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ABSTRACT

State-of-the-art biochemical systems for medical applications and chemical computing

are application-specific and cannot be re-programmed or trained once fabricated. The

implementation of adaptive biochemical systems that would offer flexibility through pro-

grammability and autonomous adaptation faces major challenges because of the large

number of required chemical species as well as the timing-sensitive feedback loops re-

quired for learning. Currently, biochemistry lacks a systems vision on how the user-

level programming interface and abstraction with a subsequent translation to chemistry

should look like. By developing adaptation in chemistry, we could replace multiple hard-

wired systems with a single programmable template that can be (re)trained to match a

desired input-output profile benefiting smart drug delivery, pattern recognition, and chem-

ical computing.

I aimed to address these challenges by proposing several approaches to learning and

adaptation in Chemical Reaction Networks (CRNs), a type of simulated chemistry, where

species are unstructured, i.e., they are identified by symbols rather than molecular struc-

ture, and their dynamics or concentration evolution are driven by reactions and reaction

rates that follow mass-action and Michaelis-Menten kinetics.

Several CRN and experimental DNA-based models of neural networks exist. How-

ever, these models successfully implement only the forward-pass, i.e., the input-weight in-

tegration part of a perceptron model. Learning is delegated to a non-chemical system that
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computes the weights before converting them to molecular concentrations. Autonomous

learning, i.e., learning implemented fully inside chemistry has been absent from both

theoretical and experimental research.

The research in this thesis offers the first constructive evidence that learning in CRNs

is, in fact, possible. I have introduced the original concept of a chemical binary perceptron

that can learn all 14 linearly-separable logic functions and is robust to the perturbation of

rate constants. That shows learning is universal and substrate-free. To simplify the model

I later proposed and applied the “asymmetric” chemical arithmetic providing a compact

solution for representing negative numbers in chemistry.

To tackle more difficult tasks and to serve more complicated biochemical applica-

tions, I introduced several key modular building blocks, each addressing certain aspects

of chemical information processing and learning. These parts organically combined into

gradually more complex systems. First, instead of simple static Boolean functions, I

tackled analog time-series learning and signal processing by modeling an analog chem-

ical perceptron. To store past input concentrations as a sliding window I implemented a

chemical delay line, which feeds the values to the underlying chemical perceptron. That

allows the system to learn, e.g., the linear moving-average and to some degree predict a

highly nonlinear NARMA benchmark series.

Another important contribution to the area of chemical learning, which I have helped

to shape, is the composability of perceptrons into larger multi-compartment networks.

Each compartment hosts a single chemical perceptron and compartments communicate

with each other through a channel-mediated exchange of molecular species. Besides the

feedforward pass, I implemented the chemical error backpropagation analogous to that of

feedforward neural networks. Also, after applying mass-action kinetics for the catalytic

reactions, I succeeded to systematically analyze the ODEs of my models and derive the
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closed exact and approximative formulas for both the input-weight integration and the

weight update with a learning rate annealing. I proved mathematically that the formulas

of certain chemical perceptrons equal the formal linear and sigmoid neurons, essentially

bridging neural networks and adaptive CRNs.

For all my models the basic methodology was to first design species and reactions,

and then set the rate constants either ”empirically” by hand, automatically by a standard

genetic algorithm (GA), or analytically if possible. I performed all simulations in my

COEL framework, which is the first cloud-based chemistry modeling tool, accessible at

coel-sim.org.

I minimized the amount of required molecular species and reactions to make wet

chemical implementation possible. I applied an automatized mapping technique, Solove-

ichik’s CRN-to-DNA-strand-displacement transformation, to the chemical linear percep-

tron and the manual signalling delay line and obtained their full DNA-strand specified

implementations. As an alternative DNA-based substrate, I mapped these two models

also to deoxyribozyme-mediated cleavage reactions reducing the size of the displacement

variant to a third. Both DNA-based incarnations could directly serve as blue-prints for

wet biochemicals.

Besides an actual synthesis of my models and conducting an experiment in a bio-

chemical laboratory, the most promising future work is to employ so-called reservoir

computing (RC), which is a novel machine learning method based on recurrent neural

networks. The RC approach is relevant because for time-series prediction it is clearly

superior to classical recurrent networks. It can also be implemented in various ways,

such as electrical circuits, physical systems, such as a colony of Escherichia Coli, and

water. RC’s loose structural assumptions therefore suggest that it could be expressed in

a chemical form as well. This could further enhance the expressivity and capabilities of
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chemically-embedded learning.

My chemical learning systems may have applications in the area of medical diagno-

sis and smart medication, e.g., concentration signal processing and monitoring, and the

detection of harmful species, such as chemicals produced by cancer cells in a host (can-

cer miRNAs) or the detection of a severe event, defined as a linear or nonlinear temporal

concentration pattern. My approach could replace hard-coded solutions and would allow

to specify, train, and reuse chemical systems without redesigning them. With time-series

integration, biochemical computers could keep a record of changing biological systems

and act as diagnostic aids and tools in preventative and highly personalized medicine.
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Y , the target output Ŷ , and the absolute error E. . . . . . . . . . . . . . . 84

xviii



LIST OF FIGURES

6.1 Delay line as a chemical learner’s memory. . . . . . . . . . . . . . . . . 88
6.2 The manual signalling chemical delay line of size n = 3. The species

X1, X2, and X3 represent the input X cached at time/cycle t, t− 1, and t− 2
respectively. The manual signalling model relies on sequential injection
of the signals XS

3 , X
S
2 , and XS

1 , hence it produces the cached values one
after another. Nodes represent species, solid lines are reactions, dashed
lines are catalysts, and λ stands for no or inert species. . . . . . . . . . . 89

6.3 Diagrams illustrating a propagation of the past input values in the manual
signalling chemical delay line of size n = 3. The input concentrations
injected at time t0, t5, and t10 are shown as black, yellow, and green circles
respectively. The signals injected at time t1, t6, and t11 (XS

3 ), t2, t7, and t12

(XS
2 ), and t3, t8, and t13 (XS

1 ), trigger the copy reactions, which produce
the terminal species consumed by the underlying system. Note that be-
cause the signals operate sequentially, so do the production of terminals.
Consequently, the latency of the system grows linearly with the number
of cached values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 The backpropagation signalling chemical DL of size n = 3. The species
X1, X2, and X3 represent the input X cached at time/cycle t, t − 1, and
t − 2 respectively. This model is semi-sequential (semi-parallel) since the
occurrence of signals XS

3 , X
S
2 , and XS

1 , which are transformed one from
another backwards, partially overlap. Nodes represent species, solid lines
are reactions, dashed lines are catalysts, and λ stands for no or inert species. 92

6.5 Diagrams illustrating a propagation of the past input values in the back-
propagation signalling chemical delay line of size n = 3. The input con-
centrations injected at time t0, t3, and t6 are shown as black, yellow, and
green circles respectively. The signal XS

3 injected at time t1, t4, and t7

transforms to the signals XS
2 and XS

1 , which trigger the copy reactions
producing the terminal species consumed by the underlying system. Note
that because of the partially overlapping stages the neighboring copy re-
actions leak a portion of the cached values prematurely. That produces an
error that accumulates with every stage (illustrated with color stripes). . . 94

6.6 The parallel-accessible delay line of size n = 3. The species X1, X2, and
X3 represent the input X cached at time/cycle t, t − 1, and t − 2 respec-
tively. The parallel model utilizes a wait queue XT

i for each stage and two
alternating signals S 1 and S 2, which produces all the values simultane-
ously. Nodes represent species, solid lines are reactions, dashed lines are
catalysts, and λ stands for no or inert species. . . . . . . . . . . . . . . . 95

xix



LIST OF FIGURES

6.7 Diagrams illustrating a propagation of the past input values in the parallel-
accessible chemical delay line of size n = 3. The input concentrations
injected at time t0, t5, and t10 are shown as black, yellow, and green circles
respectively. The red signal S 1 injected at time t1, t6, and t11, and the blue
signal S 2 injected at time t3 and t8 trigger the copy and move-in-wait-
queue reactions, which produce all the terminal species consumed by the
underlying system at the same time. . . . . . . . . . . . . . . . . . . . . 96

6.8 An AASP-DL schematic of size n = 2. . . . . . . . . . . . . . . . . . . . 98
6.9 The relation between the final RNMSE and SAMP error and the AASP-

DL size after 800 learning iterations. For each task 10,000 runs were
performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.10 The RNMSE error over time for all tasks. Average values over 10,000 runs.102
6.11 The SAMP error over time for all tasks. Average values over 10,000 runs. 103
6.12 An example of the AASP-DL n = 2 learning LWMA2, showing (a) the

concentration traces of the weights and (b) the filtered output and the
target output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 The weight-update mechanism for a two-input AASP. The process is
started by the injection of penalty signal P. The anihilatory compari-
son of the output Y and the threshold T determines whether the weights
will be increased or decreased. Nodes represent species, solid lines are
reactions, dashed lines are catalysts, and λ stands for no or inert species. . 119

7.2 FCNNs have tree-like topologies. . . . . . . . . . . . . . . . . . . . . . . 120
7.3 An alternative scheme places all hidden neurons as sibling subcompart-

ments of the output neuron, illustrated for an all-to-all network topology. . 121
7.4 A simplified diagram of the feedforward action of a two-input, one-hidden-

layer, two-hidden-neuron FCNN. The inert X′i species are injected into the
outer layer and permeate into the input layer, turning into the reactive Xi

input species in the process. Each inner compartment produces Y , which
then permeates into the outer compartment as it is transformed into the ap-
propriate Xi. This feedforward process is modulated by unshown species
S F and F, see Section 7.2.2. . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Concentration/time plot in the example FCNN with two HCNs (a, b) and
one OCN (c), illustrating the HCNs’ outputs feeding forward and becom-
ing the OCN’s input. At time zero the inputs X′1, X

′
2, and S ′in are injected

to the OCN (not shown in (c)). They then permeate into each HCN, trans-
forming into the input species. Note the initial spikes in concentrations of
X1, X2, and S in in (a) and (b). After the injection of an S F signal at time
40, each HCN’s output permeates out to the OCN, transforming into the
appropriate input species and S in. . . . . . . . . . . . . . . . . . . . . . . 125

xx



LIST OF FIGURES

7.6 A diagram of the backpropagation action of a one-hidden-layer, two-
hidden-neuron FCNN. The weight-adjusting species in the outer OCN
(right of figure) produce signed, input-specific penalty species Pi. The
penalty species then permeate into the hidden neurons’ compartments,
becoming those neurons’ weight-changing species in the process. . . . . . 126

7.7 Average accuracy of the FCNN on each of the 16 binary two-input logic
functions. An FCNN with one hidden layer and two hidden neurons lay-
ers was run 10,000 times on each of the 16 functions. Each run started
with random initial weights and was trained for 2,000 learning iterations.
The data points represent the proportion of correct answers the system
produced on a given learning iteration. Six of the functions are labelled;
the remaining ten overlap in the top-left of the graph. Note that the FCNN
learns equally well any two functions that are equivalent after switching
the names of X1 and X2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.8 An example of weights and output concentration converging in the OCN
as an FCNN learns XOR over 300 learning iterations. Note that when
the weights reach a fixed point around the 250th iteration, the output [Y]
oscillates around 0.6, which in this case is the binary threshold. In this ex-
periment, inputs were cycled in the fixed order ((0, 0), (1, 0), (0, 1), (1, 1))
for the purpose of illustration—once the function is learned, [Y] oscillates
as the system produces the correct (thresholded) output stream 0, 1, 1, 0
(zoomed in the smaller plot). . . . . . . . . . . . . . . . . . . . . . . . . 131

7.9 Response surface of an FCNN which learned XOR. Here input [X] values
of 1.0 correspond to TRUE, and 0.0 to FALSE, so the accuracy of the
FCNN is defined only by its response at the corners of the plots. The
plot on the left shows the FCNN’s output value at each ([X1], [X2]), while
the plot on the right shows the same data thresholded by 0.6—the output
values above the threshold correspond to TRUE (red region), and those
below indicate FALSE (blue regions). Jagged lines in the right figure are
an artifact of our sampling technique. . . . . . . . . . . . . . . . . . . . 132

8.1 The input-output vector map of the nonlinear cross-dependent input-weight
integration with a single input (weight) and k1 = k2 = w = 1. Note that
the output decreases above the threshold concentration C = k1w

k2
= 1 and

increases below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 The input-output relation of the nonlinear cross-weight input-weight in-

tegration with a single input compared to the lower bound 1 − e−
x

2w , the
upper bound 1 − e

−x
w , the mean approximation w

(
1 − e

x
2w +e

x
w

2

)
, and a linear

function. The rate constants and the weight concentration were set to 1
(k1 = k2 = w = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xxi



LIST OF FIGURES

8.3 The reactions performing: a) a strictly additive input-weight integration
of two inputs, where each weight races with decay of its input Xi, b) a lin-
ear cumulative input-weight integration of two inputs, where each weight
races with a transformation of its input to the negative output Y	. The pos-
itive and negative outputs combine through the annihilation Y + Y	 → λ.
In both cases three species S L

in, X
L
1 , and XL

2 represent the contributions of
the inputs S in, X1, and X2 with associated weights in the output Y . Nodes
represent species, solid lines are reactions, dashed lines are catalysts, and
λ stands for no or inert species. . . . . . . . . . . . . . . . . . . . . . . . 146

8.4 The reactions responsible for a direct production of weight changers W	

and W⊕ from the output and desired output species Y and Y	 triggered by
a learning signal S L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.5 The reactions responsible for positive and negative weight adaptation. . . 154
8.6 The reactions responsible for the annealed weight adaptation. . . . . . . . 158
8.7 Mean square error (MSE) of the analytic and the ODE version of a chem-

ical linear perceptron on the NARMA10 task using a delay line of size
10 averaged over 10,000 runs, each consisting of 800 learning iterations.
The analytic and ODE versions match perfectly. . . . . . . . . . . . . . . 165

8.8 Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the
neural network linear perceptron (NNLP), and the AASP after 800 learn-
ing iterations for 6 linear and nonlinear functions of two inputs averaged
over 10,000 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.9 RNMSE and SAMP of the chemical linear perceptron for 6 linear and
nonlinear functions of two inputs averaged over 10, 000 runs with the
initial δ = 0.1 and 0.001 increment (annealing). . . . . . . . . . . . . . . 168

8.10 Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the
neural network linear perceptron (NNLP), and the AASP after 800 learn-
ing iterations for the 4 target times series averaged over 10,000 runs. The
best global results obtained using the delay line of size 2 to 20 are shown. 169

8.11 Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the
neural network linear perceptron (NNLP), the linear regression (L Reg),
and the AASP after 800 learning iterations for the 4 target times series
averaged over 10,000 runs and the delay line sizes from 2 to 20. The
most scalable results are shown for the CHLP and the NNLP out of all
learning/annealing rate combinations. . . . . . . . . . . . . . . . . . . . 171

9.1 DNA structure (adapted from US National Library of Medicine). . . . . . 177
9.2 A roadmap showing different abstraction levels going from a formal model

through CRN specification and to DNA domains, DNA sequences, and
ultimately (wet) DNA molecules. . . . . . . . . . . . . . . . . . . . . . . 178

xxii



LIST OF FIGURES

9.3 DNA strand displacement—an upper strand X displaces a strand Y from
a complex G in a series of reactions. Long domains are gray and short
domains are red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.4 Transformation of a formal unimolecular reaction with one product S →
P1 into a cascade of two DNA strand displacements. The original species
(in bold) are single stranded molecules consisting of four unique domains.
Long domains are gray and short domains are red. . . . . . . . . . . . . . 183

9.5 Transformation of a formal unimolecular reaction with two products S→
P1 + P2 into a cascade of two DNA strand displacements. The original
species (in bold) are single stranded molecules consisting of four unique
domains. Long domains are gray and short domains are red. . . . . . . . 183

9.6 Transformation of a formal bimolecular reaction with one product S1 +

S2 → P1 into a cascade of three DNA strand displacements. The original
species (in bold) are single stranded molecules consisting of four unique
domains. Long domains are gray and short domains are red. . . . . . . . 184

9.7 Transformation of a formal bimolecular reaction with one product S1 +

S2 → P1 + P2 into a cascade of three DNA strand displacements. The
original species (in bold) are single stranded molecules consisting of four
unique domains. Long domains are gray and short domains are red. . . . 185

9.8 Example of a buffering reaction, a bidirectional displacement, of species
X j, defined as X j +LS j ←→ HS j + BS j. Long domains are gray and short
domains are red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.9 The domain-specified structures of the first 7 displacements of the linear
chemical perceptron from Table 9.3. The full list is available in Appendix,
Figure C.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.10 The domain-specified structures of the first 6 displacements of the manual
signalling delay line from Table 9.5. The full list is available in Appendix,
Figure C.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.11 An example of catalytic DNA reaction D + Q-F → D + Q + F: deoxyri-
bozyme D cleaves an oligonucleotide Q-F into two parts Q and F. . . . . 200

9.12 Deoxyribozyme-based NOT gate D + I → D-I. A strand i binds to the
stem loop sequence i∗ of the enzyme D and deactivates it. . . . . . . . . . 200

9.13 Naive deoxyribozyme-based implementation of the copy reactions of the
manual signalling delay line of size three. . . . . . . . . . . . . . . . . . 202

9.14 Deoxyribozyme-based implementation of the copy reactions of the man-
ual signalling delay line of size three where an exchange of the cached
species XC

i between the stages is carried out by the DNA strand displace-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xxiii



LIST OF FIGURES

9.15 Final deoxyribozyme-based implementation of the copy reactions of the
manual signalling delay line of size three where an exchange of the cached
species XC

i between the stages is carried out by the DNA strand displace-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.16 Deoxyribozyme-based implementation (NOT gates) of the signal decays
of the manual signalling delay line of size three. . . . . . . . . . . . . . . 206

9.17 Deoxyribozyme-based implementation of the input-weight integration re-
actions of the linear chemical perceptron. . . . . . . . . . . . . . . . . . 208

9.18 (a) Rosen’s diagram showing organization invariance of life. The system
is continually repaired and replicated as a product of its own metabolism.
Solid arrows are material causations, whereas dashed arrows are efficient
causations; (b) High-level diagram of an abstract chemical learning sys-
tem. The concentration of functional species is adapted by the learning
module implemented internally and operated externally by a trainer. . . . 213

10.1 A partial description of a chemical reaction network in COEL. Species
are listed at the top, and their reactions are presented in tabular form.
The reactants and products are described in the third column, the forward
reaction rates are in the fourth column, and any catalysts are in the fifth. . 219

10.2 COEL’s representation of a permeation schema. . . . . . . . . . . . . . . 220
10.3 The details of a COEL interaction series. Left arrows denote the setting

of species concentrations, and right arrows indicate assignments of user-
defined variables. The interaction at time 100 does the following (note
that at time 0 the variable IN is set to 3): first, the variables X1 in j and
X2 in j are randomly set to 0 or 3 with equal probability. The concen-
tration of S in is set to 3, then the concentrations of X1 and X2 are set
equal to their respective injection variables. Finally, Y is flushed from the
system—its concentration is set to 0. . . . . . . . . . . . . . . . . . . . . 221

10.4 A chart showing concentration traces of 5 chemical species over time in
COEL. In this case, an interaction series injects a random combination of
X1 and X2 at concentration 1, every 1000 time steps. . . . . . . . . . . . 222

10.5 A chart of three separate performance evaluations, each one showing the
performance of a binary chemical perceptron averaged over 10,000 rep-
etitions for given interaction series representing desired binary function
(XOR, OR, PROJ). Note the data export options on the right. . . . . . . . . . 223

10.6 A chart of a population’s fitness over time in a run of a particular GA.
This plot displays several features shared by all plots in COEL, enabling
modification of the plot without refreshing the web page: an x-axis slider
to specify the plot’s domain, a drop-down menu to select which series to
display, and a slider to select the plot’s resolution relative the data set. . . 224

xxiv



LIST OF FIGURES

10.7 COEL’s tool for visualizing DNA strands specified in Visual DSD. Red
lines represent toeholds, and gray lines are long domains. . . . . . . . . . 225

10.8 A DNA strand displacement reaction obtained by COEL’s transformation
of arbitrary CRNs into strand displacement circuits. . . . . . . . . . . . . 226

10.9 A high-level overview of COEL’s architecture consisting of web and con-
sole clients, web servlet, services, business logic, persistence layer, and
computational grid. The application (IoC) container holding the server-
side of the application is implemented in Spring framework. . . . . . . . 229

10.10COEL’s home (welcome) page. URL: coel-sim.org. . . . . . . . . . . . . 235
10.11Diagram showing a physical deployment of COEL’s components. . . . . . 237

11.1 A high-level taxonomic tree of all our chemical models showing deriva-
tion paths, historical context, and integrations. Since the FCNN, which
learns the binary functions, is not a perceptron but a multicompartment
chemistry consisting of three analog perceptrons (AASPs), we placed it
between the binary and analog perceptron models. . . . . . . . . . . . . . 241

xxv

http://coel-sim.org


LIST OF SYMBOLS AND ACRONYMS

Acronym Description

CRN Chemical Reaction Network
AC Artificial Chemistry
WLP Weight-Loop Perceptron
WRP Weight-Race Perceptron
ASP Asymmetric Signal Perceptron
SASP Standard Asymmetric Signal Perceptron
TASP Thresholded Asymmetric Signal Perceptron
AASP Analog Asymmetric Signal Perceptron
DL Delay Line
MDL Manual Signalling Delay Line
BDL Backpropagation Signalling Delay Line
PDL Parallel-Accessible Delay Line
FCNN Feedforward Chemical Neural Network
RNMSE Root Normalized Mean Square Error
SAMP Symmetric Absolute Mean Percentage Error
NARMA Nonlinear AutoRegressive Moving Average
NNLP Neural Network Linear Perceptron
CHLP Chemical Linear Perceptron
DNA Deoxyribonucleic Acid

xxvi



STATUTORY DECLARATION

I hereby formally declare that I am the sole author of this dissertation and I have not used
any source or aid apart from the stated ones. This thesis was neither presented in equal
nor in similar form to another examining board at any other university. I cited all used
references observing actual academic rules.

In Portland, OR, April 7, 2015 Peter Banda

xxvii



QUOTE

”Living forms are not in being, they are happening, they are the expression of a
perpetual stream of matter and energy which passes through the organism and at the

same time constitutes it.”
Ludwig von Bertalanffy (1901-1972)

xxviii



1

INTRODUCTION

Our bodies consist of cells, powerful chemical machines, capable of dynamic resource

distribution, repair, and reproduction. Biochemical media, especially DNA strands, offer

generic combinatorial power to model a wide variety of computational systems. Chem-

istry supports information processing due to inherent parallelism, massive interactivity,

redundancy, and asynchronicity [11, 42, 82]. Biomolecular systems have successfully

tackled several computing problems, including the traveling salesman problem [10], 3-

SAT [28], maximal clique [119], chess [50], and tic-tac-toe [145]. However, attempts to

build a programmable molecular automaton, that is, an automaton with more than one

hard-wired purpose failed, or had limited scope and no reusability [23,41,121]. The main

challenge is that the integration of the forward-pass, where the input species transform

to the output, with the backward-pass, where a user’s action affects the concentrations

of species that define the system’s functionality, requires reactions with complicated and

timing-sensitive relations that involve positive and negative catalytic feedback loops.

State-of-the-art biochemical systems for medical applications and chemical comput-

ing are application-specific and cannot be re-programmed or reused once fabricated. Typ-

ically these systems are one-shot-only so after they do certain work they cannot recover

their state and must be discarded. After injection in vitro or in vivo, nano-scale chemical

machines [157] are difficult to interface with and control. To address that, new chemical
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systems must function not only in idealized well-known lab settings, but also in previously

unanticipated environments. Rather than following static rules, their response must be ro-

bust and adaptive. Adaptive chemical systems would decide autonomously and learn new

environments through reinforcements in response to external stimuli. We could imagine

that in the future millions of molecular spiders [137] would help our immune system fight

viruses, deliver medications, fix broken cells, etc. For that vision to become true I wish

to understand how autonomous learning and adaptation can be incarnated in a chemical

medium.

The main goal of this dissertation is to introduce a flexible programmable template

for synthetic biochemistry that could find use in a variety of applications, such as drug

delivery [92], pattern recognition, smart medication, and chemical computing [42]. Cur-

rently the design of chemical systems is time-consuming and costly due to the complexity

of molecular interactions, and undesired leakage and crosstalk. Often the only method-

ology available is a tedious trial-and-error approach. I argue that by understanding and

developing adaptation in chemistry, we will be in a position where, instead of multiple

systems with hard-wired purpose, we may design a single programmable template that

can be trained (and re-trained) to achieve a desired input-output function profile.

Another motivation is to fit learning into the broader definition of life and challenge

its conventional meaning. The chemical medium is the basis of everything living on this

planet; therefore, it is the most natural choice for implementing an artificial life. Learning

allows organisms to generalize and predict the observed environment, and therefore to

gain a competitive advantage for their survival and reproduction. As I will show, the

feedback-based adaptation requires special molecular species, meta catalysts, that drive

the synthesis of underlying catalysts, whose concentrations represent the system’s state. I

will also place the presented chemical learning models in a wider context to see how their
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structure compares to the chemical organization of living systems, especially Rosen’s

metabolic-repair systems [131].

In complex biological organisms learning is carried out by neurons organized into

networks and ultimately brains. Artificial neural network theory [62] investigates such

systems by applying the circuit-based abstraction, wherein inputs and so-called synaptic

weights are integrated and processed by the activation function to produce the output

signal (an action potential). The question I ask is whether a system at the molecular level,

an order of magnitude simpler than those of a neuro-biological origin, could adapt as

well. Note that chemistry acts on different premises from formal neural circuits, e.g., it is

diffusive, lacks topology, and its dynamics preserve matter, so we could not map formal

neural models to chemistry in a straightforward one-to-one manner.

1.1 DISSERTATION CONTRIBUTIONS

In the dissertation I explore various approaches to learning and adaptation in the widely

used formalism of chemical reaction networks, realistic yet abstract simulated chemistries.

My work is the first successful scientific endeavour with constructive proofs to define

“chemical learning” as a new interdisciplinary field at the threshold of machine learning,

neural networks, chemical reaction networks, biochemistry, and perhaps control theory.

The chemical building blocks introduced in this dissertation fit together to obtain more

advanced systems with sufficient computational and representational power to serve dif-

ferent bio-computing applications, such as adaptable and programmable decision-making

in vivo, pathogen detection, or processing and monitoring concentration time series. As

opposed to hard-wired chemical circuits, my systems can learn and therefore morph func-

tionally to many target behaviors defined by an input-output profile.
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To show that my chemical reaction networks, whose species are symbolic and unstruc-

tured, could be translated to wet chemicals, I implemented two of my models, a chemical

perceptron and a chemical delay line, at a low-level by two DNA reaction primitives:

DNA strand displacement and deoxyribozymes. These DNA incarnations carry out the

essential reaction structure and dynamics of the original chemical systems. Even though

my DNA-implemented chemical learner is substantially larger than single-purpose chemi-

cal systems, its reusability and flexibility will eventually reduce the design and fabrication

cost in the long term.

The detailed contributions of my dissertation are as follow.

• I conceptualized the representation of binary and signed real numbers by means of

species concentrations and identified two basic categories—symmetric and asym-

metric encodings (Chapter 3).

• I introduced the very first model of a simulated chemical system capable of au-

tonomous learning. I coined the term binary chemical perceptron because its two

initial variants, weight-loop perceptron and weight-race perceptron, can solve all

14 linearly separable logic functions perfectly as a formal perceptron. Both models

are robust to the perturbation of rate constants and employ a symmetric represen-

tation, however, they treat the roles of input and weight species inversely. These

perceptrons are trained by supervised learning through injections of the input and

desired-output pairs [21] (Chapter 4).

• I further simplified the chemical perceptron and reduced its size by 50% by em-

ploying asymmetric chemical arithmetic with a novel representation of negative

numbers and subtraction and introduced a binary asymmetric signal perceptron. As

opposed to previous models, the asymmetric signal perceptron learns by penalty
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signal, which fits better its asymmetric design. As before, the perceptron can learn

all 14 linearly separable functions [22] (Chapter 4).

• I incorporated the minimal bistable chemical system with 4 reactions (formulated

by Wilhelm [159]) to the asymmetric signal perceptron design to obtain an active

thresholding of the output, such that its final concentration is effectively binary, i.e.,

low (zero) or high (one) [22] (Chapter 4).

• I modeled an analog chemical perceptron called analog asymmetric signal percep-

tron by adjusting a design of the binary asymmetric signal perceptron (e.g., adding

input-weight contribution species and replacing a penalty signal with desired out-

put) and showed that it can learn various linear and nonlinear functions of two

inputs with an error (RNMSE) in the range (0.103, 0.0.378) [20] (Chapter 5).

• To show chemistry is capable of explicit memorization, I implemented—in collabo-

ration with Josh Moles—two sequential delay lines as chemical reaction networks.

Chemical delay lines store the past inputs over a sliding window of a given size and

feed them to an underlying system [114] (Chapter 6).

• I addressed the issues of previous chemical delay lines, in particular, their sequen-

tiality, latency, and large number of operating copy signals, in the design of a new

parallel-accessible delay line. It functions optimally, i.e., aside from a constant (ar-

bitrary short) waiting time, mimics an algorithmic delay line perfectly [19] (Chapter

6).

• I demonstrated the modularity and reliability of the parallel-accessible delay line

by an integration with an analog asymmetric signal perceptron of two to five in-

puts. The integrated memory-extended chemical analog perceptron tackled four

5



1.1. DISSERTATION CONTRIBUTIONS

time series: linear moving average, moving maximum, and benchmark NARMA2

and NARMA10 tasks [19] (Chapter 6).

• To demonstrate composability of chemical perceptrons, I—in collaboration with

Drew Blount—created the concept of a feedforward chemical neural network [27],

which consists of hierarchical compartments communicating with each other through

channel- mediated exchange of chemical species. A significant contribution is the

implementation of error backpropagation analogous to that of formal feedforward

neural networks (Chapter 7).

• By combining three analog asymmetric signal perceptrons and adjusting their error

production and propagation—in collaboration with Drew Blount—I created a feed-

forward chemical network where a skin compartment with an outer neuron contains

two subcompartments (two hidden neurons). This basic topology analogical to the

2-2-1 formal feedforward neural network allowed the system to learn all binary

functions with 99.88% average success rate, including XOR and XNOR. Note that

because XOR and XNOR are nonlinearly separable, they are beyond the capabil-

ities of a single binary chemical perceptron. The same property holds for formal

neural network perceptrons [27] (Chapter 7).

• To complement purely statistical simulations and provide an insight into chemical

learning, I rigorously analyzed the differential equations of analog asymmetric sig-

nal and chemical linear perceptrons and derived closed or approximative formulas

for the input-weight integration and weight update. I showed the formulas of the

linear chemical perceptron match those of the formal neural network linear percep-

tron aside from bounding the weights and a normalization of the inputs during a

weight update. These analytical findings established a solid connection between
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adaptive chemical reaction networks and neural networks (Chapter 8).

• I introduced an annealed weight update using an error decay species, which ampli-

fies or reduces the error obtained from the output and the desired output. Annealed

weight updating benefits the weight convergence and overall performance (Chapter

8).

• I compared the performance of the chemical linear perceptron, the neural network

linear perceptron, and the analog asymmetric signal perceptron on the previously

used 6 static functions of two inputs and 4 time series with an algorithmic delay

line of size 2 to 20. I showed that the performance of the chemical linear perceptron

and the neural network linear perceptron equal and exceeds the analog asymmetric

signal perceptron by 94 or 437 times on average for the static functions depending

on the error metrics. For the time series, the error is reduced by 8.37 (or 15.24)

times. (Chapter 8).

• To demonstrate the feasibility of wet chemical applications, especially in the areas

of smart drug delivery and chemical computing, I provided biochemical specifica-

tion of the linear chemical perceptron and the manual signalling delay line by using

DNA strand displacement and deoxyribozyme reaction primitives. These could di-

rectly serve as blue-prints for synthetic realizations of my models (Chapter 9).

• I implemented the first web-based chemistry simulation framework, COEL, avail-

able at coel-sim.org. Its most prominent features include ODE-based simulations

of chemical reaction networks and multicompartment reaction networks, with rich

options for user interactions, optimization of rate constants based on genetic al-

gorithms, expression validation, an application-wide plotting engine, and SBML/
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Octave/Matlab export. I programmed COEL in Scala and Java, and employed pri-

marily Grails, Spring, Hibernate, and GridGain technology stack. A visually pleas-

ing and intuitive user interface, simulations that run on a large computational grid,

reliable database storage, and transactional services make COEL ideal for collabo-

rative research and education. COEL has currently around 40 users and is provided

openly for educational and research purposes. Note that the efforts to make the

project open source are under way [17] (Chapter 10).

• I implemented a parser of domain-specified DNA strands represented as strings in

Visual DSD syntax [91]. The parser outputs SVG visualizations of DNA strands

which are embedded but could be exported [17] (Chapter 10).

• I programmed the well-known Soloveichik’s transformation that automatically com-

piles any chemical reaction network to DNA strand displacement circuit with the

species specified by DNA domains. To the best of my knowledge, COEL is the only

CRN simulation framework to provide that. By an integration with my DNA strand

parser the output of the compilation process is a list of visualized DNA strand dis-

placement reactions and species with a convenient export functionality. This feature

could be of far reaching importance for general scientific community [17] (Chapter

10).

• In this field I published 4 journal papers [21, 22, 27, 114] (including one under re-

view), 3 conference papers [17, 19, 20], and one extended abstract [18]. I held a

poster presentation at 4 venues and had 3 oral conference presentations.
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2

BACKGROUND AND RELATED WORK

Learning and adaptation, along with homeostasis and growth, are among the fundamental

characteristics that life in the most general sense exhibits [25,88]. They represent the abil-

ity of an individual to alter its response and decision-making by using feedback from the

environment. This ability lets individuals adjust and escape predefined behavioural pat-

terns given by evolution, i.e., adaptation at the level of the population. Learning has been

a vibrant topic in the artificial life and neural network communities for over two decades.

It has been realized by means of neural networks [62,130], various forms of evolutionary

algorithms [112, 113], and reinforcement learning [147], in which agents learn from the

consequences of their actions through rewards. Some applications of learning include

path finding problems [80], multi-agent systems [101], and robotics [31].

2.1 NEURAL NETWORK THEORY

Artificial neural networks [62] are inspired by the coarse-grained behavior of biological

neurons in the brain and a desire to emulate and understand its computational power. Neu-

ral network theory formalizes the functioning of biological neurons as linear-integration

circuits with a threshold, sigmoid, or other monotone activation function. Note that this

overview section does not cover all neural network models thoroughly, but describes only
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those that are a primary inspiration for the implementation of so-called chemical percep-

tron and mutlicompartment chemical network presented in Chapters 4, 5, and 7 respec-

tively.

2.1.1 Perceptron

The perceptron, introduced by Rosenblatt [132], is an early type of artificial neural net-

work [130]. Despite all simplifications, the perceptron is capable of non-trivial learning

and forms the basis of more complex feed-forward neural networks (Section 2.1.2).

A perceptron processes a vector of input signals x = (x1, . . . , xn), xi ∈ R, and produces

one output y based on the setting of its weights w = (w0,w1, . . . ,wn) as shown in Figure

2.1. More precisely, a perceptron first calculates the linear integration (the dot product)

of weights w and inputs x as v =
∑n

i=0 wi · xi, and then passes the result v to an activation

function ϕ : R→ [0, 1] or ϕ : R→ [−1, 1], which produces the final output y. The weight

w0, called bias or offset, always contributes to an output, since its associated input x0 is

constant 1.

Figure 2.1: Model of a perceptron. An activation function ϕ processes the dot product of weights and inputs
w · xT , producing output y.
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A perceptron can classify only linearly separable functions [111]—functions in which

a straight line, or in the general case, a hyperplane can divide the inputs into two classes.

By combining several perceptrons, we can construct a multilayer perceptron network, also

known as a multilayer feed-forward network [62] that overcomes the linear separability

problem and in fact becomes a universal approximator [72].

Supervised Learning

Perceptron learning [130] is a type of supervised Hebbian learning [63] where a training

data set T = {(x1, d1), . . . , (xm, dm)}, consisting of input-output pairs, characterizes the

target behavior of the system. During each step of the learning process, a perceptron

absorbs one training sample (x, d). If in the current state of the perceptron (i.e., its current

weights) there is a discrepancy between its actual output y and the desired output d, the

error is fed back to the perceptron and triggers an adaptation of the participating weights.

The adaptation of a weight wi for the training sample (x, d) at time t is defined as wi(t+1) =

wi(t) + α(d − y(t))xi, where α ∈ (0, 1] is the learning rate. If an error is detected, that is, if

|d− y| > 0, the weight wi shifts toward the desired output proportionally to its input signal

xi. If an input xi = 0, the weight wi is not involved in the global output y and therefore

stays unaltered. Initially, the weights are set to small random values. The process of

weight adaptation continues until the cumulative error of several consecutive training

samples drops below the error threshold, or alternatively a fixed number of iterations is

reached. After a training, performance (accuracy) is evaluated against a test set, which

might include different input-output pairs from the target domain.
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Learning By Reinforcement

An alternative learning method to supervised learning, that is more biologically plausi-

ble [106] and widely used for agent-based modeling, is reinforcement learning [147]. In

reinforcement learning agents learn their expected behaviour from the consequences of

their actions through rewards (positive reinforcements) and/or penalties (negative rein-

forcements). To replace the classical perceptron learning algorithm with reinforcement

specified as a single penalty signal, the adaptation of weight wi for the penalized percep-

tron is wi(t+1) = wi(t)±α b xi, where b is the constant penalty signal. The perceptron itself

must determine whether the weight should be increased or decreased as a consequence of

penalization, i.e., the production of incorrect output.

Table 2.1: The relation of an input pair x1 and x2 to output y in the two-input binary perceptron, where
w0,w1 and w2 are weights, and θ is a threshold.

x1 x2 y

0 0 w0 > θ

1 0 w0 + w1 > θ

0 1 w0 + w2 > θ

1 1 w0 + w1 + w2 > θ

Two-Input Binary Perceptron

The two-input binary perceptron with a threshold activation function outputs one if the

inner product w0 +w1x1 + x2w2 is greater than the threshold θ, zero otherwise. Because the

input is binary, the linear integration collapses to the four cases summarized in Table 2.1.

The two-input binary perceptron can learn all 14 linearly separable binary functions, i.e.,

all two-input binary functions except XOR and XNOR.

Now, we can ask the question what happens if we restrict some weights only to posi-

tive and some weights only to negative values?0 For instance, let us assume w0 is negative

12
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Table 2.2: Overview of the modeling capabilities of the two-input binary perceptron restricted to positive
or negative values of weights w0,w1,w2.

Weights Binary Functions

w0 w1 w2 F
A
L
S
E

N
O
R

N
C
I
M
P
L

N
O
T
X
1

N
I
M
P
L

N
O
T
X
2

X
O
R

N
A
N
D

A
N
D

X
N
O
R

P
R
O
J
X
2

I
M
P
L

P
R
O
J
X
1

C
I
M
P
L

O
R

T
R
U
E

	 	 	 ×

	 	 ⊕ × × ×

	 ⊕ 	 × × ×

	 ⊕ ⊕ × × × × ×

⊕ 	 	 × × × × ×

⊕ 	 ⊕ × × ×

⊕ ⊕ 	 × × ×

⊕ ⊕ ⊕ ×

and w1 and w2 are positive. Then the weights w0 = −10,w1 = 7,w2 = 9 model the AND

function and the weights w0 = −10,w1 = 12,w2 = 13 the OR function. However, no

combination of negative w0 and positive w1 and w2 weight values can represent the NAND

function. Table 2.2 summarizes the limitations of all sign-weight combinations for a rep-

resentation of logic functions. It shows that each weight must support both positive and

negative values to implement a perceptron that can encompass all 14 linearly separable

binary functions. This is especially important for an implementation of the chemical per-

ceptron (Chapter 4 and 5), because it implies that the representation of negative numbers

could not be avoided.

2.1.2 Feed-Forward Neural Network

A feed-forward neural network [62] is an acyclic neural network consisting of perceptrons

(neurons) organized into layers. For the so-called forward pass, an input x is fed into the

input layer neurons, whose outputs become inputs for the next (hidden) layer, and so on

until the final (output) layer containing a single output neuron produces the output y. The
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formula for a neuron i is

ϕ(
∑

j

x jwi j),
�� ��2.1

where wi j is the weight coming from neuron j (from the previous layer) to the neuron

i, ϕ is an activation function, and x j is the output of neuron j or the input if it is located in

the input layer. This is a direct extension of the simple perceptron input-weight integration

presented in Section 2.1.1.

The weight adaptation or backward pass, however, gets more complicated than in a

simple perceptron case (Section 2.1.1). The so-called delta rule consists of two stages.

The first stage calculates the cumulative error of each neuron through backpropagation.

Starting with the output perceptron, the error δ of is calculated as d − y, where d is the

desired output. Then, working backwards layer by layer we calculate each remaining

neuron’s error. Now consider the single perceptron i in the hidden layer. The error that

propagates from the neuron k in the next layer is weighted. The global error for the per-

ceptron i is then the linear combination of the weighted errors of the next layer’s percep-

trons connected to the perceptron j and the sensitivity (first derivative) of the activation

function ϕ with respect to the input-weight dot-product v:

δi = ϕ′(vi)
∑

i

δkwki,
�� ��2.2

where the derivation of the activation function ϕ′(vi) with vi =
∑

j x jwi j is y(1 − y) for

a logistic function ϕ(v) = (1 + e−v)−1 and (1 + y)(1 − y) for a hyperbolic tangent function

ϕ(v) = tanh(v).
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Once all of the errors have been calculated, each perceptron’s weights are updated as

∆wi j = αδix j.
�
 �	2.3

2.2 INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithms (GA) [112] were originally introduced by Holland [68] as a stochastic

optimization tool inspired by the Darwinian evolution. GA is an iterative process that

intelligently searches through a space of possible solutions. GAs are popular and widely

applied for many scientific or technological problems [12, 14, 16, 58].

A GA operates on a population of chromosomes, which encode possible solutions

for a given problem and are represented by vectors. The initial population is usually

generated at random or using a heuristic. During each generation (evolutionary step), the

GA calculates the fitness of each chromosome, which reflects how well the chromosome

solves a given problem. For instance, the fitness could be a fraction of the correctly

classified instances to the number of trials.

The best chromosomes act as parents of new individuals in the next generation. Chro-

mosomes can be selected to reproduce standardly either by elite or roulette method [112].

The elite method selects deterministically a certain number of the fittest chromosomes.

The roulette method selects chromosome with a probability proportional to their fitness.

In the roulette method, the selection probability could be adjusted by a fitness renormal-

ization.

Reproduction can be sexual or asexual. In the former case, crossover between two

selected parent chromosomes can be either one-point (i.e., in chromosomes of length n,

the child’s first p ≤ n genes are from one parent and the last n − p are from the other),
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or a probabilistic shuffle. Also, crossover could be conditional, hence it occurs with a

probability pcross ≤ 1, otherwise new off-springs are exact copies of their parents. The

mutation operation alters certain bits in newly created chromosomes. The bit alternation

can be produced either by a full replacement with a newly generated bit, or for Integer

or Real numbers a new bit can be generated by a perturbation. The number of bits the

mutation changes depends on the mutation type: one-bit, two-bit, exchange and per-bit.

Similarly to crossover the mutation could be conditional.

As presented in Figure 2.2 an evolutionary cycle consists of fitness calculation, se-

lection, crossover and mutation, and it repeats until the stop-criterion, such as, the target

(maximum) fitness, or alternatively a fixed (maximal) number of generations is reached.

For more information about GA and evolutionary dynamics we advise the reader to refer

to the many excellent textbooks that already cover these areas, e.g., [40, 112].

Figure 2.2: A genetic algorithm as a cyclic process.
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2.3 CHEMISTRY

Chemistry is the study of matter and its transformations. Depending on the desired pre-

cision the focus of chemistry could vary from the small to the large matter. The small

matter, such as protons and electrons, is accompanied with valence relations and fur-

ther down with the equation of the wave motion. The larger matter, such as atoms and

molecules, follows mass-action law, which describe the concentration change over time.

Even larger complex biochemical molecules, in particular DNA, could form complicated

3-D structures, such as origami [105]. Throughout centuries, researchers collected chem-

istry knowledge based on empirical study: experiment, observation, and generalization.

Chemistry describes and also helps us to make predictions about the reactions not con-

ducted before. Throughout the reminder of this dissertation we make a distinction be-

tween chemistry used as a set of mathematical laws and wet chemistry, which refers to

actual experiment in a lab and embraces what really happens physically.

Chemistry neighbors and bridges physics on the lower and biology on the upper end of

the granularity spectrum. For different applications we need to balance the complexity of

laws we want to keep, and the severity of mismatch with the wet chemistry we can afford.

With the offspring of computers we could propose a set of reactions and molecular species

and simulate their dynamics without anchoring our models in physical reality. The goal

is to obtain a system that carries out some form of information processing, or sensing. At

this level chemistry does not describe, but rather prescribes how chemicals should behave,

keeping some part of their specification open. That means the proposed abstract chemicals

still follow a set of chemical laws, but they do not relate directly to existing molecular

species, natural or synthetic. Of course the more abstract the chemical design, the larger

discrepancy and the more difficult the translation to a wet chemical implementation, since

17



2.3. CHEMISTRY

the space of wet molecular species to consider for possible substitution of the abstract

species expands.

2.3.1 Chemical Reaction Network

In this thesis I employ almost exclusively the formalism of Chemical Reaction Network

(CRN) [48, 71]. A CRN is the standard framework for representing chemistry that con-

sists of the finite set of molecular species and the finite set of reactions paired with corre-

sponding rate constants [47, 49]. CRN represents an unstructured macroscopic simulated

chemistry, hence, the species labeled with symbols are not assigned a molecular struc-

ture yet. More importantly, CRN lacks the notion of space—in a well-stirred tank, the

probability that a molecule is involved in a reaction does not depend on its position, but

solely on its type. Consequently, the state of the system is a vector of species’ concen-

trations. Note that we use concentration as a dimensionless quantity, and a wet chemical

implementation could scale the concentrations to micro molar (µM) or nano molar (nM)

as needed. The container of chemical species specified by their concentrations, i.e., the

whole system, is often referred to as a tank, a reactor, or a solution.

Each reaction is an ordered pair k1X1 + . . . + knXn → l1Y1 + . . . + lmYm, where species

Xi are reactants, species Yi are products, and constants ki and li are called stoichiometric

factors. For instance, a reaction A + B → C describes a transformation of species A

and B that bind together to form species C. Note that a legal reaction could have no

reactants or no products. For that purpose we introduce a special no-species symbol λ to

represent a formal annihilation A + B → λ or a decay A → λ. Mass conservation states

that matter cannot be destroyed nor created—in a closed system the matter consumed

and produced by each reaction is the same. Annihilation and decay as we defined them

seem to violate that, however, in the chemical analogy, λ does not signify a disappearance
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of matter but simply an inert species, effectively absent from the system of chemical

interactions. Similarly we interpret a reaction λ → A as an influx of A rather than a

creation of a molecule A from nothing.

Each reaction has a rate, which defines the strength of the reaction’s contribution to

the production or consumption of particular species over time. The rate expressions are

not arbitrary, but are prescribed by kinetics laws. More precisely, the three most common

kinetics are mass-action law [13,49] for ordinary, Michaelis-Menten kinetics [38,108] for

catalytic, and linear uncompetitive kinetics for inhibitory reactions.

The mass-action law [13, 49] states that the rate of a reaction is proportional to the

product of the concentrations of the reactants. Hence the reaction rate, the speed of the

reaction application, is assumed to be linearly dependent on the concentration of reactants

(Figure 2.3(a)). For an irreversible generic reaction aS 1 + bS 2 → P, the rate is given by

r =
d[P]

dt
= −

1
a

d[S 1]
dt

= −
1
b

d[S 2]
dt

= k[S 1]a[S 2]b,
�� ��2.4

where k ∈ R+ is a reaction rate constant, a, b are stoichiometric constants, and [S 1],

[S 2] are a concentration of reactants (substrates) S 1, S 2 respectively. Note that in wet

chemistry for some cases the coefficients in the rate law might not equal the stoichiometric

constants. We will however assume that our reactions are all “well-behaved”.

