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Abstract 

In the past decade, the amount of scientific data collected and generated by scientists has 

grown dramatically. This growth has intensified an existing problem: in large archives 

consisting of datasets stored in many files, formats and locations, how can scientists find 

data relevant to their research interests? We approach this problem in a new way: by 

adapting Information Retrieval techniques, developed for searching text documents, into 

the world of (primarily numeric) scientific data. We propose an approach that uses a 

blend of automated and curated methods to extract metadata from large repositories of 

scientific data. We then perform searches over this metadata, returning results ranked by 

similarity to the search criteria. We present a model of this approach, and describe a 

specific implementation thereof performed at an ocean-observatory data archive and now 

running in production. Our prototype implements scanners that extract metadata from 

datasets that contain different kinds of environmental observations, and a search engine 

with a candidate similarity measure for comparing a set of search terms to the extracted 

metadata. We evaluate the utility of the prototype by performing two user studies; these 

studies show that the approach resonates with users, and that our proposed similarity 

measure performs well when analyzed using standard Information Retrieval evaluation 

methods. We performed performance tests to explore how continued archive growth will 

affect our goal of interactive response, developed and applied techniques that mitigate the 

effects of that growth, and show that the techniques are effective. Lastly, we describe 

some of the research needed to extend this initial work into a true “Google for data”.   
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1 

1 Introduction 

Scientists are frustrated by the limited capabilities currently available to them for locating 

data. Researchers can spend inordinate time just locating and selecting suitable data sets, 

before even starting the data analyses that might lead to scientific insights. When a search 

requires many selections or scanning a large archive, scientists may desist, at cost to their 

research. Ahrens et al. note, “when datastreams aren’t optimally exploited, scientific 

discovery is delayed or missed” [5]. The problem of finding scientific data, and dealing 

with the heterogeneity of multiple data formats, has been widely recognized [27, 33].  

Large archives of data only have value commensurate with the use and reuse that can be 

made of their contents; and data cannot be used if it cannot be found [49, 125, 142]. 

Growth in data must be accompanied by improvements in tools that help scientists easily 

find the data they need [48]. Despite much progress in providing data access through 

portals and gateways, the problem of how a scientist finds the data she feels is worth 

accessing has not been solved. This problem was highlighted at a National Research 

Council workshop [142]. In our work with one oceanography observatory and research 

center, the Center for Coastal Margin Observation and Prediction (CMOP) [147], the 

scientists brought this issue of finding relevant data to our attention as one of their 

highest priority problems with CMOP’s scientific data archive – despite having access to 

state-of-the-art data access, analysis and visualization tools [148]. 

What scientists desire is a “Google for data.” At the high level, our vision is this: to 

provide scientists with an interactive search engine that can quickly find data relevant to 
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their research interests; and further, to let them quickly assess whether the data located is 

interesting enough to warrant exploring in greater detail. This dissertation describes our 

first steps towards this vision. 

We contribute a novel approach to the problem of finding relevant data: ranked similarity 

search of scientific datasets. We begin by limiting the space we address to a large subset 

of scientific data: data made available for public download by scientific archives. The 

data provided by each individual archive tends to be somewhat limited in nature, in terms 

of the subject areas addressed, the types of data made available, and the formats used. 

Each archive has some staff responsible for ensuring data is accessible and has some 

amount of consistency or quality control. The data formats, types and contents vary 

widely from archive to archive.  

Within this subset, we focus our experimental work on observational data, whether 

sensor-derived, measured in the laboratory, or generated by scientific models. This subset 

of scientific data already consists of many petabytes of data, is growing rapidly and is 

diverse, thus representing at a smaller scale many of the issues of the entire field. Given 

the large quantity of numeric observational data, and that a significant proportion of other 

scientific data is numeric, we experiment primarily on numeric observational data. We 

believe, however, that the work described in this dissertation can be readily extended to 

other fields or kinds of numeric data, and even to non-numeric data. 
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1.1 Searching for Observed Data 

Scientific research into natural systems has benefited from a rapid increase in the number 

and types of deployed observational sensors. Some research institutions act as 

observatories; they manage collections of sensors focused on a single research topic, 

collecting, storing and making their data available on the Internet. The stored data for the 

observatory forms a data archive that grows in age, size, and complexity. With billions of 

historical observations now stored in diverse databases and in thousands of datasets of 

different formats and in different navigational structures, scientists have difficulty 

locating data relevant to their research even within a single archive. 

A decade ago, this explosion was described as the “Data Deluge” [61], and continued 

exponential growth in data volumes was predicted [81]. These predictions have now been 

realized and exceeded, and have led to an increased focus on the issues of “big data.”  

New big-data proposals are announced daily, and Gartner warns of big-data chaos if new 

management techniques are not developed to access the variety, velocity and volume of 

data now available [42]. “Big data” collections, such as observatory archives, represent a 

large, continuing investment of funds and people. We expect the value of such sources to 

grow as their holdings increase. Yet there is real danger that each expansion of an archive 

makes each individual dataset within it more difficult to locate, thus compromising that 

value.  

As data archive sizes grow, traditional methods scientists have used to find data begin to 

fail. The archive needs a way to help a scientist identify and locate data of interest in its 
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collection. Each archive now has some data access system – often a website or portal – 

that a scientist can navigate to find datasets of interest. Some data access systems rely on 

manual navigation of catalogs (e.g., a THREDDS catalog hierarchy); the scientist is 

expected to choose the correct option at each step within the catalog hierarchy that will 

eventually lead to her desired data. Some data access systems rely on Boolean queries for 

specific words in metadata contributed by the scientist who archived the data. More 

sophisticated systems allow text search over words in metadata, with the scientist 

entering words representing her interest and the system returning entries judged most 

relevant, even if not exactly matching all the search criteria, based on the contributed 

metadata text.  

Much scientific data is numeric in nature. In these cases, unlike with text search of the 

actual document as we expect in web search, the data access system searches textual 

metadata contributed by the data provider for the user’s terms, treating the metadata (not 

the actual data) as a text document. Such searches are successful only if the contributed 

metadata contains words that match those for which the scientist searches, and if she can 

represent the search in that way.  

For geospatial data, one of the better served areas of scientific search due to its 

importance to many research fields, metadata may include a geospatial extent on the 

contained data, and search systems rely on only geographic comparisons such as contains 

or intersects. 
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A naïve approach to searching the content of numeric datasets might entail indexing each 

contained number as though it were a term in a document, and then allowing a scientist to 

list the numbers she is looking for. However, the searches posed by scientists are often 

different from searches targeted at text documents. Rather than looking for specific 

words, scientists are often looking for datasets containing particular variables, such as 

salinity or nitrogen, that manifest a desired range of data values or that were observed at 

some location and time. For example, a scientist may be looking for “water temperature 

between 5 and 10C.” Many datasets may contain the same-named variables but may 

contain very different values for these variables; reporting only that a dataset contains a 

specific variable or number (“dataset_1 contains a ‘5’, a ‘10’, a ‘C’ and the word 

‘between’”), as might be determined by a text search, has little utility for the scientist. In 

fact, a matching dataset may not contain a ‘5’ or a ‘10’ at all, or the data may be in 

Fahrenheit. This same issue is found even in non-scientific fields, such as in a 

components portal [4] where users want to retrieve specification documents without exact 

word-matches between the search terms and the attribute names and associated numeric 

values in the documents. 

The scientist’s desired search results are sets of data, rather than text documents [103]. 

Once interesting datasets are identified, the datasets are generally further analyzed or 

visualized using a variety of scientific tools, rather than simply browsed, as is more 

common for text documents. The scientists have powerful analysis and visualization tools 

available to them [63, 107, 125]; however, these tools must be told the dataset and data 
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ranges to analyze or visualize. Visualizing a dataset of observations may confirm that a 

given dataset does or does not contain the desired data; but individually visualizing each 

dataset is not practical as the number of datasets increases. Thus, a key part of the 

scientist’s needs is in linking search results to visualization, data download or analysis 

using appropriate tools [48, 124]. Further, since visualization and analysis tasks are 

generally nonlinear with respect to the amount of data analyzed [48], it is often 

advantageous to limit the amount of amount of data analyzed to the most relevant subset 

within a larger dataset. 

If a scientist fails to find an exact match for her interests, or even if she locates one 

dataset of interest, additional potentially relevant datasets (similar to already-located 

datasets) are rarely found using current methods, much less are these similar datasets 

ranked by their relevance or similarity. 

Metadata collection, curation and maintenance are themselves acknowledged and 

ongoing problems. Creating metadata to describe and categorize data is a labor-intensive 

and oft-neglected part of research projects [27, 93], and relying on scientists to contribute 

metadata describing their datasets is considered a prescription for failure [14, 81]. Search 

systems that rely on the success of this process have limited practicality and utility. 

1.2 An Information Retrieval Approach 

Similarities in the problem description between the scientists’ need to identify relevant 

datasets, and the long history of Information Retrieval (IR) in defining relevance [115, 
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116] and searching for relevant text documents in large collections [83], sparked our 

curiosity.  

The Internet has seen explosive growth over the past few decades, along with challenges 

in locating sought-for information as the volume of web pages increased. Tools to 

address these challenges have been developed and have matured. Initially, web pages 

were only available to someone who knew the pages’ URLs. Then, some users created 

themed directories of pages (such as the first version of Angie’s List or Yahoo!); other 

users navigated these lists and hierarchies to find the pages relevant to them. Simple 

search capabilities were then added to ease this task. We now have large-scale search 

engines that index these directories and the pages they catalog. In response to a user 

search, the search engine identifies and returns – based on the terms the user has searched 

for – a list of possibly relevant pages, along with a snippet from each. The user can 

further examine pages from this list to find the ones suited to his information need. The 

search engine acts as a filter, presenting a smaller list of pages than the user would 

otherwise have to browse; it also orders the list by some notion of relevance (and in some 

cases even multiple alternative estimates of relevance [3, 34, 128]) hoping to present the 

best pages near the top of the list. These web-search techniques now allow users to easily 

find relevant documents despite the enormous growth in total pages available on the 

Internet. 

The use of search services such as Google and Microsoft Bing have changed users’ 

expectations of search engines [146]. Users are accustomed to receiving a ranked list of 
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search results, with “close” matches to their search along with “not so close” matches. 

Further, they expect that the search engine will respond based on the contents of items 

rather than just on externally defined metadata such as document title or specified 

keywords.  

We wondered: Can we move beyond the existing word-matching and simple geometric 

comparisons used in contemporary data-archive search systems, to estimating the 

relevance of a dataset to a scientist’s information need? Further, what are the similarities 

(and differences) between web search and scientists’ search for data? Can we adapt 

techniques from web search to help scientists find relevant datasets; and if so, which 

techniques are applicable, and how far can we push the correspondence?   

We believe we have demonstrated that we can; this dissertation describes our results from 

exploring these questions. We explore the feasibility and utility of applying IR techniques 

to search over an existing archive of scientific datasets, with some first steps towards 

extending the approach over multiple archives. We begin with the standard high-level 

Figure 1.1. High-level web-search architecture 
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architecture used for web search, as shown in Figure 1.1, and adapt it to our situation.  

In devising the details of our approach, we assume that scientists will continue to use 

tools they are familiar with to visualize or analyze data once they have discovered it. We 

are biased towards identifying light-weight, easy-to-use approaches that ease the 

discovery process; as noted in considering the success of Google Maps, “Richness and 

depth are trumped by speed and ease, just as cheap trumps expensive: not always, but 

often” [94].  Other search engines have found that providing fast response time is key to 

their utility [117]; we believe the same is true in searching for scientific data. We are also 

biased towards exploiting well-studied and optimized underlying functionality and 

techniques wherever possible.  

1.3 Contributions 

We assert that the IR concept of relevance is applicable to ranked retrieval of scientific 

datasets, and that therefore IR similarity measures and IR evaluation methods are also 

applicable. Without such concepts applied to scientific data, the usefulness of a scientific 

archive decreases as the archive grows beyond the ability of an individual scientist to 

navigate it.  

Specifically, our contributions are: 

1. We cast the problem of finding scientific data within an archive or a collection of 

archives as an Information Retrieval problem, similar in nature to finding relevant text 

on the web or in a document collection. 
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2. We present an approach to solving the problem, by adapting and applying Information 

Retrieval techniques to scientific datasets. 

3. We formulate a model for evaluating the similarity of a set of datasets to a scientist’s 

search. We show that the model can be instantiated by a flexible, componentized 

software architecture.  

4. We show that we can directly map these approaches into a ranked-retrieval system for 

datasets. We demonstrate the feasibility of the approach, model and architecture by 

implementing these principles in a prototype (“Data Near Here”) over the majority of 

CMOP’s holdings, which represent multiple types, scales and formats of data. Our 

implementation links search results to visualization, data download and analysis using 

appropriate tools, as desired by our scientists.  

5. We propose a candidate similarity measure consistent with cognitive science research, 

and implement it in the prototype. 

6. We provide evidence of system utility via two user studies. In these studies we 

demonstrate that the concepts of “dataset relevance” and “dataset similarity” are 

meaningful when applied to scientific data. The first user study examines our candidate 

similarity measure, while the second user study evaluates our prototype. 

7. We demonstrate that IR measures (such as Mean Reciprocal Rank, Rank Biased 

Precision and Discounted Cumulative Gain) are applicable to dataset search. We 

compare our candidate similarity measure to several alternatives using these measures; 
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the IR measures indicate our initial candidate similarity measure performs well in 

comparison. 

8. We address the desire by scientists to easily identify a subset of data that matches their 

research interests within a larger set of data by virtually segmenting datasets to give the 

appearance of multiple, smaller datasets within our system. We incorporate this 

capability into our model and implement it in our prototype.   

9. We describe and evaluate the architecture of our system, and show it will meet 

currently anticipated needs. 

10. We explore the performance of our prototype, using data of interest to our scientists. 

Looking ahead to continued growth in the data collections, we adapt and assess several 

performance-improvement techniques to support larger collections.   

Given the availability of an observational archive and associated scientific research 

community at CMOP, we further limit our empirical work to their archive and to their 

immediate needs. While our experiments are undertaken within one particular scientific 

research discipline and archive of observational data, the same issues and problems we 

consider are seen in many other research disciplines [142]. We also believe our work can 

be extended to cover a confederation of scientific archives. 

Our prototype, called “Data Near Here”, has now been deployed for use by our scientists 

for over six months. Figure 1.2 shows the primary search interface, which includes on a 

single webpage the search interface and ranked search results. The search interface is 

akin to the “advanced search” used by some text-search engines, but adapted to scientific 
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data. (Note that the search interface is naïve, and is not the subject of our research.) The 

search results are displayed as brief summaries of the datasets, akin to the “snippets” of a 

document shown in web search. Details of a dataset’s metadata and contents can be 

viewed by clicking on an individual snippet. Because geospatial location is so important 

to our user base, the spatial extent of the search is shown on the map interface (the square 

white box), and the spatial extent of the datasets in the search results list are also shown 

on the map (here, diagonal lines and markers; other datasets may be represented by 

Figure 1.2. User interface for “Data Near Here”, showing a sample search for a geographic region (shown as 

a rectangle on the map) and date range, with temperature data in the range 5:10C. Result datasets (or subsets) 

are shown as points and lines in the output pane, together with their relationship to the search region. In the 

ranked list of answers, no full matches for the search conditions were found; four partial matches to a search 

with time, space and a variable with limits are listed, and more are shown on the map. 
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polylines or polygons). However, our work is not limited to this kind of geospatial-

temporal search.  

We expand on the background on the problem and other approaches in Chapter 2; that 

chapter includes an overview of our solution and describes related work. We describe our 

underlying model for dataset similarity and search in Chapter 3.  

Chapter 4 provides more tangible detail on our approach to dataset similarity; we also 

describe our approach to extracting metadata from our test archive of datasets. We use 

these approaches in our prototype. In Chapter 5 we describe the prototype, giving details 

of the implementation and an architectural evaluation of the implementation.  

In Chapter 6 we describe our two user studies. Our first user study tests the feasibility of 

ranked search of scientific datasets via a relatively straightforward similarity measure we 

developed. This first study focuses on geospatial and temporal characteristics of 

observational datasets, two features that are critical in many areas of scientific research. 

Our second user study takes the form of an operational test by users of the search tool 

against around 30,000 datasets totaling more than 0.5 TB, the observational component 

of the repository. This data represents over a decade of environmental observations. 

Thus, the task we are studying in this work is both topical and real. The searchers are 

scientists using the repository, who formulated searches representing their own 

information needs. This study structure gave us a tight linkage between real users with 

their own information needs, and the assigned relevance ratings or “ground truth” for 

their search results. 
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We then consider another challenge: is it possible to provide interactive response times, 

as we have come to expect from document search, over a metadata collection 

representing a scientific data archive of current and expected sizes? To understand the 

performance and scalability characteristics of the concepts beyond the catalog sizes 

afforded by the current prototype, we estimate the potential effect of growth of the 

archive on the number of dataset summaries. We developed techniques to improve 

response time; we describe these techniques and assess the improvement they afford in 

Chapter 7.  

We recognize that there are significant additional research challenges to generalizing this 

initial work. We describe a subset of these challenges in Chapter 8. 

1.4 Terminology 

While our work is currently focused on scientific data, we recognize that non-scientists 

may also have interest in the data; also, the principles we develop may be useful for data 

that is not directly scientific in nature. We therefore sometimes use the more general term 

user to refer to a person who uses our prototype or systems built using our model, in 

addition to using the term scientist. 

We use the term (scientific) archive to mean an online-accessible collection of scientific 

data. The archive is generally under the administrative control of a single institution or 

agency, and preserves and provides access to data pertinent to the agency’s mission. For 

example, CMOP has an archive of oceanographic and coastal-margin data, while 
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NOAA’s National Climatic Data Center has an online data archive of weather and 

climate data.
1
    

Most scientific archives have a contact person responsible for responding to questions 

about the data, ensuring that data can be downloaded, creating and managing metadata to 

describe the data, etc. We refer to this person as the archive’s curator. 

We use the term dataset to mean a defined set of (scientific) data with some internal 

structure that can be consistently determined via some access method. The set of data 

contains variables (like environmental variables such as “oxygen saturation” and 

“nitrate”), and those variables have one or more values. This definition of dataset 

includes such variants as a file stored in a file system containing tabular data in a series of 

columns, a file in a standard scientific format such as NetCDF, or a set of rows in a 

database table. Although we have experimented most with these forms and use them in 

our examples, we do not restrict our definition to these dataset types. Our ultimate goal is 

to match the concepts of dataset, variables and values within the minds of the scientists; 

we believe that groups of scientists within a single research field often have similar 

definitions, and thus these definitions should be recognizable and replicable.     

We borrow the term catalog from the field of library science to describe the collection of 

entries we create that summarize and allow us to search over, locate and access scientific 

datasets. Our catalog contains data about the source data, that is, metadata.   

                                                 

1
 http://www.ncdc.noaa.gov/cdo-web/ 
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To (we hope) reduce confusion, we use the term index in its Information Technology 

usage, to refer to a list of keys used to quickly access data within a data structure. We 

recognize that our catalog is itself a form of index, and can be implemented in a relational 

database in a set of tables that themselves have indexes. 

Our metadata does not retain the association of specific values with the source 

observation; that is, within any set of tabular data we operate on columns of data, not on 

rows. For simplicity, we may refer to a column name as being an attribute or a field of 

the dataset. We may refer to the set of values contained in a column as its footprint, and 

the minimum and maximum values as its bounds or range. We sometimes refer to a 

dataset’s collection of bounds across all columns as the dataset’s footprint.  

We use the term dataset summary to refer to the brief description we use to represent the 

dataset in our metadata catalog. Generically we regard it as consisting of a unique 

identifier for the summary, an identifier of the dataset to which it refers, and some 

collection of features. We store our data summaries in a catalog; thus, our data summaries 

are metadata. 

Adapting a definition from Information Retrieval (IR) [83], a dataset is relevant if the 

scientist perceives that it contains data that satisfies her information need.  

We refer to the user’s representation of their information need, as presented to a search 

system, as his or her search. We consider the search as consisting of a number of 

conditions that describe the overall information need, and we refer to each of these 
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conditions as a search term. When a search term specifies a variable with a higher and 

lower value in some units, we call this interval the desired variable’s range. 

We use query to mean a single request to a relational database system. Thus, a single 

search may be implemented via a series of queries against a database. 
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2 Background and Overview 

How do scientists locate data today, and why are these methods not adequate? In this 

chapter, we first discuss our motivation in Section 2.1, then some similarities to and 

differences from the field of Information Retrieval in Section 2.2. In Section 2.3 we 

describe a fairly typical scientific archive we work with and use as our test bed, and in 

Section 2.4, current methods used in searching for data in similar archives. We identify 

what we believe are some common characteristics of scientific archives in Section 2.5; 

for our work to be generally applicable across archives, our approach must be robust with 

respect to these characteristics.  

We then provide an overview to our work in adapting web Information Retrieval (IR) 

techniques to this field (Section 2.6) and summarize related work (Section 2.7).   

2.1 Motivation 

The practice of observational science has changed dramatically in the past few decades. 

Scientists now research ecosystem-scale and global problems in interdisciplinary teams – 

driving the need for more data over more environmental variables from more locations 

over longer timeframes [5]. Time expended in searching for relevant data is now a 

significant overhead on scientist productivity. 

In our work with one scientific archive, we see the effect on scientists of the dramatic 

growth in available data. Microbiologists, who once collected a few water samples a year 

and studied them intensively, now have equipment that can capture a water sample every 

few seconds; on science cruises, sensors measure environmental variables every few 
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milliseconds over hundreds of miles. The methods available for managing and exploiting 

the information now being collected have not kept pace. Anecdotal evidence indicates 

that even when a scientist has previously worked with a dataset, he or she may 

“misremember” exactly what time or place it was obtained. Given current access 

methods, such a dataset is effectively “lost”, as far as that scientist is concerned [92]. 

Informally, scientists have told us that they have abandoned research questions because 

they found it too hard to locate relevant data, even in cases where they knew the data they 

sought existed. This behavior is not limited to our archive or scientific field [124]; in the 

field of chemistry, Caruthers states “we [scientists] are starting to die from data,” and that 

scientists desperately need better ways to store and retrieve research data or “we are 

going to be more and more inefficient in the science that we do in the future.” He adds 

“data from experiments conducted as recently as six months ago might be suddenly 

deemed important, but researchers might never find those numbers” [22]. The problems 

scientists experience in locating relevant data threaten to undermine the value of large 

and growing archives. 

Our research goal is to counteract these problems by making it easy for scientists to find 

data relevant to their research questions, despite growth in the archives that store that 

data. 

2.2 Information Retrieval Concepts and Scientific Data Search 

There are strong similarities between the scientists’ search for data and the needs 

addressed by the field of Information Retrieval. In both cases, a user represents his 
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information need by a set of search criteria; ideally, he desires an exact match to his 

information need. In its absence (due to lack of data or to an imprecise formulation of his 

information need), he may consider a “near match” instead; research by D’Ulizia et al. 

shows that 95% of users would rather have an approximate answer or a near match than 

none at all [28].  

The traditional text IR model focuses on three components: a document, a search, and a 

similarity measure that compares them. Traditional text IR treats a document as a bag of 

words, with each distinct word within the document regarded as a feature; further, a 

frequently used word (e.g., “the”) is seen as having less value than a less frequently used 

word (e.g., “deconstructionism”). In many scientific datasets, each variable name is listed 

once as a column heading and not repeated, while all the values are listed in a column 

below; units may be supplied in the heading or as metadata.  Treating a dataset as a 

document and applying a simple bag-of-words model implies matching based on word 

equality. However, when treated this way, the values in a column would be disconnected 

from the associated variable and each (white-space separated) value treated as a word; the 

association between a variable, its units and values would be lost. Finding a variable 

“water_temperature” and the value “5.0” somewhere in the same dataset is not the same 

as finding “water_temperature of 5.0”.  Similarly, a text IR search also consists of a bag 

of words (for example, “Paris Hilton”), and thus each search term can be matched to a 

document feature. Our scientists, however, do not search for specific values found in a 

dataset (“water_temperature 5.93615C”), but rather express their information needs in 
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terms of an observational variable with values in some range (“water_temperature 

between 5 and 10C”). In text IR, a similarity measure is applied to the search and each 

candidate document, and documents “more similar” than some cut-off value are returned. 

Common text similarity measures (e.g., cosine similarity using tf-idf) balance how 

frequently words in the search occur in a document with how frequently they occur in the 

document archive. For scientific data, it is not clear that a frequently occurring value 

makes a dataset containing it less relevant to a search. Thus, the bag-of-words similarity 

measure is also not a direct fit.    

Thus, the bag-of-words model and the similarity measures that rely on that model, as 

used in traditional text IR, do not seem to directly apply. Even when we have solved the 

issues of accessing and reading relevant datasets (see Section 2.4), traditional IR methods 

must be adapted to be usable for scientific data. Nevertheless, we are curious to see how 

much we can learn and apply from existing IR techniques, how the techniques can be 

adapted, and how far applying these approaches can take us towards our goal. 

Given the size of this research topic, our approach was to work with a specific archive, 

described below, to experiment with and test a combination of methods, and to use the 

results to inform further experimentation and research.   

2.3 Our Study Archive 

The Center for Coastal Margin Observation and Prediction (CMOP) is a National Science 

Foundation Science and Technology Center (NSF STC) based in Portland, Oregon, 

focused on coastal-margin and near-ocean issues. It is a multi-institution, cross-
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disciplinary research partnership consisting primarily of oceanographers and marine 

biologists. CMOP has collected observational data from an ever-changing set of fixed 

and mobile sensors around the Columbia River and off the Washington and Oregon 

coasts for more than a decade – a rich resource for oceanographic research.  

CMOP collects observations using a wide variety of fixed and mobile observation 

platforms; individual observations may even be manually collected, for example a water 

sample may be gathered by a biologist with a bucket. At another extreme is a network of 

fixed stations, each of which have a single geospatial location (often with multiple 

elevations), and may have collected a million observations spanning a decade. The 

mobile sensors may collect millions of observations over widely varying geographic and 

temporal scales: science cruises may cover hundreds of miles in the ocean over several 

weeks, while gliders and autonomic unmanned vehicles (AUVs) are often deployed for 

shorter time periods – hours or days – and a few miles, often in a river or estuary.  

A single observation consists of a set of measurements of environmental or biological 

variables at a point in space at a point in time. Observations that are related in some way 

(often, collected from the same source, at a similar time, or supporting a single research 

project) are stored together in one or more datasets. The set of environmental or 

biological variables (hereafter called simply variables) observed changes over time; there 

are frequent changes in the instruments deployed as new instruments are developed and 

new research topics studied, leading to changes in the data structures used to store the 

data.  



 

23 

CMOP’s observational archive spans more than a decade and contains thousands of 

datasets, with over 0.5TB of data in aggregate. CMOP scientists analyze historical 

observations and run complex simulation models, producing additional terabytes of 

(computer-generated) observations [82]. Almost all data (both observed and modeled) is 

accessible for public download via CMOP’s portal or from their THREDDS server.
2
 The 

datasets are heterogeneous in content, format and storage type. Multiple tools are needed 

to access and read the different dataset types, and no single interactive query or search 

capability spans all the data. Figure 2.1 gives a simplified schematic of the range of data 

formats and data access tools currently used at CMOP for searching for data; all of these 

tools are variously used by scientists to locate and identify the relevant subsets of data in 

the archive for their analysis. Some of these tools are also used for analysis once the 

relevant data has been located. 

The CMOP repository is in many ways a typical scientific archive. An informal 

examination of other sister archives accessed by CMOP scientists showed only minor 

differences in the capabilities and tools provided. 

 Scientists want to search these collections of observations for data that matches their 

research criteria. The scientists at CMOP often define their information needs using 

varying combinations of geospatial areas, temporal ranges, environmental variables 

collected, and ranges of readings for specific variables. For example, one microbiologist 

may be looking for “any temperature readings near the Astoria Bridge in August 2011” in 

                                                 

2
 Data can be accessed via CMOP’s website, http://www.stccmop.org. Some data is not available to the 

public until quality assurance is completed. 

http://www.stccmop.org/
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order to place a water sample taken there into physical context. An oceanographer may 

be looking for simultaneous low oxygen and low pH (high acidity) in a river estuary, as it 

may indicate that upwelling ocean water is entering the river system. He is interested in 

data from any time period with these conditions.  

2.4 Current Approaches to Searching for Scientific Data 

How do scientists describe their information needs, in order to search for relevant data? 

To our knowledge, this question is not discussed in the research literature; their search 

language is generally implicit in or mandated by the system or approach used. 

Approaches currently described in the literature fall into three main categories:  

 Data access via successive menu selections or navigating through a directory 

hierarchy; 

 Visualization of a set of data;  

 Text search for words in metadata associated with the datasets.  

Figure 2.1. Heterogeneity of data formats and data access tools in one scientific archive 
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In this section we describe the use of these approaches in searching for scientific data. 

Then, in Section 2.5, we take a step back and discuss why the often-suggested alternative 

solution of portals and gateways (which act as the front-end for one or more of these 

approaches for some collection of datasets) does not adequately address the scientists’ 

needs. 

CMOP scientists have available to them a state-of-the-art set of tools for locating 

observational data in their archive [82]. The interface presents them with a set of options 

at each step that narrows down to the (presumably) desired dataset. A scientist can select 

a category of data (station, cruise, etc.); then select the desired station or cruise from a 

list; select an instrument; then select the desired time period containing the relevant data, 

and lastly, the specific dataset can be accessed.  

However, the existence of this system, akin to structured data retrieval, does not fulfill 

many of the information retrieval needs of the scientists. Scientists are now asking 

questions such as: for a particular location or time, what variables were collected, 

anywhere in the archive, or even, in other similar archives? For a particular variable, 

during what time periods and at what locations are there observations? What data exists 

in the archive where a specific variable has values within some identified range? In each 

case, the structured-access interface does not afford a rapid answer; the scientist must 

scan and access a significant portion of the entire archive to answer the question. The 

access is complicated by the heterogeneity of the dataset locations and formats. While 

this heterogeneity is partly hidden by the structured-access interface, this kind of search is 
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not practical with the selection-driven approach the interface uses.  

One of the most common methods proposed to help scientists find relevant data is to 

graph or otherwise visualize a large quantity of data, trusting that the scientists can 

visually identify the relevant subset of data out of the large volume of data displayed [63, 

107, 125]. The scientist specifies the dataset and range of data within the dataset (that she 

has identified using some other unspecified method). The system then presents a 

visualization of the specified numeric data. In some cases, a million data points can be 

represented in a single image, to allow the scientist to visually assess patterns or sought-

for irregularities. This method is implicitly assumed by THREDDS, for example. 

However, these tools must be told the location and name of the specific dataset and the 

data ranges to analyze or visualize.  

Visualizing each dataset individually, looking for possibly relevant data, also has built-in 

scalability constraints; in all cases, visualization on a per-dataset basis is only practical 

for a small number of datasets. Visualizing a dataset of observations for a desired 

location in, say, June may find no relevant data. Potentially relevant substitutes that are 

“close” in either time or space (say, from late May in the desired place, or from June but 

a little further away) are not found using current methods. While visualization allows the 

scientist to review more data at a time than, for example, looking at the same data in the 

form of a table of numbers, the approach is still limited by the amount of time the 

scientist is willing to spend in this dataset-by-dataset review; visualization tasks scale 

almost linearly with data volumes [49]. In addition, the relevant visualization tools 



 

27 

generally change for each data-storage method, so the scientist spends more time dealing 

with software install and license issues and learning curves for additional tools – a further 

disincentive to searching for relevant data. 

Using the approaches described above, locating a relevant dataset of observations 

requires that the scientist knows that the relevant data exists, and understands the 

dataset’s storage location, access methods, tools and format (e.g., NetCDF versus 

relational data versus unstructured models). Even with a search tool that can find data in a 

desired range, the scientist may not know how far to set those bounds in order to 

encompass possible substitutes. If the scientist knows a dataset exists but does not recall 

the details correctly, then the dataset is effectively “lost.” He is not personally involved in 

all collection activities and so is not personally familiar with what data was collected, and 

memories fade even for those he is involved in [93]. If he is not aware of exactly what 

data exists and which tool to use to access it, or he misremembers the exact combination 

of search terms or selections to find the desired data, he may find no data. The successful 

use of any search or query interface that returns a Boolean result (a result is either in or 

not in the desired set) is dependent on the user specifying exactly the search terms that 

will find the desired data. Widening the criteria may result in more datasets than he can 

review or analyze, with no guidance on which are likely to be most relevant.   

Another common approach is for the archive curator to add metadata or annotations to 

the datasets in the form of a catalog, and expose the metadata via a search engine. Some 

catalogs [43, 103, 109, 129] provide text-search capabilities over the contents of metadata 
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fields; however, scientists are often vitally interested in the data values contained within a 

dataset rather than the text description. Often, descriptive metadata may only lead a 

scientist to conclude that there might be relevant data in a specific collection of datasets; 

finding the subset of that collection that is relevant requires access to the contents of the 

datasets themselves. Even when the dataset contents are exposed to a search engine, most 

text retrieval approaches treat numbers the same way they treat other words; a search for 

6798.320 on Google does not return 6798.32 (although it does return the paper that 

makes this point [4]).  

The effort involved in creating metadata over which to search is an acknowledged issue 

in the literature. Further, having metadata does not help unless the provided metadata 

matches the kinds of search terms scientists wish to use to find the data. Automatic 

metadata generation has been identified as an important need, since the manual metadata 

annotation by scientists required in most systems is considered burdensome and is rarely 

provided [14, 60, 81]. One group noted that the users wanted more metadata than 

providers were interested in providing, and that providers stopped providing access to 

data when more metadata was requested from them [27].  

Where only a subset of a dataset is relevant, the search challenge is even greater. Within a 

dataset with millions of rows, only a few thousand may be relevant; finding the subset 

containing those few thousand is difficult using any of the approaches described above. 

Extracting the relevant portion of a dataset, once located, can then be a separate 

challenge, and the time taken here is a further constraint on productivity. 
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Our scientists express frustration at the database-style or sequential-selection searches 

and visualizations that they currently use to locate desired data. Even with the techniques 

and tools described in this section, their problem remains. 

None of the approaches described here adequately address the question of how the 

scientist can efficiently identify interesting datasets and ranges to visualize. That question 

is the subject of this research. 

2.5 Archives, Portals and Gateways 

Other observatory archives we explored have many of the same characteristics as 

CMOP’s archive; these similarities make our work broadly applicable to such archives. 

In this section we describe the common characteristics that are relevant to our work. 

2.5.1 Data Access and Sharing 

Scientists now often wish to expand coverage of their analysis or simulation models, 

spatially, temporally, and in terms of the variables studied. This expansion increases their 

need for relevant data, and increases the likelihood that they will need to search across 

multiple archives. At CMOP, scientists are including more of the Pacific coast and ocean 

in their simulations, and are beginning to simulate microbiological populations. Thus, 

data relevant to our scientists is being collected by and stored in multiple other 

observatories and archives, each with its own access methods. The providers of 

observatory archives often desire, or even have a mandate, to make their data available to 

researchers both within and outside their organization, leading to issues of data access 

and sharing.  
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In the typical data archive there are many categories of data that a scientist must review 

to find relevant data. Each archive generally has some internal structure based on some 

logic meaningful during data capture and storage: for observational archives it may be the 

observation source, the instrument capturing the observation, the time of capture, 

intended or original usage, owner, or some other construct. The data-storage locations 

and formats themselves change over time, as the archive evolves. This structure may not, 

however, have direct applicability to the scientist searching for data. For each scientist to 

gain familiarity with each of these other archives’ holdings is not realistic; however, 

failure to include relevant data from other archives in a scientist’s research may 

artificially (and inappropriately) limit that research.  

In the oceanographic community, efforts to make data sharing easier date back to at least 

the early 1990s [27], but the challenge is not limited to that community. Barros et al. [13] 

Figure 2.2. A centralized gateway architecture in the climate-change community allows users to discover, 

integrate and download data from a variety of data providers via a centralized gateway. After Ahrens et al. 

[3] 
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describe data sharing via a digital-library approach for uploading, storing and browsing 

spreadsheets of ecological observations. Ahrens et al. [5] describe the efforts by the 

climate-change community to share observations and modeled data via a centralized 

gateway. As shown in Figure 2.2 (after their paper), the gateway consists of: a metadata 

collection, contributed by data providers; modules for data discovery, data integration 

and access of data products; and a web portal with client-tool access capabilities, which 

exposes the data to the user community. The authors use a climate-change case study to 

draw attention to the growth of data and the challenges in making the data useful to 

researchers, and the similarity of these issues to other scientific domains. A similar 

challenge and conceptually similar solution for ecology is presented by Reichman et al. 

[110] and separately by Baker and Chandler [9]. These portals rely on data owners 

submitting their data to the portal together with the metadata the portal suggests or 

requires. Data discovery is addressed by using one of the approaches described 

previously. 

Data access could be simplified by migrating all data to a single format, with NetCDF 

[111] being a common choice. However, data formats are generally selected by the 

producer rather than the consumer, who are often not in the same organization. Even 

when the producers and consumers are in the same organization, it is often not practical 

to migrate many terabytes of data or the programs and tools that access them from current 

formats to a new format, and data must often be kept in original format for use by 

existing processes. Such a migration would reduce the number of tools required, but 
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would not change the problem of having to locate and scan all the possibly relevant 

datasets.  

One part of the solution is to develop middleware and catalog software such as 

THREDDS [33]. The goal of THREDDS is to provide an end-to-end system for data 

access and visualization, based on a loose federation of distributed metadata catalogs and 

inventories; it is assumed that the user can identify and locate interesting data via separate 

means. The catalogs, implemented as XML documents served over HTTP, are accessed 

by interactive data analysis and display tools, of which many have been built. Once 

relevant data has been identified, Dataset Query Capabilities (DQC) allow users to 

request a subset of a dataset collection for download. THREDDS can be coupled with a 

data-transport-and-access protocol such as OPeNDAP [27], which allows an identified 

dataset or specified subset to be downloaded via standard or self-coded browser plugins 

for specific data types. THREDDS has focused on the problem of providing middleware 

that allows clients to access catalogs and download data in formats recognizable to 

THREDDS plugins, and not on the problem of locating the datasets of interest. (These 

technologies are all in use at CMOP.) Our work is complementary: we help the user 

locate and identify datasets of interest that THREDDS gives them access to.  

Should the scientist’s information needs expand past the geographic region covered by 

her home observatory, there is much in these efforts that can help her access and analyze 

datasets – once she has found relevant ones. However, knowing whether relevant data 

resides in a specific archive is currently dependent on knowing which observatories 
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operate in which areas, and how to locate, access and navigate the relevant portal or 

gateway. Once she has found the relevant portal, she still needs to locate the data within 

that portal, and she is constrained by the same tools and restrictions discussed previously. 

Her problem of finding relevant data is repeated, at a higher level. 

2.5.2 Common Characteristics of Scientific Archives  

The characteristics common across the archives relevant to our scientists – including that 

of our primary subject, the archive at CMOP – are heterogeneity, size, variation over 

time, and read-mostly. 

Heterogeneity: Scientific data is stored in heterogeneous formats, and the formats 

selected may change over time. Common formats include scientific standards such as 

NetCDF (netCDF-4/HDF5, 64-bit Offset Format, classic), binary files created by a 

variety of custom programs, delimited or positional text files – sometimes delivered as 

HTML pages – and relational databases. The internal structure or representation may 

change; for example the columns on an HTML page representing an instrument’s 

readings may change when the instrument is upgraded. Variable names are not consistent. 

Instruments are added or moved, new variables are measured, with each change adding to 

the existing variations. To review each variation and understand how to process it to 

check for relevance requires multiple tools and much time.    

Size: Archives are now routinely terabytes in size and may contain thousands of datasets 

of widely varying sizes, and the rate of growth continues to accelerate [81, 142]. An 

individual dataset may contain millions of records. In other cases, a dataset may consist 
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of a small number of individual but important observations; for example, in some years 

CMOP only collects tens of water samples. A single water sample may have hundreds of 

environmental variables associated with it, including DNA samples. Focusing only on 

large datasets may mean that small datasets get less attention or are treated in an ad-hoc 

manner, making them harder to find.  

Variation Over Time: Many observational archives accumulate data over decades. 

While a single observation site may exist for that whole period, the specific data collected 

often changes over time as new equipment or methods become available, or as sensors 

are added or removed in support of specific research initiatives. Formats, naming 

standards, measurement units and scales of measurement all change.  

Read-Mostly: In general, existing data remains in the archive, and is added to over time. 

Once created, data is not updated except in unusual situations, for example, if the dataset 

is discovered to have been incorrectly produced, or new quality-control or calibration 

procedures were applied. 

As noted in the introduction, our experimental work focuses primarily on a single archive 

(CMOP). However, we consider these aspects of other archives to ensure that our work 

can be generalized and is focused on problems experienced widely across the scientific-

data community. We believe these characteristics are common in archives in fields 

unrelated to physical observations or oceanography. 



 

35 

2.6 Adapting Web Information Retrieval Approaches  

In this section, we describe at a high level how we adapt web-based IR approaches to 

searching for scientific data. We see our research as providing a realization for the “data 

discovery” component of Figure 2.2. Further, we suggest a content model for the 

metadata catalog, and use that metadata in our data discovery approach. Our work 

assumes that the source data can be accessed via some (unspecified) tool; in particular, 

we access the source data to automatically create (much of) the needed metadata over 

which we propose to search.  

In IR systems, the user converts her information need to a set of search terms, usually a 

list of words, to be searched for in an index representing a library of items (where an 

individual item may be, for example, a web page). As shown in Figure 1.1, web-based IR 

approaches separate off-line indexing of a collection of web resources (HTML pages and 

other documents) from interactive, on-line search. The indexing process is performed 

asynchronously as a feature-extraction task: each web page is scanned and relevant 

features extracted. A feature may be the count of a word in the page, or it may be an 

image filename, a title string, or a link found in the page. The features associated with 

each web page are stored in an inverted index. During interactive search the user’s search 

terms are compared to an index containing each web page’s features. A similarity 

measure is applied to quantify the gap between the search terms and the index entries and 

assign a score to each item. For example, the similarity measure may be the cosine angle 

between a vector representing the search terms and a vector representing a document’s 
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features. Scores are interpreted as a measure of similarity to the search, and hence 

estimate relevance of the web page to the search. The highest-scoring web pages are 

returned in a ranked list [83].     

We may regard relevance as Boolean (a returned dataset is either relevant or not), or we 

may posit a spectrum of  relevance (a returned dataset may be somewhere between 

“highly relevant” and “not at all relevant”). We may therefore roughly differentiate 

between Boolean retrieval and ranked retrieval. In Boolean retrieval, only exact matches 

are returned. In ranked retrieval, each item is given a score representing an estimate of 

the item's relevance to the search. The list of items is ranked by ordering items from 

highest to lowest score, and the highest-scoring items returned. In our work, we assume a 

spectrum of relevance (often represented by several points, or levels, on that spectrum); 

that is, one dataset may be “more relevant” than another, even if both are relevant. 

