
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 12-16-2014

The Nax Language: Unifying Functional Programming and
Logical Reasoning in a Language based on Mendler-style
Recursion Schemes and Term-indexed Types
Ki Yung Ahn
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Programming Languages and Compilers Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Ahn, Ki Yung, "The Nax Language: Unifying Functional Programming and Logical Reasoning in a Language based on Mendler-style
Recursion Schemes and Term-indexed Types" (2014). Dissertations and Theses. Paper 2088.

10.15760/etd.2086

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2088?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2086
mailto:pdxscholar@pdx.edu

The Nax Language :

Unifying Functional Programming and Logical Reasoning

in a Language based on Mendler-style Recursion Schemes

and Term-indexed Types

by

Ki Yung Ahn

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Tim Sheard, Chair

James Hook
Mark P. Jones

Andrew Tolmach
Douglas V. Hall

Portland State University
2014

i

ABSTRACT

Two major applications of lambda calculi in computer science are functional

programming languages and mechanized reasoning systems (or, proof assistants).

According to the Curry–Howard correspondence, it is possible, in principle, to

design a unified language based on a typed lambda calculus for both logical rea-

soning and programming. However, the different requirements of programming

languages and reasoning systems make it difficult to design such a unified language

useful for both purposes. Programming languages usually extend lambda calculi

with programming-friendly features (e.g., recursive datatypes, general recursion)

for supporting the flexibility to model various computations, while sacrificing log-

ical consistency. Logical reasoning systems usually extend lambda calculi with

logic-friendly features (e.g., induction principles, dependent types) for paradox-

free inference over fine-grained properties, while being more restrictive in modeling

computations.

In this dissertation, we design and implement a language called Nax that bal-

ances between the benefits of both. Nax accepts all recursive datatypes, thus, al-

lowing the same flexibility of defining recursive datatypes as functional languages.

Nax supports a number of Mendler-style recursion schemes that can express various

kinds of recursive computations and also grantee termination. Nax supports term-

indexed types to support specifications of fine-grained properties. In addition, Nax

supports a conservative extension of Hindley–Milner type inference.

The theoretical contributions of this dissertation include theories for Mendler-

style recursion schemes and term-indexed types, which we developed to establish

strong normalization and logical consistency of Nax.

ii

DEDICATION

To the Logos from the beginning of the universe, who was with the creator and the

creator himself, the source of all beings, and the light of life shines in the darkness.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Tim Sheard, who has always been patient and

open to experimenting with new ideas, the members of the dissertation committee

for their useful feedback, and special thanks to Andrew M. Pitts and Marcelo

Fiore for the discussions greatetly improved my theiss research during the visit

to Cambridge, UK, and also to Gabor Grief, who gave feedback on my thesis

related research. Many thanks to my parents, Rev. Sam Whan Kim, and friends

in Myungsung Presbyterian Church for their love and prayers from the other side

of the Pacific; the young adults’ group in Oregon Eden Presbyterian Church for

being a warm and dynamic community; and, to coach Ruth Aquino and friends in

the Lloyd Center Ice Rink, where I chilled out in the evenings.

iv

Table of Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables ix

List of Figures x

Part I Prelude 1

Chapter 1 Introduction 2
1.1 Programming and Formal Reasoning 2

1.1.1 The Curry–Howard correspondence 3
1.1.2 Logical consistency and strong normalization 9
1.1.3 Datatypes and recursion schemes 10

1.2 Motivation . 15
1.3 Thesis . 17
1.4 Mendler-style recursion and term-indexed types 18

1.4.1 Restriction on recursive types for normalization 18
1.4.2 Justification of Mendler style as a design choice. 22
1.4.3 Term-indexed types, type inference, and datatypes 23

1.5 Contributions . 25
1.5.1 Contributions related to Mendler style 25
1.5.2 Contributions to the theory of term-indexed types 27
1.5.3 Contributions towards the Nax language design 27
1.5.4 Contributions identifying open problems 29

v

1.6 Chapter organization . 30

Chapter 2 Polymorphic type systems 35
2.1 Simply-typed lambda calculus . 35

2.1.1 Strong normalization . 38
2.1.2 Motivations for polymorphic type systems 44

2.2 System F . 45
2.2.1 Encoding datatypes in System F 48
2.2.2 Subject reduction and strong normalization 54

2.3 System Fω . 59
2.3.1 Encodings of datatypes in System Fω 62
2.3.2 Strong normalization . 69

2.4 The Hindley–Milner type system 75
2.4.1 Syntax . 77
2.4.2 Declarative typing rules . 80
2.4.3 Syntax-directed typing rules 84
2.4.4 The type inference algorithm W 87

Part II Mendler style 90

Chapter 3 Mendler-style recursion schemes 91
3.1 Introduction . 92

3.1.1 Background - Termination and Negativity 94
3.1.2 Historical progression . 96
3.1.3 Roadmap to a tour of the Mendler-style approach 98

3.2 Defining regular recursive datatypes 102
3.3 Conventional iteration for regular datatypes 103
3.4 Mendler-style iteration for regular datatypes 104
3.5 Mendler-style course-of-values iteration for regular datatypes 106
3.6 Mendler-style iteration and course-of-values iteration over negative

datatypes . 110
3.7 Mendler-style iteration and course-of-values iteration over non-regular

datatypes and mutually recursive datatypes 114
3.7.1 Nested datatypes . 114
3.7.2 Indexed datatypes (GADTs) 121

vi

3.7.3 Mutually recursive datatypes 123
3.8 Mendler-style primitive recursion (mpr) 126
3.9 Mendler-style iteration with syntactic inverses 131

3.9.1 Formatting HOAS . 132
3.9.2 Fω encoding of µ̆∗ and msfit∗ 139
3.9.3 Evaluating Simply Typed HOAS 142
3.9.4 A graph datatype with cycles and sharing 145
3.9.5 Additional Mendler-style combinators 145

3.10 Properties of recursion combinators 148

Part III Term-Indexed Lambda Calculi 152

Chapter 4 System Fi 153
4.1 System Fi . 156

4.1.1 Design of System Fi . 156
4.1.2 System Fi compared to System Fω 161

4.2 Embedding datatypes and Mendler-style iterators 164
4.2.1 Embedding datatypes using Church-encoded terms 164
4.2.2 Embedding recursive datatypes as two-level types 168
4.2.3 Leibniz index equality . 172

4.3 Metatheory . 174
4.3.1 Well-formedness properties and substitution lemmas 174
4.3.2 Erasure properties . 176
4.3.3 Strong normalization and logical consistency 183

Chapter 5 System Fixi 184
5.1 System Fixi . 185

5.1.1 Polarities . 190
5.1.2 Equi-recursive type operator fix 192

5.2 Embedding datatypes and primitive recursion 193
5.3 Embedding course-of-values recursion 196

5.3.1 General form for the embedding of course-of-values recursion 199
5.3.2 Embedding unrollers . 200
5.3.3 Deriving uniform embeddings of the unrollers 202
5.3.4 Properties of unrollers . 208

vii

5.4 Metatheory of Fixi . 210
5.4.1 Strong normalization and logical consistency 210
5.4.2 Syntactic conditions for well-behaved course-of-values recur-

sion . 213

Part IV Nax Language 220

Chapter 6 Introduction to Features of the Nax Language 221
6.1 Two-level types . 221
6.2 Creating values . 223
6.3 Synonyms, constructor functions, and fixpoint derivation 223
6.4 Mendler combinators for non-indexed types 224
6.5 Types with static indices . 230
6.6 Mendler-style combinators for indexed types 232
6.7 Recursive types of unrestricted polarity but restricted elimination . 236
6.8 Lessons from Nax . 238

Chapter 7 Design Principles of Nax’s Type System 240
7.1 Introduction . 240
7.2 The trilingual Rosetta Stone . 242

7.2.1 Type-preserving evaluator for an expression language 242
7.2.2 Generic Paths parametrized by a binary relation 247
7.2.3 Stack-safe compiler for the expression language 253

7.3 Discussion . 254
7.3.1 Universes, kinds, and well-sortedness 254
7.3.2 Nested Term Indices and Datatypes Containing Types . . . 257

7.4 Related Work . 259
7.5 Summary and Future Work . 262

Chapter 8 Type Inference in Nax 263
8.1 SmallNax . 263
8.2 SmallNax with Mendler-style recursion 269

8.2.1 A review of monomorphic recursion and polymorphic recursion270
8.2.2 Typing rules for Mendler-style recursion combinators 270

8.3 SmallNax with GADTs . 273
8.3.1 Existential type variables . 273

viii

8.3.2 Generalized existential type variables and index transformers 275

Part V Postlude 278

Chapter 9 Related work 279
9.1 Mendler-style co-iteration and co-recursion 279
9.2 Mendler-style recursion schemes over multiple values 284

9.2.1 Simultaneous iteration . 284
9.2.2 Lexicographic recursion . 286

9.3 Mendler-style induction . 287
9.4 Type-based termination and sized types 288
9.5 Logical Frameworks based on the λΠ-calculus 291

Chapter 10 Future work 297
10.1 Another Mendler-style recursion scheme for mixed-variant datatypes 297
10.2 Conversion between different fixpoint types 303
10.3 Monotonicity from polarized kinds 306
10.4 Kind polymorphism and kind inference 309

Chapter 11 Conclusions 311
11.1 Summary . 311
11.2 Significance . 317
11.3 Limitations and future work . 318

Bibliography 320

Index 334

Appendix 338

Appendix A The Proof for Completeness of W 338

Appendix B Proofs in the metatheory of System Fi 345

ix

List of Tables

2.1 Church encodings of regular datatypes can be well-typed in SystemF. 50

3.1 Termination properties of Mendler-style recursion combinators. . . . 149

7.1 Nax features: deriving fixpoint, synonym, µ, In, and mcata. . . 243

x

List of Figures

1.1 Intuitionistic natural deduction with implication and falsity, and its
corresponding simply-typed lambda calculus. 5

1.2 Typing derivations (right) for terms of type A → A → A in STLC
and their corresponding proofs (left) in natural deduction. 6

1.3 Reduction of a proof involving introduction and elimination rules
for implication, and its corresponding β-reduction of a well-typed
term. 8

1.4 Comparison of datatypes in functional languages and datatypes in
reasoning systems. 11

1.5 Two different approaches to terminating recursion schemes (in con-
trast to unrestricted general recursion in functional languages). . . . 19

1.6 Summary of the relationships among key concepts. 31

2.1 Simply-typed lambda calculus in Church style and Curry style . . . 36
2.2 Interpretation of the STLC for proving strong normalization 42
2.3 System F in Church style and Curry style. 46
2.4 Reduction rules of System F. 47
2.5 Interpretation of System F for proving strong normalization 56
2.6 Syntax, kinding rules, typing rules, and reduction rules of System Fω. 61
2.7 Type constructor equality rules of System Fω. 62
2.8 Interpretation of System Fω for proving strong normalization 70
2.9 Milner’s polymorphic lambda calculus. 76
2.10 The type inference algorithm W . 88

3.1 Standard (µ) and inverse-augmented (µ̆) datatype fixpoints at kinds
∗ and ∗ → ∗. 100

3.2 Type signatures of recursion combinators. Note the heavy use of
higher-rank types. 100

xi

3.3 Definitions of recursion combinators. 101
3.4 cata example: list length function. 104
3.5 mit∗ example: list length function. 104
3.6 mcvit∗ example: Fibonacci function. 109
3.7 An example of a total function lenFoo over a negative datatype Foo

defined by mit∗, and a counterexample loopFoo illustrating that
mcvit∗ can diverge for negative datatypes. 113

3.8 Summing up a powerlist (Powl), a nested datatype, expressed in
terms of mit∗→∗. 117

3.9 Summing up a bush (Bush), a recursively nested datatype, expressed
in terms of mit∗→∗. 118

3.10 Recursion (copy) and course-of-values recursion (switch2) over size-
indexed lists (Vec) expressed in terms of mit∗→∗ and mcvit∗→∗. . . 124

3.11 Mutual recursion (extend and eval over Dec and Exp) expressed in
terms of mit∗→∗ over an indexed datatype DecExpF 125

3.12 The Mendler-style primitive recursion and course-of-values recursion 127
3.13 mpr∗ example: factorial function. 128
3.14 mpr∗ example (non-recursive): a constant time predecessor. 130
3.15 mpr∗ example (non-recursive): a constant time tail function for lists.130
3.16 Lucas number (http://oeis.org/A066982) example illustrating the

use of the mcvpr∗ family. 130
3.17 msfit∗ example: String formatting function for HOAS. 133
3.18 Fω encoding of µ̆∗, msfit∗, and the sum type (+). 139
3.19 HOAS string formatting example in Fω. 140
3.20 msfit∗→∗ example: an evaluator for the simply-typed HOAS. 143
3.21 A graph datatype with cycles and sharing [32] 146
3.22 The Mendler-style open-iteration mopenit∗, which allows one free

variable, and the freevarused function defined using mopenit∗. . . . 147
3.23 Fω encoding of µ∗ and mit∗ in Haskell. 148
3.24 Alternative definition of iteration via the course-of-values iteration. 151

4.1 Syntax and Reduction rules of Fi. 158
4.2 Sorting, Kinding, and Typing rules of Fi. 159
4.3 Equality rules of Fi. 160
4.4 Kinding derivation for an index abstraction. 164
4.5 Embedding non-recursive datatypes. 165

http://oeis.org/A066982

xii

4.6 Embedding recursive datatypes. 166
4.7 Two-level types and their Mendler-style iterators in Haskell. 169
4.8 Embedding of the recursive operators (µκ), their data constructors

(Inκ), and the Mendler-style iterators (mitκ) in Fi. 171

5.1 Syntax and Reduction rules of Fixi. 186
5.2 Sorting, Kinding, and Typing rules of Fixi. 187
5.3 Kind and type-constructor equality rules of Fixi. 188
5.4 Term equality rules of Fixi. 189
5.5 Embeddings of some well-known non-recursive datatypes in Fixi. . . 193
5.6 Embedding of the recursive type operators (µκ), their data con-

structors (Inκ), and the Mendler-style primitive recursors (mprκ) in
Fixi. 194

5.7 Well-typedness of the mpr embedding in Fixi. 195
5.8 Well-typedness of the In embedding in Fixi. 195
5.9 Embedding of the recursive type operators (µ+

κ), the Mendler-style
course-of-values recursors (mcvprκ), and the roller (InF) in Fixi,
provided that the embedding of unInF exists. 197

5.10 Embeddings of unroller (unInF) for some well-known positive base
structures (F). 198

5.11 µ∗, mcvpr∗, and µ∗→∗, mcvpr∗→∗ transcribed into Haskell. 203
5.12 Embeddings of unInN , unIn(LA), unIn(RA) transcribed into Haskell. . 204
5.13 Embedding of unInP and unInB transcribed into Haskell. 205
5.14 Embedding of unIn(V A) and another embedding of unInP transcribed

into Haskell. 206
5.15 Haskell code example to illustrate well-typedness of fmaps derived

in the proof of Proposition 5.4.1. 217

6.1 Illustrating the use of the Mendler-style recursion combinators pro-
vided in Nax by simple examples: length, tail, factorial, and fibonacci.228

7.1 A type-preserving evaluator (eval) that evaluates an expression (Expr)
to a value (Val), in Haskell and in Nax. 244

7.2 A type-preserving evaluator (eval) that evaluates an expression (Expr)
to a value (Val), in Nax and in Agda. 245

xiii

7.3 A generic indexed list (Path) parameterized by a binary relation (x)
over indices (i, j, k) and its instantiations (List ′, Vec), in Haskell
and in Nax. 248

7.4 A generic indexed list (Path) parameterized by a binary relation (x ,
X) over indices (i, j, k) and its instantiations (List ′, Vec), in Nax
and in Agda. 249

7.5 A stack-safe compiler, in Haskell and in Nax. 251
7.6 A stack-safe compiler, in Nax and in Agda 252
7.7 Universes, kind syntax, and selected sorting rules of Haskell, Nax,

and Agda. Haskell’s and Nax’s kind syntax are simplified to exclude
kind polymorphism. Agda’s (→) rule is simplified to only allow non-
dependent kind arrows. 255

7.8 Justifications for well-sortedness of the kind List Ty → ? in Nax,
Haskell, Agda. 256

7.9 Environments of stateful resources indexed by the length-indexed
list of states. 258

7.10 Heterogeneous lists (HList) indexed by the list of element types
(List ?). 259

8.1 Kinding and typing rules of SmallNax 266
8.2 SmallNax extended with µκ and mitκ, using a simplified version of

the inference rule for mitκ . 271
8.3 A more polymorphic version of the inference rule for mitκ 273

9.1 A Haskell transcription of Mendler-style co-iteration (mcoit) in
comparison to Mendler-style iteration (mit) at kind ∗. 280

10.1 Two evaluators for the simply-typed λ-calculus in HOAS. One uses
a native (Haskell) value domain (evalHOAS), the other uses a user-
defined value domain (vevalHOAS). 298

10.2 Conversion from µ̆-values to µ-values using msfit. 305
10.3 An incomplete attempt to convert from µ-values to µ̆-values. 305
10.4 Fω encoding of msfit′ in Haskell (see with Figure 3.18 on p.139). . . 305

1

Part I

Prelude

2

Chapter 1

INTRODUCTION

In this dissertation, we contribute to answering the question: “how does one build

a seamless system where programmers can both write (functional) programs and

formally reason about those programs?” We set the scope of our research by

clarifying what we mean by programming and formal reasoning, and how they

are related (Section 1.1). We outline the motivations our research by describing

the gap between typical design choices made in functional programming languages

and formal reasoning systems (Section 1.2), and assert the thesis (Section 1.3). We

introduce the preliminary concepts of Mendler-style recursion schemes and term-

indexed types (Section 1.4), and highlight the contributions of this dissertation

(Section 1.5). We close this chapter by providing an overview of the chapter

organization (Section 1.6).

1.1 PROGRAMMING AND FORMAL REASONING

In this dissertation, programming refers to writing programs in modern functional

programming languages (e.g., Haskell, ML) that support (recursive) datatypes,

higher-order functions, (parametric) polymorphism, and type inference. When we

refer to functional programming languages, functional languages, or programming

languages, we mean such languages. We do not consider so-called dynamically

typed functional languages (e.g., Lisp, Erlang) in this dissertation.

Formal reasoning or logical reasoning refers to the construction of proofs with

3

dependently-typed formal reasoning systems (e.g., Coq, Agda) that support (in-

ductive) datatypes, higher-order functions, polymorphism (i.e., type arguments to

type constructors), and dependent types (i.e., term arguments to type construc-

tors). In referring to formal reasoning systems, logical reasoning systems, or, simply

reasoning systems, we mean such systems.

Functional languages and reasoning systems are closely related. Proofs in rea-

soning systems are similar in structure to programs in functional languages. For

example, the Haskell program id, which computes a value of type A when given a

value of type A, and, the Agda proof id, which proves that proposition A is true

when given a proof of A, are very similar:

Haskell

id :: A→ A

id = λx→ x

Agda

id : A→ A

id = λx→ x

Such similarities are not accidental but intended by the design of reasoning systems,

based on the observation that proofs correspond to programs and propositions

correspond to types. This observation is called the Curry–Howard correspondence

[50]. In the following subsections, we explain a few preliminary concepts necessary

for understanding the Curry–Howard correspondence

We assume that readers are familiar with programming in functional languages,

basic concepts of lambda calculi (e.g., β-reduction, normal forms) and type theory

(i.e., familiar with describing typing rules in the inference rule format). Moreover,

we assume that the readers understand basic concepts of logic (e.g., axioms, infer-

ence, and proofs) but are not necessarily familiar with formal reasoning systems.

1.1.1 The Curry–Howard correspondence

In the late 1960s, Howard [50] observed that intuitionistic natural deduction, which

is a proof system for a formal logic, and a typed lambda calculus, which is a

4

model of computation, are directly related. This relationship, known as the Curry–

Howard correspondence, is established as follows:

• A proposition in natural deduction corresponds to a type in lambda calculus.

• A proof for a proposition corresponds to a term of that type.

• Simplification of proofs corresponds to computation, that is, simplification

of terms.

Once these are established, we can formalize the logic within one unified language

system by internally witnessing proofs as terms (or, programs) because we consider

“propositions as types”.1 In contrast, in a more traditional approach, where one

represents “propositions as terms”,2 one needs a meta-language other than the

object language for logic, which is an extension of lambda calculus with logical

constants and connectives, in order to construct proofs.

We explain this correspondence with a very simple version of intuitionistic nat-

ural deduction and a simply-typed lambda calculus (Figure 1.1).3 There are many

variations of formal logic based on natural deduction (and their corresponding

typed lambda calculi) depending on the set of logical connectives, constants, and

quantifiers they support. We show an example of intuitionistic natural deduction

with implication (→) and falsity (⊥), as well as its corresponding simply-typed

1 Coq and Agda are based on the Curry–Howard correspondence.
2 HOL family is based on this more traditional approach.
3 Readers who are familiar with the literature on natural deduction might notice that the left

column in Figure 1.1 is not in the same style as the natural deduction formalized by Gentzen
[35, 36]. It has styles similar to both natural deduction and sequent calculus. The context Γ
is part of the judgement syntax as in sequent calculus. Instead of the syntactic structural rules
(such as weakening, contraction, permutation) of sequent calculus, we simply rely on Ax ∈ Γ to
use the hypothetical propositions from Γ. We choose to formalize natural deduction this way
to emphasize the structural similarities to the typical formalization of typing rules of lambda
calculi.

Traditionally, in Hilbert-style deduction, a logic is formalized by a minimal set of inference
rules (e.g., modus ponens Γ ` A→ B Γ ` A

Γ ` B) and a set of axiom schemes (e.g., A→ A and
A→ (B → A) where the meta-variables A and B can be instantiated to arbitrary propositions).
Natural deduction, in contrast, is another style of formalizing logic mostly by using a set of
inference rules and a minimal (often empty) set of axiom schemes.

5

Intuitionistic natural deduction Typing rules of STLC

Ax ∈ Γ
Γ ` A (Ax) x : A ∈ Γ

Γ ` A

Γ, Ax ` B
Γ ` A→ B

(→I)
Γ, x : A ` B

Γ ` λx.t : A→ B

Γ ` A→ B Γ ` A
Γ ` B (→E) Γ ` t : A→ B Γ ` s : A

Γ ` t s : B

Γ ` ⊥
Γ ` A (⊥E) Γ ` t : ⊥

Γ ` elim⊥ t : A

Figure 1.1: Intuitionistic natural deduction with implication and falsity, and its

corresponding simply-typed lambda calculus.

lambda calculus (STLC) in Figure 1.1. The implication and the falsity in natural

deduction correspond to the function type (→) and the void type (⊥) in STLC. In

the inference rules (Ax) and (→I), x on Ax is a meta-tag for distinguishing between

multiple possible occurrences of A in Γ (e.g., Γ = Ax1 , Bx2 , Ax3).

Note that each typing rule (in the right column) has exactly the same structure

as its corresponding inference rule (in the left column), with the exception of the

variables and terms appearing on the left-hand side of the colon (e.g., x in x : A

and t in t : A → B). Therefore, a type-correct term, which is justified by the

derivation following the typing rules of lambda calculus, captures the structure of

its corresponding proof by natural deduction. For instance, (λx.x) is a term that

captures the structure of a proof for A → A. For this reason, such type-correct

terms are called proof terms, proof objects, or simply proofs in reasoning systems.

We explained that proofs and propositions in natural deduction correspond to

terms and types in lambda calculus. Lastly, we need to show the correspondence

6

(→I)x1

(→I)x2

(Ax)x1
Ax1 ∈ Ax1 , Ax2

Ax1 , Ax2 ` A
Ax1 ` A→ A
` A→ A→ A

(→I)
(→I)

(Ax)
x1 : A ∈ x1 : A, x2 : A
x1 : A, x2 : A ` x1 : A

x1 : A ` λx2.x1 : A→ A
` λx1.λx2.x1 : A→ A→ A

(→I)x1

(→I)x2

(Ax)x2
Ax2 ∈ Ax1 , Ax2

Ax1 , Ax2 ` A
Ax1 ` A→ A
` A→ A→ A

(→I)
(→I)

(Ax)
x2 : A ∈ x1 : A, x2 : A
x1 : A, x2 : A ` x2 : A

x1 : A ` λx2.x2 : A→ A
` λx1.λx2.x2 : A→ A→ A

Figure 1.2: Typing derivations (right) for terms of type A→ A→ A in STLC and

their corresponding proofs (left) in natural deduction.

between simplification of proofs and simplification of terms (i.e., computation) in

order to establish the Curry–Howard correspondence between natural deduction

and lambda calculus.

There can be multiple proofs for the same proposition, and, correspondingly,

there can be more than one term of the same type. Some of these terms are

closely related while others are rather independent. For example, λx1.λx2.x1 and

λx1.λx2.x2 are rather independent terms that inhabit the same type A→ A→ A.

The typing derivations for these terms (right column) and their corresponding

proofs (left column) are illustrated in Figure 1.2.

On the other hand, there are closely related terms of the same type. For

example, (λx1.x2)x3 reduces to x2 by a β-reduction step (i.e., (λx1.x2)x3 −→β

x2). A term such as x2, which cannot (β-)reduce any further, is called a (β-

)normal form or a (β-)normal term. Prawitz [80] established a notion of reduction

and normalization for natural deduction. One can reduce a proof when there

are consecutive uses of introduction and elimination rules. An introduction rule

introduces a certain form of proposition in the conclusion (below the horizontal

bar), and, an elimination rule uses propositions of that form in the premises (above

the horizontal bar). The rules (→I) and (→E) are introduction and elimination

7

rules, respectively, for implication (→). So, we need to show the correspondence

between reduction of proofs over implication in the natural deduction and reduction

over type-correct terms in the lambda calculus, in order to establish the Curry–

Howard correspondence.

Figure 1.3 illustrates that the reduction of a proof involving consecutive uses of

(→I) and (→E) corresponds to the β-reduction of well-typed terms.4 To reduce the

proof, we replace the uses of Ax in the premise of (→I)x with derivation D′, which

deduces A from the original context Γ, so that we can remove Ax from the left-

hand sides of the turnstile (`) throughout the proof. The change of subscripts from

D[Γ,Ax] to D[Γ] before and after the reduction denotes that we consistently remove

Ax from the context (i.e., left-hand sides of `). We leave it as an exercise for the

readers to construct a corresponding proof for the reduction (λx1.x2)x3 −→β x2

from the previous paragraph (hint: Start with Γ = x2 : A, x3 : B).

We illustrated the Curry–Howard correspondence between a minimal intuition-

istic logic and its corresponding lambda calculus in Figure 1.1. That is, a propo-

sition, its proof, and simplification of proofs (or proof reduction) correspond to a

term, its type, and simplification of terms (or, computation), respectively. The

first and second pieces of the correspondence — a proposition and its proof corre-

sponding to a term and its type — are quite evident from the structural similarity

between inference rules and typing rules. The last piece of the correspondence be-

tween proof reduction and computation needs further analysis of the introduction

and elimination rules. We illustrated the correspondence between proof reduction

over implication and β-reduction, which describes computation over function ap-

plications, in Figure 1.3. The correspondence between proof reduction over falsity

and computation over the void type hold vacuously. There is no proof reduction

4 Introduction and elimination rules for (→) used consecutively in the opposite order corre-
sponds to η-reduction (i.e., (λx.t x) −→η t where x does not appear free in t). In this dissertation,
we only consider β-reduction.

8

Reducing a proof involving consecutive uses of (→I) and (→E):

(→E)
(→I)x

(Ax)x
Ax ∈ Γ, Ax,Γ′
Γ, Ax,Γ′ ` A

...
D[Γ,Ax]

Γ, Ax ` B
Γ ` A→ B

D′[Γ]

Γ ` A
Γ ` B −→

D′[Γ,Γ′]
Γ,Γ′ ` A

...
D[Γ]

Γ ` B

Reduction of a well-typed term along with its typing derivation:

(→E)
(→I)

(Ax)
x : A ∈ Γ, x : A,Γ′
Γ, x : A,Γ′ ` x : A

...
D[Γ,x:A]

Γ, x : A ` t : B
Γ ` λx.t : A→ B

D′[Γ]

Γ ` s : A
Γ ` (λx.t) s : B −→β

D′[Γ,Γ′]
Γ,Γ′ ` s : A

...
D[Γ]

Γ ` t[s/x] : B

Figure 1.3: Reduction of a proof involving introduction and elimination rules for

implication, and its corresponding β-reduction of a well-typed term.

9

and computation over ⊥ because it lacks the introduction rule — it only has the

elimination rule (⊥E).

1.1.2 Logical consistency and strong normalization

A logic is consistent when not all propositions are provable. Logical consistency,

is absolutely necessary for a logic to be meaningful, that is, to be able to justify

true propositions and refute false propositions. A standard way of showing logical

consistency is to find a sound model5 for the logic, and show that there exists a

proposition whose interpretation in the model is a falsity value.

For instance, to show that the logic described in Figure 1.1 is consistent, we

would construct a sound model such that the meaning of ⊥ is a falsity value. Using

the Curry–Howard correspondence, we can construct a model for the logic using

the syntactic structure of its corresponding lambda calculus. For instance, we can

define interpretation JA]] for proposition A as the set of terms of type A in lambda

calculus. In a model following such interpretations, the empty set would be the

falsity value. Then, we can show that there exist no closed terms in J⊥]], which

implies that ` ⊥ cannot be proved. In Chapter 2, we construct models for several

lambda calculi based on this idea of interpreting propositions (or, types) as sets of

well-typed terms. Given that the scope of our research includes reasoning systems

that are based on the Curry–Howard correspondence, most of our descriptions

will be in terms of lambda calculi, without mentioning their corresponding natural

deduction counterparts.

In the construction of such models of lambda calculus, we typically assume

strong normalization.6 In the models we construct in Chapter 2, the interpretation

5In this dissertation, we mean logic in a proof theoretic sense. A model is sound with respect
to logic described by a proof system when any provable proposition in the logic is interpreted as
a truth value in the model.

6 Strong normalization is a property that all well-typed terms reduce to their normal form
regardless of the reduction strategy (i.e., choice of which redex to reduce first).

10

JA]] for type A is inductively defined as follows:

• Base case: normal forms of type A are in JA]]

• Inductive case: if t′ ∈ JA]] and t −→β t
′ then t ∈ JA]].

That is, interpretations of types are (β-)equivalence classes of their well-typed

normal forms. We show that each of the calculi in Chapter 2 are logically consistent

by demonstrating that there is no closed term in the interpretation of the void type.

When we admit diverging (or, non-terminating) terms in a lambda calculus, the

definition of type interpretations becomes more complicated and we cannot estab-

lish the Curry–Howard correspondence, because those diverging terms cannot be

considered as proofs in general. In fact, it is well-known that functional languages

are logically inconsistent if we try to view diverging terms (i.e., non-terminating

programs) in functional languages as proofs using a naive Curry–Howard corre-

spondence. For example, the non-terminating program defined as loop = loop in

Haskell can inhabit arbitrary types (even ∀a.a, which is the polymorphic encoding

of the void type). Intuitively, such non-terminating programs correspond to log-

ical fallacies of circular reasoning (i.e., arguing something by assuming the same

thing). Therefore, reasoning systems are designed to be strongly normalizing, un-

like functional languages. Moreover, we limit the scope of our research to strongly

normalizing languages because one of the design goals of our language system is

achieving logical consistency under the Curry–Howard correspondence.

1.1.3 Datatypes and recursion schemes

Both functional languages and reasoning systems support other language con-

structs in addition to those supported by the lambda calculus. Among those

constructs, datatypes and recursion are the most common and the most essential.

Datatype definitions in both programming languages and reasoning systems have

11

Datatypes in functional languages Datatypes in reasoning systems
Datatypes may involve diverging
computations (e.g., functions de-
fined by general recursion)

Curry–Howard correspondence must
holds for all datatypes

Type constructors may have type
arguments

Type constructors may have term
arguments (or, term indices) as well
as type arguments

Figure 1.4: Comparison of datatypes in functional languages and datatypes in rea-

soning systems.

the form of disjoint sums (over several data constructors) of products (of the ar-

gument types for each data constructor). For example, in Haskell, we can define

a datatype (Diagram) that defines a diagram, which is either empty (Empty), a

point (Point) defined by a single coordinate, a line segment (LineSeg) defined by

two coordinates, or a triangle (Triangle) defined by three coordinates, as follows:

data Diagram = Empty
| Point Coord
| LineSeg Coord Coord
| Triangle Coord Coord Coord

In type theory, we can understand the above datatype as a sum of products

Diagram , Unit + Coord + (Coord× Coord) + (Coord× Coord× Coord)

where + and × are binary operators for sums and products and Unit is the iden-

tity for products. Non-recursive datatypes, excluding dependent types (i.e., types

indexed by terms), in reasoning systems can be understood in the same manner.

It is well-known that the Curry–Howard correspondence holds between type op-

erators, sum (+), and product (×), and, the logical connectives, disjunction (∨),

and conjunction (∧),

In Figure 1.4, we summarize the different characteristics between the datatypes

in functional languages and the datatypes in reasoning systems. Our approach

12

on datatypes is to find a common middle ground balancing between the desired

properties of functional languages (few restrictions on datatype definitions) and

reasoning systems (logical consistency, term indices). When we exclude general

recursion from functional languages and exclude dependent types from reasoning

systems, non-recursive datatypes in functional languages and reasoning systems

coincide. However, for datatypes that are defined recursively (or inductively), the

situation is more subtle — they do not coincide even when we disregard general

recursion and dependent types.

Datatypes defined in terms of themselves are called recursive datatypes in func-

tional languages and inductive datatypes in reasoning systems. Recursive datatypes

in functional languages have few restrictions. Any syntactically valid7 datatype def-

inition is admitted as a valid type. In contrast, inductive datatypes in reasoning

systems have additional restrictions. Only those datatypes for which the Curry–

Howard correspondence hold are admitted. Some recursive datatypes, admitted

as valid in functional languages, are not admitted as valid inductive datatypes

in reasoning systems. For example, the Haskell datatype T below would not be

admitted in a reasoning system.

data T a = C (T → a) -- datatype recursive on a contravariant position

w :: T a→ a -- an encoding of the untyped (λx.x x) in a typed language

w = λx→ case x of C f → f x

fix :: (a→ a)→ a -- an encoding of (λf.(λx.f(x x)) (λx.f(x x)))

fix = λf → (λx→ f(w x)) (C(λx→ f(w x)))

Surprisingly (if you hadn’t known), we can encode the well known general recur-

sive combinator fix (a.k.a. Y-combinator) using a datatype recursive on a con-

travariant position (i.e., left-hand side of →), without using any recursion at the

7 More accurately, what we really mean is well-kinded rather than syntactically valid. For
those who are not familiar with the use of kinds in type systems, we discuss them in later chapters,
such as in Section 2.3 where we describe System Fω.

13

term-level. Datatypes that are recursive only over covariant8 positions are called

positive datatypes, and, datatypes that are recursive over one or more contravari-

ant positions are called negative datatypes. Negative datatypes are not admitted in

reasoning systems because they might cause non-termination, as illustrated above.

Recall that the Curry–Howard correspondence is established only when proofs are

normalizing.

A process for designing reasoning systems can be summarized as follows: start

from a strongly normalizing and logically consistent calculus, add language exten-

sions, and then theoretically justify that those extensions do not break normaliza-

tion and consistency. Datatypes and their recursion schemes are one of the most

common and significant extensions. Each recursive datatype admitted under the

Curry–Howard correspondence comes with a recursion scheme in the calculus or

an induction principle in the logic.9 The reduction step for a recursion scheme

in the calculus should follow from the Curry–Howard correspondence over the re-

cursive types, just as β-reduction follows from the Curry–Howard correspondence

over function types.

There are two approaches for ensuring normalization of datatypes and their

recursion schemes. One is to restrict datatype definitions (i.e., formation rules)

and the other is to restrict the use of datatypes (i.e., elimination rules).

The former approach, also known as the conventional10 approach, is used

in most reasoning systems (e.g., Coq, Agda) and studies on terminating recur-

sion schemes in functional languages following the Squiggol school of constructive

programming [12, 13, 43]. The conventional approach restricts the definition of

8Type arguments without → are by default in covariant positions. Right-hand sides of → are
covariant and a contravariant position of a contravariant position (e.g., A in (A → B) → B) is
covariant as well.

9 Induction principles provided in reasoning systems are dependently-typed. Disregarding
dependent types, these induction principles are computationally equivalent to recursion schemes
such as primitive recursion, course-of-values recursion, or lexicographic recursion. Since we do not
consider dependent types, we will only discuss those non-dependently-typed recursion schemes.

10 We adopted the word “conventional” from the literature on Mendler style (e.g., [3]).

14

datatypes and the key mechanisms of checking termination of recursion schemes

are based on size decreasing arguments in an untyped setting. We rely on the

assumption that recursive values contained inside a data constructor are always

smaller than the value which contains them. This assumption holds because of the

positivity restriction on datatype definitions. However, measuring size by struc-

tural containment does not always hold for negative datatypes.

The latter non-conventional approach, known as the Mendler-style approach,

puts no restrictions on datatype definitions, but instead, carefully restricts the

use of data values. In particular, the decomposition (i.e., elimination, or, pattern

matching) of recursive values is restricted. In this approach, theoretical devel-

opment for termination of recursion schemes is type based. Instead of treating

datatypes as primitive language constructs, datatypes and their recursion schemes

are embedded into a typed lambda calculus, which is proven to be strongly nor-

malizing and logically consistent. Then, there is no extra theoretical burden for es-

tablishing the Curry–Howard correspondence for datatypes because the datatypes

are encoded using the basic primitives of the lambda calculus, for which we al-

ready know that the Curry–Howard correspondence hold.s In addition, there is no

need for any extra mechanism, other than type checking, to ensure termination of

the recursion schemes. We adopt this non-conventional approach for our language

system design.

Further details on conventional approach and Mendler-style approach for ter-

minating recursion schemes are discussed in Section 1.4 and Chapter 3. From now

on, we develop our discussions from the perspective of recursive datatypes. That

is, when we need to describe inductive datatypes, we consider them as recursive

datatypes with additional restrictions on their formation.

15

1.2 MOTIVATION

Since the discovery of the Curry–Howard correspondence, logicians and program-

ming language researchers have dreamed of building a system in which one can

both write programs (i.e., model computation) and formally reason about (i.e.,

construct proofs of) the properties (i.e., types) of those programs.

However, building a practical system that unifies programming and formal

reasoning based on the Curry–Howard correspondence remains an open research

problem. The gap between the conflicting design goals of typed functional pro-

gramming languages, such as ML and Haskell, and formal reasoning systems, such

as Coq and Agda, is still wide. As discussed in the previous section, one of the

difficulties is that datatypes admitted in functional languages and those admitted

in reasoning systems do not coincide completely.

• Programming languages are designed to achieve computational expressive-

ness, for which they often sacrifice logical consistency. Programmers should

be able to conveniently express all possible computations, regardless of whether

those computations have a logical interpretation (by the Curry–Howard cor-

respondence).

• Formal reasoning systems are designed to achieve logical consistency, for

which they often sacrifice computational expressiveness. Users expect that

it is only possible to prove true propositions but impossible to prove falsity.

They are willing to live with the difficultly (or even inability) to express

certain computations within the reasoning system for achieving logical con-

sistency.

Consequently, the recursion schemes of programming languages and formal rea-

soning systems differ considerably. Programming languages provide unrestricted

general recursion to conveniently express computations that may or may not termi-

nate. Formal reasoning systems provide induction principles for sound reasoning,

16

or, from the computational viewpoint, principled recursion schemes that can only

express terminating computations.

The two different design goals for programming languages and reasoning sys-

tems are reflected in the design of their type systems, especially regarding datatypes

and recursion schemes. Programming languages place few restrictions on the def-

inition of datatypes. Programmers can express computations over a wide variety

of datatypes. In reasoning systems based on conventional approach, additional

restrictions are enforced on datatype definition — only positive datatypes are ac-

cepted. In addition, most functional programing languages have a clearly distin-

guish between terms and types (i.e., terms do not appear in types). In reasoning

systems, terms can appear in types for specifying fine-grained properties involving

values at the term-level (e.g., size invariants of data structures).

This dissertation explores a sweet spot where one can benefit from the advan-

tages of both programming languages and formal reasoning systems. That is, we

design a unified language system called Nax that is logically consistent while being

able to conveniently express many useful computations. We do this by placing few

restrictions on datatype definitions, as is done in programming languages, but also

provide a rich set of non-conventional recursion schemes that always terminate.

These non-conventional recursion schemes are known as Mendler-style recursion

schemes.11 Another major design choice in Nax is supporting (non-dependent)

term indices in types, a middle ground between polymorphic types and dependent

types.

In the following section, we clarify what we mean by the sweet spot between

programming languages and reasoning systems, and assert the thesis.

11 We introduce the concepts of conventional and non-conventional recursion schemes in Sec-
tion 1.4.

17

1.3 THESIS

We characterize the sweet spot of language design for unifying programming and

reasoning by supporting the following four features:

(1) A convenient programming style supported by the major constructs of

modern functional programming languages: parametric polymorphism, re-

cursive datatypes, recursive functions, and type inference,

(2) An expressive logic that can specify fine-grained program properties using

types, and terms that witness the proofs of these properties (Curry–Howard

correspondence),

(3) A small theory based on a minimal foundational calculus that is expres-

sive enough to support programming features, expressive enough to embed

propositions and proofs about programs, and logically consistent to avoid

paradoxical proofs in the logic, and

(4) A simple implementation that keeps the trusted base small.

Our thesis is that a language design based on Mendler-style recursion schemes and

term-indexed types can lead to a system that supports these four features.

The following chapters support the thesis as follows: Mendler-style recursion

schemes support (1) because they are based on parametric polymorphism and are

well-defined over a wide range of datatypes. Term-indexed types support (2),

because they can statically track program properties. For instance the size of

data structures can be tracked by using a natural number term in their types. To

support (3), we design several foundational calculi, each of which extends a well

known polymorphic lambda calculus with term-indexed types. Moreover, Mendler-

style recursion schemes support (4) because their termination is type-based — no

need for an auxiliary termination checker.

18

1.4 MENDLER-STYLE RECURSION AND TERM-INDEXED TYPES

We summarize the preliminary concepts of Mendler-style recursion schemes (Sec-

tion 1.4.2) and term-indexed types (Section 1.4.3). Further details and the his-

torical background of each of these concepts appears in subsequent chapters (see

Section 1.6 for an overview of chapter organization).

1.4.1 Restriction on recursive types for normalization

Logical reasoning systems establish the Curry–Howard correspondence assuming

normalization. So, one challenge in the successful design of reasoning systems is

how to restrict recursion so that all well-typed terms have normal forms. The two

different design choices to this end are shown in Figure 1.5, in contrast to the

unrestricted general recursion in functional languages. The conventional approach

restricts the formation of recursive types (i.e., the restriction is in datatype defi-

nition), whereas the Mendler-style approach restricts the elimination of the values

of recursive types (i.e., restrict pattern matching).

Recursive types in functional programming languages. Let us start with

a review of the theory of recursive types used in functional programming languages.

Just as we can capture the essence of unrestricted general recursion at the term

level by using a fixpoint operator (usually denoted by Y or fix), we can capture

the essence of recursive types by the using a recursive type operator µ at the type-

level. The rules for the formation (µ-form), introduction (µ-intro), and elimination

(µ-elim) of the recursive type operator µ are described in Figure 1.5. We also need

a reduction rule (unIn-In) that relates In, the data constructor for recursive types,

and unIn, the destructor for recursive types, at the term-level.

The recursive type operator µ described in Figure 1.5, is already powerful

enough to express non-terminating programs, even without introducing the general

19

Unrestricted

general

recursion

in functional

languages

kinding: (µ-form) Γ ` F : ∗ → ∗
Γ ` µF : ∗

typing: (µ-intro)
Γ ` t : F (µF)
Γ ` In t : µF

(µ-elim)
Γ ` t : µF

Γ ` unIn t : F (µF)

reduction: (unIn-In) unIn (In t) t

A conventional

recursion scheme

kinding: (µ-form+)
Γ ` F : ∗ → ∗ positive(F)

Γ ` µF : ∗

typing: (µ-intro) and (µ-elim) same as functional language

(It)
Γ ` t : µF Γ ` ϕ : FA→ A

Γ ` It ϕ t : A

reduction: (unIn-In) same as functional language

(It-In)
It ϕ (In t) ϕ (mapF (It ϕ) t)

A Mendler-style

recursion scheme

kinding: (µ-form) same as functional language

typing: (µ-intro) same as functional language

(mit)
Γ ` t : µF Γ ` ϕ : ∀X.(X → A)→ FX → A

Γ `mit ϕ t : A

reduction: (mit-In)
mit ϕ (In t) ϕ (mit ϕ) t

Figure 1.5: Two different approaches to terminating recursion schemes (in contrast

to unrestricted general recursion in functional languages).

20

recursive term operator fix into the language. We illustrate this below.12 First,

here is a short reminder of how a fixpoint at the term-level works. The typing rule

and the reduction rule for fix can be given as follows:

typing: Γ ` f : A→ A

fix f : A reduction : fix f f(fix f)

We can actually implement fix using µ as follows (using Haskell-like syntax):

data T a r = C (r → a) -- a non-recursive datatype

w : µ(T a)→ a -- an encoding of the untyped (λx.x x) in a typed language

w = λx. case unIn x of C f → f x

fix : (a→ a)→ a -- an encoding of (λf.(λx.f(x x)) (λx.f(x x)))

fix = λf.(λx.f(w x)) (In(C(λx.f(w x))))

Thus, we need to alter the rules for µ in someways to guarantee termination.

One way is to restrict the rule µ-form and the other way is to restrict the rule

µ-elim. The design of principled recursion combinators (e.g., It for the former and

mit for the latter) follows from the choice of the rule to restrict..

Positive (recursive) datatypes and negative (recursive) datatypes. Pos-

itive datatypes are recursive on only covariant positions. For example, µT2, where

data T2 r = C2 (Bool → r), is a positive datatype since the recursive argu-

ment r in the base structure T2 appears only in the covariant position. Recursive

datatypes that have no function arguments are by default positive datatypes. For

instance, the natural number datatype µN , where dataN r = S r | Z, is a positive

datatype.

Negative datatypes have recursion in contravariant positions. Note that µ(T a)

in the example above is a negative datatype because the recursive argument r in

12This is essentially the same example we discussed in Section 1.1.3, but this time using µ.

21

the base structure T appears in the contravariant position. Another example of a

negative datatype is µT ′, where data T ′ r = C ′ (r → r) because r in T ′ appears

in both contravariant and covariant positions. We say that r is in a negative

position because (r → a) is analogous to (¬r ∧ a) when we think of → as a logical

implication.

Recursive types in conventional approach. In conventional approach, the

formation (i.e., datatype definition) of recursive types is restricted, but arbitrary

elimination (i.e., pattern matching) over the values of recursive types is allowed.

In particular, the formation of negative recursive types is restricted. Only positive

recursive types are supported. Thus, in Figure 1.5, we have a restricted version

of the formation rule (µ-form+) with an additional condition that F should be

positive. The other rules (µ-intro), (µ-elim), and (unIn-In) remain the same as in

functional languages. Because we have restricted the recursive types at the type-

level and we do not have general recursion at the term-level, the language is indeed

normalizing. However, we cannot write interesting (i.e., recursive) programs that

involve recursive types, nor can we reason inductively about those programs, unless

we have principled recursion schemes that are guaranteed to normalize. One such

recursion scheme is called iteration (a.k.a. catamorphism). The typing rules for the

conventional iteration It are illustrated in Figure 1.5. Note, we have the typing rule

(It) and the reduction rule (It-In) for It in addition to the rules for the recursive

type operator µ.

Recursive types in Mendler-style approach. In Mendler-style approach, we

allow arbitrary formation (i.e., datatype definition) of recursive types, but we re-

strict the elimination (i.e., pattern matching) over the values of recursive types.

The formation rule (µ-form) remains the same as that for functional languages.

22

That is, we can define arbitrary recursive types, both positive and negative. How-

ever, we no longer have the elimination rule (µ-elim). That is, we are not allowed

to pattern match against the values of recursive types freely, as we do for values of

non-recursive datatypes using case expressions. We can only pattern match over

the values of recursive types using Mendler-style recursion combinators. The rules

for the Mendler-style iteration combinator mit are illustrated in Figure 1.5. Note

that there are no rules for unIn in the Mendler-style approach. The typing rule

(µ-elim) is replaced by (mit) and the reduction rule (unIn-In) is replaced by (mit-In).

More precisely, the typing rule mit is both an elimination rule for recursive types

and a typing rule for the Mendler-style iterator. You can think of the rule (mit)

as replacing both the elimination rule (µ-elim) and the typing rule for conventional

iteration (It), but in a safe manner that guarantees normalization.

1.4.2 Justification of Mendler style as a design choice.

We choose to base our approach to the design of a seamless synthesis of both logical

reasoning and programming on Mendler style. It restricts elimination (i.e., pattern

matching) over values of recursive types rather than restricting the formation (i.e.,

datatype definition) of recursive types (a more conventional approach). This design

choice enables our language system to include all datatype definitions that are used

in functional programming languages.

Functional programming promotes “functions as first class values”. It is natu-

ral for both pass functions as arguments and embedding functions into (recursive)

datatypes. There exist many interesting and useful examples in functional pro-

gramming involving negative datatypes. In Section 3.9, we illustrate that the

Mendler-style recursion scheme, which we discovered, can be used for expressing

interesting examples involving negative datatypes.

Recall that the motivation of this thesis research is to search for an answer to

the question “how does one build a seamless system where programmers can both

23

write programs and formally reason about those programs?” Mendler style is a

promising approach because all recursive types (both positive and negative) are

definable and the recursion schemes over those types are normalizing.

Under the Curry–Howard correspondence, to formally reason about a program,

the logic needs to refer to the type of the program because the type interpreted

as a proposition describes the property of the program. Since the Mendler-style

approach does not restrict recursive datatype definitions, we can directly refer to

the types of programs that use negative recursive datatypes. One may object that

it is possible to indirectly model negative recursive types in conventional style, via

alternative equivalent encodings, which map negative recursive types into positive

ones. But, such encodings do not align with our motivation towards a seamless

unified system for both programming and reasoning. It is undesirable to require

programmers to significantly change their programs just to reason about them. If

the change is unavoidable, it should be kept small. That is, the changed program

should syntactically resemble the original program, which programmers usually

write in functional programming languages. In Chapter 3, we show a number of

example programs written in Mendler style that look closer to programs written

using general recursion than programs written in conventional style.

1.4.3 Term-indexed types, type inference, and datatypes

One of the most frequently asked questions about our design choices for Nax re-

garding term-indexed types, is “why not dependent types?” Our answer is that

a moderate extension of the polymorphic calculus is a better candidate than a

dependently-typed calculus as the basis for a practical programming system. Lan-

guage designs based on indexed types can benefit from existing compiler technology

and type inference algorithms for functional programming languages. In addition,

theories for term-indexed datatypes are simpler than theories for full-fledged de-

pendent datatypes because term-indexed datatypes can be encoded as functions

24

(using Church-like encodings).

The implementation technology for functional programming languages based

on polymorphic calculi is quite mature. There exist industrial-strength implemen-

tations such as the Glasgow Haskell Compiler (GHC), whose intermediate core

language is an extension of Fω. Our term-indexed calculi described in Part III are

closely related to Fω by an index-erasure property. The hope is that our imple-

mentation can benefit from these technologies.

Type inference algorithms for functional programming languages are often

based on certain restrictions of Curry-style polymorphic lambda calculi. These

restrictions are designed to avoid higher-order unification during type inference.

We develop a conservative extension of Hindley–Milner type inference for Nax

(Chapter 8). This is possible because Nax is based on our term-indexed cal-

culi (Part III). Dependently-typed languages, however, are often based on bidirec-

tional type checking, which requires annotations on top level definitions, unlike the

Hindley–Milner type inference.

In dependent type theories, datatypes are usually supported as primitive con-

structs with axioms, rather than as functional encodings (e.g., Church encodings).

One can give functional encodings for datatypes in a dependent type theory, but

one soon realizes that the induction principles (or, dependent eliminators) for

those datatypes cannot be derived within the pure dependent calculi [39]. So,

dependently-typed reasoning systems support datatypes as primitives. For in-

stance, Coq is based on the Calculus of Inductive Constructions, which extends

the Calculus of Constructions [26] with dependent datatypes and their induction

principles.

In contrast, in polymorphic type theories, all imaginable datatypes within the

calculi have functional encodings (e.g., Church encodings). For instance, Fω need

not introduce datatypes as primitive constructs since Fω can embed all imaginable

datatypes including non-regular recursive datatypes with type indices.

25

Another reason to use term-indexed calculi over dependent type theories is

to extend the application of Mendler-style recursion schemes, which are well-

understood in the context of Fω. Researchers have thought about (though not

published)13 a dependently-typed Mendler-style primitive recursion that is well-

defined for positive datatypes (i.e., datatypes that have a map) but not for negative

(or mixed-variant) datatypes. In our term-indexed calculi, we can embed Mendler-

style recursion schemes (just as we embedded them in Fω) that are well-defined for

negative datatypes as well.

1.5 CONTRIBUTIONS

This dissertation makes contributions in several areas.

1. It organizes and expands the realm of Mendler-style recursion schemes (Part II)

2. It establishes meta-theories for term-indexed types (Part III),

3. It designs a practical language (with an implementation) in the sweet spot

between programming and logical reasoning (Part IV), and

4. It identifies several interesting open problems related to the three aforemen-

tioned areas.

1.5.1 Contributions related to Mendler style

We organize a hierarchy of Mendler-style recursion schemes in two dimensions.

The first dimension is the abstract operations they support. For instance, the

Mendler-style iteration (mit) supports a single abstract operation, the recursive

call. All other Mendler-style recursion schemes support the recursive call and an

additional set of abstract operations. The second dimension is over the kind of

the datatypes they operate over. For example, Nat has kind ∗, while Vec has kind

13 Tarmo Uustalu described this on a whiteboard when we met with him at the University of
Cambridge in 2011. We discuss this in the related work chapter (Section 9.3).

26

∗ → Nat→ ∗. Each recursion scheme is actually a family of recursion combinators

sharing the same term definition (i.e., uniformly defined) but with different type

signatures at each kind.

We expand the realm of Mendler-style recursion schemes in several ways. First,

we report on a new recursion scheme msfit, which is useful for negative datatypes.

Second, we study the termination behaviors of Mendler-style recursion schemes.

Some recursion schemes (e.g., mit, msfit) always terminate for any recursive type,

whereas others (e.g., mcvpr) terminate only for certain classes of recursive types.

Third, we extend all Mendler-style recursion schemes to be expressive over term-

indexed types. The Mendler style has been studied in the context of Fω (and

several extensions) which can express type-indexed types. To extend Mendler-

style recursion schemes to be expressive over term-indexed types, we report on

several theories for calculi (Fi and Fixi) that support term indices. This is another

important facet of our contribution.

We provide examples that illustrate scenarios in which each recursion scheme

is useful in Chapter 3. The most interesting example among them is the type-

preserving evaluator for a simply-typed Higher-Order Abstract Syntax (HOAS) in

Section 3.9.3, which involves negative datatypes with indices. This example is our

novel discovery, which reports that a type-preserving evaluator for a simply-typed

HOAS can be expressed within Fω.

In addition, we develop a better understanding of some existing Mendler-style

recursion schemes. For instance, the existence of Mendler-style course-of-values

recursion (mcvpr) is reported in the literature, but the calculus that can embed

mcvpr was unknown hitherto. We embed Mendler-style course-of-values recursion

into Fixi (or into Fixω [3] when we do not consider term-indices).

27

1.5.2 Contributions to the theory of term-indexed types

Mendler-style recursion schemes have been studied in the context of polymorphic

lambda calculi. For instance, Abel, Matthes, and Uustalu [4] embedded Mendler-

style iteration (mit) into Fω and Abel and Matthes [3] embedded Mendler-style

primitive recursion (mpr) into Fixω. These calculi support type-indexed types.

To extend the realm of Mendler-style recursion schemes in order to include

term-indexed types, we extended Fω and Fixω to support term indices. In Part III,

we present our new calculi Fi (Chapter 4) that extends Fω with term indices,

and Fixi (Chapter 5) that extends Fixω with term indices. These calculi have an

erasure property that states that well-typed terms in each calculus are also well-

typed terms (when erased) in the underlying calculus. For instance, any well-typed

term in Fi is also a well-typed term in Fω, and there are no additional well-typed

terms in Fi that are not well-typed in Fω.

Our new calculi Fi and Fixiare strongly normalizing and logically consistent as

we show by using the erasure properties. That is, the strong normalization and

logical consistency of Fi and Fixi are inherited from Fω and Fixω. Since Fi and Fixi
are strongly normalizing and logically consistent, Mendler-style recursion schemes

that can be embedded into these calculi are adequate for logical reasoning as well

as for programming.

1.5.3 Contributions towards the Nax language design

We design and implement a prototypical language Nax that explores the sweet spot

between programming oriented systems and logic oriented systems. The language

features supported by Nax provide the advantages of both programming oriented

systems and logic oriented systems. Nax supports both term- and type-indexed

datatypes, rich families of Mendler-style recursion combinators, and a conservative

28

extension of Hindley–Milner type inference. We designed Nax so that its founda-

tional theory and implementation framework could be kept simple.

Term- and type-indexed datatypes can express fine-grained program properties

via the Curry–Howard correspondence, as in logic-oriented systems. Although

not as flexible as full-fledged dependent types, indexed datatypes can still express

program invariants such as stack-safe compilation (Section 7.2) and size invariants

on data structures. Index types can simulate much of what dependent types can do

using singleton types. Given that Nax has only erasable indices, the foundational

theory can be kept simple, and it supports features that have the advantages of

programming oriented systems (e.g., type inference, arbitrary recursive datatypes).

Adopting Mendler style provides the merits of both programming oriented sys-

tems and logic oriented systems. Since Mendler style is elimination based, one can

define all recursive datatypes usually supported in functional programming lan-

guages. In addition, programs written using Mendler-style recursion combinators

look more similar to the programs written using general recursion programs writ-

ten in the Squiggol style. Because Nax supports only well-behaved (i.e., strongly

normalizing) Mendler-style recursion combinators, it is safe to construct proofs

using them. In addition, Mendler-style recursion combinators are naturally well-

defined over indexed datatypes, which are essential to express fine-grained program

properties. Mendler style provides type based termination, that is, termination is a

by-product of type checking. Thus, it makes the implementation framework simple

since we do not need extra termination checking algorithms.

The Hindley–Milner-style type inference is familiar to functional programmers.

Nax can infer types for all programs that involve only regular datatypes, which are

already inferable in Hindley–Milner, without any type annotation. Nax requires

programs involving indexed datatypes to annotate their eliminators by index trans-

formers, which specify the relationship between the input type index and the result

type. Eliminators of non-recursive datatypes are case expressions and eliminators

29

of recursive datatypes are Mendler-style recursion combinators.

1.5.4 Contributions identifying open problems

We identify several open problems alongside the contributions mentioned in the

previews subsections. We discuss the details of these open problems in Chapter

10. Here, we briefly introduce two of them.

Handling different interpretations of µ in one language system: Nax

provides multiple recursion schemes used for describing different kinds of recursive

computations over recursive datatypes. These recursion schemes are all motivated

by concrete examples, which explains the need for multiple schemes. It is more

convenient to express various kinds of recursive computations in Nax by choosing a

recursion scheme that fits the structure of the computation, than in systems that

provide only one induction scheme. However, there is a theoretical difficulty of

handling multiple interpretations of the recursive type operator in one language

system.

Recall that we can embed datatypes as functional encodings in our indexed

type theory. Recursive datatypes and their recursion schemes in Nax are embedded

using Mendler-style encodings. In Mendler style, one encodes the recursive type

operator µ and its eliminator (the recursion scheme) as a pair. So, there are several

different encodings of µ, one for each recursion scheme. Some recursion schemes

subsume others (i.e., the more expressive one can simulate the other).

It would have been easy to describe the theory for Nax if we had one most

powerful recursion scheme that subsumes all the others; then it would lead to a

single interpretation of µ. Unfortunately, we know of no Mendler-style recursion

scheme that subsumes all other recursion schemes we hope to support in Nax. For

instance, iteration (mit) is subsumed by primitive recursion (mpr), but mpr does

not subsume iteration with a syntactic inverse (msfit) or vice versa. There is no

30

known recursion scheme that can subsume both msfit and mpr.

We discovered that µ-values, to which mit can be applied, can be considered

as a superset of µ̆-values, to which msfit can be applied. That is, casting from

µ̆-values to µ-values is always safe. However, we do not know whether it is safe to

cast the other way. We have neither found a casting function from µ-values to µ̆-

values nor found a counterexample. We currently plan to support two fixpoints in

Nax and allow one way casting. Further discussions can be found in Section 10.2.

Deriving positivity (or monotonicity) from polarized kinds: One can

extend the kind syntax of arrow kinds in Fω with polarities (pκ1 → κ2 where the

polarity p is either +, −, or 0) to track whether a type constructor argument

is used in covariant (positive), contravariant (negative), or mixed-variant (both

positive and negative) positions. Whether it is possible to derive monotonicity

(i.e., the existence of a map) for a type constructor from its polarized kind, without

examining the type constructor definition remains an open problem.

We identified a useful application for a solution to this open problem. We

discovered an embedding of Mendler-style course-of-values recursion in a polarized

system for positive (or monotone) type constructors. That is, once you can show

the existence of a map for a datatype, course-of-values recursion always terminates.

However, in a practical language system, it is not desirable to burden users with the

manual derivation for every datatype on which they might want to perform course-

of-values recursion. If the type system can automatically categorize datatypes that

have maps from their polarized kinds, this burden can be alleviated.

1.6 CHAPTER ORGANIZATION

This dissertation consists of five parts: Part I (Prelude), Part II (Mendler style),

Part III (Term-indexed λ-calculi), Part IV (Nax language), and Part V (Postlude).

The three parts in the middle describe the three steps of our approach. First,

31

STLC

type
polymorphism

��

Hindley–Milner

��

F

type constructor
polymorphism

��

rank-1 restriction

33

Nax’s type inference

Fω '/

polaraized kinds,
equi-recursive µ

��

Fi

��

go

77

mit msfit

gg

oonnnnnnnnmmmmmmllll
llllkkkkkk

jjjjjjii
iiiiii

hhhhhh
gggg
oo

iiiiii
iijjjj

jjjjkk
kkkkkkkk

llllllllmm
mmmmmmmmnnnnnnnnoooooooo

Fixω
term index

(0 Fixi
index erasure
hp mpr

⋂
embeded into

qq mmnnnnnnnnnnnnnnooooooooooooooppppppppppppppqqqqqq

mcvpr

⋂ (termination behavior
is not subsumed here)

ii

mmmmmmllllllll
llllllkkkk

kkkkkkkk
kkjjjjjj

jjjjjjii
ii

Figure 1.6: Summary of the relationships among key concepts.

we explore new ideas about Mendler-style recursion schemes driven by concrete

examples using Haskell (with some GHC extensions). Second, we develop theories

(i.e., lambda calculi) for term-indexed datatypes to prove that the Mendler-style

recursion schemes are well-defined over indexed datatypes and have the expected

termination behavior. Third, we design a language system with practical features,

which implements our ideas and is based on the theory we developed. Figure 1.6

summarizes the organization of key concepts throughout the dissertation.

Part I (Prelude) comprises Chapter 1 (which you are currently reading) and

Chapter 2 which reviews the theory of several well-known typed lambda calculi:

the simply-typed lambda calculus (STLC) (Section 2.1), System F (Section 2.2),

System Fω (Section 2.3), and the Hindley–Milner type system (Section 2.4).

32

In Sections 2.1-2.3, we review strong normalization proofs (using saturated sets)

for each of the three calculi: STLC (no polymorphism), System F (polymorphism

over types), and System Fω (polymorphism over type constructors).

