macular scans, such as the

thickness of the ganglion cell layer from an intraretinal segmentation, may be

able to detect such loss at an earlier stage.

2. Better understanding of what quantitative features on OCT images predict

visual disfunction in diseases such as AMD, DME, and glaucoma: As a long

term goal, it would be desirable to be able to predict future disfunction from a
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patient’s current history of OCT images and other data. This would help guide

ophthalmologists on treatment options and understanding the progression of the

diseases. However, it would also be useful just to understand what features from

OCT images are currently associated with visual disfunction. To do this, an

intraretinal layer segmentation would be necessary in order to extract individual

layer properties such as thickness or texture.

More applications and additional clinical background information will be provided in

later chapters (e.g., see Chapter 7).

2.5 Prior approaches for the segmentation of
OCT images

Even though multiple layers of the retina are identifiable on OCT images, commer-

cially available systems currently only segment and provide thickness measurements

for one layer of the retina (i.e., the total retina on macular scans and the retinal nerve

fiber layer on peripapillary scans). Although we do not know the proprietary details

of the segmentation approach used, it is most likely a 2-D approach. Similarly, to the

best of our knowledge, the reported approaches by others [17–24] for the segmenta-

tion of OCT images have been two-dimensional in nature (i.e., if multiple 2-D slices

are available in a particular scanning sequence they are segmented independently).

Thus, applying these approaches to the segmentation of 3-D images (e.g., by repeat-

edly applying the 2-D approach to each slice) would not take advantage of any 3-D

contextual information. In fact, many of the reported approaches do not even take full

advantage of 2-D contextual information as they first rely on finding intensity peaks

from each preprocessed A-scan (column) separately [17–20, 22, 23]. While variations

to each of the prior approaches exist for the segmentation of retinal boundaries, a

typical approach proceeds as follows:

• Preprocess the image (e.g., with a median filter as in [17–20] or anisotropic

diffusion filter as in [22]).
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• Perform a 1-D peak detection algorithm on each A-scan (column) of the pro-

cessed image to find points on each border of interest.

• (For only a few approaches) Process the points further to correct for possible

discontinuities in the 1-D border detection approaches (e.g., use Markov model-

ing to connect smaller segments to the largest continuous segment followed by

spline-fit as in [17, 18]).

Other prior approaches include the use of 2-D dynamic programming by Baroni et

al. [24] and manually-initialized deformable models for the segmentation of fluid-filled

regions by Cabrera Fernández [21].

The prior segmentation approaches by others have attempted to find different

numbers of boundaries of the retina. In particular, Koozekanani et al. [17, 18] found

2, Baroni et al. [24] found 3, Shahidi et al. found 4 [23], Ishikawa et al. [19, 20]

found 5, and Cabrera Fernández found 7 [22]. Because most authors reported lim-

ited quantitative validation, it is difficult to assess the robustness of the approaches.

Nevertheless, based on the given results and personal communication with some of

the authors, it is clear that better segmentation approaches are needed for greater

accuracy.

2.6 Optimal 3-D segmentation

While it is often simpler to repeatedly perform a 2-D approach for the 3-D segmen-

tation of surfaces, the lack of 3-D contextual information can produce segmentation er-

rors [6]. However, many traditionally used 3-D surface segmentation approaches such

as level-sets [25–29] and active-shape/active-appearance models (AAM/ASM) [30–33]

involve converging to a local minimum, and thus do not guarantee finding a globally-

optimal solution. Similarly, some other 3-D surface segmentation approaches must

rely on heuristic solutions because of the computational demands of finding an opti-

mal solution [3, 34]. Other approaches that do not explicitly involve an optimization
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problem, such as region-growing, are prone to their own set of problems such as

leaking.

The recent work by Wu and Chen [7] and later extended to the multiple surface

case by Li et al. [6] reflects a notable exception that allows for the optimal detection

of surfaces in low-polynomial time. In these approaches, the surface (or multisurface)

segmentation task is transformed into that of finding a minimum-cost closed set in a

constructed vertex-weighted geometric graph. The edges of the graph are defined so

that each closed set in the graph corresponds to a feasible surface (or set of feasible

surfaces). Furthermore, the vertex costs are assigned so that the cost of each closed

set directly corresponds to the cost of the set of surfaces. The closed set with the

minimum cost (corresponding to the optimal set of surfaces) is then determined by

finding a minimum s-t cut in a closely-related graph.

Note that even though the surfaces are ultimately found by finding a minimum-

cost s-t cut in a constructed graph, these approaches [6,7] are fundamentally different

than the “graph cut” methods of Boykov et al. (e.g., [35]), which represent another

option for optimally performing segmentation tasks in 3-D. However, perhaps most

importantly for the purposes of intraretinal layer segmentation, one advantage of using

the optimal graph search approaches in [6,7] over that of the graph cut methods [35],

is the ability to find multiple surfaces simultaneously. Other potential advantages

include: 1) the ability to constrain the topology of the found surfaces, 2) the fact

that the segmentation problem is directly formulated as finding surfaces instead of

assigning “labels” to voxels, and 3) the clear separation of the surface feasibility

constraints and the surface costs in the graph representation.
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CHAPTER 3
MULTI-SURFACE IMAGE SEGMENTATION – EXTENSIONS OF

OPTIMAL 3-D GRAPH-BASED SURFACE DETECTION

In this chapter, we review the original optimal 3-D graph search and present two

extensions: the incorporation of regional information (presented at IPMI 2007 [36])

and the incorporation of varying constraints (presented at MICCAI 2007 [37]). Note

that the appendix provides some additional background on relevant graph concepts.

3.1 Review of optimal 3-D graph search
concepts

Recall that the optimal 3-D graph search approach is designed to solve what we

will call the “multiple surface segmentation problem.” An overview of the steps used

in this approach are illustrated in Fig. 3.1. In very general terms, the multiple surface

segmentation problem can be thought of as an optimization problem with the goal

being to find the set of surfaces with the minimum cost such that the found surface

set is feasible. Thus, there are two major components to the problem specification:

1) the specification of the constraints to require surface set feasibility and 2) the

formalization of the cost of a set of surfaces. The first step in the graph search

approach is to construct a graph such that the minimum-cost closed set of the graph

corresponds to the set of surfaces with the minimum cost. (A closed set is a subset

of the vertices of a graph such that no directed edges leave the set.) This is done

by 1) ensuring that there is a one-to-one correspondence between each closed set in

the constructed graph and each feasible surface set and 2) ensuring that the cost of

each closed set in the graph corresponds (within a constant) to the cost of a set of

(feasible) surfaces. Thus, it is the structure of the graph that reflects the feasibility

constraints and vertex weights of the graph that reflect the cost functions. Finally,

the actual minimum-cost closed set is found by finding minimum-cost s-t cut in a

closely related graph [6, 7] (also see the appendix).
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Figure 3.1: Review of optimal 3-D graph search approach. First, the multiple surface
segmentation problem is transformed into the graph-theoretic problem of finding a
minimum-cost closed set in a geometric graph. The graph is constructed so that the
structure of the graph reflects the feasibility constraints and the vertex weights of the
graph reflect the cost function. Finally, the minimum-cost closed set is found in the
constructed graph by finding a minimum s-t cut in a closely related graph.
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3.1.1 Limitations

However, in its original formulation, the 3-D optimal graph search method em-

ployed surface feasibility constraints that were constant in each direction. For exam-

ple, the smoothness constraints for a particular surface f(x, y) were represented by

two parameters, ∆x and ∆y, reflecting the allowed change in surface height when mov-

ing from one neighboring surface point to the next in the x-direction and y-direction,

respectively. Similarly, the surface interaction constraints (reflecting the allowed min-

imum and maximum distances between surface pairs) were constant. More flexibility

in constraining surfaces to particular shapes would be obtained if varying constraints

were allowed. Such a change would especially be important for surfaces in which the

needed constraints are expected to change based on location (e.g., the foveal region

in OCT images).

Furthermore, in its original formulation [6, 7], the cost of a set of surfaces was

defined as a summation of cost values associated with voxels on the surfaces (i.e.,

the cost of a voxel with respect to a particular surface reflected the unlikeliness that

the voxel would be part of the surface). While such “on-surface” costs can incor-

porate both image edge and regional information (e.g., see [38, 39] and variation 1

of Chapter 4), the incorporation of regional information is often limited to a region

immediately surrounding the voxel for which the cost is defined (especially in cases of

multiple surface detection). In some applications, better cost functions could likely be

defined if “true” regional information could be incorporated. This involves extending

the definition of the cost of a set of surfaces to also include the summation of in-

region cost values in addition to the on-surface cost values. The in-region cost value

for a voxel associated with a particular region would reflect the unlikeliness of that

voxel belonging to the region. Thus, this chapter focuses on the development of an

“extended version” of the optimal graph search approach that incorporates varying

constraints and regional cost function terms.
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3.2 Incorporating varying constraints

3.2.1 Surface set feasibility with varying constraints

Consider a volumetric image I(x, y, z) of size X×Y ×Z. We focus on the case in

which each surface of interest can be defined with a function f(x, y) mapping (x, y)

pairs to z-values. Associated with each (x, y) pair is a column of voxels in which

only one of the voxels — the voxel at (x, y, f(x, y)) — intersects the surface. Each

column also has a set of neighbors. We use a “4-neighbor” relationship in which the

set of neighbors for the column associated with (x, y) are the columns associated with

(x + 1, y), (x− 1, y), (x, y + 1), and (x, y − 1). Other neighborhood relationships are

also possible. One common example is to add a “circularity” neighbor relationship

for images that are unwrapped from a cylindrical coordinate system. An example of

this would be if the column associated with (0, y0) is considered to be a neighbor to

the column associated with (X − 1, y0).

In prior work, a single surface is considered feasible if the difference in z-values

of neighboring surface points is less than or equal to a constant parameter (∆x in x-

direction, ∆y in y-direction). For example, for neighboring columns {(x1, y1), (x2, y2)}

in the x-direction, this requires that

−∆x ≤ f(x1, y1)− f(x2, y2) ≤ ∆x. (3.1)

A similar constraint exists for neighbors in the y-direction.

Instead, we propose to allow the smoothness constraints to vary as a function of

the column neighborhood pair. For a given neighborhood pair {(x1, y1), (x2, y2)}, the

constraint becomes:

−∆u
{(x1,y1),(x2,y2)}

≤ f(x1, y1)− f(x2, y2) ≤ ∆l
{(x1,y1),(x2,y2)}

, (3.2)

where ∆u
{(x1,y1),(x2,y2)}

reflects the maximum allowed increase in z-value when moving
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on a surface from column (x1, y1) to column (x2, y2) and ∆l
{(x1,y1),(x2,y2)}

reflects the

maximum allowed decrease in z-value.

For a set of surfaces, additional constraints are added to model the desired rela-

tionships between the surfaces. For example, it may be known that one surface is

always above another surface and that the distance between the surfaces is at least

δl voxels, but no more than δu voxels (note the notational difference in δ used for

surface interaction constraints and ∆ used for smoothness constraints). Again, in

prior work, these constraints were constant. Here, we allow these constraints to be a

function of (x, y) so that in principle, a different interaction constraint can be used

for each column.

3.2.2 Graph representation of surface set feasibility

The structure of the constructed graph reflects the feasibility constraints. Recall

that this means that there must be a one-to-one correspondence between each feasible

surface set and a closed set in the constructed graph. The graph is constructed in

a similar manner as reported in [6] with the exception that the edges of the graph

must take into account the varying constraints. First, one graph is created for each

surface to be found. Then, intracolumn and intercolumn edges are added to enforce

the surface smoothness constraints (Fig. 3.2(a-b)). Finally, the individual graphs

are connected with intersurface edges to enforce the surface interaction constraints

(Fig. 3.2(c-d)). Fig. 3.3 provides a 2-D toy example providing an intuitive illustration

of how such a graph structure can enforce the feasibility constraints. Note that the

“upper envelope” of the closed set corresponds to the surface.

More specifically, we will consider the added edges for one vertex (x1, y1, z1) as-

sociated with a voxel towards the center of the image (i.e., a vertex not involved

in boundary conditions). It will be associated with two intracolumn directed edges:

one directed towards the vertex below it in the column and one from the vertex

above it. Two intercolumn edges will also exist for each neighboring column (x2, y2):
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col0 col1 coli−1 coli coli+1 colX−2 colX−1

pr{0,1} pr{i−1,i} pr{i,i+1} pr{X−2,X−1}
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z

(a)

coli coli+1

pr{i,i+1}

∆u
{i,i+1}x

∆l
{i,i+1}x

x

z

(b)

Intersurface edges

(c)

δl

δu

(d)

Figure 3.2: Graph representation of feasibility constraints. (a–b) Surface smoothness
constraints (shown only in x-direction using simplified notation). (b–c) Intersurface
edges are added between the surface subgraphs to enforce the surface interaction
constraints.
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(a) Vertices (b) Intracolumn edges (c) Intercolumn edges

(d) Not a closed set (e) A closed set (f) Not a closed set

Figure 3.3: 2-D closed set toy example. (a–c) Creation of graph to enforce constant
surface smoothness constraints (∆x = 1). (d) Highlighted yellow vertices do not form
a closed set because a number of edges (in red and yellow) leave the set, providing an
intuitive illustration of why the intracolumn edges are important in enforcing surface
feasibility. (e) Highlighted yellow vertices form a closed set because all of the directed
edges stay within the set. (f) Highlighted yellow edges do not form a closed set
because two edges (indicated in red and yellow) leave the set, providing an intuitive
illustration of why the intercolumn edges are important in enforcing the smoothness
constraints.
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one directed to the vertex in the neighboring column that has a z-value that is

∆l
{(x1,y1),(x2,y2)}

smaller and one from the vertex in the neighboring column that has

a z-value that is ∆u
{(x1,y1),(x2,y2)}

greater (Fig. 3.2(b)). Finally, for each corresponding

column in the volume associated with a surface interaction constraint, two intersur-

face edges are associated with the vertex: one to the vertex in the corresponding

column with a z-value that is δu(x1, y1) smaller and one from the vertex in the corre-

sponding column with a z-value that is δl(x1, y1) smaller (assuming the surface for the

given vertex is supposed to be “above” the interacting surface – see Fig. 3.2(c-d) with

the blue surface graph being above the red surface graph; if not, the edge directions

are reversed). Slightly different edges must be used in the “boundary cases” in which

any of those vertices do not exist [6].

3.3 Incorporating regional information

3.3.1 Cost of a feasible surface set

Given a set of n non-intersecting surfaces {f1(x, y), f2(x, y), . . . , fn(x, y)}, the

surfaces naturally divide the volume into n + 1 regions (Fig. 3.4). Assuming the

surfaces are labeled in “increasing” order, the regions can be labeled R0, . . . , Rn,

where Ri reflects the region that lies between surface i and surface i + 1 (with region

boundary cases R0 and Rn being defined as the region with lower z-values than

surface 1 and the region with higher z-values than surface n, respectively). Each

voxel can thus have 2n + 1 real-valued costs associated with it: n on-surface costs

corresponding to the unlikeliness of belonging to each surface and n+1 in-region costs

associated with the unlikeliness of belonging to each region. Let csurfi(x, y, z) represent

the on-surface cost function associated with surface i and cregi
(x, y, z) represent the

in-region cost function associated with region i. Then, the cost C{f1(x,y),f2(x,y),...,fn(x,y)}
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f2(x, y)

R0
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R2
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z

(a)

∑
(x,y,z)∈R0

creg0
(x, y, z)

∑
(x,y,z)∈R1

creg
1
(x, y, z)

∑
(x,y,z)∈R2

creg
2
(x, y, z)

∑
{(x,y,z)|z=f1(x,y)} csurf1(x, y, z)

∑
{(x,y,z)|z=f2(x,y)} csurf2(x, y, z)

(b)

Figure 3.4: Example schematic cost of two surfaces for the multiple surface segmen-
tation problem. The two surfaces divide the volume into three regions.

associated with the set of surfaces can be defined as

C{f1(x,y),f2(x,y),...,fn(x,y)} =
n∑

i=1

Cfi(x,y) +
n∑

i=0

CRi
, (3.3)

where

Cfi(x,y) =
∑

{(x,y,z)|z=fi(x,y)}

csurfi
(x, y, z) , (3.4)

and

CRi
=

∑

(x,y,z)∈Ri

cregi
(x, y, z) . (3.5)

Note that Cfi(x,y) reflects the cost associated with voxels on surface i and CRi
reflects

the cost associated with voxels belonging to region i.

3.3.2 Graph representation of surface set costs

The cost of each vertex in the graph is set such that the cost of each closed set

corresponds to the cost (within a constant) of the set of surfaces. (The cost of a

closed set is the summation of the costs of all the vertices.) The weight wi(x, y, z)
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of each vertex (i = 1, 2, . . . , n) can be defined as the summation of a term related

to the on-surface costs (won−surfi
(x, y, z)) and a term related to the in-region costs

(win−regi
(x, y, z)):

wi(x, y, z) = won−surfi
(x, y, z) + win−regi

(x, y, z) . (3.6)

3.3.2.1 On-surface costs

For on-surface costs, the cost of each vertex is assigned the on-surface cost of the

corresponding voxel minus the on-surface cost of the voxel below it [6, 7]:

won−surfi(x, y, z) =






csurfi
(x, y, z) if z = 0

csurfi
(x, y, z)− csurfi(x, y, z − 1) otherwise

. (3.7)

This is illustrated with a 2-D toy example in Fig. 3.5. In addition, to ensure that a

nonempty closed set is ultimately determined, the cost of one of the vertices of the

graph is modified so that the summation of all of the “base” vertices is negative, as

illustrated in Fig. 3.6.

As a contrast, Fig. 3.7 illustrates the same toy example using a dynamic pro-

gramming approach (finding a minimum-cost path in a graph as described in the

appendix). As dynamic programming is a popular 2-D graph-based segmentation

approach, this example is provided to make some of the similarities and differences

more clear. However, it is important to remember that even though both approaches

work for finding optimal boundaries in 2-D, the minimum-cost path approach does

not scale well to multiple dimensions.