We would like to present our research scientist with a ranked list of the most-relevant 

datasets, ordered by decreasing estimated relevance to a search she poses; to do so, we 

need to quickly compute the relevance scores of many datasets against her search. 

Ideally, we would like to know how well the contents of each dataset matches the search 

terms. However, comparing the contents of each dataset to a search directly does not 

scale as the amount of data in an archive increases. It is not practical to scan a large 

scientific archive of datasets and their contents while still providing interactive response 

to a search. 
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Therefore, in common with most IR systems [113], we wish to identify a set of features 

that we can extract from each dataset, and upon which we can operate quickly rather than 

operating upon the original dataset. This set of features will constitute a small summary 

of each dataset. We want a method for searching over those features, scoring them with 

respect to their closeness (however defined) to a scientist’s search, and providing a 

ranked list of datasets in response to that search. Each dataset’s rank should be based on a 

relevance score that represents an estimate of the dataset content’s relevance to the 

scientist’s search terms. 

These needs can be matched to our adapted IR architecture, shown in Figure 2.3. As with 

web-search architectures, we perform asynchronous feature extraction from the datasets, 

via scanners that locate, access and process each dataset in its source location. As each 

dataset is processed, its features are added to a metadata catalog. We provide an 

interactive search (data-discovery) interface in which to express the search conditions, 

and a scoring-and-ranking component that returns a ranked list of datasets with the 

Figure 2.3. High-level dataset search architecture  
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highest relevance scores. For each dataset, the relevance score is calculated by applying a 

similarity measure to the search conditions and the features previously extracted. 

To make this scheme practical, we must be able to estimate the relevance from a compact 

dataset summary made up of a set of features. Figure 2.4 shows the high-level concept of 

what we aim to accomplish: we aim to approximate an “ideal” similarity scoring function 

over datasets (Figure 2.4a) by finding a light-weight similarity scoring function that can 

operate over a dataset summary created via feature extraction (Figure 2.4b).  

If we can successfully realize this concept, then the application of IR evaluation metrics, 

such as mean average precision, to the results should also be valid. Further, we must 

validate that any proposed set of features and similarity measure resonates with potential 

Figure 2.4. Ideal versus approximated dataset similarity scoring. (a) Ideal scoring (b) Similarity score 

approximated over extracted features. 
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searchers; and that the similarity measure embodies a notion of relevance that resonates 

with potential users.  

We developed a candidate similarity measure and set of features and instantiated them in 

a prototype. We tested their utility via two user studies; we describe these user studies in 

Chapter 6. We show that the search system has utility, and that the similarity measure 

embodies a notion of relevance that mimics the judgment of potential users.  

2.6.1 A Notion of Dataset Similarity 

We believe that a notion of dataset similarity exists in the minds of the scientists. A 

scientist can generally describe the kind of data he or she is looking for in a quantitative 

way. As noted in our initial scenarios in Section 2.3, one microbiologist may be looking 

for “any temperature readings near the Astoria Bridge in August 2011”, while an 

oceanographer may be looking for simultaneous low oxygen and low pH (high acidity) in 

the river estuary. Our two scientists use similar descriptions for existing datasets they 

currently work with. Note that each scientist is, in essence, providing a (partial) summary 

description of the dataset he or she would ideally like to find but does not give every 

detail about the dataset’s contents; nor does he or she enumerate the individual 

observations in the dataset. Further, a scientist can tell us if an individual dataset meets 

her information need or not; and further, whether it is an exact match, a “close” match, or 

“not close at all.” We also observe that she often describes the match separately for each 

part of her information need: she may say that a dataset “is in the right area and has 

temperature values, but it’s not close to the time I want,” or that “The oxygen values 
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aren’t in the range I’m looking for.” These assessments provide a hint on estimating the 

similarity of a dataset to a search.  

Anecdotally, we can describe a dataset as “close to” or “far from” the search, whether we 

are talking temporally, geospatially, referring to a variable range, or a combination of all 

three simultaneously. We therefore posit that we can approximate similarity between a 

search and a dataset by a notion of distance. While it is well known that people are 

inaccurate in their estimates of absolute distance, research shows that they are relatively 

consistent in ordinal rankings [100, 112]. Thus, if a distance measure provides overall 

ordinal rankings similar to those a user would give, it should suffice, even if there is 

disagreement between the measure and the user on the actual distance. We describe our 

notion of similarity and our candidate similarity measure in more detail in Chapter 4.  

2.6.2 Hierarchies of Scale 

One of the issues for scientists in finding relevant data is the mismatch between the scales 

of the data they seek, the scales of observation, and the partitioning of data for convenient 

processing and storage. Multiple scientists might use the same datasets, but have very 

different scales of data of interest. We motivate this idea via three examples: 

 What is a “meaningful unit of data” for one scientist may not be for another. Lynda 

could be looking for data for a fairly short time period, since a different time in the 

tidal cycle is likely to change her results. Figure 2.5 shows a dataset containing 

several million environmental observations during a specific 2-month science cruise; 

the overall dataset is split into smaller segments representing specific sections of the 
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cruise. In Figure 2.5, the most interesting portion of data for our microbiologist, is the 

cruise segment from July 28, 10-12 a.m., since it is closest in time and space to her 

search (near the water sample marked “w” in the figure, at that time). Even though 

another part of the cruise track intersects her water sample, it is not close enough in 

time to be very relevant. Our oceanographer, in contrast, is looking for simultaneous 

low oxygen and lower pH; for him, the most relevant data is for the whole day of 

August 1 – a much larger portion of the dataset.  

 What is stored in a single dataset within an archive is generally defined during data 

collection and refined by data management concerns. However, there is no immediate 

Figure 2.5. Example of a dataset hierarchy: a dataset containing several million environmental 

observations (taken at 3-millisecond intervals) during a specific 2-month science cruise, segmented into a 

hierarchy. The white line on the map shows the cruise track, and the marker “w” shows the location of 

Lynda’s water sample. The most detailed level is a single simplified segment or leg of a cruise, often 

covering part of an hour or a few hours; these segments are aggregated into successively longer and more 

complex cruise segments, and lastly into an entire cruise dataset. The most relevant portion to Lynda is 

shown shaded on the left in the hierarchy, while the most relevant portion to Joel is shown shaded on the 

right. 
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relationship between this definition and the needs of the scientists searching for data. 

A research cruise may last for several weeks and cover hundreds of miles, collecting 

millions of observations, and these may be stored in a single dataset. A search 

performed only at the level of a summary of the entire cruise may cause a highly 

relevant subset of data to be thought not relevant on the basis of low similarity 

between the search and the dataset as a whole.  

 Consider the difference in scales between a single water sample, consisting of a single 

observation with a large collection of environmental variables from many tests run on 

the sample, as compared to a fixed observing station, with millions of observations 

each consisting of a few environmental variables. For storage management and 

convenience, archives with both types of data will often store many water samples 

together in a single file, although the scientists logically regard each sample as 

separate; again, the overall similarity of the dataset to a single search may be low, 

masking the high relevance of a portion of its contents. 

We wish to mediate within our system between the convenient storage grouping from the 

perspective of the archive manager and the logically meaningful dataset for each 

scientist. Further, we want to approximate a concept of the most useful meaning-bearing 

unit [122] for multiple constituencies of scientists, with each constituency having a 

different granularity in mind. For example, microbiologists tend to operate at different 

scales than oceanographers, but CMOP’s archive serves both communities.  
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To provide additional expressiveness across the range of possible datasets sizes and 

scales, we incorporate the idea of hierarchical metadata. As described in our model in 

Chapter 3, an individual dataset may be partitioned into multiple “virtual datasets”, for 

example, when a dataset covering a long time period or large geographic area is divided 

into smaller subsets. A dataset summary may correspond to the contents of a single 

physical dataset or file as stored, say, on a disk or in a relational database table; however, 

a summary may also represent a subset or superset of such a dataset. Each subset 

summary carries with it the relationship it has to contained subsets and to the overall 

dataset; we organize these relationships into a hierarchy (further described in Section 

4.2). We allow summaries from a dataset and its subsets to participate in multiple 

hierarchies, thus supporting coexistence of alternative partitioning approaches. Dataset 

summaries from one or more – or even all – levels of a hierarchy can be returned for a 

single search.  

In this way we address the diversity among the “meaningful units” of data for multiple 

scientists, and between those units and the archive’s unit of convenient dataset creation 

and management. By adding this additional level of flexibility, we provide the capability 

for a scientist to locate a small, highly relevant subset of data that might otherwise be lost 

within a much larger dataset. 

In the example in Figure 2.5, a dataset for a two-month cruise is broken up into individual 

days (a temporal split), and then into individual cruise segments or legs (a geographic 

split). Lynda can find and download just the two hours she is interested in, while Joel can 
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retrieve the whole day that matches his needs. Neither scientist needs to download the 

entire cruise dataset just to get the relevant portions. 

2.7 Related Work 

In this section we summarize related work, to provide a context for our own work. Our 

approach to the problem of searching scientific archives is, to our knowledge, unique. 

Our work touches on and is informed by many fields: structured data query, scientific 

search systems, XML search, geospatial search systems, Information Retrieval 

(particularly online search engines), digital libraries, spatial cognition and cognitive 

science. Since each of these fields is in itself vast, we select a few representative works in 

each case. In addition to this overview, each chapter contains a section of related work 

specific to the contents of that chapter. 

Structured Data Query and Information Retrieval. Searching for numbers in “big data” is 

traditionally the purview of database query approaches, for example by using SQL 

queries to identify a range of numbers to be returned.  

As noted by Saracevic [115], the notion of relevance differentiates IR from database 

retrieval, although databases may be used as an underlying technology for implementing 

IR. In fact, we use that approach. Database retrieval is set-based. The database query 

engine compares query parameters to each data item and returns a Boolean denoting 

whether the item matches the search criteria and should be returned in the result set, or 

not. Relevance, on the other hand, inherently has a scale associated with it; an item may 

be very relevant or only somewhat relevant, and this variability in relevance is important. 
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Boolean search results are not ranked [80]; as the number of possible results increases, 

use of a ranking function is important in identifying the best results to return, but the 

concept of “best results” is not defined for Boolean search.   

Database retrieval can be contrasted with information retrieval for text in the following 

way. Database retrieval addresses structured data via formally defined queries and 

provides a set of exact results with a formal theoretical foundation. Information retrieval 

searches mostly unstructured, free text to meet imprecise information needs and provides 

a combination of more-relevant and less-relevant results, ordered according to some 

notion of relevance. For example: we accept that Google and Microsoft Bing might return 

different results for the same search, but we would be surprised if IBM DB2 and 

PostgreSQL returned different results for the same SQL query over the same data. 

As a result of these differences, IR research typically focuses on effectiveness of scoring 

and ranking, while database research focuses on evaluation efficiency. Chaudhuri et al. 

[26] note that databases and IR systems developed separately since they address different 

problems.  

Scientific Search Systems. It is common in science-based data search to apply query-

based approaches. For example, Tata et al. [127] query biological sequence data by 

extending SQL with Match and Augment operators. Mork et al. [101] extend SQL into 

PQL, a query language for semi-structured data that operates over a mediated schema of 

relationships such as is often found in biological databases. Leser [77] develops a 

declarative query language based on SQL (and also named PQL, Pathway Query 
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Language) for querying large protein interaction databases. Unlike these field-specific 

approaches, our goal is to develop as generic a search method as possible while 

remaining effective. 

Many scientific archives support searching the text in scientist-contributed metadata 

associated with datasets [103, 109]; these searches are primarily Boolean in nature.  

Search Over XML. Another approach to structured data search is found in research 

addressing searching of XML documents, such as INEX-XML (Initiative for the 

Evaluation of XML Retrieval) [32, 153]. Scientific data could be represented as XML 

(such as by using XSIL [16] or in ChemML [102]), so conceptually XML search applies. 

Our scientists’ queries could be considered similar to the “content and structure” queries 

described in the INEX-XML entity-ranking track. However, scientific datasets are not 

described by a DTD, and would need to be converted into XML format. In addition, 

XML search focuses on finding the text words used in the search in the identified part of 

the XML structure. Scientists do not generally search for a specific number (“14.239”) in 

a dataset. Even if the data were converted to XML, similarity must be calculated using a 

method that can account for many repeated uses of a number, and for relevant datasets 

that do not contain the searched-for number at all. 

In contrast to text or XML document-retrieval systems, our system’s searches have a 

potential for greater dynamic range in granularity: a scientist may be searching for a 

single day or week, or for data spanning a year. Search engines usually index material at 

a single granularity, such as the web page. We operate over multiple granularities and 



 

47 

sources, using our hierarchies to intermediate between meaning-bearing units at multiple 

scales and thus gracefully adapting to differences in research foci and scientists.  

There is much research into ranked relevance of unstructured text documents and XML 

with text queries (e.g., [8, 32, 83, 87]). We adapt these ideas to ranking the relevance of 

scientific datasets. Our initial work on search assumes each search term is a numeric 

range. 

Geospatial Search Systems. An important characteristic of much scientific data – in fact 

of much data – is the time and location in which an observation took place (or is 

predicted to take place, in the case of simulation models). While time and location can be 

considered to be variables like any others, their special importance has led to much 

research focused specifically on them, in the form of geospatial-temporal search systems.  

Most geographic search systems [47, 51] score items based on word matches against 

metadata without considering the temporal span or geographic content of the items 

returned. State-of-the-art geospatial portals [151, 152] allow searches using both 

geographic and temporal criteria; generally, three spatial tests are supported (the map 

view intersects, mostly contains, or completely contains the dataset), and temporal 

searches appear to be simple contains tests. Other fields, variables and contents are 

generally not considered, although some systems handle them by allowing text searches 

for specified words within selected metadata fields. In contrast, we explicitly rank 

returned items based on combined temporal, geographic and variable “distance” of the 

dataset contents from the search [91]. 
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Grossner et al. [51] provide a summary of progress in the previous decade in developing 

a “Digital Earth”, and identify gaps in efforts so far. They note that the leading-edge 

spatially aware portals and libraries allow a user to locate information by identifying 

either a place or spatial footprint and then applying one or more filters. They also note 

that current geographic and temporal search responses provide matches only on one level 

of a cataloged object, for example, a one-level catalog entry; further, the contents of 

cataloged digital objects are not exposed and are not searchable, so users are limited to 

searching the one level of metadata captured for that object. In contrast, we capture and 

expose in the search engine multiple levels of metadata for a single dataset. 

One widely used geospatial search system is Google Maps [94], which supports searches 

for a place name or a specified latitude and longitude and provides nearby points of 

interest (“restaurants near here”). They do not currently expose a temporal or attribute-

value search capability. It is possible for a website to explicitly link a dataset to a specific 

location using KML, but it is not currently possible to search ranges within linked 

datasets. Egenhofer describes some desired geographic request semantics but does not 

propose an implementation [36].   

Online Search Engines. Many Internet search engines today optimize search and infer 

relevance based on a global ranking of documents [80], often by counting citations or 

links to or from a target document. For example, PageRank [17] counts and weights links 

to a webpage from other pages, and then normalizes the result. These methods do not 

appear to apply to dataset search, as the datasets do not (normally) contain links to other 
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datasets. Furthermore, some web-search engines only index a prefix of long documents 

[17]. In our context, a dataset with a million observations may have subsets with widely 

varying relevance to a search; a prefix of a dataset might be very unrepresentative of the 

whole (for example, a cruise that transits from fresh to salt water). Also, treating the 

whole dataset as a “bag of numbers” (as documents are often treated as a “bag of words”) 

does not assist the scientist; the numbers listed in the search may not appear in the dataset 

at all. 

Other Systems. Hill et al. present a system for describing and searching a library’s digital 

collection of geographic items [61]. They apply widely accepted collection concepts from 

paper-based archives that are based on a textual description of a map series (publisher, 

title, number in series, etc.) to digital map collections. A single collection may contain a 

set of maps where each map has a different geographic coverage; however, the specific 

map's geographic coverage is an access or index key to that map. The challenge is how to 

represent these collections by searchable metadata. They differentiate contextual 

metadata, which is externally provided (e.g., publisher), from inherent metadata, derived 

from automated analysis of the data (e.g., count of items included in a collection). This 

automatic data analysis adds to the metadata but does not allow the content itself to be 

searched. They do not provide hierarchical metadata, nor do they discuss methods for 

ranked search results. 

The concept of ranked relevance has also been adapted from text document search into 

other fields, such as similarity and retrieval of music [134] and content-based image 
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retrieval [30]; in these fields, some extremely successful applications exist, but the 

technology has not yet been widely adopted. In concept, the datasets we “index” could be 

image or music files; we hope to test these extensions in future work. 

Venetis et al. extract and search numbers in HTML tables [138], but their work focuses 

on extracting additional semantics. Agrawal and Srikant [4] also search numeric data, but 

both these approaches assume each “document” is small by our standards (for example, a 

single web page, say containing a product specification). Cafarella et al. also search over 

a large number of tables extracted from HTML, with a goal of returning ranked search 

responses based on table content [20]; they match on contained values or on synonyms of 

search terms, and appear to treat a number as a word. To our knowledge, ours is the first 

application of these ideas to archives of large, heterogeneous datasets.   

The work perhaps most similar to ours in scope and spirit is by D’Ulizia et al. [28]. Like 

us, they are interested in providing approximate results ranked in similarity across a 

combination of geospatial and non-geospatial attributes. They obtain these ranked results 

via search relaxation. Relaxation is performed on three kinds of constraints: topological 

(for geospatial similarity), semantic (by evaluating the similarity of the concepts 

represented by the attributes, using an information-content approach against a given 

taxonomy) and structural (similarity between the sets of attributes, mediated by an 

ontology of attributes, and calculated by using a bipartite graph-matching approach on 

the ontology). Their approach differs from ours in that each attribute is assumed to have a 

single value, and the attribute and the values are matched via known ontologies and 
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taxonomies. They provide alternative queries (rather than results) to the user by relaxing 

the search terms if no matching terms are found, and they compute the similarity of the 

relaxed search to the original search (rather than to the database contents). All their data 

exists within their database and they match individual data items, whereas we work with 

summaries of large datasets where the datasets may be stored elsewhere.     
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3 Model 

In this chapter, we describe our search model, using an example search and dataset. We 

formally describe our model for feature extraction and similarity scoring. We first 

decompose and describe the feature extraction portion (refer to Figure 2.4) in Section 3.1, 

then decompose and describe the similarity scoring portion in Section 3.2. Section 3.3 

describes extensions to the initial model to provide the adaptability across multiple scales 

described in Section 2.6.2. Section 3.4 shows how the componentized nature of the model 

allows individual components to be modified independently. 

We use as our running example a scientist searching for observations taken in June 2010 

in a specific area (an area near the Astoria-Megler bridge between Oregon and 

Washington), containing temperature data with values in the range of 5 to 10C. We refer 

to an example dataset, saturn01.ctd.201005, described in Figure 3.1, containing the 

temperature and salinity data collected at one location for two weeks during the month of 

May 2010. This example dataset contains many temperature values within the desired 

range, without containing the actual values of 5 or 10. We also have other datasets 

containing temperature values in the range 10.01 to 15C taken in late 2010; we would 

like to find those datasets in preference to those, say, from 2008 with temperatures 

between 20 and 25C.    

Formally: we wish to relate a dataset d to a search Q via a similarity function Sim(Q, d) 

that quantifies the similarity between the two. However, there may be many datasets, they 

may be large, and there may be many different formats and types. Scanning the datasets 
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in response to each search is not practical [48, 49]. To provide interactive response times 

and scalability, for each dataset d we wish to identify a small summary s of d that we can 

use to compute similarity more quickly. Thus, we desire a feature extraction or 

summarization function F that operates over d to produce a summary s, and a similarity 

function Sim_s(Q, s) that produces (approximately) the same results as Sim(Q, d):   

 s = F(d)         (1) 

 Sim(Q, d) ≈ Sim_s(Q, F(d)) = Sim_s(Q, s)     (2) 

Our strategy is to choose summarization and similarity functions that allow us to compute 

the summary s in advance, and evaluate Sim_s(Q, s) quickly at the time the search Q is 

presented. We show the relationship of these functions diagrammatically; Figure 2.4a 

shows the ideal similarity scoring approach in the absence of any constraints, while 

Figure 2.4b shows the approximation we seek plus the first level decomposition into 

extracting features into a dataset summary for each dataset. We will apply our similarity 

scoring function to this dataset summary. 

3.1 Feature Extraction 

First, we describe the feature extraction function F that creates our dataset summaries.  

We consider each dataset d as consisting of some “global” information dg that applies to 

the whole dataset, such as identifier, physical storage location and format; and a set of m 

variables {c1, c2, …, cm}. The number and names of the variables may be different for 

each dataset, that is, m is dataset-dependent and ci for dataset dy is not required to be the 

same as ci for dataset dz. In our example dataset in Figure 3.1, global information includes 
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the dataset id, description, quality, and so on; the set of variables is {salinity, 

temperature, time}, with the time variable also promoted to and repeated at the global 

level.  

We create the summary s = F(d) from each dataset d by applying the summarization 

function F. As is common in text and image retrieval, the summary will be a list of p 

features, each produced by a function fi(d). We capture dataset-level summary 

information for the dataset using a function f0(d). Thus, the summary is of the form: 

s  = F(d) =  f0(d),  f1(d),  f2(d), …,  fp(d)                 (3) 

Each function fi summarizes a particular aspect of the dataset. There are many possible 

such functions. To maximize utility, we wish to identify functions that capture features 

that most closely match the way our scientists appear to think about their data. Further, 

we wish to capture features that correspond to possible search terms. We conjecture that 

scientists often visualize their data in (possibly multidimensional) tables with each 

Figure 3.1. Example of a dataset summary 
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variable in a separate column; and that their information needs can, in general, be fairly 

arbitrary subsets of the data in these columns. Therefore, in order to match possible 

search terms to captured features, we generally summarize each variable or column 

separately. However, where a group of variables or columns has semantic meaning (such 

as a latitude column and a longitude column, together defining geospatial location), we 

may summarize the group with a single feature. We may also choose to do both: 

summarize a group of variables to produce a single feature in addition to summarizing 

each of the variables as individual features. 

For simplicity, we will describe a tabular example, with each individual observation in a 

row and each variable stored in a separate column. We refer to the summary for column x 

as scx = fx(d[cx]), where d[cx] is the x
th

 column of dataset d and the summary scx is 

produced by the function fx. Dataset-level summary information is represented by sc0 = 

f0(d). Thus, a dataset summary is described by:  

s = sc0, sc1, sc2,…, scm              (4) 

  = f0(d), f1(d[c1]), f2(d[c2]), …, fm(d[cm])  

Figure 3.2 shows diagrammatically the relationship of the functions and components; we 

highlight in red a feature extraction function creating a single feature within the dataset 

summary. Note that we may also have scx = fx(d[ca, cb]), or scx = fx(d[ci, cj, ck]), and so 

forth. 
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At an archive level, we have a set D of n datasets: D = {d1, d2, …, dn}. We perform 

feature extraction for each dataset, and produce the resulting collection of summaries S = 

{s1, s2, …, sn}. 

In practice, there may be a library L of feature-extraction functions Ƒ from which we 

choose our summarization functions based on some rules (such as dataset format or type). 

In our running example, we have a dataset-level summarization function f0 that collects 

dataset-level information such as file type and filename, and adds other static information 

such as physical data location; some column information may even be repeated at the 

dataset level, as is shown in Figure 3.1 for time, geospatial location and elevation. For 

feature summarization, we choose a single function fb that abstracts the values for each 

Figure 3.2. High-level depiction of creating and scoring a dataset summary 
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variable by their bounds, although other choices (such as a median or a Gaussian 

distribution) are possible. The resulting summary for each variable contains its identity 

(i.e., name), bounds, and possibly (as shown in Figure 3.1) information such as its units 

and data type in this dataset. In our example we represent each individual variable 

summary by a tuple: variable name, bounds, units. Thus: 

s(saturn01.ctd.201005)  = F(saturn01.ctd.201005)  

   = f0(saturn01.ctd.201005), fb(salinity), fb(temperature), fb(time) 

where 

sc0 = f0(saturn01.ctd.201005)  

   = “saturn01.ctd.201005”, “verified”, point(-123.8,42.2) 

sc1(salinity) = fb(salinity) = “salinity”, [0:29.6], psu 

sc2(temperature) = fb(temperature)  

   = “temperature”, [8.2:14.6], C  

sc3(time) = fb(time)  

    = “time”, [1273869578:1275378800], “secs since epoch”   

3.2 Similarity Scoring 

We now turn our attention to modeling similarity scoring. That is, given a search Q and a 

set of dataset summaries S, how do we find the elements of S that we estimate to have the 

greatest similarity to our search?  

A search Q is represented as a set of r search terms Q = {q1, q2, …, qr}. In our example, 

we represent each term qj as a tuple of the form variable, range, units. Our example 

scientist’s search QE is thus represented as: 



 

58 

 QE = {“temperature”, [5:10], C,  

“time”, [2010-04-15:2010-07-15], date,  

“location”, [Bbox(43.5,-125.2:43.6,-125.5)], lat/long } 

We desire a similarity function Sim_s that, given a search Q and a summary s, produces a 

similarity score, scoreQ,s = Sim_s(Q, s), representing the similarity between the search 

and the summary. We want similarity functions where the similarity computed over the 

summary is roughly equal to what the similarity computed over the entire dataset would 

be. We could then separate computing similarity into a one-time, offline function that 

summarizes the entire dataset, and a lightweight similarity function used during online 

search that operates only over the summary.  

We consider that Sim_s(Q, s) is structured as a pair of functions Score_s and Match: 

scoreQ,s = Sim_s(Q, s)  = Score_s(Match(Q, s))     (5)  

Match(Q, s) matches each search term q   Q to one or more features (or, to no feature) in 

the dataset summary and selects a similarity function lf (“likeness function”) to use to 

compare the two. For ease of explication, we use a subscript (lfj) to denote the scoring 

function used for the j
th

 search-term-and-feature combination. Match returns a list of r 

tuples, each one consisting of a search term qi, matched feature set sti, and likeness 

function lfi to use in comparing them. For each query term, Score_s applies the similarity 

function selected by Match to the query term and feature it matched to them, and 

combines the resulting score.   

In more detail:  
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    Match(Q, s) = Match({q1, q2,…, qr} , { sc0, sc1, sc2,…, scm})   (6) 

          = {(q1 , st1, lf1), (q2, st2, lf2), … (qr, str, lfr)}     sti ⊆ s, lfi   L 

The individual similarity functions lfi operate over query terms and extracted features. 

While it might seem that Match might need a different function for each search-and-

feature pair, in practice it can use a library L of likeness functions, and apply some rules 

for selecting the appropriate function from that library. For now, we will assume that 

such similarity functions exist, while deferring a discussion of specific functions to 

Chapter 4. Different similarity functions can be used for different term-feature matches 

within a single search Q and summary s; that is, lf may be different for different features 

(including column types or columns). There is no requirement in the model that Match 

use the same similarity functions across different summaries.  

Often we expect a feature to be based on one column (representing a single variable) or a 

small number of columns of the dataset (for example, where a set of variables make up a 

single concept, such as location being represented by a combination of a latitude and a 

longitude column, with possibly an elevation). Match may choose among multiple 

features to return for a single search term, or may, as an extension, return a feature that is 

a combination of variables (such as our latitude-longitude case). If Match does not 

identify or choose a matching feature, it may return no tuple for a given search term. Note 

that the behaviors of Match, Score_s and lfi, while partly independent, must be 

complementary.  
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We show the relationship of these functions pictorially in Figure 3.3; we highlight in red 

the flow of a search term being matched to a single dataset summary feature.  

In our example, Match selects one similarity function for both the temperature and time 

search terms, and a different one for the geospatial feature. Match naïvely matches the 

variable name temperature in the search to the variable name temperature in our dataset 

summary, the time term in the search to the dataset’s time variable, and the geospatial 

location portion of the search to the location information in the dataset summary.  

Figure 3.3. Scoring a dataset summary 
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For each tuple returned by Match, Score_s applies the selected likeness function to the 

search term and selected feature. Each likeness function lf returns a score for its term-

feature comparison; it must also perform any needed unit and datum transformations, or 

adjust the scoring for non-transformed data as appropriate. Finally, Score_s combines the 

resulting scores, using some combination function combine:  

    Score_s({(q1 , st1, lf1), (q2, st2, lf2), … (qr, str, lfr)})  

= combine(lf1(q1 , st1), lf2(q2, st2), …  lfr(qr, str))  =  scoreQ,s  (7) 

Thus, in effect, we adopt a feature-space model, with each search term being treated as a 

separate dimension.  

In our example search with our example dataset, function lf1 and lf2 (for the time and the 

temperature terms) are the same function, and lf3 is a different function (for the location 

search term). Suppose lf1 returns a score of 100 (complete match) for the time search term 

and variable, and it returns 91 for the temperature term (high similarity, with an overlap 

between the search and dataset ranges but less than a complete match). Function lf3 is 

called for the location search term and variable, and returns 100. We choose to combine 

the individual scores to give a final dataset score by averaging them; thus our final score 

for this dataset will be 97: 

 Sim_s(QE, saturn01.ctd.201005) = (100 + 91 + 100) / 3 = 97 

The purpose of separating Match from Score_s (and the lfj) in the model is to isolate 

different levels of abstraction, and allow similarity to be assessed at each level 

independently. For example: we may have a second dataset, containing a variable temp 
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but no variable temperature. Match may have high confidence that in this case, temp is 

actually the same as temperature (perhaps based on matching units (C), or other 

information), and should therefore be returned as the matching feature for the 

temperature search term. For a third dataset, Match may make a different choice; for 

example if temp in this third dataset was an alphanumeric code
3
, it may return no feature 

for this search term. This feature-matching decision is at a separate level of abstraction 

from calculating the similarity of the summary of a temperature column to a search term 

for temperature. 

Lastly: We desire a result list Rd containing the k most-relevant datasets in our archive D 

in response to our search Q. That is: 
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We actually return our estimate                      , containing the k highest-

scoring summaries in our metadata catalog S. That is: 

 kssskQSRs ..,,,),,( 21 , where 

}...,,{),(_),(_ 1 ii ssSssQsSimsQsSim   (9) 

We believe the model described here is not limited to any specific scoring or ranking 

function. In our application of these ideas we have primarily experimented with using the 

bounds to represent a variable’s contents in a dataset, but we believe the techniques are 

                                                 

3
 From Wikipedia: TEMP (upper air soundings) is a set of World Meteorological Organization (WMO) 

alphanumerical codes used for reporting weather observations of the upper regions of the atmosphere made 
by weather balloons released from the surface level (either at land or at sea). 
(https://en.wikipedia.org/wiki/TEMP_%28meteorology%29) 

https://en.wikipedia.org/wiki/WMO
https://en.wikipedia.org/wiki/Atmosphere
https://en.wikipedia.org/wiki/Weather_balloon
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applicable to other feature types, such as data distributions. However, the overall results 

will likely vary in quality substantially depending on the choices made. We require the 

score-combining function to be monotonic. We expect qualitatively better results if each 

feature-likeness function produces a score that reasonably reflects subjective distance 

between the search term and feature. Further, it is desirable that all similarity functions in 

use within a single system be normalized across features such that the same score implies 

the equivalent similarity (in the minds of the searcher) between a search term and an 

individual feature. Widely different feature types (genetic sequence versus geographic 

location, say) may require widely different feature-likeness functions.   

3.3 Adaptability: Across Dataset and Search Granularities 

Section 2.6.2 raised the issue of potential mismatch between different granularities of 

data sought by different scientists, and between them and the convenient units for 

processing and storage of data. We wish to approximate the concept of the most useful 

meaning-bearing unit [122] for multiple constituencies, with each constituency having a 

different granularity in mind.  

We therefore wish to mediate within our model between the convenient storage 

groupings from the perspective of the archive owner and the meaning-bearing units of the 

scientists. We incorporate the ideas of segmenting datasets and creating hierarchical 

metadata by loosening the correspondence between a single summary and a single 

dataset, allowing a single summary to represent subsets or supersets of a single dataset.  
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We can represent a subset d′ of some dataset d (according to some definition of dataset, 

such as a single file in an operating system directory, a single directory containing many 

files, or even an entire archive) by a summary s′. Thus, for example, a single table stored 

in a relational database may at times be treated as one or as many datasets. A set of 

summaries may be composed into a hierarchy, by logically subdividing or composing 

summaries while retaining knowledge of the relationship of the component parts.  

When a dataset is subdivided, we call the individual parts or segments children, and we 

call the original dataset the parent of those children. Each child must be a strict subset of 

its parent, and we must be able to identify its parent (and the children of a parent). The 

children are not required to be disjoint, and the union of all children is not required to 

equal the parent. The segmentation of parents into children is neither prescribed nor 

limited, and is left as a design choice to each archive, dataset collection or feature-

extraction process (further discussed in our description of our prototype in Chapter 5). 

We call a summary with no parent dataset a root; a summary with no children is a leaf. 

Each tree consisting of a root, and recursively, its children, we will for convenience call a 

hierarchy. Each hierarchy is in the form of a tree. The number of levels within the 

hierarchy is not limited, nor need it be equal on all paths. A metadata catalog is a forest 

of hierarchies, generally representing one or more archives.  
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To support this extension, we add into our initial model a hierarchy function, H(D) = (D′, 

T), where H is a function that applies a partitioning (or pooling) strategy p on a set of 

datasets D. H produces a set of datasets D′ and a hierarchy tree (or forest) T that relates 

the datasets of D′ in some way. While the original datasets in D are potentially (but not 

necessarily) included in D′, we do wish to ensure that no data is lost in the partitioning; 

that is,        . In addition, if there is an edge (D1, D2) in T, then D1 ⊆ D2. Each 

Figure 3.4. A set of datasets partitioned and assembled into a hierarchy, allowing subsets to be separately 

returned in response to a search. 
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dataset in D′ is then fed to a feature-extraction function, resulting in a set of dataset 

summaries {s1, s2, …, sr }, one for each dataset; these summaries are composed into one 

or more hierarchies according to the edges of T.  

There may be multiple hierarchy strategies in use at any one time within a metadata 

catalog. We may even apply multiple hierarchy-and-partitioning strategies and feature-

extraction functions to a single dataset to create multiple hierarchies with different 

characteristics, for example to meet the needs of different scientist communities or 

perspectives. In Section 7.5.2 we show different hierarchies built over the same set of 

data, demonstrating different partitionings representing potentially different perspectives 

of the same underlying dataset. 

Figure 3.4 shows how this functionality fits into the model, extending the diagram from 

Figure 3.3. We treat parent and child summaries in the same way; that is, both can be 

matched to a search term and returned in the top-k summaries, and a top-k result list for a 

search may contain both a child and its parent dataset. Figure 3.4 shows such an 

additional summary, s′, representing a subset d′ of a dataset d being matched to a search 

term. We can now return multiple potentially relevant subsets (or supersets) of the dataset 

in response to a scientist’s search. Subsets and supersets of a single dataset can appear in 

the top-k for a single search along with the dataset itself, if the calculated similarity score 

of each summary is high enough.  
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3.4 Discussion 

The model as described gives rise to a componentized implementation architecture. 

Various components can be individually modified (see Figure 3.5): 

1. Dataset-partitioning approaches  

2. Feature-extraction approaches 

3. Hierarchy approaches 

4. Dataset-summary contents and format 

Figure 3.5. Modifiable components in the architecture 
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5. The form of the search terms  

6. Matching approaches 

7. Likeness functions 

8. Score-combining function 

There are some relationships and dependencies between components; for example, the 

matching function must know how to match the search terms to the dataset summary 

features. These relationships are outlined in Table 3.1.  

Our model addresses and exploits the four identified common characteristics of scientific 

archives in the following way: 

Heterogeneity: While the underlying data sources are heterogeneous, we impose a 

simple, homogeneous metadata model over the data.  

Size: Our use of hierarchical summaries with dataset subsets and supersets allows us to 

easily operate over widely differing dataset sizes.  

Table 3.1. Model Component Dependencies 

Model Component Dependencies and Relationships 

Dataset partitioning  None 

Feature extraction  Dependent on dataset-summary contents and format 

Hierarchy tree Depends on dataset-summary format, and on 

partitioning approach used 

Dataset-summary contents 

and format  

Used by feature extraction, hierarchy, matching 

approach, similarity functions 

Search term form  Used (and possibly transformed) by Match 

Matching  Depends on search-term form, dataset-summary 

format, and on library of available likeness functions 

Similarity functions Depends on dataset-summary contents. Related to 

allowable search terms.  

Score-combining function Depends on output from likeness functions 
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Variation Over Time: We can easily accommodate addition of new datasets, new 

variable names, and new data formats into our model.  

Read-Mostly: We take advantage of the low incidence of data update by reading datasets 

only when they are modified; otherwise, the same summary remains in place. Only new 

data or data that has changed or been regenerated must be read. 

Our model provides for significant flexibility. Our prototype is one possible instantiation 

of the model; many other instantiations are possible. We developed multiple versions of 

several of the functions (hierarchy, partitioning, similarity) and are running them 

simultaneously within the prototype, thus showing that the model can be implemented 

and various components can coexist and be independently modified.  
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4 Dataset Similarity and Metadata Extraction 

The model described in Chapter 3 depends on the availability of appropriate similarity 

functions and on a metadata catalog of dataset summaries over which to operate. In this 

chapter we address the question of whether we can realize them:  

 Can we identify a similarity measure that will resonate with scientists, and will work 

with the concept of dataset summaries? Is there any basis in existing research for a 

similarity function that could apply (relatively generally) to datasets consisting of 

numeric data, including times and sets of geospatial locations? We explore these 

questions in Section 4.1. 

 Can we create a catalog of dataset summaries from an existing archive, as described 

in our model? Can we apply the similarity measure we identified to these summaries? 

We explore these questions in Section 4.2. 

Lastly, in Section 4.3, we describe how we evaluate this work.   

4.1 Dataset Similarity 

We wish to identify and evaluate at least one function that measures the similarity 

between a user’s search and a dataset. Specifically, we wish to quantify and replicate 

scientist perception of “similar”; moreover, we wish to order a set of datasets the same 

way that scientists would, when considering the datasets in terms of relevance to their 

information need. In keeping with our model, our overall similarity function will be 

composed from a similarity measure applied to each search term. We recognize that 

many such similarity measures may exist and that some measures may more closely 
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replicate scientists’ perceptions for some data than for other data. However, initially we 

seek a measure that can simply and fairly generally be applied and will give “good 

enough” results; in essence, an analog of an IR measure such as cosine similarity.  

We first support our use of a distance-based measure (Section 4.1.1), then in Section 

4.1.2 describe our intuition for such a measure. We give the equations for our measure in 

Section 4.1.3 and then describe the variation we apply to geospatial features in Section 

4.1.4. We describe how we apply the equations to a catalog of dataset summaries in 

Section 4.1.5, and lastly, in Section 4.1.6 we summarize related work in the field of 

similarity.  

4.1.1 Data Distance as Similarity 

Traditional text IR treats a document as a bag of words, with each distinct word a feature; 

further, a word used frequently across documents is seen as having less value than a less 

frequently used word. A text IR search also consists of a bag of words, and thus each 

search term can be matched to a document feature. Our scientists, however, do not search 

for specific values found in a dataset (that is, they do not search for “water_temperature = 

5.93615C”, or even “5.93615”), but rather express their information needs in terms of an 

observational variable with values in some range (“water_temperature between 5 and 

10C”). Thus, we rejected the bag-of-words model in favor of using variable names and 

their value ranges as our features and our search terms, and developing a similarity 

measure that allows us to compare them.  
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Cognitive science has long recognized that people frequently use distance as a metaphor 

for similarity, including interpreting time (and other variables) as distance [75]. Tversky 

and Gati [132] point out that “the notion of similarity – that appears under such different 

names as proximity, resemblance, communality, representativeness, and psychological 

distance – is fundamental to theories of perception, learning, and judgment.” They note 

that similarity relations have been dominated by geometric models; these models 

represent points in a coordinate space, generally assumed to be Euclidean, and the 

distance between the points is taken as a measure of their similarity. In the field of spatial 

cognition, Fabrikant [39] notes that a spatial “near-far” image schemata is often used as 

an abstraction for similarity (for example in estimating distance between documents 

based on content similarity), and that this metaphor carries over into multiple (non-

spatial) dimensions. In further support, Lakoff notes that interpreting time as distance is a 

common metaphor (for example, “far in the future” or “they are close in age”) [75]. 

While it is well known that people are inaccurate in their estimates of absolute distance, 

research shows that they are relatively consistent with each other in ordinal rankings 

[100, 112].  

Salton’s vector-space model [35], the dominant model in Information Retrieval today, 

applies this notion of “similarity as distance” to document search. (In fact, strictly 

speaking, similarity is the inverse of distance, in that small distance is regarded as high 

similarity.) Each document is represented as a vector of individual terms (often words or 

word stems) and their frequency within the document. Similarity between a search 
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(represented as another word vector) and a document is computed by calculating the 

(inverse of the) distance between the two vectors; a common formula used is cosine 

similarity [83], which calculates the cosine of the angle between the two vectors. Until 

recently, words in documents were generally assumed to be unrelated to each other; that 

is, they were assumed to be “orthogonal” in spatial terms, and were treated as 

independent vector terms. Salton and McGill [35] reportedly regarded orthogonality as a 

reasonable approximation.  

Given the fundamental nature of the near-far model in human cognition, we believe it can 

be applied to dataset similarity. For searches over datasets, we hypothesize that the same 

“near-far” similarity abstraction can be extended to comparing the value range of a 

variable in the dataset to a desired range of values, and further, to comparing an entire 

dataset to a search consisting of several individual search terms. We further hypothesize 

that treating separate variables within a dataset as independent and therefore orthogonal is 

a reasonable approximation. Variables representing space and time are already often 

regarded as orthogonal, and modeled as such [105]. Creating a measure that captures 

absolute distance as perceived by people is unlikely, as people are not consistent amongst 

themselves. However, we may be able to create a measure that adequately replicates their 

ordinal rankings, and use that measure to order a set of search results. 

Tversky [131, 132] argues on both theoretical and empirical grounds that the metric and 

dimensional assumptions underlying the distance-based representation of similarity is 

unfounded. He argues for a set-based approach in which objects are represented as a set 
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of features, and similarity is modeled as a feature-matching process where the larger the 

intersection between two feature sets, the more similar the objects are considered to be. In 

some ways we borrow from this thinking when we encounter overlaps between a 

variable’s range and a search term, and in accounting for similarity of datasets that 

contain subsets of the desired variables. It is likely that a dataset containing a desired 

variable (but with a poor match in terms of the data range) may be considered as “more 

similar” than another dataset that does not contain that variable (but is the same in other 

ways). Our work currently has this level of refinement only for a subset of search term 

types (“existence” search terms). 