Each proof extends the normalization proof of the previous calculus. We will

use the strong normalization of System Fω to show that our term-indexed lambda

calculi in Part III are strongly normalizing. Readers familiar with strong normal-

ization proofs of these calculi may skip or quickly skim over these sections. It is

worth noticing two stylistic choices in our formalization of System F and Fω: (1)

terms are in Curry style and (2) typing contexts are divided into two parts (one for

type variables and the other for term variables). This choice prepares readers for

our formalization of the term-indexed calculi in Part III, which involves Curry-style

terms and typing contexts divided into two parts.

In Section 2.4, we review the type inference algorithm for the Hindley–Milner

type system (Section 2.4). The Hindley–Milner type system (HM) is a restriction

of System F, which makes it possible to infer types without any type annotation

on terms. Later in Part IV Chapter 8, we formulate a conservative extension of

HM, which restricts the term-indexed calculus System Fi (Chapter 4) in a similar

manner.

Part II (Mendler style) introduces the concept of Mendler-style recursion

schemes (Chapter 3) using examples written in Haskell (with some GHC exten-

sions). The readers of Chapter 3 need no background knowledge on typed lambda

calculi but only some familiarity with functional programming. We explain the

concepts of a number of Mendler-style recursion schemes, their termination prop-

erties, and the relationships among the recursion schemes. We also provide semi-

formal proofs of termination for some of the recursion schemes (mit and msfit) by

embedding them into the Fω fragment of Haskell. More formal and general proofs,

by embedding the schemes into our term-indexed lambda calculi, are given later

33

in Part III.

Mendler-style recursion schemes discussed in Chapter 3 include iteration (mit),

iteration with syntactic inverse (msfit), primitive recursion (mpr), course-of-

values iteration (mcvit), and course-of-values recursion (mcvpr). Of these, msfit

was discovered while writing this dissertation. There are more Mendler-style re-

cursion schemes that are not discussed in Chapter 3 — we give pointers to them

in our related work chapter (Chapter 9 of Part V).

Part III (term-indexed lambda calculi) describes the developments of theories

for term-indexed types. We formalize two term-indexed lambda calculi, which ex-

tends their underlying polymorphic calculi that support type indices only. System

Fi (Chapter 4) extends System Fω with term indices and System Fixi (Chapter 5)

extends System Fixω [3] with term indices.

We prove these term-indexed calculi to be strong normalizing and logical con-

sistent of using their index erasure properties. The index erasure property of a

term-indexed calculus projects a typing in the term-index calculi into its underly-

ing polymorphic calculus from which the term-indexed calculus extends. That is,

all well-typed terms in Fi and Fixi are also well-typed terms in Fω and Fixω.

By embedding Mendler-style recursion schemes into our term-indexed lambda

calculi, we prove that those schemes are well-defined and terminate over term-

indexed datatypes. For instance, mit and msfit can be embedded into System Fi,

and, mpr and mcvpr can be embedded into System Fixi.

Part IV (the Nax language) consists of three chapters. First, we introduce the

features of Nax (Chapter 6) in a tutorial format using small Nax code snippets as

examples. Next, we discuss the design principles of the type system (Chapter 7)

by comparing it with two other systems: Haskell’s datatype promotion and Agda.

In Chapter 7 we develop larger and more practical examples, a type-preserving

34

interpreter and a stack-safe compiler. Lastly, we discuss type inference in Nax

(Chapter 8), which is a conservative extension of the Hindley–Milner type sys-

tem (HM). That is, any program whose type is inferable in HM, can also have its

type inferred in Nax without any annotation. Programs involving term- or type-

indexed datatypes, which are not supported in HM, need some annotation for their

types to be inferred in Nax. These annotations are only required on three syntac-

tic entities (datatype declarations, case expressions, and Mendler-style recursion

combinators).

Part V (Postlude) closes the dissertation by summarizing related work (Chap-

ter 9), future work (Chapter 10), and conclusions (Chapter 11).

35

Chapter 2

POLYMORPHIC TYPE SYSTEMS

In this chapter, we review the simply-typed lambda calculus (Section 2.1), a non-

polymorphic type system, and a series of well-known polymorphic type systems:

System F (Section 2.2), System Fω (Section 2.3), and the Hindley–Milner type

system (Section 2.4). We review them because Fi (Chapter 4), Fixi (Chapter 5),

and the Nax language (Chapter 7) in later chapters are extensions of these systems.

We assume the reader has some familiarity with lambda calculi, at least with the

untyped lambda calculus. Readers with an expert understanding on polymorphic

type systems and encodings of datatypes in such systems may skip this chapter

and continue directly to the following chapters.

One of the purposes of this chapter is illustrating the strong normalization

theorem for less common formulations of the polymorphic lambda calculi. System F

and System Fω are more often formulated in Church style and with a single typing

context. Here, we illustrate them in Curry style and their typing rules with two

typing contexts, because our indexed type theories, System Fi and System Fixi,

in Part III are formulated in such ways. Another purpose of this chapter is to

familiarize the readers with functional encodings of datatypes in polymorphic type

systems (see Section 2.2.1 and Section 2.3.1).

2.1 SIMPLY-TYPED LAMBDA CALCULUS

We illustrate two styles of the simply-typed lambda calculus (STLC) in Figure 2.1.

The left column of the figure illustrates the Church-style STLC and the right

36

Church-style

term syntax
t, s ::= x variable

| λ(x : A).t abstraction
| t s application

type syntax
A,B ::= A→ B arrow type

| ι ground type

typing context
Γ ::= ·
| Γ, x : A (x /∈ dom(Γ))

typing rules Γ ` t : A

Var x : A ∈ Γ
Γ ` x : A

Abs
Γ, x : A ` t : B

Γ ` λ(x : A).t : A→ B

App Γ ` t : A→ B Γ ` s : A
Γ ` t s : B

reduction rules t −→ t′

RedBeta
(λ(x : A).t) s −→ t[s/x]

RedAbs t −→ t′

λ(x : A).t −→ λ(x : A).t′

RedApp1 t −→ t′

t s −→ t′ s

RedApp2 s −→ s′

t s −→ t s′

Curry-style

term syntax
t, s ::= x

| λx.t
| t s

type syntax
A,B ::= A→ B

| ι

typing context
Γ ::= ·
| Γ, x : A (x /∈ dom(Γ))

typing rules Γ ` t : A

Var x : A ∈ Γ
Γ ` x : A

Abs
Γ, x : A ` t : B

Γ ` λx.t : A→ B

App Γ ` t : A→ B Γ ` s : A
Γ ` t s : B

reduction rules t −→ t′

RedBeta
(λx.t) s −→ t[s/x]

RedAbs t −→ t′

λx.t −→ λx.t′

RedApp1 t −→ t′

t s −→ t′ s

RedApp2 s −→ s′

t s −→ t s′

Figure 2.1: Simply-typed lambda calculus in Church style and Curry style

37

column illustrates the Curry-style STLC.

A term can be either a variable, an abstraction (a.k.a. lambda term), or an

application. The distinction between the two styles comes from whether the ab-

straction has a type annotation in the term syntax. Abstractions in Church style

have the form λ(x : A).t with a type annotation A on the variable x bound in t.

Abstractions in Curry style have the form λx.t without any type annotation. The

differences in typing rules and reduction rules between the two styles follow from

this distinction.

A type can be either an arrow type or a ground type. The type syntax is

exactly the same in both styles. Arrow types are types for functions. For instance,

abstractions have arrow types. We need ground types as a base case for the

inductive definition of types. Otherwise, if there were no ground types, we would

not be able to populate types.1 Here, we choose to include only the simplest ground

type, ι, which is also known as the void type. Note that there does not exist any

closed term of type ι. It is only possible to construct terms of type ι when we have

a bound variable, whose type is either ι or an arrow type that eventually returns

ι, in the typing context.

When using the STLC to model a programming language (with simple types),

a richer set of ground types (e.g., unit, boolean, natural numbers), rather than

the void type alone, are provided. In such versions of the STLC, one must extend

the term syntax by providing normal terms (or, constants) for those ground types

(e.g., true and false for booleans) and eliminators (e.g., if-then-else expression for

booleans) that can examine the normal terms. Later on, we shall see that poly-

morphic type systems such as System F (Section 2.2) and System Fω (Section 2.3)

are expressive enough to encode those ground types without introducing them as

primitive constructs of the calculi. Having the void type as a ground type is enough

1 If we allow infinite types, then it is possible to populate types without ground types. There
exist exotic lambda calculi with infinite types, but these are rather uncommon.

38

to motivate polymorphic type systems, without complicating the term syntax of

the STLC.

Typing rules are the rules to derive (or prove) typing judgments. A typing

judgment Γ ` t : A means that the term t has type A under the typing context Γ.

We say t is well-typed (or, t is a well-typed term) under Γ when we can derive (or

prove) a typing judgment Γ ` t : A for some A according to the typing rules. There

are just three typing rules — one typing rule for each item of the term syntax.

Therefore, the typing rules of the STLC are syntax-directed in both styles. That

is, there is exactly one rule to choose for the typing derivation by examining the

shape of the term.

The reduction rules in Figure 2.1 describes β-reduction for the STLC. The

RedBeta rule describes the key concept of β-reduction, the β-redex. A β-redex is

an application of an abstraction to another term. The other three rules describe the

idea that a redex may appear in subterms even though the term itself is not a redex.

The reduction rules of the STLC are virtually the same as the reduction rules of the

untyped lambda calculus. Note that reduction rules are not deterministic. There

is no preferred order when there is more than one redex in a term. For instance,

when there are redexes in both t and s in the application (t s), one may apply

either of the two rules RedApp1 and RedApp2.

We first discuss two important properties of the STLC, subject reduction and

strong normalization, hold in both Curry style and Church style (Section 2.1.1).

Then, we motivate the discussion of polymorphic type systems by reviewing the

limitations of the STLC (Section 2.1.2).

2.1.1 Strong normalization

We discuss two important properties of the STLC, which hold in both Church

style and Curry style — subject reduction (a.k.a. type preservation) and strong

39

normalization. Since we focus on strong normalization, we will be rather brief on

the proof of subject reduction and elaborate in more detail on the proof of strong

normalization.

Subject reduction states that reduction preserves types.

Theorem 2.1.1 (subject reduction). Γ ` t : A t −→ t′

Γ ` t′ : A

That is, when a well-typed term takes a reduction step, then the reduced term

has the same type as the well-typed term. We can prove subject reduction by

induction on the derivation of the reduction rules. The only interesting case is the

RedBeta rule. Proving all the other rules is simply done by applying the induction

hypothesis. Proving the RedBeta rule amounts to proving the substitution lemma:

Lemma 2.1.1 (substitution). Γ, x : A ` t : B Γ ` s : A
Γ ` t[s/x] : B

Proof of the substitution lemma is a straightforward induction on the derivation

of the typing judgement.

As an aside, when people use the STLC to model a programming language,

they usually consider another property called progress, which states that well-

typed terms are either values or can take an evaluation step. Values are terms

that meet certain syntactic criteria, i.e., those terms that are meant to represent

“final answers”, or terms that are done evaluating. We do not further discuss

progress in this dissertation.

An evaluation is a reduction strategy (i.e., a certain subset of the reduction

relation which computes a value, hence the name evaluation), which is often deter-

ministic. In such a setting, type safety is usually defined to be subject reduction

together with progress — all well-typed terms are either fully evaluated (i.e., they

are values), or they can take a step to another well-typed term. However, in a

calculus considering reductions of terms to normal forms, rather than evaluations

40

to values, type safety is just subject reduction since normal terms are irreducible

by definition.

Strong normalization. When we consider terms of the STLC as proofs in a

propositional logic using the Curry–Howard correspondence, strong normalization

is another important property of the STLC. Strong normalization states that every

well-typed term reduces to a normal form, no matter what reduction strategy is

followed.

To prove strong normalization of the STLC, we use the following proof strategy.

We first define the set of strongly normalizing terms, which may or may not be

well-typed, and show that all well-typed terms belong to this set. For each type,

we define a distinct set of terms called the interpretation of that type. We show

that the interpretation of every type belongs to the set of normalizing terms.

The discussion below on strong normalization uses the Curry-style term syntax,

but this proof strategy also works well for the Church-style STLC.2 In fact, this

strategy originates from Girard’s strong normalization proof for System F using

reducibility candidates [40], and later rephrased using Tait’s saturated sets [87].

In particular, we adopt the notation used in the paper by Abel and Matthes [3],

which includes a strong normalization proof for an extension of Fω using saturated

sets.

The strong normalization proofs for System F (Section 2.2) and System Fω
(Section 2.3) in this chapter are also based on this strategy using saturated sets.

As the language increases in complexity, we gradually increase the complexity of

the interpretation of types in those systems.

The set of strongly normalizing terms (SN) can be defined using a straight

2This proof strategy generalizes well to more complicated systems such as System F, Sys-
tem Fω, and even to dependently-typed calculi such as the Calculus of Constructions[38].

41

forward inductive definition:

s1, . . . , sn ∈ SN
x s1 · · · sn ∈ SN

t ∈ SN
λx.t ∈ SN

t′ ∈ SN t −→ t′

t ∈ SN

That is, variables and applications of a variable to strongly normalizing terms are

in SN, abstractions are in SN when their bodies are in SN, and terms that reduce

to SN are also in SN. Relying on the fact that normal order reduction (i.e., reduce

the outermost leftmost redex first) always leads to a normal form if a normal

form exists, we can alter the last rule of the inductive definition above to be more

syntactic, which defines the same set SN, as follows:

s1, . . . , sn ∈ SN
x s1 · · · sn ∈ SN

t ∈ SN
λx.t ∈ SN

t[s/x] s1 · · · sn ∈ SN s ∈ SN
(λx.t) s s1 · · · sn ∈ SN

A setA is saturated when it is closed under adding strongly normalizing neutral

terms, and when it is closed under strongly normalizing weak head expansion:

s1, . . . , sn ∈ SN
x s1 · · · sn ∈ A

t[s/x] s1 · · · sn ∈ A s ∈ SN
(λx.t) s s1 · · · sn ∈ A

There is a sort of cleverness in this definition of saturated. A set is saturated

when the terms it contains are either variables, or “come from” other terms in the

saturated set using these two rules (neutral terms and weak head expansion). We

can easily observe that SN is a saturated set by definition. We can get the first

and last part of the inductive definition for SN when A = SN. We can define an

arrow operation (→), which given two saturated sets, defines a third saturated set

as follows:

A → B = {t ∈ SN | t s ∈ B for all s ∈ A}

It is known that A → B is saturated when both A and B are saturated [87].

We interpret types as saturated subsets of SN (i.e., subsets of SN that are

saturated) as in Figure 2.2. We interpret the void type as the minimal saturated

set (⊥), which is saturated from the empty set. We choose the symbol ⊥ since

42

Interpretation of types as saturated sets of normalizing terms:

Jι]] = ⊥ (the minimal saturated set)
JA→ B]] = JA]]→ JB]]

Interpretation of typing contexts as sets of valuations (ρ):

JΓ]] = { ρ ∈ dom(Γ)→ SN | ρ(x) ∈ JΓ(x)]] for all x ∈ dom(Γ) }

Interpretation of terms as terms themselves whose free variables are substi-
tuted according to the given valuation (ρ):

Jx]]ρ = ρ(x)
Jλx.t]]ρ = λx.Jt]]ρ (x /∈ dom(ρ))
Jt s]]ρ = Jt]]ρ Js]]ρ

Figure 2.2: Interpretation of types, typing contexts, and terms of the STLC for
the proof of strong normalization

43

saturated sets form a complete lattice under the subset relation as the partial

order. We may denote SN as > since it is the maximal element of the lattice. Note

that ⊥, or Jι]], does not include any abstraction (λ-terms) since ι is not the type of

a function. Arrow types (A→ B) are interpreted as the saturated-set arrow over

the interpretations of the domain type and the range type (JA]]→ JB]]).

We interpret a typing context (Γ) as a set of valuations (ρ). For every variable

binding in the typing context (x : A ∈ Γ), a valuation should map the variable (x)

to a term that belongs to the interpretation of its desired type (JA]]). That is, if

x : A ∈ Γ then any ρ ∈ JΓ]] should satisfy the proposition that ρ(x) ∈ JA]].

The proof of strong normalization amounts to proving the following theorem:

Theorem 2.1.2 (soundness of typing). Γ ` t : A ρ ∈ JΓ]]
Jt]]ρ ∈ JA]]

Proof. We prove this by induction on the typing derivation (Γ ` t : A).

For variables, it is trivial to show that Γ ` x : A ρ ∈ JΓ]]
Jx]]ρ ∈ JA]] .

Because of the Var rule, x : A ∈ Γ. Thus, Jx]]ρ = ρ(x) ∈ JΓ(x)]] = JA]].

For abstractions, we need to show that Γ ` λx.t : A→ B ρ ∈ JΓ]]
Jλx.t]]ρ ∈ JA→ B]] .

Since Jλx.t]]ρ = λx.Jt]]ρ and JA→ B]] = {t ∈ SN | t s ∈ JB]] for all s ∈ JA]]}, what

we need to show is equivalent to the following:

Γ ` λx.t : A→ B ρ ∈ JΓ]]
λx.Jt]]ρ ∈ {t ∈ SN | t s ∈ JB]] for all s ∈ JA]]}

By induction, we know that: Γ, x : A ` t : B ρ′ ∈ JΓ, x : A]]
Jt]]ρ′ ∈ JB]] .

Since this holds for all ρ′ ∈ JΓ, x : A]], it also holds for a particular ρ′, where ρ′ =

ρ[x 7→ s] for any s ∈ JA]]. So, Jt]]ρ[x 7→s] = (Jt]]ρ)[s/x] ∈ JB]] for any s ∈ JA]]. Since

saturated sets are closed under normalizing weak head expansion, (λx.Jt]]ρ) s ∈ JB]]

for any s ∈ JA]]. Therefore, λx.Jt]]ρ is obviously in the set, which we wanted it to

be in, i.e., λx.Jt]]ρ ∈ {t ∈ SN | t s ∈ JB]] for all s ∈ JA]]}.

44

For applications, we need to show that Γ ` t s : B ρ ∈ JΓ]]
Jt s]]ρ ∈ JB]] .

By induction we know that

Γ ` t : A→ B ρ ∈ JΓ]]
Jt]]ρ ∈ JA→ B]]

Γ ` s : A ρ ∈ JΓ]]
Js]]ρ ∈ JA]]

Then, it is straightforward to see that Jt s]]ρ ∈ JB]] by definition of JA→ B]].

Corollary 2.1.1 (strong normalization). Γ ` t : A
t ∈ SN

Once we have proved the soundness of typing with respect to interpretation,

it is easy to see that the STLC is strongly normalizing, even for open terms (i.e.,

terms with free variables), by giving a trivial interpretation such that ρ(x) = x for

all x ∈ dom(Γ). Note that Jt]]ρ = t ∈ JA]] ⊂ SN under the trivial interpretation.

2.1.2 Motivations for polymorphic type systems

A limitation of the STLC is that a variable (x) can be given only one type binding

(x : A) in a given context (Γ). Thus a variable term can have only one type.

It is possible to give many typings for terms other than variables in Curry

style (e.g., the abstraction λx.x in the previous subsection), a type for variable

(x) is uniquely determined once the context (Γ) is determined. This becomes

inconvenient when we want to abstract over functions that can be given multiple

types, such as the identity function (λx.x). That is, when we have a variable xid

that stands for (λx.x) and have a context Γ such that xid : A→ A ∈ Γ for some A,

we cannot apply this xid to arguments of differing types within the same context

Γ. Bucause of this limitation, most typed functional languages are based on a

polymorphic lambda calculus, which has a richer notion of types than the STLC.

Polymorphic lambda calculi supports polymorphic types, such as ∀X.X → X for

the type of the identity function, which capture the idea that the type variable X

can be instantiated to any type, in each occurrence of the identity function (xid).

45

We will introduce several well-known polymorphic lambda calculi and discuss their

properties in the following subsections.

2.2 SYSTEM F

System F [40] extends the type syntax of the STLC with type variables (X) and

forall types (∀X.B), which enable us to express polymorphic types (see Figure

2.3). However, System F does not have a dedicated syntax for ground types, such

as the void type ι in the STLC. In System F, we can populate types from forall

types such as ∀X.X. This type is, in fact, an encoding of the void type. We shall

see that a large class of datatypes are encodable in System F (Section 2.2.1)

Unlike in the STLC, not all types constructed by the type syntax of System F

make sense. Since we have type variables in System F, we need to make sure that

types are well-kinded. That is, we should make sure that all the type variables

appearing in types are properly bound by universal quantifiers (∀). For instance,

consider the two types ∀X.X and ∀X.X ′. Under the empty kinding context, ∀X.X

is well-kinded since X is bounded by ∀, but ∀X.X ′ is ill-kinded since X ′ is an

unbound type variable. The kinding rules determine whether a type is well-kinded.

In the kinding rules and typing rules, the kinding context (∆) keeps track of the

bound type variables. The complete syntax, kinding rules, and typing rules of

System F are illustrated in Figure 2.3. The left column describes the Church-style

System F and the right column describes the Curry-style System F. The reduction

rules are shown separately in Figure 2.4.

As in the STLC, the term syntax for abstractions differs between the two styles.

The Church-style System F has type annotations in abstractions but the Curry-

style System F does not. Furthermore, the Church-style System F has additional

syntax for type abstractions and type applications. The syntax for type abstrac-

tions (ΛX.t) makes it explicit that the type of the term should be generalized to a

forall type. The syntax for type applications (t[A]) makes it explicit that the type

46

Church style

term syntax
t, s ::= x variable

| λ(x : A).t abstraction
| t s application
| ΛX.t type abstraction
| t[A] type application

type syntax
A,B ::= X variable type

| A→ B arrow type
| ∀X.B forall type

kinding & typing contexts
∆ ::= ·

| ∆, X (X /∈ dom(∆))
Γ ::= ·
| Γ, x : A (x /∈ dom(Γ))

kinding rules ∆ ` A

TVar X ∈ ∆
∆ ` X

TArr ∆ ` A ∆ ` B
∆ ` A→ B

TAll
∆, X ` B
∆ ` ∀X.B

typing rules ∆; Γ ` t : A

Var x : A ∈ Γ
∆; Γ ` x : A

Abs
∆ ` A ∆; Γ, x : A ` t : B
∆; Γ ` λ(x : A).t : A→ B

App
∆; Γ ` t : A→ B ∆; Γ ` s : A

∆; Γ ` t s : B

TyAbs
∆, X; Γ ` t : B

∆; Γ ` ΛX.t : ∀X.B (X /∈ FV(Γ))

TyApp
∆; Γ ` t : ∀X.B ∆ ` A

∆; Γ ` t[A] : B[A/X]

Curry style

term syntax
t, s ::= x

| λx.t
| t s

type syntax
A,B ::= X

| A→ B

| ∀X.B

kinding & typing contexts
∆ ::= ·

| ∆, X (X /∈ dom(∆))
Γ ::= ·
| Γ, x : A (x /∈ dom(Γ))

kinding rules ∆ ` A

TVar X ∈ ∆
∆ ` X

TArr ∆ ` A ∆ ` B
∆ ` A→ B

TAll
∆, X ` B
∆ ` ∀X.B

typing rules ∆; Γ ` t : A

Var x : A ∈ Γ
∆; Γ ` x : A

Abs
∆ ` A ∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B

App
∆; Γ ` t : A→ B ∆; Γ ` s : A

∆; Γ ` t s : B

TyAbs
∆, X; Γ ` t : B
∆; Γ ` t : ∀X.B (X /∈ FV(Γ))

TyApp
∆; Γ ` t : ∀X.B ∆ ` A

∆; Γ ` t : B[A/X]

Figure 2.3: System F in Church style and Curry style.

47

Reduction rules for the Church-style System F

RedBeta (λ(x : A).t) s −→ t[s/x] RedTy (ΛX.t)[A] −→ t[A/X]

RedAbs t −→ t′

λx.t −→ λx.t′
RedTyAbs t −→ t′

ΛX.t −→ ΛX.t′

RedApp1 t −→ t′

t s −→ t′ s
RedTyApp t −→ t′

t[A] −→ t′[A]

RedApp2 s −→ s′

t s −→ t s′

Reduction rules for the Curry-style System F

RedBeta (λx.t) s −→ t[s/x]

RedAbs t −→ t′

λx.t −→ λx.t′

RedApp1 t −→ t′

t s −→ t′ s

RedApp2 s −→ s′

t s −→ t s′

Figure 2.4: Reduction rules of System F.

48

of the term should be instantiated to a specific type from a forall type. On the

contrary, the Curry-style System F has neither type abstractions nor type applica-

tions in the term syntax. So, types are implicitly generalized and instantiated in

Curry style. The differences in typing rules and reduction rules between the two

styles follow from this difference in the term syntax.

The typing rules Var, Abs, and App are essentially the same as in the STLC

except that we carry around the kinding context (∆) along with the typing context

(Γ). What are new in System F are the typing rules for type abstractions (TyAbs)

and type applications (TyApp), which enable us to introduce forall types and

instantiate forall types to a specific type. In Church style, the use of these two

rules TyAbs and TyAbs are guided by the term syntax of type abstractions (ΛX.t)

and type applications (t[A]). So, the typing rules of the Church-style System F

are syntax-directed. In Curry style, on the other hand, there are no term syntax

to guide the use of the rules TyAbs and TyApp. So, the typing rules of the

Curry-style System F are not syntax-directed.

The reduction rules for the Church-style System F include all the reduction

rules for the Church-style STLC. In addition, there are three more reduction rules

(RedTy, RedTyAbs, and RedTyApp) involving type abstractions and type ap-

plications.

The reduction rules for the Curry-style System F are exactly the same as the

reduction rules for the Curry-style STLC (Figure 2.1) since the terms of the Curry-

style System F are identical to the terms of the Curry-style STLC.

2.2.1 Encoding datatypes in System F

System F is powerful enough to encode a fairly large class of datatypes within

its type system. Encodings of well-known datatypes are listed in Table 2.1. In

System F, we can encode non-recursive datatypes that are either simply typed

(e.g., void, unit, and booleans) or parametrized (e.g., pairs and sums). More

49

interestingly, we can also encode recursive datatypes that are either simply typed

(natural numbers) or parametrized (lists). All of these datatypes are classified

as regular datatypes.3 All regular datatypes that are not mutually recursive are

encodable in System F. Encodings of mutually recursive datatypes seem to require

more expressive type systems such as System Fω (Section 2.3).

Church [22] devised an encoding for natural numbers in the untyped lambda

calculus, based on the idea that the natural number n is represented by a higher-

order function (λxs.λxz.xns xz), which applies the first argument (xs) n times to

the second argument (xz). Such an encoding of natural numbers is called Church

numerals, after Alonzo Church. More generally, term encodings of the objects of

datatypes based on similar ideas are called Church encodings. Church encodings

were developed for the untyped λ-calculus. They cannot be well-typed in the

STLC.

In System F, these Church-encoded terms can be well-typed by encoding the

datatype as a polymorphic type of System F, as illustrated in Table 2.1. Such

encodings for datatypes are called impredicative encodings since they rely on the

impredicative polymorphism4 of System F.

Encodings of types, constructors, and eliminators for well-known datatypes

are listed in Table 2.1. We use the Curry-style System F since the constructors

and the eliminators are exactly the same as the Church encodings in the untyped

lambda calculus. If we were to use the Church-style System F, we would need to

adjust the constructors and the eliminators by adding type abstractions and type

applications in appropriate places. For example, the constructor for Unit would

be Unit = ΛX.λx : X.x and the eliminator would be λ(x : Unit).ΛX.x[X] x′.

3 We discuss the concept of regular datatypes, in contrast to non-regular datatypes, in Sec-
tion 2.3.1.

4 In System F, polymorphic type variables in a polymorphic type can be instantiated with the
same polymorphic type itself. This self-referential property is called impredicativity. For instance,
∀X.X → X can be instantiated to (∀X.X → X) → (∀X.X → X) where X is instantiated with
∀X.X → X,

50

void encoding of type Void = ∀X.X

constructor

eliminator λx.x

unit encoding of type Unit = ∀X.X → X

constructor Unit = λx.x

eliminator λx.λx′.x x′

booleans encoding of type Bool = ∀X.X → X → X

constructors True = λx1.λx2.x1, False = λx1.λx2.x2

eliminator λx.λx1.λx2.x x1 x2 (if x then x1 else x2)

pairs encoding of type A1 × A2 = ∀X.(A1 → A2 → X)→ X

constructor Pair = λx1.λx2.λx
′.x′ x1 x2

eliminator λx.λx′.x x′

(by passing appropriate values to x′, we get

fst = λx.x(λx1.λx2.x1), snd = λx.x(λx1.λx2.x2))

sums encoding of type A1 + A2 = ∀X.(A1 → X)→ (A2 → X)→ X

constructors Inl = λx.λx1.λx2.x1 x, Inr = λx.λx2.λx2.x2 x

eliminator λx.λx1.λx2.x x1 x2

(case x of {Inl x′ → x1 x
′; Inr x′ → x2 x

′})

natural encoding of type Nat = ∀X.(X → X)→ X → X

numbers constructors Succ = λx.λxs.λ.xz.xs(x xs xz),

Zero = λxs.λxz.xz

eliminator λx.λxz.λxs.x xs xz (iteration on natural num.)

lists encoding of type List A = ∀X.(A→ X → X)→ X → X

constructors Cons = λxa.λx.λxc.λxn.xc xa (x xc xn),

Nil = λxc.λxn.λxn

eliminator λx.λxc.λxn.x xc xn (foldr xz xc x in Haskell)

Table 2.1: Church encodings of regular datatypes can be well-typed in System F.

51

Constructors produce objects of a datatype. Nullary constructors (a.k.a. con-

stants) are objects by themselves. For example, Unit (or, λx.x) is a unit object,

True (or, λx1.λx2.x1) is a boolean object, Zero (or, λxs.λxz.xz) is a natural num-

ber, and Nil (or, λxc.λxn.λxn) is a list. That is,

` Unit : Unit ` True : Bool ` Zero : Nat ` Nil : ∀Xa.List Xa

where Unit is a shorthand notation (or, type synonym) for ∀X.X → X, Bool is

for ∀X.X → X → X, and so on, as described in Figure 2.1. Other (non-nullary)

constructors expect some arguments in order to produce objects. For example,

Pair expects two arbitrary arguments to produce a pair, Succ expects a natural

number argument to produce another natural number, and Cons expects a new

element and a list as arguments to produce another list. That is,

` Pair : ∀X1.∀X2.X1 → X2 → X1 ×X2 ` Succ : Nat→ Nat

` Cons : ∀Xa.Xa → List Xa → List Xa

where X1 ×X2, Nat, and List Xa are shorthand notations for encodings of the

datatypes, as described in Figure 2.1.

We can deduce the number of constructors for a datatype and the types of

those constructors from the impredicative encoding of the datatype. The general

form for the encodings of the simply-typed datatypes is:

D = ∀X.A1 → · · · → An → X where Ai = Ai1 → · · · → Aik → X

From the encoding of type above, we can deduce the following facts:

• n is the number of constructors,

• k is the arity of the ith constructor, and

• the type of the ith constructor is Ai[D/X].

Note, D is a shorthand notation for the entire encoding of the type. So, Ai[D/X]

expands to Ai[(∀X.A1 → · · · → An → X)/X]. Here, the type variable X in Ai is

52

substituted by a polymorphic type D = (∀X. · · ·). Recall that X in Ai comes from

the variable universally quantified in D. In System F, we are able to substitute the

universally quantified type variable X with the very polymorphic type D, within

which X is universally quantified. For this ability of self-instantiation referring to

itself, we say “System F is impredicative”. Impredicative encodings of datatypes

rely on this impredicative nature (or, impredicativity) of System F.

Similarly, the general form for the encodings of the parametrized datatypes is

DX1 · · ·Xk = ∀X.A1 → · · · → An → X. Then, the number of constructors is n

and the type of the ith constructor is ∀X1. · · · ∀Xn.Ai[DX1 · · ·Xk/X].

Eliminators consume objects of a datatype for computation. An eliminator

for a datatype expects an object of the datatype as its first argument followed

by arguments of computations to be performed for each of the constructors. For

instance, the eliminator for void (λx.x) expects only one argument since void has

no constructor, the eliminator for unit (λx.λx′.x x′) expect two arguments since

unit has one constructor, and the eliminator for booleans (λx.λx1.λx2.x x1 x2)

expect three arguments since there are two boolean constructors.

Eliminators examine the shape of the object (i.e., by which constructor it is

constructed) in order to perform the computation that corresponds to the shape of

the object. For instance, the eliminator for booleans amounts to the well-known if-

then-else expression. For recursive types, computations are performed recursively

because some of their constructors would expect recursive arguments. For instance,

note that (x xs xz) appearing in the definition of Succ coincides with the body of

the eliminator for natural numbers. Eliminators for recursive types are also known

as iterators or folds.

The impredicative encoding of a datatype specifies what is needed to eliminate

an object of the datatype. Recall the general form for the encodings of the simply-

typed datatypes:

D = ∀X.A1 → · · · → An → X where Ai = Ai1 → · · · → Aik → X

53

We can understand this encoding as follows:

To compute the result of type X from an object of type D, we need

n small computations, whose types are A1, . . . , An. When the object

is constructed by ith constructor, we use the ith small computation,

whose type is Ai, that is, Ai1 → · · · → Aik → X. This small com-

putation gathers all the k arguments supplied to the ith constructor

for the object construction, in order to compute the result from those

arguments.

For constants, the eliminator simply returns the argument being passed to

handle the constant, as it is. For example, the unit eliminator (λx.λx′.x x′) will

return what is passed into x′. That is,

(λx.λx′.x x′) Unit s −→ (λx′.Unit x′) s −→ Unit s −→ s

since Unit = λx.x. Similarly, the boolean eliminator (λx.λx1.λx2.x x1 x2) simply

returns x1 when x is True and returns x2 when x is False, owing to the definition

of True = λx1.λx2.x1 and False = λx1.λx2.x2.

For non-nullary constructors, the argument being passed to the eliminator to

handle the constructor must be a function that collects the arguments used for

the object construction. The pair eliminator (λx.λx′.x x′) expects the argument

x′ be of type X1 → X2 → X where X is the result type you want to compute. For

example, you may pass an addition function (Nat→ Nat→ Nat) to x′ to compute

the sum of the first element and the second element of a pair of natural numbers

(Nat × Nat). We can define selector functions fst and snd for pairs by providing

an appropriate argument for x′ as described in Table 2.1.

The key idea behind Church encodings is that objects are defined by how they

will be eliminated. That is, the Church encoded objects are, in fact, eliminators.

Readers familiar with lambda calculi may have noticed that all the eliminators in

54

Table 2.1 are η-expansions of the identity function. The formulation of eliminators

in Table 2.1 is simply to emphasize how many arguments each eliminator expects.

2.2.2 Subject reduction and strong normalization

We discuss two important properties of System F, which hold in both Church

style and Curry style — subject reduction (a.k.a. type preservation) and strong

normalization.

Subject reduction

The subject reduction theorem for System F can be stated as follows:

Theorem 2.2.1 (subject reduction). ∆; Γ ` t : A t −→ t′

∆; Γ ` t′ : A

We can prove subject reduction for System F in a similar fashion to the proof

of subject reduction for the STLC, by induction on the derivation of the reduction

rules.

In Church style, proof for all other cases except for the rules RedBeta and

RedTy are simply done by applying the induction hypothesis. Since the typing

rules in Church style are syntax-directed, there is no ambiguity for which typing

rule should be used in the derivation for a certain judgment. For the RedBeta

case, we use the substitution lemma. For proving the RedTy case, we use the type

substitution lemma. The substitution lemma and the type-substitution lemma are

stated below:

Lemma 2.2.1 (substitution). ∆; Γ, x : A ` t : B ∆; Γ ` s : A
∆; Γ ` t[s/x] : B

Lemma 2.2.2 (type substitution). ∆, X; Γ ` t : B ∆ ` A
∆; Γ ` t[A/X] : B[A/X] (X /∈ FV(Γ))

In Curry style, the most interesting case is the RedBeta rule, where we use

the substitution lemma. The other rules simply apply the induction hypothesis.

55

There is a small complication in the proof, compared to the proof in Church style,

since the typing rules are not syntax-directed. Although we have fewer rules to

consider than in the Church-style System F, we need to deal with the ambiguity of

which rule to apply in order to obtain a typing judgement. The ambiguity is due

to the rules TyAbs and TyApp.

An alternative way to prove subject reduction for the Curry-style System F is

by translating the subject reduction property of the Curry-style System F into the

subject reduction property of the Church-style System F. That is, we extract a

Church-style term from a typing derivation in Curry style. It is not difficult to

see that each typing derivation in Curry style corresponds to a unique Church-

style term, and, that a reduction step in Curry style corresponds to one or more

reduction steps in Church style.5

Strong Normalization

To prove strong normalization of System F, we use the same proof strategy as in the

proof of strong normalization of the STLC in Section 2.1.1. That is, we interpret

types as saturated sets of normalizing terms, which may or may not be well-typed.

The interpretation of types, contexts, and terms of System F are illustrated in

Figure 2.5. Since we have type variables, we need a type valuation (ξ) that maps

the type variables to interpretations of types. So, the interpretation of types are

indexed by the type valuation (ξ), and the interpretation of terms are indexed by

the pair of term and type valuations (ξ; ρ). A type valuation ξ is a function from

dom(∆), the set of type variables bound in ∆, to SAT, the set of all saturated sets.

Any type interpretation is a saturated set. Since ξ maps a type variable to a

saturated set, JX]]ξ ∈ SAT. We know JA → B]]ξ ∈ SAT since saturated sets are

5 This correspondence between reduction steps in two styles is not always one step to one
step. For instance, the reduction rules RedTyAbs and RedTyApp in Church style correspond
to zero reduction step in Curry style.

56

Interpretation of types as saturated sets of normalizing terms whose free type
variables are substituted according to the given type valuation (ξ):

JX]]ξ = ξ(X)
JA→ B]]ξ = JA]]ξ → JB]]ξ
J∀X.B]]ξ =

⋂
A∈SAT

JB]]ξ[X 7→A] (X /∈ dom(ξ))

Interpretation of kinding and typing contexts as sets of type valuations
and term valuations (ξ and ρ):

J∆]] = dom(∆)→ SAT
J∆; Γ]] = {ξ; ρ | ξ ∈ J∆]], ρ ∈ JΓ]]ξ}
JΓ]]ξ = {ρ ∈ dom(Γ)→ SN | ρ(x) = JΓ(x)]]ξ for all x ∈ dom(Γ)}

Interpretation of terms as terms themselves whose free variables are substi-
tuted according to the given pair of type and term valuation (ξ;ρ):

Jx]]ξ;ρ = ρ(x)
Jλx.t]]ξ;ρ = λx.Jt]]ξ;ρ (x /∈ dom(ρ))
Jt s]]ξ;ρ = Jt]]ξ;ρ Js]]ξ;ρ

Figure 2.5: Interpretation of types, kinding and typing contexts, and terms of Sys-
tem F for the proof of strong normalization.

57

closed under the arrow operation (→), as we mentioned in Section 2.1.1. J∀X.B]]ξ ∈

SAT since it is known that saturated sets are closed under set indexed intersection.

The proof of strong normalization amounts to proving the following theorem:

Theorem 2.2.2 (soundness of typing). ∆; Γ ` t : A ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JA]]ξ

Proof. We prove by induction on the typing derivation (∆; Γ ` t : A).

Case (Var) It is trivial to show that ∆; Γ ` x : A ξ; ρ ∈ J∆; Γ]]
Jx]]ξ;ρ ∈ JA]]ξ

.

We know that x : A ∈ Γ from the Var rule. So, Jx]]ξ;ρ = ρ(x) ∈ JΓ(x)]]ξ = JA]]ξ.

Case (Abs) We need to show that ∆; Γ ` λx.t : A→ B ξ; ρ ∈ J∆; Γ]]
Jλx.t]]ξ;ρ ∈ JA→ B]]ξ

.

By induction, we know that ∆; Γ, x : A ` t : B ξ′; ρ′ ∈ J∆; Γ, x : A]]
Jt]]ξ′;ρ′ ∈ JB]]ξ

.

Since this holds for all ξ′; ρ′ ∈ J∆; Γ, x : A]], it also holds for particular ξ′; ρ′ such

that ξ′ = ξ and ρ′ = ρ[x 7→ s] for any s ∈ JA]]′ξ = JA]]ξ. Since saturated sets

are closed under normalizing weak head expansion, (λx.Jt]]ξ;ρ) s ∈ JB]]ξ for any

s ∈ JA]]ξ. Therefore, λx.Jt]]ξ;ρ is obviously in the desired set,

Jλx.t]]ξ;ρ = λx.Jt]]ξ;ρ ∈ {t ∈ SN | t s ∈ JB]] for all s ∈ JA]]} = JA→ B]]ξ

Case (App) We need to show that ∆; Γ ` t s : B ξ; ρ ∈ J∆; Γ]]
Jt s]]ξ;ρ ∈ JB]]ξ

.

By induction we know that

∆; Γ ` t : A→ B ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JA→ B]]ξ

∆; Γ ` s : A ξ; ρ ∈ J∆; Γ]]
Js]]ξ;ρ ∈ JA]]ξ

Then, it is straightforward to see that Jt s]]ξ;ρ ∈ JB]]ξ by the definition of JA→ B]]ξ.

Case (TyAbs) We need to show that ∆; Γ ` t : ∀X.B ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ J∀X.B]]ξ

By induction, we know that

∆, X; Γ ` t : B ξ′; ρ′ ∈ J∆, X; Γ]]
Jt]]ξ′;ρ′ ∈ JB]]ξ′

(X /∈ FV(Γ))

58

Since this holds for all ξ′; ρ′ ∈ J∆, X; Γ]] where X /∈ FV(Γ), it also holds for

particular subset such that ξ′ = ξ[X 7→ A] and ρ′ = ρ for all A ∈ SAT. That is,

Jt]]ξ[X 7→A];ρ ∈ JB]]ξ[X 7→A] for all A ∈ SAT

From X /∈ FV(Γ), we know that Jt]]ξ[X 7→A];ρ = Jt]]ξ;ρ because ρ is independent of

that to which X maps. So, we know that

Jt]]ξ;ρ ∈ JB]]ξ[X 7→A] for all A ∈ SAT

By set theoretic definition, this is exactly what we wanted to show:

Jt]]ξ;ρ ∈
⋂
A∈SAT

JB]]ξ[X 7→A] = J∀X.B]]ξ

Case (TyApp) We need to show that ∆; Γ ` t : B[A/X] ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JB[A/X]]]ξ

By induction, we know that ∆; Γ ` t : ∀X.B ξ′; ρ′ ∈ J∆; Γ]]
Jt]]ξ′;ρ′ ∈ J∀X.B]]ξ′

.

Since this holds for all ξ′; ρ′ ∈ J∆,Γ]], it also holds for ξ′ = ξ and ρ′ = ρ.

Thus, Jt]]ξ;ρ ∈ J∀X.B]]ξ = ⋂
A∈SATJB]]ξ[X 7→A] ⊆ JB]]ξ[X 7→JA]]ξ]

= JB[A/X]]]ξ.

Corollary 2.2.1 (strong normalization). ∆; Γ ` t : A
t ∈ SN

Once we have proved the soundness of typing with respect to interpretation,

it is easy to see that System F is strongly normalizing by giving a trivial term

interpretation ρ(x) = x for all the free variables. Note that Jt]]ξ;ρ = t ∈ JA]]ξ ⊂ SN

under the trivial interpretation.

59

2.3 SYSTEM Fω

System Fω [41] extends the type syntax of System F with lambda types and appli-

cation types (see Figure 2.6). Lambda types (λXκ.F) and application types (F G),

at the type-level, are analogous to lambda terms and applications at the term level.

Type constructors are like functions, but at the type-level. Type constructors are

categorized by kinds, just as terms are categorized by types. Type constructors of

kind ∗ are just types, and do not expect any arguments. Type constructors that

expect an argument have arrow kinds (κ→ κ′). A type constructor of kind κ→ κ′

expects another type constructor of kind κ as an argument to produce yet another

type constructor of kind κ′, just as a function of type A→ B expects another term

of type A as an argument, to produce yet another term of type B. By convention,

A and B stand for types (i.e., type constructors of kind ∗), while F and G stand

for type constructors or arbitrary kinds.

We can think of System F as a restriction of System Fω, where we only allow

types of kind ∗. That is, all the type variables appearing in well-kinded types in

System F are of kind ∗. Since there exists only one kind (∗) in System F, the

kinding rules of System F only needs to ensure that type variables are bound in

the context.

Since the kind structure of System Fω is richer than the kind structure of Sys-

tem F, we need to keep track of the kind of the type variables in the kinding context

(∆). So, the kinding context is extended by a type variable annotated by its kind

(Xκ). The kinding rules of System Fω keep track of the kinds of type constructors

as well as ensuring that the type variables are bound in ∆.

The kinding rules - TVar, TArr, and TAll - for the type syntax inherited from

System F are similar to their counterparts in System F, except for this additional

kinding annotation. The kinding rules TLam and TApp state when the extensions

(lambda types and application types) to System F are well-kinded.

60

The typing rules of System Fω are almost identical to the typing rules of Sys-

tem F, except for one new rule Conv. The Conv rule supports conversion between

equivalent types.

• In the STLC, types are equal when they are syntactically identical.

• In System F, types are equal when they are α-equivalent (i.e., up to change of

bound type variable names). For example, ∀X.X and ∀X ′.X ′ are considered

to be same types in System F.

• In System Fω, we expect a richer notion of equality which incorporates the

notion of β-equivalence at the type-level, since the type syntax of System Fω
has the structure of the STLC at the type-level. For instance, we want

(λX∗.X)A = A.

The equality rules over the type constructors of System Fω are illustrated in

Figure 2.7. The EqTBeta rule describes the essence of β-equivalence. Other rules

describe the structural nature of equality (EqTVar, EqTArr, EqTAll, EqTLam,

EqTApp) and transitivity of equality (EqTTrans).

The syntax, kinding rules, and typing rules of System Fω are illustrated in

Figure 2.6. We consider only the Curry-style term syntax for System Fω. Since

lambda binders exist at both the term- and the type-levels in System Fω, we also

have a choice of either Church style (kind annotations on lambda types) or Curry

style (no kind annotations on lambda types) for the type syntax. We consider only

the Church-style type syntax with explicit kind annotations.

The reduction rules of System Fω are almost identical to the reduction rules of

System F since the term syntax of System Fω is almost identical to the term syntax

of System F. Reduction rules are defined only on the structure of terms, usually

ignoring types.

61

term syntax t, s ::= x variable
| λ(x : A).t abstraction
| t s application

type syntax F,G,A,B ::= X variable type
| A→ B arrow type
| ∀Xκ.B forall type
| λXκ.F lambda type
| F G application type

kind syntax κ ::= κ→ κ′ arrow kind
| ∗ star kind

kinding rules ∆ ` F : κ TVar Xκ ∈ ∆
∆ ` X : κ

TArr ∆ ` A : ∗ ∆ ` B : ∗
∆ ` A→ B : ∗ TAll

∆, Xκ ` B : ∗
∆ ` ∀Xκ.B : ∗

TLam
∆, Xκ ` F : κ′

∆ ` λXκ.F : κ→ κ′
TApp ∆ ` F : κ→ κ′ ∆ ` G : κ

∆ ` F G : κ′

typing rules ∆; Γ ` t : A Var x : A ∈ Γ
∆; Γ ` x : A

Abs
∆ ` A : ∗ ∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B
App

∆; Γ ` t : A→ B ∆; Γ ` s : A
∆; Γ ` t s : B

TyAbs
∆, Xκ; Γ ` t : B
∆; Γ ` t : ∀Xκ.B

(X/∈FV(Γ)) TyApp
∆; Γ ` t : ∀Xκ.B ∆ ` G : κ

∆; Γ ` t : B[G/X]

Conv
∆; Γ ` t : A ∆ ` A = A′ : ∗

∆; Γ ` t : A′

reduction rules t −→ t′

RedBeta
(λx.t) s −→ t[s/x]

RedAbs t −→ t′

λx.t −→ λx.t′

RedApp1 t −→ t′

t s −→ t′ s
RedApp2 s −→ s′

t s −→ t s′

Figure 2.6: Syntax, kinding rules, typing rules, and reduction rules of System Fω.

62

EqTBeta
∆, Xκ ` F : κ→ κ′ ∆ ` G : κ
∆ ` (λXκ.F) G = F [G/X] : κ′ EqTVar Xκ ∈ ∆

∆ ` X = X : κ

EqTArr ∆ ` A = A′ : ∗ ∆ ` B = B′ : ∗
∆ ` A→ B = A′ → B′ : ∗ EqTAll

∆, Xκ ` B = B′ : ∗
∆ ` ∀Xκ.B = B′ : ∗

EqTLam
∆, Xκ ` F = F ′ : κ′

∆ ` λXκ.F = λXκ.F ′ : κ→ κ′

EqTApp ∆ ` F = F ′ : κ→ κ′ ∆ ` G = G′ : κ
∆ ` F G = F ′ G′ : κ′

EqTTrans ∆ ` F = F ′ : κ ∆ ` F ′ = F ′′ : κ
∆ ` F = F ′′ : κ′

Figure 2.7: Type constructor equality rules of System Fω.

2.3.1 Encodings of datatypes in System Fω

In System Fω we can encode all the datatypes encodable in System F (see Sec-

tion 2.2.1) and more. In addition to the obvious type constructors, one can encode

indexed types, nested types, and even fixpoint operators over type constructors.

• Type constructors for polymorphic datatypes can be encoded using lambda

types that abstract over types.

• Non-regular datatypes, or nested datatypes, can be encoded using forall types

that are polymorphic over type constructors.

• With higher-kinded type constructors, we can even encode the recursive type

operator µ in System Fω by abstracting over non-star type constructors.

This additional expressive power comes from two different uses of type-level

constructs other than types of kind ∗.

• Higher-kinded polymorphism is the ability to universally quantify over both

type constructors of arbitrary kinds.

• Type constructors of higher kinds or higher-kinded type constructors are type

constructors that expect type constructors as their arguments.

63

In fact, we combine these two to define a family of kind-indexed recursive

type operators µκ using both higher-kinded type constructors and higher-kinded

polymorphism.

Type constructors for polymorphic datatypes expect other types as argu-

ments to produce a datatype. We can encode these type constructors in System

Fω. For example, the shorthand notations (or, type synonyms) in Section 2.2.1,

such as (×) for pair types and (+) for sum types, can be encoded as as follows:6

(×) = λX∗1 .λX
∗
2 .(X1 → X2 → X)→ X : ∗ → ∗ → ∗

(+) = λX∗1 .λX
∗
2 .(X1 → X)→ (X2 → X)→ X : ∗ → ∗ → ∗

Type constructors for polymorphic recursive datatypes are encodable as well. For

instance, we can encode the constructor List for the polymorphic list datatype:

List = λX∗a .∀X∗.(Xa → X → X)→ X → X : ∗ → ∗

In System F, type constructors, such as (×), (+), and List, are meta-level concepts

(or, shorthand notations, macros) that cannot be encoded within the type system

of System F. In System Fω, these datatype constructors are encodable as type

constructors, which are ordinary constructs of System Fω.

Higher-kinded datatype constructors that expect not only types but also

type constructors of arbitrary kinds as arguments are encodable in System Fω as

well. For example, we can encode Flip, which flips the order of the first and second

arguments of a binary type constructor (i.e., (Flip F)A1A2 = F A2A1), and Comp,

which composes two unary type constructors (i.e., (Comp F1 F2)A = F1 (F2A)),

6Here, we used a Haskell-ish notation of turning a infix binary operator into a prefix binary
operator by surrounding the operator in parenthesis (e.g., (+) X1X2 = X1+X2). I also annotated
the kinds of the type constructors after the colon (:).

64

as follows:

Flip = λX∗→∗→∗f .λX∗1 .λX
∗
2 .Xf X2 X1 : (∗ → ∗ → ∗)→ ∗ → ∗ → ∗

Compose = λX∗→∗f .λX∗→∗g .λX∗.Xf (XgX) : (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗

Higher-kinded polymorphism is the ability to universally quantify over type

constructors as well as types. That is, we can have ∀Xκ.B where κ is not kind ∗.

We can encode non-regular (recursive) datatypes in System Fω using higher-kinded

polymorphism.

We mentioned that we can encode regular (recursive) datatypes in Systerm F

(Section 2.2.1), but have not discussed what regular datatypes are. A represen-

tative example of a regular datatype is the polymorphic list type (∀Xa.ListXa).

We say that the polymorphic list type is regular since its recursive component, the

tail, has exactly the same type. That is, for any non-empty list of type ListA, its

tail must be of type ListA. Many other well-known recursive datatypes are also

regular (e.g., binary trees).

But, one can imagine a non-regular twist to the regular polymorphic list type by

insisting the recursive components (i.e., tails) have different type arguments from

the list they are part of. For instance, we may insist that a list-like datatype of type

(Powl A) must have its tail be of type (Powl (A×A)). That is, if the first element

is an integer (e.g., 1), then the second element must be a pair of integers (e.g.,

(2, 3)), and the third elment must be a pair of pair of integers (e.g., ((4, 5), (6, 7))),

and so on. We can depict an example of this list-like datatype with three elements

as: [1, (2, 3), ((4, 5), (6, 7))]. This is a representative example of a non-regular

datatype called powerlists. Such datatypes are also called nested datatypes since

the type constructor is applied to ever-increasing complex arguments (here they

are nested, but one can imagine even richer kinds of complexity) as we step further

inside the recursive components.

We can encode the type constructor Powl for powerlists using higher-kinded

65

polymorphism of System Fω, as follows (cf. encoding of List):

Powl = λX∗a .∀X∗→∗ .(Xa → X(Xa ×Xa) →X Xa) →X Xa →X Xa

List = λX∗a .∀X∗ .(Xa → X →X) →X →X

Unlike the encoding of List, where X is polymorphic over types of kind ∗, the

universally quantified variable X in the encoding of Powl is polymorphic over

constructors of kind ∗ → ∗. Intuitively, X in the list encoding corresponds to

List Xa (i.e., the type constructor List applied to its uniform argument Xa), and,

X in the powerlist encoding corresponds to Powl without being applied to its

argument so that it may be applied to a non-regular argument (e.g., X(Xa×Xa)).

See Section 3.7 for more examples and discussions on non-regular datatypes.

The recursive type operator µ builds a recursive type (µF) from a non-

recursive base structure (F : ∗ → ∗). Theories on recursive datatypes are often

formulated in terms of the recursive type operator µ, which satisfies the property

that µF = F (µF) for any F : ∗ → ∗. A recursive datatype (µF) is built from

its base structure (F) by applying the recursive operator. For example, the nat-

ural number datatype can be built from the base structure F = λX∗r .Xr + Unit.

Intuitively, we can understand this base structure as a specification for natural

numbers: a natural number is either a successor of a recursive object (Xr) or

zero encoded as the unit object (Unit). From this base structure, we can define

Nat = µ(λX∗r .Xr + Unit). Let us write down the desired property of µ for Nat.

µ(λX∗r .Xr + Unit) = (λX∗r .Xr + Unit)(µ(λX∗r .Xr + Unit))

Nat = (λX∗r .Xr + Unit) Nat

Nat = Nat + Unit

The simplified last equation looks very similar to the recursive datatype definitions

for unary natural numbers in functional languages, such as Haskell:

data Nat = Succ Nat | Zero

66

See Chapter 3 for more Haskell examples on recursive datatypes and µ.

Although recursive datatypes are encodable in System F (Section 2.2.1), ex-

tensions of System F with µ have been studied since one can reason about the

properties of recursive datatypes more uniformly by factoring out the recursion at

the type-level as the fixpoint µ. In System Fω, we can encode µ using higher-kinded

type constructors and higher-kinded polymorphism as follows:

µ = λX∗→∗f .∀X ′∗.(∀X∗r .(Xr → X ′)→ Xf Xr → X ′)→ X ′ : (∗ → ∗)→ ∗

Let us intuitively derive above the encoding of µ starting from the impredicative

encoding of natural numbers:

Nat = ∀X∗.(X → X)→ X → X

∼= ∀X∗.(X → X)→ (Unit→ X)→ X (∵ Unit→ X ∼= X)

∼= µ(λX∗r . Xr + Unit) (to show)

We want to show that the impredicative encoding of natural numbers is equivalent

to the natural number type defined using µ. We need to turn the impredicative

encoding of natural numbers into a non-recursive base structure by abstract away

the recursive component, which is the underlined part below. That is, we replace

the underlined X with a new variable Xr:

∀X∗.(X → X)→ (Unit→ X)→ X

∀X∗.(Xr → X)→ (Unit→ X)→ X

Recall that Xr + Unit = ∀X∗.(Xr → X) → (Unit → X) → X. Also, recall that

the idea behind the impredicative encoding is that we can eliminate an object

of the datatype into an arbitrary result type X. If we are to encode datatypes

constructed by µ, we apply this idea of impredicative encoding in two layers: for

the base structure and for µ. We already know how to encode the base structure;

with the encoding above, we can eliminate in order to obtain an arbitrary result

67

type X. For µ, we introduce yet another variable X ′ so that we can eliminate in

order to obtain an arbitrary result type X ′. Thus, the encoding for the natural

number type constructed using µ would be of the following form:

∀X ′∗.(. (Xr + Unit)→ X ′)→ X ′

Since the recursive type contains the base structure, we would be able to eliminate

the recursive type, given that we know how to eliminate the base structure ((Xr +

Unit) → X ′). However, this is not yet complete because we do not know how to

eliminate Xr. So, we require that we should also know how to eliminate Xr, as

follows:

∀X ′∗.(∀X∗r .(Xr → X ′)→ (Xr + Unit)→ X ′)→ X ′

We can derive the encoding for µ (repeated below) so that µ(λX∗r .Xr + Unit) is

equivalent to above.

µ = λX∗→∗f .∀X ′∗.(∀X∗r .(Xr → X ′)→ Xf Xr → X ′)→ X ′ : (∗ → ∗)→ ∗

Note that Xr is also universally quantified in (∀X∗r .(Xr → X ′) → Xf Xr → X ′)

locally. See Chapter 3 for an intuitive explanation for why Xr should be universally

quantified.

The (data) constructor for the recursive type operator µ is called In and the

eliminator is called mit. The encodings of In and mit as Curry-style terms are as

follows:

In = λxr.λxϕ.xϕ (mit xϕ)xr mit = λxϕ.λxr.xr xϕ

These (µ, In, and mit) are, in fact, encodings for Mendler-style iteration, which

will be discussed in Section 3.10.

A kind-indexed family of recursive type operators µκ: The recursive type

operator µ : (∗ → ∗) → ∗ discussed so far can only construct (non-mutually

68

recursive) regular datatypes. For example,

Nat = µ(λX∗.X + Unit)

List = λX∗a .µ(λX∗.(Xa ×X) + Unit)

More generally, there is a family of recursive type operators µκ : (κ → κ) → κ

for each kind κ. The µ, which we discussed above, is µ∗ : (∗ → ∗) → ∗. We

can construct Powl, which is a non-regular datatype, using another recursive typer

operator µ∗→∗ : ((∗ → ∗)→ (∗ → ∗))→ (∗ → ∗) as follows (cf. List).

Powl = µ∗→∗(λX∗→∗.λX∗a .(Xa ×X(Xa ×Xa)) + Unit)

List = λX∗a .µ∗(λX∗.(Xa ×X) + Unit)

Note the difference on where Xa is bound in the definitions of Powl and List. The

encodings of µ∗ and µ∗→∗ in System Fω are shown below:

µ∗ = λX∗→∗f .∀X ′∗.(∀X∗r .(Xr → X ′)→ (Xf Xr → X ′))→ X ′

µ∗→∗ = λX
(∗→∗)→(∗→∗)
f .λX∗a .

∀X ′∗→∗.
(
∀X∗→∗r .(∀X∗a .XrXa → X ′Xa)→

(∀X∗a .Xf XrXa → X ′Xa)
)
→ X ′Xa

The general form for the encoding of µκ is as follows:

µκ = λXκ→κ
f .λ ~X~κ.∀X ′∗→∗.

(
∀Xκ→κ

r .(∀ ~X~κ.Xr
~X → X ′ ~X)→

(∀ ~X~κ.Xf Xr
~X → X ′ ~X)

)
→ X ′ ~X

where ~X denotes a sequence of n variables such that n = 0 when κ = ∗; otherwise,

n = |~κ| when κ = ~κ → ∗ = κ1 → · · · → κn → ∗.7 That is, we can simply erase

all the λ ~X~κ, ∀ ~X~κ, and ~X from above when κ = ∗; otherwise, λ ~X~κ stands for

λXκ1
1 . · · · .λXκn

n , ∀ ~X~κ stands for ∀Xκ1
1 . · · · .∀Xκn

n , and F ~X stands for F X1 · · ·Xn

when κ = ~κ→ ∗ = κ1 → · · · → κn → ∗.

7 κ always end up with ∗ when it is an arrow kind since → is right associative by convention.

69

The (data) constructor for the recursive type operator µκ is called Inκ and the

eliminator is called mitκ. The encodings of Inκ and mitκ as Curry-style terms are

exactly the same as for In and mit for the star kind:

Inκ = λxr.λxϕ.xϕ (mit xϕ)xr mitκ = λxϕ.λxr.xr xϕ

These (µκ, Inκ, and mitκ) are, in fact, encodings for Mendler-style iteration in Fω,

which will be discussed in Section 4.2.

2.3.2 Strong normalization

Here, we will take the subject reduction (Theorem 2.3.1) (a.k.a. type preservation)

for granted,8 and focus our discussion on the strong normalization of System Fω.

Theorem 2.3.1 (subject reduction). ∆; Γ ` t : A t −→ t′

∆; Γ ` t′ : A

To prove strong normalization of System F, we use the same proof strategy

as in the proof of strong normalization of System F (Section 2.2.2). That is, we

interpret types as saturated sets of normalizing terms as we did for System F.

However, we need to generalize the interpretation of types to the interpretation of

type constructors.

In the strong normalization proof of System F, we had a complete lattice

(SAT,⊆). We generalize from (SAT,⊆), which is for kind ∗ only, to (SATκ,vκ) for

an arbitrary kind κ, as follows:

• The set SATκ is a generalization of SAT such that

SAT∗ = SAT

SATκ→κ′ = SATκ → SATκ′ (i.e., functions from SATκ to SAT′κ).

8 The proof for subject reduction of System Fω is similar to the proof for the subject reduction
of System F.

70

Interpretation of kinds as pointwise generalization of SAT

Jκ]] = SATκ

Interpretation of type constructors as function spaces over saturated sets of
normalizing terms whose free type variables are substituted according to the
given type constructor valuation (ξ):

JX]]ξ = ξ(X)
JA→ B]]ξ = JA]]ξ → JB]]ξ
J∀Xκ.B]]ξ =

⋂
F∈Jκ]]

JB]]ξ[X 7→F] (X /∈ dom(ξ))

JλXκ.F]]ξ = λ(G ∈ Jκ]]).JF]]ξ[X 7→G] (X /∈ dom(ξ))
JF G]]ξ = JF]]ξ(JG]]ξ)

Interpretation of kinding and typing contexts as sets of type constructor
valuations and term valuations (ξ and ρ):

J∆]] = {ξ ∈ dom(∆)→
⋃
κ

Jκ]] | ξ(x) ∈ J∆(x)]] for all x ∈ dom(∆)}

J∆; Γ]] = {ξ; ρ | ξ ∈ J∆]], ρ ∈ JΓ]]ξ}
JΓ]]ξ = {ρ ∈ dom(Γ)→ SN | ρ(x) = JΓ(x)]]ξ for all x ∈ dom(Γ)}

Interpretation of terms as terms themselves whose free variables are substi-
tuted according to the given pair of type constructor and term valuations
(ξ;ρ):

Jx]]ξ;ρ = ρ(x)
Jλx.t]]ξ;ρ = λx.Jt]]ξ;ρ (x /∈ dom(ρ))
Jt s]]ξ;ρ = Jt]]ξ;ρ Js]]ξ;ρ

Figure 2.8: Interpretation of type constructors, kinding and typing contexts, and
terms of System Fω for the proof of strong normalization.