3.3.2.2 In-region costs

For in-region costs, the cost of each vertex is assigned the in-region cost of the

region below the surface associated with the vertex minus the in-region cost of the
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Figure 3.5: Correspondence of image on-surface costs with closed set costs. (a) Ex-
ample on-surface cost function. (b) Graph representation of on-surface costs. (c)
Example surface highlighted in yellow (surface cost = 50). (d) Corresponding closed
set highlighted in yellow (closed set cost = 50).
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Figure 3.6: Additional cost transformation to ensure that a nonempty closed set will
be found. The cost of one vertex in the base graph (bottom row of vertices in this
figure) is modified so that the summation of all of the vertices in the base graph is
negative.

region above the surface associated with the vertex:

win−regi
(x, y, z) = cregi−1

(x, y, z)− cregi
(x, y, z) . (3.8)

Because the use of in-region costs is new and perhaps less intuitive, Fig. 3.8

illustrates why such a transformation works and Figs. 3.9 and 3.10 provide a toy

example in 2-D. The cost of the closed set C(VCSi
) associated with surface i using

the in-region costs becomes

C(VCSi
) =

∑

(x,y,z)∈R0
⋃
···

⋃
Ri−1

cregi−1
(x, y, z)−

∑

(x,y,z)∈R0
⋃
···

⋃
Ri−1

cregi
(x, y, z) . (3.9)

Recognizing that many of costs associated with each individual region cancel when

added together and the fact that
∑

(x,y,z)∈R0
⋃
···

⋃
Rn

cregn
(x, y, z) is a constant K (e.g.,

440 for the toy example illustrated in Figs. 3.9 and 3.10), the cost for the closed set
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Figure 3.7: Same toy example using a dynamic programming approach (finding a
minimum-cost path). Note that while both a path-based and closed-set-based ap-
proach can be used to find an optimal surface in 2-D (as in this toy example), the
path-based approach does not scale to multiple dimensions, but the closed-set ap-
proach does.
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Figure 3.8: Schematic showing how the assignment of in-region costs to vertices
produces the desired overall cost.

associated with the entire set of surfaces C(VCS) reduces to

C(VCS) = −K +

n∑

i=0

∑

(x,y,z)∈Ri

cregi
(x, y, z) , (3.10)

which, within a constant, is equivalent to the desired in-region component of the cost

of the set of surfaces.

3.4 Incorporating prior knowledge into the
graph search

The clear separation between surface feasibility and surface set costs in the optimal

3-D graph search allows us to focus on each part independently. As an example,

we conclude this chapter by presenting how surface feasibility constraints can be

learned from examples (set of manually-traced boundaries) to incorporate prior shape

information. Later chapters will address using prior knowledge in the cost-function

design.

3.4.1 Learning varying constraints from examples

For purposes of learning the varying smoothness constraints for each surface, it

may be easiest to think of each pair of neighboring columns {(x1, y1), (x2, y2)} as
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Figure 3.9: 2-D toy example illustrating graph representation of in-region costs. (a)
Cost function for region 2. (b) Cost function for region 1. (c) Cost function for region
0. (d) Graph corresponding to surface 2. (d) Graph corresponding to surface 1. Note
that the intersurface edges (that would exist between graph 1 and graph 2) are not
shown.
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Figure 3.10: 2-D toy example illustrating how the cost of a closed set in the graph
corresponds to the desired in-region cost terms. (a) Region 2 cost function with
yellow highlighted vertices indicating vertices selected to be part of region 2 (for
purposes of this example). (b) Region 1 cost function with yellow highlighted vertices
indicating vertices selected to be part of region 1. (c) Region 0 cost function with
yellow highlighted vertices indicating vertices selected to be part of region 0. (d)
Summation of all of the vertices in the region 2 cost function (a constant). (e)
Graph for surface 2 with vertices that are part of the closed set highlighted in yellow
(summation of cost values = -160). (f) Graph for surface 1 with vertices that are part
of the closed set highlighted in yellow (summation of cost values = -160). Note that
C(VCS) = −320 = −440 + 120.
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having its own constraint that needs to be learned separately. The basic idea is use

manual tracings in the training set to determine the mean and standard deviation

of how the z-value changes when moving from column (x1, y1) to column (x2, y2).

Let d reflect the mean deviation (i.e., the mean of f(x1, y1) − f(x2, y2) from the

reference standard) and σ reflect the standard deviation. Then, to allow for 99% of

the expected changes in z-value when moving from column (x1, y1) to column (x2, y2)

(assuming a normal distribution), the two parameters of the smoothness constraint,

∆l
{(x1,y1),(x2,y2)}

and ∆u
{(x1,y1),(x2,y2)}

can be set as follows:

∆l
{(x1,y1),(x2,y2)}

= d + 2.6 ∗ σ , (3.11)

and

∆u
{(x1,y1),(x2,y2)} = −(d− 2.6 ∗ σ) . (3.12)

However, depending on the prior knowledge of the problem, this general case may

not be necessary. For example, it may be sufficient to only learn the constraints in

one direction (e.g., for column pairs in the x-direction) and use a constant constraint

for columns in the other direction. Alternatively, the smoothness constraints can

independently be learned in each direction. In essence, the concept is the same as in

the general case, but fewer constraints are required to be learned, thus requiring less

training data.

The surface interaction constraints can be learned in a similar fashion. For each

surface pairing, the minimum allowed distance between the surfaces at each column

is set as the mean thickness minus 2.6 times the standard deviation (but truncated

not so as not to go below 0). The maximum allowed distance between the surfaces

at each column is set as the mean thickness plus 2.6 times the standard deviation.
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CHAPTER 4
TIME-DOMAIN OCT SEGMENTATION

In this chapter, a summary the completed work related to segmenting time-domain

OCT images in 3-D is presented [36–40].

4.1 Initial work with peripapillary scans

Our initial work in this area, published in MICCAI 2006 [40], involved the 3-D

segmentation of the upper and lower surfaces of the retina on peripapillary OCT scans

(Fig. 4.1) using the optimal 3-D graph search (with only on-surface costs and constant

constraints). After preprocessing the images using a speckle-reducing anisotropic

diffusion method [41], the upper surface (internal limiting membrane) was found first,

followed by the lower surface (retinal pigment epithelium). A different cost function

was used for each surface, but both involved combining an edge and localized regional

term, as discussed in more detail below:

• Edge term: A 3x3 Sobel kernel was convolved with each preprocessed image,

resulting in an estimate the strength of the edge in the z-direction for each voxel

(giving positive values for light-to-dark transitions and negative values for dark-

to-light transitions). Because we expected a dark-to-light transition to occur at

both surfaces, we maintained the signed edge values in the cost function, thus

favoring dark-to-light transitions and discouraging light-to-dark transitions.

• Localized regional term: The regional cost terms were added to help aid in the

detection of the correct surface even when edge information was lacking. For

the internal limiting membrane, we used a normalized cumulative image as our

regional cost term. This was based on the observation that very few bright

voxels exist above (have a smaller z-value than) the internal limiting membrane

in each column. Incorporating a cumulative image into the cost also had the

effect of discouraging the selection of voxels in the pigment epithelial surface, a

necessity since we were finding the internal limiting membrane first.
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For the pigment epithelial surface, we incorporated a localized region-based term

into the cost function that attempted to minimize the regional variances above

and below the surface. As an example, suppose there are only two relatively-

homogeneous regions in a 3-D image separated by a surface S with average

intensities a1 (from voxel locations (x, y, z) inside S) and a2 (from voxel locations

(x, y, z) outside S). Then a regional cost function term as presented by Chan

and Vese [42] can be defined as

F (S, a1, a2) =

∫

inside(S)

|I(x, y, z)− a1)|
2 dx dy dz (4.1)

+

∫

outside(S)

|I(x, y, z)− a2|
2 dx dy dz.

In our work, we maintained the idea of minimizing a variance-like term on either

side of the surface, but we limited the computation to a region of limited size.

Furthermore, because our cost function was voxel-based and not surface-based

(the cost of a surface in this work was computed from a summation of voxel-

based costs and thus could not include terms that depended on the overall

surface properties), we added the variance-like term of the voxels above and

below each voxel for which we were computing the cost:

v̂(r, θ, z) =
z−1∑

k=z−γ

(I(r, θ, k)− Ī−)2 +

z+γ∑

k=z+1

(I(r, θ, k)− Ī+)2, (4.2)

where γ was a constant defining how far above and below the voxel we computed

the variance-like term, Ī− was the average intensity of voxels with smaller z-

values than the voxel at position (r, θ, z), and Ī+ was the average intensity of

voxels with larger z-values than the voxel at position (r, θ, z). However, since

Eq. (4.2) would also favor voxels that were not of interest (e.g., background
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Figure 4.1: Circular scans used in MICCAI 2006 work [40]. (a) Each 3-D OCT image
was composed of six 2-D circular scans surrounding the optic disc, as schematically
shown on the left. One example circular scan is shown on the right. The internal
limiting membrane is the “upper” surface of the retinal layer (smaller z-values) and
the pigment epithelium is the “lower” surface of the retinal layer (larger z-values).
(b) Example 3-D rendering of segmented image, with colors indicating total retinal
thickness.

voxels), the actual regional cost term v(r, θ, z) would use the cost defined by

Eq. (4.2) only if Ī+ were greater than Ī−:

v(r, θ, z) =






v̂(r, θ, z) if Ī+ + ε > Ī−

c otherwise,

(4.3)

where c was a relatively large constant, thereby giving a large cost to potential

surface voxels that do not separate a high intensity region “below” (larger z-

values) from a low intensity region “above” (smaller z-values) the voxel.

The method was tested on 18 3-D data sets obtained using a Stratus OCT-3

scanner: 9 from patients with normal optic discs and 9 from patients with papilledema

(optic nerve swelling). The dimensions of each data set were 6× 128× 1024 (R = 6,

T = 128, Z = 1024). The axial scan length was 2 mm, resulting in a voxel size of

approximately 2 µm in the z-direction. The size of the voxels in the r and θ direction

varied due to the radial nature of the scans. Expert analysis of all the data sets

indicated that our method found the correct surfaces. Fig. 4.2 displays an example
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Figure 4.2: Typical results for one 3-D data set [40]. The results are shown in
increasing circular scan order such that the results for the inner circular scan are
shown in (a), while the results for the outer circular scan are shown in (f). Note that
for easier visualization of the borders, the top and bottom of the images have been
cropped. (h) 3-D view of the internal limiting membrane with colors reflecting retinal
thickness (in pixels).

of a typical segmentation result.

Furthermore, we achieved a decrease in analysis failures from the vitreo-retinal

interface segmentation available using the Stratus OCT-3 method (4/108 minor fail-

ures using our method versus 19/108 minor and 2/108 complete failures using the

Stratus OCT-3 method – see Table 4.1). A circular scan was considered to have a

“minor failure” if the visible deviation of the result from the correct surface was small

enough not to require correction in a clinical setting. A scan was considered to have a

“complete failure” if the result had a large deviation that would require correction in

order for the segmentation to be clinically useful. The complete failures of the Stratus

system are shown in Fig. 4.3, with our results also shown for comparison. Admittedly,

the lack of a reference standard made our validation only preliminary at this stage,

but at minimum, it served as a good “proof-of-concept” study to demonstrate that

the optimal 3-D graph search can work well for the segmentation of OCT images.
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Table 4.1: Count of circular scan failures in our method and the Stratus OCT-3
method for the internal limiting membrane

Scan group Method Minor failures Complete failures Total failures

Normal scans 3-D Graph Search 0 (0.0%) 0 (0.0%) 0 (0.0%)
Normal scans Stratus OCT-3 4 (7.4%) 0 (0.0%) 4 (7.4%)

Papilledema scans 3-D Graph Search 4 (7.4%) 0 (0.0%) 4 (7.4%)
Papilledema scans Stratus OCT-3 15 (27.8%) 2 (3.7%) 17 (31.5%)

All scans 3-D Graph Search 4 (3.7%) 0 (0.0%) 4 (3.7%)
All scans Stratus OCT-3 19 (17.6%) 2 (1.8%) 21 (19.4%)

(a) Our method. (b) Stratus method. (c) Our method. (d) Stratus method.

Figure 4.3: Examples of “complete failures” (arrows) for the Stratus OCT-3 method
and our corresponding results for the internal limiting membrane published in MIC-
CAI 2006 [40]. (a)–(b) Our method versus the Stratus OCT-3 method for an inner
circular scan on a patient with papilledema, (b) is considered a “complete failure.”
(c)–(d) Our method versus the Stratus OCT-3 method for an inner circular scan on
a different patient with papilledema, (c) is considered a “minor failure” and (d) is
considered a “complete failure.”

Furthermore, it was the first work to our knowledge that presented a 3-D approach

for the segmentation of such images.

4.2 Macular segmentation overview

After our initial work with peripapillary OCT segmentation, most of our effort

related to time-domain OCT segmentation was focused on the intraretinal layer seg-

mentation of macular scans [36–39] using the graph search approach presented in

Chapter 3. Recall (see Fig. 2.5 (a–c) and Fig. 2.6 in Chapter 2) that one macular

OCT image series (using the fast macular Stratus OCT-3 protocol) consists of six
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radial linear cross-sectional scans centered at the fovea. In this work, repeated series

were acquired (six, if possible) for each eye, so that up to six raw scans existed at

each angular location. The overall goal of the segmentation method was to deter-

mine surfaces defining the retinal layers on a composite 3-D image derived from the

repeated raw scans.

Fig. 4.4 illustrates the surfaces and corresponding retinal layers we desired to

find on each 3-D composite image (surface 4 is indicated with a hashed line because

it was not found in all variations of our approach). As mentioned in Chapter 2,

based on histology and higher-resolution OCT images published in the literature

[16], we assumed the surfaces roughly had the following anatomical correspondence:

surface 1 corresponded to the vitreo-retinal interface (VRI), surface 2 corresponded

to the separation of the retinal nerve fiber layer (NFL) above from the ganglion cell

layer (GCL) below, surface 3 corresponded to the separation of the inner plexiform

layer (IPL) above from the inner nuclear layer (INL) below, surface 4 corresponded

to separation of INL above from the outer plexiform layer (OPL) below, surface

5 corresponded to the separation of the OPL above from the outer nuclear layer

(ONL) below, surface 6 corresponded to the junction between the photoreceptor inner

and outer segments (IS/OS), and surface 7 corresponded to the separation of the

photoreceptor outer segment (OS) from the retinal pigment epithelium (RPE). The

corresponding six layers (labeled A though F in Figure 4.4(b)) may well be associated

with the following anatomical layers: A) NFL, B) GCL + IPL, C) INL, D) OPL,

E) ONL + IS, and F) OS.

There were two stages to the overall approach: I) the creation of a composite

3-D macular image from the raw scans and II) the determination of the surfaces on

the 3-D composite image. An overview of the data flow in the segmentation process

can be found in Fig. 4.5. While Stage I remained the same in all of our work for

the segmentation of macular time-domain images, Stage II was performed with three
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Figure 4.4: Example composite image with labeled intralayer segmentation (top and
bottom of images have been cropped to aid in visualization). (a) Composite image.
(b) Seven surfaces (labeled 1-7) and six corresponding intralayers (labeled A through
F). The anatomical correspondence is our current presumption based on histology and
example images from higher-resolution research OCT scanners [16]: A) NFL (nerve
fiber layer), B) GCL + IPL (ganglion cell layer and inner plexiform layer), C) INL
(inner nuclear layer), D) OPL (outer plexiform layer), D) ONL + IS (outer nuclear
layer and photoreceptor inner segments), E) OS (photoreceptor outer segments).

different variations:

1. The segmentation of six total surfaces (surfaces 1, 2, 3, 5, 6, and 7) using only

on-surface costs and constant smoothness and interaction constraints [38, 39].

2. The segmentation of seven total surfaces using in-region costs for the interior

surfaces (surfaces 2, 3, 4, and 5) and non-varying smoothness and surface inter-

action constraints [36].

3. The segmentation of seven total surfaces using in-region costs for the interior

surfaces and using varying smoothness and surface interaction constraints [37].

In the next few sections, the methods for Stage I and each of the variations for Stage II

are described in more detail.
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Figure 4.5: Overview of segmentation steps for the data associated with one eye.
First, each individual scan was aligned so that the RPE (boundary 7) was approx-
imately horizontal in the image. Second, images from each location were registered
and averaged to form a composite image. Finally, the intralayer boundaries were de-
termined using a 3-D graph-search approach. All steps were performed automatically.
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Figure 4.6: Individual scan alignment (top and bottom of images have been cropped
to aid in visualization).

4.3 Stage I: Alignment and registration of
macular scans

The 3-D composite image associated with each eye was created in two major

steps. In the first step (Fig. 4.6), raw scans for a particular angular location (e.g.,

all the vertical scans) were individually aligned so that that the boundary 7 (the

retinal pigment epithelium) appeared approximately straight in the aligned image.

The purpose of the alignment was twofold: to aid in the final 3-D segmentation and

to allow for better visualization. Each scan was aligned by first finding boundaries 1,

6, and 7 simultaneously using an optimal graph search approach similar to that used

during stage II (described in more detail in later sections), but performed in 2-D. To

ensure smoothness, a least-squares spline was fit to boundary 7. The columns were

then translated so that this spline would be a straight line in the aligned image.

In the second step of this stage, each aligned image was registered to the first

image in its location set by exhaustively searching for the best whole-pixel transla-

tion (according to the mutual information registration metric [43]) to align each of

its columns to the corresponding target image column. The position of boundary

7 determined during the first step was used as a guide to determine the range of
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(a) (b)

Figure 4.7: Comparison between an individual scan and a 2-D composite scan (top
and bottom of images have been cropped to aid in visualization). (a) Individual scan.
(b) Composite scan.

translations to be tested for each column. The registered images in each location

set were averaged together to form the composite image for that particular angular

location. The purpose of averaging the images was to obtain a representative scan of

that location that had a higher signal-to-noise ratio than any of the raw scans. An

example of an individual scan and the corresponding 2-D composite scan is shown in

Fig. 4.7. The set of 2-D composite images (one for each angular location) formed the

3-D composite image used in the next stage.

4.4 Stage II: Segmentation of each 3-D
composite image

In the second stage, the surfaces were found on the 3-D composite image. As a

preprocessing step, a speckle-reducing anisotropic diffusion method [41] was applied

(Fig. 4.8). Surfaces 1, 6, and 7 were then simultaneously found using the optimal
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(a) (b)

Figure 4.8: Example of using a speckle-reducing anisotropic diffusion (SRAD) method
as a preprocessing step (top and bottom of images have been cropped to aid in
visualization). (a) Composite scan. (b) Composite scan after application of the
SRAD method.

graph search approach. As mentioned previously, the remaining surfaces were then

found using one of three variations: 1) sequentially using only on-surface costs and

constant constraints [38, 39], 2) simultaneously using only in-region costs and con-

stant constraints [36], or 3) simultaneously using only in-region costs and varying

constraints learned from examples. When detected sequentially, surface 4 was not

detected. The other surfaces were found in the following order: surface 5, surface 3,

and finally, surface 2. Fig. 4.9 illustrates the segmentation order for each variation of

the approach.

The nature of the macular scans (Fig. 2.5(a–c)) made it natural to use a discrete

cylindrical coordinate system when working with each 3-D composite image (the z-

axis coincided with the intersection of the six 2-D composite scans). The coordinates

of each voxel could thus be described with the triple (r, θ, z), where r reflected the
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(a) Variation 1
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Figure 4.9: Surface segmentation order for each variation of the approach. After
finding surfaces 1, 6, and 7 simultaneously, the remaining surfaces were either found
sequentially or simultaneously. (a) Sequential detection of interior surfaces when only
using on-surface costs in variation 1 [38, 39]. (b) Simultaneous detection of interior
surfaces when using in-region costs for interior surfaces in variations 2 and 3 [36,37].
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distance of the voxel from the z-axis, θ reflected the angular location of the voxel (0,

30, 60, 90, 120, 150, 180, 210, 240, 270, 300, or 330), and z reflected the row of the

voxel in the corresponding 2-D image. Note that with this coordinate system, voxels

in the left half of each 2-D image had a different θ value than those in the right half

(for example, for the vertical 2-D scan shown in red in Fig. 2.5(a–c), voxels in the right

half of the image had a θ value of 90 while those in the left half had a θ value of 270).

