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ABSTRACT

This thesis studies the problem of estimating the interior structure of a collapsed

building using embedded Ultra-Wideband (UWB) radios as sensors. The two

major sensing problems needed to build the mapping system are determining wall

type and wall orientation. We develop sensing algorithms that determine (1) load-

bearing wall composition, thickness, and location and (2) wall position within the

indoor cavity. We use extensive experimentation and measurement to develop

those algorithms.

In order to identify wall types and locations, our research approach uses Received

Signal Strength (RSS) measurement between pairs of UWB radios. We create an

extensive database of UWB signal propagation data through various wall types

and thicknesses. Once the database is built, fingerprinting algorithms are devel-

oped which determine the best match between measurement data and database

information. For wall mapping, we use measurement of Time of Arrival (ToA)

and Angle of Arrival (AoA) between pairs of radios in the same cavity. Using this

data and a novel algorithm, we demonstrate how to determine wall material type,

thickness, location, and the topology of the wall.

Our research methodology utilizes experimental measurements to create the

database of signal propagation through different wall materials. The work also
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performs measurements to determine wall position in simulated scenarios. We ran

the developed algorithms over the measurement data and characterized the error

behavior of the solutions.

The experimental test bed uses Time Domain UWB radios with a center fre-

quency of 4.7 GHz and bandwidth of over 3.2 GHz. The software was provided by

Time Domain as well, including Performance Analysis Tool, Ranging application,

and AoA application. For wall type identification, we use the P200 radio. And

for wall mapping, we built a special UWB radio with both angle and distance

measurement capability using one P200 radio and one P210 radio.

In our experimental design for wall identification, we varied wall type and dis-

tance between the radios, while fixing the number of radios, transmit power and

the number of antennas per radio. For wall mapping, we varied the locations of

reference node sensors and receiver sensors on adjoining and opposite walls, while

fixing cavity size, transmit power, and the number of antennas per radio.

As we present in following chapters, our algorithms have very small estimation

errors and can precisely identify wall types and wall positions.
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Chapter 1

THESIS STATEMENT

Can we use properties of radio signal propagation to map the interior structure

of buildings and construction material type? What are the limitations of using

this technique in real life?
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Chapter 2

INTRODUCTION

When a building collapses following earthquakes, hurricanes, tsunami, or other

causes, trapped survivors need to be rescued as quickly and safely as possible.

Time is of great importance during search and rescue operations in the aftermath

of a disaster. The first 24 hours after a disaster has been called the “Golden Day”,

the period during which injured or trapped victims have an 80 percent chance of

survival [25].

Rescuing trapped survivors after building collapse is a very slow and difficult

effort due to unstable and unknown structure of the damaged buildings and lack

of real-time assistance tools to aid damage assessment and rescue planning. Figure

2.1 shows the interior structure of such collapses. We see that cavities are formed

by structural material and survivors are trapped in those cavities. Rescuers need to

dig through the rubble cautiously in order to prevent a secondary collapse, which

can cause further loss of lives of both rescuers and victims. Thus, knowledge of the

interior structure of the collapse, specifically the wall composition and the shape

of the cavities, is essential in order to locate and rescue potential survivors in a

timely manner.

Traditional rescue tools to assist in locating survivors and surveying structural

topology consists of heartbeat sensors [69][53][47], acoustic sensors, search cameras,

or small robots [66][64][36] that are inserted into small openings though the rubble
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Figure 2.1. Interior structure of a collapsed building

pile, and ground penetrating radar (GPR) [49][62][67][81][94]. However, most of

these tools have their own limitations in that they can survey only the top part of

the rubble pile and cannot examine the structures and survivors buried deep in the

collapse. The rescue operation can be expedited if a map of the interior structure

of the collapsed building is available, which identifies the location of the walls and

the shape of the cavities.

The overall disaster rescue scenarios will involve the following steps:

1. Battery-operated sensors are deployed a priori on interior walls of the build-

ing that turn on automatically in the event of building collapse, triggered by

their vertical alignment change.
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2. These sensors use Ultra-Wideband (UWB) radio to determine the load-

bearing wall types and locations. Sensors coordinate sending and receiving

and begin sensing the material as well as location of others by broadcasting

signals and receiving signals to and from neighbor sensors.

3. Sensors form a multi-hop ad hoc network in which each sensor participates in

routing (e.g. flooding, SPIN, Rumor routing, energy aware routing [43][44][52]

[10][104][80]) in order to relay the local sensing information (e.g. wall type,

and sensor location) to rescuers outside.

4. The external node with computing power will fuse the received sensing data

for analysis to create a cavity map of the interior structure.

In step 1 above, in order to turn on sensors, accelerometers [95][48][82] can be uti-

lized which can detect the change of velocity and angle of the moving objects. The

event that causes the destructive structural change in the building is a rare event,

thus sensors are expected to have a long lifetime. The long lifetime can be achieved

by combining multiple power saving techniques such as forced excitation-based sen-

sors that operate on an extremely low-duty cycle, low-power listening, hierarchy

based asynchronous wakeup, processing, and radio transmission [27][17][80][5][6].

In step 2 and 3, sender-receiver synchronization can be done with a conventional

approach of handshaking between a pair of nodes, TPSN (Timing-sync Protocol for

Sensor Networks), or post-facto synchronization [32][29]. However, in our research,

clock synchronization between a sender and a receiver is not required because the

sender uses time of arrival for the returned signal from the receiver. In order to

minimize the complexity of sensors in step 3, sensors are not required to track its

absolute location. Instead, the powerful external node is responsible for deriving
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global location of sensors from the forwarded relative location information [12][14].

The radios cooperatively form an ad hoc network from the inside out to forward all

the collected data to rescuers who are on the outside of the rubble. This process

is a well-studied one in general mobile ad hoc networking with many available

solutions. Sensors can coordinate transmission and reception of data using various

MAC protocols such as carrier sense multiple access [30][102]. There is a limitation

on this approach in that there can be areas where sensing information cannot

be collected due to no sensors nearby. However, a partial map created by the

incomplete information will be also useful.

In order to build the complete rescue mapping system, there are major sensing

problems to solve, such as (1) detecting people via heartbeats or respiration rate,

(2) identifying cavity shapes, (3) determining orientation of the supporting walls,

and (4) determining wall composition, thickness, and location with respect to

sensors.

The goal of this research is to develop sensing algorithms for a subset of the

whole sensing problem using experimentation and measurement. In this research

the focus of the work is on step 2 noted above. Specifically, this research focuses

on two areas:

• Determining wall composition, thickness, and location (with respect to sen-

sors)

• Determining radio/wall positions in indoor cavities

Once sensing is done, a data fusion step will combine measured data to complete

constructing the interior structure map. However, data fusion to build a complete

map using other types of sensing data is out of scope of this research.



6

Figure 2.2. An Example of UWB signal in frequency domain (left) and time domain (right) [77]

2.1 RESEARCH APPROACH

Ultra-wideband (UWB) wireless technology has been the subject of extensive

research in the area of wireless sensing in recent years. With the advent of 5G

wireless technology that envisions billions of smart and connected devices, the

importance of high resolution positioning systems in hostile signal propagation

environment is critical [3]. Due to its unique capabilities as explained further below,

UWB satisfies the requirements of precise estimation of position, wall orientation,

and building structure. We aim to utilize embedded UWB radios as wireless sensors

with a goal to aid disaster recovery.

UWB is a radio technology that operates on a spectrum of 3.1GHz to 10.6 GHz.

As the name implies, UWB occupies significantly large bandwidth of the spectrum

of the order of many GHz. FCC defines UWB signals as having an absolute

bandwidth of at least 500 MHz or a fractional (relative) bandwidth of larger than

20% [18]. As shown in figure 2.2 (a), the absolute bandwidth, B, is obtained as

the difference between the upper frequency fH and the lower frequency fL (i.e.,

fB = fH − fL), whereas the fractional bandwidth, fFB, is calculated as a ratio of

bandwidth and center frequency, fc, when fc = (fH + fL)/2, i.e.:
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fFB =
fB
fC

=
2(fH − fL)

fH + fL

(2.1)

The pulse duration of an electromagnetic signal Tp and its bandwidth B satisfies

an inverse relation given by [65]:

B ≈ 1

Tp
. (2.2)

Thus, the wider the bandwidth, the shorter the pulse duration, and the narrower

the bandwidth, the longer the pulse duration. Due to the inverse relation of the

bandwidth and the pulse duration, UWB radios generate very short pulses to

generate ultra-wide bandwidth signals (figure 2.2 (b)), resulting in a high time

resolution of UWB signals. The high time precision of the UWB signal can be

exploited for accurate measurement of distance and time [77]. Also, its property

to use short pulses makes signal reflections barely overlap with the primary signal,

and thus helps UWB be resistant to multipath [96].

Another property of UWB is that it has improved signal penetration to obsta-

cles due to the presence of lower frequency components as well as high frequency

components [35][8]. This is because different radio frequencies have different phys-

ical properties as they propagate through media. As shown in equation 2.3, the

wavelengths of lower frequencies are longer than that of higher ones, allowing the

lower frequencies propagate farther than higher frequencies:

f =
v

λ
, (2.3)
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where v is the phase velocity and λ is the wavelength of the wave. Radio signals

with longer wavelength tend to hug the edge of obstacles and be less susceptible to

atoms and molecules, whereas the higher frequency signals with shorter wavelength

tend to be blocked by them. These unique properties together with low energy

consumption have made UWB widely accepted for developing applications in the

areas of wireless sensing or precise positioning.

In our research, we assume that every wall of a building has an embedded UWB

radio. Upon collapse, these embedded UWB radios will be tasked to perform the two

important sensing tasks of wall identification and cavity mapping. The following

approaches were taken to achieve each task.