71

• The relation vκ is a pointwise generalization of ⊆ such that

A v∗ A′ = A ⊆ A′

F vκ→κ′ F ′ = F(G) vκ′ F ′(G) for all G ∈ SATκ

It is easy to see that (SATκ,vκ) forms a complete lattice by induction on κ. For

kind ?, this is obvious since we already know that (SAT,⊆) forms a complete

lattice. For an arrow kind κ → κ′, we know that (SATκ′ ,vκ) forms a complete

lattice by induction. It is easy to see that for every two element F1,F2 ∈ SATκ′,vκ
there exist a greatest lower bound (F1∧F2) and a greatest upper bound (F1∨F2),

defined pointwisely as follows:

(F1 ∧ F2)(G) = F1(G) ∧ F2(G) for all G ∈ SATκ

(F1 ∨ F2)(G) = F1(G) ∨ F2(G) for all G ∈ SATκ

The top and bottom elements of an arrow kind ⊥κ→κ′ are also defined pointwisely.

Let ⊥κ→κ′ be the constant function that always returns ⊥κ′ (the bottom element

at κ′, and, let >κ→κ′ be the constant function that always returns >κ′ (the top

element of the lattice at κ′). It is easy to see that ⊥κ→κ′ and >κ→κ′ are the bottom

and top elements at kind κ→ κ′ by definition of vκ→κ′ .

Then, we can give an interpretation of kind κ as SATκ. That is, Jκ]] = SATκ.

An interpretation of a type constructor of kind κ should be a member of Jκ]],

i.e., SATκ. The interpretation of kinds, type constructors, contexts, and terms of

System Fω are illustrated in Figure 2.8.

We use the Curry-style System Fω to present the strong normalization proof.

It is more convenient to interpret terms in Curry style since the Curry-style terms

syntax is simpler than the Church-style term syntax. It is more convenient to

interpret type constructors in Curry style since the kind annotation makes it clear

how to interpret the bound type variable X in forall types and lambda types (i.e.,

for Xκ choose from Jκ]]).

72

The proof of strong normalization amounts to proving the following theorem:

Theorem 2.3.2 (soundness of typing). ∆; Γ ` t : A ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JA]]ξ

Proof. We prove by induction on the typing derivation (∆; Γ ` t : A).

The cases for Var, Abs, and App are pretty much the same as the strong

normalization proof for System F. The cases for TyAbs and TyApp is almost the

same as the strong normalization proof for System F, except that the type variable

can be of some kind κ other than just the star kind. We need to consider one

more rule Conv, which is new in System Fω. Let us elaborate on the three cases

of TyAbs and TyApp, and Conv.

Case (TyAbs) We need to show that ∆; Γ ` t : ∀X.B ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ J∀Xκ.B]]ξ

By induction, we know that

∆, Xκ; Γ ` t : B ξ′; ρ′ ∈ J∆, X; Γ]]
Jt]]ξ′;ρ′ ∈ JB]]ξ′

(X /∈ FV(Γ))

Since this holds for all ξ′; ρ′ ∈ J∆, Xκ; Γ]] where X /∈ FV(Γ), it also holds for

particular subset such that ξ′ = ξ[X 7→ F] and ρ′ = ρ for all F ∈ Jκ]]. That is,

Jt]]ξ[X 7→F];ρ ∈ JB]]ξ[X 7→F] for all F ∈ Jκ]]

From X /∈ FV(Γ), we know that Jt]]ξ[X 7→F];ρ = Jt]]ξ;ρ because ρ is independent of

that to which X maps to. So, we know that

Jt]]ξ;ρ ∈ JB]]ξ[X 7→F] for all F ∈ Jκ]]

By set theoretic definition, this is exactly what we wanted to show:

Jt]]ξ;ρ ∈
⋂
F∈Jκ]]

JB]]ξ[X 7→F] = J∀Xκ.B]]ξ

73

Case (TyApp) We need to show that ∆; Γ ` t : B[G/X] ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JB[G/X]]]ξ

.

By induction, we know that ∆; Γ ` t : ∀Xκ.B ξ′; ρ′ ∈ J∆; Γ]]
Jt]]ξ′;ρ′ ∈ J∀Xκ.B]]ξ′

.

Since this holds for all ξ′; ρ′ ∈ J∆,Γ]], it also holds for ξ′ = ξ and ρ′ = ρ. Then, we

are done: Jt]]ξ;ρ ∈ J∀Xκ.B]]ξ = ⋂
G∈Jκ]]JB]]ξ[X 7→G] ⊆ JB]]ξ[X 7→JG]]ξ]

= JB[G/X]]]ξ.

Case (Conv) We need to show that ∆; Γ ` t : A′ ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JA′]]ξ

By induction we know that ∆; Γ ` t : A ξ; ρ ∈ J∆; Γ]]
Jt]]ξ;ρ ∈ JA]]ξ

If we can show that JA]]ξ = JA′]]ξ, we are done. To show that JA]]ξ = JA′]]ξ, we use

the soundness of type constructor equality lemma (Lemma 2.3.1).

Corollary 2.3.1 (strong normalization). ∆; Γ ` t : A
t ∈ SN

Lemma 2.3.1 (soundness of type equality). ∆ ` F = F ′ : κ ξ ∈ J∆]]
JF]]ξ = JF ′]]ξ

Proof. The only interesting case is the EqTBeta rule. The EqTVar is trivial and

all other rules are handled by induction. Let us elaborate on the EqTBeta case.

Case (EqTBeta) We need to show that

∆ ` (λXκ.F) G = F [G/X] : κ′ ξ ∈ J∆]]
J(λXκ.F) G]]ξ = JF [G/X]]]ξ

By applying the soundness of kinding lemma (Lemma 2.3.2) to the premises,

we know that

∆, Xκ ` F : κ→ κ′ ξ′ ∈ J∆, Xκ]]
JF]]ξ′ ∈ Jκ′]] and ∆ ` G : κ ξ ∈ J∆]]

JG]]ξ ∈ Jκ]]

Since it should hold for arbitrary ξ′, it should also hold for a particular ξ′ such

that ξ′ = ξ[X 7→ G] for any G ∈ Jκ]]. Therefore, we can rewrite the left-hand side

of the conclusion, which is what we wanted to show, into the right-hand side as

74

follows:

J(λXκ.F) G]]ξ = J(λXκ.F)]]ξ(JG]]ξ)

= (λ(G ∈ Jκ]]).JF]]ξ[X 7→G])(JG]]ξ)

= JF]]ξ[X 7→JG]]ξ]

= JF [G/X]]]ξ

System Fω has a richer kind structure than System F, which has kind (∗) only.

So, the interpretation of type constructors would only be well-defined when the

type constructors are well-kinded. For example, the interpretation of a type con-

structor application JF G]]ξ would only make sense when JF]]ξ ∈ Jκ → κ′]] and

JG]]ξ ∈ Jκ]] for some κ and κ′. The soundness of kinding lemma below states the

property that well-kinded type constructors indeed have a well-defined interpreta-

tion.

Lemma 2.3.2 (soundness of kinding). ∆ ` F : κ ξ ∈ J∆]]
JF]]ξ ∈ Jκ]]

Proof. We prove by induction on the kinding judgment.

Case (TVar) Straightforward by definition of J∆]].

JX]]ξ = ξ(X) ∈ Jκ]] since ξ(X) ∈ Jκ]] for any ξ ∈ J∆]] when Xκ ∈ J∆]].

Case (TArr) By induction, straightforward.

Case (TAll) We need to show that ∆ ` ∀Xκ.B : ∗ ξ ∈ J∆]]
J∀Xκ.B]]ξ ∈ J∗]] .

By induction, we know that ∆, Xκ ` B : ∗ ξ′ ∈ J∆, Xκ]]
JB]]ξ′ ∈ J∗]] .

Since it should hold for any ξ′, it also holds for ξ′ = ξ[X 7→ G] for any G ∈ Jκ]].

Therefore, J∀Xκ.B]]ξ = ⋂
G∈Jκ]]JB]]ξ[X 7→G] ∈ J∗]].

75

Case (TLam) We need to show that ∆ ` λXκ.B : ∗ ξ ∈ J∆]]
J∀X.B]]ξ ∈ J∗]] .

By induction, we know that ∆, Xκ ` F : κ′ ξ′ ∈ J∆, Xκ]]
JF]]ξ′ ∈ Jκ′]] .

Since it should hold for any ξ, it also holds for ξ′ = ξ[X 7→ G] for any G ∈ Jκ]].

Therefore, JλXκ.F]]ξ = λ(G ∈ Jκ]]).JF]]ξ[X 7→G] ∈ Jκ→ κ′]].

Case (TApp) By induction, straightforward.

2.4 THE HINDLEY–MILNER TYPE SYSTEM

Hindley [48] demonstrated the existence of a unique principal type scheme for every

object in a combinatory logic. Milner [66] rediscovered this fact in the setting of a

polymorphic lambda calculus. He was devising an algorithm, called algorithm W ,

which infers a most general type scheme (a.k.a. principal type scheme) for a Curry-

style lambda term. Damas [28] (a student of Milner) published detailed theories

about Milner’s polymorphic lambda calculus and the type inference algorithm W .

This type system for Milner’s polymorphic lambda calculus [28, 29, 66] is also

known as the Hindley–Milner type system (HM), the Damas–Hindley–Milner type

system (DHM), or let-polymorphic type system.

The syntax of Milner’s polymorphic lambda calculus and its typing rules are

illustrated in Figure 2.9. The type inference algorithm W is illustrated in Figure

2.10. We discuss each of these figures separately — the syntax in Section 2.4.1,

the typing rules in Section 2.4.2 and Section 2.4.3, and the inference algorithm

in Section 2.4.4. We provide two equivalent sets of typing rules (we prove this in

Section 2.4.3). The declarative typing rules (Section 2.4.2) are suited for reasoning

about the soundness of typing. The syntax-directed typing rules (Section 2.4.3)

are suited for reasoning about the properties of the type inference algorithm W

(Section 2.4.4).

76

Term t, s ::= x | λx.t | t s | let x = s in t

Type (or, monotype) A,B ::= A→ B | ι | X
Type scheme (or, polytype) σ ::= ∀X.σ | A
Typing context Γ ::= · | Γ, x : σ (x /∈ dom(Γ))

Type scheme ordering (or, generic instantiation) σ v σ′

GenInst
X ′1, . . . , X

′
m /∈ FV(∀X1 . . . Xn.A)

∀X1 . . . Xn.A v ∀X ′1 . . . X ′m. A[B1/X1] · · · [Bn/Xn]

Declarative typing rules Syntax-directed typing rules

Γ ` t : σ Γ s̀ t : A

Var x : σ ∈ Γ
Γ ` x : σ Vars

x : σ ∈ Γ σ v A
Γ s̀ x : A

Abs
Γ, x : A ` t : B

Γ ` λx.t : A→ B
Abss

Γ, x : A s̀ t : B
Γ s̀ λx.t : A→ B

App Γ ` t : A→ B Γ ` s : A
Γ ` t s : B Apps Γ s̀ t : A→ B Γ s̀ s : A

Γ s̀ t s : B

Let
Γ ` s : σ Γ, x : σ ` t : B

Γ ` let x = s in t : B Lets
Γ s̀ s : A Γ, x : Γ(A) s̀ t : B

Γ s̀ let x = s in t : B
Inst Γ ` t : σ σ v σ′

Γ ` t : σ′
Γ(A)=∀ ~X.A where ~X=FV(A)\FV(Γ)

Gen Γ ` t : σ
Γ ` t : ∀X.σ (X /∈ FV(Γ))

Figure 2.9: Milner’s polymorphic lambda calculus.

77

2.4.1 Syntax

The syntax of terms includes the usual Curry-style terms (x, λx.t, and t s) and

let-terms (let x = s in t). A let term, let x = s in t, is semantically equivalent

to (λx.t) s. That is, let x = s in t is a syntactic sugar for (λx.t) s when we think

about reduction.9 However, a let-term (let x = s in t) is assigned a significantly

different type than its semantic equivalent ((λx.t) s). The typing rules support

the introduction of a polymorphic type scheme for x into the typing context when

typing the let-term’s body t. We will discuss many further details of typing let-

terms (the Let rule) when we explain the typing rules.

The syntax of types (or, monotypes) includes all the types in the STLC (A→ B

and ι) and type variables (X). The syntax of type schemes (or, polytypes) are simi-

lar to the polymorphic types of System F, but universal quantification must appear

only at the top level. Syntactically, type schemes are either universal quantifica-

tions over other type schemes (∀X.σ) or (mono)types (A). Typing contexts (Γ)

keep track of each term variable and its associated type scheme (x : σ).

The ordering between two type schemes σ v σ′, defined in Figure 2.9, means

that σ is more general than or equivalent to σ′. The ordering relation v comes from

Damas and Milner [29], and is also known as generic instantiation — σ′ is called

a generic instance of σ when σ v σ′. The shorthand notation ∀X1 . . . Xn.A stands

for consecutive universal quantification of n variables. For instance, ∀X1X2X3.A

is a shorthand for ∀X1.∀X2.∀X3.A.

Two type schemes σ and σ′ are equivalent when σ v σ′ and σ′ v σ. This

coincides with α-equivalence (e.g., ∀X.X → X is equivalent to ∀X ′.X ′ → X ′). In

fact, we can derive α-equivalence as a special case of the type scheme ordering rule

GenInst (Figure 2.9), where n = m and Bi = X ′i for each i from 1 to n.

9 The reduction rules for the terms of HM are exactly the same as the reduction rules for
Curry-style terms in the previous sections, once we desugar all the let terms.

78

The usual instantiation (i.e., substitution of quantified variables with mono-

types) is a special case of generic instantiation. For example, consider the instan-

tiations of ∀X1X2.X1 → X2 below:

(∀X1X2.X1 → X2) v (∀X2.ι→ X2) v (ι→ ι)

Here, we instantiate the quantified X1 with ι, and then, instantiate the quantified

X2 with ι. In such cases of σ v σ′, we can call σ′ an instance (as well as a generic

instance) of σ. For example, (1) ι → ι is an instance of ∀X2.ι → X2 and an

instance of ∀X1X2.X → X2; and (2) both ι→ ι and ∀X2.ι→ X2 are instances of

∀X1X2.X1 → X2.

The relation v is more than α-equivalence and instantiation, since the type

scheme ordering rule allows quantifying newly introduced variables in σ′, which do

not appear free in σ. For example, consider the two generic instances of ∀X.X → X

below:

∀X.X → X v (X ′ → X ′)→ (X ′ → X ′)

∀X.X → X v ∀X ′.(X ′ → X ′)→ (X ′ → X ′)

The former, (X ′ → X ′)→ (X ′ → X ′), is an instance of ∀X.X → X instantiating

X to (X ′ → X ′). However, the latter, ∀X ′.(X ′ → X ′) → (X ′ → X ′), is not

an instance but a generic instance of ∀X.X → X because the newly introduced

variable X ′ is universally quantified.

There is a difference between the (mono)type (X ′ → X ′)→ (X ′ → X ′), where

X ′ is free, and the type scheme ∀X ′.(X ′ → X ′)→ (X ′ → X ′), where X ′ is univer-

sally quantified. A function of the monomorphic type (X ′ → X ′) → (X ′ → X ′)

can only be applied to functions of the same type in one program, but a function

of the polymorphic type scheme ∀X ′.(X ′ → X ′) → (X ′ → X ′) can be applied to

functions of many different types in one program. For example, consider a typing

79

context Γ with four term-variables such that10

square : int→ int ∈ Γ

revstr : string→ string ∈ Γ

Id mon
→ : (X ′ → X ′)→ (X ′ → X ′) ∈ Γ

Id poly
→ : ∀X ′.(X ′ → X ′)→ (X ′ → X ′) ∈ Γ

The four function names, with the types assigned as above, are available in the con-

text. Under this typing context Γ, it is possible to apply Id mon
→ , the monomorphic

identity function over endofunctions, to either square or revstr (as we do below),

as long as we do not try to apply Id mon
→ to both of them in the same program.11

For example, we note the different types for each application, and consider the

different type that Id mon
→ must have inside each term.

Γ ` (Id mon
→ square) : int→ int

Γ ` (Id mon
→ revstr) : string→ string

It is impossible to derive a type for a program that applies Id mon
→ to both square

and revstr in one program, since there is no solution for the inconsistent equations

X ′ = int and X ′ = string.

Γ ` . . . (Id mon
→ square) . . .

. . . (Id mon
→ revstr) . . . : this is a type error

On the other hand, we can apply Id poly
→ , the polymorphic identity function over

endofunctions, to both square and revstr in the same program, since the universally

quantified type variable X ′ can be instantiated to many different types including

int and string.

Γ ` (Id poly
→ square) : int→ int

Γ ` (Id poly
→ revstr) : string→ string

10 For an intuitive explanation, we assume int and string to be existing ground types although
our formal definition of HM in Figure 2.9 only has the void type ι as the ground type for simplicity.

11A program is just a term, but it sounds like a more practical example.

80

Γ ` . . . (Id poly
→ square) . . .

. . . (Id poly
→ revstr) . . . : this can be type correct

To discover why the first must be ill-typed, and the second can be well-typed

we must look at the details of the typing rules.

2.4.2 Declarative typing rules

The declarative typing rules deduce a type scheme for a given term under a typing

context (Γ ` t : σ). The type scheme (σ) deduced for the given term (t) under the

typing context (Γ) may not be unique. For example,

· ` λx.x : ι→ ι

· ` λx.x : X → X

· ` λx.x : (X → X)→ (X → X)

· ` λx.x : ∀X.X → X

· ` λx.x : ∀X.(X → X)→ (X → X)

· ` λx.x : ∀X1X2.(X1 → X2)→ (X1 → X2)
...

This is expected since terms of HM are Curry style. Recall that the uniqueness of

typing does not hold for lambda calculi with Curry-style terms.

The first three declarative rules – Var, Abs, and App – in Figure 2.9 are fairly

standard. The Var rule deduces the type scheme of a variable according to the type

scheme binding of the variable in the typing context. Note that the type schemes

deduced by the rules Abs and App are restricted to the form of (mono)types12

since the domain and range of function (→) types are restricted to (mono)types.

12Recall that (mono)types are subset of type schemes.

81

The Let rule can introduce polymorphic type schemes into the typing context

(we discuss more about this shortly, in the next page). The most interesting rules

are the Inst rule and the Gen rule.

• The Inst rule deduces a generic instance (σ′) of any type scheme (σ). The

Inst rule is essential when variables with polymorphic type schemes appear in

the rules Abs and App. For instance, when t is a variable with a polymorphic

type scheme in Γ, we need to instantiate the type scheme into a type since

Abs and App are restricted to deduce (mono)types. A typical usage (where

Γ = x′ : ∀X ′.X ′ → X ′) of the Inst rule is illustrated below:

Abs
Inst

Var
x′ : ∀X ′.X ′ → X ′ ∈ Γ, x : X
Γ, x : X ` x′ : ∀X ′.X ′ → X ′

Γ, x : X ` x′ : X ′′ → X ′′

Γ ` λx.x′ : X → (X ′′ → X ′′)

• The Gen rule deduces a generalization (i.e., universal quantification) of a

type scheme, as long as the quantified variable does not appear free in the

typing context. The Gen is essential for the Let rule to be useful. For

instance, consider that s is a function that may be polymorphic, such as

the identity function λx′.x′. We want to bind this function in a let term,

let x = λx′.x′ in t, and use x as a polymorphic function in t (i.e., extend

the typing context with x : ∀X.X → X). However, the Abs rule can only

deduce a function type without any universal quantification, such as Γ `

λx′.x′ : X → X. Here, we can use the Gen rule to generalize X → X to

∀X.X → X, provided that X does not appear free in the typing context Γ,

as below:

Let
Gen

Abs
...

Γ ` λx′.x′ : X → X
Γ ` λx′.x′ : ∀X.X → X Γ, x : ∀X.X → X ` t : B

Γ ` let x = λx′.x′ in t : B

82

The soundness of typing is obvious once we observe that HM is a restriction of

the Curry-style System F (i.e., if Γ ` t : σ in HM, then ∆; Γ ` t : σ in System F).

The terms in HM are exactly the same as the terms in the Curry-style System F,

if we consider the let-term as a syntactic sugar. Both types (or, monotypes) and

type schemes (or, polytypes) in HM are restrictions of types in System F. The

declarative typing rules (of Figure 2.9) are also a restriction of the typing rules in

System F. The rules Var, Abs, App, and Gen in HM are virtually the same as

their counterparts in System F.13 Thus, we only need ensure that the Let rule and

the Inst rule in HM are admissible in System F.

A single derivation step of Let in HM corresponds to two derivation steps in

System F involving the App and Abs rules. Let us start from the Let rule in HM,

quoted verbatim from Figure 2.9:

Let
Γ ` s : σ Γ, x : σ ` t : B

Γ ` let x = s in t : B

Recall that a let-term, let x = s in t is semantically equivalent to (λx.t) s. We

first desugar the let-term into an application of an abstraction (λx.t) to the body

of the local definition (s). Then, we can simply apply the App rule and the Abs

rule in System F, as below:

App
Abs

∆ ` σ ∆; Γ, x : σ ` t : B
∆; Γ ` λx.t : A→ B ∆; Γ ` s : σ

∆; Γ ` (λx.t) s

A singe derivation step of Inst in HM corresponds to multiple derivation steps

in System F involving the rules TyAbs and TyApp rules. Since the Inst rule refers

to the generic instantiation relation v, the shape of σ and σ′ in the Inst rule must

match the left- and right-hand sides of v in the generic instantiation rule, as below:

13The names of corresponding rules in HM and System F are the same (Var, Abs, App),
except for the Gen rule. The Gen rule in HM corresponds to the TyAbs rule in System F.

83

Inst Γ ` t : σ σ v σ′

Γ ` t : σ′ where σ = ∀X1 . . . Xn.A

σ′ = ∀X ′1 . . . X ′m. A[B1/X1] · · · [Bn/Xn]

such that X ′1, . . . , X
′
m /∈ FV(∀X1 . . . Xn.A)

∀X1 . . . Xn.A v ∀X ′1 . . . X ′m. A[B1/X1] · · · [Bn/Xn]

The generic instantiation from σ to σ′ in the Inst rule above can be understood
as having two phases: instantiation from σ to A[B1/X1] · · · [Bn/Xn] and generaliza-
tion from A[B1/X1] · · · [Bn/Xn] to σ′. The instantiation phase, from ∀.X1 . . . Xn.A

to A[B1/X1] · · · [Bn/Xn], can be broken down to n small steps of instantiation —
each step instantiates one of the quantified variables (X1 . . . Xn). The generaliza-
tion phase, from A[B1/X1] · · · [Bn/Xn] to ∀X ′1 . . . X ′m.A[B1/X1] · · · [Bn/Xn], can be
broken down into m small steps of generalization — each step universally quanti-
fies one of the newly introduced variables (X ′1 . . . Xm) from the instantiation phase.
The Curry-style System F has rules, which correspond exactly to these small steps
(see Figure 2.3 in Section 2.2). The TyApp rule captures the small steps in the
instantiation phase. The TyAbs rule captures the small steps in the generalization
phase. Therefore, we can translate the Inst rule in HM into consecutive applica-
tions of the TyApp rule followed by consecutive applications of the TyAbs rule in
System F, as below:

TyApp
∆; Γ ` t : ∀X1 . . . Xn.A ∆ ` ∀X1 . . . Xn.A

∆; Γ ` t : ∀X2 . . . Xn.A[B1/X1]

TyApp
... ∆ ` ∀Xn.A[B1/X1] · · · [Bn−1/Xn−1]

∆; Γ ` t : A[B1/X1] · · · [Bn/Xn]

TyAbs
∆; Γ ` t : ∀X ′m. A[B1/X1] · · · [Bn/Xn]

(X ′m /∈ FV(A[B1/X1] · · · [Bn/Xn]))

...

TyAbs
∆; Γ ` t : ∀X ′2 . . . X ′m. A[B1/X1] · · · [Bn/Xn]
∆; Γ ` t : ∀X ′1 . . . X ′m. A[B1/X1] · · · [Bn/Xn]

(X ′1 /∈ FV
(

∀X′2...X
′
m.

A[B1/X1]···[Bn/Xn]

)
)

84

2.4.3 Syntax-directed typing rules

The syntax-directed typing rules [23] deduce a type, rather than a type scheme, for

a given term under a typing context (Γ ` t : A). These rules are syntax-directed,

since for each syntactic category of terms, there is only one typing rule that can

apply.

The syntax-directed typing rules are based on the observation that the Inst

and Gen in the declarative typing rules are only necessary at the Var and Let

rules, respectively. That is, we only need to apply the Inst rule to the conclusion

of the Var rule, and, we only need to apply the Gen rule to the first premise

(Γ ` s : σ) of the Let rule. The Vars rule can be understood as a merging of Var

and Inst into one rule. The Abss rule and the Apps rule remain the same as their

counterparts in the declarative typing rules. The Lets rule can be understood as

a merging of the Let and the Gen into one rule.

The notation Γ(A) appearing in the rule Lets is the generalization closure of

the type A with respect to Γ. That is, Γ(A) generalizes A over all the free type

variables occurring in A, except the free types variables occurring in Γ. The free

type variables of Γ are defined as FV(Γ) = ⋃
x:σ∈Γ FV(σ).

The syntax-directed typing rules are sound (Theorem 2.4.1) and complete (The-

orem 2.4.2) with respect to the declarative typing rules.

We will simply sketch the key ideas for the proof of the soundness of s̀ since the

soundness is rather obvious. All we need to do is transform any given derivation

for s̀ into a derivation for `, which is straightforward.

Theorem 2.4.1 (s̀ is sound with respect to `). Γ s̀ t : A
Γ ` t : A

Proof. Recall that the Vars rule can be understood as a merging of Var and Inst.

Thus, we can transform any derivation step using the Vars rule into two steps of

derivation: using the Var rule and then applying the Inst rule to the conclusion

85

of the Var rule.

The Abss rule and the Apps rules are mapped to the Abs rule and the App

rule, respectively.

Recall that the Lets rule can be understood as a merging of Let and Gen. We

can transform any derivation step using the Lets rule into a series of Gen rules

applied to the first premise of the Let rule, and then applying the Let rule. Since

the definition of the closure Γ(A) appearing in the Lets rule generalizes only the

free type variables of A, which do not appear free in Γ, the condition X /∈ FV(Γ)

appearing in the Gen rule holds.

The completeness of s̀ is stated below. Note that the completeness of s̀ must

be stated in terms of generalization closure and of the type scheme ordering rela-

tion (Γ(A) v σ) since the syntax-directed rules can only deduce types, not type

schemes. The syntax-directed rule s̀ is complete in the sense that for any given

term we can always deduce a type A such that the closure of A is more general

than the type scheme σ deduced from the declarative typing rules.

Theorem 2.4.2 (s̀ is complete with respect to `). Γ ` t : σ
∃A. Γ s̀ t : A ∧ Γ(A) v σ

Proof. We prove this by induction on the derivation of Γ ` t : σ. Let us consider

the cases by the last rule applied (i.e., root of the derivation).

When the last rule is Var, we know that x : σ ∈ Γ. We choose A in the Vars

rule to be an instance of σ, instantiating each universally quantified variable with a

fresh variable, which neither appears free in σ nor Γ. We further restrict A to satisfy

Γ(A) v σ. For example, when σ = ∀X1.∀X2.X1 → X2 → X, we choose A = X ′1 →

X ′2 → X where X ′1, X ′2 /∈ FV(Γ). If X ∈ FV(Γ), then Γ(A) = ∀X ′1.∀X ′2.X ′1 →

X ′2 → X, which is α-equivalent to σ, therefore, Γ(A) v σ. Otherwise, if X /∈

FV(Γ), then Γ(A) = ∀X ′1.∀X ′2.∀X.X ′1 → X ′2 → X; so, Γ(A) v σ still holds.

When the last rule is Abs, it is straightforward by induction.

86

When the last rule is App, it is straightforward by induction.

When the last rule is Let (let x = s in t), we know by induction that there

exists A′ and B′ such that Γ s̀ s : A′ ∧ Γ(A′) v σ and Γ, x : σ s̀ t : B′ ∧

Γ, x : σ(B′) v B. The case for Let would be complete if we could show that

Γ, x : Γ(A′) s̀ t : B′ ∧ Γ, x : Γ(A′)(B′) v B. Instead we can only show Γ, x : σ s̀

t : B′ ∧ Γ, x : σ(B′) v B. We use Lemma 2.4.1 to prove Γ, x : Γ(A′) s̀ t : B′

from Γ, x : σ s̀ t : B′, and we use Lemma 2.4.2 to prove Γ, x : Γ(A′)(B′) v B

from Γ, x : σ(B′) v B and the transitivity of v. These two lemmas are introduced

directly following the proof of this theorem.

When the last rule is Inst, it is straightforward by induction and transitivity

of v.

When the last rule is Gen, we know by induction that there exists A such that

Γ(A) v σ. We also know that X /∈ FV(Γ(A)) by the definition of generalization

closure. This step follows from a proof by contradiction argument. If it were the

case that X ∈ Γ(A), then it should be the case that X ∈ FV(Γ) by the definition

of generalization closure. This contradicts the side condition of the Gen rule:

X /∈ FV(Γ). Recall that generic instantiation allows quantifying type variables

that do not appear free in the original type scheme. Thus, Γ(A) v ∀X.σ by

definition of v.

Lemma 2.4.1 (generalizing typing context is safe). Γ s̀ t : A Γ′ v Γ
Γ′ s̀ t : A where

Γ′ v Γ when for any x : σ ∈ Γ, there exists x : σ′ ∈ Γ′ such that σ′ v σ.

Proof. This is an intuitively obvious property since assuming more general type

schemes for variables only makes it possible to deduce all the judgments of s̀ and

more, but no less, by transitivity of v over type schemes. We will simply give a

proof for the base case, the Var rule, which illustrates this intuition. Other cases

are straightforward by induction on the derivation of s̀.

87

When Γ s̀ x : A, we know that there exists x, σ′ ∈ Γ′ such that σ′ v σ. By

the Vars rule, we can deduce any A′ for x such that Γ′ s̀ x : A′ and σ′ v A′. By

transitivity of v, σ′ v σ v A. Therefore, Γ′ s̀ x : A.

Lemma 2.4.2 (closure of a more general typing context is more general).
Γ′ v Γ

Γ′(A) v Γ(A)
for any A.

Proof. It is obvious once we observe that FV(Γ′) ⊆ FV(Γ). To show this, it suffices

to show that (⊆) relation holds pointwise on the type schemes in the context. That

is, FV(σ′) v FV(σ) when x : σ′ ∈ Γ′ and x : σ ∈ Γ. Note that dom(Γ′) = dom(Γ)

by definition of v over contexts. From the assumption Γ′ v Γ, we know that

σ′ v σ when x : σ′ ∈ Γ′ and x : σ ∈ Γ. Thus, we only need to show that σ′ v σ

implies FV(σ′) ⊆ FV(σ), which is not difficult to observe from the definition of v

over type schemes (GenInst in Figure 2.9).

2.4.4 The type inference algorithm W

Damas and Milner [29] presented the type inference algorithm W (Figure 2.10) and

proved its soundness and completeness with respect to the declarative typing rules.

Here, we show the soundness and completeness of the type inference algorithm, W

(Figure 2.10), with respect to the syntax-directed typing rules. Each rule of the

type inference algorithm W has a similar structure to the corresponding syntax-

directed rule. The type inference algorithm has additional details of explicitly

managing fresh type variable introduction and substitution.

The unification of A1 and A2 succeeds when there exists a substitution S such

that SA1 = SA2. When the unification succeeds, we write unify(A1, A2) S,

where the resulting substitution S is a unifier of A1 and A2. Furthermore, S is a

most general unifier [47, 81] whose domain is a subset of FV(A1) ∪ FV(A2). That

is, for any unifier S ′ such that S ′A1 = S ′A2 and dom(S ′) ⊆ FV(A1) ∪ FV(A2),

there exists a substitution R such that S ′ = R ◦ S and dom(R) ⊆ dom(S). The

88

VarW

x : ∀X1 . . . Xn.A ∈ Γ
X ′1, . . . , X

′
n fresh

W (Γ, x) (∅, A[X ′1/X1] · · · [X ′n/Xn])

AbsW

X fresh
W ((Γ, x : X), t) (S1, A)

W (Γ, λx.t) (S1, S1X → A)

AppW

W (Γ, t) (S1, A1)
W (S1Γ, s) (S2, A2)

X fresh
unify(S2A1, A2 → X) S3

W (Γ, t s) (S3 ◦ S2 ◦ S1, S3X)

LetW

W (Γ, s) (S1, A1)
W ((S1Γ, x : S1Γ(A1)), t) (S2, A2)
W (Γ, let x = s in t) (S2 ◦ S1, A2)

Figure 2.10: The type inference algorithm W .

composition of two substitutions is defined as (S2 ◦ S1)A = S2(S1(A)).

Proposition 2.4.1. Γ s̀ t : A
SΓ s̀ t : SA

Proposition 2.4.2. S(Γ(A)) = SΓ(SA)

Theorem 2.4.3 (Soundness of W). W (Γ, t) (S,A)
SΓ s̀ t : A

Proof. By induction on the syntax of the term t.

case (x) Obvious, by definition of v.

case (λx.t) We need to show that S1Γ s̀ λx.t : S1X → A.

By induction, we know that S1(Γ, x : X) s̀ t : A.

We know that S1Γ, x : S1X s̀ t : A, since S1(Γ, x : X) = S1Γ, x : S1X.

By Abss rule, we have S1Γ s̀ λx.t : S1X → A.

89

case (t s) We need to show that (S3 ◦ S2 ◦ S1)Γ s̀ t s : S3X.

By induction, we know that S1Γ s̀ t : A1 and S2(S1Γ) s̀ s : A2. By

Proposition 2.4.1, S3(S2(S1Γ)) s̀ t : S3(S2(A1)) and S3(S2(S1Γ)) s̀ s : S3A2.

Due to the property of unification, S2A1 = A2 → X.

Thus, S3(S2(S1Γ)) s̀ t : S3(A2 → X) and S3(S2(S1Γ)) s̀ s : S3A2.

That is, (S3 ◦ S2 ◦ S1)Γ s̀ t : S3A2 → S3X and (S3 ◦ S2 ◦ S1)Γ s̀ s : S3A2.

By Apps rule, we have (S3 ◦ S2 ◦ S1)Γ s̀ t s : S3X.

case (let x = s in t) We need to show that (S2 ◦ S1)Γ s̀ let x = s in t : A2.

By induction, we have S1Γ s̀ s : A1 and S2(S1Γ, x : S1Γ(A1)) s̀ t : A2.

By Proposition 2.4.1, we have S2(S1Γ) s̀ s : S2A1.

By Proposition 2.4.2, we have S2(S1Γ), x : S2(S1Γ)(S2A1) s̀ t : A2.

By Lets, we have S2(S1Γ) s̀ let x = s in t : A2. Since S2(S1Γ) = (S2 ◦ S1)Γ

by definition, we have (S2 ◦ S1)Γ s̀ let x = s in t : A2.

Proposition 2.4.3 (Abss inverse). Γ s̀ λx.t : A→ B
Γ, x : A s̀ t : B

Proposition 2.4.4 (Apps inverse). Γ s̀ t s : B
∃A. (Γ s̀ t : A→ B ∧ Γ s̀ s : A)

Proposition 2.4.5 (Lets inverse). Γ s̀ let x = s in t : B
∃A.

(
Γ s̀ s : A ∧ Γ, x : Γ(A) s̀ t : B

)
Theorem 2.4.4 (Completeness of W).

For any Γ and t, there exist S ′, where dom(S ′) ⊆ FV(Γ), and A′ such that

S ′Γ s̀ t : A′
W (Γ, t) (S,AW) ∧ ∃R.

(
S ′Γ = R(SΓ) ∧ R(SΓ(AW)) v A′

)
Proof. See Appendix A.

Corollary 2.4.1 (Completeness of W under closed context).
Γ s̀ t : A′ FV(Γ) = ∅

W (Γ, t) (S,A) ∧ ∃R.R(Γ(A)) v A′

Proof. By Theorem 2.4.4 and the fact that S ′Γ = Γ for any S ′ when FV(Γ) = ∅.

90

Part II

Mendler style

91

Chapter 3

MENDLER-STYLE RECURSION SCHEMES

In this chapter, we explore a family of terminating recursion combinators of Mendler

style. These combinators behave well over a wide class of recursive datatypes.

This chapter is a revised and extended version of the conference paper by Ahn and

Sheard [6]. Here, the names of Mendler-style recursion combinators are different

from those in the paper to make the names consistent throughout the dissertation:

mit, msfit, mcvit, and msfcvit correspond to mcata, msfcata, mhist, and msfhist

in the paper. In addition, we introduce several more families of recursion combi-

nators (mpr, mcvit, mcvpr) and a new example using msfit over an indexed

datatype,1 which are not present in the conference paper.

This chapter gives the reader an intuitive understanding of Mendler-style re-

cursion combinators, rather than providing a rigorous formulation of the theories

behind Mendler style. The discussions in this chapter are guided by a series of ex-

amples (and some semi-formal proofs) written in a certain style of Haskell, which

assumes certain conventions (see Section 3.1). Haskell is a real world functional

programming language [72], which admits a certain level of formality since it is a

pure functional language. More rigorous formulations of the background theory

used to formalize Mendler style will come in the following chapters (Chapter 4 and

Chapter 5).

1 The type signature of msfit∗→∗ and the definition of the µ̆∗→∗ datatype is different from
the type signature of msfcata1 and the definition of µ̆∗→∗ datatype in the paper. msfcata1 does
type check but its type sigature was too restrictive to write any useful examples. Here, we give
a more flexible type signature and defintion for msfit∗→∗ and µ̆∗→∗ so that we can write useful
examples with them.

92

3.1 INTRODUCTION

The functional programming community has traditionally focused on a style of

recursion combinators that works well in Hindley–Milner languages. One well-

known combinator is called fold (a.k.a. catamorphism or iteration). We explore

a more expressive style called Mendler style. Mendler-style recursion combinators

were originally developed in the context of the Nuprl [25] type system. Nuprl

made extensive use of dependent types and higher-rank polymorphism. General

type checking in Nuprl was done by interactive theorem proving – not by type

inference. Mendler-style combinators are considerably more expressive than the

conventional combinators of the Squiggol [13] school in two aspects: (1) Mendler-

style combinators are well behaved (i.e., they guarantee termination) over a wider

range of recursive datatypes and (2) Mendler-style combinators are uniformly de-

fined over non-regular datatypes. An historical perspective on Mendler style is

summarized in Section 3.1.2.

Recently, Mendler-style recursion combinators have been studied in the con-

text of modern functional languages with advanced type system features, includ-

ing higher-rank polymorphism and generalized algebraic datatypes. This chapter

extends that work by

F Illustrating that Mendler-style approach applies to useful examples of neg-

ative datatypes, through case studies on HOAS (Section 3.9.1 and Sec-

tion 3.9.3),

FExtending Mendler-style iteration by using the inverse trick (msfit) (Sec-

tion 3.9.1), which was first described by Fegaras and Sheard [32] and later

refined by Washburn and Weirich [96] in conventional style,

FUsing msfit over an indexed datatype to evaluate a simply-typed HOAS

(Section 3.9.3), which clearly exemplifies the advantages of Mendler style

over conventional style,

93

• Providing an intuitive explanation of why Mendler-style iteration ensures

termination (Section 3.4) even for negative datatypes (Section 3.6). We

illustrate a semi-formal proof of termination by encoding msfit in the Fω
fragment of Haskell (Figure 3.23 in Section 3.10),

FProviding an intuitive explanation of why Mendler-style course-of-values it-

eration terminates for positive datatypes (Section 3.5), but may fail to termi-

nate for negative datatypes (Section 3.6), by illustrating a counter-example

that obviously fails to terminate,

• Organizing a large class of Mendler-style recursion combinators into an in-

tuitive hierarchy, of increasing generality, that is expressive enough to cover

regular datatypes (Section 3.2, Section 3.5), nested datatypes (Section 3.7.1),

indexed datatypes (GADTs) (Section 3.7.2), mutually recursive datatypes

(Section 3.7.3), and negative datatypes (Section 3.6, Section 3.9.1), and

• Providing a detailed set of examples, all written in Haskell, illustrating two

versions (one with general recursion and one with a Mendler-style recursion

combinator) side by side, in order to illustrate the usage of each family of

recursion combinators.

The F-items are original contributions, and the others are collective observations

of common patterns arising from the study of both previously known combinators

and our new combinators.

In this chapter, we demonstrate the Mendler-style combinators in the Glasgow

Haskell Compiler [88] (GHC) dialect of Haskell. However, this demonstration

depends on a set of conventions, because we want to control the source of non-

termination. We assert that all our code fragments conform with our conventions.

These conventions include:

1. all values of algebraic datatypes are finite (i.e., do not use laziness to build

infinite structures),

94

2. certain conventions of data abstraction that are not enforced by Haskell (i.e.,

treating the recursive type operator µ, and the recursion combinators, as

primitive constructs, rather than user-defined constructs), and

3. other sources of non-termination are delineated (e.g., not allowed to use

general recursion in user-defined datatypes and functions, pattern matching

can only be done through the recursion combinators).

Mendler-style combinators operate on types defined in two levels, i.e., two-level

types (see Section 3.2). Two-level types are characterized by splitting the definition

of a recursive type into a generating functor (or a base datatype) and an explicit

application of the appropriate datatype fixpoint operator (µ). There exists an

infinite series of datatype fixpoint operators for each different kind (e.g., µ∗, µ∗→∗).

In this chapter, we illustrate the Mendler-style recursion combinators only at the

two simplest kinds, ∗ and ∗ → ∗.

3.1.1 Background - Termination and Negativity

Mendler [64] showed that diverging computations can be expressed using recursive

datatypes with negative occurrences of the datatype being defined. No explicit

recursion at the value level is required to elicit non-termination. We can illustrate

this in Haskell as follows:

data T = C (T → ())

p :: T → (T → ())

p (C f) = f

w :: T → ()

w x = (p x) x

w (C w)

 (p (C w)) (C w))

 w (C w)

 (p (C w)) (C w))

 · · ·

On the left is a data definition of the negative datatype T and the non-recursive

functions p and q. On the right is a diverging computation (denotes reduction

steps).

95

Note the term w (C w) :: T diverges even though the functions p and w are

non-recursive. The cause of this divergence can be attributed to the “hidden” self

application in the term w (C w)::T . The negative occurrence of T in the datatype

definition of T is what enables this self application to be well typed.

For this reason, many systems (e.g., Hagino’s CPL [43] and Coq [75]) require all

recursive datatypes to be positive (or covariant) in order to ensure normalization.

Uustalu and Vene [90] call this style, limiting recursive occurrences to positive

positions, the conventional style, in contrast to what they name Mendler style

[65].

In Mendler style, datatypes are not limited to recurse over positive occur-

rences, yet functions expressible via iteration (a.k.a. catamorphism) always termi-

nate. This was first reported by Uustalu [89] and Matthes [59], but the search

for exciting examples of negative datatypes was postponed (considering it “may

have a theoretical value only”[90]). Subsequent work [4, 5, 92, 94], that pioneered

Mendler style in practical functional programming also failed to produce good

examples that make use of negative datatypes in Mendler style.

In the functional programming community, there are both well-known and use-

ful examples of negative (or mixed-variant) datatypes (e.g., delimited control[82]2).

One of the classic examples is HOAS [21, 76]. A non-standard definition of HOAS

in Haskell is:3 data Exp = Lam (Exp → Exp) | App Exp Exp | Var String. We

can define a function showExp :: Exp → String that formats an HOAS expression

into a string. For example,

showExp (Lam (λx → x)) "(\a->a)"

showExp (Lam (λx → App x x)) "(\a->(a a))"

2 A Haskell datatype definition for this can be found at
http://lists.seas.upenn.edu/pipermail/types-list/2004/000267.html
3 The datatype Exp here is a HOAS-like structure specialized to String type. The stan-

dard definition of HOAS, which omits the Var constructor, makes it more challenging to define
showExp, as we shall see in Section 3.9.1.

http://lists.seas.upenn.edu/pipermail/types-list/2004/000267.html

96

The function showExp is total, provided the function values embedded in the Lam

data constructor are total. We will illustrate that this example (which involves a

negative datatype) and many other examples that involve non-regular datatypes

and mutually recursive datatypes can all be easily written using Mendler-style

recursion combinators, whose termination properties are known. A Detailed case

study of how to express this function using our Mendler-style iteration extended

with syntactic inverses is presented in Section 3.9.1.

3.1.2 Historical progression

Mendler [64] discovered an interesting way of formalizing primitive recursion, which

was later dubbed “Mendler style”, while he was formalizing a logic that extended

System F with primitive recursion. Interestingly, Mendler did not seem to notice

(or maybe just did not bother to mention) that his style of formalizing primitive

recursion also guaranteed normalization for non-positive recursive types – Mendler

required recursive types to be positive in his extension of System F. A decade

later, Matthes [59] and Uustalu [89] noticed that Mendler never used the positivity

condition in his proof of strong normalization.

Abel and Matthes [3] generalized Mendler’s primitive recursion combinator [64]

into a family of combinators that are uniformly defined for type constructors of

arbitrary kinds. This was necessary for handling nested datatypes. Their system

extends System Fω (Mendler [64] extends System F). The notion of a kind indexed

family of Mendler combinators has now become the norm.

Abel and Matthes [3] proved strong normalization of their language MRec,

which extends System Fω by adding a family of kind-indexed Mendler-style prim-

itive recursion combinators. They showed that MRec has a reduction preserving

embedding into a calculus they called Fixω. Then, they showed that Fixω is strongly

normalizing.

Abel, Matthes, and Uustalu [4, 5] studied a kind-indexed family of iteration

97

combinators, along with examples involving nested datatypes that make use of

those combinators. Iteration (a.k.a. catamorphism) is a recursion scheme that has

the same computational power as primitive recursion (i.e., both can be defined in

terms of each other), but has different algorithmic complexity.

It is strongly believed that primitive recursion is more efficient than iteration.

For instance, it is trivial to define a constant time predecessor for natural numbers

with primitive recursion, but it is believed impossible to define the constant time

predecessor with iteration. The Mendler-style iteration family can be embedded

into Fω in a reduction preserving manner. That is, we can encode the family

of Mendler-style iteration combinators into Fω in such a way that the number

of reduction steps of the original and the embedding differ only by a constant

number of steps. The primitive recursion family, in contrast, is not believed to

have a reduction preserving embedding into Fω. Abel and Matthes [3] needed a

more involved embedding of MRec into Fixω, which has a richer structure than Fω.

Although Matthes, Uustalu, and others were well aware of the fact that the

Mendler-style iteration family and the primitive recursion family both normalize

for negative recursive types, they did not explore or document actual examples.

They postponed “the search for exciting examples of negative recursive types”.

They stated that the normalization of negative types “may have a theoretical value

only”[90]. So, until recently, the study of Mendler-style recursion combinators has

focused on examples of positive recursive types possibly with type indices (but not

term-indices).

Recently, we developed several new contributions to the study of the Mendler-

style recursion schemes [6].4 These contributions fall into three broad categories:

• discovered a new family of Mendler-style recursion combinators (Section 3.9),

which normalizes for negative recursive types and is believed to be more

expressive than the Mendler-style iteration family,

4 This chapter is a revised and extended version of this ICFP paper.

98

• discovered a counterexample, which proves that some families of Mendler-

style recursion combinators do not normalize for negative datatypes but only

normalize for positive datatypes (Section 3.6), and

• explored the use of Mendler-style recursion combinators over (almost) term-

indexed types (i.e., GADTs) (Section 3.7.2).

3.1.3 Roadmap to a tour of the Mendler-style approach

In this subsection, we give an overview of the Mendler-style approach, to orient

the reader to navigate the following sections.

First, we introduce the Mendler-style iteration (mit. a.k.a. catamorphism)

(Section 3.4) and course-of-values iteration (mcvit. a.k.a. histomorphism) (Sec-

tion 3.5) combinators at kind ∗, that is, for (non-mutually recursive) regular

datatypes (Section 3.2). We also give an intuitive explanation why these Mendler-

style recursion combinators ensure termination for positive datatypes.

In Section 3.6, we discuss why the Mendler-style iteration (mit) ensures ter-

mination even for negative datatypes, while the Mendler-style course-of-values it-

eration (mcvit) can only ensure termination for positive datatypes.

Then, we move our focus from non-mutually recursive regular datatypes to

more expressive datatypes (Section 3.7), which require recursion combinators at

kind ∗ → ∗. We provide several examples of non-regular datatypes including

nested datatypes (Section 3.7.1) and indexed datatypes (GADTs) (Section 3.7.2),

which illustrate the use of the Mendler-style iteration (mit) and course-of-values

iteration (mcvit) at kind ∗ → ∗. We also provide some examples that show how

to encode mutually recursive datatypes using indexed datatypes (Section 3.7.3).

In Section 3.8, we introduce the Mendler-style primitive recursion (mpr) and

course-of-values recursion (mcvpr). These two combinators mpr and mcvpr are

equivalent to mit and mcvit, respectively, in terms of computability, but often

lead to more efficient implementations.

99

In Section 3.9, we introduce a new Mendler-style family (msfit), which we

discovered, and illustrate its expressiveness over negative datatypes by presenting

the case study on formatting HOAS (Section 3.9.1) and evaluating simply-typed

HOAS (Section 3.9.3)

Finally, we summarize the properties of Mendler-style recursion combinators in

Section 3.10.

All of our results are summarized in Figures 3.1, 3.2, and 3.3. In Figure 3.1, we

define the Mendler-style datatype fixpoint operators (i.e., µ∗ and µ∗→∗). These are

datatype definitions in Haskell that take type constructors as arguments. They are

used to tie the recursive knot through the generating functor (or base datatype)

that they take as an argument.

In Figure 3.2, we provide the types of 8 Mendler-style combinators distributed

over the two kinds that we consider, along with the type of a conventional iteration

combinator for comparison. The combinators can be organized into a hierarchy of

increasing generality. By juxtaposing the types of the combinators, it looks clear

where in the hierarchy each combinator appears and how each is related to the

others.

In Figure 3.3, we define the combinators themselves, again distributed over two

kinds. The definitions of the corresponding combinators at two kinds are textually

identical, although they must be given different types at each kind.

In addition to the Mendler-style recursion combinators in Figures 3.2 and 3.3,

we introduce Mendler-style primitive recursion (mpr) and course-of-values recur-

sion (mcvpr) in Section 3.8.

In Figures 3.5, 3.6, 3.9, 3.10, and 3.11, we provide examples5 selected for each

of the combinators mit∗, mcvit∗, mit∗→∗, and mcvit∗→∗. We provide examples

using the mpr and mcvpr families in Section 3.8. We discuss the remaining

combinators of the inverse-augmented fixpoints in Section 3.9.1 and Section 3.9.3,

5Some of the examples (Figures 3.5, 3.6, and 3.9) are adopted from [4, 5, 92, 94].

100

ne
w

ty
pe

µ
∗

(f
::
∗

→
∗

)
=

In
∗
{o

ut
∗

::
f

(µ
∗

f)
}

ne
w

ty
pe

µ
∗→
∗

(f
::

(∗
→
∗)
→

(∗
→
∗)

)
i

=
In
∗→
∗
{o

ut
∗→
∗

::
f

(µ
∗→
∗

f)
i}

da
ta

µ̆
∗

(f
::
∗

→
∗

)(
a

::
∗)

=
In̆
∗
{ŏ

ut
∗

::
f

(µ̆
∗

f
a)

}
|I

nv
er

se
∗

a

da
ta

µ̆
∗→
∗

(f
::

(∗
→
∗)
→

(∗
→
∗)

)(
a

::
∗
→
∗)

i
=

In̆
∗→
∗
{ŏ

ut
∗→
∗

::
f

(µ̆
∗→
∗

f
a)

i}
|I

nv
er

se
∗→
∗

(a
i)

Fi
gu

re
3.

1:
St

an
da

rd
(µ

)
an

d
in

ve
rs

e-
au

gm
en

te
d

(µ̆
)

da
ta

ty
pe

fix
po

in
ts

at
ki

nd
s
∗

an
d
∗
→
∗.

ab
st

ra
ct

in
ve

rs
e

ab
st

ra
ct

un
ro

ll
ab

st
ra

ct
re

cu
rs

iv
e

ca
ll

co
m

bi
ni

ng
fu

nc
ti

on
in

pu
t

va
lu

e
an

sw
er

ca
ta

::
Fu

nc
to

r
f
⇒

(
(f

a
→

a
))
→

µ
∗

f
→

a

m
it
∗

::
(∀

r.
(

r
→

a
)→

(f
r

→
a

))
→

µ
∗

f
→

a

m
it
∗→
∗

::
(∀

r
i.

(∀
i.r

i
→

a
i)
→

(f
r

i
→

a
i)

)→
µ
∗→
∗

f
i
→

a
i

m
cv

it
∗

::
(∀

r.
(

r
→

f
r

)→
(

r
→

a
)→

(f
r

→
a

))
→

µ
∗

f
→

a

m
cv

it
∗→
∗

::
(∀

r
i.

(∀
i.

r
i
→

f
r

i
)→

(∀
i.r

i
→

a
i)
→

(f
r

i
→

a
i)

)→
µ
∗→
∗

f
i
→

a
i

m
sfi

t ∗
::

(∀
r.

(
a
→

r
a

)→
(

r
a
→

a
)→

(f
(r

a)
→

a
))
→

(∀
a.
µ̆
∗

f
a

)→
a

m
sfi

t ∗
→
∗

::
(∀

r
i.(
∀i
.a

i→
r

a
i)
→

(∀
i.r

a
i→

a
i)
→

(f
(r

a)
i→

a
i)

)→
(∀

a.
µ̆
∗→
∗

f
a

i)
→

a
i

m
sf

cv
it
∗

::
(∀

r.
(

a
→

r
a

)→
(∀

a.
r

a
→

f
(r

a)
)→

(
r

a
→

a
)→

(f
(r

a)
→

a
))
→

(∀
a.
µ̆
∗

f
a

)→
a

m
sf

cv
it
∗→
∗

::
(∀

r
i.(
∀i
.a

i→
r

a
i)
→

(∀
a

i.r
a

i→
f

(r
a)

i)
→

(∀
i.r

a
i→

a
i)
→

(f
(r

a)
i→

a
i)

)→
(∀

a.
µ̆
∗→
∗

f
a

i)
→

a
i

Fi
gu

re
3.

2:
Ty

pe
sig

na
tu

re
s

of
re

cu
rs

io
n

co
m

bi
na

to
rs

.
N

ot
e

th
e

he
av

y
us

e
of

hi
gh

er
-r

an
k

ty
pe

s.

101

ca
ta

s
(In
∗

x)
=

s
(f

m
ap

(c
at

a
s)

x)

m
it
∗

ϕ
(In
∗

x)
=
ϕ

(m
it
∗
ϕ

)
x

m
it
∗→
∗

ϕ
(In
∗→
∗

x)
=
ϕ

(m
it
∗→
∗
ϕ

)
x

m
cv

it
∗

ϕ
(In
∗

x)
=
ϕ

ou
t ∗

(m
cv

it
∗
ϕ

)
x

m
cv

it
∗→
∗
ϕ

(In
∗→
∗

x)
=
ϕ

ou
t ∗
→
∗

(m
cv

it
∗→
∗
ϕ

)x

m
sfi

t ∗
ϕ

r
=

m
sfi

t
ϕ

r
w

he
re

m
sfi

t
ϕ

(In̆
∗

x)
=
ϕ

In
ve

rs
e ∗

(m
sfi

t
ϕ

)
x

m
sfi

t
ϕ

(In
ve

rs
e ∗

z)
=

z

m
sfi

t ∗
→
∗
ϕ

r
=

m
sfi

t
ϕ

r
w

he
re

m
sfi

t:
:(
∀r

i.
(∀

i.a
i→

r
a

i)

→
(∀

i.r
a

i→
a

i)

→
(f

(r
a)

i→
a

i)
)→

µ̆
∗→
∗

f
a

i→
a

i

m
sfi

t
ϕ

(In̆
∗→
∗

x)
=
ϕ

In
ve

rs
e ∗
→
∗

(m
sfi

t
ϕ

)
x

m
sfi

t
ϕ

(In
ve

rs
e ∗
→
∗

z)
=

z

m
sf

cv
it
∗

ϕ
r

=
m

sf
cv

it
ϕ

r
w

he
re

m
sf

cv
it

::
(∀

r.
(a
→

r
a)

→
(∀

a.
r

a
→

f
(r

a)
)

→
(r

a
→

a)

→
(f

(r
a)
→

a)
)→

µ̆
∗

f
a
→

a

m
sf

cv
it
ϕ

(In̆
∗

x)
=
ϕ

In
ve

rs
e ∗

ŏu
t ∗

(m
sf

cv
it
ϕ

)x

m
sf

cv
it
ϕ

(In
ve

rs
e ∗

z)
=

z

m
sf

cv
it
∗→
∗
ϕ

r
=

m
sf

cv
it
ϕ

r
w

he
re

m
sf

cv
it

::
(∀

r
i.

(∀
i.a

i→
r

a
i)

→
(∀

a
i.r

a
i→

f
(r

a)
i)

→
(∀

i.r
a

i→
a

i)

→
(f

(r
a)

i→
a

i)
)→

µ̆
∗→
∗

f
a

i→
a

i

m
sf

cv
it
ϕ

(In̆
∗→
∗

x)
=
ϕ

In
ve

rs
e ∗
→
∗

ŏu
t ∗
→
∗

(m
sf

cv
it
ϕ

)x

m
sf

cv
it
ϕ

(In
ve

rs
e ∗
→
∗

z)
=

z

Fi
gu

re
3.

3:
D

efi
ni

tio
ns

of
re

cu
rs

io
n

co
m

bi
na

to
rs

.N
ot

et
he

id
en

tic
al

te
xt

ua
ld

efi
ni

tio
ns

of
th

es
am

eo
pe

ra
to

rs
at

di
ffe

re
nt

ki
nd

s,
bu

t
w

ith
ty

pe
s

sp
ec

ia
liz

ed
fo

r
th

at
ki

nd
.

102

where we culminate with examples involving HOAS. We have structured each of

the examples into two, side by side, parts. On the left, we provide a general

recursive version and on the right, a Mendler-style version.

3.2 DEFINING REGULAR RECURSIVE DATATYPES

In the Mendler-style approach, we define recursive datatypes as fixpoints of non-

recursive base datatypes. For example, the following are definitions of the natural

number type in general recursion style (left) and in Mendler style (right).

data Nat

= Z

| S Nat

data N r = Z | S r

type Nat = µ∗ N

zero = In∗ Z

succ n = In∗ (S n)

Note, in Mendler style, we define Nat by applying the fixpoint µ∗ to the base N .

The type argument r in the base N is intended to denote the points of recursion

in the recursive datatype. Here, we have only one point of recursion at S , the suc-

cessor data constructor. Then, we define the shorthand constructors zero and succ

(on the right), which correspond to the data constructors Z and S of the natural

number datatype in the general recursive encoding (on the left). We can express

the number 2 as S (S Z) in the general recursive encoding and succ (succ zero) or

In∗ (S (In∗ (S (In∗ Z)))) in the Mendler-style encoding.

We can also define parameterized datatypes, such as lists, in Mendler style,

using the same datatype fixpoint µ∗, provided that we consistently order the pa-

rameter arguments (p) to come before the type argument that denotes the recursion

points (r) in the base datatype definition (L p r):

data List p

= N

| C p (List p)

data L p r = N | C p r

type List p = µ∗ (L p)

nil = In∗ N

cons x xs = In∗ (C x xs)

103

We define List p as µ∗ (L p), which is the fixpoint of the partial application of the

base L to the parameter p. We can express the integer list with two elements 1

and 2 as C 1 (C 2 N) in the general recursive encoding, and cons 1 (cons 2 nil) or

In∗ (C 1 (In∗ (C 2 (In∗ N)))) in the Mendler-style encoding.

3.3 CONVENTIONAL ITERATION FOR REGULAR DATATYPES

The conventional iteration6 is defined on the very same fixpoint, µ∗, as in Mendler

style, provided that the base datatype f is a functor. This, more widely known

approach [43], was independently developed at about the same time as Mendler

style.

The additional requirement that the base datatype (f) is a functor shows up

as a type class constraint (Functor f) in the type signature of the conventional

iteration combinator cata:

cata :: Functor f ⇒ (f a → a)→ µ∗ f → a (Figure 3.2).

This is necessary because cata is defined in terms of fmap, which is a method of

the Functor class:

cata ϕ (In∗ x) = ϕ (fmap (cata ϕ) x) (Figure 3.3).

The combinator cata takes a combining function ϕ :: f a → a, which assumes

the recursive subcomponents (e.g., tail of the list) have already been turned into

a value of answer type (a) and combines the overall result.

A typical example of iteration is the list length function. We can define the

list length function lenc in conventional style, as in Figure 3.4, which corresponds

to the list length function len in general recursion style on the left-hand side of

Figure 3.5. Of course, we need the functor instance for the base L p, which properly

defines fmap, to complete the definition.

The conventional iteration is widely known, especially on the list type, as foldr .

6Also known as catamorphism. In Haskell-ish words, foldr on lists generalized to other
datatypes.

104

lenc :: List p → Int

lenc = cata ϕ where

ϕ N = 0

ϕ (C x xslen) = 1 + xslen

instance Functor (L p) where

fmap f N = N

fmap f (C x xs) = C x (f xs)

Figure 3.4: cata example: list length function.

data List p

= N

| C p (List p)

len :: List p → Int

len N = 0

len (C x xs) = 1 + len xs

data L p r = N | C p r

type List p = µ∗ (L p)

nil = In∗ N

cons x xs = In∗ (C x xs)

lenm :: List p → Int

lenm = mit∗ ϕ where

ϕ len N = 0

ϕ len (C x xs) = 1 + len xs

Figure 3.5: mit∗ example: list length function.

This conventional iteration is more often used than the Mendler-style iteration, but

it does not generalize easily to more exotic datatypes such as nested datatypes and

GADTs.

3.4 MENDLER-STYLE ITERATION FOR REGULAR DATATYPES

The Mendler-style iteration combinator mit∗ lifts the restriction that the base type

must be a functor, but still maintains the strict termination behavior of cata. This

restriction is lifted by using two devices.

• The combining function ϕ becomes a function of two arguments rather than

one. The first argument is a function that represents a recursive caller, and

the second is the base structure that must be combined into an answer. The

105

recursive caller allows the programmer to direct where recursive calls must

be made. The Functor class requirement is lifted, because the definition of

mit∗ does not rely on fmap:

mit∗ ϕ (In∗ x) = ϕ (mit∗ ϕ) x

• The second device is the use of higher-rank polymorphism to insist that the

recursive caller, with type (r → a), and the base structure, with type (f r),

work over an abstract type, denoted by (r).

mit∗ :: (∀r .(r → a)→ (f r → a))→ µ∗ f → a

Under what conditions do mit∗ calls always terminate? Although we defined

µ∗ as a newtype and mit∗ as a function in Haskell, you should consider them as

an information hiding abstraction. The rules of the game (which will be enforced

by the language design of Nax) require programmers to construct recursive values

using the In∗ constructor (as in zero, succ, nil, and cons), but forbid programmers

from deconstructing those values by pattern matching against In∗ (or by using

the selector function out∗). Whenever you need to decompose values of recursive

datatypes, you must do it via mit∗ (or any of the other terminating Mendler-

style combinators). To conform to these rules, all functions over positive recursive

datatypes, except the trivial ones such as identity and constant functions (which

don’t inspect their structure), need to be implemented in terms of the combinators

described in Figure 3.2. For negative recursive datatypes only the combinators in

the iteration family ensure termination.