Besides being a reactant or a product, a species can take on two other roles in a re-

action. A catalyst is a substance that increases the rate of a reaction without itself being

altered. To incorporate catalysts (or enzymes) in reaction rates, we follow Michaelis-

Menten enzyme kinetics [38, 108] (Figure 2.3(b) and 2.3(c)). Let E + S 
 ES → E + P

be a catalytic reaction written compactly as S
E
−→ P, where E is a catalyst, S is a substrate,

P is a product, and ES is an intermediate enzyme-substrate binding species. Michaelis-
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Figure 2.3: Example traces of (a) S → P reaction driven by mass-action kinetics and (b-c) catalytic S
E
−→ P

reaction with catalyst E driven by Michaelis-Menten kinetics. The substrate S transforms to the product P
faster for a higher concentration of [E] = 0.5 (b) as opposed to [E] = 0.1 (c). The reaction rate of (a) is
k = 0.1 and (b-c) kcat = 0.1,Km = 0.5.

Menten kinetics assumes that the substrate S is in instantaneous equilibrium with the

enzyme-substrate complex ES . This assumption is called the quasi-steady-state approx-

imation, which holds if the first reaction E + S → ES is substantially faster than the

second one ES → E + P. Another assumption is that the enzyme concentration [E] is

much smaller than the substrate concentration [S ]. An overall reaction rate for the P

production is

r =
d[P]

dt
= −

d[S ]
dt

=
kcat[E][S ]
Km + [S ]

,
�
 �	2.5

where kcat,Km ∈ R
+ are rate constants. Michaelis-Menten kinetics can be also ex-
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panded to the multi-substrate case [94]. An alternative to Michaelis-Menten kinetics,

without any assumptions about the enzyme concentration or the speed of the reactions,

is to use mass-action kinetics for two partial, associative and disassociative reactions,

E + S 
 and ES → E + P, which yields

d[P]
dt

= −k f [E][S ] + kr[ES ] + kcat[ES ]

d[S ]
dt

= −k f [E][S ] + kr[ES ]

d[ES ]
dt

= k f [E][S ] − kr[ES ] − kcat[ES ]

d[P]
dt

= kcat[ES ],

�
 �	2.6

where k f is a forward association rate, kr is a reverse association rate, and kcat is a

disassociation rate.

An inhibitor is a substance that retards the rate of a reaction without itself being

consumed. Several types of inhibition exist, however, our CRN is restricted to the simplest

one, known as linear uncompetitive inhibition [94]. The reaction rate of I + S → I + P,

where I is an inhibitor, and k and Ki are rate constants is

r =
d[P]

dt
= −

d[S ]
dt

=
k[S ]

1 + Ki[I]
.

�� ��2.7

By applying rate laws over all reactions we obtain the change of a concentration of

molecular species described as a system of deterministic ordinary differential equations

(ODEs). Since it is, in general, impossible to find an analytical solution of such a system

explicitly, we employ numerical integration of the ODEs, which delivers an approxima-

tive solution [135]. To simulate the learning protocol, we use either 0.5, 0.1, or 0.05-step

Runge-Kutta4 (RK4) numerical integration [69,142] of the rate ODEs. The Runge-Kutta4
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solver provides a good balance between the result quality and the simulation cost. To as-

sure stability of the RK4 solver, i.e., to bound the derivations of overall concentration

functions, we restrict the rate constants and the initial concentrations appropriately.

An alternative to deterministic ODE-driven chemistry is the Gillespie method [56],

which simulates each reaction step stochastically on a molecular level [79,152]. Although

it is more realistic physically, it is computationally more expensive. As the number of

molecules increases, the stochastic results will converge to the deterministic solutions.

Hence, if we scale up the number of molecules in our system, the deterministic (numeri-

cal) simulations would match stochastic (and therefore also real) chemistry quite well.
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Figure 2.4: A concentration trace of a chemistry with species S = {A0, A1, B} and reactions R = {R0 :

A1 + B → A0,R1 : B
A0
−−→ A1} using the rate constants k = 0.00325, kcat = 0.025, and km = 0.5. Injections

are provided at time step t0: [A0] = [A1] = 2, and [B] = 10, t100: [B] = 10, and t200: [B] = 10. The output
interpretation max([A1]) > max([A0]) produces the output sequence 1, 0, 0 (from left to right).
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2.3.2 Interaction and Interpretation

The state of a chemical system is a vector of species concentrations. To interact with

the system we need to perturb its state—the concentration of specific species that usually

represents the input. An interaction emulates a step in the execution of an experimental

protocol, where at a certain time the person performing the chemical experiment injects

or removes substances into or from a tank. It is modeled by instantaneously changing the

concentration of a species. Concentrations can be modified multiple times, not just at time

t0. For iterative processes, such as learning, it is useful to define repetitive interactions,

in which a sequence of interactions repeat in a loop at predefined time intervals. For the

output interpretation we must carry out a reverse translation: we map the concentrations

of the designated output species at certain time or time period to the formal variable.

The output interpretation usually follows the input injection, and similarly to interactions,

interpretations can be repetitive.

For example, let R0 be a reaction A1 + B→ A0, and R1 be a reaction B→ A1 catalyzed

by A0 using the species set S = {A0, A1, B}. Figure 2.4 presents a concentration trace

of species from S driven by the reactions R0 and R1. Interactions occur at time t0, t100,

and t200 as described in the caption. By applying the output interpretation defined as

max([A1]) > max([A0]) on the intervals t0 − t99, t100 − t199, and t200 − t299, we translate the

output to sequence 1, 0, 0.

2.3.3 Artificial Chemistry, a Historical Overview

Artificial chemistry (AC) as defined by Dittrich [44] spans many models from grammars

to more substrate-specific structured or spatial chemistries. At the beginning of 2000,

there was a tendency to incorporate general simulated chemistry (CRN) to the artificial
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chemistry due to the influence of the artificial life community. Since a lot of systems

with very loose relation to chemistry have been called artificial chemistries, it became

difficult to systematically define this field. For instance cellular automata (CA) [160] and

Fontana’s AlChemy [54] are often considered artificial chemistries, even though they do

not follow any exact chemical or physical laws. They better fit into the field of multi-agent

systems or complex networks in the former and random lambda calculus in the later case.

Initially the abstract rewriting system on multisets [118, 149] occupied the core part of

artificial chemistry, however, later the focus shifted to more grammar-like forms and a

large part of the artificial chemistry field turned into P systems [125].

P Systems [120, 125, 126] consider heavily abstracted chemical systems where a dif-

ferent reactions occur in different cells, with communication between cells via membrane

permeation. The main difference between CRN and P Systems is that P Systems that

represent chemical objects by strings over a defined alphabet, which react through rewrit-

ing rules taken from Chomsky grammars. P systems do not model reaction rates, have

a more grammar-like update, and manipulate discrete symbols. P Systems successfully

demonstrated the computational power of formal grammars of a specific type, but signif-

icant omissions, such as mass action kinetics, separate them from chemical computing in

practice.

Because of the term overloading and the unclear distinction between rule-based sys-

tems and artificial chemistry, there is tendency to drop the adjective artificial or substitute

it with the term simulated if the system is based on chemical laws, i.e., it does not incor-

porate chemistry just as a metaphor. To avoid confusion we follow this convention and

we avoid using the term artificial chemistry but rather use a more specific term chemical

reaction network, which we employ to model our autonomous learners.
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2.4. LEARNING IN CHEMISTRY

2.4 LEARNING IN CHEMISTRY

Even though, neural networks are widely used, the mathematical abstraction and network

formalism detached them from their physical counterpart (their original inspiration). For

instance, the calculation of a dot-product of inputs and weights, or a sigmoidal amplifi-

cation do not address how a neural substrate physically represents values and functions.

Physical neurons are electrical machines: synaptic voltage travels through ion channels

and contributes to the membrane voltage, which spikes once it exceeds a constant thresh-

old current. A model that deals with a neuron’s physical realization to that fine detail

is the spiking Hodgkin-Huxley neuron [67] and the related leaky integrate-and-fire neu-

ron [141]. They are both driven by an electrical engineering formalism and incorporate

terms such as resistance, capacitance, and Ohm’s law.

Our goal has parallels to the leaky integrate-and-fire neuron model, but rather than de-

scribing mechanics of an existing neuron we aim to implement learning and adaptation in

a chemical substrate, not necessarily the same as in its biological counterpart. Hence in-

stead of voltage, the chemical models feed on molecular species and are driven by kinetic

laws. Because of different premises and attributes, neural models cannot be translated

directly to chemistry, but rather serve qualitatively to exemplify feedback control and

adaptation.

The idea of neural network computation in chemical systems is not new. Several the-

oretical and experimental DNA-based models [29,32,65,66,85,109] have been proposed,

however, these models succeeded to map to chemistry only the input-weight integration

part (the forward-pass) of a single perceptron model [132]. The research in this area

has mainly been limited to constructing logic gates and assembling them into circuits

to compute custom Boolean functions. For instance, in a theoretical work Hjelmfelt et
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al. [66] extended the cyclic enzyme system, introduced by Okamoto for metabolic reg-

ulation, to mimic the functionality of a McCulloch-Pitts neuron, with a special focus

on thresholding. The weights, represented by catalysts, drive the reactions, which con-

sume an input species with either low (0-value) or high (1-value) concentration. Kim et

al. [85] modeled the states of neurons as the concentrations of RNA species and synapses

as transcriptionally controlled DNA switches. More recently, Qian et al. [128] demon-

strated an experimental implementation of linear threshold circuits by using DNA strand

displacement seesaw gates and combined these to construct a Hopfield network. In all

cases the existing work does not dwell on the learning aspects of chemical neural net-

works. The supervised learning is either not considered at all or performed by an external

(non-chemical) system that computes the weights for a formal neural network, before

converting these to molecular concentrations to serve as parameters for the chemical im-

plementation [85, 128]. The main challenge is that the integration of the forward-pass,

where the input species transform to the output, with the backward-pass, where a user’s

action affects the concentrations of species that define the system’s functionality, requires

reactions with complicated and timing-sensitive relations, such as positive and negative

(catalytic) feedback loops.

Beyond neural-network approaches, Lakin proposed a schema for rudimentary learn-

ing within enzymatic chemistry [89], equivalent to non-negative least squares regression.

In wet chemistry, rote learning of small decision trees was exhibited [121] (training by

example), but true learning calls for generalization. Recently Chiang et al. [37] pro-

posed a construction method for chemical reaction networks to represent reconfigurable

logic functions. As opposed to our work, the reconfiguration is performed manually

by controlling the concentrations of certain knob species. Wu et al. [161] surveyed a

wide range of DNA-based logic gates, computing, and their applications in biotechnol-
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ogy and biomedicine. In related work El-Samad and Khammash [45] explored feedback

control in gene regulatory networks manifested in various dynamics, in particular bista-

bility, mulistability, oscillations, and molecular switches. Jiang et al. [81] introduced

the concept of a delay element used as a storage area for holding data in between each

computation cycle. Moreover, a system based on gene regulatory networks embedded

in Escherichia coli [52] demonstrated that even single-celled organisms could carry out

associative learning.

Spiking neural P systems [76, 77] are related types of systems, which draw inspi-

ration from neural network theory and incorporate membrane computing with a model

of spiking neurons. Each neuron is wrapped in a membrane, where inter-neuron (inter-

membrane) communication is carried by the electrical impulses, called spikes. Some

attempts were made to introduce learning to neural P systems [60], however, similarly to

DNA-strand implementations, learning has not been autonomous either.
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VALUE REPRESENTATION

In this chapter, we address the question of how to represent numerical values in chem-

istry. We present several novel methods on how to map Boolean or Real values into

the concentrations of chemical species. We will later see how these representation ap-

proaches affect the design of binary and analog chemical perceptron models, including

their learning performance and robustness.

A CRN, which we introduced in Section 2.3.1, can represent a formal variable by one

or several species. In our chemical models we need to encode variables of two types:

Boolean with values 0 and 1, and Real with values from R. We transform variables to

species in the systematic fashion as follows.

3.1 REAL VARIABLE

If the domain of a Real variable is positive, its value could directly correspond to the

concentration of a species. For the signed real variables, a direct mapping to the concen-

trations of species would not work because the concentration cannot be negative. Note

that the problem of representing negative numbers is equivalent to the problem of imple-

menting the subtraction operation. Hence, if we restrict the model to positive numbers

only, we could only add but not subtract numbers. That might be acceptable for some
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models, but what if negative numbers cannot be avoided? How can we deal with that in

chemistry?

A possible first approach is to introduce a special negative variant of each species and

to extend pure addition-based chemical arithmetic with a subtraction operation wherein

the complementary species annihilate when they occur simultaneously in a reactor (Fig-

ure 3.1(a)). This strategy maps each formal real variable p to two species P⊕ and P	,

hence it is an instance of representation symmetry. Intuitively, after the complementary

species (whose concentrations we wish to compare or subtract) annihilate, their original

state is lost. If the goal is to repeat this comparison the system must also maintain back-

up copies P
⊕

and P
	

by consuming an externally provided fuel. After the comparison is

completed the copies P
⊕

and P
	

are used to restore the original species. Because of the

P→ P→ P reversibility, to prevent an infinite loop, we must precisely time the recovery

phase and have a special species catalyzing (guarding) the comparison.

An improved symmetric strategy is to compare the concentrations of species indirectly

by their impact on the concurrent reactions they catalyze, and so annihilation occurs at

the level of complementary products. Let us consider a chemical system in which a

substrate S is transformed to a product P⊕ or to P	, depending on the concentrations of

two concurrent catalysts E⊕ and E	, as shown in Figure 3.1(b). Assuming the reaction

rates of these two reactions are equal, the catalysts represent a positive number if and only

if the final concentration of product [P⊕]t→∞ > [P	]t→∞, which holds for [E⊕]0 > [E	]0,

otherwise they represent a negative number. Since all products are derived from substrate

S , [P⊕]t + [P	]t + [S ]t ≤ [S ]0 and finally [P⊕]t→∞ + [P	]t→∞ ≤ [S ]0.

What other approach could we take to implementing subtraction in chemistry? The

general case may be difficult, but what if a qualitative comparison rather than precise

subtraction suffices? Since the interpretation of positive and negative numbers is external
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(a) (b)

(c) (d)

Figure 3.1: Implementations of positive and negative numbers in chemistry. (a-b) Symmetric approach
using (a) annihilation of complementary species P⊕ and P	, or (b) competition of catalysts E⊕ and E	. (c-d)
Asymmetric approach wherein a single catalyst E competes with (c) the substrate decay, or (d) annihilation
of the substrate S and the product P. λ stands for no species, i.e., in a chemical implementation, an inert
waste product.

(performed by us), the mapping from the concentration of catalyst(s) can be arbitrary. To

eliminate the representation symmetry, we can keep just one catalyst E and one product P,

but then all of the substrate S will eventually turn to product P regardless the rates or the

non-zero concentration of the catalyst E. Therefore, we have no choice but to reintroduce

a competition. Even though a negative catalyst is banned, we can still achieve a race if

we introduce a decay of substrate S → λ. Hence, the catalyst E must work against a
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pressure, which is linear in the concentration of S (Figure 3.1(c)). The final concentration

of product P after the experiment [P]t→∞, depends on the rate of the decay reaction and

the concentration of E, and is bounded by [P]t→∞ < [S ]0. To exploit this mechanism for

the representation of real numbers, we set the threshold concentration ΘP and ΘE such

that [P]t→∞ > ΘP if and only if [E]0 > ΘE. For a given initial substrate concentration

[S ]0, the product concentration threshold ΘP < [S ]0, and reaction rates, we can determine

the threshold concentration of catalyst ΘE such that [E]0 > ΘE produces the concentration

of product [P]t that is interpreted as positive, or if [E]0 ≤ ΘE as negative. The relation

between the concentration of catalyst [E]0 and the final concentration of product [P]t→∞,

and therefore also between the thresholds ΘE and ΘP, is plotted in Figure 3.2(a).

An alternative version of the asymmetric comparison forces a catalyst E to compete

against annihilation of substrate S and product P (Figure 3.1(d)). The relation between

[E]0 and [P]∞ is slightly different (Figure 3.2(b)), but it again acts as a monotonically

increasing function. The initial concentration of substrate [S ]0 restricts the range of rep-

resentable numbers in both situations, with or without symmetry. Note that only limited

theoretical conclusions about the decay and annihilatory based asymmetric comparison

can be drawn owing to the complexity of the underlying ODEs (see Appendix). However,

in Chapter 8, after flattening the catalytic reactions to mass-action kinetics, we rigorously

analyze the ODEs and derive the closed or approximative formulas.

3.2 BOOLEAN VARIABLE

Similarly to the real-valued case, a Boolean variable can be represented by either two-

species encoding, which is an instance of symmetric representation, or one-species (asym-

metric) encoding. The symmetric encoding maps a variable p into two species P0 and P1,
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Figure 3.2: Relation between the concentration of catalyst [E]0 and the final concentration of product [P]∞
for the asymmetric representation of real numbers by (a) decay of the substrate and (b) the annihilation of

substrate and product using different kcat rate constants and fixed Km = 0.05 of the catalytic S
E
−→ P reaction

(Michaelis-Menten kinetics) using 0.01-step Runge-Kutta4 numerical integration. The rate of the substrate
decay as well as the substrate-product annihilation is 1. For a given threshold product concentration ΘP (y-
axis) we can determine the associated catalyst threshold ΘE (x-axis), so all concentrations of catalyst [E]0
to the left of this threshold represent negative numbers, and all concentrations to the right represent positive
numbers. The [P]∞ asymptotically reaches the initial concentration of the substrate [S ]0 = 1 (upper line)
for [E]0 → ∞.
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which are mutually exclusive. The non-zero concentration of P0 denotes p = 0, analo-

gously [P1] non-zero implies p = 1. If both variants P0 and P1 are simultaneously present

in the tank, they annihilate very rapidly. The value is therefore interpreted as logic one if

the concentration of P1 is greater than the concentration of P0, and logic zero otherwise,

i.e., [P1] > [P0]. The analogous case for real-valued variable is shown in Figure 3.1(a).

An asymmetric approach utilizes just a single species, whose concentration repre-

sents both the logic zero and one value. To distinguish these two concentration regions

we impose a concentration threshold Θ. Now we identify three types of thresholding:

passive, semi-active, and active. The passive thresholding interprets the threshold exter-

nally by an outside observer, who compares the concentration of P to Θ, i.e., [P] > Θ.

The semi-active thresholding relies on injecting complementary species of given thresh-

old concentration Θ to annihilate with P as performed, e.g., by Qian et al. [128]. This type

of thresholding is conceptually similar to the passive tresholding, but instead of compar-

ing the concentration with the threshold, we need to test whether the final concentration

of species after annihilation is positive: [P] > 0. Moreover the semi-active threshold-

ing is not repeatable without an experimenter intervention for the additional injection of

complementary species.

3.3 ACTIVE THRESHOLDING

Active thresholding is a thresholding fully implemented in chemistry. It is a mechanism

that amplifies the concentration to a specific upper value (representing logic one) if it

exceeds the threshold, or reduces it to a lower value (representing logic zero) otherwise.

The value interpretation distinguishes between two concentration levels: [P] = Plow as

the formal zero and [P] = Phigh as the formal one. The problem of active thresholding can
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be effectively reduced to an implementation of a bistable regulator.

Wilhelm [159] proposed the smallest chemical reaction system with bistability using

four reactions:

S + Y
k1
−→ 2X

2X
k2
−→ X + Y

X + Y
k3
−→ Y + P

X
k4
−→ P

with two species X and Y , energy source S , and an inert product P. Since the concentra-

tion of S is constant and P is practically a waste, we can discard them from the reaction

set and obtain a system with two species X and Y only. The system has three equilib-

rium states x1 = 0, y1 = 0, x2 = (k1 −
√

k1D)/2k3, y2 = x2
2/k1, x3 = (k1 +

√
k1D)/2k3,

y3 = x3
2/k1 with discriminant D = k1 − 4k3k4. The first (lower value) and the third (upper

value) solutions are locally stable, the second (threshold value) is unstable, hence if it is

perturbed upwards, the system travels to the upper value; if it is perturbed downwards, it

settles to (0, 0) (Figure 3.3).

Now we can map the upper value Phigh (logic one) to the upper stable point y3, the

lower value Plow (logic zero) to the lower stable point y1 = 0, and the threshold Θ to

the unstable point y2. Note that besides the species Y , there is an auxiliary species X

undergoing qualitatively similar bistable behavior than Y . Since the thresholding of the

species X is not utilized, we ignore and consider it a waste.
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Figure 3.3: The original minimal bistable system introduced by Wilhelm [159] with three equilibrium
states, two of which, lower and upper values, are stable, and the middle one (the threshold) is unstable. The
figure shows concentration paths for the system perturbed in an upper direction and a lower direction.
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4

BINARY CHEMICAL PERCEPTRON

In this chapter we will describe an implementation of the two-input binary CRN percep-

tron, an autonomous chemical learning system, which we call a binary chemical percep-

tron. It is the first chemical model capable of autonomous learning, that is the learning

fully implemented in simulated chemistry without any external help. We want to em-

phasize that many ways to approach this problem exist. Here we present four models,

the Weight-Loop Perceptron (WLP), the Weight-Race Perceptron (WRP), the Asymmetric

Signal Perceptron (ASP) and its thresholded version (TASP). These represent fundamen-

tal techniques for implementing the input-weight integration and learning in chemistry.

This work has been published in parts in [21, 22].

The WLP and the WRP adapt a symmetric representation of values and learn de-

sired outputs. The WLP’s input-weight integration is based on a direct transformation of

weights to the output, and reconstructing them after the processing from back-up copies

forming a weight loop. It is the largest system of all presented and the only one that

requires inhibition. The WRP improves the WLP by changing the roles of the inputs

and weights—it applies indirect comparison of weights by letting them race on the input-

to-output reactions as catalysts. Supervised learning in both cases is triggered by a dis-

crepancy between the desired and the actual output species, where the concentration of

the desired output is additively or subtractively combined with the concentrations of the
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weights. The output is interpreted by the concentration of complementary zero and one

output species.

The WLP and the WRP learn perfectly all 14 linearly-separable logic functions after

200 learning iterations (100% success rate). They are also robust to perturbations of

rate constants that substantially alleviate reaction-timing restrictions for real chemical

implementations. Overall, the WLP and the WRP are proof-of-concept models for a

chemical perceptron, however, the number of reactions and their complexity make them

impractical for wet chemistry implementation. The underlying cause of that complexity is

a crucial characteristic they share—a representation symmetry of the species that encode

the formal variables. Namely, all real-valued variables require a positive and a negative

variant of a species; and, similarly, two species, the zero and one variants, represent each

binary variable.

The follow-up model of the ASP aims to simplify and reduce the number of reactions,

such that an implementation in wet chemistry becomes possible. The main improvement

is the abolition of representation symmetry, which reduces the number of reactions by

half. The ASP contains no inhibition and uses at most one catalyst per reaction. Fur-

thermore, the ASP introduces a special species, the input clock signal, that is provided

alongside with the regular input. The ASP determines the output value by thresholding,

as opposed to a comparison of two output species. The thresholding is either imposed

by an external observer (passive thresholding), or is implemented fully in chemistry (ac-

tive thresholding). A variant of the ASP with active thresholding (TASP) can support

modularization and cascading of multiple perceptrons.

The learning mechanism has been revised and the ASP introduces adaptation by the

biologically more plausible reinforcement method [80, 147]. More specifically, we train

the ASP by injecting a penalty signal when it produces an incorrect output. The major
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4.1. BASIC SPECIES

saving in design is offset by reduced robustness with respect to variation of kinetic rates,

which is, however, still sufficiently high to mitigate the difficulties of precise reaction

timing. On the other hand, the ASP maintains the high performance of the WLP and the

WRP: it learns all 14 linearly-separable binary functions with a 99.3 − 99.99% success

rate.

All models are compatible with Michaelis-Menten [38, 108], and the ASP also with

pure mass-action kinetics [13, 49]. Their reactions and rates provide a universal descrip-

tion that all chemists understand and consequently can translate to the implementation

substrate of their choice, such as DNA hybridization [140, 166], or deoxyribozymes

[95, 143, 145].

Each chemical perceptron can function in two modes: input-weight integration mode

and learning mode. In the input-weight integration mode, the perceptron acts like a logic

gate; it takes two inputs and produces an output by pairing inputs with weights and com-

bining their contributions. The second learning mode is built on top of the input-weight

integration and is triggered either by the desired-output molecules for the WLP and the

WRP, or the penalty signal for the ASP.

4.1 BASIC SPECIES

Here we describe the core species used in the WLP, WRP, and ASP design, highlight-

ing the differences resulting from adopted symmetric and asymmetric strategies for the

representation of real and Boolean values (Chapter 3).

4.1.1 Input Species and the Clocked Representation

The two-input formal binary perceptron introduced in Section 2.1.1 accepts four possible

inputs (x1, x2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. In our CRN we represent the presentation of
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4.1. BASIC SPECIES

an input as the injection of a molecular species into the reaction chamber, such that each

formal variable with its associated value maps to one or several molecular species.

The WLP and WRP designs use a straightforward domain enumeration (a symmetric

approach) wherein each binary variable requires two species—one for the value 0 and

one for the value 1, marked with a superscript. That is, the assignment x1 = 0 translates

into the injection of species X0
1 , and x1 = 1 into the injection of species X1

1 . Analogously,

the cases x2 = 0 and x2 = 1 are represented as X0
2 and X1

2 , respectively. Therefore, the

presence rather than the precise concentration of the input species represents a value. The

input concentration is, however, not arbitrary and must reflect a specific scale, design, and

it must be sufficient to feed inner reactions, because the input species are sole fuel for the

WRP and the ASP. Note that the injections are consistent, so the complementary input

species never occur together.

To reduce the number of input species and therefore also the number of reactions,

we need to drop the 0/1 representation symmetry. A naive way would be to discard

the zero-value species and provide input to a chemical perceptron only if it formally is

the value one. The drawback here is that the input pair (0, 0) would be represented as

nothing. That is, a chemical perceptron would not know whether and when to produce

the output for the input (0, 0). We argue that a true implementation of a chemical logic

gate must not treat the zero-valued input as an aberration, even if it is commonly done

so in the biochemical computing literature. For instance, chemical systems of the form

X1 + X2 → Y are commonly said to represent AND gates; because a measurable output Y is

produced only for a simultaneous presence of both reactants, such systems should rather

be called two-signal detectors.

The standard solution to deal with the zero-value problem, widely used in digital

system design in electrical engineering, is to introduce a clock signal, provided alongside
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4.1. BASIC SPECIES

Table 4.1: Representation of four binary input pairs by chemical species for the WLP, the WRP, the ASP,
and a minimal representation that neglects the input (0, 0).

Binary input WLP/WRP ASP Minimal

(x1, x2) = (0, 0) {X0
1 , X

0
2} {S in} ∅

(x1, x2) = (1, 0) {X1
1 , X

0
2} {S in, X1} {X1}

(x1, x2) = (0, 1) {X0
1 , X

1
2} {S in, X2} {X2}

(x1, x2) = (1, 1) {X1
1 , X

1
2} {S in, X1, X2} {X1, X2}

the regular input. Even though this special signal, which we shall denote S in, is, strictly

speaking, required only for the input (0, 0), we employ it for all input cases. The reason

is the overall consistency and the functioning of the ASP. Since the goal is to imitate the

weight sum y = w0 + w1x1 + w2x2 we can consider the clock signal S in the constant-one

coefficient (or the constant input x0 = 1) of the bias weight w0, and so each weight has its

own input species, and S in always accompanies the regular input X1 and X2 (Table 4.1).

This approach simplifies the design and makes the clock signal with the bias processing

of the ASP conceptually independent from the X1 and X2 reactions, as we shall discuss in

Section 4.2.

4.1.2 Output Species and Output Interpretation

For the output interpretation, we must carry out a reverse translation: we map the con-

centrations of the designated output species to the formal binary variable y. The WLP

and the WRP have two complementary output species, Y0 and Y1, which are mutually

exclusive, so if they occur simultaneously, they annihilate. We interpret the output as one

if the concentration of Y1 is greater than the concentration of Y0, and zero otherwise, i.e.,

y = [Y1] > [Y0], which we call passive thresholding. The ASP contains only one output

species Y; therefore, to distinguish between zero and one output, we impose a threshold

concentration Θ, and externally interpret the output as y = [Y] > Θ. Another version
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4.1. BASIC SPECIES

of the ASP with internal thresholding distinguishes between two concentration levels:

[Y] = 0 as the formal zero and [Y] = 1.5 as the formal one.

Table 4.2: Species of (a) the WLP, (b) the WRP, (c) the ASP. The species are divided into groups according
to their purpose and functional characteristics. Note that in addition to the species of the ASP, the TASP
also uses an auxiliary output species Yaux.

(a) WLP

Function Species

Inputs X0
1 , X

1
1 , X

0
2 , X

1
2

Outputs Y0,Y1

Weights W⊕0 ,W
	
0 ,W

⊕
1 ,W

	
1 ,W

⊕
2 ,W

	
2

Desired outputs D0,D1

Processed weights W
⊕

0 ,W
	

0 ,W
⊕

1 ,W
	

1 ,W
⊕

2 ,W
	

2
Energy source E

Total 21

(b) WRP

Function Species

Inputs X0
1 , X

1
1 , X

0
2 , X

1
2

Outputs Y0,Y1

Weights W⊕0 ,W
	
0 ,W

⊕
1 ,W

	
1 ,W

⊕
2 ,W

	
2

Desired outputs D0,D1

Total 14

(c) ASP

Function Species

Inputs X1, X2
Output Y
Weights W0,W1,W2
Penalty signal P
Input (clock) signal S in

Weight changers W	,W⊕,W	1 ,W
	
2

Total 12

4.1.3 Weight Species

All chemical perceptrons include the weight species (Table 4.2), which hold the percep-

tron’s state and define its functionality. After each learning iteration the perceptron needs

to recover to its steady state. Only the weight species form the persistent state, hence

all other species not consumed during the chemical computation must be flushed or re-

moved by a clean-up reaction such as decay. Furthermore, there are WLP-, WRP- and

ASP-specific species groups, the purpose of which will be explained later.
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4.2. INPUT-WEIGHT INTEGRATION

4.2 INPUT-WEIGHT INTEGRATION

To implement the input-weight integration of the two-input perceptron, we must cover the

four weight sums from Table 2.1. Since the representation of negative numbers and the

subtraction operation cannot be avoided, we demonstrate how the symmetric and asym-

metric approaches to the chemical representation of real numbers affect the design of the

WLP, the WRP and the ASP.

4.2.1 Weight-Loop Perceptron

The WLP, which consists of 21 species (Table 4.2(a)), follows the formal perceptron defi-

nition from Section 2.1.1 in a straightforward manner. More precisely, the WLP computes

the weight sum directly by transforming weights W into output species Y . The problem

is that the weights encode the state of the perceptron, so their concentration must be pre-

served. Therefore, besides Y species, the perceptron must create also back-up copies of

the weights W. The perceptron can then restore its weights after the output production is

over. A reaction Wi → W i + Y followed by W i → Wi would break the mass-conservation

law, so the perceptron needs to consume a fuel, species E, that is provided to the system

at constant concentration 1. From a functional perspective, the perceptron sequentially

processes an input, produces an output, recovers weights, and finally performs a clean-up

(Figure 4.1).

The perceptron starts working when inputs X1 and X2 are injected into the system. It

processes the weight W1 on input X1
1 , the weight W2 on input X1

2 , and the weight W0, in

parallel, producing Y0 and Y1 molecules. Species X1
1 , formally encoding x1 = 1, catalyzes

⊕ and 	 versions of reaction W1 + E → W1 + Y . Similarly, species X1
2 , which represents

x2 = 1, catalyzes W2 + E → W2 + Y . Since the weight W0 always contributes to the sum
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4.2. INPUT-WEIGHT INTEGRATION

Figure 4.1: The WLP’s reactions employed in the input-weight integration. The input species X trigger
(catalyze) a reaction W + E → W + Y , which consumes weight W and fuel E, and produces output Y
and a back-up copy of the weight W. After the output is produced, the WLP recovers the weights by
reactions W → W (not shown here). For simplification neither the input decay reactions are present in
the plot. Nodes represent species, solid lines are reactions, dashed lines are catalysts, and λ is no or inert
species. The horizontal symmetry is due to the existence of two perceptron’s inputs; the vertical one is the
representation symmetry globally spread across the WLP design.

regardless of an input, each of the possible inputs X0
1 , X

1
1 , X

0
2 , and X1

2 catalyzes W0 + E →

W0 + Y . In order to determine whether the total concentration of Ys is above or below

the zero threshold, Y0 annihilates with Y1. If there are more Y0 molecules at the end, the

output is 0, otherwise 1.

The weights could alternate between the normal version W and the processed version

W, each time consuming a fuel E and producing new Y molecules. To prevent a contin-

uous cycling of the weights, the WLP must ensure that there is no input present before it

rolls the weights back. That is, the input species must decay, and the processed weights

roll back only when substantial amounts of inputs are gone, i.e., inputs act as inhibitors
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4.2. INPUT-WEIGHT INTEGRATION

on W → W reactions. Since the system is open and weights W can switch reversibly to

W, consuming a fuel E provided from outside, a potential infinite loop might emerge in

which the concentration of Y molecules increase without bound. The correct timing of

phases is crucial for avoiding this problem. The output molecules Y are removed from the

system by a decay.

Table 4.3(a) presents the full set of reactions with associated catalysts and inhibitors.

Note that each reaction with multiple independent catalysts (group 1) or inhibitors (group

4) is a compressed version of the reactions each using just one input species X0
1 , X

1
1 , X

0
2 , X

1
2

as a catalyst or an inhibitor. Therefore, the group 1 expands to 8 reactions, the group 4 to

24 reactions, and overall the WLP requires 54 rather than 34 reactions shown in the table.

4.2.2 Weight-Race Perceptron

The functioning of the WLP is based on rather conservatively-designed phases working

in a sequence. This approach works well since the WLP directly implements the input-

weight integration routine of the formal binary perceptron. Nevertheless, the idea of

direct calculation of the weight sum and recovering the original state seems unnecessarily

cumbersome for a chemical system, resulting in a large number of species and reactions.

The WRP, consisting of 14 species and 30 reactions, improves the weight-loop model

by switching the chemical roles of inputs and weights. Instead of having inputs catalyzing

a transformation of weights to a weight sum, which determines an output, weights cat-

alyze the input-to-output reactions as presented in Figure 4.2. Input species X1 and X2 are

transformed directly to Y0 or Y1 depending on the sign of currently present weights. Thus,

the WRP does not compare weights directly, but lets them compete on input-to-output re-

actions as catalysts, so it basically implements a rate (derivation-based) comparison. For

this to work, species Y0 must annihilate with Y1 quickly, racing must be simultaneous,
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4.2. INPUT-WEIGHT INTEGRATION

Figure 4.2: The WRP’s reactions employed in the input weight integration. The weights W catalyze (com-
pete on) the input-to-output reactions X → Y . Nodes represent species, solid lines are reactions, dashed
lines are catalysts, and λ is no or inert species. The horizontal symmetry is due to the existence of two
perceptron’s inputs; the vertical one is the representation symmetry globally spread across the WRP design.

and the rate functions must have a similar shape.

This is an instance of the second symmetric approach (Figure 3.1(b)), in which the

sum of positive and negative numbers is calculated indirectly by the impact of a catalytic

species racing on a shared substrate. Whether the WRP produces more Y1 or Y0 is de-

termined by the cumulative strength of all ⊕ over the 	 weights, which includes both the

weight concentrations and the catalytic reaction rates.

The weight W⊕

1 (or W	

1 ) catalyses solely the reaction X1
1 → Y1 (or X1

1 → Y0), analo-

gously for W⊕

2 and W	

2 . Since the bias weights W⊕

0 and W	

0 are always active, they drive

all input-to-output reactions. Note that at this point the formal weight values stop match-

ing the concentrations of the weight species, owing to the non-linear nature of a catalytic
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race. Weights catalyze the reactions concurrently, so the one with the highest concentra-

tion consumes the largest portion of an input and has therefore the highest contribution in

an output. Analogously to the weight-loop model, an annihilation of Y1 and Y0 decides

whether the concentration of Ys is above or below the zero threshold.

If the WRP is supposed to treat all weights equally, it must ensure that the weight

race is fair. Following the formal perceptron definition, the contribution of weights in

the sum must be uniform, meaning there is no preference among weights. Besides the

weight concentration, the reaction rate constants determine the actual speed of the input

consumption.

Now, if all weights have the same sign, then it does not matter what rate constants

are set, so we can let the qualitative state of the perceptron be W⊕

0 , W	

1 and W	

2 (Figure

4.3). For inputs X0
1 and X0

2 only the weight W⊕

0 is active, so there is no racing. The weight

W⊕

0 competes with W	

1 and W	

2 for inputs X1
1 and X1

2 ; however, W⊕

0 is privileged since

it consumes X1
1 and X1

2 at the same time. Note that W	

1 consumes just X1
1 and W	

2 just

X1
2 . To fix this issue we have to penalize W⊕

0 by setting the rate constants of the reactions

X1
1 → Y1 and X1

2 → Y1 both catalyzed by W⊕

0 to δ, and those catalyzed by W	

1 and W	

2 to

2δ. As a result, the contribution preference of the weights is balanced.

The new problem emerges for inputs X1
1 and X0

2 , where W⊕

0 drives two, but W	

1 just one

reaction. Even if the X1
1 reactions follow the two-to-one rate constant ratio, whatever con-

stant assigned to the reaction X0
2 → Y1 catalyzed by W⊕

0 will result in an unfair advantage

for W⊕

0 , since eventually all X0
2 molecules will change to Y1. To balance the preference of

W⊕

0 we need to introduce a decay of X0
2 , such that exactly two thirds are taken away. In

order to do that, W⊕

0 must catalyze not just X0
2 → Y1 with the rate constant δ, but also the

decay X0
2 → λ with the rate constant 2δ. That is the reason why the reaction set of the

WRP contains a decay of the input species X0
1 and X0

2 (Table 4.3(b), Group 2).
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Inputs

Outputs

(a) (0, 0) (b) (1, 0)

Inputs

Outputs

(c) (0, 1) (d) (1, 1)

Figure 4.3: The input-output precessing of the WRP for positive W0 and negative W1 and W2 weights and
4 input pairs.

Based on our simulations, it however turns out that the WRP can perform well re-

gardless of the preference among weights because it can compensate a certain degree of

unfairness in the race by non-uniform weight adaptation. Even though a bias exists, we

can always find such a concentration of weight species that the overall production of Y1

over Y0 will follow a prescribed binary function profile.

The WRP is substantially simpler compared to the WLP. It contains 30 reactions with-

out any inhibition. Unlike the WLP, the system does not need any externally supplied fuel

species. In fact, the input species adapts this role, so they are essentially an information

and energy source.
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Table 4.3: The full reaction list for (a) the WLP and (b) the WRP. Reactions are divided into groups
according to common functional characteristics. The symbol ∀X denotes all inputs species X0

1 , X
1
1 , X

0
2 , X

1
2 .

(a)

# Reaction Catalysts Inhibitors
1 W⊕0 + E → W

⊕

0 + Y1 ∀X
W	0 + E → W

	

0 + Y0 ∀X
2 W⊕1 + E → W

⊕

1 + Y1 X1
1

W	1 + E → W
	

1 + Y0 X1
1

W⊕2 + E → W
⊕

2 + Y1 X1
2

W	2 + E → W
	

2 + Y0 X1
2

3 W⊕1 → W
⊕

1 X0
1

W	1 → W
	

1 X0
1

W⊕2 → W
⊕

2 X0
2

W	2 → W
	

2 X0
2

4 W
⊕

0 → W⊕0 ∀X
W
	

0 → W	0 ∀X
W
⊕

1 → W⊕1 ∀X
W
	

1 → W	1 ∀X
W
⊕

2 → W⊕2 ∀X
W
	

2 → W	2 ∀X
5 W⊕0 + W	0 → λ

W⊕1 + W	1 → λ

W⊕2 + W	2 → λ

6 Y0 + Y1 → λ

7 X0
1 → λ

X1
1 → λ

X0
2 → λ

X1
2 → λ

8 Y0 → λ

Y1 → λ

9 D0 → λ

D1 → λ

10 D0 → W	0 Y1

D1 → W⊕0 Y0

11 D0 → W	1 Y1, X1
1 (AND)

D0 → W	2 Y1, X1
2 (AND)

D1 → W⊕1 Y0, X1
1 (AND)

D1 → W⊕2 Y0, X1
2 (AND)

(b)

# Reaction Catalysts
1 X0

1 → Y1 W⊕0
X0

1 → Y0 W	0
X0

2 → Y1 W⊕0
X0

2 → Y0 W	0
X1

1 → Y1 W⊕0
X1

1 → Y0 W	0
X1

2 → Y1 W⊕0
X1

2 → Y0 W	0
2 X0

1 → λ W⊕0
X0

1 → λ W	0
X0

2 → λ W⊕0
X0

2 → λ W	0
3 X1

1 → Y1 W⊕1
X1

1 → Y0 W	1
X1

2 → Y1 W⊕2
X1

2 → Y0 W	2
4 W⊕0 + W	0 → λ

W⊕1 + W	1 → λ

W⊕2 + W	2 → λ

5 Y0 + Y1 → λ

6 Y0 → λ

Y1 → λ

7 D0 → λ

D1 → λ

8 D0 → W	0 Y1

D1 → W⊕0 Y0

9 D0 → W	1 Y1, X1
1 (AND)

D0 → W	2 Y1, X1
2 (AND)

D1 → W⊕1 Y0, X1
1 (AND)

D1 → W⊕2 Y0, X1
2 (AND)
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Table 4.4: The full reaction list for (a) the ASP; (b) the extra thresholding reactions of the TASP. Reactions
are divided into groups according to common functional characteristics.

(a)

# Reaction Catalyst
1 S in + Y → λ

2 S in → Y W0

3 X1 + Y → λ

X2 + Y → λ

4 X1 → Y W1
X2 → Y W2

5 P→ W⊕

6 P→ W	 Y
7 W	 + W0 → λ

8 W⊕ → W0

9 W	 → W	1 X1
W	 → W	2 X2

10 W1 + W	1 → λ

W2 + W	2 → λ

11 W⊕ → W1 X1
W⊕ → W2 X2

(b)

# Reaction
12 Yaux → 2Y
13 2Y → Y + Yaux

14 Y + Yaux → Yaux

15 Y → λ

4.2.3 Asymmetric Signal Perceptron

In the design of the ASP we further extend the idea of an unfair race embedded in the

WRP design. It exploits the reaction rate setting to ensure that the contribution of weights

allows the representation of negative numbers and subtraction, but at the same time avoids

the ⊕ vs. 	 symmetry of weights. The set of input species in the ASP shrinks from

{X0
1 , X

1
1 , X

0
2 , X

1
2} to the three species {X1, X2, S in} (Table 4.1). The input (clock) signal

S in, primarily needed for the input pair (0, 0), when neither X1 nor X2 is injected, can be

elegantly incorporated to the rest of input pairs to serve an additional purpose. Because the

bias weight is always included in the weight sum regardless of the input (see Table 2.1),

we can extract the bias processing part and design the ASP such that the input signal

S in will also be the weight-species W0 specific substrate. Therefore, the input signal S in
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is always injected and it accompanies the regular input species X1 and X2 (if provided).

This is a simpler alternative than hooking the W0 species to all possible inputs as in the

WRP. The presence of event signals, the input signal and the penalty signal (introduced

in Section 4.3), is another prominent feature of the ASP.

Now, using the asymmetric representation of numbers by a single catalyst (Figure

3.1(c)), we obtain three weight species W0,W1, and W2 as opposed to W⊕

0 ,W
	

0 ,W
⊕

1 , W	

1 ,

W⊕

2 , and W	

2 as required by the WLP/WRP. Owing to the introduction of the input signal

S in, each weight species consumes its own input and adds a portion to the global output

species Y , as shown in Figure 4.4(a). By imposing a certain threshold concentration

Θ we create a system in which each weight species races with its private decay, and

consequently the weight concentrations can represent both positive and negative numbers.

On the other hand, this system lacks cross-weight racing because of the disconnection

of weight impacts. More precisely, a small concentration of one weight resulting in a

stronger weight-specific decay would never affect the contribution of a different weight to

the global output. Since no arrow points out of the species Y , once produced, Y cannot be

consumed, therefore the system is additive. The output concentration [Y] would consist

of three portions [Y]S in , [Y]X1 , and [Y]X2 , corresponding to the output produced from the

input species S in, X1, and X2. Because the weights do not influence one another (their

contributions are strictly additive), the output for the formal inputs (0, 0), (1, 0), (0, 1),

and (1, 1) would be [Y](0,0) = [Y]S in , [Y](1,0) = [Y]S in + [Y]X1 , [Y](0,1) = [Y]S in + [Y]X2 ,

and [Y](1,1) = [Y]S in + [Y]X1 + [Y]X2 consecutively. Now, since the threshold or the output

interpretation is the same for all inputs, the output concentrations could not represent bi-

nary functions that are non-monotonously increasing, such as NAND or NOR for any weight

concentrations. For instance, NAND requires [Y](1,1) = [Y]S in + [Y]X1 + [Y]X2 ≤ Θ, and

[Y](0,0) = [Y]S in > Θ, which is not possible. Hence, instead of one global race embracing
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(a) (b)

Figure 4.4: The initial (a) and the final (b) version of the ASP’s reactions employed in input-weight inte-
gration incorporating an asymmetric representation of real values (and subtraction). The initial version (a)
using decay of inputs fails to model a general linearly separable binary function due to pure additive contri-
butions of input-weight branches. The final version (b) overcomes this problem and enforces cross-weight
competition by introducing the annihilation of inputs and output. Nodes represent species, solid lines are
reactions, dashed lines are catalyses, and λ is nothing, or an inert species.

all weights, we would end up having three independent races with additive contributions.

What could we do to impose a cross-weight global race? As we mentioned earlier,

there is no negative pressure, such as decay, that would interlink the products of weight

catalyses. In other words, we need the reaction arrows to head not just into but also out

of the output species Y . Naively introducing a decay of the output species Y → λ would

not work because a negative pressure or consumption must be conditional on the input

type. Depending on the presence of S in, X1, and X2, a certain part of negative pressure

must be controlled (turned on or off). To address that, we replace the original asymmetric

building block with a version using an annihilation of the substrate (input) and product,

instead of the decay (Figure 3.1(d)), and thus obtain the system shown in Figure 4.4(b),

which can qualitatively imitate the two-input perceptron. As the concentration of weights
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increases, the output increases as well and asymptotically reaches the total amount of

input injected. The upper bound for the final output’s concentration is therefore [Y] ≤

[X1]0 + [X2]0 + [S in]0, which holds if both inputs X1 and X2 are injected. For the input

(0, 0) only the clock signal S in penetrates the system, therefore the upper bound for this

case [Y] ≤ [S in]0. Since we compare the output concentration with the same threshold

Θ for all four possible inputs, Θ < [Y] ≤ [S in]0 ≤ [X1]0 + [X2]0 + [S in]0. We set the

threshold concentration Θ to 0.5, which allows enough maneuverability in both positive

and negative region.

