
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2010

Addressing Automated Adversaries of Network Applications
Edward Leo Kaiser
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Kaiser, Edward Leo, "Addressing Automated Adversaries of Network Applications" (2010). Dissertations and Theses. Paper 4.

10.15760/etd.4

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/4?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.4
mailto:pdxscholar@pdx.edu

Addressing Automated Adversaries of Network Applications

by

Edward Leo Raymond Kaiser

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Wu-chang Feng, Chair

Wu-chi Feng

Byrant York

Jonathan Walpole

Scott Burns

Portland State University

©2010

i

ABSTRACT

The Internet supports a perpetually evolving patchwork of network services and

applications. Popular applications include the World Wide Web, online commerce,

online banking, email, instant messaging, multimedia streaming, and online video

games. Practically all networked applications have a common objective: to directly

or indirectly process requests generated by humans. Some users employ automation

to establish an unfair advantage over non-automated users. The perceived and

substantive damages that automated, adversarial users inflict on an application

degrade its enjoyment and usability by legitimate users, and result in reputation

and revenue loss for the application’s service provider.

This dissertation examines three challenges critical to addressing the un-

desirable automation of networked applications. The first challenge explores

individual methods that detect various automated behaviors. Detection methods

range from observing unusual network-level request traffic to sensing anomalous

client operation at the application-level. Since many detection methods are not

individually conclusive, the second challenge investigates how to combine detection

methods to accurately identify automated adversaries. The third challenge

considers how to leverage the available knowledge to disincentivize adversary

automation by nullifying their advantage over legitimate users.

The thesis of this dissertation is that: there exist methods to detect automated

behaviors with which an application’s service provider can identify and then

systematically disincentivize automated adversaries. This dissertation evaluates

this thesis using research performed on two network applications that have different

access to the client software: Web-based services and multiplayer online games.

ii

For my parents and Ashley.

iii

ACKNOWLEDGEMENTS

This dissertation represents the culmination of my formal educational journey.

Along the way, countless people shaped my education in ways both large and

small. I would like to express my gratitude to all those who influenced me.

I would like to thank my advisor, Professor Wu-chang Feng, for his guidance

throughout the course of this work. When I was stuck on a problem, his valuable

advice always offered me a new perspective from which to approach the problem.

From providing me with a framework for my research to reading and patiently

editing my papers, each of his many contributions nudged me incrementally closer

to completing my dissertation. I would also like to express my appreciation to

Professor Wu-chi Feng, Professor Bryant York, Professor Jonathan Walpole, and

Professor Scott Burns for serving on my dissertation committee.

I have benefited greatly from my fellow graduate students at Portland State

University and OGI. Their insights, discourse, and foosball challenges provided the

grist for much of my research. Among them are Chris Chambers, Francis Chang,

Thanh Dang, Akshay Dua, Bill Howe, Alex Ross, Phillip Sitbon, and Jim Snow.

I would also like to thank the excellent staff at Portland State University

and OGI for their expert administrative assistance and willingness to share their

knowledge of school procedures. Special thanks to Kathi Lee, René Remillard,

Beth Phelps, Dana Director, Lorie Gookin, Barb Mosher, and Cindy Pfaltzgraff.

Finally, I would like to thank my family. My wife, Ashley, for her faith in me,

seemingly limitless patience, and editorial skills. And my parents and brother for

their unflagging encouragement throughout my educational journey.

Thank you to all my colleagues, friends, and family. With such wonderful

people in my life, I look forward to the exciting challenges that lie ahead.

iv

TABLE OF CONTENTS

Abstract . i

Dedication . ii

Acknowledgements . iii

List of Tables . vi

List of Figures . vii

List of acronyms . ix

1 Introduction . 1

1.1 The Automation Problem . 1

1.1.1 Examples of Adversarial Automation 3

1.1.2 Root Causes of Adversarial Automation 15

1.2 Research Challenges . 17

1.2.1 What methods can be used to detect automated behavior? . 17

1.2.2 How can detectors be combined to best identify adversaries? 17

1.2.3 How can adversarial automation best be disincentivized? . . 17

1.3 Dissertation Outline . 18

1.3.1 Thesis Statement . 20

2 Detection Methods . 21

2.1 Introduction . 21

2.2 The Cheating Problem . 22

2.2.1 A Distinct Security Problem . 22

2.2.2 Cheating Methods . 24

2.3 The Fides Approach . 31

2.3.1 The Auditor . 35

2.3.2 The Controller . 38

2.4 Evaluation . 43

2.4.1 Experimentation . 44

2.4.2 Limitations . 58

2.4.3 Discussion . 60

v

2.5 Related Work . 63

2.6 Conclusion . 65

3 Adversary Identification . 67

3.1 Introduction . 67

3.2 The Problem with Online Behavior . 69

3.2.1 The Case for Reputation Systems 70

3.3 The PlayerRating Approach . 71

3.3.1 Agent Algorithms . 76

3.4 Evaluation . 83

3.4.1 Experimentation . 84

3.4.2 Limitations . 89

3.4.3 Discussion . 90

3.5 Related Work . 91

3.6 Conclusion . 92

4 Disincentivizing Adversarial Automation 94

4.1 Introduction . 94

4.2 The Resource Consumption Problem 95

4.2.1 The Shortcomings of CAPTCHAs 96

4.2.2 The Case for Proof-of-Work . 97

4.3 The kaPOW Approach . 98

4.4 Evaluation . 108

4.4.1 Experimentation . 109

4.4.2 Limitations . 128

4.4.3 Discussion . 129

4.5 Related Work . 130

4.6 Conclusion . 131

5 Conclusion . 132

References . 135

vi

LIST OF TABLES

1.1 Summary of adversarial automation examples 14

2.1 Cheat methods best detected by Auditor measurements 37

2.2 Efficiency of Auditor routines . 45

2.3 Efficiency of Controller routines . 46

2.4 Memory layout commonality . 57

3.1 Characteristics of the Slashdot Zoo subset 84

3.2 Efficiency of PlayerRating routines . 88

4.1 Comparison of work function constructions 100

4.2 Throughput of Geographic kaPOW routines 119

4.3 Largest U.S. metropolises . 121

4.4 Ticket acquisition breakdown . 125

vii

LIST OF FIGURES

1.1 Example of flooding-based Distributed Denial-of-Service attack . . . 6

1.2 Solicitous spam comment posted on YouTube 8

1.3 Gold farmer botting path . 9

1.4 Example TicketMaster CAPTCHA . 12

2.1 Addition of Fides to the client-server game architecture 31

2.2 Internal structure of the Fides Auditor 35

2.3 Internal structure of the Fides Controller 38

2.4 Example execution call graph . 40

2.5 Execution profile of the Homebrew gameplay loop 48

2.6 Stack trace audits required to detect cheats for the Homebrew game 49

2.7 Page hash audits required to detect cheats for the Homebrew game 50

2.8 Execution profile of the Warcraft III gameplay loop 52

2.9 Page hash audits required to detect Warcraft III maphack cheats . . 53

2.10 Warcraft III virtual memory usage . 56

2.11 One functional location of Intel’s Manageability Engine 62

3.1 Addition of PlayerRating to the game system at large 71

3.2 Example social network of players . 73

3.3 User interface addition for rating peers 77

3.4 Iterating UpdateReputations() over the example social network . . 82

3.5 Peer reputation displayed in a tooltip 83

3.6 PlayerRating reputation convergence 85

3.7 PlayerRating collusion resistance . 86

4.1 Unintelligible CAPTCHAs . 96

4.2 Addition of kaPOW to Web server . 98

4.3 Internal structure of mod kaPOW . 99

4.4 Comparison of hash-based work functions 101

4.5 HTML markup of modified example document 105

4.6 HTML markup of kaPOW error page 107

4.7 Flooders vs. default Web server . 109

4.8 Flooders vs. mod kaPOW . 110

viii

4.9 Flooders vs. mod kaPOW with iptables filter 111

4.10 Solving flooders vs. mod kaPOW . 112

4.11 Request processing time vs. webpage URLs 113

4.12 Request processing time vs. webpage size 114

4.13 Simulator validation . 120

4.14 Adversary ticket acquisition . 122

4.15 Ticket purchase probability . 124

4.16 Effectiveness of various difficulty algorithms 126

ix

LIST OF ACRONYMS

API Application Programming Interface

ASLR Address Space Layout Randomization

CAPTCHA Completely Automated Turing test to tell Computers and

Humans Apart

CPU Central Processing Unit

DLL Dynamic Link Library

DOS Denial-of-Service

FPS First Person Shooter

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IAT Import Address Table

IA-32 Intel Architecture 32-bit

I/O Input/Output

IP Internet Protocol

MMORPG Massively Multiplayer Online Role Playing Game

POW Proof-of-Work

RMT Real Money Trade

RTS Real Time Strategy

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

1

Chapter 1

INTRODUCTION

1.1 THE AUTOMATION PROBLEM

By design, the Internet supports a perpetually evolving patchwork of networked

applications and services. Popular applications include the World Wide Web,

online commerce and banking, email, instant messaging, blogging, multimedia

streaming, and multiplayer online video games. Practically all networked applica-

tions have a common objective: to directly or indirectly process requests generated

by humans. Specifically, the above applications all directly inform, entertain, or

transact business with human users. Other fundamental Internet services like the

Domain Name System (DNS) [81] or the Network Time Protocol (NTP) [80] are

used by those higher level applications and thus indirectly process human requests;

users rarely query them directly.

Malicious Users Automate Their Participation. Often malicious (i.e.,

adversarial) users of network applications employ automation to gain an advantage

over or simply frustrate the non-automated users. That advantage translates

to unfair access to the service, sometimes completely denying human users any

access at all. Such adversaries have political, reputational, or fiscal motivations for

employing automation. Adversaries have little legal disincentive to automate since

they can simply operate in jurisdictions with weak cyber-laws and enforcement.

Exacerbating the situation, there are few technological barriers to automate as

the automation of network applications is inexpensively achieved through software

agents commonly referred to as “Internet robots,” or simply as “bots.”

2

Adversary Automation Impacts Application Viability. Adversarial

automation affects not only legitimate users but it also threatens the very viability

of networked applications. An application’s developer or proprietor (hereon

referred to as the “service provider”) runs the application to distribute ideas or

goods. Adversarial automation makes the application less accessible, less efficient,

and more costly for the average user and consequently results in lost revenue for

the service provider.

Some adversaries intentionally attack the availability of a service. Adversaries

perform these attacks (referred to as denial-of-service attacks) out of some grudge

for the service provider or when hired to do so by a competitor of the service

provider. When the service is unavailable, the service provider loses potential

customers and the corresponding revenues. Other adversaries unintentionally

lower the efficiency of an application while performing their automation. For

example, email spammers intend to solicit business rather than disrupt legitimate

correspondence. Other adversaries, like automated ticket scalpers, drive up the

cost of popular commodities. While the scalpers turn a quick profit, legitimate

customers pay a higher price for the tickets than they otherwise would have. The

price represents revenue that could have been captured by the original vendor, yet

may have been forgone in an effort to make the tickets available to a wider market.

Additionally, the perception of automated adversaries running rampant within

an application (e.g., cheaters in online games) hurts the reputation of the service

provider. In saturated and very competitive markets, a service provider’s tarnished

reputation will discourage participation by legitimate users and can cause the

application to fail even though it may be accessible, efficient, and inexpensive.

While we oppose adversarial automation, we support service provider au-

tomation as it stands to make applications more accessible, more efficient, and

less expensive for users. Specifically, we argue that service providers must have

an automated approach to mitigating automated adversaries. This dissertation

presents methods for mitigating adversarial automation in networked applications.

3

Legitimate Automation Exists. While uncommon, not all client au-

tomation is harmful. In fact, some types of client automation are beneficial

when properly identified and operated according to directives laid out by the

service provider. One notable example is the prevalence of “web crawlers” which

algorithmically index the World Wide Web on behalf of search engines such as

Google. When restrained from overwhelming a website’s resources, web crawlers

benefit a website as it becomes locatable through web-searches by potentially

interested users. The important distinction is that legitimate automation supports

rather than undermines the goals defined by the service provider.

1.1.1 Examples of Adversarial Automation

This section discusses specific examples of adversarial automation which negatively

impacts various network applications. These examples are classified by the main

advantage that each type of automation provides: repetition, accurate timing,

or action precision. Some examples demonstrate that clever adversaries apply a

hybrid human-software approach; automating all possible tasks of the application

and merely engaging a human to circumvent existing anti-automation mechanisms.

Table 1.1 on page 14 summarizes these examples.

Repetition-Based Automation

Repetition-based automation performs very simple, structurally repetitive tasks

tirelessly, more quickly, and less expensively than hired humans could do alone.

Repetition is the dominant advantage that automation provides to adversaries as

evidenced by the breadth of the examples presented next.

Port Scans. At the network and transport layers of the Internet [130], port

scans are often a precursor to other network-level attacks. A port scan is an

automatically-generated sequence of packets sent to a target network in order to

probe and enumerate its connected hosts. The port scan lists all the networked

machines and the network services running on each of them.

4

Port scans are effective because network services are commonly built upon one

of two transport layer protocols: the Transmission Control Protocol (TCP) [91] or

the User Datagram Protocol (UDP) [90]. Both protocols rely upon ports (hence the

name “port scan”) to identify and partition traffic to different network applications

running on the same machine. Network services wait for client requests at well-

defined application-specific ports. By probing and eliciting a response from a

specific port, a port scanner can determine whether or not a specific application is

running on the target machine.

The adversary perpetrating an automated port scan is often searching for

computers running application software with an unpublished or unrepaired exploit

which they intend to attack before it is fixed. This type of port scan, called a “port

sweep,” probes a small number of ports across a large number of machines. At a

later time, the adversary may manually subvert one or more of the vulnerable

machines as a gateway into the private network (e.g., corporate, military, or

government networks) or use a large set of vulnerable hosts as the initial hit-list

of machines to infect with an automated network worm [107].

By themselves, port scans do not catastrophically disrupt the applications they

probe. However, by mitigating port scans an application service provider can

reduce the likelihood of being targeted by an imminent attack that might bring

down their application or co-opt their machines into attacking other network hosts

or applications.

Network Worms. A network worm is a self-replicating malicious computer

program. The worm has two functions: to infect additional network hosts and to

deliver a malicious payload programmed by the adversary. The first function often

involves port scans to search for new network hosts with identical vulnerabilities.

While the occasional port scan is not disastrous, a worm’s port scan traffic grows

exponentially as more network hosts are infected. As demonstrated by the Slammer

Worm in January 2003 [82], this can have a crippling effect on the network and

impact the accessibility of all network applications.

5

The second function of the worm is to execute its malicious payload. In a

growing number of cases, the payload directly assaults the privacy of the machine

owner and is hence referred to as “spyware.” This payload seeks out and reports

back any sensitive personal information found on the machine. Specialized spyware

known as a “key-loggers” record passwords entered by users via their keyboards.

Most commonly though, worms install a simple process that awaits commands

issued by the adversary at a future time. In effect, the adversary uses the worm to

create an army of subservient networked machines (referred to as a “botnet”) ready

to perpetrate other repetitious attacks. Botnet machines (individually referred to

as “zombies”) are co-opted without their owner’s knowledge and the adversary

attempts to operate them in a manner that minimizes the likelihood that owners

discover and remove the zombie processes. Botnets range in size from hundreds to

tens of thousands of zombie machines. In some remarkable cases, botnets consisting

of hundreds of thousands of zombies have been recorded [21, 23].

Denial-of-Service Attacks. Denial-of-Service (DOS) attacks directly

assault the accessibility of an application by overwhelming the service provider

with bogus requests. The unrelenting barrage of bogus requests exhausts all the

service provider’s resources so that it cannot respond to legitimate user requests.

Distributed Denial-of-Service (DDOS) attacks often leverage botnets to radically

scale the resource imbalance in the adversary’s favor. This also allows the adversary

to assign the attack effort over many zombie machines to reduce the likelihood

that individual zombies are discovered and repaired. Vulnerable service provider

resources include network bandwidth, computation cycles, and machine memory.

Regardless of the application, network bandwidth is a vulnerable service

provider resource. As an expensive ongoing operating cost, service providers

rationally provision only enough bandwidth to handle the expected client load

for the application with some bandwidth to spare. When an adversary has greater

bandwidth at their disposal than the service provider (e.g., the adversary controls

a large botnet), it can swamp the application with a flood of network packets.

6

Figure 1.1: Example of flooding-based Distributed Denial-of-Service attack.

Each zombie machine generates a small, steady, packet flow. The flows converge as

they approach the victim and eventually fully congest a network link to the point

where packets, including those from legitimate users, are discarded.

The attack congests the service provider’s connection to the Internet as illustrated

by Figure 1.1. In this state, network packet buffers are filled to capacity and

are forced to discard packets. During a persistent packet flood, many packets

belonging to legitimate clients are discarded, thereby disrupting or completely

denying communication with the service provider.

To orchestrate a computation-depletion DOS attack, an adversary employs

automation to repeatedly send application-specific requests that are difficult for

the service provider to process. These requests are often easy for the adversary

to generate but are hard for the service provider to dismiss outright since they

adhere to the application’s protocol. The complex yet bogus requests consume a

disproportionately large amount of the service provider’s processor cycles, reducing

the cycles it has left to process legitimate requests. This critically lowers the

application’s efficiency and negatively impacts its accessibility.

7

Memory consumption attacks operate in much the same manner. An intent

adversary repeatedly sends application-specific requests to participate in the

application’s protocol just to the point where the service provider allocates some of

its limited memory to transacting with the adversary. Using only a few machines,

an adversary can keep all of the service provider’s memory resources committed

to connections waiting for further correspondence that will not come. Although

those connections will eventually timeout and be reset, the adversary can continue

to reconnect and reoccupy the resources as frequently as they timeout.

Email and Instant Messaging Spam. Spam is a nuisance that practically

every email user has experienced at some time or another. Spam is any unwanted

solicitous or duplicitous electronic message. While widely recognized as a problem

for email, spam is also a problem for other electronic communication methods,

including instant messaging and messaging within online video games. Solicitous

spam often advertises goods at unbelievably low prices in an attempt to sell

imitation goods to the victim or to outright defraud them. Deceptive spam

messages, known as “phishing” attacks, trick recipients into believing that the

sender is the administrator of their email account, online bank account, or another

web-based account. Through this deception, the adversary elicits victims to

reveal their passwords or other personal information. An adversary on a spam

campaign typically employs a botnet to generate and deliver messages to a large,

indiscriminate set of recipients en masse. While the success rate for any single

message is low, the success of even a small fraction of messages makes this

automation immensely profitable for the adversary.

Comment Spam. Similar to spam, adversaries flood websites that allow

users to submit comments with solicitous messages. Often an adversary uses a

specialized web crawler to locate websites that accept user comments and then

automatically enter the spam message. This nuisance is colloquially referred to

as “crap-flooding” by bloggers frustrated about the impact of this indiscriminant

attack on their blogs.

8

Figure 1.2: Solicitous spam comment posted on YouTube. The comment

(highlighted in the lower left corner of the image) is advertising “quality

medications at very good prices” by following a link to a temporary website.

While comment spammers may be trying to solicit business directly from

readers, spammers also have another goal which is unique to this application:

bolstering the rank of their website in search engine results. Specifically, they

intend to improve their rank within Google search results, hence this attack is

also known as “Google bombing.” This motivation exists because the PageRank

algorithm [87] that powers the Google search engine sorts search results partially

by how well each webpage is connected to the rest of the Internet. In particular,

a result is biased towards the top of the results list if other popular websites

link to it numerous times, effectively favorably endorsing it. Ironically YouTube,

which is owned by Google, is a fashionable website for adversaries to comment

spam as shown in Figure 1.2. Those comment spammers hope to transform some

of YouTube’s massive popularity into improved ranking of their own temporary,

commercial website.

9

Figure 1.3: Gold farmer botting path. This path was historically used by gold

farming bots to mine valuable ore in the World of Warcraft zone Winterspring.

Dots indicate the spawn locations of precious Rich Thorium Ore nodes.

Leveling & Grinding Bots. In massively multiplayer online role playing

games (MMORPGs) like World of Warcraft [13], a player’s social status is closely

tied to the exceptionality of their in-game avatar. Specifically, players strive

to have high-level avatars with rare equipment. Game developers make this

goal non-trivial so that players must continue to play the game (while paying

a monthly subscription fee) to accomplish this. Furthermore, to keep the game

interesting, the developer periodically patches the game to include new, more

powerful equipment and allow avatars to attain new, previously unattainable levels.

Individuals without the patience to play the game and achieve these goals resort

to automated software to play their avatar on their behalf. The act of mindlessly

and continuously hunting virtual monsters is referred to as “grinding.” Automated

software that grinds character levels, in-game currency, or virtual loot are called

“gliders” and are of great concern to game developers because they shorten the

normal life cycle of virtual assets.

10

Game automation spawned the Real Money Trade market (RMT) [108] where

virtual gold and items are exchanged for real currencies. Enterprising individuals

in foreign countries exploit cheap labor to manage the automation of multiple

avatars simultaneously [58]. The laborers (disparagingly referred to as “gold

farmers”) dislodge avatars that get stuck on terrain obstacles, avoid vigilante

players attempting to disrupt them, and dispute game moderators investigating

player-generated reports about their automated behavior. Figure 1.3 shows a

circuit within a World of Warcraft zone used at one time by gold farming bots

to gather precious ore and gems.

Besides undermining the game’s enjoyment for legitimate players, the contin-

uous stream of complex in-game actions that gold farming bots undertake has

significant resource implications for the service provider. A recent campaign to

eliminate gold farmers in the MMORPG entitled EVE Online discovered that 2% of

the total player accounts were involved in gold farming. After those accounts were

banned from the game, the game’s developer observed a dramatic 30% reduction

in computation load [17].

Leveling characters and grinding virtual goods using automated programs has

very high profit margins. As a consequence, the RMT market has become so

saturated with competing adversaries that they have resorted to spamming in-

game communication channels to advertise cheap gold or avatar leveling services.

Referred to as “gold spamming,” this activity demonstrates the willingness of

adversaries to apply additional automation techniques to the target application

in order to selfishly increase their own benefit.

Furthermore, the unexpected and popular RMT market has so far gone

unregulated. As a result, numerous illegal and more morally reprehensible

behaviors have become rampant: activities such as theft of account information,

money, or credit card numbers, and even money laundering. While some nations

are considering virtual property ownership laws, addressing the root problem of

automation would be a first step towards safeguarding consumers in that market.

11

Click Fraud. Website advertising often uses the pay-per-click model in which

advertisers pay websites for each user that clicks on an ad and is redirected to the

advertised website. While the monetary amount paid per user is small (roughly a

few cents per click-through), adversaries have learned how automation can exploit

this through “click fraud.” There are two click fraud variations that an adversary

may employ. The first approach directly benefits the adversary by using an

automated script to simulate clicks on the ad as if it was a legitimate user. Through

this approach, the adversary defrauds advertisers with ads placed on their website

since they collect payment for user click-throughs that did not actually occur.

The second approach is less direct in that an adversary will seek ads from their

competitors. Using a specialized web crawler, the adversary targets competitor ads

with fraudulent clicks in an effort to deplete the competitor’s advertising budget

before many legitimate users see the ads.

Timing-Based Automation

Timing-based automation performs online tasks at the exact moment that

maximizes benefit for the adversary. This may involve coordinating many network

machines or simply executing the protocol more precisely than humanly possible.

Auction Sniping. Adversaries use automation software called an “auction

sniper” to monitor online timed auctions. The software places a winning bid at

the last moment possible (often only seconds before the auction closes) giving

other potential bidders no opportunity to outbid the adversary. This allows the

adversary to purchase the item without engaging in a bidding war with other

interested parties. While not illegal in every jurisdiction or explicitly against rules

laid out by many online auction websites, automated auction sniping is frowned

upon by many users because it cheats sellers out of higher sale prices and means

that goods are not sold for what they are truly worth. This in turn negatively

affects the profits of the service provider as a portion of their revenue is realized

as percentage-based transaction fees for auction sales.

12

Figure 1.4: Example TicketMaster CAPTCHA. This challenge was presented to

a user attempting to purchase event tickets online.

Ticket Bots. When tickets for popular events such as Hannah Montana

concerts go on sale online, they sell out almost instantly. Unfortunately, a

significant number of the tickets are purchased by scalpers looking to turn a quick

profit [110]. The scalpers use world-wide botnets to automate the navigation of the

vendor’s website and engage in transactions to purchase all tickets within minutes

of them becoming available. Many ticket vendors fruitlessly employ CAPTCHAs

(Completely Automated Public Turing tests to tell Computers and Humans

Apart [117]) like the one shown in Figure 1.4 to deter automated adversaries.

Scalpers resort to hybrid human-machine approaches that automates the entire

transaction except for outsourcing the task of CAPTCHA solution to inexpensive

foreign labor willing to solve them quickly and for less than a penny each [43].

While the scalpers turn a quick profit, legitimately interested concertgoers must

pay a higher price for the tickets than they otherwise would have. This increased

price clearly represents revenue that could have been captured by the original ticket

vendor or performers, yet may have been forgone in an effort to make the event

available to a wider audience. Consequently ticket scalpers are not simply “finding

the true market value for the tickets” as they might claim, but instead are directly

undermining the ticket vendor.

13

Precision-Based Automation

Precision-based automation performs application tasks with better precision than

humans could possibly achieve unaided or reveals secret information that allows

humans to interact with the application more precisely than intended by design.

Aim Bots. Some automation scripts called “aim bots” improve a player’s aim

within First Person Shooter (FPS) games. At the extreme end, these bots yield

perfect aim where every shot the player takes is fatal for their opponents. This

becomes frustrating (and easy to observe) for their honest opponents. Aim bots

are considered cheating and their use is strictly against game rules. Rampant

cheating, including the use of aim bots, can destroy the reputation of the game

and dissuade potential players from purchasing the game.

Map & Wall Hacks. Some programs automatically reveal secret game data

to the player which they definitely should not know. For example, “map hacks” are

used by cheaters in Real Time Strategy (RTS) games to reveal the entire layout

of the battlefield and precisely indicate the location and status of opponent units.

In FPS games, “wall hacks” operate similarly by allowing the cheater to see their

opponents through opaque walls. This is not only useful for strategic purposes, but

also allows the cheater to precisely target opponents and subsequently kill them

using powerful weapons that can shoot through walls. Like the aim bot nuisance,

cheaters using map hacks or wall hacks have an unfair competitive advantage over

their opponents, negatively impacting the game adoption and sales.

Poker Odds Bots. Automated programs called poker odds bots reveal the

odds of winning and recommend a course of action to online poker players. These

bots essentially reveal card statistics in a more straightforward fashion than those

shown to their opponents. Using this automation, the adversary gains a precision

advantage which helps them make fewer uncertain actions, thereby giving them

an unfair advantage. This automation is used as the gateway automation to fully

automated bots that play the game and collude to defraud human players.

14

Application & Automation Type

Adversarial Approach Repetition Timing Precision

All Network Applications

Port Scans ✓
Network Worms ✓
Denial-of-Service Attacks ✓

Email & Instant Messaging

Spam ✓
World Wide Web

Comment Spam ✓
Online Commerce

Click Fraud ✓
Ticket Bots ✓ ✓
Auction Snipers ✓

Multiplayer Video Games

Leveling & Grinding Bots ✓
Aim Bots ✓
Map & Wall Hacks ✓
Poker Odds Bots ✓

Table 1.1: Summary of adversarial automation examples. The examples are

grouped by the various applications they affect. A few examples attack at the

network protocol level, thus any network application may be vulnerable to such an

automated attack. The remaining automation examples exploit features specific

to the various applications.

Example Summary

Table 1.1 summarizes the automation examples discussed, grouped by the types

of network applications which they affect. Most adversarial automation performs

highly repetitive tasks and, similar to industrial automation, those tasks become

immensely profitable at large scales. Techniques and methods for mitigating

the discussed automation examples are presented through the course of this

dissertation.