The intuitive reasoning behind the termination property of mit∗ for all positive

recursive datatypes is that (1) mit∗ strips off one In∗ constructor each time it is

called and (2) mit∗ only recurses, on the direct subcomponents (e.g., tail of a list)

of its argument (because the type of the recursive caller won’t allow it to be applied

to anything else). Once we observe these two properties, it is obvious that mit∗
always terminates since those properties imply that every recursive call to mit∗

106

decreases the number of In∗ constructors in its argument.7

The first property is easy to observe from the definition of mit∗ in Figure 3.3,

particularly the pattern matching of the second argument with (In∗ x). The second

property is enforced by the parametricity in the type of the combining function ϕ

of the mit∗ combinator as shown in Figure 3.2,

In Figure 3.5, we redefine the length function (lenm on the right), this time using

a Mendler-style iteration. In the definition of lenm, we name the first argument of

ϕ, which is the recursive caller, as len. We use this len exactly where we would

recursively call the recursive function in general recursion style (len on the left).

However, unlike general recursion style, it is not possible to call len :: r → Int

on anything other than the tail xs :: r . Using general recursion, we could easily err

(by mistake or by design) causing length to diverge, if we wrote its second equation

as follows: len (C x xs) = 1 + len (C x xs).

We cannot encode such diverging recursion in Mendler style because len :: r →

Int requires its argument to have the parametric type r , while (C x xs) :: L p r has

a more specific type than r . The parametricity enforces weak structural induction.

The scheme of having the combining function ϕ abstract over the recursive

caller len is a powerful one. We will reuse this strategy, generalizing ϕ to abstract

over additional arguments, in order to generalize mit∗ to become more expressive.

3.5 MENDLER-STYLE COURSE-OF-VALUES ITERATION FOR REG-

ULAR DATATYPES

Some computations are not easily expressible by iteration, since iteration only

recurses on the direct subcomponents (e.g., tail of a list). Terminating recursion

schemes on deeper subcomponents (e.g., tail of a tail of a list) requires rather

7 We assume that the values of recursive types are always finite. We can construct infinite
values (or co-recursive values) in Haskell by exploiting laziness, but we exclude such infinite
values from our discussion in this work.

107

complex encodings in the conventional setting. Functional programmers often

write recursive functions using nested pattern matching that recurse on deeper

subcomponents exposed by the nested patterns. A typical example is the Fibonacci

function:

fib Z = 0

fib (S Z) = 1

fib (S (S m)) = fib (S m) + fib m

Note in the third equation fib recurses on both the predecessor (S m), which is a

direct subcomponent of the argument, and the predecessor of the predecessor m,

which is a deeper subcomponent of the argument. Histomorphism [91] captures

such patterns of recursion. Histomorphism is also known as the course-of-values

iteration. In conventional style, the course-of-values iteration is defined through a

co-algebraic construction of an intermediate stream data structure that pairs up the

current argument and the results from the previous steps. There are two ways of

implementing this. One is a memoizing bottom-up version and the other is a non-

memoizing version that repeats the computation of the previous steps. We are not

going to show or discuss those implementations here, but the point we want to make

is that both versions need to be implemented through co-algebraic construction

[92, 94]. The course-of-values iteration expressed in terms of this co-algebraic

construction will look very different from its equivalent in general recursion style.

One needs to extract both the original arguments and the deep result values from

the stream explicitly calling on stream-head and stream-tail operations. However,

in Mendler style, we do not need such co-algebraic construction at least for the

non-memoizing version.8

8 The Mendler-style histormophism combinators implemented here are the non-memoizing
ones. Vene [94] suggests how to implement a memoizing Mendler-style histomorphism, which
uses co-algebraic construction.

108

In the Mendler-style course-of-values iteration (mcvit), we play the same trick

we played in the Mendler-style iteration (mit). We arrange for the combining

function to take additional arguments (Figures 3.2 and 3.3).

• The combining function ϕ now becomes a function of 3 arguments. The first

argument is a function that represents an abstract unrolling function that

projects out the value embedded inside the data constructor In∗ by accessing

the projection function out∗ given in the definition. As in mit∗, the next

argument represents a recursive caller, and the last argument represents the

base structure that must be combined into an answer.

mcvit∗ ϕ (In∗ x) = ϕ out∗ (mcvit∗ ϕ) x

• Again, we use higher-rank polymorphism to insist that the abstract unrolling

function, with type (r → f r), the recursive caller function, with type (r →

a), and the base structure, with type (f r), only work over an abstract type,

denoted by (r).

mcvit∗ :: (∀r .(a → f a)→ (r → a)→ (f r → a))→ · · ·

The Mendler-style course-of-values iteration is much handier than the conven-

tional course-of-values iteration [92]. For example, in Figure 3.6, the definition

of the Fibonacci function in general recursion style (left) and the definition in

Mendler style (right) look almost identical, particularly when we have unrolled the

nested pattern matching in the general recursive definition into a case expression.

The only difference between the two is that in Mendler style (left), we pattern

match over out n in the case expression, while in general recursion style (right) we

pattern match over n.

Let us visually relate the definition of mcvit∗ with the second equation of ϕ in

the definition of the Fibonacci function as follows:

mcvit∗ ϕ (In∗ x) = ϕ out∗ (mcvit∗ ϕ) x
...

109

data Nat

= Z

| S Nat

fib Z = 0

fib (S n) =

case n of

Z → 1

S n′ → fib n + fib n′

data N r = Z | S r

type Nat = µ∗ N

zero = In∗ Z

succ n = In∗ (S n)

fibm = mcvit∗ ϕ where

ϕ out fib Z = 0

ϕ out fib (S n) =

case out n of

Z → 1

S n′ → fib n + fib n′

Figure 3.6: mcvit∗ example: Fibonacci function.

ϕ out fib (S n) = case out n of
Z → 1
S n′ → fib n + fib n′

The abstract unrolling function out and the recursive caller fib stand for the actual

arguments out∗ and (mcvit∗ ϕ), but the higher-rank type of the combining func-

tion ϕ ensures that they are only used in a safe manner. The abstract unrolling

function out enables us to discharge In∗ as many times as we want inside ϕ.

From the programmer’s perspective, out∗ is a hidden primitive, hidden by the

mcvit∗ abstraction (i.e., only used within the definition of combinators such as

mcvit∗ but not in the user-defined functions). But, inside the definition of the

combining function ϕ, the programmer can actually access the functionality of out∗
through the abstract unrolling function out. The higher-rank types limit the use

of this abstract unrolling function out to values of type r .

In a positive recursive datatype, the only functions with domain r are the

abstract unroller and the recursive caller. The programmer can only whittle down

the r values inside the base structure, of type (f r), into smaller structures, of type

110

(f r). The programmer can then decompose these into even smaller r values by

pattern matching against the data constructors of the base structure f . However,

there is no way to combine any of these decomposed r values to build up larger r

values. The only possible use of the decomposed r values is to call the recursive

caller, with type (r → a).

For example, in Figure 3.6, we pattern match over (out n), discharging the

hidden In∗ constructor of n. Note the types inside the (S n′) pattern matching

branch: n :: r ; (out n) :: (N r); and n′ :: r . What can we possibly do with n and n′,

of type r? The only possible computation is to call fib :: r → Int on n and n′, as

we do in fib n + fib n′. It is a type error to call fib :: r → Int on either (S n) :: N r

or (S n′) :: N r . This is why the termination property of mcvit∗ continues to

hold for positive datatypes. In Section 5.3, We discuss further when Mendler-style

course-of-values recursion is guaranteed to terminate.

For negative datatypes, however, we have additional functions with domain r .

Inside the ϕ function passed to mcvit∗, the embedded functions with negative

occurrences will have type r as their domain. These can be problematic, as shown

in Figure 3.7, which contains the counterexample to the termination of mcvit∗.

In the following section (Section 3.6), we will discuss why the mcvit family fails

to guarantee termination for negative datatypes while the mit family guarantees

termination for arbitrary datatypes including negative datatypes.

3.6 MENDLER-STYLE ITERATION AND COURSE-OF-VALUES IT-

ERATION OVER NEGATIVE DATATYPES

Let us revisit the negative recursive datatype T (from Section 3.1.1) from which

we constructed a diverging computation. We can define a Mendler-style version of

T , called Tm, as follows:

data TBase r = Cm (r → ())

type Tm = µ∗ TBase

111

If we can write two functions, pm :: Tm → (Tm → ()) and wm :: Tm → (), corre-

sponding to p and w from Section 3.1.1, we can reconstruct the same diverging

computation. The function

wm x = (pm x) x

is easy. The function pm is problematic. By the rules of the game, we cannot

pattern match on In∗ (or use out∗) and thus we must resort to using one of the

combinators, such as mit∗. However, it is not possible to write pm in terms of

mit∗. Here is an attempt (seemingly the only one possible) that fails:

pm :: Tm → (Tm → ())

pm = mit∗ ϕ where

ϕ :: (r → (Tm → ()))→ TBase r → (Tm → ())

ϕ (Cm f) = f

We write the explicit type signature for the combining function ϕ (even though

the type can be inferred from the type of mit∗) to make it clear why this attempt

fails to type check. The combining function ϕ takes two arguments: the recursive

caller (for which we have used the pattern , since we don’t intend to call it) and

the base structure (Cm f), from which we can extract the function f :: r → ().

Note that r is an abstract type (since it is universally quantified in the function

argument), and the result type of ϕ requires f :: Tm → (). The types r and Tm can

never match if r is to remain abstract. Thus, pm fails to type check.

There is a function, with the right type, that you can define:

pconst :: Tm → (Tm → ())

pconst = mit∗ ϕ where ϕ g (C f) = const ()

Given the abstract pieces composed of the recursive caller g :: r → (), the base

structure (C f) ::TBase r , and the function we can extract from the base structure

f :: r → (), the only function (modulo extensional equivalence) one is able to write

is, in fact, the constant function returning the unit value.

112

This illustrates the essence of how the Mendler-style iteration guarantees nor-

malization even in the presence of negative occurrences in the recursive datatype

definition. By quantifying over the recursive type parameter of the base datatype

(e.g., r in TBase r), it prevents an embedded function with a negative occurrence

from flowing into any outside terms (especially terms embedding that function).

Given these restrictions, the astute reader may ask the following. Are types

with embedded functions with negative occurrences good for anything at all? Can

we ever call such functions? A simple example that uses an embedded function

inside a negative recursive datatype is illustrated in Figure 3.7. The datatype

Foo (defined as a fixpoint of FooF) is a list-like data structure with two data

constructors Noo and Coo. The data constructor Noo is like the nil and Coo is like

the cons. Interestingly, the element (with type Foo → Foo) contained in Coo is a

function that transforms a Foo value into another Foo value. The function lenFoo,

defined by mit∗, is a length-like function, but it recurses on the transformed tail

(f xs) instead of the original tail xs. The intuition behind the termination of mit∗
for this negative datatype Foo is similar to the intuition for positive datatypes.

The embedded function f :: r → r can only apply to the direct subcomponent of

its parent, or to its sibling, xs and its transformed values (e.g., f xs, f (f xs), . . .),

but no larger values that contain f itself. In Section 3.10, we illustrate a general

proof for the termination of mit∗ (see Figure 3.23).

While all functions written in terms of mit∗ are total, the same cannot be said

of function written in terms of mcvit∗. The function loopFoo defined by mcvit∗ is

a counterexample to totality, which shows that the Mendler-style course-of-values

iteration does not always terminate. Try evaluating loopFoo foo. It will loop. This

function loopFoo is similar to lenFoo, but has an additional twist. At the very

end of the function definition, we recurse on the transformed tail (f ′ xs), when

we have more than two elements where the first and second elements are named

f and f ′, respectively. Note f ′ is an element embedded inside the tail xs. Thus,

113

data FooF r = Noo | Coo (r → r) r

type Foo = µ∗ FooF

noo = In∗ Noo

coo f xs = In∗ (Coo f xs)

lenFoo :: Foo → Int

lenFoo = mit∗ ϕ where

ϕ len Noo = 0

ϕ len (Coo f xs) = 1 + len (f xs)

loopFoo :: Foo → Int

loopFoo = mcvit∗ ϕ where

ϕ out len Noo = 0

ϕ out len (Coo f xs) = case out xs of

Noo → 1 + len (f xs)

Coo f ′ → 1 + len (f ′ xs)

foo :: Foo -- loops for loopFoo

foo = coo0 (coo1 noo) where coo0 = coo id

coo1 = coo coo0

Figure 3.7: An example of a total function lenFoo over a negative datatype Foo de-

fined by mit∗, and a counterexample loopFoo illustrating that mcvit∗
can diverge for negative datatypes.

114

(f ′ xs) is dangerous since it applies f ′ to a larger value xs, which contains f ′. The

abstract type of the unrolling function (out :: r → f r) prevents the recursive caller

from being applied to a larger value, but it does not preclude the risk of embedded

functions, with negative domains, being applied to larger values that contain the

embedded function itself.

3.7 MENDLER-STYLE ITERATION AND COURSE-OF-VALUES IT-

ERATION OVER NON-REGULAR DATATYPES AND MUTU-

ALLY RECURSIVE DATATYPES

We have discussed the Mendler-style iteration and course-of-values iteration over

non-mutually recursive datatypes so far. In this section, we discuss these recursion

schemes over non-regular datatypes (Section 3.7.1, Section 3.7.2) and mutually

recursive datatypes (Section 3.7.3).

3.7.1 Nested datatypes

The datatypes Nat and List, defined in Section 3.2, are regular datatypes. Non-

recursive datatypes (e.g., Bool) and recursive datatypes without any type argu-

ments (e.g., Nat) are always regular. Among the recursive datatypes with type

arguments, those datatypes where all of the recursive occurrences on the right-

hand side have exactly the same type argument as those on the left-hand side

(in the same order) are considered regular. For example, the list datatype

data List p = N | C p (List p) is regular since (List p) appearing on right-

hand side takes exactly the same argument p as (List p) on the left-hand side

(data List p = . . .).

Note every concrete instantiation of the list datatype has an equivalent non-

parameterized datatype definition. For instance, List Bool is equivalent to the

following datatype:

115

data ListBool = NBool | CBool Bool ListBool

This instantiation property does not hold for nested datatypes.

Type arguments that never change in any recursive occurrences in a datatype

definition are called type parameters. Type arguments that do change are called

type indices. Datatypes with only type parameters are always regular. Nested

datatypes [10] are non-regular datatypes where type arguments in some of the

recursive occurrences in the recursive datatype equation differ from those on the

left-hand side of the datatype equation.

Such types can be expressed in Haskell and ML without using GADT exten-

sions. We introduce two well-known examples of nested datatypes, powerlists and

bushes. Functions that sum up the elements in those data structures (Figure 3.8

and Figure 3.9). Nested datatypes require us to move from rank-0 Mendler com-

binators to rank-1 Mendler combinators.9

The powerlist datatype is defined as follows (also in Figure 3.8):

data Powl i = NP | CP i (Powl (i, i))

The type argument (i, i) for Powl occurring on the right-hand side is different from

i appearing on the left-hand side. Type arguments that occur in variation on the

right-hand side, like i, are type indices.

This single datatype equation for Powl relates to a family of datatypes: the

tail of an i-powerlist is a (i, i)-powerlist, its tail is a ((i, i), (i, i))-powerlist, and so

on. More concretely,

ps = CP 1 ps′ :: Powl Int

ps′ = CP (2, 3) ps′′ :: Powl (Int, Int)

9 The rank of a kind is defined by these equations: rank(∗) = 0 and rank(κ→ κ′) = max(1 +
rank(κ), rank(κ′)). Rank-0 Mendler combinators work on recursive types of kind ∗, whose rank is
0, constructed from base structures of kind ∗ → ∗, whose rank is 1. Rank-1 Mendler combinators
work on recursive type constructors of kind ∗ → ∗, whose rank is 1, constructed from base
structures of kind (∗ → ∗) → (∗ → ∗), whose rank is 2. We could have called them rank-1 and
rank-2 Mendler combinators, matching the rank of the base structure, instead of the rank of the
recursive type constructor, but just happen to prefer counting from 0.

116

ps′′ = CP ((4, 5), (6, 7)) NP :: Powl ((Int, Int), (Int, Int))

The tail of ps is ps′, and the tail of ps′ is ps′′. Note that the shape of elements

includes deeper nested pairs as the type indices become more deeply nested.

On the left-hand side of Figure 3.8, we define a function that sums up all the

nested elements in a powerlist using general recursion style. This function takes 2

parameters: a function that turns elements into integers and the powerlist itself.

The key part in the definition of psum is constructing the function (λ(x , y) →

f x + f y) :: (i, i) → Int. We must construct this function, on the fly, in order to

make the recursive call of psum on its tail xs :: Powl (i, i). Without this function,

the recursive call wouldn’t know how to sum up paired elements.

We can specialize psum, for instance, for integer powerlists as follows by sup-

plying the identity function:

sumP :: Powl Int → Int

sumP xs = psum xs id

Using sumP, we can sum up ps defined above: sumP ps 28.

117

da
ta

Po
wl

i=
N P
|C

P
i(

Po
wl

(i
,i

))

ps
um

::
Po

wl
i→

(i
→

In
t)
→

In
t

ps
um

N P
=
λ

f
→

0

ps
um

(C
P

x
xs

)=
λ

f
→

f
x

+
ps

um
xs

(λ
(x
,y

)→
f

x
+

f
y)

ne
w

ty
pe

Re
ti

=
Re

t{
un

Re
t:

:(
i→

In
t)
→

In
t}

ps
um
′
::

Po
wl

i→
Re

ti

ps
um
′

N P
=

Re
t(
λ

f
→

0)

ps
um
′
(C

P
x

xs
)=

Re
t(
λ

f
→

f
x

+
ps

um
′′

xs
(λ

(x
,y

)→
f

x
+

f
y)

)

w
he

re
ps

um
′′

::
Po

wl
i→

(i
→

In
t)
→

In
t

ps
um
′′

=
un

Re
t◦

ps
um
′

da
ta

Po
wl

F
r

i=
N P
|C

P
i(

r
(i
,i

))

ty
pe

Po
wl

i=
µ
∗→
∗

Po
wl

F
i

ni
l P

=
In
∗→
∗

N P
co

ns
P

x
xs

=
In
∗→
∗

(C
P

x
xs

)

ps
um

::
Po

wl
i→

(i
→

In
t)
→

In
t

ps
um

=
un

Re
t◦

ps
um

m

ps
um

m
::

Po
wl

i→
Re

ti

ps
um

m
=

m
it
∗→
∗
ϕ

w
he

re

ϕ
::
∀r

i′ .
(∀

i.r
i→

Re
ti

)→
Po

wl
F

r
i′
→

Re
ti
′

ϕ
ps

um
′

N P
=

Re
t(
λ

f
→

0)

ϕ
ps

um
′
(C

P
x

xs
)=

Re
t(
λ

f
→

f
x

+
ps

um
′′

xs
(λ

(x
,y

)→
f

x
+

f
y)

)

w
he

re
ps

um
′′

::
r

i→
(i
→

In
t)
→

In
t

ps
um
′′

=
un

Re
t◦

ps
um
′

Fi
gu

re
3.

8:
Su

m
m

in
g

up
a

po
we

rli
st

(P
ow

l)
,a

ne
st

ed
da

ta
ty

pe
,e

xp
re

ss
ed

in
te

rm
s

of
m

it
∗→
∗.

118

da
ta

Bu
sh

i=
N B
|C

B
i(

Bu
sh

(B
us

h
i)

)

bs
um

::
Bu

sh
i→

(i
→

In
t)
→

In
t

bs
um

N B
=

(λ
f
→

0)

bs
um

(C
B

x
xs

)=
(λ

f
→

f
x

+
bs

um
xs

(λ
ys
→

bs
um

ys
f)

)

ne
w

ty
pe

Re
ti

=
Re

t{
un

Re
t:

:(
i→

In
t)
→

In
t}

bs
um
′
::

Bu
sh

i→
Re

ti

bs
um
′

N B
=

Re
t(
λ

f
→

0)

bs
um
′
(C

B
x

xs
)=

Re
t(
λ

f
→

f
x

+
bs

um
′′

xs
(λ

ys
→

bs
um
′′

ys
f)

)

w
he

re
bs

um
′′

::
Bu

sh
i→

(i
→

In
t)
→

In
t

bs
um
′′

=
un

Re
t◦

bs
um
′

da
ta

Bu
sh

F
r

i=
N B
|C

B
i(

r
(r

i)
)

ty
pe

Bu
sh

i=
µ
∗→
∗

Bu
sh

F
i

ni
l B

=
In
∗→
∗

N B
co

ns
B

x
xs

=
In
∗→
∗

(C
B

x
xs

)

bs
um

::
Bu

sh
i→

(i
→

In
t)
→

In
t

bs
um

=
un

Re
t◦

bs
um

m

bs
um

m
::

Bu
sh

i→
Re

ti

bs
um

m
=

m
it
∗→
∗
ϕ

w
he

re

ϕ
::
∀r

i′ .
(∀

i.r
i→

Re
ti

)→
Bu

sh
F

r
i′
→

Re
ti
′

ϕ
bs

um
′

N B
=

Re
t(
λ

f
→

0)

ϕ
bs

um
′
(C

B
x

xs
)=

Re
t(
λ

f
→

f
x

+
bs

um
′′

xs
(λ

ys
→

bs
um
′′

ys
f)

)

w
he

re
bs

um
′′

::
r

i→
(i
→

In
t)
→

In
t

bs
um
′′

=
un

Re
t◦

bs
um
′

Fi
gu

re
3.

9:
Su

m
m

in
g

up
a

bu
sh

(B
us

h)
,a

re
cu

rs
iv

el
y

ne
st

ed
da

ta
ty

pe
,e

xp
re

ss
ed

in
te

rm
s

of
m

it
∗→
∗.

119

Before discussing the Mendler-style version, let us take a look at yet another

general recursive version of the function psum′, which explicitly wraps up the

answer values of type (i → Int) → Int inside the newtype Ret i. The relations

between the plain vanilla version and the wrapped up version are simply:

psum = unRet ◦ psum′

Ret ◦ psum = psum′

The wrapped up version psum′ has the same structure as the Mendler-style version

psumm found on the right-hand side of Figure 3.8. The wrapping of the answer

type is for purely technical reasons: to avoid the need for higher-order unification.

If we were to work with the unwrapped answer type in Mendler style, the type

system would need to unify (a i) with ((i → Int)→ Int), which is a higher-order

unification, whereas unifying (a i) with the wrapped answer type (Ret i) is first-

order. The type inference algorithm of Haskell (and most other languages) does

not support higher-order unification.10

The summation function for powerlists in Mendler style is illustrated on the

right-hand side in Figure 3.8. First, we give two-level datatype definitions for

powerlists. As usual, we define the datatype Powl as a fixpoint of the base PowlF .

However, an important difference that readers should notice is the use of fixpoint

µ∗→∗ at kind ∗ → ∗ bases, instead of µ∗, for the kind ∗ bases inducing regular

datatypes. Since we used µ∗→∗ to define the recursive datatype, we use mit∗→∗, the

Mendler-style iteration combinator at kind ∗ → ∗, to define the function psumm.

The beauty of the Mendler-style approach is that the implementations of the

recursion combinators for higher-ranks (or higher-kinds) are exactly the same as

those for their kind ∗ counterparts. The definitions differ only in their type signa-

tures. As you can see in Figures 3.2 and 3.3, mit∗→∗ has a richer type than mit∗,

10We may avoid higher-order unification, either by making the Mendler-style combinators
language constructs (rather than functions) so that the type system treats them with specialized
typing rules or by providing a version of the combinators with syntactic Kan-extension as in [5].

120

but their implementations are exactly the same! This is not the case for the con-

ventional approach. The definition of cata won’t generalize to nested datatypes

in a trivial way. There have been several approaches [11, 49, 57] to extend folds or

catamorphisms for nested datatypes in the conventional setting.

We can also define a summation function for bushes in a similar way as the

summation function for powerlists. The bush datatype is defined as below (also in

Figure 3.9):

data Bush i = NB | CB i (Bush (Bush i))

The type argument i for Bush is a type index, since the type argument (Bush i)

occurring on the right-hand side is different from i appearing on the left-hand side.

What is intriguing about Bush is that the variation of the type index involves itself.

Matthes [61] calls such datatypes as Bush, truly nested datatypes. Here are some

examples of bush values:

bs = CB 1 bs′ :: Bush Int

bs′ = CB (CB 2 NB) bs′′ :: Bush (Bush Int)

bs′′ :: Bush (Bush (Bush Int))

bs′′ = CB (CB (CB 3 NB) (CB (CB (CB 4 NB) NB) NB)) NB
The tail of bs is bs′ and the tail of bs′ is bs′′. Note that the shape of the ele-

ments becomes more deeply nested as we move towards the latter elements. More

interestingly, the element type of the bush becomes nested by the bush type itself.

We can define a function that sums up all the nested elements in a bush. Let

us first take a look at the function bsum in general recursion style, on the left-

hand side of Figure 3.9. This function takes 2 parameters: a bush to sum up and

a function that turns elements into integers. The key part in the definition of

bsum is constructing the function (λys → bsum ys f) :: Bush i → Int. We must

construct this function, on the fly, in order to make the recursive call of bsum on

its tail xs :: Bush (Bush i). Without this function, the recursive call wouldn’t know

how to sum up the bushed elements.

121

We can specialize bsum, for instance, for integer bushes as follows by supplying

the identity function:

sumB :: Bush Int → Int

sumB xs = bsum xs id

Using sumB, we can sum up bs defined above: sumB bs 10.

Before discussing the Mendler-style version, let us take a look at yet another

general recursive version of the function bsum′ that explicitly wraps up the answer

values of type (i → Int) → Int inside the newtype Ret i. The relations between

the plain vanilla version and the wrapped up version are simply:

bsum = unRet ◦ bsum′

Ret ◦ bsum = bsum′

The wrapped up version bsum′ has the same structure as the Mendler-style version

bsumm found on the right-hand side of Figure 3.9. In Mendler style, we define the

datatype Bush as a fixpoint (µ∗→∗) of the base BushF and define bsumm in terms

of mit∗→∗, similar to the definition of the summation function for powerlists in

Mendler style.

The type argument i in both Powl i and Bush i is a type index that forces

us to choose the fixpoint on kind ∗ → ∗ (and its related recursion combinators).

Note in the definition of the base types PowlF and BushF , we place the index i

after the type argument r for the recursion points. This is the convention we use.

We always write parameters (p), before the recursion point argument (r), followed

by indices (i). Figure 3.10, which we will shortly discuss in Section 3.7.2, contains

an example where there are both type parameters and type indices in a datatype

(Vec p i).

3.7.2 Indexed datatypes (GADTs)

A recent popular extension to the GHC Haskell compiler is GADTs [84]. In our

nested examples, the variation of type indices always occurred in the arguments of

122

the data constructors. GADTs are indexed datatypes, where the index may vary

in the result types of the data constructors. Haskell’s normal data declaration,

which uses an “equation” syntax, makes the assumption that the result types of

every constructor are the “same” type with no variation. GHC’s GADT datatype

extension is more expressive than the usual data declaration in equational form.

The GHC compiler extends the datatype syntax, so that each datatype constructor

is given its full type annotation. The datatype definition for vectors (or size-

indexed lists) is a prime example:

data Vec p i where

NV :: Vec p Z

CV :: p → Vec p i → Vec p (S i)

Note the indices11 vary in the result types of the data constructors: Z in the type

of NV and (S i) in the type of CV .

Nested datatypes, which we discussed earlier, are a special case of indexed

datatypes that happened to be expressible within the recursive type equation syn-

tax of Haskell, because the indices only vary in the recursive arguments of the data

constructors, but not in the result type. For a clearer comparison, we express the

bush datatype in GADT syntax as follows:12

data Bush i where

NB :: Bush i

CB :: i → Bush (Bush i)→ Bush i

Note, the type argument varies in the second argument of CB, which is Bush (Bush i),

but both the result types of NP and CP are Bush i.

In Figure 3.10, we define the vector datatype Vec as µ∗→∗ (V p) i, in Mendler

style. That is, we apply µ∗→∗ to the partial application of the base V to the

11The Z and S used in Vec are type-level representations of natural numbers, which are empty
types that are not inhabited by any value. They are only intended to be used as indices.

12We can translate any recursive type equation into a definition using the GADT syntax since
GADTs are indeed generalized algebraic datatypes.

123

parameter p, and then apply the resulting fixpoint to the index i. The base

datatype V p r i is a GADT with a parameter p and an index i. Recall that

by convention we place the parameter p before the type argument r for recursion

points, followed by the index i. We can express the copy function that traverses

a given vector and reconstructs that vector with the same elements, in Mendler

style, using the Mendler-style iteration combinator mit∗→∗ at kind ∗ → ∗. We

can express the switch2 function that switches every two elements of the given

vector, in Mendler style, using the course-of-values iteration combinator mcvit∗→∗
at kind ∗ → ∗. The definitions of mit∗→∗ and mcvit∗→∗ are exactly the same

as the definitions of mit∗ and mcvit∗, except that mit∗→∗ and mcvit∗→∗ have

richer type signatures (see Figures 3.2 and 3.3). Thus, defining functions using

mit∗→∗ and mcvit∗→∗ is no more complicated than defining functions for regular

datatypes using mit∗ and mcvit∗. The one proviso to this statement is that we

need to give explicit type signatures for ϕ because GHC does not support type

inference for higher-rank types (i.e., types with inner ∀s that are not top-level).

Again, in a language where Mendler-style combinators were language constructs

rather than functions, we believe this annoying burden could be lifted.

3.7.3 Mutually recursive datatypes

We can express mutual recursion over mutually recursive datatypes in Mendler

style using an indexed base datatype. The context extension function extend and

the expression evaluation function eval in Figure 3.11 are mutually recursive func-

tions over the mutually recursive datatypes of declaration Dec and expression

Exp. The general recursive version on the left-hand side of Figure 3.11 is a self-

explanatory standard evaluator implementation for the expression.

To express this in Mender style (right), we first define the common base DecExpF ,

which is indexed by D and E . Note the data constructors of DecExpF include the

data constructors of declarations (Def) and expressions (Var , Val, Add, and Let).

124

data Z

data S i

data Vec p i where

NV :: Vec p Z

CV :: p → Vec p i → Vec p (S i)

copy :: Vec p i → Vec p i

copy NV = NV

copy (CV x xs) = CV x (copy xs)

switch2 :: Vec p i → Vec p i

switch2 NV = NV

switch2 (CV x xs) =

case xs of

NV → CV x NV

CV y ys → CV y (CV x (switch2 ys))

data V p r i where

NV :: V p r Z

CV :: p → r i → V p r (S i)

type Vec p i = µ∗→∗ (V p) i

nilV = In∗→∗ NV

consV x xs = In∗→∗ (CV x xs)

copy :: Vec p i → Vec p i

copy = mit∗→∗ ϕ where

ϕ :: (∀i.r i → Vec p i)→ V p r i → Vec p i

ϕ cp NV = nilV
ϕ cp (CV x xs) = consV x (cp xs)

switch2 :: Vec p i → Vec p i

switch2 = mcvit∗→∗ ϕ where

ϕ :: (∀i.r i → V p r i)→

(∀i.r i → Vec p i)→ V p r i → Vec p i

ϕ out sw2 NV = nilV
ϕ out sw2 (CV x xs) =

case out xs of

NV → consV x nilV
CV y ys → consV y (consV x (sw2 ys))

Figure 3.10: Recursion (copy) and course-of-values recursion (switch2) over size-

indexed lists (Vec) expressed in terms of mit∗→∗ and mcvit∗→∗.

125

type Name = String
type Env = [(Name, Int)]

data Dec = Def Name Exp
data Exp = Var Name

| Val Int
| Add Exp Exp
| Let Dec Exp

extend :: Dec → Env → Env
extend (Def x e) =

λσ → (x, eval e σ) : σ
eval :: Exp → Env → Int
eval (Var x) =

λσ → fromJust (lookup x σ)
eval (Val v) =

λσ → v
eval (Add e1 e2) =

λσ → eval e1 σ + eval e2 σ

data D
data E
data DecExpF (r :: ∗ → ∗) (i :: ∗) where

Def :: Name → r E → DecExpF r D
Var :: Name → DecExpF r E
Val :: Int → DecExpF r E
Add :: r E → r E → DecExpF r E
Let :: r D → r E → DecExpF r E

type Dec = µ∗→∗ DecExpF D
type Exp = µ∗→∗ DecExpF E
data family Ret i :: ∗
newtype instance Ret D = RetD (Env → Env)
newtype instance Ret E = RetE (Env → Int)
πD f = λx → case f x of RetD fD → fD
πE f = λx → case f x of RetE fE → fE
extev :: µ∗→∗ DecExpF i → Ret i
extev = mit∗→∗ ϕ where
ϕ :: (∀i.r i → Ret i)→ DecExpF r i → Ret i
ϕ f (Def x e) =

RetD $ λσ → (x, ev e σ) : σ
where ev = πE f

ϕ f (Var x) =
RetE $ λσ → fromJust (lookup x σ)

ϕ f (Val v) =
RetE $ λσ → v

ϕ f (Add e1 e2) =
RetE $ λσ → ev e1 σ + ev e2 σ

where ev = πE f
extend :: Dec → Env → Env
extend = πD extev
eval :: Exp → Env → Int
eval = πE extev

Figure 3.11: Mutual recursion (extend and eval over Dec and Exp) expressed in

terms of mit∗→∗ over an indexed datatype DecExpF .

126

The data constructor for declarations is indexed by D and the other data construc-

tors for expressions are indexed by E in their result types. Then, we can define

Dec as µ∗→∗ DecExpF D and Exp as µ∗→∗ DecExpF E . We wrap up the return

types of the eval and extend functions with the data family Ret, for reasons similar

to the return types of the summation functions in Section 3.7.1. We also define the

projection functions πD ::Ret D → (Env → Env) and πE ::Ret E → (Env → Int) to

open up the return type. Then, we can express the mutually recursive functions,

both eval and extend, combined in one function definition extev using mit∗→∗. You

can observe that the definition of ϕ is very close to the definitions of the general

recursive versions of extend and eval on the left. The difference is that we project

out ev from f , which is the handle for the combined mutually recursive function,

when we need to call the evaluation function for the recursion. Once we have

defined the combined function extev, we can project out extend and eval using πD

and πE .

3.8 MENDLER-STYLE PRIMITIVE RECURSION (mpr)

In Figure 3.12, we list type declarations and defining equations of several families

of the Mendler-style recursion combinators. We give two versions for each family,

one at kind ∗ and one at kind ∗ → ∗. The families of combinators increase in

complexity from iteration (mit), through primitive recursion (mpr) and course-

of-values iteration (mcvit), to course-of-values recursion (mcvpr). We saw mit

and mcvit in the previous sections.

The Mendler-style primitive recursion family (mpr), when compared to the

mit family, has an additional abstract operation, which we call cast. The cast

operation explicitly converts a value of the abstract recursive type (r) into a value

of the concrete recursive type (µ∗ t).

Similarly, the Mendler-style course-of-values recursion family (mcvpr), when

compared to the mcvit family, also has an additional cast operation.

127

ou
t

ca
st

ab
st

ra
ct

re
cu

rs
iv

e
ca

ll
m

it
∗

::
(∀

r
.

(
r
→

a
)→

(f
r
→

a
))
→

(µ
∗

f
→

a
)

m
it
∗→
∗

::
(∀

r
i.

(∀
i.r

i→
a

i)
→

(f
r

i→
a

i)
)→

(µ
∗→
∗

f
i→

a
i)

m
pr
∗

::
(∀

r
.

(
r
→

µ
∗

f
)→

(
r
→

a
)→

(f
r
→

a
))
→

(µ
∗

f
→

a
)

m
pr
∗→
∗

::
(∀

r
i.

(∀
i.r

i→
µ
∗→
∗

f
i)
→

(∀
i.r

i→
a

i)
→

(f
r

i→
a

i)
)→

(µ
∗→
∗

f
i→

a
i)

m
cv

it
∗

::
(∀

r
.(

r
→

f
r

)→
(

r
→

a
)→

(f
r
→

a
))
→

(µ
∗

f
→

a
)

m
cv

it
∗→
∗

::
(∀

r
i.(
∀i
.r

i→
f

r
i)
→

(∀
i.r

i→
a

i)
→

(f
r

i→
a

i)
)→

(µ
∗→
∗

f
i→

a
i)

m
cv

pr
∗

::
(∀

r
.(

r
→

f
r

)→
(

r
→

µ
∗

f
)→

(
r
→

a
)→

(f
r
→

a
))
→

(µ
∗

f
→

a
)

m
cv

pr
∗→
∗

::
(∀

r
i.(
∀i
.r

i→
f

r
i)
→

(∀
i.r

i→
µ
∗→
∗

f
i)
→

(∀
i.r

i→
a

i)
→

(f
r

i→
a

i)
)→

(µ
∗→
∗

f
i→

a
i)

m
it
∗

ϕ
(In
∗

x)
=
ϕ

(m
it
∗

ϕ
)x

m
it
∗→
∗

ϕ
(In
∗→
∗

x)
=
ϕ

(m
it
∗→
∗

ϕ
)x

m
pr
∗

ϕ
(In
∗

x)
=
ϕ

id
(m

pr
∗

ϕ
)x

m
pr
∗→
∗

ϕ
(In
∗→
∗

x)
=
ϕ

id
(m

pr
∗→
∗

ϕ
)x

m
cv

it
∗

ϕ
(In
∗

x)
=
ϕ

ou
t ∗

(m
cv

it
∗

ϕ
)x

m
cv

it
∗→
∗
ϕ

(In
∗→
∗

x)
=
ϕ

ou
t ∗
→
∗

(m
cv

it
∗→
∗
ϕ

)x
m

cv
pr
∗

ϕ
(In
∗

x)
=
ϕ

ou
t ∗

id
(m

cv
pr
∗

ϕ
)x

m
cv

pr
∗→
∗
ϕ

(In
∗→
∗

x)
=
ϕ

ou
t ∗
→
∗

id
(m

cv
pr
∗→
∗
ϕ

)x

Fi
gu

re
3.

12
:

T
he

M
en

dl
er

-s
ty

le
pr

im
iti

ve
re

cu
rs

io
n

(m
pr

)
an

d
th

e
M

en
dl

er
-s

ty
le

co
ur

se
-o

f-v
al

ue
s

re
cu

rs
io

n
(m

cv
pr

)
at

ki
nd

s
∗

an
d
∗
→
∗,

in
co

m
pa

ris
on

w
ith

m
it

an
d

m
cv

it
.

128

data Nat

= Zero

| Succ Nat

fac Zero = Succ Zero

fac (Succ n) = times (Succ n) (fac n)

data N r = Z | S r

type Nat = µ∗ N

zero = In∗ Z

succ n = In∗ (S n)

factorial = mpr∗ ϕ where

ϕ cast fac Z = succ zero

ϕ cast fac (S n) = times (succ (cast n)) (fac n)

Figure 3.13: mpr∗ example: factorial function.

Since mpr has an additional abstract operation, when compared to mit, it can

express all the functions expressible with mit. In some programs, the additional

cast operation can increase the efficiency of the program by supporting constant

time access to the concrete value of the recursive component.

A typical example of primitive recursion is the factorial function. Figure 3.13

illustrates the general recursive version (right) and the Mendler-style version (left)

of the factorial function, where times :: Nat → Nat → Nat is the usual multipli-

cation operation on natural numbers. Note the definition of ϕ in Mendler style

is similar to the definition of fac in the general recursive version, except that it

uses the explicit cast to convert from an abstract value (n : r) to a concrete value

(cast n : Nat).

The primitive recursion family also enables programmers to define non-recursive

functions, such as a constant time predecessor for natural numbers (Figure 3.14)

and a constant time tail function for lists (Figure 3.15). Although it is possible

to implement factorial, pred, and tail in terms of mit, those implementations will

be less efficient. The time complexity of factorial in terms of iteration will be

quadratic in the size of the input rather than being linear. The time complexity

of pred and tail in terms of iteration will be linear in the size of the input rather

129

than being constant.

The course-of-values recursion family can be defined by adding the out opera-

tion to the mpr family, as is shown in Figure 3.12, just as the mcvit family can be

defined by adding the out operation to mit. The mcvpr family is only guaranteed

to terminate for positive datatypes, for the same reason that the mcvit family is

only guaranteed to terminate for positive datatypes (recall Figure 3.7).

A simple variation of the Fibonacci function, shown in Figure 3.16, is an ex-

ample of a course-of-values recursion. The Fibonacci function fib and the Lucas

function luc satisfy the following recurrence relations:13

fib (n + 2) = fib (n + 1) + fib n

luc (n + 2) = luc (n + 1) + luc n + n

Note the trailing “· · ·+ n” in the recurrence relation for luc. We need the ability

of the course-of-values recursion because n is a deep recursive component of n+ 2

(i.e., n is the predecessor of the predecessor of n+2). We need primitive recursion,

since we not only perform a recursive call over n (· · ·+ luc n + ·s), but also add the

value of n itself (· · ·+ n). The mcvpr family provides both out and cast operations

for accessing deep recursive components and casting from an abstract value to a

concrete recursive value.

It is strongly believed that the primitive recursion family cannot be embed-

ded in Fω in a reduction preserving manner, since it is known that induction is

not derivable from second-order dependent calculi [39]. As we mentioned in Sec-

tion 3.1.2, the termination properties of Mendler-style primitive recursion can be

shown by embedding mpr into Fixω [3] (also described in Section 5.2). Addition-

ally, we discovered how to embed mcvpr within Fixω. However, our embedding of

13 The luc function in Figure 3.16 is slightly different from the original version of Lucas numbers.
What luc n implements is the function Lucas(n+1)−(n+1), where Lucas is the original definition
of the Lucas number. Mathematically, Lucas numbers are just a Fibonacci sequence with different
base values. They can be understood as a Fibonacci number offset by linear term. For instance,
luc can be turned into a Fibonacci function via change of variable by fib n = luc n + n + 1.

130

pred Zero = Zero

pred (Succ n) = n

pred = mpr∗ ϕ where

ϕ cast pr Z = zero

ϕ cast pr (S n) = cast n

Figure 3.14: mpr∗ example (non-recursive): a constant time predecessor.

data List a

= Nil

| Cons a (List a)

tail Nil = Nil

tail (Cons x xs) = xs

data L a r = N | C a r

type List a = µ∗ (L a)

nil = In∗ N

cons x xs = In∗ (C x xs)

tail = mpr∗ ϕ where

ϕ cast tl N = nil

ϕ cast tl (C x xs) = cast xs

Figure 3.15: mpr∗ example (non-recursive): a constant time tail function for lists.

luc Zero = Zero

luc (Succ n) =

case n of

Zero → Succ Zero

Succ n′ → plus (plus (luc n) (luc n′))

n′

lucas = mcvpr∗ ϕ where

ϕ out cast luc Z = zero

ϕ out cast luc (S n) =

case out n of

Z → succ zero

S n′ → plus (plus (luc n) (luc n′))

(cast n′)

Figure 3.16: Lucas number (http://oeis.org/A066982) example illustrating the

use of the mcvpr∗ family.

http://oeis.org/A066982

131

mcvpr into Fixω (or Fixi) is not reduction preserving. We will explain the details

of the embedding of mcvpr into Fixω in Section 5.3.

3.9 MENDLER-STYLE ITERATION WITH SYNTACTIC INVERSES

While it is known that iteration and primitive recursion terminate for all types

[3, 5], they are not particularly expressive over negative recursive types. Identifying

additional Mendler-style operators that work naturally, and are more expressive

than iteration, is one of the important results of this dissertation.

Interesting examples of Mendler-style operators over negative recursive types

have been neglected in the literature. One of the reasons, we think, is because

it is often possible to encode negative recursive types into positive recursive ones

(e.g., [19]). Because conventional iteration and primitive recursion normalize for

positive recursive types, one can use standard techniques on these encodings, which

are translations of negative recursive types into positive recursive types. What we

gain by using such encodings must be traded off against the loss in transparency

that such encodings force upon the implementation. The natural structures, which

were evident in the negative datatype, become obscured by such encodings.

A series of papers [30, 32, 63, 74, 96] has studied techniques that define re-

cursion schemes directly over negative recursive types in the conventional setting.

In our recent paper [6], we discovered that iteration over negative recursive types

can be naturally captured as a kind-indexed family of Mendler style combinator.

The msfit combinator (a.k.a. msfcata) at kind ∗ corresponds to the conventional

recursion combinator discovered by Fegaras and Sheard [32] and later refined by

Washburn and Weirich [96]. With this new msfit family, we were able to write

many interesting programs, involving negative recursive types that may be impos-

sible, or very unnatural, to write with the ordinary Mendler-style iteration family

(mit, a.k.a. mcata).

132

3.9.1 Formatting HOAS

To lead up to the Mendler-style solution to formatting HOAS, we first review some

earlier work on turning HOAS expressions into strings. This solution was suggested

by Fegaras and Sheard [32]. They were studying yet another abstract recursion

scheme described by Paterson [74] and Meijer and Hutton [63] that could only be

used if the combining function had a true inverse. This seemed a bit limiting,

so Fegaras and Sheard introduced the idea of a syntactic inverse. The syntactic

inverse was realized by augmenting the µ∗ type with a second constructor. This

augmented µ∗ had the same structure as µ̆∗ in Figure 3.1, but with a different

type.

The algorithm works, but the augmentation introduces junk. Washburn and

Weirich [96] eliminated the junk by exploiting parametricity. It is a coincidence

that Mendler-style recursion combinators also use the same technique, parametric-

ity, for a different purpose, to guarantee termination. Fortunately, these two ap-

proaches work together without getting in each other’s way.

A general recursive implementation for open HOAS

The recursive datatype Expg in Figure 3.17 is an open HOAS. By open, we express

that Expg has a data constructor Varg, which enables us to introduce free variables.

The constructor Lamg holds an embedded function of type (Expg → Expg). This is

called a shallow embedding, since we use functions in the host language, Haskell,

to represent lambda abstractions in the object language Expg. For example, using

the Haskell lambda expressions, we can construct some Expg representing lambda

expressions as follows:

kg = Lamg (λx → Lamg (λy → x))
sg = Lamg (λx → Lamg (λy → Lamg (λz → Appg (Appg x z) (Appg y z))))
wg = Lamg (λx → Appg x x)
skkg = Appg (Appg sg kg) kg

133

da
ta

Ex
p g

=
La

m
g

(E
xp
g
→

Ex
p g

)|
Ap

p g
Ex

p g
Ex

p g
|V

ar
g

St
ri

ng
sh

ow
Ex

p g
::

Ex
p g
→

St
ri

ng
sh

ow
Ex

p g
e

=
sh

ow
′

e
va

rs
w

he
re

sh
ow
′
(A

pp
g

x
y)

=
λ

vs
→

"(
"

++
sh

ow
′

x
vs

++
"

"
++

sh
ow
′

y
vs

++
")

"
sh

ow
′
(L

am
g

z)
=
λ

(v
:v

s)
→

"(
\\

"
++

v
++

"-
>"

++
sh

ow
′
(z

(V
ar
g

v)
)v

s+
+

")
"

sh
ow
′
(V

ar
g

v)
=
λ

vs
→

v

da
ta

Ex
pF

r
=

La
m

(r
→

r)
|A

pp
r

r
ty

pe
Ex

p′
a

=
µ̆
∗

Ex
pF

a
ty

pe
Ex

p
=
∀a
.E

xp
′

a
--

la
m

::
(∀

a.
Ex

p′
a
→

Ex
p′

a)
→

Ex
p

la
m

e
=

In̆
∗

(L
am

e)
--

ap
p

::
Ex

p
→

Ex
p
→

Ex
p

ap
p

f
e

=
In̆
∗

(A
pp

f
e)

sh
ow

Ex
p

::
Ex

p
→

St
ri

ng
sh

ow
Ex

p
e

=
m

sfi
t ∗
ϕ

e
va

rs
w

he
re
ϕ

::
((

[S
tr

in
g]
→

St
ri

ng
)→

r)
→

(r
→

([
St

ri
ng

]→
St

ri
ng

))
→

Ex
pF

r
→

([
St

ri
ng

]→
St

ri
ng

)
ϕ

in
v

sh
ow
′
(A

pp
x

y)
=
λ

vs
→

"(
"

++
sh

ow
′

x
vs

++
"

"
++

sh
ow
′

y
vs

++
")

"
ϕ

in
v

sh
ow
′
(L

am
z)

=
λ

(v
:v

s)
→

"(
\\

"
++

v
++

"-
>"

++
sh

ow
′
(z

(in
v

(c
on

st
v)

))
vs

++
")

"

va
rs

=
[[

i]
|i
←

[’
a’
..

’z
’]

]+
+

[i
:s

ho
w

j|
j←

[1
..

],
i←

[’
a’
..

’z
’]

]:
:[

St
ri

ng
]

Fi
gu

re
3.

17
:

m
sfi

t ∗
ex

am
pl

e:
St

rin
g

fo
rm

at
tin

g
fu

nc
tio

n
fo

r
H

O
A

S.

134

Since we can build any untyped lambda expression with Expg, even the prob-

lematic self application expression wg, it is not possible to write a terminating

evaluation function for Expg. However, there are many functions that recurse over

the structure of Expg, and when they terminate produce something useful. One of

them is the string formatting function showExpg defined in Figure 3.17.

Given an expression (Expg) and a list of fresh variable names ([String]), the

function show ′ (defined in the where clause of showExpg) returns a string (String)

that represents the given expression. To format an application expression (Appg x y),

we simply recurse over each of the subexpressions x and y. To format a lambda

expression, we take a fresh name v to represent the binder and we recurse over

(z (Varg v)), which is the application of the embedded function (z :: Expg → Expg)

to a variable expression (Varg v :: Expg) constructed from the fresh name. Note

we had to create a new variable expression to format the function body since we

cannot look inside the function values of Haskell. To format a variable expression

(Varg v), we only need to return its name v. The local function show ′ (and hence

also showExpg) are total as long as the function values embedded in the Lamg

constructors are total.

We can use showExpg to print out the terms as follows:
> putStrLn (showExpg kg)

(\a->(\b->a))

> putStrLn (showExpg sg)

(\a->(\b->(\c->((a c) (b c)))))

> putStrLn (showExpg wg)

(\a->(a a))

Note that show ′ is not structurally inductive in the Lamg case. The recursive

argument (z (Varg v)), in particular Varg v, is not a subexpression of (Lamg z).

Thus, the recursive call to show ′ may not terminate. This function terminated only

because the embedded function z was well behaved, and the argument we passed

135

to z , which is (Varg v), was well behaved. If we had applied z to the expression

(Lamg (λx → x)) in place of Varg v, or z itself had been divergent, the recursive

call would have diverged. If z is divergent, then obviously show ′ (z x) diverges for

all x . More interestingly, suppose z is not divergent (perhaps something as simple

as the identity function) and show ′ was written to recurse on (Lamg (λx → x)),

then what happens?

show ′ (Lamg z) (v : vs) = "(\\" ++ v ++ "->" ++

show ′ (z (Lamg (λx → x)) vs ++ ")"

The function is no longer total. To format (z (Lamg (λx → x))) in the recursive

call, it loops back to the Lamg case again, unless z is a function that ignores its

argument. This will form an infinite recursion, since this altered show ′ forms yet

another new Lamg (λx → x) expression and keeps on recursing.

A Mendler-style solution for closed HOAS

Our exploration of the code in Figure 3.17 illustrates three potential problems with

the general recursive approach.

• The embedded functions may not terminate.

• In a recursive call, the arguments to an embedded function may introduce a

constructor with another embedded function, leading to a non-terminating

cycle.

• We got lucky, in that the answer we required was a String, and we happened

to have a constructor Varg :: String → Expg. In general, we may not be so

lucky.

In Figure 3.17, we define Expg in anticipation of our need to write a function

showExpg :: Expg → String, by including a constructor Varg :: String → Expg. Had

we anticipated another function f :: Expg → Int, we would have needed another

136

constructor C :: Int → Expg. Clearly we need a better solution. The solution is

to generalize the kind of the datatype from Expg :: ∗ to Exp :: ∗ → ∗, and add a

universal inverse.

data Exp a = App (Exp a) (Exp a)
| Lam (Exp a → Exp a)
| Inv a

countLam :: Exp Int → Int
countLam (Inv n) = n
countLam (App x y) = countLam x + countLam y
countLam (Lam f) = countLam (f (Inv 1))

Generalizing from countLam, we can define a function from Exp to any type. How

do we lift this kind of solution to Mendler style? Fegaras and Sheard [32] proposed

moving the general inverse from the base type to the datatype fixpoint. Later, this

approach was refined by Washburn and Weirich [96] to remove the junk introduced

by that augmentation (i.e., things such as App (Inv 1) (Inv 1)).

We use the same inverse-augmented datatype fixpoint appearing in Washburn

and Weirich [96]. Here, we call it µ̆∗ (see Figure 3.1). The inverse-augmented

datatype fixpoint µ̆∗ is similar to the standard datatype fixpoint µ∗. The difference

is that µ̆∗ has an additional type index a and an additional data constructor

Inverse∗ ::a → µ̆∗ f a, corresponding to the universal inverse. The data constructor

In̆∗ and the projection function ŏut∗ correspond to In∗ and out∗ of the normal

fixpoint µ∗. As usual, we restrict the use of ŏut∗, or pattern matching against In̆∗.

We illustrate this in the second part of Figure 3.17. As usual, we define Exp′ a

as a fixpoint of the base datatype ExpF and define shorthand constructors lam

and app. Using the shorthand constructor functions, we can define some lambda

expressions:

k = lam (λx → lam (λy → x))
s = lam (λx → lam (λy → lam (λz → app (app x z) (app y z))))
w = lam (λx → app x x)
skk = app (app s k) k

137

However, there is another way to construct Exp′ values that is problematic.

Using the constructor Inverse∗, we can turn values of arbitrary type t into values

of Exp′ t (e.g., Inverse∗ True :: Exp′ Bool). This value is junk, since it does not

correspond to any lambda term. By design, we wish to hide Inverse∗ behind an

abstraction boundary. We should never allow the user to construct expressions

such as Inverse∗ True, except for using them as callers for intermediate results

during computation.

We can distinguish pure expressions that are inverse-free from expressions that

contain inverse values by exploiting parametricity. The expressions that do not

contain inverses have a fully polymorphic type. For instance, k, s, and w are

of type (Exp′ a). The expressions that contain Inverse∗ have more specific types

(e.g., (Inverse∗ True) :: (Exp′ Bool)). Therefore, we define the type of Exp to be

∀a.Exp′ a. Then, expressions of type Exp are guaranteed to be be inverse-free.

Using parametricity to sort out the junk introduced by the inverse is the key

idea of Washburn and Weirich [96], and the inverse-augmented fixpoint µ∗ is the

key idea of Fegaras and Sheard [32]. The contribution we make in this work is

putting together these ideas in a Mender-style setting. By doing so, we are able

to define recursion combinators over types with negative occurrences, which have

well-understood termination properties enforced by parametricity. We define four

such combinators: msfit∗, msfcvit∗, msfit∗→∗, and msfcvit∗→∗. The combinator

msfit∗ is the simplest. To define it, we generalize over mit∗ by using the same

device we used earlier. We abstract the combining function over an additional

argument, this time, an abstract inverse.

• The combining function ϕ becomes a function of 3 arguments: an abstract

inverse, an recursive caller, and a base structure.

msfit ϕ (In̆∗ x) = ϕ Inverse∗ (msfit ϕ) x

msfit ϕ (Inverse∗ z) = z

138

• For inverse values, return the value inside Inverse∗ as it is.

• We use higher-rank polymorphism to insist that the abstract inverse function,

with type (a → r a), the recursive caller function, with type (r a → a), and

the base structure, with type (f (r a)), only work over an abstract type

constructor, denoted by (r).

msfit∗ :: (∀r .(a → r a)→

(r a → a)→

(f (r a) → a))→ (∀a.µ̆∗ f a)→ a

• Note the abstract recursive type r is parameterized by the answer type a

because the inverse-augmented fixpoint µ̆∗ is parameterized by the answer

type a.

Also, note the second argument of msfit∗, the object being operated on, has

the higher-rank type (∀a.µ̆∗ f a), insisting the input value to be inverse-free

by enforcing a to be abstract.

In Figure 3.17, using msfit∗, it is easy to define showExp, the string formatting

function for Exp, as in Figure 3.17. The App case is similar to the general recursive

implementation. The body of ϕ is almost textually identical to the body of show ′

in the general recursive solution, except we use the inverse expression inv (const v)

to create an abstract r value to pass to the embedded function z . Note const v

plays exactly the same role as (Varg v) in show ′.

Does msfit∗ really guarantee termination? To prove this, we need to address

the first two of the three potential problems described on page 135. We assume

that the first problem (embedded functions may be partial) won’t happen. The

second problem (cyclic use of constructors as arguments to embedded functions)

is addressed by the same argument we used in Section 3.6. The abstract type of

the inverse doesn’t allow it to be applied to constructors, as they’re not abstract

enough. Just as we couldn’t define p m (in Section 3.6), we can’t apply z to things

139

type µ̆∗ f r a = (r a) + (((r a → a)→ f (r a)→ a)→ a)

newtype Id x = Id {unId :: x }

msfit∗ :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)

→ (∀a.µ̆∗ f Id a)→ a

msfit∗ ϕ x = case+ x unId (λf → f (ϕ Id))

lift :: ((Id a → a)→ f (Id a)→ a)→ µ̆∗ f Id a → Id a

lift h x = case+ x id (λx → Id (x h))

type a + b = ∀c.(a → c)→ (b → c)→ c

inL :: a → (a + b)

inL a = λf g → f a

inR :: b → (a + b)

inR b = λf g → g b

case+ :: (a + b)→ (a → c)→ (b → c)→ c

case+ x f g = x f g

Figure 3.18: Fω encoding of µ̆∗, msfit∗, and the sum type (+).

such as (Lam (λx → x)). In Section 3.9.2, we provide an embedding of msfit, along

with several examples (including the HOAS formatting example) into the strongly

normalizing language Fω. This constitutes a proof that msfit terminates for all

inductive datatypes, even those with negative occurrences.

3.9.2 Fω encoding of µ̆∗ and msfit∗

Figure 3.18 is the Fω encoding14 of the inverse-augmented datatype µ̆∗ and its

iteration msfit∗. We use the sum type to encode µ̆∗ since it consists of two con-

structors, one for the inverse and the other for the recursion. The newtype Id

14 Using a fragment of Haskell, which we believe to be a subset of Fω.

140

data ExpF x = App x x | Lam (x → x)

type Exp′ a = µ̆∗ ExpF Id a

type Exp = ∀a.Exp′ a

app :: Exp′ a → Exp′ a → Exp′ a

app x y = inR (λh → h unId (App (lift h x) (lift h y)))

lam :: (Exp′ a → Exp′ a)→ Exp′ a

lam f = inR (λh → h unId (Lam (λx → lift h (f (inL x)))))

showExp :: Exp → String

showExp e = msfit∗ ϕ e vars where

ϕ inv show ′ (App x y) = λvs →

"(" ++ show ′ x vs ++ " " ++ show ′ y vs ++ ")"

ϕ inv show ′ (Lam z) = λ(v : vs)→

"(\\" ++ v ++ "->" ++ show ′ (z (inv (const v))) vs ++ ")"

Figure 3.19: HOAS string formatting example in Fω.

141

wraps answer values inside the inverse. The iteration combinator msfit∗ unwraps

the result (unIn) when x is an inverse. Otherwise, msfit∗ runs the combining

function ϕ over the recursive structure (λf → f (ϕ Id)). The utility function lift

abstracts a common pattern, useful when we define the shorthand constructors

(lam and app).

Figure 3.18 also contains the Fω encoding of the sum type (+) and its con-

structors (or injection functions) inL and inR. The case expression case+ for the

sum type is just a binary function application. In the Fω encoding, this could be

omitted (i.e., case+ x f g simplifies to x f g). But, we choose to write in terms of

case+ to make the definitions easier to read.

In Figure 3.19, we define both a recursive datatype for HOAS (Exp) and the

string formatting function (showExp), with these Fω encodings, just as we did in

Section 3.9.1. We can define simple expressions using the shorthand constructors

and print out those expressions using showExp. For example,

> putStrLn (showExp (lam (λx → lam (λy → x))))

(\a->(\b->a))

It is important to note that we embedded µ̆∗ and msfit∗ into Fω in Figure 3.19,

but we have not embedded In̆∗ into Fω. Instead, we embedded the two constructors

of Exp, app and lam, into Fω. Note that app and lam are defined in terms of inR,

unId, and lift, which are definable in Fω as in Figure 3.18.

The situation is different from embedding of the Mendler-style iteration into Fω,

where µ∗, mit∗, and also In∗ are embedded into Fω (see Figure 3.23 in Section 3.10).

Then, the embeddings for data constructors of recursive types are simply given in

terms of In∗ (see the embedding of natural numbers on page 150, Section 3.10).

Unfortunately, for the Mendler-style iteration with syntactic inverses, we have

not found a way to factor out µ̆∗ as an Fω-term to reuse it for embedding data

142

constructors of inverse-augmented recursive types. We can only embed data con-

structors (app and lam) of a specific recursive type (Exp). This is analogous to the

situation where we can embed any given regular recursive type in System F, but

can not factor out µ or In as we can do in System Fω.

We strongly believe that there exist systematic algorithms of embedding any

given regular recursive types µ̆∗ and msfit∗. We can already see the pattern:

lift is applied to recursive arguments in positive positions and inL is used in re-

cursive arguments in negative positions. More precise and general description of

the algorithm for embedding and a proof that the algorithm leads to desired the

embeddings would be interesting future work.

3.9.3 Evaluating Simply Typed HOAS

We can write an evaluator for a simply-typed HOAS in a surprisingly simple man-

ner as in Figure 3.20, using the Mendler-style iteration with syntactic inverses.

We first define the simply-typed HOAS as a recursive indexed datatype Exp ::

∗ → ∗. We take the fixpoint using µ̆∗→∗ (the fixpoint operation that supports

a syntactic inverse). This fixpoint is taken over a non-recursive base structure

(ExpF :: (∗ → ∗)→ (∗ → ∗)). Note that ExpF is an indexed type. So expressions

will be indexed by their type. Using µ̆∗→∗, the fixpoint of any structure is also

parameterized by the type of the answer.

The use of msfit requires that Exp should be parametric in this answer type (by

defining type Exp t = ∀a.Exp′ a) just as we did in the untyped HOAS formatting

example in Figure 3.17.

Using general recursion, one would have defined the datatype Expg ::∗ → ∗ that

corresponds to Exp as follows, using Haskell’s native recursive datatype definition.

data Expg t where

Lamg :: (Expg a → Expg b)→ Expg (a → b)

Appg :: Expg (a → b)→ Expg a → Expg b

143

data ExpF r t where

Lam :: (r a → r b)→ ExpF r (a → b)

App :: r (a → b)→ r a → ExpF r b

type Exp′ a t = µ̆∗→∗ ExpF a t

type Exp t = ∀a.Exp′ a t

-- lam :: Exp′ a t1 → Exp′ a t2 → Exp′ a (t1 → t2)

lam e = In̆∗→∗ (Lam e)

-- app :: Exp (t1 → t2)→ Exp t1 → Exp t2

app f e = In̆∗→∗ (App f e)

newtype Id a = MkId {unId :: a}

type Phi f a = ∀r .(∀i.a i → r a i)→ (∀i.r a i → a i)→ (∀i.f (r a) i → a i)

evalHOAS :: Exp t → Id t

evalHOAS e = msfit∗→∗ ϕ e where

ϕ :: Phi ExpF Id

ϕ inv ev (Lam f) = MkId (λv → unId (ev (f (inv (MkId v)))))

ϕ inv ev (App f x) = MkId (unId (ev f) (unId (ev x)))

Figure 3.20: msfit∗→∗ example: an evaluator for the simply-typed HOAS.

144

The definition of evalHOAS specifies how to evaluate an HOAS expression to

a host-language value (i.e., Haskell) wrapped by the identity type (Id). In the

description below, we ignore the wrapping (MkId) and unwrapping (unId) of Id

by completely dropping them from the description. See Figure 3.20 (where they

are not omitted) if you care about these details. We discuss the evaluation for each

of the constructors of Exp:

• Evaluating an HOAS abstraction (Lam f) lifts an object-language function

(f) over Exp into a host-language function over values: (λv → ev (f (inv v))).

In the body of this host-language lambda abstraction, the inverse of the (host-

language) argument value v is passed to the object-language function f . The

resulting HOAS expression (f (inv v)) is evaluated by the recursive caller

(ev) to obtain a host-language value.