4.2.4 Thresholded Asymmetric Signal Perceptron

The ASP uses a single output species Y , therefore to translate a real-valued concentration

as a Boolean, we compare the concentration of Y with the 0.5 threshold externally (by an

outside observer). Now, since the input concentrations are fixed, but the output concentra-

tion is not, multiple perceptrons connected in a cascade may not work properly without

extra precautions. We cannot therefore claim that either of our designs is modular. To

address, that we introduce a tresholded version of the ASP, the TASP, which amplifies

the output to the same level as expected by the input by employing Wilhelm’s bistable

chemical reactions as introduced in Section 3.3. We can easily adjust this mechanism

for a custom upper value and threshold, and derive the TASP, which requires one extra

species Yaux and four reactions, as shown in Table 4.4(b). Recall that the bistable chemical

system has three equilibrium states: lower value 0, threshold (k1 −
√

k1D)/2k3, and upper

value(k1 +
√

k1D)/2k3, with discriminant D = k1 − 4k3k4. If we set the upper value—the

input concentration of the ASP—to 1.5 we calculate the rate constants as k1 = 1, k2 = 1,

k3 = 0.533, and k4 = 0.3. Note that besides output Y , its companion species Yaux is am-

plified as well (upper value 2.25). The threshold for the given rate constants is 0.375 for
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Y and 0.141 for Yaux.

Note that an active thresholding or a conditional amplification is an additional feature

built on the top of the standard ASP (SASP). Other than the output interpretation, all

features and settings, including the input-weight integration and learning, are the same.

Therefore, the label ASP will refer to both models. If a distinction is needed, we will use

either the standard ASP (SASP) or its thresholded extension (TASP). Unlike the SASP,

in which the input species are the sole fuel, the TASP continuously consumes external

species, which is kept constant to maintain the output at the upper equilibrium.

4.2.5 Execution

So far, we have introduced the WLP, the WRP and the ASP structurally as a collection

of species, reactions, catalysts, and inhibitors that model the input-weight integration to

mimic any linearly separable binary function. To illustrate this capability, we execute the

chemical perceptrons with the best rate constants found by evolution.

Let us assume we know the correct weight species concentrations for a given binary

function and, as a first step, we place the weight species molecules into the tank. (Note

that normally we would obtain the weight species concentrations by learning.) Then, we

inject one of the input combinations from Table 4.1. The concentration of each input

species and the input signal is 1 for the WLP, 2 for the WRP, and 1.5 for the ASP. For

instance, the input (x1, x2) = (1, 0) is injected to the WLP as [X1
1] = 1.5 and [X0

2] = 1.5,

as [X1
1] = 2 and [X0

2] = 2 to the WRP, and as [S in] = 1.5 and [X1] = 1.5 to the ASP.

Since this processing of inputs and producing the output takes some time, we cannot

inject the input species immediately after the previous pair. We have to wait until the

system settles down. For the WRP, the length of this period is S WLP/WRP = 5,000 steps,

for the ASP it is reduced to S AS P = 1,000 steps.
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Figure 4.5: Simulation of the NAND function on four different combinations of the input species by (a)
the WLP, (b) the WRP. From top to bottom: concentration of input species X0

1 , X
1
1 , concentration of input

species X0
2 , X

1
2 , and concentration of output Y0,Y1. By applying the translation that compares the maximal

concentration of Y1 and Y0 in the four intervals 5,000 steps long, we obtain the NAND output sequence
1, 1, 1, and 0.
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Figure 4.6: Simulation of the NAND function on four different combinations of the input species by (a)
the SASP, and (b) the TASP. From top to bottom: concentration of input species X1, concentration of input
species X2, and concentration of output Y . By applying the translation that (a) externally interprets threshold
[Y] > Θ = 0.5, and (b) distinguishes between [Y] = 0 and [Y] = 1.5 in the four intervals 1,000 steps long,
we obtain the NAND output sequence 1, 1, 1, and 0.
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Figures 4.5 and 4.6 present the WLP, WRP and ASP (both SASP and TASP) execution

traces on four consecutive inputs with the concentration of weight species set according to

the NAND function. Going from left to right, we obtain the NAND function outputs 1, 1, 1, 0.

The WLP and the WRP output one if, following the annihilation of output species, the

species Y1 remains (solid peaks), otherwise Y0 (dashed peaks) indicates the binary output

zero. For the SASP, the concentration of the single species Y in terms of its position above

or below the threshold determines the output. This is what we call passive thresholding.

On the other hand, the TASP actively distinguishes between these two positions and am-

plifies or diminishes the output accordingly. Unlike the WLP/WRP, the output species

does not decay in the ASP, hence it must be discarded after each processing.

4.3 LEARNING AND FEEDBACK

The input-weight integration part deals with the output production driven by a given con-

centrations of the weights. To alter the predefined weight concentrations, and therefore

to alter the predefined functionality, we train the perceptron such that it adheres to the

required input-output profile. In this section we describe two approaches, learning by

desired output and reinforcement learning, incarnated in our chemical designs.

The original definition of the formal perceptron learning (Section 2.1.1) adapts a

weight wi as ∆wi = α(d − y)xi for a given output y and desired output d. Assuming

d , y, each weight participating in the output production, i.e., xi = 1, increments by

∆w = α(d − y). Since the sign of the weight sum fully determines output, weight adapta-

tion is stronger for inputs with the higher number of ones. For instance, the weight sum

is adjusted by ∆w for input (0, 0), but 3∆w for input (1, 1), as shown in Table 4.5(a). A

learning rate α is incorporated into our chemical learning as the concentration of either
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4.3. LEARNING AND FEEDBACK

Table 4.5: The adaptation of a weight sum during a learning of two-input binary perceptron for four inputs:
(a) a uniform adaptation of individual weights, (b) a uniform adaptation of weight sum.

(a)

x1 x2 Adapted Weight Sum
0 0 w0 + ∆w
1 0 w0 + w1 + 2∆w
0 1 w0 + w2 + 2∆w
1 1 w0 + w1 + w2 + 3∆w

(b)

x1 x2 Adapted Weight Sum
0 0 w0 + ∆w
1 0 w0 + w1 + ∆w
0 1 w0 + w2 + ∆w
1 1 w0 + w1 + w2 + ∆w

the desired output D, or the penalty signal P. The chemical perceptrons do not age, i.e., a

learning rate α is constant throughout the whole training.

Essentially, the uniform adaptation of individual weights causes a bias in the weight

adaptation. Our simulations showed that this unfairness hurts the overall performance and

is also biologically questionable, since the overall amount of ∆w would need to reflect the

number of inputs and the number of those holding logic one. To fix that, we do not adapt

individual weights but the whole weight sum uniformly for all inputs as presented in Table

4.5(b). More specifically, the chemical perceptron divides ∆w—the concentration of the

desired output D or the penalty signal P—among weights, so the whole weight sum is

adapted by ∆w. We think that the biased adaptation in the original formal perceptron does

not cause substantial issues because the weight sum is further processed by an activation

function and the learning rate α decreases over time. As a result, small differences in the

weight adaptation become neglectful.

4.3.1 Learning by Desired Output

The WLP and the WRP learn binary functions by supervised learning based on desired

output. They share the same learning-embedded reactions, hence the description we pro-

vide in this section is valid for both.
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4.3. LEARNING AND FEEDBACK

(a) WLP (b) WRP (c) ASP

Figure 4.7: Overall qualitative diagram covering the reactions of the input-weight integration as well as
learning for (a) WLP, (b) WRP, and (c) ASP.

Figure 4.8: The WLP’s (and WRP’s) reactions employed in learning. The desired-output species D0 or D1

transforms to weights W, if the provided variant does not match the actual output, Y0 or Y1.

Recall from Section 2.1.1 that classical supervised learning expects a trainer to feed

the perceptron with the binary desired output d. Figure 4.7(a) shows a high level diagram

of the WLP covering both the input-weight integration as well as learning. Figure 4.7(b)

shows the same for the WRP. By applying the representation symmetry, the desired output

d translates into two species D0 and D1, and so during each learning step, the WLP/WRP
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compares the variant of the actual output Y against the variant of the desired output D.

If Y matches D, i.e., the species Y0 and D0, or Y1 and D1 are simultaneously present in

the system, the output is correct, and the weights remain unaltered (D0 or D1 disappears

by decay). Otherwise, the desired-output species D transforms to the ⊕ or 	 version of

the weight species W, which are added to (or annihilate with) existing weights. This

happens, however, only for those weights that participate in an output production for the

current inputs (Figure 4.8). Thus, an input together with an output catalyzes the D → W

reactions, so they are dependent (AND) catalysts (Table 4.3(a), Group 11 or Table 4.3(b),

Group 9). Because the bias weight W0 always participates in the output production it gets

adapted no matter what input was injected. On the other hand, the weight species W1 and

W2 race on their specific input substrate X1
1 and X1

2 , respectively. The learning rate α is

defined as the concentration of the desired output species, so the more D we provide, the

more the weight concentrations change.

4.3.2 Learning by Penalty Signal

As opposed to the WLP or the WRP, the ASP needs just a single output species Y . Here

we interpret the formal binary output by thresholding. As a matter of fact, following the

same approach as before and distinguishing the desired output by two variants D0 and D1

would be cumbersome. Recall that WLP/WRP requires two species—the input and the

actual output—to simultaneously catalyse the transformation of the desired output to the

weights. This part of the design is rather artificial since most common reactions have a

maximum of one catalyst. The ASP promised fewer and simpler reactions, therefore, we

avoid using more than one catalyst simultaneously.

For the ASP we choose a more biologically plausible alternative for the supervised

desired output learning—learning by reinforcement [147]. We introduce a special event
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signal, the penalty signal P, which represents a reinforcement for an incorrect output (Fig-

ure 4.7(c)). Now, ASP has to decide whether to increase or decrease the concentrations

of the weight species W0,W1, and W2. We represent those two options by intermediate

species W⊕ and W	, and so we let two reactions P → W⊕ and P → W	 compete on

the penalty signal P. Following our asymmetric approach to comparison, only one of the

reactions, namely P → W	, has a catalyst Y . The concentration of Y decides whether

weights will be incremented or decremented, and the concentration of P defines by how

much (the learning rate α). More precisely, since the concentration [Y] > 0.5 represents

one, the presence of the penalty signal P for a high concentration of Y means we expected

ASP to provide zero, therefore the weight concentrations must drop, and so P should

split to more W	 than W⊕ molecules. Note that as a consequence of the reinforcement

both variants W	 and W⊕ are always produced. Also, compared with the WRP, the ASP

does not have to handle the disappearance of the feedback species P because if the ASP

operates as expected, we skip the injection of P.

Having W⊕ and W	, the second step is to decide which weights should be adapted.

All reactions employed for learning are presented in Figure 4.9. Similarly to the WRP,

only the weights responsible for the current output production are altered. Since the

bias weight W0 is active for the input (clock) signal S in, which is always present, we

can directly draw the reaction from W⊕ to W0 and annihilate W	 and W0 for the weight

decrease. By using annihilation we avoided introducing the intermediate W	

0 species.

Again, similarly to the WRP, the weights W1 and W2 are active only for the inputs X1

and X2, respectively. Thus, we need their substrates from the input-weight integration

to catalyse the transformation to the intermediate weight changers W	

1 and W	

2 (which

annihilate with weights W1 and W2), or the transformation of W⊕ directly to W1 and W2.

The ASP requires more reactions (10) than WLP/WRP (8) to model learning (Table
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Figure 4.9: The ASP’s reactions employed in learning. The penalty signal P increments or decrements the
weights W depending on the concentration level (low vs high) of the actual output Y produced.

4.3 and 4.4) mainly because it forbids two simultaneous catalysts per reaction; otherwise,

we would have achieved an even larger reduction in the number of reactions. Also, we

intentionally do not handle the case where the concentrations of the weight-specific con-

centration changers W	

1 and W	

2 exceed the actual concentrations of the weights W1 and

W2, respectively. We assume this situation does not occur thanks to a sufficiently high

starting concentration of weights and low concentration of the penalty signal. We satisfy

these properties by a genetic search of the rate constants (Section 4.4.1).

4.3.3 Execution

Here we present an experiment execution protocol of the chemical perceptrons to demon-

strate their learning capabilities. Note that similarly to Section 4.3.3, the presented exam-

ples have the rate constants set by genetic algorithms.

The initial concentrations of the weight species are drawn from a uniform distribution
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on the interval [2, 10] for the WLP and the WRP, and the interval [0.5, 1.5] for the ASP.

The learning rate α is constant throughout the whole training, which translates into the

constant concentration of feedback species—the desired output [D0] = 2 or [D1] = 2 for

the WLP and the WRP, and the penalty signal [P] = 0.2 for the ASP. The feedback species

together with the input species describe the expected input-output behaviour of the per-

ceptrons. We determined the optimal concentration of feedback species by experiments.

If the concentration is too high, the weights would oscillate and would not converge on a

stable solution. Conversely, a low concentration of the feedback species (i.e., low learning

rate) prolongs the learning process and does not provide enough pressure to drive weights

out of the zero region if their concentrations are very low.

After injection of a single input, we need to allow the chemical perceptron some time

to produce the output. If we injected inputs together with the feedback at the same time,

the adaptation of the weights would start immediately, changing the actual output. Thus,

the actual output would differ from the one we would obtain only by providing input

species. In the extreme case, the WLP/WPR could just copy the desired output to the

actual output by having very low concentrations of weights. To prevent this, we inject an

input, wait a certain number of steps, measure the output, and then provide the feedback.

Note that both input species X and output species Y must be present in the moment of

weight adaptation. Therefore, we must allow enough time for the output production,

but we cannot postpone the injection of the feedback species for too long, otherwise the

chemical perceptron would fully process the input species. We found experimentally that

this delay can be fairly short. More precisely, in our learning simulations we wait 100

simulation steps and then automatically inject the desired output (WLP/WRP), or first

verify the correctness of the output, and then provide a penalty or no signal (ASP). This

also means that the ASP, unlike the WLP and the WRP, requires active participation of
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the trainer or environment. During each learning iteration we randomly draw one of the

four input and feedback combinations and repeat this process every S WLP/WRP = 5,000, or

S AS P = 1,000 steps until a solution is found.

Figures 4.10 and 4.11 present a trace of the WLP, the WRP, and the ASP (both SASP

and TASP) execution for learning the NAND function, starting from a state where the weight

concentrations are set such that they represent the FALSE function. Over several learning

iterations the concentrations of the weight species change towards the expected solution.
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Figure 4.10: Training of (a) the WLP, and (b) the WRP to perform the NAND function starting from the
FALSE setting: adaptation of weights (top), and output (bottom). Constant zeros gradually change to the
NAND function outputs 1, 1, 1, 0. Note that we have replaced a random order of training samples by a fixed
order solely for illustrative purposes.
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Figure 4.11: Training of (a) the SASP, and (c) the TASP to perform the NAND function starting from the
FALSE setting: adaptation of weights (top), and output (bottom). Constant zeros gradually change to the
NAND function outputs 1, 1, 1, 0. Note that we have replaced a random order of training samples by a fixed
order solely for illustrative purposes.

4.4 PERFORMANCE AND RESULTS

In this section we present the results of our simulations, covering the learning perfor-

mance of the WLP, the WRP, the SASP variant with Michaelis-Menten (SASP MM) and

mass-action kinetics (SASP MA), and the TASP with the same two kinetics—TASP MM

and TASP MA. Unlike the WPR, the ASP’s reactions do not contain two simultaneous

catalysts, so we can directly rewrite catalytic reactions in the mass-action format using

standard expansion. In doing so we prepare the ASP for a potential DNA-strand displace-

ment implementation [128, 140, 166].
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4.4.1 Genetic Search

Recall that the WLP, the WRP and the ASP were introduced as a collection of species and

reactions, avoiding the specification of rate constants. Since the space of possible rate

constants is large, it would be difficult and time-consuming to sample it in a trial-and-

error fashion or by exhaustive search. We therefore employ a standard genetic algorithm

(GA) [46, 123] to optimize the rate constants. Our reaction design is a qualitative model,

which becomes a quantitative, ODE-driven system once the rate constants are set.

Chromosomes encoding possible solutions are simply vectors of rate constants, which

undergo cross-over and mutation. The fitness of a chromosome reflects how well a chemi-

cal perceptron with the given rate constants (encoded in the chromosome) learns the given

binary function. As mentioned in Section 4.3.3, during each learning iteration the chem-

ical perceptron obtains one of the four input and feedback combinations. Each training

consists of 120 learning iterations; however, we count only the last 20 iterations. The

fitness of a single chromosome is then the average over 150 runs for each of the binary

functions. We included the detailed GA parameter values in the Appendix, Table D.2.

For the WLP and the WRP the GA reaches solutions with the fitness above 0.9 already

within a couple of generations, after which it continues with a slower pace toward the

maximum fitness 1, which is reached around generation 20. Overall, the fitness landscape

of the rate constants for the WLP and the WRP has the shape of a high table plateau, hence

finding acceptable rate constants is not difficult. This demonstrates that their structural

design in terms of species and reactions already provides a correct behavior, and the

perceptrons do not need to rely much on the specific rate constants as shown in Section

4.4.3.

We performed 20 evolutionary runs for both SASP variants. In all cases, the fitness
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quickly climbs above 0.7 and then either settles to a local optimum around 0.75 − 0.9 or,

in 25% of cases, it reaches the maximal values of 0.99−1.0. Since the SASP’s output Y is

not produced steadily—it does not act as a constant influx—we could not apply the same

rate constants and calculate just the thresholding reactions analytically, therefore, we had

to run the GA for the TASP as well. Almost all TASP’s evolutionary runs saturated at the

maximal fitness, similarly to the WLP and the WRP.

4.4.2 Learning Performance

Since we are interested only in the best performing instances, we obtained learning per-

formance for the best GA rate constants only (Appendix, A.3). We calculated the average

learning success rate over 10, 000 simulation runs for each of 14 binary functions, where

each run consists of 200 training iterations, similar to the fitness evaluation (see Sec-

tion 4.4.1). The results (Figure 4.12) show that all chemical perceptrons can successfully

learn 14 logic functions. The WLP and the WRP reach the perfect score of 100%, the

ASP reaches a nearly perfect score of 99.5% (SASP MM), 99.3% (SASP MA), 99.999%

(TASP MM), and 99.995% (TASP MA). That illustrates the asymmetric ASP design is

correct and works properly, even with just a half of the WRP’s number of reactions. Note

that performance of a formal non-chemical perceptron with a signum activation function

and a constant learning rate α = 0.1 included in Figure 4.12 reaches 100% accuracy af-

ter 152th learning iteration, which is comparable with the WLP and the WRP chemical

perceptrons.

The WLP and the WRP start from a balanced distribution where the probabilities of

the ⊕ and the 	 weight species are equal, and hence initially the output production is

evenly split between Y0 and Y1. Furthermore, because of the symmetric design, the learn-

ing difficulty of a function and its complement are the same (e.g., OR and NOR). Because
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Figure 4.12: Mean and standard deviation of the 14 correct learning rate averages for the WLP, the WRP,
the SASP MM, the SASP MA, the TASP MM, the TASP MA, and a formal perceptron with a signum
activation function. Each average corresponds to one linearly separable binary function, for which 10,000
runs were performed.

of the asymmetry, it is challenging to find a balanced initial concentration range for the

SASP. In fact, the GA in all our evolutionary runs drives the rates to the state where the

initial probability of output one ([Y] > 0.5) and output zero ([Y] ≤ 0.5) differs. For the

best rate constants the SASP always starts with a zero output as a FALSE function (Figure

4.13). Therefore, the SASP has a bias for functions with more zeros in the output, and the

learning difficulty of a binary function and its complement do not match in general.

Further, the SASP’s error is very function-specific. For instance, the NAND function

has by far the worst performance, i.e., 94.78% (SASP MM), 96.02% (SASP MA). Since

the SASP acts initially as FALSE, it must push the output for all but the last bit above the

threshold (Figure 4.11). NAND is also the most difficult function because it is non-additive

and only the simultaneous presence of X1 and X2 with a low concentration of W1 and W2

annihilates the output below the threshold. Besides NAND, only the functions AND, IMPL,

and CIMPL reach non-perfect scores of 97.5 − 99.5%. Even though the error is marginal,
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Figure 4.13: Performance of the SASP MM for each of the 14 linearly separable binary functions averaged
over 10,000 runs runs. The performance of the mass-action variant is similar and not shown here.

we speculate it could be eliminated by conducting a more detailed search on the initial

weight and input concentrations.

On the other hand, the TASP’s error is negligible (< 0.005%) and it reaches the ex-

pected behavior faster than the SASP. This is due to a larger gap between the formal

output one (1.5) and zero (0), which makes the net effect of the weight-changer reactions

responsible for the reinforcement learning driven by the output species qualitatively more

distinct. The TASP, compared with the SASP, starts with less unbalanced weight concen-

trations but still its initial preference of the output zero is 94% for the TASP MM. The

TASP MA prefers the output one at 64%. This also implies that the space of possible

solutions with different starting bias for the TASP is larger than for the SASP. Table 4.6

summarizes the features of all our chemical perceptrons.
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Table 4.6: Comparison of the binary chemical perceptrons: the WLP, the WRP, the SASP, and the TASP.
The learning performance of all models is almost equivalent and reaches ∼ 100% accuracy. The WLP and
the WRP, which employ a symmetric design, are substantially larger then the asymmetric binary chemical
perceptrons of the SASP and the TASP. On the other hand, the asymmetric perceptrons are less robust to
rate constant perturbation.

Attribute WLP WRP SASP TASP
Number of species 21 14 12 13
Number of reactions 34(54) 30 16 20
Overall learning performance 100% 100% 99.5% (MM) 99.999% (MM)

99.3% (MA) 99.995% (MA)
Rate robustness (50% perturb.) 98.98% 99.34% 86.8% (MM) 63.65% (MM)

85.62% (MA) 65.76% (MA)
Symmetry of species yes yes no no
Output interpretation [Y1] > [Y0] [Y1] > [Y0] [Y] > .5 [Y] = 0, [Y] = 1.5
Learning feedback desired output desired output penalty signal penalty signal
Time steps per input processing 5, 000 5, 000 1, 000 1, 000
ODE numerical approximation Euler Euler RK 4 RK 4

4.4.3 Robustness Analysis

We have shown that the chemical perceptron performs very well by learning all functions

almost perfectly (∼ 100% accuracy). The question arises how much the performance

depends on the rate constants, and whether we can tolerate errors in an implementation?

To answer that question, we introduce perturbations and study the system under different

conditions. We replace each rate constant γ randomly by (1 ± q)γ, where q is drawn

from a uniform distribution over the interval (0, p), where p is the perturbation magnitude

(strength).

We analyzed the robustness of the chemical perceptrons (Figure 4.14) with the best

rate constants only. The results show that the WLP and the WRP maintain very high

robustness, even for 50% perturbation, its learning rate approaches 98.98% (WLP) and

99.34% (WRP). The main difference between the WLP and the WRP occurs at high per-

turbation when the WLP becomes slightly more vulnerable. For the 200% perturbation

magnitude, the performance of the WLP drops even below 50%, which is a sign that the
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concentration of output species rises beyond the maximal limit in some simulations. Note

that for the WLP, this situation might happen due to an open fuel influx.

On the other hand, the SASP is also fairly robust—for a 50% perturbation its learn-

ing rate reaches 86.8% (MM) or 85.62% (MA), although compared with the WLP or the

WRP, the SASP’s robustness is significantly lower. Beyond the 125% perturbation mag-

nitude, the gap between the WLP/WRP and the SASP starts to shrink, and finally the

performance reaches 55− 60% for the 200% perturbation, which basically means that the

rate constants are selected at random. The SASP is less robust because of the asymmetric

real number representation, where a single catalyst represents both a positive and nega-

tive number, depending on its concentration and rate. Therefore, by perturbing a single

reaction rate we might alter the functioning of the system more dramatically than for the

symmetric representation. In the WLP/WRP, real numbers are expressed structurally by

having two mirrored catalytic reactions racing on the same substrate. The design is thus

more redundant and robust. In the opposite case, since the SASP requires a smaller num-

ber of reactions and rates, it relies more on its individual components and is therefore less

robust.

For the TASP a perturbation would produce a system that is still bistable, i.e., dis-

tinguishes between the logic one and zero values separated by the threshold, but these

values would most likely differ from than the original ones, which we calculated analyti-

cally to match the expected output of 1.5 (logic one). That is why we relaxed the output

interpretation and set it to the SASP’s [Y] > 0.5. Because the thresholding reactions are

very sensitive to any rate change, the robustness of the TASP, even with the relaxed in-

terpretation is quite small—just 63.65% (MM) or 65.76% (MA) for a 50% perturbation.

70



4.4. PERFORMANCE AND RESULTS

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Perturbation Strength

50

60

70

80

90

100

C
or
re
ct
 (
%
)

WLP

WRP

SASP MM

SASP MA

TASP MM

TASP MA

Figure 4.14: Mean and standard deviation of the 14 final correct rate averages under the perturbation of rate
constants after 200 learning iterations for for the WLP, the WRP, the SASP MM, the SASP MA, the TASP
MM, and the TASP MA. Each average corresponds to one linearly-separable binary function for which 104

runs were performed. For a given perturbation strength p, each rate constant is perturbed randomly over
the interval (0, p).
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5

ANALOG CHEMICAL PERCEPTRON

In the previous chapter, we presented several types of binary chemical perceptron as the

first proof-of-concept artificial chemical systems that can learn and adapt autonomously

to the feedback provided externally by a teacher. The most advanced asymmetric signal

perceptron (ASP) [22] requires less than a half of the reactions of its predecessors with

comparable performance (i.e., 99.3 − 99.99% success rates). The flip side of the more

compact design is a reduced robustness to rate constant perturbations due to a lack of

structural redundancy.

In real biomedical applications one is often required to distinguish subtle changes in

concentrations with complex linear or nonlinear relations among species. Such behav-

ior cannot easily be achieved with our previous binary perceptron models, thus, several

improvements are necessary. In this chapter we present a new analog asymmetric signal

perceptron (AASP) with two inputs. To avoid confusion, we will refer to the original ASP

as a binary ASP (BASP). As usual, the AASP model follows mass-action and Michaelis-

Menten kinetics and learns through feedback from the environment. The design is mod-

ular and extensible to any number of inputs. We demonstrate that the AASP can learn

various linear and nonlinear functions. For example, it is possible to learn to produce the

average of two analog values. This work has been published in parts in [20].
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5.1 MODEL

The AASP models a formal analog perceptron [132] with two inputs x1 and x2, similar

to an early type of artificial neuron [62]. It is capable of simple learning and can be used

as a building block of a feed-forward neural networks. Networks built from perceptrons

have been shown to be universal approximators [72].

While the previous BASP models a perceptron with two inputs and a binary output

produced by external or internal thresholding, the new AASP is analog and does not use

thresholding. Instead of a binary yes/no answer, its output is analog, which requires much

Table 5.1: (a) The AASP’s species divided into groups according to their purpose and functional character-
istics; (b) the AASP’s reactions with the best rate constants found by the GA (see Section 4.4.1), rounded to
four decimals. Reaction groups 1–4 implement the input-weight integrations, the rest implement learning.
The catalytic reactions have two rates: kcat and Km.

Function Species
Inputs X1, X2
Output Y
Weights W0,W1,W2
Target output Ŷ
Input (clock) signal S in

Learning signal S L

Input contributions XL
1 , X

L
2 , S

L
in

Weight changers W	,W⊕ ,
W	0 ,W

	
1 ,W

	
2

Total 17

# Reaction Catalyst Rates
1 S in + Y → λ .1800
2 S in → Y + S L

in W0 .5521, 2.5336
3 X1 + Y → λ .3905

X2 + Y → λ

4 X1 → Y + XL
1 W1 .4358, 0.1227

X2 → Y + XL
2 W2

5 Ŷ → W⊕ .1884
6 Y → W	 S L .1155, 1.9613
7 Y + Ŷ → λ 1.0000
8 W	 → W	0 S L

in 0.600, 1.6697
9 W0 + W	0 → λ .2642
10 W⊕ → W0 S L

in .5023, 2.9078
11 W	 → W	1 XL

1 .1889, 1.6788
W	 → W	2 XL

2
12 W1 + W	1 → λ .2416

W2 + W	2 → λ

13 W⊕ → W1 XL
1 .2744, 5.0000

W⊕ → W2 XL
2

Total 18
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finer control over the weight convergence. As a consequence, the AASP consists of more

species, namely 17 vs. 13, and more reactions, namely 18 vs. 16.

5.1.1 Input-Weight Integration

A formal perceptron integrates the inputs x with the weights w linearly as Σn
i=0wixi, where

the weight w0, a bias, always contributes to an output because its associated input x0 = 1.

An activation function ϕ, such as a hyperbolic tangent or signum, then transforms the dot

product to the output y.

The reactions carrying out the chemical input-weight integration are structurally the

same as in the BASP. The only difference is an addition of the partial input-weight con-

tribution species, which are, however, required for learning only, and will be explained

in Section 5.1.2. The AASP models a two-input perceptron where the output calculation

is reduced to y = ϕ(w0 + w1x1 + x2w2). The concentration of input species X1 and X2

corresponds to the formal inputs x1 and x2, and the species Y to the output y. A clock

(input) signal S in is always provided along the regular input X1 and X2 because it serves

as the constant-one coefficient (or the constant input x0 = 1) of the bias weight w0.

The AASP represents the weights by three species W1,W2, and W0. As opposed to the

formal model, the input-weight integration is nonlinear and based on an annihilatory ver-

sion of the asymmetric representation of the values and the addition/subtraction operation

as utilized in the design of the BASP and discussed generally in Chapter 3. Recall that

since the concentration cannot be negative, we cannot map a signed real variable directly

to the concentration of a single species. The weights require both positive and negative

values, otherwise we could cover only functions that are strictly additive.

Using the asymmetric comparison primitives, we map the AASP’s weights to cata-

lysts, the inputs to substrates, and the output to product and obtain 6 reactions as shown in
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Figure 5.1(a) and Table 5.1(b), groups 1–4. Each weight species races with its substrate’s

annihilation but also with other weights. Since the output Y is shared, this effectively im-

plements a nonlinear input-weight integration. Note that by replacing annihilation with

a decay of the input species, we would end up having three independent races with ad-

ditive contributions instead of one global race. An alternative symmetric representation

embedded in the previously reported weight-loop perceptron and the weight-race per-

ceptron [21] encodes the values by two complementary species, one for the positive and

one for the negative domain. We opt for the asymmetric approach because it reduces the

number of reactions by half compared to the symmetric one.

Using Michaelis-Menten kinetics, the concentration ODEs for the input-weight inte-

gration reactions are

˙[Xi] = −
kcat,i[Wi][Xi]
Km,i + [Xi]

− ki[Xi][Y]

˙[Y] =
∑

i

(
kcat,i[Wi][Xi]
Km,i + [Xi]

− ki[Xi][Y]
)
,

�
 �	5.1

where for consistency S in is labelled as X0.

Because of the complexity of the underlying ODEs, no closed formula for the output

concentration exists and theoretical conclusions are very limited. Although we cannot

analyze the input-weight integration dynamics quantitatively, we can still describe the

qualitative behavior and constraints. The weight concentration represents formally both

positive and negative values, so the weights together with annihilatory reactions can act

as both catalysts and inhibitors. More specifically, a low weight concentration, which

strengthens its input-specific annihilation, could impose a negative pressure on a different

weight branch. Hence, we interpret a weight that contributes to the output less than its

input consumes as negative. In an extreme case, when the weight concentration is zero,
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its branch would consume the same amount of output as its input injected. The relation

between the concentration of weights and the final output [Y]∞ has a sigmoidal shape

with the limit [X1]0 + [X2]0 + [S in]0 reaching for all weights [Wi]→ ∞. Clearly the output

concentration cannot exceed all the inputs provided.

Figure 5.2 shows the relation between the concentration of weight W1 and weight

W2 and the final output concentration. For simplicity, the bias processing part is not

considered ([S in] = 0), so we keep only two branches of the input-weight integration

triangle. Note that in the plots the concentration of weights span the interval 0 to 2

because in our simulations we draw the weights uniformly from the interval (0.5, 1.5).

On the z-axis we plotted the ratio of the output concentration [Y] to [X1]0 + [X2]0. For

learning to work, we want the gradient of the output surface to be responsive to changes

in the weight concentrations. Therefore, we restrict the range of possible outputs so it

is neither too close to the maximal output, where the surface is effectively constant, nor

too close to zero, where the surface is too steep and even a very small perturbation of the

weight concentration would dramatically change the output. Note that we optimized the

AASP’s rate constants to obtain an optimal weight-output surface by genetic algorithms

(discussed in Section 5.1.3).

5.1.2 Learning

In the previous BASP model, learning reinforced the adaptation of weights by a penalty

signal whose presence indicated that the output was incorrect. Since the output is analog

in the new AASP model, a simple penalty signal is not sufficient anymore. We therefore

replaced the reinforcement learning by classical supervised learning [130]. Formally, the

adaptation of a weight wi for the training sample (x, ŷ), where ŷ is a target output and x

a input vector, is defined as ∆wi = α(ŷ − y)xi, where α ∈ (0, 1] is the learning rate. The
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(a) Input-weight integration (b) Output comparison

(c) Positive adaptation (d) Negative adaptation

Figure 5.1: (a) The AASP’s reactions performing input-weight integration. Similarly to the BASP, cross-
weight competition is achieved by the annihilation of the inputs S in, X1, X2 with the output Y , an asym-
metric strategy for representation of real values and subtraction. (b-d) the AASP’s reactions responsible
for learning. They are decomposed into three parts: (b) comparison of the output Y with the target-output
Ŷ , determining whether weights should be incremented (W⊕ species) or decremented (W	 species), and
(c-d) positive and negative adaptation of the weights W0,W1, and W2, which is proportional to the part of
the output they produced S L

in, X
L
1 , and XL

2 respectively. Nodes represent species, solid lines are reactions,
dashed lines are catalysts, and λ stands for no or inert species.
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Figure 5.2: The relation between the weight concentrations [W1] and [W2] and the final output concentration
[Y]∞ normalized by [X1]0 + [X2]0 for the input-weight integration (excluding the bias W0 part) showing
various inputs. The rate constant of annihilatory reactions Xi + Y → λ, i ∈ {1, 2} is k = 0.2 in the top and
k = 1 in the bottom row.

AASP’s, similarly to the BASP’s input-weight integration, does not implement the formal

∆wi adaptation precisely, rather, it follows the relation qualitatively.

Learning is triggered by an injection of the target output Ŷ provided some time after

the injection of the input species. The part presented in Figure 5.1(b) compares the output

Y and the target output Ŷ by annihilation. Intuitively a leftover of the regular output Y

implies that the next time the AASP faces the same input, it must produce less output,

and therefore it needs to decrease the weights by producing a negative weight changer

W	 from Y . In the opposite case, the AASP needs to increase the weights, hence Ŷ trans-

forms to a positive weight changer W⊕. Since the AASP can produce output also without

learning, just by the input-weight integration, we need to guard the reaction Y → W	 by

a learning signal S L, which is injected with the target output and removed afterwards. To

prevent creation of erroneous or premature weight changers, the annihilation Y + Ŷ → λ

must be very rapid. Note that the difference between the actual output Y and the desired
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output Ŷ , materializing in the total concentration of weight changers W⊕ and W	, must

not be greater that the required weight adaptation, otherwise the weights would diverge.

The learning rate α is therefore effectively incorporated in the concentration of W⊕ and

W	.

In the formal perceptron, the adaptation of a weight wi is proportional to the current

input xi. Originally, the BASP distinguished which weights to adapt by a residual con-

centration of inputs X1 and X2. Because the inputs as well as an adaptation decision were

binary, we cared only about whether some of the unprocessed input were still left, but

not about its precise concentration. Thus, an injection of the penalty signal could not

happen too soon, neither too late. Because the AASP’s learning needs more information,

the input-weight integration introduced three additional species, namely the partial input-

weight contributions XL
1 , XL

2 , and S L
in, which are produced alongside the regular output

Y . A decision on which weights to update based on the input-weight contributions could

be made even after the input-weight integration is finished. That allows to postpone an

injection of the target output Ŷ and the learning signal S L.

Let us now discuss a positive adaptation as shown in Figure 5.1(c), where the total

amount of W⊕ is distributed among participating weights. The input contribution species

XL
1 , X

L
2 , and S L

in race over the substrate W⊕ by catalyzing the reactions W⊕ → Wi, i ∈

{0, 1, 2}. Note that the traditional weight adaptation formula takes into account solely the

input value, so here we depart further from the formal perceptron and have the combina-

tion of input and weights compete over W⊕. Since larger weights produce more output

they get adapted more. In addition, once a weight reaches zero, it will not be recoverable.

The negative adaptation presented in Figure 5.1(d) is analogous to the positive one, but

this time the input-weight contributions race over W	 and produce intermediates W	

0 ,W
	

1 ,

and W	

2 , which annihilate with the weights. Again, because the magnitude of a weight
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update depends on the weight itself, this feedback loop protects the weight from falling

too low and reaching zero, a point of no return. This is beneficial because, as opposed to

the formal perceptron, a weight value (concentration) cannot be physically negative.

To implement the entire learning algorithm, the AASP requires 12 reactions as pre-

sented in Table 5.1(b), groups 5 − 13.

5.1.3 Genetic Search

Since a manual trial-and-error setting of the rate constants would be very time-consuming,

we optimize the rate constants by standard genetic algorithms (GA). Possible solutions

are encoded on chromosomes as vectors of rate constants, which undergo cross-over and

mutation. We use elite selection with elite size 20, 100 chromosomes per generation,

shuffle cross-over, per-bit mutation, and a generation limit of 50. The fitness of a chromo-

some, defined as the RNMSE, reflects how well the AASP with the given rate constants

(encoded in the chromosome) learns the target functions k1x1 + k2x2 + k0, k1x1, and k2x2.

The fitness of a single chromosome is then calculated as the average over 300 runs for

each function. We included the k1x1 and k2x2 tasks to force the AASP to utilize and dis-

tinguish both inputs x1 and x2. Otherwise the GA would have a higher tendency to opt for

a greedy statistical approach, where only the weight W0 (mean) might be utilized.

Table 5.2: Target functions with constants k1, k2, k0 drawn uniformly from the provided intervals, and mean
and variance rounded to four decimal places.

ŷ k1 k2 k0 Mean Variance

k1x1 + k2x2 + k0 (0.2, 0.8) (0.2, 0.8) (0.1, 0.4) 0.85 0.0590
k1x1 − k2x2 + k0 (0.2, 0.8) (0.0, 0.3) (0.3, 0.4) 0.56 0.0309
k1x1 (0.2, 0.8) − − 0.30 0.0257
k2x2 − (0.2, 0.8) − 0.30 0.0257
k1x1x2 + k0 (0.2, 0.8) − 0.25 0.43 0.0154
k0 − − (0.1, 0.4) 0.25 0.0075
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5.2 PERFORMANCE

We demonstrate the learning capabilities of the AASP on 6 linear and nonlinear target

functions as shown in Table 5.2. Simulations of the AASP were carried out by a 4th order

Runge-Kutta numerical integration with the temporal step of 0.05. During each learning

iteration we inject inputs X1 and X2 with concentrations drawn from the interval (0.2, 1)

and set the bias input S in concentration to 0.5. We chose the target functions carefully,

such that the output concentration is always in a safe region, which is far from the minimal

(zero) and the maximal output concentration [S in]0+[X1]0+[X2]0. We then inject the target

output Ŷ with the learning signal S L 50 steps after the input, which is sufficient to allow

the input-weight integration to proceed.

For each function family we calculated the AASP’s performance over 10,000 simula-

tion runs, where each run consisted of 800 training iterations. We define performance as

the root normalized mean square error (RNMSE)

RNMSE =

√
〈(y − ŷ)2〉

σ2
ŷ

,
�
 �	5.2

where the square error is normalized byσ2
ŷ , a variance of the target output ŷ. A RNMSE of

1 means chance level. We also provide the results using another standard error measure:

the symmetric absolute mean percentage error (SAMP) with values ranging from 0% to

100%

SAMP = 100〈
|y − ŷ|
y + ŷ

〉.
�
 �	5.3

The AASP’s final RNMSE settles down to the range (0.103, 0.0.378) (see Figure 5.4

and 5.3). When we include only the functions that utilize both inputs x1 and x2 as well
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as the bias, i.e., the scenario the AASP was primarily designed for, the RNMSE drops to

the range (0.103, 0.304). Note that we do not distinguish between the training and testing

set. During each iteration we draw the inputs with the target output for a given function

independently.

Among all the functions, k1x1 + k2x2 + k is the easiest (RNMSE of 0.103) and the

constant function k0 the most difficult one (RNMSE of 0.378). The function k0 is even

more difficult than the nonlinear function k1x1x2 + k0 (RNMSE of 0.304). Compared

to the formal perceptron, the constant function does not reach a close-to-zero RNMSE

because the AASP cannot fully eliminate the contribution (or consumption) of the X1

and X2 input-weight branches. The formal perceptron could simply discard both inputs

and adjust only the bias weight, however, the AASP’s weights W1 and W2 with zero

concentration would effectively act as inhibitors, thus consuming a part of the output

produced by the bias. Note that for the nonlinear function we set k0 = 0.25, which does

not increase the variance, i.e., only the nonlinear part counts toward the error. Figure 5.5

shows the weight concentration traces as well as the output, the target output, and the

absolute error for selected functions.
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Figure 5.3: Final performance of the AASP on 6 linear and nonlinear functions after 800 learning iterations
showing the error calculated as RNMSE and SAMP. Note that the final error for the functions k1x1 and k2x2
was taken at the 700th iteration because of a divergence that happen afterwards.
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Figure 5.4: RNMSE and SAMP of the AASP on 6 linear and nonlinear functions over 800 learning itera-
tions.

5.3 DISCUSSION

In this chapter we extended the chemical asymmetric design introduced for the asymmet-

ric signal perceptron to an analog scenario. We demonstrated that our new AASP model

can successfully learn several linear and nonlinear two-input functions. The AASP fol-

83



5.3. DISCUSSION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105
0

1

2

3

4

5

Time

C
o
n
ce
n
tr
a
ti
o
n

W0

W1

W2

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Learning Iteration

V
a
lu
e

E
Y

Ŷ
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Figure 5.5: AASP learning examples for selected functions. The left column shows concentration traces of
the weights, the right column the filtered output Y , the target output Ŷ , and the absolute error E.

lows Michaelis-Menten and mass-action kinetics, and learns through feedback provided

as a desired output. As opposed to our previous designs that used simple binary signals,

the AASP allows to adapt to precise concentration levels. In Chapter 6 we integrate the
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AASP with a chemical delay line to tackle time-series prediction rather than learning

static functions.

In related work, Lakin et al. [89] designed and simulated a system based on enzymatic

chemistry, capable of learning linear functions of the form k1x1 + k2x2. Compared to the

AASP, the system lacks cross-weight competition, meaning the weights cannot formally

represent negative numbers, and so the system could model only strictly additive functions

with k1, k2 ≥ 0. Besides the regular inputs x1 and x2, the AASP utilizes also the bias

(constant shift), hence it can model linear functions of a more general form k1x1 +k2x2 +k0

as well as nonlinear (quadratic) functions of the form kx1x2 + k0, where k1, k2, k0 ∈ R. The

AASP uses 18 reactions, however, by excluding the bias (k0) part, it would need just 13

as opposed to 27 reactions used in Lakin’s system. On the other hand, Lakin’s system

targets a specific wet implementation based on deoxyribozyme chemistry, so the higher

number of reactions is justifiable. Last but not least, we evaluated the performance more

precisely over 10,000 instead of 10 trials.
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6

DELAY LINE

In current chemical reaction networks, it is difficult to coherently store and retrieve val-

ues as we are used to in traditional computer architectures. To build more complicated

systems in chemistries, the ability to look at data in the past would be a valuable tool

to perform complex calculations. Here, we propose a specific kind of memory applied

widely in computer and electrical engineering, a delay line, also called a shift register.

A delay line buffers the past inputs over a sliding window and presents them for reading

(consumption) both sequentially but also as a parallel output. In our implementations

enzymes acting as phase signals are a means to facilitate the copy reactions and conse-

quently reduce the error.

Once implemented in a wet chemistry, a delay line could have significant applications

in the areas of smart medication and biochemical computing [9, 61, 92, 116, 156, 168].

Rather than having a fixed dosage of a specific type of medicine, a patient could be ob-

served over a time window and then adjust the drug release (in quantity or species) to

best respond to the body’s needs [102, 103]. With a time delay line, the detection would

not be limited to a static response based on the actual chemical state, but could be ex-

tended to measure a chemical concentration as time series as well as capture at what point

the event occurred. Temporally-enabled chemical learners, such as chemical perceptrons

introduced in Chapter 4 and 5, could be used for signal memorization, processing, and
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prediction to act as proactive, adaptable (and programmable) agents in human bodies.

This work presents three types of chemical delay lines—manual signalling, backprop-

agation signalling, and parallel-accessible. The manual signalling delay line relies on a

manual injection of the copy signals to indicate when it is time to shift the values. The

second model features an automatic backward propagation of the copy signals, where

only the bottom-most signal needs to be injected. Although the functioning of these two

models is simple and minimizes the number of species and reactions, which is linear

in the number of buffered values, they provide solely a sequential access to the content

and their inherent latency results in poor scalability. The most advanced delay line, the

parallel-accessible delay line, addresses these issues and achieves optimal performance by

employing wait queues and operating on the basis of two alternating signals (catalysts).

The system’s modularity allows for integration with existing chemical systems. We

illustrate the delay line capabilities by connecting the parallel-accessible delay line with

an analog asymmetric signal perceptron (AASP) as presented in Chapter 5. In our setup,

a parallel-accessible delay line feeds an underlying AASP with past input concentrations,

and therefore allows to solve temporal tasks. We evaluated the performance of our new

delayed AASP on four temporal tasks: the linear weighted moving average, the moving

maximum, and two variants of the Nonlinear AutoRegressive Moving Average (NARMA).

We also scale the system’s size to more than two cached inputs to study the effect of

memory on learning.

This work has been published in parts in [19,114] and has been done in collaboration

with Josh Moles.
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6.1. MODEL

6.1 MODEL

A chemical delay line stores past input concentrations in a queue and provides them to a

connected system. It is essentially a memory that allows the underlying system such as a

chemical learner to look at and utilize the past inputs (Figure 6.1).

We present three variants of a chemical delay line—manual signalling, backpropaga-

tion signalling, and parallel-accessible. The core (shared) set of species is as follows. The

species X represents the externally injected input value of the delay line. A delay line

maintains two copies of each (past) input, Xi and XC
i , which (ideally) hold the concentra-

tion of input X provided before i − 1 iterations. The terminal species Xi is available for

consumption to the underlying system, and another copy XC
i+1 is buffered and propagated

to the next stage. Besides the species X, Xi, and XC
i each delay line employs the signal

species, which act as catalysts (triggers) of the copy reactions. The signals propagate the

cached values recursively deeper in the hierarchy.

Figure 6.1: Delay line as a chemical learner’s memory.
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6.1. MODEL

6.1.1 Manual Signalling Delay Line

The manual signalling delay line uses a specific signal XS
i , which splits the cached input

XC
i (or injected input X) into the terminal Xi+1 and the cached copy XC

i+1 propagated to

the next stage. The operation of this model is fully sequential and relies on injections

of signals XS
i for each copy phase in a backward order. The reactions of the manual

signalling delay line are

XC
i

XS
i
−−→ Xi+1 + XC

i+1

XS
i → λ,

�
 �	6.1

where XC
0 = X is the injected input. Each copy phase, triggered by an injection of the

associated signal XS
i , starts only when the previous copy phase is completed, i.e., when

the shared buffered species XC
i+1 is fully consumed. The rate of a signal decay XS

i → λ is

Figure 6.2: The manual signalling chemical delay line of size n = 3. The species X1, X2, and X3 represent
the input X cached at time/cycle t, t − 1, and t − 2 respectively. The manual signalling model relies on
sequential injection of the signals XS

3 , X
S
2 , and XS

1 , hence it produces the cached values one after another.
Nodes represent species, solid lines are reactions, dashed lines are catalysts, and λ stands for no or inert
species.
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6.1. MODEL

set such that a time window in which the signal XS
i is present is sufficient to fully catalyze

its copy reaction.

In the delay line with three stages (as shown in Figure 6.2) an injection of the signal

XS
3 produces X3 from cached XC

2 , then the signal XS
2 copies (splits) the cached XC

1 into X2

and XC
2 , and finally the signal XS

1 copies the input X into X1 and XC
1 . The terminal species

X1, X2, and X3 representing the actual and past inputs are consumed. Figure 6.3 shows a

propagation of values for the three-staged manual signalling delay line in finer detail.