1. Wall identification: In order to identify wall material properties such as

type, thickness, and location with respect to the radios, we used Received

Signal Strength (RSS) measurements between pairs of UWB radios sepa-

rated by varying types of walls in cavities. This approach is feasible since

building construction walls come in only a few types (e.g. reinforced con-

crete, concrete, and ply-wood) and standard thicknesses. For example, 8′′

reinforced concrete is typically used as a load bearing material in building

construction. This approach requires creating an extensive database of signal

propagation measurement through various wall types and thicknesses. Once

the database of signal propagation measurements is built, fingerprinting al-

gorithms [7][39][40][50][51] are developed which determine the best match

between in-field measurement and information derived from the database in

order to determine wall material type, thickness, and location in an actual

collapse.
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2. Wall mapping: Radio locationing and wall mapping will identify the loca-

tion of the radios in the cavity in which a radio finds itself after a collapse.

The approach we study uses measurement of Time of Arrival (ToA) and

Angle of Arrival (AoA) between pairs of radios within the same cavity. As-

suming that each embedded radio knows its original placement (i.e., the wall

it is embedded in), we developed algorithms that use the ToA based dis-

tance information to construct the topology of the wall [35]. The collective

positioning information from multiple sets of radios provides a view of the

wall.

2.2 RESEARCH METHODOLOGY

The methodology for this research utilizes extensive measurements for creating

the database of signal propagation through different materials. The work simulta-

neously performs measurements to study the capability of these radios to determine

position information in indoor cavities. Finally, algorithms were developed that

fuse the measurement data for wall identification and also fuse positioning com-

ponents to estimate the location of the radios and view of the wall on which those

radios reside in a collapsed cavity.

The experimental measurements were carried out utilizing Time Domain UWB

radios [90][91] with walls and cavities built in the Civil Engineering department.

We performed ′′real life′′ measurements in simulated scenarios and ran our devel-

oped algorithms on the collected data in order to test the developed algorithms.

We characterized the error behavior of the developed solution.

We summarize below the experiments that were performed to develop and verify

wall identification algorithms:
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• Measure signal propagation through various types and thicknesses of building

materials, and characterize the path loss characteristics of the materials.

We created a database with those measurements, which was made publicly

accessible [55]. RSS was measured between two radios through a wall that

separates the two radios in non-line-of-sight (NLOS) environment. Sample

debris walls were constructed in a lab.

For radio locationing and wall mapping, measurement data was collected be-

tween a pair of UWB sensors in the same room that simulates a cavity. Measure-

ments were done at various locations on the walls as well as various orientations

of walls to understand the signal propagation characteristics based on the various

configurations of radio and wall positions. Then, measurement data was analyzed

to understand the error characteristics of in-room propagation and the accuracy

of individual ranging. Once measurement data was analyzed, algorithms for esti-

mating the radio location and wall position was developed. For radio locationing

and wall mapping, ToA and AoA data was collected.

We specify below the experiments for radio locationing and wall mapping algo-

rithm development:

• Perform the AoA and ToA measurements when the radios are in the same

cavity for estimation of wall orientation and radio location. Both AoA and

ToA measurements were performed in line-of-sight environment.

The various configurations of a cavity was simulated in a laboratory environment,

which enabled us to study the core problems in a controlled environment and to

change the settings and parameters to our need. The developed algorithms - radio
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locationing, material identification, and cavity mapping - can be refined further in

future works based on the experiments performed in the laboratory setting.

2.3 CONTRIBUTIONS

This research provides direct human benefit in disaster rescue missions by de-

veloping a useful tool for mapping collapsed structures. Technical contributions

include:

• Proof of concept of using embedded UWB radios as sensors to aid in mapping

fallen buildings from the inside.

• This research generated a, first of its kind, publicly available database of

UWB signal propagation measurements through various thicknesses and com-

position of building materials in various configurations. This will be useful

in understanding non-line-of-sight (NLOS) signal propagation characteristics

and modeling for UWB communications. In addition, this study will provide

a comprehensive understanding of using UWB for sensing.

• A detailed measurement study of UWB-based ToA and AoA indoor posi-

tioning in complex multi-path environments. Measurement-based study of

error in estimation of distances and angles for locationing.

• Data fusion algorithms for creating topological estimates of radio and wall

locations in indoor cavities using the UWB based material sensing and posi-

tioning capabilities. Analysis of error in such estimation and characterization

of where these techniques can be used and where we may need other tech-

niques.
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The remainder of this thesis is organized as follows. In the next chapter we

discuss the experimental test-bed. Chapter 4 explains the experimental design for

wall identification while chapter 5 discusses the measurement results. Chapter 6

summarizes the results for wall identification, and chapter 7 discusses wall mapping

algorithm and results. Chapter 8 summarizes related work on material sensing and

indoor positioning. Finally, chapter 9 concludes the thesis.
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Chapter 3

EXPERIMENTAL TEST BED

3.1 UWB RADIOS

The experimental measurements were carried out utilizing Time Domain UWB

radios, the PulseOn P200 [90] and the P210 [91] as shown in Figure 3.1. These

radios transmit very short pulses, which gives us high accuracy in time or distance

estimation. The pulses are centered at 4.7GHz and have a UWB bandwidth of 3.2

GHz, giving us a time accuracy of the order of a nanosecond. This translates to a

distance accuracy of better than 10 cm. The pulses are generated every 104.2 ns

(= 1 frame). The antenna module is an omni-directional planar dipole.

3.1.1 Transceiver based UWB System

There are two types of UWB systems, i.e., UWB transceiver system and UWB

radar system. The UWB system used in our experiment is a transceiver based

system. Transceiver based UWB system has a combined transmitter and receiver

that actively generates and transmits a return signal on receipt of an incoming

signal while radar based UWB system passively reflects the incoming signal [28].

Transceiver based UWB system has potential for a higher Signal to Noise Ratio

(SNR) than passive UWB radar system. The amplitude of the return signal will

have a range, r, dependence of r−2, as opposed to r−4 for a radar system, and it

will be independent of the reflectivity of the illuminated surface.
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Figure 3.1. PulseOn P200 Radio (left) and PulseOn P210 Radio (Right)

UWB transceiver system has benefit over UWB radar in that the position of the

UWB transceiver can be accurately determined, thus the precise location of the

responder radio can be obtained. Furthermore, the amplitude and location of the

responder radio can be determined independent of the conditions, orientation, and

geometry of the object. On the other hand, in a UWB radar system, the ampli-

tude and location of the object will be significantly dependent on the conditions,

orientation, and geometry of the object.

The UWB transceiver system is often referred to as UWB Impulse Radio (UWB

IR) becuase it generates a time series of very short impulse like pulses in the time

domain, with the pulse width of the order of nanoseconds and the bandwidth of

the order of GHz as shown in Figure 3.2. Different from conventional radios, UWB

IRs do not generate a modulated carrier wave. 1/B seconds in the time domain in

the figure corresponds to a square pulse with a bandwidth of approximately B Hz

in the frequency domain. Shorter pulses correspond to broader bandwidths. The

lower image shows an example of the time series for the Hitachi UWB IR [90].
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Figure 3.2. The basic features of an UWB Impulse Radio. The top image shows the Fourier

conjugates, the sinc pulse and the square function. The bottom image shows the time series for

the Hitachi UWB IR [90]
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Figure 3.3. Network setup between a PC and the UWB radios

3.1.2 Transmit Power

The FCC power spectral density emission limit for UWB transmitters is -41.3

dBm/MHz. This has been the basis of power limits of UWB systems. The Time

Domain PulseOn P200 and P210 radios were designed to be compliant to FCC

regulations, so the average transmit power is 50 microwatts (= -13dBm).

3.1.3 Network Setup

The radios were controlled by a laptop for loading embedded software on the ra-

dio, configuring measurement parameters, and fetching measurement results from

radios. The laptop and the radios were connected through a router using standard

Ethernet cables as shown in Figure 3.3 [91]. The PC and radios were configured

with different static IP addresses. Once connected, the PC to radio interface was

tested by establishing the Ethernet connection using telnet.
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3.1.4 SW Setup

For our experimental measurement, the SW (Software) application provided by

Time Domain was used. The SW applications configure test parameters, start/stop

the measurement and fetch measurement results from the radio. Figure 3.4, Figure

3.5, Figure 3.6, and Figure 3.7 show the screen capture of applications. Each kind

of applications run as a pair on the controller laptop, one as a Tx (transmitter)

mode and the other as a Rx (receiver) mode to control a transmitter radio and a

receiver radio each.

• Performance Analysis Tool (Figure 3.4) [90] enables scanning UWB wave-

forms (Figure 3.5) and provides amplitude values. It is used to obtain RSS

measurements.

• Range Demonstration Application (Figure 3.6) [92] is used for distance rang-

ing.

• AoA Demonstration Application (Figure 3.7) [89] displays the AoA with the

white line. The zero degree display is shown in Figure 3.7.

3.2 WALLS AND CAVITIES RADIO MEASUREMENT SETUP

For wall identification experimentation, two P200 radios were used for RSS (Re-

ceived Signal Strength) measurement. For wall mapping research, in order to build

a sensor with both angle and distance measurement capability, one P200 radio and

one P210 radio were put together as shown in Figure 3.8. The former is an AoA

sensor and the latter is a distance ranging sensor. Sensor 1 estimates the AoA and

distance of sensor 2.
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Figure 3.4. Performance Analysis Tool (PAT) application

Figure 3.5. The waveform scan window of Performance Analysis Tool
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Figure 3.6. Range demonstration application

Figure 3.7. Angle of Arrival (AoA) demonstration application
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Figure 3.8. Radio setup for sensor 1 and sensor 2 for wall mapping

• Sensor 1 has two antennas for AoA and one antenna for distance ranging.

In order to introduce the time difference between reception signals in the

AoA receiver antenna array, it has the antenna separation of 61 cm and the

cable lengths of 610 cm and 30.5 cm respectively [89]. Figure 3.9 describes the

method implemented in the software for AoA calculation. We have converted

the antenna separation and the cable lengths into time based on the speed

of propagation of radio waves. Consider three cases where the transmitter

is located at 0°, 90°, and 180°. When the transmitter is at 0°, the signal

arrives at antenna B 2 ns ahead of antenna A and therefore the two signals

will be received by the radio at times 20 − (2 + 1) = 17 ns apart. If the

transmitter is at 90°, the two antennas receive the signal simultaneously but

due to different cable lengths the radio receives the signals 20 − 1 = 19 ns
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Figure 3.9. Illustration of AoA calculation method

apart. Finally if the transmitter is at 180°, the signals are received by the

radio 20 + 2 − 1 = 21 ns apart. It is easy to see how this idea generalizes to

other transmitter angles. The accuracy of determining the transmitter angle

depends on the accuracy of the radio in determining the time difference of

arrival between the two signals from antennas A and B.