Each surface could be defined with a function f(r, θ), mapping (r, θ) pairs to z-values.

The base graph in Fig. 4.10 schematically shows the neighborhood relationship for the

columns and the corresponding smoothness constraints when using this coordinate

system.

Using this coordinate system only changed the surface feasibility notation de-

scribed in Chapter 3 slightly. For example, in the constant-constraint case, a surface

was considered feasible if [38, 39]:

• θ smoothness constraint: |f(r, θ +30)− f(r, θ)| was less than or equal to ∆θ for

all (r, θ), θ ≤ 300.

• Circularity constraint: |f(r, 0)− f(r, 330)| was less than or equal to ∆θ for all

r.

• r smoothness constraint: |f(r + 1, θ)− f(r, θ)| was less than or equal to ∆r for

all (r, θ).

• Constraint to connect the left and right halves of the 2-D scans together (a

smoothness constraint): |f(0, θ) − f(0, θ + 180)| was less than or equal to ∆r

for (r, θ) pairs in which 0 ≤ θ ≤ 150.

• Surface interaction constraint for each pair of surfaces f1 and f2: The distance

between the two surfaces was at least δl voxels and at most δu voxels (i.e.,

δl ≤ f1(r, θ)− f2(r, θ) ≤ δu for all (r, θ)).

As described in Chapter 3, the smoothness constraints essentially required the z-

values of neighboring surface points (see Fig. 4.10) on a particular surface to be
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(a) (b)

Figure 4.10: Schematic view of neighborhood relationship for 3-D macular OCT
segmentation. The edges indicate neighborhood connectivity of one “column” of
z-values at a (r, θ) pair to another. For each edge shown, smoothness constraints
existed between corresponding voxel z-columns for the two (r, θ) pairs connected
to the edge. (a) Base graph using cylindrical coordinates. (b) Base graph using
unwrapped coordinate system (as was stored in the computer).

within a specified range (given by±∆θ or±∆r) and the surface interaction constraints

required the surface z-values for a particular surface to be within a specified range of

the corresponding points on the other surfaces. In the varying constraint case, each

of the constraints became a function of (r, θ) location as described for rectangular

coordinates in Chapter 3.

4.5 Cost functions

4.5.1 On-surface cost functions (variation 1)

Clearly the defined cost functions were an important component in determining

the desired surfaces. In the first variation, the cost function for each surface was

constructed from a linear combination of base “intuitive” cost function terms so as

to satisfy expected properties of the surface. For example, it was expected that the

first surface could be characterized by a combination of the following two properties:

1) the presence of an edge with a dark-to-light transition and 2) the lack of bright

voxels above the surface. Correspondingly, the cost function for the first surface was
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Figure 4.11: Some examples for where the image information comes from in a regional
cost function term. Dark borders represent surrounding surfaces (may not be known)
of the surface for which the cost function term is being defined. In cases for which
an upper or lower surrounding surface does not exist (i.e., the first and last surfaces),
the corresponding dark border represents the boundary of the image.

defined as a normalized combination of a signed edge image (to favor the dark-to-light

transition) and a cumulative image (created starting at the top of the image so as to

discourage the detection of surfaces for which there were many bright pixels above

the surface).

The cost functions for all of the surfaces followed the general pattern of having an

edge-based term (to either favor a dark-to-light transition or a light-to-dark transi-

tion) and one or more localized region-based terms (such as the cumulative image used

in the cost function for surface 1). Depending on the prior knowledge of the locations

of other surfaces, regional information used in this variation generally was acquired

from the locations illustrated in Fig. 4.11. Because both surrounding surfaces of each

surface were often not known (surface 2 was the only surface for which the two sur-

rounding surfaces were known) before designing its cost function, it was common to

only use regional information from a limited region surrounding the surface (e.g., as

in Fig. 4.11(a–b)).

More specifically, each of the surface cost functions was constructed from a nor-

malized combination of a set of the following terms:

• Signed edge term (using Sobel kernel) favoring a dark-to-light transition (used
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for surfaces 1, 6, and 7).

• Signed edge term (using Sobel kernel) favoring a light-to-dark transition (used

for surfaces 2, 3, and 5).

• Summation of pixel intensities in a limited region (Fig. 4.11(a)) above each

potential surface voxel to encourage favoring surfaces with dark regions above

surface (used for surfaces 6 and 7).

• Negated summation of pixel intensities in a limited region (Fig. 4.11(a)) above

each potential surface voxel to encourage favoring surfaces with bright regions

above surface (used for surface 2).

• Summation of pixel intensities in a limited region (Fig. 4.11(b)) below each

potential surface voxel to encourage favoring surfaces with dark regions below

(used for surface 3).

• Negated summation of pixel intensities in a limited region (Fig. 4.11(b)) below

each potential surface voxel to encourage favoring surfaces with bright regions

below (used for surfaces 6 and 7).

• Cumulative term acquired starting at the top of the image and accumulating

downwards (Fig. 4.11(c)) to discourage finding surfaces with bright pixels above

the surface (used for surface 1).

• Cumulative term acquired starting from the known boundary below and ac-

cumulating upwards (Fig. 4.11(d)) to discourage finding surfaces with bright

pixels below the surface (used for surface 5).

• Chan-Vese [42] inspired term that attempted to minimize the intensity variances

surrounding the surface. A-priori estimated means of the two regions separated

by the surface were computed from a region surrounding each known surface

(as shown in Fig. 4.11(e) with the lighter intensity region indicated by a dashed

line). Because the best use of this term required the prior location of the two

surrounding surfaces, only surface 2 used this term.
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4.5.2 In-region cost functions (variation 2)

For the work presented at IPMI 2007 [36] and MICCAI 2007 [37], in-region cost

functions were used for finding the interior surfaces simultaneously (surfaces 2, 3, 4,

and 5). (Surfaces 1, 6, and 7 were simultaneously found using the same on-surface

cost functions described in the previous section.)

Motivated by the observation that the intensity of each of the five interior regions

could be described as being dark, medium, or bright (region A was bright, region B

was medium, region C was dark, region D was medium, region E was dark), the in-

region cost values were set based on fuzzy membership functions. Based on Gaussians,

each membership function mapped a normalized image intensity value to a value

between 0 and 1, with higher values reflecting a greater likelihood of belonging to

the particular intensity group. The corresponding cost value was then defined as 1

minus the membership value. Fig. 4.12 shows an example plot of these membership

functions and their corresponding cost values. More specifically, the dark membership

function, darkmem(x), was defined as

darkmem(x) =






1 for x ≤ ∆d

e−(x−∆d)2/2σ2
for x > ∆d

, (4.4)

the medium membership function, medmem(x), was defined as

medmem(x) =






e−(x−(cm−∆m))2/2σ2
for x < cm −∆m

1 for cm −∆m ≤ x ≤ cm + ∆m

e−(x−(cm+∆m))2/2σ2
for x > cm + ∆m

, (4.5)
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Figure 4.12: Example dark, medium, and bright membership functions and corre-
sponding cost values.

and the bright membership function, brightmem(x), was defined as

brightmem(x) =






e−(x−(1−∆b))2/2σ2
for x < 1−∆b

1 for x ≥ 1−∆b

. (4.6)

Note that the precise membership functions used could be described by the five

parameters ∆d, ∆m, and ∆b, cm, and σ. To allow for varying membership functions

for each image, ∆d, cm, and ∆b were estimated from the image data by computing

the mean intensity value of regions that were assumed to have a dark, medium, or

bright intensity, respectively. The assumed dark region was taken as 50–70 µm above

surface 7, the assumed medium region was taken as a 40–60 µm below surface 1 (not

including the middle voxels closest to the fovea), and the assumed bright region was

taken as 0–24 µm below surface 7. These estimates could be taken because surfaces

1, 6, and 7 had already been determined.
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4.6 Incorporation of varying constraints
(variation 3)

For each subject, the smoothness and surface interaction constraints were learned

in a leave-one-subject-out fashion as described in Chapter 3 (but only in the radial

direction as opposed to in both the x and y-directions). Varying surface interaction

constraints (thickness constraints) were used only in the simultaneous segmentation

of the interior surfaces 2, 3, 4 and 5. The varying constraints were computed for the

following surface pairings: 1-2, 2-3, 3-4, 4-5, and 5-6, with cost function modification

used to enforce the constraints for surface pairings 1-2 and 5-6.

4.7 Validation methods

4.7.1 Data

Each variation of the algorithm was tested on fast macular scans from 12 subjects

with unilateral chronic anterior ischemic optic neuropathy. Note that the unilateral

nature of the disease meant that we had data for 24 eyes, 12 of which were affected

by optic neuropathy, 12 of which were not. In almost all cases (21/24 eyes), six

repeated series were used to create the 3-D composite image for each eye. (Each

of the remaining three eyes used fewer than six repeated series to create the 3-D

composite image.) The resulting 24 3-D composite images were each comprised of 6

composite 2-D scans (144 total composite 2-D scans) of size 128 × 1024 pixels. The

corresponding reported physical width and height of the 2-D raw scans (and thus also

the composite scans) was 6 mm × 2 mm, resulting in a pixel size of approximately

50 µm (horizontally) × 2 µm (vertically).

4.7.2 Manual tracing software

Custom-made software for manually tracing boundaries on time-domain Stratus

OCT-3 images (Fig. 4.13) was developed. The software allowed for the “manual

alignment” of the scans to a particular boundary for better visualization while tracing.
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Figure 4.13: Screenshot of manual tracing software developed for tracing macular
time-domain OCT scans.
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4.7.3 Validation of variation 1

One raw scan from each eye was independently traced by three human experts

(using the software illustrated in Fig. 4.13) with the average of the three tracings

being used as the reference standard. Experts were masked to the clinical status of

the scanned eye. The experts did not attempt to trace borders that they did not

consider visible. The algorithmic result on the corresponding composite 2-D scan was

converted into the coordinate system of the raw scan (undoing alignment/registration)

and the mean signed and unsigned border positioning errors for each border were

computed (the middle 30 pixels were not included to exclude the fovea). The signed

and unsigned border positioning errors were also computed between the observers in

the following ways:

• Observer 1 versus observer 2,

• Observer 2 versus observer 3,

• Observer 1 versus observer 3,

• Observer 1 versus the average of observers 2 and 3,

• Observer 2 versus the average of observers 1 and 3, and

• Observer 3 versus the average of observers 1 and 2.

Standard deviations (over images) were also computed.

In addition, in order to compute an example clinically meaningful measure, the

mean thickness (again, not including the middle 30 pixels to exclude the fovea) of

layers defined from the first border to each of the remaining borders was computed

using the algorithm and each observer. The average thicknesses computed from the

three observers was used as a reference standard and the absolute differences between

the algorithmic thicknesses and reference thicknesses were computed. Furthermore,

absolute thickness differences were computed between the observers using the same

cases as was done for computing the border positioning errors.
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4.7.4 Validation of variation 2

One raw scan from each eye was independently traced by two human experts

with the average of the two tracings being used as the reference standard. As in

variation 1, the experts did not attempt to trace borders that were not considered

visible. Again, the algorithmic result on the corresponding composite 2-D scan was

converted into the coordinate system of the raw scan (inversely transforming the

alignment/registration) and the mean and the maximum unsigned border positioning

errors for each border were computed (the middle 30 pixels were not included to

exclude the fovea). The unsigned border positioning errors were also computed using

one observer as a reference standard for the other. For each border, a paired t-test was

used to test for significant differences in the computed mean border positioning errors

(with Bonferroni correction, p-values < 0.05
7

= 0.007 were considered significant).

4.7.5 Validation of variation 3

The same reference standard was used as in variation 2. The mean unsigned border

positioning errors for each border were computed for the method using (piecewise)

constant constraints and the approach with varying constraints. However, the middle

30 pixels were included in this case. The unsigned border positioning errors were also

computed using one observer as a reference standard for the other.

4.8 Results using only on-surface costs
(variation 1)

Tables 4.2 and 4.3 summarize the computed border position errors. Table 4.4 and

Fig. 4.14 summarize the thickness difference results. The border positioning errors

and thickness differences between the algorithm and the reference standard were very

similar to those computed between the observers. For example, the algorithm’s overall

unsigned border positioning error was 6.1 ± 2.9 µm, while the overall observer error

averaged 6.9 ± 3.3 µm (ranging from 5.5 ± 3.0 µm for observer 2 versus the average
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Table 4.2: Variation 1: Summary of mean unsigned border positioning errors.†

Avg. Obs. Obs. 1 vs. Obs. 2 vs. Obs. 1 vs. Obs. 1 vs. Obs. 2 vs. Obs. 3 vs.
Border vs. Algo. Obs. 2 Obs. 3 Obs. 3 Obs. 2,3 Obs. 1,3 Obs. 1,2

1 4.4 ± 1.2 4.0 ± 1.1 4.8 ± 1.4 5.9 ± 1.3 4.3 ± 0.9 3.3 ± 1.0 5.0 ± 1.3
2* 7.6 ± 3.1 6.9 ± 4.4 7.5 ± 4.6 5.8 ± 1.2 5.3 ± 2.3 6.5 ± 4.4 5.9 ± 2.3

3* 6.9 ± 2.0 8.2 ± 2.1 8.6 ± 2.6 8.1 ± 3.0 6.9 ± 2.4 7.5 ± 1.7 7.3 ± 2.3
5 7.0 ± 2.9 7.5 ± 3.0 9.1 ± 3.6 9.4 ± 4.4 7.3 ± 3.2 6.8 ± 2.4 8.4 ± 3.9
6 3.0 ± 1.1 4.4 ± 1.6 5.5 ± 1.8 7.8 ± 2.8 5.6 ± 2.1 3.4 ± 1.0 6.4 ± 2.3
7 7.6 ± 2.9 8.5 ± 4.8 8.0 ± 3.0 11.5 ± 4.6 9.2 ± 4.5 6.2 ± 3.1 9.0 ± 3.0

overall 6.1 ± 2.9 7.0 ± 3.5 7.2 ± 3.3 8.2 ± 3.8 6.5 ± 3.2 5.5 ± 3.0 7.0 ± 3.0

† Mean ± SD for 24 scans in µm. For each boundary, differences were not computed for the middle
30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which boundary was determined to not be visible
by at least one expert.

of observers 1 and 3 to 8.2 ± 3.8 µm for observer 1 versus observer 3). In terms

of thickness differences, the smallest errors for both the algorithm and the observers

were for the layer defined by surfaces 1 and 6 (2.2 ±1.8 µm for the algorithm and an

average of 2.2 ± 1.9 µm for the observers), while the largest errors for the algorithm

were for the layer defined by surfaces 1 and 7 (6.2 ± 3.9 µm). (However, note that

surface 7 was also the surface displaying the largest bias based on the signed border

positioning errors.) The largest thickness differences between the observers were for

the layer defined by surfaces 1 and 5 (overall average error of 8.2 ± 4.5 µm, which is

larger than the algorithm’s error of 4.8 ± 4.7 µm for this layer). Three example results

(reflecting the best case, the median case, and the worst case according to the overall

unsigned border positioning error) are shown in Fig. 4.15. The mean intraretinal

layer segmentation time (after alignment/registration) was 4.1 ± 0.9 minutes (using

a Windows XP workstation with a 3.2 GHz Intel Xeon CPU).

4.9 Results using in-region costs (variation 2)

The computed unsigned and maximal border position errors are summarized in

Table 4.5. Except for the unsigned border positioning errors for surface 2 (which
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Table 4.3: Variation 1: Summary of mean signed border positioning errors.†

Avg. Obs. Obs. 1 vs. Obs. 2 vs. Obs. 1 vs. Obs. 1 vs. Obs. 2 vs. Obs. 3 vs.
Border vs. Algo. Obs. 2 Obs. 3 Obs. 3 Obs. 2,3 Obs. 1,3 Obs. 1,2

1 0.1 ± 2.5 1.4 ± 1.6 3.8 ± 1.9 5.2 ± 1.7 3.3 ± 1.3 1.2 ± 1.6 -4.5 ± 1.6
2* 1.4 ± 3.9 -1.4 ± 5.7 -1.4 ± 5.8 -2.7 ± 2.5 -2.0 ± 3.3 0.0 ± 5.6 2.0 ± 3.5

3* -3.9 ± 3.4 -0.1 ± 3.9 -5.0 ± 4.0 -5.0 ± 3.6 -2.5 ± 3.2 -2.5 ± 3.5 5.0 ± 3.3
5 -3.0 ± 4.9 0.2 ± 4.8 -6.9 ± 5.1 -6.7 ± 6.1 -3.3 ± 4.8 -3.5 ± 3.9 6.8 ± 5.1
6 0.9 ± 1.9 2.7 ± 2.1 4.8 ± 2.4 7.5 ± 3.1 5.1 ± 2.4 1.1 ± 1.7 -6.2 ± 2.6
7 -5.6 ± 4.0 6.1 ± 6.9 5.0 ± 6.1 11.1 ± 4.9 8.6 ± 5.2 -0.5 ± 6.0 -8.0 ± 4.3

overall -1.8 ± 4.4 1.6 ± 5.1 0.2 ± 6.5 1.9 ± 7.8 1.7 ± 5.7 -0.7 ± 4.4 -1.0 ± 6.8

† Mean ± SD for 24 scans in µm. For each boundary, differences were not computed for the middle
30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which boundary was determined to not be visible by
at least one expert.

Table 4.4: Variation 1: Summary of mean absolute thickness differences.†

Avg. Obs. Obs. 1 vs. Obs. 2 vs. Obs. 1 vs. Obs. 1 vs. Obs. 2 vs. Obs. 3 vs.
Border vs. Algo. Obs. 2 Obs. 3 Obs. 3 Obs. 2,3 Obs. 1,3 Obs. 1,2

1–2* 3.1 ± 3.1 4.4 ± 5.0 7.1 ± 3.7 8.1 ± 3.2 5.8 ± 3.0 4.6 ± 3.7 6.9 ± 3.5
1–3* 4.1 ± 3.3 4.1 ± 2.6 8.8 ± 4.2 10.2 ± 3.8 5.9 ± 3.5 4.4 ± 3.2 9.4 ± 3.6
1–5 4.8 ± 4.7 3.5 ± 2.8 10.7 ± 5.0 11.9 ± 6.2 6.6 ± 4.6 5.0 ± 3.1 11.3 ± 5.2
1–6 2.2 ± 1.8 2.2 ± 1.9 2.0 ± 1.4 3.1 ± 2.9 2.4 ± 2.4 1.3 ± 1.0 2.4 ± 2.0
1–7 6.2 ± 3.9 6.4 ± 5.5 5.2 ± 3.9 6.0 ± 4.7 5.9 ± 4.3 5.0 ± 4.2 4.7 ± 3.3

† Mean ± SD for 24 scans in µm.. For each boundary, thickness differences were not computed for
the middle 30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which the lower boundary was determined to not be
visible by at least one expert.
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Figure 4.14: Bar chart of mean thickness differences using variation 1 (error bars
reflect standard deviations).

was significantly greater, p < 0.001), the computed mean errors for all the surfaces

were significantly smaller or not significantly different from that between the human

observers (p < 0.001 for surface 1; p = 0.11 for surface 3; p = 0.04 for surface 4;

p = 0.80 for surface 5; p < 0.001 for surface 6; p = 0.004 for surface 7). The overall

mean (all borders combined) unsigned border positioning error for the algorithm

was 7.8 ± 5.0 µm with an overall maximum unsigned border positioning error of

24.7 ± 12.9 µm. This was comparable to the overall mean and maximum border

positioning errors computed between the observers which were 8.1 ± 3.6 µm and

22.8 ± 9.2 µm, respectively, and compared well with the true 9–10 µm resolution of

the OCT imaging system reported in the literature [44]. An example result is shown

in Fig. 4.16.