15

1.1.2 Root Causes of Adversarial Automation

The End-to-End Principle [97] is a central design principle of the Internet. In

brief, the principle states that network and application protocol features are only

justified at the lower layers of the network system if they optimize network-wide

performance, all other complexity should be in the end hosts. This principle yields

the lightweight and stateless Network Layer (Layer 3 in the OSI model [130])

which has allowed the Internet to become the dynamic patchwork of innovative

applications that it is today. Unfortunately, the resulting properties of the Internet

that make novel network applications possible without reengineering the network

are the very same properties that facilitate adversarial automation. This section

highlights these properties and argues that an application service provider cannot

prevent adversarial automation, only detect and disincentivize it.

No Central Administrative Authority. Since the underlying Internet

network architecture comprises an amalgamation of communication networks

owned by organizations with radically different objectives (e.g., governments,

companies, and academic institutions) there does not exist a single administrative

authority over the entire Internet. Specifically, no one organization can guarantee

that a host’s entry point to the Internet (i.e., one of the many communication

networks) will monitor and police the data packets that it sends. This is

particularly true of packets destined for remote networks due to the phenomenon

known as “hot-potato routing,” a policy where each network forwards packets to

the next nearest network, only performing the minimum amount of routing and

processing required. Furthermore, no one organization can guarantee or mandate

that all network hosts must run anti-virus software or do not run known-malicious

applications. Consequently, the Internet lacks strict host attribution and it is

practically impossible to stop adversarial behavior at its source. This is even

more apparent when considering dynamic IP assignment, where an adversary may

use a new network address each time they connect to the Internet.

16

Unpoliced Internet Architecture. The Internet was designed to

extensibly support new and unpredicted applications. Since applications operate

with different goals, behavior that may be desirable for one application may be

intolerable for another application. Thus, no global definition or consensus exists

to dictate exactly what constitutes adversarial behavior, automated or otherwise.

Insofar as an application’s clients do not interrupt or impede other applications,

defining undesired behavior is left up to the individual service providers. As a

result of the open architecture and the lack of a central administrative authority,

anyone can send any data to any recipient claiming to be any sender and regarding

the inbound data it is largely up to the recipients to deem what is inappropriate.

Uncertainty About Host Automation. Even if communication networks

had the incentive or desire to monitor and filter all communication from hosts

connected to it, since the distinction between wanted and unwanted network

packets is defined by an application service provider at a distant network location

it would be impractical to query for each packet. This means that intermediate

network devices generally cannot know with certainty whether data packets will be

accepted or discarded, or even if the packet results from adversarial automation. To

exacerbate the problem, adversaries do not confess when caught, but instead attack

new victims or adapt their adversarial approach. Furthermore, a network host

may not be malicious in all contexts and they might not even know that they are

malicious in some contexts (consider the case of a user trying to browse a website

while they are unknowingly also running zombie software attacking that same

website). Finally, evidence of prior malicious behavior and correct classification as

an adversary may only be temporarily valid because the network host could reform

(consider the above case after the user discovers and removes the zombie software

running on the machine).

For these three main reasons, adversarial automation cannot be prevented at

the adversary’s network ingress. Instead, each application must learn to detect

and disincentivize adversarial behavior as it applies to that specific application.

17

1.2 RESEARCH CHALLENGES

This dissertation seeks to address adversarial automation. The task of mitigating

adversarial automation presents the following three research challenges:

1.2.1 What methods can be used to detect automated behavior?

Quickly and accurately detecting automated behavior is the fundamental challenge

to thwarting automated adversaries. Since the adversaries outperform humans,

there must exist some characteristic of their operation that allows them to do

so. Distinguishing this characteristic and determining how to detect it is the first

challenge to towards thwarting adversarial automation of that application.

1.2.2 How can detectors be combined to best identify adversaries?

There may be more than one method to detect the adversary, and each of those

detection methods may be individually inconclusive. For any given application,

the service provider may have a number of individually inconclusive detectors at

their disposal. The next challenge involves how to best combine them to create

a single metric with a more conclusive result. Specifically, what is sought is a

single value that ranges from “not adversarial” to “adversarial” (i.e., a probability

∈ [0.0, 1.0]) to describe each client. This prediction value must be calculable in

an accurate and efficient manner.

1.2.3 How can adversarial automation best be disincentivized?

Provided prediction values regarding adversarial automation, the service provider

may leverage this knowledge to discourage such behaviors. Specifically, the

challenge is how to disincentivize automated behavior so that adversaries behave

indistinguishably from and thus have no advantage over non-automated human

peers. Of particular interest are mitigation approaches that gracefully handle cases

where the prediction value is gaining certainty but is not yet conclusive.

18

1.3 DISSERTATION OUTLINE

This dissertation explores the outlined challenges using research on two popular

networked applications where the service provider has varying access to the client:

multiplayer online video games and web-based services. In multiplayer online video

games, the game’s service provider (hereon referred to as the “game developer”)

implements and releases the only client software that is authorized to interact with

the server software. This means the game developer has firm control over what all

legitimate client operation looks like.

In contrast, web-based services operate over the HyperText Transfer Protocol

(HTTP) [40] which simply dictates request and response formats. Any web browser

that adheres to the HTTP protocol can therefore access the service. Behavior

outside of the protocol (e.g., how frequently to request data or what to do with it)

is browser-dependent and varies amongst browser implementations and browser-

addons. As such, a web service provider has little control over exactly what

legitimate client operation looks like.

This dissertation is divided into chapters focusing on each of the three research

challenges. Chapter 2 investigates the detection of adversarial automation that

manifests itself as cheating in online multiplayer video games. In this application,

banning adversary accounts is a proven, effective, automation disincentive since

the adversary loses their software purchase as well as the subscription fees and

time invested up to that point. However, existing detection approaches are error-

prone, inefficient, non-automated, and expensive to maintain. Exploiting the game

developer’s direct access to the game client, we explore a novel approach to video

game cheat detection: anomaly-based detection. In this approach, the application

automatically learns how the client operates on different machines through partial

client emulation. Using continued, random, and remote audits, the server validates

client execution and flags unexpected execution as possible cheat behavior. The

evaluation of this research focuses on detection accuracy and integrity.

19

Chapter 3 investigates the combination of individual detectors to create a

predictor likely to produce a conclusive result. Specifically, the chapter looks at

reducing a set of heterogeneous detectors within multiplayer online video games

to establish a metric for identifying malicious, automated players. This research

is realized as a novel reputation system for multiplayer online games. Treating a

player’s peers as detectors (i.e., each peer’s observations provide clues regarding

the maliciousness of other peers), the disincentive simply follows: players will avoid

known malicious peers, peers who will at the same time garner unwanted scrutiny

from the game developer. The reputation system is designed to minimize need for

direct access to the game client to enforce trustworthy operation. The evaluation

of this research explores both its efficiency and collusion resistance, properties

necessary for combining largely untrusted detectors. Experiment results indicate

that this approach may be applicable to the web-based applications, like those

discussed in the next chapter.

Chapter 4 investigates the use of proof-of-work to disincentivize automated

adversaries of web-based applications. In this setting, service providers have no

access to monitor the operation of client software so they must rely upon detectors

completely external to the client software. Given an established accurate predictor

regarding the probability a client is automated, we show that service providers

can wield proof-of-work challenges to quickly thwart adversaries. The proof-of-

work paradigm requires clients to solve computational puzzles which are scaled

in difficulty proportionally to the adversarial metric. More adversarial clients are

given very difficult puzzles to solve, while less adversarial clients are given trivial

puzzles to solve. This approach disincentivizes automated adversarial behaviors

by computationally taxing them. The evaluation of this research explores the

effectiveness of the approach in isolating automated adversaries.

Chapter 5 reviews the contributions of this dissertation and summarizes some

of the key findings of this research.

20

1.3.1 Thesis Statement

The research discussed throughout this dissertation is guided by the following

thesis statement:

There exist methods to detect automated behaviors with which an

application’s service provider can identify and disincentivize automated

adversaries.

21

Chapter 2

DETECTION METHODS

2.1 INTRODUCTION

The fundamental challenge to thwarting automated adversaries is to quickly and

accurately detect their automated behavior. Towards this goal, this chapter

explores the problem of cheating in multiplayer online games. Multiplayer online

games serve as the ideal application for research focused on developing methods

to detect adversarial automation. In this application, a well established and

proven disincentive already exists: adversaries are banned, forfeiting their software

purchase as well as the subscription fees and time they have invested up to

that point. Given such an effective disincentive, the only challenge to defeating

automation plaguing multiplayer online games is accurate detection.

Unfortunately, existing cheat detection approaches [31, 76, 115] are error

prone, inefficient, and expensive to maintain. These approaches require the game

developer to identify, obtain, catalog, and then continuously search for cheat

software operating on the client machine. In addition to the above shortcomings,

those approaches are completely incapable of detecting cheats which the developer

cannot obtain and catalog.

Since the game developer has a thorough understanding of the game client

software, it follows that the developer could instead focus detection efforts on

abnormal client execution. In this chapter, we show that such an approach is both

more efficient and accurate, and able to detect cheats which the developer cannot

easily catalogue. Throughout the chapter, we refer to the adversary as a “cheater”

and the service provider as a “game developer” or “developer.”

22

2.2 THE CHEATING PROBLEM

Multiplayer online games simulate complex virtual environments. Due to the

expense of server computation resources as well as the player’s sensitivity to

network latency, games are designed to offload as much computation as possible to

the game client. That client software is expected to run accurately and keep secret

game state hidden from the player. Cheat software violates this trust by altering

the simulation locally to give the cheater an unfair advantage (e.g., perfect aim,

X-ray vision, or teleportation).

While the motives vary from game to game, cheating has become widespread.

Many underground communities write and sell cheats ranging from automated

bots that treasure hunt virtual items, level up characters, and attain ranks for

cheaters unwilling to play the game, to cheats that provide perfect aim and reveal

secret knowledge for cheaters unable to win unaided. Studies have shown that

such automated bots behave in a repetitious fashion consuming a disproportionate

amount of the costly server computation resources [17]. Furthermore, legitimate

players are frustrated by cheaters to the point where they seek other games that

are more robust to cheating. Since losing existing and potential paying players

directly impacts revenue, developers have a second powerful incentive to thwart

automated cheating in their games.

2.2.1 A Distinct Security Problem

Cheaters have one clear advantage over developers – they control the machines on

which they cheat. This means that the cheater can grant the cheat software all

the necessary privileges and may run it before anti-cheat software is ever loaded.

State-of-the-art cheats conceal their presence by modifying the operating system,

disabling or spoofing anti-cheat software, and even cloaking their code just before

routine anti-cheat software runs. Fortunately, cheats are a weak threat compared

to other security problems like rootkits, botnets, and worms.

23

First, most cheats embed themselves within the game process to easily access

game data and functionality and this drastically limits their ability to conceal their

presence, let alone remain hidden indefinitely. For these reasons, game developers

can focus their efforts on a small search space yet detect a majority of cheaters.

Second, at the level of individual cheaters, the problem is not urgent. The

problem only becomes catastrophic for game developers if cheating becomes

widespread or is believed by most players to be largely unaddressed. As a result,

there is no need for rigorous cheat prevention or immediate containment; sensitive

information (such as passwords and personal information) is not being stolen and

the machine is not being used to attack other network hosts.

Third, cheating damage is easily undone once discovered. By confiscating a

cheater’s ill-gotten gains and disabling their account, the cheater can no longer

affect legitimate gameplay. The full extent of cheating damage is easily determined

since game developers keep transactional logs regarding persistent virtual world

state (character levels, wealth, and win-loss records) so cleanup is comprehensive.

Since disabling the cheater’s account annuls all invested time and confiscates both

the software purchase and paid subscription fees, cleanup directly punishes the

cheater. To an automation-based adversary of networked applications, this is an

uncommon, severe consequence for being detected.

Finally, due to the long-term connected nature of online games, the server has

many lengthy client interactions during which the cheater need only be detected

once to halt their disruption. Reversing an adversary’s traditional advantage, the

cheater must anticipate and guard against every detection technique to succeed while

the developer need only detect a single unauthorized change to thwart them. With

no need for urgency, being able to eventually detect the cheater is sufficient to

address the cheating problem, which is supported by the widespread use of cheat

detection. The next section discusses the various methods which cheaters employ

to modify and automate the game client.

24

2.2.2 Cheating Methods

To further understand the cheating problem, it is important to survey the methods

that are currently being used by adversaries to cheat1. At present, most computer-

based video games (and hence most cheats) are implemented for the Windows

operating system. The cheat techniques described in this section are illustrated

using Windows functions, however, the methods are general and apply to other

operating systems. In practice, the methods presented are typically used in

conjunction with each other to implement cheat software.

Authorized, Automated Data Read

This method automates the collection of information that is presented and available

to the cheater. Such cheats typically use legitimate APIs to learn game data

without directly interacting with the game process. Because the APIs serve

legitimate purposes (mostly for accessibility), their abuse is difficult to detect.

� Using the Graphics Device Interface (specifically BitBlt() and GetPixel())

to dump pixel information from the screen and discern game state.

This method is used by bots that automate actions, like FishBuddy for World of

Warcraft which automates the casting, hooking, and storing of virtual fish.

Unauthorized Data Read

This method, also known as “information exposure,” accesses hidden game data

that should not be revealed to the player. Specific techniques include:

� Using a packet sniffer to extract game data from unencrypted network traffic.

� Using APIs (such as ReadProcessMemory()) to remotely read game memory.

� Using a thread within the game process to access game data.

1This research appeared as a survey in NetGames 2008 [38].

25

Cheats that employ this method include map-hacks that reveal the location of

enemy units behind the “fog of war” in Warcraft III, wall-hacks that reveal the

exact locations of enemy players behind walls in Counter-Strike, and Kick-Ass Map

that reveals mob locations beyond the player’s view in World of Warcraft.

Unauthorized Data Write

One of the simplest methods to alter game behavior is to directly modify data

within the game process. By changing the data that the game uses, cheaters can

gain abilities that their opponents cannot. Techniques for performing unauthorized

data writes include:

� Using APIs (like WriteProcessMemory()) to remotely rewrite game data.

� Using a thread within the game process to modify game data.

Cheats that use static data writes include modifying the gravity constant so

that cheaters can climb walls in World of Warcraft and modifying memory-mapped

wall textures to make them transparent in Counter-Strike. While these examples

are extremely easy to detect since they modify data to invalid values for the

duration of the cheat, other cheats dynamically toggle data between valid values

in an illegitimate way. For example, a cheat for Battlefield 2 continuously changes

the team the cheater is on in order to trick the game client into revealing enemy

locations via the radar.

Cheat Engine [18] is a tool that uses this method to locate and dynamically

modify game data. In particular, it modifies the cheater’s coordinates and direction

to implement teleport cheats, Z-hack cheats (where the cheater is kept a fixed

distance from the opponent during battle), and direction cheats (where the cheater

is made to face the opponent at all times). Cheat Engine is also used to illegally

modify a character’s attributes such as experience or health level.

26

Code Injection

Many cheats change the operation of the game by altering the game code or running

their own code within the game process. To achieve this, cheaters can inject their

code into the process during the loading of the game or from an external process

while the game is running. There are a myriad of ways that code can be injected

including:

� Using WriteProcessMemory() to hotpatch (i.e., overwrite) game code to

implement new functionality or make particular game operations always or

never happen. For example, one can disable flash grenade blinding effects

in Counter-Strike by changing jump instructions that call the flash effect

into NOPs. Hotpatching is feasible if the changes can be done within the size

constraints of the original function.

� Using WriteProcessMemory() to write to code-caves, pockets of allocated

but unused memory between existing game functions. The use of code-caves

provides some stealth if the anti-cheat only scans the game’s original code

locations.

� Allocating new memory using VirtualAllocEx() and writing to it using

WriteProcessMemory(). This is not stealthy, but it facilitates injecting an

arbitrary amount of cheat code into the game process.

� Loading a Dynamic Link Library (DLL) containing the cheat payload by

either using LoadLibrary(), by hooking LoadLibrary() as it is called for

other game DLLs, or by modifying registry entries such as AppInit DLL

to have the payload DLL loaded automatically with the game. Tools that

support this technique include Winject and INJLIB.

Cheats that inject code are prevalent and include aiming automation tools

like BlackOmega [11] for Battlefield 2, Ecstatic [30] for Counter-Strike, and

HL2 Hook [48] for Half-Life 2.

27

Thread Manipulation

Once cheat code is injected into the game, it must be executed. The most common

techniques involve manipulating threads within the game process by:

� Using detours (or trampolines) to temporarily hijack an existing game

thread [53]. The detour redirects game function calls to injected cheat

code by hotpatching a handful of bytes at the beginning of game functions.

The overwritten bytes include a jump instruction that points to previously

injected cheat code. Depending on the intention, some detours will execute

part or all of the game function after executing the cheat code.

� Injecting a new thread via CreateRemoteThread() to execute cheat code

alongside the game’s normally operating threads.

Direct Function Calls

Many cheats change the operation of the game by directly calling operating system

or game functions as needed for the desired behavior. This is especially true for

automation bots which take input from authorized or unauthorized reads, make

decisions, and then directly call game code to take action. Techniques include:

� Using I/O APIs (keybd event() or mouse event()) to directly generate

game input signals which would otherwise be sent by the keyboard/mouse

interrupt handler.

� Using an injected or hijacked thread to directly call functions from within

the game process.

The use of direct function calls is prevalent in bots and is a key component of

Hoglund’s World of Warcraft Implant bot [52].

28

Function Pointer Hooks

Similar to detours, cheats may modify function pointers in the game or operating

system in order to redirect execution to cheat code. Function pointers are prevalent

in any running process whether it is within the game’s code, the libraries it uses,

or the operating system. By overwriting function pointers in order to execute

injected cheat code rather than modifying the functions themselves, this method

passes integrity checks that only examine the game’s code. Techniques include:

� Return address hooks that modify pointers stored in the stack so that

functions return to injected code rather than their caller. This technique

is the basis for return-to-libc attacks [106].

� Overwriting function pointers in game code that implement run-time binding

of operations or jump table implementations of switch statements in C/C++.

� Import Address Table (IAT) hooks that replace the game process’ table of

function pointers for functions exported by loaded DLLs such as DirectX,

DirectInput, WinSock, or kernel DLLs.

� Hooks that replace entries in system tables such as the Interrupt Descriptor

Table (IDT), the System Service Dispatch Table (SSDT), or the I/O Request

Packet (IRP) Function Table.

� Structured Exception Handler (SEH) hooks that replace exception handler

pointers on the stack with addresses for cheat code.

� Using the Windows API to hook message handlers across all running

processes via SetWindowsHookEx().

Function pointer hooks are prevalent in bots across all game genres such as

HL2Hook/CSHook and speed hacks implemented using Cheat Engine [18].

29

External Processes

In this method, the cheater employs an external process that modifies or tampers

with the game process. Instances of this method include:

� Using previously described operating system APIs to access and tamper with

the game process such as ReadProcessMemory(), WriteProcessMemory(),

CreateRemoteThread(), and VirtualAllocEx().

� Sending Windows messages such as mouse and keyboard events to the

game process via APIs like SendMessage(). For example, in first-person

shooters, automated events are sent in order to perform recoil suppression

(e.g., WM MOUSEMOVE).

� Using DebugActiveProcess() to attach to the game process as a debugger

and completely control its execution. This technique can be used to either

change the game code itself or to hijack game process threads to load cheat

code from libraries.

Examples include recoil suppression cheats in first-person shooters that inject

mouse events from a remote process and any cheats that use the debugger interface

to gain control of the game process.

File Replacement

In this method, the cheater modifies the game binary, the game’s data files, the

libraries the game uses, or kernel modules on disk before they are loaded. While

this method has been used in the past, file integrity checks by anti-cheat software

have rendered this less popular. Specific examples include wall hacks in first-person

shooters that replace game texture files with transparent alternatives.

30

Hardware Facilities

Due to the difficulty in correctly measuring hardware state from software, some

cheats like Cheat Engine and Hoglund’s Governor exploit hardware features. The

following methods are specific to Intel processors but are applicable to other

processors.

� Cheats may tamper with the Interrupt Descriptor Table Register (IDTR)

of the CPU which stores a pointer to where the Interrupt Descriptor Table

(IDT) resides. This leaves the original table intact yet points to a completely

different table containing pointers to cheat code.

� Processors typically support hardware debug registers that stop execution

and cause an exception to occur whenever particular code locations are

reached or when particular memory locations are accessed. By using this

facility, cheat software can hijack game execution without explicitly injecting

debugger interrupt instructions into the original game code.

� To access game memory, cheats can tamper with the memory management

subsystem of a processor including its control and segment registers. For

example, tampering with IA-32 control registers (CR0-CR3) allows a cheat

to modify read-only pages or hide memory pages where cheat code resides.

� Model Specific Registers (MSRs) can also be used to tamper with the game

and operating system in a variety of ways. One specific example is the

SYSENTER EIP MSR register on IA-32 CPUs that holds the address of the

“fast” system call function. By modifying this register, a cheat can hook

essential system calls underneath a game.

� Another stealthy method is to have the game run virtualized and implement

the cheat into the virtual machine or hypervisor. With hardware support for

virtualization, such an approach can make detection extremely difficult [131].

31

ControllerAuditor

Game
Client

Game
Server

Player
Account

Figure 2.1: Addition of Fides to the client-server game architecture. Interaction

between the game and the Fides Auditor and Controller is shown: dashed arrows

represent request traffic while solid ones represent data flow. Any detected cheating

is recorded to the player account so that the developer can respond appropriately.

2.3 THE FIDES APPROACH

Our approach for cheat detection is the Fides approach2,3 which, to our knowledge,

is the first anomaly-based software-integrity detection approach in the literature

that is useable on commercial-off-the-shelf online games. The Fides system (shown

in Figure 2.1) dovetails with prevalent client-server game architectures to minimize

the modifications necessary while efficiently detecting cheats that directly modify

game clients. Cheats completely external to the game process (e.g., cheating

through collusion or mechanical “roboting”) is not addressed by this approach.

Fides is a generalized cheat detection approach that is game-independent; the

approach works across games, game genres, operating systems, and hardware

architectures. Fides adapts anomaly-based application integrity research to the

game domain, thereby avoiding the detractions of existing approaches. Specifically,

Fides does not require human intensive maintenance and can quickly detect cheats

without first knowing their operational minutia.

2Fides was the goddess of trust in Roman mythology.
3This research appeared in a paper at ACM CCS 2009 [67].

32

Anomaly-Based Cheat Detection. There are two possible cheat detection

approaches: signature-based detection and anomaly-based detection. Signature-

based detection learns what cheats look like and actively searches for these patterns

while the game is running – scanning not only the game but every active process

on the system. Anti-spyware advocates observe that this maintenance-heavy

methodology is the current choice of game developers [51], likely because it can be

implemented after game release.

In contrast, anomaly-based detection learns how the legitimate unmodified

game client operates and periodically audits it, searching for unexpected deviations

that indicate the presence of cheat software. This detection approach only inspects

the client process which is feasible since most cheats embed themselves in the client

process rather than manifest as an external process. As a result the search space

is well bounded and other processes running concurrently affect neither the speed

nor the accuracy of this methodology.

Restricting the search space to the game process yields security benefits too.

Foremost there is no risk of privacy breach [76]; sensitive data that exists in

unrelated software processes is not read and cannot be leaked. Additionally,

adversaries cannot exploit the scanning of unfamiliar processes by injecting false

positives. This avoids attacks similar to the case in which a message containing

the binary pattern of a cheat signature was broadcast to an IRC channel belonging

to a prominent game clan, was falsely detected by signature-based detection

(Punkbuster [31]), and caused 300 legitimate players to be incorrectly banned [85].

Anomaly-based detection is cheat-independent and requires fewer developer

resources (i.e., manpower and storage) to maintain since the game is readily

accessible for study by its own developers. Cheats do not need to be captured

and studied to create signatures as only knowledge about the game is used. The

perpetually increasing collection of cheats, cheat variations, and polymorphic

cheats does not inflate the knowledgebase which only changes when the game

software is updated (i.e., patched).

33

Furthermore, anomaly-based detection is not reactionary. Signature-based

detection relies on manually finding cheats and cataloging their signatures which

causes a lag between when a cheat is first used and when its signature can first be

detected. This lag is often artificially increased by the developer to avoid tipping

off cheaters as to when and how they were caught. Legitimate players, however,

may perceive that personally observed cheating behavior goes unpunished.

For anomaly-based detection to work properly, all host variation that affects

the game client (i.e., library versions and their memory locations) must be

accommodated to ensure that all legitimate game operation is recognized and

not misclassified as cheat behavior. With such accommodations, anomaly-based

detection is advantageous in terms of efficiency, maintenance costs, and accuracy.

Continued Random Remote Measurement. A novel Fides feature is

that it performs continued random remote measurements of the game client during

gameplay. The system comprises a simple client-side Auditor that is directed by a

robust server-side Controller. The Auditor supports a selection of parameterized

functions to measure client state and return the results to the Controller. The

system complexity is located in the Controller which dictates the audit strategy

(i.e., what gets measured as well as when) and validates all measurements taken.

This continued sampling approach reduces client-side overhead.

Minimizing the Auditor’s complexity facilitates strengthening it against attack.

The use of techniques like execution entanglement, rapid polymorphism, and

lightweight tamper-resistant coprocessors can provide stronger assurances about

the Auditor’s integrity and measurement accuracy.

Additionally, employing a partially randomized strategy and placing it in

the Controller avoids telegraphing audits and allows the developer to change

strategy surreptitiously. The “fear of the unknown,” specifically not knowing

when cheat techniques believed to be detection-proof become obsolete, has been

an effective deterrent for would-be cheaters [52]. Continued random measurements

will eventually detect a persistent cheater due to the always-on nature of the game.

34

Partial Client Emulation. Another novel feature of the Fides system

is that the Controller partially emulates the game client to accommodate any

client system variation that would affect measurement validation. The Controller

includes routines (explained in detail later) for mapping the client’s virtual memory

and learning its execution patterns during player logon. This compiled knowledge

is relevant for the duration of gameplay and is used to validate each Auditor

measurement; deviation indicates the presence of cheat software.

Static game data and code are learned by parsing the game client’s binary and

library files, and rebasing them to match the layout on the client machine. The

Auditor or client (via the server) must relate those pertinent library details to the

Controller at client logon. Dynamic data is semantically identified using source

code and debugger files so that the Controller may query the server to corroborate

those values. For this approach to validate dynamic data values, the server design

must be adapted to respond to local queries about player state.

Client execution patterns are learned by disassembling the mapped code

sections and creating a graph of legitimate execution describing the range of and

relationship between all client functions. This knowledge allows the Controller

to know what code should be executing given an instruction pointer, and whether

specific code locations represent CALL instructions linking two legitimate functions.

To better learn commercial-off-the-shelf games (which may be obfuscated to

prevent reverse engineering and may not supply its source code) that run in

common machine environments, the emulator includes tools for sampling and

profiling legitimate client execution in a secure server-side environment. These

tools can provide client understanding where static learning routines cannot.

While the Auditor and Controller in Figure 2.1 are shown separate from the

game components, they could be implemented within the game client and game

server. Locating the Auditor in the client enables polymorphic patching discussed

in detail in Section 2.4.3 on page 60. Locating the Controller in the server

streamlines the validation of dynamic data.

35

Sample
Memory

Hash
Page

Trace
Stack

Detect
Debugger

EIPn0x8CC70208

0x90BEFFFA
0xA4506CEB
0xBEF9A3F7

0xC67178F2
yes / no

r / w / x

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

Game
Data

...
r / w / x

Game Client

C
o
n
tr
o
ll
e
r

EIP0

Digest

Auditor

Request
Processor

Figure 2.2: Internal structure of the Fides Auditor. The Auditor responds to

requests from the Controller and executes one of the four supported measurement

routines that collect client state directly from the game client process.

2.3.1 The Auditor

The Fides approach predominantly involves server-side software since it is the

game developer who is interested in the detection results. However, to audit the

game client requires the addition of a client-side component. That component is

the Auditor (shown in Figure 2.2) which accepts instructions from the server-side

Controller, performs the requested measurements, and returns the results.