• Sensor 2 has two antennas, one for the AoA measurement and the other for

the distance ranging.

The next chapter describes the specifics of the types of measurements conducted

for wall identification while chapter 7 describes measurement for wall mapping.
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Chapter 4

EXPERIMENTAL DESIGN FOR WALL IDENTIFICATION

The fixed and variable experimental parameters for the wall identification re-

search are described below. The fixed parameters do not change for the whole

duration of the experiments whereas the variable parameters change to create a

set of different test cases.

• Fixed Parameters

– Number of radios: 2

– Transmit power: -13 dBm

– Number of antennas per radio: 1

• Variable Parameters

– Wall types:

∗ Free space (as a baseline pathloss characterization)

∗ Dry concrete 4.5′′

∗ Dry concrete 6.5′′

∗ Dry concrete 8′′

∗ Dry reinforced concrete 7.5′′

∗ Dry drywall 0.5′′

∗ Dry plywood 0.5′′
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∗ Wet concrete 6.5′′

∗ Wet reinforced concrete 7.5′′

– Distances between the radios separating the wall:

∗ 30 different distances between 1 and 3 meters

– Number of repetitions:

∗ 5 repetitions

– Full factorial experimental design:

∗ 9 x 30 x 5 = 1350 total data points

• Metrics

– Received power

4.1 LABORATORY SETUP

Figure 4.1 shows the experimental setup used in this research in order to char-

acterize the pathloss of various type and combination of building materials. The

transmitter is shown sitting on a stool in the figure while the receiver is in the

enclosed box on the right that has shielding material layered on the inside (90

dB attenuation). The enclosed box door is closed and the door is also shielded

with shielding material. Both the transmitter and the receiver radios are placed 1

meter high from the ground. The building material is mounted between the two

radios, facing the door of the enclosed box. The building material and the enclosed

box were not moved, but the transmitter was put at different distances from the

receiver, forming 90 degrees with the building material. The received power at the

transmitter was recorded (ten repetitions at each distance) for each placement.
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Figure 4.1. Laboratory setup for wall type and thickness measurement

As mentioned earlier, building material types come in a limited set of standard

types. Standard types of building materials used in this research include:

• Concrete: 4.5, 6.5, 8 inches thick

• Reinforced concrete: 7.5 inches

• Drywall: 0.5 inches

• Plywood: 0.5 inches

As such, building are built with a certain combination of materials. We selected

below combinations of material for our research to be as much representative of

real world scenarios as possible:

• Freespace (i.e., no building material between the transmitter and the re-

ceiver)
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• Concrete & drywall

• Concrete & plywood

• Concrete & plywood & drywall

• Reinforced concrete & drywall

• Reinforced concrete & plywood

• Reinforced concrete & plywood & drywall

• A metallic grid & concrete

Finally, we performed pathloss measurements when building material was dry

as well as wet.

These combinations were selected as being representative of real world use cases

in the field in terms of combination of material as well as wet conditions. Fur-

thermore, we deliberately used the placement of the radios and material as in

Figure 4.1 since in a cavity, Figure 6.1, the two radios will have freespace between

themselves and the wall and there will be all kinds of multipath present.

4.2 MEASUREMENT DATABASE FOR WALL IDENTIFICATION

We built a database from the measurement data, generated from the above

mentioned design and setup. The database records attenuation of UWB signals

through different types and thicknesses of walls. This data was used to apply fin-

gerprint algorithms and identify the type of the wall as well as wall thickness as
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explained in chapter 6. The data from the above mentioned experimental mea-

surement is available at RescueNet website [55] for general use. The Time Domain

P200 radios [91] were used for wall identification measurements.

The raw measurement data is searchable using simple queries in the website as

shown in Figure 4.2. Sample database query result for raw measurement data are

shown in Figure 4.3, with an example of 4.5 inch dry concrete for varying distances

between two radios. It can be seen that the distance between the transmitter radio

and the receiver radio was varied between 40 inches to 89 inches. The website users

can also view analysis results from the raw measurement data such as scatter plot

for pathloss analysis of different configurations, e.g., Figure 4.4.
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Figure 4.2. RescueNet website for measurement database access
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Figure 4.3. Sample database query result
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Figure 4.4. Example database analysis on RescueNet website
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Chapter 5

RESULTS FOR WALL TYPE AND THICKNESS MEASUREMENT

In this chapter we present pathloss measurement results for wall type and thick-

ness identification for various test configurations.

5.1 FREESPACE PATHLOSS AS BASELINE

Freespace measurement serves as the baseline for all other measurements with

building material for comparison. Its pathloss plot should show highest Rx Power

compared to results using some material obstruction. Figure 5.1 shows a scatter

plot of measurement results when no building material was placed between the

two radios. The best fit line is drawn along those scatter data points to obtain

its pathloss line with slope and y-intercept. As distance between two radios gets

larger, the variation of measurement data increased.

5.2 PATHLOSS RESULT FOR DRY MATERIAL

5.2.1 Pathloss Result for Dry Concrete and Other Material

This section shows pathloss result for 6.5′′ dry concrete as well as with other

material. Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5 show pathloss graph

for dry concrete in combination with following material:

(a) Dry concrete only
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Figure 5.1. Freespace pathloss

(b) Dry concrete with dry plywood

(c) Dry concrete with dry drywall

(d) Dry concrete with dry plywood and dry drywall

In order to see how the individual plots relate to each other, we put them into

one plot as in Figure 5.6, where it can be seen that the signal attenuation is

largest when all materials were put together (i.e., option (a)) compared to other

combinations. When either plywood or drywall were put together with concrete,

it does not effectively attenuate the signal compared to (a) concrete only. Thus

it can sometimes appear even better than (a). Since measurement was done in

different days, it is probable that it was affected by weather changes as well as

slight material placement changes during lab test setup. Overall, the pathloss
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Figure 5.2. 6′′ dry concrete pathloss

graph of (b) and (c) still stays close to that of (a) dry concrete, and it is well

separated from either freespace or reinforced concrete pathloss graphs.

5.2.2 Pathloss Result for Dry Reinforced Concrete and Other Material

This section shows pathloss result for 7.5′′ dry reinforced concrete as well as with

other material. Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 show pathloss

graph for dry reinforced concrete in combination with following material:

(a) Dry reinforced concrete only

(b) Dry reinforced concrete with dry plywood
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Figure 5.3. 6′′ dry concrete with plywood
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Figure 5.4. Dry concrete with drywall
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Figure 5.5. Dry concrete with plywood and drywall
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Figure 5.6. Dry concrete with other material

(c) Dry reinforced concrete with dry drywall

(d) Dry reinforced concrete with dry plywood and dry drywall

In order to see how the above individual plots are relative to each other, we put

them into one plot as in Figure 5.11, where it can be seen that the signal attenuation

is largest when all materials were put together (i.e., option (a)) compared to other

combinations. When either plywood or drywall were put together with concrete, it

does not effectively attenuate the signal compared to (a) reinforced concrete only.

Thus, it can sometimes appear even better than (a). As explained in section 5.2.1,

since measurement was done in different days, it is probable that it was affected

by weather changes as well as slight material placement changes during lab test

setup. Overall, the pathloss graph of (b) and (c) still stays close to that of (a)
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Figure 5.7. Dry reinforced concrete pathloss

reinforced concrete only. It is well separated from either freespace or reinforced

concrete pathloss graphs.

5.2.3 Dry Concrete of Other Thickness

This section shows pathloss plots when concrete of various thickness was placed

in-between two radios as well as when it was placed back to back with other

materials. The concrete thickness for Figure 5.12 and Figure 5.13 is 4.5 inches and

8 inches respectively. The combination of material used for measurement was the

same as previous experiments.

The following observations can be made from the pathloss plots:
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Figure 5.8. Dry reinforced concrete with plywood
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Figure 5.9. Dry reinforced concrete with drywall
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Figure 5.10. Dry reinforced concrete with plywood and drywall
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Figure 5.11. Dry reinforced concrete with other material

• The legend in the figures show the slope and y-intercept of each pathloss

plot. As shown in the below figures, as concrete gets thicker from 4.5 inches

to 8 inches the received power gets weaker, and thus y-intercept becomes

smaller and slope got steeper.

• In general, when more materials were used together with concrete the signal

attenuation got higher, thus the y-intercept of concrete with other material

was lower than concrete only.
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Figure 5.12. 4.5′′ dry concrete with other materials

Figure 5.13. 8′′ dry concrete with other materials
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5.3 PATHLOSS RESULT FOR WET MATERIAL

5.3.1 Pathloss Result for Wet Concrete and Other Material

This section shows pathloss result for 6.5′′ wet concrete as well as with other

material. Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17 show pathloss

graph for dry concrete in combination with following material:

(a) Wet concrete only

(b) Wet concrete with wet plywood

(c) Wet concrete with dry drywall

(d) Wet concrete with wet plywood and dry drywall

Above plots were put into one plot in Figure 5.18. Wet concrete result is similar

to dry concrete result, where the signal attenuation is largest when all materials

were put together (i.e., option (d)).

5.3.2 Pathloss Result for Wet Reinforced Concrete and Other Material

This section shows pathloss result for wet reinforced concrete as well as with

other material. Figure 5.19, Figure 5.20, Figure 5.21, and Figure 5.22 show pathloss

graph for wet reinforced concrete in combination with following material:

(a) Wet reinforced concrete only

(b) Wet reinforced concrete with wet plywood

(c) Wet reinforced concrete with dry drywall

(d) Wet reinforced concrete with wet plywood and dry drywall
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Figure 5.14. Wet concrete pathloss
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Figure 5.15. Wet concrete with wet plywood
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Figure 5.16. Wet concrete with dry drywall
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Figure 5.17. Wet concrete with wet plywood and dry drywall
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Figure 5.18. Wet concrete with other material

Above plots were put into one plot in Figure 40. Wet concrete result is similar

to dry reinforced concrete result, where the signal attenuation is largest when all

materials were put together (i.e., option (d)).