Separation and sequentiality of the copying stages results in error-free functioning of

the delay line, however, this model requires a significant amount of external “help” since

the number of signal injections equals the number of stages (cached values) of the system.

6.1.2 Backpropagation Signalling Delay Line

The backpropagation signalling delay line keeps the basic copy (cleave) mechanism of

the manual version but treats the signal species differently. More specifically, only the

bottom-most signal XS
n , where n is the number of stages, needs to be injected. The signals

react and transform in a bottom-up chain. This process is governed by the delay line’s

reactions, therefore no external help is needed. The reactions of the backpropagation

signalling delay line are

XC
i

XS
i
−−→ Xi+1 + XC

i+1

XS
i+1 → XS

i

XS
1 → λ,

�
 �	6.2

where XC
0 = X is the injected input. Note that the top signal XS

1 is still removed by a

decay as in the manual variant. The advantage of this model is that the user is required to

perform only two injections, of an input and the bottom-most signal, at the beginning of
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(a) t0 (b) t1 (c) t2 (d) t3 (e) t4

(f) t5 (g) t6 (h) t7 (i) t8 (j) t9

(k) t10 (l) t11 (m) t12 (n) t13 (o) t14

Figure 6.3: Diagrams illustrating a propagation of the past input values in the manual signalling chemical
delay line of size n = 3. The input concentrations injected at time t0, t5, and t10 are shown as black, yellow,
and green circles respectively. The signals injected at time t1, t6, and t11 (XS

3 ), t2, t7, and t12 (XS
2 ), and t3, t8,

and t13 (XS
1 ), trigger the copy reactions, which produce the terminal species consumed by the underlying

system. Note that because the signals operate sequentially, so do the production of terminals. Consequently,
the latency of the system grows linearly with the number of cached values.

the cycle and then the system transforms the species internally. Despite an adaptation of

the signalling, the main characteristic of the manual model, i.e., a sequential access and

consequently a linear latency, applies also for this variant.
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Figure 6.4 shows the delay line with three stages, where an injection of the signal

XS
3 produces X3 from cached XC

2 . Simulatenously the signal XS
3 is transformed to XS

2

and consequently to XS
1 splitting the cached XC

1 into X2 and XC
2 , and the input X into X1

and XC
1 . Figure 6.5 shows a propagation of values for the three-staged backpropagation

signalling delay line in finer detail.

Since the reactions performing signal backpropagation are not instantaneous, there is

always an overlap of consecutive stages, where both signals XS
i+1 and XS

i are present. This

overlap allows the partial parallelism of this system. In this time window the shared buffer

species XC
i+1 is simultaneously consumed by the reaction catalyzed by XS

i+1 and produced

by the XS
i ’s reaction, i.e., there is effectively a direct path from XC

i to cascade down to

XC
i+2 (and Xi+2). As a matter of fact, a portion of the more current cached input XC

i might

“leak” to XC
i+2 prematurely. That produces an error that accumulates with every stage.

Figure 6.4: The backpropagation signalling chemical DL of size n = 3. The species X1, X2, and X3 represent
the input X cached at time/cycle t, t−1, and t−2 respectively. This model is semi-sequential (semi-parallel)
since the occurrence of signals XS

3 , X
S
2 , and XS

1 , which are transformed one from another backwards, par-
tially overlap. Nodes represent species, solid lines are reactions, dashed lines are catalysts, and λ stands for
no or inert species.
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Table 6.1: Maximal and average copy error of the backpropagation signalling delay line calculated as
SAMP for 10,000 runs with 200 iterations each. The rate constants were optimized by genetic algorithms
for each size independently.

Size Max Average
2 2.28% 1.97%
3 5.26% 4.84%
4 11.66% 11.25%
5 14.35% 14.09%

By choosing rate constants carefully we can minimize the time window in which the

signals are simultaneously present. This helps to minimize the error. To optimize the rate

constants we employed standard genetic algorithms. Table 6.1 shows the overall copy

error for the best solutions found. Since the error grows rapidly with the system size this

model could be used only for small sizes, such as n = 2 or n = 3. Depending on the

desired properties of the delay line, this is worth considering for the application. More

detailed information can be found in [114].

6.1.3 Parallel-Accessible Delay Line

As opposed to blocking sequential stages employed before, the parallel-accessible delay

line (PDL) executes several non-concurrent stages in parallel. It is the final optimized

variant of a chemical delay line with a minimal error, minimal latency, minimal number

of injections, and a constant number of signals. The reactions of the parallel-accessible

delay line are

XC
i

S
−→ XT1

i+1 + XC
i+1 S = S 1 iff i is even, S = S 2 otherwise

XT j

i
S
−→ XT j+1

i ( j < i) S = S 1 iff i + j − 1 is even, S = S 2 otherwise

S 1 → λ

S 2 → λ,

�
 �	6.3
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(a) t0 (b) t1 (c) t2

(d) t3 (e) t4 (f) t5

(g) t6 (h) t7 (i) t8

Figure 6.5: Diagrams illustrating a propagation of the past input values in the backpropagation signalling
chemical delay line of size n = 3. The input concentrations injected at time t0, t3, and t6 are shown as black,
yellow, and green circles respectively. The signal XS

3 injected at time t1, t4, and t7 transforms to the signals
XS

2 and XS
1 , which trigger the copy reactions producing the terminal species consumed by the underlying

system. Note that because of the partially overlapping stages the neighboring copy reactions leak a portion
of the cached values prematurely. That produces an error that accumulates with every stage (illustrated with
color stripes).

where XC
0 = X is the injected input. The parallel-accessible delay line combines the

standard copy reactions XC
i

S 1/S 2
−−−−→ Xi+1 + XC

i+1 with wait queues XT j

i

S 1/S 2
−−−−→ XT j+1

i , where the

past concentrations are buffered for the required number of cycles. Only two alternating
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signals S 1 (red) and S 2 (blue) are needed to drive the delay line’s execution, regardless

of its size. The key idea here is that the signals S 1 and S 2 alternate in catalyzing the

reactions, therefore, all evenly indexed (and then all oddly indexed) reactions could be

executed at the same time without a conflict. Out of each pair of two neighboring species,

there is always at least one with zero concentration since no S 1 (or S 2) signals drive the

adjacent reactions.

As shown in Figure 6.6, an injection of S 1 fires a simultaneous production of all the

values X1, X2, and X3, and other copy or move-in-wait-queue reactions. The signal S 2

injected some time after S 1 triggers the remaining reactions that move values further to

terminals Xi, consumed by an underlying system. Note that the concentration pathway

from X to Xi contains 2i−1 reactions with i red and i−1 blue signals. Figure 6.7 presents

a propagation of values for the three-staged parallel-accessible delay line in finer detail.

Figure 6.6: The parallel-accessible delay line of size n = 3. The species X1, X2, and X3 represent the input
X cached at time/cycle t, t − 1, and t − 2 respectively. The parallel model utilizes a wait queue XT

i for each
stage and two alternating signals S 1 and S 2, which produces all the values simultaneously. Nodes represent
species, solid lines are reactions, dashed lines are catalysts, and λ stands for no or inert species.
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(a) t0 (b) t1 (c) t2 (d) t3 (e) t4

(f) t5 (g) t6 (h) t7 (i) t8 (j) t9

(k) t10 (l) t11 (m) t12

Figure 6.7: Diagrams illustrating a propagation of the past input values in the parallel-accessible chemical
delay line of size n = 3. The input concentrations injected at time t0, t5, and t10 are shown as black, yellow,
and green circles respectively. The red signal S 1 injected at time t1, t6, and t11, and the blue signal S 2
injected at time t3 and t8 trigger the copy and move-in-wait-queue reactions, which produce all the terminal
species consumed by the underlying system at the same time.

Due to a negligible error and a constant latency, i.e., all past values are available

immediately, the PDL could easily integrate with other chemical systems and provide

them with a reliable and fast-access memory. Compared to our previous models, the new

model, however, requires more species and reactions. Because of the wait queues, the

number grows quadratically for both the species (n+2)(n+1)
2 and the reactions (n+1)n

2 . Table

6.2 summarizes the attributes of all our chemical delay line models.
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6.2. PERCEPTRON INTEGRATION

Table 6.2: Comparison of three different types of a chemical delay line.

Attribute Manual DL Backprop. DL Parallel DL

Error 0 exp 0
Injections O(n) O(1) O(1)
Latency O(n) O(n) O(1)
Signals O(n) O(n) O(1)
Species O(n) O(n) O(n2)
Reactions O(n) O(n) O(n2)

6.2 PERCEPTRON INTEGRATION

In this section we will integrate an AASP (Chapter 5) with a PDL to create a new memory-

enabled AASP (AASP-DL) by feeding the species Xi produced by the PDL directly into

an AASP as shown in Figure 6.8. This setup will allow us to perform temporal signal

processing effectively. We set the rates of all PDL reactions to kcat = 2 and Km = 0.075.

In order to fully proceed the S 1 phase in 25 steps, but at the same time prevent a signal

overlap that could produce a transfer error, we set the decay rate of S 1 and S 2 to 0.6.

In order to operate with arbitrary memory we extend the AASP to more than two

inputs. For each new cached input Xi we add five reactions: Xi
Wi
−−→ XL

i + Y and Xi + Y → λ

for the input-weight integration, and W⊕
XL

i
−−→ Wi, W	

XL
i
−−→ W	

i , and Wi + W	
i → λ for

the positive and negative weight adaptation. The AASP of size n has therefore 4n + 9

species and 5n + 8 reactions. All new reactions use the same rate constants as the original

X1/X2 reactions. Since the values Xi are produced rapidly, the AASP’s timing, such as the

injection of the input signal S in, are unchanged. Also, a single DL operational cycle of 50

time steps is compatible with 500 time steps required for the AASP’s training cycle. To

demonstrate the scalability, we model AASP-DLs of size 2 to 5.
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Figure 6.8: An AASP-DL schematic of size n = 2.

6.3 EXPERIMENTS

In this section we describe the tasks, the performance metrics, the training setup, and the

learning results of the AASP-DL.

6.3.1 Tasks

The selection and setting of temporal tasks reflect the fact that the expected AASP’s output

concentration must be between the minimal (zero) and the maximal output concentration,

which is equal to the sum of all inputs provided [S in] + [X1] + . . . + [Xn]. The tasks used

to evaluate the performance of our new system follow.

1) LWMA2: The Linear Weighted Moving Average (LWMA) is a time series of a

lagged averages, where each past element is weighted by an arbitrary value. The LWMA

of order 2 is defined as

yt = k1ut−1 + k2ut−2 + k0,
�
 �	6.4

where k1, k2 ∈ (0.2, 0.8) are randomly drawn constants, k0 ∈ (0.1, 0.4) is a constant bias,

and ut is an i.i.d input stream generated uniformly from (0.2, 1). The task is to output yt

based on the past inputs ut−i.

98



6.3. EXPERIMENTS

2) WMM2: The Weighted Moving Maximum (WMM) is a time series of maximum

lagged inputs. The WMM of order two is defined as

yt = k max(ut−1, ut−2) + k0,
�
 �	6.5

where similarly to LWMA2 the constants k and k0 are randomly drawn from the interval

(0.2, 0.8) and (0.1, 0.4) respectively, and ut is an i.i.d input stream generated uniformly

from (0.2, 1). The task is to output yt based on the past inputs ut−i.

3,4) NARMA: The Nonlinear AutoRegressive Moving Average (NARMA) [15] is a

discrete time series, where the current output yt depends on both the previous inputs and

outputs up to a given depth (order). The NARMA task of order n is defined as

yt = αyt−1 + βyt−1

n∑
i=1

yt−i + γut−nut−1 + δ,
�
 �	6.6

where α = 0.3, β = 0.05, γ = 1.5, δ = 0.1, and ut is an i.i.d input stream generated

uniformly from an interval (0, 0.5). The task is to produce the output yt based on the

previous inputs ut−i. NARMA is widely used as a benchmark task in the neural and

reservoir computing literature [78, 99] due to its nonlinearity and dependence on long-

term memory.

We tackle two variants, NARMA2 and NARMA10, i.e., the second and tenth order of

the problem. Since NARMA10 can be unstable, we bound the series by a non-linear tanh

saturation function. Also, we scale the target stream yt for NARMA2 by 2 to better fit the

AASP’s output range.
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6.3.2 Performance Measures

We define performance by two standard error measures: the symmetric absolute mean

percentage error (SAMP) with values ranging from 0% to 100%

SAMP = 100〈
|y − ŷ|
y + ŷ

〉,
�
 �	6.7

and the root normalized mean square error (RNMSE)

RNMSE =

√
〈(y − ŷ)2〉

σ2
ŷ

,
�
 �	6.8

where the square error is normalized by σ2
ŷ , a variance of the target output ŷ. A RNMSE

of 1 therefore corresponds to chance level.

6.3.3 Training Setup

The training of all AASP-DLs starts with a random setting of weight concentrations from

(0.5, 1.5). During each training iteration we first inject the input X with a concentration

corresponding to ut for all tasks. Then we set the bias input S in concentration to 0.5

for LWMA2 and WMM2, and 0.1 for NARMA2 and NARMA10. To trigger the DL

operation we also provide the signal S 1, which immediately produces both the current

and the cached values Xi. To finish a PDL buffering procedure, we inject another DL

signal S 2 25 time steps later. Then again after 25 time steps, we finally provide both the

learning signal S L and the target output Ŷ representing yt to initiate the weight adaptation.

We run the AASP-DL against 10,000 training time series of length 800 for each task.

We then evaluate the RNMSE and SAMP performance over 10,000 runs for each training

iteration, however, we report only the final training error.
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6.3.4 Results

The AASP-DL reaches a relatively small error for all temporal tasks, which demonstrates

that even a single chemical perceptron posses sufficient learning and computing capabil-

ities. The error of the AASP-DL with optimal size settles to the range of (0.10, 0.77) for

RNMSE and (1.20%, 7.37%) for SAMP as shown in Figure 6.9. Figures 6.10 and 6.11

show RNMSE and SAMP for all tasks over time.

The easiest function is a linear LWMA2 (RNMSE of 0.10), with performance decreas-

ing as memory of the past inputs grows. That is to be expected because LWMA2 depends

only on the last two inputs ut−1 and ut−2, so any additional information is essentially su-

perfluous. Note that the AASP cannot fully eliminate the contribution or consumption of

an extra input-weight branch, hence the input here basically acts as a noise. Figure 6.12

shows an example of the weight concentration traces and the filtered output and target

output for LWMA2.

The WMM2 task’s output is also fully prescribed by the last two inputs, however

as opposed to LWMA2, the AASP-DL of size 5 performs best (RNMSE of 0.32) with
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Figure 6.9: The relation between the final RNMSE and SAMP error and the AASP-DL size after 800
learning iterations. For each task 10,000 runs were performed.
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a marginal difference to the n = 2 instance (RNMSE of 0.35). Even though the extra

past inputs do not affect the target output yt, the AASP might utilize them as a statistical

variance source.

Because of its recurrent definition, the NARMA2 performance improves significantly

for a longer DL, reaching an optimum for n = 3 (RNMSE of 0.44) and slightly worse for

n = 4 (RNMSE of 0.45). Since the NARMA2 depends on the last two inputs ut−1 and

ut−2 and recurrently on the last two outputs yt−1 and yt−2, its output is fully determined by

the last four inputs, which is inline with our results. NARMA10 is the most difficult task

(RNMSE of 0.77) due to the function dependence on long lags. The performance is fairly

constant for n ≤ 4.
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Figure 6.10: The RNMSE error over time for all tasks. Average values over 10,000 runs.
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Figure 6.11: The SAMP error over time for all tasks. Average values over 10,000 runs.
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Figure 6.12: An example of the AASP-DL n = 2 learning LWMA2, showing (a) the concentration traces
of the weights and (b) the filtered output and the target output.
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6.4 DISCUSSION

In this chapter we demonstrated that the idea of chemical learning can be extended to

temporal tasks by utilizing a memory of past concentrations provided through a chemical

delay line. The AASP-DL successfully learns to produce a weighted moving average as

well as a moving maximum. These operations could be applied to monitoring certain

substances in a patient’s blood, such as the insulin level, and perhaps also be used to

control it by a conditional release of a specific amount of a required substance (cure). To

demonstrate more complex nonlinear time dependencies, we also trained the AASP-DL

for both the NARMA2 and NARMA10 benchmark tasks.

Our results show that memory improves learning for the recursive NARMA2 and

nonlinear WMM2 tasks, but leads to lower performance for the simple LWMA2 task.

Because the weights compete with each other and the AASP cannot fully eliminate the

contribution or consumption of an extra input-weight branch, for a memory larger than the

task inherently requires, performance decreases. Note that for the initial weights drawn

uniformly from the interval (0.5 − 1.5), the AASP’s ideal output region optimized by

genetic algorithms (Chapter 5) is around half of the maximal output concentration, which

equals the total amount of input injected [S in] + [X1] + [X2]. To move the input-output

relation closer to that region, we scaled the NARMA2 task by two.

Our work reported in [114] presents an integration of the backpropagation signalling

delay line with a thresholded asymmetric signal perceptron (Chapter 4). The temporally-

equipped binary chemical perceptron successfully learns 14 linearly separable binary

functions over a sliding window of size two.

In related work Jiang et al. [81] introduced the concept of a delay element. The delay

element is primarily used as a storage area for holding data in between each computation
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cycle. The data then returns and is examined in computing during the next iteration of

the calculation. Jiang’s buffer is primarily a signal processing application looking only

at the previous value. Our delay line has the ability to delay not only multiple steps in

time, but also allows access to any of the past values besides the most recent. Note that

we could create a FIFO [83] out of the delay line by removing the intermediate stages and

providing only the final output.

Other areas, such as networking, use chemical reaction networks as a mechanism to

control scheduling and queuing of packets [107]. The work discusses a methodology to

use the law of mass action as a means to schedule packets. With our buffer Meyer’s sys-

tems could also be extended to actually implement a means to queue packets in a chem-

ical system. This would reduce cost and complexity by having a single implementation

medium.
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MULTICOMPARTMENT FEEDFORWARD CHEMICAL NEURAL NETWORK

Having developed a family of individual chemical perceptrons, we wish to design a

method for connecting these in a more computationally-powerful network and investi-

gate their composability. The network should be modular, such that networks with differ-

ent topologies are constructed from different combinations of the same parts. As neural

networks have been shown to be powerful machine learners, we hope that a network of

single chemical perceptrons could be a step towards the first general-use reprogrammable

(retrainable) chemical computer.

We achieve this goal with the Feedforward Chemical Neural Network (FCNN), a net-

work of cellular compartments, each containing a chemical neuron as a module. Commu-

nication between nodes in the network is achieved by permeation through the compart-

ment walls, facilitating the network’s feedforward and backpropagation mechanisms.

Like standard single-layer perceptrons, each of our individual chemical perceptrons

can learn the linearly separable binary two-input logic functions, such as AND and OR,

but they are incapable of learning the linearly inseparable functions XOR and XNOR

[110]. Here, we demonstrate that the FCNN learns each of these functions. To our knowl-

edge, it is the first chemical system able to learn a linearly inseparable function.

The FCNN presented here has the simplest feedforward neural network topology:

one hidden layer with two neurons, the same as the first classical neural net to learn
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XOR via backpropagation [133]. For more complex learning problems, we show how the

FCNN’s modular design can be applied to topologies with more, or larger hidden layers.

In any case, using an FCNN is as simple as injecting a few species into its outermost

chemical container, and measuring the concentration of an output species. By modulating

the concentrations of injected species, different inputs can be provided, the network can

be trained to new tasks, and its learning rate can be annealed.

Built on a realistic model of chemical dynamics, the FCNN is a step towards reusable,

reprogrammable chemical computers. We hypothesize that the FCNN, or something very

similar, will likely form the basis of the first full-featured neural networks to be built in a

purely chemical medium. Bringing computation into the chemical domain will not only

change medicine, but computer science and biology as well. By implementing human-

programmed computation in biochemical settings, we will also be a step closer to un-

derstanding the information-processing that has always occurred at the cellular level of

life. The FCNN shows that a relatively simple chemical reaction network can learn and

perform complex computation.

This work has been published in parts in [27] and has been done in collaboration with

Drew Blount.

7.1 CELLULAR COMPARTMENTS

Since Aristotle, Pasteur, and more recently Varela and Maturana [104], cellular compart-

mentalization has been considered a central characteristic of living systems. The analogy

of the cell as a self-contained, self-sustaining regulatory machine is a familiar one, and

the most basic requirement for such a machine is compartmentalization—separation from

the outside world. Several important philosophical explanations of biological organiza-
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tion consider this concept of closure to be essential [39]. Hence, much effort has gone

into determining the salient characteristics of a cell, and simulating cells in the field of

artificial life [51, 75, 139, 148]. For these reasons, cells have been a common component

of several significant accomplishments in chemical computing [24, 43, 150].

In our chemical system, we use cellular walls as containers for the individual chemical

perceptrons, which compose the FCNN. Interaction between neurons is facilitated by

rules of permeation across the membranes of these cells. We refer to these permeation

rules as channels.

Channels can be either reactive or inert. In the first case, a species is allowed to

enter the cellular wall, but a different species emerges on the other side. Chemically, we

imagine a molecule which reacts with the cell wall as it passes through it. A species

passing through an inert channel is not changed; it simply travels from one side of the

membrane to the other. A given cell wall can have any number of channels of either type.

Unlike the reactions in our CRN, whose kinetics are driven by simple but chemically

accurate equations of mass-action and Michaelis-Menten kinetics, there is no obvious

and simple choice for a model of permeation kinetics. In nature, cell walls, membranes,

biofilms, and similar structures exist in a number of different forms. There are numerous

models describing the permeability of these structures in a variety of different contexts

and levels of detail [84, 87, 117, 139].

In modelling membrane permeation, it is common to consider the pressure inside the

cell, or, in a similar vein, the numbers of particular molecules within it [84, 139]. In the

latter case, a chemical species S permeates into a cell more slowly if there is already a

high concentration of S in the cell. Furthermore, if a cell’s total volume is constrained,

species can permeate into it only up to a certain point, when the cell becomes ‘full.’ More

detailed models also consider solute permeability, viscosity, hydraulic conductivity [87],
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pH, and temperature.

We make several simplifying assumptions about our cells. First, the cell’s internal

pressure is constant, meaning either that the total volume of permeation is much smaller

than that of the cell, or that the cell’s volume can dynamically expand and contract to

maintain pressure. Second, permeation rules are inherently one-way; if a species passes

from side A of a cell wall to side B, it does so aware only of the state on side A. This

means that permeation is not osmotic, or equilibrium-seeking. Third, since we consider

chemical species only in terms of their concentrations, other physical parameters such as

temperature and viscosity are beyond the scope of our model. Having thus simplified the

chemical picture, channel permeation rates follow mass-action kinetics: the rate of per-

meation is exactly proportional to the concentration of the source species—in the source

container—and a permeability constant k.

We introduce a notation for channels. Consider two example channels through the

wall C,

C : (S 2 ← S 1), and

C : (S ′1 → S ′2).

�� ��7.1

The first and second species within the parenthesis are always inside and outside of

C, respectively, and the arrow denotes the direction of permeation. Here C : (S 2 ← S 1)

is a reactive channel in which S 1 passes into C, turning into S 2 in the process.

Cells and their membranes are the central object of study in the field of P Systems

(also called membrane systems), which considers heavily abstracted chemical systems

where different reactions occur in different cells, with communication between cells via

membrane permeation [124, 125]. The work presented here is superficially similar to P

Systems, so it is important to understand key differences between the two models. Our
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approach to chemistry is less abstracted than that taken in P Systems: the chemical objects

of P Systems are strings that ‘react’ through rewriting rules akin to Chomsky’s context-

free grammars [124]. P Systems successfully demonstrated the computational power of

formal grammars of a specific type, but significant omissions, such as any kinetic model,

separate them from chemical computing in practice.

Our CRN [48, 71] constitutes a logic built upon the ordinary differential equations.

Our task is to construct autonomously learning neural networks from systems of these

ODEs, so our chemical perceptrons are mathematically distinct from perceptrons as they

are commonly defined formally [62].

Each phase of the operation of a multilayered perceptron, such as ‘calculate linear

sum,’ and ‘update weights,’ is only qualitatively emulated by our ODEs—we do not aim

to reproduce the mathematics of neural networks in a one-to-one fashion in chemistry.

Moreover, chemical reactions representing each operation run continuously and in par-

allel, rather than discretely and in sequence. Because our network is a large, nonlinear

system of ODEs, there are generally no analytic solutions for, say, what concentration of

the output Y will be present in our system a set time after it is started with given initial

conditions. We therefore use numerical ODE solvers as the backbone of our simulations,

as discussed in Section 7.5.

Previous results on the theoretical power of perceptrons and neural networks (e.g.,

Hornik’s proof that feedforward perceptrons are universal approximators [73]) start with

the mathematical definitions of the models, and thus rely upon assumptions (as basic as

y =
∑

wixi) that are not valid in our chemical perceptrons. Furthermore, as discussed

in Section 7.1, our networks are restricted to tree-like topologies, a restriction which is

generally not made in the study of classical perceptrons.

Nonetheless, Rumelhart’s classic exposition of backpropagation [133] treats just our
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special case: solving XOR with a one-hidden-layer, two-hidden-unit feedforward percep-

tron. In Section 7.5 we will use this early result from classical multilayer perceptrons as

a benchmark against our FCNN.

7.2 CHEMICAL NEURONS

The chemical neuron, which forms the basis of the FCNN is the Analog Asymmetric Sig-

nal Perceptron (AASP). Two new variants of the AASP are used, one for hidden neurons

and one for the output neuron, discussed in Section 7.2.2. Having discussed the neu-

rons, we move on to the network: we specify the compartments containing each single

perceptron and the channels between them in Section 7.3. It is through these permeation

channels that the signal feeds forward through the network, and the error propagates back-

ward. As a reference throughout this section and the rest of the chapter, see Table 7.1,

which lists all chemical species in the FCNN. Tables listing all reactions, reaction rate

constants, and permeation channels are provided in the Appendix.

7.2.1 Our Chemical Neuron: The AASP

The AASP forms the basis of our network. Chapter 5 introduced the AASP and described

its mechanism and motivation in depth. Because both our hidden and output neurons

(described in Sections 7.2.2 and 7.2.2) are modified versions of the AASP, we describe

the relevant features of the AASP to the FCNN in this section.

Input

Each component of the input vector is represented by a species Xi. Though the AASP

accepts continuous input values, it also operates very well as a binary-input perceptron.
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Table 7.1: Chemical Species in the FCNN
*: OCN only; #: HCN only

Function Species

Inputs X1, X2
Output Y
Weights W0,W1,W2
Input (clock) signal S in

Learning signal S L

Production records XL
1 , X

L
2 , S

L
in

Weight adjusters W⊕,W	

Indiv. weight decreasers W	0 ,W
	
1 ,W

	
2

Inert input transmit * X′1, X
′
2, S

′
in

Binary threshold * T
Penalty * P
Error signal * E⊕, E	

Backprop signals * P⊕1 , P
	
1 , P

⊕
2 , P

	
2

Feedforward signal # S F

Feedforward output # F

In this case, we inject only those Xi whose value is 1, at a preset input concentration, and

do not inject the Xi whose value is 0.

Under this input encoding, the zero input (Xi = 0 for all i) corresponds to no chemical

injection, which poses problems for a system that should react to such an input—the zero

input is indistinguishable from no input at all. We therefore include a special clock signal

S in with every input, alerting the perceptron to the input event. Though S in is necessary

only to recognize the zero input, it is included with all inputs for the sake of consistency.

We will see later that S in is also useful in the weight integration.

Input-Weight Integration

Like a formal perceptron’s weights, our chemical perceptrons’ weights determine the

persistent state of the system, and when adjusted, modulate the mapping from input to

output. With reactions between the weight species Wi, the input species Xi, and the output
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species Y , we wish to qualitatively reproduce the simple linear sum,

y = w0 + w1x1 + w2x2,
�� ��7.2

in such a way that it reproduces the functionality of negative weights.

What we require of each Wi is simply that, in the presence of Xi, the output Y is either

increased or decreased depending on the concentration of Wi. This is achieved by a race

between two reactions that consume Xi. In the first, Wi catalyzes Xi’s transformation into

Y . In the second, Xi and Y annihilate.

Xi
Wi
−−−−→ Y + XL

i

Xi + Y → λ

�
 �	7.3

Note that the first reaction, which produces Y as a function of Xi and Wi, simulta-

neously produces a record-keeping species XL
i . This species is later used in the weight-

update stage of learning, as will be described in Section 7.2.1. Since the clock species S in

is already present in every injection, it acts as the constant-one coefficient of the bias W0.

In terms of equation 7.3, S in = X0.

Recalling the reaction rate laws, we see that [Y]’s rate of change d[Y]/dt during the

input-weight integration is the sum of two terms for each input:

d[Y]
dt

=
∑

i

(
kc,i[Xi][Wi]
Km,i + [Xi]

− ka,i[Xi][Y]
)
,

�� ��7.4

where each k is a reaction rate constant. The terms inside the sum are the rates of the

reactions in Equation 7.3; their signs are opposite because one reaction produces Y and

the other consumes it. Because the first reaction’s rate is proportional to [Wi], a large [Wi]

will result in the first reaction producing Y faster than the second reaction consumes it.
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In this case, the net effect of the two reactions is to increase [Y]. When [Wi] is small,

the second reaction dominates and [Y] decreases. Thus, the concentration of the weight

species Wi determines if the presence of Xi serves to increase or decrease the final output.

Note that upon input injection, each Wi, Xi pair is simultaneously producing and an-

nihilating the same Y . A consequence of this is another disanalogy between chemical

and formal perceptrons: weight strengths are relative, as each copy of the second reaction

above will proceed at a rate proportional to [Y], which is constantly changing in a manner

dependent on every input weight.

Note that there is no analytic solution to [Y] in the above equation, hence our use

of numeric ODE solvers, discussed in Section 7.5. Though we cannot determine the

nonlinear dynamics of [Y] without running an ODE solver, the nature of the chemical

reaction network enforces a lower bound of zero and an upper bound equal to the sum of

the input concentrations,
∑

i[Xi]. The upper bound is asymptotically reached as weights

go to infinity.

Learning

Chemical implementations of the input-weight integration are not new [66, 85], but our

previous work was the first to implement autonomous learning [21]. Though each of our

neurons has a slightly modified learning process from the AASP, explaining the AASP’s

will lay the groundwork for learning in chemical neurons. In an AASP, learning starts

with the injection of a desired output species Ŷ , and ultimately updates each weight in

the appropriate direction by a magnitude relative to that input dimension’s impact on the

most recent output Y and an analog of error.

The first step of the learning process is reading the output of the AASP. After input

injection, the integration reactions are allowed to run for a preset period of time, chosen
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so that the injected input species are fully consumed. In our simulations, this lasted 50

time steps. At the end of this period, the concentration of Y in the AASP is read as its

output.

The next step in the AASP’s learning process is determining the correctness of this

output. This is accomplished by injecting the desired output species Ŷ at the concentration

we desire of Y . Upon this injection, Y and Ŷ quickly annihilate each other in equal

proportions via the reaction,

Y + Ŷ → λ.
�
 �	7.5

This reaction consumes all of whichever species has the lower initial concentration, and

the remaining species’ concentration will be equal to the difference in initial concentra-

tions, i.e., it will be an analog of the error. We then use whichever species remains to

create weight-changing species with the appropriate sign, in a slower reaction than the

above (to ensure something akin to ‘execution order’):

Ŷ → W⊕, and

Y
S L
−−→ W⊕,

�
 �	7.6

where the learning-signal species S L, also injected with Ŷ , ensures that Y is transformed

into W⊕ only after Ŷ’s injection. This process, by which the output is compared with

the desired output to produce weight-adjustment species. Similar processes are used to

calculate error and weight-adjustment signals in both the hidden and output neurons in

the FCNN.

Once weight-adjustment signals are produced, the AASP, and the two modified ver-

sion introduced in Section 7.2.2 all behave identically, adjusting their ith weight in pro-

portion to both the adjustment signal and the ith input dimension’s influence on the most
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recent production of Y . This qualitatively reproduces the so-called delta rule of classic

perceptron learning [62].

In Section 7.2.1, we introduced the species XL
i , which is produced as a record of the

impact of Xi and Wi on the production of Y . Via catalysis, we use this species to emulate

the delta rule: the weight-adjustment species W⊕ and W	 adjust the concentration of

weight Wi through productive and annihilatory reactions, respectively, each catalyzed by

XL
i . Thus, weight-adjustment is achieved by the reactions

W⊕
XL

i
−−→ Wi,

W	
XL

i
−−→ W	

i , and

W	
i + Wi → λ.

�� ��7.7

The main difference between this method and the classical delta rule is that, because XL
i ’s

production is influenced positively by Wi, and XL
i also catalyzes Wi’s adjustment, larger Wi

will be adjusted relatively more than smaller ones. Thus, larger weights are adjusted more

than smaller ones. We reproduce the effect that the ith weight is adjusted proportionally to

both the difference between desired and actual output, and the most recent ith input signal.

Note that it takes an intermediate species and two reactions for W	 to annihilate Wi.

This is simply because the hypothetical reaction W	 + Wi
XL

i
−−→ λ, with two reactants and

a catalyst, would require the collision of three molecules in the same instant. As such

three-molecule interactions are unlikely, we do not use them in our designs.

7.2.2 Two Breeds of AASP

To accommodate communication between neurons in FCNNs, we had to modify the orig-

inal AASP design. This resulted in two related breeds: one for hidden neurons, which
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has a modulated output schedule and accepts backpropagated error signals; and another

for the output neuron, modified to initialize the cascading backpropagation reactions. We

discuss the means by which these neurons are connected to each other to achieve feeding-

forward and backpropagation in Sections 7.3.2 and 7.3.3, but here we first discuss the

details that distinguish our output and hidden neurons from each other and the AASP.

The Hidden Chemical Neuron

The Hidden Chemical Neuron (HCN) is the modular component from which FCNNs of

various topologies are constructed. It has two differences from the AASP as presented in

Section 7.2.1, one each to facilitate feeding forward and backpropagation.

The AASP produces output Y constantly, as the input dimensions are gradually in-

tegrated through the series of reactions in Section 7.2.1. It is designed to receive input

signals instantaneously, however, so in a network context, we cannot simply feed forward

a hidden neuron’s output as it is produced. We have in practice found that AASPs perform

poorly with their input injected gradually over time.

Thus, we introduce a feedforward species S F , which arrives in an HCN’s chemical

system when its output Y is meant to feed forward. The details of this will be discussed

along with the rest of the network in Section 7.3.2, but for now it is enough to know that

the following reaction occurs in each HCN:

Y
S F
−−→ F,

�
 �	7.8

where F is the species that is later fed forward. Thus the next neuron receives an input

signal that is more sudden than the relatively gradual output of the HCN, and this action

is induced by S F .
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In terms of learning, an HCN has less work to do than an AASP. An AASP reasons

about its output and a desired output to produce the weight-update species W⊕ and W	,

but hidden neurons receive error signals through backpropagation, not through a direct

comparison of the outputs. Thus, the W⊕ and W	-producing reactions of an AASP are

omitted from the HCN.

The Output Chemical Neuron

The Output Chemical Neuron (OCN) has a different learning mechanism than the AASP.

As the current FCNN is designed to learn binary functions, such as XOR, inserting a

desired output species to instigate learning is somewhat ineffective. For example, if the

binary threshold is 0.5, the error will be minuscule if the actual output is, say 0.499.

This was not a serious problem in the single AASP, but the OCN’s error signal must not

only update its own weights, but propagate backwards as well. The reactions involving

backpropagation will be discussed in Section 7.3.3; here, we explain the method by which

weight-changing signals are produced within the OCN.

The OCN’s learning phase begins with the external evaluation of its output. A penalty

species P is injected only if the OCN’s output is incorrect, i.e., on the wrong side of

the binary threshold that is used to interpret chemical concentrations as binary values.

Along with P, the AASP’s learning signal S L is injected. Further, a threshold species T is

injected in concentration equivalent to the binary threshold. T ‘communicates’ the binary

threshold to the OCN, and behaves somewhat analogously to the ‘desired output’ species

Ŷ in the AASP (Section 7.2.1).

The goal of the OCN’s error-evaluating reactions, diagrammed in Figure 7.1, is to

amplify small continuous-valued errors to emulate distinct binary-valued errors. This

is done in two stages. First, Y and T annihilate in a fast reaction. Whichever is left
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Figure 7.1: The weight-update mechanism for a two-input AASP. The process is started by the injection of
penalty signal P. The anihilatory comparison of the output Y and the threshold T determines whether the
weights will be increased or decreased. Nodes represent species, solid lines are reactions, dashed lines are
catalysts, and λ stands for no or inert species.

over encodes whether Y was above or below the threshold, and so if weights should be

increased or decreased. So S L catalyzes relatively slow reactions from Y and T to signed

error species E	 and E⊕, respectively.

Whichever E species is more prevalent tells whether the weights should be increased

or decreased, but their absolute magnitudes might be very small. We then amplify these

signals auto-catalytically while consuming the penalty species P:

P
E⊕
−−→ E⊕ + W⊕,

P
E	
−−→ E	 + W	.

�
 �	7.9

Note that E⊕ (E	) is both catalyst and product, and W⊕ (W	) is also produced. The above

equations are illustrated in the bottom half of Figure 7.1.

The autocatalytic reactions ensure that the total amount of weight-change is not lim-

ited by the initial difference between [Y] and [T ], which is encoded in the [E]s. The total

amount of weight-change is bounded, however, by the injected concentration of P, as it is

the only reactant creating W⊕ or W	. Thus, we can achieve annealing by decreasing the
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7.3. NETWORKING

concentration of successive injections of P. To summarize the error-evaluating reactions:

the initial difference between [Y] and [T ] determines the sign of the weight adjustment

and P determines the magnitude.

7.3 NETWORKING

This section discusses the methods by which AASPs are connected to make a FCNN. We

first describe the network’s topology, both as a neural network and as a series of chemical

containers, then its mechanisms of feeding forward and error backpropagation.

2

4 6 75

32

1

1

3

2

Figure 7.2: FCNNs have tree-like topologies.

7.3.1 Constructing the Network Topology

With neurons in nested cells and links across cell walls, our networks are topologically

trees, with each wall a branch and the outermost cell the root (Figure 7.2). The outermost

cell (1 in the figure) corresponds to the output layer in a feedfoward multilayer perceptron,

and for a given set of nested cells, the deepest cells (4-7 in the figure) correspond to

the input layer. We cannot construct arbitrary feedforward networks, as in our tree-like

networks each node can feed forward to only one node in the next layer.

This nested architecture crucially enables the FCNN’s modularity. Each neuron is

guaranteed to share a permeable wall with any neuron to which it is connected in the
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7.3. NETWORKING

network, so messages which must pass from one neuron to another do not need to be

‘addressed’—they passively permeate from parent to child or vice-versa. This allows

for scalability. The signal species between different pairs of neurons can be chemically

identical because the signalling occurs in distinct compartments. For this reason, the

number of species in the FCNN is sub-linear in the size of the network.

If we wished to make arbitrary feed-forward topologies, it would be possible only if

we included distinct signal species for every linkage in the neural network. This could be

achieved by placing all hidden neurons, regardless of their level in the network, as sibling

subcompartments within the larger output neuron. Feedforward and backpropagation sig-

nals would travel between hidden neurons via this shared compartment. As long as there

are unique signal species for each link in the network, this design allows for arbitrary

feedforward network topologies.

Here we utilized a simple two-hidden-neuron, one-hidden-layer topology to solve

XOR. This topology is consistent with either of the above paradigms. As we are more

interested in the modularity afforded by a tree-like topology, we implement backpropaga-

tion and feeding forward in ways generalizable to tree-like designs.

1

2 4

3

5

X 1

X2

3 4

5

Figure 7.3: An alternative scheme places all hidden neurons as sibling subcompartments of the output
neuron, illustrated for an all-to-all network topology.
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X ′
1 −→ X1

X ′
2 −→ X2

X ′
1 −→ X1

X ′
2 −→ X2

X ′
1

X ′
2

⇒ HCN ⇒ Y −→ X1

⇒ HCN ⇒ Y −→ X2

⇒ OCN ⇒ Y
X1

X2

X ′
1

X ′
2

Injection
species

Figure 7.4: A simplified diagram of the feedforward action of a two-input, one-hidden-layer, two-hidden-
neuron FCNN. The inert X′i species are injected into the outer layer and permeate into the input layer,
turning into the reactive Xi input species in the process. Each inner compartment produces Y , which then
permeates into the outer compartment as it is transformed into the appropriate Xi. This feedforward process
is modulated by unshown species S F and F, see Section 7.2.2.

7.3.2 The Forward Pass

Injection

Each of an FCNN’s input neurons is contained in a subcompartment of the output neuron.

To correspond easily with wet chemistries, all injections into the system are made directly

into the outermost compartment, rather than precisely into any of its subcompartments.

Yet the input species must be consumed only by reactions in the input-layer nodes, and

because the output compartment contains an AASP, any input species Xi are automatically

consumed whenever they are present within it. Therefore, an inert species X′i is injected
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instead, that permeates into the input compartments. These cells have channels which

convert each inert X′i to the reactive input species Xi. These species are immediately

treated by the hidden neurons as input.

C : (Xi ← X′i ) for C an input cell
�
 �	7.10

Similarly, each hidden neuron needs to receive a feedforward species S F (described

in Section 7.2.2), which must be ultimately injected from outside the system, and every

neuron in a given layer should receive this signal simultaneously. In an FCNN with n

hidden layers, we require a set of feedforward species S 1
F , S

2
F , ..., S

n
F , which transform

into the basic signal species S F when permeating into cells of the appropriate layer:

C : S F ← S i
F , C in the ith hidden layer.

�� ��7.11

Once S F permeates into a given hidden neuron, that neuron’s output Y is transformed

into the feedforward species F. If this HCN is the ith neuron, in the jth hidden layer, say

it is in container i
jC. Then F permeates outward into C, turning into the corresponding

input species Xi in the process:

Y
S F
−−→ F

iC : (F → Xi) iC is the ith subcell of C.

�� ��7.12

Simultaneously, the OCN receives its signal species S in by recycling the HCN’s S F:

iC : (S F → S in) iC is the ith subcell of C.
�
 �	7.13

Thus, S F plays two roles: it alerts the hidden neurons to feed forward their output,

123



7.3. NETWORKING

and then by the above permeation alerts the neurons in the next layer to begin processing

input. With these reactions, the output Y of each hidden chemical neuron feeds forward.

This process is illustrated in Figure 7.5, which shows experimental concentration/time

data for the species in the feedforward process, in each neuron in a simple one-hidden-

layer FCNN.

7.3.3 Backpropagation

Backpropagation is the algorithm that first learned XOR and popularized the modern feed-

forward neural network [133]. Again, our chemical system does not exactly reproduce the

classic formulae defining this process, and we focus instead on chemically reproducing

the important conceptual relationships between parts.

To review, classical backpropagation proceeds in three steps:

1. The output perceptron’s error e = ŷ − y is calculated, where ŷ and y are the desired

and actual outputs.

2. Moving backwards, each perceptron’s error is calculated as the sum of errors which

it has affected, weighted by the connecting weights. In our topologically-restricted

multilayer perceptrons, each node only feeds forward to one other, so this reduces

to ei = e jw ji, where w ji is the weight from perceptron i to j and e j is already known.

3. Each weight is updated proportionally to this error, the weight’s own magnitude,

and the most recent output of the source perceptron: ∆w ji ∝ eiw jiyi , where yi is the

last output of perceptron i.

The first step above is emulated by the OCN’s internal reactions, described in Section

7.2.2. These reactions produce weight-update species that encode the sign and magnitude

of the network’s overall error.
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Figure 7.5: Concentration/time plot in the example FCNN with two HCNs (a, b) and one OCN (c), illustrat-
ing the HCNs’ outputs feeding forward and becoming the OCN’s input. At time zero the inputs X′1, X

′
2, and

S ′in are injected to the OCN (not shown in (c)). They then permeate into each HCN, transforming into the
input species. Note the initial spikes in concentrations of X1, X2, and S in in (a) and (b). After the injection
of an S F signal at time 40, each HCN’s output permeates out to the OCN, transforming into the appropriate
input species and S in.
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The OCN generates input-specific error signals to be backpropagated to the previous

layer in the network. These reactions are also implemented in any HCN with deeper layers

of HCNs inside of it, i.e., all neurons where a signal should be backpropagated. In such

neurons, the weight-adjustment species W⊕ and W	, in addition to changing weights, pro-

duce input-specific backpropagation signals. This production is catalyzed by the weight

species Wi,

W⊕ Wi
−−→ P⊕i ,

W	 Wi
−−→ P	i ,

�� ��7.14

so the ith backpropagation signal P⊕i or P	i is produced in an amount positively correlated

with the ith weight and the overall adjustment species W⊕ and W	.

HCN ⇐W⊕/⊖ ←− P⊕/⊖
2

HCN ⇐W⊕/⊖ ←− P⊕/⊖
1

W1

W2

W⊕/⊖ ⇐ OCN

⇐

⇐

Figure 7.6: A diagram of the backpropagation action of a one-hidden-layer, two-hidden-neuron FCNN. The
weight-adjusting species in the outer OCN (right of figure) produce signed, input-specific penalty species
Pi. The penalty species then permeate into the hidden neurons’ compartments, becoming those neurons’
weight-changing species in the process.
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The signed, dimension-specific penalty species P⊕i or P	i , then propagate backwards

through the network via permeation channels. Since the purpose of these signals is to

adjust weights, they are simply transformed to the species W⊕ and W	 as they permeate

into the appropriate subcontainers:

iC : (W⊕ ← P⊕i )

iC : (W	 ← P	i ) iC is the ith subcell of C.

�
 �	7.15

Thus, in the one-hidden-layer case, the concentration of the weight-changing species

W⊕ and W	 in the ith inner compartment is related to a) W⊕ and W	 in the outer compart-

ment, and b) the weight Wi connecting the two compartments. This relationship is shown

in Figure 7.6.

7.4 METHODOLOGY

7.4.1 Rate and Permeation Constants

Though we have discussed all of the reactions and permeation channels in the FCNN, we

have so far only specified the reactants, products, and catalysts in each reaction, but every

reaction has at least one dimensionless rate coefficient, which describes its speed. Here

we discuss how those rate coefficients have been set in our experiments. Tables listing all

reaction rates can be found in Appendix B.

As each AASP (Section 7.2.1) contains around twenty distinct rate constants, the rate

parameter space is prohibitively large and complex to explore via exhaustive search. In

Chapter 5 we searched for these constants with a standard genetic algorithm. As both the

Hidden and Output Chemical Neurons share most of their reactions with the AASP, the

rates of these reactions are unmodified.
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7.4. METHODOLOGY

Unlike with the AASP, we found success in setting the reactions introduced in this

paper by hand. Our intuition in doing so was based on the intended function of each reac-

tion, and which reactions should occur relatively faster or slower than others. To illustrate

the intuitive setting of rate constants, consider the case when two species annihilate in or-

der to determine which had the larger initial concentration, and then the remaining species

is transformed into another to perform a task dependent on the initial comparison. This is

the case when Y and T are compared in the OCN’s error-calculating mechanism (Figure

7.1): whichever species remains after annihilation is meant to turn into an appropriately-

signed error species. In cases such as these, the comparison reaction should be faster than

the follow-up reactions, dependent on that comparison. Otherwise, the second reaction

would execute before the comparison had been meaningfully made. These manually set

rate constants and those set by the genetic algorithm are listed in Appendix B.

7.4.2 Simulation Details

The FCNN is a large system of ODEs. As such systems are generally unsolvable analyt-

ically, we make use of numeric Runge-Kutta-type ODE solvers to observe the FCNN’s

behavior. We used a fixed-time-step solver with a step size of 0.1, chosen for speed as

well as stability. All simulations were run on the COEL web-based chemical modelling

and simulation framework, built throughout this and related projects (Chapter 10).