4.10 Results using varying constraints
(variation 3)

The computed unsigned border positioning errors are summarized in Table 4.6.

Introducing the varying constraints significantly decreased the mean unsigned bor-

der positioning errors [overall mean error of 7.3 ± 3.7 µm using varying constraints
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(a) Best Case (b) Algorithm (c) Ref. Standard

(d) Median Case (e) Algorithm (f) Ref. Standard

(g) Worst Case (h) Algorithm (i) Ref. Standard

Figure 4.15: Three example results reflecting the best, median, and worst perfor-
mances according to the overall unsigned border positioning error using the first
variation. (a) Best case composite image. (b) Best case composite image with seg-
mented borders. (c) Best case composite image with average manual tracing. (d)
Median case composite image. (e) Median case composite image with segmented bor-
ders. (f) Median case composite image with average manual tracing. (g) Worst case
composite image. (h) Worst case composite image with segmented borders. (i) Worst
case composite image with average manual tracing.
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Table 4.5: Variation 2: Summary of mean unsigned border positioning
errors.†

Algorithm vs. Avg. Observer Observer 1 vs. Observer 2

Border Mean Maximum Mean Maximum

1 4.0 ± 1.2 16.9 ± 9.0 5.9 ± 1.3 16.4 ± 5.0
2* 11.2 ± 5.2 37.1 ± 11.9 5.8 ± 1.2 21.5 ± 8.6

3* 10.0 ± 4.7 29.0 ± 9.3 8.4 ± 3.3 26.0 ± 11.8
4* 10.4 ± 5.1 31.4 ± 14.3 7.7 ± 2.1 22.7 ± 6.6
5 9.1 ± 6.5 27.1 ± 13.2 9.4 ± 4.4 28.5 ± 12.5
6 3.5 ± 2.0 13.1 ± 7.5 7.8 ± 2.8 19.3 ± 5.6
7 7.8 ± 2.5 22.5 ± 7.2 11.5 ± 4.6 24.8 ± 5.8

† Mean ± SD for 24 in µm. For each boundary, differences were not computed for
the middle 30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which boundary was determined to
not be visible by at least one expert.

(a) (b)

Figure 4.16: Example result using variation 2 shown on a 2-D scan from one of the
3-D images.
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Table 4.6: Variation 3: Summary of mean unsigned border posi-
tioning errors†.

Algorithm vs. Avg. Observer

Border Obs. 1 vs. Obs. 2 Varying S & I Constant S & I

1 5.9 ± 1.2 4.6 ± 1.6 5.1 ± 2.3
2‡ 6.3 ± 1.0 10.9 ± 4.3 11.2 ± 5.0
3‡ 9.1 ± 3.7 8.9 ± 4.4 10.2 ± 4.9
4‡ 7.6 ± 2.0 8.6 ± 1.9 12.0 ± 4.5
5 9.4 ± 3.9 8.3 ± 2.9 9.7 ± 5.4
6 7.6 ± 2.4 3.0 ± 1.0 3.6 ± 2.5
7 11.4 ± 4.7 7.6 ± 2.2 7.8 ± 2.2

Overall 8.2 ± 3.5 7.3 ± 3.7 8.3 ± 4.9

† Mean ± SD for 24 scans in µm.

‡ Errors were not computed for those scans in which boundary was deter-
mined to not be visible by at least one observer.

(a) Original (b) Constant S & I (c) Varying S & I

Figure 4.17: Example improvement in segmentation result by using varying smooth-
ness and surface interaction constraints (variation 3) [37].

compared to 8.3 ± 4.9 µm using constant constraints (p < 0.001 using paired t-test)

and 8.2 ± 3.5 µm for the inter-observer variability (p = 0.01)]. Even more notice-

able differences occurred in cases in which image information was locally ambiguous.

Fig. 4.17 shows an example improvement.

4.11 Discussion

This chapter has presented three different variations for segmenting the interior

surfaces of macular time-domain images. When comparing the results to the human
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experts, all variations performed well (achieving quantitative results similar to that

of human experts).

Variations 1 and 2 reflect two different very different choices for the cost functions:

variation 1 used only on-surface costs, while variation 2 used only in-region costs. The

choice of using only in-region costs (instead of having both in-region and on-surface

costs) for the segmentation of interior surfaces in variation 2 was to demonstrate the

feasibility of such type of costs since they had never been used in an application be-

fore. Thus, it was not to suggest that only using in-region costs would be a better

approach than only using on-surface costs. In fact, both approaches performed simi-

larly well. (Note, however, that the quantitative results are not directly comparable

since a different reference standard was used in the two cases). Nevertheless, a more

appropriate cost-function choice would most likely be to find an appropriate combi-

nation on on-surface and in-region costs, as is done for the spectral case in the next

chapter.

Given a particular cost function, using varying constraints instead of constant

constraints will likely improve the segmentation results (e.g., as was indicated by the

comparisons made for variation 3 when using in-region cost functions for the interior

surfaces). In essence, having varying constraints allows you to more appropriately

define what is considered to be a feasible set of surfaces, which is particularly helpful

when the image information is locally ambiguous.

To our knowledge, the work summarized in this chapter [36–40] reflects the first

reported approach for the 3-D segmentation of intraretinal layers on OCT images.

Admittedly, the sparsely acquired data makes the utility of a 3-D approach for time-

domain cases not as noticeable as would be observed with true volumetric data.

However, perhaps most importantly, it sets the important stage for being able to

segment spectral-domain images in 3-D (see next chapter).
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CHAPTER 5
SPECTRAL OCT SEGMENTATION

This chapter presents details about the methods, experimental methods, and re-

sults used for segmenting macular spectral-domain OCT images.

5.1 Intraretinal layer segmentation of macular
scans

Fig. 5.1 illustrates the seven surfaces we desired to find on macular spectral-

domain OCT images. Even though the surfaces were the same as those segmented

in the time-domain case, the larger coverage of the macular region created a greater

variety of layer appearances (see example slices from a macular spectral-domain vol-

umetric image illustrated in Fig. 5.2). An overview of the steps used for segmenting

spectral-domain OCT images is illustrated in Fig. 5.3. As in the time-domain case,

the images were first flattened so that the surfaces near the RPE became approxi-

mately a flat plane. However, three major differences in the spectral flattening step

existed from the time-domain case: 1) the preliminary segmentation of the first group

of surfaces (surfaces 1, 6, and 7) was performed in 3-D instead of in 2-D, 2) the pre-

liminary segmentation was performed on a downsampled image (by a factor of four)

to save time and memory requirements, and 3) a thin-plate spline (with regulariza-

tion) was used for fitting the found RPE surface instead of using 2-D least-squares

splines. After flattening, the intraretinal layer segmentation of all seven surfaces was

performed on a truncated full-resolution version of the 3-D image. More details about

the flattening and intraretinal layer segmentation steps can be found in the next few

sections.

5.1.1 Flattening

Flattening the 3-D OCT volumes served multiple purposes: 1) to allow for smaller

image sizes in the segmentation step, 2) to provide for a more consistent shape for

segmentation purposes, and 3) to make visualization easier. For example, having
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(a)

(b)

RNFL

GCL+IPL

INL

OPL

ONL+IS

OS

1
2

3
4
5

6
7

(c)

Figure 5.1: Illustration of surfaces to be segmented on macular spectral-domain OCT
images. (a) Fundus photograph with schematic OCT volume (size 6 × 6 × 2 mm3)
with surfaces indicated with yellow lines. (b) Example slice (flattened/truncated)
from the center of an OCT volume. (c) Seven surfaces (and corresponding six layers)
on example slice. (RNFL = retinal nerve fiber layer, GCL + IPL = ganglion cell
layer and inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform
layer, ONL + IS = outer nuclear layer and photoreceptor inner segments, and OS =
photoreceptor outer segments.)
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(a) Slice 0 (b) Slice 11 (c) Slice 22 (d) Slice 33 (e) Slice 44

(f) Slice 55 (g) Slice 66 (h) Slice 77 (i) Slice 88 (j) Slice 99

(k) Slice 110 (l) Slice 121 (m) Slice 132 (n) Slice 143 (o) Slice 154

(p) Slice 165 (q) Slice 176 (r) Slice 187 (s) Slice 198

Figure 5.2: Example slices from a macular spectral-domain OCT volume.
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Macular

Spectral

OCT Image

Flatten

Image

Simultaneously

Segment

Surfaces 1, 6,7
Downsample

Simultaneously

Segment

Surfaces 2,3,4,5

Segment

Surfaces 1, 6, 7

Fit Thin-Plate

Spline to Surface 7

Figure 5.3: Overview of steps used in segmenting macular spectral OCT images.

a consistent shape aided in both visualization and learning appropriate constraints

for segmentation. In addition, flattening the image made it possible to truncate the

image substantially in the axial (z-direction), thereby reducing the memory and time-

requirements of the intraretinal layer segmentation approach. Flattening an image

involved the following steps:

• Downsample image (by a factor of 4).

• Simultaneously find surfaces 1, 6, and 7 on downsampled image using the opti-

mal 3-D graph search approach.

• Fit a (regularized) thin-plate spline [45] to an upsampled version of surface 7.

• Translate all the columns of the (full-resolution) image so that the fitted surface

becomes a flat plane.

• Truncate the flattened image based on surface locations 1 and 7.

An example image before flattening is illustrated in Fig. 5.4. The same image

after flattening is illustrated in Fig. 5.5.
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(a)

(b)

Figure 5.4: Rendering of spectral OCT image before flattening. (a) View of three
orthogonal planes. (b) Volume rendering.
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(a)

(b)

Figure 5.5: Rendering of spectral OCT image after flattening. (a) View of three
orthogonal planes. (b) Volume rendering.
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5.1.2 Intraretinal layer segmentation

As in the time-domain case, after applying a speckle-reducing anisotropic diffusion

method [41], the surfaces on the flattened and truncated volumetric spectral images

were segmented in two groups: surfaces 1, 6, and 7 were segmented simultaneously

first followed by the simultaneous segmentation of surfaces 2, 3, 4, and 5. The cost

functions used for surfaces 1, 6, and 7 were the same as those used in our prior work

for the time-domain case (see previous chapter and [38, 39]). Recall that the cost

functions for these surfaces were on-surface cost functions comprised of an edge-term

(favoring a dark-to-bright transition using a Sobel kernel) and localized regional terms

(cumulative term used for surface 1, terms favoring surfaces with a dark region above

and bright region below used for surfaces 6 and 7).

The cost functions for the interior surfaces (surfaces 2, 3, 4, and 5) used a combi-

nation of on-surface and in-region cost functions. The used on-surface cost functions

for the interior surfaces were signed edge terms (using a Sobel kernel) to favor either

a bright-to-dark transition (used for surfaces 2, 3, and 5) or a dark-to-bright transi-

tion (used for surface 4). The in-region cost terms were based on fuzzy membership

functions in dark, medium, or bright intensity classes (similar to what was used for

the time-domain case). Based on Gaussians, each membership function mapped a

normalized image intensity to a value between 0 and 1, with higher values reflecting a

greater likelihood of belonging to the particular intensity group. The corresponding

cost value was then defined as 1 minus the membership value. As in the time-domain

case, the dark membership function, darkmem(x), was defined as

darkmem(x) =






1 for x ≤ ∆d

e−(x−∆d)2/2σ2
for x > ∆d

, (5.1)
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the medium membership function, medmem(x), was defined as

medmem(x) =






e−(x−(cm−∆m))2/2σ2
for x < cm −∆m

1 for cm −∆m ≤ x ≤ cm + ∆m

e−(x−(cm+∆m))2/2σ2
for x > cm + ∆m

, (5.2)

and the bright membership function, brightmem(x), was defined as

brightmem(x) =






e−(x−(1−∆b))2/2σ2
for x < 1−∆b

1 for x ≥ 1−∆b

. (5.3)

The region between surfaces 1 and 2 used a bright membership function (ad-

justable by parameter ∆b), the region between surfaces 2 and 3 used a medium

membership function (adjustable by parameter cm), the region between surfaces 3

and 4 used a dark membership function (adjustable by parameter ∆d1), the region

between surfaces 4 and 5 used a medium membership function (adjustable by param-

eter cm), and the region between surfaces 5 and 6 used a dark membership function

(adjustable by parameter ∆d2). Note that there were actually two dark parameters,

∆d1 and ∆d2, for the two dark regions. This choice was based on our experience in

noticing that the region bounded by surfaces 5 and 6 tended to have smaller intensity

values than the region bounded by surfaces 3 and 4.

The parameters ∆b, cm, and ∆d2 were automatically estimated for each volumetric

image by computing the mean intensity in regions that were expected to have that

related intensity class. These regions could be estimated by utilizing learned thickness

constraints. For example, the RNFL (layer defined by surfaces 1 and 2) must contain

the voxels between surface 1 and the surface defined by adding the minimum allowed

distance between surfaces 1 and 2 to surface 1. The mean intensity in this region could

thus be used for estimating (1 - ∆b). Table 5.1 provides a summary of the bounding
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Table 5.1: Bounding surfaces for estimating in-region cost parameters.†

Parameter Top estimation surface Bottom estimation surface

∆b f1(x, y) f1(x, y) + δl
1−2(x, y)

cm f1(x, y) + δu
1−2(x, y) f1(x, y) + δl

1−2(x, y) + δl
2−3(x, y)

∆d2 f6(x, y)− δl
5−6(x, y) f6(x, y)

† (x, y) columns for which the top estimation surface would go below
the bottom estimation surface were excluded

surfaces for each region. Columns for which the top surface would overlap with the

bottom surface were excluded from the estimation region. ∆d1 was estimated based on

finding the relationship between ∆d2 and ∆d1 using training data (i.e., ∆d1 = ∆d2+c,

where c was a constant determined from the training data). The other parameters,

σ and ∆m were set to reasonable fixed values based on our prior experiments with

the time-domain cases.

An appropriate combination of the on-surface and in-region cost functions for

these surfaces were experimentally determined based on a training set, as described

further in the Experimental methods section (Section 5.2). Similarly, the surface

smoothness and surface interaction constraints used for finding the interior surfaces

were experimentally determined based on a training set (again, described in more

detail in the Experimental methods section).

5.2 Experimental methods

5.2.1 Subject data

Macula-centered 3-D OCT volumes (200 × 200 × 1024 voxels, 6 × 6 × 2 mm3)

were obtained from the right eyes of 27 normal subjects using three CirrusTM HD-OCT

machines (provided by Carl Zeiss Meditec, Inc., Dublin, CA, USA). As illustrated in

Fig. 5.6, the data were organized into two groups:
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1 2 1514131211109876543

2423222120191817161514 25 26 27

2423222120191817161514 25 26 27

Machine A: Subjects 1-15

Machine B: Subjects 14-27

Machine C: Subjects 14-27

Figure 5.6: Summary of data available for training and testing the macular spectral
OCT segmentation approach.

1 2 131211109876543 2423222120191817161514 25 26 27

2423222120191817161514 25 26 27

Training Set Testing Set

Figure 5.7: Data using for training and testing. The scans of the 13 subjects for
which repeated scans were not available were used as a training set. The repeated
scans of the 14 other subjects were used as a testing set.

• Normals with age information: a 3-D OCT volume of the right eye of each

subject 1–15 (mean age of 39.4 ± 8.2 years) was acquired using one machine

(machine A).

• Normals with repeated scans: a 3-D OCT volume of the right eye of each subject

14–27 was acquired twice using two different machines (machine B and machine

C).

Thus, 43 total volumes were acquired (15+14×2). The volumetric scans of the right

eyes of subjects 1–13 (using machine A) were used for training the algorithm and the

repeated volumes of the right eyes of subjects 14–27 (using machines B and C) were

used for testing the algorithm (Fig. 5.7).
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28 (14 x 2) 

normal macular scans

Testing Set

13 normal

macular scans

Training Set

Create Bronze

Standard

Develop Cost 

Functions

Learn Varying

Smoothness and

Thickness 

Constraints

Final

Algorithm

Create Gold

Standard

Run Final

Algorithm

Validation

Figure 5.8: Spectral training/testing flowchart.

5.2.2 Reference standards

Fig. 5.8 illustrates the use of reference standards in the training and testing pro-

cess. Two reference standards were used: a “bronze” standard (using for training)

and a “gold” standard (used for testing). The bronze standard involved creating com-

plete edited segmentations for all 13 volumes in the training set (editing performed

by one observer). This standard was used for learning the constraints and cost func-

tions for use in the final algorithm. The gold standard was created by having two

ophthalmologists trace 10 slices on each volume and then taking the average of these

tracings to be used as the reference standard. This standard was used for validation

of the approach on the test set. To prevent an unintended bias from influencing the

final algorithm, no segmentations were performed on the test set until the training

was complete. More details about the creation of the bronze and gold standards are

given in the following sections.
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13 normal

macular scans

(training set)

Data Bronze Standard

Complete edited

segmentations for

13 normal scans

Anchor tracings

and run algorithm

Edit segmentations
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Trace 10 random

slices per scan

using manual

tracing tool

Figure 5.9: Steps used in creating the bronze standard.

5.2.2.1 Bronze standard (used for training)

A summary of the steps used in creating the bronze standard are illustrated in

Fig. 5.9. First, each volume was divided into 10 regions (illustrated in Fig. 5.10)

and one slice was randomly selected in each region. Each region consisted of 22

slices, expect for the middle two regions (near the fovea), which consisted of 12 slices

each. Using custom-designed manual tracing software (as was also used for the time-

domain case), the surfaces were manually traced on each of the 10 slices. Although

only 10 slices were traced in each volume, all 200 slices were available to provide 3-D

context (typically viewed in a cine-like mode). In addition, for better visualization,

the software allowed for translating the columns to flatten the image to a manually

traced boundary of interest (typically boundary 6 or 7).