• Evaluating an HOAS application (App f x) lifts the function f and argument

x to host-language values (ev f) and (ev x), and uses the host-language

application to compute the resulting value. Note that the host-language

application ((ev f) (ev x)) is type-correct since ev f :: a → b and ev x :: a;

thus the resulting value has type b.

We can be confident that evalHOAS indeed terminates since µ̆∗→∗ and msfit∗→∗
can be embedded into Fω in a manner similar to the embedding of µ̆∗ and msfit∗
into Fω in Figure 3.18.

Figure 3.20 highlights two advantages of Mendler style over conventional style in

one example. This example shows that the Mendler-style Sheard–Fegaras iteration

is useful for both negative and indexed datatypes. Exp in Figure 3.20 has both

negative recursive occurrences and type indices.

The showHOAS example in Figure 3.17, which we discussed in the previous

subsection, has appeared in other work [32], written in conventional style. So, the

showHOAS example only shows that Mendler style is as expressive as conventional

145

style (although it is perhaps syntactically more pleasant than conventional style).

However, it is not obvious how one could extend the conventional-style Sheard–

Fegaras iteration over indexed datatypes.

In contrast, the Mendler-style Sheard–Fegaras iteration is naturally defined over

indexed datatypes of arbitrary kinds. In fact, both msfit∗→∗ used in evalHOAS

and msfit∗ used in showHOAS have exactly the same syntactic definition. They

differ only in their type signatures. This is illustrated in Figures 3.2 and 3.3 on

pages 100-101.

3.9.4 A graph datatype with cycles and sharing

Another example of a negative datatype is the graph with cycles and sharing in

Figure 3.21. For further details, see the paper by Fegaras and Sheard [32].

3.9.5 Additional Mendler-style combinators

The combinator msfcvit∗ generalizes mcvit∗ by the addition of an abstract inverse

to a combinator that already has an abstract unroller. The combining function ϕ

becomes a function of 4 arguments: an abstract inverse, an abstract unroller, a

recursive caller, and a base structure.

The combinators msfit∗→∗ and msfcvit∗→∗ (at kind ∗ → ∗) generalize the

combinators msfit∗ and msfcvit∗ (at kind ∗) to combinators on types with a type

index. The pattern of generalization is quite evident in Figures 3.2 (p.100), and

3.3 (p.101) and the reader is encouraged to study those figures for a complete

understanding of the results of this chapter.

We believe msfit∗→∗ might be useful for writing functions over negative datatypes

with type indices. The combinator msfcvit∗→∗, like its kind ∗ counterpart msfcvit∗,

may not terminate given ill-behaved ϕ functions. Such functions use the unroller

to reach down inside a tree to extract an embedded function and then apply that

function to an ancestor that contains that function. Yet, they may be nevertheless

146

data G p r = N p [r] | R (r → r) | S (r → r) r

type Graph p = ∀a.µ̆∗ (G p) a

node v gs = In̆∗ (N v gs)

rec f = In̆∗ (R f)

share f g = In̆∗ (S f g)

flatG :: Graph a → [a]

flatG = msfit∗ ϕ where

ϕ inv flat (N v gs) = v : concatMap flat gs

ϕ inv flat (R f) = flat (f (inv []))

ϕ inv flat (S f g) = flat (f g)

sumG :: Graph Int → Int

sumG = msfit∗ ϕ where

ϕ inv sumg (N n gs) = n + sum (map sumg gs)

ϕ inv sumg (R f) = sumg (f (inv 0))

ϕ inv sumg (S f g) = sumg (f g)

g0 :: Graph Int -- 0 //

��

1

��

ii

2

^^

x y

z

flatG g0 [0, 2, 1, 2]
sumG g0 5

g0 = rec (λx →

share (λz → node 0 [z , rec (λy → node 1 [y, z])])

(node 2 [x]))

Figure 3.21: A graph datatype with cycles and sharing [32]

147

mopenit∗ :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)

→ (∀a.µ̆∗ f a → µ̆∗ f a)→ (a → a)

mopenit∗ ϕ x v = msfit ϕ (x (Inverse∗ v))

where

msfit :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)→ µ̆∗ f a → a

msfit ϕ (In̆∗ x) = ϕ Inverse∗ (msfit ϕ) x

msfit ϕ (Inverse∗ z) = z

data E r = A r r | L (r → r) -- base structure for HOAS

type Exp a = µ̆∗ E a

lam g = In̆∗ (L g)

app e1 e2 = In̆∗ (A e1 e2)

-- False for (λx → lam (λy → y)), True for (λx → lam (λy → x))

freevarused :: (∀a.Exp a → Exp a)→ Bool

freevarused e = mopenit∗ ϕ e True

where

ϕ :: ∀r .(Bool → r Bool)→ (r Bool → Bool)→ E (r Bool)→ Bool

ϕ inv fvused (L g) = fvused (g (inv False))

ϕ inv fvused (A e1 e2) = fvused e1 ∨ fvused e2

Figure 3.22: The Mendler-style open-iteration mopenit∗, which allows one free

variable, and the freevarused function defined using mopenit∗.

148

type µ∗ f = ∀a.(∀r .(r → a)→ f r → a)→ a

mit∗ :: (∀r .(r → a)→ f r → a)→ µ∗ f → a

mit∗ ϕ r = r ϕ

in0 :: f (µ∗ f)→ µ∗ f

in0 r ϕ = ϕ (mit∗ ϕ) r

Figure 3.23: Fω encoding of µ∗ and mit∗ in Haskell.

useful for well-behaved ϕ functions.

In HOAS, a meta-level function (from expressions to expressions) represents

an expression with a single free variable. For example, λx → app (lam (λf →

app f x)) represents λf → f x , where x is free. The Mendler-style open-iterator

(mopenit∗) supports computation over terms with one free variable represented

in this fashion. We write mopenit∗ (λx → e) v for the open-iteration over an

expression e with a free variable x . The iteration should compute v when the com-

putation reaches x . For instance, the function freevarused defined using mopenit∗
in Figure 3.22 checks whether x appears in e, or is simply never mentioned. There

is an open-iteration combinator at each kind (e.g., mopenit∗→∗ at kind ∗ → ∗),

just like other combinators. Washburn and Weirich [96] studied open-iterations

that support more than one free variable, although not in Mendler style.

3.10 PROPERTIES OF RECURSION COMBINATORS

We close this chapter by summarizing the termination properties of Mendler-style

recursion combinators (Table 3.1) and the relationships between those combinators

(Figure 3.24) (i.e., which combinators can be defined in terms of others).

We give a termination proof for the Mendler-style iteration (at kind ∗) in Fig-

ure 3.23. The proof takes the form of an embedding into Fω, which is known to

be strongly normalizing. The proof in Figure 3.23 is adapted from work by Abel

149

positive negative example

cata proof [43] undefined len Section 3.3

mit∗ proof Figure 3.23 proof Figure 3.23 len Figure 3.5

mcvit∗ proof [94] no fib Figure 3.6

msfit∗ proof Section 3.9.2 proof Section 3.9.2 showExp Figure 3.17

msfcvit∗ argument Section 3.5 no loopFoo Figure 3.7

mpr∗ proof [3] proof [3] factorial Figure 3.13

mcvpr∗ conjecture Section 5.3 no lucas Figure 3.16

mit∗→∗ proof [5] proof [5] bsum Figure 3.9

extev Figure 3.11

mcvit∗→∗ similar to mcvpr∗→∗ no switch2 Figure 3.10

msfit∗→∗ similar to msfit∗ similar to msfit∗
msfcvit∗→∗ similar to msfcvit∗ no

Table 3.1: Termination properties of Mendler-style recursion combinators.

150

et al. [5]. They prove termination of the Mendler-style iteration at arbitrary kinds.

A proof similar to Figure 3.23 is also given by Vene [94].

The definitions given in Figure 3.23 are Fω terms, but are also legal Haskell

terms that execute in GHC. Try the following code with the definitions of µ∗ and

mit∗ from Figure 3.23. They run and return the expected results!

data N c = Z | S c

type Nat = µ∗ N

zer = in0 Z

suc = in0 ◦ S

n2i :: Nat → Int

n2i = mit∗ ϕ where

ϕ n2i ′ Z = 0

ϕ n2i ′ (S n) = 1 + n2i ′ n

Abel and Matthes [3] proved termination of Mendler-style primitive recursion

(mpr) by a reduction preserving embedding of mpr into Fixω. We discuss the

details of this embedding in Section 5.2. We know that the Mendler-style course-

of-values recursion (mcvpr) does not terminate for negative datatypes since mcvit

does not terminate for negative datatypes. Any computation that can be defined

by mit can also be defined by mcvpr (where it may be more efficient). We show a

partial proof that mcvpr∗ terminates for regular positive datatypes in Section 5.3,

and we conjecture that mcvpr terminates for positive datatypes at higher-kinds

as well.

Vene [94] stated that we can deduce the termination of the Mendler-style

course-of-values iteration for positive datatypes from its relation to the conven-

tional course-of-values iteration, but he did not clearly discuss whether the termi-

nation property holds for negative datatypes. In our work, we demonstrated that

mcvit∗ may not terminate for negative datatypes by exhibiting the counterexam-

ple (Figure 3.7) in Section 3.6.

Figure 3.24 illustrates a well-known fact that a standard iteration (mit) is

a special case of a course-of-values iteration (mcvit). Note that mit is defined

in terms of mcvit by ignoring the inverse operation (out). Similarly, we can

151

define mit in terms of mpr and mcvit in terms of mcvpr by ignoring the casting

operation of the primitive recursion families.

mit∗ ϕ r = mcvit∗ (const ϕ) r

mit∗→∗ ϕ r = mcvit∗→∗ (const ϕ) r

msfit∗ ϕ r = msfcvit∗ (λinv → ϕ inv) r

msfit∗→∗ ϕ r = msfcvit∗→∗ (λinv → ϕ inv) r

Figure 3.24: Alternative definition of iteration via the course-of-values iteration.

152

Part III

Term-Indexed Lambda Calculi

153

Chapter 4

SYSTEM Fi

It is well known that datatypes can be embedded into polymorphic lambda cal-

culi by means of functional encodings such as the Church and Boehm-Berarducci

encodings [14].

In System F, one can embed regular datatypes like homogeneous lists:

Haskell: data List a = Cons a (List a) | Nil

System F: List A , ∀X.(A→ X → X)→ X → X

Cons , λw.λx.λy.λz. y w (x y z), Nil , λy.λz.z

In such regular datatypes, constructors have an algebraic structure that directly

translates into polymorphic operations on abstract types, as encapsulated by uni-

versal quantification over types (of kind ∗).

In the more expressive System Fω, where one can abstract over type constructors

of any kind, one can encode more general type-indexed datatypes that go beyond

the regular datatypes. For example, one can embed powerlists with heterogeneous

elements in which an element of type a is followed by an element of the product

type (a,a):

Haskell: data Powl a = PCons a (Powl(a,a)) | PNil

-- PCons 1 (PCons (2,3) (PCons ((3,4),(1,2)) PNil)) :: Powl Int

System Fω: Powl , λA∗.∀X∗→∗.(A→ X(A× A)→ XA)→ XA→ XA

Note the non-regular occurrence (Powl(a,a)) in the definition of (Powl a) and

the use of universal quantification over higher-order kinds (∀X∗→∗). The term

154

encodings for PCons and PNil are exactly the same as the term encodings for Cons

and Nil, but with different types.

What about term-indexed datatypes? What extensions to System Fω are needed

to embed term-indices as well as type-indices? Our solution is System Fi.

In a functional language that supports term-indexed datatypes, we envisage

that the classic example of homogeneous length-indexed lists would be defined

along the following lines (in Nax-like syntax):

data Nat = S Nat | Z
data Vec : * -> Nat -> * where

VCons : a -> Vec a {i} -> Vec a {S i}
VNil : Vec a {Z}

Here, the type constructor Vec is defined to admit parameterisation by both a

type parameter and a term index.1 For instance, the type (Vec (List Nat) {S(S Z)})

is a vector whose elements are lists of natural numbers. By design, our syntax

directly reflects the difference between type and term arguments by enclosing the

latter in curly braces. We also make this distinction in System Fi, where it is useful

within the type system to guarantee the static nature of term-indexing.

The encoding of the vector datatype in System Fi is as follows:

Vec , λA∗.λiNat.∀XNat→∗.(∀jNat.A→ X{j} → X{S j})→ X{Z} → X{i}

where Nat, Z, and S encode the natural number type and its two constructors,

zero, and successor, respectively. Again, the term encodings for VCons and VNil

are exactly the same as the encodings for Cons and Nil, but with different types.

Without going into the details of the formalism given in the next section, one

sees that such a calculus that incorporates term-indexing structure needs four

additional constructs (see Figure 4.1 for the highlighted extended syntax).

1Recall in Chapter 3, we classify the arguments of type constructors either as parameters that
appear uniformly in the datatype definition (e.g., a in Vec, or as indices that vary (e.g., i, S i, or
Z). Type arguments are sometimes used as parameters and sometimes used as as indices. Term
arguments, on the other hand, are almost always used as indices, except for some degenerate
cases (e.g., term-indexing by a unit value).

155

1. Type-indexed kind A → κ (as Nat→* in the example above), where the

compile-time nature of term-indexing is reflected in the typing rules, forcing

A to be a closed type (rule (Ri) in Figure 4.2).

2. Term-index abstraction λiA.F (as λiNat. · · · in the example above) for con-

structing (or introducing) type-indexed kinds (rule (λi) in Figure 4.2).

3. Term-index application F{s} (as X{Z}, X{j}, and X{S j} in the exam-

ple above) for destructing (or eliminating) type-indexed kinds, where the

compile-time nature of indexing is reflected in the typing rules, forcing the

index to be statically typed (rule (@i) in Figure 4.2).

4. Term-index polymorphism ∀iA.B (as ∀jNat. · · · in the example above), where

the compile-time nature of polymorphic term-indexing is reflected in the

typing rules, forcing the variable i to be static of closed type A (rule (∀Ii)

in Figure 4.2).

As described above, System Fi maintains a clear-cut separation between type-

indexing and term-indexing. This adds a level of abstraction to System Fω and

yields types that, in addition to parametric polymorphism, also keep track of

inductive invariants using term-indices. All term-index information can be erased,

as it is only used at compile-time. It is possible to project any well-typed System Fi
term into a well-typed System Fω term. For instance, the erasure of the Fi-type Vec

is the Fω-type List. This is established in Section 4.3 and used to deduce the strong

normalization of System Fi.

A conference paper [7] presented the contents of this chapter at TLCA in 2013

has been published.

156

4.1 SYSTEM Fi

System Fi is a higher-order polymorphic lambda calculus designed to extend Sys-

tem Fω by the inclusion of term indices. The syntax and rules of System Fi are

described in Figures 4.1, 4.2, and 4.3. The extensions new to System Fi that

are not originally part of System Fω are highlighted by grey boxes . Eliding all

the grey boxes from Figures 4.1, 4.2 and 4.3, one obtains a version of System Fω
with Curry-style terms and the typing context separated into two parts (type-level

context ∆ and term-level context Γ).

In this section, we first discuss the rational for our design choices (Section 4.1.1)

and then introduce the new constructs of System Fi (Section 4.1.2).

4.1.1 Design of System Fi

Terms in Fi are Curry style. That is, term-level abstractions are unannotated

(λx.t), and type generalizations (∀I) and type instantiations (∀E) are implicit at

the term-level. A Curry-style calculus generally has an advantage over its Church-

style counterpart when reasoning about properties of reduction. For instance, the

Church-Rosser property naturally holds for β-, η-, and βη-reduction in the Curry

style, but may not hold in the Church style. This is caused by the presence of

annotations in the abstractions [68].2

Type constructors, on the other hand, remain Church style in Fi. That is, type-

level abstractions are annotated by kinds (λXκ.F). Choosing type constructors

to be Church style makes the kind of a type constructor visually explicit. The

choice of style for type constructors is not as crucial as the choice of style for terms

because the syntax and kinding rules at the type-level are essentially a simply-

typed lambda calculus. Annotating the type-level abstractions with kinds makes

2The Church-Rosser property, in its strictest sense (i.e., α-equivalence over terms), generally
does not hold in Church-style calculi , but may hold under certain approximations, such as
modulo ignoring the annotations in abstractions.

157

the kinds explicit in the type syntax. Because Fi is essentially an extension of

Fω with a new kind formation rule, making kinds explicit is a pedagogical tool to

emphasize the consequences of this new formation rule. As a notational convention,

we write A and B instead of F and G, where A and B to are expected to be types

(i.e., nullary type constructors) of kind ∗.

In a language with term indices, terms appear in types (e.g., the length index

(n+m) in the type Vec Nat {n+m}). Such terms contain variables and the binding

sites of these variables matter. In Fi, we expect such variables to be statically

bound. Dynamically bound index variables would require a dependently-typed

calculus such as the calculus of constructions. To reflect this design choice, typing

contexts are separated into type-level contexts (∆) and term-level contexts (Γ).

Type level (static) variables (X, i) are bound in ∆ and term (dynamic) variables

(x) are bound in Γ. Type level variables are either type constructor variables (X)

or term variables to be used as indices (i). As a notational convention, we write

i instead of x when term variables are to be used as indices (i.e., introduced by

either index abstraction or index polymorphism).

In contrast to our design choice, System Fω is most often formalized using a

single context, which binds both type variables (X) and term variables (x). In such

a formalization, the free type variables in the typing of the term variable must be

bound earlier in the context. For example, if X and Y appear free in the type of

f , they must appear earlier in the single context (Γ) as below:

Γ = . . . , X∗, . . . , Y ∗, . . . , (f : ∀Z∗.X → Y → Z), . . .

In such a formalization, the side condition (X /∈ Γ) in the (∀I) rule of Figure 4.1

is not necessary, since such a condition is already a part of the well-formedness

condition for the context (i.e., Γ, Xκ is well-formed when X /∈ FV(Γ)). Thus,

for Fω, it is only a matter of taste whether to formalize the system using a single

context or two contexts as they are equivalent formalizations with comparable

158

Syntax:

Sort �

Term Variables x, i

Type Constructor Variables X

Kinds κ ::= ∗ | κ→ κ | A→ κ

Type Constructors A,B, F,G ::= X | A→ B

| λXκ.F | F G | ∀Xκ.B

| λiA.F | F {s} | ∀iA.B

Terms r, s, t ::= x | λx.t | r s

Typing Contexts ∆ ::= · | ∆, Xκ | ∆, iA

Γ ::= · | Γ, x : A

Reduction: t t′

(λx.t) s t[s/x]
t t′

λx.t λx.t′
r r′

r s r′ s
s s′

r s r s′

Figure 4.1: Syntax and Reduction rules of Fi.

complexity.

However, in Fi, we separate the context into two parts to distinguish the term

variables used in types (called index variables, or indices, and bound as ∆, iA)

from the ordinary use of term variables (bound as Γ, x : A). The expectation

is that indices should have no effect on reduction at the term-level. Although it

is imaginable to formalize Fi with a single typing context and distinguish index

variables from ordinary term variables using more general concepts (e.g., capability,

or modality), we believe that splitting the typing context into two parts is the

simplest solution for our purposes.

159

Well-formed typing contexts:

` ∆ ` ·
` ∆ ` κ : �
` ∆, Xκ

(
X /∈ dom(∆)

)
` ∆ · ` A : ∗
` ∆, iA

(
i /∈ dom(∆)

)
∆ ` Γ ` ∆

∆ ` ·
∆ ` Γ ∆ ` A : ∗

∆ ` Γ, x : A
(
x /∈ dom(Γ) ∪ dom(∆)

)
Sorting: ` κ : �

(A) ` ∗ : � (R) ` κ : � ` κ′ : �
` κ→ κ′ : �

(Ri) · ` A : ∗ ` κ : �
` A→ κ : �

Kinding: ∆ ` F : κ (V ar) Xκ ∈ ∆ ` ∆
∆ ` X : κ (→) ∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗

(λ)
` κ : � ∆, Xκ ` F : κ′

∆ ` λXκ.F : κ→ κ′
(λi)

· ` A : ∗ ∆, iA ` F : κ
∆ ` λiA.F : A→ κ

(@) ∆ ` F : κ→ κ′ ∆ ` G : κ
∆ ` F G : κ′

(@i)
∆ ` F : A→ κ ∆; · ` s : A

∆ ` F {s} : κ

(∀)
` κ : � ∆, Xκ ` B : ∗

∆ ` ∀Xκ.B : ∗ (∀i)
· ` A : ∗ ∆, iA ` B : ∗

∆ ` ∀iA.B : ∗

(Conv) ∆ ` A : κ ∆ ` κ = κ′ : �
∆ ` A : κ′

Typing: ∆; Γ ` t : A (:)
(x : A) ∈ Γ ∆ ` Γ

∆; Γ ` x : A (: i) iA ∈ ∆ ∆ ` Γ
∆; Γ ` i : A

(→I)
∆ ` A : ∗ ∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B
(→E)

∆; Γ ` r : A→ B ∆; Γ ` s : A
∆; Γ ` r s : B

(∀I)
` κ : � ∆, Xκ; Γ ` t : B

∆; Γ ` t : ∀Xκ.B
(X /∈ FV(Γ)) (∀E)

∆; Γ ` t : ∀Xκ.B ∆ ` G : κ
∆; Γ ` t : B[G/X]

(∀Ii)
· ` A : ∗ ∆, iA; Γ ` t : B

∆; Γ ` t : ∀iA.B

(
i /∈ FV(t),
i /∈ FV(Γ)

)
(∀Ei)

∆; Γ ` t : ∀iA.B ∆; · ` s : A
∆; Γ ` t : B[s/i]

(=)
∆; Γ ` t : A ∆ ` A = B : ∗

∆; Γ ` t : B

Figure 4.2: Sorting, Kinding, and Typing rules of Fi.

160

Kind equality: ` κ = κ′ : � ` ∗ = ∗ : �

` κ1 = κ′1 : � ` κ2 = κ′2 : �
` κ1 → κ2 = κ′1 → κ′2 : �

· ` A = A′ : ∗ ` κ = κ′ : �
` A→ κ = A′ → κ′ : �

` κ = κ′ : �
` κ′ = κ : �

` κ = κ′ : � ` κ′ = κ′′ : �
` κ = κ′′ : �

Type constructor equality: ∆ ` F = F ′ : κ

∆, Xκ ` F : κ′ ∆ ` G : κ
∆ ` (λXκ.F)G = F [G/X] : κ′

∆, iA ` F : κ ∆; · ` s : A
∆ ` (λiA.F) {s} = F [s/i] : κ

∆ ` X : κ
∆ ` X = X : κ

∆ ` A = A′ : ∗ ∆ ` B = B′ : ∗
∆ ` A→ B = A′ → B′ : ∗

` κ : � ∆, Xκ ` F = F ′ : κ′

∆ ` λXκ.F = λXκ.F ′ : κ→ κ′
· ` A : ∗ ∆, iA ` F = F ′ : κ
∆ ` λiA.F = λiA.F ′ : A→ κ

∆ ` F = F ′ : κ→ κ′ ∆ ` G = G′ : κ
∆ ` F G = F ′G′ : κ′

∆ ` F = F ′ : A→ κ ∆; · ` s = s′ : A
k∆ ` F {s} = F ′ {s′} : κ

` κ : � ∆, Xκ ` B = B′ : ∗
∆ ` ∀Xκ.B = ∀Xκ.B′ : ∗

· ` A : ∗ ∆, iA ` B = B′ : ∗
∆ ` ∀iA.B = ∀iA.B′ : ∗

∆ ` F = F ′ : κ
∆ ` F ′ = F : κ

∆ ` F = F ′ : κ ∆ ` F ′ = F ′′ : κ
∆ ` F = F ′′ : κ

Term equality: ∆; Γ ` t = t′ : A

∆; Γ, x : A ` t : B ∆; Γ ` s : A
∆; Γ ` (λx.t) s = t[s/x] : B

∆; Γ ` x : A
∆; Γ ` x = x : A

∆ ` A : ∗ ∆; Γ, x : A ` t = t′ : B
∆; Γ ` λx.t = λx.t′ : B

∆; Γ ` r = r′ : A→ B ∆; Γ ` s = s′ : A
∆; Γ ` r s = r′ s′ : B

` κ : � ∆, Xκ; Γ ` t = t′ : B
∆; Γ ` t = t′ : ∀Xκ.B

(X /∈ FV(Γ)) ∆; Γ ` t = t′ : ∀Xκ.B ∆ ` G : κ
∆; Γ ` t = t′ : B[G/X]

· ` A : ∗ ∆, iA; Γ ` t = t′ : B
∆; Γ ` t = t′ : ∀iA.B

(
i/∈FV(t),
i/∈FV(t′),
i/∈FV(Γ)

)
∆; Γ ` t = t′ : ∀iA.B ∆; · ` s : A

∆; Γ ` t = t′ : B[s/i]

∆; Γ ` t = t′ : A
∆; Γ ` t′ = t : A

∆; Γ ` t = t′ : A ∆; Γ ` t′ = t′′ : A
∆; Γ ` t = t′′ : A

Figure 4.3: Equality rules of Fi.

161

4.1.2 System Fi compared to System Fω

We assume readers are familiar with System Fω and focus on describing the new

constructs of Fi. These appear in grey boxes.

Kinds: The key extension to Fω is the addition of type-indexed arrow kinds of

the form A→ κ . This allows type constructors to have terms as indices. The

development of Fi follows naturally from this single extension.

Sorting: The formation of indexed arrow kinds is governed by the sorting rule

(Ri) . This rule specifies that an indexed arrow kind A → κ is well-sorted when

A has kind ∗ under the empty type-level context (·) and κ is well-sorted.

Requiring the use of the empty context avoids dependent kinds (i.e., kinds

depending on the type-level or the value-level bindings). The type A appearing

in the index arrow kind A → κ must be well-kinded under the empty type-level

context (·). That is, A should to be a closed type of kind ∗ that does not contain

any free type variables or index variables. For example, (ListX → ∗) is not a

well-sorted kind, while ((∀X∗.ListX)→ ∗) is a well-sorted kind.

Typing contexts: Typing contexts are split into two parts: the type-level con-

texts (∆) for type-level (static) bindings and the term-level contexts (Γ) for term-

level (dynamic) bindings. A new form of index variable binding (iA) can appear

in type-level contexts in addition to the traditional type variable bindings (Xκ).

There is only one form of term-level binding (x : A) that appears in term-level

contexts.

Well-formed typing contexts: A type-level context ∆ is well-formed if it is

either (1) empty, (2) extended by a type variable binding Xκ whose kind κ is

well-sorted, or (3) extended by an index binding iA whose type A is well-kinded

under the empty type-level context at kind ∗. This restriction is similar to the one

162

that occurs in the sorting rule (Ri) for type-indexed arrow kinds (see paragraph

Sorting). The consequence of this is that, in typing contexts and sorts, A must

be a closed type (i.e., nullary type constructor) without free variables.

A term-level context Γ is well-formed under a type-level context ∆ when it

is either empty or extended by a term variable binding x : A whose type A is

well-kinded under ∆.

Type constructors and their kinding rules: We extend the type constructor

syntax by three constructs and extend the kinding rules accordingly.

Abstraction λiA.F is the type-level abstraction over an index (or, index ab-

straction). Index abstractions introduce indexed arrow kinds by the kinding rule

(λi) . Note the use of the new form of context extension iA in the kinding rule

(λi).

Application F {s} is the type-level index application. In contrast to the ordi-

nary type-level application (F G) where the argument (G) is a type constructor,

the argument of an index application (F {s}) is a term (s). We use the curly brace

notation around an index argument in a type to emphasize the transition from or-

dinary type to term and emphasize that s is an index term that is erasable. Index

applications eliminate indexed arrow kinds by the kinding rule (@i) . We type

check index term (s) under the current type-level context paired with the empty

term-level context (∆; ·) because we do not want it to depend on any term-level

bindings. Allowing such a dependency would admit true dependent types.

Forall type ∀iA.B that quantifies over a term-index variable is called an index

polymorphic type. The formation of indexed polymorphic types is governed by

the kinding rule ∀i , which is very similar to the formation rule (∀) for ordinary

polymorphic types.

In addition to rules (λi), (@i), and (∀i), we need a conversion rule (Conv)

at the kind-level. This is because the new extension to the kind syntax A → κ

163

involves types. Since kind syntax involves types, we need more than a simple

structural equality over kinds. The new equality over kinds is the usual structural

equality extended by the type constructor equality when comparing indexed arrow

kinds (see Figure 4.3).

Terms and their typing rules. The term syntax is exactly the same as other

Curry-style calculi. We write x for ordinary term variables introduced by term-level

abstractions (λx.t). We write i for index variables introduced by index abstractions

(λiA.F) and index polymorphic types (∀iA.B). As discussed earlier, the distinction

between x and i is for the convenience of readability.

Since Fi has index polymorphic types (∀iA.B), we need typing rules for index

polymorphism: (∀Ii) for index generalization and (∀Ei) for index instantiation.

The index generalization rule (∀Ii) is similar to the type generalization rule

(∀I), but generalizes over index variables (i) rather than type constructor vari-

ables (X). Rule (∀Ii) has two side conditions while rule (∀I) has only one. The

additional side condition i /∈ FV(t) in the (∀Ii) rule prevents terms from access-

ing the type-level index variables introduced by index polymorphism. Without

this side condition, ∀-binder would no longer behave polymorphically, but instead

would behave as a dependent function, which is usually denoted by the Π-binder

in dependent type theories. The rule (∀I) for ordinary type generalization does

not need such an additional side condition because type variables cannot appear

in the syntax of terms. The side conditions on generalization rules for polymor-

phism are fairly standard in dependently-typed languages supporting distinctions

between polymorphism (i.e., erasable arguments) and dependent functions (e.g.,

IPTS[69], ICC[68]).

The index instantiation rule (∀Ei) is similar to the type instantiation rule

(∀Ei), except that we type check that the index term s is instantiated for i in the

current type-level context paired with the empty term-level context (∆; ·) rather

164

(λi)
· ` A : ∗

(@i)
∆, iA ` F : A→ κ

(: i)
iA ∈ ∆, iA ∆ ` ·

∆, iA; · ` i : A
∆, iA ` F{i} : κ

∆ ` λiA.F{i} : A→ κ

Figure 4.4: Kinding derivation for an index abstraction.

than the current term-level context. Because index terms are at type-level, they

should not depend on term-level bindings.

In addition to the rules (∀Ii) and (∀Ei) for index polymorphism, we need an

additional variable rule (: i) to be able to access the index variables already in

scope. Terms (s) used at type-level in index applications (F{s}) should be able

to access index variables already in scope. For example, λiA.F{i} should be well-

kinded under a context where F is well-kinded; this is justified by the derivation

in Figure 4.4.

4.2 EMBEDDING DATATYPES AND MENDLER-STYLE ITERA-

TORS

System Fi can express a rich collection of datatypes. First, we illustrate embeddings

for both non-recursive and recursive datatypes using Church encodings [20] to

define data constructors (Section 4.2.1). Second, we illustrate a more involved

embedding for recursive datatypes based on two-level types (Section 4.2.2). Lastly,

we discuss an encoding of equality over term indices (Section 4.2.3).

4.2.1 Embedding datatypes using Church-encoded terms

Church [20] invented an embedding of the natural numbers into the untyped

λ-calculus, which he used to argue that the λ-calculus was expressive enough

165

Bool = ∀X.X → X → X

true : Bool = λx1.λx2.x1

false : Bool = λx1.λx2.x2

elimBool : Bool→ ∀X.X → X → X

= λx.λx1.λx2.x x1 x2 (if x then x1 else x2)

A1 × A2 = ∀X.(A1 → A2 → X)→ X

pair : ∀A∗1.∀A∗2.A1 × A2 = λx1.λx2.λx
′.x′ x1 x2

elim(×) : ∀A∗1.∀A∗2.A1 × A2 → ∀X.(A1 → A2 → X)→ X

= λx.λx′.x x′

(by passing appropriate values to x′, we get
fst = λx.x(λx1.λx2.x1), snd = λx.x(λx1.λx2.x2))

A1 + A2 = ∀X∗.(A1 → X)→ (A2 → X)→ X

inl : ∀A∗1.∀A∗2.A1 → A1 + A2 = λx.λx1.λx2.x1 x

inr : ∀A∗1.∀A∗2.A2 → A1 + A2 = λx.λx1.λx2.x2 x

elim(+) : ∀A∗1.∀A∗2.(A1 + A2)→
∀X∗.(A1 → X)→ (A2 → X)→ X

= λx.λx1.λx2.x x1 x2

(case x of {inl x′ → x1 x
′; inr x′ → x2 x

′})

Figure 4.5: Embedding non-recursive datatypes.

166

List = λA∗.∀X∗.(A→ X → X)→ X → X

cons : ∀A∗.A→ ListA→ ListA

= λxa.λx.λxc.λxn.xc xa (x xc xn)
nil : ∀A∗.ListA = λxc.λxn.λxn

elimList : ∀A∗.ListA→ ∀X∗.(A→ X → X)→ X → X

= λx.λxc.λxn.x xc xn (foldr xz xc x in Haskell)

Powl = λA∗.

∀X∗→∗.(A→ X(A× A)→ XA)→ XA→ XA

pcons : ∀A∗.A→ Powl(A× A)→ PowlA

= λxa.λx.λxc.λxn.xc xa (x xc xn)
pnil : ∀A∗.PowlA = λxc.λxn.λxn

elimPowl : ∀A∗.PowlA→
∀X∗→∗.(A→ X(A× A)→ XA)→ XA→ XA

= λx.λxc.λxn.x xc xn

Vec = λA∗.λiNat.

∀XNat→∗.(∀iNat.A→ X{i} → X{S i})→
X{Z} → X{i}

vcons : ∀A∗.∀iNat.A→ VecA {i} → VecA {S i}
= λxa.λx.λxc.λxn.xc xa (x xc xn)

vnil : ∀A∗.VecA {Z} = λxc.λxn.xn

elimVec : ∀A∗.∀iNat.VecA {i} →
∀XNat→∗.(∀iNat.A→ X{i} → X{S i})→

X{Z} → X{i}
= λx.λxc.λxn.x xc xn

Figure 4.6: Embedding recursive datatypes.

167

for the foundation of logic and arithmetic. Church encoded the data construc-

tors of natural numbers, successor and zero, as higher-order functions, succ =

λx.λxs.λxz.xs(x xsxz) and zero = λxs.λxz.xz. The key concept of the Church en-

coding is that a value is encoded as an elimination function. The bound variables xs
and xz (in succ and zero) denote the operations needed to eliminate the successor

and zero cases respectively. The Church encodings of successor states that to elim-

inate succx, one must “apply xs to the elimination of the predecessor (x xsxz)”,

and, to eliminate zero, one may simply “return xz”. Since values are elimination

functions, the eliminator can be defined as an application of the value itself to the

needed operations, one for each of the data constructors. For instance, we can de-

fine an eliminator for the natural numbers as elimNat = λx.λxs.λxz.x xsxz. This is

simply an η-expansion of the identity function λx.x. The Church encoded natural

numbers are typable in polymorphic λ-calculi, such as System Fω, as follows:

Nat = ∀X∗.(X → X)→ X → X

S : Nat→ Nat = λx.λxs.λxz.xs(x xsxz)

Z : Nat = λxs.λxz.xz

elimNat : Nat→ ∀X∗.(X → X)→ X → X

= λx.λxs.λxz.x xsxz

Other datatypes are also embeddable into polymorphic λ-calculi in a similar

fashion. Embeddings of some well-known non-recursive datatypes are illustrated

in Figure 4.5, and embeddings of the list-like recursive datatypes, which we dis-

cussed as motivating examples in the beginning of this chapter, are illustrated in

Figure 4.6. Note that the term encodings for the constructors and eliminators of

the list-like datatypes in Figure 4.6 are exactly the same. For instance, the term

encodings for nil, pnil, and vnil are all the same term: λxs.λxz.xz. The term

encodings for nil and cons capture the linear nature of lists, hence they are the

same for all list-like structures. However, their types differ, capturing different

168

invariants, for example, element shape (Powl) and list length (Vec).

4.2.2 Embedding recursive datatypes as two-level types

We can divide a recursive datatype definition into two parts – a recursive type

operator and a base structure. The operator “weaves” recursion into the datatype

definition and the base structure describes its shape (i.e., the number of data con-

structors and their types). One can program with two-level types in any functional

language that supports higher-order polymorphism3 such as Haskell. In Figure 4.7,

we illustrate this with an example of a two-level definition for ordinary lists (all

the other types in this paper have similar definitions).

The use of two-level types has been recognized as a useful functional program-

ming pearl [85] because two-level types separate the two concerns of (1) recursion

on recursive subcomponents and (2) handling different cases by pattern match-

ing over the shape of the (non-recursive) base structure. An advantage of such

an approach is that a single eliminator can be defined once for all datatypes of

the same kind. For example, the function mitκ describes Mendler-style iteration

(a.k.a., fold, or catamorphism) for the recursive types defined by µκ. Although

it is possible to write programs using two level datatypes in a general purpose

functional language, one could not expect logical consistency in such systems.

Interestingly, there exist embeddings of the recursive type operator µκ, its data

constructor Inκ, and the Mendler-style iterator mitκ for each kind κ into the

higher-order polymorphic λ-calculus Fi, as illustrated in Figure 4.8. In addition

to illustrating the general form of embedding µκ, we also fully expand the embed-

dings for some instances (µ∗, µ∗→∗ , µNat→∗), which are used in Figure 4.7. These

embeddings support the embedding of arbitrary type- and term-indexed recursive

datatypes into System Fi. Thus we can reason about these datatypes in a logically

3 This is also known as higher-kinded polymorphism, or type-constructor polymorphism

169

newtype µ∗ (f :: * -> *) = In∗ (f (µ∗ f))

data ListF (a::*) (r::*) = Cons a r | Nil
type List a = µ∗ (ListF a)
cons x xs = In∗ (Cons x xs)
nil = In∗ Nil

mit∗ :: (∀ r.(r->x) -> f r -> x) -> Mu0 f -> x
mit∗ phi (In∗ z) = phi (mit∗ phi) z

newtype µ(∗→∗) (f :: (*->*) -> (* - >*)) (a::*)
= In(∗→∗) (f (Mu(∗→∗) f)) a

data PowlF (r::* - >*) (a::*) = PCons a (r(a,a)) | PNil
type Powl a = µ(∗→∗) PowlF a
pcons x xs = In(∗→∗) (PCons x xs)
pnil = In(∗→∗) PNil

mit(∗→∗) :: (∀ r a.(∀a.r a->x a) -> f r a -> x a)
-> µ(∗→∗) f a -> x a

mit(∗→∗) phi (In(∗→∗) z) = phi (mit(∗→∗) phi) z

-- above is Haskell (with some GHC extensions)
-- below is Haskell -ish pseudocode

newtype µ(Nat→∗) (f::(Nat ->*)->(Nat - >*)) {n:: Nat}
= In(Nat→∗) (f (µ(Nat→∗) f)) {n}

data VecF (a::*) (r::Nat ->*) {n:: Nat} where
VCons :: a -> r n -> VecF a r {S n}
VNil :: VecF a r {Z}

type Vec a {n:: Nat} = µ(Nat→∗) (VecF a) {n}
vcons x xs = In(Nat→∗) (VCons x xs)
vnil = In(Nat→∗) VNil

mit(Nat→∗) ::(∀ r n.(∀n.r{n}->x{n})->f r {n}->x{n})
-> µ(Nat→∗) f {n} -> x{n}

mit(Nat→∗) phi (In(Nat→∗) z) = phi (mit(Nat→∗) phi) z

Figure 4.7: Two-level types and their Mendler-style iterators in Haskell.

170

consistent calculus.

However, it is important to note that there does not exist an embedding that

arbitrarily destructs (i.e., pattern matches away) the Inκ constructor. It is known

that combining arbitrary recursive datatypes with the ability to destruct (or unroll)

their values is powerful enough to define non-terminating computations in a type-

safe way, leading to logical inconsistency. Some systems maintain consistency by

restricting which recursive datatypes can be defined, but allow arbitrary unrolling.

In Mendler style, one can define any datatype, but unrolling recursive values is

restricted to Mendler-style recursion combinators. Such datatypes and Mendler-

style recursion combinators are embeddable in Fi (and some in Fixi). The family of

Mendler-style recursion schemes are quite expressive, capturing at least iteration,

primitive recursion, and course-of-values recursion.

Example 4.2.1. Datatype of λ-terms in context

data Lam (C: Nat -> *) { i: Nat } where
LVar : C{i} -> Lam{i}
LApp : Lam{i} -> Lam{i} -> Lam{i}
LAbs : Lam{S i} -> Lam{i}

is encoded as:

Lam , λCNat→∗λiNat.∀XNat→∗.

(∀jNat. C{j} → X{j})
→ (∀jNat. X{j} → X{j} → X{j})
→ (∀jNat. X{S j} → X{j})
→ X{i}

For a concrete representation one can consider Lam Fin where

data Fin { i: Nat } where
FZ : Fin{S i}
FS : Fin{i} -> Fin{S i}

This is encoded as

Fin , λiNat. ∀XNat→∗. (∀jNat. X{S j})→ (∀jNat. X{j} → X{S j})→ X{i}

171

no
ta

tio
n:

λ
Iκ
.F

=
λ
I
K

1
1
.·
··
.λ
I
K
n

n
.F

F
I=

F
I 1
··
·I
n

∀I
κ
.B

=
∀I

K
1

1
.·
··
.∀
I
K
n

n
.B

F
κ →→ →→→ → →→ →
G

=
∀I

κ
.F

I→
G
I

w
he

re
κ

=
K

1
→
··
·→

K
n
→
∗

an
d
I i

is
an

in
de

x
va

ria
bl

e
(i
i)

w
he

n
K
i

is
a

ty
pe

,
I

=
I 1
,
..
.
..
.
,
I n

a
ty

pe
co

ns
tr

uc
to

r
va

ria
bl

e
(X

i)
ot

he
rw

ise
(i.

e.
,K

i
=
κ
i).

µ
κ

:
(κ
→

κ
)→

κ
=
λ
F
κ
→
κ
.λ
Iκ
.∀
X
κ
.(∀
X
rκ
.(X

r
κ →→ →→→ → →→ →
X

)→
(F
X
r
κ →→ →→→ → →→ →
X

))
→

X
I

µ
∗

:
(∗
→
∗)
→
∗

=
λ
F
∗→
∗ .

∀X
∗ .

(∀
X
r∗
.(X

r
→

X
)→

(F
X
r
→

X
))
→

X

µ
∗→
∗

:
((
∗
→
∗)
→

(∗
→
∗)

)→
(∗
→
∗)

=
λ
F

(∗
→
∗)
→

(∗
→
∗)
.λ
X
∗ 1
.∀
X
∗→
∗ .

(∀
X
r∗
→
∗ .

(∀
X
∗ 1
.X

r
X

1
→

X
X

1)
→

(∀
X
∗ 1
.F
X
r
X

1
→

X
X

1)
)→

X
X

1

µ
Na

t→
∗

:
((

Na
t
→
∗)
→

(N
at
→
∗)

)→
(N

at
→
∗)

=
λ
F

(N
at
→
∗)
→

(N
at
→
∗)
.λ
iNa

t
1
.∀
X

Na
t→
∗ .

(∀
X
rNa

t→
∗ .

(∀
iNa

t
1
.X

r
i 1
→

X
i 1

)→
(∀
iNa

t
1
.F
X
r
i 1
→

X
i 1

))
→

X
i 1

In
κ

:
∀F

κ
→
κ
.F

(µ
κ
F

)
κ →→ →→→ → →→ →
µ
κ
F

=
λ
x
r
.λ
x
ϕ
.x
ϕ

(m
it

κ
x
ϕ
)x

r

mi
t κ

:
∀F

κ
→
κ
.∀
X
κ
.(∀
X
rκ
.(X

r
κ →→ →→→ → →→ →
X

)→
(F
X
r
κ →→ →→→ → →→ →
X

))
→

(µ
κ
F

κ →→ →→→ → →→ →
X

)
=

λ
x
ϕ
.λ
x
r
.x
r
x
ϕ

Fi
gu

re
4.

8:
Em

be
dd

in
g

of
th

e
re

cu
rs

iv
e

op
er

at
or

s
(µ

κ
),

th
ei

r
da

ta
co

ns
tr

uc
to

rs
(I

n κ
),

an
d

th
e

M
en

dl
er

-s
ty

le
ite

ra
to

rs
(m

it
κ
)

in
F i

.

172

4.2.3 Leibniz index equality

The quantification over type-indexed arrow kind available in System Fi allows the

definition of Leibniz-equality type constructor LEqA : A→ A→ ∗ on closed types A,

defined as follows:

LEqA , λiA. λjA.∀XA→∗. X{i} → X{j}

Observe that the following types are inhabited:

(Reflexive) ∀iA. LEqA{i}{i}

(Transitive) ∀iA.∀jA.∀kA. LEqA{i}{j} → LEqA{j}{k} → LEqA{i}{k}

(Logical) ∀iA.∀jA. LEqA{i}{j} → ∀fA→B. LEqB{f i}{f j}

∀fA→B.∀gA→B. LEqA→B{f}{g} → ∀iA. LEqB{f i}{g i}

In addition to the above, one also has the inhabitation of the following type:4

(Symmetric) ∀iA.∀jA. LEqA{i}{j} → LEqA{j}{i}

Hence Leibniz equality is a congruence.

In applications, the types LEqA are useful in constraining the term-indexing of

datatypes. A general construction is given by the type constructors RanA,B : (A→

B)→ (A→ ∗)→ B → ∗. These are defined as

RanA,B , λfA→B. λXA→∗. λjB.∀iA. LEqB{j}{f i} → X{i}

and are, in spirit, right Kan extensions, a notion that is extensively used in pro-

gramming, e.g. [5, 52].

One of their usefulness comes from the fact that the following type is inhabited

by a section:

∀Y B→∗.∀XA→∗.∀fA→B.
(
∀iA. Y {f i} → X{i}

)
→
(
∀jB. Y {j} → (RanA,B{f}X){j}

)
4 Intuitively, this is obvious, since we can swap the order of consecutive universal quantification

over indices. That is, from (∀iA.∀jA. · · ·) to (∀jA.∀iA. · · ·).

173

This allows one to represent functions from input datatypes with constrained in-

dices as plain indexed functions, and vice versa. For instance, by means of the

iterators of the previous section, one can define a vector tail function of type

∀X∗.∀jNat. VecX {j} →
(
RanNat,Nat {S}(VecX)

)
{j}

and retract it to one of type

∀X∗. ∀iNat. VecX {S i} → VecX {i} .

Analogously, one can use an iterator to define a single-variable capture-avoiding

substitution function of type

∀iNat. (Lam Fin){i} →
(
RanNat,Nat{S}(λjNat. Lam Fin{j} → Lam Fin{j})

)
{i}

and then retract it to one of type

∀iNat. (Lam Fin){S i} → (Lam Fin){i} → (Lam Fin){i} .

Type constructors LanA,B : (A→ B)→ (A→ ∗)→ B → ∗, which are in spirit

left Kan extensions, permit the encoding of functions of type (∀iA. F{i} → G{t i})

for F : A→ ∗, G : B → ∗, and t : A→ B, as functions of type

∀jB. (LanA,B{t}F){j} → G{j} .

Left Kan extensions are dual to right Kan extensions, but to define them as such,

one needs existential and product types. In formalisms without them, these have

to be encoded. This can be done as follows:

LanA,B , λfA→B. λXA→∗. λjB.∀Z∗. (∀iA. LEqB{f i}{j} → X{i} → Z)→ Z

The type

∀XA→∗.∀Y B→∗.∀fA→B. (∀iA. X{i} → Y {f i})→ (∀jB. (LanA,B{f}X){j} → Y {j})

174

is thus inhabited by a section, providing a retractable coercion between the two

functional representations.

Left Kan extensions come with a canonical section of type

∀fA→B.∀XA→∗.∀iA. X{i} → (LanA,B{f}X){f i}

that, according to a reindexing function t : A → B, embeds an A-indexed type

F (at index s) into the B-indexed type LanA,B{t}F (at index t s). For instance,

the type constructor LanA,A×A{λx. pairx x} embeds arrays of types into matrices

along the diagonal; while the type constructors LanA×A,A{fst} and LanA×A,A{snd}

respectively encapsulate matrices of types as arrays by columns and rows.

4.3 METATHEORY

The expectation is that System Fi has all the nice properties of System Fω, yet is

more expressive because of the addition of term-indexed types.

We show some basic well-formedness properties for the judgments of Fi in

Section 4.3.1. We prove erasure properties of Fi, which captures the idea that

indices are erasable because they are irrelevant for reduction in Section 4.3.2. We

show strong normalization, logical consistence, and subject reduction for Fi by

reasoning about well-known calculi related to Fi in Section 4.3.3.

4.3.1 Well-formedness properties and substitution lemmas

We need to show that kinding and typing derivations give well-formed results under

well-formed contexts. That is, kinding derivations (∆ ` F : κ) result in well-sorted

kinds (` κ) under well-formed type-level contexts (` ∆) (Proposition 4.3.1), and

typing derivations (∆; Γ ` t : A) result in well-kinded types (∆; Γ ` A : ∗) under

well-formed type and term-level contexts (Proposition 4.3.2).

Proposition 4.3.1. ` ∆ ∆ ` F : κ
` κ : �

175

Proposition 4.3.2. ∆ ` Γ ∆; Γ ` t : A
∆ ` A : ∗

We can prove these well-formedness properties by induction over the judgment

and using the well-formness lemmas on equalities (Lemmas 4.3.1, 4.3.2, and 4.3.3)

and substitution lemma (Lemma 4.3.4). The proofs for Propositions 4.3.1 and

4.3.2 are mutually inductive. Hence, we prove these two propositions at the same

time, using a combined judgment J , which is either a kinding judgment or a typing

judgment (i.e., J ::= ∆ ` F : κ | ∆; Γ ` t : A). See Appendix B for the detailed

proofs.

Lemma 4.3.1 (kind equality is well-sorted). ` κ = κ′ : �
` κ : � ` κ′ : �

Proof. By induction on the derivation of kind equality and by the sorting rules.

Lemma 4.3.2 (type constructor equality is well-kinded).

∆ ` F = F ′ : κ
∆ ` F : κ ∆ ` F ′ : κ

Proof. By induction on the derivation of type constructor equality and by the

kinding rules. Also use the type substitution lemma (Lemma 4.3.4(1)) and the

index substitution lemma (Lemma 4.3.4(2)).

Lemma 4.3.3 (term equality is well-typed).

∆,Γ ` t = t′ : A
∆,Γ ` t : A ∆,Γ ` t′ : A

Proof. By induction on the derivation of term equality and by the typing rules.

Also use the term substitution lemma (Lemma 4.3.4(3)).

The proofs for the three lemmas above are straightforward once we have dealt

with the interesting cases for the equality rules involving substitution. We can

prove those interesting cases by applying the substitution lemmas. The other cases

fall into two categories: first, the equality rules that follow the same structure as

176

the sorting, kinding, and typing rules; and second, the reflexive rules and the

transitive rules. The proof for the first category can be proved by induction and

applying the corresponding sorting, kinding, and typing rules. The proof for the

second category can be proved simply by induction.

Lemma 4.3.4 (substitution).

1. (type substitution) ∆, Xκ ` F : κ′ ∆ ` G : κ
∆ ` F [G/X] : κ′

2. (index substitution) ∆, iA ` F : κ ∆; · ` s : A
∆ ` F [s/i] : κ

3. (term substitution) ∆; Γ, x : A ` t : B ∆; Γ ` s : A
∆,Γ ` t[s/x] : B

The substitution lemma is fairly standard and comparable to substitution lem-

mas in other well-known systems such as Fω or ICC.

4.3.2 Erasure properties

We define a meta-operation of index erasure that projects Fi-types to Fω-types.

Definition 4.3.1 (index erasure).

κ◦ ∗◦ = ∗ (κ1 → κ2)◦ = κ1
◦ → κ2

◦ (A→ κ)◦ = κ◦

F ◦ X◦ = X (A→ B)◦ = A◦ → B◦

(λXκ.F)◦ = λXκ◦ .F ◦ (λiA.F)◦ = F ◦

(F G)◦ = F ◦ G◦ (F {s})◦ = F ◦

(∀Xκ.B)◦ = ∀Xκ◦ .B◦ (∀iA.B)◦ = B◦

∆◦ ·◦ = · (∆, Xκ)◦ = ∆◦, Xκ◦ (∆, iA)◦ = ∆◦

Γ◦ ·◦ = · (Γ, x : A)◦ = Γ◦, x : A◦

177

Example 4.3.1. The meta-operation of index erasure simply discards all index-

ing information. The effect of this on most datatypes is to project the indexing

invariants while retaining the type structure. This is clearly seen for the vector

type constructor Vec whose index erasure is the list type constructor List, as in

Figure 4.6. One can however build pathological examples. For instance, the type

PA , ∀iA.∀jA. LEqA{i}{j} has index erasure Unit , ∀X∗. X → X.

Theorem 4.3.1 (index erasure on well-sorted kinds). ` κ : �
` κ◦ : �

Proof. By induction on the sorting derivation.

Remark 4.3.1. For any well-sorted kind κ in Fi, κ◦ is a kind in Fω.

Theorem 4.3.2 (index erasure on well-formed type-level contexts).

` ∆
` ∆◦

Proof. By induction on the derivation for well-formed type-level context and by

Theorem 4.3.1.

Remark 4.3.2. For any well-formed type-level context ∆ in Fi, ∆◦ is a well-formed

type-level context in Fω.

Theorem 4.3.3 (index erasure on kind equality). ` κ = κ′ : �
` κ◦ = κ′◦ : �

Proof. By induction on the kind equality judgement.

Remark 4.3.3. For any well-sorted kind equality ` κ = κ′ : � in Fi, ` κ◦ = κ′◦ : �

is a well-sorted kind equality in Fω.

The three theorems above on kinds are rather simple to prove as there is no

need to consider mutual recursion in the definition of kinds because of the erasure

operation on kinds. Recall that this operation discards the type (A) appearing in

the index arrow type (A→ κ). So, there is no need to consider the types appearing

in kinds and the index terms appearing in those types after the erasure.

178

Theorem 4.3.4 (index erasure on well-kinded type constructors).

` ∆ ∆ ` F : κ
∆◦ ` F ◦ : κ◦

Proof. By induction on the kinding derivation.

case (V ar) Use Theorem 4.3.2.

case (Conv) By induction and using Theorem 4.3.3.

case (λ) By induction and using Theorem 4.3.1.

case (@) By induction.

case (λi) We need to show that ∆◦ ` (λiA.F)◦ : (A → κ)◦, which simplifies to

∆◦ ` F ◦ : κ◦ by Definition 4.3.1.

By induction, we know that (∆, iA)◦ ` F ◦ : κ◦, which simplifies ∆◦ ` F ◦ : κ◦

by Definition 4.3.1.

case (@i) We need to show that ∆◦ ` (F {s})◦ : κ◦, which simplifies to ∆◦ ` F ◦ :

κ◦ by Definition 4.3.1.

By induction we know that ∆◦ ` F ◦ : (A → κ)◦, which simplifies to ∆◦ `

F ◦ : κ◦ by Definition 4.3.1.

case (→) By induction.

case (∀) We need to show that ∆◦ ` (∀Xκ.B)◦ : ∗◦, which simplifies to ∆◦ `

∀Xκ◦ .B◦ : ∗ by Definition 4.3.1.

From Theorem 4.3.1, we know that ` κ◦ : �.

By induction we know that (∆, Xκ)◦ ` B◦ : ∗◦, which simplifies to ∆◦, Xκ◦ `

B◦ : ∗ by Definition 4.3.1.

From the kinding rule (∀), we get exactly what we need to show: ∆◦ `

∀Xκ◦ .B◦ : ∗.

case (∀i) We need to show that ∆◦ ` (∀iA.B)◦ : ∗◦, which simplifies to ∆◦ ` B◦ : ∗

by Definition 4.3.1.

179

By induction we know that (∆, iA)◦ ` B◦ : ∗◦, which simplifies ∆◦ ` B◦ : ∗

by Definition 4.3.1.

Theorem 4.3.5 (index erasure on type constructor equality).

∆ ` F = F ′ : κ
∆◦ ` F ◦ = F ′◦ : κ◦

Proof. By induction on the derivation of type constructor equality.

Most cases are proven by applying the induction hypothesis and sometimes

using Proposition 4.3.1.

The only interesting cases that are worth elaborating are the equality rules

involving substitution. There are two such rules.

∆, Xκ ` F : κ′ ∆ ` G : κ
∆ ` (λXκ.F)G = F [G/X] : κ′

We need to show ∆◦ ` ((λXκ.F)G)◦ = (F [G/X])◦ : κ′◦, which simplifies to

∆◦ ` (λXκ◦ .F ◦)G◦ = (F [G/X])◦ : κ′◦ by Definition 4.3.1.

By induction, we know that (∆, Xκ)◦ ` F ◦ : κ′◦, which simplifies to ∆◦, Xκ◦ `

F ◦ : κ′◦ by Definition 4.3.1.

Using the kinding rule (λ), we get ∆◦ ` λXκ◦ .F ◦ : κ◦ → κ′◦.

Using the kinding rule (@), we get ∆◦ ` (λXκ◦ .F ◦)G◦ : κ′◦.

Using the very same equality rule of this case,

we get ∆◦ ` (λXκ◦F ◦)G◦ = F ◦[G◦/X] : κ′◦.

We only need to check is (F [G/X])◦ = F ◦[G◦/X], which is easy to see.

∆, iA ` F : κ ∆; · ` s : A
∆ ` (λiA.F) {s} = F [s/i] : κ

By induction we know that ∆◦ ` F ◦ : κ◦.

180

The erasure of the left hand side of the equality is

((λiA.F) {s})◦ = (λiA.F)◦ = F ◦.

We only need to show is (F [s/i])◦ = F ◦, which is obvious since index variables

can only occur in index terms that are always erased. Recall the index erasure over

type constructors in Definition 4.3.1, in particular, (λiA.F)◦ = F ◦, (F{s})◦ = F ◦,

and (∀iA.B)◦ = B◦.

Remark 4.3.4. For any well-kinded type constructor equality ∆ ` F = F ′ : κ in

Fi, ∆◦ ` F ◦ = F ′◦ : κ◦ is a well-kinded type constructor equality in Fω.

The proofs for the two theorems on type constructors above need not consider

mutual recursion in the type constructor definition because of the erasure oper-

ation. Recall that the erasure operation on type constructors discards the index

term (s) appearing in the index application (F {s}). So, there is no need to

consider the index terms appearing in the types after the erasure.

Theorem 4.3.6 (index erasure on well-formed term-level contexts).

∆ ` Γ
∆◦ ` Γ◦

Proof. By induction on Γ.

case (Γ = ·) It trivially holds.

case (Γ = Γ′, x : A) We know that ∆ ` Γ′ and ∆ ` A : ∗ by the well-formedness

rules and that ∆◦ ` Γ′◦ by induction.

From ∆ ` A : ∗, we know that ∆◦ ` A◦ : ∗ by Theorem 4.3.4.

We know that ∆◦ ` Γ′◦, x : A◦ from ∆◦ ` Γ′◦ and ∆◦ ` A◦ : ∗ by the

well-formedness rules.

Because Γ′◦, x : A◦ = (Γ′, x : A)◦ = Γ◦ by definition, we know that ∆◦ ` Γ◦.

181

Theorem 4.3.7 (index erasure on index-free well-typed terms).

∆ ` Γ ∆; Γ ` t : A
∆◦; Γ◦ ` t : A◦ (dom(∆) ∩ FV(t) = ∅)

Proof. By induction on the typing derivation. Interesting cases are the index re-

lated rules (: i), (∀Ii), and (∀Ei). Proofs for the other cases are straightforward by

induction and application of other erasure theorems corresponding to the judgment

forms.

case (:) By Theorem 4.3.6, we know that ∆◦ ` Γ◦ when ∆ ` Γ. By the definition

of erasure in term-level context, we know that (x : A◦) ∈ Γ◦ when (x : A) ∈ Γ.

case (: i) Vacuously true because t does not contain any index variables (i.e.,

dom(∆) ∩ FV(t) = ∅).

case (→I) By Theorem 4.3.4, we know that · ` A◦ : ∗. By induction, we know

that ∆◦; Γ◦, x : A◦ ` t◦ : B◦. Applying the (→I) rule to what we know, we

have ∆◦; Γ◦ ` λx.t◦ : A◦ → B◦.

case (→E) Straightforward by induction.

case (∀I) By Theorem 4.3.1, we know that ` κ◦ : �. By induction, we know

that ∆◦, Xκ◦ ; Γ◦ ` t : B◦. Applying the (∀I) rule to what we know, we have

∆◦; Γ◦ ` t : ∀Xκ◦ .B◦.

case (∀E) By induction, we know that ∆◦; Γ◦ ` t : ∀Xκ◦ .B◦. By Theorem 4.3.4,

we know that ∆◦ ` G◦ : κ◦. Applying the (∀E) rule, we have ∆◦; Γ◦ ` t :

B◦[G◦/X].

case (∀Ii) By Theorem 4.3.4, we know that · ` A◦ : ∗. By induction, we know

that ∆◦; Γ◦ ` t : B◦, which is what is required since (∀iA.B)◦ = B◦.

case (∀Ei) By induction, we know that ∆◦; Γ◦ ` t : B◦, which is what is required

since (B[s/i])◦ = B◦.

case (=) By Theorem 4.3.5 and induction.

182

Example 4.3.2. The theorem yields that the pathological type PA of Exam-

ple 4.3.1 is not inhabited, as it is impossible to have both t : PA and t : (PA)◦ =

Unit. It follows as a corollary that the implication of Theorem 4.3.7 does not

admit a converse.

In this context, for A = Void, note that even though one has iVoid; · ` λx. i :

∀jVoid.∀XVoid→∗. X{i} → X{j}, this open term cannot be closed by rule (∀Ii)

because of its side condition. This is in stark contrast to what is possible in

calculi with -ull type dependency. In System Fi, the index variables in a type-level

context ∆ cannot appear dynamically at the term-level. Conversely, term variables

in the term-level context Γ cannot be used for instantiation of index polymorphic

types (rule (∀Ei)).

We introduce an index variable selection meta-operation that selects all the

index variable bindings from the type-level context.

Definition 4.3.2 (index variable selection).

·• = · (∆, Xκ)• = ∆• (∆, iA)• = ∆•, i : A

Theorem 4.3.8 (index erasure on well-formed term-level contexts prepended by

index variable selection).

∆ ` Γ
∆◦ ` (∆•,Γ)◦

Proof. Straightforward, by Theorem 4.3.6 and the typing rule (: i).

The following result is the appropriate version of Theorem 4.3.7 without the

side condition therein.

Theorem 4.3.9 (index erasure on well-typed terms).

∆ ` Γ ∆; Γ ` t : A
∆◦; (∆•,Γ)◦ ` t : A◦

183

Proof. The proof is almost the same as that of Theorem 4.3.7, except for the (: i)

case. The proof for the rule (: i) case is easy because (i : A) ∈ ∆• when iA ∈ ∆ by

definition of the index variable selection operation. Prepending indices to Γ that

come from ∆ do not affect the proof for the other cases.

4.3.3 Strong normalization and logical consistency

Strong normalization is a corollary of the erasure property since we know that

System Fω is strongly normalizing.

Logical consistency is immediate because System Fi is a strict subset of the

restricted implicit calculus [67], which is in turn a restriction of ICC [68]. Subject

reduction is also immediate for the same reason.

We can also give a more direct proof of logical consistency by showing that the

void type ∀X∗.X is uninhabited in Fi. By type erasure, no terms inhabit Fi-types

other than the corresponding Fω-types. Since we already know that the void type

∀X∗.X is uninhabited in Fω, it must be the case that the void type is uninhabited

in Fi.

184

Chapter 5

SYSTEM Fixi

In this chapter, we investigate how System Fω needs to be extended in order to

prove termination of the Mendler-style primitive recursion (msfit) by a reduction

preserving embedding. Recall that msfit supplies access to immediate subterms

as well as the value of recursive calls over those subterms. The factorial function is

the classic example of a computation described by primitive recursion that cannot

be simulated efficiently by iteration.