5.3.3 When compared to Dry Material Result

Figure 5.24 shows when comparing wet material result to dry material one. Both

wet concrete and wet reinforced concrete has better received signal power compared

to dry concrete and dry reinforced concrete. It seems that signal attenuates less

when material is wet.
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Figure 5.19. Wet reinforced concrete pathloss
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Figure 5.20. Wet reinforced concrete with wet plywood
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Figure 5.21. Wet reinforced concrete with dry drywall
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Figure 5.22. Wet reinforced concrete with wet plywood and dry drywall

Figure 5.23. Wet reinforced concrete with other material
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Figure 5.24. Dry versus wet material
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Chapter 6

WALL TYPE AND THICKNESS IDENTIFICATION

As explained in chapter 2, the focus of this research is to solve the problem of

identifying the material type and thickness as well as mapping walls by applying

data fusion algorithms on transmitted pulses between radios, i.e., problem of mate-

rial sensing and wall mapping. This chapter presents the details of the first sensing

problem, which is wall type and thickness identification. Details on wall mapping

will be presented in the next chapter. The remainder of this chapter first explains

the research challenges, wall identification algorithm, and methodology, and then

presents results of applying the algorithm for wall type and identification.

6.1 RESEARCH CHALLENGE FOR WALL TYPE AND THICK-

NESS IDENTIFICATION

In order to understand the challenge of determining wall composition of cavities,

it is instructive to consider Figure 6.1. Here we see two radios A and B in different

cavities that are separated by a wall. We need to determine the thickness dw as

well as the type of material comprising the wall.

This approach requires an accurate distance measurement between the two ra-

dios. UWB has a very large bandwidth and therefore has high accuracy in de-

termining ToA in free space. However, in complex indoor environment, as radio
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Figure 6.1. Radio locationing and material sensing example

signals propagate, they suffer attenuation due to distance as well as due to ab-

sorption by intervening materials. There is error due to multipath effects, where a

reflection can be mistaken for the LOS signal, as well as error due to weak received

signals (which require longer integration periods for detection). Due to such er-

rors the value of df in Figure 6.1 can be inaccurate resulting in incorrect material

sensing. In order to understand the error as well as develop ways to mitigate the

effects of error, we performed extensive measurements of UWB signal propagation

through materials, and also developed an algorithm that can accurately determine

wall type and thickness under the adverse multipath effect.

6.2 ALGORITHM FOR WALL TYPE AND THICKNESS IDENTI-

FICATION

This section explains the algorithm we developed for wall type and thickness

identification using signal propagation measurements between two radios. Our

approach used the Received Signal Strength (RSS) of a transmission from A at

B (Figure 6.1) to determine the wall’s properties. The three values - distance

between the two radios, dw, and the wall type - will be estimated simultaneously
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using path loss characteristics of the walls and RSS. The algorithm to determine

the wall type and thickness of the middle wall in Figure 6.1 is as follows:

1. Let us assume that the wall thickness is dw and the sum of the two distances

between each radio and the wall is df (freespace distance). Thus, the distance

between the two radios A and B is y = df + dw.

2. Let radio A be the transmitter and radio B the receiver. Radio A transmits a

short pulse (nanosecond in length) to B. Radio B returns the pulse back to A

at a pre-determined power. We assume that radio A either has two receivers

or two antennas separated by some distance, where they form a straight line

with the antenna of B. The two values of the received power at A are p1 and

p2. Let the time difference of when each antenna at A receives the signal be

δt and we set x = cδt m, where x indicates the difference in distances of the

two antennas or receivers from the transmitter, and c is the speed of light in

freespace. Let us arbitrarily assume that the signal is received at antenna 1

first (i.e., it is closer to B).

3. Generally the material used for construction is known apriori. Indeed, the

main load-bearing members used typically have well-defined thicknesses and

composition (e.g., 8 inch concrete etc.). Assume that we characterize the

path loss seen between two radios separated by some distance D and with

one piece of building material (of various thicknesses) in between. We can

plot the received signal strength (for a given transmit power) versus D for

different materials as shown in Figure 6.2.

4. The distance y1 (i.e., distance to closer receiver) is an unknown. However,

we know that at distance y1 the received power is p1 and at y2 = y1 + x

it is p2. We draw a horizontal line segment in Figure 6.2 corresponding to
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power levels p1 and p2. We guess a value for y1 (call it ȳ1) and construct a

line segment connecting points (ȳ1, p1) and (ȳ2, p2). We compute the Mean

Square Error (MSE) between this line segment and the pathloss line for each

material. The range of values for ȳ1 goes from zero to ymax where ymax is

determined using time of arrival (ToA) data from the UWB radio. Assuming

freespace, the ToA information gives us an upper bound on ȳ1 (if material

is present then ȳ1 is smaller since speed of the signal is less in material) and

this is the value used for ymax.

5. Among all the potential fits, we select the one that minimizes the MSE. This

gives us a good estimate for y1 as well the material and the thickness (read

off from the path loss curves).

6.3 WALL TYPE AND THICKNESS IDENTIFICATION METHOD-

OLOGY

In order to verify that the algorithm to determine the type and thickness of

material works, a series of very detailed signal propagation measurements were

conducted. There were two main steps in this experimental work.

1. Characterizing the pathloss for a variety of building material in order to

produce a graph like Figure 6.2.

2. Run experiments to identify the type and thickness of the wall as described

in the algorithm.

6.3.1 Applying Fingerprinting Algorithm

Figure 6.3 shows reference measurements of signal propagation through different

types of material. It plots the pathloss for freespace, reinforced concrete (7.5 in),
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Figure 6.2. Illustration of the algorithm
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Figure 6.3. Pathloss for a subset of dry material

and concrete (6.5 in). The numbers next to each line indicate the slope and the

y-intercept. For clarity we have left out the individual measurements and only

retained the best fit lines. As we can see, the curves are well separated and

therefore identifying the type of wall using our algorithm is feasible.

In order to test out algorithm, the following experimental methodology was used

for each material or combination of material:

• We used two receivers and one transmitter. Let y1 and y2 denote the distance

of the two antennas or receivers from the transmitter.

• We varied y1 between 1 and 3 meters (to better represent small cavities found

in fallen buildings). y2 also varied between these values but was greater than

y1 because y1 is the distance to closer receiver or antenna. In all there were
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450 pairwise measurement points. For each y1 and y2 value, we collected 5

measurements of received power p and ToA per receiver that was total of 5

x 5. Thus, we collected a total of 450 x 5 x 5 data points.

• For each pair of p1 and p2 values, we ran the algorithm described in section 6.2

and found:

– Type of material and thickness (the answer is a 1 or 0 depending on

whether we guessed correctly or incorrectly).

– The estimated value of y1 (since this is also unknown in reality).

In the next section, we present algorithm application results in detail by calcu-

lating the percentages of the correct guesses between the predicted values and the

actual values.

6.4 RESULTS FOR WALL TYPE AND THICKNESS IDENTIFICA-

TION

This section shows result of applying our material identification algorithm for

wall type and thickness. The method of applying our algorithm was explained in

section 6.3.1, and the reference pathloss plot is shown in Figure 6.3.

Table 6.1 summarizes the main results for three materials. As we can see, the

algorithm correctly determines the material type and thickness almost all the time.

Plywood was the only material where the algorithm made some mistakes. This

is due to the fact that plywood does not attenuate the signal much as compared

to concrete or reinforced concrete and thus the algorithm sometimes concludes

freespace as the material rather than wood. The table also summarizes the error

in estimating y1. Notably, plywood has the highest error while for reinforced
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concrete the error is negligible. Indeed, in the case of plywood, the algorithm

always underestimates the value of y1.

Table 6.1. Summary of algorithm performance

Material
Material thickness & type

guess

Mean absolute error in y1

estimate

Freespace 100 % 4.84 %

Plywood 98.7 % 15.7 %

Concrete 99.39 % 3.39 %

Reinforced

Concrete
99.95 % 0.76 %

In order to understand the error in distance estimate, we plot the error (ex-

pressed as a percentage) in estimating y1 versus y2 − y1 (i.e, the distance between

the two receivers). Figure 6.4, Figure 6.5, Figure 6.6 and Figure 6.7 show the

plot for freespace, plywood, concrete, and reinforced concrete in that order. The

error for freespace is highly variable for all y1 − y2 values and is explained by the

severe multipath present in the laboratory which is essentially a large concrete

sub-basement used for testing concrete structures. Interestingly, the error is small

and consistent for reinforced concrete primarily because a great deal of signal en-

ergy is absorbed by the reinforced concrete leaving little energy in various reflected

components. In view of our original application, this is good news since we can

conclude that in the real world our algorithm ought to provide good estimates.
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Figure 6.4. Error in distance estimate for freespace
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Figure 6.5. Error in distance estimate for plywood
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Figure 6.6. Error in distance estimate for concrete
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Figure 6.7. Error in distance estimate for reinforced concrete
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Chapter 7

3D WALL MAPPING

In this chapter, we discuss the algorighm to estimate the position of the wall by

locationing radios in 3D space and present the result of wall mapping measurements

and wall position estimation. In order to estimate radio position in a small cavity

using ToA and AoA, we performed extensive in-lab measurement of ToA and AoA

in various configurations and angles using omni-directional transmission. Wall

orientation was also varied to understand the impact of multipath on estimation

errors. Experiments were done for LOS case where two radios were both in the

same cavity. From the measured set of AoAs from the baseline and the actual AoA

value we know, database entries were created with the tuple. Same applied to the

ToA database. This became the ′′fingerprint′′ for locationing. This measurement

database was used to characterize the positioning accuracy. We used a geometric

technique to estimate the position of radios. Measurement values were significantly

affected when multipath effect was severe. In such case, positioning accuracy was

decreased.

7.1 ALGORITHM FOR RADIO POSITION ESTIMATION

This section first explains radio position estimation algorithm in 2D space and

then explains how it is extended for 3D space radio position estimation. Sec-

tion 7.1.1 illustrates 2D radio position estimation algorithm, and section 7.1.2

shows 3D radio position estimation algorithm used in this research.