In the interest of modularity and flexibility of simulations, COEL’s ODE solvers do

not consider the FCNN as a whole. Rather, the contents of each cellular compartment

are simulated semi-independently, with a separate ODE solver in each compartment and

the various solvers communicating with each other as needed. This allows us to use

different solvers in each compartment, or even to have compartments containing entirely

different types of simulations (though this option is unused in our current applications).
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When using adaptive time step-size ODE solvers, the compartments are synchronized by

imposing the ‘slowest’ compartment’s time step-size on the other compartments, and so

all of the chemical concentrations in the FCNN are updated in unison. Still, this design

lends itself naturally to fixed time-step solvers.

7.5 RESULTS

As our goal is to learn linearly inseparable functions in a chemical neural network, we

built the first FCNN in the classic one-hidden-layer, two-hidden-neuron network topology

first shown to learn XOR [133]. We will refer to this topology, with rate constants set as

described in Section 7.4.1 simply as the FCNN in this section.

The FCNN’s accuracy at each of the 2,000 consecutive iterations was averaged over
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Figure 7.7: Average accuracy of the FCNN on each of the 16 binary two-input logic functions. An FCNN
with one hidden layer and two hidden neurons layers was run 10,000 times on each of the 16 functions.
Each run started with random initial weights and was trained for 2,000 learning iterations. The data points
represent the proportion of correct answers the system produced on a given learning iteration. Six of the
functions are labelled; the remaining ten overlap in the top-left of the graph. Note that the FCNN learns
equally well any two functions that are equivalent after switching the names of X1 and X2.
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10,000 training runs, to produce accuracy/time data for each logic function shown in

Figure 7.7. Figure 7.8 shows an example of the FCNN converging to a solution of XOR.

The FCNN successfully learns each of the sixteen binary two-input logic functions.

In a single learning run, it was trained to a given logic function with 2,000 random inputs

and corresponding penalty injections (described in Section 7.3). We generated inputs

randomly from {0, 1}2 and later injected a threshold species T with concentration 0.6 and

a penalty P as appropriate, 2,000 times consecutively. The concentration of the penalty

species, which is analogous to a learning rate, was annealed by a factor of 0.0008 at each

learning iteration. We experimentally found the best-suited annealing factor out of 10

values in the 0.0005–0.0015 range.

The most important results are the FCNN’s performance on XOR and XNOR, which,

because of their linear inseparability, cannot be learned by a single perceptron [110]. On

the 2, 000th iteration, the FCNN’s accuracy on XOR and XNOR is 100.00% and 98.05%,

respectively. Averaged over all 16 functions, the FCNN is 99.88% accurate by the 2, 000th

learning iteration.

As can be seen in Figure 7.7, the FCNN converges to learn inseparable functions in

a relatively short period of time. The 14 separable functions are almost perfectly learned

by the 600th learning iteration, but it takes until around iteration 1,200 to learn XOR.

XNOR is not perfectly learned even by iteration 2,000. We see this as confirmation that

linear inseparability is a challenging feature to learn. Nonetheless, the FCNN learns about

as quickly as the original multilayer perceptrons that solved XOR: Rumelhart’s classic

multilayer perceptron took roughly 1,000 learning iterations [133].

The difference in performance between XOR and XNOR can be explained by the

FCNN’s asymmetric treatment of the input values 0 and 1. The functions !X1 and !X2

are learned almost identically well by the FCNN. This is because the FCNN architecture
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is symmetric on input; each input dimension behaves according to the same logic. Its

architecture is not symmetric on negation, however, as 1 and 0 values are treated funda-

mentally differently. Consider the fact that the output species Y is ultimately produced

by the two input species X1 and X2, as well as the signal species S in (Sections 7.2.1 and

7.3.2). For this reason, it is easier for the FCNN to learn to output 0 when it is given the
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Figure 7.8: An example of weights and output concentration converging in the OCN as an FCNN learns
XOR over 300 learning iterations. Note that when the weights reach a fixed point around the 250th iteration,
the output [Y] oscillates around 0.6, which in this case is the binary threshold. In this experiment, inputs
were cycled in the fixed order ((0, 0), (1, 0), (0, 1), (1, 1)) for the purpose of illustration—once the function
is learned, [Y] oscillates as the system produces the correct (thresholded) output stream 0, 1, 1, 0 (zoomed
in the smaller plot).

131



7.5. RESULTS

Table 7.2: Accuracy of FCNN vs. single binary chemical perceptrons.

Accuracy FCNN WLP WRP SASP TASP

XOR 100.00 57.61 61.88 50.53 59.00

XNOR 98.05 57.79 61.12 51.02 57.86

16-function average 99.88 94.71 95.18 93.40 94.80
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Figure 7.9: Response surface of an FCNN which learned XOR. Here input [X] values of 1.0 correspond to
TRUE, and 0.0 to FALSE, so the accuracy of the FCNN is defined only by its response at the corners of the
plots. The plot on the left shows the FCNN’s output value at each ([X1], [X2]), while the plot on the right
shows the same data thresholded by 0.6—the output values above the threshold correspond to TRUE (red
region), and those below indicate FALSE (blue regions). Jagged lines in the right figure are an artifact of
our sampling technique.

input (0, 0) (i.e., when only S in is present at injection), than to learn to output 1.

Unlike its building block, the AASP (Section 7.2.1), the FCNN in this context behaves

as a binary perceptron. Thus, we compare its performance on the binary logic functions

not with the AASP, but single chemical perceptrons: the WRP, the WRP, the SASP (Stan-

dard ASP) and an automatically thresholded version, the TASP (Thresholded ASP). As

shown in Table 7.2, the FCNN is significantly more capable than any of these perceptrons.

Thus, the FCNN is the first chemical system to autonomously learn linearly insepa-

rable functions. As shown by Minsky and Papert [110], single perceptrons cannot learn

such functions because, as binary classifiers, they can only divide the input space along
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a hyperplane. Like a multilayer perceptron, the FCNN does not have this constraint.

To illustrate this, we mapped the response surface of an FCNN, which had successfully

learned XOR, as shown in Figure 7.9.

7.6 DISCUSSION

We have presented a hierarchical, compartmentalized chemical system that is capable of

autonomous learning. The FCNN is, to our knowledge, the first chemical system to learn

a linearly inseparable function. It does so by a chemical analog of backpropagation. This

is demonstrated in the classic example of the XOR binary function, which the FCNN

learns perfectly in under 1,500 learning iterations, 100% of the time.

Each chemical neuron in the FCNN is a modified version of the AASP from our pre-

vious work. Neurons are distinguished from each other by their compartmentalization in

nested cellular walls. This nesting constrains FCNNs to tree-like topologies, but allows

modular design. Inter-neuron communication, facilitating feeding-forward and backprop-

agation, is mediated by selective permeation of signal species through the cell walls.

Each hidden neuron is chemically identical in terms of the species and reactions that

occur within them. This means that the FCNN is easily extendable: once an FCNN with

a simple topology has been implemented in wet chemistry, it will be possible to construct

much larger networks than the minimal example explored here.

One technical complication in the FCNN design worth addressing is the manual in-

jection of the feedforward signal-species S F . Ideally, a chemical neural net could operate

completely independently besides receiving input and a desired output signal. We are

hopeful of developing mechanisms by which S F could be generated periodically within

the FCNN, perhaps using chemical oscillators such as the Lotka-Volterra predator-prey
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system [96, 97].

Another direction for further research is optimizing the modules of the FCNN. We

have developed a small family of single chemical perceptrons (Chapters 4 and 5). We have

explored network architectures with many of these as building blocks, with performance

presented in Appendix, Figure B.1. Though we have presented the best-performing ar-

chitecture we have tested, it is possible that there are yet better components for the FCNN

than our current hidden and output neurons.

Moreover, it would be intriguing to explore the FCNN model on larger networks, with

either more hidden layers, more neurons per layer, or both. In related work Josh Moles

[115] modeled a control system with an FCNN containing up to 4 inner compartments to

tackle Santa Fe trail and John Muir trail [80] however instead of error backpropagation

the weight concentrations were optimized by standard genetic algorithms. Larger FCNNs

are expected to tackle more complex problems, and it is an interesting and open question

how many layers and neurons per layer are necessary for the FCNN to solve certain tasks,

as its behavior and performance will likely differ somewhat from classically implemented

neural networks.

It bears repeating that the FCNN is not a chemical transcription of a neural network,

but an analogy. As discussed with our results in Section 7.5, the FCNN we used here to

solve XOR converged about as quickly as Rumelhart, Hinton, and Williams’s first XOR-

solving network [133]. We wonder if the FCNN generally converges faster or slower than

classical neural nets. Our analog of input-weight integration, mathematically written in

the language of ODEs, is highly nonlinear—as the building block of a backpropagated

network, how does this compare to standard linear integration and sigmoidal activation

functions?

The importance of this research is the hope of a reprogrammable chemical computer.
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Like the formal multilayered perceptron, the FCNN has two modes: simply processing

output when given an input, and learning via backpropagation of errors. A wet implemen-

tation of the FCNN, once trained to learn a task, could perform that task reliably as long

as desired. The chemical computer could then, at any time, be retrained to perform any

other task of which it is capable. We are hopeful that current work in synthesizing bilayer

lipid membranes will develop a compartmentalized system with channels functionality

equivalent to the FCNN’s eventually opening profound possibilities for patient-embedded

biochemical computers. There has already been significant research into medical uses of

computational chemical networks. One recent result [162] presented a chemical logic

circuit which tests for the presence of micro RNA molecules and the absence of others,

effectively identifying a type of cancer cell called HeLa. The authors designed a bespoke

chemical logic circuit for this purpose, but this is exactly the type of computation an

FCNN excels at learning.
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ANALYTIC BASIS OF CHEMICAL LEARNING

In previous chapters we explored several binary chemical perceptrons [21, 22], an analog

chemical perceptron called the analog asymmetric signal perceptron [20], modeled delay

lines [19, 114], and built a multi-compartment chemical feedforward network [27]. Even

though these endeavours clearly demonstrated the feasibility of chemically implemented

learning with teacher supervision for, e.g., smart drug delivery and chemical computing,

we used formal neural networks just as a source of inspiration and we aimed to mimic

their behavior qualitatively. Chemical reaction primitives differ from neural networks, so

there is no simple one-to-one mapping between these two domains.

The complexity of differential equations, which describe the evolution of species con-

centrations, prevented us to gain a proper insight into the dynamics of our models and

predict the behavior purely from their structure, i.e., without “running” the models us-

ing a numerical integration. Thus, a proof of our design choices and effectiveness of our

learners were purely based on a statistical approach, extensive learning simulations. A

mathematically rigorous analysis was, however, missing.

In this chapter we aim to fill this missing part and ask why chemical learning works.

After flattening the catalytic reactions to mass-action kinetics, we succeeded to analyze

the newly introduced linear cumulative input-weight integration and partially also the

nonlinear cross-dependent input-weight integration, employed by the analog asymmetric
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signal perceptron.

Instead of claiming that our chemical learners are “a metaphor” or qualitative coarse-

grained implementation of formal perceptrons we show that the closed formulas we de-

rived for the input-weight integration as well the weight update follow the mathematics

of the formal linear perceptron. Our findings bridge adaptive chemical reaction networks

and neural networks and open possibilities for applying rich findings of theory of neural

networks to chemistry. For the nonlinear cross-dependent input-weight integration used

in our previous work, we derive an approximative formula for an instance with a single

input and weight. We show that cross-dependence prevents integrability for more than

two inputs. This unwanted aspect also makes the analog asymmetric signal perceptron

unscalable.

Moreover, we introduce the reactions implementing learning rate annealing, which

benefits convergence and performance. A closed formula for the new annealed weight

update corresponds closely to the classic delta rule known from machine learning. Be-

cause of cumulativity and independent processing of the input-weight branches, a new

linear chemical perceptron learns 6 two-input linear and nonlinear functions 94 or 437

times better on average depending on the error metrics than the analog asymmetric signal

perceptron. Once integrated with a delay line our new model is also more scalable and

reaches a significantly smaller error of the 0.004 – 0.346 RNMSE and the 0.02 – 4.83%

SAMP on benchmark time series.

Last but not least, we combine nonlinearity of the cross-dependent input-weight in-

tegration with cumulativity of a linear perceptron and derive a chemical sigmoid percep-

tron, which resembles its neural network counterpart. Having closed formulas rather than

numerically integrated differential equations greatly reduces simulation costs.
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8.1 KINETICS

As introduced in Section 2.3.1 the reaction rate of an ordinary reaction aS 1 + bS 2 → P

with a rate constant k ∈ R+ is defined by mass-action law [49] as

r =
d[P]

dt
= −

1
a

d[S 1]
dt

= −
1
b

d[S 2]
dt

= k[S 1]a[S 2]b.
�
 �	8.1

In our previous models, we generated the differential equations of the catalytic reac-

tions S
E
−→ P, where E is a catalyst, by Michaelis-Menten kinetics as

r =
d[P]

dt
= −

d[S ]
dt

=
kcat[E][S ]
Km + [S ]

.
�
 �	8.2

Here we expand the catalytic reactions simply to S + E → P + E and replace the

Michaelis-Menten with mass-action kinetics as

r =
d[P]

dt
= −

d[S ]
dt

= k[E][S ].
�
 �	8.3

Recall that Michaelis-Menten kinetics are an approximation of the mass-action kinet-

ics for two partial, associative and disassociative reactions, E + S 
 and ES → E + P, if

the substrate S is in instantaneous equilibrium with the enzyme-substrate complex ES and

the enzyme concentration [E] is much smaller than the substrate concentration [S ]. Using

the mass-action variant is therefore more general and the resulting differential equations

are easier to analyze.
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8.2 INPUT-WEIGHT INTEGRATION

The input-weight integration is a key part of the chemical and neural network perceptrons.

It produces the output from given inputs processed (integrated) through the weights. In

our CRN implementations, the weights are catalysts of the input-output reactions.

In this section we present two variants for a chemical integration of the inputs and

the weights: nonlinear cross-dependent and linear cumulative. The ODEs of the nonlin-

ear cross-dependent input-weight integration employed by the analog asymmetric signal

perceptron resists a rigorous analysis, however, the linear cumulative version allows to

derive a closed formula that resembles that of a linear neural network perceptron. At the

end of this section we combine the cumulativity of the new input-weight integration with

a nonlinear activation function harvested from a single input cross-weight integration and

derive the so-called sigmoid chemical perceptron.

8.2.1 Nonlinear Cross-Dependent Input-Weight Integration

The AASP presented in Chapter 5 consists of 17 species and 18 reactions and mimics

a formal two-input analog perceptron [132]. The AASP integrates the inputs and the

weights in a cross-dependent fashion. During a nonlinear input-weight integration (Figure

5.1(a)), each weight Wi catalyzes a transformation of the input Xi to the output Y and races

with the annihilation of its input and the output Xi + Y → λ. For clarity, we relabel the

input signal S in to a zeroth input X0.

Recall that if the concentration of a weight Wi is high the input-output transforma-

tion proceeds rapidly and the annihilation fails to interfere, since both the input Xi and

the output Y are simultaneously present only for a short period of time. In the opposite

case when the weight concentration is close to zero, its branch could consume more from
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the output than it contributes to. Therefore, a weight species coupled with its annihila-

tory reaction can act effectively as a catalyst and an inhibitor. Since the global output Y

is shared, each weight races besides the annihilation in its own branch also with other

input-weight branches. A low weight concentration could impose a negative pressure on

a different weight branch, and therefore this type of input-weight integration allows to

represent both addition and subtraction in a nonlinear weight cross-dependent form. Note

that besides the output Y each input transforms also to the species XL
i (by the reaction

Xi
Wi
−−→ Y + XL

i ), which keeps a record of how much each input contributed to the output

and is used later for the weight adaptation.

As we stated initially, we opt for a rigorous analysis of the chemical input-weight

integration and weight update. In this section we show, however, that the catalytic re-

actions of the cross-weight input-weight integration resists deriving a closed formula for

the output from the underlying ordinary differential equations. That is due to the system’s

inherent complexity, which arises from cluttering all input-weight branches. Also, the

cross-weight dependency results in poor scalability, as we demonstrate in Section 8.5. On

the other hand, we approximate the output formula by lower and upper bounds, for the

case of a single input and weight, which provides a new insight into the system’s behavior.

Analysis

Here we analyze a cross-dependent input-weight integration with the catalytic reactions

following mass-action kinetics. We proceed with general rate constants, which makes the

outcomes applicable for the AASP as well.

We start with the case of a single input X and the corresponding weight W. The

reactions and rates follow.
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8.2. INPUT-WEIGHT INTEGRATION

X
W
−→ Y + XL k1[X][W]

X + Y → λ k2[X][Y]

�
 �	8.4

We assume each rate constant is positive, i.e., each reaction actually proceeds (exists).

In the remainder of this chapter, we will use lower case letters to represent the species

concentrations, i.e., x = [X], xL = [XL], y = [Y], and w = [W]. As mentioned before XL

is a contribution-keeping species, which plays an important role only in a weight update,

but during a input-weight integration is extraneous.

The corresponding system of ODEs is

dx
dt

= −k1xw − k2xy = x(−k1w − k2y)

dy
dt

= k1xw − k2xy = x(k1w − k2y)

dxL

dt
= k1xw.

�
 �	8.5
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Figure 8.1: The input-output vector map of the nonlinear cross-dependent input-weight integration with a
single input (weight) and k1 = k2 = w = 1. Note that the output decreases above the threshold concentration
C = k1w

k2
= 1 and increases below.
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It follows that dy
dt = 0 iff x = 0 (no input left) or y = C, where C = k1w

k2
. Therefore, if

y > C the output concentration decreases (dy
dt < 0) and if y < C, the output concentration

increases (dy
dt > 0) as shown in Figure 8.1.

By substituting x = (−k1w − k2y)−1 dx
dt from the first equation into the second, we

integrate the ẏ-equation directly

dy
dt

= x(k1w − k2y)

dy
dt

=
k1w − k2y
−k1w − k2y

dx
dt

−k1w − k2y
k1w − k2y

dy = dx

(
1 +

−2k1w
k1w − k2y

)
dy = dx∫ yt

y0

(
1 +

−2k1w
k1w − k2y

)
dy =

∫ xt

x0

dx

yt − y0 + 2C
(

ln(k1w − k2yt) − ln(k1w − k2y0)
)

= xt − x0.

�
 �	8.6

For all our species (especially the output yt) we are interested primarily in the final

concentration. To conceptualize a final state, in which the system reaches equilibrium

(all substrate is consumed), we introduce a special symbol ⊥ that denotes the eventual

equilibrium time. Naturally, from the analytic perspective, the time t =⊥ is t → ∞, but in

practical applications, where we alter input-weight integration and weight update phases

many times sequentially to achieve a desired behavior, t =⊥ for a single output production

is set to a finite, sufficiently large number such that most of the input is consumed and

the state of the system could be factually perceived as a fixed point. For the simulations

(Section 8.5) we specify this time period for both input-weight integration and weight

update more precisely. In all analytical considerations of the eventual behavior we will,

however, use t =⊥ for t → ∞ interchangeably.
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Figure 8.2: The input-output relation of the nonlinear cross-weight input-weight integration with a single
input compared to the lower bound 1−e−

x
2w , the upper bound 1−e

−x
w , the mean approximation w

(
1− e

x
2w +e

x
w

2

)
,

and a linear function. The rate constants and the weight concentration were set to 1 (k1 = k2 = w = 1).

Now, since eventually all the input X is consumed and initially no output is present,

we set y0 = 0 and x⊥ = 0, which implies

y⊥ + 2C
(

ln(k1w − k2y⊥) − ln(k1w)
)

= −x0

y⊥ + 2C ln(1 −C−1y⊥) = −x0.

�
 �	8.7

The output cannot exceed C = k1w
k2

regardless of the input. To simplify the formula

we denote y = y⊥ as the final output and x = x0 as a given (initial) input. Because

both y and ln( f (y)) appear on the left side, the expression cannot be stated in a closed

form. Despite this difficulty we characterize the behavior of a single input nonlinear

input-weight integration by bounding and approximating the output formula. First, by

using the Maclaurin expansion, we express ln(1 − q) as −
∑

i
qi

i , which gives us

ln(1 −C−1y) = −
∑

i

(C−1y)i

i
≤ −C−1y,

�
 �	8.8

and so the upper bound is
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C ln(1 −C−1y) − x ≤ −y − x = 2C ln(1 −C−1y)

C ln(1 −C−1y) ≥ −x

1 −C−1y ≥ e
−x
C

y ≤ C(1 − e
−x
C ).

�
 �	8.9

For the lower bound we simply drop the y+ term on the left side of Equation 8.7 and

derive a similar inequality

2C ln(1 −C−1y) ≤ y + 2C ln(1 −C−1y) = −x

ln(1 −C−1y) ≤
−x
2C

y ≥ C(1 − e
−x
2C ).

�
 �	8.10

By combining both results we bound y as

C(1 − e
−x
2C ) ≤ y ≤ C(1 − e

−x
C ).

�
 �	8.11

It is noteworthy that the actual y is closely approximated by the upper bound C(1−e
−x
C )

for y ≈ 0, where both y and C(1− e
−x
C ) behave as a linear function y = x (Figure 8.2). The

linear nature of y when close to zero can be seen also through the Maclaurin expansion,

since ln(1−C−1y) = −C−1y−O(y2) ≈ −C−1y for y ≈ 0, and so, −x = y+2C ln(1−C−1y) ≈

y − 2y = −y. For the opposite case, where y is close to the saturation point y ≈ C,

−2C ln(1 −C−1y) � y, and y ≈ C(1 − e
−x
2C ) (the lower bound).

For convenience we set k1 = k2 = 1 and bound y as

w(1 − e
−x
2w ) ≤ y ≤ w(1 − e

−x
w ).

�
 �	8.12
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Alternatively we can approximate y by a simple average of these two bounds

y ≈ w
(
1 −

e
−x
w + e

−x
2w

2

)
.

�
 �	8.13

Even though we succeeded in approximating the input-output relation of the nonlin-

ear cross-dependent input-weight integration with a single input, the underlying ODEs

become significantly more complicated for two and more inputs, and cannot be explic-

itly integrated or approximated sufficiently. The general differential output formula for n

inputs is

dy =
∑

i

(
1 +

2k1wi

−k1wi − k2y

)
dxi.

�
 �	8.14

Equation 8.14 underlines the fact that the weight contributions are interlinked and

cannot be separated. Since the weights race with each other, the contribution of each

weight does not depend solely on its own input, but also on the inputs of the remaining

weights.

Recall that the purpose of a species XL
i is to track the contribution of the input-weight

branch Wi. During the weight adaptation each weight is supposed to be adjusted ”propor-

tionally” to its own contributing record Xi. However, as the number of inputs grow, the

information stored in XL
i becomes less reliable and misleads the weight adaptation pro-

cess, since a certain weight could have had a different effect on the output if other inputs

(and weights) were different. This results in an unfair change of the weights.

In Section 8.5 we illustrate that the nonlinear cross-dependent input-weight integra-

tion does not scale well. For a large number of inputs, the performance drops and the

weights become highly correlated. In fact, the weights start acting as a single weight and

converge towards the mean of their input stream.

145



8.2. INPUT-WEIGHT INTEGRATION

8.2.2 Linear Cumulative Input-Weight Integration

As we showed, the nonlinear cross-dependent input-weight integration is not properly

analyzable and its scalability is poor. The reason behind that is a parallel annihilation of

the inputs with the global output.

A naive way to tackle that is to replace the input-output annihilations with input de-

cays as shown in Figure 8.3(a). This makes the output Y a sink (a terminal species)—it

can act only as a product, but not as a reactant, i.e., reaction arrows can only enter Y . A

combination of the partial outputs thus becomes strictly additive. Despite processing each

input-weight branch independently, we could not represent the situations where some of

the formal weights need to be “negative.” Specifically, the smallest achievable contribu-

tion of a weight species Wi is zero (for [Wi] = 0), but could never be negative.

(a) Strictly additive (b) Cumulative

Figure 8.3: The reactions performing: a) a strictly additive input-weight integration of two inputs, where
each weight races with decay of its input Xi, b) a linear cumulative input-weight integration of two inputs,
where each weight races with a transformation of its input to the negative output Y	. The positive and
negative outputs combine through the annihilation Y + Y	 → λ. In both cases three species S L

in, X
L
1 , and

XL
2 represent the contributions of the inputs S in, X1, and X2 with associated weights in the output Y . Nodes

represent species, solid lines are reactions, dashed lines are catalysts, and λ stands for no or inert species.
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Formally, we aim to achieve “cumulativity” (and independence) of the input-weight

branches such that the output y =
∑

i f (xi,wi), where f (xi,wi), could hold both positive

and negative numbers. To keep the negative partial outcomes, we avoid decaying the

inputs and rather transform them to a new species Y	. Each weight Wi therefore races

with a constant negative transformation Xi → Y	. To create the global output, we let Y

and Y	 annihilate. Although the outputs Y and Y	 react and are not terminal species per

se, perceived together, they form a sink of the system.

Later we will use the sink property of Y and Y	 (Section 8.2.2) and show that the input-

weight integration is indeed cumulative and performs both addition and subtraction. In

fact, the simplicity of the reactions allows for a direct integration of the ODEs and we

succeed to derive a closed formula for the global output as y =
∑

(1 − 2
wi+1 )xi, which

resembles that of a linear neural network perceptron. The behavior of the linear chemical

perceptron is more predictable, it is easier to control, and scales and performs better than

the AASP, which utilizes the nonlinear cross-dependent input-weight integration.

Analysis

We start with the case of a single input X and the corresponding weight W. The reactions

and rates follow.

X
W
−→ Y + XL k1[X][W]

X → Y	 + XL k2[X]

Y + Y	 → λ k3[Y][Y	]

�
 �	8.15

Let x = [X], y = [Y], y	 = [Y	], xL = [XL], and w = [W]. The corresponding system

of ODEs is
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dx
dt

= −k1xw − k2x

dy
dt

= k1xw − k3yy	

dy	

dt
= k2x − k3yy	

dxL

dt
= k1xw + k2x

�
 �	8.16

We can integrate the equation ẋ directly as any first-order reaction (setting C = k1w +

k2)

dx
dt

= −Cx

1
x

dx = −Cdt∫ x

x0

1
xt

dx =

∫ t

0
−Cdt

ln x − ln x0 = −Ct

�
 �	8.17

Hence, the concentration of X at time t is

xt = x0 e−Ct.
�
 �	8.18

Now let y	′t be the concentration y	t as it would be without the annihilation Y+Y	 → λ,

which would consume overall ya
t of Y and Y	, i.e., y	′t = y	t + ya

t and dy	′

dt = k2x. When we

substitute x = − 1
C

dx
dt from the first equation, we obtain

dy	′

dt
= −

k2

C
dx
dt∫ y	t

y	0

dy	′ =

∫ xt

x0

−
k2

C
dx

y	′t = −
k2

C
(xt − x0) + y	′0.

�
 �	8.19
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Similarly, y′t = yt + ya
t and y′t = − k1w

C (xt − x0) + y′0. Since the system is closed and

all reactions have the same number of reactants and products (excluding the annihilation

Y + Y	 → λ), we know that the total concentration is preserved, i.e.,

y′t + y	′t + xt = y0 + y	0 + x0.
�
 �	8.20

Now, let us assume the usual initial state of y0 = 0, and y	0 = 0. Then the concentration

y′t equals

y′t = x0 − y	
′

t − xt.
�
 �	8.21

Because the annihilatory constant is k3 > 0, we know that eventually Y and Y	 fully

annihilate, leaving a leftover of either Y or Y	. Using the symbol ⊥ for an asymptotic

time, eventually ya
⊥ = y	

′

⊥ or ya
⊥ = y′⊥. Trivially, the input is only consumed, hence x⊥ = 0.

Suppose y′⊥ ≥ y	
′

⊥ , which holds for k1w ≥ k2. Then ya
⊥ = y	

′

⊥ , and y⊥ = y′⊥ − ya
⊥ ≥ 0.

Further,

y⊥ = y′⊥ − ya
⊥

y⊥ = x0 − y	′⊥ − x⊥ − ya
⊥ (Equation 8.21)

y⊥ = x0 − y	′⊥ − x⊥ − y	′⊥ (ya
⊥ = y	

′

⊥ by the assumption y′⊥ ≥ y	′⊥)

y⊥ = x0 + 2
k2

C
(x⊥ − x0) − x⊥ (Equation 8.19)

y⊥ = (1 −
2k2

C
)x0

y⊥ = (1 −
2k2

k1w + k2
)x0.

�
 �	8.22

Since the output species Y and Y	 form a sink of all the input-weight branches, their
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contributions are cumulative and independent from each other. If we denote the final

output y⊥ simply as the total output concentration for n inputs x0, . . . , xn with weights

w0, . . . ,wn,

y =
∑

i

(
1 −

2k2

k1wi + k2

)
xi.

�
 �	8.23

Equation 8.23 shows that the cumulative input-weight integration is linear from the

input perspective, although the effect of a weight wi on the input xi’s factor is nonlinear

and equals 1 − 2k2
k1wi+k2

. Similarly to the sigmoid function, this factor ranges between −1

and 1 and reaches zero for wi = k1
k2

. For convenience we center the formal zero-weight

value to w = 1 by setting k1 = k2 = 1, finally simplifying the input-output relation to

y =
∑

i

(
1 −

2
wi + 1

)
xi.

�
 �	8.24

By introducing a formal chemical weight w′i = 1 − 2
wi+1 , the formula changes to

y =
∑

i

w′i xi.
�
 �	8.25

A formal weight w′i holds a negative value for wi between 0 and 1 and positive for

wi > 1. The formula we derived is very similar to that of a classic linear perceptron,

where the input-weight integration is calculated as a dot product

y =
∑

i

wixi.
�
 �	8.26

The only difference here is that the values of w′i could range between −1 and 1, as

opposed to a formal linear perceptron where weights are unbounded and can hold an

arbitrary real value. It is important to realize that the constraint on chemical weights
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is due to the preservation of matter. Specifically, the only substrate each weight could

process is its input Xi, therefore, the input Xi can by either fully subtracted or fully added

to the output (or anything between) but could never become for instance 2[Xi]. Thus, the

total output is bounded by
∑

i[Xi].

8.2.3 Sigmoid Chemical Perceptron

An evident benefit of the linear input-weight integration with the output formula y =∑
w′i xi, is cumulativity and independence of the weights. In the theory of neural networks,

an input-weight integration is followed by applying an activation function f . For more

complicated learning scenarios it is beneficial to choose f as a nonlinear function (tanh,

logistic function, etc.). To incorporate a nonlinear activation function into the cumulative

input-weight integration, we harness the nonlinearity of a single input cross-dependent

input-weight integration.

Recall that the input-output relation of the cross-dependent input-weight integration

has a sigmoid shape similar to tanh, and could be approximated by w
(
1 − e

−x
w +e

−x
2w

2

)
. We

adapt the reactions of the linear cumulative input-weight integration such that instead of

Y and Y	 it produces the intermediate species Z and Z	, which represent a signed dot

product. More precisely,

Xi
Wi
−−→ Z + XL

i k1[Xi][Wi]

Xi → Z	 + XL
i k2[Xi]

Z + Z	 → λ k3[Z][Z	].

�
 �	8.27

On the top of that we add the reactions for a sigmoid processing of the species Z, since

we care only about the positive output. Here we drop the weight W from the original

cross-dependent integration (we replace a catalytic reaction Z
W
−→ Y with Z → Y) and
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obtain the reactions

Z → Y q1[Z]

Z + Y → λ q2[Z][Y].

�
 �	8.28

Similarly to the linear cumulative input-weight integration, we set q1 = q2 = 1. To

make the sigmoid activation function to work in a modular fashion, we need to assume

that the input-weight integration part finishes “sooner” than the sigmoid part. We achieve

this behavior by assuming the sigmoid processing reactions are slower, i.e., q1 = q2 �

k1 = k2. Also, to minimize an error, the annihilation Z + Z	 → λ is assumed to be instant

k3 � q1. Alternatively, we could introduce a special trigger signal S A to guard the output

reaction of the sigmoid activation function, i.e., Z
S A
−−→ Y . In this case the rate constants

q1 = q2 would not need to be smaller than k1, k2, and k3.

Finally, the sigmoid chemical perceptron can be formalized as

y = f (z), z =
∑

i

(1 −
2

wi + 1
)xi,

�
 �	8.29

where f ≈ 1 − e−x+e
−x
2

2 .

8.3 LEARNING AND WEIGHT UPDATE

After the output is produced through a linear or nonlinear input-weight integration, we

train a chemical perceptron by providing a desired output. A discrepancy between the

actual and desired output propagates through the chemical perceptron and results in an

adaptation of the weight concentrations.

In this section we present two ways for updating the weights. In the first scenario,

which we employed before for training the AASP (chapter 5), the total amount by which
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all the weights are updated directly corresponds to the difference between the actual and

desired output. The second, newly introduced approach amplifies or reduces the output

difference by a factor, which we anneal over time. In the machine learning community

this is commonly known as a learning rate. Annealing a learning rate over time benefits

weight convergence and overall performance.

Note that the weight update is modular and could be combined with arbitrary input-

weight integration and activation function. The only linkage to the learning phase from

a preceding input-weight integration is the weight contribution species XL
i , whose values

(and meaning) depend on the integration type.

Figure 8.4: The reactions responsible for a direct production of weight changers W	 and W⊕ from the
output and desired output species Y and Y	 triggered by a learning signal S L.

8.3.1 Direct Weight Update

Our chemical implementation of the classical supervised learning [130] is triggered by

an injection of the target output Ŷ . The target output is provided after the input species,

injected at the beginning of the input-weight integration phase, transforms to the output

Y .

Intuitively, a large output Y compared to the desired output Ŷ implies that the weights

need to be decreased, hence we produce a negative weight-changer W	 from Y . In the

opposite case, Ŷ is transformed to a positive weight-changer W⊕ to increase the weights.

The species W⊕ and W	 represent a total concentration by which all the weights get
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(a) Positive weight adaptation (b) Negative weight adaptation

Figure 8.5: The reactions responsible for positive and negative weight adaptation.

updated. Also, since the output species Y is continuously produced during an input-weight

integration, we need to guard the reaction Y → W	 by a learning signal S L that is injected

with the target output and removed afterwards (Figure 8.4). For consistency, we let S L

trigger also the reaction Ŷ → W	, although the species Ŷ is injected instantaneously only

when needed so even without an explicit reaction trigger (a catalyst), its transformation

would work correctly.

Having a production of the total weight-changers W⊕ and W	 covered, we need to

distribute them among the weights. For the positive adaptation, W⊕ is split by concur-

rent catalytic reactions W⊕ → Wi among the weights proportionally to their input-weight

contributions XL
i (Figure 8.5(a)). Similarly, the negative adaptation splits W	 to interme-

diates W	
i , which annihilate with the weights (Figure 8.5(b)). It is critical to mention that

both the positive and negative weight updates occur simultaneously and drive the weights

in opposing directions. Eventually, through an annihilation, Wi + W	
i → λ. The net in-
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crease or decrease of a weight Wi is decided by a difference between the concentration

of the total weight-changers [W⊕] − [W	], which equals a difference between [Ŷ] and

[Y]. We elaborate this argument more thoroughly in Section 8.3.1 and show that an initial

annihilation Y + Ŷ → λ would be redundant and yields the same eventual weight change.

Note that XL
i is an auxiliary species that represents a contribution of the input Xi with

the associated weight Wi in the output Y . After each learning iteration, the input-weight

contributions species are flushed. The specific value (concentration) of XL
i depends on the

type of input-weight integration that produced it.

Analysis

The reactions and rates of a direct weight update follow.

W⊕
XL

i
−−→ Wi k1[W⊕][XL

i ] ∀i ∈ {0, . . . , n}

W	
XL

i
−−→ W	

i k1[W	][XL
i ] ∀i ∈ {0, . . . , n}

Wi + W	
i → λ k2[Wi][W	

i ] ∀i ∈ {0, . . . , n}

Ŷ → W⊕ k3[Ŷ]

Y → W	 k3[Y]

�
 �	8.30

Let xL
i = [XL

i ], y = [Y], ŷ = [Ŷ],w⊕ = [W⊕],w	 = [W	], wi = [Wi], and w	i = [W	
i ].

First, suppose the weight-changer concentrations w⊕ and w	 are given, i.e., we ignore the

last two reactions. Also, similarly to Section 8.2.2, we omit the annihilation Wi +W	
i → λ

and set w′i = wi + wa
i and w	′i = w	i + wa

i . Then the corresponding system of ODEs is
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dw⊕

dt
= −k1

∑
i

xL
i w⊕

dw	

dt
= −k1

∑
i

xL
i w	

dw′i
dt

= k1xL
i w⊕ ∀i ∈ {0, . . . , n}

dw	′i
dt

= k1xL
i w	 ∀i ∈ {0, . . . , n}.

�
 �	8.31

The concentration of the total weight-changers w⊕ or w	 is divided among the weights

proportionally to their input concentrations. More precisely, we derive the formula for w′it

as follows

dw′i
dt

= k1xL
i w⊕

dw′i = −
k1xL

i

k1
∑

j xL
j

dw⊕

w′it − w′i0 =
xL

i∑
j xL

j

(w⊕0 − w⊕t )

w′it =
xL

i∑
j xL

j

w⊕t + wi0 (wi0 = w′i0,w
⊕

0 = 0).

�
 �	8.32

Similarly, w	′i = xi∑
j x j

w	t . Since the equations for w′it and w	′it are linear with regards to

w⊕t and w	t , and the originally omitted reactions Ŷ → W⊕ and Y → W	 supply the species

W⊕ and W	 uni-directionally, the total concentration w⊕ and w	 produced by those two

reactions can be incorporated directly to w′it and w	′it. Regardless of k3, eventually all the

target output Ŷ and the output Y transforms to W⊕ and W	 respectively. Hence

w′i⊥ =
xL

i∑
j xL

j

ŷ0 + wi0

w	′i⊥ =
xL

i∑
j xL

j

y0.

�
 �	8.33
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To finalize the formula, we plug in the annihilatory reactions Wi + W	
i → λ and write

∆wi⊥ =
xL

i∑
j xL

j

(ŷ0 − y0).
�
 �	8.34

If we denote a final ∆wi⊥ simply as ∆wi and a given output and desired output con-

centration as y and ŷ, the chemical weight update formula becomes

∆wi =
xL

i∑
j xL

j

(ŷ − y).
�
 �	8.35

Since a concentration is never negative, a new weight value wi = ∆wi + wi is truncated

at zero.

Note that because each weight depends on ŷ − y, a comparison of the output and

the target output by the annihilation Y + Ŷ → λ (used by the analog asymmetric signal

perceptron) yields the same (eventual) result and is therefore redundant. To prove that

formally, suppose Y + Ŷ → λ is present. As we did before, let ya
t be the amount of Y and

Y	 consumed by the annihilation untill time t. Then y′t = yt − ya
t and ŷ′t = ŷt − ya

t , and

eventually the total concentration of Y and Ŷ provided for the weight adaptation would be

y0 − ya
⊥ and ŷ0 − ya

⊥, and so ∆wi⊥ =
xL

i∑
j xL

j
(ŷ0 − ya

⊥ − (y0 − ya
⊥)) , which equals Equation 8.34

and after relabeling also Equation 8.35.

We observe that the sum of all input contributions (a normalization factor) in Equation

8.35 statistically approaches a constant as the number of inputs grow, and so could be

perceived as a (constant) learning rate. To avoid the normalization, we would need to

replace the reactions Ŷ → W⊕ and Y → W	 with the reactions Ŷ → Ŷ0 + . . . + Ŷn

and Y → Y0 + . . . + Yn that clone Ŷ and Y and allow each weight update to proceed

independently. These reactions are, however, unscalable since each new weight would

require changing the right side of the reactions and the large (potentially unbounded)
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number of products would make any wet chemical implementation highly unpractical.

8.3.2 Annealed Weight Update

In a direct weight update, the error |y − ŷ| translates to
∑

i ∆wi, which is split among

the weights. Since the characteristics of a desired input-output function is unknown

to a chemical perceptron, and in general could be arbitrary, the magnitude of a weight

change does not necessarily correspond to that of the output. That could lead to the target

over/under shooting and poor convergence.

This is a classic control problem of control theory and machine learning. A solution

is to introduce a learning rate (an amplification factor) and anneal it over time. Initially

the weights could explore the input-output surface in a wide range and over time, as the

learning rate decreases, so does the amplitude of weights.

In our chemical learning implementation we incorporate a learning rate into the reac-

tions of the direct weight update presented in Section 8.3.1. Instead of directly producing

the total weight-changers W⊕ and W	 from Ŷ and Y , we add an “error layer” represented

by the positive and negative error species E⊕ and E	. These catalyze the production of W⊕

Figure 8.6: The reactions responsible for the annealed weight adaptation.
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and W	 from an external (abundant) source Q, kept at a constant concentration [Q] = 1,

as shown in Figure 8.6. A time window in which the error species E⊕ and E	 operate is

tuned by the species Edecay, which catalyzes their decay.

The larger the time window, the larger the amount of Q transformed to W⊕ and W	,

and the more the original difference of [Y] and ˆ[Y] (used for the weight adaptation) am-

plifies. Because [Edecay] shrinks the error, it works essentially as an inverse of a learning

rate. Instead of reducing [Edecay], we increase it over time to emulate the effect of formal

learning rate annealing, as done in neural networks.

Analysis

The reactions and rates of the annealed direct weight update are as following.

W⊕
XL

i
−−→ Wi k1[W⊕][XL

i ]

W	
XL

i
−−→ W	

i k1[W	][XL
i ]

Wi + W	
i → λ k2[Wi][W	

i ]

Ŷ
S L
−−→ E⊕ k3[Ŷ][S L]

Y
S L
−−→ E	 k3[Y][S L]

Q
E⊕
−−→ W⊕ k4[Q][E⊕]

Q
E	
−−→ W	 k4[Q][E	]

E⊕
Edecay
−−−−→ λ k5[E⊕][Edecay]

E	
Edecay
−−−−→ λ k5[E	][Edecay]

�
 �	8.36

The first three reactions that distribute W⊕ and W	 are the same as in Section 8.3.1

(illustrated in Figure 8.5). We again omit the reactions 4 and 5 and assume E⊕ and E	 are

given. Let xL
i = [XL

i ], y = [Y], ŷ = [Ŷ],w⊕ = [W⊕],w	 = [W	], wi = [Wi], and w	i = [W	
i ].

The corresponding system of ODEs is
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dw⊕

dt
= k4e⊕

dw	

dt
= k4e	

de⊕

dt
= −k5e⊕ed

de	

dt
= −k5e	ed.

�
 �	8.37

By assuming the starting condition w⊕0 = w	0 = 0 and substituting e⊕ = − 1
k5ed

ė⊕ to the

first ODE (similarly for e	), we obtain

w⊕t =
k4

k5ed
(e⊕0 − e⊕t )

w	t =
k4

k5ed
(e	0 − e	t )

�
 �	8.38

Now, because Ŷ and Y transform to E⊕ and E	 in a one-to-one manner eventually,

w⊕⊥ =
k4

k5ed
ŷ0

w	⊥ =
k4

k5ed
y0.

�
 �	8.39

By setting k4 = k5 and merging Equation 8.39 with the formulas for the first three

(weight distributing) reactions from Equation 8.33, we finalize the weight updating for-

mula of the annealed chemical weight update as

∆wi =
xL

i∑
j xL

j

(ŷ − y)γ−1,
�
 �	8.40

where γ = ed = [Edecay] regulates how much of the error (ŷ − y) is used for the weight

update.
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8.4 COMBINING INPUT-WEIGHT INTEGRATION WITH WEIGHT UPDATE

In this section we present different variations of an input-weight integration and weight

update. We discuss the analog asymmetric signal perceptron, and introduce the linear

chemical perceptron and compare its closed formulas to those of a formal linear percep-

tron from the theory of neural networks.

In Sections 8.3.1 and 8.3.2 we formalized the direct and annealed weight update in

a general form. Recall that a species XL
i keeps a record of how much the input-weight

Xi − Wi contributed to the output Y . As a result of an incorrect output this value is in a

linear relation to a weight change. In this section we investigate the impact of the input

contribution species on the weight update.

8.4.1 Analog Asymmetric Signal Perceptron

The AASP combines a nonlinear cross-dependent input-weight integration with a direct

weight update. The ODE dxL
i

dt = k1wixi for an input contribution species XL from Section

8.2.1 can be expanded to

dxL
i = −

k1wi

k1wi + k2y
dxi.

�
 �	8.41

Because the right side contains y, which we could approximate only for a single input

case, no general formula for xL
i exists. That is due to the weight cross-dependency. Since

XL
i is produced from Xi, we can bound xL

i⊥ ≤ xi0.

Note that dxL
i

dt depends on the weight wi (not just the input xi), i.e., larger weights

produce more xL
i . Since the direct and annealed weight update ∆wi depends linearly on

xL
i , larger weights get adapted more, i.e., the magnitude of a weight update depends on the

weight itself. That means once a weight reaches zero, its concentration cannot be changed
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through a learning process anymore, i.e., zero-valued weights are not recoverable.

Since the weight update decreases as the weights approach zero the feedback loop pro-

tects the weights from falling too low and reaching zero (a point of no return). However,

it holds only if the initial concentration of weights is large enough, y− ŷ is within reason-

able bounds, and the error decay rate γ is not too small. This potential danger, and often

cumbersome setting of parameters, is another reason the AASP (and its cross-dependent

input-weight integration) fails as a candidate for a truly robust and general-purpose chem-

ical learning.

Since the AASP is an older model its learning part differs slightly from the general

weight update presented here. First, the AASP compares the output Y and the target

output Ŷ by a rapid annihilation, which redundancy we proven in Section 8.3.1. Second,

the AASP uses the learning trigger signal S L only on the Y-side, which is sufficient.

Third, since the AASP employs fixed rate constants optimized by genetic algorithms, it

is a specific instance of the nonlinear cross-dependent input-weight integration and the

direct weight update. Note that the AASP could use the annealed weight update as well,

after a careful setting of γ. Last, its catalytic reactions use Michaelis-Menten kinetics, not

the mass-action version.

8.4.2 Linear Perceptron

By a chemical linear perceptron (chemical LP) we denote a chemical system with a linear

cumulative input-weight integration and a direct or annealed weight update. The input

contribution species XL
i is produced by both positive and negative branches of a linear

input-weight integration. Hence, the reactions Xi
Wi
−−→ Y + XL

i and Xi → Y	+ XL
i eventually

recycle an input Xi as xL
i⊥ = xi0. If we denote the initial concentration of an input Xi as xi,

injected at the beginning of the linear cumulative input-weight integration that preceded
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the current weight update, the direct and annealed weight update formulas are

∆wi =
xi∑
j x j

(ŷ − y)

and

∆wi =
xi∑
j x j

(ŷ − y)γ−1.

�
 �	8.42

This means that, unlike the nonlinear cross-dependent input-weight integration, the

input contribution [XL
i ] equals the actual input provided to the linear integration. Since

[XL
i ] is detached from a weight concentration, the weights can freely move up or down

and even reach zero without imposing a self-feedback.

More importantly, the direct and annealed weight update formulas 8.42 are similar to

that of the formal neural network linear perceptron (neural network LP)

∆wi = xi(ŷ − y)

and

∆wi = xi(ŷ − y)α.

�
 �	8.43

The major difference is a normalization of inputs, which for a large number of inputs

approaches a constant and could be incorporated into a learning rate. Further, the learning

rate α is an inverse of our error decay rate γ, so to have an annealed effect instead of

annealing, we (linearly) increase γ over time.