It is fairly well known that there cannot be a reduction preserving embedding of

primitive recursion1 in System F. A proof of this is outlined in the paper Induction

is not derivable in second-order dependent type theory [39]. For similar reasons,

researchers strongly believe that there is no reduction-preserving embedding of

primitive recursion in System Fω. Fortunately, all hope is not lost for finding a

reduction preserving embedding in a relatively simple calculus. Abel and Matthes

[3] have designed Fixω, an extension of Fω, that embeds primitive recursion with

the desired reduction behavior. Their embedding relies on a novel use of the two

extensions to Fω – polarized kinds and an equi-recursive fixpoint type operator –

in order to define primitive recursion within Fixω.

As a natural extension of these ideas, we present Fixi, an extension of Fixω
with erasable term-indices, that embeds primitive recursion over term-indexed

datatypes as well as type-indexed datatypes and regular datatypes.

1 Although we can define primitive recursion for positive datatypes in terms of iteration, which
is embeddable in System F, such an embedding would not be reduction preserving. That is, it
would require more reduction steps than the usual definition of primitive recursion.

185

The organization of this chapter is analogous to Chapter 4, where we added

term-indices to Fω to obtain Fi. Here, we add term indices to Fixω to obtain Fixi.

We describe Fixi focusing on its differences from Fi. Readers may refer back to

Chapter 4 for those details that remain unchanged from System Fi.

We describe syntax and typing rules (Section 5.1), illustrate embeddings of

primitive recursion (Section 5.2), and discuss embeddings of course-of-values re-

cursion (Section 5.3). Finally, we discuss the metatheory of Fixi (Section 5.4).

5.1 SYSTEM Fixi

The syntax and rules of System Fi are described in Figures 5.1, 5.2, 5.3, and 5.4.

The extensions new to System Fixi that are not original parts of either System Fω or

System Fixω are highlighted by either dashed boxes or grey boxes , respectively.

The extensions that not originally part of System Fixω are highlighted by

grey boxes . Those extensions support term indexing. Eliding all the grey boxes

from Figures 5.1, 5.2, 5.3, and 5.4, one obtains a version of System Fixω with typing

contexts separated into two parts.2

The extensions that are not originally part of System Fω but present in Sys-

tem Fixω are highlighted by dashed boxes . Those extensions support equi-recursive

types. Eliding all the dashed boxes, as well as all the grey boxes, from Figures 5.1,

5.2, 5.3 and 5.4, one obtains the Curry-style System Fω with typing contexts sep-

arated into two parts.

The grey-boxed extensions for term-indexing are essentially the same as those

grey-boxed extensions in System Fi (Section 4.1). Hence, we will only focus our

description on the dashed-box extensions regarding polarities (Section 5.1.1) and

equi-recursive types (Section 5.1.2).

2 The original description of Fixω[3] has one combined typing context.

186

Syntax:

Sort �

Term Variables x, i

Type Constructor Variables X

Polarities p ::= + | − | 0

Kinds κ ::= ∗ | pκ → κ | A→ κ

Type Constructors A,B, F,G ::= X | A→ B | fixF

| λ Xpκ .F | F G | ∀Xκ.B

| λiA.F | F {s} | ∀iA.B

Terms r, s, t ::= x | λx.t | r s

Typing Contexts ∆ ::= · | ∆, Xpκ | ∆, iA

Γ ::= · | Γ, x : A

Reduction: t t′

(λx.t) s t[s/x]
t t′

λx.t λx.t′
r r′

r s r′ s
s s′

r s r s′

Figure 5.1: Syntax and Reduction rules of Fixi.

187

Well-formed typing contexts:

` ∆ ` ·
` ∆ ` κ : �
` ∆, Xpκ

(
X /∈ dom(∆)

) ` ∆ · ` A : ∗
` ∆, iA

(
i /∈ dom(∆)

)

∆ ` Γ ` ∆
0∆ ` ·

∆ ` Γ ∆ ` A : ∗
∆ ` Γ, x : A

(
x /∈ dom(Γ)

)
Sorting: ` κ : � (A) ` ∗ : � (R) ` κ : � ` κ′ : �

` pκ → κ′ : �
(Ri) · ` A : ∗ ` κ : �

` A→ κ : �

Kinding: ∆ ` F : κ (V ar)
Xpκ ∈ ∆ ` ∆

∆ ` X : κ (p ∈ {+, 0})

(→)
−∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗ (fix) ∆ ` F : +κ→ κ
∆ ` fixF : κ

(λ)
` κ : � ∆, Xpκ ` F : κ′

∆ ` λ Xpκ .F : pκ → κ′
(λi)

· ` A : ∗ ∆, iA ` F : κ
∆ ` λiA.F : A→ κ

(@)
∆ ` F : pκ → κ′ p∆ ` G : κ

∆ ` F G : κ′
(@i)

∆ ` F : A→ κ 0∆ ; · ` s : A
∆ ` F {s} : κ

(∀)
` κ : � ∆, X0κ ` B : ∗

∆ ` ∀Xκ.B : ∗ (∀i)
· ` A : ∗ ∆, iA ` B : ∗

∆ ` ∀iA.B : ∗

(Conv) ∆ ` A : κ ∆ ` κ = κ′ : �
∆ ` A : κ′

Typing: ∆; Γ ` t : A (:)
(x : A) ∈ Γ ∆ ` Γ

∆; Γ ` x : A (: i) iA ∈ ∆ ∆ ` Γ
∆; Γ ` i : A

(→I)
∆ ` A : ∗ ∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B
(→E)

∆; Γ ` r : A→ B ∆; Γ ` s : A
∆; Γ ` r s : B

(∀I)
` κ : � ∆, X0κ ; Γ ` t : B

∆; Γ ` t : ∀Xκ.B
(X /∈ FV(Γ)) (∀E)

∆; Γ ` t : ∀Xκ.B ∆ ` G : κ
∆; Γ ` t : B[G/X]

(∀Ii)
· ` A : ∗ ∆, iA; Γ ` t : B

∆; Γ ` t : ∀iA.B

(
i /∈ FV(t),
i /∈ FV(Γ)

)
(∀Ei)

∆; Γ ` t : ∀iA.B ∆; · ` s : A
∆; Γ ` t : B[s/i]

(=)
∆; Γ ` t : A ∆ ` A = B : ∗

∆; Γ ` t : B

Figure 5.2: Sorting, Kinding, and Typing rules of Fixi.

188

Kind equality: ` κ = κ′ : � ` ∗ = ∗ : �

` κ1 = κ′1 : � ` κ2 = κ′2 : �

` pκ1 → κ2 = pκ′1 → κ′2 : �
· ` A = A′ : ∗ ` κ = κ′ : �
` A→ κ = A′ → κ′ : �

` κ = κ′ : �
` κ′ = κ : �

` κ = κ′ : � ` κ′ = κ′′ : �
` κ = κ′′ : �

Type constructor equality: ∆ ` F = F ′ : κ ∆ ` F : +κ→ κ
∆ ` fixF = F (fixF) : κ

∆, Xpκ ` F : κ′ p∆ ` G : κ
∆ ` (λXpκ.F)G = F [G/X] : κ′

∆, iA ` F : κ 0∆ ; · ` s : A
∆ ` (λiA.F) {s} = F [s/i] : κ

∆ ` X : κ
∆ ` X = X : κ

−∆ ` A = A′ : ∗ ∆ ` B = B′ : ∗
∆ ` A→ B = A′ → B′ : ∗

∆ ` F = F ′ : +κ→ κ

∆ ` fixF = fixF ′ : κ
` κ : � ∆, Xpκ ` F = F ′ : κ′

∆ ` λ Xpκ .F = λ Xpκ .F ′ : κ → κ′
· ` A : ∗ ∆, iA ` F = F ′ : κ
∆ ` λiA.F = λiA.F ′ : A→ κ

∆ ` F = F ′ : pκ → κ′ p∆ ` G = G′ : κ
∆ ` F G = F ′G′ : κ′

∆ ` F = F ′ : A→ κ 0∆ ; · ` s = s′ : A
∆ ` F {s} = F ′ {s′} : κ

` κ : � ∆, X0κ ` B = B′ : ∗
∆ ` ∀Xκ.B = ∀Xκ.B′ : ∗

· ` A : ∗ ∆, iA ` B = B′ : ∗
∆ ` ∀iA.B = ∀iA.B′ : ∗

∆ ` F = F ′ : κ
∆ ` F ′ = F : κ

∆ ` F = F ′ : κ ∆ ` F ′ = F ′′ : κ
∆ ` F = F ′′ : κ

Figure 5.3: Kind and type-constructor equality rules of Fixi.

189

Term equality: ∆; Γ ` t = t′ : A

∆; Γ, x : A ` t : B ∆; Γ ` s : A
∆; Γ ` (λx.t) s = t[s/x] : B

∆; Γ ` x : A
∆; Γ ` x = x : A

∆ ` A : ∗ ∆; Γ, x : A ` t = t′ : B
∆; Γ ` λx.t = λx.t′ : B

∆; Γ ` r = r′ : A→ B ∆; Γ ` s = s′ : A
∆; Γ ` r s = r′ s′ : B

` κ : � ∆, X0κ ; Γ ` t = t′ : B
∆; Γ ` t = t′ : ∀Xκ.B

(X /∈ FV(Γ))

∆; Γ ` t = t′ : ∀Xκ.B ∆ ` G : κ
∆; Γ ` t = t′ : B[G/X]

· ` A : ∗ ∆, iA; Γ ` t = t′ : B
∆; Γ ` t = t′ : ∀iA.B

(
i/∈FV(t),
i/∈FV(t′),
i/∈FV(Γ)

)

∆; Γ ` t = t′ : ∀iA.B ∆; · ` s : A
∆; Γ ` t = t′ : B[s/i]

∆; Γ ` t = t′ : A
∆; Γ ` t′ = t : A

∆; Γ ` t = t′ : A ∆; Γ ` t′ = t′′ : A
∆; Γ ` t = t′′ : A

Figure 5.4: Term equality rules of Fixi.

190

5.1.1 Polarities

Polarities track how type constructor variables are used. A polarity (p) is either

covariant (+), contravariant (−), or avariant (0). When a type variable is bound,

its polarity is made explicit both at its binding site, and in the context. The

avariant polarity (0) means that a variable can be used both covariantly and con-

travariantly3 We prefix a kind by a polarity (i.e., pκ) to specify the variable’s kind

and polarity. For example,

X−∗1 , X+∗
2 ` X1 → X2 : ∗ justifies λX−∗1 .λX+∗

2 .X1 → X2

X0∗
1 , X

0∗
2 ` X1 → X2 : ∗ also justifies λX0∗

1 .λX
0∗
2 .X1 → X2

X0∗ ` X → X : ∗ justifies λX0∗.X → X

Note that we can replace + and − in the first example with 0 as in the second

example, since the variables of avariant polarity can be used in any position that is

both in a covariant and contravariant position. In the third example, the polarity

of X can be neither + nor −, but must must be 0, since X appears in both

covariant and contravariant positions.

Syntax using polarized kinds: The kind syntax is polarized. That is, the

domain kind (κ) of an arrow kind (pκ → κ′) must be prefixed by its polarity (p).

Type abstractions (λXpκ.F) in the type syntax are annotated by polarity-prefixed

kinds (pκ). Type constructor variables (X) bound in the type-level contexts (∆)

are likewise annotated by polarity-prefixed kinds (pκ). Note the syntax for ex-

tending the type-level context ∆, Xpκ in Figure 5.1. The kinding rule (λ) exploits

all these three uses of polarized kinds – in type abstractions, in kind arrows, and

in type-level contexts.

3 The word “invariant” is sometimes used (see [3]), but we think this notation is quite mis-
leading, The polarity 0 means that the system does not care about that variable’s polarity, rather
than indicating some unchanging set of properties about the variable’s polarity.

191

Polarity operation on type-level context (p∆): The kinding judgment ∆ `

F : κ assumes that F is in covariant positions. This is why the (V ar) rule requires

the polarity of X to be either + or 0 but not −. To judge well-kindedness of type

constructors in contravariant positions (e.g., A in A → B), we should invert the

polarities of all the type constructor variables in the context. This idea of inverting

polarities in the context is captured by the −∆ operation in the kinding rule (→).

More generally, the well-kindedness F expected to be used as p-polarity can be

determined by the judgement p∆ ` F : κ, where p∆ operation is defined as:

• when p is either + or −
p · = ·

p(∆, Xp′κ) = p∆, X(pp′)κ

p(∆, iA) = p∆, iA

(
pp′ is the usual sign product

+p′ = p′

−+ = −
−− = +
−0 = 0

)

• when p = 0
0 · = ·

0(∆, X0κ) = 0∆, X0κ

0(∆, Xpκ) = 0∆ (p 6= 0)

0(∆, iA) = 0∆, iA

Note the use of p∆ operation in the kinding rule (@) in order to determine the

well-kindedness of G expected to be used as p-polarity by the type constructor

F : pκ→ κ′ being applied to G.

Where polarities are irrelevant (i.e., avariant): Polarities are irrelevant

(i.e., avariant) for universally quantified variables and indices as well as in the typ-

ing rules. This is because the sole purpose of tracking polarities in Fixi is to ensure

that we only take the equi-recursive fixpoint over covariant type constructors, as in

the kinding rule (µ). Note that we can only take fixpoints over type constructors

of covariant arrow kinds whose domain and codomain coincide (+κ → κ). We

192

can never take fixpoints over forall types (or universal quantification) and type

constructor that expect an index because they are not of arrow kinds. Forall types

are always of kind ∗ and type constructors that expect an index are of arrow kinds

(A→ κ). So, we give universally quantified variables avariant polarity (X0κ in the

(∀) rule) and nullify polarities when type checking indices (0∆ in the (@i) rule).

For similar reasons, we assume that type-level contexts are nullified in the typing

rules; note 0∆ in the well-formedness condition for ∆ ` Γ in Figure 5.2. That is,

we always type check under nullified type-level context for all terms in general as

well as for indices appearing in type applications. As a result, the typing rules of

Fixi have no dashed-box extensions except for X0κ in the generalization rule (∀I)

where we introduce a universally quantified type constructor variable.

5.1.2 Equi-recursive type operator fix

Fixi provides the equi-recursive type operator fix. The kinding rule (fix) in Fig-

ure 5.2 is similar to the (µ) rule of System Fi (see Figure 4.2 in Section 4.1), but

requires base structure F to be covariant (or positive), that is, F : +κ→ κ. This

restriction on the polarity of F is caused by the equi-recursive nature of fix, that is,

fixF = F (fixF), described by the first type constructor equality rule inside a dashed

box in Figure 5.3. Restricting the polarity of the base structure, to which fix can

be applied, is necessary to maintain strong normalization. Adding equi-recursive

types without restricting the polarity breaks the strong normalization because it

amounts to having both formation and elimination of arbitrary iso-recursive types.

Note that there is no explicit term syntax that guides the conversion between

fixF and F (fixF), unlike in iso-recursive4 systems where In and unIn are term

syntaxes that explicitly guide rolling (from µF to F (µF)) and unrolling (from

F (µF) to µF). Because fixF = F (fixF) is given definitionally (i.e., by the equality

4 In this dissertation, all the other fixpoint type operators except fix are iso-recursive.

193

⊥ , ∀X∗.X : ∗
Unit , ∀X.λX0∗.X : ∗
× , λX+∗

1 .λX+∗
2 .∀X∗.(X1 → X2 → X)→ X : + ∗ → +∗ → ∗

+ , λX+∗
1 .λX+∗

2 .∀X∗.(X1 → X)→ (X2 → X)→ X : + ∗ → +∗ → ∗
∃κ , λX0κ→∗

F .∀X∗.(∀Xκ
1 .XF X1 → X)→ X : + (0κ→ ∗)→ ∗

∃A , λXA→∗
F .∀X∗.(∀iA.XF{i} → X)→ X : + (A→ ∗)→ ∗

Figure 5.5: Embeddings of some well-known non-recursive datatypes in Fixi.

rule definition), the type constructor conversion rule (Conv) can silently roll (from

F (fixF) to fixF) and unroll (from F (fixF) to fixF) the recursive types, just as it

can silently β-convert type constructors.

In the following section, we review how iso-recursive type operator µκ and its Inκ
constructor, which is well-behaved (i.e., strongly normalizes) for base structures of

arbitrary polarity, can be embedded into Fixi defined in terms of the equi-recursive

type operator fix that is only well-behaved for covariant base structures.

5.2 EMBEDDING DATATYPES AND PRIMITIVE RECURSION

Embedding for primitive recursion over datatypes of arbitrary polarities into Fixi
was discovered by Abel and Matthes [3]. We review these embeddings in the

context of Fixi.

The embeddings of non-recursive datatypes in Figure 5.5 are exactly the same

as in Fi (see Section 4.2), other than tracking polarities of the type constructor

variables. That is, we use the usual impredicative encodings for non-recursive

datatypes such as void, unit, pairs, sums, and existential types. The examples in

Figure 5.5 are mostly from Abel and Matthes [3], except for the last example of

∃A, an existential type over term-indices of type A.

Embedding recursive datatypes and their Mendler-style primitive recursion

194

no
ta

tio
n:

λ
Iκ
.F

=
λ
I
K

1
1
.·
··
.λ
I
K
n

n
.F

F
I=

F
I 1
··
·I
n

∀I
κ
.B

=
∀I

K
1

1
.·
··
.∀
I
K
n

n
.B

F
κ →→ →→→ → →→ →
G

=
∀I

κ
.F

I→
G
I

w
he

re κ
=
K

1
→
··
·→

K
n
→
∗

an
d
I i

is
an

in
de

x
va

ria
bl

e
(i
i)

w
he

n
K
i

is
a

ty
pe

,
I

=
I 1
,
..
.
..
.
,
I n

a
ty

pe
co

ns
tr

uc
to

r
va

ria
bl

e
(X

i)
ot

he
rw

ise
(i.

e.
,K

n
=
p i
κ
i).

µ
κ

:
0(

0κ
→

κ
)→

κ

µ
κ
,
λ
X

0(
0κ
→
κ

)
F

.fi
x(

Φ
κ
X
F

)
Φ
κ

:
0(

0κ
→

κ
)→

+
κ
→

κ

Φ
κ
,
λ
X

0(
0κ
→
κ

)
F

.λ
X

+
κ

c
.λ
Iκ
.∀
X
κ
.(∀
X
κ r
.(X

r
κ →→ →→→ → →→ →
X
c
)→

(X
r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→

X
I

m
pr

κ
:
∀X

0(
0κ
→
κ

)
F

.∀
X
κ
.(∀
X
rκ
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→

(µ
κ
X
F

κ →→ →→→ → →→ →
X

)
m

pr
κ
,
λ
s.
λ
r.
r
s

In
κ

:
∀X

0(
0κ
→
κ

)
F

.X
F

(µ
κ
X
F

)
κ →→ →→→ → →→ →
µ
κ
X
F

In
κ
,
λ
t.
λ
s.
s

id
(m

pr
κ
s)
t

id
,
λ
x
.x

Fi
gu

re
5.

6:
Em

be
dd

in
g

of
th

e
re

cu
rs

iv
e

ty
pe

op
er

at
or

s
(µ

κ
),

th
ei

r
da

ta
co

ns
tr

uc
to

rs
(In

κ
),

an
d

th
e

M
en

dl
er

-s
ty

le
pr

im
iti

ve
re

cu
rs

or
s

(m
pr

κ
)

in
Fi

x i
.

195

T
he

ty
pe

of
r

ca
n

be
ex

pa
nd

ed
by

th
e

de
fin

tio
n

of
fix

an
d

th
e

eq
ui

-r
ec

ur
siv

e
eq

ua
lit

y
ru

le
on

fix
as

fo
llo

w
s:

µ
κ
X
F
I=

fix
(Φ

κ
X
F

)I
=

Φ
κ
X
F

(fi
x(

Φ
κ
X
F

))
I=

Φ
κ
X
F

(µ
κ
X
F

)I

=
∀X

κ
.(
∀X

κ r
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
︸

︷︷
︸

ex
ac

tl
y

m
at

ch
es

w
it

h
th

e
ty

pe
of
s

→
X

I

X
0(

0κ
→
κ

)
F

,X
0κ
,I
κ
;
s

:(
∀X

rκ
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
,r

:µ
κ
X
F
I`

r
s

:X
I

X
0(

0κ
→
κ

)
F

,X
0κ

;
s

:(
∀X

rκ
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
`
λ
s.
r
s

:µ
κ
X
F

κ →→ →→→ → →→ →
X

·;
·`

λ
s.
λ
r.
r
s

:∀
X

0κ
→
κ

F
.∀
X
κ
.(∀
X
rκ
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→

(µ
κ
X
F

κ →→ →→→ → →→ →
X

)

Fi
gu

re
5.

7:
W

el
l-t

yp
ed

ne
ss

of
th

e
m

pr
em

be
dd

in
g

in
Fi

x i
.

Le
t

∆
=
X

0(
0κ
→
κ

)
F

,I
κ
,X

0κ
an

d
Γ

=
t

:X
F

(µ
κ
X
F

)I
,s

:(
∀X

κ r
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
.

∆
;Γ
`
s

:(
µ
κ
X
F

κ →→ →→→ → →→ →
µ
κ
X
F

)
→

(µ
κ
X
F

κ →→ →→→ → →→ →
X

)
→

(X
F

(µ
κ
X
F

)
κ →→ →→→ → →→ →
X

)
(b

y
in

st
an

tia
tin

g
X
r

w
ith

µ
κ
X
F

)
∆

;Γ
`

id
:(
µ
κ
X
F

κ →→ →→→ → →→ →
µ
κ
X
F

)
∆

;Γ
`

(m
pr

κ
s)

:
(µ
κ
X
F

κ →→ →→→ → →→ →
X

)
∆

;Γ
`
t

:
X
F

(µ
κ
X
F

)I

X
0(

0κ
→
κ

)
F

,I
κ
,X

0κ
;
t

:X
F

(µ
κ
X
F

)I
,s

:(
∀X

κ r
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
`
s

id
(m

pr
κ
s)
t

:X
I

X
0(

0κ
→
κ

)
F

,I
κ
;
t

:X
F

(µ
κ
X
F

)I
`
λ
s.
s

id
(m

pr
κ
s)
t

:∀
X
κ
.(∀
X
κ r
.(X

r
κ →→ →→→ → →→ →
µ
κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→
X

I

X
0(

0κ
→
κ

)
F

,I
κ
;
t

:X
F

(µ
κ
X
F

)I
`
λ
s.
s

id
(m

pr
κ
s)
t

:µ
κ
X
F
I

(W
e

ca
n

ex
pa

nd
th

e
ty

pe
in

to
ab

ov
e

as
in

Fi
gu

re
5.

7)
·;
·`

λ
t.
λ
s.
s

id
(m

pr
κ
s)
t

:∀
X
κ
→
κ

F
.X
F

(µ
κ
X
F

)
κ →→ →→→ → →→ →
µ
κ
X
F

Fi
gu

re
5.

8:
W

el
l-t

yp
ed

ne
ss

of
th

e
In

em
be

dd
in

g
in

Fi
x i

.

196

amounts to embedding µκ, Inκ, and mprκ described in Section 3.8. Figure 5.6

illustrates the embeddings discovered by Abel and Matthes [3], reformatted using

our conventions (see Figure 4.8 in Section 4.2.2) and taking term-indices into con-

sideration. To confirm the correctness of these embeddings, we need to check that

(1) the embeddings are well-kinded and well-typed and (2) the primitive recursion

behaves well (i.e., mprκ s (Inκ) −→+ s id (mprκ s) t). From the term encodings

of mprκ and Inκ, it is obvious that the reduction of primitive recursion behaves

well. Thus, we only need to check that µκ is well-kinded and that mprκ and Inκ
are well-typed.

Note that the polarities appearing in the embedding of µκ are all 0. The

embedding from a non-polarize kind κ into a polarized kind pκq can be defined as:

p∗q = ∗ pκ1 → κ2q = 0pκ1q→ pκ2q pA→ κq = A→ pκq.

It is easy to see that the embedding of the non-polarized recursive type operator

µκ : 0(0κ → κ) → κ is well-kinded, provided that Φκ : 0(0κ → κ) → +κ → κ

is well-kinded. Note that Φκ turns an avariant type constructor (0κ → κ) into a

positive type constructor (+κ → κ). From the definition of Φκ, we only need to

check that (Xr
κ→→→→→→→→→ Xc), (Xr

κ→→→→→→→→→ X), XF Xr
κ→→→→→→→→→ X, and X I are of kind ∗ under the

context X0(0κ→κ)
F , X+κ

c , Iκ, X0κ, which is not difficult to see.

Well-typedness of mprκ and Inκ are justified in Figures 5.7 and 5.8

5.3 EMBEDDING COURSE-OF-VALUES RECURSION

To add a new Mendler-style recursion scheme and show its termination, we need

to address several issues:

• First, we need to add an appropriate type-level fixpoint operator (e.g., µκ
for primitive recursion) that is used to build recursive types. This type-level

operation needs to capture not only the tying of the recursive knot, but also

the compatible structure needed to encode the new Mendler-style recursor.

197

µ
+ κ

:
0(

+
κ
→

κ
)→

κ

µ
+ κ
,
λ
X

0(
+
κ
→
κ

)
F

.fi
x(

Φ
+ κ
X
F

)
Φ

+ κ
:

0(
+
κ
→

κ
)→

+
κ
→

κ

Φ
+ κ
,
λ
X

0(
+
κ
→
κ

)
F

.λ
X

+
κ

c
.λ
Iκ
.∀
X
κ
.(∀
X
κ r
.(X

r
κ →→ →→→ → →→ →
X
F
X
r
)→

(X
r
κ →→ →→→ → →→ →
X
c
)→

(X
r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→

X
I

m
cv

pr
κ

:
∀X

+
κ
→
κ

F
.∀
X
κ
.(∀
X
rκ
.(X

r
κ →→ →→→ → →→ →
X
F
X
r
)→

(X
r
κ →→ →→→ → →→ →
µ

+ κ
X
F

)→
(X

r
κ →→ →→→ → →→ →
X

)→
(X

F
X
r
κ →→ →→→ → →→ →
X

))
→

(µ
+ κ
X
F

κ →→ →→→ → →→ →
X

)
m

cv
pr

κ
,
λ
s.
λ
r.
r
s

In
F

:
F

(µ
+ κ
F

)
κ →→ →→→ → →→ →
µ

+ κ
F

In
F
,
λ
t.
λ
s.
s

un
In
F

id
(m

cv
pr

κ
s)

t

Pr
ov

id
ed

th
at

th
er

e
ex

ist
s

un
In
F

:µ
+ κ
F

κ →→ →→→ → →→ →
F

(µ
+ κ
F

)
fo

r
th

e
ba

se
st

ru
ct

ur
e
F

:+
κ
→

κ
,s

uc
h

th
at

un
In
F

(In
F
t)
−→

+
t

w
he

re
th

e
re

du
ct

io
n

is
co

ns
ta

nt
re

ga
rd

le
ss

of
t

(a
lth

ou
gh

st
ep

s
m

ay
va

ry
be

tw
ee

n
ea

ch
ba

se
st

ru
ct

ur
e
F

).

Se
e

Fi
gu

re
5.

10
fo

r
em

be
dd

in
gs

of
un

ro
lle

rs
(u

nI
n F

)
fo

r
so

m
e

we
ll-

kn
ow

n
po

sit
iv

e
ba

se
st

ru
ct

ur
es

(F
).

Fi
gu

re
5.

9:
Em

be
dd

in
g

of
th

e
re

cu
rs

iv
e

ty
pe

op
er

at
or

s
(µ

+ κ
),

th
e

M
en

dl
er

-s
ty

le
co

ur
se

-o
f-v

al
ue

s
re

cu
rs

or
s

(m
cv

pr
κ
),

an
d

th
e

ro
lle

r
(In

F
)

in
Fi

x i
,p

ro
vi

de
d

th
at

th
e

em
be

dd
in

g
of

un
In
F

ex
ist

s.

198

R
eg

ul
ar

da
ta

ty
pe

s

N
,
λ
X

+
∗ .
X

+
Un

it
un

In
N
,

m
cv

pr
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(I
nL
◦

ca
st

)I
nR

)

L
,
λ
X

+
∗

a
.λ
X

+
∗ .

(X
a
×
X

)+
Un

it
un

In
(L
A

)
,

m
cv

pr
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(I
nL
◦

(id
×
ca
st

))
In

R)

R
,
λ
X

+
∗

a
.λ
X

+
∗ .

(X
a
×

Li
st
X

)→
X

un
In

(R
A

)
,

m
cv

pr
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(id
×

fm
ap

Li
st
ca
st

))

T
yp

e-
in

de
xe

d
da

ta
ty

pe
s

P
,
λ
X

+
∗→
∗ .
λ
X

+
∗

a
.X

a
×
X

(X
a
×
X
a
)+

Un
it

un
In
P
,

m
cv

pr
+
∗→
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(I
nL
◦

(id
×

ca
st

))
In

R)

B
,
λ
X

+
∗→
∗ .
λ
X

+
∗

a
.X

a
×
X

(X
X
a
)+

Un
it

un
In
B
,

m
cv

pr
+
∗→
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(I
nL
◦

(id
×

(c
as

t◦
fm

ap
ca

st
))

)I
nR

)

T
er

m
-i

nd
ex

ed
da

ta
ty

pe
s

V
,
λ
X
∗ a
.λ
X

Na
t→
∗ .
λ
iNa

t .
(∃
jNa

t .
((
i

=
su

cc
j)
×
X
a
×
X
{j
})

)+
(i

=
ze

ro
)

VC
on

s
,
λ
x
a
.λ
x
.I

nL
(E

x N
at

(E
q

Na
t,
x
a
,x

))
:
∀X

∗ a
.∀
X

Na
t→
∗ .
∀i

Na
t .
X
a
→

X
{i
}
→

V
X
a
X
{s

uc
c
i}

VN
il
,

In
R

Eq
Na

t
:
∀X

∗ a
.∀
X

Na
t→
∗ .
V
X
a
X
{z

er
o}

un
In

(V
A

)
,

m
cv

pr
Na

t→
∗(
λ
.λ

ca
st
.λ
.λ
x
.x

(I
nL
◦

(id
×

id
×

ca
st

))
In

R)

T
he

no
ta

tio
n
∃j

A
.B

is
sh

or
th

an
d

fo
r
∃ A

(λ
jA
.B

)
w

he
re
∃ A

is
de

fin
ed

in
Fi

gu
re

5.
5.

Ex
A

:∀
F
A
→
∗ .
∃ A
F

an
d

Eq
A

:∀
iA
.∀
jA
.(i

=
j)

ar
e

th
e

da
ta

co
ns

tr
uc

to
rs

of
th

e
ex

ist
en

tia
la

nd
eq

ua
lit

y
ty

pe
s,

re
sp

ec
tiv

el
y.

Se
e

Fi
gu

re
5.

9
fo

r
th

e
em

be
dd

in
g

of
th

e
M

en
dl

er
-s

ty
le

co
ur

se
-o

f-v
al

ue
s

re
cu

rs
or

(m
cv

pr
κ
).

Fi
gu

re
5.

10
:

Em
be

dd
in

gs
of

un
ro

lle
r

(u
nI

n F
)

fo
r

so
m

e
we

ll-
kn

ow
n

po
sit

iv
e

ba
se

st
ru

ct
ur

es
(F

).

199

• Second, we need to specify the behavior of the new Mendler-style recursor by

discovering the characteristic equations it should obey (e.g., Haskell definition

of Mendler-style recursor in Chapter 3).

• Third, we need to find an embedding that preserves the characteristic equa-

tions in the host calculus (e.g., embedding of Inκ and mprκ).

• In practice, the second and third issues are intimately entwined as the equa-

tions and embedding are carefully designed (using a Church-style encoding)

to achieve the desired result (e.g., Inκ is defined in terms of the Mendler-style

recursor mprκ).

To embed Mendler-style course-of-values recursion, we can follow the steps

above just as we did for Mendler-style primitive recursion. In addition, we need

to embed an unroller unInF , the key operation for Mendler-style course-of-values

recursion. Recall the use of out in the Fibonacci number example (Figure 3.6) and

the Lucas number example (Figure 3.16) in Section 3.5.

5.3.1 General form for the embedding of course-of-values recursion

Figure 5.9 illustrates the embedding of a new iso-recursive type operator (µ+
κ), the

Mendler-style course-of-values recursor (mcvprκ), and the roller InF in Fixi. Since

the embedding of InF uses unInF , we also need to embed the unroller unInF in order

to complete the embedding of the roller InF . Embedding unInF is possible for a

fairly large class of positive base structure F . Figure 5.10 illustrates some of these

unrollers. But, it may not be possible to give an embedding of the unroller for some

base structures. Recall that not all base structures can have well-defined course-

of-values recursion that guarantees termination (see Figure 3.7 in Section 3.5).

The embeddings of µ+
κ , mcvprκ, and InF for course-of-values recursion (see

Figure 5.9) are very similar to the embeddings of µκ, mprκ, and Inκ for primitive

recursion (see Figure 5.6) discussed earlier in the previous section. The definition

200

of mcvprκ , λs.λr.r s is exactly the same as the definition of mprκ, only differing

in its type signature. The definition of InF is similar to Inκ but uses the additional

unInF that implements the abstract unroller. So, the last piece of the puzzle for

embedding Mendler-style course-of-values recursion is the embedding of unInF .

In the following subsections, we elaborate on how to embed unrollers (unInF)

through examples (Section 5.3.2), derive uniform embeddings of the unrollers gen-

eralizing from those examples, and discuss whether the embeddings of unrollers

satisfy their desired properties.

5.3.2 Embedding unrollers

Embeddings of unrollers for some well-known positive datatypes are illustrated

in Figure 5.10. The general idea is to use mcvprκ to define unInF for the base

structure F : +κ → κ without using the abstract recursive call operation, only

using the abstract cast operation to define constant time unrollers. To define

an unroller, we map non-recursive components (Xa) as they use id and map ab-

stract recursive components (Xr) to concrete recursive components (µ+
κF) using

the abstract cast operation provided by mcvprκ. We can embed unrollers for reg-

ular datatypes such as natural numbers (base N) and lists (base L), type-indexed

datatypes such as powerlists (base P), and term-indexed datatypes such as vectors

(base V) in this way. The notation for combining functions for tuples are defined

as (f × g) , λx.(f x, g x), and (f × g × h) are defined similarly for triples.

Embedding unrollers for regular datatypes: The embeddings of unInN and

unIn(LA) are self explanatory. The embedding of unIn(RA) relies on the map function

for lists, since the rose tree is indirect datatype where recursive subcomponents

appear inside the list (ListXr). The fmapList function applies cast to each of the

abstract recursive subcomponents of type Xr inside F Xr values into a concrete

recursive type µ+
∗ F in order to obtain F (µ+

∗ F) values.

201

Embedding unrollers for nested datatypes are no more complicated than

embedding unrollers for regular datatypes. For instance, the embedding of unInP
for powerlists is almost identical to the embedding of unInL for regular lists except

for the use of mcvpr∗→∗ instead of mcvpr∗. This is because the cast operation

provided by mcvpr∗→∗ is polymorphic over the type index: cast : ∀Xi.XrXi →

µ+
∗→∗XFXi. Since unrollers preserve indices, there is no extra work to be done other

than toa apply the cast. In the embedding of unInP , the cast function performs an

index-preserving cast from an abstract recursive type Xr(Xa×Xa) to the concrete

powerlist type µ+P (Xa ×Xa).

Embedding unrollers for truly nested datatypes [5] such as bushes are sim-

ilar to embedding unrollers for indirect regular recursive types. Truly nested

datatypes are recursive datatypes whose indices may involve themselves. Truly

nested datatypes are similar to indirect recursive types in the sense that a bunch

of recursive components are contained in certain data structures – in case of truly

nested datatypes those data structures are exactly the nested datatypes them-

selves. Assuming that the nested datatype has a notion of monotone map, we can

use fmap to push down the cast to the inner structure and then cast the outer

structure. Note the use of (cast◦ fmap cast) in the embedding of the unroller unInR
for bushes.

Embedding unrollers for indexed datatypes are no more complicated than

embedding unrollers for regular datatypes. To embed unrollers for term-indexed

datatypes, we would often need existential types (Figure 5.5) and equality types.

We can encode equality types in Fixi as a Leibniz equality over indices, i.e., (i =

j) , ∀FA→∗.F{i} → F{j}, as discussed in Section 4.2.3. These extra encodings for

maintaining term-indices do not terribly complicate the embeddings of unrollers,

as unrollers are index-preserving. The embedding of unIn(V A) for length indexed

lists is almost identical to the embedding of unIn(LA) for regular lists, except that

202

it has one more id. The first id that appears in (id× id× cast) is so that the index

equality remain unchanged.

Giving different definitions of unInF for each different F , as illustrated in Fig-

ure 5.10 appears too ad-hoc. Hence, we discuss how to generalize the embeddings

of the unIn operations, assuming that F has a notion of a monotone map (e.g.,

fmap for F : +∗ →∗) in the following subsection. Later, in Section 5.4.2, we reason

about what conditions for F to have a notion of a monotone map.

5.3.3 Deriving uniform embeddings of the unrollers

To derive uniform embeddings of the unrollers, we transcribed the embeddings of

the unrollers appearing in Figure 5.10 into Haskell and observed common patterns

among them. These results are summarized in Figures 5.11, 5.12, 5.13, and 5.14.

This Haskell transcription exercise not only helps us derive uniform embeddings of

the unrollers, but also helps us recognize the conditions that the base structures

should satisfy in order to have an embedding of its unroller in Fixi.

Haskell transcriptions of the unroller embeddings for regular datatypes are

given in Figure 5.12 (Haskell definitions of Mu0 and mcvpr0 are given in Fig-

ure 5.11). Note that the definitions of unInN, unInL, and unInR are uniform:

mvcvp0 (λ_ cast _ →fmap cast). This uniform definition relies on the existence

of fmap over the base structures – note the deriving Functor in the data decla-

rations. In Section 5.4.2, we show that fmap exists for any F : +∗ → ∗ in Fixi.

Hence, we can derive a uniform embedding for the unroller unIn∗ for any base

F : +∗ → ∗ as follows:

unIn∗ : ∀X+∗→∗
F .µ+

∗XF → XF (µ+
∗XF)

unIn∗ ,mcvpr∗(λ .λcast.λ .fmapXF cast)

Haskell transcriptions of the unroller embeddings for nested datatypes are given

203

newtype Mu0 f = In0 { unIn0 :: f(Mu0 f) }

mcvpr0 :: Functor f ⇒ (∀ r. (r → f r) →
(r → Mu0 f) →
(r → a) →
(f r → a))

→ Mu0 f → a
mcvpr0 phi = phi unIn0 id (mcvpr0 phi) . unIn0

newtype Mu1 f i = In1 { unIn1 :: f(Mu1 f)i }

mcvpr1 :: Functor1 f ⇒
(∀ r i’. Functor r ⇒ (∀ i. r i → f r i) →

(∀ i. r i → Mu1 f i) →
(∀ i. r i → a i) →
(f r i’ → a i ’))

→ Mu1 f i → a i
mcvpr1 phi = phi unIn1 id (mcvpr1 phi) . unIn1

class Functor1 h where
fmap1 ’ :: Functor f ⇒ (∀ i j. (i → j) → f i → g j)

→ (a → b) → h f a → h g b
-- fmap1 ’ h = fmap1 (h id)

fmap1 :: Functor f ⇒ (∀ i. f i → g i)
→ (a → b) → h f a → h g b

fmap1 h = fmap1 ’ (λf → h . fmap f)

instance (Functor1 h, Functor f) ⇒ Functor (h f) where
fmap f = fmap1 id

-- fmap1 ’ (λf → id . fmap f)

instance Functor (f (Mu1 f)) ⇒ Functor (Mu1 f) where
fmap f = In1 . fmap f . unIn1

Figure 5.11: µ∗, mcvpr∗, and µ∗→∗, mcvpr∗→∗ transcribed into Haskell.

204

data N r = S r | Z deriving Functor

type Nat = Mu0 N

unInN :: Mu0 N → N(Mu0 N)

unInN = mcvpr0 (λ _ cast _ → fmap cast)

data L a r = C a r | N deriving Functor

type List a = Mu0 (L a)

unInL :: Mu0(L a) → (L a) (Mu0(L a))

unInL = mcvpr0 (λ _ cast _ → fmap cast)

data R a r = F a [r] deriving Functor -- relies on (Functor [])

type Rose a = Mu0 (R a)

unInR :: Mu0(R a) → (R a) (Mu0(R a))

unInR = mcvpr0 (λ _ cast _ → fmap cast)

Figure 5.12: Embeddings of unInN , unIn(LA), unIn(RA) transcribed into Haskell.

205

data P r i = PC i (r (i,i)) | PN
type Powl i = Mu1 P i

instance Functor1 P where
fmap1 ’ h f (PC x a) = PC (f x) (h (λ(i,j) → (f i,f j)) a)
fmap1 ’ _ _ PN = PN

unInP :: Mu1 P i → P(Mu1 P) i
unInP = mcvpr1 (λ _ cast _ → fmap1 cast id)

-- mcvpr1 phi where
-- phi _ cast _ (PC x xs) = PC x (cast xs)
-- phi _ cast _ PN = PN

data B r i = BC i (r (r i)) | BN
type Bush i = Mu1 B i

instance Functor1 B where
fmap1 ’ h f (BC x a) = BC (f x) (h (h f) a)
fmap1 ’ _ _ BN = BN

unInB :: Mu1 B i → B (Mu1 B) i
unInB = mcvpr1 (λ _ cast _ → fmap1 cast id)

-- mcvpr1 phi where
-- phi _ cast _ (BC x xs) = BC x (cast (fmap cast xs))
-- phi _ cast _ BN = BN

Figure 5.13: Embedding of unInP and unInB transcribed into Haskell.

206

class FunctorI1 (h :: (* → *) → * → *) where
fmapI1 :: (∀ i . f i → g i) → h f j → h g j

mcvprI1 :: FunctorI1 f ⇒
(∀ r j. (∀ i. r i → f r i) →

(∀ i. r i → Mu1 f i) →
(∀ i. r i → a i) →
(f r j → a j))

→ Mu1 f i’ → a i’
mcvprI1 phi = phi unIn1 id (mcvprI1 phi) . unIn1

data Succ n
data Zero

data V a r i where
VC :: a → r n → V a r (Succ n)
VN :: V a r Zero

instance FunctorI1 (V a) where
fmapI1 h (VC x a) = VC x (h a)
fmapI1 _ VN = VN

unInV :: Mu1 (V a) i → (V a) (Mu1 (V a)) i
unInV = mcvprI1 (λ_ cast _ → fmapI1 cast)

instance FunctorI1 P where
fmapI1 h (PC x a) = PC x (h a)
fmapI1 _ PN = PN

unInP ’ :: Mu1 P a → P (Mu1 P) a
unInP ’ = mcvprI1 (λ_ cast _ → fmapI1 cast)

Figure 5.14: Embedding of unIn(V A) and another embedding of unInP
transcribed into Haskell.

207

in Figure 5.13. (Haskell definitions of Mu1, mcvpr1, and fmap1’ are given in Fig-

ure 5.11). Note that the definitions of the unrollers unInP for powerlists and

unInB for bushes are uniform: mvcvp1 (λ_ cast _ →fmap1 cast id). The func-

tion fmap1 is the rank 2 monotone map for type constructors of kind +(+∗ →

∗) → (+∗ → ∗), which is analogous to rank 1 monotone map fmap for type con-

structors of kind +∗ → ∗. Alternatively, one can think of the Functor1 class as

a bifunctor over type constructors of kind +(+∗ → ∗) → +∗ → ∗, whose first

argument (+(+∗ → ∗) → +∗ → ∗) is a type constructor and second argument

(+(+∗ → ∗)→ +∗ → ∗) is a type.

A Haskell transcription of the unroller embedding for the length-indexed list

datatype, which is a term-indexed datatype, is given in Figure 5.14. To give an

embedding of unIn(V A), we define another version of Mendler-style course-of-values

recursion combinator mcvprI1 similar to mcvpr1 in Figure 5.11 but requires the

base structure to be an instance of the FunctorI1 class rather than an instance of

the Functor1 class. The FunctorI1 class is simpler than the Functor1 class be-

cause FunctorI1 requires only the first argument to be monotone while Functor1

requires both the first and second arguments to be monotone – this is evident when

comparing the types of their member functions fmap1 and fmapI1 side-by-side:

fmap1 :: (Functor f, Functor1 h) ⇒

(∀ i. f i → g i) → (a → b) → h f a → h g b

fmapI1 :: FunctorI1 h ⇒

(∀ i. f i → g i) → h f a → h g a

Here, fmapI1 does not have the extra Functor requirement since it does not require

the second argument type to be monotone. The function fmapI1 only transforms

the first type constructor argument, preserving the second argument (which may

be a type index or a term index), while fmap1 is able to transform both the first

and second arguments. For term-indexed datatypes, fmapI1 is enough to con-

struct embeddings of the unrollers, since there is no need to transform indices –

208

recall that term-indices do not appear at value level. Hence, there are no values

to transform in the first place. Furthermore, even if we had such values, we need

not transform them anyway because unrollers are index-preserving by definition.

Thus, in the type signature of mcvprI1, we need not require the abstract recur-

sive structure r to be a Functor, unlike in the type signature of mcvpr1 where

we did require Functor r. The embedding of unIn(V A) has the expected shape:

mcvprI1 (λ_ cast _ →fmapI1 cast).

Interestingly, we can give yet another Haskell transcription of unInP in terms

of mcvprI1 (see unInP’ in Figure 5.14) rather than in terms of mcvpr1. This

is because we do not really need the ability to transform type indices to embed

unrollers for powerlists. However, for truly nested datatypes such as bushes, this

alternative is not possible. Recall that we do need to transform indices from

abstract recursive type to concrete recursive type to embed unInB because a bush

is indexed by its own structure. In summary, unroller embeddings for indexed

datatypes, regardless of term-indexed or type-indexed, do not require indices to

be monotone unless the datatype is truly nested. For truly nested datatypes, we

must require indices as well as the recursive type constructor itself to be monotone

in order to embed their unrollers. We can have a good approximation of this idea

using with polarized kinds in Fixi. We conjecture that all base structures of kind

+(+∗ → ∗)→ +∗ → ∗ are instances of Functor1, while all base structures of kind

+(0∗ → ∗) → 0∗ → ∗ are instances of Functor1. We discuss this more formally

in Section 5.4.2.

5.3.4 Properties of unrollers

We expect two properties to hold for the unroller embeddings. First, unInF must

be a left identity of Inκ. That is, unInF (Inκt) −→+ t for any term t. Second, unInF
should be a constant time operation, regardless of its supplied argument. That is,

unInF (Inκt) −→+ t takes constant steps independent of t (but may vary between

209

differrent F s). One difficulty is that some embeddings of the unrollers illustrated

in Figure 5.10 are not constant time. However, we can safely optimize them into

constant time functions because of the metatheoretic property of mcvprκ and

fmap:

• The cast operation of mcvprκ is implemened as the identity function id.

• (fmapF id) t −→+ t for any t : FA. This property generalizes to monotone

maps of higher kinds. For instance, (fmap1H id id) t −→+ t for any t : H F A

(see Figure 5.11 for the definition of fmap1).

For instance, unIn(RA) for the rose tree datatype, which is an indirect recursive

datatype, are not constant time. The map function for lists fmapList appearing

in the definition of unIn(RA) is obviously not a constant time function. That is,

we traverse the list inside a rose tree to cast each element of the list. Thus,

unIn(RA) is linear to the length of the list appearing in the rose tree. We can safely

optimize unIn(RA) into a constant time operation by optimizing (fmapList cast) into

the identity function id. This optimization is safe because the property of cast is

implemented by id and the property of (fmap id) is equivalent to id. However, this

does not mean we have a constant time embedding of unIn(RA) within Fixi, since

the optimized term is not type-correct. The identity function id , λx.x cannot be

given the same type as (fmapList id) : List(XrXa)→ List(µ+
κRXa).

For similar reasons, unInB for the bush datatype, which is a truly nested datatype,

is not constant time either due to the use of fmap cast : Xr(XrXa)→ Xr(µ+
∗→∗BXa),

which traverses the outer Xr structure (an abstract bush) to cast each element from

(XrXa) to (µ+
∗→∗BXa). However, in this case, there is yet another subtlety that

must be addressed before we can address the embedding of unInB not being con-

stant time. Note that we boldly assumed that the abstract recursive type Xr has

an fmap operation (specified by Functor r in the Haskell transcription). Previ-

ously, in the embedding of unInR for the rose tree, we relied on a property of a

210

specific instance of fmap for List, which is a type well known to have fmap and is

indeed equipped with the desired property. In the case of unInB, we cannot assume

anything but the kind of Xr : +∗ → ∗ because it is abstract. Hence, we should

rely on a more general property that fmap is well-defined for any type constructors

of kind +∗ → ∗ in Fixi. We discuss this general property of fmap in Section 5.4.2.

Lastly, we can even further optimize the unrollers based on the observation

made in the previous subsection that all unroller embeddings have uniform shape:

mcvprκ(λ .λcast.λ . fmap?? cast id · · · id)

where the underlined part can be optimized to the identity function id.

It is important to note that embeddings of the Mendler-style course-of-values

primitive recursion rely on the existence of unrollers. However, we have not for-

mally proved the existence of unrollers in general. We only conjecture and strongly

believe that unrollers exist for recursive types whose kinds are decorated with suf-

ficient positive polarity. Clarifying these issues will be an interesting direction for

future work. Some preliminary ideas are elaborated in Section 5.4.2.

5.4 METATHEORY OF Fixi

Recall that we extended Fixω to Fixi to support primitive recursion and course-of-

values recursion. In this section, we show strong normalization and logical consis-

tency of Fixi. We also give a partial proof of the syntactic conditions necessary for

well-behaved course-of-values recursion.

5.4.1 Strong normalization and logical consistency

We can prove strong normalization of Fixi by the following strategy.

• Define a notion of index erasure that projects Fixi types to Fixω types.

• Show that every well-typed Fixi-term is a well-typed Fixω-term by index

erasure.

211

• Fixi inherits strongly normalization from Fixω because Fixω is strongly nor-

malizing [3].

The definition of the index erasure operation for System Fixi and the proofs of

the related theorems are virtually the same as their counterparts in System Fi (see

Section 4.3). So, we simply illustrate the definition and the theorems, but omit

their proofs.

We define a meta-operation of index erasure (◦) that projects Fixi types to Fixω
types and another meta-operation (•) that selects only the index variable bindings

(iA) from the type-level context.

Definition 5.4.1 (index erasure).

κ◦ ∗◦ = ∗ (pκ1 → κ2)◦ = pκ1
◦ → κ2

◦ (A→ κ)◦ = κ◦

F ◦ X◦ = X (A→ B)◦ = A◦ → B◦ (fixF)◦ = fixF ◦

(λXpκ.F)◦ = λXpκ◦ .F ◦ (λiA.F)◦ = F ◦

(F G)◦ = F ◦ G◦ (F {s})◦ = F ◦

(∀Xκ.B)◦ = ∀Xκ◦ .B◦ (∀iA.B)◦ = B◦

∆◦ ·◦ = · (∆, Xpκ)◦ = ∆◦, Xpκ◦ (∆, iA)◦ = ∆◦

Γ◦ ·◦ = · (Γ, x : A)◦ = Γ◦, x : A◦

Definition 5.4.2 (index variable selection).

·• = · (∆, Xpκ)• = ∆• (∆, iA)• = ∆•, i : A

These two definitions are exactly the same as the definitions of ◦ and • in Fi
(defined in Section 4.3.3), except for the new constructs of Fixi: (1) polarities in

kinds and (2) the equi-recursive type operator fix.

Once ◦ and • are defined, the proof of strong normalization of Fixi, by index era-

sure, is virtually the same as the proof of strong normalization of Fi (Section 4.3.3).

212

Here, we list only the theorems since their proofs can be trivially reconstructed by

consulting the proofs of the corresponding theorems in Section 4.3.3.

Theorem 5.4.1 (index erasure on well-sorted kinds). ` κ : �
` κ◦ : �

Theorem 5.4.2 (index erasure on well-formed type-level contexts).

` ∆
` ∆◦

Theorem 5.4.3 (index erasure on kind equality). ` κ = κ′ : �
` κ◦ = κ′◦ : �

Theorem 5.4.4 (index erasure on well-kinded type constructors).

` ∆ ∆ ` F : κ
∆◦ ` F ◦ : κ◦

Theorem 5.4.5 (index erasure on type constructor equality).

∆ ` F = F ′ : κ
∆◦ ` F ◦ = F ′◦ : κ◦

Theorem 5.4.6 (index erasure on well-formed term-level contexts).

∆ ` Γ
∆◦ ` Γ◦

Theorem 5.4.7 (index erasure on index-free well-typed terms).

∆ ` Γ ∆; Γ ` t : A
∆◦; Γ◦ ` t : A◦ (dom(∆) ∩ FV(t) = ∅)

Theorem 5.4.8 (index erasure on well-formed term-level contexts prepended by

index variable selection).

∆ ` Γ
∆◦ ` (∆•,Γ)◦

Theorem 5.4.9 (index erasure on well-typed terms).

∆ ` Γ ∆; Γ ` t : A
∆◦; (∆•,Γ)◦ ` t : A◦

As stated in the introduction to this section, strong normalization is a direct

consequence of the erasure theorems above.

213

Logical consistency: We show the logical consistency of Fixi by showing that

the void type ∀X∗.X is uninhabited. By index erasure, we know that that the

set of terms that inhabit a Fixi-type is a subset of the set of terms that inhabit

the corresponding (erased) Fixω-type. Thus, if ∀X∗.X is uninhabited in Fixω then

∀X∗.X is uninhabited in Fixi. Abel and Matthes [3] gives a saturated set inter-

pretation for the type constructors in Fixω that is similar to the interpretation

given in Section 2.3.2 for Fω type constructors. The void type ∀X∗.X is obviously

uninhabited (by any closed term) according to this interpretation. That is, no

strongly-normalizing, closed term inhabits ∀X∗.X.

J∀X∗.X]]ξ ∈ SAT∗ → SAT∗

J∀X∗.X]]ξ =
⋂
A∈J∗]]

JX]]ξ[X→A] =
⋂
A∈J∗]]

A = ⊥

The minimal saturated set ⊥ of SAT, which is saturated from the empty set, does

not have any closed terms. See Section 2.1.1 for the definition of saturated sets.

5.4.2 Syntactic conditions for well-behaved course-of-values recursion

In Section 5.3, we embedded Mendler-style course-of-values recursion (mcvpr) in

Fixi for the base structures (F) that have maps (fmapF), also known as monotonic-

ity witnesses [58, 60]. The theoretical development of the termination of mcvpr by

assuming the existence of maps is elegant, since it does not require ad-hoc syntac-

tic restrictions on the formation of types. However, in a language implementation,

it is not desirable to require users to manually witness fmapF every time they need

to convince the type system that mcvpr is well-defined over F .

It would be very convenient if we could categorize type constructors of Fixi
that have maps by analyzing their polarized kinds. As a consequence, for any type

constructor F whose kind meets certain criteria, users can immediately assume the

existence of fmapF and that mcvpr always terminates for F .

For instance, we conjecture that any F : +∗ → ∗ should have a map, as in

214

Conjecture 5.4.1 below. In this thesis, we only show that this conjecture holds for

simple cases (Proposition 5.4.1) while still encompassing a broad range of types.

The complete proof is left for future work. Matthes [60] showed that positive

inductive types, in the context of System F, are monotone (i.e., map exists), but

it has not yet been studied whether we can rely on polarized kinds to derive

monotonicity in the context of System Fω.

Conjecture 5.4.1. For any F : +∗ → ∗, there exists

fmapF : ∀X∗.∀Y ∗.(X → Y)→ F X → F Y such that

fmapF id = id

fmapF f ◦ fmapF g = fmapF (f ◦ g)

Assuming that the conjecture above is true, we can show that mcvpr is well-

defined for any F : +∗ → ∗ as follows.

Conjecture 5.4.2. For any F : +∗ → ∗, there exists unInF : µ+∗F → F (µ+∗F)

such that unInF (InF t) −→+ t.

Proof. Because we know that fmapF exists by Conjecture 5.4.1, we can define

unInF = mcvpr∗ (λ .λcast.λ .λx.fmapF cast x)

Because we know that fmapF id x −→+ x, we can show that the unroller unInF
has the desired property unInF (InF t) −→+ fmapF id t −→+ t.

We believe that the above conjectures are true, but we prove only a small

fragment (outlined below), which is a special case of Conjecture 5.4.1.

Proposition 5.4.1. There exists fmapF : ∀X∗.∀Y ∗.(X → Y)→ F X → F Y for

any F : +∗ → ∗ such that

• F is non-recursive, that is, does not have fix,

215

• F is a value, that is, F is in normal form (i.e., has no redex) and closed

(i.e., F has no free variables),

• All the bound variables within F are introduced by universal quantification

and those variables are of kind ∗.

Proof. We can derive fmapF from the structure of F . Since F has kind +∗ → ∗,

it must be a lambda abstraction (λZ+∗.B), some kind of application (a normal

application, F ′G, or an index application F ′{s}), or a variable of kind +∗ → ∗.

No other way of forming F can have kind +∗ → ∗.

We also assume that F is in normal form, so if F were an application then

F ′ must be a variable with an arrow kind. However, we have assumed that all

variables have kind ∗. Hence, F cannot be a variable since we have assumed that

F is a value with no free variables, thus F must have the form λZ+∗.B. We proceed

by analyzing the structure of B.

case (Z /∈ FV(B), i.e., F is a constant function.) fmap(λZ+∗.B) = λ .λx.x

Since F X = F Y = B, we simply return the identity function on B.

case (F , λZ+∗.Z. i.e., F is the identity.) fmap(λZ+∗.Z) = λz.z

Since F X = X and F X = Y , we return the function z : X → Y itself.

case (F , λZ+∗.∀X∗1 .B1, B is a universal quantification.)

fmap(λZ+∗.∀X∗1 .B1) = fmap(λZ+∗.B1)

Here, we need to find an fmap that works for any valuation of X1. That is,

we must find an fmap that works for λZ+∗.B1[V/X1] for an arbitrary value

V . Since values are closed, v cannot contain free variables including Z. Since

v is completely independent of Z, the value V cannot make any difference to

the derived fmap. Hence, we simply ignore X1.

case (F , λZ+∗.A→ B1, i.e., B is a function.)

When Z /∈ FV(A), fmap(λZ+∗.A→B1) = λz.λy.λx.fmap(λZ+∗.B1) z (y x)

216

When A , ∀X∗1 .A1, fmap(λZ+∗.(∀X∗1 .A1)→B1) = fmap(λZ+∗.A1→B1)

When B1 , ∀X∗1 .B2, fmap(λZ+∗.A→∀X∗1 .B2) = fmap(λZ+∗.A→B2)

When A , A1 → · · · → An → ∀X∗2 .B′2,
fmap(λZ+∗.(A1→···→An→∀X∗2 .B

′
2)→B1) = fmap(λZ+∗.(A1→···→An→B′2)→B1)

When A , A1 → · · · → An → B2, where B2 is not an arrow type
fmap(λZ+∗.(A1→···→An→B2)→B1)

= λz.λy.λx. fmap(λZ+∗.B1) z (y (λx1. . . . λxn. x (fmap(λZ+∗.A1) z x1)
...

(fmap(λZ+∗.An) z xn)))

To illustrate that the fmaps derived in the proof above are indeed type-correct,

we provide some examples in Haskell accepted by GHC in Figure 5.15. In fact,

all the Functor instances in Figure 5.15 are automatically derivable using the

DeriveFunctor extension in GHC version 7.4. However, GHC does not derive

functor instances when there are type constructor variables other than ∗, since the

kind system in GHC does not keep track of polarity as in Fixω or Fixi.

Recall that we are proving a simplified version of the desired conjecture with

several simplifying assumptions: F is a non-recursive closed value and bound vari-

ables introduced in F have kind ∗. Let us now generalize the latter restriction by

allowing type constructor variables of kind p∗ → ∗ as well as type variables of kind

∗. There are three possibilities for X : p∗ → ∗. Note that the variable X would

be used as the function part of an application, like X G, within type B.

case (X : +∗ → ∗) By induction,5 there exists a map for any valuation of X. So,

we denote that map as fmapX . The map for λZ+∗.X G is

fmap(λZ+∗.X G) = fmapX ◦ fmap(λZ+∗.G)

5 We need to make sure that this is a well-founded induction. It may be a coinductive proof.

217

{-# LANGUAGE RankNTypes # -}

data F1 x = C1 (Int → Bool)

instance Functor F1 where
fmap f (C1 z) = C1 z

data F2 x = C2 x

instance Functor F2 where
fmap f (C2 z) = C2 (f z)

data F3 x = C3 (([x] → Bool) → Maybe x)

instance Functor F3 where
fmap z (C3 y) = C3 (λx → fmap z (y (λx1→ x (fmap z x1))))

data F4 x = C4 ((∀ y . [x] → y) → Maybe x)

instance Functor F4 where
fmap z (C4 y) = C4 (λx → fmap z (y (λx1→ x (fmap z x1))))

data F5 x = C5 (∀ y . ([x] → y) → Maybe x)

instance Functor F5 where
fmap z (C5 y) = C5 (λx → fmap z (y (λx1→ x (fmap z x1))))

data F6 x = C6 (([x] → ([x] → Bool)) → Maybe x)

instance Functor F6 where
fmap z (C6 y) =

C6 (λx → fmap z (y (λx1 x2 → x (fmap z x1) (fmap z x2))))

Figure 5.15: Haskell code example to illustrate well-typedness of fmaps derived in

the proof of Proposition 5.4.1.

218

Note that fmapX is not fixed until it is instantiated, however, we definitely

know that it exists for any valuation.

case (X : −∗ → ∗) According to the (@) rule applied to X G, the argument

G should be well-kinded under −∆. Note that Z−∗ ∈ −∆ since Z+∗ ∈ ∆.

So, Z cannot appear in positive positions in G. It can only appear in neg-

ative positions (e.g., G , Z → G′). Any valuation of X will have the

form of λX−∗1 .B1 where X1 appears in negative positions. As a consequence,

(λX−∗1 .B1)G = B1[G/X1] by a single step reduction. Note that B1[G/X1]

must be in normal form. SinceG has kind ∗ (it cannot be a lambda), substitu-

tion of X1 with G cannot introduce a new redex. Since G is substituted only

into negative positions, any Z occurring in a negative position in G become

a positive position in the substituted type. Thus, λZ+∗.B1[G/X1] : +∗ → ∗.

Hence, by induction,6 there exists a map for any valuation of X since we can

derive fmap(λZ+∗.B1[G/X1]).

case (X : 0∗ → ∗) Note that G cannot have Z in it because Z has + polarity

in the context. Recall that, 0∆ ignores the variables with either + or −

polarity. According to the (@) rule in Figure 5.2, G should be well-kinded

under 0∆. Since Z /∈ FV(X G), we simply return the identity function as

the map for λZ+∗.X G.

In addition, having X : A → ∗ does not make a difference since X{s} cannot

have Z either. Once we know that we can derive maps in the presence of type

constructor variables with single argument, it is easy to generalize this to arbitrary

rank-1 kinded type constructor variables (e.g., +∗ → A1 → −∗ → A2 → 0∗ → ∗).

To complete the proof of Conjecture 5.4.1, we need to consider the equi-

recursive type operator (fix) and type constructor variables of kind higher than

rank 1. Considering fix makes the proof harder since it becomes less obvious

6 We need to make sure that this is a well-founded induction. It may be a coinductive proof.

219

what “normal form” of a type constructor means. Recall that (fix F1) expands to

F1(fix F1). When F1 is a lambda abstraction, the expansion of fix introduces a new

redex at the type level. We hope to complete this proof in the future.