The Auditor is intentionally kept very simple for three reasons. First, game-

specific features are kept out of its design so that it may be used by any number

of game developers to audit their games, or even by other service providers to

audit their network applications. Second, its simplicity allows one to assure

its correct operation, reducing the likelihood that incorrect operation will later

be discovered and require correction. Third, its simplicity facilitates the use of

expensive cryptographic integrity-assuring operations like entanglement or tamper-

resistant coprocessors to verify its integrity.

36

Auditor Measurements

The Auditor currently supports four measurement routines which are described

in detail below. Table 2.1 shows the cheat methods best detected by each of the

measurement routines.

Sample Memory. This routine returns the contents and read-write-execute

permission flags of a specified range of the game client’s virtual memory. This

routine is best used to detect cheats that modify dynamic data. Since the specified

memory range is expected to contain dynamic data, every game client thread must

be briefly suspended to get a quiescent reading.

Hash Page. This routine uses a cryptographic hash function (e.g., SHA1 [84])

to hash the specified memory page and return the digest along with the page’s

permission flags, facilitating efficient detection of cheats targeting static data and

code. If unspecified, the page currently executed by a randomly selected thread is

hashed. This measurement does not require suspending any game client threads

because the target memory page should be static. Whenever possible, use of this

routine is preferable over memory sampling because it saves network bandwidth

and minimizes the server-side state necessary to validate the results.

Trace Stack. This routine suspends one client thread, chosen at random if

unspecified, and obtains the current instruction pointer (EIP) and stack pointer

(EBP) which are the representative registers of the stack frame (i.e., client function

executed). Recording all encountered instruction pointers, the routine recursively

descends the stack, obtaining each previous stack frame by dereferencing the stack

pointer of the current frame, until it reaches the frame corresponding to the thread

entry point (i.e., EBP = null) at which point the measurement is done and the

client thread may be resumed. The n recorded instruction pointers list the function

calls that the client thread used to get from the entry point to the current point of

execution and are returned, facilitating the detection of any cheats that hijack game

execution (redirecting it to unrecognized locations or between unrelated functions).

37

Measurement Cheat Methods Detected

Sample Memory Dynamic Data Manipulation

Hash Page

Static Data Manipulation

Code Manipulation

Code & DLL Injection

File Replacement

Memory Management Manipulation

Trace Stack

Thread Injection

Thread Hijacking

Function Pointer Hooking

Direct Function Calls

Register Manipulation

Detect Debugger
Software Debugging

Hardware Debugging

Table 2.1: Cheat methods best detected by Auditor measurements. In general,

page hashing and stack tracing are the preferred measurements. Page hashing can

detect all the static cheat methods that memory sampling can, yet is much more

efficient in terms of network bandwidth. Stack tracing can detect all the cheat

methods that alter game execution.

Detect Debugger. This routine detects whether the game client is being

manipulated by a cheat attached to it as a debugger, and returns the Boolean result

to the Controller. If the game client has a debugger attached, the corresponding

flag in its Process Execution Block (PEB) should be set to true (although the

first thing such cheats do is set the flag to false) which can be tested via the

CheckRemoteDebuggerPresent() function. Alternatively, the routine attaches

to the game client as a debugger using DebugActiveProcess() which always

fails if another debugger is already present. Attaching as debugger is relatively

expensive (roughly 9ms) and should only be done if the first test is negative.

This measurement routine detects all software debugger cheats and most hardware

debugger cheats.

38

Client
Emulator

Controller
Code

Disassembler
Binary
Parser

Memory
Layout

Code
Patterns

Game Server

Cheaters

Dynamic
DataEmulated

Client State

Client
Layout

Audit
Validator

Audit
Strategist

A
u

d
it

o
r

Game
Binary

Libraries

Figure 2.3: Internal structure of the Fides Controller. The Controller hosts all

of the system complexity and dictates what should be measured by the Auditor.

Arrows show the data flow between external data sources and the Client Emulator,

Audit Strategist, and Audit Validator components.

2.3.2 The Controller

The Controller (shown in Figure 2.3) hosts the complexity of the Fides system,

the bulk of which is the Client Emulator. The Client Emulator learns the

game client properties that remain constant (i.e., static data, code, and function

relationships) and identifies dynamic data sections. The Audit Strategist uses

the compiled knowledge to create an audit strategy (possibly tailored to the game)

and orchestrates the strategy during gameplay. The Audit Validator uses emulated

state to directly verify audits of static game client data and code. To verify audits

of dynamic game client state, the semantics of the sampled memory are extracted

from the emulated state so that the actual values can be validated by what the

server dictates they should be at that time. This accommodates most susceptible

dynamic variables since they normally change slowly (i.e., on the order of seconds

or minutes) and smoothly (e.g., character movement, health, and ammunition).

39

Client Emulator

The hardware and software of the machine on which the client runs varies from

player to player, and even changes between play sessions for individuals who play

on different machines. Such variation affects the memory layout and contents of

the client process. For example, the libraries loaded by the game differ between

operating systems and system versions. Additionally, memory layout differs

between executions on systems that randomly rebase libraries via Address Space

Layout Randomization (ASLR) [101].

The Client Emulator accommodates for host variation by thoroughly mapping

the code and static data and identifying the dynamic data for each client at logon.

Pertinent clients layout details (i.e., the name, version, and base location of every

library loaded) must be communicated to the Controller either by the Auditor or

by the client via the server. The emulator owns a copy of all known and authorized

legitimate libraries so no files need to be transferred from the client machine to the

Controller. If the client (rather than the Auditor) is tasked to exchange its layout

details, it is behooved to accurately report those details otherwise inconsistencies

will be instantly detected and classified as cheating.

Game clients may run on operating systems without ASLR (or may be compiled

with ASLR disabled – a decision the developer may elect) and share common

library content and layout. Specifically, core system libraries (e.g., KERNEL32.DLL

and NTDLL.DLL) often contain thousands of small functions that comprise much

of any client application’s complexity. The emulator can leverage commonality

to reuse significant portions of the emulated state between clients, and learn only

truly variable client structure at logon.

The Client Emulator uses two routines for learning client structure: a Binary

Parser and a Code Disassembler. The emulator also contains an Execution Sampler

and an Execution Profiler to better understand if the client application can be run

in a cheat-free virtual machine using a consistent layout.

40

Figure 2.4: Example execution call graph. This partial graph shows the function

dependencies originating from the initialization routine of our Homebrew game.

Nodes represent functions while directed edges represent specific memory locations

(i.e., CALL instructions) that relate two functions. Often a second function is called

several times, hence the multiple edges connecting any two functions.

Binary Parser. The first learning routine is the Binary Parser which maps

the client virtual memory from the executable, all linked libraries, and data files.

Using the client-provided layout information, the routine rebases the libraries to

know the location and properties (i.e., read-write-execute permissions) of every

memory section in the client. Function pointers (e.g., IAT pointers) are corrected

so that page hashes may be generated for static data and code sections, reducing

emulator state for that data to a small digest per page. If available, the emulator

uses source code and debugger database files to learn the semantics of variables in

dynamic data sections so the Controller may intelligently query the server for the

correct values of a memory sample.

Code Disassembler. The second learning routine is the Code Disassembler

which uses the code sections mapped by the Binary Parser to learn the range of and

relationship between every function in the game client. The routine starts at the

entry point of the executable and traverses the code, observing the memory range

of each function and the location of instructions that relate functions, creating

an execution graph (like the one shown in Figure 2.4) similar to the “callgraph”

model [119]. This knowledge is used when validating stack trace audits.

41

Execution Sampler. The above routines are sufficient to learn client

applications for games designed to work well with Fides, however, to better learn

commercial-off-the-shelf games (which may be obfuscated and for which one may

not have source code) running in non-ASLR environments the emulator includes

an Execution Sampler. The tool executes the client application in a cheat-free

environment, like that which the actual client should be running in. The sampler

then exhaustively hashes all the non-writeable pages of the game, furnishing the

knowledge to the emulator so it may be used to validate page hash audits of the

actual client.

Execution Profiler. The emulator also includes an Execution Profiler

to learn the instruction range of and the relationship between client functions

(specifically observing indirect function calls), reinforcing the execution graph used

to validate stack trace audits. This tool executes the client application in a secure,

cheat-free environment, attaches to it as a debugger, and uses hardware debugging

routines (i.e., register manipulation and single-step interrupts) to step through

its execution. The profiler records details about instruction counts, code timing,

and function execution frequencies. These execution patterns may also be used to

improve audit strategies.

Audit Strategist

The Audit Strategist orchestrates the detection strategy, dictating the ordering,

timing, and details of every audit request. Locating all the strategy in the

Controller avoids telegraphing measurements, allows the developer to change

strategy surreptitiously, and minimizes Auditor complexity. The strategy may be

game-specific using developer intuition regarding data or code likely to be attacked,

however, a good strategy must employ some randomization to prevent cheaters

from predicting audits and developing a successful cloaking routine. As cheaters

will be audited countless times while they are online, a strategy with randomness

will, with good probability, eventually catch them.

42

Audit Validator

After measurements have been returned to the Controller, the Audit Validator

validates them through different means according to their type as follows.

Hash Page. These audits measure static data, so they should remain

unchanged. The validator does a simple binary comparison of the audited digest

against the stored digest. Any bitwise difference means that the page has been

modified, an indication of tampering.

Sample Memory. Although an easy audit to perform, validating sampled

dynamic data is difficult and involves server corroboration. The validator must

determine the semantics of the data (i.e., which variable it represents) and query

the server regarding what the proper value or range of values should be. Consider

the cheat which toggles the team variable to reveal enemy locations via the radar.

To validate that variable, the server must share which team the player is on. This

is straightforward because there are few valid values and the variable changes

infrequently. Next, consider teleport cheats that adjust the character’s in-game

coordinates. In this case, there are innumerable valid values, the value changes

frequently, and due to their use of dead-reckoning techniques, clients will be strides

ahead of what the server has recorded. Consequently, the server must provide a

range of locations where the player could legitimately be according to game rules.

Stack Trace. Validating a stack audit involves walking the execution graph

according to the sequential list of instruction pointers returned by the audit. Client

execution has been hijacked if any instruction pointer calls an unknown location

in memory (i.e., referencing a nonexistent node) or represents an unrecognized

function call (i.e., referencing a nonexistent edge). Indirect function calls are

handled by validating every direct call up to it and immediately hash auditing

the functions after it ensuring they have not been detoured.

Detect Debugger. The simplest audit to validate; a detect debugger audit

should be false otherwise the client is being manipulated by a debugger.

43

2.4 EVALUATION

To demonstrate the utility and easy deployment of the Fides approach, a software

prototype was implemented consisting of two applications (corresponding to the

Auditor and Controller) that communicate through a TCP socket. The prototype

is game-agnostic and has been tested successfully on a number of games.

Auditor Details. The Auditor employs functions of the Windows debugging

API to conveniently read client virtual memory using ReadProcessMemory() and

access the client’s registers using GetThreadContext(). When necessary, the

Auditor suspends a client thread using SuspendThread() since it is three orders

of magnitude faster than attaching as a debugger.

Controller Details. The Binary Parser processes files of the Windows

Portable Executable (PE) format, maps those files to virtual addresses, fixes the

links in each file, and hashes the static sections with SHA1. The implementation

challenges included resolving circular linking dependencies, evaluating forwarded

exports, handling aliased functions, and locating anonymous import tables. When

available, the parser also processes files of the Program Database (PDB) format

to uncover un-exported function symbols and identify dynamic data variables.

The Code Disassembler is a basic x86 disassembler which walks client code

starting at the entry point of the binary and follows function calls to determine

the range of and relationship between client functions. Implementation challenges

included resolving functions that terminate in inconsistent ways, functions that use

discontinuous memory, and functions that embed return instructions in the middle

(in particular those protected by the Windows implementation of StackGuard [22]).

To better understand the game client structure, the Execution Sampler uses

CreateProcess() to run the client application local to the Controller since the

client and Controller use common non-ASLR operating systems (i.e., Windows XP

SP3). The sampler exhaustively hashes every user-space page between 0x00000000

and 0x7FFFF000 that is static (i.e., allocated and non-writeable).

44

The Execution Profiler also runs the client, but attaches to it as a hardware

debugger to learn the function frequency and indirect function calls unhandled

by the disassembler. The implementation challenges included avoiding the

game’s anti-debugging techniques, resolving timing delays caused by the debugger

interrupts, and guiding the game into its gameplay loop to be measured.

Measurement Strategy. The Controller uses a straightforward game-

independent audit strategy that takes measurements at a specified interval.

To avoid predictability, random timing jitter is added, uniformly distributed

between -5% and +5% of the interval length. Throughout each experiment, the

chosen measurement routine was held constant but the target of each individual

measurement was left unspecified. For stack trace audits, this means a thread was

selected at random. For page hash audits, this means a thread was selected at

random and its executing code page was hashed.

2.4.1 Experimentation

Benchmarking

The Fides Auditor and Controller were benchmarked to evaluate whether the

approach is suitable for commercial-off-the-shelf games (in this case the game

was Warcraft III [12]) without imposing a significant negative compute burden

in exchange for its cheat detection benefits. Using a 2.39GHz Intel Core2 machine,

each routine was executed 1,000,000 times recording the average and variance in the

number of cycles to complete them. The efficiency of the Auditor and Controller

routines are shown respectively in Table 2.2 and Table 2.3.

Warcraft III imports 17 DLLs representing 4,103 total functions, many of which

belong to system libraries and are unused. The memory sections represent 1,649

total pages of which 1,619 are flagged as static. This indicates library layout

commonality (specifically on non-ASLR systems) could save the Controller from

executing the full learning routines for every client.

45

Auditor Task Cycles Time

Null 82 ± 18% 34.6ns

Sample Memory 87,941 ± 21% 36.8µs

Suspend Threads 54,960 ± 22% 22.9µs

Read Memory 11,947 ± 35% 5.0µs

Fetch Page Flags 21,854 ± 30% 9.1µs

Resume Thread 4,249 ± 97% 1.8µs

Hash Page 112,885 ± 21% 47.2µs

Suspend Thread 4,843 ± 33% 2.0µs

Get EIP 19,760 ± 44% 8.3µs

Resume Thread 4,153 ± 65% 1.7µs

Read Page 15,597 ± 32% 6.5µs

Hash Contents 55,391 ± 23% 23.2µs

Fetch Page Flags 11,031 ± 42% 4.6µs

Trace Stack 64,399 ± 27% 26.9µs

Suspend Thread 4,844 ± 25% 2.0µs

Get EIP & EBP 26,042 ± 45% 10.9µs

Get Stack Range 15,782 ± 42% 6.6µs

Traverse Stack 13,462 ± 37% 5.6µs

Resume Thread 4,292 ± 31% 1.8µs

Detect Debugger 23,246,056 ± 1.5% 9.7ms

Test Debug Flag 2,998 ± 43% 1.3µs

Attach Debugger 21,411,428 ± 1.2% 8.9ms

Detach Debugger 1,828,041 ± 7.0% 0.8ms

Table 2.2: Efficiency of Auditor routines. The average and variance in the number

of processor cycles to complete the routines was measured and converted to time.

The results demonstrate that the Auditor’s measurements complete very

quickly. The three most common routines (sample memory, hash page, and trace

stack) operate on the order of tens of microseconds, adding imperceptible overhead

(0.05% when auditing roughly once every 100ms) to the game. The most expensive

routine (detect debugger) takes 9.7ms and only adds a perceptible hiccup to the

game if performed frequently in a tight loop.

46

Controller Task Cycles Time

Null 85 ± 19% 35.6ns

Parse Binaries 236,322,896 ± 0.1% 98.8ms

(single file) 17,221,136 ± 2.5% 7.2ms

Memory Map File 741,448 ± 5.0% 0.3ms

Identify Sections 4,774 ± 20% 2.0µs

Allocate IAT 388,067 ± 19% 0.2ms

Populate IAT 5,193,318 ± 2.1% 2.2ms

(single entry) 58,517 ± 4.4% 24.5µs

Hash Sections 10,893,211 ± 4.5% 4.6ms

(single page) 46,908 ± 6.7% 19.6µs

Disassemble Code 205,290,560 ± 0.2% 85.9ms

Isolate Function 1,165,818 ± 6.3% 0.5ms

Validate Result varies as follows ...

Sample Memory data dependent

Hash Page 3,170 ± 20% 1.3µs

Trace Stack 10,808,131 ± 10% 4.5ms

Detect Debugger 130 ± 21% 52.4ns

Table 2.3: Efficiency of Controller routines. The average and variance in the

number of processor cycles to complete the routines was measured and then

converted to time for convenient analysis.

The Controller’s learning routines take under 100ms and do not impose a

meaningful burden to the game considering they are only run once at client logon.

The number of subtasks to learn a game depends on its complexity – this game is

reasonably complex. Similarly, the validation routines are very quick. Validating

a hash page audit involves a binary comparison of the 20B digest and validating a

debugger audit evaluates the Boolean value, both very efficient routines. Validating

a stack trace audit is more involved because each instruction pointer in the list

must be looked up as to which function it belongs to, and if it can legally call the

next function. The effort to validate such an audit depends on the stack depth

and the number of functions in the game.

47

Homebrew Game

This section evaluates Fides on our Homebrew (i.e., of our own creation) game and

four cheats employing different techniques in order to compare the effectiveness of

stack trace audits and hash page audits. The game is a simple networked two-

dimensional arena combat game in which players jump to-and-from a number of

platforms while shooting at each other. The game is single-threaded and uses the

Simple Directmedia Library (SDL.DLL) which facilitated fast game development

by conveniently wrapping graphics functions (in OPENGL32.DLL), network functions

(in WSOCK32.DLL and SECUR32.DLL), and system functions (in KERNEL32.DLL). The

game client executes a short gameplay loop where it checks for input, communicates

changes to the server, renders the world, and then sleeps. In total the loop takes

25.8ms to complete, equivalent to an average frame rate of 38.8fps.

To simplify cheating, the game client stores sensitive data (i.e., opponent

positions) at fixed locations in memory. The game client also performs shooting

actions through the ShootGun(x,y) function which fires a shot from the player’s

current coordinates to the specified (x,y)-coordinates. Four game cheats using

different cheating techniques were implemented to exploit this function in order to

automatically aim the cheater’s shots.

The first cheat uses a small hotpatch which statically replaces the input to the

ShootGun() function with the static coordinates of a target at time of patching

– clearly not a very intelligent cheat yet done in place without allocating any

additional client memory. The second cheat injected a DLL which detours the

ShootGun() function to injected code which dynamically aims the shot at an

opponent. The third cheat injects a DLL that trampolines the ShootGun()

function to a CheatShootGun() function (contained within the injected DLL)

which uses game state to better aim all shots. The fourth cheat injected a DLL

and a new game thread to run the injected code. The injected the code loops

indefinitely, intelligently executing the ShootGun() function every 100ms.

48

C
o

d
e

 P
a

g
e

 E
x

e
c

u
te

d

KERNEL32.DLL
Sleep()

SDL.DLL

OPENGL32.DLL

0x80000000

0x70000000

0x60000000

0x50000000

0x40000000

0.0 5.0 10.0 15.0 20.0 25.0

C
o

d
e

 P
a

g
e

 E
x

e
c

u
te

d

0x00000000

GAME CODE

0x30000000

0x20000000

0x10000000

0.0 5.0 10.0 15.0 20.0 25.0

Time (ms)

Figure 2.5: Execution profile of the Homebrew gameplay loop. Most of the

pages executed represent game code and just a few other DLLs – predominantly

KERNEL32.DLL because of the Sleep() function.

Game Profile. Using the Execution Profiler, the execution pattern of the

gameplay loop is illustrated in Figure 2.5. The code pages executed throughout

the gameplay loop are shown. Note that there are 65,536 pages between y-axis

labels and dots are disproportionately large for legibility. When actively running

simulation code, the game frequently calls short library functions that return

quickly to the game code. No significant amount of contiguous time is spent on

any single code page although many of the executed code pages are clustered in

close proximity to each other. Once the loop calls the Sleep() function, execution

is suspended on that single code page for a significantly large amount of time.

Specifically, the gameplay loop spends 76% of its time in KERNEL32.DLL almost

entirely due to that function.

49

60

70

80

90

100

110

120

130

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

0

10

20

30

40

50

60

10.0 100.0 1000.0

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

Detour

Trampoline

Thread Injection

10.0 100.0 1000.0

Auditing Period (log10 ms)

Figure 2.6: Stack trace audits required to detect cheats for the Homebrew game.

Three of the four cheats are detectable by stack traces; only in situ hotpatches

cannot be detected. In constrast, thread injection is particularly susceptible to

detection by stack traces.

Cheat Detection. Figure 2.6 shows the average number of stack trace audits

required to detect the cheats. For the cheats that hijack execution, more audits

are required for detection because the ShootGun() function where the cheats

manifest is infrequently executed. Not surprisingly, stack trace audits cannot

detect hotpatches which do not change execution flow, but stack trace audits

do very well in detecting thread injection. This is because the stack trace has

a uniform
x

x+y probability of selecting the cheat thread (which is immediately

detected as unrecognized, even when idle), where there are x cheat threads and y

game threads. In this case the probability of selecting the injected thread is
1
2 and

supports the two audits on average required to detect the thread injection cheat.

50

5

6

7

8

9

10

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

Detour

Trampoline

Thread Injection

Hotpatch

0

1

2

3

4

10.0 100.0 1000.0

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

Auditing Period (log10 ms)

Figure 2.7: Page hash audits required to detect cheats for the Homebrew game.

All four cheats are quickly detected by page hashes.

Figure 2.7 shows the average number of page hash audits required to detect the

cheats. Each cheat is detected quickly using roughly four audits – expected since

the game is single-threaded and spends about a quarter of its time in game code.

These results are an order of magnitude faster than the stack trace audits. The

small code footprint contributes to the fast cheat detection; while the game does

not execute the ShootGun() function frequently, other more common functions

reside on the same code page so audits indirectly catch the cheat.

This leads to the observation that careful client design can trade some memory

performance for quicker anomaly-based detection. Hash page audits are able to

quickly, sometimes indirectly, catch these cheats not because they modified a lot

of code but because the code they did modify was located on the same memory

page as frequently executed code.

51

Commercial-Off-The-Shelf Game: Warcraft III

The Fides approach works best on games designed with it in mind. However,

to evaluate that the Fides approach works on commercially-deployed games, this

section explores the detection of cheats for the popular Real Time Strategy

(RTS) game Warcraft III [12]. The game was released in 2002 and has remained

extremely popular since then, especially as the game of choice for professional

video game competitions. Weekly, thousands of players continue to play it

online in competitive, ladder-ranked matches. The game’s developer, Blizzard

Entertainment, has patched the game regularly throughout the years to fine-tune

game balance and attempt to stay ahead of cheaters. This experimentation was

done in October 2008 immediately following a patch release. Within one week, new

cheats were released in response to the patch and Fides readily detected them. A

month later, the preeminent cheat was released and Fides swiftly detected it.

Warcraft III has several security features that make it complex. The game client

is designed so that the executable is merely a launcher: all game functionality

is located in a library appropriately named GAME.DLL. This library is loaded at

runtime via the Windows LoadLibrary() function and is obfuscated to hinder

disassembly. Similar to the Homebrew game, Warcraft III executes a short

gameplay loop where its threads check for input, communicate with the server,

render the world, and then sleep. In total, the loop takes only 15.6ms to complete,

equivalent to an average frame rate of 64.2fps.

The game client is heavily multi-threaded, employing 22 threads of which

only 8 are active during normal gameplay. Threads have assigned tasks that

include rendering the world, loading map and texture info, gathering player input,

managing network connections, running artificial intelligence routines for path

planning and non-player (i.e., computer) opponent strategy, stub server routines

for hosting games locally, and routines for performing some anti-cheating and anti-

debugging techniques (it attempts to kill any process that attaches as a debugger).

52

C
o

d
e

 P
a

g
e

 E
x

e
c

u
te

d
GAME.DLL

WaitForSingleObject()System DLLs

0x80000000

0x70000000

0x60000000

0x50000000

0x40000000

OPENGL32.DLL

0.0 5.0 10.0 15.0

C
o

d
e

 P
a

g
e

 E
x

e
c

u
te

d

0x00000000

MSS32.DLL

STORM.DLL

0x30000000

0x20000000

0x10000000

Time (ms)

Figure 2.8: Execution profile of the Warcraft III gameplay loop. Like the

Homebrew game, the pages executed represent game code and a few other DLLs

– predominantly KERNEL32.DLL due to the WaitForSingleObject() function.

Game Profile. Using the Execution Profiler, the profiles of the threads active

during the gameplay loop are shown collectively in Figure 2.8. Game threads

execute system functions (in NTDLL.DLL and KERNEL32.DLL), core game functions

(in GAME.DLL), render graphics (in OPENGL32.DLL), process audio (in MSS32.DLL),

and access game data (Blizzard games use STORM.DLL to load map data from

disk). The game uses WaitForSingleObject() to sleep while waiting for I/O; if

an input event occurs, the function returns early, otherwise it sleeps for the full

duration. Without active input, the game threads spend roughly 94% of the loop

sleeping. With 22 threads to randomly choose from when auditing the game, the

odds of auditing game code modified by a Warcraft III cheat is relatively low when

compared to the simple Homebrew game cheats analyzed earlier.

53

1000

1200

1400

1600

1800

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

Bendik's MapHack

Kolkoo's MapHack

Revealer MapHack

Simple MapHack

Nemesis MapHack

0

200

400

600

800

10.0 100.0 1000.0

A
v
e

ra
g

e
 A

u
d

it
s

 t
o

 D
e

te
c

t
C

h
e

a
t

10.0 100.0 1000.0

Auditing Period (log10 ms)

Figure 2.9: Page hash audits required to detect Warcraft III maphack cheats.

The five representative cheats shown are easily detectable by page hashes.

Cheat Detection. Several communities are dedicated to cheating in

Warcraft III. They produce and sell numerous cheat binaries, very rarely revealing

actual source code. Advanced cheats for popular games often have price tags that

rival the purchase price of the game itself. Since cheat-software sales are at stake,

cheat authors compete to be the first to publish a cheat that works against the

newest patch level of the game. Ironically, many authors steal other authors’ cheat

codes and techniques to spread them to new communities claiming them as their

own work – there truly is little honor among cheaters.

When this experimentation was performed Warcraft III was recently patched,

meaning a spectrum of first-to-release cheats were readily available. Each cheat

was run in isolation by hosting non-ranked Local Area Network (LAN) games to

avoid disturbing legitimate players. Fides was able to detect every cheat collected;

54

the five most prominent cheats (i.e., all original software, not variants rebranding

stolen code) being: Bendik’s MapHack which is very minimalist and reveals no

more than hidden units on the main map, Kolkoo’s MapHack which patches code

over a few pages, the Revealer MapHack which hotpatches a small number of bytes

over fewer pages but also injects code that hooks game input functions so that it

may be toggled on or off, the Simple MapHack which hotpatches a mere 61 bytes

but over a number of pages, and Perma’s Nemesis MapHack which is the prominent

success of this experiment.

Perma is viewed in many communities as the foremost Warcraft III cheat

author. His Nemesis MapHack (which he advertises as “undetectable”) is the

sequel to his infamous Zerocraft cheat which went undetectable for just short of

two years before it was discontinued because Blizzard finally obtained a copy and

developed a signature that could detect it. In an attempt to prevent Blizzard

from obtaining a copy of the Nemesis MapHack, the procedure to obtain a copy

requires one to have a profile with good standing in his home cheat community4

and purchase the cheat for $25. Amazingly, this is more than the current purchase

price of the game. The Nemesis MapHack has more features than the other cheats

mentioned and is heavily obfuscated to prevent Blizzard (as well as rival cheat

authors) from learning its tricks.

Figure 2.9 shows that the Warcraft III cheats are detected using upwards of

two hundred Hash Page audits, which is not surprising given that the game has 22

threads and sleeps roughly 94% of the time. At this scale, one can see a trend that

the number of audits required to detect a cheat tapers off. This occurs because at

larger audit frequencies the inter-arrival randomness grows to the point where the

randomness (between ± 5% of the frequency) surpasses the loop duration of 15.6ms

so that the probability of detection asymptotically approaches the probability to

detect the cheat with a single random audit.

4We used an account that had been established for previous anti-cheating research.