Chemical Linear Perceptron NN Linear Perceptron

Input-weight Integration y
∑

i(1 −
2

wi+1 )xi
∑

i wixi

Direct Weight Update ∆wi
xi∑
j x j

(ŷ − y) xi(ŷ − y)
Annealed Weight Update ∆wi

xi∑
j x j

(ŷ − y)γ−1 xi(ŷ − y)α

Table 8.1: Comparison of the input-weight integration and weight update formulas of the linear chemical
and formal neural network perceptrons.
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8.5 RESULTS

In this section we compare the performance of the chemical linear perceptron, its neu-

ral network counterpart, and the AASP. We proved mathematically that the differential

equations obtained from the reactions responsible for the linear input-weight integration

and weight update collapse to simple closed formulas. Our simulations confirm these

theoretical results as illustrated in Figure 8.7. Because the behavior of the analytic and

the ODE version of a chemical linear perceptron match perfectly, we evaluate the perfor-

mance of the analytic version only. Note that the simulation cost of the analytic version is

fractional—roughly 1000 times faster than the ODE numerical integration using a Runge-

Kutta4 method with 0.05 time step over 800 training iterations.

To provide a broad view on the learning capabilities of the aforementioned models,

we use 6 linear and nonlinear target functions (of two inputs) from Chapter 5 and 4 time

series from Chapter 6. We evaluate the performance calculated as the RNMSE and SAMP

error over 10,000 runs, each consisting of 800 training iterations. For all the tasks we

draw initial weight concentrations uniformly from the interval (0.5, 2) for the chemical

LP, (−0.5, 0.5) for the neural network LP, and (0.5, 1.5) for the AASP.

It is important to recall that the input-weight integration of the chemical LP (Equations

8.24 and 8.25) equals that of the neural network LP (Equation 8.26) with the weights

restricted to the range (−1, 1). In other words, any weight setting of the chemical LP

could be translated to an equivalent setting for the neural network LP. Thus, technically,

the representation power of the neural network LP is greater than that of the chemical LP.

In an idealized learning process the final performance of the neural network LP would not

be smaller, however, a practical realization of learning and the weight update tuned by,

e.g., an initial weight distribution and learning annealing rate, greatly affects the weight
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Figure 8.7: Mean square error (MSE) of the analytic and the ODE version of a chemical linear perceptron
on the NARMA10 task using a delay line of size 10 averaged over 10,000 runs, each consisting of 800
learning iterations. The analytic and ODE versions match perfectly.

convergence, and in our simulations often results in performance that is (slightly) worse

than what we obtained in chemistry. Note that we selected the target functions and time

series such that the minimal and maximal expected output is within bounds enforced by

the (−1, 1) weight restriction. Generally, fitting the weights to the (−1, 1) range requires

statistical knowledge of the target task and appropriate scaling of the inputs. On the other

hand, since the effective weights are bounded their convergence is “safer” than of the

neural network perceptron. Unlike the chemical model, the weights of the neural network

counterpart are unbounded, hence they can diverge to infinity and the setting of the initial

learning and annealing rate is more sensitive to extremal events.

The chemical LP’s error decay rate γ, an inverse of the formal learning rate, is the

concentration of the species Edecay. For each task we combined initial γ of 0.1 and 0.05

with four “an annealing rates” of 0.0001, 0.0005, 0.001, and 0.005, which are used to

increase γ each learning iteration. In this section we report the best results only. Note that

a manual increment of γ in a wet chemical experiment could be replaced by a constant
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influx of Edecay at a prescribed rate. The neural network LP uses a linear annealing of the

learning rate α such that it reaches zero at 800th learning iteration. Again we optimized

the learning rate for each task individually using the values 0.1, 0.2, . . . , 0.7.

8.5.1 Static Functions of Two Inputs

The chemical LP reaches a marginal error on all static linear functions of two inputs listed

in Table 5.2 : RNMSE of 0.0007 to 0.0158 and SAMP of 0.003 to 0.13 (Figure 8.9 and

Table 8.2). As expected, performance significantly decreases for the quadratic (nonlinear)

function kx1x2 +k0 (RNMSE of 0.235, SAMP of 2.38). The learning error of the chemical

k1x1+k2x2+k0 k1x1-k2x2+k0 k1x1x2+k0 k1x1 and k2x2 k0

0.0001

0.001

0.01
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1

R
N

M
S
E

AASP

CHLP

NNLP

(a) RNMSE

k1x1+k2x2+k0 k1x1-k2x2+k0 k1x1x2+k0 k1x1 and k2x2 k0

0.001
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NNLP

(b) SAMP

Figure 8.8: Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the neural network linear
perceptron (NNLP), and the AASP after 800 learning iterations for 6 linear and nonlinear functions of two
inputs averaged over 10,000 runs.
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linear perceptron is an order of magnitude smaller compared to the AASP (Figure 8.8);

for the functions k1x1 and k2x2, the ratio is 355 for RNMSE and 1834 for SAMP. Note that

the AASP cannot fully eliminate the contributions (or consumptions) of the superfluous

inputs, such as the input X2 for the target function k1x1. Even though the AASP’s input-

output relation is nonlinear and would seem to be better suited for a quadratic function

kx1x2 + k0, the chemical linear perceptron reaches 30% smaller RNMSE and 50% smaller

SAMP on that task. The performance of the chemical and neural network linear percep-

trons on a quadratic function match almost perfectly (1–6% difference) and approach the

best achievable error represented by linear regression (Table 8.2). On the linear functions

the neural network LP outperforms the chemical LP on average if the error is measured

by RNMSE, however, the situation is opposite for the SAMP. In general the representa-

tion potential and learning capabilities of these two models are coherent and the small

Table 8.2: Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the neural network linear
perceptron (NNLP), the linear regression (L Reg), and the AASP after 800 learning iterations for 6 linear
and nonlinear functions of two inputs averaged over 10,000 runs. The values are rounded to 5 decimal
places.

(a) RNMSE

Name AASP CHLP NNLP L Reg
k1x1 + k2x2 + k0 0.10344 0.00157 0.00036 1.98 × 10−15

k1x1 − k2x2 + k0 0.31045 0.01236 0.00082 1.82 × 10−15

kx1x2 + k0 0.30424 0.23486 0.23313 0.22664
k1x1 and k2x2 0.25162 0.00071 0.00054 1.91 × 10−15

k0 0.37839 0.01582 0.00160 8.62 × 10−15

(b) SAMP

Name AASP CHLP NNLP L Reg
k1x1 + k2x2 + k0 1.23594 0.00546 0.00372 2.23 × 10−14

k1x1 − k2x2 + k0 3.78678 0.12593 0.00992 2.19 × 10−14

kx1x2 + k0 3.68816 2.38396 2.52996 2.47268
k1x1 and k2x2 5.98028 0.00326 0.01339 2.86 × 10−14

k0 6.75389 0.07327 0.01909 1.23 × 10−13
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performance disparities are an artifact of different annealing methods and parameters.
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Figure 8.9: RNMSE and SAMP of the chemical linear perceptron for 6 linear and nonlinear functions of
two inputs averaged over 10, 000 runs with the initial δ = 0.1 and 0.001 increment (annealing).

8.5.2 Time Series

To investigate the scalability of the AASP as well as the chemical and neural network

linear perceptrons, we use these models for 2 to 20 inputs and integrate them with a delay

line of appropriate length. For the AASP, we opted for an algorithmic rather than chemical

delay line because of the simulation cost and precision. Note that the number of species

and reactions of the best performing and most reliable chemical delay line, called the

parallel-accessible delay line (PDL), grows quadratically. Also, since the AASP’s input

species annihilate with the output and the PDL’s production of the past inputs is non-

instant, to a small extent, the AASP’s performance could be negatively affected. Since

our goal here is not to test the integration of a chemical delay line with chemical learners

but rather to investigate the learning capabilities of different models, we opted for a non-

chemical (algorithmic) delay line, which emulates an instant feeding of the past inputs.

Note that since the input-weight integration of the chemical linear perceptron is cumula-

tive, using a chemical delay line with any latency (such as the manual signalling variant)
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would yield the same results (not presented here).

The final errors for all the target time series are summarized in Figure 8.10 and Ta-

ble 8.3. The linear chemical perceptron compared to the AASP reaches significantly

higher performance on the four time series, the linear-weighted moving average of order

two (LWMA2), the weighted moving maximum of order two (WMM2), NARMA2 and

NARMA10. For the LWMA2, the final error of the chemical linear perceptron out of

all delay line lengths is very low and reaches an RNMSE of 0.004 and a SAMP of 0.02,

which is 29, respectively 57 times lower compared to the AASP. Performance on the most

difficult, highly nonlinear NARMA10 task is naturally worse (the RNMSE of 0.346, the
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Figure 8.10: Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the neural network linear
perceptron (NNLP), and the AASP after 800 learning iterations for the 4 target times series averaged over
10,000 runs. The best global results obtained using the delay line of size 2 to 20 are shown.
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SAMP of 3.53), however that reduces the AASP’s error roughly by a factor of two. As for

the static linear and nonlinear functions, the neural network linear perceptron performs

similarly to the the chemical one. For the nonlinear time series, i.e., WMM2, NARMA2,

and NARMA10, the difference is within 12%.

Since the LWMA2 and WMM2 tasks are determined purely by the last two inputs, the

expected optimal delay line (memory) size is two. Because the NARMA2 and NARMA10

tasks are recurrent, their calculation is based on the last 4 and 20 inputs respectively. The

performance of the linear chemical and neural network perceptrons are in line with these

values. The results also show that any extra past input that required by the task, which

basically acts as noise, is effectively discarded with a small impact on performance. On

the other hand, a nonlinear cross-dependent input-weight integration employed by the

AASP interlinks the contributions of the weights as we showed theoretically. This is not

a major issue for small system sizes, but the larger the number of inputs, the less distinct

the weights. As a consequence, the performance drops sharply. As shown in Figure 8.11,

the scalability of the AASP is poor.

8.6 DISCUSSION

By applying an analytic approach we derived the closed formulas for both the input-

weight integration and weight update of chemically simulated learning. We introduced a

new, cumulative input-weight integration, which we employed in the design of the chem-

ical linear perceptron. To mediate the weight convergence, we implemented an annealed

weight update controlled by the concentration of the error decay species. It amplifies

or reduces the transformation of the output and the target output species to the weight-

changers, which are split among participating weights proportionally. The analytic solu-
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(a) LWMA2
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(b) WMM2
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(c) NARMA2
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(d) NARMA10

Figure 8.11: Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the neural network linear
perceptron (NNLP), the linear regression (L Reg), and the AASP after 800 learning iterations for the 4
target times series averaged over 10,000 runs and the delay line sizes from 2 to 20. The most scalable
results are shown for the CHLP and the NNLP out of all learning/annealing rate combinations.
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8.6. DISCUSSION

Table 8.3: Final RNMSE and SAMP of the chemical linear perceptron (CHLP), the neural network linear
perceptron (NNLP), the linear regression (L Reg), and the AASP after 800 learning iterations for 4 target
times series averaged over 10,000 runs. The values are rounded to 5 decimal places.

(a) RNMSE

Name AASP CHLP NNLP L Reg
LWMA2 0.10274 0.00356 0.00672 1.80 × 10−15

WMM2 0.32412 0.27743 0.27250 0.27015
NARMA10 0.76234 0.34641 0.37947 0.36334
NARMA2 0.43269 0.33732 0.33992 0.33193

(b) SAMP

Name AASP CHLP NNLP L Reg
LWMA2 1.16794 0.02066 0.07277 2.07 × 10−14

WMM2 3.80595 3.26660 3.18554 3.19002
NARMA10 7.34650 3.52902 3.95260 3.73775
NARMA2 5.68125 4.83426 5.14635 5.10683

tions provided insight into the functioning of the linear chemical perceptron and placed

it solidly side by side to its neural network counter part. We verified the equivalence

between the analytic and ODE-based version and thus justified the use of the analytic

version. A practical significance of this work translates into a huge saving in simulation

time. This enables to transition to more advanced chemical constructs, such as feedfor-

ward multi-compartment chemical neural networks, which have been so far too time con-

suming to investigate in depth. This work bridged adaptive CRNs with neural networks

and opened a new territory for further exploration of chemical learning. Our analytic ap-

proach paid well also in significantly lower learning error (up to 437 times), compared

to the AASP. We showed that the AASP does not scale due to a cross-dependent input-

weight integration.

The size of the chemical linear perceptron with 2 inputs (and bias) is relatively small:

22 reactions and 21 species. To simplify the construction, the production of species XL
i

by the input-weight integration reactions could be removed and provided alongside the
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8.6. DISCUSSION

target output at the same concentration as preceding input.

The linear chemical perceptron can work with arbitrary rate constants that obey the

inherent system symmetries. The design is therefore robust. In fact, for the very first time

we could avoid choosing rate constants empirically or using genetic algorithms. We only

fixed the rate constants of the input-weight integration reactions more for convenience

than necessity. By setting the rates of the reactions that transform the input to Y and Ŷ

to the value one, we defined the weight positive region for the concentration > 1 and

negative for < 1.

Compared to the neural network version, the performance of the linear chemical per-

ceptron is equivalent on average, however, for the nonlinear functions (time series) is

slightly better (even if compared to linear regression). That might seem surprising since

the weights of the neural network perceptron are unbounded and could represent a wider

range of functions. In fact, since the effective weights of the chemical linear percep-

tron are restricted to the (−1, 1) interval, a weight search becomes easier, assuming the

(sub)optimal weights lie in this region, which we can deduct from the target task formula.

The learning process implementing an input-normalized delta rule is more effective and

safer, since a divergence is limited. On the other hand, a selection of the target functions

must take this limitation into consideration, and if needed, the inputs must be rescaled. To

conclude, the formal neural network linear perceptron is more universal, but for the price

of a potentially unbounded search.

We demonstrated the learning capabilities of the linear chemical perceptron on 6 static

linear and nonlinear functions of two inputs as well as 4 time series. On the all linear

functions the RNMSE error reached low values below 0.0158. For the most difficult time

series, NARMA2 and NARMA10 tasks, the RNMSE rose to 0.337 and 0.346 respec-

tively. Note that the NARMA task is generally tackled with a magnitude larger and more
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8.6. DISCUSSION

complicated machine learning approaches than our single memory-enabled chemical per-

ceptron. A common approach is to employ recurrent neural networks [15] or advanced

reservoir computing [33], i.e., echo state networks [78] or liquid state machines [99],

consisting of hundreds of nodes (neurons). For instance, minimal complexity echo state

networks reported by Tino and Rodan [129] needed 50 nodes to achieve a NMSE of 0.16,

i.e., RNMSE of 0.4 (higher than for a linear perceptron with a delay line).
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9

BIOCHEMICAL IMPLEMENTATION

As specified in Section 2.3.1 CRNs describe the behavior of chemical system in terms

of reactions and kinetic rates without any assumption about the molecular structure of

the chemical species. In CRNs the reactions specify how the molecules should interact

to achieve the desired behavior, such as learning or memorization, but they do not tell

which molecular structures out of the pool of possible wet chemicals could carry out

these dynamics. The symbols, e.g., X,Y, and W0, are, therefore, placeholders for any

species that would obey the defined interaction constraints and kinetics. We considered

the basic characteristics of “well-behaved” reactions, such as that the maximal number of

reactants is two. Also, we minimized the number of species and reactions of each CRN

to simplify eventual wet biochemical implementations.

A system-level abstraction of CRN allowed us to explore and better understand the

species roles and interaction principles of a wide range of models. Keeping CRN species

symbolic preserved generality. In theory, a single CRN could serve (and be mapped to)

several sets of wet chemical substrates, i.e., symbolic species’ substitutions. CRN is often

perceived as a high-level chemical programming language. For computer scientists, it

could be viewed as a pseudocode holding the essential properties of an algorithm without

being corrupted by the constructs provided by a specific language, such as Java or C++.

The mapping from CRN to naturally-occurring or synthetic chemicals is nontrivial.
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For a CRN consisting of a single reaction 2X + Y → 2Z we can substitute the species X to

diatomic hydrogen H2, the species Y to diatomic oxygen O2, and the species Z to hydro-

gen oxide H2O (water), and thus obtain a wet chemical implementation of the symbolic

reaction (without the mapping of rate constants). Even though such ad-hoc mappings

might exist for simple CRNs, they are not extendible and they often require intimate

knowledge about the target substrate molecules. In order to accommodate a potentially

unlimited number of species, ideal substrate molecules should be “concatenable” with-

out bounds to create longer and longer polymers from a given set of monomers. Also,

it is essential that the outcomes of reactions are predictable just from the structure of

the reactants. Although several chemistries satisfy these conditions, the most popular

used molecule in biochemistry capable of polymerization with highly predictable results

is DNA (deoxyribonucleic acid). We will therefore limit our biochemical endevours to

DNA chemistry.

DNA, whose 3D structure was described by Watson and Crick in 1953 [158], is a

molecule that carries genetic information of all living forms, and is thus referred to as a

“molecule of life”. As shown in Figure 9.1, DNA consists of 4 nucleotides (bases): ade-

nine (A), cytosine (C), guanine (G), and thymine (T). DNA has a double helix structure,

which is due to the bindings of adenine with thymine (A-T) and guanine with cytosine (G-

C) through hydrogen bonds. This binding mechanism is called Watson-Crick base pairing

or Watson-Crick complementarity. Given a nucleotide sequence, there is only one inverse

sequence fully matching it. Because DNA chemistry is structured and we can concatenate

DNA sequences into longer, linear or nonlinear structures, we could create potentially an

unlimited number of different molecular species. That gives us a huge modeling power

and control over reaction design.

Despite the beneficial properties of DNA, moving directly to raw DNA sequences
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Figure 9.1: DNA structure (adapted from US National Library of Medicine).

would not be feasible. To make the mapping process gradual, we apply standard inter-

mediate abstraction levels, as shown in Figure 9.2, commonly used in DNA chemistry.

This general roadmap [138, 165] starts with a formal model described by a set of equa-

tions or diagrams for the functioning of the system of interest. The next step is a CRN

specification with species and reactions producing the required output for given inputs as

prescribed by the model. Moving from a formal model to a CRN is not standardized and

its difficulty varies greatly. After we obtain a CRN, an ideal and the most general chemical

model, we create a new equivalent CRN compatible with DNA primitives that we want to

map our species to. That includes introducing new species, reactions, and replicating and

splitting the existing reactions into several intermediates. The original CRN thus gives a

lower bound on the system size. After a CRN is in right format, we map species to DNA

domains. At this level of abstraction we specify the spatial organization of DNA species
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Figure 9.2: A roadmap showing different abstraction levels going from a formal model through CRN spec-
ification and to DNA domains, DNA sequences, and ultimately (wet) DNA molecules.

and logically decompose them into shared parts, so-called domains. A domain is a sub-

sequence of single-stranded DNA labeled with a number. Domains are classified as long,

typically consisting of more than 20 bases, and short with 5 bases (called toehold or sticky

end). At the domain level we abstract from actual sequences and assume that domains are

unique and that they bind only to their complements distinguished by an asterisk ∗. For

instance, a single strand decomposed into domains 1 and 2 binds with a complementary
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single strand 1∗-2∗. Further, because of the length, a binding of long strands is more stable

and stronger than of short strands.

In the following sections we present two options for transforming a CRN to a chem-

istry specified with DNA domains: DNA-strand displacement and deoxyribozymes. For

the first option there exists a generic compilation process, which can transform any CRN

to an adapted CRN (step 3) and associate DNA domains to the species with a minimal

effort. Even though a transformation to deoxyribozymes is not automatic and requires

ad-hoc adjustments of the original CRNs, compared to DNA-strand displacement, this

method is better suited for catalytic reactions and requires fewer species and reactions.

To demonstrate our CRN models are wet-implementable, we illustrate a DNA-strand dis-

placement and deoxyribozyme implementation for the linear chemical perceptron and the

manual signalling delay line.

The next step, turning domain-specified DNA molecules into nucleotide sequences

(e.g., A-T-C-C-T) is provided by sequence designer tools, which apply combinatorial

designs to produce the sequences of required length, satisfying the complementarity of

domains with a minimal overlap, and binding among non-complementary domains. The

most popular DNA sequencer with a convenient web interface, which (partially) addresses

undesired binding (crosstalk or leakage), is NUPACK [164].

The last step, i.e., a synthesis of the sequences and producing wet DNA molecules is

supplied by several companies. Ideally, if all the mappings between the adjacent abstrac-

tion levels are performed accurately, an experiment conducted with the synthesized DNA

molecules should yield the same result as a simulated CRN. We will discuss the source of

potential discrepancies later.
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9.1. DNA STRAND DISPLACEMENT

9.1 DNA STRAND DISPLACEMENT

DNA strand displacement [163, 166, 167] is a simple, yet powerful reaction primitive,

which operates on single and double DNA strands. Its most advanced applications include

a square root calculation [127] and a construction of Hopfield network [127].

Single strands are classified as upper or lower, indicating their position if bound in a

double strand. Although DNA strands could be flipped, so technically each upper strand

could be a lower strand and vice versa, for convenience, we assume that the strands com-

posed of the domains labeled with plain numbers (1, 2 etc.) occur in an upper position and

the strands consisting of complementary domains (1∗, 2∗ etc.) occur in a lower position,

and this distinction is exclusive (no mixed domains).

The orientation of a DNA molecule is determined by its 5′-end and 3′-end. Two

complementary strands bind if their directions (and ends) are opposite. Using the up-

per/lower distinction upper strands are right handed (e.g., 5′-1-2-3′) and lower strands are

left handed (e.g., 3′-1∗-2∗-5′). In all our figures long domains are gray, short domains are

red and strands’ 3′ and 5′ ends are implied from their upper/lower position.

What we refer to as a full double strand is a perfect Watson-Crick DNA double strand,

where all bases pairs of corresponding upper and lower strands are complementary. Partial

double strand is similar to a full double strand but instead of all pairs, only a substring

of upper and lower strands matches. Full or partial double strands, or more complicated

nonlinear DNA structures, such as deoxyribozymes (Section 9.2), are called complexes

or gates.

In a basic version of DNA strand displacement, with a full name toehold-mediated

DNA strand displacement, two species, a single strand X and a complex G, react. As

shown in Figure 9.3, the toehold domain 1∗ of a double strand G is unmatched and binds
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9.1. DNA STRAND DISPLACEMENT

(a) X + G ↔ XG

(b) XG ↔ GX

(c) GX ↔ H + Y

Figure 9.3: DNA strand displacement—an upper strand X displaces a strand Y from a complex G in a series
of reactions. Long domains are gray and short domains are red.

to its complementary domain 1 of a single strand X creating the complex XG. Then, the

domain 2 of an intruding upper strand X and the identical domain 2 of an original complex

G compete over the complementary domain 2∗ since they are both in a binding position. In

the process called branch migration, a crossing point of the two competing domains moves

stochastically left and right between the domains 1 and 3 as a random walk. Once the

crossing point reaches the rightmost position, the domain 2 of the strand 2-3 is partially

displaced by the intruding domain 2. Finally, the toeholds 3 and 3∗ separate and the

strand 2-3 labeled as Y is fully displaced and detached from the complex. Note that these

reactions are bidirectional, i.e., a single strand Y could displace X from a complex H. The

reaction rates depend on the domain lengths and toehold binding strength. Also, if the

domains 3 and 3∗ were removed, the final complex H would become a full double strand

and the reaction GX → H + Y would be effectively unidirectional.

181



9.1. DNA STRAND DISPLACEMENT

9.1.1 CRN to DNA-Strand Displacement Compilation

In this section we introduce Soloveichik’s method [140], which compiles a CRN to a

DNA strand displacement circuit ”automatically.” Soloveichik proved that a strand dis-

placement circuit can approximate, with arbitrarily small error, any CRN-based solely on

mass action kinetics. Since this method transforms species, reactions, as well as rates

universally it could be applied to each of our models, once the catalytic reactions S
E
−→ P

using Michaelis-Menten kinetics are flattened to mass action S + E → P + E. Besides the

mass action requirement, each reaction must have either one or two reactants, which we

comply with by default. Note that there is no restriction on the number of products.

The compilation uses several extended variations of the basic DNA strand displace-

ment (Figure 9.3). Several DNA strand displacement reactions cascade in a chain, where

a product of one is a reactant of the next displacement. Populations of the original CRN

species, the signals, are represented by the populations of single-stranded molecules, each

consisting of four unique domains (two short and two long). Since the signal DNA strands

are entirely distinct, they do not interaction with each other, but their transformation is

mediated by double-stranded complexes.

A unimolecular reaction with a reactant (substrate) S , products P1, . . . , Pn, and rate

constant k is transformed to two cascaded displacements as

S
k
−→ c1P1 + . . . + cnPn {


S + G

q
−→ W1 + O

O + T
qmax
−−−→ W2 + c1P1 + . . . + cnPn

,
�
 �	9.1

where G,T,O,W1,W2 are new intermediate species and q and qmax are new rate con-

stants (which will discuss later). Initially a single strand S displaces O from a complex
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9.1. DNA STRAND DISPLACEMENT

(a) S + G → W1 + O

(b) O + T → W2 + P1

Figure 9.4: Transformation of a formal unimolecular reaction with one product S → P1 into a cascade of
two DNA strand displacements. The original species (in bold) are single stranded molecules consisting of
four unique domains. Long domains are gray and short domains are red.

(a) S + G → W1 + O

(b) O + T → W2 + P1 + P2

Figure 9.5: Transformation of a formal unimolecular reaction with two products S→ P1 +P2 into a cascade
of two DNA strand displacements. The original species (in bold) are single stranded molecules consisting
of four unique domains. Long domains are gray and short domains are red.

G producing waste W1. Once a single strand O is produced, it displaces the products {Pi}

from a complex T producing another double-stranded waste W2. Note that G and T are

fuel species, which are supplied at large concentrations, higher than the substrate con-

centration [S ]. This ensures that the reaction rates effectively become constant over the

required lifetime.

The transformation of an unimolecular reaction with a single product is illustrated in

Figure 9.4, and a two-product version in Figure 9.5. For a decay reaction with no product,
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9.1. DNA STRAND DISPLACEMENT

S → λ, the second superfluous displacement is removed, i.e., both W1 and O are wastes.

A bimolecular reaction with reactants (substrates) S 1 and S 2, products P1, . . . , Pn, and

rate constant k is transformed to three cascaded displacements as

S1 + S2
k
−→ c1P1 + . . . + cnPn {



S1 + L
q
←→
qmax

H + B

S2 + H
qmax
−−−→ W1 + O

O + T
qmax
−−−→ W2 + c1P1 + . . . + cnPn

,
�
 �	9.2

where similarly to the unimolecular case, L,H, B,O,T,W1,W2 are new intermediate species,

and q and qmax are new rate constants.

Initially, a single strand S 1 displaces B from a complex L producing a double strand H.

Bear in mind that this reaction is bidirectional, since a lower toehold of double strand H

is naked (the toehold 9∗ and 13∗ shown in Figure 9.6 and 9.7 respectively). Double strand

(a) S1 + L↔ H + B

(b) S2 + H → W1 + O

(c) O + T → W2 + P1

Figure 9.6: Transformation of a formal bimolecular reaction with one product S1 + S2 → P1 into a cascade
of three DNA strand displacements. The original species (in bold) are single stranded molecules consisting
of four unique domains. Long domains are gray and short domains are red.
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(a) S1 + L↔ H + B

(b) S2 + H → W1 + O

(c) O + T → W2 + P1 + P2

Figure 9.7: Transformation of a formal bimolecular reaction with one product S1 + S2 → P1 + P2 into a
cascade of three DNA strand displacements. The original species (in bold) are single stranded molecules
consisting of four unique domains. Long domains are gray and short domains are red.

H then cascades to the second reaction where its upper strand O detaches by the second

signal, a single strand S 2. Strand O and complex T then produce the required products.

As in the unimolecular case, the species W1 and W2 are inert waste species, which serve

no purpose, other than being produced. The species L, B, and T are fuel species supplied

at large concentrations. Also, for an annihilatory reaction with no product S 1 + S 2 → λ,

the third superfluous displacement is removed, i.e., both W1 and O are waste.

As seen from the construction, Soloveichik’s transformation produces a vast amount

of intermediate fuel, mediating, or waste species. That is due to a single-stranded structure

of the formal species, called signals. In some situations, specific signals can be mapped to

double strands, thus saving intermediates. An example is a system consisting of a single

reaction S 1 + S 2 → P1 + P2, where S 1 and P2 could be mapped to single strands and

S 2 and P1 to double strands. In the general case, where a single species is a reactant or

a product multiple times, mixing single and double strand roles could lead to a conflict.
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For instance, a greedy direct mapping would not work for a reaction B + B → C, since

species B cannot be both a single and double strand. Therefore, to maintain universality,

Soloveichik’s transformation explicitly associates single strands to formal species.

9.1.2 Calculating Displacement Rates

So far, we covered the transformation of CRN’s species and reactions to DNA strand

displacement primitives, but for convenience, we omitted the specification of new rate

constants q and qmax of the displacement reactions. In this section we will finalize the

construction by adding rate constants.

First, we set the constant Cmax, the maximal concentration, and assume that fuel

species Gi,Ti for unimolecular reactions and Li, Bi,Ti for bimolecular reactions, con-

sumed and turned into waste, are provided at the concentration Cmax, which is sufficiently

higher than the concentrations of the signals. A formal proof showing the kinetic equiva-

lence between a CRN and its transformed DNA strand displacement circuit can be found

in the supplementary material of [140]. In the following, we provide rate constant calcu-

lations without proofs.

Let B be a set of all bimolecular reactions, U be a set of all unimolecular reactions

and {Xi} be a set of the CRN’s species. We define the formal parameter σ j for species X j

as

σ j =
∑

i∈B|ri,1= j

ki

σ = max
j
{σ j},

�
 �	9.3

where ri,1 = j holds if the species X j is the first reactant in a bimolecular reaction i and σ

is the maximal value for all species.
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The maximal rate qmax at which most of the displacement reactions operate (Equations

9.1 and 9.1) is

qmax = max{max
i∈U

ki

Cmax
+ σ,max

i∈B
ki + σ,max

j
(2σ − σ j)}

�
 �	9.4

The buffering scaling factor γ, indicating the scale-up to rate constants necessary to

cancel the effect of buffering of the signal species is

γ =
(qmax − σ)

qmax
.

�
 �	9.5

Note that so-called buffering must be introduced for species that are not sufficiently

buffered by the first displacement of the bimolecular reactions. Formally, for every species

X j for which σ j < σ, we formulate the buffering reaction illustrated in Figure 9.8 as

X j + LS j
qs j
←→
qmax

HS j + BS j,
�
 �	9.6

where fuel species LS j and BS j are provided at the concentration Cmax and the rate con-

stant qs j = γ−1(σ − σ j). The buffering reactions serve no purpose other than to increase

the buffering load of DNA species that are not already maximally buffered, so that in the

end all DNA species are buffered equally with accurate kinetics.

Finally, the new rate constant of a displacement reaction S + Gi
qi
−→ W1,i + Oi mapped

Figure 9.8: Example of a buffering reaction, a bidirectional displacement, of species X j, defined as X j +

LS j ←→ HS j + BS j. Long domains are gray and short domains are red.
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from a unimolecular reaction S
ki
−→ c1P1 + . . . + cnPn is

qi = γ−1kiC−1
max

�
 �	9.7

and for a displacement reaction S 1 + L
qi
←→
qmax

Hi + Bi mapped from a bimolecular

reaction S 1 + S 2
ki
−→ c1P1 + . . . + cnPn

qi = γ−1ki.
�
 �	9.8

To replicate the displacement reaction rates the toehold domains that actively partic-

ipate in a displacement must be sequenced such that their binding strength matches the

prescribed rate.

9.1.3 DNA Strand Implementation of Our Models

We implemented and validated Soloveichik’s compilation algorithm as a module in the

COEL simulation framework (Chapter 10). Besides converting reactions, rates, and intro-

ducing new symbolic species, our implementation generated the full domain specification

of the DNA strands using Visual DSD syntax [91]. A DNA strand parser encoded by this

syntax with a visualization mechanism was also implemented and integrated into COEL.

Although we used a slightly different numbering of the domains, the correctness of the

overall construction holds.

We applied our implementation of Soloveichik’s compilation and embedded visualiza-

tion to two models—the linear chemical perceptron and the manual delay line. Although

the transformation could be applied to any of our models, we chose the linear chemical

perceptron introduced in Section 8.4.2 because of its simplicity, analytical origin, and
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equivalence to a linear neural network perceptron. To demonstrate the DNA compila-

tion on a CRN model other than a chemical learner, we chose a manual signalling delay

line, which is small and regular, and therefore better fitted than the most advanced and

best-performing parallel-accessible delay line.

To be as close to physical reality as possible we set the maximal concentration Cmax =

10−5M, typical for DNA strand displacement reactions, assuming the fuel species are

injected as [Gi] = [Ti] = [Li] = [Bi] = Cmax for all reactions and [LS j] = [BS j] = Cmax

for all species. Instead of using the formal rates of the original CRNs we rescale the

timing of our two systems such that the maximal rate constant of the compiled DNA

strand displacement reactions is qmax = 106M−1s−1, recommended by Soloveichik as a

target speed achievable in a wet implementation of strand displacement. Since qmax is

calculated by Equation 9.4 from a given set of reactions, we reverse-engineer scaling

constants to fit the maximal rate after the compilation to 106M−1s−1.

Table 9.1: The species type counts for the DNA strand displacement implementation of the linear chemical
perceptron with two inputs and the manual signalling delay line of size three. The signals (sigs) are the
original CRN species. The total number of the DNA species (strands) is 217 for the linear perceptron and
49 for the manual signalling delay line. The number of species that need to be actively provided to the
system, i.e., the input signals and the fuel strands G,T, L, B, BS , and LS , is 106 (LP) and 22 (MDL). The
rest are either intermediates (O,H, and HS ), produced and consumed in a cascade, or wastes (WT1 and
WT2).

(a) LP

Type In Sigs Other Sigs G T L B BS LS O H HS WT1 WT2 Total

# 9 12 5 18 17 17 20 20 22 17 20 22 18 217

(b) MDL

Type In Sigs Other Sigs G T L B BS LS O H HS WT1 WT2 Total

# 4 6 3 3 3 3 3 3 6 3 3 6 3 49
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Table 9.2: The reactions of the linear chemical perceptron with two inputs and the manual signalling delay
line of size three with the original and scaled rates (unimolecular in s−1 and bimolecular in M−1s−1).

(a) LP

Reaction Rate Scaled Rate

S in → Y	 + S L
in 1 0.004

S in + W0 → Y + S L
in + W0 1 83333.33

X1 → Y	 + XL
1 1 0.004

X1 + W1 → Y + XL
1 + W1 1 83333.33

X2 → Y	 + XL
2 1 0.004

X2 + W2 → Y + XL
2 + W2 1 83333.33

Y + Y	 → λ 5 416666.67
Ŷ + S L → E⊕ + S L 1 83333.33
Y + S L → E	 + S L 1 83333.33
E⊕ + Edecay → Edecay 1 83333.33
E	 + Edecay → Edecay 1 83333.33
E⊕ → W⊕ + E⊕ 1 0.004
E	 → W	 + E	 1 0.004
W⊕ + S L

in → W0 + S L
in 1 83333.33

W	 + S L
in → W	0 + S L

in 1 83333.33
W0 + W	

0 → λ 5 416666.67
W⊕ + XL

1 → W1 + XL
1 1 83333.33

W	 + XL
1 → W	1 + XL

1 1 83333.33
W1 + W	

1 → λ 5 416666.67
W⊕ + XL

2 → W2 + XL
2 1 83333.33

W	 + XL
2 → W	2 + XL

2 1 83333.33
W2 + W	

2 → λ 5 416666.67

(b) MDL

Reaction Rate Scaled Rate

X + XS
1 → X1 + XC

1 + XS
1 5.0 500000

XC
1 + XS

2 → X2 + XC
2 + XS

2 5.0 500000
XC

2 + XS
3 → X3 + XC

3 + XS
3 5.0 500000

XS
1 → λ 0.5 0.002

XS
2 → λ 0.5 0.002

XS
3 → λ 0.5 0.002

Linear Chemical Perceptron Implementation

As showed analytically, the rate constants of the linear chemical perceptron are not im-

portant and the system could work with arbitrarily picked constants that preserve inherent

symmetries of the system such as treating the weights W0,W1,W2 equally. Even with bro-

ken symmetry the system could perform fairly well, but then our proofs and the derived

closed formulas would not hold. The only rate constants that we set explicitly were of the

input-weight integration reactions. Recall that we set these rates to 1 to move the zero-

weight value to the concentration of 1. The ODE-version of a linear chemical perceptron,
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as we tested it, has all rate constants equal to 1 besides the annihilatory reactions. Since

the annihilatory reactions process terminal species, they could be arbitrary but for faster

execution we set them to 5.

Now we need to adjust the rates such that after the compilation qmax = 106M−1s−1. We

achieve that by scaling all unimolecular reactions by a factor 1/α and all biomolecular re-

actions by a factor 1/β where α = 250 and β = 6
510−6 shown in Table 9.2(a). Also, note

that we moved from a unitless CRN to a CRN scaled to operate in the maximal concentra-

tion of 10µM, where the signal species are expected to be provided at nM concentrations.

The rates are scaled to s−1 for unimolecular and M−1s−1 for bimolecular reactions.

Because of many intermediate reactions and species, the original linear chemical per-

ceptron model with 22 reactions and 21 species compiled to 77 displacement reactions and

217 DNA strand species (Table 9.1(a)) consisting of 104 domains (with complements).

Out of all displacement reactions, 20 served buffering. Table 9.3 shows all displacements

obtained by converting all unimolecular and bimolecular reactions. Table 9.4 shows the

buffering reactions for the species with σi < σ. The key calculated paramterers used for

the displacement rates are σ = 5 × 105 and γ−1 = 2. Also, to avoid confusion with the

weight species Wi, we renamed the wastes W1 and W2 to WT1 and WT2.

Manual Signalling Delay Implementation

In this section we present a DNA strand displacement implemention of the manual sig-

nalling delay line of size three showed in Figure 6.2. The rate constants of the copy

reactions are set to 5 and the decays of the copy signals to 0.5, assuming the time frame

to produce the cached values is within 20 time steps. Similarly to the linear chemical

perceptron, we adjust the rates such that after the compilation qmax = 106M−1s−1. We

achieve that by scaling all unimolecular reactions by a factor 1/α and all biomolecular
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Table 9.3: The original and compiled DNA strand displacement reactions of the linear chemical perceptron
with the forward and reverse rates (M−1s−1).

Reaction DNA-SD Reactions Forward Rate Reverse Rate

S in → Y	 + S L
in

S in + GR01 → WT1R01 + OR01 800
OR01 + TR01 → WT2R01 + Y	 + S L

in 106

S in + W0 → Y + S L
in + W0

S in + LR02 ↔ HR02 + BR02 166666.66 106

W0 + HR02 → WT1R02 + OR02 106

OR02 + TR02 → WT2R02 + Y + S L
in + W0 106

X1 → Y	 + XL
1

X1 + GR03 → WT1R03 + OR03 800
OR03 + TR03 → WT2R03 + Y	 + XL

1 106

X1 + W1 → Y + XL
1 + W1

X1 + LR04 ↔ HR04 + BR04 166666.66 106

W1 + HR04 → WT1R04 + OR04 106

OR04 + TR04 → WT2R04 + Y + XL
1 + W1 106

X2 → Y	 + XL
2

X2 + GR05 → WT1R05 + OR05 800
OR05 + TR05 → WT2R05 + Y	 + XL

2 106

X2 + W2 → Y + XL
2 + W2

X2 + LR06 ↔ HR06 + BR06 166666.66 106

W2 + HR06 → WT1R06 + OR06 106

OR06 + TR06 → WT2R06 + Y + XL
2 + W2 106

Y + Y	 → λ
Y + LR07 ↔ HR07 + BR07 833333.33 106

Y	 + HR07 → WT1R07 + OR07 106

Ŷ + S L → E⊕ + S L

Ŷ + LR08 ↔ HR08 + BR08 166666.66 106

S L + HR08 → WT1R08 + OR08 106

OR08 + TR08 → WT2R08 + E⊕ + S L 106

Y + S L → E	 + S L

Y + LR09 ↔ HR09 + BR09 166666.66 106

S L + HR09 → WT1R09 + OR09 106

OR09 + TR09 → WT2R09 + E	 + S L 106

E⊕ + Edecay → Edecay

E⊕ + LR10 ↔ HR10 + BR10 166666.66 106

Edecay + HR10 → WT1R10 + OR10 106

OR10 + TR10 → WT2R10 + Edecay 106

E	 + Edecay → Edecay

E	 + LR11 ↔ HR11 + BR11 166666.66 106

Edecay + HR11 → WT1R11 + OR11 106

OR11 + TR11 → WT2R11 + Edecay 106

E⊕ → W⊕ + E⊕
E⊕ + GR12 → WT1R12 + OR12 800
OR12 + TR12 → WT2R12 + W⊕ + E⊕ 106

E	 → W	 + E	
E	 + GR13 → WT1R13 + OR13 800
OR13 + TR13 → WT2R13 + W	 + E	 106

W⊕ + S L
in → W0 + S L

in

W⊕ + LR14 ↔ HR14 + BR14 166666.66 106

S L
in + HR14 → WT1R14 + OR14 106

OR14 + TR14 → WT2R14 + W0 + S L
in 106

W	 + S L
in → W	0 + S L

in

W	 + LR15 ↔ HR15 + BR15 166666.66 106

S L
in + HR15 → WT1R15 + OR15 106

OR15 + TR15 → WT2R15 + W	
0 + S L

in 106

W0 + W	0 → λ
W0 + LR16 ↔ HR16 + BR16 833333.33 106

W	0 + HR16 → WT1R16 + OR16 106
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W⊕ + XL
1 → W1 + XL

1

W⊕ + LR17 ↔ HR17 + BR17 166666.66 106

XL
1 + HR17 → WT1R17 + OR17 106

OR17 + TR17 → WT2R17 + W1 + XL
1 106

W	 + XL
1 → W	1 + XL

1

W	 + LR18 ↔ HR18 + BR18 166666.66 106

XL
1 + HR18 → WT1R18 + OR18 106

OR18 + TR18 → WT2R18 + W	1 + XL
1 106

W1 + W	1 → λ
W1 + LR19 ↔ HR19 + BR19 833333.33 106

W	1 + HR19 → WT1R19 + OR19 106

W⊕ + XL
2 → W2 + XL

2

W⊕ + LR20 ↔ HR20 + BR20 166666.66 106

XL
2 + HR20 → WT1R20 + OR20 106

OR20 + TR20 → WT2R20 + W2 + XL
2 106

W	 + XL
2 → W	2 + XL

2

W	 + LR21 ↔ HR21 + BR21 166666.66 106

XL
2 + HR21 → WT1R21 + OR21 106

OR21 + TR21 → WT2R21 + W	2 + XL
2 106

W2 + W	2 → λ
W2 + LR22 ↔ HR22 + BR22 833333.33 106

W	2 + HR22 → WT1R22 + OR22 106

Table 9.4: The buffering reactions of the DNA-strand implemented linear chemical perceptron with the
forward and reverse rates in M−1s−1.

Species Buffering DNA-SD Reaction Forward Rate Reverse Rate

S in S in + LS S in ↔ HS S in + BS S in 833333.33 106

X1 X1 + LS X1 ↔ HS X1 + BS X1 833333.33 106

X2 X2 + LS X2 ↔ HS X2 + BS X2 833333.33 106

W0 W0 + LS W0 ↔ HS W0 + BS W0 166666.66 106

W1 W1 + LS W1 ↔ HS W1 + BS W1 166666.66 106

W2 W2 + LS W2 ↔ HS W2 + BS W2 166666.66 106

S L
in S L

in + LS S L
in
↔ HS S L

in
+ BS S L

in
106 106

XL
1 XL

1 + LS XL
1
↔ HS XL

1
+ BS XL

1
106 106

XL
2 XL

2 + LS XL
2
↔ HS XL

2
+ BS XL

2
106 106

E	 E	 + LS E	 ↔ HS E	 + BS E	 833333.33 106

E⊕ E⊕ + LS E⊕ ↔ HS E⊕ + BS E⊕ 833333.33 106

W	 W	 + LS W	 ↔ HS W	 + BS W	 500000 106

W⊕ W⊕ + LS W⊕ ↔ HS W⊕ + BS W⊕ 500000 106

W	0 W	0 + LS W0	 ↔ HS W0	 + BS W	0
106 106

W	1 W	1 + LS W	1
↔ HS W	1

+ BS W	1
106 106

W	2 W	2 + LS W	2
↔ HS W	2

+ BS W	2
106 106

S L S L + LS S L ↔ HS S L + BS S L 106 106

Y	 Y	 + LS Y	 ↔ HS Y	 + BS Y	 106 106

Ŷ Ŷ + LS Ŷ ↔ HS Ŷ + BS Ŷ 833333.33 106

Edecay Edecay + LS Edecay ↔ HS Edecay + BS Edecay 106 106
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reactions by a factor 1/β, where α = 250 and β = 10−5, as shown in Table 9.2(b).

The original manual signalling delay line with 6 reactions and 10 species compiles

to 15 displacement reactions and 49 DNA strand species (Table 9.1(b)), consisting of 43

domains (with complements). Out of all displacement reactions 3 served buffering. Table

9.5 shows the displacements obtained by converting all unimolecular and bimolecular

reactions and Table 9.6 shows the buffering reactions added for accuracy for the species

with σi < σ. As before, the calculated variables used for the displacement rates are

σ = 5 × 105 and γ−1 = 2.

Table 9.5: The original and compiled DNA strand displacement reactions of the manual signalling delay
line with the forward and reverse rates (M−1s−1).

Reaction DNA-SD Reactions Forward Rate Reverse Rate

X + XS
1 → X1 + XC

1 + XS
1

X + LR01 ↔ HR01 + BR01 106 106

XS
1 + HR01 → WT1R01 + OR01 106

OR01 + TR01 → WT2R01 + X1 + XC
1 + XS

1 106

XC
1 + XS

2 → X2 + XC
2 + XS

2

XC
1 + LR02 ↔ HR02 + BR02 106 106

XS
2 + HR02 → WT1R02 + OR02 106

OR02 + TR02 → WT2R02 + X2 + XC
2 + XS

2 106

XC
2 + XS

3 → X3 + XC
3 + XS

3

XC
2 + LR03 ↔ HR03 + BR03 106 106

XS
3 + HR03 → WT1R03 + OR03 106

OR03 + TR03 → WT2R03 + X3 + XC
3 + XS

3 106

XS
1 → λ XS

1 + GR04 → WT1R04 + OR04 400
XS

2 → λ XS
2 + GR05 → WT1R05 + OR05 400

XS
3 → λ XS

3 + GR06 → WT1R06 + OR06 400

Table 9.6: The buffering reactions of the DNA-strand implemented manual delay line with the forward and
reverse rates in M−1s−1.

Species Buffering DNA-SD Reaction Forward Rate Reverse Rate

XS
1 XS

1 + LS XS
1
↔ HS XS

1
+ BS XS

1
106 106

XS
2 XS

2 + LS XS
2
↔ HS XS

2
+ BS XS

2
106 106

XS
3 XS

3 + LS XS
3
↔ HS XS

3
+ BS XS

3
106 106
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S in + GR01 → WT1R01 + OR01

OR01 + TR01 → WT2R01 + Y	 + S L
in

S in + LR02 ↔ HR02 + BR02

W0 + HR02 → WT1R02 + OR02

OR02 + TR02 → WT2R02 + Y + S L
in + W0

X1 + GR03 → WT1R03 + OR03

OR03 + TR03 → WT2R03 + Y	 + XL
1

Figure 9.9: The domain-specified structures of the first 7 displacements of the linear chemical perceptron
from Table 9.3. The full list is available in Appendix, Figure C.1.
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X + LR01 ↔ HR01 + BR01

XS
1 + HR01 → WT1R01 + OR01

OR01 + TR01 → WT2R01 + X1 + XC
1 + XS

1

XC
1 + LR02 ↔ HR02 + BR02

XS
2 + HR02 → WT1R02 + OR02

OR02 + TR02 → WT2R02 + X2 + XC
2 + XS

2

Figure 9.10: The domain-specified structures of the first 6 displacements of the manual signalling delay
line from Table 9.5. The full list is available in Appendix, Figure C.2.