Once we have completed the proof of Conjecture 5.4.1, the next step is prove a

similar conjecture for higher kinds (recall fmap1 in Section 5.3.2). For instance, we

conjecture that maps exist for type constructors of kind +(+∗ → ∗)→ (+∗ → ∗).

220

Part IV

Nax Language

221

Chapter 6

INTRODUCTION TO FEATURES OF THE NAX LANGUAGE

This chapter provides an informal introduction to the Nax programming language.

We go through several distinct features of Nax, providing one or more examples for

each feature. Basic understanding of these features will be necessary to continue

further discussions on design principles (Chapter 7) and type inference (Chapter 8)

in the following chapters.

All the examples in this chapter run on our prototype implementation of Nax.

An example usually consists of several parts:

• Introducing data definitions to describe the data of interest. Recursive data

is introduced in two stages. We must be careful to separate parameters from

indices when using indices to describe static properties of data.

• Introduce type synonyms and constructor functions, either by explicit def-

inition or by automatic fixpoint derivation, to limit the amount of explicit

notation that must be supplied by the programmer.

• Write a series of definitions that describes how the data is to be manipulated.

Deconstruction of recursive data can only be performed with Mendler-style

recursion combinators to ensure strong normalization.

6.1 TWO-LEVEL TYPES

Non-recursive datatypes are introduced by the data declaration. The data dec-

laration can include arguments. For example, the three non-recursive datatypes,

222

Bool, Either , and Maybe, familiar to many functional programmers, are introduced

by declaring the kind of the type and the type of each of the constructors. This is

similar to the way GADTs are introduced in Haskell.

data Bool : ?
where

False : Bool
True : Bool

data Either : ?→ ?→ ?

where
Left : a → Either a b
Right : b → Either a b

data Maybe : ?→ ?

where
Nothing : Maybe a
Just : a → Maybe a

Note the kind information (Bool : ?) declares Bool to be a type, (Either : ? →

? → ?) declares Either to be a type constructor with two type arguments, and

(Maybe : ?→ ?) declares Maybe to be a type constructor with one type argument.

To introduce a recursive type, we first introduce a non-recursive datatype that

uses a parameter where the usual recursive components occur. By design, normal

parameters of the introduced type are written first (a in L below) and the type

argument that stands for the recursive component is written last (the r of N and

the r of L below).

-- The fixpoint of N will
-- be the natural numbers.
data N : ?→ ? where

Zero : N r
Succ : r → N r

-- The fixpoint of (L a) will
-- be the polymorphic lists
data L : ?→ ?→ ? where

Nil : L a r
Cons : a → r → L a r

A recursive type can be defined as the fixpoint of a (perhaps partially applied)

non-recursive type constructor. Thus, the traditional natural numbers are typed by

µ[?] N and the traditional lists with components of type a are typed by µ[?] (L a).

Note that the recursive type operator µ[κ] is itself specialized with a kind argument

inside square brackets ([κ]). The recursive type (µ[κ] f) is well-kinded only if the

operand f has kind κ → κ, in which case the recursive type (µ[k] f) has kind κ.

223

Since both N and (L a) have kind ?→ ?, the recursive types µ[?] N and µ[?] (L a)

have kind ?. That is, they are both types, not type constructors.

6.2 CREATING VALUES

Values of a particular datatype are created by the use of constructor functions.

For example, True and False are nullary constructors (or constants) of type Bool.

(Left 4) is a value of type (Either Int a). Values of recursive types (i.e., those

values with types such as (µ[k] f) are formed by using the special In[κ] construc-

tor expression. Thus, Nil has type L a and (In[?] Nil) has type (µ[?] (L a)).

In general, applying the operator In[k] injects a term of type f (µ[k] f) to the

recursive type (µ[k] f). Thus, a list of Bool could be created using the term

(In[?] (Cons True (In[?] (Cons False (In[?] Nil))))). A general rule of thumb is to

apply In[k] to terms of non-recursive types to get terms of recursive types. Writing

programs using two-level types and recursive injections has definite benefits, but it

certainly makes programs rather annoying to write. Thus, we have provided Nax

with a simple but powerful synonym (or macro) facility.

6.3 SYNONYMS, CONSTRUCTOR FUNCTIONS, AND FIXPOINT

DERIVATION

We may codify that some type is the fixpoint of another, once and for all, by

introducing a type synonym.

synonym Nat = µ[?] N

synonym List a = µ[?] (L a)

In a similar manner, we can introduce constructor functions that create recursive

values without explicit mention of In[κ] at their call sites (potentially many), but

only at their site of definition (exactly once).

224

zero = In[?] Zero

succ n = In[?] (Succ n)

nil = In[?] Nil

cons x xs = In[?] (Cons x xs)

This is such a common occurrence that recursive synonyms and constructor func-

tions can be automatically derived. Automatic synonym and constructor derivation

in Nax is both concise and simple. The clause “deriving fixpoint List” (below

right) automatically derives the synonym definition for List. It also defines the

constructor functions nil and cons. By convention, the constructor functions are

named by dropping the initial upper-case letter in the name of the non-recursive

constructors to lower-case. To illustrate, we provide side-by-side comparisons of

Haskell and two different uses of Nax.

Haskell Nax with synonyms Nax with derivation

data List a
= Nil
| Cons a (List a)

x = Cons 3 (Cons 2 Nil)

data L : ?→ ?→ ? where
Nil : L a r
Cons : a → r → L a r

synonym List a = µ[?] (L a)
nil = In[?] Nil
cons x xs = In[?] (Cons x xs)
x = cons 3 (cons 2 nil)

data L : ?→ ?→ ? where
Nil : L a r
Cons : a → r → L a r

deriving fixpoint List

x = cons 3 (cons 2 nil)

6.4 MENDLER COMBINATORS FOR NON-INDEXED TYPES

There are no restrictions on what kinds of datatypes can be defined in Nax. There

are also no restrictions on the creation of values for those datatypes. Values of

datatypes are created using data constructors and the recursive injection (In[k]).

To ensure strong normalization, analysis (or elimination, pattern matching) of

the constructed values has some restrictions. Values of non-recursive types can be

225

freely analyzed using pattern matching. Values of recursive types must be analyzed

using one of the Mendler-style combinators. By design, we limit pattern matching

to values of non-recursive types, by not providing any mechanism to match against

the recursive injection (In[k]).

To illustrate simple pattern matching over non-recursive types, we give a multi-

clause definition for the ¬ function1 over the (non-recursive) Bool type, and a

function that strips off the Just constructor over the (non-recursive) Maybe type

using a case expression.

¬ True = False
¬ False = True

unJust0 x = case{ } x of Just x → x
Nothing → 0

Of course, the ¬ function can also be defined as a single clause definition using

the case expression and the unJust0 function can also be defined as a multi-clause

definition.

Analysis of recursive data is performed by Mendler-style recursion combinators.

In our implementation, we provide 5 families of Mendler-style combinators: mit·
(fold or catamorphism or iteration), mpr· (primitive recursion), mcvit· (courses-

of-values iteration), mcvpr· (courses-of-values recursion), and msfit· (fold or cata-

morphism or iteration for recursive types with negative occurrences).

A Mendler-style combinator is written in a manner similar to a case expression.

A Mendler-style combinator expression contains patterns, and the variables bound

in the patterns are scoped over a term. This term is executed if the pattern

matches. A Mendler-style combinator expression differs from a case expression in

that it also introduces additional names (or variables) into scope. These variables

play a role similar in nature to the operations of an abstract datatype and provide

additional functionality aside to what can be expressed using just case analysis.

1 ¬ is just a pretty-printed notation of not using lhs2TeX.

226

For a visual example, compare the case expression to the mit· expression. In

the case expression, each clause following the of indicates a possible match of the

scrutinee x . In the mit· expression, each equation following the with, binds the

variable f , and matches the pattern to a value related to the scrutinee x .

case{ } x of Nil → e1

Cons x xs → e2

mit{ } x with f (Cons x xs) = e1

f Nil = e2

The number and type of the additional variables depends upon which family of

Mendler combinators is used to analyze the scrutinee. Each equation specifies (a

potential) computation in an abstract datatype depending on whether the pattern

matches. For the mit· combinator (above), the abstract datatype has the following

form. The scrutinee x is a value of some recursive type (µ[?] T) for a non-recursive

type constructor T . In each clause, the pattern has type (T r), for some abstract

type r . The additional variable introduced (f) is an operator over the abstract

type r that can safely manipulate only abstract values of type r .

Different Mendler-style combinators are implemented by different abstract types.

Each abstraction safely describes a class of provably terminating computations over

a recursive type. The number (and type) of abstract operations differs from one

family of Mendler combinators to another. Below, we give descriptions of three

families of Mendler combinators, their abstractions, and the types of the operators

within the abstraction. In each description, the type ans represents the result type

when the Mendler combinator is fully applied.

227

mit{ } x with
f pi = ei

x : µ[?] T
f : r → ans

pi : T r
ei : ans

mit{ψ} ϕ (In[?] x)
= ϕ (mit{ψ} ϕ) x

mpr{ } x with
f cast pi = ei

x : µ[?] T
f : r → ans
cast : r → µ[?] T
pi : T r
ei : ans

mpr{ψ} ϕ (In[?] x)
= ϕ (mpr{ψ} ϕ) (In[?]) x

mcvit{ } x with
f out pi = ei

x : µ[?] T
f : r → ans
out : r → T r
pi : T r
ei : ans

mcvit{ψ} ϕ (In[?] x)
= ϕ (mcvit{ψ} ϕ) out x
where out (In[?] x) = x

A Mendler-style combinator implements a (provably terminating) recursive

function applied to the scrutinee. The abstract type and its operations ensure

termination. Note that every operation above includes an abstract operator,

f : r → ans. This operation represents a recursive call in the function defined

by the Mendler-style combinator. Other operations, such as cast and out, support

additional functionality within the abstraction in which they are defined (mpr· and

mcvit·, respectively). The equations at the bottom of each column above provide

an operational understanding of how each Mendler-style combinator works. These

can be safely ignored until after we see some examples of how a Mendler-style com-

binator works in practice. In Figure 6.1, the length function uses the simplest kind

of recursion where each recursive call is an application to a direct subcomponent

of the input. Operationally, length works as follows. The scrutinee y has type

(µ[?] (L a)) and has the form (In[?] x). The type of y implies that x must have the

form Nil or (Cons x xs). The mit· strips off the In[?] and matches x against the

Nil and (Cons x xs) patterns. If the Nil pattern matches, then 0 is returned. If the

(Cons x xs) pattern matches, x and xs are bound. The abstract type mechanism

228

length y = mit{ } y with len Nil = zero
len (Cons x xs) = (succ zero) + len xs

tail x = mpr{ } x with tl cast Nil = nil
tl cast (Cons y ys) = cast ys

factorial x = mpr{ } x with fact cast Zero = succ zero
fact cast (Succ n) = times (succ (cast n)) (fact n)

fibonacci x = mcvit{ } x with fib out Zero = succ zero
fib out (Succ n) = case{ } (out n) of

Zero → succ zero
Succ m → fib n + fib m

Figure 6.1: Illustrating the use of the Mendler-style recursion combinators pro-

vided in Nax by simple examples: length, tail, factorial, and fibonacci.

gives the pattern (Cons x xs) and the type (L a r), so (x : a) and (xs : r) for some

abstract type r . The abstract operation, (len : r → Int), can safely be applied to

xs, obtaining the length of the tail of the original list. This value is incremented

and then returned. The abstract operation of mit· provides a safe way to allow the

user to make recursive calls, len, but the abstract type, r , limits its use to direct

subcomponents, so termination is guaranteed.

Some recursive functions need access to the concrete values of the direct sub-

components (of type µ[?] T), in addition to applying abstract recursive calls on

the abstract handles of the direct subcomponents (of type r). The Mendler-style

combinator mpr· provides a safe, yet abstract mechanism to support this.

There are two abstract operations provided by mpr·: the recursive caller with

type (r → ans) and a casting function with type (r → µ[?] T). The casting

operation allows the user to recover the original type from the abstract recursive

type r , but since the recursive caller only works on the abstract recursive type r ,

the user cannot make a recursive call on one of these cast values. The functions

229

factorial (over the natural numbers) and tail (over lists) are both defined using

mpr·.

Note how in factorial the original input is recovered (in constant time) by

taking the successor of the concrete predecessor value (cast n) obtained by casting

the abstract predecessor n. In the tail function, the abstract tail ys is cast to get

the answer, and the recursive caller is not even used.

Some recursive functions need access, not only to the direct subcomponents,

but also to even deeper subcomponents. The Mendler-style combinator mcvit·
provides a safe,2 yet abstract mechanism to support this. The function fibonacci

is a classic example of this kind of recursion. The recursion combinator mcvit·
provides two abstract operations: the recursive caller with type (r → ans) and a

projection function with type (r → T r). The projection allows the programmer

to observe the hidden T structure inside a value of the abstract recursive type r .

In the fibonacci function above, we name the projection out. It is used to observe

if the abstract predecessor, n, of the input, x , is either zero, or the successor of

the second predecessor m of x . Note how recursive calls are made on the direct

predecessor n and the second predecessor m.

Each recursion combinator can be defined by the equation at the bottom of its

figure. Each combinator can be given a naive type involving the concrete recursive

type (µ[?] T), but if we instead give it a more abstract type, abstracting values

of type (µ[?] T) into some unknown abstract type r , one can safely guarantee

a certain pattern of use that ensures termination. Informally, if the combinator

works for some unknown type r , it will certainly also work for the actual type

(µ[?] T), but because we cannot assume that r has any particular structure; the

user is forced to use the abstract operations in carefully proscribed ways.

2 Only for positive datatypes, of course.

230

6.5 TYPES WITH STATIC INDICES

Recall that a type can have both parameters and indices, and that indices can be

either types or terms. We define three types below, each with one or more indices.

Each example defines a non-recursive type and then uses fixpoint derivation to

define synonyms for its fixpoint and constructor functions. By convention, in

each example, the argument that abstracts the recursive components is called r .

By design, arguments appearing before r are understood to be parameters, and

arguments appearing after r are understood to be indices. To define a recursive

type with indices, it is necessary to give the argument r a higher kind. That is,

r should take indices as well, since it abstracts over a recursive type which takes

indices.

data Nest : (?→ ?)→ ?→ ? where
Tip : a → Nest r a
Fork : r (a, a)→ Nest r a

deriving fixpoint PowerTree
data V : ?→ (Nat → ?)→ Nat → ? where

Vnil : V a r { ‘zero}
Vcons : a → r {n} → V a r { ‘succ n}

deriving fixpoint Vector
data Tag = E | O
data P : (Tag → Nat → ?)→ Tag → Nat → ? where

Base : P r {E } { ‘zero}
StepO : r {O} {i } → P r {E } { ‘succ i }
StepE : r {E } {i } → P r {O} { ‘succ i }

deriving fixpoint Proof

Note, to distinguish type indices from term indices (and to make parsing unam-

biguous), we enclose term indices in braces ({ ...}). We also backquote (‘) variables

in terms that we expect to be bound in the current environment. Un-backquoted

variables are taken to be universally quantified. By backquoting succ, we indicate

that we want terms that are applications of the successor function, but not some

231

universally quantified variable3. For non-recursive types without parameters, the

kind of the fixpoint is the same as the kind of the recursive argument r . If the

non-recursive type has parameters, the kind of the fixpoint will be composed of the

parameters→ the kind of the recursive argument r . For example, study the kinds

of the fixpoints for the non-recursive types declared above in the table below.

non-recursive type Nest V P

recursive type PowerTree Vector Proof

kind of T ?→ ? ?→ Nat → ? Tag → Nat → ?

kind of r ?→ ? Nat → ? Tag → Nat → ?

number of parameters 0 1 0

number of indices 1 (type) 1 (term) 2 (term,term)

Recall, indices are used to track static properties about values with those types. A

well-formed (PowerTree x) contains a balanced set of parenthesized binary tuples

of elements. The index x describes the type of values nested in the parentheses.

The invariant is that the number of items nested is always an exact power of 2.

A (Vector a {n}) is a list of elements of type a, with length exactly equal to

n, and a (Proof {E } {n}) witnesses that the natural number n is even, while a

(Proof {O} {m}) witnesses that the natural number m is odd. Some example

values with these types are given below.

tree1 : PowerTree Int = tip 3

tree2 : PowerTree Int = fork (tip (2, 5))

tree3 : PowerTree Int = fork (fork (tip ((4, 7), (0, 2))))

v2 : Vector Int {succ (succ zero)} = (vcons 3 (vcons 5 vnil))

p1 : P {O} {succ zero} = stepE base

p2 : P {E } {succ (succ zero)} = stepO (stepE base)

3 In the design of Nax, we had a choice. Either explicitly declare each universally quantified
variable or explicitly mark those variables not universally quantified. Since quantification is much
more common than referring to variables already in scope, the choice was easy.

232

Note that in the types of the terms above, the indices in braces ({ ...}) are

ordinary terms (not types). In these examples, we use natural numbers (e.g.,

succ (succ zero)) and elements (E and O) of the two-valued type Tag. It is

interesting to note that sometimes the terms are of recursive types (e.g., Nat which

is a synonym for µ[?] N), while some are non-recursive types (e.g., Tag).

6.6 MENDLER-STYLE COMBINATORS FOR INDEXED TYPES

Mendler-style combinators generalize naturally to indexed types. The key obser-

vation that makes this generalization possible is that the types of the operations

within abstraction have to be generalized to deal with the type indices in a consis-

tent manner. How this is done is best first explained by example, and then later

abstracted to its full general form.

Recall, a value of type (PowerTree Int) is a set of integers. This set is

constructed as a balanced binary tree with pairs at the leaves (see tree2 and

tree3 above). The number of integers in the set is an exact power of 2. Con-

sider a function that adds up all those integers. One wants a function of type

(PowerTree Int → Int). One strategy for writing this function is to write a more

general function of type (PowerTree a → (a → Int) → Int). In Nax, we can do

this as follows:

genericSum t = mit{a. (a→Int)→Int} t with
sum (Tip x) = λf → f x
sum (Fork x) = λf → sum x (λ(a, b)→ f a + f b)

sumTree t = genericSum t (λx → x)

In general, the type of the result of a function over an indexed type can depend

upon what the index is. Thus, a Mendler-style combinator over a value with an

indexed type must be type-specialized to that value’s index. Different values of

the same general type will have different indices. After all, the role of an index is

to witness an invariant about the value, and different values might have different

233

invariants. Capturing this variation is the role of the clause {a . (a → Int)→ Int }

following the keyword mit·. We call such a clause an index transformer. In the

same way that the type of the result depends upon the index, the type of the dif-

ferent components of the abstract datatype implementing the Mendler-style com-

binator also depend upon the index. In fact, everything depends upon the index

in a uniform way. The index transformer captures this uniformity. One cannot

abstract over the index transformer in Nax. Each Mendler-style combinator, over

an indexed type, must be supplied with a concrete clause (inside the braces) that

describe how the results depend upon the index. To see how the transformer is

used, study the types of the terms in the following paragraph. Can you see the

relation between the types and the transformer?

The scrutinee t has type (PowerTree a), which is a synonym for ((µ[?→?] Nest) a).

The recursive caller sum has type (∀a . r a → (a → Int)→ Int), for some abstract

type constructor r . Recall that r has an index. So r must be a type construc-

tor, not a type. The patterns (Tip x) and (Fork x) have type (Nest r a) and

the right-hand sides of the equations (λf → f x) and (λf → sum x (λ(a, b) →

f a + f b)) have type ((a → Int) → Int). Note that the dependency of ((a →

Int) → Int) on the index a appears in both the result type and the type of

the recursive caller. If we think of an index transformer such as {a . (a →

Int) → Int } as a function ψ a = (a → Int) → Int, we can succinctly de-

scribe the types of the abstract operations of mit·. In the table below, we put

the general case for the general form (mit{ψ} x with f pi = ei) on the left, and

terms from the genericSum example that illustrate the general case on the right.

234

ψ : κ→ ? {a . (a → Int)→ Int } : ?→ ?

T : (κ→ ?)→ κ→ ? Nest : (?→ ?)→ ?→ ?

x : (µ[κ→?] T) a t : (µ[?→?] Nest) a

f : ∀a : κ . r a → ψ a sum : ∀a : ? . r a → (a → Int)→ Int

pi : T r a Fork x : Nest r a

ei : ψ a λf → f x : (a → Int)→ Int

The same scheme for mit· generalizes to type constructors with term indices

and with multiple indices. To illustrate this, we give the generic schemes for type

constructors with 2 or 3 indices. In the table, the variables κ1, κ2, and κ3 stand

for arbitrary kinds (either kinds for types such as ? or kinds for terms such as Nat

or Tag).

T : (κ1 → κ2 → ?)→ (κ1 → κ2 → ?)

ψ : κ1 → κ2 → ?

x : (µ[κ1→κ2→?] T) a b

f : ∀a : κ1 (b : κ2) . r a b → ψ a b

pi : T r a b

ei : ψ a b

T : (κ1 → κ2 → κ3 → ?)→ (κ1 → κ2 → κ3 → ?)

ψ : κ1 → κ2 → κ3 → ?

x : (µ[κ1→κ2→κ3→?] T) a b c

f : ∀a : κ1 (b : κ2) (c : κ3) . r a b c → ψ a b c

pi : T r a b c

ei : ψ a b c

The simplest form of index transformation is where the transformation is a con-

stant function. This is the case of the function that computes the integer length

of a length-indexed list (what we call a Vector). Independent of the length, the

result is an integer. Such a function has type Vector a {n} → Int. We can write

this as follows:

vlen x = mit{{i}. Int} x with len Vnil = 0
len (Vcons x xs) = 1 + len xs

Let’s study an example with a more interesting index transformation. A term

with type (Proof {E } {n}), which is synonymous with (µ[Tag→Nat→?] P {E } {n}),

witnesses that the term n is even. Can we transform such a term into a proof that

235

n + 1 is odd? We can generalize this by writing a function which has both of the

types below:

Proof {E } {n} → Proof {O} { ‘succ n}, and

Proof {O} {n} → Proof {E } { ‘succ n}.

We can capture this dependency by defining the term-level function flip and using

a mit· with the index transformer: {{t } {i } . Proof { ‘flip t } { ‘succ i }}.

flip E = O
flip O = E
flop x = mit{{t} {i}.Proof {‘flip t} { ‘succ i}} x with

f Base = stepE base
f (StepO p) = stepE (f p)
f (StepE p) = stepO (f p)

For our last term-indexed example, every length-indexed list has a length, which

is either even or odd. We can witness this fact by writing a function with type:

Vector a {n} → Either (Even {n}) (Odd {n}). Here, Even and Odd are syn-

onyms for particular kinds of Proof . To write this function, we need the index

transformation: {{n} . Either (Even {n}) (Odd {n})}.

synonym Even {x } = Proof {E } {x }
synonym Odd {x } = Proof {O} {x }
proveEvenOrOdd x = mit{{n}.Either (Even {n}) (Odd {n})} x with

prEOO Vnil = Left base
prEOO (Vcons x xs) = case{ } prEOO xs of

Left p → Right (stepE p)
Right p → Left (stepO p)

236

6.7 RECURSIVE TYPES OF UNRESTRICTED POLARITY BUT

RESTRICTED ELIMINATION

In Nax, programmers can define recursive data structures with both positive and

negative polarity. The classic example is a datatype encoding the syntax of λ-

calculus, which uses higher-order abstract syntax (HOAS). Terms in the λ-calculus

are variables, applications, or abstractions. In a HOAS representation, one uses

Nax functions to encode abstractions. We give a two-level description for recursive

λ-calculus Terms, by taking the fixpoint of the non-recursive Lam datatype.

data Lam : ?→ ? where
App :: r → r → Lam r
Abs :: (r → r)→ Lam r

deriving fixpoint Term
apply = abs (λf → abs (λx → app f x))

Note that we don’t need to include a constructor for variables, as variables are

represented by Nax variables, bound by Nax functions. For example, the lambda

term (λf.λx.f x) is encoded by the Nax term apply above.

Note also, the constructor function abs : (Term → Term) → Term introduced

by the deriving fixpoint clause, has a negative occurrence of the type Term. In

a language with unrestricted analysis, such a type could lead to non-terminating

computations. The Mendler mit· and mpr· combinators limit the analysis of such

types in a manner that precludes non-terminating computations. The Mendler-

style combinator mcvit· is too expressive to exclude non-terminating computations

and must be restricted to recursive datatypes with no negative occurrences.

Even though mit· and mpr· allow us to safely operate on values of type Term,

they are not expressive enough to write many interesting functions. Fortunately,

there is a more expressive Mendler-style combinator that is safe over recursive

types with negative occurrences. We call this combinator msfit·. This combinator

is based upon an interesting programming trick, first described by Sheard and

237

Fegaras [32], hence the “sf” in the name msfit·. The abstraction supported by

msfit· is as follows:4

msfit{ } x with
f inv pi = ei

x : µ[?] T
f : r → ans
inv : ans → r
pi : T r
ei : ans

To use msfit· the inverse allows one to cast an answer into an abstract value. To

see how this works, study the function that turns a Term into a string. The strategy

is to write an auxiliary function showHelp that takes an extra integer argument.

Every time we encounter a lambda abstraction, we create a new variable xn (see

the function new), where n is the current value of the integer variable. When we

make a recursive call, we increment the integer. In the comments (the rest of a

line after --), we give the types of a few terms, including the abstract operations

sh and inv.

-- cat : List String → String
-- new : Int → String

new n = cat ["x", show n]
-- showHelp : Term → (Int → String)
-- sh : r → (Int → String)
-- inv : (Int → String)→ r
-- (λn → new m) : Int → String

showHelp x =
msfit{ } x with

sh inv (App x y) = λm → cat ["(", sh x m, " ", sh y m, ")"]
sh inv (Abs f) = λm → cat ["(fn ", new m, " => ",

sh (f (inv (λn → new m))) (m + 1), ")"]

4 More precisely, we need to use µ̆, which is different from µ, for msfit· (see Section 10.2).
We have not correctly implemented this in our current implementation, which we are using to
run the examples in this dissertation. So, our example here just uses µ instead of µ̆. But, we are
working it the right way in the new implementation.

238

showTerm x = showHelp x 0
showTerm apply : List Char = "(fn x0 => (fn x1 => (x0 x1)))"

The final line of the example above illustrates applying showTerm to apply.

Recall that apply = abs (λf → abs (λx → app f x)), which is the HOAS represen-

tation of the λ-calculus term (λf.λx.f x).

There are more details behind the msfit· and fixpoint derivations for the

datatypes on which msfit· operates. Recall, in Chapter 3, we described in Haskell

that msfit operates on recursive values of a fixpoint type (µ̆) augmented by a

syntactic inverse, while other recursion schemes operate on recursive values of a

standard fixpoint type (µ). For further discussions, see Section 10.2.

6.8 LESSONS FROM NAX

Nax is our attempt to build a strongly normalizing, sound and consistent logic

based upon Mendler-style recursion combinators. We would like to emphasize the

lessons we learned along the way.

• Writing types as the fixed point of a non-recursive type constructor (two-

level types) is quite expressive. It supports a wide variety of types including

regular types (Nat and List), nested types (PowerTree), GADTs (Vector),

and mutually recursive types (Even and Odd).

• Two-level types, while expressive, are difficult to program with (all those

µ[κ] and In[κ] annotations), so a strong synonym facility is necessary. With

syntactic support of synonyms and automatic derivation of synonyms for

recursive types, one hardly notices extra verbosity due to the use of two-

level types.

• The use of term-indexed types allows programmers to write types that act

as logical relations and form the basis for reasoning about programs. In

Chapters 4 and 5, we formalized lambda calculi, which support term indices.

239

• Using Mendler-style combinators is expressive and, with syntactic support

(the with equations of the Mendler combinators), easy to use. In fact, Nax

programs are often no more complicated than their Haskell counterparts,

except the use of Mendler-style recursion combinators instead of general re-

cursion.

• Type inference is an important feature of a programming language. We

hope you noticed, apart from index transformers and datatype declarations,

no type information is supplied in any of the Nax examples. Our Nax im-

plementation can reconstruct all other type information.

• Index transformers are the minimal information needed to extend Hindley–

Milner type inference over GADTs. One can always predict where they

are needed, and the Nax implementation can enforce that the programmer

supplies them. They are never needed for non-indexed types. Nax faithfully

extends Hindley–Milner type inference.

240

Chapter 7

DESIGN PRINCIPLES OF NAX’S TYPE SYSTEM

7.1 INTRODUCTION

During the past decade, the functional programming community has achieved par-

tial success in their goal of maintaining fine-grained properties by only moderately

extending functional language type systems [17, 18, 98]. This approach is often

called “lightweight”1 in contrast to the approach taken by fully dependent type

systems (e.g., Coq, Agda). The Generalized Algebraic Data Type (GADT)

extension, implemented in the Glasgow Haskell Compiler (GHC) and in OCaml

[34, 56], has made the lightweight approach widely applicable to everyday func-

tional programming tasks.

Unfortunately, most practical lightweight implementations lack logical con-

sistency and type inference. In addition, they often lack term indexing, so term

indices are faked (or simulated) by using an additional type structure to repli-

cate the requisite term structure. A recent extension in GHC, datatype promotion

[99], addresses the issue of term indices, but the issues of logical consistency and

type inference remain.

Nax is a programming language designed to support both type- and term-

indexed datatypes, logical consistency, and type inference.

(1) Nax is strongly normalizing and logically consistent.

Types in Nax can be given logical interpretations as propositions and the

1e.g., http://okmij.org/ftp/Computation/lightweight-dependent-typing.html

http://okmij.org/ftp/Computation/lightweight-dependent-typing.html

241

programs of those types as proofs of those propositions. Theories behind

strong normalization and logical consistency include Mendler-style recursion

[6] discussed in Chapter 3 and the lambda calculi, System Fi, and System

Fixi, discussed in Chapters 4 and 5.

(2) Nax supports Hindley–Milner-style type inference.

Nax needs few type annotations. In particular, annotations for top-level func-

tions, which are usually required for bidirectional type checking in dependently-

typed languages, are unnecessary. Type annotations are only required when

introducing GADTs and as index transformers attached to pattern matching

constructs (case and Mendler-style combinators such as mit·) for GADTs.

We will discuss further details on type inference in Chapter 8.

(3) Nax programs are expressive and concise.

Nax programs are similar in size to their Haskell and Agda equivalents (Sec-

tion 7.2), yet they still retain logical consistency and type inference. Despite

several features unique to Nax, explained in Table 7.1, these features do not

necessarily add verbosity.

(4) Nax supports term indices within a relatively simple type system.

The type system of Nax (Section 7.3.1) is based on a two-level universe

structure, just like Haskell, yet it allows nested term indices (Section 7.3.2)

as in languages based on a universe structure of countably many levels (e.g.,

Coq, Agda).

The detailed mechanisms behind (1) and (2) are discussed in other chapters. In

this chapter, we demonstrate (3) and (4), through a series of examples: – a type-

preserving evaluator (Section 7.2.1), a generic path datatype (Section 7.2.2), and

a stack-safe compiler (Section 7.2.3). These examples demonstrate that program-

ming in Nax can be as succinct as as programming in Haskell or Agda. Then, we

discuss the key design principles behind indexed datatypes in Nax (Section 7.3.1)

242

and its strengths and limitations (Section 7.3.2).

7.2 THE TRILINGUAL ROSETTA STONE

In this section, we introduce three examples (Figures 7.1 and 7.2, Figures 7.3 and

7.4, and Figures 7.5 and 7.6) that use term-indexed datatypes to enforce program

invariants. Each example is written in three different languages – like the Rosetta

Stone – Haskell, Nax, and Agda. We have crafted these programs to look as similar

to one another as possible by choosing the same identifiers and syntax structure

whenever possible. So, anyone already familiar with Haskell-like languages or

Agda-like languages could easily understand our Nax programs just by comparing

them with the programs on the left or on the right. The features unique to Nax,

which are used in this chapter, are summarized in Table 7.1 (review Chapter 6 for

further details).

The three examples we introduce are the following:

• A type-preserving evaluator for a simple expression language (Section 7.2.1),

• A generic Path datatype that can be specialized to various list-like structures

with indices (Section 7.2.2), and

• A stack-safe compiler for the same simple expression language, which uses

the Path datatype (Section 7.2.3).

We adopt the examples from Conor McBride’s keynote talk [62] at ICFP 2012

(originally written in Agda). All the example code was tested in GHC 7.4.1 (should

also work in later versions such as GHC 7.6.x), our prototype Nax implementation,

and Agda 2.3.0.1.

7.2.1 Type-preserving evaluator for an expression language

In a language that supports term indices, one writes a type-preserving evaluator

as follows: (1) define a datatype TypeUniverse which encodes types of the object

243

The “deriving fixpoint T” clause after data F : k → κ → κ where · · ·

automatically derives a recursive type synonym T a = µ[κ] (F a):κ and its con-

structor functions. For instance, the deriving clause below left automatically

derives the definitions below right:

data L : ?→ ?→ ? where synonym List a = µ[?] (L a)

Nil : L a r nil = In[?] Nil

Cons : a → r → L a r cons x xs = In[?] (Cons x xs)

deriving fixpoint List

The synonym keyword defines a type synonym, just like Haskell’s type key-

word.

In Nax, data declarations cannot be recursive. Instead, to define recursive

types, one uses a fixpoint type operator µ[κ] : (κ→ κ)→ κ over non-recursive

base structures of kind κ→ κ (e.g., (L a):?→ ?). Nax provides the usual data

constructor In[κ] to construct recursive values of the type µ[κ]. In[κ] is used to

define the normal constructor functions of recursive types (e.g., nil and cons).

However, one cannot pattern match against In[κ] e in Nax. Instead, Nax

provides several well-behaved (i.e., always terminating) Mendler-style recursion

combinators such as mit· that work naturally over µ types, even with indices.

To support type inference, Nax requires programmers to annotate Mendler-

style combinators with index transformers. For instance, Nax can infer that

the term (λx → mit{{i} {j}.T2 {j} {i}} x with · · ·) has type T1 {i } {j } →

T2 {j } {i } using the information in the index transformer {{i} {j} . T2 {j} {i}}.

Table 7.1: Nax features: deriving fixpoint, synonym, µ, In, and mcata.

244

GADTs,
Haskell + DataKinds, KindSignatures

data Ty = I | B

data Val :: Ty → ? where

IV :: Int → Val I

BV :: Bool → Val B

plusV :: Val I→ Val I→ Val I

plusV (IV n) (IV m) = IV (n + m)

ifV :: Val B→ Val t → Val t → Val t

ifV (BV b) v1 v2 = if b then v1 else v2

data Expr :: Ty → ? where

VAL :: Val t → Expr t

PLUS :: Expr I→ Expr I→ Expr I

IF :: Expr B→

Expr t → Expr t → Expr t

eval :: Expr t → Val t

eval (VAL v) = v

eval (PLUS e1 e2) =

plusV (eval e1) (eval e2)

eval (IF e0 e1 e2) =

ifV (eval e0) (eval e1) (eval e2)

Nax

data Ty = I | B

data Val : Ty → ? where

IV : Int → Val {I}

BV : Bool → Val {B}

-- plusV : Val {I} → Val {I} → Val {I}

plusV (IV n) (IV m) = IV (n + m)

-- ifV : Val {B} → Val {t } → Val {t } → Val {t }

ifV (BV b) v1 v2 = if b then v1 else v2

data E : (Ty → ?)→ (Ty → ?) where

VAL : Val {t } → E r {t }

PLUS : r {I} → r {I} → E r {I}

IF : r {B} → r {t } → r {t } → E r {t }

deriving fixpoint Expr

-- eval : Expr {t } → Val {t }

eval e = mit{{t}.Val {t}} e with

ev (VAL v) = v

ev (PLUS e1 e2) =

plusV (ev e1) (ev e2)

ev (IF e0 e1 e2) =

ifV (ev e0) (ev e1) (ev e2)

Figure 7.1: A type-preserving evaluator (eval) that evaluates an expression (Expr)

to a value (Val), in Haskell and in Nax.

245

Nax

data Ty = I | B

data Val : Ty → ? where

IV : Int → Val {I}

BV : Bool → Val {B}

-- plusV : Val {I} → Val {I} → Val {I}

plusV (IV n) (IV m) = IV (n + m)

-- ifV : Val {B} → Val {t } → Val {t } → Val {t }

ifV (BV b) v1 v2 = if b then v1 else v2

data E : (Ty → ?)→ (Ty → ?) where

VAL : Val {t } → E r {t }

PLUS : r {I} → r {I} → E r {I}

IF : r {B} → r {t } → r {t } → E r {t }

deriving fixpoint Expr

-- eval : Expr {t } → Val {t }

eval e = mit{{t}.Val {t}} e with

ev (VAL v) = v

ev (PLUS e1 e2) =

plusV (ev e1) (ev e2)

ev (IF e0 e1 e2) =

ifV (ev e0) (ev e1) (ev e2)

Agda

data Ty : ? where I : :Ty

B : Ty

data Val : Ty → ? where

IV : N→ Val I

BV : Bool → Val B

plusV : Val I→ Val I→ Val I

plusV (IV n) (IV m) = IV (n + m)

ifV : Val B→ {t : Ty} →

Val t → Val t → Val t

ifV (BV b) v1 v2 = if b then v1 else v2

data Expr : Ty → ? where

VAL : {t : Ty} → Val t → Expr t

PLUS : Expr I→ Expr I→ Expr I

IF : Expr B→ {t : Ty} →

Expr t → Expr t → Expr t

eval : {t : Ty} → Expr t → Val t

eval (VAL v) = v

eval (PLUS e1 e2) =

plusV (eval e1) (eval e2)

eval (IF e0 e1 e2) =

ifV (eval e0) (eval e1) (eval e2)

Figure 7.2: A type-preserving evaluator (eval) that evaluates an expression (Expr)

to a value (Val), in Nax and in Agda.

246

language; (2) define a datatype Value (the range of object language evaluation)

indexed by terms of the type TypeUniverse; (3) define a datatype ObjectLanguage

indexed by the same type TypeUniverse; and (4) write the evaluator (from expres-

sions to values) that preserves the term indices representing the type of the object

language. Once the evaluator is type checked, we are confident that the evaluator

is type-preserving, relying on type preservation of the host-language type system.

In Figures 7.1 and 7.2, we provide a concrete example of such a type-preserving

evaluator for a very simple expression language (Expr).

Our TypeUniverse (Ty) for the expression language consists of numbers and

booleans, represented by the constants I and B. We want to evaluate an expression

to get a value, which may be either numeric (IV n) or boolean (BV b). Note that

the both the Expr and the Val datatypes are indexed by constant terms (I and

B) of TypeUniverse (Ty). The terms of TypeUniverse are also known as type

representations.

An expression (Expr) is either a value (VAL v), a numeric addition (PLUS e1 e2),

or a conditional (IF e0 e1 e2). Note that the term indices of Expr ensure that

expressions are type-correct by construction. For instance, a conditional expression

IF e0 e1 e2 can only be constructed when e0 is a boolean expression (i.e., indexed by

B) and e1 and e2 are expressions of the same type (i.e., both indexed by t). Then,

we can write an evaluator (eval) (from expressions to values) which preserves the

index that represents the object language type. The definition of eval is fairly

straightforward, since our expression language is a very simple one. Note that

the functions in Nax do not need type annotations (they appear as comments in

gray). In fact, Nax currently does not support any syntax for type annotations on

function declarations.

Curly braces in the Nax code above indicate the use of term indices in types. For

instance, t appearing in {t } is a term-index variable rather than a type variable.

247

7.2.2 Generic Paths parametrized by a binary relation

In this section, we introduce a generic Path datatype.2 We will instantiate Path

into three different types of lists: plain lists, length-indexed lists (List ′ and Vec

in Figures 7.3 and 7.4) and a Code type, in order to write a stack-safe compiler

(Figures 7.5 and 7.6).

The type constructor Path expects three arguments, that is, Path x {i } {j } :?.

The argument x : {ι} → {ι} → ? is a binary relation describing legal transitions

(i.e., x {i } {j } is inhabited if one can legally step from i to j). The arguments

i : ι and j : ι represent the initial and final vertices of Path. A term of type

Path x {i } {j } witnesses a (possibly many step) path from i to j following the

legal transition steps given by the relation x : {ι} → {ι} → ?.

The Path datatype provides two ways of constructing witnesses of paths. First,

pNil : Path x {i } {i } witnesses an empty path (or ε-transition) from a vertex to

itself, which always exists regardless of the choice of x . Second, pCons:x {i } {j } →

Path x {j } {k } → Path x {i } {k } witnesses a path from i to k, provided that

there is a single step transition from i to j and that there exists a path from j to

k.

The function append : Path x {i } {j } → Path x {j } {k } → Path x {i } {k }

witnesses that there exists a path from i to k provided that there exist two paths

from i to j and from j to k. Note that the implementation of append is exactly the

same as the usual append function for plain lists. We instantiate Path by providing

a specific relation to instantiate the parameter x .

Plain lists (List ′ a) are path oblivious. That is, one can always add an element

(a) to a list (List ′ a) to get a new list (List ′ a). We instantiate x to the degenerate

relation (Elem a) : Unit → Unit → ?, which is tagged by a value of type a and

which witnesses a step with no interesting information. Then, we can define List ′ a

2 There is a Haskell library package for this: http://hackage.haskell.org/package/thrist

http://hackage.haskell.org/package/thrist

248

GADTs,
Haskell + DataKinds, PolyKinds

data Path x i j where
PNil :: Path x i i
PCons :: x i j → Path x j k

→ Path x i k

append :: Path x i j → Path x j k
→ Path x i k

append PNil ys = ys
append (PCons x xs) ys =

PCons x (append xs ys)

Nax

data P : ({ι} → {ι} → ?)→
({ι} → {ι} → ?)→
({ι} → {ι} → ?) where

PNil : P x r {i} {i}
PCons : x {i} {j} → r {j} {k} → P x r {i} {k}

deriving fixpoint Path
-- append : Path {i} {j} → Path {j} {k}
append l = -- → Path {i} {k}

mit{{i} {j}.Path x {j} {k}→Path x {i} {k}} l
with

app PNil ys = ys
app (PCons x xs) ys =

pCons x (app xs ys)

-- instantiating to a plain regular list
data Elem a i j where

MkElem :: a → Elem a () ()
type List ′ a = Path (Elem a) () ()
nil ′ = PNil :: List ′ a
cons′ :: a → List ′ a → List ′ a
cons′ = PCons . MkElem
-- instantiating to a length-indexed list
data Nat = Z | S Nat
data ElemV a i j where

MkElemV :: a → ElemV a (S n) n
type Vec a n = Path (ElemV a) n Z
vNil = PNil :: Vec a Z
vCons :: a → Vec a n → Vec a (S n)
vCons = PCons . MkElemV

-- instantiating to a plain regular list
data Unit = U
data Elem : ?→ Unit → Unit → ? where

MkElem : a → Elem a {U } {U }
synonym List ′ a = Path (Elem a) {U } {U }
nil ′ = pNil -- :List ′ a
-- cons′ : a → List ′ a → List ′ a
cons′ x = pCons (MkElem x)
-- instantiating to a length-indexed list
data ElemV : ?→ Nat → Nat → ? where

MkElemV : a → ElemV a {‘succ n} {n}
synonym Vec a {n}

= Path (ElemV a) {n} {‘zero}
vNil = pNil -- :Vec a {‘zero}
-- vCons : a → Vec a {n} → Vec a { ‘succ n}
vCons x = pCons (MkElemV x)

Figure 7.3: A generic indexed list (Path) parameterized by a binary relation (x)

over indices (i, j, k) and its instantiations (List ′, Vec), in Haskell and

in Nax.

249

Nax

data P : ({ι} → {ι} → ?)→
({ι} → {ι} → ?)→
({ι} → {ι} → ?) where

PNil : P x r {i} {i}
PCons : x {i} {j} → r {j} {k} → P x r {i} {k}

deriving fixpoint Path
-- append : Path {i} {j} → Path {j} {k}
append l = -- → Path {i} {k}

mit{{i} {j}.Path x {j} {k}→Path x {i} {k}} l
with

app PNil ys = ys
app (PCons x xs) ys =

pCons x (app xs ys)

Agda

data Path {I : ?} (X : I → I → ?)
: I → I → ?

where
PNil : {i : I } → Path X i i
PCons : {i j k : I } → X i j →

Path X j k → Path X i k
append : {I : ?} →
{X : I → I → ?} →
{i j k : I } →
Path X i j → Path X j k

→ Path X i k
append PNil ys = ys
append (PCons x xs) ys =

PCons x (append xs ys)
-- instantiating to a plain regular list
data Unit = U
data Elem : ?→ Unit → Unit → ? where

MkElem : a → Elem a {U } {U }
synonym List ′ a = Path (Elem a) {U } {U }
nil ′ = pNil -- :List ′ a
-- cons′ : a → List ′ a → List ′ a
cons′ x = pCons (MkElem x)
-- instantiating to a length-indexed list
data ElemV : ?→ Nat → Nat → ? where

MkElemV : a → ElemV a { ‘succ n} {n}
synonym Vec a {n}

= Path (ElemV a) {n} {‘zero}
vNil = pNil -- :Vec a { ‘zero}
-- vCons : a → Vec a {n} → Vec a { ‘succ n}
vCons x = pCons (MkElemV x)

-- instantiating to a plain regular list
record Unit : ? where constructor 〈〉
List ′ : ?→ ?

List ′ a = Path (λ i j → a) 〈〉 〈〉
nil ′ : {a : ?} → List ′ a
nil ′ = PNil
cons′ : {a : ?} → a → List ′ a → List ′ a
cons′ = PCons
-- instantiating to a length-indexed list
Vec : ?→ N→ ?

Vec a n = Path (λ i j → a) n zero
vNil : {a : ?} → Vec a zero
vNil = PNil
vCons : {a : ?} {n : N} →

a → Vec a n → Vec a (suc n)
vCons = PCons

Figure 7.4: A generic indexed list (Path) parameterized by a binary relation (x ,

X) over indices (i, j, k) and its instantiations (List ′, Vec), in Nax and

in Agda.

250

as a synonym of Path (Elem a) {U } {U }, and its constructors nil ′ and cons′.

Length-indexed lists (Vec a {n}) need a natural number index to represent

the length of the list. So, we instantiate x to a relation over natural numbers

(ElemV a) : Nat → Nat → ? tagged by a value of type a witnessing steps of size

one. The relation (ElemV a) counts down exactly one step, from succ n to n, as

described in the type signature of MkElemV :a → Elem a { ‘succ n} {n}. Then, we

define Vec a {n} as a synonym Path (ElemV a) {n} { ‘zero}, counting down from

n to zero. In Nax, in a declaration, backquoted identifiers appearing inside index

terms enclosed by braces refer to functions or constants in the current scope (e.g.,

‘zero appearing in Path (ElemV a) {n} { ‘zero} refers to the predefined zero : Nat).

Names without backquotes (e.g., n and a) are implicitly universally quantified.

For plain lists and vectors, the relations (Elem a) and (ElemV a) are param-

eterized by the type a. That is, the transition step for adding one value to the

path is always the same, independent of the value. Note that both Elem and

ElemV have only one data constructor MkElem and MkElemV , respectively, since

all “small” steps are the same. In the next subsection, we will instantiate Path

with a relation witnessing stack configurations, with multiple constructors, each

witnessing different transition steps for different machine instructions.

The Haskell code is similar to the Nax code, except that it uses general recursion

and kinds are not explicitly annotated on datatypes.3 In Agda, there is no need to

define wrapper datatypes such as Elem and ElemV since type-level functions are

no different from term-level functions.

251

KindSignatures, TypeOperators,
Haskell + GADTs, DataKinds, PolyKinds

data List a = Nil | a :.List a ; infixr :.

data Inst :: List Ty → List Ty → ? where

PUSH :: Val t → Inst ts (t :. ts)

ADD :: Inst (I :. I :. ts) (I :. ts)

IFPOP :: Path Inst ts ts′ →

Path Inst ts ts′ →

Inst (B :. ts) ts′

type Code sc sc′ = Path Inst sc sc′

compile :: Expr t → Code ts (t :. ts)

compile (VAL v) =

PCons (PUSH v) PNil

compile (PLUS e1 e2) =

append (append (compile e1) (compile e2))

(PCons ADD PNil)

compile (IF e0 e1 e2) =

append (compile e0)

(PCons (IFPOP (compile e1)

(compile e2))

PNil)

Nax

data Instr : (List Ty → List Ty → ?)→

(List Ty → List Ty → ?) where

PUSH : Val {t } → Instr r {ts} {̀ cons t ts}

ADD : Instr r {̀ cons I (̀cons I ts)} {̀ cons I ts}

IFPOP : Path r {ts} {ts′} →

Path r {ts} {ts′} →

Instr r {̀ cons B ts} {ts′}

deriving fixpoint Inst

synonym Code {sc} {sc′} = Path Inst {sc} {sc′}

-- Path (µ[List Ty→List Ty→?] Instr) {sc} {sc′}

compile e =

mit{{t}.Code {ts} {̀ cons t ts}} e with

cmpl (VAL v) =

pCons (pUSH v) pNil

cmpl (PLUS e1 e2) =

append (append (cmpl e1) (cmpl e2))

(pCons aDD pNil)

cmpl (IF e0 e1 e2) =

append (cmpl e0)

(pCons (iFPOP (cmpl e1)

(cmpl e2))

pNil)

Figure 7.5: A stack-safe compiler, in Haskell and in Nax.

252

Nax

data Instr : (List Ty → List Ty → ?)→

(List Ty → List Ty → ?) where

PUSH : Val {t } → Instr r {ts} {̀ cons t ts}

ADD : Instr r {̀ cons I (̀cons I ts)} {̀ cons I ts}

IFPOP : Path r {ts} {ts′} →

Path r {ts} {ts′} →

Instr r {̀ cons B ts} {ts′}

deriving fixpoint Inst

synonym Code {sc} {sc′} = Path Inst {sc} {sc′}

-- Path (µ[List Ty→List Ty→?] Instr) {sc} {sc′}

compile e =

mit{{t}.Code {ts} {̀ cons t ts}} e with

cmpl (VAL v) =

pCons (pUSH v) pNil

cmpl (PLUS e1 e2) =

append (append (cmpl e1) (cmpl e2))

(pCons aDD pNil)

cmpl (IF e0 e1 e2) =

append (cmpl e0)

(pCons (iFPOP (cmpl e1)

(cmpl e2))

pNil)

Agda

data Inst : List Ty → List Ty → ? where

PUSH : {t : Ty} {ts : List Ty} →

Val t → Inst ts (t :: ts)

ADD : {ts : List Ty} →

Inst (I :: I :: ts) (I :: ts)

IFPOP : {ts ts′ : List Ty} →

Path Inst ts ts′ →

Path Inst ts ts′ →

Inst (B :: ts) ts′

Code : List Ty → List Ty → ?

Code sc sc′ = Path Inst sc sc′

compile : {t : Ty} → {ts : List Ty} →

Expr t → Code ts (t :: ts)

compile (VAL v) =

PCons (PUSH v) PNil

compile (PLUS e1 e2) =

append (append (compile e1) (compile e2))

(PCons ADD PNil)

compile (IF e0 e1 e2) =

append (compile e0)

(PCons (IFPOP (compile e1)

(compile e2))

PNil)

Figure 7.6: A stack-safe compiler, in Nax and in Agda

253

7.2.3 Stack-safe compiler for the expression language

In Figures 7.5 and 7.6, we implement a stack-safe compiler for the same expres-

sion language (Expr in Figures 7.1 and 7.2) discussed in Section 7.2.1. In Fig-

ures 7.1 and 7.2 of that section, we implemented an index-preserving evaluator

eval : Expr {t } → Val {t }. Here, the stack-safe compiler compile : Expr {t } →

Code {ts} { c̀ons t ts} uses the index to enforce stack safety – an expression of

type t compiles to some code, which when run on a stack machine with an initial

stack configuration ts terminates with the final stack configuration cons t ts.

A stack configuration is an abstraction of the stack that tracks only the types

of the values stored there. We represent a stack configuration as a list of type

representations (List Ty).4 For instance, the configuration for the stack containing

three values (from top to bottom) [3, True, 4] is cons I (cons B (cons I Nil)).

To enforce stack safety, each instruction (Inst : List Ty → List Ty → ?)

is indexed with its initial and final stack configuration. For example, aDD :

Inst { c̀ons I (̀ cons I ts)} { c̀ons I ts} instruction expects two numeric values

on top of the stack. Running the aDD instruction will consume those two values,

replacing them with a new numeric value (the result of the addition) on top of the

stack leaving the rest of the stack unchanged.

We define Code as a Path of stack-consistent instructions (i.e., Code {ts} {ts′}

is a synonym for Path Inst {ts} {ts′} from Section 7.2.2). For example, the

compiled code consisting of the three instructions inst1 : Inst {ts0} {ts1}, inst2 :

3 In Haskell, kinds are inferred by default. The KindSignatures extension in GHC allows
kind annotations.

4 The astute reader may wonder why we use List instead of the already defined List′ in
Figures 7.3 and 7.4, which is exactly the plain list we want. In Nax and Agda, it is possible to
have term indices of List′ Ty instead of List Ty. (In Nax and Agda, the List datatype is defined
in their standard libraries.) Unfortunately, this is not the case in Haskell. Haskell’s datatype
promotion does not allow promoting datatypes indexed by the already promoted datatypes.
Recall that List′ Ty is a synonym of Path (Elem Ty) () (), which cannot be promoted to an index
since it is indexed by the already promoted unit term (). In the following section, we will discuss
further on how the two approaches of Nax and Haskell differ in their treatment of term-indexed
types.

254

Inst {ts1} {ts2}, and inst3 : Inst {ts2} {ts3} has the type Code {ts0} {ts3}.

7.3 DISCUSSION

Indexed types (e.g., Val in Figure 7.1) are classified by kinds (e.g., Ty → ?). What

do valid kinds look like? Sorting rules define kind validity (or well-sortedness).

Different programming languages that support term indices have made different

design choices. In this section, we compare the sorting rules of Nax with the

sorting rules of other languages (Section 7.3.1). Then, we compare the class of

indexed datatypes supported by Nax with those supported in other languages

(Section 7.3.2).

7.3.1 Universes, kinds, and well-sortedness

The concrete syntax for kinds appears similar among Haskell, Nax, and Agda. For

instance, in Figure 7.1, the kind Ty → ? has exactly the same textual represen-

tation in all of the three languages. However, each language has its own universe

structure, kind syntax, and sorting rules, as summarized in Figure 7.7.

Figure 7.8 illustrates differences and similarities between the mechanism for

checking well-sortedness, by comparing the justification for the well-sortedness of

the kind List Ty → ?. The important lessons of Figure 7.8 are that the Nax ap-

proach is closely related to universe subtyping in Agda and the datatype promotion

in Haskell is closely related to universe polymorphism in Agda.

In Nax, we may form a kind arrow {A} → κ whenever A is a type (i.e.,

t̀y A : ?). Note that types may only appear in the domain (the left-hand side of

the arrow) but not in the codomain (the right-hand side of the arrow). Modulo

right associativity of arrows (i.e., κ1 → κ2 → κ3 means κ1 → (κ2 → κ3)), kinds in

Nax always terminate in ?. For example,5 ?→ ?→ ?, {Nat } → {Nat } → ?, and

5 The Nax implementation allows programmers to omit curly braces in kinds when the domain

255

Haskell + DataKinds Nax Agda

? :� ? :� ?0 : ?1 : ?2 : ?3 : · · ·
‖
?

‖
�

κ ::= ? | κ→ κ | T κ κ ::= ? | κ→ κ | {A}→ κ term/type/kind/sort merged
into one pseudo-term syntax

(→) k̀ κ1 :� k̀ κ2 :�
k̀ κ1 → κ2 :�

(↑�?)

t̀y T : ?n → ?

k̀ κ :� for each κ ∈ κ
k̀ T κ : �

(→) k̀ κ1 :� k̀ κ2 :�
k̀ κ1 → κ2 :�

({}→) t̀y A : ? k̀ κ :�
k̀{A} → κ :�

(→) ` κ1 : ?i ` κ2 : ?i
` κ1 → κ2 : ?i

(6) ` κ : s s 6 s′

` κ : s′

Figure 7.7: Universes, kind syntax, and selected sorting rules of Haskell, Nax,
and Agda. Haskell’s and Nax’s kind syntax are simplified to exclude
kind polymorphism. Agda’s (→) rule is simplified to only allow non-
dependent kind arrows.

({Nat } → ?)→ {Nat } → ? are valid kinds in Nax. The sorting rule ({}→) could

be understood as a specific use of universe subtyping (? 6 �) hard-wired within

the arrow formation rule. Agda needs a more general notion of universe subtyping,

since it is a dependently-typed language with stratified universes, which we will

shortly explain.

Agda has countably many stratified type universes for several good reasons.

When we form a kind arrow κ1 → κ2 in Agda, the domain κ1 and the codomain

κ2 must be the same universe (or sort), as specified by the (→) rule in Figure 7.7,

and the arrow kind also lies in the same universe. However, requiring κ1, κ2, and

κ1 → κ2 to be in exactly the same universe can cause a lot of code duplication.

For example, List Ty → ?0 cannot be justified by the (→) rule since ` List Ty : ?0

while ` ?0 : ?1. To work around the universe difference, one could define the

datatypes List ′ and Ty ′, which are isomorphic to List and Ty, only at one higher

of an arrow kind obviously looks like a type. For instance, Nat → ? is considered as {Nat } → ?
since Nat is obviously a type because it starts with an uppercase. In Section 7.2, we omitted curly
braces to help readers compare Nax with other languages. From now on, we will consistently put
curly braces in kinds.

256

Nax ({}→)

t̀y List : ?→ ? t̀y Ty : ?
t̀y List Ty : ? k̀ ? :�

k̀{List Ty} → ? :�

Agda (→)

(6)

(→)
` List : ?→ ? ` Ty : ?

` List Ty : ? ? 6 �
` List Ty :� ` ? :�

` List Ty → ? :�

Haskell (→)

(↑�?)
t̀y List : ?→ ?

(↑�?)
t̀y Ty : ?
k̀ Ty :�

k̀ List Ty :� k̀ ? :�
k̀ List Ty → ? :�

Agda
+ universe

polymorphism (→)

` List : ∀{i} → ?i → ?i
` List :�→ �

` Ty : ∀{i} → ?i
` Ty :�

` List Ty :� ` ? :�
` List Ty → ? :�

Figure 7.8: Justifications for well-sortedness of the kind List Ty → ? in Nax,

Haskell, Agda.

level, such that ` List ′ Ty ′ : ?1. Only then, can one construct List ′ Ty ′ → ?0.

Furthermore, if one needs to form List Ty → ?1, we would need yet another set of

duplicate datatypes List ′′ and Ty ′′ at yet another higher level. Universe subtyping

provides a remedy to such a code duplication problem by allowing objects in a

lower universe to be considered as objects in a higher universe. This gives us a

notion of subtyping such that ?i 6 ?j where i 6 j.6 With universe subtyping, we

can form arrows from Ty to any level of universe (e.g., List Ty → ?0, List Ty → ?1,

. . .). Relating Agda’s universes to sorts in Haskell and Nax, ?0 and ?1 correspond

to ? and �. So, we write ? and � instead of ?0 and ?1 in the justification of well-

formedness of List Ty → ? in Agda, to make the comparisons align in Figure 7.8.

6 See Ulf Norell’s thesis [71] (Section 1.4) for the full description on universe subtyping.

257

In addition to universe subtyping, Agda also supports universe polymorphism,7

which is closely related to datatype promotion. In fact, it is more intuitive to

understand the datatype promotion in Haskell as a special case of universe poly-

morphism. Since there are only two universes ? and � in Haskell, we can think

of datatypes such as List and Ty being defined polymorphically at both ? and �.

That is, List :�→ � as well as List : ?→ ?, and similarly, Ty :� as well as Ty : ?.

So, List :�→ � can be applied to Ty :� at the kind-level, just as List : ?→ ? can

be applied at the type-level.

In summary, Nax provides a new way of forming kind arrows by allowing types

that are already fully applied at the type-level as the domain of an arrow. On the

contrary, Haskell first promotes type constructors (e.g., List) and their argument

types (e.g., Ty) to the kind-level, and everything else (application of List to Ty

and kind arrow formation) happens at the kind-level.

7.3.2 Nested Term Indices and Datatypes Containing Types

Nax supports nested term indices, while Haskell’s datatype promotion cannot. The

examples in Section 7.2 only used rather simple indexed datatypes, whose term

indices are of non-indexed types (e.g., Nat, List Ty). One can imagine more com-

plex indexed datatypes, where some term indices are themselves of term-indexed

datatypes. Such nested term indices are often useful in dependently-typed pro-

gramming. For instance, Brady and Hammond [16] used an environment datatype

with nested term indices in their EDSL implementation for verified resource us-

age protocols. Figure 7.9 illustrates transcriptions of their environment datatype

(Env), originally written in Idris [15], into Nax and Agda. The datatype Env is

indexed by a length indexed list (Vec), which is again indexed by a natural num-

ber (n). Note that the nested term index n appears inside the curly braces nested

7See http://wiki.portal.chalmers.se/agda/agda.php?n=Main.UniversePolymorphism.

http://wiki.portal.chalmers.se/agda/agda.php?n=Main.UniversePolymorphism

258
Nax

-- Environments of stateful resources index by length-indexed lists
data V : ?→ (Nat → ?)→ Nat → ? where

VNil : V a r { z̀ero}
VCons : a → r {n} → V a r { s̀ucc n}

deriving fixpoint Vec
data Envr : (({st } → ?)→ {Vec st {n}} → ?)

→ (({st } → ?)→ {Vec st {n}} → ?) where
Empty : Envr r res { v̀Nil }
Extend : res {x } → r res {xs} → Envr r res { v̀Cons x xs}

deriving fixpoint Env
-- Usage example: resource (Res) indexed by its state (St)
data St = Read |Write
data Res : St → ? where File1 : Res {Read }

File2 : Res {Write}
-- myenv : Env Res { v̀Cons Read (̀ vCons Write v̀Nil)}
myenv = extend File1 (extend File2 empty)
-- Environments additionaly indexed by singleton natural numbers
data SN : (Nat → ?)→ (Nat → ?) where Szer : SN r { z̀ero}

Ssuc : r {n} → SN r { s̀ucc n}
deriving fixpoint SNat

data Envr ′ : (({st } → ?)→ {SNat {n}} → {Vec st {n}} → ?)
→ (({st } → ?)→ {SNat {n}} → {Vec st {n}} → ?) where

Empty′ : Envr ′ r res { s̀zer } { v̀Nil }
Extend ′ : res {x } → r res {n} {xs} → Envr ′ r res { s̀suc n} { v̀Cons x xs}

deriving fixpoint Env′

-- myenv′ : Env′ Res { s̀suc (̀ ssuc s̀zer)} { v̀Cons Read (̀ vCons Write v̀Nil)}
myenv′ = extend ′ File1 (extend ′ File2 empty′)

Agda

data Vec (a : ?) : N→ ? where VNil : {n : N} → Vec a n
VCons : {n : N} → a → Vec a n → Vec a (suc n)

data Env {st } (res : st → ?) : {n : N} → Vec st n → ? where
Empty : Env res {0} VNil
Extend : {n : N} {x : st } {xs : Vec st n} →

res x → Env res xs → Env res {suc n} (VCons x xs)

Figure 7.9: Environments of stateful resources indexed by the length-indexed list
of states.

259

Haskell + GADTs, DataKinds, PolyKinds

data List a = Nil | a :.List a ; infixr :.
data HList :: List ?→ ? where

HNil :: HList Nil
HCons :: t → HList ts → HList (t :. ts)

hlist :: HList (Int :.Bool :.List Int :.Nil)
hlist = HCons 3 (HCons True (HCons (1 :. 2 :.Nil) HNil))

Figure 7.10: Heterogeneous lists (HList) indexed by the list of element types
(List ?).

twice ({Vec st {n}}). There is no Haskell transcription for Env because datatype

promotion is limited to datatypes without term indices.

On the contrary, Haskell supports promoted datatypes that hold types as ele-

ments, although limited to types without term indices, while Nax does not. The

heterogeneous list datatype (HList) in Figure 7.10 is a well-known example8 that

uses datatypes containing types. Note that HList is indexed by List ?, which

is a promoted list whose elements are of kind ?, that is, the element are types.