After the boundaries were manually defined on each of the selected slices, the

volumes were flattened to the RPE by fitting a thin-plate spline to this manually

traced surface and then translating the columns so that this surface became a flat

plane. Next, using the manual tracings as “anchor points,” a preliminary version

of the segmentation approach was performed to segment the remaining slices. The

“anchoring” was done by modifying the edge-based cost functions to have a very

large value for all pixels in the selected slices except for the pixels on the “anchored
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12 slices
12 slices

22 slices

22 slices

22 slices

22 slices

22 slices

22 slices

22 slices

22 slices

Figure 5.10: Regions for randomly selecting slices for the macular spectral OCT
independent standard (one slice was randomly chosen from each region).

surface.” Because the constraints had not been learned yet, the smoothness and

surface interaction constraints were set to values more permissive than were expected

to be necessary. The cost functions for surfaces 1, 6, and 7 were the same as those used

in prior work for the time-domain case [36–39]. The cost functions for the interior

surfaces (surfaces 2, 3, 4, and 5) were set in a similar fashion as in the time-domain

method using regional information only [36], with the exception that the estimation

of the dark, medium, and bright intensity classes were set by computing the mean of

those actual regions on the traced slices (e.g., the mean bright intensity was estimated

by computing the mean value of those pixels between surfaces 1 and 2 on the 10 traced

slices).

Finally, the resulting surfaces were reloaded back into the manual tracings appli-

cation to be edited. For ease of editing, only every 5th point was loaded (a spline was

used to interpolate the boundaries between the points). The editing was performed

on the flattened images. The final complete edited segmentations defined the bronze

standard.
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Gold Standard

28 (14 x 2) 

normal macular scans

(testing set)

Data

Average the
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Trace 10 random
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Figure 5.11: Steps used in creating the gold standard.

5.2.2.2 Gold standard (used for testing)

A summary of the steps used in creating the gold standard are illustrated in

Fig. 5.9. For each 3-D OCT volume, 10 slices were randomly traced independently

by two ophthalmologists. The slices were selected from the same regions as was done

for bronze standard (illustrated in Fig. 5.10). The average of these tracings defined

the gold standard.

5.2.3 Learning the constraints

Using the complete edited segmentations from the training set (bronze standard),

the surface interaction (“thickness”) and smoothness constraints for the interior sur-

faces were learned as described in a general fashion in Section 3.4.1 of Chapter 3. The

smoothness constraints were learned in the x-direction and y-direction separately.

5.2.4 Learning cost function parameters

As mentioned in the previous section, most of the in-region parameters were de-

termined automatically in a subject-specific fashion during the segmentation method

itself by using the learned thickness constraints to determine the regions of interest

for estimation. However, the relationship between the two dark parameters were esti-

mated based on the training data. In particular, it was assumed that this relationship
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could be described as ∆d1 = ∆d2 + c. Then the constant c was estimated by taking

the difference of the mean intensity of the two dark regions based on the 10 × 13

manually traced slices (before segmentation/editing) in the training set.

To learn an appropriate combination of the on-surface and in-region cost functions

for the simultaneous segmentation of surfaces 2, 3, 4, and 5, first the overall cost

function was described using one parameter (α) to indicate the relative weight of the

on-surface and in-region cost terms (0 ≤ α ≤ 1):

C{f2(x,y),f3(x,y),...,f5(x,y)} = α
5∑

i=2

Cfi(x,y) + (1− α)
5∑

i=1

CRi
, (5.4)

where

Cfi(x,y) =
∑

{(x,y,z)|z=fi(x,y)}

csurfi
(x, y, z) , (5.5)

and

CRi
=

∑

(x,y,z)∈Ri

cregi
(x, y, z) . (5.6)

With this description, α = 1 corresponded to only using on-surface cost functions

and α = 0 corresponded to only using in-region cost terms. Various values of α were

tested on images in the training set. For each value of α, the mean unsigned border

positioning error from the bronze standard for each surface was computed. Values

of α in increments of 0.1 were first tested, followed by using smaller increments as

deemed necessary for obtaining the best value.

Next, in order to allow for a different weighting factor for each surface, the cost

function for the interior surfaces was written as:

C{f2(x,y),...,f5(x,y)} = c2Cf2(x,y) + c3Cf3(x,y) + c4Cf4(x,y) + c5Cf5(x,y) +

5∑

i=1

CRi
, (5.7)

where c2, c3, c4, and c5 were constant weighting factors used for the on-surface cost

terms. Note that in this formulation the weighting factor for the in-region costs was
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set to 1 so that only the on-surface weights would change. Letting αi be the best

value of α for surface i, the weighting ci for each on-surface cost function was set as

follows:

ci =






αi/(1− αi) if 1− αi > 0

Clarge if 1− αi = 0

, (5.8)

where Clarge is a relatively large constant value. In this formulation, the desired ratio

(determined from αi) of the on-surface costs to the in-region costs was preserved for

each surface. However, it could also change the relative “importance” of each surface

with respect to the others if the values of α varied greatly amongst the surfaces.

Thus, this cost function formulation was then run on the cases in the training set to

ensure that it in fact produced a smaller overall error. (If not, then only one value of

α would be used as in Eq. 5.4.) This defined the “final” cost function to be used in

the test set.

5.2.5 Validation on the test set

5.2.5.1 Border positioning errors

After training was complete (learning the constraints and cost functions), the

final algorithm was run on all images in the test set. Signed and unsigned border

positioning differences were computed for the following cases (over the 10 selected

slices for each volume):

• ophthalmologist 1 versus ophthalmologist 2,

• the algorithm versus the average of ophthalmologists 1 and 2 (gold standard),

• the algorithm versus ophthalmologist 1, and

• the algorithm versus ophthalmologist 2.

In order to compare the interobserver variability of the ophthalmologists with

the errors of the algorithm, differences in the “errors” (e.g., comparing the border

positioning differences between the two ophthalmologists to the border positioning
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differences between algorithm and the gold standard) for each border were fitted

using a univariate analysis of variance (ANOVA) model. The models were fitted

using the GLM (general linear models) procedure from the Statistical Analysis System

(SAS) version 9.1. Resulting p-values were adjusted using the SIMULATE option for

pairwise comparisons among least squares method-specific means that were estimated

using the GLM procedure. This adjustment approach provided family-wise error rate

protection by computing adjusted p-values based on simulated data. The type I error

rate was specified to be 0.05.

5.2.5.2 Thickness reproducibility

For each volume, individual layer thicknesses (on the 10 selected slices) were

computed based on the following surface-definition methods:

• the algorithm,

• the manual tracings of ophthalmologist 1,

• the manual tracings of ophthalmologist 2, and

• the average tracings from ophthalmologist 1 and ophthalmologist 2 (gold stan-

dard).

Next, for each subject, the absolute thickness difference between machine B and

machine C were computed for each of the surface-definition methods above. A mul-

tivariate analysis of variance (MANOVA) model was fitted using the GLM (general

linear models) procedure from the Statistical Analysis System (SAS) version 9.1 to

compare the vector of layer thickness difference measurements for each of the surface-

definition methods above (algorithm, ophthalmologist 1, ophthalmologist 2, average

ophthalmologist). To identify any specific differences, a univariate analysis of vari-

ance (ANOVA) model was fit for each layer. As before, resulting p-values were then

adjusted using the SIMULATE option for pairwise comparisons among least squares

method-specific means that were estimated using the GLM procedure and the type I
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error rate was specified to be 0.05.

5.3 Results

5.3.1 Training set

5.3.1.1 Learned constraints

Fig. 5.12 illustrates the resulting learned thickness (surface interaction) constraints.

For reference, the computed mean thicknesses are also shown in the figure. A visu-

alization of the thickness standard deviation values are illustrated in Fig. 5.13. The

learned smoothness constraints (the maximum allowed decrease of z-value in the x-

direction, the maximum allowed increase of z-value in the x-direction, the maximum

allowed decrease of z-value in the y-direction, and the maximum allowed increase of

z-value in the y-direction) are illustrated in Fig. 5.14. As a point of clarification, “in-

creasing” or “decreasing” refers to increasing or decreasing the z-value when moving

from one column to the next (e.g., moving from column (x,yi) to column (x + 1, yi)

for the x-direction constraints) in a coordinate system in which z = 0 was at the top

of the images. However, it may be more intuitive to think of z = 0 as being located at

the bottom of the images. If this were the case, the “increase” and “decrease” labels

of the images in Fig. 5.14 would just have to be swapped.

5.3.1.2 Cost function combination

Fig. 5.15 summarizes the computed unsigned positioning errors for each tested

value of α. As mentioned previously, first values of α in increments of 0.1 were

tested. For additional precision in determining the best value of α for each surface,

the following additional values of α were also tested: 0.83, 0.85, 0.88, 0.93, 0.95, and

0.98. Table 5.2 summarizes the resulting best values of α for each surface. The last

column of this table provides the ratio of αi to 1−αi, which was used as the on-surface

cost weighting term.
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Figure 5.12: Visualization of learned thickness constraints. The minimum and maxi-
mum thickness constraints are illustrated in the second and fourth columns, respec-
tively, while the mean thicknesses are illustrated in the third column. Each image is
oriented so that the temporal side is on the left and the nasal side is on the right.
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Figure 5.13: Visualization of thickness standard deviation values in microns.

Table 5.2: Best values of α for
each surface.

Surface αi 1− αi
αi

1−αi

2 0.95 0.05 19.0
3 0.80 0.20 4.0
4 0.83 0.17 4.9
5 0.83 0.17 4.9
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Figure 5.14: Learned smoothness constraints.
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Figure 5.15: Unsigned border positioning error results for different combinations of
edge and regional information on training set.
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5.3.2 Test set

5.3.2.1 Example results

Qualitatively, the algorithm performed very well overall, with only minor local

inaccuracies. The one exception might be surface 7, as it would sometimes “flip”

between two probable surfaces in a localized region (this will be discussed more in the

discussion). Fig. 5.16 and Fig. 5.17 illustrate the slices/results on the volume with the

smallest overall unsigned border positioning error. (Slices without resulting surfaces

are shown in Fig. 5.16 and the flattened slices with resulting surfaces are shown in

Fig. 5.17). Similarly, Fig. 5.18 and Fig. 5.19 illustrate the slices/results on the volume

with the median overall unsigned border positioning error and Fig. 5.20 and Fig. 5.21

illustrate the slices/results on the volume with the largest overall unsigned border

positioning error.

5.3.2.2 Border positioning errors

The resulting unsigned and signed border positioning errors are illustrated in

Table 5.3 and Table 5.4, respectively. The overall mean unsigned border position-

ing error was 5.71 ± 1.98 µm for the comparison between the two ophthalmologists,

5.69± 2.41 µm for the comparison between the algorithm and the average ophthalmol-

ogist, 6.73 ± 2.48 µm for the comparison of the algorithm versus ophthalmologist 1,

and 5.89 ± 2.74 µm for the comparison of the algorithm versus ophthalmologist 2.

When looking at each border individually (using separate ANOVA models and ad-

justing the p-values to take into account the multiple comparisons), the unsigned

errors of the algorithm (when compared to the gold standard defined as the average

tracings of the two ophthalmologists) were significantly smaller than those between

the two ophthalmologists for border 1 (p < 0.0001), border 2 (p = 0.0112), and bor-

der 3 (p < 0.0001). The unsigned errors of the algorithm were significantly larger

than those between the two ophthalmologists for border 4 (p = 0.0294) and border 7
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(a) Slice 15 (b) Slice 28

(c) Slice 58 (d) Slice 83

(e) Slice 92 (f) Slice 109

(g) Slice 132 (h) Slice 142

(i) Slice 165 (j) Slice 190

Figure 5.16: The 10 slices used for validation for the OCT volume with the smallest
overall mean unsigned border positioning error.
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(a) Slice 15 (b) Slice 28

(c) Slice 58 (d) Slice 83

(e) Slice 92 (f) Slice 109

(g) Slice 132 (h) Slice 142

(i) Slice 165 (j) Slice 190

Figure 5.17: Example 7-surface 3-D segmentation results shown on the 10 slices used
for validation (best case according to overall mean unsigned positioning error).
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(a) Slice 18 (b) Slice 25

(c) Slice 58 (d) Slice 68

(e) Slice 91 (f) Slice 101

(g) Slice 127 (h) Slice 141

(i) Slice 174 (j) Slice 181

Figure 5.18: The 10 slices used for validation for the OCT volume with the median
overall mean unsigned border positioning error.



91

(a) Slice 18 (b) Slice 25

(c) Slice 58 (d) Slice 68

(e) Slice 91 (f) Slice 101

(g) Slice 127 (h) Slice 141

(i) Slice 174 (j) Slice 181

Figure 5.19: Example 7-surface 3-D segmentation results shown on the 10 slices used
for validation (median case according to overall mean unsigned positioning error).
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(a) Slice 18 (b) Slice 35

(c) Slice 46 (d) Slice 83

(e) Slice 96 (f) Slice 108

(g) Slice 125 (h) Slice 150

(i) Slice 171 (j) Slice 189

Figure 5.20: The 10 slices used for validation for the OCT volume with the largest
overall mean unsigned border positioning error.
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(a) Slice 18 (b) Slice 35

(c) Slice 46 (d) Slice 83

(e) Slice 96 (f) Slice 108

(g) Slice 125 (h) Slice 150

(i) Slice 171 (j) Slice 189

Figure 5.21: Example 7-surface 3-D segmentation results shown on the 10 slices used
for validation (worst case according to overall mean unsigned positioning error).
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Table 5.3: Summary of mean unsigned border positioning
errors† for test set.

Obs. 1 vs. Algo. vs. Algo. vs. Algo. vs.
Border Obs. 2 Avg. Obs. Obs. 1 Obs. 2

1 3.48 ± 0.41 2.85 ± 0.32 3.70 ± 0.44 2.93 ± 0.34
2 5.49 ± 0.90 4.98 ± 1.24 6.28 ± 1.43 5.09 ± 1.25
3 6.68 ± 1.19 7.25 ± 1.10 8.30 ± 1.42 7.54 ± 1.18
4 7.06 ± 1.41 7.79 ± 0.74 9.59 ± 1.25 7.35 ± 0.54
5 6.16 ± 1.10 5.18 ± 0.82 6.50 ± 1.24 5.46 ± 0.75
6 3.99 ± 2.28 3.30 ± 1.60 4.28 ± 1.93 3.09 ± 2.03
7 7.11 ± 2.07 8.47 ± 2.29 8.48 ± 1.74 9.77 ± 2.76

overall 5.71 ± 1.98 5.69 ± 2.41 6.73 ± 2.48 5.89 ± 2.74

† Mean ± SD in µm.

Table 5.4: Summary of mean signed border positioning
errors† for test set.

Obs. 1 vs. Algo. vs. Algo. vs. Algo. vs.
Border Obs. 2 Avg. Obs. Obs. 1 Obs. 2

1 0.20 ± 1.02 -1.52 ± 0.45 -1.62 ± 0.78 -1.42 ± 0.56
2 -0.34 ± 1.52 -2.04 ± 1.55 -1.87 ± 1.72 -2.21 ± 1.73
3 0.08 ± 2.12 5.02 ± 1.41 4.98 ± 1.78 5.06 ± 1.75
4 3.74 ± 2.47 -3.53 ± 2.18 -5.40 ± 3.07 -1.66 ± 1.76
5 1.88 ± 2.03 -1.19 ± 1.66 -2.14 ± 2.25 -0.25 ± 1.59
6 1.10 ± 2.57 -1.55 ± 1.78 -2.10 ± 2.09 -1.00 ± 2.29
7 4.10 ± 3.75 6.25 ± 3.37 4.20 ± 3.64 8.30 ± 4.07

† Mean ± SD in µm.

(p = 0.0377). The unsigned border positioning errors for border 3 and border 6

were not significantly different between the algorithm and the two ophthalmologists.

Mean signed errors with a magnitude greater than 4 µm (approximately 2 pixels) were

present in all comparisons for surface 7, in all comparisons involving the algorithm

for surface 3, and in the comparison of the algorithm versus ophthalmologist 1 for

surface 4.
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Table 5.5: Summary of absolute thickness differences be-
tween repeated scans † for test set.

Layer Algo. Obs. 1 Obs. 2 Avg. Obs.

1-2 1.13 ± 0.88 1.34 ± 1.08 1.58 ± 1.50 1.07 ± 1.12
2-3 0.62 ± 0.51 2.18 ± 1.13 2.23 ± 1.25 1.26 ± 1.37
3-4 1.47 ± 0.86 1.64 ± 1.29 1.70 ± 1.15 1.20 ± 1.10
4-5 1.73 ± 1.23 1.93 ± 2.47 1.44 ± 1.42 1.38 ± 1.53
5-6 0.88 ± 0.70 3.27 ± 2.81 1.82 ± 2.51 1.94 ± 1.86
6-7 1.89 ± 1.45 2.17 ± 2.32 3.45 ± 3.02 2.46 ± 2.37

overall 1.28 ± 1.06 2.10 ± 2.01 2.04 ± 2.00 1.55 ± 1.65

† Mean ± SD in µm.

5.3.2.3 Thickness reproducibility

A summary of the computed absolute thickness differences between machines for

each thickness definition method (based on layer segmentations of the algorithm,

ophthalmologist 1, ophthalmologist 2, and those of both ophthalmologists combined)

are shown in Table 5.5. The overall absolute thickness difference between the two

machines (combining all layers) based on the algorithmic results averaged 1.28 ±

1.06 µm, while the overall thickness differences between the two machines averaged

2.10 ± 2.01 µm based on the manual tracings of ophthalmologist 1, 2.04 ± 2.00 µm

based on the manual tracings of ophthalmologist 2, and 1.55 ± 1.65 µm based on the

average manual tracings of the two ophthalmologists.

The fitted MANOVA model found a significant difference between the methods

(p < 0.0001, Wilks’ Lambda statistic), so individual (for each layer) ANOVA models

were fitted. The adjusted p-values are summarized in Table 5.6. Thus, the algorithm

demonstrated significantly smaller (more reproducible) absolute thickness differences

between repeated scans for layers 2-3 (p = 0.0004) and 5-6 (p = 0.0063) when com-

pared to ophthalmologist 1 and significantly smaller absolute thickness differences

for layer 2-3 (p = 0.0002) when compared to ophthalmologist 2. None of the other

comparisons of absolute layer thickness differences were significant.
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Table 5.6: Adjusted p-values for fitted ANOVA models† of absolute thickness
differences between repeated scans.

Layer Obs. 1 vs. Obs. 2 Algo. vs. Avg. Obs. Algo. vs. Obs. 1 Algo. vs. Obs. 2

1-2 0.9463 0.9984 0.9058 0.6124
2-3 0.9990 0.2841 0.0004 0.0002
3-4 0.9977 0.8506 0.9519 0.8924
4-5 0.8085 0.9232 0.9835 0.9523
5-6 0.1644 0.4207 0.0063 0.5161
6-7 0.3343 0.8702 0.9801 0.1742

† An ANOVA model was fit for each layer.

5.4 Discussion

5.4.1 Accuracy and reproducibility

With respect to accuracy, the unsigned border positioning errors were comparable

to that of the two ophthalmologists (overall mean error of 5.69 ± 2.41 µm for the

algorithm versus the average of the ophthalmologists and 5.71 ± 1.98 µm for differ-

ences between the two ophthalmologists). In addition, the thickness reproducibility

between repeated scans was also comparable when comparing the algorithm with the

two ophthalmologists.