67

Figure 7.1. Position of target node in 2D space

7.1.1 2D Radio Position Estimation Algorithm

When the Ri in Figure 7.1 is the ith reference node and the T is the target node,

the position estimation of T from the reference node Ri is expressed as:

x̂i = xi + di cos βi (7.1)

ŷi = yi + di sin βi, (7.2)

where (x̂i, ŷi) is the estimation of position T from the ith reference node, Ri,

(xi, yi) is the position of the reference node Ri, di is the distance between the Ri

and the T , and βi is the AoA of the signal from T to Ri. Section 8.2 provides

further details on traditional indoor positioning algorithms using other metrics

such as RSS, ToA, TDoA, AoA, RSSI and hybrid schemes.
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7.1.2 3D Radio Position Estimation Algorithm

This section explains the 3D target position estimation algorithm used in our

research, which utilizes ToA based location sensing. Location sensing can be done

by measuring RSS, AoA and/or ToA as location metrics. However, due to severe

multipath propagation and heavy shadow fading in indoor environment, the mea-

surements of RSS and AoA provide less measurement accuracy than does ToA [72].

This can be seen in our AoA measurement results in this chapter, which provide

high measurement error compared to ToA based distance measurements. Thus,

we developed the target position estimation algorithm using ToA based distance

measurement. ToA method measures the distance between the reference node and

the target node by estimating signal propagation delay between signal transmission

time and reception time.

Let (xi, yi, zi) in Figure 7.2 be the coordinate of the ith reference node, Ri, and

(x, y, z) the coordinate of the target node, T , then the distance, di, between Ri,

and T , is:

di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (7.3)

Since the position of any reference nodes, (xi, yi, zi), i = 1, . . . , N , and the

distance, di, are known values from the rest of the sections in this chapter, the

estimated position of the target node T , (x̂, ŷ, ẑ), can be obtained by selecting

any three distances from three reference nodes as (7.4) - (7.6) and calculating the

target position [71][63].

di =
√

(x̂− xi)2 + (ŷ − yi)2 + (ẑ − zi)2 (7.4)

dj =
√

(x̂− xj)2 + (ŷ − yj)2 + (ẑ − zj)2 (7.5)
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Figure 7.2. Position of target node in 3D space

dk =
√

(x̂− xk)2 + (ŷ − yk)2 + (ẑ − zk)2 (7.6)

These equations can be transformed to a system of linear equations by squar-

ing them first and then subtracting one of the equations from each of the others

[71][63][74]. For example, by subtracting d2
j and d2

k from d2
i , and d2

k from d2
j , we

obtain (7.7) - (7.9) without non-linear terms x̂2, ŷ2, and ẑ2.

d2
i − d2

j = 2(xj − xi)x̂+ 2(yj − yi)ŷ + 2(zj − zi)ẑ

+ x2
i + y2

i + z2
i − x2

j − y2
j − z2

j (7.7)

d2
i − d2

k = 2(xk − xi)x̂+ 2(yk − yi)ŷ + 2(zk − zi)ẑ

+ x2
i + y2

i + z2
i − x2

k − y2
k − z2

k (7.8)

d2
j − d2

k = 2(xk − xj)x̂+ 2(yk − yj)ŷ + 2(zk − zj)ẑ

+ x2
j + y2

j + z2
j − x2

k − y2
k − z2

k (7.9)
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These equations (7.7) - (7.9) can be expressed as matrix form:

AX̂ = b, (7.10)

where

A
∆
=


2(xi − xj) (2(yi − yj) 2(zi − zj)

2(xi − xk) (2(yi − yk) 2(zi − zk)

2(xj − xk) (2(yj − yk) 2(zj − zk)

 , (7.11)

b
∆
=


x2
i + y2

i + z2
i − x2

j − y2
j − z2

j − d2
i + d2

j

x2
i + y2

i + z2
i − x2

k − y2
k − z2

k − d2
i + d2

k

x2
j + y2

j + z2
j − x2

k − y2
k − z2

k − d2
j + d2

k

 , (7.12)

and

X̂
∆
=


x̂

ŷ

ẑ

 . (7.13)

Then, the position of the target node X̂ is estimated by solving the matrix as

(7.14) only if we have the perfect distance estimates.

X̂ = A−1b. (7.14)

However, since the distance estimates di, i = 1, . . . , N , are imperfect measure-

ments, we can represent the estimated position of the target node with the least

square solution [74]:

X̂ = (ATA)−1AT b. (7.15)
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Once the target node position is estimated from a set of three reference nodes,

we repeat the position estimation for T from all combination of three reference

nodes, which produces multiple position estimations for the target node T . Then,

we calculate Euclidean distance between the actual target node position and the

estimated position. Next, the mean square error (MSE) of target position esti-

mation error was calculated to understand the estimation performance and choose

the estimation with the minimum MSE.
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7.2 3D WALL MAPPING METHODOLOGY

The fixed and variable experimental parameters for the wall mapping research

include:

• Fixed Parameters

– Cavity size: W381 x D335 x H231cm

– Transmit power: -13 dBm

– Number of antennas per radio:

∗ Sensor 1: 2 radios. One has 2 antennas and the other has 1 antenna.

∗ Sensor 2: 2 radios with one antenna each.

• Variable Parameters

– Sensor 1 locations: 5 locations at A, B, C, D, and E on wall A (refer

Figure 7.4 and Figure 7.5)

– Sensor 2 locations: 140 locations

∗ 70 locations on wall B (refer Figure 7.4)

∗ 70 locations on Wall C (refer Figure 7.5)

– Number of repetitions: 1

– Full factorial experimental design

∗ 5 x 140 x 1 = 700 total data points

• Metrics

– Distance

– Angle of Arrival
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Figure 7.3. 3D wall measurement experimental setup

The experimental setup is shown in Figure 7.3. Sensor 1 is shown on the left and

sensor 2 on the right. The PulseOn P200 [90] and the P210 [91] UWB radios from

Time Domain Corporation were used for the experiment. In order to simulate a

sensor which can measure both Angle of Arrival (AoA) and distance ranging, one

P200 radio and one P210 radio were put together for each sensor.

Sensor 1 estimates the AoA [89] and distance [92] of sensor 2. As shown in

Figure 3.8, sensor 1 had the P200 AoA receiver and the P210 ranging transmitter,

and sensor 2 had the P200 AoA transmitter and P210 ranging receiver. In order

to introduce the time difference between UWB reception signals in the antenna

array, sensor 1 AoA receiver had two antennas with the antenna separation of 610

mm (24 inches) and the cable length of 20 ft and 12 inches as shown in Figure 3.8.

Antenna separation of 24 inches provides the desired arc accuracy of 3 inches for

0 to 300 cm distance [89]. The middle antenna of sensor 1 was used to measure

the distance ranging. Sensor 2 had two antennas, one for the AoA measurement

and the other for the distance ranging. Measurements were done using the sample

AoA and Distance measurement applications provided by Time Domain. The flat
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Figure 7.4. Adjoining wall measurement setup

faces of sensor 1 and sensor 2 were placed to be parallel to each other since the

received signal is stronger with that configuration [90].

Figure 7.4 shows the adjoining wall experimental setup. Measurements were

performed in an empty room with the size of 381cm x 335cm x 231cm in x, y, z

direction. Each wall was marked every 30 cm horizontally and 33 cm vertically

starting from the (x, y, z) origin. Sensor 1, which measured the AoA and distance

to sensor 2, was placed on the wall A at five different positions, A, B, C, D, and

E, and for each sensor 1 position sensor 2 on the wall B was moved to 10 different

columns per seven rows. So, the total of 5 x 10 x 7 = 350 measurements was done.

Row 8 was skipped due to sensors height.

Figure 7.5 shows the opposite wall experiment setup. The experiment was done

in the same room as the adjoining wall experiment and each wall was marked the

same way, 30 cm interval horizontally and 33 cm interval vertically. Sensor 1 was

placed on the wall A at five different positions, A, B, C, D, and E, and for each

sensor 1 position sensor 2 on the wall C was moved to 10 different positions per
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Figure 7.5. Opposite wall measurement setup

seven rows.
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7.3 RESULTS FOR ADJOINING WALL MEASUREMENT

Measurement values from distance ranging and AoA experiment for the adjoining

walls were analyzed to see the measurement error compared to the actual angle

and actual distance.

7.3.1 Results for Adjoining Wall Distance Measurement

Figure 7.6, Figure 7.7, and Figure 7.8 show the distance estimation errors com-

pared to actual distance. Figure 7.6 plots distance estimation errors from each

sensor 1 position, A, B, C, D, and E, to all sensor 2 positions. More than 95 % of

the total errors are less than 4 %. High errors occurred when the distance between

sensor 1 and sensor 2 was small and sensor 1 was placed near the wall B at position

B and E. As sensor 1 moved away from the wall B, the error was reduced and when

it was farthest away from the wall B at position A and D the errors were less than

2 %. It can be seen more clearly from Figure 7.8, where error on each sensor 1

position was sub-plotted for each sensor 2 row location. The error was greatest

when sensor 1 was near wall B at position B and E, medium when sensor 1 was in

the middle of wall A at position C, and smallest when sensor 1 was farthest away

from wall B at position A and D. It is explained by the larger multipath affect to

sensor 1 when near wall B at a shorter distance to sensor 2.