196



9.1. DNA STRAND DISPLACEMENT

9.1.4 Discussion

Once the DNA strands of our models are sequenced and synthesized, they could directly

lead to biochemical implementations. Note that only the signal and fuel species, which

are to be provided to the system during an experiment, need to be synthesized. The

number of such species is 106 for the linear chemical perceptron and 22 for the manual

signalling delay line. The remaining species are either intermediates or wastes. A state-

of-the-art DNA strand displacement system to calculate square root [127], experimentally

constructed and verified in a lab, consists of 130 DNA strands. Even though the so-called

see-saw gates used in the experiment are simpler than the ones produced by Soloveichik’s

transformation, the size of both our DNA strand systems is within the same complexity

range. Thus, taking into count practical considerations and cost, they are in principal

wet-implementable.

The displacement reaction rates are determined by the binding strength of the toehold

domains. Even though in practice a limited number of exact rate constants are achievable,

they are distributed over many orders of magnitude [140]. As we mentioned, both our

example CRNs, and therefore also their DNA strand displacement circuits, are insensitive

to a specific setting of rate constants. We expect that a failure to precisely replicate the

displacement rates under experimental conditions would be absorbed by the systems’

robustness and would practically affect only the waiting times of the systems’ stages.

An inherent challenge of DNA strand displacement is to minimize unwanted bind-

ing of non-complementary domains. Even though intelligent sequence designers (e.g.,

NUPACK) address that, for large number of domains, such as as in the linear chemical

perceptron, partial crosstalk and leakage is inevitable. We can expect that the leakage of

even larger-scale DNA strand systems will further decline [151].
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Furthermore, the fuel species expected to be provided at large concentrations 10−5M

are depleted and turned into inactive waste as the system evolves. As the fuel is consumed,

the system becomes less accurate and departs from its expected kinetics. One-shot-only

systems are naturally resistant to that, however, any chemical learner or delay line is

expected to work repeatedly in many iterations throughout its lifecycle. Since the signal

species are provided at nM as opposed to 10µM (fuel strands), it might take hundreds

of iterations until the accuracy starts to decline. On the other hand, if we opt for true

reusability of the linear chemical perceptron and the manual signalling delay line during

training, we would need to continually add new fuel gates to the solution. In order to

preserve the kinetics, the correct amount of replacement structures would need to be added

repetitively to counter balance their consumption. That kind of experimental setup would

be nontrivial to reproduce.

Besides the Soloveichik’s DNA strand displacement transformation there are two

more DNA strand implementation methods proposed by Luca Cardelli. The building

blocks are known as “three domain” [34] and “two domain” strands and gates [35]. These

use restricted classes of DNA strands to denote the chemical species (with two or three

domains respectively). The main difference compared to Soloveichik’s method is for

experimental implementations. In particular, the three-domain and even moreso the two-

domain scheme uses very simple structures for the gates and strands. They are thus easier

to synthesize, but have more transformation steps, so they are slower to emulate a given

set of reactions.

198



9.2. DEOXYRIBOZYME DNA

9.2 DEOXYRIBOZYME DNA

Besides ordinary reactions A+B↔ C+D covered by DNA strand displacement, DNA also

serves enzymatic (catalytic) reactions. DNA enzymes called deoxyribozymes [30,95,145]

catalyze the transformation of oligonucleotides (short, single-stranded DNAs). They were

applied, e.g., for modeling logic gates [100, 144], a tic-tac-toe automaton [121, 145], and

a half-adder [146].

A deoxyribozyme consists of a stem loop called a catalytic core and two short toehold

“legs” (sticky ends). In a core deoxyribozyme reaction as shown in Figure 9.11, a deoxyri-

bozyme D binds to a fluorogenic substrate, oligonucleotide Q-F, consisting of domains

1 and 2 complementary to the deoxyribozyme’s legs 1∗ and 2∗. The deoxyribozyme gate

D then cleaves the attached oligonucleotide Q-F at the “weak” site of a single ribonu-

cleotide (rA), which is used to ensure an expected cleavage site. After the cleavage the

single toehold bindings become weak and they detach from the complex as two products

Q and F. Since the deoxyribozyme exits the reaction unaltered, it acts as a catalyst and

we can write the reaction as D + Q-S → D + Q + S . The product F contains a chemical

called fluorescein that emits fluorescence. It can easily be measured and interpreted as

the output of the system.

In our implementations we are going to use the so-called NOT gates [100]. A NOT

gate is a deoxyribozyme where a part of the stem-loop sequence is replaced by a specific

strand i∗. Besides this structural change, a deoxyribozyme works normally and if pre-

sented, it cleaves a complementary oligonucleotide. However, as shown in Figure 9.12,

if we provide a strand I, consisting of a domain i to the solution, it binds to the comple-

mentary loop, and distorts the shape of the catalytic core, thus inhibiting (disabling) the

catalytic cleavage.

199



9.2. DEOXYRIBOZYME DNA

Note that many deoxyribozyme reaction types exist. For instance, in a if-then case,

the substrate S of the upstream enzyme U deactivates the downstream enzyme D. If S

is attached to D nothing happens, however, after the cleavage of S by U, D is activated,

so the core reaction can go on. By combining different cascading types of upstream

and downstream enzymes and the activation and deactivation relations, more complicated

hierarchical scenarios could be served.

Figure 9.11: An example of catalytic DNA reaction D + Q-F → D + Q + F: deoxyribozyme D cleaves an
oligonucleotide Q-F into two parts Q and F.

Figure 9.12: Deoxyribozyme-based NOT gate D + I → D-I. A strand i binds to the stem loop sequence i∗

of the enzyme D and deactivates it.

9.2.1 Deoxyribozyme-Based Implementation of Our Models

As opposed to DNA strand displacement, no automatic compilation technique to map a

CRN to a deoxyribozyme-based circuit exists. The main reason why we opted for de-

oxyribozymes is higher reusability and serving of catalytic reactions. On the other hand,

since we cannot rely on known compilation techniques the correctness of our construc-

tions is purely qualitative. Our implementations are more speculative, but incorporate a
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wider range of structural features than our generic, yet conservative DNA strand displace-

ment implementations.

Since both our models heavily rely on catalysis, which is effectively served by de-

oxyribozymes, we could save a large amount of fuel gates and intermediates, eventually

reducing the system size roughly to a third of what we presented previously.

In this section we provide a domain specification of oligonucleotides and deoxyri-

bozymes carrying out the original CRN reactions. As we mentioned before, both our

models are robust and work correctly with arbitrary rates obeying the inherent system

symmetries. At this level of precision, we can simply assume some uniform rates re-

flected by the toehold binding strengths exist. The actual rates of wet implementations

will affect only the timing of the system phases (e.g., input and desired output injection

delay).

Manual Signalling Delay Implementation

In this section we present a deoxyribozyme-based implementation of the manual sig-

nalling delay line of size three, as shown in Figure 6.2. Because the core catalytic reac-

tions of the delay line XC
i

XS
i
−−→ Xi+1 + XC

i+1 are already in the right format for the standard

cleavage reaction (Figure 9.11), we use a direct mapping and obtained three cascaded

reactions shown in Figure 9.13. At each stage, a deoxyribozyme with legs k∗ and (k + 1)∗

cleaves the “top” part of the oligonucleotide, which was fed from the preceding phase.

Hence the original oligo 1-2-3-4 representing the input species X continuously splits to

X1 with the toehold 1, X2 represented by the toehold 2, and finally X3 consisting of a single

toehold 3. The problem with this rather naive scheme is that the oligo 1-2-3-4 contains the

parts complementary to all the enzymes. As a matter of fact, there is nothing preventing

the enzymes from a simultaneous (unwanted) cleavage of the original oligo once injected.
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(a) XS
1 + X → XS

1 + X1 + XC
1

(b) XS
2 + XC

1 → XS
2 + X2 + XC

2

(c) XS
3 + XC

2 → XS
3 + X3 + XC

3

Figure 9.13: Naive deoxyribozyme-based implementation of the copy reactions of the manual signalling
delay line of size three.

To fix the crosstalk issue of the naive mapping, we need a mechanism to transfer and

protect cached species between the cleavage phases. We approach that with the help of

DNA strand displacement. In particular, instead of directly producing the cached species,

we introduce intermediates O1 and O2, which displace the actual XC
1 and XC

2 from the

double-strand gates T1 and T2 producing wastes WT1 and WT2 as byproducts (Figure

9.14). In this scheme the unique enzymes’ legs are ordered as 1∗, 2∗; 3∗, 4∗, and 5∗, 6∗.

The input oligo X could be cleaved only by the deoxyribozyme XS
1 since the only pair of

complementary toeholds that matches any deoxyribozyme is 1-2. This property induc-
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tively holds for consecutive oligos XC
1 and XC

2 . Each oligo ends with the long domain e,

which does not serve any purpose in catalyses and it only increases and stabilizes the DNA

strand displacements. Note that for better circuit precision we can assume that the bind-

ing of the odd-indexed toeholds 1-1∗, 3-3∗, and 5-5∗ is stronger than of the even-indexed

2-2∗, 4-4∗, and 6-6∗. This ensures that the oligos do not bind to the double-strands T1 and

T2 before being cleaved. Without this assumption, the system would still work, yet more

cumbersomely since it could still cleave the oligo attached to the lower strands of T1 and

T2 because the toehold 1 and 2 respectively would be unmatched.

Even though we solved the problem of a simultaneous cleavage of the oligonucleotides,

we unintentionally created another source of crosstalk, this time among the enzymes and

the double strand (fuel) gates. More precisely, the deoxyribozyme XS
2 could potentially

attach to the hanging toehold 3 of the gate T1 (similarly for the enzyme XS
3 and the gate

T2). Since this unwanted binding is weak the overall correctness of the construction holds,

however, it might result in a slower system’s execution.

The final and also the most complex circuit prevents a disruption of the fuel gates by

keeping the domains 3, 4 and 5, 6 fully attached to the lower strands. This requires a more

clever domain numbering with the nested even-indexed domains and alternating the oligo

ends. The original input X is now 1-2-6-e-4, where the long domain e is used as previously

to increase potency of the strand displacements. At each level the gate Ti alternates its

toehold position from left to right to protect the cleavage domains, which are similarly to

the previous construction swapped. Another difference is that strand displacements are

now bidirectional, e.g., the strand XC
1 could attach with its toehold 3 to the sticky end of

the waste WT1, however, once the oligos XC
1 and XC

2 are produced they are unidirectional

cleaved by XS
2 and XS

3 respectively, so the reverse displacements are rather weak. This

construction is easily generalizable to any number of cached values.

203



9.2. DEOXYRIBOZYME DNA

(a) XS
1 + X → XS

1 + X1 + O1

(b) O1 + T1 → WT1 + XC
1

(c) XS
2 + XC

1 → XS
2 + X2 + O2

(d) O2 + T2 → WT2 + XC
2

(e) XS
3 + XC

2 → XS
3 + X3 + XC

3

Figure 9.14: Deoxyribozyme-based implementation of the copy reactions of the manual signalling delay
line of size three where an exchange of the cached species XC

i between the stages is carried out by the DNA
strand displacements.
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(a) XS
1 + X → XS

1 + X1 + O1

(b) O1 + T1 ↔ WT1 + XC
1

(c) XS
2 + XC

1 → XS
2 + X2 + O2

(d) O2 + T2 ↔ WT2 + XC
2

(e) XS
3 + XC

2 → XS
3 + X3 + XC

3

Figure 9.15: Final deoxyribozyme-based implementation of the copy reactions of the manual signalling
delay line of size three where an exchange of the cached species XC

i between the stages is carried out by the
DNA strand displacements.
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(a) XS
1 + I → XS

1 -I

(b) XS
2 + I → XS

2 -I

(c) XS
3 + I → XS

3 -I

Figure 9.16: Deoxyribozyme-based implementation (NOT gates) of the signal decays of the manual sig-
nalling delay line of size three.

Similarly to how we handled the copy reactions of the manual signalling delay line, we

need to implement the decays of the copy signal species. An easy solution is to assume

the presence of a special deactivation species I, which is a long strand i implementing

a NOT gate trigger for all three enzymes XS
1 , X

S
2 , and XS

3 , whose stem loops contain a

complementary sequence i∗ (Figure 9.16). As a matter of fact, each enzyme, after it gets

injected one by one in a backward order (as expected by the functioning of the delay line),

starts cleaving its oligo, but as it proceeds, its activity slowly fades due to an interaction

with the species I provided in abundance. Once it is fully deactivated we inject the signal

for the higher level up to XS
1 .

Note that because synthesizing an oligo with multiple cleavage sites is expensive, we

can continually add a new cleavage site after each stage (displacement). Then each oligo
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X, XC
1 , and XC

2 would have only a single cleavage site and the intruding strands O1 and O2

would be plain strands (without any cleavage sites).

Overall, we transformed the original CRN model of the manual signalling delay line

with 6 reactions to a deoxyribozyme-based circuit with 8 reactions: 3 cleavages, 3 gate de-

activations (NOT gates), and 2 DNA strand displacements. The original set of 10 species

expanded to 19 species consisting of 6 deoxyribozymes (3 regular and 3 NOT) and 13

oligos or single/double strands.

Linear Chemical Perceptron Implementation

In this section we present a deoxyribozyme-based implementation of the linear chemical

perceptron with two inputs. Due to the size and the reaction complexity of this CRN,

we focus only on mapping the input-weight integration reactions. More precisely, we

implement the catalytic input-output reactions Xi
Wi
−−→ Y and Xi → Y	 and the annihilation

of the positive and negative outputs Y+Y	 → λ. Recall that the actual output is determined

by the concentration of the weight species Wi. Here, for sake of simplicity, we removed

the input-contribution species XL
i produced along Y and Y	 because they do not serve the

input-weight integration in any way and their final concentration is known to be equal to

that of the original injected inputs.

The first step is to adjust the simple transformation Xi → Y	 to a catalytic reaction

Xi
W	i
−−→ Y	, where W	

i is a new species (deoxyribozyme) with a constant concentration

imposing a pressure at Wi, i.e., we assume that in the eventual learning part only Wi gets

adapted. For generality we relabel X0 = S in. The main difficulty of the construction

is to allow a dual race of two deoxyribozymes Wi and W	
i over the single substrate Xi.

Since the oligo Xi is shared, it needs to contain two cleavage sites, one for each weight.

Further, we need to design it in a way such that the oligo Xi could be cleaved just once,
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9.2. DEOXYRIBOZYME DNA

(a) Wi + Xi → Wi + Y + WTi

(b) W	i + Xi → W	i + Y	 + WT	1

(c) Y + L↔ H + O1

(d) Y	 + H → WTYY	 + O2

Figure 9.17: Deoxyribozyme-based implementation of the input-weight integration reactions of the linear
chemical perceptron.
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so if Wi cleaves it first, there must be a mechanism preventing W	
i from further interfer-

ence (and vice versa). We address this issue by a shared short toehold i wrapped around

two cleavage sites. It is important to mention that i serves as a unique identifier of the

oligo Xi preventing W j and W	
j where i , j from cleaving. As shown in Figure 9.17, the

deoxyribozyme Wi has two legs, u1∗ and i∗d1∗, cleaving the oligo X structured as u3-u2-

u1-i-d1-d2-d3 (which we justify later), into the output Y and the waste WTi consisting

of the domains i-d1-d2-d3. Because of the overlap of the competing gates, the deoxyri-

bozyme W	
i with legs u1∗i∗ and d1∗ cannot fully bind to WTi, hence WTi becomes an

inert waste. If W	
i cleaves first, the output Y	 is produced instead. Whether more Y or Y	

will be produced depends on the concentrations of Wi and W	
i and the binding strength of

the toeholds u1, i, and d1, which we can assume is uniform. Note that instead of a linear

structure we could use a circular oligo Xi introduced by Levy [93], keeping two cleavage

sites.

Each pair of the weight races processes its own input and produces the outputs Y

and Y	, shared across the input-weight integration reactions. The last part we need to

cover is the annihilation of the regular output with the negative output Y + Y	 → λ. A

straightforward yet incorrect approach would be to assume Y and Y	 are complementary,

so they could bind together, forming a perfect double-strand. Since Y and Y	, i.e., u3-

u2-u1 and d1-d2-d3 form the ends of the oligo Xi, if complementary, they would bind

together prematurely, turning each Xi into a (defected) loop structure. To address that,

instead of letting Y and Y	 to bind together directly, we let them ‘cooperatively” displace

two upper strands O1 and O2 from the complex T as shown at the bottom of Figure 9.17.

First, the strand Y reversibility displaces O1 from the fuel gate L, producing the double-

strand H, which cascades to the next displacement. Since the toehold d1∗ of the double-

strand H is now open, it binds to d1 part of the strand Y	, which eventually displaces the
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upper strand d2-d3 and together with Y form the waste WTYY	 .

Overall, we transformed the input-weight integration part of the original CRN model

of the linear chemical perceptron with 7 reactions to a deoxyribozyme-based circuit with

8 reactions: 6 cleavages (two per each input) and 2 DNA strand displacements. The

original set of 8 species expanded to 16 species consisting of 6 deoxyribozymes and 10

oligos or single/double strands.

9.2.2 Discussion

We showed that deoxyribozymes are a natural choice for implementing catalytic reac-

tions with DNA. As all other catalysts they drive reactions without being consumed,

and hence promote reusability. By using deoxyribozymes in our designs we reduced the

number of species and reactions significantly. Note that for certain parts, besides using

deoxyribozyme-mediated catalysis, we incorporated also a few strand displacements, and

so our deoxyribozyme implementations should be considered hybrid systems.

For the manual signalling delay line, instead of 15 displacement reactions and 49

strands needed for the DNA strand displacement implementation obtained by Solove-

ichik’s transformation, the minimalistic deoxyribozyme version contains only 8 reactions

and 19 species of which 6 are deoxyribozymes. The input-weight integration part of the

linear chemical perceptron implemented by using deoxyribozymes shrank from 25 dis-

placements and 70 strands to 8 reactions and 16 species of which 6 are deoxyribozymes.

9.3 SYSTEMS BIOLOGY AND CHEMICAL LEARNING

In an abstract chemical learning system, we can categorize species into four groups: input,

output, functional, and feedback. The weight species of our chemical learners are specific

examples of functional species, and the desired output and the penalty signal showcase
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feedback species. The concentration of the functional species constitutes the behaviour

of the system, and therefore it must be preserved during regular execution, so multiple

inputs can be fed into the system sequentially. The most natural choice to achieve that

is to make the functional species the catalysts that drive the input-to-output reactions, as

we did. The learning module prescribes how the system should behave, and it adjusts the

concentration of the functional species if needed.

Here we want to demonstrate that the application of the learning module goes beyond

learning. In particular, an interesting dimension of chemical learning comes from the

Systems and Relational Biology [86, 154]. In living organisms the metabolic transforma-

tion of substrates A to products B is catalysed by functional species (enzymes) f [122].

Rosen [131] distinguishes between the material causation A→ B and the efficient causa-

tion f =⇒ (A → B) and asserts that life must be open to material, but closed to efficient

causation. The problem here is that the metabolic catalysts undergo decay due to di-

lution and their finite stability, hence, an organism must continuously recreate them by

an inner repair (replacement) mechanism, so the function species must be a product of

metabolism as well. Rosen’s (M,R) system (metabolic-repair or metabolic-replacement

system) generalizes this idea and explicitly assumes the material link between the product

of metabolism B and the catalysts f controlled by the replacement system Φ as shown in

Figure 9.18(a). The replacement system is, however, physical, and therefore subject to

decay. To avoid infinite regress, Rosen postulated the replication of Φ from the catalysts

f with efficient causation of metabolites B obtaining the organization invariance of the

system.

If we draw a diagram of a chemical learning system (Figure 9.18(b)) next to Rosen’s

diagram of life, we can see striking parallels. Note that to be consistent with the (M,R)

formalism we renamed the species accordingly. The transformation of the input to the
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output species in a chemical learning system is essentially a metabolism, although our

interpretation of the output (product) has a meaning and is available for external measure-

ment. Furthermore, the (re)creation of the functional species f in our model, called adap-

tation, is driven by the learning module ΦL, as opposed to the term regulatory replacement

operated by Φ. The main structural difference and also a simplification we adopted is that

our functional species do not decay, so we could avoid explicit replacement. The learning

module prescribes the expected behaviour, hence if the weights decayed and their concen-

trations diverted outside the desired region, and therefore produced incorrect output, the

learning module would detect that and recover or stabilize the concentrations. Thus, if the

learning module were invoked internally on a regular basis rather than an external cause, it

would form its function factory, and consequently Rosen’s replacement mechanism. This

results in an interesting relation between individual learning, where the learning module

is driven by an environment or a teacher, and population learning (evolution), where indi-

viduals share the hard-coded internal function factory with input-output pairs encoded in

the genome. Although a function factory is in place and continually repairs an underlying

function species, we still have to deal with the problem of its own degradation. Besides

that, we can perhaps keep one instance of the learning module to maintain the function

and one for individual learning (adaptation of function).

From a computer science perspective, the functional species guide the chemical ex-

ecution and therefore represent the low-level (chemical) code. The specification of the

learning module in terms of input and desired output pairs represents the high-level func-

tional program. In the process of learning, a program compiles to the chemical code of the

functional species concentrations, hence, the learning module introduces the compilation

layer, bridging computer science and chemistry, allowing users without a background in

chemistry to effectively program this chemical interface. Note that, as opposed to the or-
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(a) (b)

Figure 9.18: (a) Rosen’s diagram showing organization invariance of life. The system is continually re-
paired and replicated as a product of its own metabolism. Solid arrows are material causations, whereas
dashed arrows are efficient causations; (b) High-level diagram of an abstract chemical learning system. The
concentration of functional species is adapted by the learning module implemented internally and operated
externally by a trainer.

dinary procedural programming, the functional programming does not say how we want

to achieve our goal in a step-by-step fashion, but specifies instead what behaviour we

want our system to imitate.

Here, we illustrated that the learning is not just about adaptation to the feedback from

the environment, but it encompasses the more general area of self-stabilization. Whether

we should call this process learning, programming, regulation, replacement, or repair is

strictly based on the purpose of what we consider a general function factory.
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COEL—THE WEB-BASED CHEMISTRY SIMULATION FRAMEWORK

In this chapter we present a new enterprise chemistry simulation framework, COEL,

which has been developed mainly as a part of this dissertation. COEL is the first web-

based framework of its kind, and has been the sole simulation tool for modeling, evalua-

tion and administration of all the chemical models mentioned in the dissertation.

The main motivation behind the development of the COEL framework is the often

monotonous and inadequate management and execution of scientific models. Further,

running simulations on multiple threads and CPUs requires non-trivial effort. Research

avenues built on solid theoretical ideas often run into trouble because of a lack of appro-

priate tools and software, leading to unnecessary delays, implementation of proprietary

(home-made) solutions for basic tasks and reinventions of standard design patterns. As is

true with most desktop applications, most existing tools provide access to only a single

user on a local machine, requiring version-management software to enable collaboration.

General usability and visual appeal are usually low priorities. We argue that the way we

work and conduct research must dramatically change to keep pace with the amount of

data produced by simulations, to provide immediate and integrated visualization, and to

enable geographically dispersed teams to work together on a single platform.

COllective cELlular computing (COEL) framework is the first web-based simulation

framework for modeling and simulating chemical reaction networks (CRNs). COEL’s
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web client is immediately accessible without any installation or download. The compu-

tational load of simulations is handled by COEL’s grid rather than the client’s machine.

Remote teams can share and manipulate chemical models in real time. Data is stored

remotely and safely in COEL’s database, which is backed up daily. In developing COEL

we emphasized platform-wide visualization, providing quick and embedded insight for

users.

It is important to emphasize the significance of COEL’s database storage. Even though

raw file storage (as opposed to structured databases) has been obsolete in industry for

more than two decades, the scientific community still widely practices this approach.

Storing data in files is not only ineffective, but its textual representation requires cum-

bersome parsing and tedious serialization for later structured searches, data mining or

analysis. More so, files are inherently local, and without proper back-up, it is not uncom-

mon that scientific data are lost. A recent study by Vines et al. in Current Biology [153]

found that 80% of scientific data are lost within two decades, disappearing into old email

addresses and obsolete storage devices. Alarmingly, the authors found that the average

rate of data loss is 17% each year. Furthermore, because of private and local storing only

11% of the academic research in the literature was reproducible by the original research

groups, as reported in Nature [26]. This is intuitively more prevalent in experimental

science, but computer-based research is affected as well. We suggest that with current

scientific approaches this problem will only worsen in the age of big data. We argue that

storing all (even intermediate) models and results remotely and in a reliable long-term

fashion, and making them accessible to the general scientific community should become

the new standard. With remote data storage and a convenient web client, users do not

have to deal with version-compatibility of data structures, as it is the case with traditional

approaches. Since a new application release is deployed together with a central migration
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of the database, version updates are worry-free for users.

Accessibility has two important consequences: collaboration and transparency. Using

COEL, as with so-called ‘cloud-based’ web applications, individuals can work on differ-

ent facets of the same project and see each other’s modifications in real-time. This has

allowed the authors of this paper, for example, to study the same system, run parame-

ter evolutions and performance evaluations, modify simulation dynamics and so on from

separate campuses. We have successfully applied COEL as a tool to model and evalu-

ate various types of chemical perceptrons [20–22], chemical delay lines and time-series

learners [19, 114], and random DNA circuits [18].

In this chapter we first discuss the state-of-the-art in chemistry simulation frameworks,

then present COEL’s functionality and technical architecture. We conclude with a discus-

sion of COEL’s place in the ecosystem of chemistry simulation frameworks, and the future

of COEL. This work has been published in parts in [17].

10.1 RELATED WORK

COEL is not the first software made to simulate chemical reaction networks. There are

already many programs which do so, and together the field of CRN simulators [36, 55,

70, 74, 134] offers a huge set of technical features, e.g., simulation options and statistical

tools. Our goal with COEL was not (so much) to introduce new simulation algorithms or

methods of analysis, but to include the most common and useful tools among CRN sim-

ulators in an intuitive and modern web-based package. This makes the tools of systems

biology more accessible, and the research done with them more transparent, collaborative,

and replicable.

COPASI [70] is arguably the most advanced and widely used tool. In a nutshell,
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COPASI simulates a variety of chemical objects and allows for freedom in experiment

design and statistical analysis. COPASI is quite feature rich, and could be considered

the gold standard of CRN simulation frameworks. There are others worth mentioning,

of course, such as those in the MATLAB Systems Biology Toolbox [134], and CellDe-

signer [55], which is a modeling tool for biochemical networks. Most of these tools share

support for the SBML language for describing chemical systems [74], which as a standard

has been a great boon to the field, enabling cross-platform migration.

Along with SBML support, most simulation environments share a core set of capabil-

ities. Beyond basic deterministic ODE integration of CRNs (and stochastic reactions, a

feature which COEL notably does not have), it is common to offer parameter optimization

to help in the design of the networks themselves. Programs such as COPASI and CellDe-

signer can simulate a number of other biochemical objects of interest, such as cellular

compartments. It is common to allow for various kinetic models of chemical interactions,

such as Michaelis-Menten [108] and mass action [96].

In many kinds of frameworks, there is some tension between the depth of features and

the features’ accessibility, especially for highly technical applications such as CRN simu-

lators. In addition to offering rich design capabilities, many developers of CRN simulators

have the explicit motivation of reaching a large audience: The authors of COPASI said,

“... the software needs to be available for the majority of scientists ...” (p. 3069, [70]).

The authors of CellDesigner felt similarly, saying that they wish to ”confer benefits to

as many users as possible” (p. 1255, [55]). COEL automatically runs on any operating

system with a web browser, including smartphones or tablets, so it is accessible anywhere

in the world without any installation. Further, COEL’s computational grid centrally runs

any difficult tasks which might run slowly on clients’ computers. We strongly believe that

there is no more accessible paradigm for research tools than a web-based interface with
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computation performed in the cloud.

10.2 FEATURES AND FUNCTIONALITY

COEL provides a unified web environment for the definition, manipulation, and simula-

tion of chemical reaction networks. In this section, we will discuss COEL’s functionality

and application-wide features in detail.

10.2.1 Chemical Reaction Network Definition

At its most basic level, a chemical reaction network (CRN) consists of a finite set of

chemicals and reactions. A CRN represents an unstructured macroscopic simulated chem-

istry, hence the species labeled with symbols are not assigned a molecular structure. The

state of a CRN is represented by a vector of chemical species concentrations. Reaction

rates define the strength or speed of reactions, as prescribed by kinetic laws–Michaelis-

Menten [38] kinetics for catalytic reactions, and mass action kinetics [49] otherwise (Sec-

tion 2.3.1).

COEL is consistent with these general CRN formalisms; next, we will describe details

particular to COEL’s implementation. COEL automatically computes appropriate rate

functions once given numeric rate constants, yet it also allows users to define arbitrary

rate functions using custom expressions over species labels, giving the user full freedom

over the system’s dynamics. Reactions can be uni- or bidirectional, and bidirectional

reactions can have independent forward and backward rates.

Both species sets and reaction sets are extensible, in that new sets can be defined as

expansions of old ones. This promotes reuse and modular design. Further, two CRNs can

be merged combining their reactions and species into one network.

218



10.2. FEATURES AND FUNCTIONALITY

Figure 10.1: A partial description of a chemical reaction network in COEL. Species are listed at the top, and
their reactions are presented in tabular form. The reactants and products are described in the third column,
the forward reaction rates are in the fourth column, and any catalysts are in the fifth.

Figure 10.1 shows an example CRN in COEL, a memory-enabled chemical percep-

tron [19]. The CRN’s species, reactions, and reaction rates are presented in a unified view

from which any of these objects can be easily edited in a few steps. Also, users can ex-

port CRNs in Matlab, Octave, or SMBL formats if they wish to study their systems using

different tools. It is also possible to import an SBML-defined CRN into COEL.

In imitation of biochemical cells or membranes, CRNs in COEL support hierarchical

tree-like compartmentalization. Each compartment hosts an independent reaction set and

vector of chemical concentrations. Compartments communicate with each other through

permeation, formalized in what we call ‘channels.’ A channel works just like an ordinary

reaction, except the reactant and product species reside in adjacent compartments. Among

other things, this allows for modular design of chemical systems, where connected mod-

ules reside in nested compartments, as shown in Figure 10.2.
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Figure 10.2: COEL’s representation of a permeation schema.

10.2.2 Chemical Reaction Network Simulation and Interaction Series

A major feature of COEL, in that it has been crucial to its early users and their work, is

so-called interaction series. An interaction series allows the user to directly manipulate

concentrations of species in the CRN. This feature is analogous to, though more capable

than, automatic chemical injections into a reaction chamber. For compartment-extended

CRNs, interaction series can be identically hierarchical, allowing for precise interaction

with each component of the network.

Concentrations can be modified multiple times, not just initially. E.g., for iterative

processes it is useful to define a set of periodic interactions. In specifying interactions, a

user can define custom concentration-setting expressions, as well as custom variables for

use in those expressions. For example, the bottommost interaction in Figure 10.3 injects

species B (here a ‘penalty species’) at concentration 0.5 if the output species Y does not

match AND of the original input concentrations, X1 in j and X2 in j. The COEL Interaction

Series API, as we call it, is then a scripted language that can describe a variety of com-

plicated experimental scenarios without touching the underlying simulation-framework

code. Thus end users have the freedom to manipulate the chemical system in a dynamic

and safe way (basic expression validation is provided).

To actually simulate a CRN, a user runs a defined reaction network with a selected

interaction series (which might be as simple as setting initial concentrations). Users can
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choose from a number of non-adaptive and adaptive deterministic ODE solvers, such as

Runge-Kutta4, Cash-Karp, and Fehlberg, to integrate their system. Upon running such

a simulation, the user is by default shown an embedded chart of species concentrations

over time (Figure 10.4). If further post-processing is required, full or filtered data could

be easily exported into a CSV file.

Note that since ODE solvers are deterministic, two simulations using the same CRN

and interaction series will always produce the same concentration traces if the interaction

series is deterministic. That is, however, not the case for the interaction series in Figure

10.3, which uses random weight setting and randomly injects binary inputs at concen-

tration 0 or 3. COEL does not currently have a feature to save random number seeds to

exactly replicate simulations such as these.

Figure 10.3: The details of a COEL interaction series. Left arrows denote the setting of species concen-
trations, and right arrows indicate assignments of user-defined variables. The interaction at time 100 does
the following (note that at time 0 the variable IN is set to 3): first, the variables X1 in j and X2 in j are
randomly set to 0 or 3 with equal probability. The concentration of S in is set to 3, then the concentrations
of X1 and X2 are set equal to their respective injection variables. Finally, Y is flushed from the system—its
concentration is set to 0.
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Figure 10.4: A chart showing concentration traces of 5 chemical species over time in COEL. In this case,
an interaction series injects a random combination of X1 and X2 at concentration 1, every 1000 time steps.

10.2.3 Performance Evaluation and Dynamics Analysis

COEL provides a core set of tools for analyzing and modifying CRNs, enabling statistical

record-keeping as well as the design of complex networks whose precise architecture is

initially unknown to the user. COEL’s basic interpretive tool is the “translation series,”

defined by the user in a similar manner to interaction series, described above. A single

translation is a straightforward function of the current concentrations and any predefined

constants, and can be Boolean or numeric in its output.

One can simply plot the output of a translation series to see the CRN’s behavior

through a certain lens, or use the series as the basis of evaluation and optimization. Be-

cause many CRNs involve a random component, especially in (but not limited to) their

interaction series, COEL allows the user to run large batches of simulations and collect

statistics based on these translation series.

Because it is usually difficult to precisely translate simulated chemistries into wet

ones, COEL also offers perturbation analysis. Users can evaluate the performance of the

CRN if a defined set of rates are randomly perturbed according to set parameters. This is
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useful in measuring the robustness of a chemical system.

COEL also offers dynamics analyses with a detailed statistical view of an individual

CRN simulation. This includes Lyapunov exponents, Derrida stability, time and spatial

nonlinearity errors, and more; along with reports about the simulation itself, like how

many species concentrations reached fixed points for given tolerance.

To allow maximum freedom in analysis, COEL offers CSV export of any raw data

a user might produce. Every chart and data visualization in COEL is accompanied by a

CSV export function, allowing the user to export either the data currently displayed on-

screen (to replicate a chart or precisely modify its appearance) or the entire raw dataset,

as shown in Figure 10.5.

Figure 10.5: A chart of three separate performance evaluations, each one showing the performance of
a binary chemical perceptron averaged over 10,000 repetitions for given interaction series representing
desired binary function (XOR, OR, PROJ). Note the data export options on the right.

10.2.4 Rate Constant Optimization

With defined evaluation criteria, a user can optimize CRN’s parameters with COEL’s

flexible genetic algorithm implementation. Users define the space to be optimized by se-
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Figure 10.6: A chart of a population’s fitness over time in a run of a particular GA. This plot displays several
features shared by all plots in COEL, enabling modification of the plot without refreshing the web page: an
x-axis slider to specify the plot’s domain, a drop-down menu to select which series to display, and a slider
to select the plot’s resolution relative the data set.

lecting which reaction and channel permeation rates are to be modified, in what ranges,

and under what constraints (e.g. several reaction rates can be fixed to each other). Chro-

mosomes are then vectors of rate constants.

The parameters of COEL’s GAs are easily modified, allowing for different rates of mu-

tation, rules of reproduction, initial populations, and so on. Chromosomes can be selected

to reproduce either deterministically with elite selection, or probabilistically relative the

measured fitness of each chromosome. Reproduction can be sexual or asexual. In the

former case, crossover between two chromosomes can be either one-point (i.e., in chro-

mosomes of length n, the child’s first p ≤ n genes are from one parent and the last n − p

are from the other), or a probabilistic shuffle. Supported mutation types are one-bit, two-

bit, exchange and per-bit, with content replacement and perturbation options. COEL’s

GAs also support fitness renormalization, and selection of maximization or minimization

of the target function (fitness vs. error).
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10.2.5 DNA Strand Visualization and Displacement Reactions

COEL has a convenient web interface for visualizing DNA strands specified by the Mi-

crosoft Visual DSD syntax [90, 91], which decomposes single and (full or partial) double

DNA strands into labeled subsequences called domains. Domains are classified as ei-

ther long or short, also called toeholds. These DNA-strand images can be exported in

the svg format, appropriate for publications and educational purposes alike. Note that

the Microsoft Visual DSD web tool (unlike COEL) requires an installation of Microsoft

Silverlight, whose support on Linux is problematic.

Furthermore, COEL can transform any CRN based on mass-action kinetics into a

DNA strand-displacement circuit using the methods of Soloveichik et al. [140]. In strand

displacement systems, populations of these species are typically represented by the popu-

lations of single-stranded DNA molecules. These interact with double-stranded gate com-

plexes which mediate transformations between free signals. In a nutshell, the mass-action

Figure 10.7: COEL’s tool for visualizing DNA strands specified in Visual DSD. Red lines represent toe-
holds, and gray lines are long domains.
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reaction X1 +X2 → X3 is translated to three displacement reactions X1 +L� H + B (a sin-

gle strand X1 displaces an upper strand B from the complex L), X2 +H → O+W1 (a single

strand X2 displaces an upper strand O from the complex H), and finally O+T → X3+W2 (a

single strand O displaces an upper strand X3 from the complex T ), where L,H, B,O,T,H

are auxiliary fuel species, and W1 and W2 are waste products.

Once applied to a reaction set, the transformation produces a CRN with new interme-

diate species and reactions, describing displacements of single strands from partial or full

double strands. Besides new reactions, COEL also specifies the DNA structure of each

species in terms of numerically-labeled domains, the output of which is shown in Figure

10.8. This is a powerful tool for automatic translation of so-called in silico systems to

feasible wet chemistries in a user-friendly way. The authors are not aware of any other

CRN simulation framework that includes DNA strand displacement transformations as a

part of their application toolbox.

Figure 10.8: A DNA strand displacement reaction obtained by COEL’s transformation of arbitrary CRNs
into strand displacement circuits.
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10.2.6 Random Chemical Reaction Network

COEL offers functionality to quickly make a random chemical reaction network with set

specifications. User-defined parameters include the number of species, the number of re-

actions, the number of reactants and products in each reactions, and a random distribution

of reaction constants; COEL meets all of these constraints with combinatorial design. For

open systems the user can also specify influx and efflux constraints.

Furthermore, COEL also supports generation of random DNA-stand circuits [18] us-

ing single, full double, and partial double strands. Parameters for this function include

number of single strands, ratio of upper to lower strands, ratio of upper strands with

complements, (positive) normal distribution of partial double strands per upper strand,

(positive) normal distribution of rate constants, ratio of influxes and effluxes, and distri-

bution of rate constants. Based on a randomly generated ordering, DNA strands with

higher order take precedence over lower-order strands in DNA-strand displacement reac-

tions (Section 10.2.5). Also, note that the maximum number of strands that could bind

together is two, which is justified by assuming that a single strand does not bind to partial

double strand, but always displace its upper or lower part. We assume wet synthesis of

these networks is possible by standard DNA sequence design [164].

10.2.7 Platform-wide Features

Numerous features of COEL are omnipresent throughout the platform, creating a famil-

iar look-and-feel as well as providing intuitive access to common features. Throughout

COEL, users input mathematical functions in the straightforward syntax of the Java Ex-

pression Parser (displayed in Figure 10.3), and those expressions are always validated

by COEL before being input into any simulation. Views, such as COEL’s list of reac-
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tion sets or interaction series, have a common search and filter feature, allowing for easy

navigation through huge sets of objects.

All charts in COEL are made with the Google Visualization API, and include sliders

for domain selection and data filtering (see Figure 10.6), as well as CSV export options

(see Figure 10.5). Finally, COEL has rudimentary user privacy protocols, where each user

account is either a ‘user’ who can see only his/her own projects, or an ‘admin’ who can

see every project on COEL. In order to share a project, a group of users currently have to

have admin rights. We plan to expand privacy features in later versions.

10.3 ARCHITECTURE AND TECHNOLOGY

COEL’s architecture is highly modular with strict separation of business logic and tech-

nological application aspects. Nowadays, the main challenge of enterprise application

development is not programming per se but rather the integration of diverse technologies

and libraries which each addresses different application needs. The absence of strict inter-

modular / inter-layer dependencies enables quick and easy customization and replacement

of technologies and providers.

At this level of abstraction only the domain objects, the data holders of business data,

implemented as POJOs (Plain Java Objects), are shared among all application parts and

layers. Figure 10.9 presents a high-level overview of COEL’s architecture with call (re-

quest) pathways. On the very top we have two clients representing the only entry points to

the application: the web client backed by Grails [5], jQuery [3] and Bootstrap [1] frame-

works (discussed in Section 10.3.4), and the plain console client implemented in standard

Java for “headless” scripting.

Based on user’s requests, the clients call the services such as ChemistryService,
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Figure 10.9: A high-level overview of COEL’s architecture consisting of web and console clients, web
servlet, services, business logic, persistence layer, and computational grid. The application (IoC) container
holding the server-side of the application is implemented in Spring framework.

Evolution Service, and UserManagementService (Section 10.3.2) maintained by the

Spring application container (Section 10.3.1), which then redirects either to a compu-

tational grid implemented on the top of GridGain HPC technology [2] (Section 10.3.3)
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for distributed task execution, or to the persistence layer with DAOs (Data-Access Ob-

jects) and ORM (Object-Relation Mapping) provided by Hibernate [6] (Section 10.3.5).

In addition, the web client controllers have a direct link to the persistence layer, which is

beneficial especially for basic CRUD (Create, Read, Update, Delete) operations. At the

very bottom a PostgreSQL [7] database stores and provides data on the demand of the

persistence layer.

The business logic such as chemistry simulation and GA optimization is implemented

mainly in the Scala language, leveraging both object-oriented and functional program-

ming approaches. All technologies and libraries integrated into COEL are either open-

source or free to use.

Table 10.1: A list of the acronyms used in this section.

Acronym Description
JVM Java Virtual Machine
ORM Object-Relational Mapping
POJO Plain Java Object
DAO Data-Access Object
IoC Inversion of Control
JEP Java Expression Parser
JMS Java Message Service
REST Representational State Transfer
HPC High Performance Computing
JDBC Java Database Connectivity
SQL Structured Query Language
PLSQL Procedural Language/Structured Query Language
HQL Hibernate Query Language

10.3.1 Application Container

The Spring Framework [8, 155] provides the COEL’s core application infrastructure.

Spring is a leading enterprise solution for Java maintained by the SpringSource commu-

nity since 2002. Compared to Enterprise Java Beans, the Spring portfolio is less invasive
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and more flexible. Spring is not an application server, it is just a set of libraries which

can be used and deployed anywhere (like e.g., Tomcat and Jetty). It consists of several

sub-projects which can be used separately or together as needed. Spring is a lightweight

tool that shows how little is really needed for enterprise application development. It does

not have strict dependencies, and it detaches technical and business concerns.

The IoC (Inversion of Control) container is a central part of the Spring Framework.

It controls the creation, number of instances (with singleton and prototype scopes), life-

cycle, inter-dependencies (loose-coupling or wiring) and general configuration of appli-

cation components, modules, adapters, specific utility classes or in general any POJO

whose creation and use should be maintained in the application context. Spring IoC is a

simple and transparent glue or integrator of various components and frameworks which

are provided either by Spring Portfolio itself or other parties.

The IoC container encourages the best practices of programming with interfaces, i.e.,

each bean (POJO object in the IoC container) should consist of an interface and imple-

mentation class. Therefore, each bean knows that it can talk to a different bean that does

something specific, but not which type of object, how its functionality is implemented,

nor how the call is carried out. The IoC container injects the dependencies into POJOs at

the runtime, and so beans take care only about their business purpose, not creation (and

maintenance) of their relationships.

This approach is superior to the factory design pattern because all dependencies get in-

jected and configured through the application container (annotations and/or XML), how-

ever beans are not aware of the container’s existence, i.e., unlike the factory pattern they

do not need to call the application container in order to get their dependencies. The ap-

plication code of Spring beans has little dependency on Spring itself. As a matter of fact,

IoC is often described with the Hollywood principle: “Don’t call us, we call you.” Besides
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Spring, other popular IoC containers include GUICE and Pico.

IoC abstraction results in modular, lightweight and layered architecture with loose-

coupled pluggable components. Programmers are also encouraged to implement beans

as thread-safe and stateless if possible, so several callers could safely query the same

component without worrying about timing and/or call history.

Last but not least, Spring IoC enables COEL to become a truly test-driven project.

Because of loose-coupling and dependency injections, our JUnit tests could switch to test

(rather than production) application context and substitute for instance implementation

classes that require remote access to production systems with mock objects.

10.3.2 Services

The service layer is the actual gateway to the business/functional part of the application.

Services are callable functions provided to the clients (or outside world). COEL is di-

vided into five functional modules, each exposed by a separate service interface (facade):

ChemistryService, EvolutionService, NetworkService, AnalysisService and

UserManagementService.

One of the most compelling reasons to use Spring for service management is its com-

prehensive transaction support. Spring provides a consistent abstraction for transaction

management that integrates very well with various data access abstractions. For remote

access, the service interfaces can be easily injected by appropriate stubs. Spring sup-

ports for example Remote Method Invocation (RMI), Spring’s HTTP invoker, JAX-RPC,

JAX-WS or JMS.

Since the web client runs as a part of the application context, i.e., it lives inside the

same server-side JVM (Java Virtual Machine) as Spring, all service calls are local. On

the other side, the console client runs as a separate process and its calls are remote. More
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precisely, console clients requests are carried out by RESTFul Web Services and alter-

natively by JMS. In the future we might consider exposing a portion of services to 3rd

parties, possibly other universities or teams, through REST.

10.3.3 Cloud Computing

COEL’s computational grid has been built on top of the GridGain In-Memory Computing

Platform [2]. The GridGain HPC (High Performance Computing) library implements a

scalable low-latency zero-deployment computational grid, which fits seamlessly into our

Spring-backed IoC container (Section 10.3.1).

COEL’s grid currently consists of 30 nodes with around 750 cores. All nodes are

hosted on Portland State University hardware, though the technology allows us to add

any geographically remote resource, since the communication is carried out by TCP/IP

protocol with optimized marshaling (serialization) of exchanged data. We plan to utilize

existing grid technology to pool the resources with other geographically dispersed teams.

COEL’s grid acts transparently, as a single computing resource. GridGain enables

COEL’s users to be more productive by eliminating the complexity of distributed com-

puting. Regardless of a user’s geographic location, they can add tasks to the grid from the

COEL web page without much effort. When a user submits a task, after the chain of calls

the request is ultimately received by the grid master node running within the application

context. The task splits into many partial jobs, which are then distributed over the grid.

GridGain provides zero-deployment technology, so a new slave node (or a new task

code) could be added to the grid on-the-fly by registering with the master node identified

by the IP address or domain name. Therefore the grid’s topology might change freely dur-

ing its lifetime. COEL’s grid supports several enterprise features contributing to effective

and robust execution of jobs. The grid keeps track of various node statistics such as CPU
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performance, execution time, and availability, which are constantly updated and utilized

for adaptive job distribution such that high performing nodes obtain more jobs. Also,

if a node disconnects from the grid, the exception is noted by a periodic heartbeat, and

disconnected node’s jobs are redistributed across the grid. Moreover, if a node finishes its

execution sooner than expected and so it sits idle (its wait queue is empty), it steals jobs

from other nodes.

Due to the communication and task initialization overhead we execute only nontrivial

tasks on the grid, with compute times that can last seconds, hours, or days. The main grid

tasks include chemical ODE simulations, dynamics analyses, and evolutionary optimiza-

tions of rate constants.

10.3.4 Web Client

COEL’s web client is implemented in Grails [5], which is a powerful web 2.0 framework

using the Groovy dynamic language for the Java Virtual Machine. JVM compatibility

means that Java, Groovy, and Scala source compiles into Java byte code, hence these

three languages are natively inter-callable. Grails follows the ”Convention over Config-

uration” approach, which emphasizes standard (conventional) naming, binding and data

flow, so the structure of the application is simply implied if it is not explicitly config-

ured. This approach is heavily utilized in a function called scaffolding, which based on

a domain object structure generates dynamically at runtime the controller with associated

web pages, providing basic CRUD operations without any effort. As a matter of fact, we

could build a COEL prototype web client just with a few lines of code. Grails internally

uses Spring IoC for dependency injection and bean creation. Furthermore, Grails was

officially incorporated into Spring portfolio at the end of 2008.