4.1.2 Dataset Similarity: The Intuition 

If a search term specifies a desired variable with a desired data range and we find a 

matching variable in two datasets, we seek to rank these datasets in an order that 

resonates with the scientists. We use a distance-based measure that compares the search 

range to the data range. While we use distance as a basis, we are approximating 

similarity, thus, a smaller distance translates to a higher similarity score.  

In this section we use a running example, provided by a CMOP scientist: imagine a 

microbiologist looking for “any observations near the Astoria Bridge in June 2010 with 

temperature between 5 and 10 C,” because she wants to place a water sample taken there 

into physical context. In this case, the search has three search terms: one geospatial and 

two one-dimensional variables, one of them being temporal. Each of the given search 

terms can be converted to a variable (location, time, temperature), a range (some distance 
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around a physical area, June 1:June 30 2010, 5:10C), and some units in which each range 

is specified.  

The scientist has a qualitative intuition about which observations she considers a perfect 

match, relatively close, or too far from the search to be interesting. Consider a dataset 

with a temperature variable whose values range between 6 and 9C. All temperature data 

in that dataset falls is in the range of 6 to 9C, and so matches the temperature search term. 

Given three other datasets, with temperatures between 8 and 12C, between 11 and 15C, 

and between 16 and 22C, we have a good idea how she would rank them in order of 

closeness to this search term (that is, in the order listed here). We aim to develop a 

similarity measure that resembles her qualitative intuition; that is, it computes, for a 

numeric search term expressed as a desired range, the distance between that range and the 

dataset’s values.  

Figure 4.1. Example of qualitative geospatial and temporal ranking: the top section shows a temporal 

search T and the time spans of various observation datasets. Dataset A(t) is a complete match, while 

datasets B(t), C(t), D(t), F(t) and E(t) are at increasing times from the search. The bottom section shows 

a notional map with geospatial search G, and with the geospatial locations and extents of several 

observation datasets represented by points (shown by markers), polygons and lines at various distances. 

In the middle is a qualitative scale that applies to both time and space. 
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Figure 4.1 depicts the geospatial and temporal search terms and several datasets for this 

example; we will use this figure to further provide an intuition about how to measure 

dataset distance. We begin our example with a one-dimensional variable: time. Using the 

“similarity as distance” metaphor, the top of Figure 4.1 shows a timeline and a temporal 

search, denoted T, with a line representing the search time span of June 2010. We can 

consider the temporal search to have a center and a radius; here, the center is midnight on 

June 15 and the radius 15 days. Lines A(t), B(t), ..., F(t) represent the time spans of 

observations stored in datasets A, B, …, F. Span A(t) represents a complete match; all 

observations in this dataset are from June. Span C(t)'s observations span the month of 

May and so it is “very close”; Span B(t) overlaps the search time span and is therefore 

“closer” than Span C(t) but is not a complete match. Span F(t), representing a small time 

period in the middle of May, is also “very close”; it is arguable whether or not it is closer 

than C(t). Span D(t) is further away still and Span E(t), with observations in February, is 

“far” from the June search. Note that we can treat temperature, also a one-dimensional 

variable, the same way. 

The bottom section of Figure 4.1 shows our two-dimensional geospatial search term G as 

drawn on a (notional) map. The search area is here represented by a central point P (in 

our running example, geo-coordinate (46.23, -123.88), near the Astoria bridge), and a 

radius r (½ km) within which the desired observations should fall. The marker labeled 

A(g) represents the geospatial extent of observations in the same dataset A whose 

temporal extent was shown above. For dataset A, the observations are at a single location, 
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for example, observations from a fixed station or a set of observations made while 

anchored during a cruise. Markers B(g), E(g) and F(g) represent single-location datasets 

further away from the search center. Linear extents C(g), D(g) and H(G) represent 

transects traveled by a mobile observation station such as a cruise ship, AUV or glider. 

Polygonal extents J(g) and K(g) represent the bounding box of a longer, complex cruise 

track. Point extent A(g) falls within the radius of the search and so is a complete match to 

the geographic search term. Note that the qualitative measure of “closeness” remains 

consistent across geometry types. Despite the differences in geometry types represented, 

marker B(g) and line C(g) are both considered “very close” and polygon K(g) and marker 

F(g) are “too far” from the search to be interesting. In fact, the scientist is applying an 

implicit scaling model that is specific to his task [99]. Support for a “too far” judgment 

can be found in Montello’s spatialization study [98]; the exact distance at which this 

judgment is applied may change for different users or even for different tasks [99]. 

The same intuitive scaling can be applied across the different search terms. For example, 

temporal observations at F(t) and spatial observations at marker B(g) could be considered 

equidistant from their search centers, as they are both (qualitatively speaking) “quite 

close.” Further, when considering both the temporal and spatial distances simultaneously, 

the dataset F, with temporal observations F(t) (quite close) at location F(g) (too far), is 

further from the search than datasets A (“here” in both time and space), B and C (“quite 

close” in both time and space). These examples illustrate the situation of one dataset 

dominating another: being closer in both time and space. The more interesting case arises 
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in ranking two datasets where neither dominates the other, such as D and F: F is 

temporally closer, but D is closer in space.  

To simplify such comparisons, we use the search radii as the weighting method between 

the multiple search terms. For example, had the spatial portion of the search been “within 

5 km of P”, D(g) and F(g) would both be considered “here” spatially, but D would now 

be dominated by F since it is temporally dominated by F. This approach allows us to 

convert each different unit into a unit-less distance measure, scaled separately for each 

search term based on its radius; we can then easily compare different search terms on a 

common, unit-less scale. 

4.1.3 Estimating Dataset Similarity  

To compute these comparisons across a large number of datasets, we need an efficient 

computation that characterizes the intuition described above. We develop a simple, 

lightweight formula that approximates the distance between each search term and a 

matching variable in a dataset based on summary information about the dataset, such as 

the contained variables and their bounds or footprints. In this section, we describe that 

formula.  

There are many options for representing the proximity of two entities (in our case, a 

search term and relevant variable’s values), with varying computational complexities 

[95]. A commonly used surrogate for distance between two geographic entities is 

centroid-to-centroid distance. While it is a poor approximation when the entities are large 

and close together, it is relatively simple to calculate, at least for simple geometries. 
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However, this measure ignores the radii of the search terms, and does not directly identify 

overlaps between the geometries or ranges of the variables.  

Another well-studied distance measure is minimum (or maximum) distance between two 

entities. This distance can be estimated by knowing only the bounds of the entities. This 

measure more closely matches our criteria; it can be calculated quickly using information 

(the bounds) that can be statically extracted from a dataset. We can use the minimum and 

maximum distances to identify key characteristics that will drive our ranking: whether a 

dataset is within our search bounds, whether the search and dataset overlap or whether 

they are disjoint, and if so by how much. This discussion applies equally to the one-

dimensional “spaces” of time or other one-dimensional variables.  

In essence, we regard the variable’s values (whether of time, space, or some other 

variable) within a dataset as representing a distribution of “distances” from the search 

center, with a single point value (such as a constant value for a variable, or a single time) 

being the most constrained distribution. Each search term itself represents a desired 

distribution of the appropriate variable. At present, we regard the contents as being 

equally distributed between the bounds, as is common in database indexing [84]; future 

research may consider alternative distributions. Other researchers eliminate the highest 

and lowest values prior to calculating the bounds [84]; this elimination does not alter our 

discussion. 

Our distance measure for a one-dimensional numeric variable, such as temperature or 

time, is shown in Equations (1)-(4); Figure 4.2 depicts our measure graphically. Without 
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loss of generality, we assume that there is a monotonic mapping from the variable’s 

domain to the real numbers; in the case of a temporal search term, for example, we 

convert time values to “Unix time.” 

We compare the range of each search term to the range of values in the matching dataset 

variable. We have three cases: 

 If the column bounds are within the search bounds for this term, we regard this term 

as a “complete match”; for example, A(v) in Figure 4.2.  

 If the two are disjoint, we calculate the number of search radii (half the bounds, and 

centered on the average of the bounds) that separates the middle of the dataset from 

the closer edge of the search radius. The closer edge is used since the dataset may be 

numerically below or above the search radius. The higher the number of radii, the 

lower the similarity. An example in Figure 4.2 is E(v). 

 Where the ranges overlap, the similarity is adjusted upwards by the percentage of 

Figure 4.2. Graphic depicting a portion of the candidate distance measure, as applied to a one-dimensional 

variable (v) to calculate a similarity score. The search range Q is shown in blue; the search radius r is one-half 

of the range of Q. The range for variable v in each of six datasets (labeled A to F) is shown, along with each 

dataset’s resulting score for this search term. For each dataset, the scoring function S identifies the middle of 

the range of the variable v, scales it by the search radius, and converts the result to a score. Datasets wholly 

inside the search range (e.g., dataset A) are given a score of 100. Datasets wholly outside the search range are 

given a score based on the number of radii that the middle of the range is from the search center (datasets C-

F). Datasets whose “middle” is at 10 radii from the search’s edge (that is, 11 radii from the center) are given a 

score of 0, and ones further away may receive negative scores (dataset E). Datasets that overlap the search 

range are scored accounting for the proportion of the dataset range that is inside the search range (dataset B).   
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overlap between them. We compare the ranges rather than the averages or median, 

since, for example, the sets {10, 30} and {19, 21} have the same average, but they do 

not have the same relevance to someone searching for data in the range of 18:22. An 

example in Figure 4.2 is B(v). 

For a one-dimensional search term, let QRmn and QRmx represent the lower and upper 

bounds of the term, and let vXmn and vXmx represent the minimum and maximum values of 

observations for the matched variable v in a dataset d.   

Equation 1, shown in Figure 4.3, calculates vRmn, the distance of variable v’s minimum 

value from the search term’s “center”, i.e., the mean of QRmn and QRmx, and then scales the 

result by the search term “radius” (half the size of the term’s range). Similarly Equation 2 

calculates vRmx, the “scaled variable-range distance” of the variable’s maximum value.  

Equation 3 uses vRmn and vRmx to calculate an overall distance for this variable’s range from 

the search term’s range, normalized by the search-term radius. The first subcase shown 

applies to variable values completely within the term’s range, and thus at a distance of 0 

radii. Subcases 2 through 4 account for a variable range overlapping the search range at the 

high end, at the low end, and on both sides, respectively; these subcases adjust the distance 

calculation based on the percent of the variable’s range estimated to be inside the search 

range. The last subcase accounts for a dataset completely outside of the search term’s 

range. 

In Equation 4, we then apply a scoring function s to to vRdist to convert the calculated 

distance in radii from the search term center into a relevance score vRs, while allowing a  
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weighting factor to be applied to the distance result, if desired. Per Montello [100], this 

implicit scaling factor may change for different users or different tasks. Our current 

implementation (reflected in the example in Figure 4.2) uses s(vRdist ) = (100 – f * vRdist). 

That is, if the distance is f “radii” (currently we have set f = 10 in our prototype) from the 

search term’s edge it is considered “too far away” to be relevant and given a score of 0 or 

less, while a distance of 0 (i.e., completely within the search term’s range) is given a score 

of 100. 

Lastly, the scores vRs for each search term, including any geospatial score dGs, are 

combined to give an overall score dscore for this dataset. We currently take a simple 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Formulae 
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arithmetic mean of these scores. Combining these distance measures results in a multi-

component ranking, which is the norm in web search systems today [38, 71, 79, 83]. 

Note, however, that we scaled each of these rankings by the radii of the respective search 

terms, resulting in a unitless measure; thus, the user describes the relative importance of 

time and distance, for example, by adjusting the search-term ranges. 

4.1.4 Geometric and Geospatial Similarity 

We adapt the measure to the two-dimensional case of calculating similarity of geometric or 

geospatial search terms and features. By convention, the geolocations
4
 within the dataset 

can be represented by any of the common geometries: point, line/polyline or polygon 

(e.g., convex hull) [58]. Similarly to the one-dimensional measure in Equations (1)-(4), 

we use minimum and maximum distance between the search term and dataset feature (see 

Figure 4.4a) to provide a reasonable approximation of distance for the three primary 

geometries while minimizing the number and complexity of spatial calculations needed. 

This approach uses a total of two spatial calculations (maximum distance and minimum 

distance between two geometries) for each metadata record scored. Spatial functions can 

be slow, so minimizing the number and complexity of geometries handled is beneficial. 

We first describe using a geospatial, circular search feature for some area: let C represent 

the center location of the geospatial search term and r the radius. Let the locations of all 

the observations within a single dataset d be represented by a geometry g.  

                                                 

4
 By convention, we use “surface of the earth” distance for geospatial search terms and features. 
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a. 

  

 

 

  

b. 

  

  

 

 

  

c. 

  

Figure 4.4. Adapting the distance measure to various geometric shapes and search regions. The blue line 

represents the search region, and multiples of the radius are shown by dashed lines.  a. Initial version. Point 

c represents the notional “center” for each dataset shown. b. Adaptation from a circular to a rectangular 

search region. c. Adjustment made for datasets overlapping the search region, with one end point within the 

search region.  
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Let dGmn and dGmx represent the minimum and maximum distances of the geometry from 

C, using some distance measure such as earth-surface distance or Euclidean distance. 

Equation 5 calculates the overall distance measure for three subcases: the dataset’s 

geometry is completely within the search radius; the geometry overlaps the search area, 

or the geometry is completely outside the search area. Equation 6 gives a geospatial-

relevance score dGs for dataset d by again applying the same scoring function s to the 

calculated overall distance measure. 

Note that we calculate an average between the distance to the closest point and the 

distance to the farthest point (and scale it by the search-term radius, as before). We treat 

this distance as notionally being the average distance to the dataset. However, although 

we show a point in Figure 4.4a that indicates this distance, we do not calculate such a 

representative point but work solely with minimum and maximum distances.  

This measure has several advantages: it takes the overall shape of the geometry into 

account, unlike a nearest-neighbor approach; it is more nuanced than the often-used 

categorization of the spatial relationship of two shapes into contains, intersects or disjoint; 

and it is easy to calculate. A more complex spatial scoring system can easily be devised; 

what is less clear is whether, given the uncertainties in people’s views of distance [99], the 

additional complexity provides a better distance score as perceived by the user. What is 

clear is that the additional complexity will add to the computation time. 

At the request of the scientists, the geographic search term is represented in the current 

prototype as a rectangle. We adapted the calculations in the following way. We identify 
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the closest point of the geometry to the center of the search region, and calculate the 

distance to that point (see the two examples in Figure 4.4b, for a line (D(g) and a 

polygon, K(g)). Then we calculate the distance to the intersection of a line running 

between the center of the search region and the closest point and the search-region 

boundary; this distance becomes the radius we use in scaling the distance to the closest 

point.  

In the case where the dataset overlaps the search region (as in Figure 4.4c), the closest 

point is within the search region. Here, we extend the line to the search region boundary, 

and use this distance as the radius of the search region in this direction. 

We repeat the process for the farthest point. Thus, the scaled max distance formula uses a 

different radius from that used in the scaled min distance formula, reflecting the different 

“yardstick” in that direction. We then proceed to calculate the average of the scaled 

distances to the minimum and maximum points and the score for the overall geometric 

search term as before. 

We show an example in Figure 4.5. Here, our similarity measure calculates the dataset 

Figure 4.5. Dataset distance calculation for rectangular search region, with distances in kilometers  
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represented by the line D(g) as being (2/1 + 4.5/3)/2 = 1.7 radii from the search center, or 

0.7 radii from the edge of the search region. We show the calculated notional dGdist in 

Figure 4.5 (although, as noted, we do not calculate an actual point or direction relative to 

the search region, we work only with distances). Using our current scoring function, the 

geospatial score for this dataset would be (100 - 10 * 0.7) = 93, that is, “quite close” to 

the search region.  

This scaling using the intersection point with the boundary works for any convex search 

geometry. Further, in the case of a circular search region, it reduces to our original 

measure. 

4.1.5 Algorithm for Dataset Scoring 

We treat searches as a conjunction of desired features. In general, we represent each 

search term as a tuple of the form <variable, range, units>. For example:   

{<“time”, [2010-06-01:2010-06-30], days>, 

<“temperature”, [5:10], C>,  

<“location”, [46.23, -123.88: 47.23, -124.52], 

degrees>} 

The dataset summaries, stored in our catalog, likewise contain a set of features of the 

same form. In general, we have one feature for each variable within a dataset. 

(Exceptions may exist. For example, we combine latitude and longitude into a single 

geospatial feature, and have considered adding elevation to that.) This model gives us 

symmetry between the search terms and the dataset features, which allows a returned 

dataset to itself serve as a search to find similar datasets. 
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Figure 4.6 shows simplified pseudo-code for our algorithm. For each dataset, we first 

match each search term to a feature of this dataset, or to no feature (function Match). Our 

initial matching function, used in the user study and reflected in the pseudo-code here, 

simply looks for an exact match between the variable named in the search term and a 

named column in the dataset.  (This approach is naïve and is not required by our model. 

Inputs: Search specification Q, catalog entry collection D, desired number of 

highest-scoring entries k, library of similarity functions LF 

 

Initialize array Scores[] 

For each catalog entry d in collection D do: 

  Scores[d] = Score(Q,d) 

Sort values in Scores[]  

Return Scores[1..k] 

 

Score_s(Q,d): 

// Calculate similarity score for search Q on dataset d 

  C = Match(Q,d) 

  L = [] // Accumulate scores in list L 

  score = 0     

  For each tuple (q,c,lf) in C do: 

    score = score + Score_c(q,c,lf) 

  Return score / |C| 

 

Match(Q,d):   // Naïve version 

// Match search terms to features 

   matched = {}  // initialize empty set 

   For each search condition q in Q do: 

     If (requested variable v exists in d): 

        Choose lf from LF based on datatype of v 

        If q.units != v.units: 

           Convert q.range, q.units to match v.units 

        Add (q,v,lf) to matched 

     Else: 

        Add (q,Null,Null) to matched 

   Return matched 

 

Score_c(q,v,lf): 

// Return score for this search term q, variable v using likeness function lf 

// Naïve version 

  MaxCondScore = 100  // Implementation choice 

  NoMatchScore = 0  // Implementation choice 

  If lf == Null or c == Null: // No match 

    Return NoMatchScore   

  Elif (q is a variable existence condition): 

       Add  s = s + MaxCondScore  

  Else:  // variable with range condition 

       Return lf(q, v)  //apply measure 

Figure 4.6. Simplified pseudo-code for dataset summary ranked search algorithm. 
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Work is underway to address the problems of normalizing the variable names in the 

archive [90]; see Section 8.3.)   

Next, we score each search condition and matched variable.  

 If no variable was matched to a search term (for example, the desired variable is 

temperature but there is no matching variable in the dataset), we give that search 

condition a “null” score.  

 If a variable is matched and the search term merely requests the existence of that 

variable in the dataset (e.g., <“temperature”,,>) we count it as a complete 

match for the term and give it the maximum possible score (MaxCondScore). In 

concept, this condition specifies a variable with an infinite range of values; thus, any 

dataset that contains a matching variable is considered “closer” to that search 

condition than a dataset that lacks that variable. In effect, the resulting score is binary: 

a dataset is a perfect match to the search condition if the desired variable is found in 

that dataset, or a complete non-match if it does not. When Match is extended to non-

exact matches on variables, this score can become more nuanced.  

 If a variable is matched and the search term contains a range, an appropriate likeness 

function is selected. The similarity between the search term and matching feature is 

scored using the likeness function; our primary likeness functions are described above 

in Figure 4.3.  

After processing all terms, we normalize the final score by the number of terms in the 

search to give an overall score for each catalog entry. As described above, in our current 
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implementation we set the MaxCondScore to 100; the minimum score is not bounded.   

Given a collection of candidate datasets, each dataset’s dscore can be calculated. 

Optionally, datasets with dscore ≤ 0 can be discarded if desired.  

Finally, we sort the resulting list in decreasing order of dscore into a ranked list and return 

the catalog entries with the k highest scores. Conceptually, each search generates a rating 

of every catalog entry (although for performance reasons, our implementation avoids 

doing so). We have explored optimizations to this pseudo-code, such as traversing 

hierarchical relationships between datasets, to derive the same results more efficiently 

(see Chapter 7).  

4.1.5.1 Textual Scientific Data 

In addition to the large quantity of numeric data, some datasets contain one or more fields 

of textual data. For all variables containing textual data, we currently allow only searches 

for the existence of these variables.  

There are a few data fields, such as research notes or study descriptions, for which 

traditional textual search may apply. However, discussions with our scientists lead us to 

believe that traditional text search is inappropriate for most textual variables. Examples 

found at CMOP of such textual variables include quality levels, species names, and 

unique hybrid textual-numeric identifiers given to water samples and test locations. The 

notion of distance still seems germane to such variables. For example, quality levels are 

ordered, two species are more or less related, and the numbering schemes were often 
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selected for memorability by embedding a notion of geolocation. Thus, we expect notions 

of distance still apply, though the details of the likeness functions may need to change.  

We experimented with adapting our distance measure for ordinal categorical data, such as 

quality levels. We assigned each quality level a value within a range that respects its 

ordinal position, with “no quality control” having the lowest value and “full quality 

control” having the highest. We convert the search term range and data ranges to the 

matching numeric values and apply our distance measure to these values. While this 

approach has been well accepted by our implementation’s users, it relies on assessing 

each textual variable independently for applicability and manually assigning the ordinal 

values, and so we do not see this approach as viable for large archives with many 

categorical variables. Other measures will be required for distances that cannot be 

captured by a linear order, for example, distance between species. In some domains, 

existing similarity functions may be adapted for use; for example, similarity functions 

exist for DNA sequences, although an approach is required for specifying a search radius 

around the desired sequence for our style of search.  

Combining and weighting textual and numeric search terms remains an area for future 

research. While it is mathematically possible to combine scores from these two methods 

– for example, by including the score for each textual term in the final score 

normalization – we do not yet have an understanding of how scientists perceive these 

combinations. In particular, unlike the continuous numeric and existence measures, we 

have not validated these additional approaches with formal user studies. While there are 
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certainly technical issues to be addressed, we believe more user studies exploring how 

users expect these systems to operate to be the most pressing issue. 

4.1.6 Related Work: Dataset Similarity 

To our knowledge, we are the first researchers to explore the question of what constitutes 

relevance of a scientific, numeric dataset to a search, and to attempt to develop a broadly 

applicable relevance measure for such datasets.  

Our application of a distance-based similarity measure draws on research in the field of 

spatialization of data [39, 122]. Despite the name, the data searched is not spatial in 

nature but is nevertheless represented as points in a vector space. Spatial cognition 

researchers have shown that judging relative distance between individual spatialized data 

points is practical, and that study participants naturally understand similarity represented 

as relative distance. We apply their notions of distance more broadly to large sets of 

combined temporal, spatial and environmental-variable values. Although spatialization 

research has identified anomalies and inaccuracies in user perceptions at the detail level, 

we believe a fast approximation of similarity between a search and a dataset has 

significant value. 

D’Ulizia et al. [28] provide approximate results ranked in similarity across a combination 

of geospatial and non-geospatial attributes; however, unlike our work with data ranges, 

they assume each attribute has a single value, and they match attributes and their values 

via known ontologies and taxonomies. Roddick et al. [112] suggest that (even) for 

numeric values, practical distance may be different from numeric or Euclidean distance 
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(for example, software version numbers), and go on to develop a unifying model for 

semantic distance. We believe these concepts might be applicable to matching variable 

names, and leave further exploration to future research.  

As noted earlier, traditional text IR treats a document as a bag of words, with each 

distinct word a feature. Many similarity functions and measures have been proposed and 

used for the bag-of-words model. One popular measure in text retrieval is cosine 

similarity. This measure computes the cosine of the angle between two vectors, one 

representing the search and the other the document. This measure compensates for two 

similar documents appearing dissimilar as a result of length differences [83]. In essence, 

our focus on data ranges has a similar dampening effect on differences, as the counts of 

specific values occurring are not taken into account in our similarity measure.   

One of the assumptions often made in the bag-of-words model is that a frequently used 

word in the document collection is seen as having less value than a less frequently used 

word [83]; we can then adjust for these differences in value, as is done when using  tf-idf 

(term frequency-inverse document frequency). However, it is not known that this 

assumption is valid when applied to data rather than words; for example, while the word 

“the” clearly carries less information content than a word such as “disintermediation”, it 

is not clear that a repeated number in a dataset has less value than a rare one. Recently, 

sophisticated search engines are now taking word co-occurrences and context into 

account in their similarity-scoring functions [78]; identifying ways to apply these 

concepts to dataset similarity is left to future research. 
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Recent text-retrieval systems use a wide variety of ranking criteria. Some of these, such 

as click frequency, have ready analogs in the dataset world: for example, download 

frequency as a surrogate for utility. Other criteria, such as reference frequency, will 

require adaptation of existing scholarly practices to apply to datasets; for example, 

methods to consistently cite a dataset, and discipline around retaining accessibility to the 

cited datasets [142]. Research into how to apply these concepts to datasets is warranted. 

Some scientific fields have developed similarity functions that they apply to their specific 

data, data formats or problem. For example, Zhang et al. [145] develop a similarity 

measure for protein structures, using IR feature-indexing techniques to quickly compare 

their tableau representations. In the field of spatial data, Schwering [118] reviews and 

compares different notions of similarity in current use, categorizing them into geometric 

models, feature matching, network distances, alignment and transformational models. 

Some models apply only to concepts, and others to objects. The notions are described for 

spatial comparisons only.  

Focusing on geographic search, Goodchild [47] notes that most geographic search 

systems score items based on word matches against metadata without considering the 

temporal span or geographic content of the items returned (that is, these geographic 

search systems use text search). Goodchild et al. [46] expand on these concerns in the 

2007 review of Geospatial One-Stop (GOS) [151], a state-of-the-art government portal to 

geographic information. GOS and similar portals such as the Global Change Master 

Directory’s Map/Date Search [152] now allow searches using both geographic and 
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temporal criteria; three spatial tests are supported (the map view intersects, mostly 

contains, or completely contains the dataset), and temporal search appears binary: items 

not matching the criteria are not returned. In contrast, we explicitly rank returned items 

based on the temporal, geographic and variable-value “distances” of the dataset from the 

search; the geographic, temporal and variable extent of the dataset are factored into the 

ranking in a continuous fashion, as opposed to the three discrete spatial tests.  

Much of the geospatial search exploration so far has been performed using point data, 

rather than with the combinations of point and non-point features (lines, polygons) that 

are common in scientific data. In one exception, Markowetz et al. [85] describe a 

prototype search engine that uses geographic “footprints” representing the spatial 

coverage of information. These footprints are associated with webpages to represent the 

spatial coverage of the information on the page, and are based on geocoding of textual 

data extracted from the page using a separate database of administrative data. For 

example, a postcode used on the page may be converted to that postcode’s geographic 

footprint. The geographic portion of the result is computed by intersecting the search 

footprint with the page footprint; if they do not intersect, the document is discarded [86]. 

The results of this comparison are combined with the results from text search to produce 

the final result. They do not address time and other variables as search criteria. 

Addressing a different kind of search problem, Sharifzadeh and Shahabi [119] compare a 

set of data points with a set of search points, where both sets potentially contain 

geographic attributes, and identify a set of points that are not dominated by any other 
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points. An example problem addressed is: which restaurants best meet a set of criteria 

such as good price, wide food selection, and convenient location to the current locations 

of a set of traveling salespeople? A restaurant is dominated by another if, for example, it 

has the same location convenience but higher prices and a narrower food selection. They 

do not specifically address time, but could presumably treat it as another attribute. Their 

approach develops the database search and algorithm to return the best points. Unlike our 

research they do not return ranked results, nor do they place the queries within the 

context of a larger application. 

4.2 Making Metadata 

The scoring-and-ranking approach described in Chapter 3 and earlier in this chapter 

assumes availability of a suitable collection of dataset summaries against which to apply 

these formulae. This section describes how to create this metadata for our collection of 

datasets, using CMOP’s observation archive as our example. We first summarize the 

challenges in creating metadata for collections of scientific datasets, in Section 4.2.1. In 

Section 4.2.2 we describe the dataset summaries that we use. Section 4.2.3 addresses how 

to create hierarchical metadata, while Section 4.2.4 describes how hierarchical metadata 

is used during a search. We then discuss some practical experiences in Section 4.2.5, and 

lastly related work in Section 4.2.6.  
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4.2.1 The Metadata-Creation Challenge 

Metadata creation is an ongoing issue for scientific data collections. One group notes that 

users want more metadata than providers are interested in providing, and that providers 

stop providing access to data when more metadata is requested from them [27].  

A separate problem is determining what metadata should be collected or provided. There 

are numerous metadata standards for scientific data, and most standards are constantly 

evolving. Each field within science has multiple relevant metadata standards, each 

addressing a different set of concerns or specialties; for example, Green et al. [50] lists 

the Marine Environmental Data Inventory, the National Biological Information 

Infrastructure, and National Oceanographic and Atmospheric Administration as all 

having their own metadata standards, while a webpage at the Marine Metadata 

Interoperability organization lists 65 standards relevant to their field [150]. In the area of 

geospatial standards, a 10-year effort led to a book documenting and analyzing the 

numerous spatial metadata standards in use worldwide [96]. Taking a different approach, 

the U.S. Federal Geographic Data Committee has a base standard for geospatial metadata 

that they propose should be further specialized by field-specific profiles, allowing 

different fields of scientific study to specify what metadata is most meaningful to them 

[133]. Thus, the question of what metadata to collect or provide does not have a simple 

answer.      

Hill et al. [61] differentiate contextual metadata, which is externally provided (e.g., by a 

scientist), from inherent metadata, which can be derived from automated analysis of the 
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data (e.g., a count of items included in a collection). Automatic metadata generation is 

ideal, since the manual metadata annotation by scientists required in most systems is 

considered burdensome and is often ignored, incomplete, or incorrect. However, most 

metadata standards specify a set of metadata items that can be automatically provided 

only in part. For example, FGDC Content Standard for Digital Geospatial Metadata lists 

as required items the abstract, purpose, and citation information, which must (at some 

level) be provided manually; it also lists as required items that may be amendable to 

automatic collection, such as the spatial and temporal coverage [133].  

It is the capturing and searching of inherent metadata, that is, the information derived 

from the datasets themselves, that has been our initial focus. Among the main reasons we 

opted for inherent metadata are uniformity and coverage across repository holdings, the 

ability to regenerate it as we refine and extend the features we want to capture, and, 

simply, success in using it. We do, however, use contextual metadata in limited forms, 

such as the quality level assigned to the data (as can be seen in Figure 3.1).  

As our work expands to cover additional archives, the importance of contextual metadata 

will increase. We believe that contextual metadata items often have different 

characteristics from the inherent metadata we focus on in this work, including:  

 Context is often specific to particular scientific fields; context for ecologists is 

different from microbiologists, for example. Many of the context items must be 

manually specified by the scientists (e.g., responsible party, project description). A 

single context often applies to a collection of datasets, and thus could perhaps be 
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specified once at a collection level and propagated through to individual datasets. 

 Contextual metadata has a greater tendency to be textual; thus, it may be amenable to 

traditional textual search approaches (project description, scientific method used). A 

combination of traditional textual search and scientific dataset search may be 

appropriate.   

In future work, we would like to provide a method for an archive to identify a relevant 

metadata standard, and then identify which fields can be automatically generated from 

the dataset collection. The system could then request contextual metadata from the 

archive curator to complete the required data.     

4.2.2 Representing A Dataset Collection: Dataset Summaries 

The discussion on our similarity measure above informs us in creating a useful dataset 

summary. We can summarize a variable in a dataset by the variable name, data type, units 

(if known) and the bounds of its values; in IR terms, we can consider this information a 

feature for this dataset. For example, we could summarize a column of temperature data 

with the range of 8.2C to 14.6C as “temperature”, [8.2:14.6], C, float. 

Similarly, we can simplify spatial data to a geometric feature such as a box or polyline. 

We can create a dataset summary by capturing such a feature for each variable or column 

in a dataset, table or spreadsheet, perhaps combined with external information such as file 

name and file type. We pre-compute this summary for each dataset by performing a one-

time scan of the dataset in its original location and format (using a feature extraction 



 

100 

component), and store the summary in our metadata catalog, along with a pointer to the 

original data.  

Figure 3.1 shows an example dataset summary. Each dataset summary contains a unique 

identifier for the summary; some general information about the dataset, such as its 

storage location and format; a small amount of contextual information (built 

automatically using a rule for this archive’s file organization); and information extracted 

from the dataset contents. This last set of information includes the temporal bounds of the 

dataset, represented as a minimum and maximum time; the spatial footprint of the 

dataset, represented by a basic geometry type such as a point, line or polygon; the ranges 

and units of all variables; and a count of the number of observations in the dataset. The 

temporal and variable bounds can easily be extracted by scanning the dataset. If 

geospatial information exists in the dataset, we can extract the geographic bounds. For 

mobile sensors that follow a path or a series of transects during which the observations 

are collected (as in our case), a more informative alternative is available; the series of 

points can be translated into a polyline with each pair of successive points representing a 

line segment. If appropriate, the polyline can be approximated by a smaller number of 

line segments. The simplified polyline can be compactly stored as a single geometry and 

quickly assessed during ranking. We can accommodate alternative representations of 

dataset components, as long as search terms and the similarity functions are adjusted to 

match.  



 

101 

4.2.3 Hierarchical Metadata 

As described in our model, a dataset can be segmented into multiple subsets (or 

combined with others into supersets), and a separate metadata entry created for each 

segment. The entries for a dataset and its segments can then be organized into a 

hierarchy, with the entries classified recursively into parents and children. A parent 

record’s bounds (both temporal and geospatial) includes the union of the bounds of its 

children. However, the children’s regions might not cover all of the parent’s, for 

example, if there are gaps in a time series. The hierarchical relationship of the contained 

subsets can be captured in the metadata catalog. The number of levels within the 

hierarchy is not fixed; for instance, we might decompose a cruise temporally by weeks 

and days within weeks, then segment each day spatially, while a water sample might have 

only a single hierarchy level.  

We give an example using data collected from a mobile sensor. Mobile sensors are 

deployed in a series of missions, each of which may span hours, days or weeks. 

Observations may be captured many times a second, either continuously or according to 

some schedule; there may be a half million or more observations per mission. 

As is shown in Figure 4.7, the track for a mobile-sensor mission can be a represented by a 

polyline. We extract the polyline from the individual observations (each of which has a 

time and location) by using the PostGIS makeline function to convert each full day’s 

worth of observations into a polyline, then applying the PostGIS implementation of the 

Douglas-Peucker algorithm, simplify, to create a simplified polyline. The simplified 
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polyline, along with the day’s start and end time, is stored as a metadata entry. We then 

extract each line segment with its time range and store it as a leaf metadata entry, with the 

day as its parent. We create a “root” metadata entry for the lifetime of the mission, and 

make the day polylines its children; this root is simply the bounding box of the polylines 

plus the begin and end times of the overall mission. This three-level hierarchy for mobile 

sensors can be created quickly, and provides multiple scales of metadata. Where a parent 

has only one child, we collapse the parent and child into a single entry; the hierarchy tree 

is not required to have the same number of levels along each possible path nor the same 

number of children at each level. 

A varying number of levels can be used for a subset of the collection or even a subset of 

sensors within a specific category; we may wish to, for example, add a daily metadata 

record for specific fixed sensors. In other cases, such as water-sample data, we may 

Figure 4.7. Spatial metadata entries for a mobile station (here, a multi-week cruise) is created by generating 

a line from point observations and simplifying it (middle hierarchy level, on line 2 of the table), then 

splitting the line into detailed line segments for the leaf records and extracting a bounding box for the 

parent record. (Note that “Point Sur” refers to a cruise vessel here.) 
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choose to only have one level in the hierarchy. 

4.2.4 Using Hierarchical Metadata  

At search time we apply the scoring formula to our collection of dataset summaries to 

quickly estimate scores for a large number of datasets. The search engine returns datasets 

or dataset segments from all levels of the hierarchy based on their scores, allowing the 

“closest” dataset segment to be returned for a search. Thus, subsets and supersets of the 

same data may be returned for the same search, but at different places in the ranking, with 

the objective of returning the most useful dataset subset for the current search.  

We show via a temporal example how our score can vary across a single hierarchy tree. 

For this example, we use datasets from a fixed sensor station that reports data only during 

some months, shown graphically in Figure 4.8. Geospatially, the station’s location is 

represented by a single point. Its continuous observations are, for convenience, stored in 

multiple datasets, each containing a single time range such as a month. In this example, 

three levels of metadata were chosen; an overall “lifetime” record, an intermediate level 

consisting of a record for the portion in each year that the station reports data, and a 

detailed level consisting of a single record for each month or partial month. Each light-

gray block in Figure 4.8 represents a metadata record, showing its minimum and 

maximum time.  

We show the score for a specific example search term, July:August 2010, next to each 

metadata record. There are two individual months that are wholly inside the desired time 

period, and thus score 100 (where 100 is a complete match). Datasets on either side score 
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in the 90s; the year in which those months occur 

scores 88, whereas years that do not overlap the 

search range at all receive negative relevance 

scores. The overall lifetime record, which overlaps 

the search at both ends, receives a score of 22. 

Several outlying leaf datasets receive negative 

scores. By including these different levels of 

information in the search results, the scientist can 

choose between accessing only the months of 

interest or the entire year (if the access tool allows 

the datasets to be aggregated).  

A temporal search for a time far outside the bounds 

of a station’s lifetime can quickly eliminate this 

station. Similarly, for a geographic search (say, 

“near the Astoria-Megler bridge”), a fixed station 

that is far distant can be recognized and ignored by 

looking at a single lifetime entry for the station. 

During search, we operate over the hierarchy in the 

following way. We apply the scoring method 

recursively to the collection of metadata records, 

starting with the root records. We first retrieve and 

Figure 4.8. Scoring example for 

intermittent data: the right-most blocks 

represent downloadable data-sets; the left-

hand blocks represent the metadata 

hierarchy and curation choices (one record 

per year, plus one for the lifetime). Ovals 

show the scores given each dataset relative 

to the search query. 
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score only the root metadata entries in the collection. We deem an individual entry 

“interesting” if the minimum geographic and time range distance is not “too far” and if 

the minimum and maximum scaled time or geographic range distances are different from 

each other. The second criterion implies that if children of this entry are available, some 

of these children may be more highly relevant than the parent entry itself. The process 

recurses until either the list of records to be retrieved is empty or no interesting records 

have children. 

4.2.5 Experiences in Creating Metadata 

How much work is required to create our metadata catalog? Our collection methodology 

is “semi-curated”, aiming to limit human involvement in metadata gathering as much as 

possible. In general, the data owner or curator must configure or code certain options 

once for each new kind of data cataloged. 

To set up a new category of data, we must understand the data format, decide the number 

of hierarchical levels to define and the download granularities to support, and then set up 

the appropriate scripts to scan the data and create the hierarchies – a process we call 

“extraction”. Each novel format requires a new extractor. Where the content, volume and 

meaning warrant separate processing, extraction may be specialized further (for example, 

mobile versus non-mobile stations, both stored in NetCDF files). We leave the data in its 

original format and location, and build links to provide direct access to the data from the 

summary (for example, parameterized URLs for a data-download program). In common 

with the approach used by Internet search engines in crawling the web, we perform the 
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maximal possible preprocessing of metadata during extraction, to minimize computation 

during search. Since metadata creation is infrequent compared to search, extraction-

processing speed is not critical. 

To keep the metadata catalog up-to-date, we must add new metadata entries whenever a 

new dataset is created, and update existing entries if a dataset changes. For each category 

of data, we regularly run a set of scripts and triggers that check for new or updated 

datasets and execute the predefined steps. The moment a new metadata entry appears in 

the metadata catalog, it is available to be searched. Generally, we use the same extractor 

to update entries as to build the initial entries. 

How do we partition (or merge) datasets? Currently, the approach is manual at the 

category level: when a new kind of data is added to the catalog, we consult scientists on 

what partitioning strategy might make sense for that type of data, and whether an existing 

partitioning strategy can be reused. Once a partitioning strategy has been decided and 

coded, it can be applied as broadly as desired. Partitioning choices must in general be 

made before a dataset is scanned and its features inserted into the metadata catalog.  

Currently, deciding what partitioning strategy to use for specific data collections is an art, 

although we see common patterns emerging that are likely possible to abstract and 

automate. We note that having subsets of data at multiple levels requires us to pre-

compute metadata summaries at all levels for efficiency. However, we generally can 

collect the metadata for all levels in a single pass of the dataset, so hierarchies do not 

significantly increase the cost of generating metadata. We have had success in abstracting 
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and generalizing a partitioning generator for at least one type of data (satellite data from 

NOAA).  

At CMOP, these choices are made once for each major category of data collected; for 

example, temporary sensors mounted on mobile platforms are partitioned by time and 

path segmentation, while permanently installed sensors on stationary platforms are 

partitioned by time only. While partitioning on a variable value is also possible, we have 

not yet encountered a case where this partitioning was requested by our scientists; 

however, a smaller time period or geographic area will generally translate to a smaller 

range for each observed variable. When we added support for autonomous unmanned 

vehicles (AUVs), for example, we asked if we should treat them the same as existing 

mobile platforms, or whether there was a reason to segment the data differently. (There 

was not, and the existing mobile-platform extractor was reused with minor 

modifications.) 

Our first program for each novel type of data takes two or three weeks to program and 

test. For example, our first mobile-collection-platform extraction program took 

approximately three weeks to program, and now automatically creates metadata as part of 

normal data handling of observations collected during additional cruises. Adding the next 

kind of mobile data, for AUVs, required a few days of additional work due to differences 

in how that data was stored. Now, additional AUV missions are handled automatically. 

Handling a third type of mobile observation collection was also quick.  
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4.2.6 Related Work: Metadata Extraction  

As noted earlier, the challenge of creating metadata over which to search is a known issue 

for scientific data. Goodchild notes that the number of metadata and catalog formats 

makes it unlikely that complete automation is possible, but that even partial automation 

would be a significant step forward [46].   

A few existing systems automatically add information such as file-creation date and 

owner’s userid [129], while several infer metadata from sources such as the directory 

structure within which the dataset is stored [14, 62]. One of these approaches [14] 

includes geographic metadata created by another application (ArcGIS) used to create the 

data and stored with their data format, but no search methods are suggested. We could 

identify only one system that extracts geographic metadata automatically from data [103], 

but unlike our research, the methods and models are not described. 

A few systems extract some metadata from the data itself; one example is inferring likely 

data types from the data, for use in applications. For example, Google Fusion Tables [44] 

infers data types such as date, number and geometry on a best-effort basis to decide the 

type of visualizations to provide; we use techniques such as these when no data type is 

given by the file format or storage system.  