• Meaning of legends in figures

– Figure 7.6

∗ ′′S1: X ′′: Sensor 1 on Wall A is located at X, where X is A, B, C,

D, or E in Figure 7.4

– Figure 7.7
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∗ ′′S2: row n′′: Sensor 2 on Wall B is located at row n, where n is

one of [1..7] in Figure 7.4

– Figure 7.8

∗ Subtitle ′′S1-WallA-X-S2-WallB′′: Sensor 1 on wall A is located at

location X, where X is A, B, C, D, or E, and S2 is on wall B in

Figure 7.4

∗ ′′S2: row n′′: Sensor 2 on Wall B is located at row n, where n is

one of [1..7] in Figure 7.4

The same data was plotted in Figure 7.7 per row that sensor 2 was placed. The

high errors whose values were greater than 10 % occurred when sensor 2 was near

the room floor or ceiling (i.e. row 1, 2, 6, and 7), and the distance between sensor

1 and sensor 2 was small. As can be seen from the upper right and bottom right

of subplots of Figure 7.8, when sensor 1 was near wall B the error reduced as

sensor 2 moved away from sensor 1. Also, the error was high when sensor 1 was at

position B and sensor 2 was on the row 1 or 7 near wall A or when sensor 1 was

at position E and sensor 2 was on the row 1, 6 and 7 near wall A. In other words,

when the two sensors were located close to each other and near the room corners

the error was high. It is explained by the severe multipath on the corner of room

floor and ceiling and also by the weak received signal when the faces of the Tx and

Rx antennas are offset vertically.
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Figure 7.6. Adjoining wall distance estimation error per sensor 1 location
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Figure 7.7. Adjoining wall distance estimation error per sensor 2 location on each row
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Figure 7.8. Adjoining wall distance estimation error per sensor 1 and sensor 2 location
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7.3.2 Results for Adjoining Wall AoA Measurement

This section discusses the results for AoA measurement when two walls are

adjoining. Figure 7.9 to Figure 7.14 show the AoA estimation errors compared

to actual angles. Figure 7.9 and Figure 7.10 plot AoA estimation errors from

each sensor 1 position to all sensor 2 positions, in relative error and absolute error

respectively. And, Figure 7.11 and Figure 7.12 plot AoA estimation errors from

each sensor 2 row position to all sensor 1 positions, in relative error and absolute

error respectively. For both cases, the relative error was high when the distance

between the two sensors is at around 3 meters, and it became smaller as the

distance between the two sensors becomes smaller or larger. This is because when

the actual angle being measured is close to 0 degree, even a smaller absolute error

is magnified when considering relative error. The distance between the two sensors

becomes around 3 meters when sensor 1 is near wall B and sensor 2 is near wall

C, facing each other at around 0 degree. The distance between the two sensors

becomes smaller when the two sensors are near the adjoining corner of wall A and

wall B, and it becomes larger when sensor 1 and sensor 2 move away from the

adjoining corner. In both cases, the angle the two radios form becomes large, thus

the relative error becomes small. The absolute error is not large at around 3 meters

as can be seen in Figure 7.10 and Figure 7.12. It is less than 10 degrees mostly.

Figure 7.13 subplots relative error on each sensor 1 position for each sensor 2

row location. It can be seen from this figure that the relative error was small when

sensor 1 was in the middle of wall A or away from wall B. The relative error was

high when sensor 1 was near wall B and the distance between sensor 1 and sensor

2 was large, meaning near 0 degree angle between the two sensors. It can be also

seen from Figure 7.14 that the absolute error was not high in such cases.
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• Meaning of legends in figures

– Figure 7.9 and Figure 7.10

∗ ′′S1: X ′′: Sensor 1 on Wall A is located at location X, where X is

A, B, C, D, or E in Figure 7.4

– Figure 7.11 and Figure 7.12

∗ ′′S2: row n′′: Sensor 2 on Wall B is located at row n, where n is

one of [1..7] in Figure 7.4

– Figure 7.13 and Figure 7.14

∗ Subtitle ′′S1-WallA-X-S2-WallB′′: Sensor 1 on wall A is located at

location X, where X is A, B, C, D, or E, and S2 is on wall B in

Figure 7.4

∗ ′′S2: row n′′: Sensor 2 on Wall B is located at row n, where n is

one of [1..7] in Figure 7.4
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Figure 7.9. Adjoining wall angle estimation error per sensor 1 location (relative error)
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Figure 7.10. Adjoining wall angle estimation error per sensor 1 location (absolute error)
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Figure 7.11. Adjoining wall angle estimation error per sensor 2 location on each row (relative

error)
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Figure 7.12. Adjoining wall angle estimation error per sensor 2 location on each row (absolute

error)
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Figure 7.13. Adjoining wall angle estimation error per sensor 1 and sensor 2 location (relative

error)
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Figure 7.14. Adjoining wall angle estimation error per sensor 1 and sensor 2 location (absolute

error)
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7.3.3 Summary of Adjoining Wall Measurement Results

This section summarizes the results for Distance and AoA measurement errors

for adjoining wall. Table 7.1 summarizes the mean error and 95 % error value range

for Distance measurement from each S1 sensor location, e.g., position A, B, C, D

and E. Mean error for distance measurement was the smallest at position D with

0.66 % and the largest at position E with 2.41 %. As explained in section 7.3.1, due

to multipath effect, the error was higher when sensor S1 was close to the adjoining

wall, e.g., at position B and E.

Table 7.2 summarizes the mean error and 95 % error range for AoA measurement

from each S1 sensor location. Mean error for AoA measurement was small at

around 10 % to 15 % at position A, C, and D, but it was large at position B and

E with about 105 % error. As explained previously, the AoA error was high at

position B and E since the relative angle estimation error becomes high compared

to near 0 angle values.

Table 7.1. Distance measurement result (adjoining wall)

S1 Mean error (%) 95% range (%)

A 0.68 [0.07, 1.54]

B 2.02 [0.10, 7.20]

C 1.16 [0.06, 2.74]

D 0.66 [0.06, 1.62]

E 2.41 [0.11, 15.89]
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Table 7.2. AoA measurement result (adjoining wall)

S1 Mean error (%) 95% range (%)

A 10.63 [0.17, 42.24]

B 105.97 [11.54, 244.29]

C 15.10 [1.43, 33.55]

D 10.31 [0.34, 23.19]

E 105.72 [4.00, 393.33]

7.4 RESULTS FOR OPPOSITE WALL MEASUREMENT

In this section, measurement values from distance ranging and AoA experiment

for the opposite wall placement were analyzed in order to see the measurement

error compared to the actual angle and actual distance.

7.4.1 Results for Opposite Wall Distance Measurement

This section discusses the results for distance measurement when two walls are

opposite. Figure 7.15 shows the distance estimation errors compared to actual

distance per sensor 1 location. Figure 7.16 is for each sensor 2 location for the

same.

Most of the distance errors are within 10 cm error range and less than 2 %. The

distance estimation performance of opposite wall case is observed to be better than

the adjoining wall case, which had more data points with greater than 4 % error.

This is due to less impact of multipath and stronger line of sight signals.

The small distance measurement error can be shown in detail in Figure 7.17,

where it shows subplots of distance error for each sensor 1 position, at A, B, C,
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D, and E, for all sensor 2 row locations. In all cases the error was small, i.e., less

than 5 %, since sensor A and sensor B have enough distance space of minimum 3

meters between them.

• Meaning of legends in figures

– Figure 7.15

∗ ′′S1: X ′′: Sensor 1 on Wall A is located at location X, where X is

A, B, C, D, or E in Figure 7.5

– Figure 7.16

∗ ′′S2: row n′′: Sensor 2 on Wall C is located at row n, where n is

one of [1..7] in Figure 7.5

– Figure 7.17

∗ Subtitle ′′S1-WallA-X-S2-WallC′′: Sensor 1 on wall A is located at

location X, where X is A, B, C, D, or E, and S2 is on wall C in

Figure 7.5

∗ ′′S2: row n′′: Sensor 2 on Wall C is located at row n, where n is

one of [1..7] in Figure 7.5

7.4.2 Results for Opposite Wall AoA Measurement

This section shows the AoA estimation errors compared to actual angles when

sensor 1 and sensor 2 were placed on the opposite walls. Figure 7.18 plots relative

AoA estimation errors from each sensor 1 position to all sensor 2 positions. And

Figure 7.19 plots relative AoA estimation errors from each sensor 2 row position to

all sensor 1 positions. For both cases, the relative error was high when the distance

between the two sensors is small at around 3 meters, and it became smaller as the



92

Figure 7.15. Opposite wall distance estimation error per sensor 1 location
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Figure 7.16. Opposite wall distance estimation error per sensor 2 location on each row
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Figure 7.17. Opposite wall distance estimation error per sensor 1 and sensor 2 location
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distance between the two becomes larger. This is because when the actual angle

being measured is close to 0, even a small absolute error is magnified when we

consider relative error. The distance between the two sensors is about 3 meters

when the two are facing each other at around 0 degree. Absolute error is not big

at around 3 meters as can be seen in Figure 7.20, but the relative error compared

to 0 degree gives large relative error as shown in Figure 7.21. Overall most of

the angle measurement error was less than 50 % when the two sensors were at

oblique angles. It is worthwhile to note that, due to the ceiling fan installed in the

experimental room, there was higher error for certain positions for the reference

node and the target node when close to the top.

• Meaning of legends in figures

– Figure 7.18

∗ ′′S1: X ′′: Sensor 1 on Wall A is located at location X, where X is

A, B, C, D, or E in Figure 7.5

– Figure 7.19

∗ ′′S2: row n′′: Sensor 2 on Wall C is located at row n, where n is

one of [1..7] in Figure 7.5

– Figure 7.20 & Figure 7.21

∗ Subtitle ′′S1-WallA-X-S2-WallC′′: Sensor 1 on wall A is located at

location X, where X is A, B, C, D, or E, and S2 is on wall C in

Figure 7.5

∗ ′′S2: row n′′: Sensor 2 on Wall C is located at row n, where n is

one of [1..7] in Figure 7.5
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Figure 7.18. Opposite wall angle estimation error per sensor 1 location



97

Figure 7.19. Opposite wall angle estimation error per sensor 2 on each row
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Figure 7.20. Opposite wall angle estimation error per sensor 1 and sensor 2 location (absolute

error)
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Figure 7.21. Opposite wall angle estimation error per sensor 1 and sensor 2 location (relative

error)
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7.4.3 Summary of Opposite Wall Measurement Results

This section summarizes the results for Distance and AoA measurement errors

for opposite wall. Table 7.3 summarizes the mean error and 95 % error value range

for Distance measurement from each S1 sensor location, e.g., position A, B, C, D

and E. Distance mean error was less than 1 % and 95 % of errors were less than

2 % in all cases. The error was smaller compared to adjoining wall case because

sensor 1 and sensor 2 had good distance separation between them in all settings.