It is important to note that the time required for each ophthalmologist to manually

trace the scans was substantial – a minimum of 30 minutes were required to trace

the 10 slices of each volume, but many volumes took longer than 30 minutes to trace.

Thus, it would not be feasible to have an ophthalmologist trace all 200 slices in order to

perform a thickness assessment (requiring approximately 10 hours of devoted tracing

time). In addition, even if an ophthalmologist (or other expert) were willing to trace

more slices, it is likely that the accuracy could suffer with the additional slices to

trace. Thus, having an automated approach is necessary if quantitative assessments

based on the surfaces are desired.

For both the algorithm and the ophthalmologist, the position of surface 7 was

sometimes difficult to define. This was because two boundaries (interfaces) were
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sometimes visible, both of which could be feasibility defined as the correct surface

and it was not clear which boundary was the appropriate one. Thus, the algorithm

would sometimes find a surface that would transition between both boundaries within

each slice; whereas each ophthalmologist would stick to one boundary for a particular

slice, but would sometimes pick the other boundary on the repeated scan (or in other

slices within the volume). This double-boundary was not noticed on the time-domain

scans for which the cost function was based (and it wasn’t present in all slices of the

spectral scans). Thus, modifying the cost function for this surface would be something

to explore. In addition, it would be useful to obtain a better understanding of these

surfaces through histological comparisons.

5.4.2 Reducing memory and time requirements

The large amount of data in spectral OCT datasets make the time and memory

requirements more of an issue when compared to the time-domain case. In fact, the

methods had to be implemented to run on a 64-bit operating system so that up to

approximately 10 GB of RAM could be used during the segmentation process. Fur-

thermore, the time requirements were substantial (requiring hours of processing time

per volume). However, there are multiple ways the memory and time requirements

could be reduced.

For example, one way of reducing the required processing time would be to try a

different s-t cut approach in the graph search (in this chapter we used an approach

based on that developed by Boykov [35]). In fact, we have performed some preliminary

experiments that indicate that substantial amounts of time could be saved by just

changing this approach (e.g., for a case with a small number of slices, a reduction in

running time from 2.5 hours to 5 minutes was achieved by changing from Boykov’s

method to a push-relabel method). Using a parallel implementation would be another

way of speeding things up.

In addition, there were a number of redundancies in the approach. Better uti-
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lization of some of the redundancies would be another way of making the approach

faster. For example, after the preliminary segmentation of surfaces 1, 6, and 7 was

performed on the downsampled volume, this information was only used for flattening

the image, but not used in the later segmentation steps. It may make sense to reuse

this preliminary segmentation in order to reduce the size of the graph required in

later steps (e.g., by defining a region of interest based on the preliminary result for

the full-resolution segmentation). Interestingly, it was the segmentation of the first

set of surfaces (1, 6, and 7) that took the most time (the segmentation of the interior

surfaces took minutes instead of hours), so utilizing the preliminary segmentation

would be expected to provide a substantial savings. Furthermore, reducing the size

of the graph in this way would save on memory requirements as well. It may also

be wise to try a more general multiresolution approach in order to save on time and

memory requirements (e.g., by performing the segmentation on more than just the

two resolutions used in this work). Thus, even though the current implementation

was relatively slow, our preliminary experience indicates that with some of the above

modifications, the segmentation time could reasonably be expected to run in minutes

instead of hours.

5.4.3 Applicability to optic nerve head 3-D OCT
segmentation

Although the work presented in this chapter has focused on segmenting macular

images, many of the developed methods are also applicable to segmenting spectral

OCT images centered at the optic nerve head as well. The typical region of the

fundus covered by a optic nerve head scan is illustrated in Fig. 5.22, with example

slices from one volume provided in Fig. 5.23. In addition to segmenting the layers in

the peripapillary region surrounding the optic disc, one can also segment structures

of the optic nerve head on these scans.

The presence of the optic nerve head does present a different set of challenges
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Figure 5.22: Fundus photograph with schematic OCT volume (size 6 × 6 × 2 mm3)
centered at optic nerve head.

as the layers “disappear” in this region. Although there are multiple ways to ap-

proach segmenting these images, here we present one possible solution as illustrated

in Fig. 5.24. Like in the macular case, the first major step is to flatten the image. The

method is the same as in the macular case, with the exception that a “don’t care”

region is specified based on an estimate of the optic disc region when segmenting the

first three surfaces on the downsampled volume. Note that this estimate does not

have to be accurate (i.e., if the images are centered properly, a fixed-size rectangle or

circular region would work fine) because the goal is only to obtain a set of points for

fitting the thin-plate spline (points inside of the “don’t care” region will not be used).

Alternatively, one could obtain this estimate from the segmentation of a projection

image. Based on the segmentation points, a thin-plate spline (with regularization) is

fit to the points found on surface 7 (RPE) outside of the optic disc region. The flat-

tening of this surface then defines a reference “RPE plane.” Because the thin-plate

spline is defined across the entire volume, this reference plane also exists in the optic

nerve head region, even though the RPE is not present there.

Once the image has been flattening, the next step would be to more accurately

estimate the optic disc and cup margins at the level of the RPE plane. One way

of doing this would be to perform the segmentation on a 2-D projection image at

the level of the RPE. The projection image can be obtained by computing the mean
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(a) Slice 0 (b) Slice 11 (c) Slice 22 (d) Slice 33 (e) Slice 44

(f) Slice 55 (g) Slice 66 (h) Slice 77 (i) Slice 88 (j) Slice 99

(k) Slice 110 (l) Slice 121 (m) Slice 132 (n) Slice 143 (o) Slice 154

(p) Slice 165 (q) Slice 176 (r) Slice 187 (s) Slice 198

Figure 5.23: Example slices from a spectral-domain OCT volume centered at the
optic nerve head.
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Figure 5.24: A possible set of steps for segmenting ONH spectral OCT images.

projection of intensity values from a small number of slices surrounding the RPE

plane. If the cup margin crosses this plane, both the disc and the cup margin can

be segmented on the projection image; otherwise only the estimate optic disc margin

can be segmented. Note that the optic disc margin would only be an estimate as

we would actually be segmenting the neural canal opening. Because the cup margin

can also be defined based on the location of the first surface (ILM), the choice of

whether to find two boundaries or one could be made based on whether the first

surface crosses the plane. Thus, before segmenting the projection image, one might

consider also finding an estimate of the first surface for purposes of determining its

maximum depth; however, one could also try both options and then pick the best one

(based on the cost function or other metrics). One way of segmenting the boundaries

in the projection images would be to use an optimal graph search approach on an

“unwrapped” image in polar coordinates.

As a feasibility study for this approach, we flattened spectral volumes and seg-
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mented the RPE-plane projection images of 10 eyes (from 9 subjects). A signed edge-

based term (favoring a dark-to-bright transition in the radial direction) was used as

the cost function for both surfaces and they were determined simultaneously using a

2-D version of the graph search. In one case, the cup did not cross the RPE plane,

and so we used a single-boundary approach for that case. Fig. 5.25 illustrates all of

the results. While the results are clearly not perfect, they are very promising. One

way of improving them might be to take into account the vessel locations (see next

section for segmentation approach). In addition, note that future work would be nec-

essary for determining how closely this estimate of the optic disc margin corresponds

to the optic disc observed on fundus photographs.

Once a better estimate of the optic disc has been determined, the layers can

be segmented in the peripapillary region by setting the region inside of the optic

disc as being a “don’t care” region in the segmentation approach. In this way, the

segmentation can be performed similarly as in the macular case. Of course, a different

set of constraints would likely be needed. In addition, more work may need to be done

to decide if changes in the cost functions would be necessary. Fig. 5.26 illustrates an

example of the resulting outputs of the overall approach.

5.4.4 Applicability to vessel segmentation

In addition to allowing the estimation of the cup and rim margins at the level of the

RPE plane (see section above), utilizing a “smart” projection method can also allow

for better vessel segmentations. For example, based on the segmentation approach

developed in this chapter, in the work by Niemeijer and Garvin et al. [46], projection

images were formed by identifying an OCT layer in which the vascular shadows had

the highest contrast. This was based on the observation that the absorption of light

by the blood causes shadows to appear below the position of the vessels (see Fig.

5.27(a)). The layer was delineated by surface 6 and an additional surface 8 that was

specially segmented for this work. This layer was chosen to provide a better contrast
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(f) Subj. P1, OS (g) Subj. P2, OD (h) Subj. P3, OS (i) Subj. P4, OS (j) Subj. P4, OD
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Figure 5.25: Example segmentation of estimated optic disc and cup boundaries at
the level of the RPE plane.
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(a) (b) (c)

(d)

(e) (f)

Figure 5.26: Segmentation of optic nerve head landmarks and retinal layers. (a)
Fundus photo of the optic disc. (b) En-face projection of OCT image. (c) 3-D seg-
mentation (yellow lines) of RPE opening (blue arrow) and cup margin (red arrow).
(d) 3-D segmentation of layers, RPE reference plane (red), RPE opening (blue). (e)
Volumetric rendering of pre-RPE rim and post-RPE cup indices (seen from ante-
rior). (f) Volumetric rendering of pre-RPE rim and post-RPE cup indices (seen from
posterior).



105

(a) (b) (c) (d)

Figure 5.27: Example of spectral 3-D OCT vessel segmentation. (a) The vessel
shadows indicate the position of the vasculature. Also indicated in red are the slice
intersections of the two surfaces that delineate the subvolume in which vessels are
segmented. (b) 2-D projection image extracted from the projected subvolume of
the spectral 3-D OCT volume. (c) Automatic vessel segmentation. (d) Vessel seg-
mentation after postprocessing – removing disconnected pieces and connecting large
segments.

in the projection image over that provided by using a naive projection method which

utilized all voxels in the image for creating the projection. Next, a classification

approach (based on kNN classification with k=31 and using Gaussian filter derivatives

as features) was used to label all pixels as vessel or non-vessel (Fig. 5.27(c–d)). When

training the method on a set of 5 3-D scans and testing on a different set of 10 optic

nerve centered 3-D OCT scans, we successfully identified the retinal vessels with high

sensitivity and specificity as determined using Receiver Operating Characteristics

(ROC) analysis (area under the curve of 0.97). Furthermore, as illustrated in Fig. 5.28,

better results were achieved when using the smart projection method than with the

naive projection method (naive method had an area under the curve of 0.939). This

work has also been extended to deal with segmenting the vessels on macular OCT

scans [47].

Having a vessel segmentation opens the door to an array of additional image anal-

ysis possibilities. For example, one might consider using the vessels to appropriately

modify the cost functions and/or smoothness constraints for better layer segmenta-

tions. This is because of the different appearance of OCT columns in which a vessel
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Figure 5.28: The resulting ROC curves of the vessel segmentation results when using
naive and smart projection methods [46]. The area under the curve is 0.939 and 0.970
respectively.

is present (e.g., the presence of shadows in the outer layers). In addition, one might

consider “removing” the vessel regions when computing global layer properties such as

thickness. Additional uses for the vessel segmentation (e.g., registration with fundus

photographs) will be discussed in Chapter 7.
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CHAPTER 6
MACULAR INTRARETINAL LAYER THICKNESS ASSESSMENT

6.1 Assessment in AION subjects using
time-domain OCT

6.1.1 Motivation

In optic neuropathies, time-domain peripapillary OCT scans are commonly used

clinically to measure nerve fiber loss surrounding the optic disc. However, especially

in acute optic neuropathies (such as in acute anterior ischemic optic neuropathy),

swelling may occur in this region, thus potentially masking nerve fiber loss until the

swelling has regressed. In addition, it has been shown that in optic neuropathies

such as glaucoma and AION, the thickness of the RNFL cannot decrease more than

a certain amount, beyond which little change can be measured even though the vi-

sual field sensitivity becomes further reduced [48–50]. Furthermore, with increasing

damage, the visual field variability increases substantially, making such functional

measurements less reliable [51–54]. Thus, there is need for alternative methods for

measuring damage with a larger dynamic range and increased reproducibility.

Measuring thickness changes in the macula may offer advantages in this regard

because of its larger distance to a (potentially swollen) optic disc, the larger number

of ganglion cells per retinal surface area, and the corresponding potential for a larger

dynamic range with ganglion cell loss. Also, determining structure-function relation-

ships may be easier in the macula because visual field testing results apply directly

to the macular region “under” it. The retinal nerve fiber and ganglion cell layer,

together with the inner plexiform layer and nuclear layer, make up the inner retina,

the thickness of which it or its sublayers is of the greatest interest. However, current

commercial scanners only provide thickness measurements for the total retina in the

macula.

As a preliminary study in demonstrating the value of using an intraretinal seg-

mentation approach, in this section, we compare inner and outer retinal thickness
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Figure 6.1: Illustration of inner and outer retinal layers on time-domain composite
OCT slice. Surface 1 to surface 4 delineated the inner layer, while surface 4 to surface
7 delineated the outer layer.

values of the affected and unaffected eyes of patients with unilateral AION.

6.1.2 Methods

Using our intraretinal layer segmentation results from variation 3 of the time-

domain segmentation approach described in Chapter 4 and presented at MIICAI 2007

[37] in 12 patients with unilateral anterior ischemic optic neuropathy, we computed

the thickness of the inner retinal layer containing the ganglion cells and their axons

(from surface 1 to surface 4 in Fig. 6.1: NFL + GCL + IPL + INL) and the thickness

of the remaining outer layers (from surface 4 to surface 7 in Fig. 6.1). We also

computed the total retinal thickness. Because the damage in the affected eye often

only occurs in a limited region, the thicknesses were computed both over the entire

macular region and in selected regions (but excluding the fovea in both cases).

More precisely, for the segmental analysis, each OCT scan was first divided into

12 segments at 30-degree increments, as illustrated in Fig. 6.2. This was done by

dividing each of the radial slices into two segments (one for the right half of the

scan and one for the left half of the scan as shown in Fig. 6.2(b)). Next, based on
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Figure 6.2: Illustration of 12 segments shown on OCT data. Note that the OCT data
is shown from a clinician’s perspective. (a) Division of six scan lines into 12 segments.
(b) Twelve segments indicated on OCT data.

visual field sensitivity data (and blinded to the segmentation results and thickness

values), an ophthalmologist chose two segments for which he noted a visual field

defect. Fig. 6.3 illustrates the corresponding segments on the visual field data from

one subject. Note that visual field data is shown from the patient’s perspective,

while OCT data is typically presented from the clinician’s perspective (thus, the

nasal-temporal designations are on opposite sides). Also remember that because of

the optics of the eye, the superior (top) part of the visual field corresponds to inferior

OCT segments and the temporal visual field corresponds to nasal OCT segments. For

10 of the 12 patients, 24-2 visual field threshold testing results were available. For

the other two patients, one had 10-2 visual field threshold testing results available

and the other only had the results from a kinetic perimetry test.
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Figure 6.3: Illustration of 12 segments shown on visual field data from one unilateral
AION subject. In general, darker regions show areas of visual field defects. In this
example, the left eye was the affected AION eye. Note that the visual field data is
shown from the patient’s perspective.

For each thickness approach (overall and segmental), thickness differences between

the unaffected and affected eyes were compared using a paired t-test. In addition, for

each (r, θ) scan location (using a right-eye orientation from a clinician’s perspective),

the thickness value was averaged over all the unaffected eyes to give an estimate

of an undiseased thickness value for that location. Next, for each diseased eye, the

differences between the averaged undiseased values and the diseased-eye thickness

values were computed (using a right-eye orientation), and displayed as an interpolated

color-coded map (in the orientation of the affected eye). Each difference was computed

as the averaged undiseased value minus the diseased value so that positive values

indicated thinning (and were displayed as warmer colors). This allowed for a localized

visual comparison between the visual field data and the thickness difference results.
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6.1.3 Results

A summary of the resulting thickness values for the affected and unaffected eyes

is shown in Fig. 6.4. When considering all segments (not just the selected ones),

the inner retinal layer thickness for the affected eye was 22.5 µm smaller on average

than for the unaffected eye (or about 16%, statistically significant using paired t-

test, p < 0.001), while the outer retinal thickness was 1.7 µm larger on average (not

statistically significant, p = 0.48). The total retinal thickness for the affected eye over

all segments was 20.8 µm smaller on average than for the unaffected eye (statistically

significant, p = 0.001).

In the selected segments, the inner retinal layer thickness for the affected eye was

29.5 µm smaller on average than for the unaffected eye (or about 21%, statistically

significant using paired t-test, p < 0.001), while the outer retinal thickness was 4.0 µm

larger on average (not statistically significant, p = 0.25). The total retinal thickness

for the affected eye in the selected segments was 25.5 µm smaller on average than for

the unaffected eye (statistically significant, p < 0.001).

The visual field and inner/outer thickness difference results for the affected eye

on all 12 patients are summarized in Fig. 6.5. While the thickness difference plots

were computed in a right-eye orientation (from a clinician’s perspective), here the

thickness plots for the cases in which the left eye was affected are flipped to a left-eye

orientation. Because the visual field data is shown from the patient’s perspective, one

can directly compare the visual field data and the thickness difference plots along the

left-right axis (i.e., the different perspectives – clinician versus patient – take care of

the fact that the temporal visual field corresponds to the nasal portion of the retina

and vice-versa). However, because of the optics of the eye, the upper portion of the

visual field should be compared to the lower portion of the thickness difference plots.

This correspondence is indicated in the upper left panel of Fig. 6.5. The red circles

depict correspondence of the retinal area imaged by a 10 degree macular OCT scan



112

(a) Inner retina, all segments (b) Inner retina, selected segments

(c) Outer retina, all segments (d) Outer retina, selected segments

(e) Total retina, all segments (f) Total retina, selected segments

Figure 6.4: Summary of thickness values based on our intraretinal layer segmentation
approach presented at MICCAI 2007 [37]. (a) Thickness values for the inner retina
over all 12 segments. (b) Thickness values for the inner retina over selected segments.
(c) Thickness values for the outer retina over all 12 segments. (d) Thickness values
for the outer retina over selected segments. (e) Thickness values for the total retina
over all 12 segments. (f) Thickness values for the total retina over selected segments.
Thickness differences between the affected and unaffected eyes were largest on average
for the inner retinal layer over the selected segments.
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with the retinal region subjected to visual field testing. Dark areas of the visual field

represent a decrease in visual sensitivity.

Fig. 6.6 provides an example of a subject with a lower altitudinal visual field

defect in the affected left eye. The visual field sensitivities for both eyes are shown,

along with the vertical OCT scan for both eyes (segmented inner layer indicated in

yellow). Note the thinning of the inner layer on the affected eye. This thinning is

also evident in the line plot of the thickness values for the vertical slice of the affected

eye as given by the orange line in Fig. 6.6(d). This line is superimposed on the same

inner retinal layer thickness values from undiseased eyes (mean ± 2 SD) indicated by

the black and dashed lines.