Some search systems address search of data by providing text search over manually 

provided metadata associated with datasets [43, 103, 109, 129]. In contrast, we search the 

content of the datasets themselves, as represented by the extracted metadata.  
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Grossner et al. [51] note that current geographic and temporal search responses provide 

matches only on one level of metadata; the contents of cataloged digital objects are not 

exposed and are not searchable. Geographic portals such as Geospatial One-Stop (GOS) 

[151] and Global Change Master Directory’s Map/Date Search [152] only consider one 

level of metadata; if a relevant item is embedded within a larger item (Fairbanks within 

Alaska), the relevant item does not have its own metadata, and thus is not found or 

returned. In contrast, we address containment by providing multiple levels of metadata; 

we may return multiple levels of metadata simultaneously (or multiple children at the 

same level) in response to a single search, with different similarity scores and thus 

different rankings for each entry.  

Few researchers have created hierarchical metadata over data. Vanea et al. [135] describe 

hierarchical metadata in the context of a data warehouse for pulmonology patient data, 

with aggregate metadata stored in hierarchical XML nodes. Specific indicators are 

calculated from underlying data and stored as dimensions in the warehouse, with 

summaries stored in metadata. Their summaries are specific to particular expected 

queries, whereas we provide a more general search capability. Rajasekar and Moore 

[109] describe a layered approach to metadata that differentiates lower layers such as 

physical characteristics from higher layers, such as scientist-contributed descriptions; 

their system allows creation of logical collections of datasets associated with a scientist’s 

research project. Pallickara et al. [103] perform data summarization of large datasets and 

allow customized combinations of subsets or supersets of existing datasets; however they 
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appear to support only one level of data, and their search types (subset, superset, intersect 

and exclusive; over time, over space, or a name-value search) are Boolean and do not 

support a relevance or distance concept. 

4.3 Evaluation 

To evaluate our similarity measure, we performed two user studies, described in Chapter 

6.  

We evaluate our metadata extraction concepts in the following ways: 

 We tested the practicality of our metadata extraction ideas by implementing a number 

of metadata scanners in the prototype, as described in Chapter 5. 

 We tested the utility of the metadata for searching by implementing the prototype 

search engine. We then used the search engine in a user study, described in Chapter 6, 

and made the search engine available to scientists at CMOP.  

 We explored the effect of the hierarchy on performance; we describe the results in 

Chapter 7.  
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5 Prototype Design and Architecture 

In this chapter we describe our prototype design and architecture, which instantiates the 

concepts and model described previously. Section 5.1 explores the high-level architecture 

and its implications in more depth. In Section 5.2 we describe our current 

implementation; in our prototype we have explored some aspects of our ideas in more 

detail than others. We then perform an architectural evaluation of the implementation in 

Section 5.3.   

5.1 High-Level Architecture 

At the high level, our architecture follows and adapts the generic search architecture used 

by most Internet search engines today, shown in Figure 1.1. The adaptation to dataset 

search is (again) shown in  Figure 5.1. 

The architecture consists of two sections, Asynchronous Indexing and Interactive Search, 

each of which communicates with a Metadata Catalog. 

The primary processes in Asynchronous Indexing are the following: 
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 Figure 5.1. High-level dataset search architecture 
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 The Crawl process identifies datasets to summarize. It is given one or more starting 

points (for example, a link to a THREDDS catalog) and navigates from there, 

creating a list of datasets for summarization. 

 The Read process takes each dataset identified by the crawl process and attempts to 

read it. It may apply rules to identify the correct reader, based on clues such as the file 

type of a file.  

 The Extract Features process asynchronously summarizes each dataset read into a set 

of features and stores the summary in a metadata catalog. The feature extraction 

process encapsulates the dataset partitioning, hierarchy creation and feature extraction 

functions (as described in Chapter 3).  

The primary processes in Interactive Search are the following: 

 Searchers use the Search Interface to specify their search criteria. The Search 

Interface passes the search criteria (the search Q in our model) to the Scoring-and-

Ranking component, and displays the results returned.  

 The Scoring-and-Ranking component is called by the Search Interface with the user’s 

search criteria. The component accesses the metadata catalog, identifies the highest-

ranked summaries for the given search criteria, and returns them to the Search 

Interface. In terms of our model, this component applies the function Sim_s to the 

search criteria and the set of summaries S stored in the metadata catalog.   

The Metadata Catalog stores the features, dataset summaries and hierarchy relationships, 

and makes them available for use by other processes, such as the Scoring-and-Ranking 
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process. As soon as a feature or summary appears in the catalog, it is available to client 

processes. The catalog represents the set of dataset summaries S in our model. 

The components are decoupled from each other as much as possible in both the model 

and the implementation. This general architecture ensures separation and independence 

between the compute-intensive, asynchronous functions of the system, and the interactive 

search, which aims to provide interactive response times to searchers. The loosely 

coupled nature of the components allows maximum flexibility in altering the internal 

design, the methods used by any component, or the implementation technologies and 

details without altering the remaining components. 

The combined system context and component diagram in Figure 5.2 shows the major 

components and users of our system, along with external systems with which it interacts. 

The Search Engine realizes the Scoring-and-Ranking component from  Figure 5.1, while 

the Metadata Creation component encapsulates the Crawl, Read and Extract Features 

Figure 5.2. System context and component diagram 
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processes.  

There are two primary sets of users of the system: searchers and archive curators.  

A searcher interacts with the Search Interface. The Search Interface may include in the 

list of search results it displays links to directly download the referenced data, or to open 

the dataset in other tools (where the tool can be opened from a link by providing relevant 

identifying information).  

Each archive may have one or more curators who interact with the metadata-creation 

process to ensure their archive’s data is appropriately represented. Currently, these 

activities include ensuring that all desired data is being scanned and that the scanning 

processes are operating correctly. Possible future activities include metadata cleaning and 

reducing variable- and unit-name diversity, as is described by Megler [90]. In future 

versions, archive curators may be able to add to or modify information gained via the 

feature extraction process. For example, a curator might add collection-level information 

to a set or collection of datasets within the archive, such as contact details for the 

responsible party or usage restrictions.  

The Metadata Creation component encompasses the Crawl, Read and Extract Features 

processes. Additional curator capabilities, such as those just described, would be 

supported by this component. The Metadata Creation component interacts with one or 

more archives, by harvesting metadata from them. The component is made up of a 

number of individual metadata-creation processes. Each metadata-creation process uses 

some selection criteria to identify a set of datasets to scan within some archive (for 
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example: all NetCDF files in a specific OPeNDAP directory tree). Multiple extraction 

processes may be running simultaneously, with each process scanning a different set of 

datasets (possibly, but not necessarily, from a different archive). Each dataset is scanned 

once to perform initial feature extraction. As the datasets may be large and possibly 

stored remotely from the feature-extraction processing location, this processing can be 

compute-intensive and time-consuming. A dataset may be rescanned if a change in the 

dataset is detected, or if the feature-extraction method is modified in a way that requires 

rescanning.  

5.2 Current Implementation 

This section describes the design and implementation of our prototype, called “Data Near 

Here” (DNH). We implemented the prototype at CMOP for use by its research scientists 

internally; it will be opened to external users after internal validation. Our prototype 

follows the high-level architecture shown in Section 5.1. This section begins by 

describing the current architecture in Section 5.2.1, provides detail on Data Near Here’s 

current data model in Section 5.2.2 and reports on current catalog contents in Section 

5.2.4. We describe the search interface in more detail in Section 5.2.5. In Sections 5.2.6 

through 5.2.8 we describe plans and extensions for additional types and sources of data, 

working with variable and unit names, and some of the changes required to move the 

current prototype to a more robust product.  
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5.2.1 Implementation Architecture 

We implemented the approaches described in this dissertation in a prototype at the Center 

for Coastal Margin Observation and Prediction (CMOP), described in Section 2.3. We 

implemented a search engine using the similarity measure described in Chapter 4, 

operating over a metadata catalog we created. 

The implementation is running in production at CMOP. However, the implementation is 

a research prototype, and is not intended for widespread deployment in its current form. 

Our goal was to create a usable implementation, sufficient to show the viability of the 

architecture; conduct user studies and performance testing in support of evaluating our 

dataset search concepts; and to create a substantial demonstration system based on a real 

scientific archive.  

In choosing our implementation approach, we favored computationally lightweight 

approaches intended to achieve speed and scalability; we did not emphasize the 

management, curation or search interfaces. We choose to exploit well-studied and 

optimized underlying functions, techniques and existing software wherever possible.  

The system was designed to be added to the existing CMOP infrastructure without 

requiring changes to existing components. Figure 5.3 shows the implementation 

architecture. In keeping with the Information Retrieval concepts and the high-level 

architecture, the system is composed of four loosely-coupled components that extend the 

existing observatory repository; these components are analogs of and implement the 

components in the high-level dataset search architecture. The Metadata-Creation 
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Component extracts features from the database or datasets in the observation repository to 

represent the source observations, and stores these features in the Metadata Catalog. The 

Search Engine implements the Scoring-and-Ranking Component; it receives search terms 

from the search interface and interacts with the Metadata Catalog. It scores candidate 

metadata records, and returns to the search interface a ranked set of records. The scoring-

and-ranking algorithm is loosely coupled with the metadata and is independent of the 

search interface, allowing different algorithms to be easily tested without modifying the 

other components.  

The Search Interface is responsible for collecting the search terms from the user and 

presenting the search results from the Search Engine; it also provides the user with some 

control over the results presented (e.g., the number of search results to return). The 

Figure 5.3. “Data Near Here” implementation architecture. The components within the dashed box are the 

components of Data Near Here that were added into the existing archive architecture. 
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Search Interface exploits Google Maps [156] for geospatial representation of the search 

and results. The sole direct interaction between the Search Interface and the Metadata 

Catalog is when the search interface requests metadata information to populate the search 

interface’s selections (for example, the “Category” drop-down menu in Figure 5.7). The 

search results link to the datasets within the repository and optionally to analysis 

programs.  

The loosely coupled nature of the components allows maximum flexibility in altering the 

internal design or methods used by any component without altering the remaining 

components; the additive nature of the architecture minimizes changes to the existing 

infrastructure necessary to add the dataset search capability. 

We selected the implementation technologies for the architecture based on existing 

technologies in use in the CMOP infrastructure, to allow for easy integration, extension 

and support. In particular:   

 The Metadata Catalog is implemented as a separate schema in CMOP’s production 

PostGIS-Postgres database and is accessed via dynamic SQL. All supporting spatial 

functions are provided by PostGIS (an open-source software program that adds 

support for geographic objects to PostgreSQL object-relational database management 

system [154]), and the geospatial geometries are stored in PostGIS geometry 

columns. The current data model for the catalog is described below.  
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 The Search Engine is a monolithic PHP module that is invoked via a REST call, and 

returns XML. Geometric functions are evaluated by PostGIS during data retrieval 

from the catalog, with final scoring and ranking performed in the PHP module.  

 The Search Interface is implemented using Javascript, JQuery and the Google Maps 

API. A production version of the Search Interface executes inside CMOP’s Drupal 

portal. The same code executes outside of Drupal for testing and demonstration 

purposes. 

 Metadata-creation scripts are written in Python 2.6, CMOP’s language of choice for 

back-end processing. The database is updated via SQL calls; for consistency, we 

primarily use PostGIS functions called from these scripts for geospatial processing, 

such as geographic-reference-system transformations, computing convex hulls, and 

creating polylines to represent a cruise track consisting of millions of point 

observations.  

Current experience leads us to believe these technologies will scale to support the 

observatory’s repository for some time. The design choices are known to constrain 

performance; for example, we could achieve faster performance by re-implementing the 

search engine in a compiled language such as C. However, the current implementation 

choices provide a useful lower bound on achievable performance, and revisiting these 

choices is unlikely to lead to multiple-orders-of-magnitude improvement in response time 

for CMOP. For a much larger observatory, other technology choices would provide 
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greater speed. The architecture allows us to easily make these choices per component as 

needed.  

In our prototype implementation, we made a number of choices for the purpose of testing 

these concepts. These choices are assumed in our description and include the following:  

 We represent each search term by a tuple of the form <variable, range, units>. 

 We summarize the values for each variable into a bounds-based “footprint.” For 

numeric variables, we use the upper and lower bounds. For text variables, we use the 

lexicographic minimum and maximum text string found. For (recognizable) 

geospatial data, we may use a point, a polyline to represent a mobile device’s track, or 

a convex hull or simple bounding box for more complex data. We represent each 

variable in a dataset summary as a tuple: 

 <variable, range, units, data type, count>  

The range and units combination represent the “footprint” for this variable in this 

dataset. We include the count on a per-variable basis in order to capture the actual 

number of observations for each variable in the dataset; for example, a dataset may 

contain readings from multiple instruments that were operational during different 

time periods. 

 Our feature matching function (Match), when matching variables, currently matches 

on lexicographically equivalent variable names only; a search for “temperature” will 

not match “air temperature” or “airtemp.” Other search options exposed by the search 

interface (location and quality, for example) are handled on a case-by-case basis. 



 

121 

 Similarity scoring is primarily based on the distance measure described in Chapter 4.  

Figure 5.4 shows the sequence diagram for Data Near Here. The interaction between the 

components is simple: the Search Interface makes an HTTP GET request to the Search 

Engine and passes the search parameters in the URL. The Search Engine interacts with 

the Metadata Catalog (using SQL), and returns the list of datasets to the Search Interface 

in XML. The Search Interface displays the results.  

We performed initial performance characterization of this architecture using a set of 

arbitrarily selected test searches, prior to implementing any techniques to improve 

performance. We analyzed the proportion of elapsed time the system spent in the 

sequence shown in Figure 5.4  with the following conclusions:   

Issue Search Request (Steps 1 and 2): The Search Interface time spent in preparing the 

search request (Step 1) and in sending the request to the back end (Step 2) is negligible.  

Search and Rank Results (Step 3): The search-and-rank-results task in the Search 

Engine contributes the greatest proportion of the response-time latency and shows the 

greatest variability across different searches. This task is made up of three steps: 

understanding the search request; performing the search and identifying the top-k results; 

and preparing the ranked results for return to the requester. Time taken by the first and 

last step is negligible. The time taken in the middle task dominates the overall response 

time, and will continue to do so as the size of the database and the complexity of the 

searches grow.  

Send Results (Step 4): The network delay is driven by certain factors outside our control 
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(distance, connectivity, bandwidth), and by the amount of data transmitted between the 

search engine and the search interface. We could possibly reduce the data transmitted by 

compression; however, it is unlikely that such a change would make a dramatic 

difference to the overall response time.  

Build Results Page and Map (Step 5): The time spent in Step 5 is primarily driven by 

the number of elements we draw on the map. We subsequently limited this time by 

drawing only the top 25 results returned and providing the user with the capability of 

choosing to draw more results, as a compromise between providing sufficient mapped 

results and taking too long in the mapping task. In the absence of mapping delay, the 

primary driver is the number of entries returned by the search. We provide default 

“minimum and maximum entries returned” guidelines to the back-end, to guide the 

search-and-rank-results task in the number of the entries desired in the response. The user 

can request additional items using a “get more” button, if she wishes. The interface 

Figure 5.4. Search-execution sequence diagram 
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currently blocks until a set of results is returned; we researched implementing a non-

blocking interface but did not do so as it would require installation of an Apache module 

not currently installed at any of the demonstration or development sites we use. Alternate 

search interface designs are possible that would allow data to be displayed with less 

delay. These UI design alternatives are not the subject of our research. 

5.2.2 Data Model  

The initial data model was designed using traditional data modeling and normalization 

approaches. The fundamental object in the catalog is a dataset summary. The summary 

has a set of global information (sg in our search model) associated with it; we store that 

information in one table. Each dataset summary may have one or more variables (sc1 .. 

scm in the model); we store this information in another table.   

We require that each dataset summary in the catalog has a unique identifier. In addition, 

each summary identifies the name of the owning agency, and the producer 

(“program_name”) that added or maintains it.  

Some variables have been reified and are reflected at the “summary” level: specifically, 

time, geographic location and elevation (inverted as “depth”, since CMOP’s scientists are 

primarily interested in below-surface observations). These variables have special 

importance to our user community in defining the context of the other observational data 

in the dataset, and are almost always part of the search criteria. At the time the code was 

developed, the then-currently used version of spatial tools (PostGIS 1.5) did not fully 

support three-dimensional spatial functions. As a result, depth is currently treated as a 
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separate search condition, and the search condition is given the same weight as geospatial 

location. An alternate approach is to treat the geospatial locations including depth as true 

three-dimensional locations. The current spatial-distance metric would work with fully 

three-dimensional data, although some implementation details would need to change. 

Splitting variables into a table separate from the dataset-summary-level information 

supports our simple, consistent abstraction and is convenient for metadata extraction, as 

we can easily add new field names and variables without changing the data model. 

During a variable search, we currently “pivot” the variables table on-the-fly during each 

query that contains a variable search term. We implement the pivot by using the crosstab 

function in the optional PostgreSQL “tablefunc” module. This pivoting is quite slow; 

while it is fast enough for DNH’s current metadata catalog, it will limit performance as 

the catalog continues to grow. 

Figure 5.5 shows the current data model for the Metadata Catalog. There are three main 

tables used for the dataset summaries:  

 metadata_files. This table contains one record for each dataset summary. This record 

contains the dataset-level metadata (such as the owning agency, and the collection of 

which this dataset is a member), along with the reified observational variables. Each 

summary is identified by a unique id, and contains a reference to its parent if it has 

one, or NULL if it is a root. Each summary also has a count of the number of children 

(“kids”), that is, the number of summaries that list this summary as their parent. 
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Currently the primary use of this count is to identify leaves, but there is potential to 

use it to improve performance.  

 metadata_vars. This table contains one record for each variable in a dataset. A foreign 

key links the variable entry to its corresponding metadata_files entry. Reified 

observational variables are repeated in their raw form; for example, a time variable in 

Unix time will be stored in this table in its source units, but converted to a timestamp 

and reflected in the metadata_files time column-pair. The table differentiates between 

the “field” and the “variable”; the “field” entry reflects what the column in the source 

dataset is called, while “variable” allows some renaming to be applied during 

metadata extract or later (see Megler [90] for additional details on this usage). Due to 

CMOP preferences that the varmin and varmax values for data with numeric data 

Figure 5.5. Current data model. Dashed boxes show sections of the data model that support experimental 

extensions. 
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types should be forced to be numeric (to prevent, for example, a text string being 

thought of as a boundary value due to an error in the source dataset), these fields are 

defined as “double precision” fields in PostgreSQL, and non-numeric fields are stored 

in a separate table.  

 metadata_varsch. This is a variation on the metadata_vars table created for non-

numeric variables. The table is identical to metadata_vars, except that the varmin and 

varmax columns are defined as “text.” The two tables are merged in views that are 

used by the search engine. 

Nascent implementations of extensions and support concepts (“Curated” Metadata, UI 

Configuration, Metadata Extract Support, Ordinal Data Translation Tables) are shown in 

Figure 5.5 in dashed boxes, along with the tables we use for the current implementation; 

we expect that future implementations will flesh out these sections of the data model into 

their own subsystems. We created several indexes to assist with search engine 

performance. (The indexes that the majority of the queries in the search engine use are 

shown in Appendix A). We tested other indexes, including several spatial indexes, but we 

found that the PostgreSQL optimizer did not choose them for the SQL queries in our 

code. There is potential for more research here. 

5.2.3 Making Metadata 

An asynchronous, batch-oriented metadata extract suite written in Python updates the 

metadata catalog. As soon as a metadata entry is inserted or updated, it is available to be 

returned in response to a search. 
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We selected metadata summarization functions and implemented them as metadata 

extract processes. Global metadata for datasets is composed from a combination of 

sources, including the operating system, curator-provided metadata, and dataset contents. 

The variable names, units and data type are read from the dataset’s NetCDF [111] header, 

or extracted from relational-database catalogs. Alternatively, they may be supplied as part 

of externally provided metadata, for example, from FGDC metadata [133], or even 

inferred during the summarization process. As described in Chapter 4, for most variables 

we use the bounds as the summary. Data types are treated the same way; automatic 

approaches such as those in UCheck [1] or Google Fusion Tables [44, 45] could be 

applied here to infer likely data types from the data itself, but these methods are not the 

subject of this research. If the units for a variable cannot be inferred, they are shown in 

the catalog as “unknown.” In this case, the search engine assumes the variable is in the 

desired units, but discounts the score to compensate. 

We implemented metadata hierarchies such as those described in Chapter 4 for datasets 

containing point data and stored in NetCDF files, and for both point and mobile 

(polyline) data stored in a relational database. We implemented adaptive hierarchies, 

where the number of hierarchy levels varies by observation category and also within a 

single category or hierarchy; for example, where there is data for only one month in a 

year, we remove the year level on that branch. 

We currently have three extractors running that cover the majority of CMOP’s 

observational data holdings. One extractor runs against several thousand NetCDF 
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datasets for fixed-location observing stations, and uses a single time-based policy for 

defining hierarchies. A second extractor runs against an RDBMS that stores observations 

from the three kinds of mobile platforms: science cruises, AUVs, and gliders. This 

extractor uses a mix of temporal and geographic policies for its hierarchies. A third 

extractor runs against the water-sample collection. This dataset is small but has high 

value to the scientists, thus making the building of a custom extractor worthwhile. We 

have an additional three extractors (one for non-CMOP buoys, one for NOAA satellite 

data, and one for CMOP models) running in various test and development platforms. 

The initial metadata scanners we wrote hard-coded the knowledge about both the external 

sources of metadata, and the format of the metadata catalog. In later scanners we began to 

abstract some of this knowledge into configuration files. 

The IT staff can add new categories of observations (e.g., new types of mobile devices), 

change the number or grouping of hierarchical levels used to represent data, or change 

the representation of a category of observations (e.g., treating cruises solely as lines 

rather than as lines and bounding boxes at different levels of the hierarchy); this activity 

is a data curation process [59]. At present, these changes involve writing or modifying 

scripts; an informal set of patterns is emerging and could be formalized and abstracted to 

configuration files if desired. 

5.2.4 Catalog Contents 

Since we initiated Data Near Here (DNH) automatic feature extraction in April 2012, we 

have seen steady growth in both datasets and total observations. Figure 5.6 shows the 
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growth since we implemented DNH, with a ramp-up prior to production release and 

slower growth since. The sudden jumps in April 2012 and July 2012 are due to the 

deployment of additional scanners; the remainder of the growth reflects the growth in 

number of observations from platforms of types handled by existing scanners.  

 

Figure 5.6. Production counts of datasets by hierarchy level and total observations, as of October 1, 2013. 

The “Roots” line is barely visible, just above the X-axis. “Middles” are records that are inside nodes within 

a hierarchy, and “leaves” are leaf records in a hierarchy. “Only” represents metadata entries with no parent 

and no children. The “observations” line shows the total observations represented by these metadata 

entries, in millions. 

 

As of October 1, 2013, the metadata catalog represented a total of 32.7 thousand datasets, 

containing a total of 1.38 billion observations. Observations come from fixed stations, 

cruises, casts, and water samples, split between three quality levels (raw, preliminary and 

verified). Figure 5.6 also breaks out the different hierarchy levels. 

Of the 32,753 datasets, 30,061 contain data collected by CMOP; the second largest 

organization represented was NOAA and affiliates, and the remainder were collected by 
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seven other organizations. Table 5.1 gives summary counts for our currently existing 

metadata entries, representing a subset of CMOP’s repository. 

The breakdown by category in Table 5.2 highlights the different curation choices made 

for different observation categories.  

At one extreme, the fixed stations have an average of 10.9 million observations each, and 

Table 5.1. Characterization of Data Near Here Metadata. This table summarizes characteristics of the 

metadata entries representing the 1.384 billion observations currently searchable (numbers as of October 3, 

2013).  

Entity Count 

Metadata entries 36,083 

Number of observation categories 7 

Records at each hierarchy level:  

Roots without children (Only) 6,554 

Roots with children (Roots) 184 

Children with children (Middles) 3,146 

Children with no children (Leaves) 26,199 

Observations represented 1,384,352,599 

Average observations per metadata 

record 
38,365 

 

Table 5.2 Characterization of Existing Metadata entries by Category, as of October 3, 2013   

Category 
Hierarchy 

Level 
Geometry 

Number of 

Records 

Number 

with 

Children 

Total 

Observations 

Represented 

(‘000s) 

Average 

Observations 

per Record 

AUV 
1 (mission) 

Polygon, 

Line 
47 27 452 9,618 

2 (segment) Line 79 1 297 3,757 

Casts-

Binned 
1 Point 3,030 0 367 121 

Casts-Raw 1 Point 2,821 0 39,855 14,128 

Cruise 

1 (mission) Polygon 20 20 8,064 403,192 

2 (day) Line 289 234 8,064 27,902 

3,4 

(segment) 
Line, Point 8,621 0 7,905 1,426 

Fixed 

Stations 

1 (lifetime) Point 121 121 1,323,420 10,937,352 

2 (year) Point 893 885 1,323,420 1,481,993 

3 (month) Point 8,384 1,303 1,323,196 157,823 

4 (dataset per 

instrument) 
Point 8,863 0 1,104,249 124,591 

Water 

Samples 
1 Point 681 0 1.7 2 

Glider 
1 (mission) Line 18 16 9,335 518,625 

2 (segment) Line 494 408 13,550 27,429 
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here we chose to create a four-level hierarchy (lifetime, year, month, dataset) with 

discussions under way on whether a fifth is warranted (daily).  

At the other extreme is the water sample collection, with an average of 2 observations 

taken per location and time; we represent this data with a single level, that is, with no 

hierarchy. The same “cast” data is available in two forms: one is the unprocessed, or 

Table 5.3. Extract Process: Current Implementations  

Categories 

Processed 

Data 

Volumes 

Frequency of 

Extract 

Processing 

Attribute 

Characteristics 

Hierarchy (from leaf to 

root) 

Source 

Format 

Cruises; 

AUV; 

glider 

Millions of 

observations 

per cruise; 

months 

between 

cruises. 

As data is 

downloaded 

during or at the 

end of cruise. 

Temporal: weeks 

Geospatial: hundreds of 

miles 

Variables defined by 

equipment taken on each 

cruise 

Individual observations 

converted to each leg of 

cruise (leaves); 

1 linestring per day; 

All days in one cruise, 

convex hull of total 

cruise track (root) 

SQL 

Casts Millions of 

observations 

per cruise; 

months 

between 

cruises. 

During cast 

processing at 

end of cruise. 

Temporal: minutes 

Geospatial: single spatial 

location (x,y), but 

vertical variability (z) 

Variables defined by 

equipment installed per 

cruise 

One level; one tree per 

cast 

SQL 

Fixed 

Stations 

Tens of 

thousands 

every  month, 

for  years 

 

Daily Temporal: taken 

continuously over years 

Geospatial: single 

geospatial location (x,y); 

equipment may have a 

fixed or variable vertical 

location (z) 

Attributes vary over time 

depending on equipment 

currently installed 

One dataset per 

instrument per month 

(leaves);  

All datasets per month; 

All datasets per year; 

Lifetime of station (root) 

NetCDF 

Water 

samples 

Approx. 

1,500 

Weekly Temporal: instantaneous 

Geospatial: fixed x,y,z 

Variables added over 

time: additional tests 

may be run long after 

sample taken, adding 

new attributes 

Samples taken at a single 

(x,y) point are grouped 

together, and are 

simultaneously a leaf and 

root. 

SQL 

External 

fixed 

stations 

[prototype] 

Hundreds of 

observations 

per month 

Monthly Temporal: hours 

Geospatial: fixed x,y 

Variables different for 

each station, and over 

time. 

Each month’s data is 

treated as a dataset (leaf); 

All datasets per year; 

Lifetime of station at 

location (root) 

HTML / 

Text 
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“raw”, collection of observations; in the other, the same data is binned to specific depths 

and averaged into a much smaller collection of measurements. 

Table 5.2 also shows the variation in geometric representation. For cruises, for example, 

we commonly use line segments (specific cruise transects) to represent the most detailed 

level in a hierarchy, but sometimes we use a point to represent a longer period of time 

when the cruise vessel was anchored in a single location. We can easily discern these 

different geometric representations programmatically from the data, but they are difficult 

for a user to identify from the source data without significant effort. For one “cruise” 

(“Forerunner Daily”) that has operated over the course of a decade, we introduced a 

fourth level of hierarchy, demonstrating the flexibility of the adaptive hierarchy. 

Table 5.3 shows the current observation types we process and their characteristics; we 

anticipate adding more variations over time. 

5.2.5 Search Interface Components 

The prototype’s search interface consists of three primary pages: a page with the search 

interface and search results; a variable-details page; and a dataset-details page. These 

pages are described in this section. The pages are implemented using Javascript, JQuery 

and the Google Maps API. Note that search interface design is not the focus of this work. 

Other search-interface designs are possible and may, in fact, be preferable. The goal of 

the current interface was to be usable by the scientists, relatively consistent with the 

current interfaces they use for other tools, easy to develop in the current CMOP 

environment with the available staff, and usable to test the concepts in this research. 
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Figure 5.7 shows the tool’s search interface and the results of a search, with the top few 

matching datasets shown. The search interface combines three interacting elements: a set 

of search-entry fields, a Google map that can be used to specify the geospatial search 

terms and on which the geospatial positions of highly ranked results are shown, and the 

search results list.  

A scientist can search on time, location and depth [91], and on one or more variables [82] 

(the variables currently available in DNH are listed in Appendix B). For each added 

Figure 5.7. User interface for Data Near Here, showing an example search for a geographic region (shown 

as a rectangle on the map) and date range, with temperature data in the range 5:10C. Result datasets (or 

subsets) are shown as points and lines in the map pane, together with their relationship to the search region. 

In the ranked list of answers, no full matches for the search conditions were found; four partial matches to 

a search with time, space and a variable with limits are visible, and more are shown on the map. The 

‘DNH’ button reissues the query with modified query terms centered on the values for this dataset. 
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variable search term, she can select from one of the available variables using a drop-

down box that lists the variables found in CMOP datasets. She can request that the 

variable has values within a specified range, or she can select a variable without 

specifying a range (called an “existence” search). She can limit the results returned to one 

or more categories of data (for example, water samples, stations, or cruises), and she can 

limit the data qualities returned.  

We also implemented a prototype of a categorical distance measure across the main 

quality levels found at CMOP, so that “raw” quality is judged to be further away from 

“verified” quality than “preliminary” is. Not all search terms must be specified; for 

Figure 5.8. Variable details page for “oxygen”  
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example, it is possible to search only on a single variable, or only on time, leaving all 

other search terms unspecified.  

Results are returned within normal interactive response times, that is, within a few 

seconds. Results are in the form of a ranked list with the highest scoring datasets first; 

these datasets also shown on the map. The user can access the data directly from this 

results page via a data download; we provide this capability wherever we can build a link 

to a tool and specify command-line parameters identifying this subset of data. 

While searching for variables, the scientists can request additional data about an 

individual variable by a small link beside the variable search box. Figure 5.8 shows the 

details page for the variable “oxygen”. The table at the top lists the various units, minima 

and maxima, number of datasets (“instances”), and the total number of observations for 

these units. The second, indented table is expanded from a row in the first table (in the 

figure, it is an expansion of the first table’s third row), and gives some specific examples 

of datasets containing oxygen. The “Collection” column gives the dataset description and 

a link to more details for that dataset. 

Such a link leads to a “dataset details” page that shows the dataset metadata. Figure 5.9 

shows a dataset in the “middle” hierarchy level, captured by a mobile device. This page 

can also be accessed directly from the search results in Figure 5.7 via the link in the 

“Collection” column. Global metadata – metadata that applies to the whole dataset – is 

shown in the table at the top left. A map displays the simplified track of the device, as 

calculated from the individual observations.  
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The page also displays each variable in the dataset, its data type and its value range. 

Links allow navigation to a superset of this data (“Click here for this dataset’s parent”), 

and to the individual line segments at a more detailed level (links under “Additional 

information”). In this way, the metadata hierarchy is exposed to the scientist for direct 

browsing. User feedback tells us that this information and the hierarchy exposed thereby 

is in itself useful for the scientists in identifying the most relevant subset of data to 

analyze. 

Figure 5.9. Dataset details page for a middle hierarchy levels of a cruise 
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The set of data this entry describes can be downloaded directly from this page, using the 

“download” link. Where possible, we add a link to a plot for each variable using CMOP’s 

plotting service. The scientist, having identified interesting items in the search results, 

may wish to use visualization techniques [63, 107, 125]  to confirm the relevance; we can 

take a scientist directly to such tools when they can be invoked via a URL. 

5.2.6 Plans and Extensions: Data Access 

We continue to add to the categories of CMOP data that we are processing. Some 

categories of data are “like” existing data, or are similar enough to existing categories 

that we can reuse the same processing routines. For example, while the data from kayak 

missions is obtained and processed in a different way and is stored in a different location, 

it is very similar to the cruise data. Thus, the kayak metadata extractor can be a minor 

modification (to take into account the storage differences) to the cruise extractor. 

We have a working extractor for NOAA satellite data. This data is 2-dimensional dense 

data captured at regular intervals since the 1970s and is pre-processed by NOAA to 

remove cloud cover and other bad values. We read the satellite data values for CMOP’s 

region of interest from the NOAA website and generate “leaf” records for each 

(configurable) geographic “tile”. This tiled data tests the spatial-search approach in 

different ways from the existing, highly geospatially skewed data. We have extended this 

extractor with a configurable hierarchy generator, and use this data in our performance 

testing for the larger volume tests.  
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We are currently building a metadata extractor for simulation-model data. CMOP 

develops detailed simulations of the Columbia River and the coastal shelf of Oregon and 

Washington. Each model run represents multiple simulated environmental variables at 

each of thousands of locations and at multiple depths, as calculated at fifteen minute 

intervals. Each model covers a large physical area, and the data is inherently four-

dimensional in nature. The data is stored in a binary storage format; a typical model run 

is around 20GB in size. There are many different model versions being run over the same 

area and time frame. We subdivide each model run geospatially into a set of “tiles”.  

We also experimented with adding metadata to our catalog that represents data at other 

archives, based on scientist requests. We prototyped extraction from remote sites that are 

using text formats. We read the data from the source location and create metadata 

summaries. We add these summaries to our catalog and they are instantly searchable, 

with no differentiation from our own data. We do not replicate the data; the “data 

download” links point to the source archive and use their data access methods. In our 

prototype implementation of a set of observation stations, this approach worked 

smoothly. We expect to expand this capability, and have a list of requests from the 

scientists for data they would like to search.  

5.2.7 Extensions: Variable and Unit Names 

The move into production focused our attention on a problem with inconsistent variable 

and unit names. The “variables” selection list in the DNH search interface listed 318 

unique variables, all of which are currently in use within the CMOP observational 
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environment. The actual number of distinct environmental variables in the minds of the 

scientists is much smaller. A brief review identified a number of different issues. In one 

example, we saw the use of multiple terms for the same variable: “salt”, “salinity”, 

“salinty” and “water_salinity” are all used for salinity. A similar problem exists where the 

spelling of units (as recorded – correct or not) may be different. Automatic adjustment is 

tricky, even for capitalization variants: “rfu” and “RFU” are the same, but “c” and “C” 

are not. In another example, data collections may use the same term for different 

variables: temperature may variously be equivalent to water_temperature or airtemp, 

depending on the dataset in question. This problem was recently explored by Megler 

[90], but remains an open area for future research. 

5.2.8 Extensions: Moving from Prototype to Product 

As noted earlier, the prototype was developed as a research project, sufficient to test the 

ideas and to operate in production for CMOP’s scientists. We anticipate a number of 

components would need to be redesigned and rewritten to formalize the prototype into a 

product. For example: 

 Currently, the search engine is implemented as a single, monolithic PHP program. 

We expect that rewriting the module in, for example, a compiled language would gain 

some amount of improvement in performance. Greater improvements might be 

achieved by using other approaches, such as segmenting the data into multiple 

databases, processing each segment in parallel and then merging the results.  
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 We currently pivot the variables tables for each SQL query that involves variables. It 

would be more efficient to materialize the result since the catalog is updated less 

frequently than it is queried, or to redesign the data model and related code to avoid 

pivoting altogether. 

 The first scanners we wrote updated the metadata catalog tables directly. More recent 

scanners build catalog entries in shadow tables, then add or replace the relevant rows 

in the catalog tables. We believe this approach should be formalized and extended, 

with a rigorous separation between a “working catalog” and a “production catalog”, 

and a “publish” process (that can be triggered by both manual and automatic actions) 

to move entries from one to the other. 

 We envision the ability for an archive curator to review the metadata currently being 

created for her archive and to configure those scanners via an external interface. The 

curator should be able to request that the archive or any defined subsection be 

rescanned using a new set of configuration options. 

 Methods for more effectively monitoring and tuning the scanning should be added.   

5.3 Architectural Evaluation 

There are numerous methods available for architectural reviews; a survey by Barcelos 

and Travassos [12] lists over twenty. They classify the techniques as questioning-based, 

measuring-technique-based (primarily via simulations), or hybrid methods, and identify 

ATAM as the most popular method of the hybrid architectural-evaluation techniques. A 

survey by Mattsson et al. [89] reviewed 240 articles and identified Architecture Tradeoff 
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Analysis Method (ATAM) [68], developed by Software Engineering Institute at Carnegie 

Mellon University, as the most mature and broadly applicable method. We therefore 

selected ATAM for this evaluation. 

ATAM is intended as a risk-identification method, and thus operates against architectural 

design artifacts rather than against the code itself [68]. ATAM “provides insights into 

how quality goals interact and trade off against each other. It uses both scenario-based 

analysis and theoretical models of each considered quality attribute to evaluate an 

architecture” [12]. The steps of ATAM are shown in Figure 5.10. The output of an 

ATAM is a collection of quality-attribute scenarios, associated risks, and risk themes 

related to the business goals. 

ATAM was updated in a revised method, Analytic Principles and Tools for the 

Improvement of Architectures (APTIA) [69]. APTIA extends ATAM by adding steps for 

selecting which subset of scenarios and business goals the stakeholders wish to focus on, 

and then generating, ranking and selecting from alternatives to the current architecture for 

those scenarios. 

 In our case, we presented the business drivers in Chapter 2 as part of our motivation. We 

describe the current architecture earlier in this chapter. We therefore move directly to step 

2, investigation and analysis. 
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1. Presentation 

 Present the Architecture Tradeoff Analysis Method 

 Present business drivers 

 Present architecture 

2. Investigation and Analysis 

 Identify architectural approaches 

 Generate quality attribute utility tree 

 Analyze architectural approaches 

3. Testing 

 Brainstorm and prioritize scenarios 

 Analyze architectural approaches 

4. Reporting 

 Present results 
Figure 5.10. Steps of ATAM (after Kazman [68]) 

 

5.3.1 Investigation and Analysis 

ATAM and APTIA depend on understanding and being able to analyze the effect of the 

architectural styles or patterns in use in an application. Architectural styles provide a 

shorthand for describing key characteristics of a system design. Attribute-based 

architectural styles (ABAS) [70] explicitly associate a reasoning framework with each 

architectural style, to provide a basis for reasoning about the (qualitative or quantitative) 

characteristics of the system.  

Klein et al. [70] provide a set of sample ABAS, covering many common styles. Their 

Data Indirection style matches our architecture. In this ABAS, coupling is reduced by 

interposing an intermediary – in our case, the metadata catalog – between the producers 

(our metadata extractors) and consumers (the search engine). This architectural style is 

relevant since we anticipate continual change in the producers of metadata, and wish to 

allow for changes on the client side as well. Figure 5.11 shows the data indirection ABAS 

with the component names slightly adapted.  
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In this ABAS, the producers and consumers both know the details of the repository’s 

layout; producers place their data in the repository and consumers retrieve it. In Klein et 

al.’s words, “modifiability is enhanced by reducing the data or control coupling between 

distinct components.” The ABAS places no restrictions on the run-time configuration of 

the components. Modifiability parameters for the architecture are as follows: 

 Topology: star 

 Persistence of data: persistent 

 Client knowledge of data: complete knowledge 

 Activeness of repository: passive [70] 

ATAM then focuses on the notion of quality-attribute characterization. Quality attributes 

are elicited via the definition of scenarios by the stakeholders (which may include the 

system architect). Each quality attribute is characterized by external stimuli, architectural 

decisions, and responses.  

The quality attributes commonly selected for exploration are: performance, modifiability, 

availability and security. Data Near Here is a research project and uses the same 

Figure 5.11. Architecture of the data indirection ABAS, as applied to “Data Near Here” (after Klein [68]) 
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infrastructure as the production CMOP systems, with the addition of a few new 

components that use existing CMOP technologies. The system is subject to the same 

production requirements as CMOP’s other systems (for example, the database schema is 

read-only for all but a few select users, who can access the database only from a known 

range of IP addresses). In the areas of availability and security, no interesting issues were 

addressed by Data Near Here, and thus these quality attributes were not further explored. 

Performance under growth scenarios is known to be constrained by the current 

implementation choices, and is discussed in Chapter 7. Therefore, we focus in this 

evaluation on the attribute of modifiability. 

5.3.2 Testing 

For the modifiability attribute, Kazman et al. state “the external stimuli are change 

requests to the systems software, architectural decisions include encapsulation and 

indirection methods, and the response is measured in terms of the number of affected 

components, connectors and interfaces and the amount of effort in changing these 

affected elements”  [68].  

Change scenarios represent the kind of change requests expected by stakeholders. 

Kazman et al. subdivide change scenarios into growth scenarios (ways in which the 

architecture is expected to accommodate growth and change in the medium term) and 

exploratory scenarios (extreme forms of growth or change, dramatic new requirements) 

[69]. Klein describes five scenarios, or stimuli, to consider for this architectural style, all 

of which we consider to be growth scenarios [70]: 
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1. Adding a new consumer of data 

2. Adding a new producer of an existing data type 

3. Adding a new producer of a new data type 

4. Changing the internal representation of an existing data item 

5. Deleting an existing data type 

Here, we interpret the “data repository” to be our metadata catalog. We interpret a “data 

type” as being a category of data with substantially similar handling characteristics. For 

example, we would consider the following to be data of an existing type: a new type of 

mobile device that produces data in an existing data format (e.g., NetCDF) but where the 

data is stored in a different directory structure and some associated metadata is stored in 

different place type. However, simulation-model data, although stored in the same data 

format (NetCDF), would be considered a different data type, as the data represents a 4-

dimensional grid, and the grid-node locations are stored separately from the individual 

observation values.  

We add three exploratory scenarios to Klein’s list: 

6. Dramatic changes in the contextual metadata associated with datasets. For example, 

allowing contextual metadata to be added by archive curators, which may require or drive 

such changes. 

7. Dramatic increase in number of users. 

8. Increase in the number of catalog entries, by, say, a factor of 100. 

We consider each of these eight scenarios in turn.  
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Scenario 1. Adding a new consumer of data, for example, by adding a new search engine. 

The new consumer accesses the catalog in the same way as the existing search engine. No 

change to other search engines or metadata producers is required. The new consumer 

must be created. Since a search engine performs only read-only access to the database, no 

additional concurrency issues are created as a result. For example, we have created 

multiple versions of the search engine to test different performance characteristics, 

without requiring any modification of the metadata catalog. Since the search engines 

interact with the data repository via SQL calls handled by the PostgreSQL middleware, 

new versions can be deployed instantaneously, limited only by the amount of effort 

required to develop the new search engine.  