55

The probability of detecting a cheat grows with respect to the quantity of

changes that the cheat makes to the game (i.e., a cheat that modifies more code

pages becomes easier to detect). This makes the feature-rich “undetectable”

Nemesis MapHack among the easiest cheats for Fides to detect. Fides did not

need to reverse engineer it. The number of audits required to detect Nemesis

taper off somewhere around 300, meaning it can be detected in about 5 minutes

when auditing at a leisurely frequency of once per second, or in 20 seconds when

auditing at a more aggressive frequency of once every 100ms. In contrast, Bendik’s

MapHack which few changes to the game would take 22 minutes to detect when

auditing once per second, or 2 minutes to detect when auditing once every 100ms.

Memory Layout Commonality

While benchmarking the Fides approach, we observed that commonly loaded

libraries to common locations (specifically on non-ASLR systems) could spare

the Controller from generating and storing new emulation state for each client.

This experiment evaluates how consistently game-client memory is laid out in a

commercial game (i.e., Warcraft III again) to show that significant potential exists

for reuse of emulation state.

A small program was implemented to execute the game client and then measure

its virtual memory layout. The game client’s memory regions are flagged with

read, write, and executable permissions when allocated and may be altered during

execution. In general, virtual memory is either code (i.e., flagged as executable),

static data (i.e., flagged readable but neither writable nor executable), or dynamic

data (i.e., flagged readable and writeable but not executable). Of particular

interest to this evaluation are memory regions that should remain constant

throughout gameplay: code and static data. Those regions are stored as page

hashes during emulation so any commonality between clients means fewer hashes

need to be stored. In contrast, dynamic data regions require server corroboration

so the associated emulation state is already reduced to only meta-data.

56

50%

60%

70%

80%

90%

100%

A
ll
o

c
a

ti
o

n
 P

e
rc

e
n

ta
g

e

Code

Static Data

Dynamic Data

0%

10%

20%

30%

40%

0x00000000 0x20000000 0x40000000 0x60000000 0x80000000

A
ll
o

c
a

ti
o

n
 P

e
rc

e
n

ta
g

e

Memory Address

Figure 2.10: Warcraft III virtual memory usage. The percentage (stacked) of

each type of page usage within 512-page regions. Here dynamic data includes

reserved, but presently unused memory.

The program ran the Warcraft III game client 1,000 times through the same

map on two different Windows XP SP3 machines. Figure 2.10 shows the memory

layout by type in Warcraft III. The first observation is that the memory space is

truly sparse: less than 10% of the available virtual memory is used. Many libraries

select default base addresses that are far from other libraries so that they will not

likely conflict when loaded, resulting in the spread out code observed.

Typical of most Windows applications, the executable entry point is located

at address 0x40000 which accounts for that spike of code amid the static and

dynamic data. Below it resides some language localization files and stack space

for each game thread. Above the entry point is the heap, which in this game is

predominantly used for map data.

57

Memory Type Machine #1 Machine #2 Both

Code 1.4% 1.4% 1.4%

constant 100.0% 96.2% 90.8%

Static Data 1.0% 1.0% 1.0%

constant 98.8% 94.6% 87.2%

Dynamic Data 3.9% 3.0% 3.5%

similar 29.5% 55.6% 11.3%

Reserved Memory 3.5% 3.4% 3.5%

similar 64.6% 93.5% 49.4%

Unallocated 90.3% 91.2% 90.6%

Table 2.4: Memory layout commonality. Memory allocation is broken down by

type. The table shows how consistently each type is laid out.

Table 2.4 presents the memory breakdown for the 1,000 runs on each of the two

machines and how they compare to each other. The results show that code and

static data occupy 1.4% and 1.0% of virtual memory, respectively. As expected,

both code and static data are allocated consistently on the same machine and

are roughly 90% consistent between the two machines. This confirms that indeed

significant portions of emulation state (i.e., hash page digests) may be reused

between sessions and between clients.

Dynamic data and reserved memory (i.e., virtual memory set aside but not

yet allocated on physical storage) each occupy roughly 3.5% of virtual memory.

Dynamic data predominantly represents map data and reserved memory is saved

for map data that has yet to be loaded. The range and size of these dynamic data

sections vary considerably between executions and machines. This may be partially

due to the fact that in each game execution, the player’s homebase is randomly

assigned to one of eight possible locations and means different map data may be

loaded initially. Map data is essentially static since it is loaded from static game

files on disk and it could be loaded to specific locations and have write-permissions

removed so that it can be audited by page hashes.

58

2.4.2 Limitations

This section recognizes the following limitations to the Fides approach:

Attacks on the Auditor. Cheaters own the systems on which they

cheat so they may tamper with any component to evade detection. Likely an

adversary would directly target the Auditor by replacing the results it returns to

the Controller with clean measurements. This is an easier problem to handle than

securing the game client itself because the Auditor is less complex. Furthermore,

a number of techniques infeasible for protecting the game client could be used

to bolster Fides against such attacks including directly accessing memory, audit

entanglement, Auditor and client polymorphism, or leveraging tamper-resistant

coprocessors. These techniques are elaborated further in the discussion.

Elementary Measurements. While the measurements presented in this

paper detect current and foreseeable cheats, cheaters may evolve methods that the

measurements cannot detect efficiently. It is important to note that Fides is not

restricted to the four presented measurements and can easily be extended to include

new measurement types. In particular, one might consider memory watchpoints

and code timing if hardware support became available. Memory watchpoints would

observe how frequently code or variables are accessed and could detect cheats that

operate external to the game client through unauthorized data reads. Similarly,

code timing would observe abnormally long execution of game functions or the

entire gameplay loop. This can detect cheats that manipulate the game through a

debugger or virtual machine.

Timing Difficulties. Network latency and jitter add timing inaccuracy at a

resolution several magnitudes greater than that which code executes at, preventing

any remote software integrity system (not only Fides) from predicting a client’s

exact execution state upon receiving an audit packet. Such systems are thus forced

to validate the correctness of whichever state the client software is observed to be

in rather than demand that the client be in precisely one state.

59

External Cheats. Fides focuses on cheats that affect the proper execution

of the game client and does not address cheating external to it. For example,

online poker cheaters collude by sharing private information (i.e., the cards in their

hand) through side-channels in order to defraud legitimate players. Other cheaters

employ robotic peripherals to automate repetitive or precision-based gameplay

(e.g., the Guitar Hero robot [125]). Cheats that never modify the client cannot be

caught by detection of anomalous client execution but instead may be caught

by detection of anomalous player behavior (e.g., observing wins correlated to

unusual gameplay, abnormal grouping patterns, highly erratic player skill, or even

abnormally precise game input).

Poor Game Design. Cheat detection may not address behavior that is

against the spirit-of-the-game yet is possible without ever modifying the client

or employing external devices. For example, many networked games incorporate

“player achievements” that are noteworthy in-game objectives (publicized when-

ever a player accomplishes one) but when implemented improperly are trivialized

by players who design custom levels to do so. Such problems should be solved by

better game design, in this case disallowing players from attaining achievements

while playing custom levels vetted by the game developer.

Macros and Keybindings. Many developers relax the prohibition on

automation by allowing players to customize their game interfaces with macros

and keybindings for authorized game commands. Games like World of Warcraft

use execution-tainting mechanisms to distinguish permitted customization from

excessive automation [126]. For accurate anomaly detection, these interface

customizations should be isolated to well-defined regions of client memory where

they will not interfere with audits of game code or data. Indirect jumps that access

them can be easily validated if the jumps are restricted into those isolated regions.

Furthermore, the client must commit to the customizations (i.e., send them to the

server) before using them so that the server may verify their legality and Fides

may validate that they are not modified at inappropriate times during gameplay.

60

2.4.3 Discussion

Future Work

There are a number of techniques that could be explored to strengthen the Fides

approach (specifically the Auditor) against evasion by the cheater.

Direct Access. Locating the Auditor within the client process provides

direct access to its virtual memory without relying upon system functions like

ReadProcessMemory(). This sidesteps attacks that hook those system calls in

order to return bogus measurements. At the same time, eliminating function calls

for reading process memory speeds up the Auditor meaning that audits which

suspend client threads will have even less impact on performance. However, this is

only a partial solution since the Auditor will become easily preemptable and thus

vulnerable to cloaked cheats like the Governor [51].

Audit Entanglement. Fides may authenticate audited data by entangling

the Auditor’s measurement routines with time-sensitive cryptographic computa-

tions, similar to Pioneer [100]. Each entangled computation would depend upon

a random nonce (sent as part of the audit request) and be constructed such

that modification to the measurement routine must alter either the correctness or

timeliness of the generated entanglement token. Using entanglement, an Auditor

response would only be valid if both the measured data and the correctly computed

entanglement token are returned within the time limit. Invalid or late entanglement

tokens would indicate the client’s use of cheat software.

Auditor Polymorphism. Rather than support defined measurement types,

the Auditor could instead accept and execute short auditing routines crafted

arbitrarily by the Controller. The measurement types and targets may be changed

surreptitiously at any time, dynamically adjusting how the client is audited.

Cheaters cannot evade detection by simply using static virtualization; they must

understand precisely what each audit routine is measuring and formulate coherent

responses (through their own client emulation).

61

To effectively manipulate data collected by the Auditor, cheaters must

completely interpret every audit routine and emulate legitimate client operation

sufficiently to generate correct responses on the fly. This is challenging for cheaters

to accomplish in a timely fashion, especially when auditor polymorphism is used in

conjunction with audit entanglement. Cheaters who fail to completely cloak their

changes or virtualize the entire system will be detected by the first measurement

that cannot be spoofed, similar to how “undetectable” virtualized rootkits (e.g.

BluePill [95]) are detected when unpredicted system functions (like cpuid() [92])

behave erratically.

Auditor polymorphism would make the Fides approach more like the Warden

system [76] in that frequent updates to client-side detection software keeps

cheaters on guard. This allows the system to remain agile enough to adopt new

measurements in order to detect new cheat techniques.

Client Polymorphism. Using this technique, the game server periodically

instructs the game clients to shuffle their memory layouts by rebasing loaded

libraries to arbitrarily specified new locations. This changes the structure of the

client without affecting legitimate operation, dynamically adjusting how the client

must be targeted by cheats. Runtime library rebasing may be done similarly to

how in-memory or reflective DLL injection [39, 104] loads libraries from within the

process’ memory (i.e., not from disk) at runtime.

Each time a new client layout is specified, cheaters must adjust their software

accordingly, particularly code hotpatching long jumps or code overwritten during

the rebasing. Cheaters attempting to manipulate measurement data must quickly

correct their own emulation and system virtualization to remain consistent with

legitimate clients. The Controller has an advantage since it can update its emulated

state before making the changes known to clients, however, cheaters cannot respond

until after they know the layout changes. Additionally, this technique could reduce

emulator state by dictating the same new layout for all clients using common

libraries.

62

CPU Memory
Controller

Memory

Auditor (ME)
I/O Controller Network

Controller

Peripherals Interfaces

OS
Game

Figure 2.11: One functional location of Intel’s Manageability Engine (ME). In

the memory controller, it has unimpeded access to all game memory and I/O.

Hardware-Based Stealth Measurements. The Fides system was

designed so that the Auditor could leverage a hardware component within the

client machine for providing tamper-resistant measurements of the game. The

hardware component must be isolated from the host processor so that it cannot

be affected by the system owner, yet it must have sufficient access to measure the

system to determine if cheat software has compromised the game client.

The Intel Active Management Technology (AMT) [56] platform is one such

suitable hardware component. Figure 2.11 shows the current architecture of the

AMT, specifically the location of the trusted Manageability Engine (ME). While

the ME is not a full-blown CPU (i.e., it lacks the speed and features necessary

to run the game client), it has been used to detect rootkits [32] and peripheral

automation cheats [98]. The ME would be a good location for the Auditor because

it has access to the entire contents of physical memory, it is controllable through a

secure (i.e., authenticated and encrypted) network connection, and it only executes

signed code thereby assuring players that their privacy is safe.

While challenges remain to employing such a hardware component (e.g., register

and memory caching, and virtual memory to real memory mapping), hardware

support could facilitate additional measurements for detecting more subtle forms

of cheating. Specifically, the addition of memory watchpoints and code timing

would allow the Auditor to observe unusual memory accesses in terms of timing,

source process, and frequency.

63

2.5 RELATED WORK

Anomaly-Based Detection. Anomaly-based detection has been explored as

a solution in research to many strong security problems like intrusion and rootkit

detection [55, 71, 88, 120]. In such applications, the detector must understand

the characteristics of a complex multi-faceted system. Extensive knowledge is

required to perfectly characterize all legitimate operation, so these approaches

instead accept a small misclassification rate in exchange for more manageable state

and quick detection results. In contrast, the cheating problem has a limited search

space (i.e., the well-defined game client software) which can be efficiently learned

using static analysis, and the game application tolerates slower adversary detection

over the misclassification of legitimate players.

The branch of research most related to our approach is anomaly-based

application integrity checking [16, 34, 50, 99, 119], which validates application

behavior from the vantage point of a secure operating system. These approaches

work well when an adversary has difficulty infiltrating the host system, however,

they are inappropriate for the cheating problem where the adversary owns the

machine and can readily alter the operating system to disable detection tools.

Other research applies anomaly detection to player behavior [19, 44, 74, 129].

These approaches detect suspicious player behavior (e.g., colluding) without

verifying game state by instead analyzing high-level player behaviors and win-loss

statistics. While those approaches can be used in combination with our approach

or integrity-based approaches, they are very game-dependent and require a deep

understanding of the game rules, game maps, and what normal behaviors look

like. Acquiring an understanding of “normal” player behaviors often requires a

large volume of trusted gameplay samples and can be expensive in terms of human

involvement. This difficulty is exacerbated in persistent games (such as massively

multiplayer online games) where the popularity of in-game activities changes over

time (sometimes in unpredictable ways) as the virtual world evolves.

64

Anti-Cheat Software. Many game developers use anti-cheat software;

Blizzard games (e.g., Diablo II, StarCraft, Warcraft III, and World of Warcraft)

use the Warden system [76] and Valve games (e.g., Counter-Strike, Left4Dead, and

Team Fortress) use the Valve Anti-Cheat (VAC) [115]. Numerous other games

(e.g., Battlefield 1942, Call of Duty, and Quake) support the use of third party

anti-cheat systems like PunkBuster [31]. Unfortunately, existing commercial anti-

cheating systems use signature-based detection, promiscuously scanning each and

every process on the client machine which leads to accuracy errors and real attacks

on the detection mechanisms [85].

Trusted Computing. Trusted computing approaches leverage secure

cryptographic software, virtual machines, or hardware components to verify that

the application code is operating as intended on the remote machine. Sometimes

referred to as a “root-of-trust,” the trusted system is used as the starting point to

assure the integrity of the application. Prominent systems include Terra [41], the

TPM architecture [96], and Pioneer [100]. While trusted computing approaches

quickly discover changes made to the application, they add overhead to the

application’s execution that may be prohibitively expensive for the real-time

demands of responsive gameplay. Instead, trusted computing approaches could

be used to guarantee the proper operation of the Auditor which is smaller, has

fewer real-time requirements, and can be used to audit any game.

Proof-of-Correctness. Proof-of-correctness approaches focus on cheat

prevention rather than cheat detection [10], ensuring that the game client is running

according to game rules and physics. While proof-of-correctness approaches

prevent some unauthorized manipulation of client state, they can only slow or

frustrate cheating efforts since the adversary controls the hardware and operating

system of the machine. Even for console gaming systems, where the developer has

a better understanding of and design input regarding the underlying hardware,

cheating has proven impossible to eradicate and detection remains a vital tool at

the game developer’s disposal.

65

2.6 CONCLUSION

This chapter investigated the problem of detecting automated and adversarial

behavior in the context of detecting cheaters in multiplayer online video games. In

this application, cheaters own the hardware that the client software runs on and

as a result have a clear advantage over game developers in terms of control over

system operation. The research contributions of this chapter are:

� We clearly defined the cheating problem affecting multiplayer online games

and identified properties that distinguish this problem from other traditional

security problems. The chief differences are that cheats target specific, well

understood software, do not demand urgent response, and inflict damage

that is easily repaired once discovered.

� We enumerated the state-of-the-art in cheating methods. Cheat techniques

range from data manipulation to code injection and execution manipulation.

Most cheats do not leverage hardware techniques such as register manipula-

tion or hardware debugging at present, but that may change in the future.

� We proposed and evaluated a novel anomaly-based cheat detection approach

for multiplayer online games through remote validation of client execution.

The Fides system comprises a server-side Controller which specifies how and

when a client-side Auditor measures the game client. To accurately validate

measurements, the Controller partially emulates the client and collaborates

with the game server. In evaluation, we showed that Fides is able to efficiently

detect several existing cheats including one advertised as “undetectable.”

Likely, the Auditor may become the next target of attack by cheaters. Future

work involves research into a number of techniques that may bolster it against

attack, including locating it on secure tamper-resistant hardware, entangling it

with cryptographic computations, or adding run-time client polymorphism.

66

While an application service provider may possess an efficient automation

detector like Fides, it may not be sufficient to identify every adversary. Improved

adversary identification may require combining multiple detectors. It may also

involve cooperation between service providers, whether those service providers

support similar or different applications. It may also involve input from clients.

The next chapter discusses how to combine multiple detectors to better identify

adversaries. This research focuses on an approach which treats clients as detectors

but also explains how the approach may be extended to leverage strong detection

systems like Fides.

67

Chapter 3

ADVERSARY IDENTIFICATION

3.1 INTRODUCTION

The previous chapter explored an approach for definitive detection of automation

and software tampering. Like many real-world adversaries (e.g., in sports, business,

and daily interactions), network adversaries find that behaving outside the defined

rules is beneficial so rather than be deterred by accurate detection methods,

they instead adapt to avoid the most prominent detection method. As a result,

application service providers must resort to multiple means to detect adversarial

automation. How to aggregate detectors to make a definitive decision is an

important research problem. This chapter investigates a method to do this.

Despite the fact that accurate detection methods exist, rule enforcers have

limited resources and cannot observe all infractions. Legitimate participants are

obliged to help by reporting malicious behaviors but they are often intimidated

into silence. In team sports like cycling, this is known as the doping dilemma [102]:

athletes who play by the rules are intimidated by teammates and trainers into

remaining silent while athletes who break the rules continue to get ahead.

Participants expect rule enforcers to catch and punish the rule breakers, yet

without their participation that does not always happen. Our approach is to

leverage the power of the masses as accurate detectors to allow them to congregate

exclusively with like-minded individuals. This approach would allow legitimate

participants who want a level playing field to disassociate with rule breakers and

compete against legitimate competitors. In such a system, humans are effectively

very abundant, yet individually inconclusive adversary detectors.

68

Given a collection of adversary detectors that may individually be inconclusive

or untrustworthy, the next research challenge addressed by this dissertation

involves how to best combine detectors to increase the likelihood of a predictive and

conclusive result. Specifically, this research seeks a single metric that ranges from

“not adversarial” to “adversarial” (i.e., a probability ∈ [0.0, 1.0]) to describe each

client. This provides an analog control that can operate disincentive mechanisms

based on how adversarial or automated each client’s behavior appears.

This chapter explores this research challenge by federating a set of homogenous

independent detectors. This work is realized through the creation of a reputation

system for multiplayer online games. Again, the multiplayer online game

application is ideal for research since well established disincentives exist. The

application is particularly suited for research into reputation systems because the

players themselves are abundant detectors and require little game developer effort

to harness. By treating every player’s peers as detectors (i.e., their observations

provide clues regarding the maliciousness of other peers) the most basic disincentive

follows: players will dissociate with and cease to play with players who are known

to behave badly.

Legitimate players have in some cases created guilds whose primary goal

is to locate automated gold farmers within massively multiplayer online games

through word-of-mouth reports. Provided with better tools like a reputation

system, those guilds may become more efficient at tracking automated players. By

analyzing the resulting social patterns, the game developer may focus man-powered

investigation on the most suspicious players, identifying not just antisocial players

but also those players employing automation to cheat. This allows the developer

to institute harsh disincentives like systematically segregating adversaries from

legitimate players, confiscate ill-gotten gains, and impose temporary or permanent

bans. Furthermore, if game developers insist on using signature-based automation

detection, a reputation system would give developers a more efficient method for

finding and cataloging cheats being used.

69

3.2 THE PROBLEM WITH ONLINE BEHAVIOR

Like the users of many other network applications, players of multiplayer online

games interact with each other using aliases which may be graphically represented

by customizable avatars. An alias hides the player’s real-world identity and allows

them to be immersed in the virtual world. Players invest considerable time, effort,

and even money improving the noteworthiness of their in-game persona – taking

pride in any renown that they achieve (colloquially referred to as “e-fame”).

Unfortunately, the anonymity provided by aliases also leads to a number

of antisocial behaviors [113]. Of particular concern are players who cheat by

automating the acquisition of wealth and items, or automating their actions

to misrepresent their abilities and receive false recognition from peers. Other

examples include players who scam their peers (often exploiting a poorly designed

facet of the user-interface) to steal virtual wealth or items. Sometimes powerful

players “grief” weaker players by playing in a manner that makes the game

unenjoyable for them (e.g., “corpse-camping” a victim who must resurrect at the

same location). Disgruntled players harass their peers through in-game text or

voice chat. Some players simply act selfishly with poor sportsmanship (e.g., “rage

quitting” the game when it greatly inconveniences their peers).

Although these behaviors are against the spirit of the game and many of its

rules, limited policing resources mean that only the most grievous infractions

are ever investigated. Often the virtual community is so large that a malicious

player may negatively affect many peers before sufficient complaints are raised

to warrant developer attention. Even then, the game rules regarding in-game

actions, especially social behavior, are so vague that infringing players are given

several warnings before incurring significant repercussions. Innocent players are

thus posed with a dilemma: either they only play with peers they know and trust

“in real-life” (i.e., from outside the game) or they must risk playing with peers

they meet in-game who may behave poorly.

70

3.2.1 The Case for Reputation Systems

Reputation systems are commonly used in Web applications where the service

provider acts as a broker between participants. Often those parties are selling items

or services as independent vendors (e.g., eBay auctioneers and Amazon affiliates).

Increasingly, reputation systems are being used in applications where clients do

not have commercial relationships with each other, but instead judge the veracity

of information shared by one another (e.g., Slashdot.org forums).

The appeal of such systems is that they grant clients self-determination about

who they will interact with or trust, yet are relatively simple for service providers

to implement. At the same time, reputation systems indentify clients who exhibit

exceptionally negative behavior so that moderators may efficiently investigate

them. This reduces an application’s reliance on trouble-ticket systems which

preoccupy game moderators with assuring complainants that the perpetrators

are being investigated rather than focusing all their efforts on investigation. As

discussed in more detail later, reputation systems could incorporate information

from other sources, such as an anomaly-based detector.

Definitions

The complete set of game players is denoted by Players. A rating is the value

corresponding to the opinion of one player (the rater, i ∈ Players) about another

player (the ratee, j ∈ Players) and is denoted by ri,j ∈ [−1.0, 1.0], where a negative

rating corresponds to dislike or distrust, and a positive rating corresponds to like

or trust. A rating of 0.0 represents an unknown or neutral relationship.

The ratings for a given ratee j are combined to formulate their reputation,

denoted by Rj ∈ [−1.0, 1.0] with a similar interpretation of affinity. A rater’s

reputation dictates how influential their ratings are in determining the reputation

of their peers: disliked raters will have little or no influence while liked raters will

have more influence.

71

Figure 3.1: Addition of PlayerRating to the game system at large. Each client

using a PlayerRating agent combines ratings from liked (i.e., trusted) peers to form

a personalized view of reputations regarding all other peers.

3.3 THE PLAYERRATING APPROACH

Our approach is the PlayerRating system1 which is, to our knowledge, the first

distributed reputation system specifically designed for online games. The intuition

behind the system is that a person trusts the opinions of their friends and friends-

of-friends about unmet peers. Furthermore, each opinion is weighed based on their

respect for the friend claiming the opinion; close friends will have more influence

than mere acquaintances. The system (shown in Figure 3.1) has participating

players run PlayerRating agents within their game clients. Each agent enables

a player to rate peers and leverage ratings from liked peers to determine the

reputability of unmet peers. The player-specific reputations are bound to in-game

aliases (preserving real-world anonymity) and provide a best effort prediction of

the type of behavior one might expect from one’s peers. This allows well-behaved

players to more easily congregate and avoid antisocial players.

1This research appeared in NetGames 2009 [65].

72

The novel features of PlayerRating are:

Experience Sharing. While some in-game mechanisms exist for recording

social relationships (e.g., friend-list and ignore-list) that data is never propa-

gated. PlayerRating transparently shares player relationship data using strictly

authenticated in-game channels to avoid Sybil attacks [26]. Sharing data allows

a player to warn peers about malicious peers. In return, peers rate other peer’s

behavior which allows the player to learn of malicious peers without having to

personally encounter them. This reduces the likelihood that a legitimate player

will inadvertently interact with a malicious peer.

Personal Perspective. Using shared relationship data, PlayerRating

locally learns the game’s social network from each player’s perspective: players

determine where they fit into the network by rating peers that they like or dislike.

The system propagates trust through positive ratings to predict the player’s

perceived reputation of peers that they have yet to meet. As we show in the

evaluation (and have observed in practice) the system works well without knowing

every rating, but improves as more ratings are learned.

Fine Granularity. Existing in-game social tools are too coarse, restricting

player relationships to like, dislike, or ambivalence. In the PlayerRating system,

player relationships are analog, allowing a player to express their like or dislike

of each peer to different degrees on a Real-valued spectrum. As such, the

PlayerRating system could sort and better match players for group play, and focus

expensive non-automated policing resources on the most disruptive players.

Distributed Operation. The PlayerRating system operates in a distributed

fashion: each participating player runs a PlayerRating agent within their game

client that determines the reputation of their peers, accounting for their personal

perspective based on who they like and dislike. Participation is optional in the

sense that a player may choose not to rate their peers, however, they cannot

prevent their peers from rating them. Furthermore, a player must accurately rate

their peers before the agent can accurately calculate meaningful peer reputations.

73

F1

self

F2

+

A1 F3

F4 F5A3A2

+−

Figure 3.2: Example social network of players. The observer (self) belongs to a

clique with friends F1 and F2. Friend F1 dislikes A1 so the observer will probably

also dislike A1 and her clique. Friend F2 likes F3 so the observer will probably like

F3 and her friends F4 and F5, although with less certainty.

Assumptions

An assumption underlying all reputation systems is that past performance is a

reliable indicator of future behavior. However, another assumption at the core

of reputation systems is that players may reform and improve their conduct at a

later time although this will not excuse past transgressions. The player population

forms a weighted directed graph (like the example shown in Figure 3.2) where

each vertex represents an individual player (uniquely identified by a player ID) and

edges represent ratings. The following assumptions are made:

� Ratings are subjective. Each player is allowed only one rating for each peer

yet the rating should encompass the rater’s perception of every interaction

with the ratee. How the rater judges interactions and assigns ratings is

subjective and entirely up to them. To accommodate new interactions, a

rating may be updated or withdrawn by the rater at any time.

74

� Ratings are asymmetrical. A related assumption is that any two players may

have different opinions of each other and their peers. Even the very best of

friends often have different opinions regarding their peers.

� Raters are authenticated. Interplayer communication passes through the

game server in practically all online games. At the server, each message

is authenticated with respect to the sender’s (i.e., rater’s) player ID. For

this reason, the approach only accepts firsthand ratings and does not accept

“hearsay ratings” (i.e., forwarded ratings) since they cannot be authenticated

in the same way.

� Players are self-esteemed. It is assumed that all players always view

themselves with the highest regard: as absolutely likeable and trustworthy

so Rself = 1.0. Similarly, ratings from peers about themselves (i.e., ri,j where

i = j) are ignored since they will always be 1.0.

� Positive ratings are transitive. Insofar as positive ratings represent trust,

positive ratings and reputations are transitive. Specifically, a peer trusted

by a trusted peer (i.e., a friend of a friend) becomes trusted, albeit with less

certainty. The opposite may not be true, so the ratings from distrusted peers

are not necessarily useful.