6.1.4 Discussion

As expected, the inner retina of the affected eye demonstrated significant thinning,

while the outer retina did not. This helps to support the notion that focusing on the

properties of the inner retinal layers may provide more discriminative information

than that of the total retina. This would especially be true in cases of confounding

factors causing an increased thickness of the outer retinal layers. In addition, it is

important to note that even larger differences between the affected and unaffected

eyes were achieved using the segmental approach, further supporting this notion and

also suggesting the importance of looking at regions locally.

The color-coded thickness difference maps of the inner retina displayed a strik-

ingly locally specific correspondence between the inner retinal layer thinning and the

location of visual sensitivity loss. Such a local correspondence was not present in the

outer retina, providing additional support for the hypothesis that local layer-specific

retinal thickness is associated with visual field sensitivity. Note that this correspon-

dence was noted even though time-domain OCT images were used in the analysis. It

would be expected that even better correspondences would be achieved using more

densely acquired spectral-domain OCT images.
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Figure 6.5: Summary of visual field and inner/outer retinal layer thickness difference
values for the AION-affected eye on all 12 patients. The correspondence scheme
between the visual field data and the color-coded OCT thickness difference maps is
indicated in the top left panel (upper visual field corresponds to lower retina). Red
areas on the color-coded OCT thickness difference plots represent thinning compared
to the average thickness observed in undiseased eyes; calculated as mean local layer
thickness observed in the set of 12 undiseased eyes minus the local layer thickness
observed in the AION diseased eye.
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Figure 6.6: Example of localized thinning of the inner retina in patient with AION
of the left eye. (a) Visual field threshold test results (24-2) for both the left and
right eyes. Note the visual field defect in the left eye. The circled region indicates the
coverage area of the fast macular OCT scan (10 degrees). (b-c) Vertical OCT slice for
the left and right eyes, with segmented inner layers indicated in yellow and thinning
indicated with a red arrow. (d) Line plot of inner retinal thickness on affected eye,
with mean ± 2 standard deviations of the unaffected thickness (over all patients) also
plotted as a reference.
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6.2 Assessment in normal subjects using
spectral-domain OCT

6.2.1 Motivation

The more densely acquired spectral OCT data provides even more localized in-

formation over that which is possible with time-domain OCT. As illustrated in the

previous section with AION subjects, it is likely that utilizing localized information

will be important in assessing disease status. For example, local layer thicknesses

differences may indicate areas of damage more readily than when averaged out with

neighboring undamaged regions. A first step in such an assessment is to define the

normal layer thicknesses. In this section, we provide a pilot study analyzing the thick-

nesses of six layers in normal subjects based on spectral-domain OCT. Part of this

work was presented at ARVO 2008 [55].

6.2.2 Methods

We applied the developed 3-D spectral segmentation approach presented in the

previous chapter to macula-centered 3-D OCT volumes (200 × 200 × 1024 voxels, 6

× 6 × 2 mm3) of normal subjects in two groups (data provided by Carl Zeiss Meditec,

Inc.):

• 15 normal subjects with a mean age of 39.4 ± 8.2 years (data from machine A

as described in the previous chapter).

• 27 normal subjects comprised of the 15 normal subjects above plus 12 addi-

tional normal subjects (additional subjects from machine C as described in the

previous chapter). Age data was not available for the additional subjects.

Both groups were analyzed because the data from the first group had the advantage

of having the age data available, while the second group had the advantage of having

a larger number of subjects.

After automatically segmenting seven surfaces on all images, the mean and stan-

dard deviation of the thickness of each of the six layers were computed for each (x, y)
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location in the en-face plane. The results were displayed as color-coded maps in a

right-eye orientation (from the clinician’s perspective so that the temporal side cor-

responded to the left half of the image and the nasal side corresponded to the right

half of the image). In addition, temporal-nasal thickness differences were computed

and tested for significance using a paired t-test (with Bonferroni correction, p-values

less than 0.05
6

= 0.008 were considered significant).

6.2.3 Results

Fig. 6.7 summarizes the resulting thickness and thickness variability maps from

the 15 normal subjects with age data available, while Fig. 6.8 summarizes the resulting

thickness and thickness variability maps from all 27 normal subjects. The resulting

temporal, nasal, and temporal-nasal thicknesses are summarized in Tables 6.1 and

6.2 for the 15-subject group and the 27-subject group, respectively. In both cases,

the retinal nerve fiber layer was significantly thicker nasally (by slightly less than 30

µm), as expected (p < 0.001). However, other layers showed significant differences

as well. For example, the ganglion cell layer (plus the inner plexiform layer) as

well as the outer nuclear layer (plus photoreceptor inner segments) were significantly

thicker temporally (p ≤ 0.002). However, the differences were small (< 4µm). When

analyzing all 27 subjects, the inner nuclear layer was significantly thicker nasally

(p < 0.001), but again, the mean difference was small (approximately 5.4 µm).

6.2.4 Discussion

While the nasally thicker RNFL was expected, some of the other temporal-nasal

thickness differences were not. Because the differences were small, the clinical rele-

vance still needs to be investigated. It may also be useful to look at the quantitative

differences at an even more localized level.

Perhaps more importantly, note that the above approach sets the groundwork for

having a normal atlas. Such an atlas can then be used for localized comparisons with
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Figure 6.7: Thickness and thickness variability maps of six macular intraretinal layers
from 15 normal subjects.

RNFL

mean

std

GCL+IPL INL OPL ONL+IS OS

0

5

10

15

20

25

30

 

0

20

40

60

80

100

120μm

μm

Figure 6.8: Thickness and thickness variability maps of six macular intraretinal layers
from 27 normal subjects.

Table 6.1: Temporal-nasal mean thickness summary for 15 normal
subjects† in µm.

Layer Mean temporal Mean nasal Mean difference p-value‡

1-2 (RNFL) 23.2 ± 2.0 49.9 ± 5.8 -26.7 ± 5.2 p < 0.001*

2-3 (GCL+IPL) 73.0 ± 3.6 70.3 ± 3.9 2.7 ± 2.3 p < 0.001*

3-4 (INL) 23.7 ± 2.7 29.0 ± 5.9 -5.3 ± 7.8 p = 0.020
4-5 (OPL) 26.9 ± 2.4 28.3 ± 5.6 -1.3 ± 6.3 p = 0.424
5-6 (ONL+IS) 79.1 ± 5.1 75.2 ± 5.8 3.8 ± 3.5 p < 0.001*

6-7 (OS) 33.4 ± 3.7 33.4 ± 3.0 -0.1 ± 2.1 p = 0.913

† Only subjects in which age data was available were included.

‡ Each p-value computed using paired t-test. With Bonferroni correction, p-
values less than 0.05

6
= 0.008 were considered significant.
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Table 6.2: Temporal-nasal mean thickness summary for 27 normal
subjects† in µm.

Layer Mean temporal Mean nasal Mean difference p-value‡

1-2 (RNFL) 23.5 ± 2.3 52.5 ± 6.8 -29.0 ± 5.6 p < 0.001*

2-3 (GCL+IPL) 72.1 ± 5.3 69.9 ± 5.3 2.2 ± 2.4 p < 0.001*

3-4 (INL) 23.6 ± 2.9 29.1 ± 4.9 -5.4 ± 6.4 p < 0.001*

4-5 (OPL) 26.9 ± 2.6 26.8 ± 5.3 0.1 ± 5.2 p = 0.908

5-6 (ONL+IS) 80.6 ± 6.1 78.1 ± 6.8 2.5 ± 3.9 p = 0.002*

6-7 (OS) 33.5 ± 3.0 33.1 ± 2.8 0.5 ± 2.8 p = 0.377

† All subjects were included (including those for which age was unknown).

‡ Each p-value computed using paired t-test. With Bonferroni correction, p-
values less than 0.05

6
= 0.008 were considered significant.

patient data. For example, Fig. 6.9 illustrates the use of normal thickness data to

produce thickness difference plots of the inner and outer layers for a patient with

primary open angle glaucoma. After segmenting an OCT volume of the patient’s eye

into the inner and outer retinal layers, color-coded difference plots were produced by

subtracting the glaucoma patient’s thickness value from the normal value for each

(x, y) location. In this way, positive values indicated thinning (illustrated in the

lower portion of the figure). In addition, the visual field sensitivity results (using

a Humphrey 10-2 visual field testing protocol which covers the central 10 degrees)

are illustrated in the upper portion of the figure. In particular, the gray scale map

(upper right portion of figure) shows a visual sensitivity loss that was worst in the

top part of the visual field (dark areas), but also shows some loss in the inferior field.

A plot of the visual field sensitivity difference from normal is also shown in the upper

left corner with the abnormal area with decrease in sensitivity surrounded by a red

dotted line. The statistical probability plot of the same visual field data is shown

in the upper middle portion of the figure. Note the high spatial correlation between

the thinned inner layer in the inferior (and to some degree in the superior) macular

regions and the corresponding superior (and inferior) areas of the visual field defects.

However, there was no such thinning in the outer retina which is known not to be
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Figure 6.9: Spectral-domain macular OCT and visual field correlation in patient with
glaucoma. Note the superior visual field defect encroaching on central fixation and
the corresponding inner retinal thinning of ganglion cell layer in the inferior macula.

affected in most glaucomatous damage.
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CHAPTER 7
GENERAL DISCUSSION AND FUTURE DIRECTIONS

The methods developed for this thesis have a number of potential applications and

future directions. While some of the general extensions to the graph search approach

described in Chapter 3 are applicable to a broad range of segmentation tasks; we will

concentrate on ophthalmic applications in this chapter. This rest of this chapter is

organized as follows. First, we present a sampling of some additional image analysis

directions related to optical coherence tomography, concentrating on the ones related

to layer segmentation. Finally, we present how these tasks may be applied to clinical

applications.

7.1 Additional image analysis directions

7.1.1 Layer properties

While thickness has been shown to be an important property of retinal layers,

other properties may be useful as well. For example, one may also consider comput-

ing a variety texture-based properties (such as those as described in [56–58]). For

example, some of the properties could include:

• Thickness values of each layer (and group of layers),

• Mean and variance of the (normalized) intensity of each of layer,

• Average regional response to Gaussian filters of various orders, scales and ori-

entations [58],

• Average regional response to Gabor filters of different preferred orientations and

spatial frequencies [59, 60], and

• Other traditionally used textural features including variance and the co-occurrence

matrix features proposed by Haralick [61].

Other properties of interest could include shape-based terms (e.g., measuring the

slope of a surface of interest) and binary terms such as the presence/absence of a
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vessel shadow.

Spectral OCT also makes it possible to quantify the properties as a more local

level. Thus, one could consider measuring each property in specified regions of interest

instead of globally. Such a local approach will especially be important when regions

of the eye are affected differently (e.g., see thickness changes between affected and

unaffected eyes of subjects with unilateral AION in Chapter 6).

7.1.2 Registration

We have already mentioned how vessels can be segmented on OCT images in

Chapter 5 and in [46, 47]. Recall that such segmentations are performed on a 2-D

projection of a layer near the RPE plane. Because approaches already exist for the

segmentation of the vasculature in fundus photographs [62], the vessel information

can be used to register fundus photographs and OCT volumes. Such a registration

could then be used in a variety of applications such as for obtaining a better under-

standing of the correspondence of clinically relevant features in both modalities. In

addition, the OCT vessel information could also be used to register OCT volumes to

one another. This would not only allow the creation of an atlas (see next section),

but also allow for a more consistent “placement” of learned varying smoothness and

thickness constraints for use in the intraretinal layer segmentation approach.

7.1.3 Atlas creation

The creation of a 3-D atlas which contains information about normal layer prop-

erties and typical inter-subject variations is an important step in being able to assess

differences from normal in patient data. A preliminary example of this use was pre-

sented with the glaucoma patient at the end of Chapter 6. While the mean thickness

maps (and associated standard deviations) of the layers presented in Chapter 6 can

be considered a very basic atlas, normalizing the data to a common retinal coordinate

system (with the help of registration approaches presented above) would likely reduce
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the inter-subject variation, enabling better detection of abnormalities in patient data.

Having properties besides thickness (see Section 7.1.1) may also be important. Fur-

thermore, it would be useful to create separate atlases for individual groups based on

age, gender, and race.

7.2 Disease-specific applications

7.2.1 Glaucoma and AION

Glaucoma is a progressive, but treatable optic neuropathy characterized clini-

cally by optic nerve cupping with corresponding visual field deficits, with or without

elevated intraocular pressure (IOP). As mentioned previously (see Chapter 6), the

current methods for assessing glaucomatous damage leave much to be desired in

terms of reproducibility and dynamic range. For example, visual field testing results

(the gold standard functional measurement) have a large degree of variability, espe-

cially with increasing amounts of damage [51–54]. The assessment of stereo optic disc

photographs by human experts (including looking at such measurements as the cup-

to-disc ratio) is subjective and exhibits considerable inter-observer and intra-observer

variability [63, 64]. Retinal nerve fiber thickness measurements reach a minimum

thickness even as the visual field sensitivity worsens [48–50]. Thus, there is a definite

need for better methods for monitoring progression that are less subjective, more re-

producible, and/or have a larger dynamic range. This has been one of the motivations

for focusing on segmenting the macula in this work (again, see previous chapter).

To test our hypothesis that the macular region does in fact contain important in-

formation for obtaining measurements that are more reproducible and have a larger

dynamic range than existing techniques, further studies need to be performed. As a

first step, one could study and verify the expected correspondence between properties

of layers of the macula and their expected corresponding locations in the peripapil-

lary regions. This would involve first involve acquiring both macular and peripapillary

OCT scans for glaucoma (and other optic neuropathies such as AION) and normal
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subjects (Fig. 7.1). The macular scans would be segmented into six layers whereas

only the retinal nerve fiber would need to be segmented on the peripapillary scans.

After segmenting the scans, properties of interest could be extracted (focusing on

thickness, but also possibly examining other features as well), and the relationships

explored in corresponding regions, at both a global and regional level. Fig. 7.2 illus-

trates such a relationship with regional comparisons (1a vs. α; 2 vs. α; 4 vs. α; 1b vs.

β; 3 vs. β; and 5 vs. β) and global comparisons ([1a+2+4+6] vs. α and [1b+3+5+6]

vs. β). Fig. 7.3 illustrates possible adjustments to these regions.

In addition to looking at the structure-structure relationship above, one could

also examine the structure-function relationship in the macula at a local level. More

specifically, a Humphrey 10-2 visual field test could be performed to result in 68

test locations (separated by 2 degrees) covering a 10 degree radius of the visual field

centered at the fovea. Note that the visual sensitivity test measures sensitivity in

decibels of light attenuation needed to reach threshold perception. A direct corre-

spondence can then be established between the regional macular OCT data (called

macular columns) and the 68 visual field test locations, as illustrated in Fig. 7.4. This

will then allow for examining localized associations between the visual field data and

columnar properties. In addition to using standard statistical approaches (such as

multivariate modeling), a classifier approach could also be developed to examine the

relationships.

7.2.2 CNV and DME

Choroidal neovascularization (CNV) and diabetic macular edema (DME) exist

in the most severe complications of age-related macular degeneration and diabetic

retinopathy, respectively. Both involve an abnormal growth and increased permeabil-

ity of blood vessels and cause abnormalities to form in the retina. These abnormalities

can be referred to as symptomatic exudate-associated derangements or SEADs. Ex-

ample SEADs in time-domain OCT images from AMD are illustrated in Fig. 7.5.



125

Macular OCT

Peripapillary OCT

10-2 VF

(a)

Peripapillary

Spectral OCT

Macular

Spectral OCT

10-2

Visual Field

Structure-Function

Relationship

Structure-Structure

Relationship

(b)

Figure 7.1: Illustration of data used for assessing structure-structure and structure-
function relationships in glaucoma. (a) Schematic illustration of macular OCT, peri-
papillary OCT, and 10-2 visual field test locations on a fundus photograph. (a)
Schematic of segmented peripapillary OCT scan, segmented macular OCT scan, and
10-2 visual field test, with corresponding structure-structure and structure-function
relationships indicated.
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Figure 7.3: Example adjustment of the labeled regions so that the regions match the
underlying anatomy – a larger than realistic angular difference used for demonstrating
the principle. (a) Schematic of the proposed adjustment. (b) The macular region
could also be subdivided as shown.

Figure 7.4: Example macular column and associated Humphrey 10-2 VF sensitivity
test location.
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In AMD, anti-VEGF injections have been used successfully to treat patients with

CNV; however, the injections do incure risks of serious ocular events and are expen-

sive. Furthermore, each patient can respond differently. Thus, it would be desirable

to develop a patient-specific dosing strategy with the minimum number of injections

required. Quantifying the SEAD properties (such as volume and texture) and proper-

ties of the surrounding layers would be one important step in being able to determine

an optimal dosing strategy. Such a quantification would also be important in assessing

treatment strategies for DME as well.

In order to do this, it will become necessary to segment both the SEADs and the

layers in these images. The presence of the SEADs will require the development of

additional segmentation approaches. One possibility would be to segment the SEADs

first using a classifier-based approach, followed by the layer segmentation using the

SEAD locations as “don’t care” regions. An example preliminary segmentation in

SEADs in AMD using an interactive level-set approach is illustrated in Fig. 7.6, with

a DME example illustrated in Fig. 7.7.

With segmented SEADs and layers of an OCT image at a given time, one can

then imagine computing a number of local properties of the SEADs (e.g., volume,

footprint area, texture, etc.) and the layers (see Section 7.1.1). Features could also

be computed on a corresponding fundus photograph and registered together using

the retinal vasculature, providing multiple derived features for each time point (see

Fig. 7.8). Functional information, such as that resulting from ETDRS visual acuity

and contrast sensitivity tests could also be performed.

Such features could thus be acquired based on the tests at multiple time points

during a treatment scheme and then used to help learn the relationship between the

features and response to treatment. In particular, it would be of interest to learn both

1) which features change over time and 2) which features are associated with outcome

parameters (e.g., total retinal thickness changes, decrease in numbers/size of SEADs,
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Figure 7.5: CNV recurrence in AMD after successful treatment induction. (CNV
= choroidal neovascularization, SEAD = symptomatic exudate-associated derange-
ment.)

number of treatments necessary in a time period). Fig. 7.9 illustrates a proposed

scheme for acquiring the data in order to provide data for learning such relationships.

In this example scheme, there is an “induction” phase of approximately 3 months in

which data are regularly acquired more frequently than the treatments (this data can

be useful in looking at short-term changes). This is followed by a longer period of

time in which the data are only acquired when treatments are given (with treatment

time decided by a clinician).
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Figure 7.6: Example SEAD response to treatment in AMD.

Figure 7.7: Example SEAD segmentation in DME.



130

OCT-OCT

Registration

Quantitative

properties

and their

temporal

di!erences

for each

time point

Image Analysis

Time ....
Time N

Time 2

Fundus Vessel Segmentation

Identi"cation

of Fovea

3D OCT Segmentation:

∙ Motion Correction

∙ SEAD Segmentation

∙ Intraretinal Layer Segmentation

∙ Vessel Segmentation

3D OCT

FUNDUS
OCT-Fundus

Registration

Image Analysis for Time 1

Figure 7.8: Steps leading to quantitative analysis in OCT images.