Scenario 2. Adding a new producer of an existing data category. As with adding a new 

consumer, adding a new metadata producer requires the creation of a single new 

component with the same constraints as existing producers: that is, detailed knowledge of 

the relevant subset of the repository data model. We require that the data placed in the 

repository is consistent with the then-current data model. We require that each producer 

uses a unique identifier for each catalog entry it adds. In addition, each entry identifies 

the name of the producer that added or maintains it. The internal design of the new 

metadata producer is not mandated by our architecture.  

For example, we were able to add AUV and glider processing into the system by adding a 

single producer, without changes to any existing components. In this case, the additional 

code to handle the new devices was incorporated into the same Python module that 
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handles data collected from continuous-monitoring instruments during science cruises 

because of the similarities in the data being processed. In other cases, additional sources 

are handled with no change to any component: for example, if a new fixed station or 

additional AUV is added to CMOP’s observation network, the existing components will 

include data from the new platform automatically as part of their normal processing.  

Scenario 3. Adding a new producer of a new category. A new component must be 

developed to handle the new data category. The ABAS notes that this scenario generally 

requires changes to the data repository and client. However, in many cases, our system as 

currently designed requires no changes to either. The requirements and constraints for 

adding a new producer of an existing category carry over to this scenario.  

At CMOP, we include the category name in the entry identifier, which helps uniquely 

identify datasets. We assume that a new category will have a name that uniquely 

identifies data of that category. We have been able to add new metadata extractors that 

include external agency buoy-collected (single location, point) data; satellite data from 

NOAA (2-dimensional gridded ocean surface, polygons); and simulation model data (3-

dimensional polygons in a dense grid) without changing the existing system, catalog or 

other producers in any way. Adding new variable names does not require any changes to 

the existing schema, as a result of the current data model. Also, the current search 

processor and search interface will incorporate new variables without change. 

Scenario 4. Changing the internal representation of an existing data item. In the case 

where the data being changed is of a single category and the change is to another 
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category that fits within the existing data model, only the producer(s) of that data must be 

changed. For example, if a field in a data source was previously processed as a text field 

and is re-interpreted as a numeric field (as a result of better understanding the source 

data), the data source can be reprocessed but the results will still fit into the existing data 

model.  

If the data structure itself is changed, it may be possible to create a database view that 

hides the effect, in which case producers and consumers may remain unaffected. If it is 

not possible to create such a view, this change may affect all producers and all 

consumers.  

Scenario 5. Deleting an existing category. If a category is simply not being produced (or 

updated) any longer, entries remaining in the repository can still be accessed by 

consumers. If a category is removed from the repository, then entries of that category will 

no longer be returned by the search engine. No changes are required to the clients or to 

other producers. 

Scenario 6. Dramatic changes in the contextual metadata associated with datasets; for 

example, changes caused by allowing contextual metadata to be added by archive 

curators. DNH exposes most of the contextual metadata associated with datasets to the 

user, and the user can search on those metadata fields. The search interface assumes 

certain metadata fields have “more meaning” than others; for example, some fields are 

chosen to be represented in the dataset snippets in the search results, and in the top 

section of the dataset details pages. In addition, we currently reflect this differentiation in 
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the data model (by the split between fields in the “files” table and those only represented 

in the “variables” tables), thus the search engine and the metadata producers are 

knowledgeable about these fields.  

For an archive curator to add contextual metadata (for example: archive-level or 

collection-level information, such as the group responsible for a set of datasets), we must 

add new capabilities to the metadata-creation component. These capabilities include: an 

interface through which the archive curators can review, add and manage the metadata 

representing their archive; the capability to configure the individual scanners (for 

example, by specifying which scanner should be used for which subset of their archive, 

or what rules to use in interpreting the dataset contents); and the ability to specify an 

external function that can add appropriate facts to each dataset summary. The existing 

scanners and any new scanners written must have a clear separation between inherent and 

contextual metadata. It is likely that the added metadata would require changes to the 

schema, and possibly also to the search engine if the contextual metadata is to be 

searchable and a schema change has occurred.    

Thus, a dramatic change in contextual metadata will affect all components in the 

architecture.  

Scenario 7. Dramatic increase in number of users. The users interact only with the search 

interface, which runs in a browser window. The search interface issues calls to the search 

engine running under Apache, which in turn calls the database. As searching only reads 

the catalog, no concurrent-access issues exist except while the metadata catalog is being 
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updated by the metadata-creation process. The metadata creation process does not 

change. 

As users increase beyond the ability of a single Apache instance and single database 

instance to handle the load, alternate physical implementations must be explored. For 

example, it is possible to set up multiple servers to run the search engine and split the 

user load amongst them using an IP sprayer. If the database engine becomes overloaded 

and slows down, we can replicate the database instance. Copies of the search engine 

running under different Apache instances can be configured to direct their requests to 

different database instances. A mechanism to keep the data synchronized must then be 

implemented. However, the synchronization mechanism used could be fairly weak; as 

long as the same client IP is directed to the same database instance, it will see a consistent 

picture of the catalog contents.  

The point at which this limit is reached depends partly on the hardware the system is 

running on. Apache/PHP and PostgreSQL each use one core during the transaction; 

increasing the number of cores on the server(s) increases the number of simultaneous 

searches that can be handled (assuming sufficient memory). 

Scenario 8. Increase catalog entries by a factor of 100. This scenario has the potential to 

affect all components in the architecture, in different ways.  

Metadata Producers: We can increase the number of metadata producers as needed to 

handle the additional load. Metadata producers generally perform two functions:   
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 Scanning or re-scanning historical data, which they may perform when the data is 

first loaded or has been regenerated.  

 Scanning incrementally to capture changes since the previous scan.   

If the historical data increases by a large factor (for example, a large archive of historical 

data is being scanned for the first time), it may be appropriate to run a set of scanners, 

each scanning a subset of the archive. At CMOP, we can specify a set or subset of data to 

scan for each scanner we have written so far; for example, we can specify a list of 

directories or cruises.  

If the volume of data added by each additional scan is such that running a single scanner 

is impractical (for example, each run is deemed to take an unacceptably long time), 

multiple scans can be run, each focusing on a subset of the data.  

Metadata Catalog: The catalog is currently stored in PostgreSQL. Assuming the current 

table sizes and hierarchy approaches, an increase in a factor of 100 gives a files table of 

around 3 million rows and variables tables of around 30 million rows. While PostgreSQL 

can manage these table sizes, the indexes will no longer fit into the server’s available 

memory and SQL query response times will increase substantially, affecting user 

response times. Thus, the table should be partitioned prior to reaching that size and the 

application split over multiple servers. Some of these changes would require changes to 

the search engines to consolidate results from multiple repositories.  

We performed tests, described in Chapter 7, that show that a files table with 1 million 

rows gives adequate performance for a subset of searches tested. Searches that include 
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variables will require a different data design due to the cost of pivoting the variables 

table. The change in data model could be handled by adding a data-restructuring step. 

The change in the data model may also force changes in the metadata producers. 

Search Engine: The search engine is currently implemented as a single, monolithic PHP 

module. We can modify the existing code to handle some level of increase in the 

underlying data through the addition of filters and relaxation, as described in Chapter 7. 

However, if a large set of rows is returned from the database, the response times may 

extend beyond what the searcher is willing to tolerate. It is also possible to exhaust the 

main memory available to the search engine, causing the engine to crash. A major 

redesign of the search engine will be required to keep search response times acceptable. 

The Search Interface will not change as a result of the increase in number of catalog 

entries. However, as the number of variables increases (for example, if the added catalog 

entries contain many different variables), the search interface may require redesign to 

make the desired variable easier to locate or identify.    

5.3.3 Results Summary  

In analyzing this ABAS, we wished to understand how changes to producers, consumers 

or the repository ripple through the system. As one would expect with this ABAS, 

changes to the data repository will ripple through both consumers and producers; 

however, even here, the design allows for a significant amount of variability in the inputs 

without requiring any change beyond the component directly handling that input.  
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Klein et al. point out that the architectural parameter with the greatest impact on the Data 

Indirection ABAS is the client’s level of knowledge of the data schema [70]. Since we 

are using SQL to access the data, the client’s level of knowledge is only partial; 

underlying details of the exact data model can be (and are) hidden by views, and 

knowledge of the physical storage is handled by PostgreSQL.  

For the majority of change scenarios, our analysis indicates that the resulting changes to 

the prototype are isolated to a single component, and our experience in making such 

changes supports the analysis. The greatest challenges to the architecture come from the 

three exploratory scenarios. We can handle a dramatic increase in the number of users 

(Scenario 7) via methods external to the prototype code. However, Scenario 8 (increasing 

catalog entries by a factor of 100) requires a major redesign of the search engine and the 

data model or addition of steps to the metadata-creation process.  

Likewise, Scenario 6 (Dramatic changes in the contextual metadata associated with 

datasets; for example, allowing external metadata to be added by archive curators) will 

drive changes to the majority of the components. For this scenario, it is likely that 

moving to an Abstract Data Repository ABAS, a refinement of the Data Indirection 

ABAS [70], would be appropriate. This sub-ABAS protects data producers and 

consumers from changes to the underlying data repository by abstracting the interface to 

the repository. In addition, formalizing the process for archive curators to manage the 

entries for their archives will drive additional requirements for the metadata creation 

process, and will likely require additional components.  
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This analysis leads us to conclude that the chosen architecture is a good fit for the 

existing and expected needs for Data Near Here operating over CMOP’s archive, and 

other archives of similar size and nature. The three exploratory scenarios create 

challenges for the existing architecture; research discussed elsewhere (specifically, 

performance research in Chapter 7, variable diversity discussed in Megler [90], and 

external metadata discussed in Chapter 8) begins to address the challenges identified.   
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6 User Evaluation 

Based on our experience, we assert that the IR concept of relevance, IR similarity 

measures and IR evaluations are all applicable to ranked retrieval of scientific datasets. 

Without such a concept, the usefulness of a scientific archive declines as the archive 

grows beyond the ability of an individual scientist to find data relevant to his research 

interests in it, and the marginal benefit of new or added data declines. In Section 6.1 we 

give some background on the concept of relevance in Information Retrieval. 

As noted in Chapter 2, any proposed set of features and similarity measure must resonate 

with potential searchers; that is, we must validate that the similarity measure embodies a 

notion of relevance that resonates with users, and that the proposed search system has 

utility.  

We therefore performed two user studies. In Section 6.2, we demonstrate with our first 

user study that the concepts of “dataset relevance” and “dataset similarity” are 

meaningful, implying that Information-Retrieval-style ranked search over scientific data 

is reasonable. This first study, a paper-based questionnaire, explored the concept of 

dataset similarity as described in Chapter 4 for temporal, spatial, and joint temporal-

spatial conditions, as these features are critical in many areas of scientific research. 

In Section 6.3, we present the second user study, which took the form of an operational 

test of the search tool described in Chapter 5, operating over CMOP’s observational 

archive. We describe related work in Section 6.4 and discuss the results of the studies in 

Section 6.5. 
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6.1 Measuring Relevance 

The notion of varying levels of relevance to an information need for different items 

allows those items to be ranked based on those levels. In Information Retrieval systems, 

we approximate those levels via a similarity measure of each item to the search, and rank 

returned items based on the scores produced by that similarity measure. Information 

Retrieval has a well-developed practice of measuring utility of IR systems by comparing 

user relevance judgments to system-returned document rankings. If our hypothesis that 

scientific data search is an IR problem holds, then the suitability of IR measures to the 

resulting approaches should also hold. 

One classically evaluates a system that retrieves text documents or web pages by 

measuring the precision and recall of the system [83].  

Precision measures the relationship of “true positives” to “true + false positives.” Our 

approach may return false positives; an example of the potential for false positives is 

shown in Figure 4.8 in Section 4.2.4. If the search were for data from April 2010, the 

summary metadata record is a match (with a low score) for the lifetime record because 

April is within the metadata record’s range, even though no actual data for April was 

recorded. However, datasets such as May and June 2010 would be given much higher 

scores. The overall precision, therefore, is driven partly by the size of data gaps tolerated 

during metadata creation and hierarchy generation, which can be tuned during the 

curation process. In a geospatial example, we may judge a bounding box for a cruise to 

be relevant even if the cruise track itself did not pass close to the section of the bounding 
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box closest to the search. The size of the bounding box would likely cause the entry to be 

given a low score; individual legs of the cruise may receive higher scores than this entry. 

As noted by Moffat and Zobel, the widely accepted measure of mean average precision 

and its variants have weaknesses when the number of relevant documents is not known, 

when multiple queries with different result sizes are grouped, and in the presence of 

uncertainty in returned results [97]. All of these conditions apply to our study.  

Recall measures the proportion of relevant items that are returned by the system. It is 

calculated: the ratio of “true positives” to “true positives + false negatives.” A “false 

negative” is an item that the system believes is not relevant but the person with the 

information need judges it as relevant. There has been significant debate about the 

appropriateness of recall as a measure of IR systems [97, 115, 116]. 

To accurately measure precision and recall requires that a person individually judges the 

relevance of every item to a specific information need. We could then compare the 

judgments to the relevance as scored by the system. For larger catalogs such as that used 

in our second study, individually judging every item is not practical. Collections such as 

TREC and INEX reduce the effort of relevance judgment by assuming documents not 

retrieved by any system in their test are not relevant, thus restricting relevance judgments 

to documents already judged relevant [32, 139]. TREC’s multiple contributing systems 

increase the certainty that any possibly relevant document is included, and lends validity 

to the assumption that all unjudged documents are true negatives. Researchers have 

shown that relevance judgments are inconsistent across judges; these inconsistencies are 
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generally avoided by assigning a single judge for each document [54, 115, 116]. Thus, 

measures of precision and recall for larger collections are always to some extent or 

another estimates.  

6.2 User Study 1: Testing the Similarity Measure 

Our first user study was designed to test the feasibility of ranked retrieval of scientific 

datasets, using the similarity approach described in Chapter 4. The initial study focused 

only on the geospatial and temporal characteristics of observational datasets, two features 

that are critical for our scientists. In this study, we wished to test a number of hypotheses 

about our approach:  

 Searchers can relate to a brief summary of a dataset, similar to a webpage snippet 

used in web search. 

 There is general agreement about what is considered “closer” across collections of 

data, at least with respect to time and space, and we can approximate this distance (or 

similarity) in a simple way. 

 Searchers accept joint comparisons of space and time. 

 Relative distance is more difficult for users to judge consistently for items at similar 

distances to the target. 

 Geospatially, “closer” makes sense across geometry types, such as points, lines and 

polygons. 
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 Scientists and non-domain experts, in general, have similar views on what constitutes 

“closer”; if so, then the proposed approaches and methods are likely generalizable 

beyond the scientific community. 

 Our candidate distance measure sufficiently captures searchers’ intuitive notion of 

distance.   

6.2.1 Methods 

Two populations, each of size 20, of scientists and non-domain experts, were asked (with 

Human Subject Research Review Committee approval) to respond to a paper 

questionnaire. The scientists consisted of CMOP professors, post-docs and graduate 

students; these scientists study spatial and temporal distributions of phenomena or 

populations. The non-domain experts included professors, graduate students and college-

educated professionals, primarily in the field of Information Technology. While 

accustomed to analytical and problem-solving activities, they do not generally search for 

large scientific, spatial or temporal datasets.  

Drawing on psychophysical ordinal-scaling techniques used in cognitive-distance 

research [100], the questionnaire contained 60 pair-wise comparisons. Each comparison 

was between a graphical representation of a search and two datasets represented 

graphically. Respondents were instructed that, given no other information, they should 

presume the dataset’s contents were spread equally across the entire spatial and temporal 

“footprint.” (Such a uniformity assumption is common in dealing with data summaries, 

such as in database optimization [84].) Respondents were asked which (if either) of the 
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two datasets (marked A and B) was closer to the search, or whether they considered the 

two datasets to be equidistant. The questionnaire included comparisons of just the time 

feature, just space, and combined space and time features; the sizes of the query area and 

their relative areas were also varied. Some datasets overlapped the search area. The 

spatial representations included points, lines and polygons; like and unlike shapes were 

compared. Figure 6.1 shows four examples of the spatial comparisons. We also 

calculated the result of applying our candidate distance measure (as described in Section 

4.1) to the questions, and compared the responses generated by this procedure to the 

respondents’ responses. 

6.2.2 Results 

Figure 6.2 plots, for the spatial components only, the change in respondent agreement 

against increasing distance between the geometries compared. Two levels of agreement 

     a.                       b. 
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Figure 6.1. Four examples of spatial dataset summary comparisons. The circle marks the area of interest 

(search). A and B represent the two-dimensional spatial extent of two datasets to be compared to the search 

circle marked X.  
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are plotted: the percent of respondents who agreed with the candidate distance measure’s 

assessment of which alternative is closer, as well as that agreement plus the percentage 

who judged the two options equidistant (“non-disagreement”). While respondents had the 

option of judging the alternatives equidistant, our distance measure almost always 

calculates that one is closer, although the difference may be very small. The graph 

demonstrates that as the difference in distance from the search center to the two shapes 

becomes small (less than around one-third of the search “radius”), the respondents’ level 

of agreement become inconsistent. In fact, in this range, the respondents often disagree 

with each other (data not shown), not just with the distance measure. Certain complex 

configurations or shapes (for example, complex multi-segment lines) increase respondent 

variability. Plots of time-only and of time-and-space comparisons (not shown) are almost 

identical to Figure 6.2, despite the difference in search type (time versus space versus 

Figure 6.2. Level of respondent agreement with the distance function, plotted against the difference in 

distance of two spatial-only choices (scaled by search radius). 
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space plus time), shapes, and dimensionality (one dimension for time only, two for space 

only, or three for space plus time).  

Visual inspection of respondent agreement across graphs (such as that shown in Figure 

6.2) of difference in scaled distance between each choice and the search (by the proposed 

distance measure) revealed a consistent pattern, with strong shifts at approximately .35 

and 1 radii difference. In order to statistically test this pattern, we separated the questions 

into three groups: difference < 0.35, difference > 1, and those between.  

We used an ANOVA to test for the variation in agreement with the distance measure 

amongst the three groups. The ANOVA showed the proportion of “equidistant” responses 

differed significantly among the three groups, F(2, 56) = 20.45, p<<0.001, with the 

variability within the “> 1” group being smaller than in the “< 0.35” group, as expected. 

In addition, the proportions of inter-respondent agreement with the proposed distance 

measure differed significantly across the three groups, F(2, 56) = 30.93, p<<0.001, with 

the level of agreement increasing as the difference in distances increases, as expected. 

We present this data in a different way in Figure 6.3, which plots for each question the 

percent of the population that chose the same option.  The horizontal axis represents the 

percent of respondents who agreed with the distance measure, while the vertical axis 

represents the highest percentage of inter-respondent agreement out of the three options. 

For example, the left-most point represents a question for which 75% of respondents 

agreed with each other, but only 5% agreed with the candidate distance measure. Figure 

6.1d illustrates this case, where most respondents chose A as being closer to the search 
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while the proposed distance measure selected B. Points within 0.30 radii of the same 

distance from the search center (representing the inconsistency seen in Figure 6.2) are 

removed from Figure 6.3. The remaining scattering of points in the top left represent 

differences of less than 0.35 (according to our distance measure); with greater 

differences, we see a high level of agreement amongst most respondents and the distance 

measure. The lower section, below 33%, is empty since the maximum possible level of 

disagreement amongst the respondents is when 1/3 of them choose each option.    

The study found only one statistically significant difference between the two populations: 

scientists had a larger standard deviation in their responses to time comparisons. This 

difference can be explained by scientists’ comments that they considered additional 

factors, such as seasonality, in their assessments of temporal relationships; for example, 

some regarded September 2002 as “closer” to September 2003 than to July 2002, for 

certain research questions.  

Figure 6.3. Percent agreement with distance measure  
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6.2.3 Discussion 

There were no questions, comments or objections from respondents in either study 

population with respect to representing dataset contents graphically or as a dataset 

“footprint”, or with the concepts of dataset closeness to a search or ranking datasets by 

distance from a search.  

From this preliminary study, it appears that our candidate distance measure approximates 

user expectations of which dataset is judged “nearer” when the difference between them 

is greater than approximately one-third of the search radius. The consistency in relative 

ordering agrees with findings in spatial cognition literature [100]. We do not consider the 

inconsistency seen for nearly equidistant datasets a major issue for our measure; such 

datasets are likely to appear close to each other in a results list. Note also that we cannot 

be more consistent with our user population than our user population is with itself (that is, 

if one third of the users respond with each of the three possible responses – A, B, and 

equidistant – how do we describe the relative distance of A and B from X?). Many 

respondents commented on the difficulty in providing what they felt would be consistent 

judgments across the different questions; despite this concern, the results we received 

were remarkably consistent outside of the expected ambiguous cases. While the study 

focused on expected confounding cases and asked few questions comparing choices with 

widely different distances, the results are statistically significant, supporting the utility of 

the candidate distance function as a similarity measure.  
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Opportunities for improvement in the candidate measure exist where the level of overall 

respondent agreement with the measure is low. Users appeared to weight the dataset edge 

closest to the search more heavily than the centroid; it appears that adjusting the distance 

measure to match that weighting could further improve formula-respondent agreement. 

The optimal weighting could not be determined from this user study; in our second user 

study, we test a few variations. Identifying optimal weighting remains an opportunity for 

further research. Other methods of estimating similarity, such as weighting by the data 

contents (such as by using histograms to compare data distributions), may also be 

applicable. In all cases, however, the accuracy of any formula in replicating respondent 

judgments is limited by the amount of agreement amongst the respondents themselves; 

where the respondents’ responses are highly diverse, the formula can at best replicate the 

most popular response. 

Of our study hypotheses, we conclude that there is general agreement about what is 

considered “closer” to a search with respect to time and space, and that we can 

approximate this distance in a simple way. We substantiated that “closer” applies across 

geometry types, such as points, lines and polygons. We confirmed that respondents 

understand joint comparisons of space and time, and that relative distance is viewed fairly 

consistently by respondents when the items to be judged are placed at distinct distances to 

the target search. Our respondents appeared to adjust for the relative sizes of the time and 

space query portions in their judgments, as does our candidate measure. It appears that 

respondents can relate to a footprint of a dataset.  
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We conclude scientists and non-domain experts in general have similar views on what 

constitutes “closer”, which provides potential to extend this approach to users beyond the 

core scientific community. 

The results of the user study support the hypothesis that a ranking approach based on the 

concept of dataset distance is feasible. We judged that these results were sufficiently 

consistent and the candidate distance measure was a sufficiently good approximation to 

justify implementing these concepts in a prototype search system for further testing. 

6.3 User Study 2: Fidelity  

The results of the first user study support the hypothesis that a ranking approach based on 

the concept of dataset distance is feasible.  

We performed a second user study using an implementation of this approach in the tool 

“Data Near Here” to explore two questions. First, is the search tool a useful one? Second, 

does the scoring and ranking method proposed and implemented provide a good – or 

“good enough” – approximation of user views of comparative relevance? In the following 

sections we describe the methods used (Section 6.3.1) and our results (Section 6.3.2).  

To address the first question, we asked respondents (described below) questions 

regarding the overall performance of the system in responding to their information needs, 

separate from rating dataset relevance. Sanderson reviews studies that show that little 

agreement exists between IR measures and user satisfaction [114]. Su found that value of 

search results was more highly correlated with search success than precision [126]. Su’s 

test population was similar to ours (Ph.D. students and faculty members in scientific 
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disciplines); if the precision reported by our study was high but user satisfaction low, or 

vice versa, those results would influence our future research. 

To address the second question, we asked respondents to rank the relevance of individual 

datasets returned in response to a search; these rankings are used to evaluate and compare 

the performance of search engines. While relevance judgments are known to be 

inconsistent across judges, a less frequently discussed concern is the gap between the 

person with the actual information need and the relevance ratings made by assessors for 

specific documents. The need as interpreted by the assessor may be different from that 

intended by the person who originally framed the description of the need for use in the 

study; this gap would obviously influence the relevance judgments made. We address this 

concern by asking each study respondent to use one of his own information needs as the 

source for his searches, and asked him to judge the relevance of the returned items for his 

own searches. While we might lose some theoretical repeatability (although it does not 

appear that repeatability has been proven in text retrieval [116, 123]), we gain insight into 

the applicability of the approach and implementation with this rating scheme.  

6.3.1 Methods 

Our second study followed a common IR approach, adapted appropriately for datasets. 

With Human Subject Research Review Committee approval, the study used a 

convenience sample of 12 scientists. These scientists were professors, post-docs and 

graduate-level students, all intended future users of the tool at CMOP and existing users 

of CMOP’s data archive. None of the scientists had previously used the tool.  
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We used as our test collection the catalog of datasets constructed from CMOP’s 

observational archive, as described in Chapters 4 and 5; thus the test collection was 

identical to the system’s production catalog. We asked that the searches be of certain 

forms (see below). Table 6.1 summarizes the major types of data within the collection, 

the count of catalog entries and observations they represent, and the geometries used to 

summarize each type of data.  

The search tool’s search interface was modified for the user study by adding features to 

administer survey and rating questions and capture the responses. The results page was 

modified to return exactly the top 100 results, if necessary including results judged by the 

system to have low relevance. The searches and survey responses were captured using 

Google Analytics. No data was captured that linked a respondent to his or her responses 

or searches.  

The study procedure is summarized in Figure 6.4. Each respondent was given a ten-

minute tour of tool operations; the same information was provided as an appendix to the 

survey instrument. The instructions then asked her to think of a recent information need 

for data supporting her research, and to perform three or more searches. In order to 

Table 6.1. Count of Test Collection Catalog Entries, Represented Observations and Geometry 

Observation Class Geometry 

Count of 

Entries 

Total 

Observations 

Stationary platform Point 14,648 744,174,016 

Stationary, variable depth Point 6,677 42,850,403 

Mobile, fixed depth Point, line, polygon 7,938 3,922,736 

Mobile, variable depth Point, line, polygon 1,161 6,982,008 

Totals  30,424 797,929,163 
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collect a range of searches we asked for (at least) three different combinations of 

conditions: one search using only one or more of location, time and (if desired) elevation 

constraints; a second search adding a variable-existence condition; and the third search 

adding constraints on the values of the variable (minimum and maximum values, in some 

units). In order to capture searches representative of real operations, no restrictions were 

specified on the kind of information need, locations, times, or variables to be used. The 

respondent was asked to review the results returned for the search.  

To measure tool utility, we asked five questions for each search, shown in Table 6.2. Our 

questions were adapted from Su [126] and represent the major categories of search 

success (Question 1), utility (Questions 2, 4 and 5), efficiency (Questions 4 and 5), and 

user satisfaction (Question 3). The answers were rated on a 7-point Likert scale, with 7 = 

excellent and 1 = not at all.  

After the scientist answered the five questions, we presented her with a subset of 25 of 

the 100 results. We include in the list of 25 the top 10 results returned, the lowest three in 

the list, and 12 randomly chosen items. These items were chosen to ensure that we could  

1. Respondent is given a brief overview of tool usage, and is given the opportunity to familiarize 

himself with the tool, if desired. 

2. Respondent considers a recent information need. Respondent formulates the need as a set of 3 or 

more searches. The set should contain at least one of each of the following types of search: a spatial 

or temporal search (or both); a variable-existence search; a search containing variable limits. 

3. For each search: 

a. Respondent enters search conditions.  

b. System retrieves and presents a ranked list of 100 items. Respondent briefly reviews results, 

then proceeds to “survey” step. 

c. System presents the 5 qualitative questions. Respondent rates questions using Likert scale. 

d. Systems presents 25 datasets selected from the results, in random order. Respondent rates each 

dataset on a 4-point Likert scale from “not relevant” to “relevant”. 

Figure 6.4. Second user-study process 
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report traditional “at ten” IR precision measures; they also ensured variety in the items 

presented for rating, in the absence of a large collection of pre-existing ratings. We 

removed the dataset score and position on the original list, ordered the 25 items 

randomly, and renumbered the items. We asked the scientist to rate the relevance of each 

result to her search. We used a four-point scale (3 = high relevance, 0 = no relevance ) 

adapted from Sormunen [123]. Our focus was on the search behavior, as the archive is 

already known to fulfill only a subset of scientist information needs. Our analog to topic 

relevance is the applicability of the dataset’s contents to the searcher’s search. Our 

Table 6.2. Responses to User Satisfaction Questions and Comparison of High vs. Low Scores:  

All Searches and by Type (NM = Not Meaningful) 

Median [Interquartile Range]  

 High versus Low Scores: z-score 

(probability) All (n=30) 

Space + 

Time (n=8) 

Variable 

Existence 

(n=13) 

Variable 

with Limits 

(n=9) 

1. How successful was this search in 

helping with your information need? 

[success] 

6.5 [0.5] 6.5 [0.5] 7 [1] 6 [2] 

2.79 (<0.01) NM 2.05 ( 0.03) 1.04 (0.16) 

2. How well does this style of query allow 

you to express your information need? 

[qryexpr] 

6 [1.0] 6 [0.25] 6 [0] 6 [1] 

3.74 (<0.01) NM NM 1.84 (0.05) 

3. How confident are you in the 

completeness of search results? 

[confcomp] 

6.5 [2.5] 6 [1.25] 7 [3] 6 [4] 

2.02 (0.03) NM 1.40 (0.09) 0.61 (0.28) 

4. Was using this tool quicker than finding 

the most relevant results by other means? 

[quicker] 

6.5 [0.5] 6.5 [0.75] 7 [1] 6 [0] 

NM NM NM NM 

5. How valuable are the search results 

versus time expended? [time/effort] 

7 [1.0] 7 [1.25] 7 [1] 7 [1] 

2.98 (<0.01) NM 1.78 (0.05) NM 
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chosen analog of Sormunen’s “degree of topical relevance (the extent to which the text 

discusses the topic)” is the proportion of a dataset’s contents that the user believes is 

directly relevant to the search. These choices allow independence of relevance from 

dataset size while providing the same intent as topic coverage; a small dataset of highly 

relevant observations may be more useful than a large dataset with few relevant 

observations.  

6.3.2 Results 

The 12 scientists returned 35 responses during the study period. Of these, five were tests 

submitted with no ratings, leaving 30 responses usable for dataset ratings. We report 

results separately for the qualitative questions and for the ratings results. 

6.3.2.1 Results for Qualitative Questions 

In order to better understand differences between the different types of searches we 

present the overall results, then break out the searches by type: geospatial-temporal only, 

searches with variable existence, and lastly searches with limits on variables. Figure 6.5 

shows the results graphically; Table 6.2 presents the median and interquartile range for 

each question, for all searches and by search type; Figure 6.5 shows the range, median 

and outliers graphically. The median for each question is 6 (very good) or better. With 

the exception of Question 3, “confidence in completeness”, answers were clustered fairly 

closely about the mean. 

To assess the overall utility of the tool, we compared the proportion of high scores (> 4) 

to low scores (< 4) for each question, using a two-sample test for the differences in 
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proportions. Results are shown in Table 6.2. The high-satisfaction responses to the 

overall-success question were statistically significant in all cases. Separating out by 

search type, the geospatial-temporal and variable-existence searches had statistically 

meaningful high responses. We could not calculate the z-statistic for a number of the 

search subsets or for the “quicker” question as there were no low scores in the responses 

for these sets (shown as “NM”, not meaningful). In all combinations but three, the high 

satisfaction responses were statistically meaningful. The exceptions are all in the 

variable-with-limits searches. For these questions, the median response was highly 

positive, but the variance high. Responses for overall search success were highly 

correlated with the other responses (Pearson’s r for correlation of overall search success 

with search expression, 0.72; with confidence in completeness, 0.85; with quicker, 0.98; 

with time versus effort 0.95; n = 30, p<0.0001 in all cases). 

6.3.2.2 Ratings Results 

Of the 30 usable responses, two judged relevance for three or fewer datasets. These two 

responses were excluded from the search-level analysis, leaving 28 usable searches with 

associated dataset judgments. The mean number of judgments for these remaining 

searches was 24.5, as a few datasets were not rated. 

For eight searches, all four values (0-3) were assigned to datasets; an additional seven 

searches assigned three values, and six searches assigned only two values. In seven 

searches all datasets were given the same rating. In six of these cases, all datasets were 

rated as highly relevant; five of these six were variable-existence searches. In one case, 
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all were rated as not relevant. Not surprisingly, the searches with “highly relevant” (value 

of 3) assigned to all datasets were associated with high satisfaction measures, whereas the 

sole search with “not relevant” (value of 0) assigned to all datasets was associated with 

the lowest satisfaction measures in the study. Even for this search, however, the 

“quicker” and “query expression” scores were high, signifying that even when no 

relevant data is found, the fact that this situation can be ascertained quickly is likely to be 

of value. This experience is consistent with Su’s findings [126].  

As our relevance data is similar to that collected for IR studies such as TREC and INEX, 

we believe using IR metrics is justified.  

Figure 6.5. Summary results for user-satisfaction survey questions. The questions are shown in Table 6.2. 
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In Table 6.3 we report precision measured at rank 10 (P@10) and mean reciprocal rank 

(MRR). Precision at rank 10 gives a measure of the number of relevant documents found 

in the top ten returned; MRR measures the average position of the first relevant document 

found [139]. We include in these measures all datasets judged to have any relevance; this 

choice is in line with the threshold of relevance used in binary evaluations [139]. We 

report measures for all relevance levels together (P@10, MRR). Overall mean precision 

at rank 10 was 0.96. Overall MRR was 0.95, and was 1.0 for two search types. In one 

variable-existence search all datasets were found to be not relevant; no dataset from any 

other top 10 was rated not relevant.  

We also report separately precision and MRR for the combination of the “medium” (2) 

and “high” (3) relevance ratings (denoted as 2+3@10 and MRR2+3); likewise, we report 

separately precision at 10 and MRR for the “highly relevant” (3) ratings only (denoted as 

3@10 and MRR3). As before, we report these measures for the full set of searches, then 

for each search type separately. Even excluding low-relevance datasets, precision at rank 

ten and MRR remain respectable, but highlight areas for possible exploration and 

improvement. Analysis of ratings below position 10 is presented below. 

Table 6.3. Precision and Mean Reciprocal Rank (MRR) by Query Type and Relevance Judgment 

 All (n=28) 

Space/Time 

(n=8) 

Variable 

Existence 

(n=12) 

Variable with Limits 

(n=8) 

P@10 0.96 1.00 0.91 1.00 

2+3@10 0.82 0.96 0.74 0.81 

3@10 0.55 0.69 0.58 0.38 

MRR 0.95 1.00 0.88 1.00 

MRR2+3 0.86 0.92 0.78 0.92 

MRR3  0.72 0.76 0.73 0.67 

 



 

175 

Recall is defined as the fraction of relevant items retrieved, and relies on knowing the 

total number of items relevant to the search in the archive. In our study, each respondent 

developed their own searches; with an archive of around 30,400 items and no constraints 

on a user’s searches, it was not practical to identify all relevant items to each search in 

order to calculate recall. Collections such as TREC and INEX reduce the effort of 

relevance judgment by assuming documents not retrieved by any system in their test are 

not relevant, thus overstating recall [32, 139]. In the absence of multiple systems to 

provide alternate sets of documents, we approximate this approach by including items 

originally ranked 98-100 in the returned list, below the presumed attention span of the 

user, in the relevance-judgment subset. In Figure 6.6 we compare the ratings given to top 

10 ranked datasets versus “bottom 3” ranked datasets (positions 98-100). The percentage 

of top 10 datasets rated as “highly relevant” is significantly higher than the percentage of 

“highly relevant” in the bottom 3 (z = 4.63, p<<0.001), despite several searches where all 

items received the same rating; thus, we posit that few false negatives exist and that 

recall, while not directly quantifiable, is likely to be high. 

Figure 6.6. Proportion of datasets by rating 
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Taking all judged-relevant top 10 datasets as the true positives and all judged-relevant 

bottom-3 datasets as false negatives, we calculate an estimated recall figure of 0.821. 

However, even datasets in the bottom 3 may be true positives; for example, in the six 

searches in our study where all datasets were rated as having some (same) level of 

relevance. Thus, this recall figure probably understates the actual recall of our system. 

6.3.2.3 Dataset-Level Results 

A total of 685 datasets was rated. Of these, 351 (51%) were rated as highly relevant; 147 

(21%) were rated medium; 118 (17%) were rated low, and 69 (10%) were rated as not 

relevant. Of the 685 datasets rated, 90 were rated more than once, with 26 of these rated 

three times.  Of the datasets rated more than once, 53 received the same rating each time, 

while 37 received different ratings. In each of the 53 same-rating cases, the ratings came 

from the same respondent in the same search set; for example, a respondent rated a 

dataset as highly relevant for a location and time-based search, then added a variable to 

the search conditions and found the same dataset highly relevant when it was returned for 

the modified search. Eight datasets of the 37 were rated from “highly relevant” to “not 

relevant” across a set of searches; in each case, the different ratings came from a different 

search set (hence a different respondent). The original position in the returned list for any 

single dataset varied from 3 to 97 due to the differences in the search for which it was 

returned. 

We saw no significant difference in the proportion of different ratings of datasets 

representing different geometries types (as listed in Table 6.1), that is, datasets 
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represented by points versus lines or polygons. Nor did we see significant differences in 

user responses between datasets from the lowest level of the hierarchy versus datasets 

from higher in a hierarchy. We conclude that summarizing diverse geographic locations 

by a geometry and representing subsets as though they were individual datasets 

themselves is well-accepted by our users.    

We further explored rankings within each search and potential variations of our scoring 

formula.  

We used two methods to explore rankings within each search. First, we applied a 

compressed version of Discounted Cumulative Gain (DCG) [67]. We have relevance 

judgments for rank positions one through 10, but we only have relevance judgments for 

15 of the datasets in rank positions 11 through 100. Therefore, we condensed the results 

and treat the judged datasets as though they had been returned in positions 1 through 25, 

omitting the non-judged datasets. We compare the order of datasets returned with an ideal 

order for the rated datasets, with all highest-rated datasets returned first, followed by all 

medium, and so forth. In absolute terms, this approach gives arguable results, though 

without rating all intervening datasets, it is not clear in which direction the results will be 

slanted. However, since our primary interest is in exploring modifications to the current 

scoring formula in order to improve ranking results, including and discounting the 

unjudged items would reduce the differentiation between the reported curves without 

adding any counterbalancing diagnostic capability. Figure 6.7 shows results for all 
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searches and for variables with limits; the plots for space plus time and for variable 

existence are visually identical to Figure 6.7(a).  

We tested the current distance measure against five variations, using the datasets judged 

by the study participants. (Our approach is in common with TREC approaches that 

evaluate alternate measures against previously judged documents, rather than the entire 

corpus.) The candidate measure, as described in Chapter 4, uses the center of a variable’s 

range as the point to which distance is calculated for one-dimensional variables; for two- 

(or more) dimensional variables, the measure uses the average of the distance to the 

closest (mindist) and farthest (maxdist) points. The variations evaluated different 

weightings of the closest edge versus the center, per indications from the first user study 

and supporting informally expressed opinions by some study participants. In particular, 

we evaluated:  

SN: mindist 

S2: mindist * 0.875 + maxdist * 0.125 

Figure 6.7. Condensed discounted cumulative gain (a) for all searches; (b) for variable-with-limits 

searches only. 
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S3: mindist * 0.75 + maxdist * 0.25 

S4: mindist * 0.625 + maxdist * 0.375 

Current: mindist * 0.5 + maxdist * 0.5 

SX: maxdist 

Based on the insight from the first user study that the closest edge should be a little more 

heavily weighted, we expected S2 or S3 to perform the best. In Figure 6.7, we plot the 

results from our current scoring formula and three variations: SN, S2 and S3. To contrast 

our measures with other orderings, we included four controls: the ideal (optimal) and 

“pessimal” (reverse of the optimal) curves, a randomized ordering (RAN), and an inverse 

ordering (REV) of the current ratings. Any possible performance curve will be bounded 

by the ideal and pessimal curves. As can be seen in Figure 6.7, there is insufficient 

differentiation to discern relative performance of the current and alternative scorings, as 

they overlay each other. We applied a one-way ANOVA to the condensed DCG at rank 

25 against these and two additional alternatives. The results implied that alternatives S2 

and S3 might perform 10-20% better than our current approach, but the results were not 

statistically significant under a Tukey’s HSD. The randomized order returned a mean 

score of around 0 and the reverse scoring returned a negative mean score, as expected. 

Secondly, we applied Rank Biased Precision (RBP) [97] with the extensions for non-

binary relevance judgments and for missing judgments. RBP discounts each succeeding 

position in the ranking by a probability of examination, p. When there are missing 

judgments, RBP is reported as a range between the highest and lowest possible value, that 
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is, if all missing judgments had been of the highest or lowest possible relevance. Chapelle 

et al. [24] found in their analysis of Internet search engine click logs that RBP with p = 

0.7 closely models user behavior, while DCG over-estimates the likelihood of 

examination of lower-ranked documents. Moffat and Zobel [97] provide a calculation of 

the RBP accuracy for different result set sizes and values of p. Using 25 datasets gives an 

RBP accuracy to 4 decimal places assuming a “user persistence” factor of 0.7 (often used 

for Internet search audiences), and to 2 decimal places with a factor of 0.83; this greater 

persistence might be expected from a scientific audience. We also felt that asking our 

scientific users to rate relevance for 25 datasets was testing the limit of their patience. In 

order to accentuate possible differences under different scoring formulae, we removed the 

searches in which all ratings were the same, leaving 22 searches. Using p = 0.7 and p = 

0.83, we calculated the mean RBP range for the alternative scoring formulae against all 

searches. We assumed all unjudged documents were not relevant for the lower bound and 

assumed all were highly relevant for the upper bound. Results are shown in Table 6.4, 

and the average ideal and pessimal RBP ranges are also given. The upper bound is less 

than the theoretically achievable 1.0, reflecting that ratings below “highly relevant” were 

given to a substantial proportion of returned datasets. With the ideal RBP as our target, 

we see that scoring alternative S2 more closely approximates user rankings than the 

current formula. Formula S2 weights datasets even more heavily towards the closest edge 

than do either the current or S3 formula. As with condensed DCG, however, the results 
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were suggestive but not statistically significant. The results varied little across different 

search types. 

6.4 Related Work 

There is a considerable body of research [32, 83, 87] into ranked relevance of 

unstructured text documents and XML against text searches; in contrast, our work 

focuses on numeric data ranges. Numbers in HTML tables are extracted and searched in 

Venetis et al. [138], but that work focuses on extracting additional semantics. Numbers 

are also matched by Agrawal and Srikant [4]. Both these approaches assume each 

“document” is small, by our standards. To our knowledge, ours is the first application of 

IR techniques to collections of diverse, potentially large, heterogeneous datasets.  