The web front-end relies heavily on Javascript provided by the jQuery library [3],
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which makes UI interactive and intuitive and moves a part of data processing and visu-

alization directly to the web browser. For instance, although COEL runs all simulations

server-side, if a user wishes to see a chart, e.g., of species concentration traces, COEL

sends the user raw data which is transformed into a chart by client-side Javascript us-

ing Google Charts API. For styling and some widgets we used the Bootstrap library [1]

created by Twitter.

Figure 10.10: COEL’s home (welcome) page. URL: coel-sim.org.

10.3.5 Persistence

The persistence layer consists of DAOs (Data-Access Objects) wrapping a storing, retriev-

ing, deleting, and filtering functionality for domain objects. To map an object-oriented do-

main model to a traditional relational database we use Hibernate [6], an object-relational

mapping (ORM) library for the Java language. DAOs and Hibernate are widely supported

by Spring, which offers hooks for fast integration.

Hibernate solves Object-Relational impedance mismatch by replacing direct persistence-
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related database accesses with high-level object handling functions. Hibernate provides

declarative strategy for persisting data. Programmers define a mapping of columns, ref-

erence metadata and inheritance strategy mapping. Hibernate handles details about per-

sistence implementation, like SQL statements and JDBC connection creation. To obtain

data we use SQL or the Hibernate query language (HQL). The actual translation from the

POJO to JDBC result set is automatic. Hibernate also uses various optimization strategies,

such as cache and DB access optimization.

We believe that it is imperative to store data in a structured database, enabling prompt

retrieval, searching and post-processing. PostgreSQL [7] is a mature open source database

providing standard SQL/PLSQL language support with numerous additional features.

The decision to select PostgreSQL as DB provider was driven mainly by the follow-

ing factors: a lot of hands-on experience, a comprehensive console as well graphical UI

(PgAdmin), an open source license, and support for array data types, useful for storing

scientific vector data. The database model currently contains about 90 tables. To assure

compatibility for each version of COEL we migrate data by a set of SQL scripts. Also,

each day the whole database is dumped (backed-up), so we could restore the state of

the DB to a certain date and time very quickly. That means our data is stored safely in

structured and indexed format.

10.3.6 Build, Deploy, and Testing

To build COEL’s project and to maintain its library dependencies, we use Apache Maven [4].

For a new application version we run a set of JUnit tests, which guarantee that the core

functionality works as expected. After that, COEL is deployed to the Tomcat application

server. Figure 10.11 shows a deployment schematic of COEL’s components over several

resources (machines), each running some part of the application: the database server, the

236



10.3. ARCHITECTURE AND TECHNOLOGY

application server, and the cloud. Due to the extendability of the computational cloud, the

number of resources is not bounded. Also, note that the database server and the applica-

tion server are currently hosted on the same machine.

COEL currently has about 40 users, 5 of which are active, i.e., they access COEL

on a daily basis. Once COEL will be available to the wider research community we

expect the number of users to grow to hundreds, which would require more resources and

more rigorous testing. If the users find a production issue or want to recommend a new

feature, they will be able to submit a report through a Jira issue tracking system. More

than 100 issues and new feature requests have be reported so far internally. Currently, the

development of COEL is largely driven by the author’s research needs.

Figure 10.11: Diagram showing a physical deployment of COEL’s components.
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10.4 DISCUSSION

Here we presented a new web-based chemistry simulation framework, COEL. Its modern

layered architecture includes a scalable computational grid, a user-friendly and interactive

web UI, and the safe and transactive persistence of chemistry models and simulation re-

sults. Its wide range of features primarily target chemistry simulations, GA optimization

of rate constants, performance evaluations, and dynamics analysis. We paid particular

attention to general usability and lightweight and fluid layout, and embedded data visual-

ization using Google’s charting engine.

COEL can be used without any installation, and from any web browser. As such, it is

easier to start using and has a larger potential audience than existing desktop-application

based frameworks. Keeping COEL in the cloud allows for easy collaboration and sharing

of results, and makes it simple to build upon another’s work.

COEL’s computational grid utilizes CPU resources only, however, it would be ben-

eficial to extend the grid over GPUs as well. GridGain, our current computational grid

library, does not provide native support for GPUs. On the other hand, we argue that

reimplementing all tasks and business logic in (J)CUDA or OpenCL and maintaining two

code branches would not be feasible. Therefore, we plan to explore transparent compila-

tion mechanism such as Aparapi or RootBeer, where a single Java code compiles to CPU

and GPU version transparently and gets executed based on resource availability.

Furthermore, we often face the situations when we want a newly submitted task to be

executed as soon as possible, or we want to associate more CPU time to the tasks of a

certain user. To achieve that we would like to assign priorities to the tasks based on their

type and users’ privileges.

As mentioned in Section 10.3.2 we might consider exposing certain services and rou-
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tines through RestFul API so 3rd party applications could call, integrate and tailor COEL’s

functionality for their needs. Also, we plan to introduce more advanced sharing permis-

sions, so each user could specify with which group or user he wants share the models and

results for viewing and editing.

To improve the quality of chemistry ODE-based simulations we plan to integrate

the standard LSODA solver. Also, to provide an alternative to the deterministic ODE

solvers our goal is to introduce a stochastic simulator based on the Gillespie method [56].

The Gillespie method simulates each reaction step stochastically on a molecular level

[79, 152]. It is computationally more demanding than ODE integration, however, it is

physically more realistic, especially if the number of molecules in the system is low.

Last but not least, our vision for COEL is to become a common platform for diverse

unconventional computing models. One step toward that goal is a new Network mod-

ule, which will eventually simulate complex spatial, random, or layered networks with

configurable node functions and interaction series.
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CONCLUSION

In this dissertation, we extracted the essence of “learning and adaptation” formalized in

the theory of neural networks and machine learning and transplanted it into the suit of

chemical reaction networks (CRNs), macroscopic simulated chemistry driven by mass-

action and Michaelis-Menten kinetics. Since chemical and neural network primitives are

not compatible, we had to approach this reimplementation and mimicking problem from

various angles.

As showed in Figure 11.1 and Table 11.1, we introduced several novel CRN models

and constructions. Our models are the first CRNs capable of autonomous learning, i.e.,

supervised learning implemented internally and operated by a teacher. This work estab-

lished a solid base for what we hope might become a new subfield interfacing chemistry

and neural networks. The list of symbols and acronyms can be found on Page V.

We designed four binary chemical perceptrons: two symmetric, the WLP and the

WRP, and two asymmetric, the SAPS and the TASP. These can learn 14 linearly separable

binary functions perfectly. The asymmetric perceptrons are substantially smaller than

the symmetric (around 50%) but are less robust to the perturbation of rate constants.

Also, the asymmetric perceptrons learn by reinforcement (penalty signal) as opposed to

desired output used by the symmetric perceptrons. The TASP, a thresholded version of

the ASP, embeds an active thresholding, i.e., conditional amplification of the output by
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incorporating Wilhelm’s minimal bistable chemical system [159].

To store past input concentrations, we implemented two sequential delay lines with

a linear structure and latency, the MDL and the BDL. A parallel-accessible delay line

improves the previous models by providing a parallel access (a constant arbitrary small

latency) and functions with no copy error.

To tackle more complicated (non-binary) scenarios, we modeled an analog chemical

perceptron, the AASP, derived from the SASP. It can learn various linear and nonlinear

functions of two inputs with an error (RNMSE) in the range (0.103, 0.0.378). We demon-

strated the modularity of the PDL by an integration with an AASP of two to five inputs,

which tackled four time series.

We built a feedforward chemical neural network (FCNN), which consists of hierarchi-

Figure 11.1: A high-level taxonomic tree of all our chemical models showing derivation paths, historical
context, and integrations. Since the FCNN, which learns the binary functions, is not a perceptron but a
multicompartment chemistry consisting of three analog perceptrons (AASPs), we placed it between the
binary and analog perceptron models.
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cal compartments communicating with each other through channel-mediated exchange of

chemical species. By combining three modified AASPs into a two-to-one topology with

the channels for the forward pass and the error backpropagation, we successfully ad-

dressed the non-linearly separable binary functions of XOR (100% accuracy) and XNOR

(98.05% accuracy), which are beyond the capabilities of single chemical perceptrons.

To provide an insight into chemical learning, we rigorously analyzed the differential

equations of the AASP and the CHLP and derived closed or approximative formulas for

the input-weight integration and weight update. We showed that the formulas of the

Table 11.1: Overview of all our models, i.e., chemical binary and analog perceptrons (of two inputs), delay
lines (of size three), and the feedforward chemical neural network (FCNN), showing the size (species /

reactions), performance, and the most important features. The performance (error) of analog perceptrons is
measured as RNMSE.

Model Size Performance Notes
(S / R)

Bin Perceptron LS Bin Funs Bin Funs
WLP [21] 21/54 100% 94.71% symmetric design, highly robust

weights convert to output (cumbersome)
WRP [21] 14/30 100% 95.18% symmetric design, highly robust

SASP [22] 12/16 99.5% 93.40% asym. design, trained by penalty signal

TASP [22] 13/20 100% 94.80% asym. design, trained by penalty signal
active thresholding (bistability)

FCNN [27] 29/57 100% 99.88% two hidden and one outer compartments
16 channels three modified AASPs, solves XOR

Ana Perceptron Linear Fun NARMA10
AASP [20] 17/18 0.1034 0.7623 weight cross-dependence, nonscalable

combined with PDL
CHLP 21/22 0.0013 0.3464 analytically designed, similar to NNLP

additive, DNA-SD and deoxy modeled

Delay Line Copy error Latency
MDL [114] 10/6 0 O(n) sequential, manually operated

DNA-SD and deoxy modeled
BDL [114] 10/6 exp O(n) sequential, signals backpropagated

PDL [19] 12/8 0 O(1) parallel, only two signals, wait queues
O(n2) species and reactions
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CHLP match those of the formal neural network linear perceptron. The performance of

the CHLP equals that of the neural network linear perceptron and exceeds the AASP by

94 or 437 times on average for the static functions depending on the error metrics. For

our benchmark time series of linear weighted moving average, moving maximum, and

highly nonlinear benchmark NARMA2 and NARMA10 tasks [15], the error is reduced

by 8.37 (or 15.24) times to the 0.004 – 0.346 RNMSE (or the 0.02 – 4.83% SAMP). Even

though we do not explicitly measure the generalization error, i.e., we do not distinguish

between training and testing test, each training sample is drawn randomly from the full

input-output domain (infinite for an analog setting). Our chemical models are therefore

trained on previously unseen data and to succeed, they must approximate an underlying

function.

An important product of this dissertation is the first cloud-based chemistry model-

ing tool, COEL, which stores all the models and ran all the required simulations. It is

accessible for educational and research purposes at coel-sim.org.

To demonstrate that our models are implementable in wet chemistry, we applied two

popular DNA-based techniques on one chemical learner, the linear chemical perceptron,

and one chemical delay line, the manual signalling delay line. In particular, we employed

DNA strand displacement circuitry [140, 166], which is generic but uses a large number

of DNA fuel species, and deoxyribozyme gates [95, 145], which more naturally map to

catalytic reactions and are reusable, but require ad-hoc adjustments to the original CRNs.

Since the number of strands or deoxyribozymes in our two DNA-based implementations

(molecular blue-prints) is within the complexity range of the state-of-the-art (experimen-

tally constructed) circuits, we can assert that bringing our chemical designs into physical

reality is plausible.

An important implication of our CRN-specified chemical learners is that any future
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attempts to implement learning in wet chemistry would not need to reinvent the core

reactions and the species roles, but rather focus on automatic or ad-hoc mapping to poten-

tially arbitrary chemical substrate and reaction primitives. Since our CRN models focus

on essential relations among species and kinetics and they abstract from actual molecular

structure, they could accommodate different wet chemical substrates and implementation

techniques.

11.1 APPLICATIONS

The importance of this research is the hope of a reprogrammable chemical computer.

A transformation of CRNs to DNA displacement circuits, achieved mainly by the au-

tomatized techniques, such as Soloveichik’s method [140] or Cardelli’s two and three

domain encodings [34, 35], is commonly associated with programming. Such methods

posit that CRN, because of its abstract nature, is a programming language (symbolic and

kinetic specification) and DNA circuit is its wet implementation (hardware). We argue

that a use of the term programming in this context is misleading and overloaded. De-

signing a CRN for a given problem requires having new reactions and new species, DNA

strands—chemical hardware—synthesized from scratch. In more constrained meaning of

programming, a program is anything that specifies the behavior above the substrate or

physical realization of the system. In chemical learning a single CRN with a single wet

DNA implementation could be altered by the user’s actions without touching or modify-

ing CRN nor underlying DNA reaction mechanism.

Our chemical learners, like formal neural networks, operate in two modes: simply

processing output when given an input, and learning via desired output or penalty signal

and consequent backpropagation of errors. A wet implementation of a chemical learning
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device, once trained to learn a task, could perform that task reliably as long as desired.

The chemical computer could then, at any time, be retrained to perform any other task it

supports.

Furthermore, the liquid nature of chemical computers and the possibility of con-

structing them from bio-compatible DNA strands open profound possibilities for patient-

embedded biochemical computers. A fleet of cell-sized machines could monitor chemical

concentrations in the bloodstream, and modulate the release of some drug accordingly.

With time-series integration, biochemical computers could keep a record of changing

biological systems and detect and adapt to specific concentration patterns produced, e.g.,

by cancer cells in a host [162], acting as diagnostic aids and tools in preventative medicine

and smart drug delivery [92]. Our approach could potentially replace hard-coded solu-

tions and would allow reusing (retraining) chemical systems without redesigning them.

Learning and adaptation allow organisms to generalize and predict the ever-changing

environment they live in, which leads to a competitive advantage for their survival and

reproduction. Learning is therefore one of the pillars of life [25,88]. As we discussed, the

chemical learning’s self-regulatory nature could be perceived as a programmable home-

ostasis. Understanding the organization principles of chemical learning might help us to

track the origin of life [64], its prerequisites, and intermediates.

11.2 FUTURE WORK

Our work could be expanded in many ways. For instance, it would be intriguing to inte-

grate standard chemical oscillators such as Lotka-Volterra [96, 97], the Brusellator [57],

and the Oregonator [53] to drive the copy signals of a chemical delay allowing a system

to sample and buffer input periodically. This inner clock (heart-beat) would enable ex-
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tending chemical learners to sense continuous environment concentration. Further, from

a systems biology perspective, an explicit decay of weight species, representing the state,

would enforce the system to repair its functioning perhaps in combination with an os-

cillator triggering a learning procedure specified by an internalized target behavior. So

far, we explored only the most basic multi-compartment topology with two subcompart-

ments. A logical extension would be to introduce multi-nested compartments, hosting the

linear chemical perceptrons with the input-weight integration and weight update modeled

through the closed formulas, which would make the simulation time realistic.

Another future work is to employ so-called reservoir computing (RC) [33, 78, 98, 99,

136], a novel machine learning method based on recurrent neural networks. RC struc-

turally consists of a fixed, randomly connected recurrent neural network, a reservoir,

which acts as a set of high-dimensional filters with fading memory, and a memoryless

readout layer, which is trained by supervised learning. The RC approach is relevant be-

cause for time-series prediction it is superior to classical recurrent networks and offers

flexible implementation that could be expressed in various formalisms and substrates.

The performance of a reservoir correlates to its dynamical properties, the most important

of which is, the sensitivity to perturbations, rather than its structure. RC’s loose structural

assumptions therefore suggest that it could be expressed in a chemical form as well [59].

To implement a chemical reservoir we could randomly generate a chemical reaction net-

work using graph-theoretical properties such as a species participation number, or gener-

ate a random DNA strand displacement system as we did in [18]. Learning, which occurs

in a read-out layer, could be effectively carried out by a linear chemical perceptron or a

feedforward chemical neural network.

A promise of this work and our long-term goal is to assemble a biomolecular learning

machine in the laboratory. In collaboration with other teams we aim to sequence and
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11.2. FUTURE WORK

synthesize our DNA-specified models of the linear chemical perceptron and the manual

signalling delay line and conduct a wet experiment as prescribed by our interaction series.
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APPENDICES

Appendix is divided into four sections, which contain extra materials about the chemi-

cal perceptrons (Appendix A), the feedforward chemical neural network that learns the

logic functions including XOR and XNOR (Appendix B), the DNA strand displacement

specifications of the chemical linear perceptron and the manual signalling delay line (Ap-

pendix C), and the various data that do not fit to the afformentioned categories (Appendix

D). For easier reproducibility we provide all our models as ODEs in Octave/Matlab for-

mat, downloadable at http://coel-sim.org/download.
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Table A.1: The WLP’s reactions with the best rate constants found by the GA, rounded to four decimal
places. Reactions are divided into groups according to common functional characteristics.

# Reaction Catalysts Inhibitors Rates
1 W⊕0 + E → W

⊕

0 + Y1 X0
1 , X

1
1 , X

0
2 , X

1
2 0.0838, 3.7116, 0.2686, 0.4393

W	0 + E → W
	

0 + Y0 X0
1 , X

1
1 , X

0
2 , X

1
2

2 W⊕1 + E → W
⊕

1 + Y1 X1
1 0.1630, 0.4358, 0.5058, 0.7404

W	1 + E → W
	

1 + Y0 X1
1

W⊕2 + E → W
⊕

2 + Y1 X1
2

W	2 + E → W
	

2 + Y0 X1
2

3 W⊕1 → W
⊕

1 X0
1 0.0974, 4.5073

W	1 → W
	

1 X0
1

W⊕2 → W
⊕

2 X0
2

W	2 → W
	

2 X0
2

4 W
⊕

0 → W⊕0 X0
1 , X

1
1 , X

0
2 , X

1
2 0.0093, 8.3625

W
	

0 → W	0 X0
1 , X

1
1 , X

0
2 , X

1
2

W
⊕

1 → W⊕1 X0
1 , X

1
1 , X

0
2 , X

1
2

W
	

1 → W	1 X0
1 , X

1
1 , X

0
2 , X

1
2

W
⊕

2 → W⊕2 X0
1 , X

1
1 , X

0
2 , X

1
2

W
	

2 → W	2 X0
1 , X

1
1 , X

0
2 , X

1
2

5 W⊕
0 + W	0 → λ 0.2448

W⊕
1 + W	1 → λ

W⊕
2 + W	2 → λ

6 Y0 + Y1 → λ 0.4249
7 X0

1 → λ 0.0115
X1

1 → λ
X0

2 → λ
X1

2 → λ

8 Y0 → λ 0.0009
Y1 → λ

9 D0 → λ 0.0018
D1 → λ

10 D0 → W	0 Y1 0.0710, 0.3033
D1 → W⊕0 Y0

11 D0 → W	1 Y1, X1
1 (AND) 0.5000, 0.1955

D0 → W	2 Y1, X1
2 (AND)

D1 → W⊕1 Y0, X1
1 (AND)

D1 → W⊕2 Y0, X1
2 (AND)
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Table A.2: The WRP’s reactions with the best rate constants found by the GA, rounded to four decimal
places. Reactions are divided into groups according to common functional characteristics.

# Reaction Catalysts Rates
1 X0

1 → Y1 W⊕0 0.0972, 4.7912
X0

1 → Y0 W	0
X0

2 → Y1 W⊕0
X0

2 → Y0 W	0
X1

1 → Y1 W⊕0
X1

1 → Y0 W	0
X1

2 → Y1 W⊕0
X1

2 → Y0 W	0
2 X0

1 → λ W⊕0 0.0019, 5.0000
X0

1 → λ W	0
X0

2 → λ W⊕0
X0

2 → λ W	0
3 X1

1 → Y1 W⊕1 0.0081, 3.0102
X1

1 → Y0 W	1
X1

2 → Y1 W⊕2
X1

2 → Y0 W	2
4 W⊕0 + W	0 → λ 0.5000

W⊕1 + W	1 → λ
W⊕2 + W	2 → λ

5 Y0 + Y1 → λ 0.5000
6 Y0 → λ 0.0011

Y1 → λ

7 D0 → λ 0.0132
D1 → λ

8 D0 → W	0 Y1 0.0265, 1.8421
D1 → W⊕0 Y0

9 D0 → W	1 Y1, X1
1 (AND) 0.3786, 0.0477

D0 → W	2 Y1, X1
2 (AND)

D1 → W⊕1 Y0, X1
1 (AND)

D1 → W⊕2 Y0, X1
2 (AND)

271



Table A.3: The reactions with the best rate constants found by the GA, rounded to four decimal places for
(a) the SASP MM, (b) the SASP MA, (c) the TASP MM, and (d) the TASP MA. Reactions are divided into
groups according to common functional characteristics.

(a)

Group Reaction Catalyst Rates
1 S in + Y → λ 0.1832
2 S in → Y W0 0.0637, 1.4774
3 X1 + Y → λ 0.0086

X2 + Y → λ

4 X1 → Y W1 0.0112, 5.0
X2 → Y W2

5 P→ W⊕ 0.5402
6 P→ W	 Y 0.1465, 4.1054
7 W	 + W0 → λ 0.0001
8 W⊕ → W0 0.2135
9 W	 → W	1 X1 0.1280, 0.0547

W	 → W	2 X2

10 W1 + W	1 → λ 0.4459
W2 + W	2 → λ

11 W⊕ → W1 X1 0.4400, 0.8848
W⊕ → W2 X2

(b)

Group Reaction Rate
1 S in + Y → λ 0.4631
2 S in + W0 → Y + W0 0.1047
3 X1 + Y → λ 0.0287

X2 + Y → λ

4 X1 + W1 → Y + W1 0.0060
X2 + W2 → Y + W2

5 P→ W⊕ 0.3795
6 P + Y → W	 + Y 0.0430
7 W	 + W0 → λ 0.3593
8 W⊕ → W0 0.0088
9 W	 + X1 → W	1 + X1 0.0348

W	 + X2 → W	2 + X2

10 W1 + W	1 → λ 0.1334
W2 + W	2 → λ

11 W⊕ + X1 → W1 + X1 0.2032
W⊕ + X2 → W2 + X2

(c)

Group Reaction Catalyst Rates
1 S in + Y → λ 0.4584
2 S in → Y W0 0.4459, 1.8066
3 X1 + Y → λ 0.0203

X2 + Y → λ

4 X1 → Y W1 0.0378, 2.5665
X2 → Y W2

5 P→ W⊕ 0.2082
6 P→ W	 Y 0.3137, 0.2370
7 W	 + W0 → λ 0.018
8 W⊕ → W0 0.1747
9 W	 → W	1 X1 0.3036, 0.1282

W	 → W	
2 X2

10 W1 + W	1 → λ 0.2335
W2 + W	2 → λ

11 W⊕ → W1 X1 0.6000, 0.6235
W⊕ → W2 X2

12 Yaux → 2Y 1
13 2Y → Y + Yaux 1
14 Y + Yaux → Yaux 0.5333
15 Y → λ 0.3

(d)

Group Reaction Rate
1 S in + Y → λ 0.2922
2 S in + W0 → Y + W0 0.2731
3 X1 + Y → λ 0.0265

X2 + Y → λ

4 X1 + W1 → Y + W1 0.0088
X2 + W2 → Y + W2

5 P→ W⊕ 0.0523
6 P + Y → W	 + Y 0.5019
7 W	 + W0 → λ 0.0024
8 W⊕ → W0 0.0037
9 W	 + X1 → W	1 + X1 0.6

W	 + X2 → W	2 + X2

10 W1 + W	1 → λ 0.518
W2 + W	2 → λ

11 W⊕ + X1 → W1 + X1 0.4558
W⊕ + X2 → W2 + X2

12 Yaux → 2Y 1
13 2Y → Y + Yaux 1
14 Y + Yaux → Yaux 0.5333
15 Y → λ 0.3
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Appendix B

FEEDFORWARD CHEMICAL NEURAL NETWORK

Contained in these materials are the detailed numerical data, defining the FCNN as im-

plemented in this paper. Table B.1 lists all chemical reactions and rates in each of our

chemical neurons and the AASP. Table B.2 lists the cell-wall permeation channels be-

tween the neurons in the network, which enable feeding forward and backpropagation.

Tables B.3 and B.4 list the ODEs that were integrated to simulate the FCNN, one for each

species. Table B.5 lists the experimental protocol, i.e., the schedule of external injections

into the FCNN that facilitated each learning iteration. Figure B.1 shows performance

plots of several prototypes of the FCNN, as they attempt to learn the 16 binary functions.

These prototypes used neurons derived from different single chemical perceptrons than

the AASP, which was our final choice.
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Table B.1: The reactions and rate constants of: (a) the original AASP, an analog asymmetric signal per-
ceptron, (reproduced from [15]), (b) the hidden chemical neuron, and (c) the output chemical neuron. The
hidden neuron is a modification of the AASP that omits the output–target-output comparison reactions and
requires an extra reaction (highlighted in dark gray) for feeding forward the output. The output chemical
neuron (also a modification of the AASP) uses the penalty species P and the threshold T for learning binary
output, and propagates the error backwards using species P⊕i and P	i . These species interact in modifications
of the AASP’s reactions (highlighted in light gray), as well as novel ones (dark gray). Note that the first
6 reactions in each set implement the input-weight integrations, the rest implement learning. The catalytic
reactions have two rates: kcat and Km. All rate constants are rounded to four decimal places.

(a) AASP

Reaction Rates
S in + Y → λ 0.1800

S in
W0
−−→ Y + S L

in 0.5521, 2.5336
X1 + Y → λ 0.3905
X2 + Y → λ

X1
W1
−−→ Y + XL

1 0.4358, 0.1227

X2
W2
−−→ Y + XL

2

Ŷ → W⊕ 0.1884

Y
S L
−−→ W	 0.1155, 1.9613

Y + Ŷ → λ 1.0000

W	
S L

in
−−→ W	0 0.600, 1.6697

W0 + W	0 → λ 0.2642

W⊕
S L

in
−−→ W0 0.5023, 2.9078

W	
XL

1
−−→ W	1 0.1889, 1.6788

W	
XL

2
−−→ W	2

W1 + W	1 → λ 0.2416
W2 + W	2 → λ

W⊕
XL

1
−−→ W1 0.2744, 5.0000

W⊕
XL

2
−−→ W2

18 reactions, 20 rates

(b) HCN

Reaction Rates
S in + Y → λ 0.1800

S in
W0
−−→ Y + S L

in 0.5521, 2.5336
X1 + Y → λ 0.3905
X2 + Y → λ

X1
W1
−−→ Y + XL

1 0.4358, 0.1227

X2
W2
−−→ Y + XL

2

W	
S L

in
−−→ W	

0 0.600, 1.6697
W0 + W	0 → λ 0.2642

W⊕
S L

in
−−→ W0 0.5023, 2.9078

W	
XL

1
−−→ W	

1 0.1889, 1.6788

W	
XL

2
−−→ W	

2
W1 + W	1 → λ 0.2416
W2 + W	2 → λ

W⊕
XL

1
−−→ W1 0.2744, 5.0000

W⊕
XL

2
−−→ W2

Y
S F
−−→ F 3.0000, 0.1000

16 reactions, 18 rates

(c) OCN

Reaction Rates
S in + Y → λ 0.1800

S in
W0
−−→ Y + S L

in 0.5521, 2.5336
X1 + Y → λ 0.3905
X2 + Y → λ

X1
W1
−−→ Y + XL

1 0.4358, 0.1227

X2
W2
−−→ Y + XL

2

T
S L
−−→ E⊕ 0.1155, 1.9613

Y
S L
−−→ E	 0.1155, 1.9613

Y + T → λ 5.0000

W	
S L

in
−−→ W	

0 0.600, 1.6697
W0 + W	0 → λ 0.2642

W⊕
S L

in
−−→ W0 0.5023, 2.9078

W	
XL

1
−−→ W	

1 0.1889, 1.6788

W	
XL

2
−−→ W	

2
W1 + W	1 → λ 0.2416
W2 + W	2 → λ

W⊕
XL

1
−−→ W1 0.2744, 5.0000

W⊕
XL

2
−−→ W2

P
E⊕
−−→ E⊕ + W⊕ 1.0000, 1.0000

P
E	
−−→ E	 + W	

E⊕ + E	 → λ 5.0000

W⊕
W1
−−→ P⊕1 0.3000, 0.5000

W⊕
W2
−−→ P⊕2

W	
W1
−−→ P	1

W	
W2
−−→ P	2

25 reactions, 26 rates
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Table B.2: Permeation channels of the two-input, two-layer FCNN, where 1C and 2C are the two inner
compartments. Groups 1 and 2 enable the inner perceptrons’ input-weight integration, groups 3 − 5 the
outer perceptron’s input-weight integration, and finally, groups 6 and 7 the inner perceptrons’ learning
(error backpropagation). All permeability constants are set to 1.

Group Channels
1 1C : (X1 ← X′1)

2C : (X1 ← X′1)
1C : (X2 ← X′2)
2C : (X2 ← X′2)

2 1C : (S in ← S ′in)
2C : (S in ← S ′in)

3 1C : (S F ← S F)
2C : (S F ← S F)

4 1C : (F → X1)
2C : (F → X2)

5 1C : (S F → S in)
2C : (S F → S in)

6 1C : (W⊕ ← P⊕1 )
2C : (W⊕ ← P⊕2 )

7 1C : (W	 ← P	1 )
2C : (W	 ← P	2 )

Total 16
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Table B.3: The full list of ODEs modelling the hidden output chemical neuron, whose reactions are shown
in Table B.1(b). Note that these ODEs exclude the contributions or consumptions of the channels (Table
B.2) mediating the communication between the FCNN’s compartments.

d[S in]
dt

= −
0.5521[W0][S in]
2.5336 + [S in]

− 0.1800[S in][Y]

d[X1]
dt

= −
0.4358[W1][X1]
0.1227 + [X1]

− 0.3905[X1][Y]

d[X2]
dt

= −
0.4358[W2][X2]
0.1227 + [X2]

− 0.3905[X2][Y]

d[Y]
dt

=
0.5521[W0][S in]
2.5336 + [S in]

+
0.4358[W1][X1]
0.1227 + [X1]

+
0.4358[W2][X2]
0.1227 + [X2]

− 0.1800[S in][Y] − 0.3905[X1][Y] − 0.3905[X2][Y]

−
0.1155[S L][Y]
1.9613 + [Y]

− 5.0[T ][Y]

d[W0]
dt

=
0.5023[S L

in][W⊕]
2.9078 + [W⊕]

− 0.2642[W	0 ][W0]

d[W1]
dt

=
0.2744[XL

1 ][W⊕]
5.0 + [W⊕]

− 0.2416[W	1 ][W1]

d[W2]
dt

=
0.2744[XL

2 ][W⊕]
5.0 + [W⊕]

− 0.2416[W	2 ][W2]

d[S L
in]

dt
=

0.5521[W0][S in]
2.5336 + [S in]

d[XL
1 ]

dt
=

0.4358[W1][X1]
0.1227 + [X1]

d[XL
2 ]

dt
=

0.4358[W2][X2]
0.1227 + [X2]

d[W⊕]
dt

= −
0.5023[S L

in][W⊕]
2.9078 + [W⊕]

−
0.2744[XL

1 ][W⊕]
5.0 + [W⊕]

−
0.2744[XL

2 ][W⊕]
5.0 + [W⊕]

−
0.3[W1][W⊕]
5.0 + [W⊕]

−
0.3[W2][W⊕]
5.0 + [W⊕]

+
1.0[E⊕][P]
1.0 + [P]

d[W	]
dt

= −
0.6[S L

in][W	]
1.6697 + [W	]

−
0.1889[XL

1 ][W	]
1.6788 + [W	]

−
0.1889[XL

2 ][W	]
1.6788 + [W	]

−
0.3[W1][W	]
5.0 + [W	]

−
0.3[W2][W	]
5.0 + [W	]

+
1.0[E	][P]
1.0 + [P]

d[W	
0 ]

dt
=

0.6[S L
in][W	]

1.6697 + [W	]
− 0.2642[W	0 ][W0]

d[W	
1 ]

dt
=

0.1889[XL
1 ][W	]

1.6788 + [W	]
− 0.2416[W	1 ][W1]

d[W	
2 ]

dt
=

0.1889[XL
2 ][W	]

1.6788 + [W	]
− 0.2416[W	2 ][W2]
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d[T ]
dt

= −
0.1155[S L][T ]
1.9613 + [T ]

− 5.0[T ][Y]

d[P]
dt

= −
1.0[E⊕][P]
1.0 + [P]

−
1.0[E	][P]
1.0 + [P]

d[E⊕]
dt

=
0.1155[S L][T ]
1.9613 + [T ]

+
1.0[E⊕][P]
1.0 + [P]

− 5.0[E	][E⊕]

d[E	]
dt

=
0.1155[S L][Y]
1.9613 + [Y]

+
1.0[E	][P]
1.0 + [P]

− 5.0[E	][E⊕]

d[P1⊕]
dt

=
0.3[W1][W⊕]
5.0 + [W⊕]

d[P2⊕]
dt

=
0.3[W2][W⊕]
5.0 + [W⊕]

d[P1	]
dt

=
0.3[W1][W	]
5.0 + [W	]

d[P2	]
dt

=
0.3[W2][W	]
5.0 + [W	]
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Table B.4: The full list of ODEs modelling the output chemical neuron, whose reactions are shown in
Table B.1(c). Note that these ODEs exclude the contributions or consumptions of the channels (Table B.2)
mediating the communication between the FCNN’s compartments.

d[S in]
dt

= −
0.5521[W0][S in]
2.5336 + [S in]

− 0.1800[Y][S in]

d[X1]
dt

= −
0.4358[W1][X1]
0.1227 + [X1]

− 0.3905[X1][Y]

d[X2]
dt

= −
0.4358[W2][X2]
0.1227 + [X2]

− 0.3905[X2][Y]

d[Y]
dt

=
0.5521[W0][S in]
2.5336 + [S in]

+
0.4358[W1][X1]
0.1227 + [X1]

+
0.4358[W2][X2]
0.1227 + [X2]

− 0.1800[S in][Y] − 0.3905[X1][Y] − 0.3905[X2][Y]

−
3.0[S F][Y]
0.1 + [Y]

d[W0]
dt

=
0.5023[S L

in][W⊕]
2.9078 + [W⊕]

− 0.2642[W	0 ][W0]

d[W1]
dt

=
0.2744[XL

1 ][W⊕]
5.0 + [W⊕]

− 0.2416[W	1 ][W1]

d[W2]
dt

=
0.2744[XL

2 ][W⊕]
5.0 + [W⊕]

− 0.2416[W	2 ][W2]

d[S L
in]

dt
=

0.5521[W0][S in]
2.5336 + [S in]

d[XL
1 ]

dt
=

0.4358[W1][X1]
0.1227 + [X1]

d[XL
2 ]

dt
=

0.4358[W2][X2]
0.1227 + [X2]

d[W⊕]
dt

= −
0.5023[S L

in][W⊕]
2.9078 + [W⊕]

−
0.2744[XL

1 ][W⊕]
5.0 + [W⊕]

−
0.2744[XL

2 ][W⊕]
5.0 + [W⊕]

d[W	]
dt

= −
0.6[S L

in][W	]
1.6697 + [W	]

−
0.1889[XL

1 ][W	]
1.6788 + [W	]

−
0.1889[XL

2 ][W	]
1.6788 + [W	]

d[W	
0 ]

dt
=

0.6[S L
in][W	]

1.6697 + [W	]
− 0.2642[W0][W	0 ]

d[W	
1 ]

dt
=

0.1889[XL
1 ][W	]

1.6788 + [W	]
− 0.2416[W	1 ][W1]

d[W	
2 ]

dt
=

0.1889[XL
2 ][W	]

1.6788 + [W	]
− 0.2416[W2][W	2 ]

d[F]
dt

=
3.0[S F][Y]
0.1 + [Y]
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Table B.5: The interaction series that represents an experimental protocol of FCNN learning for the target
binary function f (x1, x2). The random weight setting at time 0 is performed only initially, the rest of
injections and assignments defined at time 100, 140, and 200 are repeated with periodicity 500 each learning
iteration. The learning parameters are defined as follows: penalty signal concentration (learning rate) α = 1,
annealing rate k = 0.0008, and threshold concentration θ = 0.6.

Time Injections/Assignments
0 pick [W0] ∈ (0.5, 1.5)

pick [W1] ∈ (0.5, 1.5)
pick [W2] ∈ (0.5, 1.5)

100 pick x1 ∈ {0, 1}
pick x2 ∈ {0, 1}
[S ′in] = 0.5
[X′1] = x1
[X′2] = x2
[S L

in] = [XL
1 ] = [XL

2 ] = 0
[E⊕] = [E	] = 0
[S L] = 0

140 [S ′F] = 1
200 incorrect = [Y] > θ , f (x1, x2)

α = (1 − k)α
[T ] = θ i f incorrect
[P] = α i f incorrect
[S L] = 1 i f incorrect
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(a) OCN: SASP, HCN: AASP. (P = 1.0, k = 0.995). Mean final accuracy: 93.5%.
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(b) OCN: TASP, HCN: AASP. (P = 1.0, k = 0.99). Mean final accuracy: 95.4%.

Figure B.1: Shown are accuracy/learning iteration plots for two prototypes of the FCNN. Under each plot,
we describe the model that generated it in terms of: the perceptron module used as the output chemical
neuron (OCN), that used as the hidden chemical neuron (HCN), the initial penalty concentration P, and the
annealing rate k.
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(a) SASP. Mean final accuracy: 93.4%.
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(b) TASP. Mean final accuracy: 94.8%.

Figure B.2: Shown are accuracy/learning iteration plots for two single binary chemical perceptrons, the
SASP and the TASP.
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Appendix C

DNA STRAND DISPLACEMENT

S in + GR01 → WT1R01 + OR01

OR01 + TR01 → WT2R01 + Y	 + S L
in

S in + LR02 ↔ HR02 + BR02

W0 + HR02 → WT1R02 + OR02

OR02 + TR02 → WT2R02 + Y + S L
in + W0
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X1 + GR03 → WT1R03 + OR03

OR03 + TR03 → WT2R03 + Y	 + XL
1

X1 + LR04 ↔ HR04 + BR04

W1 + HR04 → WT1R04 + OR04

OR04 + TR04 → WT2R04 + Y + XL
1 + W1

X2 + GR05 → WT1R05 + OR05

OR05 + TR05 → WT2R05 + Y	 + XL
2
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X2 + LR06 ↔ HR06 + BR06

W2 + HR06 → WT1R06 + OR06

OR06 + TR06 → WT2R06 + Y + XL
2 + W2

Y + LR07 ↔ HR07 + BR07

Y	 + HR07 → WT1R07 + OR07

Ŷ + LR08 ↔ HR08 + BR08

S L + HR08 → WT1R08 + OR08

OR08 + TR08 → WT2R08 + E⊕ + S L
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Y + LR09 ↔ HR09 + BR09

S L + HR09 → WT1R09 + OR09

OR09 + TR09 → WT2R09 + E	 + S L

E⊕ + LR10 ↔ HR10 + BR10

Edecay + HR10 → WT1R10 + OR10

OR10 + TR10 → WT2R10 + Edecay

E	 + LR11 ↔ HR11 + BR11

Edecay + HR11 → WT1R11 + OR11

OR11 + TR11 → WT2R11 + Edecay
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E⊕ + GR12 → WT1R12 + OR12

OR12 + TR12 → WT2R12 + W⊕ + E⊕

E	 + GR13 → WT1R13 + OR13

OR13 + TR13 → WT2R13 + W	 + E	

W⊕ + LR14 ↔ HR14 + BR14

S L
in + HR14 → WT1R14 + OR14

OR14 + TR14 → WT2R14 + W0 + S L
in

W	 + LR15 ↔ HR15 + BR15
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S L
in + HR15 → WT1R15 + OR15

OR15 + TR15 → WT2R15 + W	0 + S L
in

W0 + LR16 ↔ HR16 + BR16

W	0 + HR16 → WT1R16 + OR16

W⊕ + LR17 ↔ HR17 + BR17

XL
1 + HR17 → WT1R17 + OR17

OR17 + TR17 → WT2R17 + W1 + XL
1

W	 + LR18 ↔ HR18 + BR18
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XL
1 + HR18 → WT1R18 + OR18

OR18 + TR18 → WT2R18 + W	1 + XL
1

W1 + LR19 ↔ HR19 + BR19

W	1 + HR19 → WT1R19 + OR19

W⊕ + LR20 ↔ HR20 + BR20

XL
2 + HR20 → WT1R20 + OR20

OR20 + TR20 → WT2R20 + W2 + XL
2

W	 + LR21 ↔ HR21 + BR21

XL
2 + HR21 → WT1R21 + OR21
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OR21 + TR21 → WT2R21 + W	2 + XL
2

W2 + LR22 ↔ HR22 + BR22

W	2 + HR22 → WT1R22 + OR22

S in + LS S in ↔ HS S in + BS S in

X1 + LS X1 ↔ HS X1 + BS X1

X2 + LS X2 ↔ HS X2 + BS X2

W0 + LS W0 ↔ HS W0 + BS W0

W1 + LS W1 ↔ HS W1 + BS W1

W2 + LS W2 ↔ HS W2 + BS W2

S L
in + LS S L

in
↔ HS S L

in
+ BS S L

in

XL
1 + LS XL

1
↔ HS XL

1
+ BS XL

1
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XL
2 + LS XL

2
↔ HS XL

2
+ BS XL

2

E	 + LS E	 ↔ HS E	 + BS E	

E⊕ + LS E⊕ ↔ HS E⊕ + BS E⊕

W	 + LS W	 ↔ HS W	 + BS W	

W⊕ + LS W⊕ ↔ HS W⊕ + BS W⊕

W	0 + LS W0	 ↔ HS W0	 + BS W	0

W	1 + LS W	1
↔ HS W	1

+ BS W	1

W	2 + LS W	2
↔ HS W	2

+ BS W	2

S L + LS S L ↔ HS S L + BS S L

Y	 + LS Y	 ↔ HS Y	 + BS Y	

Ŷ + LS Ŷ ↔ HS Ŷ + BS Ŷ
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Edecay + LS Edecay ↔ HS Edecay + BS Edecay

Figure C.1: Full list of domain-specified DNA strand displacement reactions implementing the linear chem-
ical perceptron.

X + LR01 ↔ HR01 + BR01

XS
1 + HR01 → WT1R01 + OR01

OR01 + TR01 → WT2R01 + X1 + XC
1 + XS

1

XC
1 + LR02 ↔ HR02 + BR02
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XS
2 + HR02 → WT1R02 + OR02

OR02 + TR02 → WT2R02 + X2 + XC
2 + XS

2

XC
2 + LR03 ↔ HR03 + BR03

XS
3 + HR03 → WT1R03 + OR03

OR03 + TR03 → WT2R03 + X3 + XC
3 + XS

3

XS
1 + GR04 → WT1R04 + OR04

XS
2 + GR05 → WT1R05 + OR05

XS
3 + GR06 → WT1R06 + OR06

XS
1 + LS XS

1
↔ HS XS

1
+ BS XS

1
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XS
2 + LS XS

2
↔ HS XS

2
+ BS XS

2

XS
3 + LS XS

3
↔ HS XS

3
+ BS XS

3

Figure C.2: Full list of domain-specified DNA strand displacement reactions implementing the manual
signalling delay line of size three.
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Appendix D

VARIOUS DATA

Table D.1: The bounds that restrict the value range of rate constants during mutation, and the generation of
initial population in GA. They are specified for two reaction types: mass-action and catalysis.

Type Reaction Rate Rate Constant Bounds
Mass-action S → P k[S ] k ∈ [0, 0.6]
Catalysis E + S 
 ES → E + P kcat[E][S ]

Km+[S ] kcat ∈ [0, 0.6],Km ∈ [0, 5]

Table D.2: The GA setting and parameter values.

Attribute Value

Selection type one-point
Population size 100
Elite size 20
Generation limit 50
Cross-over probability 0.9
Per-element mutation probability 0.3
Uniform mutation strength 0.3
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Name f(1,1) f(1,0) f(0,1) f(0,0)
FALSE 0 0 0 0
NOR 0 0 0 1
NCIMPL 0 0 1 0
NOT X1 0 0 1 1
NIMPL 0 1 0 0
NOT X2 0 1 0 1
XOR 0 1 1 0
NAND 0 1 1 1
AND 1 0 0 0
XNOR 1 0 0 1
PROJ X2 1 0 1 0
IMPL 1 0 1 1
PROJ X1 1 1 0 0
CIMPL 1 1 0 1
OR 1 1 1 0
TRUE 1 1 1 1

Figure D.1: All 2-input logic functions with associated truth (output) tables.

295


	Portland State University
	PDXScholar
	Spring 6-2-2015

	Novel Methods for Learning and Adaptation in Chemical Reaction Networks
	Peter Banda
	Let us know how access to this document benefits you.
	Recommended Citation


	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Symbols and Acronyms
	Statutory Declaration
	Quote
	Introduction
	Dissertation Contributions

	Background and Related Work
	Neural Network Theory
	Perceptron
	Feed-Forward Neural Network

	Introduction to Genetic Algorithms
	Chemistry
	Chemical Reaction Network
	Interaction and Interpretation
	Artificial Chemistry, a Historical Overview

	Learning in Chemistry

	Value Representation
	Real Variable
	Boolean Variable
	Active Thresholding

	Binary Chemical Perceptron
	Basic Species
	Input Species and the Clocked Representation
	Output Species and Output Interpretation
	Weight Species

	Input-Weight Integration
	Weight-Loop Perceptron
	Weight-Race Perceptron
	Asymmetric Signal Perceptron
	Thresholded Asymmetric Signal Perceptron
	Execution

	Learning and Feedback
	Learning by Desired Output
	Learning by Penalty Signal
	Execution

	Performance and Results
	Genetic Search
	Learning Performance
	Robustness Analysis


	Analog Chemical Perceptron
	Model
	Input-Weight Integration
	Learning
	Genetic Search

	Performance
	Discussion

	Delay Line
	Model
	Manual Signalling Delay Line
	Backpropagation Signalling Delay Line
	Parallel-Accessible Delay Line

	Perceptron Integration
	Experiments
	Tasks
	Performance Measures
	Training Setup
	Results

	Discussion

	Multicompartment Feedforward Chemical Neural Network
	Cellular Compartments
	Chemical Neurons
	Our Chemical Neuron: The AASP
	Two Breeds of AASP

	Networking
	Constructing the Network Topology
	The Forward Pass
	Backpropagation

	Methodology
	Rate and Permeation Constants
	Simulation Details

	Results
	Discussion

	Analytic Basis of Chemical Learning
	Kinetics
	Input-Weight Integration
	Nonlinear Cross-Dependent Input-Weight Integration
	Linear Cumulative Input-Weight Integration
	Sigmoid Chemical Perceptron

	Learning and Weight Update
	Direct Weight Update
	Annealed Weight Update

	Combining Input-Weight Integration with Weight Update
	Analog Asymmetric Signal Perceptron
	Linear Perceptron

	Results
	Static Functions of Two Inputs
	Time Series

	Discussion

	Biochemical Implementation
	DNA Strand Displacement
	CRN to DNA-Strand Displacement Compilation
	Calculating Displacement Rates
	DNA Strand Implementation of Our Models
	Discussion

	Deoxyribozyme DNA
	Deoxyribozyme-Based Implementation of Our Models
	Discussion

	Systems Biology and Chemical Learning

	COEL—The Web-based Chemistry Simulation Framework
	Related Work
	Features and Functionality
	Chemical Reaction Network Definition
	Chemical Reaction Network Simulation and Interaction Series
	Performance Evaluation and Dynamics Analysis
	Rate Constant Optimization
	DNA Strand Visualization and Displacement Reactions
	Random Chemical Reaction Network
	Platform-wide Features

	Architecture and Technology
	Application Container
	Services
	Cloud Computing
	Web Client
	Persistence
	Build, Deploy, and Testing

	Discussion

	Conclusion
	Applications
	Future Work

	Bibliography
	Appendices
	Chemical Perceptrons
	Feedforward Chemical Neural Network
	DNA Strand Displacement
	Various Data