� Ratings follow a power-law distribution. Players will self-organize following

a power-law distribution [2] like other social systems [9, 15, 72, 93]. Much

of the graph will be sparse as most players will create few ratings – even in

systems with monetary incentive (e.g., eBay) only 60% of users ever generate

ratings [25]. However, the power-law-based “small-world” model of Watts

and Strogatz [124] indicates that a few well-connected players will result in

a short average path length between any two players (i.e., only a few degrees

of separation). These few well-connected players are fundamental for the

system to yield predictions for many of the peers a player may encounter.

75

Design Goals

Players in multiplayer online games compete over recognition and limited in-game

resources. Often they will adopt any tools that make the game more enjoyable or

help them outperform their peers. To be suitable for this application, a reputation

system should facilitate more positive player interactions yet also prevent abuse.

Specifically the system should:

� Support Incremental Deployment. As a new tool, the system must accom-

modate gradual adoption, otherwise no one will use it in the first place.

Specifically, the system must calculate peer reputations as accurately as

possible given only partial graph information. Graph updates may be sent

frequently to quickly increase the utility of the system for new adopters.

� Encourage Participation. Players cannot be expected to rate every player

they interact with, yet reputation systems become more accurate with more

ratings. Related to the previous requirement, the system must encourage

participation by being easy to use and immediately beneficial.

� Resist Abuse. While encouraging participation is important, preventing

abuse is equally important. Malicious players should not be able to increase

their own reputation, even through collusion. Otherwise ill-gotten reputation

could be used to slander legitimate players, or worse, lure trusting players

into scams.

� Incur Minimal Overhead. As the goal of the system is to improve the overall

gameplay experience, it must not distract players at inopportune times or

degrade game performance. This means the system should mostly operate

in the background and be efficient in terms of computation, storage, and

communication.

76

3.3.1 Agent Algorithms

The PlayerRating system operates in a distributed fashion: each participating

player runs a PlayerRating agent within their game client that determines the

reputation of their peers, accounting for their personal perspective based on who

they like and dislike. This section illustrates system features using a World of

Warcraft [13] user-interface implementation [60], however, the system can easily

be adapted to other games and game genres.

The system is intentionally designed so that players may optionally participate;

they may choose not to rate their peers but they cannot prevent their peers from

rating them. Furthermore, a player must accurately rate their peers before their

agent can accurately calculate meaningful peer reputations.

Each player rates their peers when it is convenient to do so, presumably while

socially interacting with the ratee or shortly thereafter. Ratings are shared with

peers and expired periodically. Using all currently known ratings, the PlayerRating

agent calculates each ratee’s reputation as the average of every rating about them,

weighted by the influence (a function of reputation) of the corresponding raters.

Ratings are not absolute, but instead express a ratee’s reputation relative to that

of the rater. Thus, a ratee cannot be more reputable than the most reputable

rater who rated them, preventing collusion via positive feedback loops. These

calculations are done in an iterative fashion (similar to how Google PageRank [87]

operates) through repeated calls to the UpdateReputations() function.

Initialization

The Initialization() routine of a PlayerRating agent is executed only once,

when the player first installs the PlayerRating agent. The routine simply involves

zeroing all data (ratings, reputations, and related variables) and setting the player’s

own reputation Rself to 1.0. This routine need not be executed each time the player

executes the game client because the data will persist between play sessions.

77

Figure 3.3: User interface addition for rating peers. The PlayerRating rating

slide-bar was added to the peer interaction menu in World of Warcraft. The menu

is only displayed when the player chooses to interact socially with a peer.

Recording Ratings

The PlayerRating agent unobtrusively extends the game’s user interface (like the

World of Warcraft interface addition shown in Figure 3.3) to enable the player to

easily rate their peers. As defined earlier, ratings run along a single dimension

and represent the rater’s overall impression of the ratee. It is possible to extend

ratings to other dimensions corresponding to criteria specific to player skills (e.g.,

how good the player is at a particular role like being the team healer ri,j,healer)

or specific behaviors (e.g., negatative actions like intentionally killing teammates

ri,j,team killer or excessively swearing ri,j,swearing). Adding extra dimensions would

linearly increase system state, computation, and communication overheads. Some

criteria may not be useful enough to justify such overhead and warrant further

investigation.

The recording routine, RecordRating(), is used to record both personally

created ratings and those ratings disseminated by one’s peers. The freshness of

a peer’s rating ri,j is indicated by setting a corresponding time-to-live variable

ttli,j to the maximum value ttl max and it may be expired if it later becomes

irrelevant. Subsequent receipt of a previously recorded peer rating reaffirms the

peer’s commitment to that rating, so the rating is updated and the corresponding

time-to-live value is reset to the maximum value. By doing so, relevant ratings

survive the expiration process.

78

Sharing Ratings

Ratings are disseminated transparently via data channels which exist to support

game modification (“modding”) and operate similar to in-game chat channels. Only

personally-created ratings are broadcast on the PlayerRating channels. All peers

listening to the channel may record ratings. A peer may record ratings from an

unknown rater (i.e., Ri = 0.0) with the idea that in the future either they or

someone they trust might determine that the rater is also trustworthy.

Communication is strongly-authenticated since each message must go through

the server which validates the sender’s alias. To mitigate flooding, the server

restricts message length to a couple hundred bytes and limits senders to a few

messages every 10 seconds. PlayerRating agents may further limit the ratings

they accept to control the growth of their knowledgebase.

Dissemination Policy. The ShareRatings() function executes a game-

tailored policy to share ratings as quickly as possible and introduce some

redundancy over time. Redundant broadcasts ensure that peers who may have

been offline during the original broadcasts are notified and reaffirm the continued

conviction in previously shared ratings (otherwise they will be expired and

discarded by one’s peers). Ratings must be shared in a fashion that minimizes

the required communication, so retransmission should not be too aggressive.

Strategies used by the World of Warcraft PlayerRating implementation include:

broadcasting a rating as it is created or updated, broadcasting the rating after

interacting with the ratee, and periodically broadcasting ratings sequentially. In

this game, ratings are broadcast to hundreds of players at once so the policy is

careful to not overwhelm recipients. Other strategies may include broadcasting

ratings randomly or through bulk broadcast when joining a zone, small server, or

playgroup. These strategies are particularly useful for First Person Shooter (FPS)

games where players join small servers of 8 to 32 players for short durations. In

this case a more aggressive policy has less risk of overwhelming recipients.

79

Expiring Stale Peer Ratings

The persistent nature of online games means that a lot can change while a player

is offline. In particular, a player’s friends and peers may continue to play the game

and interact with other peers whom the player should know about. This affects the

PlayerRating system in that one’s peers may change or revoke previously shared

ratings, or quit playing the game altogether (obviating ratings created by or about

them). To handle the possibility that the PlayerRating agent may obliviously

possess stale peer ratings, the ratings collected from peers are slowly expired to

ensure that each player’s knowledgebase only contains relevant data.

Expiry Policy. The ExpireRatings() function is run periodically with

period Tdec. The function ages ratings by decrementing their associated time-

to-live values. If a time-to-live value reaches zero, the agent has not received

any reaffirmation of the peer’s conviction behind the corresponding rating, so

it is expired and removed from the knowledgebase. Since players have accurate

knowledge of their own ratings, those ratings do not need to be expired. The

maximum lifetime of a peer’s rating which is not reaffirmed is limited to:

maximum rating lifetime = Tdec × ttl max (3.1)

As a part of the game client, the PlayerRating agent only runs while the player

is online so rating lifetime is measured in terms of played time (referred to as

“pTime” with units “pHours”, “pDays”, etc.). While both Tdec and ttl max are

currently default system settings set to a common value for all agents, players can

individually adjust their local values to change the maximum lifetime of ratings,

thereby controlling the amount of state kept by their PlayerRating agent. To be

clear, locally modifying either Tdec or ttl max does not affect in any way how the

player’s peers store, use, or share ratings.

By associating a time-to-live value with each rating, the PlayerRating agent

is able to determine how old each rating is at any particular moment. The next

routine exploits this to infer how recent and thus how relevant each rating is.

80

Algorithm 1 Pseudocode for the UpdateReputations() function.

1: R′,w⇐ ∅
2: for all i ∈ Players do

3: w∆⇐ Influence(Ri)
4: for all j ∈ Players, ri,j ≠ 0.0 and ¬IsSelf(j) do

5: R′

∆⇐ (ri,j ×Ri × Decay(ttli,j)) −R′

j

6: wj ⇐ wj +w∆

7: R′

j ⇐ R′

j + (R′

∆ × w∆

wj
)

8: end for

9: end for

10: R⇐ R′

Calculating Reputations

The core routine of the PlayerRating system, UpdateReputations() shown in

Algorithm 1, uses all known ratings to determine the reputations of one’s peers.

The algorithm calculates the reputations R′ and updates R only once the entire

graph has been processed, meaning only line 10 must be atomic. As the bulk of

the algorithm is non-atomic, the algorithm may be periodically and incrementally

executed with low priority to avoid sudden computation spikes that may result in

degraded gameplay at inopportune times.

One iteration of the algorithm loops over all the players (lines 2-9) and their

ratings (lines 4-8). Each rater’s influence is calculated (line 3) by a monotonically

non-decreasing function of their reputation: the Influence() function. In the

World of Warcraft implementation, this function calculates influence as the square

of positive reputation and as zero otherwise:

Influence(Ri) =
⎧⎪⎪⎨⎪⎪⎩

(Ri)2 if Ri > 0.0

0.0 otherwise
(3.2)

Using this influence function, disliked and unknown peers have no influence (all

their ratings may be skipped) while liked peers have quadratically more influence.

81

For each non-zero rating where the ratee j is not the actual player running

the agent self (ratings about the player are ignored), the relative rating is decayed,

weighted, and averaged (lines 5-7) with all other ratings about the ratee used to

formulate the ratee’s new reputation R′

j. Averaging relative ratings (ri,j × Ri)

means that a ratee cannot be more reputable than their most reputable rater and

that reputations will always fall on the same scale as ratings (i.e., [−1.0, 1.0]).
The ratings are weighted by the rater’s influence.

More recent interactions (and thus ratings) are more important than older

ones. Since the rating’s age is already maintained via its time-to-live value, the

time relevance of the rating is logically calculated using the Decay() function which

should be monotonically non-increasing with respect to older (i.e., smaller) time-

to-live values. The World of Warcraft implementation uses a linear decay to avoid

large changes when ratings are expired and removed from the knowledgebase:

Decay(ttli,j) =
ttli,j

ttl max
(3.3)

The UpdateReputations() routine is designed so that peers who are further

away (i.e., have more degrees of separation) from the player will be more likely

to have reputations that approach zero (i.e., unknown). The reasons for this are

twofold. First, with more degrees of separation between any two people comes

less familiarity and trust, so those peers really are relatively unknown. Second,

this prevents distant peers with a few highly positive ratings from becoming

disproportionately influential with regards to the ratings they create, especially

when compared to peers closer to the player (i.e., one’s close friends).

Furthermore, the routine is designed to equilibrate to stable values for all

reputations as the routine is iterated. The routine requires iteration because the

social network is in constant flux: ratings may be added, changed, or removed at

any point in time by one’s peers.

82

A1
-0.25

F1
0.5

self
1.0

F3
0.25

F4
0.125

F5
0.125

F2
0.5

A3
0

A2
0

+0.5

+1.0

+0.5

+0.5

+0.5 +0.5

-0.5

Figure 3.4: Iterating UpdateReputations() over the example social network.

Labeled edges are ratings and labeled vertices are the reputations (from the point

of view of self) achieved upon reaching equilibrium in three iterations.

Figure 3.4 numerically illustrates the example network from Figure 3.2 after

reputations calculated by self have reached equilibrium. Before the first iteration,

Rself = 1.0 and all other reputations are 0. After one iteration, the two peers

closest to self have RF1 = RF2 = 0.5 and all other peer reputations remain at 0. In

the second iteration, the PlayerRating agent calculates the reputation for A1 by:

RA1 =
rF1,A1 ×RF1 × Influence(F1)

Influence(F1)
= −0.5 × 0.5 × 0.25

0.25
= −0.25

The positive reputation for F3 is calculated similarly through F2. The reputations

for F1 and F2 only remain unchanged because of the example numbers used:

RF1 =
rself,F1 ×Rself × Influence(self) + rF2,F1 ×RF1 × Influence(F1)

Influence(self) + Influence(F1)

= 0.5 × 1.0 × 1.0 + 1.0 × 0.5 × 0.25

1.0 + 0.25
= 0.5

In the third iteration, F4 and F5 are discovered and none of the previously

calculated reputations change. At this point, the network is discovered as fully

as possible given the two ratings self created.

83

Figure 3.5: Peer reputation displayed in a tooltip. This World of Warcraft tooltip

is displayed when the player places the cursor over the peer’s character.

Reputation Lookup

The LookupReputation() function simply returns Rj (or 0.0 if the peer is

completely unknown). It is helpful to remind the player of their rating for that

peer at the same time by returning rself,j. Both lookups are inexpensive and the

information can be presented in many graphical and numerical ways, such as the

addition to a player tooltip shown in Figure 3.5.

3.4 EVALUATION

The PlayerRating system design facilitates incremental deployment since a player

does not need to rate peers and choosing not to participate does not prevent peers

from rating them. The system also encourages participation since a player can

only benefit from accurate peer predictions if they first accurately rate their peers.

This section evaluates the system in terms of meeting the two measurable design

requirements: resistance to abuse and low system overhead.

For evaluation, the system was implemented as an offline C++ application

that was optimized for speed. This allowed experiments to be run without

impacting real players and demonstrates how efficient the system might be if

implemented directly within the game client. When implemented as a user-

interface modification, it would be written in the game’s scripting language. In

World of Warcraft, that language is Lua which roughly uses the same memory

footprint but executes at
1
30 of the speed of C++ for equivalent programs [20].

84

Characteristic Value

Ratees 30,000

Raters 3,919

1 ≤ outlinks ≤ 10 2,402

10 < outlinks ≤ 100 1,230

100 < outlinks 287

Ratings 101,842

positive 76,101

negative 25,741

Mean Ratings 3.4

positive 2.5

negative 0.9

Sparseness 0.000113

Table 3.1: Characteristics of the Slashdot Zoo subset. Raters follow a power-law

distribution with respect to their outlinks.

3.4.1 Experimentation

To demonstrate the efficiency and collusion resistance of the PlayerRating system,

experiments were performed on an emulated player population constructed using

30,000 identities from the Slashdot Zoo [72]. This is a reasonable number of player

identities since World of Warcraft census indicate that realms support up to this

many players [122]. Summarized in Table 3.1, this subset preserves the power-law

characteristics of the original set.

Convergence to Equilibrium

This experiment shows how quickly PlayerRating agents converge to equilibrium in

the worst case: when all ratings are learned instantly. In normal operation, fewer

ratings update simultaneously due to limits of the communication channel. Within

one agent, reputation instability is measured as the root-mean-square-difference

(RMSD) between iterations of the UpdateReputations() function calculated by:

85

0.0100

0.1000

1.0000

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 D
if

fe
re

n
c

e

1 < outlinks ≤ 10

10 < outlinks ≤ 100

100 < outlinks

Overall

0.0001

0.0010

0 10 20 30 40 50 60

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 D
if

fe
re

n
c

e

Iteration

Figure 3.6: PlayerRating reputation convergence. The average RMSD for

players with at least one rating, after instantaneously discovering the ratings graph,

converges towards equilibrium as the UpdateReputations() function is iterated.

RMSD =

¿
ÁÁÀ∑i∈Players (R′

i −Ri)2

∣Players∣ (3.4)

where a value of zero means the system has completely reached equilibrium and

any other value indicates that some reputations are still in flux.

Figure 3.6 shows the average RMSD for various players with at least one

rating. The results indicate that overall the average participant system converges

quickly. Players who rate fewer peers converge quickly since their connected graph

is generally smaller, while players who rate many peers converge more slowly since

their connected graph is larger. These results mean that malicious peers cannot

generate a number of ratings that would cause instability. The small bump occurs

at iteration 3 because that is the first iteration that can uncover a cycle in a

completely new graph, possibly propagating trust back to a known peer.

86

60%

80%

100%

A
d

v
e

rs
a

ri
e

s
 w

it
h

 P
o

s
it

iv
e

 R
e

p
u

ta
ti

o
n

30 Adversaries (0.1%)

300 Adversaries (1.0%)

3000 Adversaries (10.0%)

0%

20%

40%

0% 20% 40% 60% 80% 100%

A
d

v
e

rs
a

ri
e

s
 w

it
h

 P
o

s
it

iv
e

 R
e

p
u

ta
ti

o
n

Ratings about Adversaries that are Accurate

Figure 3.7: PlayerRating collusion resistance. The percentage of colluding

adversaries that incorrectly obtain positive reputation as viewed by the average

player is plotted against the percentage of accurate (i.e., negative) ratings about

individuals in the adversary population.

Collusion Resistance

This experiment shows the ability of PlayerRating agents to accurately identify and

isolate a population of colluding adversaries (i.e., correctly assign them negative

reputation). Initially, the colluding adversaries join the game and immediately

establish a fully connected positive rating sub-graph among themselves. Then, the

adversaries play in an entirely legitimate fashion in order to obtain positive ratings

from the original player population (assigned randomly according to the power-law

distribution and sparseness of the original ratings). The leftmost data plotted in

Figure 3.7 shows that at this early stage all the adversaries have obtained positive

reputation as expected because they have not yet acted maliciously, betraying their

earned trust.

87

As adversaries begin to betray their previously-earned positive reputation by

committing malicious acts, they acquire negative ratings (which reverse some

previously-obtained positive ratings). As the percentage of positive ratings

decreases, the percentage of negative (i.e., accurate) ratings increases and fewer

adversaries retain positive reputations. Eventually, the last adversaries abuse their

earned trust and are re-identified with negative ratings, leaving no adversaries with

positive reputations.

The figure shows that larger colluding populations retain positive reputation

longer than smaller colluding populations. This occurs because the colluding

population is fully connected, meaning that their rating links grow quadratically

and quickly outnumber the original rating links. In the largest adversary

population of 3,000 colluding adversaries (which represents 10% of the original

player population) the rating links vastly outnumber the original links: adversary

outlinks = 3,000 × 2,999 = 8,997,000 = 88.3 times the original outlinks.

Computation Overhead

The PlayerRating agent runs within the game client process which requires fast

execution to minimize any impact on the game’s performance. Specifically,

the agent absolutely must not affect the game’s playability at critical gameplay

moments. To measure the PlayerRating agent’s speed, benchmarks of its various

functions were performed on an Intel Core 2 Quad system (Q6600/2.4GHz). The

results shown in Table 3.2 each represent an average of 10,000 executions. Most of

the agent’s functions operate on the order of µs. The slowest operations are merely

on the order of ms. They are the ExpireRatings() function which must iterate

over all stored ratings to decrement their time-to-live values and the portion of the

UpdateReputations() function that commits R′ to R. Fortunately, these both

of these operations are infrequently performed (at periods greater than a pHour)

and may be scheduled to coincide with the next logon, loading screen, or idle time

when they will impact the player’s gameplay the least.

88

Function
Theoretical Experimental

Bounds Cycles Time

Initialization() O(1) 473 0.2µs

RecordRating() O(1) 33,539 14.0µs

ShareRatings() O(outlinks) policy dependent

ExpireRatings() O(∣r∣) 30,267,923 12.7ms

UpdateReputations() O(∣r∣) 18,300,514 7.7ms

process rating O(1) 300 0.1µs

process rater O(∣Players∣) 26,089 10.9µs

commit R′ O(∣Players∣) 10,047,723 4.2ms

LookupReputation() O(1) 752 0.3µs

Table 3.2: Efficiency of PlayerRating routines. The theoretical bounds and

experimentally measured computation cycles (also expressed as time for analysis)

to execute the various routines of a PlayerRating agent are given.

Memory Overhead

With many gaming machines having gigabytes of physical memory and game

client’s leaving so much virtual memory unused, having a small memory footprint

is less important than being fast. While memory overhead is a lesser concern,

PlayerRating agents require extremely little state. Specifically, neutral/unknown

ratings (i.e., with value 0.0) are not useful and need not be stored. Furthermore,

ratings from peers with negative reputations will not be used so they can be

discarded. Similarly, ratings about the player will have no bearing on any of

the algorithms (recall Rself = 1.0 always) so they need not be stored either.

In summary, a PlayerRating agent’s state is reduced simply to the number of

relevant ratings kept and the peer reputations. This is far less than the square of

the number of players due to the sparseness of the social graph:

total state = ∣r∣ + ∣R∣ ≪ ∣Players∣2 (3.5)

For example, the ratings and reputations throughout the evaluation merely require

2.4MB of application memory.

89

3.4.2 Limitations

The current limitations of PlayerRating involve changes to player account in-

formation that is not public and therefore is not accessible by a user-interface

modification. Specifically, a player may quit the game, transfer their character

to another server, or rename their character (although only to another unique

name). While large-scale Sybil attacks are not possible due to restrictions on how

frequently these actions may be performed, some system inaccuracy (i.e., rating

duplication may exist until those ratings expire). Such temporary inaccuracies

could be avoided if the system was aware of relevant changes to peer accounts and

peer ratings made while the player was offline. This would obviate the need for

rating expiration in the first place.

External to the game, peers sometimes sell their accounts for profit, although

this practice is often against the game’s Terms of Service Agreement. Characters

changing ownership in this fashion may have an abrupt change in behavior, making

existing ratings about them obsolete. Players with positive ratings about these

peers may be briefly misled until those ratings are corrected.

Finally, adversaries may attempt small-scale Sybil attacks [26] by creating

additional game accounts. In general, this is prohibitively expensive because

creating a game account involves purchasing a copy of the game and paying a

subscription fee. However, some games like World of Warcraft offer temporary

trial accounts (10-day trial accounts are already abused for gold spamming) which

may facilitate short-term Sybil attacks. This may be addressed by incorporating

the character’s level in the Influence() function (i.e., ratings from high-level

characters are more relevant than ratings from low-level characters). This would

immediately mitigate trial accounts since those accounts expire before an adversary

could reach maximum character level (it takes roughly 300 pHours to reach

maximum level). If PlayerRating were built into the game, ratings from trial

accounts would be easy to ignore and need not be propagated at all.

90

3.4.3 Discussion

There are several possible PlayerRating applications. Currently the system is

publicly available as a World of Warcraft mod [60] and may be adopted by any

player willing to do so. We used the system (along with in-game and real-life

friends) for a number of years before quitting the game. It is our experience

that the system successfully warns players when first interacting with peers who

have behaved badly in the past. If implemented within game algorithms that

match players for group play, reputation scores could be compared to weigh the

likelihood that the group will get along well. In this sense, PlayerRating could

completely replace existing friends-list and ignore-list tools by simply treating peers

with positive ratings as friends and ignoring peers with negative ratings.

Platforms that support multiple game titles (e.g., Sony’s PlayStation Network

or Valve’s Steam) may trivially build a recommender system on top of PlayerRating

to focus online marketing at players with friends (i.e., peers they rate highly) who

enjoy other titles or specific DownLoadable Content (DLC). This would effectively

state: “your friend from game X also plays game Y, you might enjoy it too.”

Furthermore, such a system could recommend User Generated Content (UGC) –

especially if a rating dimension was applied to modders (ri,j,modder) regarding the

quality of their creations. Ultimately, this may become an effective approach to

reduce a game developer’s time and expense in creating content for new games.

Reputation systems like PlayerRating may be used to federate adversary

detectors in other applications where the clients do not directly interact with and

rate each other. For example, independent Web services may use such a system

to learn which of its clients are bots participating in a denial-of-service attack.

In this setting, the system may incorporate ratings from peers and input from

other detectors like Fides. Since these sources of information are not being rated

by the same criteria with which they rate clients, the system could augment the

Influence() function to account for the historical accuracy of each rating source.

91

3.5 RELATED WORK

Existing In-game Tools. Many games offer simple tools for tracking peers

that a player likes (e.g., friend-list) or dislikes (e.g., ignore-list). Extensions like

PlayerNotes [86] add annotation capabilities to those tools so that the player

may be reminded why they befriended or ignored peers. While these tools are

easy to implement and are present in many online games, they do not share such

preferences and thus cannot predict whether or not a player will like a peer they

meet in-game for the first time.

Reputation and Recommender Systems. A common approach to

improving online social interaction is the use of reputation systems, such as eBay’s

Feedback system [29] or Slashdot’s Karma system [105]. Related to reputation

systems are recommender systems (where value is assessed for objects rather than

people), the most notable of which is the PageRank system that powers the

Google search engine [87]. The PageRank system determines the popularity or

rank of a webpage as the sum of all supporting evidence (i.e., hyperlinks pointing

to it) weighted by the rank of the referring webpages and a decay factor. The

algorithm iteratively updates each webpage’s rank through random walks of the

Web, eventually reaching Web-wide equilibrium. So long as a webpage has many

references from popular pages, it will also have a high PageRank.

Deployed reputation and recommender systems, like PageRank, evaluate the

global perception of persons or objects yielding rough predictions that do not

account for personal preference. For personalization, some approaches (e.g.,

TrustRank [46] and Personal PageRank [57]) extend PageRank while others

(e.g., EigenTrust [68] and email filtering [45]) implement systems that operate

in a distributed fashion. Personalized approaches allow people with similar

interests (e.g., players who dislike profanity) to congregate and form cliques. Such

approaches record peers that one likes or dislikes, and extrapolates personal and

shared ratings to predict like and dislike for peers not personally met.

92

The PlayerRating approach is architecturally similar to the PageRank system,

but is computed in a distributed fashion. PlayerRating calculations are tailored

to better suit online games and direct exposure to players. PlayerRating leverages

both positive and negative ratings, as well as bounding reputations, so that they

remain on a fixed scale and can be more easily interpreted by players.

3.6 CONCLUSION

In many networked applications, clients interact using aliases which unfortunately

enable a number of antisocial behaviors, including automation. This chapter

investigated the problem of identifying adversaries using a federation of abundant,

yet sometimes inaccurate and individually inconclusive detectors in the context

of identifying misbehaving players in multiplayer online video games. This

application is ideal for such research since established disincentives exist and

treating players as detectors harnesses abundant information sources. The research

contributions of this chapter are:

� We briefly outlined the problem with online behavior. Basically anonymity

in an (even indirectly) competitive application or environment invites

participants to behave badly towards one another. Fueled by financial

incentive, automated and adversarial behaviors become ever more common.

� We proposed and evaluated a novel reputation system for multiplayer online

games. The PlayerRating system runs an agent within each participating

player’s game client and extends the user interface to noninvasively allow

the player to rate their peers. Using the player’s ratings along with the

ratings shared by their peers, a PlayerRating agent calculates reputations

for all peers from that player’s perspective. By design, the system facilitates

incremental deployment and encourages participation. In evaluation, we

showed that the PlayerRating system resists abuse and imposes minimal

overhead.

93

There are a number of ways which a reputation system could be used in

multiplayer games. Besides the original purpose of identifying malicious players

to avoid, such a system could provide the basis for focused in-game advertising

and evaluating both downloadable and user-generated content. Furthermore,

reputation systems like PlayerRating could be used to federate adversary detectors

in other applications where the clients do not directly interact with and rate each

other.

The next chapter discusses how an application service provider may leverage an

analog metric (like player reputation) to best disincentivize automated adversaries

of Web-based applications. That research focuses on maximizing the application’s

service for legitimate clients while minimizing service granted to mostly adversarial

clients.

94

Chapter 4

DISINCENTIVIZING ADVERSARIAL AUTOMATION

4.1 INTRODUCTION

The previous chapters explored approaches to detect automated behavior and

combine detectors in order to identify application adversaries. Applications that

authenticate clients through some form of real-world credibility (e.g., multiplayer

online video games which bind player accounts to a credit card or software

purchase) can immediately leverage these approaches to penalize and thus

disincentivize malicious behavior. In contrast, applications which are susceptible

to adversarial automation before they can conveniently authenticate the client

(e.g., Web-based commerce) cannot leverage these approaches as easily and must

establish a disincentive mechanism which may work even in the absence of strong

client authentication. This chapter investigates how to do this.