Su, Al-Maskari [88, 126] and others have discussed the relationships between user 

satisfaction and IR measures; Su found that search efficiency, in terms of user time spent 

on the search, was the most highly ranked measure of search success. Chapelle et al. [24] 

Table 6.4. Comparison of Average RBP Ranges at Rank 25 for Ideal, Pessimal, Current and Alternative 

Scoring Formulae 

Scoring 

Alternative 

Average RBP 

Range at Rank 

25, p=0.7 

Average RBP 

Range at Rank 

25, p=0.83 

Ideal 0.90 – 0.93 0.79 – 0.92 

Current 0.73 – 0.75 0.66 – 0.79 

SN 0.72 – 0.74 0.64 – 0.77 

S2 0.80 – 0.83 0.70 – 0.83 

S3 0.74 – 0.76 0.67 – 0.79 

S4 0.73 – 0.76 0.66 – 0.79 

SX 0.72 – 0.75 0.65 – 0.78 

Pessimal 0.36 – 0.38 0.36 – 0.49 
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and others have applied DCG and RBP to evaluate systems’ results for text retrieval. Our 

user studies were informed by their work, and we adapt their methods to dataset 

relevance evaluation and for validating the utility of our prototype. 

To our knowledge, ours is the first application of these evaluation approaches to 

searching over collections of large, heterogeneous datasets. 

6.5 Discussion of the User Studies 

We were encouraged by the strong, positive response to the search style for expressing 

the respondents’ information needs, especially given that none of the users had used the 

tool prior to the study. We did not hear of any difficulties or concerns with conflating 

geographic, temporal, variable existence and variable ranges into a single set of search 

conditions. Although we did not ask for comments in the study, several respondents 

approached us with unsolicited comments about their experiences. While we cannot tie 

respondents to specific searches, we presume that these same experiences flavored their 

responses to the survey questions.  

The biggest frustration respondents expressed was with variable searches. The current 

prototype treats each column name as a variable name. In cases where different parts of 

the archive use different names for the same environmental variable (e.g., temperature, 

airtemp, air_temperature) these are treated as separate variables. At present, only the 

variable name specified in the search is counted as a match; similar names are not. 

Multiple similar names in a search are treated as separate search conditions. We believe 

that multiple names for the same variable is one of the key causes of the lower 
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“completeness confidence” scores for searches involving variables. Future enhancements 

may allow multiple variables to be identified as “the same” for searching purposes. In 

addition, variable units are not currently standardized; we have experimented with unit 

translations and believe that this problem is tractable. These concerns are reflected in the 

wide range of responses for the question concerning confidence in complete results. 

Despite this spread, in six of the searches for variable existence, all but two datasets were 

judged highly relevant.  

Several respondents commented that the tool did not return datasets that they knew 

existed and matched their search, leading to reduced confidence in completeness. In 

several cases the respondent demonstrated a search to us and identified supposedly 

missing datasets. In each case we investigated, the dataset was not similar to the search. 

This effect was most prevalent for searches with variables, where in several cases a long-

running observation platform did not have the relevant sensor for that variable during the 

search time period, or the variable had a different name from that used in the search. The 

individual searches all focused on locations and time periods in which there were many 

potentially highly relevant datasets; thus, there are few low-scoring datasets in our judged 

sample. This effect is the result of two interacting processes: the center collects data in its 

area of interest, and their scientists are focused on that area of interest. 

We found RBP and the condensed DCG useful in exploring the performance of variations 

of the scoring formula using the existing dataset ratings. We are encouraged by the 

consistent performance of the scoring approach across the different search types; the 
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range-based weighting of search terms across space, time and variable values seems to 

produce results relatively consistent with user expectations. Although applying RBP and 

condensed DCG did not result in statistically significant support for any one of the 

scoring alternatives over the others, they are suggestive that the weighting in the current 

formula could be improved, perhaps moving to formula S2. However, given the small 

differences reported, careful assessment of the effort invested versus the potential 

improvement is warranted; additional, larger user studies may lend support to one 

alternative over the others. 

We do not yet know what level of false positives the scientists will tolerate, although 

clearly it is desirable that we minimize it. Different choices during metadata creation will 

change the precision, as will changing the scoring formulae. 

Our scientists easily translated their experience with ranked document search into this 

new setting with nominal training. Despite their extensive previous experience with 

database-style Boolean retrieval of data, no concerns were raised about ranked retrieval, 

representing datasets by summaries, or the contents of the dataset summaries. The users 

accepted our similarity score and accepted without comment the combination of 

seemingly different distance units of space, time and variable values. Our overall success 

ratings were high. We attribute the positive response to the ease with which they can now 

perform a task they had been struggling with; this functionality, after all, is the goal of 

our research. 
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We found it relatively easy to adapt IR metrics to assessing ranked datasets and user 

ratings. User-study approaches from IR were also easily applied. The areas where we did 

encounter ambiguity tended to be ones that are also ambiguous in text document retrieval. 

For example, how should we account for the large number of unrated datasets in our test 

database? What should the relative weight be for a “highly relevant” rating versus a 

“medium” one? These issues are familiar to IR researchers.  

We are encouraged by our experiences in applying IR measures to evaluating dataset 

ranked search. The strongest message we hear from our users is a request for additional 

data to be made available for searching, often from other archives. We take this as 

additional support of the utility of the tool itself, and of the existing similarity measure.  

While our user studies necessarily reflect our current user base, we believe the concepts 

are generalizable to other scientific fields. Based on the similarities between the results 

for scientists and IT professionals in our first user study, we do not expect to see 

significant differences from these results when we expand tool usage to a non-research-

scientist population.    
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7 Performance and Scalability 

While most searches of the current CMOP archive take a few seconds, we are interested 

in understanding the effects of further growth on interactive response times. As described 

in Chapter 5, the exploratory scenarios for extreme growth create the greatest challenges 

for the current architecture and implementation approach. As noted there, we can handle 

a dramatic increase in the number of users (Scenario 7) via methods external to the 

prototype code. However, we expect Scenario 8, increasing catalog entries by a factor of 

100, to cause a potentially large increase in search response times.  

For the system to have utility, it must provide search results in a “reasonable” amount of 

time. We therefore focus on developing and assessing methods for mitigating the causes 

of search latency in our system identified in Section 5.2.1. As described there, the search 

engine’s tasks of performing the search and identifying the top-k results take the majority 

of the elapsed time seen by the user, and thus are our focus.  

In this chapter we describe a set of techniques we developed to improve search 

performance and report on our performance evaluation of these techniques. Further, as 

we know that different hierarchies can substantially affect search response times, we 

evaluate the effect on response times of various different hierarchy designs. 

We first give some background to our choices for performance evaluation and summarize 

related work in Section 7.1. Section 7.2 gives the basic algorithm we use to identify the 

top-k results for a search. We then describe the techniques we used to improve search 

performance: Section 7.3 describes the changes to the basic algorithm to add a filter, and 
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Section 7.4 adds relaxation – a technique that reduces the filter’s cutoff score if too few 

results are returned from the search and re-issues the search – to our algorithm. The 

combination of a filter and relaxation is called filter-restart.  

We then shift our focus to performance evaluations. Section 7.5 describes the methods 

and data we used in the evaluations. Section 7.5.3 reports on the evaluation of our 

relaxation approach. Section 7.7 reports results for several different hierarchy designs. 

Section 7.8 describes some additional informal experiments performed, and Section 7.9 

summarizes our findings across all the performance evaluations.   

7.1 Background to Performance Evaluation 

We do not yet know what response times scientists consider to be “reasonable”; however, 

we begin with an assumption that, since scientists are accustomed to using web search 

engines such as Google or Microsoft’s Bing, they might expect or desire to receive search 

results within a few seconds. The negative impact on users of increasing system response 

times was recently reaffirmed by Schurman and Brutlag [117]; adding server delays to 

existing server response times decreased user search activity, satisfaction and, in their 

case, revenue. These findings support our focus on understanding the latency effects of 

changes in catalog size and hierarchy designs. 

In all cases, our goal is to maintain search response in an “interactive response” range, 

while we grow the size or complexity of the underlying metadata collections. Further, we 

are curious about what techniques could compensate for any slowing, and the relative 

benefit or compensating value of these techniques. Of the various factors known to affect 
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performance of the search engine, we selected three for further exploration based on our 

expectation that they would provide the largest potential for improvement:  

 Much research has been performed into query evaluation techniques to improve top-k 

query performance [65]. Can these techniques be applied to our metadata catalogs 

with hierarchical metadata, and if so, do they reduce overall latency sufficiently to 

obviate the need for other techniques?  

 Organizing the datasets (and subsets thereof) in a hierarchy provides users with data 

in scales matching their research interests. It can also improve (or detract from) 

performance. Do alternative hierarchy design choices substantially affect latency, 

such that some designs should be avoided?   

 We know that retrieving data from the database is a large component of our search 

engine latency. Our initial data design was chosen for ease of implementation, but 

constrains our performance. The current physical database model has a simple 

structure that allows new entries with new variable names to be easily added into the 

metadata catalog, as they are easily appended to the “variables” table. On the other 

hand, search performance is limited by this design due to the use of joins and pivot 

tables, as described in Chapter 5. 

Another major performance aspect is the effect of varying the complexity of the queries 

themselves. We do not yet know what the “usual” number of search terms will be, but we 

know that this number will have a large effect on response times. User studies in Internet 

search have found 5 to be a common number for text retrieval [2, 7, 66]; however, we do 
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not know whether this number of search terms will apply to data search by scientists. 

This question is an area for future research.  

Section 7.1.1 contrasts our metadata catalog with database indexes. Section 7.1.2 

describes common top-k query evaluation techniques, and how they relate to our 

situation. Section 7.1.3 describes in more detail a particular issue in our selected approach 

of filter-restart: the problem of identifying appropriate cutoff scores. 

7.1.1 Metadata Catalog versus Index 

Classic Information Retrieval systems primarily achieve good performance by using 

inverted indexes, often implemented using key-value datastores [83]. Each (possibly 

stemmed) word is treated as a key, and the documents in which the word occurs, along 

with a count of occurrences, are stored as values. The search term (word) is used as a key 

in the lookup. In contrast, our datasets may contain real numbers and searches are 

generally for ranges rather that for a specific value, so an inverted index is not an 

appropriate indexing technology.   

 Our catalog is index-like; however, the hierarchical structure is not aimed primarily at 

performance and structure decisions are not mainly driven by performance 

considerations; instead, the hierarchy structure carries semantic meaning. Each entry is in 

itself an “object” – a set of related attributes that has a specific meaning external to the 

system. Our metadata catalog performs a similar function to a book catalog in a library: 

each entry provides a brief summary of the information to be found in the actual dataset 

to which it refers. We assume that each individual entry has some amount of semantic 
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meaning and internal coherence; we thereby differ from an index, where no semantic 

meaning is implied. Further, parents and children related via a hierarchy within the 

catalog have a semantic relationship to each other, and we can use those semantics to aid 

our search. For example, if even the closest edge of a parent is “far” from our search, we 

know that no child can be close; if a parent is completely inside our search area, then all 

children will be, too. While we may choose to segment a dataset into a set of children 

based on the parent’s size, and may even choose the number of children based on the 

size, we expect (or hope) this segmentation will be performed based on the semantics of 

this kind of dataset. This semantic relationship may be invalidated if, for example, index-

tree balancing functions are applied to the hierarchy. However, where practical and 

effective, we would like to use indexing concepts to improve performance. Other fields 

have also combined indexes with semantic meaning; for example, data mining has long 

used indexes as an aggregation method [11]. 

We chose to implement our catalog using relational database technology, specifically 

PostgreSQL. We defined PostgreSQL indexes on the tables in which we store the data; in 

particular, we use B-trees for non-spatial data, and PostGIS uses R-tree indexes 

implemented on top of GiST indexes [56, 155] to index spatial data [149]. Our queries 

use the database indexes to navigate our catalog entries.  

We expect the majority of catalog accesses to come from identifying the top-k similar 

entries to a search; we expect direct access to an individual catalog entry to be less 

common. Our similarity function does not easily translate into a query against an index: 
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rather than a request for a specific set or range of identified rows, we wish to retrieve the 

top-k entries subject to a function that considers the center and the end-points of the data 

range, in the light of another range known only at the time of the query.  

Thus, while index algorithms inform our work, search performance over our catalog is 

not directly predictable from index-performance statistics. Also, we do not require the 

hierarchy relationships to be balanced in terms of numbers of levels or numbers of 

children per level, further undermining analytic analysis and formulaic prediction of 

performance. 

There are similarities between our approach and, for example, Hellerstein and Pfeffer’s 

RD-trees (“Russian Doll” trees) [57]; in our hierarchies the children are subject to the 

same containment relation they describe, and we are often selecting a subset of the set of 

children according to some criteria. Again, every entry in our catalog, at each level of a 

hierarchy, has semantic meaning; however, an implementation of our system using RD-

tree indexes instead of the GiST indexes currently used might provide faster performance 

than that currently achieved with the combination of B-trees and R-trees.  

Several other scientific fields have developed specialty indexes for scientific data, with 

the most advanced work in the field of astronomy [72, 74, 76, 121, 141]. Unlike our case, 

these systems generally assume they are dealing with homogeneous data. 

7.1.2 Top-k Evaluation Techniques 

In our implementation, search engine latency is primarily driven by the SQL query time 

(multiple queries may be performed) plus a (relatively) fixed time to process each row 
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returned from an SQL query, in order to identify the top-k results. The simplest method 

for identifying the top-k entries from a large collection of entries (according to some 

score or measure) is to process the entire collection, compute the score of each entry, and 

then sort the resulting list. This approach suffers from scalability issues as the number of 

entries increases [65]. In addition, the subsequent sort is a blocking operation. These 

issues have led to development of improved top-k techniques and algorithms. We wished 

to explore the use of such top-k techniques and adapt them to our setting.  

Ilyas et al. [65] classify over 20 top-k approaches in a taxonomy based on dimensions 

that capture the capabilities and assumptions about the environment to which each 

approach applies. The section of their taxonomy relevant to our work is the following: in 

the query model dimension, we use a top-k selection query (we wish to return the results 

of a top-k selection query, with the scores based on the outcome of a scoring function); 

we have data and query certainty, that is, we apply exact methods over certain data; our 

infrastructure provides both sorted and random data-access methods; we desire an 

application-level technique (as opposed to a technique that modifies the underlying query 

engine); and we limit ourselves to monotone score-combining functions. We prefer 

component-scoring functions that reasonably reflect subjective distance. That is, if 

feature1 is considered by the majority of searchers to be closer to the matched search 

term than feature2, then it should have a higher score.  

Six techniques identified in their paper have our desired combination of characteristics: 

Threshold Algorithm (TA) and Combined Algorithm (CA) [40], LPTA [29], Onion 
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indexes [23], PREFER [64], and Filter-Restart [18]. We describe each in more detail. 

Fagin et al.’s Threshold Algorithm (TA) and Combined Algorithm (CA) [40] scan 

multiple lists, with each list representing a ranking of the same set of objects by a 

separate scoring component. An upper bound is maintained for the overall score of 

unprocessed items, and the algorithm terminates when k objects have been found and no 

unprocessed item can have a score higher than the k
th

 object. While TA assumes that 

random and sorted access have the same cost, CA assumes they have different costs and 

thus favors one or the other access based on the cost differential. Guntzer et al. develop a 

modification called Quick Combine that adds an efficient termination condition and 

operates efficiently over skewed data [10, 52]. Das et al. develop a variant they call 

LPTA [29], an algorithm that given a set of views and a top-k query uses the set of views 

to produce an answer to the query. The algorithm identifies the most promising views (in 

terms of performance) to use when multiple alternative views could be used to produce 

the answer, based on a cost-estimation framework. Other variants (e.g., Fagin’s No 

Random Access (NRA) [40] and Guntzer’s stream-combine [53]) assume that random 

access is not available, and operate solely on the ordered lists returned from the 

underlying access methods. 

These techniques all operate over a set of ranked lists, one for each individual search 

term, and they combine the individual search terms according to some function. The 

techniques assume an underlying engine efficiently returns such a ranked list, and, for 

optimal performance, can do so in an incremental fashion. While it is possible for our 
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relational database to generate such a ranked list for each term while using our formula, it 

is less clear that we can produce these ranked lists efficiently; to do so would require an 

index of the data range’s center point on each possible search term, and another on each 

edge of the data range. These three indexes would need to be accessed for each 

component of the search. We do not believe this approach is practical, and therefore 

choose to rely on the underlying database engine’s capabilities to return a single set of 

entries to our application.  

A different technique is to use specialized top-k indexes; one example of this technique is 

Onion indexes [23]. In this technique, each tuple is represented by a convex hull of 

points, with each point on the hull constructed from the application of a single scoring 

predicate. An onion index organizes the underlying objects into a series of layered 

convex hulls. However, as noted by Ilyas et al. [65], these indexes become inefficient for 

range predicates on attribute values, as the convex hull structure will be different for each 

set of constraints. This is precisely the situation in Data Near Here. 

PREFER [64] answers preference queries by relying on knowing beforehand the 

attributes to be searched and the scoring function to be applied by the query, but allowing 

the weights for the attribute combination to be determined at query time. The overall 

scoring function (also called the preference function) is a linear combination of the 

attributes. The authors wish to avoid evaluating all records for each query. They do so by 

creating a (small) set of materialized views where the underlying tuples have been scored 

based on the pre-defined scoring predicate. At query time they apply an algorithm that 
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computes the top-k results of a query using a minimal prefix of a (selected) view. In our 

case, the scoring function changes its details based on the range specified in the search, 

and thus this approach does not apply to our situation. 

Lastly, Filter-Restart techniques such as that of Bruno et al. [18] operate by applying 

range selection queries to limit the number of entries retrieved. A selection query is 

formulated that only returns entries above an estimated cutoff threshold (the filter), and 

the retrieved entries are ranked. If the cutoff threshold is incorrectly estimated, 

performance suffers. If it is underestimated, too many entries are retrieved and search 

time increases as a result. Conversely, it may be overestimated, in which case too few 

entries are retrieved, and the query must be re-formulated and re-issued with a lower 

threshold (the restart, query expansion or query relaxation), consuming extra time. Filter-

restart techniques operate on a set of entries returned from an underlying engine; the 

techniques still block until all scoring and sorting operations are complete, and rely for 

their performance improvement on the filter reducing the number of entries returned 

without compromising the quality of the result.     

Another oft-mentioned technique is to use a skyline or convex hull to identify the closest 

points to a given query. Despite the similarities, the top-k closest points do not 

necessarily lie on a skyline or convex hull [104], thus these techniques do not apply.  

We selected filter-restart as the best approach for our situation. 
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7.1.3 Filter-Restart and Cutoff Scores 

As the size of the table(s) over which a query is executed increases and the scoring metric 

is calculated for a larger number of entries, execution time increases. It has long been 

known that limiting the results returned from a query by using a filter can dramatically 

improve response times [21]. To reduce the number of rows returned from the database, 

we add a filter to the search to return a subset of the rows that is guaranteed to contain the 

top-k results, by applying a formula derived from our scoring formula and adding a cutoff 

threshold. To be useful, the filter must have sufficient selectivity and be fast enough that 

the total time taken to evaluate the search and process the results is less than the time that 

would be taken if we evaluated all rows without the filter. 

A challenge for the filter-restart class of techniques is determining how to initially set the 

cutoff threshold for a given top-k search. As Chaudhuri et al. noted [26], there is as yet no 

satisfactory answer to estimating result cardinalities and value distributions to identify an 

optimal cutoff value, leaving this estimation as an open area for research. More recently 

(2010), Vartak notes that “obtaining exact cardinality assurance with query relaxation has 

been proven to be NP-Hard” [136, 137]. Researchers have explored a variety of 

approaches to cutoff selection. For example, Donjerkovic and Ramakrishnan note that a 

top-k query is equivalent to a simple selection query σx>κ on an attribute x, where κ is a 

cutoff score determined by N (the number of entries) and by the data distribution over 

which the selection query is run. Since the query optimizer’s knowledge of the data 

distribution is not perfect (even for a single attribute), the cutoff score must be estimated. 
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They propose a probabilistic optimization framework, using histograms in the database 

catalog to estimate the probability that a particular cutoff score will provide the desired 

selectivity without restarts, and assuming that the histograms represent variables whose 

values are independent from each other.  

Bruno et al. translate a top-k query into a range query for  use with a traditional relational 

database management system [18]; they perform this translation for three monotonic 

distance functions, SUM, EUCLIDEAN DISTANCE and MAX (of some subset of 

attributes). If too few results are obtained from the initial query, they restart the query 

with a lower cutoff score. Like Donjerkovic and Ramakrishnan, they use database-

catalog statistics to estimate the initial starting score. In each test, they make an 

assumption about the relationship between the distributions of multiple attributes; 

commonly, the distributions are presumed to be uniform and independent [84]. However, 

Bruno et al.’s experiments show that applying the uniformity assumption within 

histogram buckets was computationally expensive and led to many restarts [18]. They 

also note that “no strategy is consistently the best across data distributions. Moreover, 

even over the same data sets, which strategy works best for a query q sometimes depends 

on the specifics of q” [18].  

Billerback and Zobel [15] focus on testing document ranking performed using the Okapi 

BM25 measure, which requires several parameters that they prime by using values 

determined in experiments on a particular test data set. The key parameters are then fixed 

and used during additional query-expansion experiments. They find that no fixed choice 



 

198 

is robust across different collections; entirely different values give the best result on 

different collections, and “worse, the best choices per query vary wildly.”  

For our primary use case (observational data), it is more common for multiple attributes 

to be either positively or negatively correlated than for them to be independent. Our data 

may also be strongly clustered temporally, spatially, or on some observational variable. 

Thus, we can expect to see issues similar to those found by other researchers in 

identifying the best cutoff value to use. 

Bruno et al. [18] attempt to adapt to the underlying data by sampling it and running a 

training workload on the sample to identify a cutoff score. Other queries from a similar 

workload can then use the same cutoff score. In our case, as the similarity function is part 

of the filter and is affected by the relative ranges of each search term, the appropriate 

cutoff score is greatly affected by the individual search. Thus, in order to use this 

technique, we also need to identify a “search similarity function” that can compare the 

current search to other searches, then use the cutoff score from the most similar search. It 

might be possible, over time, to use a history of past searches and corresponding final 

scores in this way.  

7.1.3.1 Restart and Relaxation 

We have discussed the need to estimate an initial cutoff score. However, when an initial 

cutoff score fails to return the requisite number of matches, the search must be restarted, 

that is, reissued with a revised cutoff score designed to return a larger number of matches 

[18]. This technique is often called relaxation, which is defined by Gaasterland as 
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“generalizing a query to capture neighboring information” [41]. As with the initial cutoff 

score, we must identify a revised cutoff score to use for the revised search.   

Koudas et al. [73] focus on relaxing queries (conditions) on numeric attributes, where the 

relaxations can be quantified as value differences. They compute a “relaxation skyline” 

of query results, and provide several algorithms based on which parts of the query the 

user is willing to relax. However, their top-k algorithm returns the top-k on the skyline, 

which may not be the actual top-k [104].     

More recently, several researchers have focused on relaxing queries while limiting the 

semantic distance of the results. Elbassuoni et al. [37] develop techniques for 

automatically relaxing SPARQL queries performed over RDF triples. They use a 

knowledge repository to provide alternative terms to those used in the original query; 

terms are selected based on their distance from the original under a language model. 

Results are ranked based on a combination of their match to the query under any desired 

scoring function. Their approach focuses on semantic distance between RDF triples and 

between entities, whereas our work focuses on comparing the distances of a numeric 

range in a query to a numeric range in a dataset summary. Poulovassilis and Wood also 

search over semi-structured data modeled as a graph, such as RDF triples [108]. They 

relax the given query to return similar tuples, where similarity is assessed by identifying 

alternate terms that are structurally “close” to the desired term in a provided ontology. 

They differentiate relaxation from approximate queries, which they also address, wherein 

the desired graph path is “approximated” by alternate paths through the graph that are 
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ranked according to their graph-edit distance. These techniques may be useful in future 

research, such as in comparing named categories (“high pH” or “low pH”, for example) 

to a variable with numeric values (“pH 9.23”).  

7.2 Basic Algorithm 

In this section, we present the basic algorithm we use to identify the top-k entries across 

all levels of our hierarchy. The pseudo-code is shown in Figure 7.1. We first process the 

given search terms, and build the static sections of the SQL query we will use to retrieve 

entry information from the database tables that represent our metadata catalog. Using this 

query, we then retrieve all roots from the database and score them. Any entry we deem 

likely to have “interesting” children we add to a list of parents. We then modify the SQL 

query to retrieve the children of this list of parents, thus accessing the next level of the 

hierarchy. We repeat this process for each lower level of the hierarchy, with each 

subsequent query based on the results of the previous one. When we get no rows returned 

from the database or we find no entries with likely interesting children at some level of 

the hierarchy, we terminate. Thus, rather than a single top-k query we issue an SQL query 

for (potentially) each level of any hierarchy within our forest of hierarchies.  

The entries are scored and sorted, and the top-k returned. Entries may have widely 

different numbers of children, with widely different scores. Entries in our top-k could be 

contributed from any level of the hierarchy, and our top-k is aggregated from the results 

of several SQL queries. The final selection of our top-k can only be determined after all 

relevant hierarchy levels have been processed.   
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At first glance it may appear that we will score every entry in the catalog, retrieving them 

in a series of queries (and therefore with longer latency than performing a table scan and 

processing every entry in sequence). Whether or not this is the case depends on the 

ranges of the search terms as compared to the entries in the metadata catalog. If all entries 

in the catalog are roots (and therefore have no children), then a table scan is, in fact, 

performed. On the other hand, if the ranges of the relevant variables in an entry are 

completely within the search term’s range we deem the children not interesting, as each 

child will contain only a subset of this (already identified as interesting) entry’s data; 

therefore, only the parent entry is returned. If the closest and furthest edges of the 

variable’s range have the same score (within some delta), we deem the children not 

interesting, as the children’s scores cannot be higher than the score of the closest edge of 

the variable. Again, only the parent entry is returned. In these cases, only a subset of the 

entire catalog’s entries are scored.    

Note that we do not ask the database to sort the returned entries (that is, we do not add a 

sort clause to the SQL query). Although we do currently perform some calculations in the 

SQL query, we chose to perform the majority of the scoring and sorting in our search 

engine code. We could equally have chosen to place the scoring functions in PostgreSQL 

functions or directly in the SQL query. Our experience with PostgreSQL functions is that 

their invocation is slow and their inclusion in an SQL query causes the optimizer to 

choose suboptimal plans. The complexity of these options makes customizing the SQL 

query while accounting for the potential variety of search terms fragile and error-prone.    
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// Set starting parameters 

// “highest” is the score we’ll return for an item that’s a complete match  

// for all given search terms  

highest = 100   

// note that distance is unbounded – so lowest possible score is not limited 

// but, we can choose to specify a score below which we don’t return results  

lowest  = -100 

// limit items returned to some maximum number 

maximumMatches = 50 

 

// array to save matches found, from any level of the (chosen) hierarchy 

matches = array() 

  

Parse_search_parameters() 

// incorporate search parameters into the body of the SQL query 

create_sql_body()  

// For Basic Algorithm, set SQL ‘where’ clause to null 

sql_where = ‘’ 

// start traversing the hierarchy with the forest’s roots  

sql_where_end = ‘ parent isnull’    

 

// Main retrieval loop 

do { //till we get no rows returned from sqlQuery,  

// or run out of hierarchy we want to traverse 

        sqlQuery = sql_body + sql_where + sql_where_end 

        rows = query_result(sqlQuery) 

        get_kids_list = null  

        for each row do {  

// process each entry from this level of the hierarchy 

     tmprowScore = 0    // initialize the score  

     for each search_parm do { 

  // calc score for this search parm and add it 

  tmprowScore = tmprowScore + score(row, search_parm)  

  if (search_parm is a span or overlap or  

         (inner and outer edges have ‘different’ scores)) 

   // We want to check this parent’s children 

   get_kids_list = get_kids_list + ‘, ‘ + row[‘id’]   

 } 

 row.score = tmprowScore / count(search_parm) 

// append this row as a “potential match” (all rows, for now) 

 matches[] = row;   

 } 

        sql_where_end = ‘ where parent in ( ‘ + get_kids_list + ‘) ‘ 

    } while count(rows)>0 and get_kids_list != null     

// ‘get_kids_list == null’ tells us we can stop:  

// we have finished traversing the hierarchy 

// Now: sort the matches; output the highest-scoring entries 

Create empty XMLdoc (header and root) 

Reverse_sort matches[] on row_score 

For (each match while score>lowest and fewer than maximumMatches) do { 

 compose result_snippet 

 add result_snippet to XMLdoc 

 } 

Return XMLdoc 

Figure 7.1. Pseudo-code for basic algorithm 
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7.3 Adding a Filter   

In the design of our filter, we take as a design constraint that we operate over interval 

summaries, and that we wish to avoid false negatives; that is, we wish to avoid excluding 

any entry that should have been included in the top k. Therefore, for a particular cutoff 

score (which we’ll call lowestScore), our filter must return (at least) all entries that would 

achieve a higher score using our similarity measure (in this case, our distance formula). If 

insufficient matches are found from an application of the filter, we must restart the query 

with a “looser” filter.  

To implement the filter, we make the following changes to the basic algorithm. We add a 

filter (“where” clause) to the SQL query, that limits entries returned to: 

• Those we estimate will have a final score for the entry that is higher than the cutoff 

score; that is, entries where the center of the data range has a score of lowestScore or 

higher. We may increase a summary’s score if the data range overlaps the search 

term; however, we never decrease a score below that of the center of the data range. 

This filter term excludes entries that will not be adjusted upwards and that cannot 

have a score higher than lowestScore. 

• Those whose children may have higher scores than the cutoff score; that is, entries 

that are not wholly within the search range, that have children and where the closest 

edge to the search term
5
 has a score of lowestScore or higher. These parents may have 

a child with scores higher than the parent (if, for example, a child’s bounds are near 

                                                 

5
 In the one-dimensional case, the closest edge for a variable is the endpoint of the variable’s range that is 

within the search range or that has the smallest delta from either end of the search range. 
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the parent’s closest edge). If the closest edge has a score lower than lowestScore, not 

only will the parent not have a possible score higher than lowestScore, but none of its 

children will either; thus, “far” parents and their children are not retrieved.  

• Entries which span at least one search term; or, where the closest edge has a score 

higher than lowestScore. These entries’ scores will be adjusted upwards based on the 

amount of overlap with the search term. They also may have children whose bounds 

are completely within the search term, and thus are perfect matches for that term.  

Given the confounding effects described in Section 7.1.3, our initial cutoff score is set 

somewhat arbitrarily, based on experience (currently 95). Even if the cutoff score is 

incorrect, issuing the queries with that cutoff score gives us information about the 

distribution of relevant table entries, which we can choose to exploit in adjusting the 

cutoff score. Markl et al. use multivariate statistics to estimate the joint frequencies of 

data distributions for use in the RDBMS’ optimizer [84]; techniques such as this could be 

adapted to provide a better estimate of the initial cutoff score, especially as continued 

growth in underlying data warrants additional complexity to maintain the desired 

interactive response times.  

For geospatial search terms, we developed a slightly different filter, in order to reduce the 

number of heavyweight spatial calculations. In addition to storing each entry’s shape, we 

add two columns to our data model. When building the metadata entry, one column is 

populated with the shape’s centroid, and the other with the maximum radius (maxradius) 

of the shape, allowing us to quickly calculate a lower bound on mindist. 
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// Set starting parameters 

// “highest” is the score we’ll return for an item that’s a complete match 

highest = 100 

lowestScore = 95 // starting cutoff score for filter: naïve  

… 

create_sql_body() // incorporate search parameters into the SQL query  

 

// Calculate the relative distance contributions from each of the searchParms  

// For each search parameter:since our distance measure is in “number of radii”,  

// mult is a factor that acts to apply our current (linear) distance-to-score 

// conversion function  

f = 10  // number of radii past the edge that makes something “too far” 

mult = searchTermsCnt * (highest - lowestScore + f)/f;  

 

// set up the geo, time and depth radii with defaults if necessary 

// [this section varies according to the types of search terms; 

// the example is for a search with time, location, depth, 1 variable]  

factors = qdr * qgr * qvr * qtr;     

// qdr: radius of distance search parm; qgr: radius of geo s.parm; 

// qtr: radius of time s.parm; qvr: distance of variable s.parm 

locDistFactor = factors / qgr;    

depthDistFactor = factors / qdr;  

timeDistFactor = factors / qtr; 

varDistFactor = factors / qvr;    

estDistTooFar =  mult * factors;   

 

// Set up filter: composed of terms that:  

// a) filter for the current hierarchy level  

sql_where_thislvl = ‘  true ’    // create, initialize variable 

// and b) terms that filter for parents likely to have eligible children 

// create, initialize variable (left as “false”, if not reset) 

sql_where_kids = ‘ false ’   

        

For each search_parm do {  

   // add to the filter terms specific to this search parm:  

   // first, to the “this hierarchy level” filter term 

   sql_where_thislvl = sql_where_thislvl +  

      ‘ + least(abs(minvar - qvcenter ), abs(maxvar- qvcenter))*varDistFactor ’  

   // or, locDistFactor, depthDistFactor etc., as appropriate for the variable  

   // in question.  

   // And then, add to the filter terms looking for children that may be  

   // relevant  (even if parent is not) 

   sql_where_kids = sql_where_kids + ‘ or ((minvar < qvmin and maxvar > qvmax ) 

 or least(abs(minvar - qvcenter),abs(maxvar - qvcenter)) <=   

(mult * qvradius) ) ’ 

   } 

// Complete composing the where clause:  

sql_where = sql_where_thislvl + ‘ < estDistTooFar  or (’ + sql_where_kids + ‘)’ 

… 

Figure 7.2. Pseudo-code changes for basic algorithm with filter 
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During a search, the filter calculates the distance from the query to the centroid and 

subtracts maxradius from the distance; this distance is used only in the filter’s WHERE 

clause to limit the number of entries retrieved by the SQL. The real distance is only 

calculated by the SQL query for those entries that pass this filter and will be returned to 

the calling code. We found that the number of spatial calculations avoided for entries that 

did not pass the filter far outweighed the cost of performing a spatial calculation in the 

filter that was not directly used in calculating the query results.   

Since performance (in terms of elapsed time and resources used) is driven largely by the 

number of rows returned from the SQL query, applying the filter should improve 

performance. The first SQL query in any execution only evaluates the root entries in the 

forest of trees. We access successive levels of the hierarchy (i.e., children) by parent_id, 

and the filter acts to reduce the number of child entries returned from each level. (We 

employ an index on parent_id.)  

As noted, we currently arbitrarily set a fixed cutoff score (later development may replace 

this setting with a calculated or estimated starting score per search). However, if the 

cutoff score (lowestScore, in Figure 7.2) is set too high to find k entries with equal or 

higher scores, insufficient (or no) rows will be returned from the initial walk through the 

hierarchy, and a restart will be required. In some cases, we may discover the too-high 

cutoff score at the root level (for example, if no roots are returned by the initial query); in 

other cases, we may find that “enough” entries pass the filter but not enough receive high 

scores (for example, of many entries under a single root only one leaf may receive a high 
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score). During restarts, previous results are discarded. The effect of the restarts is shown 

in the performance experiments in Section 7.6. 

Our current filter design is simplistic. The number of entries returned could be 

substantially reduced with a more sophisticated filter; for example, by taking into account 

interactions between scores on different search dimensions. Note also that as the number 

of terms in the search increases, our filter becomes less effective, since we retrieve and 

process any entry that could be “close enough” in any one dimension (since a high score 

in one dimension, or high-scoring children in one dimension, may sufficiently increase 

the overall score to balance low scores in other dimensions). It is possible that for high-

dimension queries, alternate techniques that combine filter terms may be more effective. 

This subject remains an opportunity for future research. 

7.4 Relaxation 

If fewer than k entries are found with sufficiently high scores, we restart the search with a 

lower starting score, that is, we relax our filter.  

We use the term iteration to refer to a sequence of SQL queries and associated processing 

to walk the hierarchy from root to leaf. Thus, a search that takes two iterations is one in 

which the entire hierarchy was processed once without finding sufficient entries above 

the desired cutoff score, the cutoff score was then reduced (relaxed), and the entire  

hierarchy was processed again (equivalently, we may say the search was restarted) with 

the revised cutoff score, this time finding sufficient entries. We use the term step to refer 
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to the processing of a single hierarchy level. Thus, an iteration consists of a series of 

steps.  

We developed and experimented with three relaxation techniques: 

 Naïve: In our simplest technique, whenever we do not find sufficient results at our 

starting filter score, we iterate after having reduced the filter score by a fixed amount 

(currently set at 15). 

 Adaptive: Our second technique uses information calculated while processing the 

entries returned from one iteration to adjust (in our case, lower) the starting score for 

the next iteration. 

 Contraction: This technique modifies adaptive relaxation by reversing relaxation 

within an iteration. That is, after each step we check the number of results found so 

far. If we have found more than k results with scores higher than our filter score, we 

increase the filter score for subsequent steps within the iteration.  

Clearly, many more variations and extensions on these techniques are possible.  

In all cases, our restart design was rudimentary; we discarded the results and restarted the 

entire evaluation sequence again with a new, lower cutoff score. This restart design is 

clearly a worst-case; a more intelligent, incremental restart design would be expected to 

improve performance. The number of “re-found” results will, however, necessarily be 

fewer than the total number of matches in the iteration.  

We now describe each of the three techniques separately. The performance of the 

techniques will be compared in Section 7.6. 
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7.4.1 Naïve Relaxation 

Our first relaxation approach, “Naïve”, takes a simple approach to restarting a query. We 

make the following additions to the basic algorithm, as shown in Figure 7.3: 

• Begin with a lowestScore of a given starting_score (e.g., our current default of “95”) 

• If no entries were returned from the root-level SQL query: drop the score by some 

suitably large amount (e.g., we use the empirically-chosen amount of twice 

naïve_reduction), and iterate. 

• If fewer than minimumMatches are found, subtract naïve_reduction from lowestScore 

(e.g., our current setting is “15”), and iterate. 

… 

// Relaxation loop: includes filter calculations + main retrieval loop 

do { // while less than the desired minimumMatches do 

    // Calculate the relative distance contribution from each of the searchParms 

    …  

    // Main retrieval loop 

    do {      //  till we get no rows returned from db,  

       // or run out of hierarchy we want to traverse   

    … 

// get_kids_list == null tells us we can stop:  

// we’ve either finished traversing the hierarchy, or no rows returned  

// from this level of the hierarchy (no (qualified) kids found)      

        } while count(rows)>0 and get_kids_list != null     

 

    if (count(matches) < minimumMatches)   

{ lowestScore = relaxScoreNaïve() }  

} while (count(matches) < minimumMatches)   // end relaxation loop 

// Now: we have “enough” matches; output the highest-scoring items 

… 

relaxScoreNaïve(): { 

   // when “relaxing”, relax the score by (at least) this amount 

   naïve_reduction = 15  

   // when nothing returned from db, relax by this amount:      

   evenmore = naïve_reduction x 2    // empirically chosen 

   // if the SQL query returned rows, but we didn’t find matches in them  

    if count(rows) > 0  // reduce by “naïve_reduction” amount      

{ return lowestScore – naïve_reduction }  

    else // No rows were returned from the SQL query:  

// will need to cast the net “a lot” wider 

       {  return lowestScore – evenmore }  

} 

Figure 7.3. Pseudo-code changes for naive relaxation 
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The effect is that with each restart, the next “ring” of items (in terms of distance from the 

query) is retrieved and scored. Previously scored parents and children are re-scored; no 

attempt is currently made to optimize for rework, and this remains an opportunity for 

future refinement.  

This relaxation approach is simple to apply. It can be used even when no other 

information is available about data distributions or good starting scores to use. 

7.4.2  Adaptive Relaxation 

“Adaptive” relaxation refines “Naïve” relaxation by using items scored during the current 

iteration (which did not return the minimum desired matches, minimumMatches) as a 

sample from which to estimate a revised lowestScore to use on the restart.   

The changes to the algorithm, shown in Figure 7.4, are as follows: If an iteration results 

in fewer than the minimum desired matches (minimumMatches), we choose as a new 

lowestScore the score from an entry within the sample. We currently use the score of the 

… 

    if (count(matches) < minimumMatches)  

  { lowestScore = relaxScoreAdaptive() }  

} while (count(matches) < minimumMatches)  // end relaxation loop 

// Now: we have “enough” matches; output the highest-scoring items 

… 

 

relaxScoreAdaptive(): { 

     sort matches on score from highest 

     if matches.length > minimumMatches/2      // heuristic 

          { newLowestScore = matches[ floor(minimumMatches/2) ].score } 

     else // take score of last entry 

          { newLowestScore = matches[matches.length-1].score  }   

     if abs(lowestScore – newLowestScore) < naïve_reduction 

          { return lowestScore – naïve_reduction } 

     else  

         { return newLowestScore } 

} 

Figure 7.4. Pseudo-code changes (from naïve relaxation) for adaptive relaxation 
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last item in scoredItems if fewer than minimumMatches items have been scored, else we 

use the score of the middle item of scoredItems, with empirically good results. If the 

amount of reduction of the lowestScore is less than the naïve_reduction amount (from 

Naïve), we reduce by naïve_reduction. Initial tests showed that if the score of the entry at 

minimumMatches/2 is greater than the revised score that naïve relaxation would have 

chosen, performance of the adaptive algorithm was poorer that naïve, because more 

iterations were sometimes required; thus we added the second condition to ensure that the 

score reduction is greater than the reduction the naïve algorithm would have applied. 

This refinement is effective because in most cases, we get at least some items (perhaps 

from high in the hierarchy, that is, an aggregate entry with wide ranges) back, so we get 

some sense of the score distribution near the currently applied filter’s boundaries. Note 

that items returned by the filter may receive scores lower than lowestScore, since the 

filter passes on parents that may have high-scoring children. Since reducing the filter’s 

lowestScore returns more items at each hierarchy level than were returned in the last 

iteration, we arbitrarily use the score of the entry at minimumMatches/2. Additional 

experience with a particular archive or additional research may result in a better estimate.  

This relaxation refinement is effective when the initial cutoff returns an insufficient 

number of high-scoring entries, and one or more restarts of the naïve algorithm are 

required to return the minimum desired number of entries. The expected effect is to 

reduce the number of restarts required as compared to Naïve by providing a better 

estimate of the new lowest score for the next iteration. 
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7.4.3 Contraction 

This technique modifies “Adaptive” relaxation by adding the concept of contraction, that 

is, the opposite of relaxation. As we process the results for each successive step within an 

iteration, we check the number of matches we have discovered so far, that is, the number 

of results with scores higher than the current cutoff score. If we already have more than 

minimumMatches, we increase the cutoff score that we use for subsequent queries (at 

lower levels of the hierarchy). Contraction is applied repeatedly within a single iteration 

at each step (each successive hierarchy level) to raise the lowestScore for subsequent 

SQL queries, whereas adaptive relaxation lowers the lowestScore between iterations. 