3D Macular

OCT

Fundus

time

Contrast

Sensitivity

ETDRS

Visual

Acuity

0 weeks 2 weeks 4 weeks 6 weeks 8 weeks

T1Anti-VEGF

Treatments
T2 T3 T4 T5

Anti-VEGF Induction Phase

ti
m

e
 t

o
 t

re
a

tm
e

n
t

cl
in

ic
a

lly
 in

d
ic

a
te

d

ti
m

e
 t

o
 t

re
a

tm
e

n
t

cl
in

ic
a

lly
 in

d
ic

a
te

d

ti
m

e
 t

o
 t

re
a

tm
e

n
t

cl
in

ic
a

lly
 in

d
ic

a
te

d

12 weeks10 weeks

Figure 7.9: Predicting response to anti-VEGF treatment in CNV patients.
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CHAPTER 8
CONCLUSIONS

To summarize, first recall the specific aims for this thesis:

• Aim 1: Develop a method for the incorporation of regional information and

varying constraints into the optimal 3-D graph search.

• Aim 2: Develop a method for learning cost functions and varying constraints

from examples for use in the 3-D graph search.

• Aim 3: Develop and validate a method for the 3-D segmentation of intraretinal

layers from OCT images.

• Aim 4: Use the intraretinal layer segmentation approach to (a) help determine

which macular layers show significant changes in thickness in unilateral ante-

rior ischemic optic neuropathy (AION) subjects and (b) perform pilot analysis

of localized thickness and thickness variability of individual layers in normal

subjects.

The developed method for the incorporation of regional information and varying

constraints into the optimal 3-D graph search (Aim 1) was described for the general

case in Chapter 3. While this development was motivated by needing to segment OCT

images, the method remains general so that it can be applicable to other segmentation

tasks as well. A method for learning appropriate constraints from examples (second

part of Aim 2) was also described in this chapter, with Chapter 4 illustrating how

such an approach can improve segmentation results. Chapters 4 and 5 described the

developed methods and validation of an automated method for the 3-D segmenta-

tion of intraretinal layers in time-domain (Chapter 4) and spectral-domain (Chapter

5) OCT images (Aim 3), achieving results comparable to that of human observers.

Chapter 5 also included an approach for learning in-region cost terms and determin-

ing an appropriate combination of on-surface and in-region cost terms from examples

(first part of Aim 2). Finally, in Chapter 6, the developed segmentation approach was
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applied to illustrate how the inner layer thins in anterior ischemic optic neuropathy,

while the outer layer does not (Aim 4a) and to perform an pilot analysis of localized

thickness and thickness variability of individual layers in normal subjects (Aim 4b).

In addition, this thesis has provided potential future directions for this work. The

previous chapter (Chapter 7) has just touched on some of the possible ophthalmic

applications for utilizing an automated 3-D intraretinal layer segmentation approach

(and other associated image analysis tools). Thus, such an approach shows great

promise in further contributing to the ophthalmology community.
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APPENDIX
GRAPH THEORY BACKGROUND

This appendix reviews some of the relevant graph principles and algorithms related

to transforming segmentation problems into finding a minimum-cost path in a graph

(frequently used for 2-D segmentation tasks) or finding a maximum flow (minimum

cut) in a graph (used as the final step in the 3-D segmentation approach used in this

thesis). After presenting definitions, example algorithms are presented. Note that

much of the material is based on that found in the Introduction to Algorithms textbook

by Cormen, Leiserson, Rivest, and Stein [65] (algorithms reused with permission

courtesy of The MIT Press).

A.1 Basic definitions and notation

A graph G = (V, E) consists of a set of vertices V and a set of edges E. Each edge

e in the edge set E is an ordered pair of vertices from V (E ⊆ V × V ). In a directed

graph, the order of the listed vertices in the pair matters and the second listed vertex

in the pair is defined as being adjacent to the first vertex. For example, if (u, v) is

an edge in a directed graph, v is adjacent to u; however, u is not adjacent to v unless

(v, u) is also an edge in the graph. Note that this contrasts with an undirected graph

in which the order of the vertices does not matter, making the adjacency relationship

symmetric. Thus, if (u, v) is an edge in an undirected graph (the same edge as (v, u)),

u would be adjacent to v, and v would also be adjacent to u.

In an edge-weighted graph (also known as just a weighted graph), each edge also

has a weight associated with it. The weight of an edge (u, v) will be referred to as

w(u, v). An example of a directed graph consisting of the vertices {a, b, c, d, e, f}

and edges {(a, c), (a, d), (c, e), (d, e), (d, b), (d, f)} is shown in Fig. A.1(a). A weighted

version of this graph is shown in Fig. A.1(b).

In a vertex-weighted graph, each vertex has a weight associated with it. The

weight of of a vertex v will be referred to as w(v). Note that in many image segmen-
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Figure A.1: Unweighted and weighted directed graphs. (a) Directed graph with vertex
set V = {a, b, c, d, e, f} and edge set E = {(a, c), (a, d), (c, e), (d, e), (d, b), (d, f)}. (b)
Directed graph as in (a), but with example edge weights w(a, c) = 6, w(a, d) = 2,
w(c, e) = 1, w(d, e) = 7, w(d, b) = 4, w(d, f) = 3.

tation approaches, these “weights” are also often referred to as “costs.”

A.1.1 Paths

A path p = 〈v0, v1, . . . , vk−1, vk〉 through a graph can be represented as a sequence

of vertices in which each vertex in the sequence (other than the first) is adjacent to

the previous vertex in the sequence. In addition to the vertices v0, v1, . . . , vk−1, vk,

the path also contains the edges (v0, v1), (v1, v2), . . . , (vk−1, vk) [66]. If the graph is

edge-weighted, each path also has a cost associated with it, defined as the sum of its

edge weights:

cost(p) =
k∑

i=1

w(vi−1, vi) , (A.1)

where 〈v0, v1, . . . , vk−1, vk〉 are the vertices in the path. For example, one path in the

simple graph of Fig. A.1(b) is 〈a, c, e〉, with cost(p) = w(a, c) + w(c, e) = 7.

In case of a vertex-weighted graph, the cost of a path can be written as:

cost(p) =
k∑

i=0

w(vi) , (A.2)

and in the case of both an edge-weighted and a vertex-weighted graph, the cost of a
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path can be written as:

cost(p) =

k∑

i=0

w(vi) +

k∑

i=1

w(vi−1, vi) . (A.3)

A cycle in a directed graph is a path that has at least one edge for which the first

and last vertices are the same. If a graph has no cycles, it is acyclic.

A.1.2 Flow networks

As described in [67], a flow network is a special type of directed weighted graph.

In particular, in a flow network:

1. The weight of each edge (u, v) ∈ E is nonnegative. We will refer to these weights

as capacities and define a capacity function c(u, v) such that c(u, v) = w(u, v)

for (u, v) ∈ E and (c, v) = 0 for (u, v) /∈ E. (Note that the capacity function is

defined for all (u, v) pairs, even when (u, v) /∈ E.)

2. There are two special vertices: a source s and a sink t. Furthermore, every

vertex v ∈ V lies on some path from the source to the sink. Thus, the graph is

connected and |E| ≥ |V | − 1.

Intuitively, one can think of a flow network as modeling a system in which material is

produced at a source and “flows” through conduits (edges) until it reaches the sink.

The capacities reflect the maximum amount of material that can flow across each

conduit. Fig. A.2 illustrates an example flow network.

A particular flow can be described by a function f(u, v) in which the following

three properties are satisfied:

• The flow f(u, v) between two vertices is no more than the capacity of flow

between those two vertices. (For all u, v ∈ V , f(u, v) ≤ c(u, v).)

• The flow between two vertices in one direction is the negative of the flow in the

opposite direction. (For all u, v ∈ V , f(u, v) = −f(v, u).)
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Figure A.2: Example flow network with capacities indicated.

• Flow is conserved. (For all u ∈ V − {s, t},
∑

v∈V f(u, v) = 0, meaning that

except for the source and sink, the total flow out of each vertex is 0. Because

of the second property above, this also means that the total flow into each

vertex (other than the source or sink) is also 0. Another interpretation of the

conservative property is that the positive flow entering each vertex must equal

the positive flow leaving the vertex.)

Note that although capacities must be positive, the flow between vertices can be

positive, negative, or zero. The total flow out of the source is called the value of a

flow f , |f |:

|f | =
∑

v∈V

f(s, v) . (A.4)

Given a flow f , the residual capacity cf(u, v) for each pair of vertices is given by

cf (u, v) = c(u, v)− f(u, v) , (A.5)

which reflects the additional amount of flow that the can flow between vertices u and

v. Then the residual network of the network flow G = (V, E) is a graph Gf (V, Ef)

where

Ef = {(u, v) ∈ V × V : cf(u, v) > 0} . (A.6)
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Figure A.3: Example maximum flow and corresponding minimum cut. Flows are
indicated in the form f(u, v) / c(u, v) (flow over capacity), with only positive flows
between vertices being indicated. The value of the maximum flow is 3 (note that
other choices of flows would also produce this maximum value). In this example, the
vertices in the source set S of the minimum cut are {s, a, b, c, d} (indicated in blue),
while the sink set only consists of the sink vertex t (indicated in red). The capacity
of the cut is 3 (directed edges from S to T are indicated in purple).

Cuts are another important concept in flow networks. In particular, a cut (S, T )

of a flow network is a partition of the vertices V into two disjoint sets: S and T

(T = V − S) with the requirement that s ∈ S and t ∈ T . The capacity c(S, T ) of

such a cut is defined as the summation of the capacities of the edges from vertices in

S to vertices in T :

c(S, T ) =
∑

u∈S

∑

v∈T

c(u, v) . (A.7)

A minimum cut of a flow network is defined as a cut with the minimum capacity.

Fig. A.3 illustrates an example maximum flow and corresponding minimum cut for

the flow network in Fig. A.2.

A.1.3 Closed sets

A closed set is a subset of vertices in a graph such that no directed edges leave

the set. Given a vertex-weighted graph and a closed set, the cost of a closed set can

be defined as the summation of all vertices belonging to the set.
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A.2 Finding a minimum-cost path in a DAG

As shown in [66] and [68], the minimum cost path between a start vertex s and each

other vertex in a directed acyclic graph can be found in Θ(V +E) time by “relaxing”

edges according to a topological sort of the vertices (Algorithm A.1). The process of

“relaxing” an edge (u, v) involves testing whether the current estimate of the shortest

path through v can be improved by going through (u, v), as shown in Algorithm A.2.

In other words, if d[v] represents the cost of the current estimate of the minimum

cost path from s to v, d[v] is updated to d[u] + w(u, v) if d[u] + w(u, v) < d[v] [66].

The actual path is saved by also storing the predecessor of each vertex v in π[v] (also

updated during the relaxation of an edge). Initially, all the predecessors are set to

nil and the current estimates of the shortest cost paths are set to ∞, as shown in

Algorithm A.3.

Dag-Shortest-Paths(G, w, s)

1 topologically sort the vertices of G
2 Initialize-Single-Source(G, s)
3 for each vertex u, taken in topologically sorted order
4 do for each vertex v ∈ Adj [u]
5 do Relax(u, v, w)

Algorithm A.1: Dag-Shortest-Paths(G, w, s). Copied with permission from [66].

A.3 Finding a maximum flow (minimum cut)
in a flow network

The goal of the maximum-flow problem is to find a flow f of maximum value in

a flow network G with source s and sink t. Alternatively, this can be thought of as a

finding a minimum cut in the flow network. This is because of the max-flow min-cut
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Relax(u, v, w)

1 if d[v] > d[u] + w(u, v)
2 then d[v]← d[u] + w(u, v)
3 π[v]← u

Algorithm A.2: Relax(u, v, w). Copied with permission from [66].

Initialize-Single-Source(G, s)

1 for each vertex v ∈ V [G]
2 do d[v]←∞
3 π[v]← nil

4 d[s]← 0

Algorithm A.3: Initialize-Single-Source(G, s). Copied with permission from
[66].

theorem which says that the value of the maximum flow is equal to the capacity of

the minimum cut [67]. Note that given a maximum flow (and corresponding residual

network Gf), a corresponding minimum cut can be found by defining the cut (S, T )

as follows:

S = {v ∈ V : there exists a path from s to v in Gf} , (A.8)

and T = V − S.

Multiple algorithm exist for finding a maximum flow (minimum cut) in a network

flow graph. Here, we present two common methods, each of which serves as a basis for

a number of more specific algorithms. The first general method, the Ford-Fulkerson

method (Algorithm A.4), involves repeatedly finding paths from the source to sink

for which additional material can flow. Such paths are called “augmenting paths”
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and are defined as simple paths that exist from s to t in the residual network Gf .

Once no more augmenting paths can be found, the maximum flow has been found

and the algorithm terminates. Note that the graph cut method of Boykov et al. [69]

(designed with image segmentation tasks in mind) is a variation of an “augmenting

path” method.

Ford-Fulkerson-Method(G, s, t)

1 initialize flow f to 0
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

Algorithm A.4: Ford-Fulkerson-Method(G, s, t). Copied with permission from
[67].

Algorithm A.5 provides a more detailed version of a basic Ford-Fulkerson algo-

rithm. The actual running time of such an algorithm depends on how the augmenting

path is determined. For example, if a breadth-first search is used to finding the aug-

menting path p in line 4 (i.e., the chosen augmenting path is the shortest path from

s to t in the residual network, where each edge has unit weight), then the algorithm

runs in O(V E2) time (the Edmonds-Karp algorithm) [67].

A second general method for solving maximum-flow problems, the “push-relabel”

method, involves working with the vertices of the graph at a more local level. Fur-

thermore, instead of maintaining a proper flow function throughout the algorithm,

push-relabel algorithms relax the “flow conservation” requirement so that instead of

requiring that the total positive flow into a vertex has to equal the total positive flow

out of a vertex, it just requires that the flow in must be larger than or equal to the
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Ford-Fulkerson(G, s, t)

1 for each edge (u, v) ∈ E[G]
2 do f [u, v]← 0
3 f [v, u]← 0
4 while there exists a path p from s to t in the residual network Gf

5 do cf(p)← min{cf (u, v) : (u, v) is in p}
6 for each edge (u, v) in p
7 do f [u, v]← f [u, v] + cf (p)
8 f [u, v]← −f [u, v]

Algorithm A.5: Ford-Fulkerson(G, s, t). Copied with permission from [67].

flow out (
∑

v∈V f(v, u) ≥ 0 for all vertices u ∈ V −{s}). This relaxed version of a flow

is called a “preflow.” The other properties of a flow (i.e., obeying capacity constraints

and requiring the flow in one direction between two vertices to be the negative of the

flow in the opposite direction) are still maintained in a preflow. The excess flow e(u)

into u is defined as

e(u) =
∑

v∈V

f(v, u) . (A.9)

Push-relabel algorithms also maintain what is known as a “height function,” in which

an integer value intuitively representing a height is assigned to each vertex. To be a

valid height function, a function h must satisfy the following properties:

• h(s) = |V |,

• h(t) = 0, and

• h(u) ≤ h(v) + 1 for every residual edge (u, v) ∈ Ef .

Algorithm A.6 provides a generic version of a push-relabel algorithm. After ini-

tialization (Algorithm A.7), a sequence of “push” (Algorithm A.8) and “relabel”

(Algorithm A.9) operations are performed to modify a height function h and preflow

f associated with the vertices. The “push” operations essentially work to modify
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the preflow by “pushing” excess flow from vertices to neighboring vertices, while the

“relabel” operations work to modify the height function (still maintaining a proper

height function). At termination, no excess flows exist and the preflow thus reflects a

proper flow. Furthermore, it reflects a maximum flow because of the fact that with a

proper height function and preflow (as is maintained in the algorithm), no path exists

in the residual network Gf from the source s to the sink t [67]. The general algorithm

can run in O(V 2E) time, but with appropriate data structures and careful choice of

the order of the push and relabel operations, faster running times are possible. More

details and further analysis of the push-relabel method can be found in [67].

Generic-Push-Relabel(G)

1 Initialize-Preflow(G, s)
2 while there exists an applicable push or relabel operation
3 do select an applicable push or relabel operation and perform it

Algorithm A.6: Generic-Push-Relabel(G). Copied with permission from [67].

A.4 Finding a minimum-cost closed set

As shown in [6, 70, 71], an optimal closed set can be found in a directed vertex-

weighted graph G = (V, E) by computing a minimum s-t cut in a related graph Gst =

(Vst, Est). In particular, for finding a minimum-cost closed set, Gst is constructed as

follows:

• Define the vertex set Vst by adding a source node s and sink node t to the vertex

set of G (Vst = V
⋃
{s, t}).

• Let V + denote the set of vertices in G with a nonnegative cost. Let V − denote

the set of vertices with a negative cost. Define the edge set Est by adding
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Initialize-Preflow(G, s)

1 for each vertex u ∈ V [G]
2 do h[u]← 0
3 e[u]← 0
4 for each edge (u, v) ∈ E[G]
5 do f [u, v]← 0
6 f [v, u]← 0
7 h[s]← |V [G]|
8 for each vertex u ∈ Adj[s]
9 do f [s, u]← c(s, u)

10 f [u, s]← −c(s, u)
11 e[u]← c(s, u)
12 e[s]← e[s]− c(s, u)

Algorithm A.7: Initialize-Preflow(G, s). Copied with permission from [67].

Push(u, v)

1 � Applies when: u is overflowing, cf(u, v) > 0, and h[u] = h[v] + 1.
2 � Action: Push df(u, v) = min(e[u], cf(u, v)) units of flow from u to v.
3 df(u, v)← min(e[u], cf(u, v))
4 f [u, v]← f [u, v] + df(u, v)
5 f [v, u]← −f [u, v]
6 e[u]← e[u]− df(u, v)
7 e[v]← e[v] + df(u, v)

Algorithm A.8: Push(u, v). Copied with permission from [67].

Relabel(u)

1 � Applies when: u is overflowing and for all v ∈ V such that (u, v) ∈ Ef ,
we have h[u] ≤ h[v].

2 � Action: Increase the height of u.
3 h[u]← 1 + min{h[v] : (u, v) ∈ Ef}

Algorithm A.9: Relabel(u). Copied with permission from [67].
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new edges sets Es− and Es+ to the edge set E (Est = E
⋃

Es−

⋃
Et+).

Es− is defined by adding edges from the source to each of the vertices in V −

(Es− = {(s, v) | v ∈ V −}). Each edge (s, v) ∈ Es− is given a a capacity of

−w(v). Similarly, Et+ is defined by adding edges from each of the vertices in

V + to the sink t (Et+ = {(v, t) | v ∈ V +}). Each edge (v, t) ∈ Et+ is given a

capacity of w(v). A capacity of infinity is assigned to each edge in the original

edge set E.

With this construction, the source set (without the source s) of the minimum cut

corresponds to the minimum-cost closed set.
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