We explore a Proof-of-Work (POW) approach that leverages the various

available information sources (including client geographic location) to differentiate

clients and thus disincentivize adversarial automation behavior in the context of

resource consumption attacks on Web-based applications. Most Internet commerce

is done through Web-based applications so they experience a wide variety of

resource consumption campaigns against them such as denial-of-service, ticket

scalping, comment spam, and click fraud. Web applications are ideal for adversary

disincentivization research since they have access to many sources of information

about client behavior including load metrics and network address blacklists yet

lack effective disincentive mechanisms. We show that our proof-of-work approach

is efficient, transparent to human users, and straight-forward to implement.

95

4.2 THE RESOURCE CONSUMPTION PROBLEM

Service providers use Web-based applications to distribute ideas or sell goods.

Rationally, a service provider only provisions enough computation and network

resources to handle the expected client load for the application, with some extra to

spare. Unfortunately, in most Web-based applications there is a resource imbalance

between the server and clients, both in terms of the resources each have available

and that each must commit in order to complete a transaction. Specifically, a client

may simply send a single request (i.e., network packet) to initiate the protocol,

however, the server may need to retrieve data from disk or a database, perform a

non-trivial computation, or generate a webpage from dynamic content.

In times of unexpectedly high legitimate interest (referred to as “flash crowds”

or as the “Slashdot effect”), it is possible for the server to be overwhelmed and cease

to adequately service any requests. This underscores the resource consumption

problem: with or without it being their motivation, automated adversaries (i.e.,

large botnets) can easily consume all the Web server’s resources, often in early

stages of the application protocol. Automated attacks on Web-based applications

remain a significant problem on the Internet, despite vast efforts to combat them.

Examples include comment spam on Web-based forums [89], ticket-purchasing

robots [110], click-fraud robots, and denial-of-service attacks.

There are two disadvantages that a Web server has in dealing with this problem.

First, network clients are weakly authenticated; it is often not until the very end

of a transaction that the client’s real-world identity must be revealed, so it is

difficult to stop adversaries from consuming server resources in the early stages of

the protocol and aborting just before they must commit their own resources or

identity. Second, Web applications seek a general audience which is not known a

priori, so the server expects that most clients engaging in the protocol intend to

complete the transaction.

96

a) Google b) Yahoo! c) Microsoft Live

Figure 4.1: Unintelligible CATPCHAs. Found on three of the largest Internet

websites, these examples represent the sole challenge to creating an online account.

4.2.1 The Shortcomings of CAPTCHAs

A common approach to address the automated resource consumption problem

is the use of image-based Completely Automated Public Turing Tests to Tell

Computers and Humans Apart (CAPTCHAs) [117]. Each CAPTCHA is a small

server-generated image consisting of skewed representations of letters and numbers

(like the examples shown in Figure 4.1) that a user must correctly interpret before

they are granted access to the protected service.

There are several disadvantages of using CAPTCHAs. One drawback is

the user-interface problem they impose [70]; users who are visually impaired

are unable to solve the challenge and are thus denied access to the service.

Even visually unimpaired users find it increasingly frustrating to solve challenges

correctly because they are becoming less readable in order to thwart automated

solving software. A second drawback is that automated solvers are improving

at an alarming rate and can efficiently defeat most human-readable CAPTCHA

constructions [49]. The final and probably most important drawback is that the

fixed-difficulty challenge that CAPTCHAs represent fatally limits their utility.

CAPTCHAs are designed so the typical user can solve one in roughly 10 to 20

seconds. Enterprising adversaries have outsourced the solving of CAPTCHAs to

low-cost foreign data entry specialists who will solve 1,000 challenges per hour for

under $3 [43]. From an economic standpoint, the inability to change the “price”

of access makes the approach unable to protect valuable online resources [75].

97

4.2.2 The Case for Proof-of-Work

Proof-of-Work (POW) protocols are an alternative to CAPTCHAs. A few proof-

of-work protocols have been proposed in the literature [7, 8, 24, 28, 35, 121, 123]. A

proof-of-work (also known as “cryptographic puzzles” or “client puzzles”) protocol

extends a client-server request-driven application protocol so that the server issues

prospective clients computational challenges of client-specific difficulty. Each client

must solve their own computational challenge and return a correct answer to the

server before they will be granted service. Every POW protocol is designed such

that issuing and verifying challenges is trivial for the server to do, yet solving the

challenges is arbitrarily difficult (as set by the server) for the clients to do.

The challenge-response nature of POW protocols makes them similar to

CAPTCHA protocols except that POW challenges are solved by the client machine

rather than the human user. In removing the human from the protocol, POW

protocols may more readily differentiate service on a per-client basis according to

the likelihood that each client is adversarial (i.e., through demonstrated behaviors

or other detection methods). Clients that are more likely to be adversaries are

given extremely taxing challenges to solve, while clients unlikely to be adversaries

are given easy challenges to solve. In contrast to the uniform price applied to all

clients in CAPTCHA protocols, the server can accurately price individual access

to the service using a POW protocol.

While POW approaches are highly configurable in terms of workload, few

have made progress towards being deployed. The biggest hurdle to adopting the

previously proposed approaches is that they require changes to standard protocols

and wide-scale adoption of special client software in order to operate properly,

denying all clients who have not installed it. This chapter describes kaPOW, a

novel POW approach that is transparent to clients, and POW difficulty policies

for disincentivizing automated adversary behaviors using two different information

sources: per-client request history and client geolocation.

98

URL with valid POW

Web Server

URL with valid POW

S
y
s
te

m

Clients

Content

Content

k
a
P

O
W

S
y
s
te

m

Clients
URL without valid POW

Error Page

Content

k
a
P

O
W

Error Page

Figure 4.2: Addition of kaPOW to Web server. Clients who attach a valid proof-

of-work solution to their requests are granted the content they seek, while clients

without a valid solution are ignored and issued a new proof-of-work challenge,

server resources permitting.

4.3 THE KAPOW APPROACH

Proof-of-work approaches proposed in the literature [7, 8, 24, 28, 35, 121, 123]

have demonstrated the feasibility of implementing proof-of-work systems at the

network and transport layers. While the approaches have experimentally proved

their effectiveness against portscans and network-level packet-flooding denial-of-

service attacks, they have all met resistance to adoption due to one fundamental

detraction: they require both clients and servers to adopt specialized software in

order to adhere to the protocol.

This led us to develop the kaPOW approach which is the first transparent proof-

of-work approach in literature or in practice (it currently protects the project’s

webpage [62]). The kaPOW approach (shown in Figure 4.2) protects Web-based

applications by incorporating a simple proof-of-work module at the server. To

make the approach transparent to clients, the approach leverages JavaScript which

is nearly ubiquitous as recent measurements have shown that JavaScript is enabled

in upwards of 95% of all Web browsers [118].

99

Issuing
Filter

Verifying
Filter

mod_kaPOW

High
Priority
Content

Low
Priority
Content

Request
URL

Content
Append

POWs

No No

NoYes Yes

Yes

Error

Page

D
c
=0

Absent

N
c
/ D

c

Valid A

Figure 4.3: Internal structure of mod kaPOW. The system is an Apache module

which processes POW-protected URLs and the corresponding content.

The kaPOW approach was implemented as mod kaPOW1, the Apache [5] Web

server module shown in Figure 4.2. The system protects Web content by embedding

POW challenges (“work functions”) in Uniform Resource Locators (URLs) as new

query parameters. As webpages are served, the URLs found in any HyperText

Markup Language (HTML) tags are updated to include a fresh work function.

When a client’s Web browser encounters a POW-protected link, it runs a

server-provided JavaScript routine to solve the work function and append the

solution to the URL before attempting to follow the link. As elaborated upon

later, clients without JavaScript (or with it disabled) are not necessarily prevented

from accessing the content.

Upon receiving a request, the server verifies that the URL contains a valid

work function and solution before servicing it. If either the work function is stale

or the solution is incorrect, the server denies the request and returns an error page

containing a link with a new challenge.

1This research appeared in a paper at Global Internet 2008 [63].

100

Work Server Effort Client Effort

Function Issue() Verify() Solve()

Exponential

Time-Lock 2,500µs 1.1µs deterministic Dc

Hash Collision

MicroMint – Dc × 1.1µs probabilistic Dc × ∣range∣
Hash Reversal

Basic – 1.1µs probabilistic 2Dc

k Sub-Puzzles 1.1µs k × 1.1µs probabilistic k × 2Dc

TLS 1.1µs – probabilistic 2Dc

Hashcash – 1.1µs probabilistic 2Dc

Hint-Based 2.1µs 1.1µs probabilistic Dc

Targeted – 1.1µs probabilistic Dc

Table 4.1: Comparison of work function constructions. All of them, save for the

Time-Lock construction, are hash based and use probabilistic solution algorithms.

The Hint-Based and Targeted Hash Reversal constructions are our contributions.

The Work Function

Before describing the internal operation of the system, we present the construction

of the work function employed by this approach. It is important to note that while

this work function is currently the best candidate for the kaPOW approach, the

approach is not dependent on this work function and could readily adopt another

work function construction if necessary for a particular Web application.

There are a number of work function constructions throughout the literature,

most of which are hash based. Table 4.1 compares the work functions in terms of

the effort to Issue() challenges and Verify() solutions, as well as the number

of “units of work” (as a function of the client-specific difficulty Dc) required to

Solve() them. For hash-based constructions, a unit of work is one execution of

the hash function which takes 1.09µs. For the Time-Lock construction, a unit of

work is squaring one integer modulo a large pseudo-prime which takes 0.75µs.

101

1,000

10,000

100,000

1,000,000

H
a

s
h

e
s

 R
e

q
u

ir
e

d
 t

o

S
o
l
v
e
(
)

MicroMint

Basic, TLS, Hashcash

Hint-Based, Targeted

1

10

100

1,000

1 10 100 1,000 10,000 100,000

H
a

s
h

e
s

 R
e

q
u

ir
e

d
 t

o

1 10 100 1,000 10,000 100,000

Difficulty Setting (Dc)

Figure 4.4: Comparison of hash-based work functions. Shown are the hashes

required in practice to solve the various work functions across a range of difficulties.

The computationally expensive issuance of the Time-Lock work function

makes the construction impractical for combating resource consumption attacks,

in particular attacks that flood request packets. In contrast, hash-based work

functions are easy to issue and verify. Figure 4.4 shows the effort required to solve

the various hash-based work functions. Each data point represents the average

number of hashes to solve 10,000 work functions of that particular difficulty.

The MicroMint, Basic, TLS, and HashCash constructions require effort

exponentially proportional to the difficulty Dc. At high difficulty values the coarse

work-resolution prevents a policy from accurately setting a client’s effort. Consider

that after difficulty Dc = 20 (requiring 1 million hashes or roughly 1 second to solve)

the constructions cannot issue work functions with intra-second granularity and

after difficulty Dc = 29 (requiring 73 seconds to solve) the constructions cannot

issue work functions with intra-minute granularity.

102

In contrast, the Hint-Based Hash Reversal and Targeted Hash Reversal

constructions are able to issue work functions with fine-grained solution effort

through the full range of difficulties. The Hint-Based construction achieves this

by selecting a solution and giving a hint within Dc steps from that solution. This

requires more effort to issue work functions than the Targeted construction, making

it comparatively weaker when combating resource consumption attacks such as

those based on request flooding.

For efficient issuance and verification, and finely targeted solution effort, the

mod kaPOW prototype employs our Targeted Hash Reversal construction2. The

work function is of the form:

H(Nc ∣∣ Dc ∣∣ A) ≡ 0 mod Dc (4.1)

where H is a pre-image resistant hash function with output uniformly-distributed

(e.g., SHA1 [84]), Nc is a client-specific nonce generated by the module, Dc is the

client-specific difficulty set by the module, and A is the solution that the client’s

JavaScript solver must find. Since both Nc and Dc are fixed by the issuer and H

is pre-image resistant, this work function requires the solver to perform a brute-

force search to find a value for A that satisfies the equation. The probability that

any given value for A satisfies the equation is
1

Dc , and the expected number of

attempts to find a valid value are geometrically distributed with a mean of Dc.

This is experimentally validated in Figure 4.4.

This work function is a good candidate because it is efficiently implementable.

Specifically, it requires no hashes to issue and an answer can be verified in a single

hash. Using a hash function like SHA1 with a sufficiently large digest, this takes

only 1.09µs in software [37]. Additionally, the work function can be expressed

compactly: the issuer simply has to send Dc and Nc, and a verifier only needs

those parameters and the solution A to verify that the equation is satisfied.

2This construction was presented in a paper at Global Internet 2007 [36].

103

The Server Module

The intelligence of the mod kaPOW system is within an Apache Web server module.

Apache provides a rich interface for writing modules that range from those

that control how a client accesses a server (such as mod rewrite) to those that

dynamically generate content (such as mod include). As a result, Apache lends

itself well to supporting a proof-of-work module3. The module has two filters;

an issuing filter that embeds work functions into outbound HTML content and

a verifying filter that prioritizes inbound requests based on whether or not they

contain a correct answer to a valid work function.

To prioritize requests, the server is configured with two virtual hosts. The

default low-priority virtual host does not support persistent HyperText Transfer

Protocol (HTTP) connections, and tears down any connection after servicing

a single request. Only a limited number of low-priority requests are handled

concurrently; all excess low-priority requests are rejected with HTTP error code

503: Service Temporarily Unavailable. Any request demonstrating a correct

answer to a valid work function is redirected to the high-priority virtual host which

supports more concurrent requests and allows persistent connections. If a client

sends a subsequent request with an incorrect answer or an invalid work function,

the connection is transferred to the low-priority virtual host to be terminated.

Client-Specific Variables

During the course of their operation, the issuing and verifying filters refer to the

client-specific difficulty Dc and nonce Nc. To establish Dc, the module uses a

counting Bloom filter [14, 33] to track the load imposed (i.e., requests sent) by each

client. The counting Bloom filter is an efficient data structure that offers a tradeoff

between its size and the probability of incorrectly assigning a high difficulty to a

client. It has no false negatives (i.e., a malicious client will never be issued a trivial

3The Apache module naming-convention inspired the name “mod kaPOW”.

104

work function) and the probability of a false positive can be driven arbitrarily low

with additional memory.

Given that the Bloom filter uses k different hash functions to index into an array

of n counters, the probability of misclassifying a single client from an estimated

population of m clients is approximately (1 − e−
km
n)k. Using a value of k that

minimizes that equation, the error is approximated by 0.6185
n
m . Thus to achieve a

misclassification rate of less than 0.1% of 20,000 clients, the Bloom filter requires

288,000 counters or a total of 1.2MB when using 32-bit counters. The Bloom filter

is updated every 10 seconds so that the difficulty is held constant long enough

to give clients a chance to respond, but short enough so that the difficulty can

respond to sudden changes in load. When the structure is updated, each counter

c in the filter is updated according to the following logic:

ct+1 =
⎧⎪⎪⎨⎪⎪⎩

ct + rt − decay rt ≤ decay

ct + 1.01rt−decay otherwise
(4.2)

which states that the difficulty decays linearly from one time window to the next

unless the requests rt in the latest time period t are greater than the rate of decay,

in which case those extra requests exponentially increase the difficulty.

The client-specific nonce Nc is created by concatenating the client’s identity

IPc, the original unmodified URL, and a server nonce Ns:

Nc = IPc ∣∣ URL ∣∣ Ns (4.3)

binding the client nonce and thus the entire work function to the client and specific

content for a fixed window of time. When the server nonce changes the client nonces

also expire, meaning solutions cannot be reused indefinitely. The unpredictable

server nonce prevents attacks where adversaries solve work functions offline and

stockpile valid answers. The server can update its nonce independently from the

Bloom filter and as frequently as needed to keep client solutions fresh, however,

the prototype presently updates the nonce and Bloom filter simultaneously.

105

<HTML>
<HEAD>
<SCRIPT TYPE='text/javascript' SRC='kaPoW.js'></SCRIPT>
<TITLE>Sample Content Page</TITLE>

</HEAD>
<BODY>

<H1>Sample Content Page</H1>
This webpage demonstrates an image and link protected by
proof-of-work.

 are solved when
the page is loaded to avoid delay.
 In contrast,

POW-protected links are solved only when the link is clicked.

</BODY>
</HTML>

Figure 4.5: HTML markup of modified example document. The link to the

solution JavaScript file and the added work function variables are highlighted.

The Issuing Filter

The issuing filter scans and parses HTML documents as they are served. It adds

work functions to all tags containing URLs as well as a link to the JavaScript solver

necessary for the client’s browser to solve the work functions. The modification to

an example document is shown in Figure 4.5.

The issuing filter includes the solution instructions for work functions through

the addition of a link to a JavaScript file (kaPOW.js) at the head of the document

so that it is retrieved first (if not already cached) and the script may work as

the remaining tags are incorporated into the client’s in-memory Document Object

Model (DOM). Despite containing a URL, this tag does not have a work function

because clients need this resource before they can possibly solve any work function.

The issuing filter incorporates work functions into tags by adding the variables

Nc and Dc as tag attributes. To avoid accidentally triggering HTML escape

sequences, the values are transmitted in hexadecimal. It is important to observe

that Nc differs between tags because it is calculated from the original unmodified

URL in each tag. The filter also appends a default difficulty of zero (“Dc=0”) to

the actual URL so that clients without JavaScript enabled can follow the link and

indicate to the server that they cannot solve work functions. Before sending the

content, the issuing filter updates the Bloom filter to note the client’s request.

106

The Verifying Filter

The verifying filter parses request URLs and extracts any appended proof-of-work

variables. If the request URL contains the variables Nc and Dc, they must be

verified as current and correct before the module does computationally expensive

operations such as hashing. If Nc and Dc are valid, the verifier proceeds to check

that A satisfies the work function. If everything checks out, the request is accepted

by the high-priority virtual host and the content is sent to the client.

There are three reasons why a client’s request might be rejected by the verifying

filter: the URL has no work function or solution attached, the work function

parameters are not current, or the attached solution is not valid. The first two

failures may have occurred for a variety of legitimate reasons and are not necessarily

indicative of a malicious client.

If the request URL contains no POW parameters, then the client may have been

linked to this resource from an external server that has not yet adopted the kaPOW

system and hence did not issue a work function to the client. It is also possible that

the client arrived at this website by manually entering the URL into the address

bar of their Web browser – users are not expected to know nor manually append

work function parameters and a solution into URLs since it would be incredibly

impractical for them to do so.

If the request URL contains POW parameters but they are invalid, the client

may have been directed to this site from an external server that appended its

own, different values for Nc and Dc. Alternatively, the user may have spent long

enough reading the last webpage that the server has since updated its nonce Ns

and has thus expired the stale client nonces Nc embedded in that webpage. The

mod kaPOW module ensures that old webpages which may be cached expire at the

same frequency that clients do. This is done by updating the HTTP ETag value (a

metadata string that represents the version of the webpage content) for webpages

whenever the server nonce changes.

107

<HTML>
<HEAD>

<SCRIPT TYPE='text/javascript' SRC='kaPOW.js'></SCRIPT>
<TITLE>Error: Invalid POW</TITLE>

</HEAD>
<BODY ONLOAD='Solve(document.links[0]);

window.location.replace(document.links[0].href)'>
<H1>Invalid POW</H1>
The requested URL did not have a valid proof-of-work attached.

If you are reading this page, it is likely that you do not have
JavaScript enabled.

 If you would still like to try to
access the content, please click the following link:

http://maes.cs.pdx.edu/

<HR>

</BODY>
</HTML>

Figure 4.6: HTML markup of kaPOW error page. This page is sent in response

to a URL that had an invalid work function or an incorrect solution. The script

redirecting the Web browser to use current POW parameters is highlighted.

Regardless of the reason, when a request is denied the filter returns an error

page to the client such as the one in Figure 4.6. The error page contains some

text explaining the error and a single link to the requested content. After it has

been processed by the issuing filter, it has a work function embedded into it.

The key feature is highlighted; the error page includes an OnLoad() script which

immediately solves the work function and redirects the browser to use the proper

URL. The client’s Web browser is instructed to omit this error page from the

browsing history so the user may never actually see this page displayed.

A notable exception is this error page will not automatically redirect clients who

do not have JavaScript enabled. Recall that the issuing filter embeds “Dc=0” into

all URLs found within HTML tags. If a client’s browser does not have JavaScript

enabled it will not solve the work function and will instead use the URL verbatim.

When the verifying filter observes a URL with the variable Dc set to zero, it

will conclude that the client cannot solve the work function and will accept the

request on the low-priority virtual host. This allows non-JavaScript clients to

access the content they seek (although there is a chance that the low-priority server

is inundated with requests and may not be able to service theirs) without giving

adversaries a means to disturb clients who correctly solve the work functions.

108

The Client Solver

While the client end of the system can be computationally demanding, particularly

for malicious clients, it is functionally simple. The browser executes a few scripts

found in the JavaScript file (kaPOW.js) linked at the head of the HTML document.

The Solve() script is used to solve individual work functions that the browser

encounters. The script takes a tag with a URL as input and extracts the

variables Nc and Dc and systematically hashes them with various values for A until

Equation 4.1 is satisfied. The script removes existing POW variables embedded in

the URL (specifically the “Dc=0”) and appends the new Nc, Dc, and A to the URL

stored in memory for when the browser needs to fetch the referenced resource.

Another script runs as soon as the HTML file is read and hooks into the event

triggered when tag elements are added to the DOM. As content tags (such as

) are added, this script calls Solve() so that the URL in the tag is valid

before the browser fetches that content. As hyperlink tags (<A>) are added, they

have their ONCLICK attribute modified to call Solve() so those work functions are

only solved if the user chooses to follow the link.

4.4 EVALUATION

To evaluate the effectiveness of the kaPOW approach, mod kaPOW was implemented

in C as an Apache v2.0 module. The module supports a simple load-based difficulty

policy using a Bloom filter. The Bloom filter’s counters start at zero and are

updated every 10 seconds to count the request activity in the previous 10 seconds.

The Bloom filter’s decay constant is set to 10 so that as long as a client sends fewer

than 10 requests every 10 seconds they will not be issued a work function (i.e., Dc

will remain zero). If a client sends more than 10 requests every 10 seconds, the

surplus requests exponentially increase the counters so the client will subsequently

be required to solve very difficult work functions in order to receive service. The

prototype is Web accessible and was demonstrated at SIGCOMM 2008 [62, 64].

109

100

1,000

10,000

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Good Client

Aggregate Adversaries

0

1

10

0 5 10 15 20 25 30 35 40 45 50 55 60

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Time (s)

Figure 4.7: Flooders vs. default Web server. Starting at time t = 30, the

unprotected server is saturated by the flooders who connect and continuously send

requests as fast as possible; the good client cannot get any more requests serviced.

4.4.1 Experimentation

mod kaPOW Thwarting Flooders

In this experiment, we set up a network of six 1.8GHz dual processor Intel Xeon

machines connected by Gigabit Ethernet interfaces: a server running Apache v2.0,

a good client which requests a webpage once every second, and four flooding

adversaries that attempt to saturate the server with requests. While this setup is

far from the magnitude of a real botnet, the server is configured to give adversaries

an advantage over the good client by only accepting four persistent connections.

This means if the four adversaries connect and remain connected, they will deny

service to the good client as demonstrated in Figure 4.7. Without mod kaPOW, the

adversaries occupy the server indefinitely, sustaining 2,150 requests per second, yet

the good client cannot establish a connection to get a single request serviced.

110

100

1,000

10,000

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Good Client

Aggregate Adversaries

Aggregate Adversaries Rejected

0

1

10

0 5 10 15 20 25 30 35 40 45 50 55 60

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Time (s)

Figure 4.8: Flooders vs. mod kaPOW. Starting at time t = 30, the flooders saturate

the server and deny service to the good client. At time t = 39, mod kaPOW updates

its Bloom filter; the flooders are then required to solve difficult work functions so

all their subsequent requests (without answers attached) are rejected.

In this next scenario, we add mod kaPOW to the server and do not modify the

adversary behavior at all. Specifically, flooders ignore POW work functions and

simply send as many requests as possible. Figure 4.8 shows that the flooders are

only able to deny service to the good client for nine seconds. Until mod kaPOW next

updates its Bloom filter counters, the flooders remain connected and sustain 2,150

requests per second. Once the Bloom filter is updated, each adversary is required

to solve a difficult challenge. Since they do not send correct answers along with

their requests, the requests are rejected and their connections to the server are

terminated, restoring service to the good client. In this state, the flooders are only

able to sustain 650 rejected requests per second due to the “three-way handshake”

required establish a new TCP connection per request.

111

100

1,000

10,000

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Good Client

Aggregate Adversaries

Aggregate Adversaries Rejected

0

1

10

0 5 10 15 20 25 30 35 40 45 50 55 60

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Time (s)

Figure 4.9: Flooders vs. mod kaPOW with iptables filter. Starting at time t = 30,

the flooders saturate the server and deny service to the good client. At time t = 39,

mod kaPOW updates its Bloom filter; the rejected flooders are disconnected and then

limited to five connection attempts every second by an iptables filter.

The previous scenario showed that the mod kaPOW prototype proficiently

repels a flood of requests without valid answers attached. Unfortunately, these

requests still consume substantial Web server resources since the server must

accept numerous adversary connections just to read and then reject the requests.

Figure 4.9 shows the next scenario which employs a simple iptables filter to rate-

limit incoming TCP connections. By using standard iptables matching rules, a

network-level ingress filter can restrict each adversary to a reasonable five TCP

connections every second. This reduces the volume of rejected flooder requests by

two orders of magnitude. Since we did not modify the flooders’ TCP protocol,

dropping their requests induces normal TCP backoff behavior which contributes

to the jigsaw pattern of rejected requests.

112

100

1,000

10,000

u
lt

y

(D
c

)

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

Good Client

Aggregate Adversaries

Average Adversary Difficulty

1010

109

108

107

106

105

0

1

10

0 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fi
c

u
lt

R
e

q
u

e
s

ts
 p

e
r

s
e

c
o

n
d

104

103

102

10

1

Time (s)

Figure 4.10: Solving flooders vs. mod kaPOW. Starting at time t = 30, the solving

flooders saturate the server and deny service to the good client. At time t = 40,

mod kaPOW updates its Bloom filter; the flooders are then issued difficult very work

functions which preoccupy them indefinitely so they send no new requests.

This fourth scenario demonstrates that mod kaPOW properly rejects flooding

adversaries who attempt to solve any work functions they are issued. Figure 4.10

shows that once again the flooders are only able to deny service to the good client

for under 10 seconds: that is, until mod kaPOW next updates its Bloom filter. At

that point, the Bloom Filter counters are updated and the adversaries are issued

difficult work functions, restoring service to the good client. The flooders work

functions require 232 hashes (roughly 1.3 hours) to solve, which preoccupies them

with solving the work functions rather than sending requests that will be rejected.

These scenarios illustrate that even when using a relatively simple policy to

adjust the work function difficulty Dc, the kaPOW approach can disincentivize

automated adversaries to achieve separation between them and legitimate clients.

113

100

1,000

10,000

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

Embed POWs in Dynamic Webpage

Baseline for Dynamic Webpage

Embed POWs in Static Webpage

Baseline for Static Webpage

Reject & Send Error Webpage

0

1

10

1 10 100 1,000 10,000 100,000 1M

P
ro

c
e

s
s

in
g

 T
im

e
 (

URLs in Webpage (#)

Figure 4.11: Request processing time vs. webpage URLs. The time required to

modify dynamic and static webpages, and reject invalid requests is compared.

mod kaPOW Computation Overhead

In this experiment, we used the Apache Benchmark tool (ab) [6] to measure the

time required to process various Web requests (each data point represents the

average of 10,000 identical requests), rounding up to the nearest millisecond.

Figure 4.11 shows the overhead when processing files which contain a variable

number of URLs. There is observable overhead when processing large static

webpages stored on the disk. The overhead is considerably less when processing

dynamically generated webpages because they are appropriately formatted for the

filter when they are created. Processing time is independent of file size (i.e.,

constant) for requests that are rejected for having an invalid solution because the

small error webpage is returned instead. The overhead is negligible for all webpages

containing fewer than a couple hundred URLs, yet the benefit of rejecting invalid

requests for large webpages is substantial.