Note that contraction applies once minimumMatches have been found, while adaptive 

relaxation applies when fewer have been found; thus the two methods are complementary 

and can be applied together. 

The algorithm changes, shown in Figure 7.5, are as follows: We modify the inner 

… 

    // Main retrieval loop 

    do {      //  till we get no rows returned from db,  

       // or run out of hierarchy we want to traverse   

    … 

       if (count(matches) > minimumMatches)  {   

// If we already have enough matches: Contract  

              sort matches on score, from highest to lowest  

              if ( matches[minimumMatches].score > lowestScore ) 

                   {  lowestScore = matches[minimumMatches].score  } 

             } 

    …   

        } while count(rows)>0 and get_kids_list != null   

  // If we don’t have enough matches, then relax, using Adaptive Relaxation 

    if (count(matches) < minimumMatches)   

{ lowestScore = relaxScoreAdaptive() }  

} while (count(matches) < minimumMatches)  // end relaxation loop 

// Now: we have “enough” matches; output the highest-scoring items 

…  

Figure 7.5. Pseudo-code changes for contraction 
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retrieval loop only. At each hierarchy level, if minimumMatches have already been found, 

we set the lowestScore to be the score of the entry at minimumMatches. 

The higher cutoff score potentially reduces the number of entries retrieved from database 

while processing the next level of the hierarchy, thus potentially reducing the total 

records processed. Only not-perfect matches are eligible to have their children retrieved 

(since the children of perfect matches will also be perfect matches, but will contain less 

data). If there are a number of children that have scores near lowestScore and we increase 

the lowestScore, we retrieve only the “closer” subset of them, thus reducing the number 

to be scored. This approach is most effective when there is a cluster of close-but-not-

perfect matches’ children near the current filter edge. In other cases, the increase in the 

cutoff score may not change the total entries processed. 

7.5 Performance Tests: Methods and Data 

This section describes the methods and data used in the performance comparison of the 

three types of relaxation we tested: Naïve (N), Adaptive (AD), and Contraction (CN).  

We wish to understand the performance of the following: 

 How response times change as we increase the collection size over which we search 

 Whether, and how much, our query evaluation techniques improve search 

performance 

 The effect of different hierarchy “shapes” on performance 

We focus on the performance of a single server. If single-server performance is sufficient 

for the expected workload, no additional scaling approaches are needed, while if more 
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servers are needed, the number will be defined largely by the single-server performance. 

Performance of queries executed by a database engine generally deteriorates rapidly as 

soon as the database indexes no longer fit into memory, and most highly-used 

applications retain frequently accessed indexes and data in memory to ensure minimum 

latencies (e.g., [120]). In order to understand and differentiate the performance 

characteristics of our approach from the (potentially confounding) impact of underlying 

disk hardware, we restrict ourselves to data sizes where the metadata catalog can fit its 

selected working set into our available memory (2GB of buffer pools). We believe this 

choice is reasonable since during search our metadata is read-only and thus is not likely 

to become stale; further, as usage grows we would expect the database engine to reside 

on its own server. While implementing a different data model or different datastore 

technology may change the format of the memory contents, if similar entries and 

attributes are used, the amount of memory required should be of a similar order of 

magnitude.  

We created three metadata collections of increasing size over which to run our tests. All 

three collections summarize real-world data from a non-CMOP archive of interest to our 

scientists. The smallest collection is approximately five times the size of CMOP’s current 

collection, while the largest is 200 times the size. The collections are further described in 

Section 7.5.1.  

We implemented the search-evaluation techniques that we describe earlier in this chapter, 

while retaining the current design of Data Near Here. The current design and 
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implementation is known to be a limiting factor on performance; however, we feel it 

provides a useful base for exploration of a variety of techniques to improve performance, 

the results of which can then be used to inform a more scalable redesign. Portions of such 

a redesign are described in Chapter 5.  

To test different hierarchy “shapes”, we developed eight hierarchy structures, each with 

different aggregation characteristics. In addition, we keep a ninth “no hierarchy”, with 

every entry treated as a root. The structures of the hierarchies we developed are described 

in detail in Section 7.5.2. We instantiated each hierarchy structure over the same leaf 

entries, for each of the three data collections. 

We developed three test suites of searches, comprising three sets of search terms that we 

know from experience to have very different performance characteristics: time-only, 

space-only, and time-and-space. The suites are described in Section 7.5.3.  

Each query in a test suite was run five times against each target hierarchy. For each 

search, the maximum and minimum response times were discarded and the response 

times for the remaining three queries were averaged, as is common in database 

performance measurement. Whenever a different metadata table or hierarchy was 

accessed, the first search was discarded, to force the relevant indexes (and, possibly, the 

metadata tables, if PostgreSQL chooses to) to be loaded into memory; this action 

simulates the effect of a “warm cache”, or of using the same set of tables repeatedly, as 

we would expect in a production environment.  
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All tests were run on a 2 quad-core 2.13 GHz Intel Xeon system with 64 GB main 

memory, running Ubuntu 3.2.0 with Apache 2.2.22, PHP 5, PostgreSQL 9.1 and PostGIS 

2.0. The PHP space limit per request was increased to 2 GB, and the time limit to 1,000 

seconds. PostgreSQL 9.1 only uses a single core per user request and the flow through 

the application is sequential; as a result, a search uses only one processor.  

7.5.1 Test Collections 

We scanned three sets of data from NOAA for use in the performance tests.
6
 The first 

two are chlorophyll-a concentration data from NASA's Aqua Spacecraft
7
, in two different 

formats: Science Quality (herein abbreviated to collection s) and Experimental (herein 

referred to as collection e). The data is gathered by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) carried aboard the spacecraft, and reported as a grid with 

values removed for clouds, cover, or technical reasons. The data scanned differs in 

density (0.05° for Science Quality versus 0.0125° for Experimental), and has differences 

in the algorithms used to produce the data. The third collection (herein referred to as 

collection t) contains nighttime surface temperature readings gathered by the Advanced 

Very High Resolution Radiometer (AVHRR) instrument, a multiband radiance sensor 

carried aboard the NOAA's Polar Operational Environmental Satellites (POES). The data 

is provided at high resolution (0.0125°) and is not cloud-masked; there is a data point 

reported at every possible location, resulting in greater data density than the chlorophyll 

collection.  

                                                 

6
 To reduce confusion, we will refer to the results of scanning each of these sets of data as a “catalog”. 

7
 http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp  

http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp
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We created a configurable scanner that reads the subset of data for our geographic area of 

interest (the region between latitude 40 to 50, longitude -122 to -127), and creates a leaf 

dataset record for each (configurable) block. The blocks were configured to be 0.25° 

latitude by 0.25° longitude; each block is treated as a separate “dataset” from the 

perspective of the metadata collection. Where there are missing values for cloud cover 

and other reasons, the actual area of each block represented in the data may be 

substantially smaller than the nominal area. The scanner checks the physical locations of 

the data points reported, excludes any “no data” points, and represents the physical extent 

of the valid data by a convex hull of the valid data points.  

The three resulting collections have different catalog sizes. The leaf data counts are: for s 

(small), 192,554 leaf records, with 962,770 entries in the variables table; this collection is 

5.5 times the size of our current catalog. The medium collection, e, has 930,261 leaf 

records, with 4,653,105 entries in the variables table, or 4.8 times the size of s. The large 

collection, t, has 7,066,501 leaf records, and is 201 times the size of our current catalog. 

7.5.2 Test Hierarchies  

We developed eight different hierarchy structures (hereafter abbreviated as 

“hierarchies”), and a configurable hierarchy creation program. The hierarchies represent 

different patterns of aggregation of space and time, with the number of levels varying 

from one (all entries are leaves) to 5 (root, three intermediate levels, and leaves). Each 

hierarchy was built over the s and the e collections; further, for testing convenience, each 

different hierarchy was stored in a different set of database tables.  
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Table 7.1 describes each hierarchy used in our tests. Each level defines the entity (time or 

space) aggregated on, followed by the aggregation characteristics. One or more 

aggregation entity can be used at each level. For time, we specify the aggregation in 

terms of a time unit and how many of those units; in the test hierarchies we use 15 days, 1 

year, and all.  For space, we specify the number of blocks to be aggregated in the x and 

the y direction, starting from grid coordinate (0,0); for example, an aggregation of “space: 

[1,4]” means that strips 1x4 blocks in size will be aggregated to form the next level of the 

hierarchy making. “All” means that all items at the next level of hierarchy (meeting other 

aggregation criteria) are treated as children of a single root.  

For four hierarchies, the root level contains the entire spatial coverage (for some segment 

of time); the other four contain all times at the root level (for some aggregation of spatial 

blocks). The intermediate levels are aggregated on various combinations of time and 

space. In Hierarchy “None”, every entry is simultaneously a root and a leaf. 

In the performance tables below, a designation “5e” means the e data with Hierarchy 5; 

similarly, “5s” means the s data with Hierarchy 5. For ease of explication in this chapter, 

we will often refer to the combination of a specific collection and hierarchy as a 

hierarchy (even for the “no hierarchy” structure). Thus, we may refer to “Hierarchy 5e” 

or “Hierarchy 5s”. We anticipate that a mixture of hierarchies may coexist in a single set 

of production database tables, as is currently the case at CMOP; our algorithm is not 

changed by this intermixing, although performance characteristics will likely become 

more difficult to characterize and predict.   
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Table 7.1. Summary of Test Hierarchy Structures. For each hierarchy we describe each level, beginning 

from the root, to the leaf. Each level defines the entity (time or space) aggregated on, followed by the 

aggregation characteristics. For time, we aggregate on [unit, number of units], for space, we aggregate 

together the number of blocks in each direction [x, y]. “All” means that all items at the next level of 

hierarchy (meeting other aggregation criteria) are treated as children of a single root. 

# Description (from 
leaf to root) 

#Levels Aggregated on 

None No hierarchy 1 1. leaf 

1 Aggregate on time, 
then space 

5 
 

1. space: [8, 4], time: [all], 
2. space: [1, 1], time: [year, 10],  
3. space: [1, 1],time: [month, 6], 
4. space: [1, 1], time: [day,  15],  
5. leaf 

2 Aggregate on space, 
then time (to 6 
months only) 

5 
 

1. space: [all], time: [month,6],  
2. space: [all], time: [day, 15],  
3. space: [all],time: [day,1],  
4. space: [8,4],  
5. leaf 

3 Aggregate on space, 
then time 

4 
 

1. space:[8,4],time:[all], 
2. space:[8,4],time:[year,1], 
3. space:[8,4],time:[day,15],   
4. leaf 

4 Aggregate on time, 
then space, then time 

5 
 

1. space: [8,4], time: [all] 
2. space: [8,4], time: [year,1], 
3. space: [8,4], time: [day,15],  
4. space: [1,1], time: [day,15],  
5. leaf 

5 Aggregate on space 
and time [1] 

3 
 

1. space: [8,8],time: [all], 
2. space: [8,8],time: [day, 15],  
3. leaf 

6 Aggregate on space 
and time [2] 

3 
 

1. space: [all],time: [day,15], 
2. space: [8,8],time: [day, 15],  
3. leaf 

7 Interleave 
aggregations on 
space and time [1] 

5 
 

1. space: [all],time: [year,1], 
2. space: [all],time: [day,15], 
3. space: [8,8],time: [day,15], 
4. space: [2,2],time: [day,15],  
5. leaf 

8 Interleave 
aggregations on 
space and time [2] 
 

5 
 

1. space: [all],time: [year,1], 
2. space: [all],time: [day,15], 
3. space: [8,8],time: [day,15], 
4. space: [1,4],time: [day,15],  
5. leaf 
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7.5.3 Search Suites 

Since almost all searches include time, space or both search terms, we developed three 

search suites: one with queries containing only a time search term; one with queries with 

a space search term only; and one with queries containing both a time term and a space 

term. Given the performance limitations of the search for variables (due to the current 

design, which pivots and joins two large tables for every query containing a variable 

search term) we did not develop a search suite for these queries.  

Time search suite. This search suite consists of 77 searches. The searches range in 

duration from 1 day (the smallest duration accepted in this implementation of DNH) to a 

search spanning 44 years (1/1/1970 to 1/1/2014), which is longer than our entire temporal 

coverage. We defined searches that match exactly the various levels of the hierarchy; 

others are offset from and overlap hierarchy groupings, but cover the same durations; and 

some are both longer and shorter than various hierarchy grouping levels.   

Space search suite. This suite consists of 20 searches. The smallest search’s spatial 

extent is 4.4 km
2
 (45.07187, -124.532 to 45.1, -124.55), while the largest search spans 2 

degrees latitude by 2 degrees longitude (44, -126 to 47, -124) for an area of 

approximately 52,000 km
2
., which is a bit more than 8% of our entire geographic 

coverage area (of roughly 10° latitude by 5° longitude). As with the time searches, we 

created spatial searches that align with hierarchy groupings; some that are offset from or 

overlap hierarchy groupings; and others that are both larger and smaller than hierarchy 

grouping levels. 
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Space-Time Search Suite. This suite consists of 70 searches. The searches were created 

by selecting several of the fastest, several of the slowest and several of the most-varying 

time-only searches (in terms of response times, from the results of the tests against all 

hierarchies); selecting several of the fastest, several of the slowest and several of the 

most-varying space-only searches; and combining these terms. The resulting list was 

reduced to 70 searches by removing combinations that appeared very similar or that, by 

inspecting the results from the individual runs, we expected to have very similar 

performance characteristics.  

In all cases, we requested 10 ≤ k ≤ 50, that is, a minimum number of 10 and a maximum 

of 50 entries to be returned from a search. 

7.6 Relaxation Performance Test Results  

This section describes the results from our performance tests for each of our three suites 

of searches: the time search suite (in Section 7.6.1), the space search suite (in Section 

7.6.2), and the space-time search suite (in Section 7.6.3).  

7.6.1 Time Search Suite Results 

We first ran a set of tests for the time suite to ensure the filter alone (without restart) 

provides a performance benefit. Adding a filter without adding restart capabilities means 

that a search may not result in the minimum requested entries (minimumMatches). 

The geometric mean
8
 response time for the time suite as run against each hierarchy is 

shown in Table 7.2, along with the number of searches in the suite that completed. We 

                                                 

8
 Since each search’s response time is the average of the middle 3 of 5 runs, geometric mean is used to 
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show results for both the s (smaller) and the e (medium-sized) collections. The fastest 

response times are colored in green, while the slowest are colored red. Hierarchy 2 gave 

the fastest response times for both collections, while “None” (that is, all entries are roots 

and are processed for each search) gave the slowest.  

For most of the hierarchies, adding the filter reduces the response time to one-fifth or less 

of the response time without the filter.  

Note that for “None” and no filter, every search failed to complete (either exhausting 

PHP memory or time limits) for the e collection; when the filter was added, nearly four-

fifths of the searches completed, although the mean response time for those queries was 

very high compared to the other hierarchies. For the other hierarchies, all searches for the 

e collection completed except in two cases, where one search failed to complete.  

                                                                                                                                                 

calculate the mean response time across the search suite. 

Table 7.2. Time Search Suite Response Times, No Filter vs. Filter (in seconds) 

Hier- 

archy 

s Collection e Collection 

No Filter Filter No Filter Filter 

Mean 
Std. 

Dev. 
Count Mean 

Std. 

Dev. 
Count Mean 

Std. 

Dev. 
Count Mean 

Std. 

Dev. 
Count 

1 2.245 3.279 77 0.596 0.395 77 3.812 5.893 77 0.876 0.547 77 

2 0.253 0.171 77 0.108 0.038 77 0.232 0.098 77 0.119 0.021 77 

3 0.376 0.314 77 0.146 0.055 77 1.063 1.323 77 0.276 0.134 77 

4 1.250 2.002 77 0.277 0.152 77 1.651 2.304 76 0.381 0.203 77 

5 1.118 1.264 77 0.235 0.096 77 1.363 1.543 77 0.299 0.142 76 

6 0.829 1.227 77 0.169 0.072 77 1.102 1.485 77 0.245 0.115 77 

7 0.968 1.473 77 0.197 0.091 77 1.278 1.792 77 0.279 0.133 77 

8 0.978 1.497 77 0.200 0.093 77 1.290 1.795 77 0.283 0.134 77 

None 18.554 0.696 77 1.543 5.462 76     0 4.568 23.193 61 
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We then ran the suite using Naïve (N), Adaptive relaxation (AD) and Contraction (CN) 

(which builds on Adaptive relaxation) against the e and s hierarchies. The majority of the 

time searches completed in one iteration and did not use relaxation. Hierarchies 1e, 3e 

and 5e had no searches with two or more iterations. Hierarchies 2e and 6e each had one 

search with a second iteration; in both cases, the drop in the score recommended by 

relaxation was small enough that the naïve_reduction was used instead of the adjusted 

lowestScore, and so the results were the same as for Naïve relaxation. 

The only searches noticeably affected by Adaptive relaxation were against Hierarchy 2s.  

Table 7.3. Time Search Suite, N vs. AD, for the Five Searches with More Than Two Iterations 

Hierarchy 

Naïve (N) Adaptive (AD) 

Total # of 

Iterations 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response 

(s) 

Total # of 

Iterations 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response 

(s) 

2s 21 845 192 0.16±0.07 14 334 192 0.12±0.03 

 

Table 7.3 reports, for the five searches in Hierarchy 2s with more than two iterations: the 

total number of iterations across all the searches, the average rows retrieved by the filter 

per search (“Avg. SQL Rows”), the average number of matches found (that is, number of 

items with scores higher than lowestScore on the last iteration performed) and the mean 

response time. (Note that the number of iterations, rows retrieved and number of matches 

are the same across runs of the same query with the same method, although the response 

time may vary.) Across these five searches AD reduced the total number of iterations by 

7, while reducing the number of rows returned from the database by 60% and reducing 

the mean response by a quarter, with lower variability. 
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Since many of the time searches completed in well under a second against the smaller s 

collection and noise in the system was greater than the differences between the 

algorithms we wanted to measure, we report results in Table 7.4 for the time search suite 

against the larger e collection, while including one s collection (2s) for comparison. Table 

7.4 reports the average rows retrieved from the database, the average number of entries 

returned from the search (Avg. Matches Found) and the mean response time for the 

subset of searches affected by CN, when run against each of selected hierarchies. We also 

show the number out of the 77 searches in the suite for which the low score was 

increased as a result of contraction.  

As can be seen, contraction increased the final cutoff scores for the majority of the 77 

time searches. However, contraction can only be considered to be beneficial if the 

reduction in total processing time from reducing the number of rows returned from the 

database and processed more than compensates for the additional work required to 

calculate new cutoff scores to use (i.e., storing and sorting current matches). 

 

Table 7.4. Time Search Suite, AD Only vs. CN, for searches affected by CN only 

Hier-

archy 

# of 

Searches 

with 

Increased 

Low Scores 

Adaptive (AD) Contraction (CN) 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

1e 71 12,757 11,387 1.056±0.580 8,883 7,033 0.879±0.431 

2s 58 790 704 0.221±0.071 700 223 0.159±0.045 

2e 73 409 388 0.292±0.147 385 89 0.194±0.095 

3e 63 5,249 5,126 0.590±0.388 3,088 2,676 0.307±0.094 

5e 63 6,037 5,948 0.621±0.307 3,927 3,576 0.319±0.096 

6e 63 4,843 4,773 0.500±0.252 2,920 2,604 0.361±0.210 
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For the five searches with exactly two iterations, the final cutoff score for AD was the 

same as the Naïve cutoff; this means that the revised cutoff calculated by AD based on 

results of the first iteration was either less than or the same as the naïve_reduction value. 

For these five searches, the final cutoff for these searches when using CN was higher than 

N and AD’s final cutoff, indicating that the ideal cutoff was between the cutoff scores 

used in the first two iterations (that is, between the initial setting of lowestScore and 

lowestScore minus naïve_reduction).  

As can be seen in Table 7.4, CN results in lower mean response times and lower 

variability (lower standard deviations) than AD for affected searches for every hierarchy. 

The effect of CN on the number of rows processed varies from a reduction of 6% for 

hierarchy 2e with a reduction in average response time of approximately a third, to a 

reduction in rows of 42% for hierarchy 3e, with a reduction in average response time of 

nearly one half. 

Note that while many of the searches that AD and CN benefit were among the longest 

running, other long-running searches do not benefit from them. It is possible for long-

running searches to complete in a single iteration and without changing the cutoff 

threshold; for example, if many entries are returned at each hierarchy level but very few 

of them have higher scores than the current cutoff score. Note also that despite an 

increase in the number of records by a factor of 4.8 from the 2s to the 2e collection (from 

192,554 leaf records and 205,163 total records to 930,621 leaf records and 993,535 total 

records), the response time increased by only around 20%.  



 

226 

We conclude that for this search suite, the combination of the filter with adaptive 

relaxation and contraction provides the best results for all hierarchies. While these 

techniques do not help all searches, they tend to help long-running searches and they do 

not negatively impact the searches that they do not improve.  

7.6.2 Space Search Suite Results 

For consistency, we tested the space search suite against the same collections and 

hierarchies as used for the time search suite. As many of the “no filter” searches did not 

complete, we do not include those results. Again, we report results for the e collections 

while including one s collection (2s) for comparison. 

Of the 20 searches in the space suite, seven resulted in more than one iteration using 

naïve relaxation; four searches had two iterations only. Three searches had more than two 

iterations, and one search iterated eight times before exiting and returning fewer than the 

minimum desired results.  

For the searches with two iterations (that is, the searches that might be affected by AD), 

AD used the same final cutoff score as Naïve relaxation; this means that the revised 

cutoff calculated by AD after the first iteration was either higher than the “minimum 

cutoff adjustment”, or the same as Naïve’s cutoff score. (In fact, for all tests run except 

1e, CN used the same final cutoff score as N for these searches, indicating that this effect 

is the result of interaction between the search and the data distribution. As such, this 

effect may not recur with other data and provides an opportunity for further 

experimentation.)  
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Table 7.5 summarizes the total number of iterations, average rows returned from SQL, 

the average number of matches returned from the searches, and response times for the 

three searches with more than two iterations. All response times are significantly longer 

than for the time search suite, as the spatial comparisons used in the distance measure 

take more time to calculate than the numeric calculations used to calculate “time 

distance”. In every case, AD reduced the number of iterations and reduced the response 

time by more than 50%, even in the cases where the number of rows returned from the 

database (Avg. SQL Rows) were almost identical to those returned for N. This reduction 

is because the lowestScore was adjusted down by more than the naïve_reduction value 

for all affected searches, and in most cases the search found minimumMatches during the 

first restart. 

Table 7.5. Space Search Suite, N vs. AD: Summary of (Three) Searches with More Than Two Iterations 

Hiera

rchy 

Naïve (N) Adaptive (AD) 

Total 

# of 

Iterati

ons 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response (s) 

Total 

# of 

Iterati

ons 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response (s) 

1e 17 20,419 36 33.83±6.22 7 20,229 24 14.40±2.19 

2s 19 7,688 33 14.24±3.52 6 7,444 15 4.45±0.21 

2e 17 33,302 36 61.57±7.35 8 33,074 31 29.92±2.35 

3e 17 22,505 35 31.51±5.29 7 21,754 24 13.17±2.88 

5e 17 22,484 35 32.89±4.34 7 21,732 24 13.76±3.24 

6e 17 22,984 35 32.89±4.34 7 22,232 24 13.76±3.24 

 

Table 7.6 reports the average rows retrieved by SQL and response time for the subset of 

searches affected by CN, when run against each of the selected hierarchies. As shown in 

Table 7.6, CN increased the final cutoff scores for 13 of the 20 space queries for 
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hierarchy 1e, but only for between four and seven searches over the other hierarchies.    

As Table 7.6 shows, CN results in lower mean response times and lower variability 

(lower standard deviations) for affected searches in every hierarchy tested. CN reduces 

the number of rows processed by approximately 20% to nearly 50%, while reducing 

response time by approximately 50% and reducing variability in all cases.  

Recall that the 2e collection contains 4.8 times as many records as the 2s collection, and 

the average response time nearly tripled. This result is in contrast to a response time 

increase seen in the time searches of only around 20%. 

We conclude that for this search suite (as with the time suite), the combination of the 

filter with adaptive relaxation and contraction provides the best results across all 

hierarchies. While these techniques do not help all searches, they also do not negatively 

impact the searches that they do not improve.  As multiple iterations tend to be associated 

with long response times, the searches with the longest response times tend to be the ones 

most improved. 

Table 7.6. Space Search Suite, AD vs. CN, only for searches affected by CN  

Hi

era

rch

y 

# of 

Searches 

with 

Increased 

Low 

Scores 

Adaptive (AD) Contraction (CN) 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

Avg. SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

1e 13 115,191 39,171 35.02±58.37 82,115 3,549 29.58±24.78 

2s 5 65,361 33,256 21.31±6.33 44,117 9,043 14.69±3.60 

2e 7 239,470 114,544 78.24±69.33 158,978 30,461 54.31±34.33 

3e 5 286,736 147,625 93.89±44.18 212,842 91,195 66.35±25.40 

5e 4 333,281 181,754 110.57±48.38 272,107 128,743 86.97±23.80 

6e 4 333,678 181,751 110.57±48.38 272,499 128,741 86.97±23.80 
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7.6.3 Space-Time Search Suite Results 

For consistency, we tested the combined space-time queries against the same data and 

hierarchies we used for the time search suite and the space time search suite. Again, we 

report results for the e collections while including one s collection (2s) for comparison. 

Of the 70 searches in the space-time search suite, 22 resulted in more than one iteration 

using naïve relaxation for the e collections; of these, 10 searches had two iterations only, 

11 searches had between 4 and 7 iterations, and one search iterated 8 times before 

returning fewer than the minimum desired results. For Hierarchy 2s, 28 searches resulted 

in more than one iteration; of these, 8 searches had two iterations only. Table 7.7 

summarizes the average rows returned from SQL and response times for the twelve 

searches with more than two iterations. As shown in Table 7.7, for this search suite, some 

searches (# Failed Searches) exhausted either memory or 1,000 seconds of processing 

time and failed to return results; the other columns exclude the failed searches. 

CN modifies AD by “contracting”, or raising the final cutoff score as soon as the desired 

Table 7.7. Space-Time Search Suite, N vs. AD 

Hier-

archy 

# 

Failed 

Sear-

ches 

Naïve (N) Adaptive (AD) 

Total 

# of 

Itera-

tions 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response (s) 

Total 

# of 

Itera-

tions 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean 

Response (s) 

1e 4 61 129,951 35 45.16±40.72 30 35,819 32 22.50±22.54 

2s 0 107 48,965 44 19.70±13.18 44 11,963 62 8.30±5.61 

2e 6 61 182,293 34 69.45±32.08 33 49,245 94 38.91±27.10 

3e 3 61 41,806 33 14.23±10.16 29 13,832 30 7.15±5.32 

5e 4 61 42,646 33 15.35±10.05 29 13,997 30 7.73±5.29 

6e 4 61 45,485 33 17.05±10.47 29 14,626 30 8.47±5.50 
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number of matches has been found. Table 7.8 reports the average rows retrieved by SQL 

and response time for the subset of searches affected by CN, when run against each of the 

selected hierarchies. As shown in Table 7.8, CN increased the ending scores for between 

19 and 38 of the 70 space-time searches, depending on the hierarchy. CN is only 

beneficial if the reduction in processing time by reducing the number of rows returned 

from the database and processed more than compensates for the additional time required 

to calculate new cutoff scores to use (i.e., storing and sorting current matches). CN gives 

lower mean response times and lower variability (lower standard deviations) than AD for 

every hierarchy tested. CN reduces the number of rows returned by SQL and the response 

time in all cases. In all hierarchies except 1e, the variability is reduced. Thus the extra 

costs of CN are more than offset by the improvements. 

Note that the 2e collection contains 4.8 times as many records as the 2s collection and 

that the average response time increased by a factor of 3.8. This increase is in contrast to 

a response time increase of only around 20% for the time-only searches and around 3 for 

the space-only searches. 

Table 7.8. Space-Time Search Suite: AD vs. CN, only for searches affected by CN 

Hier-

archy 

# Searches 

with 

Increased 

Low Scores 

Adaptive (AD) Contraction (CN) 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

Avg. 

SQL 

Rows 

Avg. 

Matches 

Found 

Mean Response 

(s) 

1e 38; 4 fail 170,718 40,288 198.93±177.50 120,687 2,190 178.40±208.32 

2s 25; 0 fail 58,004 22,428 19.15±14.43 37,607 5,170 14.53±8.09 

2e 30; 6 fail 149,515 37,909 78.24±69.33 103,047 6,743 54.31±34.33 

3e 22; 3 fail 185,032 77,107 45.11±55.06 112,464 26,329 31.37±34.94 

5e 19; 4 fail 189,814 75,990 47.71±50.96 140,513 44,250 39.03±38.76 

6e 19; 4 fail 190,152 75,993 48.06±50.78 140,850 44,253 39.30±38.87 
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We conclude that for this search suite (as with the other two suites), the combination of 

the filter with adaptive relaxation and contraction provides the best results across all 

hierarchies, although the improvement is not as great as seen in the other two cases. As 

multiple iterations tend to be associated with the longest response times, the searches 

with the longest response times tend to be the ones most improved. While these 

techniques do not help all searches, they also do not negatively impact the searches that 

they do not improve. 

7.7 Hierarchy Performance Test Results 

The differences seen in the previous section between the performance of the different 

hierarchies is much larger than the effects of different styles of relaxation, and thus 

deserves exploration. The primary purpose of the segmentation of datasets and grouping 

into containment hierarchies is improved usability by allowing us to match scientists’ 

information needs to the best available segment of a dataset. However, we recognize that 

there are often several equally valid-seeming ways of grouping and segmenting a large 

set of data, and that segmentation decisions must sometimes be made with limited 

knowledge or with assumptions about how the data will be used; in these cases, knowing 

the performance impact of the choices might be helpful in choosing amongst the options.  

We sought to compare the different hierarchies across the different search suites with the 

goal of providing guidance to archive curators on the response time effects of their 

hierarchy choices. Based on the results of the tests in Section 7.6  we used Adaptation 

plus Contraction as our default for the hierarchy comparisons. As noted, we expect that 
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multiple hierarchies may coexist within a single metadata collection. However, for the 

purpose of our performance tests we split each different hierarchy into a separate set of 

physical tables in our relational database, so that during a single test run the search suite 

only encountered hierarchies of a single pattern.  

7.7.1 Time Search Suite Results 

We ran the time search suite against the s and e collections for all hierarchies. In addition, 

we ran the time suite against the larger t collection for three hierarchies only. Table 7.9 

compares the (geometric) mean response time for each hierarchy across the entire time 

search suite. The hierarchy with the lowest response time for each collection is 

highlighted in green, and the worst in red. Mean response time increased in all cases from 

the s to the e collections for the same hierarchy, but by less than the increase in collection 

size (a factor of 4.8); Hierarchy 1 mean response time increased by the least, a factor of 

1.4, while Hierarchy 6 increased by the most, a factor of 3.4.  

Table 7.9. Time Search Suite: Hierarchy Comparisons. (Response time in seconds) 

 s Collection e Collection t Collection 

Hierarchy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 0.832 0.746 1.165 0.947 4.661 6.271 

2 0.217 0.125 0.440 0.294 0.263 0.878 

3 0.246 0.171 0.773 0.846 2.950 5.274 

4 0.256 0.103 0.760 0.766   

5 0.204 0.075 0.641 0.560   

6 0.140 0.033 0.480 0.370   

7 0.175 0.048 0.484 0.354   

8 0.177 0.051 0.395 0.277   

None 2.490 5.835 4.947 23.981   
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Figure 7.6 and Figure 7.7 show the level of variability in response times across the search 

suite. Each figure shows the searches in the time search suite ordered by response time 

within that hierarchy’s searches. For example, the points at the 10 mark are the 10
th

 

fastest searches for each hierarchy respectively, and thus may not represent the same 

search within the suite.  

Because of the dramatic differences in graph scale, we show the same data at three levels 

of detail. Figure 7.6a shows all hierarchies for the e collection, showing that all other 

hierarchies provide reduced and more consistent response times than “None.” Figure 7.6a 

also shows the dramatic increase in response times for some searches in “None”; the 

remaining searches did not complete within the resource limits. Figure 7.6b removes 

“None” in order to better compare the other hierarchies. Figure 7.7a removes hierarchy 

1e. Figure 7.7b shows the same set of hierarchies run over the s data, which is a much 

smaller collection and has a somewhat different data distribution. The results are similar 

Table 7.10. Space Search Suite: Response Times by Hierarchy (in seconds) 

Hierarchy s Collection e Collection 

e Collection, excluding 

5 “large” Searches 

 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 12.035 10.640 28.659 22.853 16.620 4.039 

2 7.365 4.904 38.312 27.119 24.952 5.425 

3 6.669 5.174 28.994 27.267 15.256 3.975 

4 32.408 41.698 33.552 31.188 17.397 4.434 

5 38.393 54.760 31.829 32.155 15.150 3.954 

6 39.017 55.451 32.987 33.941 15.672 3.931 

7 27.334 32.000 27.752 21.972 16.408 3.592 

8 29.393 37.223 29.631 27.204 16.365 3.827 

None 7.968 8.255 38.304 43.354 16.972 4.170 
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in pattern for most hierarchies, but the response times are faster.  

The other s graphs are almost identical and have been omitted. All hierarchies give 

improved response over “None”; in fact, the improved response holds for every search 

within the suite.  

7.7.2 Space Search Suite Results 

Table 7.10 compares the geometric mean response time for each hierarchy, across the 

entire space search suite. The hierarchy with the lowest response time for each collection 

is highlighted in green, and the worst is highlighted in red. Mean response time varied 

widely from the s to the e collections; in two cases (Hierarchies 5 and 6) it dropped by 

20% despite the increase in collection size; in three cases it was close to the same 

(Hierarchies 4, 7 and 8), and in three cases (Hierarchies 2, 3 and None) it increased by a 

factor close to the increase in the collection size.  

There is far more variability in the mean response times across hierarchies for the s 

collection than for the e collection. We believe this variability is because the data 

distribution and aggregation approach are the same for each collection, but the s 

collection contains only one-fifth as many entries. Thus, each tree in the s collection 

contains approximately one-fifth as many entries as the tree in the e collection with the 

same bounds. An iteration in an s hierarchy with a given cut-off score will have fewer 

parents returned at each level, thus is less likely to find minimumMatches while 

traversing the hierarchy, and hence more likely to require a restart.   
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Figure 7.6. Time search suite response times, e hierarchies: a. All Hierarchies, b. “None” removed 
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Figure 7.7. Time search suite response times: a. Detail, e collection; b. Detail, s collection 
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Figure 7.8. Space search suite response times: a. s collection; b. e collection 
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Figure 7.9. Space-time search suite response times: a. s collection; b. e collection 
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Figure 7.8 shows the individual search responses, sorted by rank; Figure 7.8a shows the 

results for the s collections and Figure 7.8b for the larger e collections. Unlike the time 

searches, all hierarchies here exhibit very similar behavior: relatively consistent 

performance for 15 searches in the suite, and response times increasing by a factor of 3 or 

more for the other 5 searches. 

There are 5 searches that have extremely high response times as compared to the other 

searches for all hierarchies. All 5 of these searches have geographic areas as large or 

larger than the block size used in the hierarchy, and span more than one block. (These 5 

searches do not appear in the same response time order across the different hierarchies.) 

The cause of high response times for these searches is the high number of entries 

processed (from 125,000 to over 350,000); none of these searches have more than one 

iteration. Removing these 5 searches for the e collection gives the revised response times 

shown in the right of Table 7.10; the mean response times excluding these 5 searches are 

quite consistent across the hierarchies, and also exhibit greatly reduced deviations. 

For this search suite, “None” mirrors the performance of the other hierarchies. Hierarchy 

2e gives worse performance (approximately double the response time) for the fastest 15 

searches; because this hierarchy only splits the space dimension at the leaf level, every 

entry at every level of the hierarchy must be processed, down to the leaves. This 

processing overhead increases the response times for 2e over that of “None”, since it 

visits the same number of leaves, plus all the intermediate nodes in the hierarchy.  
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For the smaller s collection, only two hierarchies gave improved mean response over 

“None”; however, for the larger e collection, all provided close to the same or faster 

response times. We attribute this change to the larger collection size; the reduction in 

number of entries returning from the filter in the e hierarchies offsets the effect of 

repeatedly querying the database. 

7.7.3 Space-Time Search Suite Results 

Table 7.11 compares the (geometric) mean response time for each hierarchy, for the 

space-time search suite. These comparisons show widely differing response times 

between the e and s collections. For four of the hierarchies (5, 6, 7 and 8), response times 

for the larger e collection dropped to a small fraction of the response time for the smaller 

s collection. This is because with the greater density of data, a subset of searches were 

able to find sufficient matches in the first or second iteration, while in the smaller 

collection these searches restarted additional times to find sufficient matches. For the s 

collection, in most hierarchies only a subset of searches finished successfully (the number 

of Successful Searches is smaller than the size of the search suite, which contained 70 

searches). Hierarchy 2 had nearly 11 times the response time for the e collection 

compared to the s collection, while “None” and hierarchy 3 had increased response times 

by a factor of around 3.5; this is less than the increase in collection size of around 4.5. 

Overall, the response times for this search suite were much longer than for the space suite 

because many more entries had to be scored for each search in order to reach 

minimumMatches; the response time is dominated by the cost of the spatial calculations. 
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Figure 7.9 shows the individual search responses sorted by rank; Figure 7.9a shows the 

results for the s collections and Figure 7.9b for the larger e collections. In both cases, 

“None” provides the best (or close to the best) results, although in the case of the e 

collection, 4 searches fail. Hierarchy 3 had the lowest maximum response time for both 

collections (28.5 seconds for 3s and 126.4 seconds for 3e); hierarchy 4 had the fewest 

searches that completed successfully, and reported very high mean response times.  

For this search suite, individual searches have widely varying response times between the 

collections; for example, one search has response times varying from 6.6 seconds to 

1,285 seconds across hierarchies. The searches that are to the right of the bend on the 

graph, signifying dramatically increasing response times, disproportionately consist of a 

time term combined with one of the 5 poorly-performing space terms identified in the 

space-search-suite results.  

Table 7.11. Space-Time Search Suite: Response Times by Hierarchy (in seconds) 

Hierarchy s Collection e Collection 

 

Successful 

Searches Mean Std. Dev. 

Successful 

Searches Mean Std. Dev. 

1 69 160.537 191.850 65 217.896 244.354 

2 70 11.046 7.395 70 120.594 101.549 

3 70 7.796 7.186 70 26.004 32.828 

4 57 314.169 297.273 59 215.340 255.911 

5 56 540.728 535.155 70 28.794 39.088 

6 57 557.902 546.000 70 29.031 38.942 

7 59 268.292 245.729 70 75.721 71.894 

8 59 286.295 270.883 70 72.371 63.889 

None 70 7.526 10.193 66 26.513 38.738 
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7.8 Other Informal Performance Tests  

The existing data model consists of two primary tables, one containing dataset-level 

information and the other containing information about variables. This data model makes 

it easy to add new variables during dataset scanning. The variables table is pivoted (using 

a contributed PostgreSQL module) during searches that include variable search terms, 

quickly leading to unacceptable performance as the table increases in size.  

We performed some informal experiments of alternative data models using several 

example searches. In one test, we pivoted the variables table into additional columns 

added to the files table (for three variables only), thus avoiding the join between the files 

and variables tables. This approach provided much faster response times than the current 

data model, as one would expect. As we gain more experience, we may be able to 

identify commonly-searched variables to include in the files table. 

We also experimented with a Bloom-filter-inspired structure [6, 25]. We pivoted the 

variable table on variable name into a materialized view, and added a binary column to 

the “files” table for each variable name. The binary value was set to TRUE for an 

individual entry if the named variable existed for that dataset. We modified the filter to 

include entries where the variable’s existence would give a total entry score above the 

cutoff score (assuming a complete match on variable values). Informal tests with several 

searches showed significant improvements in response times. Since only 1 bit is added to 

the width of the table for each new variable, this approach captures much of the 
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performance improvement of avoiding a full pivot of the variables table, without causing 

the same column explosion as the previous option.  

For any substantial set of variable names and using a relational datastore, both the 

approaches above lead to extremely wide tables. Any additions to the set of variable 

names require a schema change to add columns for the new variable names. As a result, 

despite the performance gains, we feel that these data model alternatives are not 

appropriate replacements for our current design.     

The primary driver of overall response time is the level of hierarchy that has the most 

entries returned by the filter to process. Depending on the search, this level may not, in 

fact, be the leaf level; there were a number of queries where the level above the leaf level 

had the most entries returned. In experimenting with the hierarchy designs, we tested the 

impact of removing the root level of the hierarchy, reducing tree height by one level. For 

the combinations of search and hierarchy we tried, removing the root reduced response 

time by around 0.025 seconds for the search. The root level has the smallest number of 

entries; thus, it appears that reducing the number of levels has far less effect than 

reducing the number of entries returned from any one level’s query.  

Our current spatial filter identifies “close enough” entries by taking the distance from the 

center of the search area to the entry’s spatial centroid and subtracting the maxradius of 

the entry’s shape (the centroid and maxradius having been statically calculated and stored 

as part of the dataset summary during summary creation). This filter does not use a 

spatial index because our geospatial software (PostGIS 2.0 and Postgresql 9.1) only uses 
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a spatial index for queries involving certain bounding box comparisons not used in the 

current filter design. We experimented with a different spatial filter design on several 

long-running spatial queries. In this alternate design, we created an additional spatial 

column and set it to the bounding box of each dataset’s shape. We modified the filter in 

the following way to ensure that a spatial index was used: we first calculate an expanded 

spatial query term “bounding box” representing the area where all points falling within 

that area would have a score higher than our current cutoff. We then look for 

intersections between the expanded spatial query bounding box and each dataset’s spatial 

bounding box. We confirmed that the spatial index was in fact selected by the Postgresql 

optimizer by using Postgresql query “explain” function. This rewrite reduced the number 

of rows returned from the database in the test queries by up to 50%, since a maxradius-

sized circle around the centroid will often cover a larger area than a bounding box. The 

result reduced the runtime of the SQL query by approximately one-quarter; we attribute 

the limited gain from using the spatial index to the resource-consuming calculation 

required to compare bounding boxes. We estimate that moving to this filter design would 

reduce response time for the spatial query terms by approximately one-third.   