Table 7.4 summarizes the mean error and 95 % error range for AoA measurement

from each S1 sensor location. Mean error for AoA measurement was larger at

position C with 80 % mean error due to the same reason as the relative angle

estimation error becoming high compared to near 0 angle values.

Table 7.3. Distance measurement result (opposite wall)

S1 Mean error (%) 95% range (%)

A 0.79 [0.00, 1.68]

B 0.72 [0.00, 1.69]

C 0.72 [0.00, 1.59]

D 0.61 [0.00, 1.52]

E 0.76 [0.00, 1.74]
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Table 7.4. AoA measurement result (opposite wall)

S1 Mean error (%) 95% range (%)

A 12.75 [0.29, 40.00]

B 19.76 [1.00, 67.43]

C 80.25 [4.14, 216.67]

D 23.18 [3.11, 62.00]

E 30.97 [1.75, 87.35]

7.5 RESULTS FOR ADJOINING WALL ESTIMATION

This section explains the result of the target node (e.g. sensor 2) location esti-

mation from the reference nodes (e.g. multiple sensor 1’s) on the adjoining wall

placement.

The position of the target node is calculated based on distance measurement from

the reference nodes following the algorithm explained in section 7.1. Estimated

position coordinate of the target node can be a complex number, for example,

when a set of reference nodes form a straight line, e.g. S1(A,C,E) or S1(B,C,D)

that corresponds to cyan and yellow line in Figure 7.22 respectively. S1(X, Y, Z)

denotes that a set of reference nodes, X, Y , and Z, are used in order to estimate the

target node location. Also, it happens when the two antennas from the reference

node and the target node on the same elevation are not facing each other but edge-

on or the elevation difference is high. Complex number results were eliminated for

analysis.

Figure 7.22 shows all estimated target node positions by connecting them with

a line from the actual target node position. Figure 7.23 excludes estimations with
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Figure 7.22. Estimated target positions with connected lines from actual target positions (Ad-

joining wall)

imaginary numbers from Figure 7.22. Figure 7.24 shows final result that further

excludes estimations from a set of reference nodes that form a straight line, i.e.

S1(A,C,E) and S1(B,C,D).

From the final set of result in Figure 7.24, the target position estimation error

was calculated by calculating Euclidean distance between the actual target node

position and the estimated position. Next, the mean square error (MSE) of target

position estimation error was calculated for each target node. Figure 7.25 shows the

cumulative probability plot of the MSE distribution of target position estimation

error. It can be seen that 90 % of estimation error is less than 25 cm. The mean

MSE of target position estimation error was 16.73 cm (Table 7.5).
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Figure 7.23. Estimated target positions that exclude estimations with imaginary numbers (Ad-

joining wall)
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Figure 7.24. Estimated target positions with excluded estimations with imaginary numbers and

from straight line reference nodes (Adjoining wall)
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Figure 7.25. CDF of target node position estimation MSE (adjoining wall)
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Table 7.5. Target node estimation result (adjoining wall)

Description (Adjoining Wall) Mean of MSE

Location estimation error between actual tar-

get position and estimated positions
16.73 (cm)

The combination of three reference nodes out of five (i.e. A to E) that gives

minimum error for each target node is shown in Figure 7.26. It shows normalized

error as a percentage of the inter-target node distance of 30 cm. Most of errors

were less than 30 %. It means that the best guesses had error of less than 9 cm.

Mean of all minimum position estimation errors was 6.25 cm. We summarize all

observations from Figure 7.26 below:

• Combinations of (A,B,E), (B,C,E) and (B,D,E) gives more accurate re-

sults than others, which all had position B and E. B and E are close to the

adjoining wall and thus antennas of reference nodes form bigger angle with

target nodes and it covers wider elevations from floor to ceiling.

• Combinations such as (A,C,E) and (B,C,D) where reference nodes lie on

a straight line don’t perform well.

• (A,C,D) where all reference nodes are far from the adjoining wall also does

not produce good estimation because antennas form smaller angle with target

node.

• NaN indicates that target nodes at 30 and 60 cm mark for each row failed

to get estimation from any of the combinations because they are either too

close to reference nodes or antenna angles are at near 0 degrees.
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Figure 7.26. Reference node combinations with minimum target estimation error (Adjoining

wall)
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Figure 7.27. Normalized relative target position estimation error for adjoining wall (normalized

to inter-target distance of 30 cm)

Figure 7.27 subplots show the relative target position estimation error from

each reference nodes as normalized value of inter-target distance of 30 cm. And,

Figure 7.28 shows best position estimation case for each target node from all com-

binations of reference nodes, relative to inter-sensor distance of 30cm. Most cases

are less than 20 % which is about 6 cm.
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Figure 7.28. Minimum relative target position estimation error for adjoining wall
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7.6 RESULTS FOR OPPOSITE WALL ESTIMATION

This section explains the result of the target node (e.g. sensor 2) location es-

timation from the reference nodes (e.g. multiple sensor 1’s) on the opposite wall

placement. The method that estimates the position of the target node is the same

as the one described in section 7.5 for the adjoining wall case, which uses distance

measurement from the reference nodes.

As explained in section 7.5, we start by plotting all estimation results in Fig-

ure 7.29, and then excluding results with imaginary numbers (e.g. cyan and yellow

lines) in Figure 7.30. After that, we remove results from reference nodes that form

a straight line in Figure 7.31.

From the final set of results in Figure 7.31, the target position estimation error

was calculated by calculating Euclidean distance between the actual target node

position and the estimated position. Consecutively, the mean square error (MSE)

of target position estimation error was calculated for each target node. Figure 7.32

shows the cumulative probability plot of the MSE distribution of target position

estimation error. It can be seen that 90 % of estimation error is less than 25 cm.

The mean MSE of target position estimation error was 16.68 cm (Table 7.6).

Table 7.6. Target node estimation result (opposite wall)

Description (Opposite Wall) Mean of MSE

Location estimation error between actual tar-

get position and estimated positions
16.68 (cm)
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Figure 7.29. Estimated target positions with connected lines from actual target positions (Op-

posite wall)
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Figure 7.30. Estimated target positions with excluded estimations with imaginary numbers

(Opposite wall)
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Figure 7.31. Estimated target positions with excluded estimations with imaginary numbers and

from straight line reference nodes (Opposite wall)
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Figure 7.32. CDF of target node position estimation MSE (opposite wall)
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The combination of three reference nodes out of five (i.e. A to E) that gives

minimum relative error for each target node is shown in Figure 7.33. It shows

normalized error as a percentage of the inter-target node distance of 30 cm. Most

of errors were less than 30 %. It means that the best guesses had error of less

than 9 cm. Mean of all minimum errors was 6.6855 cm. Below we summarize

observations from Figure 7.33.

• In case of opposite wall placement, position estimation performance is similar

across all combinations of reference nodes except for straight line cases. This

is due to the fact that the distance between the reference node and target

node is well separated at minimum 3 meters.

• Combinations such as (A, C, E) and (B, C, D) where reference nodes lie on

a straight line don’t perform well, similar to adjoining wall case.

• Overall, min location estimation error performance is similar to that of ad-

joining wall case.

Figure 7.34 subplots show relative target position estimation error from each

reference nodes as normalized value of inter-target distance of 30 cm. And, Fig-

ure 7.35 shows the best position estimation case for each target node from all

combinations of reference nodes, relative to inter-target distance of 30cm. Most

cases are less than 30 % which is about 9 cm.

7.7 CONCLUSIONS FOR 3D WALL MAPPING

In this chapter, we first presented the measurement error analysis of ToA based

distance and AoA for both adjoining and opposite wall in terms of mean error

and 95 % error range. The 95 % error of distance measurement was in the range
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Figure 7.33. Reference node combinations with minimum target estimation error (opposite wall)
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Figure 7.34. Normalized relative target position estimation error from each reference node com-

bination (opposite wall)
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Figure 7.35. Minimum relative target position estimation error (opposite wall)
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of 0.00 % and 15.89 %, which is less than 5 cm error. The 95 % error range of

AoA measurement for both adjoining and opposite wall was between 0.17 % and

393.33 %. Based on this distance measurement, the positions of target nodes on

adjoining wall B and opposite wall C were estimated and the results were presented.

The mean of MSE of target node estimation was 16.73 cm for adjoining wall and

16.68 cm for opposite wall. The accurate distance measurement using UWB radios

provided good position estimation of target nodes. When plotted estimated target

node positions, the shape of adjoining or opposite wall could be reconstructed in

reference to the reference nodes.
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Chapter 8

RELATED WORK

Our thesis has two primary areas of study: material characterization using radio

and indoor wall mapping. In this chapter, we present related research in these

areas.

8.1 MATERIAL CHARACTERIZATION

Technologies other than UWB such as X-ray tomographic imaging [33] and

Ground Penetrating Radar (GPR) [49][62][67][81][94][9] are being applied to de-

termine concrete thickness, to create an image of the concrete interior structure,

to detect fractures and voids, and for other applications such as human respiration

monitoring [58]. GPR gained its popularity over X-ray tomographic imaging due

to its low cost operation and safeness. However, not much work has been done

that determines wall thickness using UWB technology, which is critical in locating

transceivers precisely and in creating the image of building or rubble structure.

GPR operates in the microwave band of 300MHz up to 3GHz which is lower than

UWB spectrum of 3.1 GHz to 10.6 GHz. Thus, estimation using UWB gives less

error than using GPR, which is critical in locating transceivers precisely and in

creating the image of building or rubble structure. One other major difference

is that GPR uses signal reflection technique, while our methodology uses signal

transmission technique.
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Material sensing techniques using GPR are largely based on characterizing re-

flection coefficient of reflected signal. [106] presents GPR technique that simulta-

neously determines the number of layers, thickness, and the dielectric constants

of multiple layers of material. The measurement setup uses a network analyzer

sweeping over the frequency range of 30 kHz to 3 GHz to simulate a short pulse

generation and to estimate the reflection coefficient of the material from the mea-

sured reflected signal. An inverse scattering algorithm was used to get thickness

and the dielectric constants. [76] also studies the dielectric characterization of re-

flection coefficients of material. It estimates complex permittivity and multipath

inside material using the algorithm based on the matrix pencil method. The mea-

surement setup with vector network analyzer was used in an anechoic chamber

in 8 GHz to 12.5 GHz band. [88] extends the dielectric characterization problem

to the case of inhomogeneous materials: either it consists of multiple layers of

different materials or materials that exist only in a form of a mixture of multiple

components (i.e., materials with air void or a meat with fat).