114

100

1,000

10,000

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

Embed POWs in Dynamic Webpage

Baseline for Dynamic Webpage

Embed POWs in Static Webpage

Baseline for Static Webpage

Reject & Send Error Webpage

0

1

10

1 10 100 1,000 10,000 100,000 1M 10M

P
ro

c
e

s
s

in
g

 T
im

e
 (

Webpage Size (Bytes)

Figure 4.12: Request processing time vs. webpage size. The time required to

modify dynamic and static webpages, and reject invalid requests is compared.

Figure 4.12 shows the overhead for processing webpages of variable length

containing no URLs. The graph shows that the computation overhead is negligible

because no work functions need to be created. The benefit of rejecting invalid

requests for large webpages remains substantial.

mod kaPOW Bandwidth Overhead

The kaPOW approach adds proof-of-work challenges to outbound HTML content

which requires some additional network bandwidth. This overhead is a linear

function of the number of URLs in the original webpage: each tag containing a URL

has a work function added (between 15 and 29Bytes) in addition to the header’s

reference to the kaPOW script file (56Bytes). The total bandwidth overhead (in

Bytes) is therefore bounded by:

bandwidth overhead ≤ (29 ×#URLs) + 56 (4.4)

115

Geographic kaPOW

The previous experiments have shown that the kaPOW approach can use a

load-based difficulty policy to thwart generic packet-flooding adversaries. Many

automation attacks like email and comment spam, click fraud, and ticket

purchasing bots do not flood packets and thus cannot be deterred using a load-

based difficulty policy. The following experiments use a difficulty policy based on

client geographic distance to protect the online ticketing application. Event tickets

are a $30 billion market with most revenue coming from online purchases [103].

Automated scalpers instantly snap up all available tickets so that they can resell

them at substantially higher prices [110, 111, 112]. To change the economics for

scalpers, we introduce a PHP-based kaPOW prototype [61] that sets the work

function difficulty proportional to geographic distance from the ticketed event4.

The key observation is that most legitimate purchases come from clients located

in close geographic proximity to the event. The policy leverages modern geolocation

databases which are 90% accurate in resolving the geographic location of any

network client to within 25 miles [42, 78] and adaptively issues distant clients

more difficult work functions. In doing so, operators of ticket purchasing networks

are forced to acquire significant network resources (i.e., physical machines) in close

proximity to each event in order to monopolize all event tickets. This PHP-based

approach does not require any changes to the software running on either the client

or server and can be readily deployed by current online ticketing applications.

While this work focuses on the online ticketing problem, geographic distance

may be used as a heuristic of client legitimacy in other applications as well.

For example, online comment spam affecting articles published by regional news

outlets could similarly be mitigated using geographically driven proof-of-work.

Additionally, Web services with localized content could prioritize local clients

during denial-of-service attacks by throttling distant clients.

4This research appeared in a paper at Global Internet 2010 [66].

116

Adversary Model: Online Ticket Robots

Adversary Goal. We assume that legitimate demand for event tickets is

sufficient to normally sell them all. As a result, the goal of an adversary operating

a network of ticket purchasing robots is to acquire as many tickets as possible

when they become available for sale. To simplify the adversary model, we further

assume that all the tickets to the event are desirable for resale so the adversary

will purchase any and all tickets given the opportunity. Since the adversary will

always purchase the maximum number of tickets allowed per transaction (usually

between four and eight tickets), from hereon we will use the term “ticket” to mean

the largest quantity of real tickets that can be acquired per transaction.

General Strategy. Long before tickets go on sale, the adversary establishes

control of a botnet. This typically involves stealthily compromising a large number

of computers attached to the Internet, or possibly leasing an existing botnet from

herders [54]. Individual botnet machines are roughly equivalent to the computers

used by legitimate clients in terms of the network and computation resources

available to them. Indeed, some legitimate client computers may be unknowingly

compromised and running botnet software targeting the very same event that the

computer’s owner is interested in. As we discuss in more detail later, this scenario

becomes more probable when employing geographically-based proof-of-work. In

fact, this is a desirable outcome since the owner of the computer will be alerted to

the machine’s compromise and take steps to remove the botnet software.

Timed to coincide with the start of the ticket sale (i.e., time t = 0), the adversary

directs the botnet to execute as many ticket purchasing transactions as possible.

Since the adversary intends to use the botnet to buyout multiple events or launch

other network attacks, the adversary is careful to operate the botnet in a fashion

that neither alerts the online ticket vendor of the illegitimate purchase requests nor

alerts the true owners of the physical machines as to their misuse (lest it encourage

the machine’s real owner to remove the botnet software).

117

For any popular event, there are some legitimate clients (i.e., dedicated fans)

who attempt to purchase tickets at the very moment they go on sale. These fans

are the only clients who stand a chance versus ticket purchasing robots; clients who

decide to buy tickets hours or days after they have gone on sale are clearly too

late. Here onwards, these very passionate legitimate clients represent the legitimate

client population C. To simplify the evaluation of our approach, we assume that

these highly enthusiastic clients also equal the number of tickets available for sale

(i.e., Tickets = ∣C ∣) so that the event would sell out quickly even without the

ticket purchasing robots. This allows us to reason that any ticket purchased by an

adversary would have otherwise been sold to a legitimate client. In practice, this

assumption does not seriously weaken the adversary model since ticket scalpers

predominantly target extremely popular events to minimize the risk of purchasing

tickets that they cannot resell at a profit before the event occurs.

Existing Defenses. Online ticket vendors currently track the network

addresses of successful ticket purchasers and restrict each address to one purchase

per event. As a result, hosts that are behind network address translating proxies

are denied by ticket vendors. This means that any adversary who generates a large

number of ticket purchase transactions must have an equivalent number of unique

network addresses to successfully complete them. Consequently, this restricts any

traffic forwarding and tunneling that an adversary may perform, as they must

control an equal number of forwarders with unique network addresses.

Geographic kaPOW Proof-of-Work Mechanism

The proof-of-work mechanism in the geographic kaPOW approach is similar to

that of mod kaPOW but is instead implemented in PHP, a ubiquitous Web scripting

language. This requires no changes to the Web server so it may be adopted

by websites that cannot load Apache modules. The approach continues to use

Targeted Hash Reversal work functions and a periodically updated secret server

nonce to generate temporary client nonces.

118

Geographic kaPOW Difficulty Policy

The goal of any proof-of-work approach is to maximize the amount of work that

adversaries must perform while simultaneously minimizing the work imposed on

legitimate clients. The key observation behind geographic pricing is that most

legitimate purchasers connect online from a geographic location close to where the

event takes place. Commercial geolocation databases have become very accurate

at mapping network addresses to their geographic locations. Our hypothesis is

that a proof-of-work system where work function difficulty is driven by geographic

distance can limit scalping by forcing remote adversaries to perform significantly

more work than local clients. Adversaries must then physically own significant

resources near event centers in order to monopolize ticket purchases, which may

be prohibitively expensive to acquire.

While geographic proof-of-work increases the monetary cost to adversaries by

forcing them to have a presence near each event, there are two problems with

using network address geolocation databases. The first problem is that non-

local and erroneously geolocated legitimate clients will be unfairly penalized.

The second problem is that for small events in large event centers, the cost of

obtaining sufficient unique local machines to monopolize the event tickets may not

be high enough to completely deter automated ticket purchasing. To address these

potential problems, the proof-of-work approach could also consider the credit card’s

geographic billing address when determining the difficulty of a work function, and

require that it be distinct. Clients must already provide authentic credit card

information including the billing address in order to purchase tickets. Using that

information, the system would have another method for determining where clients

are geographically purchasing event tickets from, one which is possibly harder to

spoof. This would further raise adversary costs by forcing them to obtain and

maintain a large number of unique credit cards (and associated mailing addresses)

local to each event center.

119

Function
Requests Serviced

per Minute

Serve blank PHP page 36,583

Client geolocation 12,462

Client geolocation and issue work function 12,444

Client geolocation and verify solution 12,412

Table 4.2: Throughput of Geographic kaPOW routines. Prototype ticket server

throughput across a range of tasks.

Geographic kaPOW Throughput

Moving on to the Geographic kaPOW prototype, Table 4.2 shows the baseline

performance of the prototype on an Intel Core 2 Quad system (Q6600/2.4GHz)

running Apache v2.2.9. As the table shows, the server processes over 36,000 blank

pages a minute. When IP geolocation is added, the throughput of the system drops

by two-thirds due to the overhead of looking up the IP address in the geolocation

database. The cost of issuing and validating proof-of-work challenges is negligible

compared to that of geolocation resolution. In each case, the performance is more

than adequate to support the ticketing application as the capacity of most venues

is below the amount of requests the server can process in a minute.

Geographic kaPOW Simulator

The PHP-based kaPOW shows how easily proof-of-work can be added to online

ticketing applications. To show that it can mitigate realistic networks of ticket-

purchasing robots, however, large-scale experimentation using thousands of robots

must be performed. Since such experimentation is impractical, we have instead

developed a simulator that closely models the behavior of the prototype server

and its clients. To validate that the simulator accurately represents the PHP

implementation, we compare the results of the following small-scale experiment on

the prototype with the identical experiment in the simulator.

120

300

360

420

480

540

600

0.100

1.000

T
im

e
 (

s
)

P
ro

b
a

b
il
it

y

o
f

 T
ic

k
e

t
P

u
rc

h
a

s
e

Prototype

Simulator

Puzzle Solving Delay

0

60

120

180

240

0.001

0.010

0 500 1,000 1,500 2,000 2,500

T
i

P
ro

b
a

b
il
it

y

o
f

 T
ic

k
e

t
P

u
rc

h
a

s
e

Distance (miles)Distance (miles)

Figure 4.13: Simulator validation. The probability that prototype and simulator

clients may purchase a ticket vs. their distance from the event.

The experiment consists of an event in a city on the West coast of the USA

for which 100 good clients and 100 adversaries attempt to purchase 100 available

tickets. While the legitimate clients are all located near the city, adversaries are

randomly distributed across the 25 largest metropolitan areas in the United States

proportionally to the region size. As explored later, this distribution improves the

adversaries’ ability to acquire tickets across all events held across the country. The

work function difficulty is set as Dc = 100dc
2 + 106, alternatives are explored later.

The experiment was performed 10,000 times on both the prototype and

simulator. Figure 4.13 shows the probability that clients and adversaries

successfully purchase tickets to an event as a function of their distance to the

event. As the figure shows, the results from the simulator closely match those

from the prototype with local clients having an exponentially higher probability of

purchasing a ticket than their distant peers.

121

Rank Metropolis Population Events

1 New York City, NY 17,799,861 1,756

2 Los Angeles, CA 11,789,487 1,163

3 Chicago, IL 8,307,904 819

4 Philadelphia, PA 5,149,079 508

5 Miami, FL 4,919,036 487

6 Dallas, TX 4,145,659 412

7 Boston, MA 4,032,484 397

8 Washington, DC 3,933,920 388

9 Detroit, MI 3,903,377 385

10 Houston, TX 3,822,509 377

11 Atlanta, GA 3,499,840 345

12 San Francisco, CA 2,995,769 295

13 Phoenix, AZ 2,907,049 286

14 Seattle, WA 2,712,205 267

15 San Diego, CA 2,674,436 263

16 Minneapolis, MN 2,388,593 235

17 St. Louis, IL 2,077,662 204

18 Baltimore, MD 2,076,354 201

19 Tampa, FL 2,062,339 203

20 Denver, CO 1,984,887 197

21 Cleveland, OH 1,786,647 173

22 Pittsburgh, PA 1,753,136 173

23 Portland, OR 1,583,138 156

24 San Jose, CA 1,538,312 157

25 Riverside, CA 1,506,816 154

Total 101,350,499 10,000

Table 4.3: Largest U.S. metropolises. The population as well as how many

simulated events occur in each of the 25 most populous U.S. metropolises is listed.

Similar to real ticket vendors, the simulated server sells tickets to events

throughout the 25 largest metropolitan areas in the United States [114]. Events

occur in proportion to each area’s population. Further experiments evaluate the

adversary’s ability to purchase tickets to the 10,000 events shown in Table 4.3.

122

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
t

o
f

T
o

ta
l
T

ic
k

e
ts

 A
c

q
u

ir
e

d

Distributed Globally

Situated In Largest Event Center

Distributed Amongst Event Centers

0%

10%

20%

30%

40%

0 0 1 10 100 1,000

P
e

rc
e

n
t

o
f

T
o

ta
l
T

ic
k

e
ts

 A
c

q
u

ir
e

d

Ratio of Adversaries to ClientsRatio of Adversaries to Clients

Figure 4.14: Adversary ticket acquisition. The percentage of total tickets

acquired by adversaries vs. their ratio to clients, for adversaries employing various

geographic distributions.

Ticket-Purchasing Botnet Geographic Distribution

The next experiment explores geographic distribution strategies that the adversary

network might take to maximize its success. In each trial, an event location

is selected and 2,500 local clients attempt to purchase the 2,500 tickets. The

adversary population is exponentially increased to see what percent of the total

tickets they can purchase. Once again, the difficulty algorithm is Dc = 100dc
2+106.

Figure 4.14 shows the success of three strategies for distributing adversaries.

The first approach assembles adversaries all around the globe like a näıve botnet

might. Adversary IP addresses were obtained from the 10,000 worst daily offenders

reported by DShield [27]. Not surprisingly, this approach requires orders of

magnitude more adversaries than other approaches because many of the bots are

far away (i.e., not in North America) from where events are held.

123

In the second approach, all adversaries are situated in the largest event center:

New York City. Acquiring tickets to events in that area is easy, however, acquiring

tickets to events held in other areas remains challenging – they must get “lucky”

when solving their work functions to have a chance to purchase tickets before local

legitimate clients do.

The third approach distributes adversaries throughout the 25 largest areas in

the United States in proportion to their population. This simulates the repeated

or long-term leasing (from a botnet controller) of only those zombie machines that

are geographically desirable to at least one event location. In this approach, each

adversary is local to at least some events and on average 5.96% of the adversaries

are local to a randomly selected event. Of the three adversary approaches, this

one performs the best, particularly in purchasing the last (i.e., highest) percentile

of tickets, and is selected for subsequent experiments.

Large Ticket-Purchasing Botnets

The previous experiment qualitatively demonstrated the ability for geographic

proof-of-work to slow down an adversary. To quantify the extent at which this is

the case, we simulate the performance of the system as the number of adversaries

is dramatically increased. Similar to the last experiment, the adversaries in these

scenarios are distributed across the 25 largest metropolitan areas and the difficulty

algorithm is again calculated by Dc = 100dc
2 + 106. Figure 4.15 shows the ability

of all individuals (clients or adversaries) to purchase tickets with respect to their

distance from the event as the population size of adversaries varies. As expected,

the probability that an individual may purchase a ticket decreases the further

away they are from the event location, so local clients stand a much better chance

of acquiring tickets. In addition, as the number of total agents is increased, the

probability that an individual may purchase a ticket decreases for agents at all

distances simply because there are more individuals competing for the same finite

number of tickets.

124

0.100

1.000

P
ro

b
a

b
il
it

y
 o

f
T

ic
k

e
t

P
u

rc
h

a
s

e

2,500 Clients & 2,500 Adversaries

2,500 Clients & 20,000 Adversaries

2,500 Clients & 200,000 Adversaries

0.001

0.010

0 500 1,000 1,500 2,000 2,500

P
ro

b
a

b
il
it

y
 o

f
T

ic
k

e
t

P
u

rc
h

a
s

e

Distance (miles)Distance (miles)

Figure 4.15: Ticket purchase probability. The probability any agent may

purchase a ticket vs. their distance from the event for large adversary populations.

As the adversary population is increased significantly versus the legitimate

client population, larger numbers of local adversaries Alocal begin to compete with

the legitimate clients. This decreases the percentage of tickets that go to legitimate

clients as an increasing percentage of tickets are acquired by adversaries, as shown

in Table 4.4. While the adversary network as a whole acquires more tickets

across all events, for any specific event, non-local adversaries Afar are largely

unsuccessful. With increased distance, adversary effectiveness quickly drops off.

This is particularly evident in Figure 4.15 when the 200,000 adversaries outnumber

the 2,500 clients (and thus tickets) by a ratio of 80 to 1; adversaries beyond 1,500

miles have less than a 1% chance to acquire tickets. As the adversary population

increases, individual local adversaries also have a diminished ability to purchase

tickets because they are competing amongst themselves (not just legitimate clients)

for the limited tickets.

125

Adversary Tickets Acquired by

Population C Alocal Afar

2,500 88.7% 4.9% 6.4%

20,000 56.2% 23.0% 20.8%

200,000 12.9% 51.0% 36.1%

Table 4.4: Ticket acquisition breakdown. The percentage of total tickets acquired

by the populations evaluated in Figure 4.15. There are 2,500 legitimate clients and

2,500 tickets available for purchase.

Throughout the 10,000 events, an average 11,872 of the 200,000 adversaries

were local to any given event. The local adversaries roughly represent 6.0% of

the total adversary population yet account for 58.6% of tickets acquired by the

entire adversary population (51.0% of all tickets sold). On average 94.0% (118,128)

of adversaries are non-local and manage to purchase only 36.1% of total tickets.

The adversary network’s success comes at a great cost as 98.9% of the individual

adversaries have nothing to show for their arduous proof-of-work computation.

Geographic Difficulty Algorithms

The prior experiments have used a single difficulty algorithm for determining the

amount of work a client must perform as a function of its geographic distance from

the server. To examine how sensitive our approach is to this algorithm, we examine

a number of alternatives. In comparing algorithms, it is helpful to derive the worst-

case and best-case scenarios regarding the number of tickets that an adversary

population may acquire. The worst case scenario occurs when the server operates

without proof-of-work challenges. Given that clients and adversaries arrive at

approximately the same time, the percentage of total tickets which the adversaries

are expected to acquire is then governed by:

without proof-of-work ≈ ∣A∣
∣A∣ + ∣C ∣ (4.5)

126

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
t

o
f

T
o

ta
l
T

ic
k

e
ts

 A
c

q
u

ir
e

d

Without

Dc = 3000d + 10⁶⁶⁶⁶

Dc = 100d² + 10⁶⁶⁶⁶

Dc = 1.224^d + 10⁶⁶⁶⁶

Theoretical Best

0%

10%

20%

30%

40%

0 0 1 10 100 1,000

P
e

rc
e

n
t

o
f

T
o

ta
l
T

ic
k

e
ts

 A
c

q
u

ir
e

d

Ratio of Adversaries to ClientsRatio of Adversaries to Clients

Figure 4.16: Effectiveness of various difficulty algorithms. The percentage of

total tickets acquired by adversaries vs. their ratio to clients.

Conversely, the theoretical best that any geographically-driven system using

proof-of-work can do is deny all non-local adversaries so that only local adversaries

Alocal compete with legitimate clients for the tickets. The percentage of tickets they

acquire is similarly governed by:

theoretical best ≈ ∣Alocal∣
∣Alocal∣ + ∣C ∣ (4.6)

Figure 4.16 demonstrates the effectiveness of three different difficulty setting

algorithms on impeding adversaries with respect to the theoretical bounds

described above. The three algorithms shown in the figure are:

� linear (Dc = 3000dc + 106)

� degree-2 polynomial (Dc = 100dc
2 + 106)

� exponential (Dc = 1.224dc + 106)

127

The average client delay (in seconds) for these functions closely follows the

difficulty divided by the number of hashes computable in one second (i.e.,
Dc

1,000,000).

Thus, for these functions the delay is roughly 1 second for legitimate clients (due

to the 106 constant) and quickly grows to minutes for distant adversaries. As

the figure shows, minimal geographic differentiation is needed to give legitimate

clients a noticeable advantage over the ticket purchasing robots. With slightly more

aggressive differentiation, the system quickly nears the theoretical best curve.

Using the linear difficulty algorithm, remote adversaries are delayed on the

order of tens of seconds. In contrast, the polynomial algorithm ramps up the

difficulty so that distant adversaries across the country (3,000 miles away) are

delayed several minutes. The exponential algorithm is much more severe and delays

adversaries further than 100 miles away several minutes. The three algorithms

impede adversaries such that the adversaries must multiply their population size

by a factor of 2.72, 10.4, and 19.2 (for the respective linear, polynomial, and

exponential algorithms) to acquire the same percentage of tickets as if the server

were operating without geographic proof-of-work protection. As indicated in the

last experiment, this occurs because the adversary population is mostly non-local

(i.e., roughly 94%) and they are largely ineffective at securing tickets. As we

elaborate upon in the discussion, regardless of whether the adversary employs

only local bots or all bots, the kaPOW approach increases the likelihood that the

real owner of a compromised machine will discover and remove the botnet software.

The probabilistic nature of solving Targeted Hash Reversal work functions

means that in some cases adversaries get “unlucky” and take much longer

than expected to find an answer. This means they could do worse than the

theoretical best equation dictates (as evidenced by the error-bars reaching below

the theoretical best curve). Conversely, in some unfortunate cases adversaries get

“lucky” and solve their work functions in fewer hashes than expected and thus

obtain more tickets than expected.

128

4.4.2 Limitations

Probabilistic Solution. As the last experiment in the previous section showed,

probabilistic work functions like the Targeted Hash Reversal construction involve

a solution strategy that is random. While the theoretically expected solution effort

is Dc units of work (i.e., SHA1 hash executions) and is experimentally confirmed,

any client attempting to solve a function can get either lucky or unlucky in finding

a correct answer. Both possibilities are undesirable. An unlucky legitimate client

will likely have the same outcome as a lucky adversary: the legitimate client may

be denied service while the adversary receives the service. Unfortunately, the only

known deterministic (i.e., non-probabilistic) work function is the Time-Lock puzzle

construction [94] which is too computationally expensive to issue and verify. Faster

Time-Lock implementations or alternative deterministic constructions may exist

and warrant further investigation.

Meaningless Work Functions. Work functions represent busywork used

to differentiate access to service between clients and adversaries. After a work

function solution is verified, it is discarded. Besides throttling the solver, that

solution provides no meaningful result for the client’s expended computation effort.

Future work may consider work functions where the solution has some meaningful

purpose beyond throttling the solver. The research challenge here is finding a work

function that can be easily issued and verified, and requires some arbitrary (yet

predictable) amount of computation to solve. Additionally, the ideal work function

would have compact data representations for both the challenge and solution so

they will impose minimal communication overhead like current work functions.

One viable approach might require the client to solve two similarly structured

challenges like reCAPTCHA does for CAPTCHAs [116]: one with a solution known

by the server that is used for verification and a second challenge where the answer

is unknown but sought by the server.

129

4.4.3 Discussion

Proof-of-work forces clients to commit their computational resources before they

are granted service. Since their efforts represent busywork, one might consider an

approach which simply requires the client to wait an amount of time proportional

to Dc. That approach overlooks two benefits of the proof-of-work approach.

First, proof-of-work deters an adversary from using a single machine to

send multiple requests. If clients were simply required to wait a prescribed

amount of time, an adversary would simply flood the server with sequential

time-delayed requests. With proof-of-work, the adversary gains little benefit

from flooding requests since the challenge must still be solved before service is

granted. Additionally, proof-of-work prevents an adversary from using a single

machine to concurrently flood other servers protected by proof-of-work since

solving simultaneous proof-of-work challenges simply slows down the solution of

each rather than provide an advantage.

Second, proof-of-work increases the likelihood that botnet machines will be

discovered and repaired. Aggressive adversaries solving difficult work functions

will incur steep computational penalties which may make individual machines

unresponsive to their real owners. This increases the chance that the owner of

the machine will investigate the system degradation and fix it (i.e., remove the

zombie software). The risk of detection and removal will thus deter adversaries

from targeting servers protected by proof-of-work. In the ticketing application,

adversaries using local zombie machines also increase the risk of being discovered

when conflicting with legitimate owners also attempting to purchase event tickets.

Since the ticket vendor allows only one transaction per network address, two

outcomes are possible. If the legitimate owner completes their transaction first,

the adversary cannot complete a transaction with that machine. If the zombie

completes their transaction first, the legitimate owner will get an error message

that may lead to discovering and removing the zombie software.

130

4.5 RELATED WORK

Proof-of-Work Systems. Originally proposed in 1978 by Merkle, computa-

tional puzzles where initially proposed for cryptographic key exchange [79]. They

were first used to combat resource consumption attacks in 1992 by Dwork [28].

Since then, numerous proof-of-work approaches have been proposed in the

literature [1, 7, 8, 24, 35, 59, 83, 121, 123]. These approaches remain unused

in practice because they require clients and servers to install new software to

understand the protocol. The kaPOW approach presented in this chapter avoids

that limitation and is transparent to both clients and servers.

CAPTCHA Systems. The use of CAPTCHA systems [117] is widespread –

practically all websites which offer user accounts or allow users to post information

employ CAPTCHAs. As discussed at the beginning of this chapter CAPTCHAs

suffer three main problems. First, they make the user-interface less accessible,

particularly for visually impaired users. Second, that automated solvers have

defeated most easy-to-implement CAPTCHA constructions. Third, they represent

a small, constant “price” which is less costly than the value of the goods or service

which they are used to protect.

Indirection Approaches. An adversary must know where a network service

resides in order to attack it. Indirection approaches [69, 73, 109] provide the ability

to hide or dynamically relocate a public service in order to prevent malicious clients

from reaching the service indefinitely. These approaches make it more arduous for

legitimate clients to access the service and the defense rapidly breaks down if an

adversary successfully learns the location of the service.

Filtering & Capability Approaches. Filtering approaches [3, 47, 77, 128]

have network devices discard unwanted requests close to their sources. Capability

approaches [4, 127] distribute access tokens so that clients may attach them to

requests to indicate they are wanted. To work efficiently, these approaches require

Internet-wide deployment of specialized network devices.

131

4.6 CONCLUSION

This chapter investigated the problem of disincentizing automated behavior which

plagues Web-based applications. In this application, the server has little bearing

over the proper execution of client software but instead has numerous information

sources available to infer that a client is malicious. The research contributions of

this chapter are:

� We defined the resource consumption problem affecting Web-based applica-

tions. In particular, there exists a resource imbalance between a server and

its clients, both in terms of the resources each have available and that each

must commit in order to complete a transaction.

� We proposed and evaluated a novel proof-of-work approach for Web applica-

tions. The kaPOW approach leverages the ubiquity of JavaScript to issue

transparent computational challenges to clients – the human user need not

be involved in solving the challenge. The approach was implemented twice to

demonstrate its efficiency: as an Apache module mod kaPOW and as a PHP-

script. In evaluation, we showed that kaPOW is able to repel aggressive

request-flooding adversaries.

� We proposed and evaluated geographic distance as a novel means for inden-

tifying likely adversarial behavior. This information source was evaluated in

the context of fully automated ticket-purchasing scalper networks. Lever-

aging accurate IP geolocation databases, the system assigns client-specific

challenges that are more difficult the further away a client is from the event.

Evaluation showed that an adversary network must use up to 19.2 times as

many machines to acquire the same percentage of tickets that they would

otherwise acquire if the server was unprotected by geographically-driven

proof-of-work.

132

Chapter 5

CONCLUSION

In this dissertation, we have focused on the problem of addressing adversarial

automation that affects networked applications. This dissertation validated the

following thesis statement:

There exist methods to detect automated behaviors with which an

application’s service provider can identify and disincentivize automated

adversaries.

using research on two popular networked applications, multiplayer online video

games and Web-based services. In these two applications, the service provider has

varying access to the client. In multiplayer online video games, the game developer

implements and releases the only client software that is authorized to interact with

the server software. This means the game developer has firm control over what all

legitimate client operation looks like.

In contrast, Web-based applications operate over the standardized HyperText

Transfer Protocol which only dictates request and response formats. Any Web

browser that adheres to the protocol can therefore access the service. Behavior

outside of the protocol varies between client implementations so a Web service

provider has little control over exactly what client operation looks like.

In validating the thesis statement, this dissertation investigated three research

challenges: how to detect automated behavior, how to combine individually

inconclusive automation detectors, and how to disincentive adversarial automation.