7.9 Discussion 

Our overall goal in this performance work is to understand, improve and predict the 

performance characteristics of our approach. In this section we summarize our progress 

towards this goal, and comment on additional research required. 
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7.9.1 Effect of Filter-Restart Techniques 

We showed that as the metadata collection size increases, our filter allows us to complete 

searches that would otherwise time-out or exhaust memory. Further refining the filter and 

starting cutoff score will provide additional benefits; it may be possible to remove the 

need for most restarts through improved theory or heuristics. We experimented with a 

modified filter for space searches that may provide additional benefits by allowing use of 

spatial indexes; however, the improvement of 50% achieved is less than the order-of-

magnitude improvement needed to make a substantial difference to the scalability. 

The implementation of the filter, in turn, requires firstly selecting a starting score, and 

secondly adding a restart approach for the times when the initial cutoff score is too high 

to return the desired number of matches. We chose a default starting score for our work. 

Bruno et al. use database catalog statistics to estimate the initial starting score. In each 

test, they make an assumption about the relationship between the distributions of multiple 

attributes; commonly, the distributions are presumed to be uniform and independent [84]. 

However, Bruno et al.’s experiments show that applying the uniformity assumption 

within histogram buckets was computationally expensive and led to many restarts [18].  

In all three search suites, less than one third of the searches required restart. For the time 

search suite, restarts only occurred in one hierarchy. For searches that required restart, in 

all three suites Adaptive (which estimates a revised cutoff score based on the matches 

found so far) reduced the number of restarts required by half or more over Naïve (which 

uses a fixed revision to the cutoff score). For affected searches, Adaptive reduced 
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response time by around half, and reduced the variability of response times across the 

searches within the search suite by around half as well. Thus, Adaptive relaxation 

achieves its goal of improving performance over Naïve.  

We also experimented with “Contraction”; that is, successively increasing the cutoff 

threshold within a single iteration as the number of desired matches is reached. This 

technique can be applied to the initial filter as well as during restarts. For all three suites, 

adding Contraction reduced response time and variability; the improvement was around 

20-25% for the affected searches. However, the improvement gained by adding 

Contraction was lower than the improvement of Adaptive over Naïve.  

7.9.2 Effect of Hierarchies 

We showed that hierarchies can, depending on their organization and on the specific 

search, further improve performance compared to having no hierarchy. For most 

hierarchies compared, the increase in response times between the s and e collections (and 

t, for the tests run there) was, for most searches, smaller than the ratio of collection sizes. 

This reduction supports the added value of taking advantage of hierarchies to improve 

response times as collection size grows. 

For the subset of searches where low-density data was encountered (and therefore, a 

smaller number of children at each hierarchy level using the chosen hierarchy structures) 

in the smaller collection, the response time was higher than for the same search against 

the larger collection. For the subset of searches where high-density data was encountered 

in the larger collection, response times were much larger than the relative increase in 
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overall data sizes. These comparisons show the sensitivity of search performance to local 

data density per search. It is challenging to design a filter-restart method that can handle 

both high-density data (leading to too many matches, causing poor performance) and 

low-density data (leading to too few matches, causing poor performance from many 

restarts). 

Failed searches (exhausting either memory or PHP processing time of 1,000 seconds) 

were experienced only in the space-time suite and in the e collections; the specific failed 

searches varied according to the hierarchy. Further investigation showed that for each of 

the failed searches, there was a level in the hierarchy where the SQL query returned a 

large number of rows after applying the filter. The SQL query itself took several seconds 

to perform the query; the number of results returned from SQL to PHP sometimes 

exhausted the PHP memory available to the search engine task; and in some cases 

processing the results of the query took up to 10 times the query time for a space search 

term. While we keep a count of the number of children each entry has, we cannot predict 

the percentage of these children that will survive application of the filter. Applying 

heuristics based on the number of children to which the SQL query will apply the filter 

(which the current data model allows us to calculate) would allow us to know that we are 

likely to have a long-running query, and to adjust accordingly. For example, we could 

combine information about the parent’s score, bounds and number of children, and adjust 

the threshold based on their distribution (if a high scoring parent has many children, we 
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could further raise the cutoff threshold). We also suspect that additional refinements to 

our algorithm could avoid processing some of the returned rows.  

The mean response time was greatly affected by the difference in the types of search 

terms the search contains and by the hierarchy used, as can be seen in Table 7.12. While 

all time-only searches in the suite performed within normal user expectations (sub-second 

or a few seconds at most), space-only and space-time searches did not.   

Table 7.12. Hierarchy Comparisons Across Search Terms: Best and Worst for e Collection 

 Best (s)  Worst (s) 

Time Only 0.34±0.28 (8e) 4.95±23.98 (None/e) 

Space Only 27.75±21.97 (3e) 38.30±43.35 (None/e) 

Space-Time 26.00±32.83 (3e) 217.90±244.35 (1e) 

   

The variability across the hierarchies was far greater than the effect of the relaxation 

techniques tested. For space-only searches, Hierarchy 3e provided the best average 

response, with around two-thirds the response time of the worst, “None.”  For the space-

time searches, the worst hierarchy, 1e, had 8.4 times the average response time of the best 

hierarchy, 3e. These comparisons show that in many cases, the hierarchy can improve 

performance for some queries, providing lower response times than a linear scan of the 

entire metadata collection.   

An important question, given the widely different performance results from the search 

suites, is how to predict which hierarchy will provide the best – or at least acceptable  –  

performance for the range of searches that users may perform. These hierarchy design 

choices could then inform the archive curator when adding new data; for example if two 

data segmentation strategies equally met the users’ expected needs but had very different 
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performance characteristics, the curator could select the one that would provide faster 

response times.  

We explored a range of hypotheses for how to predict the best hierarchy to use, but 

without clear success. The best performing hierarchy varies according to the type of 

search terms and the density of data close to the combination of terms. Given the absence 

so far of a good method for choosing an appropriate hierarchy (when several options 

meet the users’ needs), several options are possible. For example: 

1. Have different types of hierarchy, in different sets of tables, as we did in the 

performance study. Start a search on each hierarchy and provide the response from 

the hierarchy that comes back first, canceling the others.  

2. Choose a single “good enough” hierarchy approach as a default, and continue to 

develop other performance methods (such as the filter-restart approaches) to maintain 

performance in acceptable ranges. 

3. Keep every set of metadata tables small enough to give fast response from each table 

and add a search integrator to combine the top-k from across the various tables. This 

approach might allow one to mix different kinds of hierarchies in any one of the 

tables. 

4. Provide partial results back early once a search with long response times is 

recognized (i.e., many results are returned from an SQL query, or a restart is 

required), and continue to refine them as more results become available.  

5. Perform additional research to identify methods to predict hierarchy performance.   
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In summary, our research echoes the findings of Bruno et al.’s experiments for setting 

starting scores: “no strategy is consistently the best across data distributions. Moreover, 

even over the same data sets, which strategy works best for a query q sometimes depends 

on the specifics of q” [18]. Similarly, our hierarchy tests mirror the results of Billerback 

and Zobel [15], who focus on testing document ranking performed using the Okapi 

BM25 measure, which requires several parameters that they initialize by using values 

determined in experiments on a particular test data set. The key parameters are then fixed 

and used during additional query expansion experiments. They find that no fixed choice 

is robust across different collections; entirely different values give the best result on 

different collections, and “worse, the best choices per query vary wildly.” 

7.9.3 Scaling Beyond a Single Server 

As noted, we wish to understand the performance of a single server; if single-server 

performance is sufficient for the expected workload, no additional scaling approaches are 

needed. When single-server performance is found insufficient even after optimization, 

throughput can be further scaled by adding servers. The scaling design must consider 

how the workload is to be distributed across these servers. Tomasic and Garcia-Molina 

[130] summarize the two basic strategies for distributing an inverted index over a 

collection of servers: so-called local inverted files, where each server is responsible for a 

disjoint partition of the documents in a collection, and so-called global inverted files, 

where each server is responsible for a disjoint partition of the terms (but across all 

documents). They simulate performance of different configurations of global and local 
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indexes and conclude that local inverted files provide the best performance. The 

performance of the servers containing the disjoint index partitions therefore limits overall 

system performance. While we are not using inverted files, the same two segmentation 

approaches apply (segment on entries or on attributes); we would expect to see the same 

result, that segmentation on entries provides better performance. 

Building on their work, Cacheda et al. [19] and Long and Suel [80] describe the use and 

performance of “query integrators” to distribute queries to and combine results from 

multiple servers with local inverted files. Cacheda et al. [19] compare the performance of 

searching a terabyte of text on three different multi-server architectures: distributed, 

replicated and clustered. Depending on the search characteristics, either the replicated or 

the clustered configurations performed better. Latency is increased relative to single 

server architectures by the need to route the searches to or aggregate the results from the 

multiple servers (depending on the approach taken), while throughput of the entire 

system, that is, the number of searches that can be handled simultaneously, is increased. 

We would expect to see the same effect of increasing response time (but with added 

throughput) from adding search integrators to our approach, relative to a single system. 

The recent move to cloud-computing infrastructures has led to new approaches that 

perform well at larger scales. For example, Wang et al. [140] describe a multi-

dimensional indexing scheme, RT-CAN, that efficiently supports multi-dimensional 

query processing in a cloud. RT-CAN creates a distributed global index that is used to 

identify the local nodes containing relevant data. The distribution approach may be based 
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on geographic location or on data ranges. They demonstrate their system using point, 

range and nearest-neighbor queries, using a 128-node network. We believe this scaling 

approach applies to our work.  

7.9.4 Current Deployment 

In our current archive, we use different hierarchies for different types of data, mixing all 

of them in a single metadata collection. Thus, a single search may be traversing many 

different hierarchy shapes simultaneously. The majority of searches occur in areas with 

the greatest data density, since more data is collected in the areas with the greatest 

research interest; thus, relatively few searches suffer from the “data scarcity” issue that 

causes slow response times for some searches over the s collection.  

In the currently deployed version of the search engine, we use the filter with Adaptive 

relaxation and Contraction, and the centroid-and-maxradius-based spatial filter. All 

search types perform well for our current catalog size, and for the expected organic 

growth of our catalog over the next 5 years.  

To support larger archives, we will need to modify the data model we use for variables as 

we described in Section 7.8. We must also learn to distinguish and accommodate 

hierarchies that lead to long response times, using techniques such as those identified in 

Section 7.9. Again, there is the opportunity for further improvements identified via 

additional research. 
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8 Future Research and Conclusions 

The research described in this dissertation consists of a concept of how large archives of 

data can be searched; a search model; a prototype showing the ideas and model are 

feasible; user studies supporting the utility of the ideas to the target user community; and 

initial performance work that identifies some successful approaches and areas for 

additional investigation.  

At the same time, the work we present is a limited proof-point; there are several research 

issues that we identified during this work but have not addressed. As we continue to work 

with the scientists and with the initial prototype, we develop additional understanding of 

the use cases, requirements, opportunities and challenges in this area. In this chapter, we 

discuss some of these potential areas of research.   

We describe needs and ideas in the areas of feature extraction (Section 8.1); managing 

metadata (Section 8.2); the issue of variable-name diversity (Section 8.3); increasing the 

sophistication of search capabilities (Section 8.4); and the goal of universal data search 

(Section 8.6). We present conclusions in Section 8.7. 

8.1 Feature Extraction 

Within Data Near Here, we focused on developing scanners for a small but representative 

set of scientific dataset formats (CSV files, NetCDF files, relational database tables, text 

webpages used to report data for several specific instrument types). We are working 

towards complete coverage of CMOP’s current data holdings, while keeping up with new 

observation capabilities. In some instances, new sources are incorporated with no extra 
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human action, such as for a deployment of an additional sensor gathering data of a 

previously seen type. We are currently testing a scanner for CMOP’s analytic models, the 

largest remaining segment of the archive not currently included in DNH’s metadata 

collection.  

We are beginning to incorporate datasets from other sources into the collection, allowing 

users to search for data across multiple organizations’ archives. We do not need to host 

the data to provide our search service – we only access it with an appropriate scanner and 

build summaries for our collection. Some of these sources are easy to incorporate – for 

example, when an archive collects similar kinds of measurements, such as temperature 

and salinity, but at another location, or uses similar data formats. For other sources, we 

have to create new feature extractors, but the data is comparable enough that we do not 

need to change similarity functions or search terms; for example, some observation points 

provide their data in columnar text format on a web page, which we read and summarize.  

At present, we treat a numeric environmental variable’s readings (as represented by the 

values in the dataset) as being equally distributed between the bounds (or, alternately, the 

bounds after having eliminated the highest and lowest observation), as is common 

practice in database indexing [84]. Some other distribution assumptions may be equally 

valid; alternatively, it may be appropriate to identify different distributions for each 

variable for at least some types of data. For each distribution assumed, a matching 

similarity function is required; further, the Match function must be modified to select an 

appropriate similarity function to use with each distribution. If different distributions and 
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similarity functions are used in a single search, interactions between the distributions and 

functions may produce a variety of rankings. User studies should be performed to 

validate that the result of rankings using such similarity functions and combinations 

match user expectations. 

As we expand into working with other kinds of data, we will wish to aggregate different 

kinds of features, depending on the type of data involved. Features for gene sequences 

will need to be handled differently from features for species names. These different types 

of features will need to be associated with appropriate similarity functions.   

We believe we could build an archive crawler that could take, for example, a base URL 

for an archive, then build metadata entries for all (recognizably formatted) datasets 

accessible from that base URL. A longer-range possibility is to embed the ideas from 

these scanners into a modified web crawler that could identify and crawl scientific 

archives, similar to the way that the Internet is crawled today.  

8.2 The Metadata Mess 

Some archive owners are sensitive to having their archive’s metadata exposed to the 

external world. As we found with CMOP [90], once we provide an easily-readable list of 

the variable names and units in use within an archive, we expect that archive curators will 

wish to normalize or repair at least some of the contents in their archive. We wish to 

provide them with the ability to request a rescan of those sections, and then provide tools 

so they can review and validate the results.  
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We also expect that there will be sections of the archive for which repair or normalization 

will be not possible, for technical or resource reasons. For these sections, we believe 

curators desire the ability to create a “gloss” over the variables and units; that is, they 

would like to provide a mapping from the actual names (as they exist in the datasets) to 

corrected names (that they wish existed in the datasets). We developed a proof-of-

concept of such a mapping capability [90]. In some cases, more than one name may even 

be desired, if different metadata or naming standards are in use. Based on our proof-of-

concept, we believe that it is possible, with some additional development, to provide such 

a capability. 

Some of the metadata standards commonly in use contain a mix of contextual metadata 

(ownership, terms and conditions, etc.) and inherent (derived from automated analysis of 

the data) metadata items [61]. In future work, we would like to provide a method for an 

archive to identify a relevant metadata standard, and then identify which fields can be 

automatically generated from the dataset collection. Contextual metadata, which is often 

the same or substantially the same for entire groups of datasets, could then be requested 

from the archive curator to fill out the required data. Archive curators should also be able 

to add to or modify information gained via the feature-extraction process. For example, a 

curator might add collection-level information to a set or collection of datasets within the 

archive, such as contact details for the responsible party, quality annotation, or usage 

restrictions. 
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As part of these capabilities, we would like to automatically segment datasets and create 

metadata hierarchies over them. We believe it is possible to develop a set of heuristics 

that can produce “good enough” results for many situations; for example, segmenting by 

time and space, by segmenting highly variable data into finer granules, or by adapting 

tools such as principal component analysis. In addition, we would expose an interface for 

archive curators to use to specify an alternate segmentation or hierarchy if desired – 

possibly at the cost of having to rescan the relevant datasets in order to implement the 

new parameters.  

We have also considered the possibility of using crowd-sourcing to assist with cleaning 

archive metadata; for example, allowing scientists to tag a variable in an archive as being 

“the same as” some other variable or concept; and then using the tags to enhance search 

results or search quality.  

We envisage moving to a two-catalog approach, with a “work” and a “production” 

catalog. The work catalog would contain the results of scanning and allow additional 

transformations to be applied to the results, if desired. Individual archive curators may 

apply different workflows to the data representing their own archives. Summaries would 

be promoted to the production catalog after moving through the appropriate workflow. 

For some summaries or for some archives, the workflow could be a “null” workflow, 

allowing summaries to move directly to the production catalog. Thus, archive curators 

would be afforded the opportunity to clean their metadata, but it would not be required.  
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8.3 The Variability of Variable Names 

We have discussed several times the challenge of variable-name diversity. The work 

described in this dissertation makes the simplifying assumption that a scientist can 

accurately name (or recognize, if presented with a list) a desired variable, and we address 

the issue of comparing the similarity of that variable’s data range to a desired data range 

(potentially including translating units).  

At a coarser level of detail is the problem of identifying whether the variable in a dataset 

is, in fact, the desired variable. In practice, diversity in variable names is a significant 

problem. This issue is in itself an unsolved research problem; we believe the issue of 

matching variable names can also be seen as an information-retrieval problem.  

While this challenge exists within a single archive, it compounds when considered across 

archives. Even in research fields for which metadata and naming standards exist, the 

challenge of updating variable names in an archive to one or more standards – or even to 

a single standard that changes over successive versions – is difficult for archives, most of 

which have extremely limited resources.  

We believe that there are several research problems to address within this topic of 

variable-name matching.  

Firstly, there is a set of translations or normalizations that an archive curator would be 

aware of, if given the opportunity to see in a central place the diversity of variable names 

in their archive. We have experienced this process at CMOP, where a scan of the archive 

brought to light the numerous ways that, for example, “water_temperature” was spelled 
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across his archive; we also experienced the effort involved in trying to reduce and 

normalize these variables. Work is underway to address the problems of normalizing the 

variable names in the archive [90]. Our approach is to distinguish the raw harvested 

metadata from that shown to the user, and to provide various methods for the archive 

curator to map from raw names to the desired variable names for their archive. There are 

multiple places in the overall harvest-and-search process where the adjustments may be 

made [90].  

However, we believe that even if every archive curator were able to present the metadata 

she wishes she had, we would still be left with a variable diversity problem on the side of 

the searchers. That is: searchers themselves are not consistent in naming the variables 

they search for. We believe that this problem can be segmented into several sub-

problems, and that each of these has different sources and must be addressed using 

different techniques.  

One source is the problem of synonymy, that is, using different terms for the same thing. 

The search engine would ideally be able to recognize and return data stored under a 

synonym. For data, synonymy can be extended to include unit translations: recognizing 

that the desired data range is in fact present in a dataset but stored using a different 

measurement unit. There are multiple approaches to semantic similarity that might apply 

here. Amongst other possibilities, Schwering distinguishes transformational distance 

(where distance is measured via the number or complexity of transformations required to 

transform one concept or object to another) from path distance (such as the length of the 
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shortest path between two nodes in a tree such as an ontology relating terms in a domain) 

[118]; the most effective (from a search user perspective) semantic similarity approach 

for addressing synonymy for units is likely to be different from the best approach for 

variable synonymy.  

A second source is the difference in research fields amongst scientists; an oceanographer 

may use a term differently from a microbiologist, say. This problem is also found in text 

retrieval, in the problem of polysemy (multiple meanings for the same syntactic term). 

This difference may be amenable to searchers giving some hints as to their source 

context, perhaps as part of an advanced search interface; latent semantic indexing 

techniques [31, 55] may be useful here. For data-search engines to be useful, both the 

archive and the user must be able to specify which context they intend, and the search 

engine must be enhanced to estimate similarity across contexts. Thus the matching of 

search terms to variables would not be fixed, but would depend on the searcher (and 

perhaps on the search). Ideally we would like to figure out the matching with the 

minimum of effort on the user side, avoiding profiles or additional dialogues with the 

search interface; as with our work so far, we are curious to see how far we can go using 

simple approximations, and perhaps handing the filtered result to a more sophisticated 

tool if desired by the searcher.  

Another source of diversity is the use of multi-level concepts. For example, fluorescence 

may be measured at different wavelengths and stored as separate variables in a dataset: 

fluores375, fluores400, etc. For a microbiologist studying the data, each of these 
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wavelengths is a separate variable. For the oceanographer, all wavelengths may be 

thought of as a single variable called “fluorescence.” Likewise, ocean modelers often 

regard surface_temperature as a variable distinct from water_temperature, since it 

represents a boundary condition of inputs from external influences (wind, sun). In 

essence, such situations are manifestations of property precedence, as described by 

Parsons and Wand [106], where attributes that appear different at one level can be 

regarded as the same at a more abstract level. We also note that a scientist may move 

through several phases of concept detail when searching for data. She may begin with a 

more general search, while trying to assess what data is available: is there any 

fluorescence information available, and if so, what kinds? On finding some, she becomes 

progressively more selective. This challenge exists in other fields; in our examination of a 

sensor archive of vehicular traffic data in an urban setting we identified the same issue. 

During a search, multi-level concepts present a number of challenges. Identifying what 

kinds of data might match a search is itself a matching problem, subject to some kind of 

(as yet undefined) similarity model and (presumably) estimable via some function. This 

variable-similarity function then overlays the data-similarity function developed in this 

dissertation. However, we posit that some rough simplifications could be applied here as 

well; for example, higher-level searches could be treated as existence searches only; or, a 

detailed search that only identifies low-similarity data could propose some alternate, 

similar terms that the search engine identifies as resulting in higher-similarity results.  
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For each dataset, we first match each search term to a feature of this dataset, or to no 

feature (performed by function Match). Our initial matching function, used in the user 

study and reflected in the pseudo-code herein, simply looks for an exact match between 

the variable named in the search term and a named column in the dataset.  (This approach 

is naïve and is not mandated by our model.)   

In addition, variable units are not currently standardized. Here, again, we have a diversity 

problem. Often, a variable can be reported using one of several different measures (such 

as, distance in millimeters, meters, or even feet), or with a single unit named in different 

ways (C, °C, Centigrade). In other cases, different measures are not directly translatable. 

In some cases, a variable may be misspelled (c instead of C), or unrecognizable. We 

believe that, as with variable diversity, it is possible to characterize kinds or sources of 

unit diversity and identify techniques that apply to each. Within Data Near Here we have 

experimented with several approaches, with promising results. We initially worked with 

the archive curator to correct and regenerate affected portions of the archive, with good 

results but with an increased understanding that this approach is only a partial solution 

and is not sustainable given the data growth and the commonly-experienced personnel 

resource constraints for such archives. In the search interface, we provide a list of the 

units found for each (identically) named variable. We have experimented with unit 

translations for some units. Where the units of the variable are unknown, we assume the 

variable is in the desired units, apply the distance measure, and then discount the result 

by a factor representing some level of uncertainty. As with variable-name diversity, some 
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of the cases may also be amenable to the “gloss” or hiding by applying rules in the 

metadata collection, while leaving the underlying data as is.  

Based on an initial analysis of sources of the diversity, it is likely that a variety of 

approaches will need to be applied to address the different aspects of matching variable 

names found in datasets to variable terms [90]. Ordering the search results will involve 

balancing similarity estimated at different levels of detail: for example, the similarity of 

the variable to the desired variable, along with the similarity of the data ranges. 

8.4 Increasing Search Sophistication  

Our initial research focused on numeric data search, as that form of data currently 

represents the overwhelming majority of our archive’s contents. As we expand our 

coverage, we will wish to handle more combinations of numeric and textual data and 

searches. Combining and weighting textual, numeric and other types of search terms 

(such as, for example, DNA sequences) remains an area for future research. While it is 

mathematically possible to combine scores from these two methods – for example, by 

including the score for each textual term in the final score normalization – we do not yet 

have a model for how scientists perceive these combinations. In particular, unlike the 

continuous numeric and the existence measures, we have not validated these additional 

approaches with formal user studies. There are technical issues to be addressed, but we 

believe the most pressing issue to be more user studies exploring how users expect these 

systems to operate.  
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For some searches, a large number of entries are found that are “perfect matches”, or 

have the same score (within some very small delta). Currently, entries with the same 

(rounded to integer) score are ordered from the entry containing the most observations to 

the entry with the least, on the assumption that more matching observations are better. 

However, we have no evidence to support this assumption; it may be that scientists 

consider entries with observations covering the entire search range as being the best fit 

for their information need. For example, when specifying a search area, a grid covering a 

large proportion of the search area may be a better fit than a single point with many 

observations. Again, we suggest user studies to discern whether there is a general 

preference amongst scientists that one could emulate (recognizing that no option will be 

the best choice in all situations). 

The current search interface design is naïve; alternatives should be explored. Additional 

desirable capabilities include the ability to remember a user’s searches for later repetition, 

and to register “standing searches” that will notify the user when new matching (above 

some score) datasets are added to the catalog.  

There is also the opportunity to provide more expressive search capabilities. However, 

research on Internet search has shown that even advanced users rarely use advanced 

search interfaces when they are available, preferring to continue using brief lists of search 

terms [66, 143]. Therefore we believe that research is required into what search 

capabilities are in fact useful before effort is invested here.  
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Recently, sophisticated search engines are taking word co-occurrences and context into 

account in their similarity scoring functions [78]; identifying ways to apply these 

concepts to dataset similarity is left to future research.  

Longer-range, we would like to suggest combinations of datasets to meet a scientist’s 

information need; for example, a search for oxygen and nitrogen data in a given location 

and time-period could suggest that two datasets, one containing oxygen data and one 

containing nitrogen data, could perhaps be combined; the combination might achieve a 

higher score than any individual dataset currently available. Ideally, we would be able to 

suggest data from multiple archives that could be correlated or integrated to produce new 

insights [49]; or, more generally, to support virtual datasets for which we could construct 

metadata in advance, then synthesize the dataset contents on demand.    

8.5 Scalability 

As noted in Chapter 7, more scalability research is required should we need to support 

much larger metadata catalogs. Alternate architectural choices and data models provide 

one possible avenue of research. We clearly showed that some hierarchy and search 

combinations lead to long response times; we also noted that, in the search suites and 

hierarchy combinations tested, there were a small number of searches that had the longest 

response times, and these searches tended to be the same across all the search suites. We 

believe additional research into identifying the characteristics of these searches and 

identifying methods targeted at improving their response times could provide substantial 

benefit.     
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8.6 Towards Universal Data Search 

We see little difficulty in deploying another instance of DNH at a different ocean 

observatory. The main additional work would be creating or adapting metadata extractors 

for datasets unlike those at CMOP, and making decisions about how to hierarchically 

decompose dataset collections. But what about using DNH for other scientific 

disciplines? In its efforts to ease data sharing, the oceanographic community 

differentiated between oceanography-specific issues and discipline-neutral problems, 

such as data access [27]. In the same way, we have differentiated between oceanography-

specific aspects of our implementation (the names of the environmental variables, the 

details of the hierarchy, the exact similarity function) and the discipline-neutral 

approaches and ideas, and have favored neutrality where possible. Thus, we believe that 

the overall architecture – and significant portions of the implementation – of DNH would 

readily carry over to other scientific repositories with a size and scope similar to CMOP. 

Other domains are likely to require new or modified similarity functions, and possibly 

additional ways to specify search terms and display results.  

Ideally, we would like to push our approach further, to be a universal search engine for 

locating relevant datasets across all scientific disciplines – the dataset equivalent of web 

search. There are significant challenges to realizing this vision. While CMOP is 

multidisciplinary, we have had success with a more-or-less-fixed mapping from search 

terms to dataset features. A general scientific search engine might have to do this 

mapping dynamically, on a per-search, per-variable or per-domain basis. The issue is not 
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just which physical phenomenon (temperature, pressure, velocity) is being measured or 

modeled, but also what entity is manifesting it. (Does “temperature” mean “water 

temperature” or “air temperature” or “star-surface temperature”?)   

We are curious whether our approach can be extended to all data search. Our user study 

results are very positive; however, it is possible that these positive results were related to 

some particularities of our use case.  For example, our use case differs substantially from 

the case of tables extracted from HTML, as explored by several researchers [20, 138, 

144]. We characterize these differences as follows: 

 We work with datasets of observations, with each individual dataset having a 

relatively simple and consistent internal structure, and with each row having a similar 

semantic meaning as other rows in the dataset. As a result, it is possible to summarize 

a large dataset by a relatively small and simple summary. This simplicity and 

regularity is not necessarily present in datasets found in HTML, where HTML may be 

being used as for presentation formatting in addition to (or instead of) representing 

the schema of the contained data. 

 Our scientists have a simpler pattern of information needs than the wide variety of 

searches posed to web search engines. We suspect that the scientist’s current 

formulations of their information needs may be constrained by the capabilities of the 

data extraction tools they currently use (such as using a Python script or Matlab 

expression to extract data from a large array). We exploit this relative regularity. 
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Searches on the web potentially address a much wider set of topics and variety of 

information needs. 

 As noted in Chapter 4, the summaries we create match quite closely the way the 

scientists describe the datasets they have or are looking for. As a result, there is a 

natural and direct translation from the scientist’s information need into a dataset 

summary that represents that dataset. We then apply a similarity measure to that ideal 

summary and the summaries stored in our metadata catalog. In the case of web search 

for data, the user’s information need may not be expressed in a way that is addressed 

by the way the data is formatted or presented. For example, a user may search for data 

in the Pacific Northwest, but a table that lists the desired data for each individual state 

may not have a summary for the Pacific Northwest.   

 Scientists don't have a “better” alternative for finding datasets that match their 

information needs. Two of our key questions in the second user study were: “Was 

using this tool quicker than finding the most relevant results by other means?” and 

“How valuable are the search results versus time expended?” In both cases, we 

received overwhelmingly positive results. In contrast, many web search engine users 

can expect to find answers to their specific questions in a text sentence in a document 

(“what is the capital of Tanzania?” ... “The capital of Tanzania is ...”), and these 

documents act as a competitor to the information in web tables. Thus, the lack of 

viable alternatives for the scientists positively influenced our results. 
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 In our user studies, our users were already working with their archive of interest 

(CMOP), since CMOP tends to collect data that is relevant to the studies that CMOP 

scientists are interested in performing. Therefore it was very likely that our archive 

contained data relevant to their research. As Data Near Here is broadened to cover 

more archives and its reach extended to scientists less familiar with what data might 

be available in the covered archives, it is likely that issues such as semantic matching 

and appropriate similarity measures (as described elsewhere in this chapter) will 

become a much greater issue.  

We believe that exploration of these differences could provide additional insight into 

improving data search in scientific and non-scientific fields. The continued increase in 

the quantity and complexity of multidisciplinary scientific research is making it difficult 

for scientists to find data by navigating individual portals for each type of data they 

desire. We believe there is the need for a general approach such as ours to scientific data 

search. We believe that many of the research issues that we have identified were probably 

raised at the beginning of text search. Research to resolve these doubts have led to the 

plethora of text search techniques in effective use today.    

8.7 Conclusion 

Just as Internet search engines began with simple functions and have become 

progressively more sophisticated and complex as we better understand and can 

automatically replicate user search behavior, we believe that much more progress can be 

made in helping searchers locate relevant data. Some big-data projects store output from 
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just a single instrument (telescope, collider), and scientists can fairly readily locate the 

data they need. But in other cases, such as ocean observatories, big data means many 

datasets, of multiple types, possibly in more than one archive, and navigating among 

them to find relevant data is a challenge.  

This dissertation presents a novel approach to this problem by adapting ideas from 

Internet search. We scan datasets, potentially partitioning them, and create a catalog entry 

summarizing the contents of each. We allow compound geospatial, temporal and variable 

searches across a collection of datasets containing numeric data; search terms are scaled 

to adjust for differences in the search ranges, data ranges and units. Search results consist 

of datasets ranked by relevance and presented in real time. The approach combines 

hierarchical metadata extracted from the datasets with a method for comparing similarity 

between datasets and a scientist’s search. This approach complements existing 

visualization techniques by allowing scientists to quickly identify which subset of a large 

collection of datasets they should review or analyze. The combination of dataset 

summaries, using the metadata for search, the hierarchical metadata design and overall 

loosely coupled architecture allows for scalability and growth across large, complex data 

repositories.  

We believe these concepts complement rather than replace other, domain- or task-specific 

tools. Our end goal is two-fold: to allow a scientist to locate within the “data deluge” the 

best-fit, most-promising datasets to analyze in the limited time she has available; and to 
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provide tools so that any interested archive owner could present to the world the metadata 

he wishes he had, instead of the metadata he currently has.  

We are encouraged by our experiences in applying IR techniques to dataset ranked 

search, and by the enthusiasm of the scientists for our work. We believe our techniques 

have broad applicability, and that as data volumes and heterogeneity grow, the need to 

apply the concepts such as those we have developed here and for tools such as that 

prototyped in “Data Near Here” will only increase. We believe that scientists really are 

looking for a “Google for data”, and that our work is a step in that direction.  

Large archives of data only have value commensurate with the use and reuse that can be 

made of their contents; and data cannot be used if it cannot be found. The harder it is to 

find data, the fewer questions are asked  [49, 142]. If relevant data cannot be found in the 

archive even when it is stored there – if the data is “lost” – the archive’s value is 

diminished. With the constant need to achieve more with fewer resources, tools such as 

ours are required to reduce the overhead associated with locating, downloading and 

segmenting data that is experienced in current scientific research. 

By adapting techniques first developed for similar challenges in the world of text 

documents, we believe that – at least for scientific data – what was lost, can still be 

found. 
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 Appendix A: DNH PostgreSQL Database Indexes 

 

CREATE INDEX metadata_files_parent ON dnh.metadata_files  

USING btree (parent, kids , mintime , maxtime , id, count ); 

CREATE INDEX metadata_files_parentnull ON dnh.metadata_files  

USING btree WHERE parent IS NULL; 

CREATE INDEX metadata_vars_idvar ON dnh.metadata_vars  

USING btree (variable, varmin , varmax , varunits, id); 

CREATE INDEX metadata_vars_varid ON dnh.metadata_vars  

USING btree (variable, id, varunits); 
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Appendix B: Variable List 

Table B.1 lists the variables available from the user interface during the time of the user 

study. Research not described in this dissertation (but described in Megler[90]) added an 

additional layer of organization (“concept”, denoting the higher-level concept that many 

of these variables are measures of) and a translation of the column name within the 

dataset to the actual variable represented. The list of concepts and variables chosen by 

CMOP, and the column names mapped to them, is shown in Table B.2. An additional set 

of 222 column names were designated as column names that should be “not visible” to 

the user until the actual dataset was downloaded; these columns often represent 

calculated, statistical or quality assurance measures.   

 

Table B.1. Variable Names at the Time of User Study 

airtemp 

alongvel 

altimeter 

altimeter_std 

apna_mode 

A_Tideheight 

atmpres 

avg_atmosphericpressure 

avg_atmospherictemp 

avg_bottle_depth 

avg_cdom_voltage 

avg_chl 

avg_chla_fluorescence 

avg_conductivity 

avg_ct_water_temperature 

avg_fluorescein 

avg_fluorescence 

avg_ft_conductivity 

avg_ft_par 

avg_ft_salinity 

avg_ft_temp 

avg_longwave_radiation 

avg_nh4 

avg_nn 

avg_no2 

avg_oxygen 

avg_par 

avg_ph 

avg_phaeophytin 

avg_po4 

avg_pressure 

avg_quality 

avg_salinity 

avg_shortwave_radiation 

avg_silicate 

avg_temperature 

avg_transmiss 

avg_turbidity 

avg_winddirection 

avg_windspeed 

bindepth 

bindist 

bottom 

bp 
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bp_fl 

bp_leu 

bp_leu_fl 

bs_avg 

capo4 

cast_dataset 

cdom 

clay 

co2 

coastal_upwelling_index_45N 

coastal_upwelling_index_48N 

cond 

conductivity 

conductivity_std 

count 

cr_flow_at_bonneville 

crossvel 

cr_residence_time 

cumulative_flow 

cv_bottle_depth 

cv_chl 

cv_ft_salinity 

cv_ft_temp 

cv_nh4 

cv_nn 

cv_no2 

cv_phaeophytin 

cv_po4 

cv_salinity 

cv_silicate 

cv_temperature 

dataset 

deploymentid 

depth 

Dist_from_Astoria 

doc 

elevation 

estoceant 

fl_fluores 

fluores 

fluores375 

fluores400 

fluores420 

fluores435 

fluores470 

fluores505 

fluores525 

fluores570 

fluores590 

fluorescein 

fluorescein_std 

fluorescence 

fluorescence_std 

flux 

fm 

fo 

height 

humidity 

isus_inter 

isus_slope 

leak 

nh3 

nitrate 

no2 

northwind 

nox 

numbottles 

num_bottles 

oxygen 

oxygensat 

oxygen_saturation 

oxygen_saturation_std 

oxygen_std 

pacific_decadal_oscillation_in_month 

par 

par_std 

ph 

pH 

ph_std 

phycoeryth 

po13c 

po15n 

po4 

poc 

pon 

pres 

pressure 

pressure_std 

pump 

quality 

q_yield 

salinity 

salinity_std 

salt 

sand 

scan 

scattcoef 

sdocnoxy 

sdocntemp 

secondary_conductivity 

secondary_conductivity_std 

secondary_fluorescein 
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secondary_fluorescein_std 

secondary_salinity 

secondary_salinity_std 

secondary_temperature 

secondary_temperature_std 

si 

silt 

so_slope 

status 

st_slope 

sum 

sumscat 

tau 

tdn 

tdp 

temp 

temperature 

temperature_std 

time 

transcount 

transmiss 

transmiss_std 

turbidity 

turbidity_std 

vapo4 

vel 

vel_e 

vel_mag 

vel_n 

vel_vert 

voltage_channel_0 

voltage_channel_0_std 

voltage_channel_1_std 

voltage_channel_2_std 

voltage_channel_3_std 

voltage_channel_4_std 

voltage_channel_5_std 

voltage_channel_6_std 

voltage_channel_7_std 

water_electrical_conductivity 

water_pressure 

water_salinity 

water_temperature 

winddir 

windgust 

windspeed 

xwind 

ywind 

 

 

Table B.2. Concepts, Variable and Column Names (as of March, 2014) 

Concept Variable Column 

calculated_data estoceant estoceant 

calculated_data estoxygen estoxygen 

calculated_data sdocnoxy sdocnoxy 

calculated_data sdocntemp sdocntemp 

calculated_data so_slope so_slope 

calculated_data st_slope st_slope 

cDOM cdom cdom 

cDOM cdom cdom_voltage 

cDOM cdom_voltage avg_cdom_voltage 

conductivity cond avg_conductivity 

conductivity cond avg_ft_conductivity 

conductivity cond conductivity 

conductivity cond secondary_conductivity 

conductivity water_electrical_conductivity water_electrical_conductivity 

metadata apna_mode apna_mode 

metadata cumulative_flow cumulative_flow 

metadata doc doc 
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Concept Variable Column 

metadata filename bpsourcefilename 

metadata isus_inter isus_inter 

metadata isus_slope isus_slope 

metadata leak leak 

metadata notes bp_notes 

metadata notes chla_notes 

metadata notes dna_test_notes 

metadata notes nutrients_notes 

metadata notes ws_notes 

metadata pump pump 

metadata sampleid sampleid 

metadata sum sum 

metadata sumscat sumscat 

metadata tau tau 

metadata transcount transcount 

metadata vessel vessel 

microbiology bp bp 

microbiology bp_fl bp_fl 

microbiology bp_leu bp_leu 

microbiology bp_leu_fl bp_leu_fl 

microbiology dna_tests dna_tests 

Murrays_dye_experiment fl_fluores fl_fluores 

Murrays_dye_experiment fl_fluores fluorescein 

Murrays_dye_experiment fluorescein avg_fluorescein 

nutrient capo4 capo4 

nutrient nh3 nh3 

nutrient nh4 avg_nh4 

nutrient nitrate nitrate 

nutrient nitrate voltage_channel_6 

nutrient nitrate voltage_channel_7 

nutrient nn avg_nn 

nutrient no2 avg_no2 

nutrient no2 no2 

nutrient nox nox 

nutrient po13c po13c 

nutrient po15n po15n 

nutrient po4 avg_po4 

nutrient po4 po4 

nutrient POC poc 

nutrient PON pon 

nutrient si si 

nutrient silicate avg_silicate 

nutrient tdn tdn 
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Concept Variable Column 

nutrient tdp tdp 

oxygen oxygen avg_oxygen 

oxygen oxygen oxygen 

oxygen oxygen voltage_channel_2 

oxygen oxygensat oxygensat 

oxygen oxygensat oxygen_saturation 

pH-CO2 co2 co2 

pH-CO2 ph ph 

pH-CO2 pH avg_ph 

pH-CO2 pH ph 

pigment chloro avg_chl 

pigment chloro_fl avg_chla_fluorescence 

pigment fluores avg_fluorescence 

pigment fluores chla_fluorescence 

pigment fluores fluorescence 

pigment fluores voltage_channel_0 

pigment fluores voltage_channel_1 

pigment fluorescence fluorescence 

pigment fm fm 

pigment fo fo 

pigment phaeophytin avg_phaeophytin 

pigment phycoeryth phycoeryth 

pigment phycoeryth phycoerythrin 

pigment q_yield q_yield 

river discharge flux flux 

salinity salt avg_ft_salinity 

salinity salt avg_salinity 

salinity salt salinity 

salinity salt secondary_salinity 

salinity water_salinity water_salinity 

temperature temp atmospherictemperature 

temperature temp avg_ct_water_temperature 

temperature temp avg_ft_temp 

temperature temp avg_temperature 

temperature temp ct_water_temperature 

temperature temp secondary_temperature 

temperature temp temperature 

temperature water_temperature water_temperature 

tides elevation elevation 

tides water_pressure water_pressure 

time-space altitude altitude 

time-space bindepth bindepth 

time-space bottom avg_beddepth 
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Concept Variable Column 

time-space bottom voltage_channel_4 

time-space depth avg_bottle_depth 

time-space depth depth 

time-space depth samplingdepth 

time-space height height 

time-space latitude latitude 

time-space longitude longitude 

time-space pres atmosphericpressure 

time-space pres avg_pressure 

time-space pres pressure 

time-space site site 

time-space time time 

turbidity backscat backscatter 

turbidity bs_avg bs_avg 

turbidity clay clay 

turbidity sand sand 

turbidity scattcoef scattcoef 

turbidity silt silt 

turbidity transmiss avg_transmiss 

turbidity transmiss transmiss 

turbidity transmiss voltage_channel_3 

turbidity turbidity avg_turbidity 

turbidity turbidity turbidity 

turbidity turbidity voltage_channel_0 

water_current alongvel alongvel 

water_current crossvel crossvel 

water_current vel vel 

water_current vel_e vel_e 

water_current vel_mag vel_mag 

water_current vel_n vel_n 

water_current vel_vert vel_vert 

weather airtemp airtemp 

weather airtemp avg_atmospherictemp 

weather atmpres atmpres 

weather atmpres avg_atmosphericpressure 

weather humidity humidity 

weather longwaver avg_longwave_radiation 

weather longwaver longwave_radiation 

weather northwind northwind 

weather par avg_ft_par 

weather par avg_par 

weather par par 

weather par voltage_channel_5 
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Concept Variable Column 

weather shortwaver avg_shortwave_radiation 

weather shortwaver shortwave_radiation 

weather winddir avg_winddirection 

weather winddir winddir 

weather winddir winddirection 

weather windgust windgust 

weather windspeed avg_windspeed 

weather windspeed windspeed 
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