Dielectric constant characterization with UWB radio has been studied in [75].

Different from GPR which exploits reflected signals [76][88][103], it uses transmis-

sion technique to characterize the dielectric constants of common building ma-

terials. [54] also characterizes the dielectric constant of building materials using

UWB radios in 3 GHz to 10 GHz bands, and [21] in 5.8 GHz band. The building

materials used in [54] (e.g. Ca-Si board, Chipwood, Glass, Plasterboard) and [21]

(e.g. Glass, Chipwood, Plasterboard, Brick wall) are different from the materi-

als that our research used (e.g. concrete, reinforced concrete, drywall, plywood).

[26] models propagation in and around homes and trees in 5.8 GHz band as well.

Their propagation study is for outdoor path loss or house level penetration loss
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using three houses, whereas our study is for indoor path loss and material level

penetration study.

8.2 INDOOR POSITIONING

In recent years the problem of locating sensors in a sensor network or mobile

devices in WLAN networks has received a great deal of attention as the Federal

Communications Commission (FCC) required the precise location of emergency

911 callers. Outdoor/Indoor positioning have been found to be very useful not

only for public safety but also for business creation such as targeted advertising,

location sensitive billing, asset tracking [78][83], etc.

Standardization bodies such as 3GPP responded to the order from the FCC

[19] on Wireless E911 Location Accuracy Requirements and studied the indoor

positioning enhancement methods in Rel-13 TR37.857 [1]. It took two main ap-

proaches, one being Radio Access Technology (RAT) dependent method and the

other being RAT-independent. RAT-dependent techniques include OTDOA, E-

CID, etc., and RAT-independent techniques studies terrestrial beacon system, col-

laborative positioning with Wi-Fi/BT/Sensors, etc.

Techniques developed for indoor positioning are different from the one for out-

door positioning which uses satellite/GPS because GPS signal is absent indoor

and they face unique challenges. The problem is to find the coordinate of the

target node. The position of the target node can be identified by obtaining posi-

tion related signal parameters from one or more reference nodes and then using

geometric relationships of those parameters in data fusion step to estimate the po-

sition. The data fusion step combines obtained signal parameters such as received

signal strength (RSS), time of arrival (ToA), Time Difference of Arrival (TDoA),



123

and angle of arrival (AoA) and applies geometric techniques such as trilateration,

triangulation, and Hybrid method to determine the position.

8.2.1 RSS based Indoor Positioning

RSS method employs the pathloss model translating the difference between the

transmitted signal strength and the received signal strength into a range estimate

[60]. The challenge in using RSS is that due to the multipath fading and shad-

owing in the indoor environment the pathloss model does not hold, thus making

reliable distance estimation indoors virtually impossible. However, several ap-

proaches, called variously fingerprinting or radio maps, have yielded reasonably

good results by utilizing the pre-generated RSS database over a dense grid of po-

sitions throughout the floor plan of the building [7][39][40][50][51][109][87]. RSS

values from a node are compared against the database and their location iden-

tified. Despite the various problems with this approach due to interference with

other mobiles or propagation environment change due to furniture, the systems

demonstrated accuracy of the order of several meters with the error of the order

of a couple of meters.

8.2.2 ToA based Indoor Positioning

ToA approaches rely on the estimation of the flight time of a signal between

a pair of nodes assuming a Line-of-Sight (LoS) propagation environment. The

nodes should be tightly synchronized. A ToA measurement specifies the circle of

the possible positions of the target node. The location of the target node can be

determined with three measurements from reference nodes at the intersection of

circles centered at each reference node. However, often indoor environments may

not have a LoS propagation channel and the time of an arriving signal may suffer
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from multipath effects resulting in large error. There have been extensive studies

and efforts to improve the ToA estimation precision that combats these drawbacks

[22][23][2][37][101]. [38] studied TOA estimation algorithms for low sampling rate

UWB systems by adaptively selecting threshold of minimum and maximum energy

samples.

8.2.3 TDoA based Indoor Positioning

TDoA only requires the reference nodes to be synchronized [11] and utilizes the

time difference of two arriving signals between the target node to two reference

nodes. Each TDoA measurement defines a hyperbola for a position of the target

node and the target node is then assumed to be located at the overlap of multiple

hyperbolae [34].

8.2.4 AOA based Indoor Positioning

AoA methods rely on the base station (BS) computing the angle of the mobile.

Generally, the angle is found as a range so at each BS we get the mobile’s position

estimated as a cone. The intersection of these cones gives us the location. 3-D

AoA multipath propagation measurement and estimation in indoor environments

including both the azimuth and elevation angles of multipath components was

investigated across the UWB frequency range of 3.1 to 10.6 GHz in [108]. However,

its focus is accurate estimation of AoA parameter itself and not 3D locationing

itself.

8.2.5 RSSI based Indoor Positioning

RSSI based method such as Wi-Fi fingerprint localization has attracted atten-

tion recently because it does not require LOS measurement and can benefit from
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pervasive wireless LAN (WLAN) deployment [41]. This localization scheme also

first performs offline site survey to build database of the signal patterns followed

by online signal measurement and its association with localization algorithm for

location estimation [98][59][84][100].

8.2.6 Hybrid Schemes for Indoor Positioning

Finally, hybrid schemes that use more than one of these four methods have also

been studied [13][20][72][93]. [40] deployed 3 APs on 3rd floor of a building tracking

moving mobile station to estimate the impact of bandwidth to locationing.

8.2.7 Challenges and Mitigation for Measurement Error

Challenges such as multipath and NLOS result in significant measurement er-

ror and a great deal of work has been done to reduce this error. [61][38] uses

beamforming technique to mitigate path overlapping effects in indoor positioning.

[4][40] reduces the error with fingerprinting technique, by creating and using a

database of estimated ToA measurements from many mobile terminals. Another

technique [86] is to use directional transmit antennas. The mean error in distance

estimate reduces by a factor of five as compared to omni-directional transmit an-

tennas and the standard deviation of error reduces by a factor of 15. The Best

Linear Unbiased Estimate (BLUE) [45] uses a statistical model to position radios

in 2D space. It tries to minimize the variance of the final estimation in the linear

space. Expectation of o(n) is in linear form of the true position E(o(n)).

Given the dependence of resolution on bandwidth [85], UWB radios appear to be

a good choice for accurate locationing. UWB transmitter localization effort using

Time Difference of Arrival (TDOA) with multiple antenna pairs was conducted
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by Young, et al. [103], where the measurement was made in an anechoic chamber

(W13 x D20 x H12m) placing trees or metallic objects in different positions of the

anechoic chamber floor to create a multipath environment. The transceivers in this

study had a LoS path, whereas signals in our study had non-line-of-sight (NLoS)

harsher propagation conditions because of travel through building materials. [105]

uses a moving transmitter and fixed receiver to produce a propagation map of a

room.

Attempts to reduce the localization error in the NLoS case were made, e.g.,

[24][56][99], but excessive propagation delay in the NLoS condition was a limiting

factor of precise ranging [56]. Wylie and Holtzman [99] used statistical information

of the difference in the variance of time of arrival (TOA) in the line-of-sight (LoS)

case and in the NLoS case. Algorithms that detect the first path under a multipath

condition were developed, e.g., [24][56]. Our algorithm targets locationing of a

transmitter with very small error even with the considerable ranging error caused

by excessive propagation delay in the NLoS case overcoming ranging limitation.

8.3 UWB RADAR

UWB technology has been used in UWB radar system that transmits signal in

a much wider spectrum with very low power than conventional radar systems [97].

UWB radar usually transmits signal under thermal noise. The technique used to

generate a UWB radar signal is to transmit pulses with very short time duration,

e.g. less than 1 nanosecond. UWB radar uses signal reflection technology while

IR-UWB technology uses signal transmission technology between the transceivers.

There were various studies on human detection system development and ap-

plications using UWB radar for military [42], medical [46], or emergency rescue
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[57] operations. Also UWB radar is useful in subsurface object detection such as

landmines [73].

Time Domain Corporation [31] received a patent on wideband radar technology

that detects the presence of an object or motion through a wall, which can be used

in through wall sensing, rubble rescue, and others. Through-wall sensing of heart

beat using Direction of Arrival (DOA) and reflection was proposed by Chia, et al.

[16].

UWB life detection radar system prototype was built by [15] and the optimal

bandwidth and center frequency of breathing motion detection UWB radar system

was presented in [70][68][107][46], and [79] also studied human detection method

using UWB radar.
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Chapter 9

CONCLUSIONS

In this thesis we consider the problem of estimating the wall type and wall

mapping using transceiver-based UWB radios as sensors. The result shows good

performance of our algorithm, and we can identify wall type and wall placement

correctly with very low error.

The wall thickness and type of material estimation utilized signal propagation

measurements using two UWB radios separated by some distance. Applying our

algorithm shows accuracy of more than 98.7 % in estimating material thickness

and type. Also, the distance estimation error was less than 4.87 % even under

severe multipath indoor environments.

Our approach in estimating 3D wall mapping utilized 4 UWB radios for ToA

based ranging and AoA measurement. We designed adjoining wall and opposite

wall configuration and placed reference nodes and target nodes in different locations

on the walls. Distance measurement mean error was less than 2.41 % for all cases.

The 95 % error range of distance measurement was between 0 % and 15.89 %,

which is less than 5 cm error. Mean error for AoA measurement was less than

105.97 %. High error happens when the actual angle being measured is close to 0

degrees. Even small absolute error is magnified when we consider relative error.
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Mean of MSE for location estimation error between actual target position and

estimated position is less than 16.73 cm for both wall configurations. The accurate

distance measurement using UWB radios provided good position estimation of tar-

get nodes. By plotting the estimated target node positions, the shape of adjoining

wall or opposite wall could be reconstructed in reference to the reference nodes.
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