133

Methods to Detect Automated Behavior

Chapter 2 investigated the detection of adversarial automation that manifests as

cheating in multiplayer online games. In this application, banning cheaters is a

proven disincentive since they lose their game purchase, however, existing detection

approaches are error-prone, not completely automated, and expensive to maintain.

Leveraging the game developer’s direct access to the game client, we explored

a novel approach to cheat detection: anomaly-based detection. Our approach,

Fides [67], automatically learns how the game client operates on different machines

through partial client emulation. A server-side Controller specifies how and when

a client-side Auditor measures the game. Through continued random remote

audits, the Controller validates client execution and flags unexpected execution as

cheating. The evaluation of this approach demonstrated that it is able to efficiently

detect new un-cataloged cheats including one advertised as “undetectable.”

Combining Detectors to Identify Adversaries

Chapter 3 investigated the combination of individually inconclusive detectors to

produce a more conclusive result. Specifically, this chapter looked at reducing a set

of heterogeneous detectors within multiplayer online video games to create a single

metric for player maliciousness, whether it is rooted in automation or otherwise.

Our approach, PlayerRating [65], is a novel reputation system for multiplayer

online games. Treating a player’s peers as detectors (i.e., each peer’s observations

provide clues regarding the maliciousness of other peers), the disincentive simply

follows: players will avoid known malicious peers, and these peers will garner

unwanted scrutiny from the game developer regarding the possibility that they

are automated. The evaluation of this approach demonstrated its efficiency and

collusion resistance, properties necessary for combining largely untrusted detectors.

The results also indicate that this approach may be applicable to Web-based

applications that have many information sources at their disposal.

134

Disincentivizing Adversarial Automation

Chapter 4 investigated the use of proof-of-work challenges to disincentivize

automated adversaries of Web-based applications. In these applications, service

providers have no access to monitor the operation of client software so they

must rely on information sources completely external to the client software. Our

approach, kaPOW [63], is a novel transparent proof-of-work system which does not

require clients to install specialized software. Proof-of-work systems require that

clients solve computational challenges before they are granted service, where each

challenge is individually scaled in difficulty proportional to a metric of the client’s

maliciousness. More adversarial clients are given very difficult puzzles to solve,

while less adversarial clients are given trivial puzzles to solve. Using request-

load as an indication of the likelihood that a client is automated, we showed

that service providers can wield proof-of-work challenges to efficiently thwart

aggressive request-flooding adversaries. Additionally, using geographic distance as

an indication that online ticket purchases are being initiated by distant, automated

adversaries, we showed that ticket vendors can force adversaries to use up to 19.2

times as many botnet machines to acquire the same number of tickets that they

would otherwise acquire if the server was unprotected.

135

REFERENCES

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately

Hard, Memory-bound Functions. In Proceedings of the 10th Annual ISOC

Symposium on Network and Distributed System Security (NDSS ’03), pages

25 – 39, February 2003.

[2] A. Adamic. Zipf, Power-laws, Pareto: A Ranking Tutorial. Technical report,

HP Labs, October 2000.

[3] D. Andersen. Mayday: Distributed Filtering for Internet Services. In

Proceedings of the 4th USENIX Symposium on Internet Technologies and

Systems (USITS ’03), pages 31 – 42, March 2003.

[4] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial-of-

Service with Capabilities. In Proceedings of the 2nd Workshop on Hot Topics

in Networks (HotNets ’03), pages 39 – 44, November 2003.

[5] Apache Software Foundation. http://www.apache.org.

[6] Apache Software Foundation. ab: Apache HTTP Server Benchmarking Tool.

http://www.apache.org/docs/2.0/programs/ab.html.

[7] T. Aura, P. Nikander, and J. Leiwo. DOS-Resistant Authentication with

Client Puzzles. In Proceedings of the 8th International Workshop on Security

Protocols, pages 170 – 177, April 2000.

[8] A. Back. Hashcash: A Denial of Service Counter-Measure. Technical report,

August 2002. http://www.hashcash.org/papers/hashcash.pdf.

[9] P. Bak. How Nature Works: the Science of Self-Organized Criticality.

Copernicus, 1996. ISBN 0-387-94791-4.

[10] N. E. Baughman and B. N. Levine. Cheat-Proof Playout for Centralized

and Distributed Online Games. In Proceedings of the 20th Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM ’01), pages 104 – 113, April 2001.

http://www.apache.org
http://www.apache.org/docs/2.0/programs/ab.html
http://www.hashcash.org/papers/hashcash.pdf

136

[11] Black Omega. http://www.mpcforum.com/showthread.php?s=

d19abd77230cfca490701e3e1ec19ee3&t=183542.

[12] Blizzard Entertainment. Warcraft III. http://blizzard.com/en-us/war3/.

[13] Blizzard Entertainment. World of Warcraft. http://worldofwarcraft.com.

[14] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An

Improved Construction for Counting Bloom Filters. In Proceedings of the

14th Annual European Symposium on Algorithms (ESA ’06), pages 684 –

695, September 2006.

[15] M. Buchanan. Ubiquity: The Science of History or Why the World is Simpler

than We Think. Crown Publishers, 2001. ISBN 0-609-60810-X.

[16] L. Catuogno, I. Visconti, and V. S. Allende. A Format-Independent

Architecture for Run-Time Integrity Checking of Executable Code.

In Proceedings of the 3rd International Conference on Security in

Communications Networks (SCN ’02), pages 219 – 233, September 2002.

[17] CCP Games. Operation Unholy Rage: Eliminating Farmers in EVE Online,

August 2009. http://www.eveonline.com/devblog.asp?a=blog&bid=687.

[18] Cheat Engine. http://cheatengine.org.

[19] K. Chen, H. K. Pao, and H. Chang. Game Bot Identification Based on

Manifold Learning. In Proceedings of the 7th Workshop on Network and

System Support for Games (NetGames ’08), pages 21 – 26, October 2008.

[20] Computer Language Benchmarks. C++ vs. Lua. http://shootout.alioth.

debian.org/u32q/benchmark.php?test=all&lang=gpp&lang2=lua.

[21] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup:

Understanding, Detecting, and Disrupting Botnets. In Proceedings of

the 1st Workshop on Steps to Reducing Unwanted Traffic on the Internet

(SRUTI ’05), pages 39 – 44, July 2005.

[22] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive

Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of the

7th USENIX Security Symposium, pages 63 – 78, January 1998.

[23] D. Dagon, C. Zou, and W. Lee. Modeling Botnet Propagation Using Time

Zones. In Proceedings of the 13th Annual ISOC Symposium on Network and

Distributed System Security (NDSS ’06), February 2006.

http://www.mpcforum.com/showthread.php?s=d19abd77230cfca490701e3e1ec19ee3&t=183542
http://www.mpcforum.com/showthread.php?s=d19abd77230cfca490701e3e1ec19ee3&t=183542
http://blizzard.com/en-us/war3/
http://worldofwarcraft.com
http://www.eveonline.com/devblog.asp?a=blog&bid=687
http://cheatengine.org
http://shootout.alioth.debian.org/u32q/benchmark.php?test=all&lang=gpp&lang2=lua
http://shootout.alioth.debian.org/u32q/benchmark.php?test=all&lang=gpp&lang2=lua

137

[24] D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In

Proceedings of the 10th USENIX Security Symposium, pages 1 – 8, August

2001.

[25] C. Dellarocas, M. Fan, and C. A. Wood. Self-Interest, Reciprocity, and

Participation in Online Reputation Systems. Technical report, MIT Sloan,

August 2004.

[26] J. R. Douceur. The Sybil Attack. In Proceedings of the 1st International

Workshop on Peer-to-Peer Systems, pages 251 – 260, March 2002.

[27] DShield. Distributed Intrusion Detection. http://www.dshield.org.

[28] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk

Mail. In Proceedings of the 12th Annual International Cryptology Conference

(CRYPTO ’92), pages 139 – 147, August 1992.

[29] eBay. User Feedback. http://ebay.com/services/forum/feedback.html.

[30] Ecstatic Counter-Strike Source Hack. http://www.mirc-scripts.de/pn/

html/modules.php?op=modload&name=News&file=article&sid=225.

[31] Even Balance. PunkBuster: Countermeasures for Cheaters in Multiplayer

Online Games. http://evenbalance.com.

[32] J. Evers. Taking on Rootkits with Hardware, December 2005.

http://news.cnet.com/Taking-on-rootkits-with-hardware/

2008-1029_3-5992309.html.

[33] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A Scalable

Wide-Area Web Cache Sharing Protocol. IEEE/ACM Transactions on

Networking (TON), 8(3):281 – 293, June 2000.

[34] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly

Detection Using Call Stack Information. In Proceedings of the 23rd IEEE

Symposium on Security and Privacy, pages 62 – 75, May 2003.

[35] W. Feng. The Case for TCP/IP Puzzles. In Proceedings of the

ACM SIGCOMM Workshop on Future Directions in Network Architecture

(FDNA ’03), pages 322 – 327, August 2003.

[36] W. Feng and E. Kaiser. The Case for Public Work. In Proceedings of the

10th IEEE Global Internet Symposium, pages 43 – 48, May 2007.

http://www.dshield.org
http://ebay.com/services/forum/feedback.html
http://www.mirc-scripts.de/pn/html/modules.php?op=modload&name=News&file=article&sid=225
http://www.mirc-scripts.de/pn/html/modules.php?op=modload&name=News&file=article&sid=225
http://evenbalance.com
http://news.cnet.com/Taking-on-rootkits-with-hardware/2008-1029_3-5992309.html
http://news.cnet.com/Taking-on-rootkits-with-hardware/2008-1029_3-5992309.html

138

[37] W. Feng, E. Kaiser, W. Feng, and A. Luu. The Design and Implementation

of Network Puzzles. In Proceedings of the 24th Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM ’05), pages

2372 – 2382, March 2005.

[38] W. Feng, E. Kaiser, and T. Schluessler. Stealth Measurements for Cheat

Detection in On-line Games. In Proceedings of the 7th Workshop on Network

and System Support for Games (NetGames ’08), pages 15 – 20, October 2008.

[39] S. Fewer. Reflective DLL Injection, October 2008. http://www.

harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf.

[40] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft

Standard), June 1999.

[41] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A

Virtual Machine-Based Platform for Trusted Computing. In Proceedings of

the 19th ACM Symposium on Operating Systems (SOSP ’03), pages 193 –

206, October 2003.

[42] Geobytes Inc. GeoNetMap. http://www.geobytes.com.

[43] GetAFreelancer. Captcha Entry Projects. http://www.getafreelancer.

com/projects/by-tag/captcha-entry.html.

[44] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang. Battle of Botcraft: Fighting

Bots in Online Games with Human Observational Proofs. In Proceedings

of the 16th ACM Conference on Computer and Communications Security

(CCS ’09), pages 256–268, November 2009.

[45] J. Golbeck and J. Hendler. Reputation Network Analysis for Email Filtering.

In Proceedings of the 1st Conference on Email and Anti-Spam (CEAS ’04),

July 2004.

[46] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating Web Spam with

TrustRank. In Proceedings of the 30th International Conference on Very

Large Data Bases (VLDB ’04), pages 576 – 587, August 2004.

[47] M. Handley and A. Greenhalgh. Steps Toward a DoS-resistant Internet

Architecture. In Proceedings of the ACM SIGCOMM Workshop on Future

Directions in Network Architecture (FDNA ’04), pages 49 – 56, August 2004.

http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.geobytes.com
http://www.getafreelancer.com/projects/by-tag/captcha-entry.html
http://www.getafreelancer.com/projects/by-tag/captcha-entry.html

139

[48] HL2 Hook. http://www.zerogamers.com/downloads/

c49-Counter-Strike:-Source-Hacks/f809-HL2-Hook-v13.html.

[49] S. Hocevar. PWNtcha: A CAPTCHA Solving Library. http://caca.zoy.

org/wiki/PWNtcha.

[50] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection using

Sequences of System Calls. Journal of Computer Security, 6(3):151 – 180,

August 1998.

[51] G. Hoglund. Keeping Blizzard Honest - Announcing the Release of ‘The

Governor’, 2005. http://www.rootkit.com.

[52] G. Hoglund. Hacking World of Warcraft: An Exercise in Advanced Rootkit

Design. In The 10th Annual Black Hat USA Technical Security Conference,

June 2006.

[53] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32

Functions. In Proceedings of the 3rd USENIX Windows NT Symposium,

pages 135 – 143, July 1999.

[54] N. Ianelli and A. Hackworth. Botnets as a Vehicle for Online Crime,

December 2005. CERT RFC 1700.

[55] H. Inoue and S. Forrest. Anomaly Intrusion Detection in Dynamic Execution

Environments. In Proceedings of the 10th New Security Paradigms Workshop

(NSPW ’02), pages 52 – 60, September 2002.

[56] Intel Corporation. Active Management Technology. http://www.intel.

com/technology/platform-technology/intel-amt/.

[57] G. Jeh and J. Widom. Scaling Personalized Web Search. In Proceedings of

the 12th International Conference on World Wide Web (WWW ’03), pages

271 – 279, May 2003.

[58] G. Jin. Chinese Gold Farmers in the Game World. Consumers, Commodities

& Consumption Online Newsletter of the Consumer Studies Research

Network, 7(2), May 2006.

[59] A. Juels and J. Brainard. Client Puzzles: A Cryptographic Defense Against

Connection Depletion. In Proceedings of the 6th Annual ISOC Network

and Distributed System Security Symposium (NDSS ’99), pages 151 – 165,

February 1999.

http://www.zerogamers.com/downloads/c49-Counter-Strike:-Source-Hacks/f809-HL2-Hook-v13.html
http://www.zerogamers.com/downloads/c49-Counter-Strike:-Source-Hacks/f809-HL2-Hook-v13.html
http://caca.zoy.org/wiki/PWNtcha
http://caca.zoy.org/wiki/PWNtcha
http://www.rootkit.com
http://www.intel.com/technology/platform-technology/intel-amt/
http://www.intel.com/technology/platform-technology/intel-amt/

140

[60] E. Kaiser. PlayerRating. http://wow.curseforge.com/addons/

playerrating/.

[61] E. Kaiser and W. Feng. kaPoW Online Ticketing Application. http://

kapow.cs.pdx.edu/geotickets.

[62] E. Kaiser and W. Feng. mod kaPoW Demo. http://kapow.cs.pdx.edu.

[63] E. Kaiser and W. Feng. mod kaPoW: Protecting the Web with Transparent

Proof-of-Work. In Proceedings of the 11th IEEE Global Internet Symposium,

April 2008.

[64] E. Kaiser and W. Feng. mod kaPoW: Putting the ‘PoW’ in Proof-of-

Work. In The ACM Interest Group Conference on Data Communication

(SIGCOMM ’08) Demo Session, August 2008.

[65] E. Kaiser and W. Feng. PlayerRating: A Reputation System for Multiplayer

Online Games. In Proceedings of the 8th Workshop on Network and System

Support for Games (NetGames ’09), November 2009.

[66] E. Kaiser and W. Feng. Helping Hannah Montana: Changing the Economics

of Ticket Robots with Geographic Proof-of-Work. In Proceedings of the 13th

IEEE Global Internet Symposium, March 2010.

[67] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remote Anomaly-Based

Cheat Detection Using Client Emulation. In Proceedings of the 16th ACM

Conference on Computer and Communications Security (CCS ’09), pages

269 – 279, November 2009.

[68] S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina. The EigenTrust

Algorithm for Reputation Management in P2P Networks. In Proceedings of

the 12th International Conference on World Wide Web (WWW ’03), pages

640 – 651, May 2003.

[69] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services.

In Proceedings of the ACM Special Interest Group Conference on Data

Communication (SIGCOMM ’02), pages 61 – 72, August 2002.

[70] D. Kesmodel. Codes on Sites ‘Captcha’ Anger of Web Users. Wall Street

Journal, May 2006.

[71] C. Kruegel and G. Vigna. Anomaly Detection of Web-Based Attacks. In

Proceedings of the 10th ACM Conference on Computer and Communications

Security (CCS ’03), pages 251 – 261, October 2003.

http://wow.curseforge.com/addons/playerrating/
http://wow.curseforge.com/addons/playerrating/
http://kapow.cs.pdx.edu/geotickets
http://kapow.cs.pdx.edu/geotickets
http://kapow.cs.pdx.edu

141

[72] J. Kunegis, A. Lommatzsch, and C. Bauckhage. The Slashdot Zoo: Mining a

Social Network with Negative Edges. In Proceedings of the 18th International

Conference on World Wide Web (WWW ’09), pages 741 – 750, April 2009.

[73] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. Taming IP Packet

Flooding Attacks. In Proceedings of the 2nd Workshop on Hot Topics in

Networks (HotNets ’03), pages 45 – 50, November 2003.

[74] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers. A Novel Approach to

the Detection of Cheating in Multiplayer Online Games. In Proceedings of

the 12th IEEE International Conference on Engineering Complex Computer

Systems (ICECCS ’07), pages 97 – 106, July 2007.

[75] B. Laurie and R. Clayton. ‘Proof-of-Work’ Proves Not to Work. In

Proceedings of the 3rd Annual Workshop on the Economics of Information

Security (WEIS ’04), May 2004.

[76] Lavish Software. On Warden. http://onwarden.blogspot.com.

[77] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.

Controlling High Bandwidth Aggregates in the Network. ACM Computer

Communication Review, 32(3):62 – 73, July 2002.

[78] MaxMind Inc. Geolocation and Online Fraud Prevention from MaxMind.

http://www.maxmind.com.

[79] R. Merkle. Secure Communications Over Insecure Channels. Communica-

tions of the ACM, 21(4):294 – 299, April 1978.

[80] D. L. Mills. Network Time Protocol Version 4 - Reference and

Implementation Guide. Technical report, University of Delaware, June 2006.

[81] P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034

(Standard), November 1987.

[82] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.

Inside the Slammer Worm. IEEE Security and Privacy, 1(4):33 – 39, July

2003.

[83] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity

Protocol Architecture. RFC 5201 (Experimental Protocol), April 2008.

[84] National Institute of Science and Technology (NIST). Secure Hash Standard,

April 1993. Federal Information Processing Standard (FIPS) 180-1.

http://onwarden.blogspot.com
http://www.maxmind.com

142

[85] NetCoders. The Unerring Punkbuster. http://forum.netcoders.cc/

announcements/14061-unerring-punkbuster.html.

[86] Netherby. PlayerNotes. http://wow.curseforge.com/addons/

playernotes/.

[87] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation

Ranking: Bringing Order to the Web. Technical report, Stanford University,

January 1998.

[88] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - A

Coprocessor-Based Kernel Runtime Integrity Monitor. In Proceedings of the

13th USENIX Security Symposium, pages 179 – 194, August 2004.

[89] phpBB. phpBB: Creating Communites Worldwide. http://www.phpbb.org.

[90] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[91] J. Postel. Transmission Control Procol. RFC 793 (Standard), September

1981.

[92] T. Ptacek and N. Lawson. Don’t Tell Joanna, The Virtualized Rootkit is

Dead. In The 11th Annual Black Hat USA Technical Security Conference,

August 2007.

[93] J. Rauch. Seeing Around Corners: The New Science of Artificial Societies.

The Atlantic Monthly, 289(4):35 – 48, April 2002.

[94] R. Rivest, A. Shamir, and D. Wagner. Time-Lock Puzzles and Timed-Release

Crypto. Technical report, MIT, March 1996. MIT/LCS/TR-684.

[95] J. Rutkowska. Subverting Vista Kernel for Fun and Profit: Part 2 - Blue Pill.

In The 10th Annual Black Hat USA Technical Security Conference, August

2006.

[96] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation

of a TCG-Based Integrity Measurement Architecture. In Proceedings of the

13th USENIX Security Symposium, pages 223 – 238, August 2004.

[97] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System

Design. In Proceedings of the 2nd International Conference on Distributed

Computing Systems (ICDCS ’81), pages 509 – 512, April 1981.

http://forum.netcoders.cc/announcements/14061-unerring-punkbuster.html
http://forum.netcoders.cc/announcements/14061-unerring-punkbuster.html
http://wow.curseforge.com/addons/playernotes/
http://wow.curseforge.com/addons/playernotes/
http://www.phpbb.org

143

[98] T. Schluessler, E. Johnson, and S. Goglin. Is a Bot at the Controls - Detecting

Input Data Attacks. In Proceedings of the 6th Workshop on Network and

System Support for Games (NetGames ’07), pages 1 – 6, October 2007.

[99] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-

Based Method for Detecting Anomalous Program Behaviors. In Proceedings

of the 21st IEEE Symposium on Security and Privacy, pages 144 – 155, May

2001.

[100] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.

Pioneer: Verifying Integrity and Guaranteeing Execution of Code on Legacy

Platforms. In Proceedings of the 20th ACM Symposium on Operating System

Principles (SOSP ’05), pages 1 – 16, October 2005.

[101] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. On the

Effectiveness of Address-Space Randomization. In Proceedings of the 11th

ACM Conference on Computer and Communications Security (CCS ’04),

pages 298 – 307, October 2004.

[102] M. Shermer. The Doping Dilemma. Scientific American, 298(4):60 – 67,

April 2008.

[103] B. Siwicki. Big Ticket Items, January 2007. http://www.

internetretailer.com/article.asp?id=20961.

[104] Skape and JT. Remote Library Injecion, April 2004. http://www.nologin.

org/Downloads/Papers/remote-library-injection.pdf.

[105] Slashdot.org. Slashdot FAQ: Karma. http://slashdot.org/faq/com-mod.

shtml#cm700.

[106] Solar Designer. Getting Around Non-executable Stack (and Fix), August

1997. Bugtraq Mailing List.

[107] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your

Spare Time. In Proceedings of the 11th USENIX Security Symposium, pages

149 – 167, August 2002.

[108] A. Starodoumov. Real Money Trade Model in Virtual Economies. Master’s

thesis, Stockholm School of Economics, June 2005.

[109] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet

Indirection Infrastructure. In Proceedings of the ACM Special Interest Group

http://www.internetretailer.com/article.asp?id=20961
http://www.internetretailer.com/article.asp?id=20961
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://slashdot.org/faq/com-mod.shtml#cm700
http://slashdot.org/faq/com-mod.shtml#cm700

144

Conference on Data Communication (SIGCOMM ’02), pages 73 – 86, August

2002.

[110] R. Stross. Hannah Montana Tickets on Sale! Oops, They’re Gone. New York

Times, December 2007.

[111] StubHub Inc. Tickets at StubHub! http://www.stubhub.com.

[112] TNOW Entertainment Group. Tickets at TicketsNow. http://www.

ticketsnow.com.

[113] M. Tresca. The Impact of Anonymity on Disinhibitive Behavior through

Computer-Mediated Communication. Master’s thesis, Michigan State

University, 1998.

[114] US Census Bureau. List of Populations of Urbanized Areas, 2000. http:

//www.census.gov/geo/www/ua/ua2k.txt.

[115] Valve Software. Valve Anti-Cheat. https://support.steampowered.com/

kb_article.php?p_faqid=370.

[116] L. von Ahn. The reCAPTCHA Project. http://recaptcha.net.

[117] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using Hard

AI Problems for Security. In Proceedings of the 22nd Annual International

Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT ’03), pages 294 – 311, May 2003.

[118] W3 Schools. Browser Statistics. http://www.w3schools.com/browsers/

browsers_stats.asp.

[119] D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In

Proceedings of the 21st IEEE Symposium on Security and Privacy, pages

156 – 168, May 2001.

[120] K. Wang and S. J. Stolfo. Anomalous Payload-Based Network Intrusion

Detection. In Proceedings of the 7th International Symposium on Recent

Advances in Intrusion Detection (RAID ’04), pages 203 – 222, October 2004.

[121] X. Wang and M. Reiter. Mitigating Bandwidth-Exhaustion Attacks Using

Congestion Puzzles. In Proceedings of the 11th ACM Conference on

Computer and Communications Security (CCS ’04), pages 257 – 267,

October 2004.

http://www.stubhub.com
http://www.ticketsnow.com
http://www.ticketsnow.com
http://www.census.gov/geo/www/ua/ua2k.txt
http://www.census.gov/geo/www/ua/ua2k.txt
https://support.steampowered.com/kb_article.php?p_faqid=370
https://support.steampowered.com/kb_article.php?p_faqid=370
http://recaptcha.net
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp

145

[122] Warcraft Realms. World of Warcraft Census. http://www.warcraftrealms.

com/realmstats.php.

[123] B. Waters, A. Juels, J. Halderman, and E. Felten. New Client Puzzle

Outsourcing Techniques for DoS Resistance. In Proceedings of the 11th ACM

Conference on Computer and Communications Security (CCS ’04), pages

246 – 256, October 2004.

[124] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’

networks. Nature, 393(6684):440 – 442, June 1998.

[125] Wired News. Guitar Hero Robot Plays Videogame With Electronic Precision.

http://blog.wired.com/gadgets/2008/11/guitar-hero-rob.html.

[126] WoWWiki. Secure Execution and Tainting. http://www.wowwiki.com/

Secure_Execution_and_Tainting.

[127] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network

Architecture. ACM SIGCOMM Computer Communications Review,

35(4):241 – 252, October 2005.

[128] D. Yau, J. Lui, and F. Liang. Defending Against Distributed Denial-

of-service Attacks with Max-min Fair Server-centric Router Throttles.

IEEE/ACM Transactions on Networking (TON), 13(1):29 – 42, February

2005.

[129] S. Yeung, J. Lui, and J. Yan. Detecting Cheaters for Multiplayer Games:

Theory, Design and Implementation. In Proceedings of the 3rd IEEE

Consumer Communications and Networking Conference (CCNC ’06), pages

1178 – 1182, January 2006.

[130] H. Zimmermann. OSI Reference Model - The ISO Model of Architecture

for Open Systems Interconnection. IEEE Transactions on Communications,

28(4):425 – 432, April 1980.

[131] D. Zovi. Hardware Virtualization-Based Rootkits. In The 10th Annual Black

Hat USA Technical Security Conference, June 2006.

http://www.warcraftrealms.com/realmstats.php
http://www.warcraftrealms.com/realmstats.php
http://blog.wired.com/gadgets/2008/11/guitar-hero-rob.html
http://www.wowwiki.com/Secure_Execution_and_Tainting
http://www.wowwiki.com/Secure_Execution_and_Tainting

	Portland State University
	PDXScholar
	1-1-2010

	Addressing Automated Adversaries of Network Applications
	Edward Leo Kaiser
	Let us know how access to this document benefits you.
	Recommended Citation

	Title
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of acronyms
	1 Introduction
	1.1 The Automation Problem
	1.1.1 Examples of Adversarial Automation
	1.1.2 Root Causes of Adversarial Automation

	1.2 Research Challenges
	1.2.1 What methods can be used to detect automated behavior?
	1.2.2 How can detectors be combined to best identify adversaries?
	1.2.3 How can adversarial automation best be disincentivized?

	1.3 Dissertation Outline
	1.3.1 Thesis Statement

	2 Detection Methods
	2.1 Introduction
	2.2 The Cheating Problem
	2.2.1 A Distinct Security Problem
	2.2.2 Cheating Methods

	2.3 The Fides Approach
	2.3.1 The Auditor
	2.3.2 The Controller

	2.4 Evaluation
	2.4.1 Experimentation
	2.4.2 Limitations
	2.4.3 Discussion

	2.5 Related Work
	2.6 Conclusion

	3 Adversary Identification
	3.1 Introduction
	3.2 The Problem with Online Behavior
	3.2.1 The Case for Reputation Systems

	3.3 The PlayerRating Approach
	3.3.1 Agent Algorithms

	3.4 Evaluation
	3.4.1 Experimentation
	3.4.2 Limitations
	3.4.3 Discussion

	3.5 Related Work
	3.6 Conclusion

	4 Disincentivizing Adversarial Automation
	4.1 Introduction
	4.2 The Resource Consumption Problem
	4.2.1 The Shortcomings of CAPTCHAs
	4.2.2 The Case for Proof-of-Work

	4.3 The kaPOW Approach
	4.4 Evaluation
	4.4.1 Experimentation
	4.4.2 Limitations
	4.4.3 Discussion

	4.5 Related Work
	4.6 Conclusion

	5 Conclusion
	References