For instance, hlist in Figure 7.10 contains three elements 3 : Int, True : Bool, and

(1 :. 2 :.Nil) : List Int, and its type is HList (Int :.Bool :.List Int :.Nil).

7.4 RELATED WORK

Singleton types, first coined by Hayashi [45], have been used in lightweight

verification to simulate dependent types [53, 97]. Sheard, Hook, and Linger [86]

demonstrated that singleton types can be defined just like any other datatype in

Omega [83], a language equipped with GADTs and a rich kind structure. Nax’s

universe and kind structure is much simpler than Omega’s (e.g., no user-defined

8The HList library in Haskell by Kiselyov, Lämmel, and Schupke [54] was originally introduced
using type class constraints, rather than using GADTs and other relatively new extensions.

260

kinds in Nax), yet singleton types are definable with fewer worries about code

duplication across different universes. Singleton types are typically indexed by the

values of their non-singleton counterparts. For example, in Figure 7.9, singleton

natural numbers (SNat) are indexed by natural numbers (Nat). Note that we

can index datatypes by singleton types in Nax, while datatype promotion cannot

(recall Section 7.3.2). For instance, Env ′ indexed by SNat in Figure 7.9 can better

simulate the dependently-typed version than Env, since Env ′ has a direct handle

on size of the environment at the type-level, just by referring to the SNat index,

without extra type-level computation on the Vec index.

Eisenberg and Weirich [31], in the setting of Haskell’s datatype promotion,

automatically derived a singleton type (e.g., singleton natural numbers) and its

associated functions (e.g., addition over singleton natural numbers) from their

non-singleton counterparts (e.g., natural numbers and their addition). We think

it would be possible to apply similar strategies to Nax, and even better, singleton

types for already indexed datatypes would be derivable.

The kind arrow ({A} → κ), from a type to a kind, predates Nax. Our kind

syntax in Figure 7.7, although developed independently, happens to coincide with

the kind syntax of Deputy [24], a dependently-typed system for low-level imperative

languages with variable mutation and a heap allocated structure.

Curly braces in Nax are different from those in Agda or SHE.

In Nax, curly braces mean that the things inside them are erasable (i.e., must

still type-correct without all the curly braces). Agda’s curly braces mean that the

things in them would often be inferable so that programmers may omit them.

261

The concrete syntax for kinds in SHE9 appears almost identical to Nax’s con-

crete kind syntax, even using curly braces around types. However, SHE’s (ab-

stract) kind syntax is virtually identical to the (abstract) kind syntax of datatype

promotion, thus quite different from Nax, since {A} ::� in SHE.

Kind polymorphism in Nax may be polymorphic over term-index variables

(i : A) and type variables (α : ?), as well as over kind variables (X : �). That is,

polymorphic kinds (or kind schemes) in Nax may be kind polymorphic (∀X . κ),

type polymorphic (∀α. κ), term-index polymorphic (∀i . κ), or combinations of them

(∀X α i . κ). For example, the kinds of P and Path in Figure 7.3 are polymorphic

over the type variable ι : ?. In contrast, datatype promotion in Haskell only needs

to consider polymorphic kinds (∀X . κ) quantified over kind variables (X :�) since

everything is already promoted to the kind-level.

In Nax, kind polymorphism is limited to rank-1 since it is well known that

higher-rank kind polymorphism leads to a paradox [51]. In fact, type polymor-

phism in Nax is limited to rank-1 as well since type inference is based on Hindley-

Milner [66].

Concoqtion [33] is an extension of MetaOCaml with indexed types. Concoq-

tion shares some similar design principles — Hindley–Milner-style type inference

and gradual typing by erasure over (term) indices. Both in Nax and in Concoq-

tion, a program using indexed types must still type check within the non-indexed

sub-language (OCaml for Concoqtion) when all indices are erased from the pro-

gram. However, indices in Concoqtion differ from the term indices discussed in this

chapter (Nax, datatype promotion, and dependently-typed languages like Agda).

Concoqtion indices are Coq terms rather than OCaml terms. Although this obvi-

ously leads to code duplication between the index world (Coq) and the program

9 http://personal.cis.strath.ac.uk/conor.mcbride/pub/she/

http://personal.cis.strath.ac.uk/conor.mcbride/pub/she/

262

world (OCaml), Concoqtion enjoys practical benefits of having access to the Coq

libraries for reasoning about indices. Comparison of Concoqtion and other related

systems can be found in the technical report by Pasalic, Siek, and Taha [73].

7.5 SUMMARY AND FUTURE WORK

In Nax, programmers can enforce program invariants using indexed types, with-

out excessive annotations (like functional programming languages) while enjoying

logical consistency (like dependently-typed proof assistants).

There are two approaches that allow term indices without code duplication

at every universe. Universe subtyping is independent of the number of universes.

Even scaled down to two universes (?,�), it adds no additional restrictions – term

indices can appear at arbitrary depth. Universe polymorphism is sensitive to the

number of universes. Unless there are countably infinite universes, nested term

indices are restricted to depth n− 1 where n is the number of universes.

On the other hand, universe polymorphism can reuse datatypes at the term-

level (List a where a : ?) at the type-level to contain type elements (e.g., List ?),

which is beyond universe subtyping. We envision that Nax extended with first-

class datatype descriptions [27] would be able express the same concept reflected

at the term level, so that we would have no need for type-level datatypes.

263

Chapter 8

TYPE INFERENCE IN NAX

Type inference for a language that supports indexed datatypes is known to be

difficult. In this chapter, we illustrate the key idea that enables a conservative

extension of Hindley-Milner type inference (HM). We will not be as formal and

detailed on proofs as we did for HM in Section 2.4. We extrapolate from the

properties of HM that the same property (soundness of type inference) should

hold for a subset of Nax, which is structurally similar to HM. Then, we will argue

that some key new features in Nax, which are not present in HM preserve those

properties.

Index transformers, which are type annotations on pattern matching constructs,

play a key role in inferring types for Nax programs involving indexed datatypes.

We introduce a subset of Nax, SmallNax, only considering non-recursive datatypes

defined by equational declarations, but omitting other details of Nax (Section 8.1).

Next, we extend SmallNax with recursive types and Mendler-style iteration, de-

scribe their kinding and typing rules, and discuss the role of index transformers for

type inference (Section 8.2). Then, we discuss how we treat other Nax features such

as GADT-style definitions and term indices in our implementation (Section 8.3).

8.1 SMALLNAX

The syntax of SmallNax is illustrated in Definition 8.1.1, its kinding and typing

rules are illustrated in Figure 8.1.

264

Definition 8.1.1 (Syntax of SmallNax).

Term t, s ::= x | λx.t | t s | let x = s in t | C | ϕψ

Type constructor F,G,A,B ::= X | A→ B | T | F G

Type scheme σ ::= ∀Xκ.σ | A

Definition 8.1.2 (Type scheme ordering (or, generic instantiation)). σ v∆ σ′

GInst

X ′1, . . . , X
′
m /∈ FV(∀Xκ1

1 . . . Xκn
n .σ)

∆ ` ∀Xκ1
1 . . . Xκn

n .σ : ∗ ∆ ` ∀X ′κ
′
1

1 . . . X ′κ
′
m

m . A[F1/X1] · · · [Fn/Xn] : ∗
∀Xκ1

1 . . . Xκn
n .σ v∆ ∀X

′κ′1
1 . . . X ′κ

′
m

m . A[F1/X1] · · · [Fn/Xn]

The syntax of SmallNax is similar to the syntax of HM in Section 2.4. SmallNax

has data constructors (C) and case functions (ϕψ) in addition to the terms of HM.

A case function ϕψ is a list of alternatives (ϕ ::= Cx→ t) annotated with an

index transformer ψ.1 The case expression caseψ s of ϕ in Nax corresponds to

ϕψ s, an application of the case function (ϕψ) to the scrutinee (s). Considering

case expressions as applications simplifies the typing rules because we do not need

a separate typing rule for case expressions. In addition to the types of HM, the

type constructor syntax in SmallNax includes type constructor names (T) and type

constructor applications (F G). The type schemes in SmallNax (∀Xκ.σ) is similar

to the type schemes (∀X.σ) in HM, but the universally quantified type variable

(X) is annotated with its kind (κ).

We assume that type constructor names and their associated data construc-

tors are introduced into the context by preprocessing non-recursive equational

datatype definitions. For example, data Maybe a = Just a | Nil introduces

a type constructor name Maybe and its associated data constructors Just and

Nil into the context (∆ and Γ in Figure 8.1). That is, Maybe∗→∗ ∈ ∆ and

1Our Nax implementation supports nested patterns (e.g., (C1 x1 (C2 x2)x3), but SmallNax
only allows simple patterns (i.e., data constructor followed by variables) in alternatives.

265

Just : ∀X∗a .Xa → MaybeXa, Nil : ∀X∗a .MaybeXa ∈ Γ. Data constructors in-

troduced from an equational datatype definition have uniform return types (T X)

and no existential variables in their types. For instance, return types of both Just

and Nil have the form of MaybeXa. For such non-recursive equational datatype

definitions, index transformer annotations are not needed. So, we either omit

the annotation on the case function (ϕ) or write a dot (ϕ·). We will need index

transformers to infer types involving recursive datatypes (Section 8.2) and GADTs

(Section 8.3).

Declarative typing rules and syntax-directed typing rules. The typing

rules of SmallNax (Figure 8.1), excluding the rules for datatypes (Con, Case,

Alt in the declarative rules and their corresponding syntax-directed rules), are

structurally similar to the typing rules of HM (Figure 2.9). Each of those typing

rules in SmallNax has its corresponding typing rule with the same name in HM. The

differences from HM are the existence of kinding rules to ensure well-kindedness of

type constructors (which can have kinds other than ∗) and the additional context

∆ in the typing rules to keep track of whether type constructor variables are in

scope with correctly assigned kinds. The generic instantiation rule (GInst) also

takes ∆ into consideration so that both sides of v are well-kinded. We can view

HM as a restriction of SmallNax (excluding the features for datatypes) where

kinds are always ∗. So, we know that the syntax-directed typing rules (excluding

Cons, Cases, Alts) are sound (Theorem 8.1.1) and complete (Theorem 8.1.2) with

respect to the declarative typing rules (excluding Con, Case, Alt) in SmallNax.

Theorem 8.1.1 (s̀ is sound with respect to `). ∆; Γ s̀ t : A
∆; Γ ` t : A

Theorem 8.1.2 (s̀ is complete with respect to `).

∆; Γ ` t : σ
∃A. ∆; Γ s̀ t : A ∧ ∆; Γ(A) v∆ σ

266

Kinding rules ∆ ` F : κ

TVar Xκ ∈ ∆
∆ ` X : κ TArr ∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗
TCon T κ ∈ ∆

∆ ` T : κ TApp ∆ ` F : κ→ κ′ ∆ ` G : κ
∆ ` F G : κ′

Declarative typing rules Syntax-directed typing rules

∆; Γ ` t : σ ∆; Γ s̀ t : A

Var x : σ ∈ Γ
∆; Γ ` x : σ Vars

x : σ ∈ Γ σ v∆ A

∆; Γ s̀ x : A

Abs

∆ ` A : ∗
∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B
Abss

∆ ` A : ∗
∆; Γ, x : A s̀ t : B

∆; Γ s̀ λx.t : A→ B

App

∆; Γ ` t : A→ B
∆; Γ ` s : A

∆; Γ ` t s : B Apps

Γ s̀ t : A→ B
Γ s̀ s : A

Γ s̀ t s : B

Let

∆; Γ ` s : σ
∆; Γ, x : σ ` t : B

∆; Γ ` let x = s in t : B Lets

∆; Γ s̀ s : A
∆; Γ, x : ∆; Γ(A) s̀ t : B
Γ s̀ let x = s in t : B

Inst
∆; Γ ` t : σ σ v∆ σ′

∆; Γ ` t : σ′
∆;Γ(A)=∀ ~X.A where ~X=FV(A)\dom(∆)\FV(Γ)

Gen
∆, Xκ; Γ ` t : σ
∆; Γ ` t : ∀Xκ.σ

(X /∈ FV(Γ))

Con C : σ ∈ Γ
∆; Γ ` C : σ Cons

C : σ ∈ Γ σ v∆ A

∆; Γ s̀ C : A

Case
∆; Γ `ψ Cx→ t : σ

∆; Γ ` (Cx→ t)ψ : σ
Cases

∆; Γ s̀ψ Cx→ t : σ σ v∆ A

∆; Γ ` (Cx→ t)ψ : A

∆; Γ `ψ Cx→ t : σ ∆; Γ s̀ψ Cx→ t : σ

Alt

∆; Γ ` C : A→ TB A′

∆; Γ, x : A ` t : ψ(A′)
∆; Γ `ψ Cx→ t

: ∀Xκ.TB X → ψ(X)

Alts

∆; Γ s̀ C : A→ TB A′

∆; Γ, x : A s̀ t : ψ(A′)
∆; Γ s̀ψ Cx→ t

: ∀Xκ.TB X → ψ(X)

Figure 8.1: Kinding and typing rules of SmallNax

267

We have argued that Theorem 8.1.1 and Theorem 8.1.2 hold for all the typ-

ing rules in SmallNax excluding the rules for datatypes. So, we only need to

check whether these two theorems hold for the rules for datatypes, that is, for

the declarative rules Con, Case, and Alt, and their syntax-directed counterparts

Cons, Cases, and Alts. They obviously hold for the rules Con and Cons because

these rules have exactly the same structure as Var and Vars. Once we know that

Alt is sound and complete with respect to Alts, it is quite straightforward to

show that Case is sound and complete with respect to Cases because the typing

one can get from Cases is a generic instantiation of the typing one can get from

Case. It is indeed the case that Alt is sound and complete with respect to Alts

because they have exactly the same structure. Unlike other syntax-directed typing

rules of the form ∆; Γ s̀ t : A, which assign a type to a monomorphic type (A),

the rule Alts of the form ∆; Γ s̀ψ Cx→ t : σ assigns a polymorphic type scheme

(σ). Since Alt and Alts have exactly the same structure, one calling on ` and

the other calling on s̀ in their premises, they must be sound and complete with

respect to each other.

SmallNax is strongly normalizing and logically consistent. The type sys-

tem of SmallNax is sound with respect to System Fω. That is, when ∆; Γ ` t : σ in

SmallNax, then ∆; Γ ` t : σ in System Fω. Considering the let-term (let x = s in t)

as a syntactic sugar of a lambda term applied to the scrutinee ((λx.t) s), the terms

of SmallNax, except data constructors and case expressions, are exactly the same

as the term of System Fω, which we discussed in Section 2.3. For SmallNax terms

involving data constructors and case expressions, we use the Church encoding to

translate them into System Fω terms. We show the soundness of typing with re-

spect to System Fω by reasoning about the declarative typing rules. Recall that we

discussed the soundness of typing for HM with respect to System F by reasoning

about the declarative typing rules of HM in Section 2.4.

268

The kinding and typing rules, except those rules for datatypes, are admissible

in System Fω. The kinding rules except TCon are exactly the same as the kinding

rules with the same name in System Fω (see Figure 2.6 on page 61). The declarative

typing rules except Con, Case, and Alt are admissible in System Fω. The rules

Var, Abs, App, and Gen2 are exactly the same as the typing rules of System Fω.

We can show that the rules Let and Inst in SmallNax are admissible in System Fω
by following virtually the same argument that we used to show that the rules Let

and Inst in HM are admissible in System F (see p.82 in Section 2.4). The Let

rule in SmallNax corresponds to a consecutive use of App and Abs in System Fω.

A single derivation step of Inst in SmallNax corresponds to multiple uses of the

rules TyAbs and TyApp in System Fω.

The kinding and typing rules involving datatypes (TCon, Con, Case, and Alt)

can be understood as being admissible in System Fω via the Church encodings of

datatypes. In Section 2.2.1 and Section 2.3.1, we discussed how non-recursive

datatypes (e.g., unit, void, boolean, sums, products) can be encoded as functions.

The rules TCon, Con, Case, and Alt are compatible with those encodings. Thus,

the type system of SmallNax, described in Figure 8.1, is sound with respect to

System Fω. Therefore, SmallNax is strongly normalizing and logically consistent.

From System Fω to SmallNax. We will discuss informal and high-level design

concepts of what restrictions from System Fω make SmallNax feasible for type in-

ference, rather than formally discussing concrete type inference algorithms. There

are two restrictions from System Fω, rank-1 polymorphism and type constructor

names, which make type inference decidable in SmallNax. In addition, we discuss

the role of index transformers in type inference. Although index transformers are

not essential for pattern matching of datatypes defined by non-recursive equations,

2 The Gen rule in SmallNax corresponds to the TyAbs rule in System Fω(Figure 2.6). The
other rules, Var, Abs, App corresponds to the rules with the same name in System Fω.

269

they do play essential roles in inferring types of recursive datatype definitions and

GADT-style datatype definitions.

Let us review what restriction from System F makes HM (without recursion)

feasible for type inference. Type inference is undecidable in System F due to its

arbitrary rank polymorphism (i.e., polymorphic types can appear arbitrary deep

inside type constructor arguments, in particular, inside the left-hand side of →).

Type inference becomes decidable in HM by restricting the polymorphism to be

rank-1 (i.e., universal quantification can only appear at the top level). Similarly,

we restrict the polymorphism to be rank-1 in SmallNax (see Definition 8.1.1).

In addition to arbitrary rank polymorphism, type abstractions (λXκ.F) in Sys-

tem Fω are another feature that makes type inference undecidable. Type inference

algorithms involving type abstractions would require higher-order unification (i.e.,

unification involving reconstruction of function implementation), which is known

to be undecidable [42]. In SmallNax, we can avoid higher-order unification be-

cause there are no type abstractions. Datatypes in SmallNax are introduced into

the context as primitives, that is, type constructor names into ∆ and their associ-

ated data constructors into Γ. So, we only need first-order unification for inferring

types in SmallNax.

8.2 SMALLNAX WITH MENDLER-STYLE RECURSION

In this section, we extend SmallNax with Mendler-style recursion combinators. We

first review type inference and recursion in Section 8.2.1. Then, we introduce the

typing rules for Mendler-style iteration in SmallNax and discuss the role of index

transformers in type inference in Section 8.2.2.

270

8.2.1 A review of monomorphic recursion and polymorphic recursion

The Hindley–Milner type system (HM) [29] supports monomorphic (general) re-

cursion by assigning a monomorphic type (A) to the recursive variable (x), as

described in the rule Fix-m below right.3 The Milner–Mycroft type system (MM)

[70] supports polymorphic recursion by assigning a polymorphic type (σ) to the

recursive variable (x), as described in the rule Fix-p below left.

Fix-m
Γ, x : A ` t : A
Γ ` fix x.t : A Fix-p

Γ, x : σ ` t : σ
Γ ` fix x.t : σ

Polymorphic recursion is necessary for writing recursive programs involving nested

datatypes. However, type inference for MM is known to be undecidable [46]. That

is, we cannot generally decide whether a suitable σ exists for fix x.t in the rule

Fix-p.

What makes HM (including Fix-m) particularly suitable for type inference while

type inference for MM is undecidable? Henglein [46] summarized the peculiarity of

HM is that occurrences of a recursive definition “inside the body of its definition

can only be used monomorphically”, whereas occurrences “outside its body can be

used polymorphically”.

8.2.2 Typing rules for Mendler-style recursion combinators

We design the typing rules for recursion combinators in SmallNax based on a

similar idea to what makes HM suitable for type inference. We first discuss a

simplified version (with less polymorphism) of the typing rule for mit in Figure 8.2.

Then, we illustrate a more polymorphic version, which is actually used in the Nax

implementation, in Figure 8.3.

What makes SmallNax, including the mit′ rule in Figure 8.2, suitable for type

3 In Section 2.4, we excluded the general recursion in our formalization of HM, although
its original presentation has general recursion, because our language does not support general
recursion.

271

Syntax

Term t, s ::= . . . | mitκ x ϕψ

Type constructor F,G,A,B ::= . . . | µκ(T G)

Kinding rules mu ∆ ` T G : κ→ κ
∆ ` µκ(T G) : κ

Typing rules

mit′
∆, Xκ

r ; Γ, x : ∀Xκ′ .XrX → ψ(X) ` ϕψ : ∀Xκ′ .F XrX → ψ(X)
∆; Γ `mitκ x ϕψ : ∀Xκ′ .µκF X → ψ(X)

Figure 8.2: SmallNax extended with µκ and mitκ, using a simplified version of the

inference rule for mitκ

inference is that the type parameters of the recursive function argument are monomor-

phic, whereas the type indices are polymorphic inside the body of the recursive

function definition. Outside the body, the recursive function can be used polymor-

phically over both type parameters and type indices.

Figure 8.2 highlights the extended parts of the syntax, kinding rules, and typing

rules of SmallNax from Figure 8.1. The term syntax is extended with the Mendler-

style iteration combinator. An application of the Mendler-style iteration combina-

tor to a term (mitκ x Cx→ t
ψ) s in SmallNax corresponds to mitψ s x (Cx)→ t

in Nax, where x is the name for the abstract recursive function call used in each

case branch t. We relaxed the syntax of the Mendler-style iteration combinator to

be used as a first-class function without its recursive argument s in SmallNax: for

the same reason we relaxed the syntax of case expressions (caseψ s of ϕ) in Nax

into case functions (ϕψ) in SmallNax so that it could be used without the scruti-

nee (s) – we do not need a separate rule for the application of the Mendler-style

iteration combinator. The kinding rule mu and the typing rule mit′ are admissi-

ble in System Fω by the embedding of µκ and κ into System Fω as discussed in

272

Section 4.2.2.

The rule mit′ is suitable for type inference. Unlike the rule Fix-p in MM, which

cannot always determine the type scheme (σ) of the general recursion (fix x.t), the

rule mit′ unambiguously determines the type scheme (∀Xκ′ .µκF X → ψ(X)) of the

Mendler-style iteration (mitκ x ϕψ) from the index transformer (ψ) – the number

and kinds of universally quantified variables (∀Xκ′ . · · ·) in the type scheme must

match the number and kinds of the arguments to the index transformer. The rule

mit′ uniquely determines the type scheme of the Mendler-style iteration, except

F . The type constructor F in the rule mit′ is determined by the rules Con, Case,

and Alt in Figure 8.1.

We can formulate the syntax-directed counterpart of the rule mit′ as follows:

mit′s
∆, Xκ

r ; Γ, x : ∀Xκ′ .XrX → ψ(X) s̀ ϕψ : ∀Xκ′ .F XrX → ψ(X)
∆; Γ s̀ mitκ x ϕψ : µκF G→ ψ(G)

Note that the type µκF G→ ψ(G) in mit′s is a generic instance of the type scheme

∀Xκ′ .µκF X → ψ(X) in mit′. So, the relation between mit′ and mit′s are similar

to the relation between Case and Cases. Therefore, the declarative typing rules

including mit′s are sound and complete with respect to the syntax-directed rules

including mit′s, for similar reasons as to why Cases is sound and complete with

respect to Case.

We need additional polymorphism in the typing rule for mit when we have free

variables in the index transformer (ψ(X)), other than the indices (X) of the argu-

ment type. For example, consider the index transformer {{t} . Code {ts} {‘cons t ts}}

appearing in the definition of the stack-safe compiler (compile) in Section 7.2.3.

The free variable (ts) should be generalized as well as the index (t) to infer the

type of the compile function. The type scheme for the recursive caller (x in the

typing rule for mit) should be fully generalized, except for the part of the input

type up to its parameters. That is, we should generalize both the indices and the

free variables of the index transformer. The idea described in this paragraph is

273

mit
∆, Xκ

r ; Γ, x : ∀X ′κ′ .XrX → ψ(X) ` ϕψ : ∀X ′κ′ .F XrX → ψ(X)
∆; Γ `mitκ x ϕψ : ∀X ′κ′ .µκF X → ψ(X)

where X ′ = X ∪ FV(ψ(X)) \ dom(∆) \ FV(Γ)
and each κ′ is an appropriate kind for each X ′

Figure 8.3: A more polymorphic version of the inference rule for mitκ

summarized as the rule mit in Figure 8.3.

Among many recursion schemes, we discuss only about Mendler-style iteration

in this chatper. Nevertheless, our discussions througout this chapter are applicable

to the formulation of typing rules for other Mendler-style recursion schemes as well.

8.3 SMALLNAX WITH GADTS

So far in this chapter, we have only considered those datatypes defined by equa-

tions.4 Such equational datatypes are either regular (e.g., homogeneous lists) or

nested (e.g., powerlists, bushes). As discussed in Section 8.1, data constructors

introduced from an equational definition (i.e., data T X = CG) have uniform re-

turn types (T X) and no existential variables in their types. GADT definitions

can introduce a wider range of datatypes, including data constructors with non-

uniform return types and data constructors with existential type variables in their

types.

8.3.1 Existential type variables

GADT definitions can introduce existential type variables in the types of data

constructors. Existential type variables are type variables that do not appear in

the result type. In fact, we have already seen an example of a GADT definition

4A recursive datatype defined using µκ over non-recursive equational datatypes can also be
described by a recursive equation.

274

that contains existential type variables in earlier chapters. Consider the simply-

typed HOAS datatype, which we discussed in Section 3.9.3, defined as a GADT in

Haskell:5

data Exp t where
Lam :: (Exp a -> Exp b) -> Exp (a -> b)
App :: Exp a -> Exp (a -> b) -> Exp b

Note that the return types of the two data constructors are not uniform. The

return type of Lam is Exp (a -> b) and the return type of App is Exp b. Also

note that the type variable a in the type of App does not appear in the result

type Exp b. So, a is an existential type variable by definition. When we have an

application expression (App e1 e2) :: Exp b, we know that there exists some

a such that e1 :: a and e2 :: a -> b, but there is no way to statically know

what a is even when we have more information about b. Existential type variables

must remain abstract in pattern matching. That is, they can never be instantiated

inside alternatives.

To handle existential variables, we adjust the rule Alt in Figure 8.1 as follows:

Alt

∆,∃Γ(C);∃C(Γ) ` C : A→ TB A′

∆,∃Γ(C); Γ, x : A ` t : ψ(A′)
∆; Γ `ψ Cx→ t : ∀Xκ.TB X → ψ(X)

(8.3.1)

where ∃Γ(C) is the list of existential variable bindings of C and ∃C(Γ) drops the

universal quantification of the existential variables in the type scheme of C (i.e.,

makes them into free variables) so that they become abstract. That is, when

C : ∀Xκ.A ∈ Γ and X ′κ′ = Xκ \ ∃(C), then C : ∀X ′κ′ .A ∈ ∃C(Γ) and all other

bindings in ∃C(Γ) remain the same as in Γ. We only need to make existential

variables abstract when assigning types for pattern variables (x : A). So, we use

∃C(Γ) only in the first premise. In the second premise, where we type check the

5 In Nax, we should define Exp in two levels by taking the fixpoint µ∗→∗ over a non-recursive
GADT. For simplicity, we illustrate the type-indexed expression datatype using Haskell since
Haskell GADTs allow recursive definitions.

275

body (t) of the alternative, we use the original Γ so that all quantified variables

in the type scheme of C can be instantiated. For example, we should be able

to apply App :: Exp a -> Exp (a -> b) -> Exp b in the example, which we

discussed above, to an expression of any type (e.g., Exp Int, Exp (Int -> Bool)).

8.3.2 Generalized existential type variables and index transformers

Lin [55] generalized the notion of existential type variables, calling them generalized

existential type variables, while developing a practical type inference algorithm

for GADTs. Intuitively, generalized existential type variables are “type variables

introduced by a pattern that receive no parametric instantiation” [55]. Generalized

existential type variables are a conservative extension of existential type variables.

That is, all existential type variables are generalized existential type variables.

Here, we focus on the generalized type variables that are not existential type

variables.

Consider the type representation (whose value describes the structure of a type.

a.k.a. type universe) defined as a GADT in Haskell:
data Rep t where

INT :: Rep Int
PAIR :: Rep a -> Rep b -> Rep (a, b)
FUN :: Rep a -> Rep b -> Rep (a -> b)

There are no existential type variables in the definition of Rep. The first type

constructor INT does not have any type variables in its type. In the other two

type constructors PAIR and FUN, both the type variables a and b appear in their

result types, Rep (a,b) and Rep (a -> b) . These type variables could be

generalized existential variables, which should not be instantiated to other types,

just like existential type variables. For example, when we pattern match against

a value of Rep t, a and b must remain polymorphic inside the alternatives. For

instance, in the alternative for PAIR, we know that t = (a,b), but we should

instantiate neither a nor b because t is polymorphic.

276

Generalized existential type variables are extrinsic properties of data construc-

tors, unlike existential type variables, which are intrinsic properties of data con-

structors [55]. Existential type variables always remain abstract (or polymorphic)

inside alternatives regardless of the scrutinee type. On the other hand, generalized

existential type variables depend on the scrutinee type. That is, we could have a

different set of generalized existential type variables for the very same data con-

structor, depending on the type of the scrutinee we pattern match against. For

example, when we pattern match against a value of Exp (Int,Bool), there is no

generalized existential type variable inside the alternative for PAIR,6 because a and

b are instantiated to Int and Bool.

We further adjust the rule Alt, adopting Lin’s notion of generalized existential

variables, as follows:

Alt

∆,∃ψΓ(C);∃ψC(Γ) ` C : A→ TB A′

∆, ∃ψΓ(C); Γ, x : A ` t : ψ(A′)
∆; Γ `ψ Cx→ t : ∀Xκ.TB X → ψ(X)

(8.3.2)

The change from the previous Alt rule (8.3.1) on page 274 is using ∃ψΓ and ∃ψC
for generalized existential type variables instead of ∃ψΓ and ∃ψC for existential type

variables. For example, ∃ψΓ(PAIR) is the list of two variables consisting of a and

b, while ∃Γ(PAIR) is an empty list. Accordingly, the type scheme binding for PAIR

in ∃ψPAIR(Γ) is a monomorphic type Rep a -> Rep b -> Rep (a, b) where a and

b are free,7 while the type scheme binding for PAIR in ∃PAIR(Γ) is a polymorphic

type scheme ∀a∗.∀b∗. Rep a -> Rep b -> Rep (a, b).

The Alt rule above (8.3.2) still lacks consideration for case functions that only

expect scrutinee types with more specific indices than fully polymorphic variables

6 Other alternatives, for INT and FUN are unreachable. So, for the scrutinee with type
Exp (Int,Bool), all cases are covered by a single alternative for PAIR. To make coverage checking
for such scrutinee types aware of unreachable cases, we need an advanced coverage checking al-
gorithm rather than just making sure that there exists an alternative for every data constructor.
Coverage checking for our Nax implementation remains future work.

7 They are bound in ∃ψΓ(PAIR), of course.

277

(e.g., pattern matching only against values of type Exp (Int,Bool), rather than

Exp t for any type t). In our Nax implementation, we do support the syntax

for such pattern matching by allowing index transformers of the form such as

{ (Int,Bool) . A }, whose argument list on the left-hand side of the dot could

contain more specific forms than just type variables. Formulation of typing rules,

which further adjust from the Alt rule (8.3.2), and implementation of coverage

checking considering such index transformers with constrained input index are left

for future work.

278

Part V

Postlude

279

Chapter 9

RELATED WORK

In this chapter, we discuss additional related work that was not discussed in pre-

vious chapters (Section 3.1 and Section 7.4). We discuss five categories of related

work: Mendler-style co-recursion schemes over co-data (Section 9.1), Mendler-style

recursion schemes over multiple values (Section 9.2), dependently-typed Mendler-

style induction (Section 9.3), the use of sized-types to explain the termination of

Mendler-style recursion schemes (Section 9.4), and the comparison of our Mendler-

style approach to logical frameworks (Section 9.5).

9.1 MENDLER-STYLE CO-ITERATION AND CO-RECURSION

Data structures have natural duals, known as co-data. Data is characterized by

how it is constructed and co-data is characterized by how it is observed (i.e.,

destructed).

Mendler-style recursion schemes generalize (or, dualize) naturally to co-data.

We call these generalizations Mendler-style co-recursion schemes. These co-recursion

schemes generate possibly infinite structures. For instance, an infinite sequence of

natural numbers.

The Mendler-style co-iteration, mcoit, (a.k.a. anamorphism or unfold) is dual

to the Mendler-style iteration, mit, (a.k.a. catamorpihsm or fold). Figure 9.1

(adapted from Uustalu and Vene [93]) illustrates a Haskell transcription of mit

and its dual mcoit. We use the same style of Haskell code used in Chapter 3. The

reversal of the function arrows is typical of a dual construction. Note that domain

280

-- Mendler-style co-fixpoint ν∗ and co-iterator mcoit∗
data ν∗ f = UnOut∗ {out∗ :: f (ν∗ f)} -- use of UnOut∗ is restricted
mcoit∗ :: (∀r .(a → r)→ (a → f r))→ (a → ν∗ f)
mcoit∗ ϕ v = UnOut∗ (ϕ (mcoit∗ ϕ) v)

-- Mendler-style fixpoint µ∗ and iterator mit∗
data µ∗ f = In∗ {unIn∗ :: f (µ∗ f)} -- use of UnIn0 is restricted
mit∗ :: (∀r .(r → a)→ (f r → a))→ (µ∗ f → a)
mit∗ ϕ x = ϕ (mit∗ ϕ) (unIn∗ x)

Figure 9.1: A Haskell transcription of Mendler-style co-iteration (mcoit) in com-

parison to Mendler-style iteration (mit) at kind ∗.

and the codomain of the abstract operations are flipped: (a → r), (a → f r),

(a → ν∗ f) verses (r → a), (f r → a), (µ∗ f → a). We illustrate Mendler-style

co-iteration at kind ∗. Mendler-style co-iteration naturally generalizes to higher

kinds just as Mendler-style iteration generalizes to higher kinds.

In order to understand co-recursive datatypes, we review recursive datatypes.

In Mendler style, recursive datatypes are defined as fixpoints of (non-recursive)

base structures. For example, we can define datatypes for natural numbers and

lists in two steps: define the base structure (N and L) and take fixpoints of them

(using µ∗):
data N r = Zero | Succ r
type Nat = µ∗ N
zero = In∗ Zero
succ n = In∗ (Succ n)

data L a r = Nil | Cons a r
type List a = µ∗ (L a)
nil = In∗ Nil
cons x xs = In∗ (Cons x xs)

The constructor functions zero, succ, nil, and cons are ordinary definitions defined

in terms of In∗. Using the conventions described in Chapter 3, the use of In∗ is

unrestricted, but its inverse unIn∗ (or pattern matching against In∗) is restricted.

To eliminate a list or a natural number, one must use a Mendler-style recursion

scheme, like mit∗. In Mendler style, one can freely construct recursive values but

281

cannot freely destruct them. For example, one cannot define head or tail functions

for List by simple pattern matching. Instead, one must define them via Mendler-

style recursion schemes.

Conversely, when we define co-data, one can freely tear down their values, but

one cannot freely construct them. To construct co-recursive values, one must rely

on Mendler-style co-recursion schemes. Co-recursive datatypes are defined as the

co-fixpoint ν∗ of (non-recursive) base structures. For example, infinite streams are

defined as a co-recursive datatype as follows:

data StreamF a r = SCons a r
type Stream a = ν∗ (StreamF a)

head s = case (out∗ s) of SCons h → h
tail s = case (out∗ s) of SCons t → t

Note that we can define destructor functions for streams, head :: Stream a → a

and tail :: Stream a → Stream a, simply by pattern matching, since we can freely

use out∗ :: ν∗ f → f (ν∗ f).

However, without the help of a Mendler-style co-recursion scheme, one cannot

define a constructor function, such as scons :: a → Stream a → Stream a, that

builds up a new stream from an element and an existing stream. One must use

Mendler-style co-recursion schemes to construct co-recursive values. This limita-

tion follows from the restriction we place on the use of UnOut∗. We can pattern

match against a value (UnOut∗ x) (or freely use the function out∗), but we cannot

freely use UnOut∗ to construct co-data. The last step of constructing co-data (ap-

plying UnOut∗) must be done using a Mendler-style co-recursion scheme, just as

the first step of eliminating data (stripping off In∗) must be done using a Mendler-

style recursion scheme.

As an example of constructing a Stream, we define a function upfrom :: Nat →

Stream Nat, which builds up a stream starting from a given natural number n

where each element (n) is allways followed by its successor (succ n), as follows:

282

upfrom n = mcoit∗ ϕ n where
ϕ upfrm n = SCons n (upfrm (succ n))

For instance, (upfrom zero) is a stream of all the natural numbers, starting from

zero, and counting upwards.

Note that the ϕ function is similar in structure to the general recursive imple-

mentation below, which exploits the laziness of Haskell:

data Streamg a = SConsg a (Streamg a)

upfromg n = SConsg n (upfromg (succ n))

Although the streams built by upfrom conceptually stand for infinite lists, they do

not diverge. The stream (upfrom zero) can be understood as a generator, ready to

generate the next natural number (using head) or the next stream (using tail).

For example, we can write a function take :: Nat → Stream a → List a, where

take n s produces a list consisting of the prefix of length n of the stream s, as

follows:

take n = mit∗ ϕ n where
ϕ tk Zero = λ → nil
ϕ tk (Succ n) = λs → cons (head s) (tk n (tail s))

For instance, (take three (upfrom zero)) produces a list with three elements starting

from zero (cons (one (cons two (cons three nil)))) where one = succ zero, two =

succ one and three = succ two.

Note that the ϕ function is similar in structure to how one would typically

implement Haskell’s standard prelude function take :: Int → [a]→ [a] over Haskell

lists. Unlike the Haskell prelude function, which is partial (e.g., take 2 [] is unde-

fined), our take funciton over streams are total because Streams are always infinite

by definition.

One could define a possibly finite stream by taking the co-fixpoint over L,

sharing the same base structure with List, as follows:

type Stream′ a = ν∗ (L a)

283

head ′ s = case out∗ s of Nil → Nothing
Cons h → Just h

tail ′ s = case out∗ s of Nil → Nothing
Cons t → Just t

Here, the destructors head ′ and tail ′ become slightly more complicated because

Stream′ can be finite, terminating in Nil.

Because of laziness, datatypes in Haskell have characteristics of both recursive

and co-recursive datatypes. However, when we use Haskell to explain Mendler-style

concepts, we always distinguish recursive and co-recursive datatypes by adhering

to the conventions we discussed: no general recursion except to define the (co-

)fixpoint1 operators themselves (µ∗, ν∗) and their (co-)recursion schemes (mit∗,

mcoit∗). We also restrict the use of unIn∗ and UnOut∗ as described.

Matthes [59] extended System F with Mendler-style (co-)iteration and primitive

(co-)recursion, and studied their properties. Abel et al. [5] embedded Mendler-

style (co-)iteration into System Fω. Abel and Matthes [3] discovered a reduction

preserving embedding of Mendler-style primitive recursion into Fixω. They mention

that an embedding of primitive co-recursion is similarly possible.

Uustalu and Vene [90, 91, 93] studied Mendler-style recursion schemes in a

categorical setting, while the works mentioned in the paragraph above are set

in the context of typed lambda calculi. Vene Vene [94] relates several Mendler-

style recursion schemes with their non Mendler-style counterparts – (co-)iteration,

primitive (co-)recursion, and course-of-values (co-)iteration.

1 A word prefixed by ‘(co-)’ refers to the words both with and without ‘(co-)’. That is,
(co-)iteration refers to both iteration and co-iteration.

284

9.2 MENDLER-STYLE RECURSION SCHEMES OVER MULTIPLE

VALUES

There are many Mendler-style recursion schemes in addition to those discussed in

Chapter 3. Here, we introduce two Mendler-style recursion schemes that work over

two (or more) structures simultaneously.

9.2.1 Simultaneous iteration

Uustalu and Vene [92] studied course-of-value iteration (a.k.a. histomorphism) and

simultaneous iteration (a.k.a. multimorhpism). They formulate these two recursion

schemes in both the conventional and Mendler style. They show that the formu-

lations are equivalent provided that the base structures for recursive types are

functors (i.e., positive). We have already discussed Mendler-style course-of-values

iteration in previous chapters. Here, we introduce Mendler-style simultaneous it-

eration over multiple recursive values, using the examples adopted from Uustalu

and Vene [92]. For simplicity, we only consider simultaneous iteration over two

recursive values, which can be transcribed into Haskell as follows:

msimit∗,∗ :: (∀r1 r2.(r1 → r2 → a)→ f1 r1 → f2 r2 → a)→ µ∗ f1 → µ∗ f2 → a

msimit∗,∗ ϕ (In∗ x1) (In∗ x2) = ϕ (msimit∗,∗ ϕ) x1 x2

This recursion scheme simplifies function definitions that simultaneously iterate

over two arguments. For example, we can define lessthan :: Nat → Nat → Nat and

take :: Nat → List a → List a as follows:

lessthan :: Nat → Nat → Bool

lessthan = msimit∗,∗ ϕ where

ϕ lt Zero Zero = False

ϕ lt Zero (Succ) = True

ϕ lt (Succ) Zero = False

ϕ lt (Succ m) (Succ n) = lt m n

285

take :: Nat → List a → List a

take = msimit∗,∗ ϕ where

ϕ tk Zero = nil

ϕ tk (Succ) Nil = nil

ϕ tk (Succ n) (Cons x xs) = cons x (tk n xs)

Note that the ϕ functions above are similar in structure to how one would typically

define lessthan and take using general recursion in Haskell. Although it is possible

to define these functions using multiple nested uses of mit∗, it is certainly not as

simple as the definitions above.

The termination behavior of simultaneous iteration (msimit) has not been

studied when negative datatypes are involved. Nor do we know of any studies that

have embeded msimit into a strongly normalizing typed lambda calculus. For

both course-of-values iteration (mcvit) and recursion (mcvpr), we have found

counterexamples that nontermination is possible for negative datatypes (see Fig-

ure 3.7 in Section 3.5 on p.113). We also showed that mcvpr can be embedded

into Fixi (or Fixω) assuming monotonicity (Section 5.3).

One can imagine simultaneous primitive recursion (msimpr∗,∗), which has ad-

ditional casting operations, as follows:

msimpr∗,∗ :: (∀r1 r2 . (r1 → r2 → a) -- recursive call

→ (r1 → µ∗ f1) -- cast1

→ (r2 → µ∗ f2) -- cast2

→ f1 r1 → f2 r2 → a)→ µ∗ f1 → µ∗ f2 → a

msimpr∗,∗ ϕ (In∗ x1) (In∗ x2) = ϕ (msimpr∗,∗ ϕ) id id x1 x2

To extend primitive recursion (mpr∗), which has has only one casting operation,

into simultaneous primitive recursion, multiple casting operations are needed – one

for each of recursive arguments. Here, we formulated msimpr∗,∗ with two recursive

arguments. So, we have two casting operations, whose types are (r1 → µ∗ f1) and

286

(r2 → µ∗ f2).

9.2.2 Lexicographic recursion

Some recursive functions over multiple recursive values justify termination because

their arguments decrease at every recursive call under a lexicographic ordering.

Note that this is different from simultaneous iteration where each of the arguments

decreases in every recursive call. In a lexicographic ordering, some arguments

may stay the same (in more-significant positions) or increase (in less-significant

positions) while another argument decreases. A typical example of lexicographic

recursion is the Ackermann function, which we can define using general recursion

in Haskell as follows:

data Natg = Zerog | Succg Natg
ackerg Zerog n = Succg n
ackerg (Succg m) Zerog = Succg (ackerg m Zerog)
ackerg (Succg m) (Succg n) = ackerg m (ackerg (Succg m) n)

Observe that the first argument is more significant than the second. In the third

equation, the first argument m of the outer recursive call decreases (i.e., is smaller

than (Succg m)) while the second argument (ackerg (Succg m) n) may increase

(i.e., may be larger than (Succg n)).

The following Mendler-style recursion scheme captures the idea of lexicographic

recursion over two arguments.

mlexpr∗,∗ :: (∀r1 r2 . (r1 → µ∗ f2 → a) -- outer recursive call
→ (r2 → a) -- inner recursive call
→ (r1 → µ∗ f1) -- cast1
→ (r2 → µ∗ f2) -- cast2
→ f1 r1 → f2 r2 → a)→ µ∗ f1 → µ∗ f2 → a

mlexpr∗,∗ ϕ (In∗ x1) (In∗ x2) = ϕ (mlexpr∗,∗ ϕ) (mlexpr∗,∗ ϕ (In∗ x1)) id id x1 x2

287

The Mendler-style lexicographic recursion mlexpr∗,∗2 is similar to the Mendler-

style simultaneous recursion msimpr∗,∗ introduced in the previous section, but

has two abstract operations for inner and outer recursion. Note the types of these

two recursive calls (r1 → µ∗ f2 → a) and (r2 → a). The outer recursive call expects

its first argument to be a direct subcomponent by requiring its type to be r1. The

second argument has type µ∗ f2, which means that it could be any value, because

it is the less-significant factor of the lexicographic ordering. The inner recursive

call only expects its second argument to be a direct subcomponent by requiring

its type is required to be r2. Since it is assumed that the first argument stays the

same in the inner call, the first argument is omitted. Using mlexpr∗,∗, we can

define the Ackermann function as follows:

acker = mlexpr∗,∗ ϕ where
ϕ ack ack ′ cast1 cast2 Zero Zero = succ zero
ϕ ack ack ′ cast1 cast2 Zero (Succ n) = succ (succ (cast2 n))
ϕ ack ack ′ cast1 cast2 (Succ m) Zero = succ (ack m zero)
ϕ ack ack ′ cast1 cast2 (Succ m) (Succ n) = ack m (ack ′ n)

We strongly believe that mlexpr∗,∗ terminates for all positive datatypes. The

termination behavior for negative (or mixed-variant) datatypes needs further in-

vestigation.

9.3 MENDLER-STYLE INDUCTION

The dependently-typed version of primitive recursion is called induction. We for-

mulate Mendler-style induction over regular datatypes as follows.

mind∗ : ∀(F : ∗ → ∗)(A : µ∗F → ∗).(
∀(r : ∗). (cast : r → µ∗F)

→ (call : (x : r)→ A (cast x))
→ (y : F r)→ A (In∗(fmapF cast y))

)
→ (z : µ∗ f)→ A z

2 The idea for mlexpr∗,∗ originated in a conversation between Tarmo Uustalu and Tim Sheard
at the TYPES 2013 workshop (not published anywhere else at the moment).

288

mind∗ ϕ (In∗ x) = ϕ id (mind∗ ϕ) x

The definition of Mendler-style induction mind3 shows that induction is essen-

tially the same as the Mendler-style primitive recursion mpr, except that the type

signature involves dependent types. Note, the final answer type (A z) is depen-

dent on the recursive argument z : µ∗F . Since A : µ∗F → ∗ expects a concrete

recursive value, we use cast in the type signature of the ϕ function to cast (x : r)

and (y : F r) into µ∗F values, so that they can be passed to A. In the type signa-

ture of mind, cast comes before call because the type signature of call depends

on cast. When defining mpr, cast and call can come in any order since there is

no dependency in the type signature of mpr.

One important aspect of mind∗ is that it is well-defined only over positive F ,

because we relied on the existence of fmapF to write its type signature. It is an

open question whether one can formulate a Mendler-style induction that works for

negative datatypes.

In the future work section (Section 10.1), we introduce another Mendler-style

recursion scheme that is useful for mixed-variant datatypes. The work of a Mendler

stylist is never done!

9.4 TYPE-BASED TERMINATION AND SIZED TYPES4

Type-based termination (coined by Barthe, Frade, Giménez, Pinto, and Uustalu [9])

stands for approaches that integrate termination into type checking, as opposed to

syntactic approaches that reason about termination over untyped term structures.

The Mendler-style approach is, of course, type-based. In fact, the idea of type-

based termination was inspired by Mendler [64, 65]. In Mendler style, we know

3 The idea behind mind∗ comes from discussion with Tarmo Uustalu. He described this on
a whiteboard when I met with him at the University of Cambridge in Fall 2011.

4We plan to submit a modified version of this section as a part of the TYPES post-proceedings
draft.

289

that well-typed functions defined using Mendler-style recursion schemes always

terminate. This guarantee follows from the design of the recursion scheme, where

the use of higher-rank polymorphic types in the abstract operations enforce the

invariants necessary for termination.

Abel [1, 2] summarizes the advantages of type-based termination as follows:

communication (programmers think using types), certification (types are machine-

checkable certificates), a simple theoretical justification (no additional complication

for termination other than type checking), orthogonality (only small parts of the

language are affected, e.g., principled recursion schemes instead of general recur-

sion), robustness (type system extensions are less likely to disrupt termination

checking), compositionality5 (one needs only types, not the code, for checking the

termination), and higher-order functions and higher-kinded datatypes (works well

even for higher-order functions and non-regular datatypes, as a consequence of

compositionality). In his dissertation [1] (Section 4.4) on sized types, Abel views

the Mendler-style approach as enforcing size restrictions using higher-rank poly-

morphism as follows:

• The abstract recursive type r in Mendler style corresponds to µαF in his

sized-type system (System Fω̂), where the sized type for the value being

passed in corresponds to µα+1F .

• The concrete recursive type µF in Mendler style corresponds to µ∞F since

there is no size restriction.

• By subtyping, a type with a smaller size-index can be cast to the same type

with a larger size-index.

This view is based on the same intuition we discussed in Chapter 3. Mendler-style

recursion schemes terminate — for positive datatypes — because r-values are direct

subcomponents of the value being eliminated. They are always smaller than the

5This is not listed in Abel’s thesis, but comes from his invited talk in FICS 2012.

290

value being passed in. Types enforce that recursive calls are only well-typed, when

applied to smaller subcomponents.

Abel’s System Fω̂ can express primitive recursion quite naturally using sub-

typing. The casting operation (r → µF) in Mendler-style primitive recursion

corresponds to an implicit conversion by subtyping from µαF to µ∞F because

α 6∞.

System Fω̂ [1] is closely related to System Fixω [3]. Both of these systems are

base on equi-recursive fixpoint types over positive base structures. Both of these

systems are able to embed (or simulate) Mendler-style primitive recursion (which

is based on iso-recursive types) via the encoding [37] of arbitrary base structures

into positive base structures. In Section 5.2, we rely on the same encoding, denoted

by Φ, when embedding mpr into System Fixi.

Abel’s sized-type approach evidences good intuition concerning the reasons that

certain recursion schemes terminate over positive datatypes. But, it is not a useful

intuition of whether or not those recursion schemes would terminate for negative

datatypes, unless there is an encoding that can translate negative datatypes into

positive datatypes. For primitive recursion, this is possible (as we mentioned

above). However, for our recursion scheme msfit, which is especially useful over

negative datatypes, we do not know of an encoding that can map the inverse

augmented fixpoints into positive fixpoints. So, it is not clear whether Abel’s the

sized-type approach based on positive equi-recursive fixpoint types can provide

a good explanation for the termination of msfit. In Section 10.1, we will discuss

another Mendler-style recursion scheme (mprsi), which is also useful over negative

datatypes and has a termination property (not yet proved) based on the size of

the index in the datatype.

291

9.5 LOGICAL FRAMEWORKS BASED ON THE λΠ-CALCULUS

A “logical framework”, in a broad sense, refers to any system that serves as “a

meta-language for the formalization of deductive systems” [77]. In a more narrow

sense, logical frameworks are systems closely related to to the Edinburgh Logi-

cal Framework (LF or ELF) [44], which uses the λΠ-calculus as its specification

language. In this section, we discuss logical frameworks in this more narrow sense.

The λΠ-calculus (a.k.a. λP) is one of the corners in Barendregt’s λ-cube [8]

that is adjacent to the simply-typed lambda calculus (STLC, or, λ→). The λΠ-

calculus extends the STLC with dependent types, but without polymorphism or

functions from types to types (type operators). The syntax of λΠ, extended with

constants (c), is describe below:

Kinds K ::= type | Πx : A.K

Type Families A,B ::= c | Πx : A.B | λx : A.B | AM

Objects M,N ::= c | x | λx : A.M |MN

In logical frameworks, one can introduce new constants by naming types and ob-

jects. These are intended to represent datatypes such as natural numbers, lists,

and may even involve higher-order abstract syntax. However, these constants are

merely syntactic descriptions, not necessary tied to any specific semantics or logi-

cal interpretations. That is, introducing constants does not automatically supply

any recursion schemes or induction principles, as is done in functional languages

or proof assistants that support new datatypes as a feature. Each logical frame-

work supports its own meta-logic to give meanings to the logic (or, the language)

specified by introducing such constants. The choice of meta-logic can be either

relational (like a logic programming language), functional (like a functional pro-

gramming language), or something else.

Logical frameworks are very flexible for describing many different logical sys-

tems (i.e., formalizing a language) by using a two-layered approach of a minimal

292

specification language (λΠ) and a meta-logic. However, this two-layered approach

is not ideal as a programming system. One can model arbitrary programming

languages, giving them semantics in the logical framework. But, the program-

ming capability of the specification language and the meta-logic is limited. In the

remainder of this section, we discuss Twelf, whose meta-logic is relational, and,

Beluga and Delphin, whose meta-logics are functional.

Twelf6 is the most widely used logical framework. In Twelf, you can define ab-

stract syntax for datatypes by introducing constants for types and objects involving

those types. For example, you can define natural numbers as follows.7

nat : type. %%% define a type constant
z : nat. %%% define a constant for zero
s : nat -> nat. %%% define a constant for sucessor

At this point, the constants z and s are just typed syntax. Introduction of con-

stants is not associated with any semantics for the constants, unlike the natively

supported inductive datatypes in Coq or Agda. So, there are no restrictions on

how these constants may be used, such as the positivity constraint on inductive

datatypes in Coq or Agda. One can give meanings to the natural number constants

by defining inductive relations over them. For example, we can define addition as

a ternary relation over natural numbers, as follows:

plus : nat -> nat -> nat -> type.
plus/z : plus z Y Y.
plus/s : plus (s X) Y (s Z)

<- plus X Y Z.

The right-hand sides (after the colon) of plus/z and plus/s look like a Prolog

program defining addition. Twelf’s meta-logic is, in fact, typed first-order relational

6http://twelf.org/
7 Twelf examples are adopted from Boyland’s Twelf Library on Github.

https://github.com/boyland/twelf-library

http://twelf.org/
https://github.com/boyland/twelf-library

293

logic. At the type-level, Twelf predicates are like pure Prolog programs with type-

checking. All computational issues, such as termination checking, are present at

the level of these relational definitions (as opposed to the introduction of new

constants). Twelf has a termination checker for inductive relations (external to

the type checker) based on lexicographic subterm ordering over untyped terms.

In addition to the type signatures of the relations, one can optionally specify

input/output modes for each of their arguments, if necessary, in order to guide the

termination checker to consider only the input arguments for termination.8

One cannot write higher-order relations natively in Twelf because Twelf’s meta-

logic is first-order, not higher-order. To write a program using higher-order func-

tions in Twelf, one has to model one’s own object language that is able to support

higher-order functions, then program within that object language rather than pro-

gramming in Twelf’s meta-logic. We summarize the steps necessary to program

using higher-order functions in Twelf:

(1) Define an object language syntax (as the syntax z and s for natural numbers)

with bindings (this is done by HOAS), applications, and whatever needed to

express higher-order functions.

(2) Define the evaluation semantics of the object language using inductive rela-

tions (i.e., write an evaluation relation for the object language in a Prolog-like

way).

(3) Write programs in the object language by putting together pieces of the

syntax you defined in (1).

(4) Finally, evaluate the program by reasoning based on the evaluation relation

defined in (2).

8There are various directives to guide checking input/output modes, coverage, and termination
in Twelf. For further information, see the documentations from its homepage.

294

This process is clearly not ideal if the desire is simply to “program” with higher-

order functions in a type-safe way, possibly with some termination guarantees.

One does not always want to reason about the meta-theory of the object language

in general.

Beluga [78] is similar to Twelf, but it is closer to a functional language since

the inductive definitions are functional, rather than relational. Beluga supports

higher-order functions, unlike Twelf. One can write a natural number addition

function in Beluga as follows:9

rec add : [. nat] -> [. nat] -> [. nat]
= fn x => fn y =>

case x of
| [. z] => y
| [. s N] => let [. R] = add [. N] y in [. s R]
;

Types like nat and nat -> nat are called representation-level types. So, ob-

jects like z and s are called representation-level objects. Types like [. nat]

and [. nat] -> [. nat] are called computation-level types. This add func-

tion definition is almost identical to typical recursive function definition of nat-

ural number addition in functional languages, except for the new representation-

level variable binding R in the second case branch. In Beluga, one cannot write

[. s (add [. N] y)] because s expects a representation-level object as its ar-

gument. In Twelf-style logical frameworks, representation-level types are inhabited

only by η-long β-normal representation-level objects, which do not include appli-

cation forms of computational-level objects.

More generally, computation-level types can have the form [g . t] where g is

a context object and t is a representation-level type. One of the Beluga’s unique

features is supporting pattern matching over computational objects with contexts,

9 Adopted from the Beluga tutorial. http://complogic.cs.mcgill.ca/beluga/

http://complogic.cs.mcgill.ca/beluga/

295

and also coverage checking of those patterns. Computational types with the empty

context, of the form [. t], are inhabited by closed values, which do not involve

any free (representation-level) variables. Since Beluga has explicit access to context

objects, we believe that it can express what msfit can express, and in addition, it

can also express what openit (Section 3.9.5) can express.

One can also write higher-order functions (e.g., map)10 in Beluga almost the

same way one does in functional programming languages, except, perhaps, for the

tedious representation-level bindings (e.g., R in the add function above). In regards

to higher-order functions, Beluga is in a much better position than Twelf. Recall

that, in Twelf, one needs to model a whole new functional language by describing

its semantics with inductive relations in order to express higher-order functions.

Termination is not type based in Beluga either. Like Twelf, it needs an external

termination (or totality) checker, but its prototype implementation currently lacks

such a checker. We suspect one of the reasons why the Beluga implementation does

not yet contain a termination checker is due to the difficulty of checking termination

of higher-order functions. The syntactic approaches to termination, used by logical

frameworks based on first-order meta-logic, may fail to check termination for many

higher-order functions.

Delphin [79] has goals similar to Beluga, supporting functional programming

rather than relational reasoning. For example, the addition function over natural

numbers can be defined in Delphin as follows.
fun plus : <nat> -> <nat> -> <nat>

= fn <z> <M> => <M>
| <s N> <M> => let val <x> = plus <N> <M> in <s x> end
;

Although both Beluga and Delphin support similar features with similar syntax,

their theoretical foundations differ [78] on how they treat contexts. Delphin cannot

10 A map function over natural number lists is given in the Beluga tutorial.

296

distinguish open values from closed values as is done in Beluga, since Delpin does

not explicitly manage contexts. Pientka [78] also points out that Delphin tries

to reuse Twelf’s infrastructure as much as possible. For instance, the termination

checker of Delphin is based on lexicographic subterm ordering, which is also the

case in Twelf.

Although Delphin and Beluga do support higher-order functions, they do not

support polymorphism, but only dependent types by term indexing. That is, one

can only write monomorphic functions. Recall that, in λΠ, one can only index type

families by terms, not types. Indexing by types would support polymorphism. This

is inconvenient for programming higher-order functions, because many higher-order

functions are polymorphic in nature; users need to duplicate their definitions for

each different type needed.

297

Chapter 10

FUTURE WORK

We summarize some ongoing and future work in this chapter: designing a new

Mendler-style recursion scheme that is useful for negative datatypes (Section 10.1),

different fixpoint types (Section 10.2), deriving monotonicity from polarized kinds

(Section 10.4), and kind polymorphism and kind inference (Section 10.4).

10.1 ANOTHER MENDLER-STYLE RECURSION SCHEME FOR

MIXED-VARIANT DATATYPES 1

In Section 3.9, we discussed Mendler-style iteration with a syntactic inverse, msfit,

which is particularly useful for defining functions over negative (or mixed-variant)

datatypes. We demonstrated the usefulness of msfit by defining functions over

HOAS:

• the string formatting function showHOAS for the untyped HOAS using

msfit∗ (Figure 3.17 on p.133) and

• the type-preserving evaluator evalHOAS for the simply-typed HOAS using

msfit∗→∗ (Figure 3.20 on p.143).

In this section, we speculate about another Mendler-style recursion scheme, mprsi,

motivated by an example similar to the evalHOAS function. The name mprsi

stands for Mendler-style primitive recursion with a sized index.

1 This section is an extended and revised version of our extended abstract (without the
introduction section) in the TYPES 2013 workshop.

298

data ExpF r t where Lam :: (r t1 → r t2)→ ExpF r (t1 → t2)
App :: r (t1 → t2)→ r t1 → ExpF r t2

type Exp′ a t = µ̆∗→∗ ExpF a t
type Exp t = ∀a.Exp′ a t
lam :: (∀a.Exp′ a t1 → Exp′ a t2)→ Exp (t1 → t2)
lam e = In̆∗→∗ (Lam e)
app :: Exp (t1 → t2)→ Exp t1 → Exp t2
app e1 e2 = In̆∗→∗ (App e1 e2)

newtype Id a = MkId {unId :: a}
type Phi f a = ∀r .(∀i.a i → r a i)→ (∀i.r a i → a i)→ (∀i.f (r a) i → a i)

evalHOAS :: Exp t → Id t
evalHOAS e = msfit∗→∗ ϕ e where
ϕ :: Phi ExpF Id
ϕ inv ev (Lam f) = MkId (λv → unId (ev (f (inv (MkId v)))))
ϕ inv ev (App f x) = MkId (unId (ev f) (unId (ev x)))

-- The code above is the same as the code in Figure 3.20 in Section 3.9.
-- We repeat it here, in order to review the evalHOAS example.

data V r t where VFun :: (r t1 → r t2)→ V r (t1 → t2)
type Val t = µ∗→∗ V t
val f = In∗→∗ (VFun f)

vevalHOAS :: Exp t → Val t
vevalHOAS e = msfit∗→∗ ϕ e where
ϕ :: Phi ExpF (µ∗→∗ V)
ϕ inv ev (Lam f) = val (λv → ev (f (inv v)))
ϕ inv ev (App e1 e2) = unVal (ev e1) (ev e2)

-- unVal does not follow the restrictions of the Mendler style.
-- Its definition relies on pattern matching against In∗→∗.

unVal :: Val (t1 → t2)→ (Val t1 → Val t2)
unVal (In∗→∗ (VFun f)) = f

Figure 10.1: Two evaluators for the simply-typed λ-calculus in HOAS. One uses

a native (Haskell) value domain (evalHOAS), the other uses a user-

defined value domain (vevalHOAS).

299

We review the evalHOAS example and then compare it to our motivating ex-

ample vevalHOAS for mprsi. Both evalHOAS and vevalHOAS are illustrated in

Figure 10.1. Recall that this code is written in Haskell, following the Mendler-style

conventions. The function evalHOAS ::Exp t → Id t is a type-preserving evaluator

that evaluates an HOAS expression of type t to a (Haskell) value of type t. The

evalHOAS function always terminates because msfit∗→∗ always terminates. Recall

that msfit∗→∗ and µ̆∗→∗ can be embedded into System Fω (or System Fi, if we need

term indices).

The motivating example vevalHOAS :: Exp t → Val t is also a type-preserving

evaluator. Unlike evalHOAS , it evaluates to a user-defined value domain Val of

type t (rather than a Haskell value). The definition of vevalHOAS is similar to

evalHOAS ; both of them are defined using msfit∗→∗. The first equation of ϕ

for evaluating the Lam-expression is essentially the same as the corresponding

equation in the definition of evalHOAS . The second equation of ϕ for evaluating

the App-expression is also similar in structure to the corresponding equation in the

definition of evalHOAS . However, the use of unVal is problematic. In particular,

the definition of unVal relies on pattern matching against In∗→∗. Recall that one

cannot freely pattern match against a recursive value in Mendler style. Recursive

values must be analyzed (or eliminated) by using Mendler-style recursion schemes.

It is not a problem to use unId in the definition of evalHOAS because Id is non-

recursive.

It is not likely that unVal can be defined using any of the existing Mendler-style

recursion schemes discussed earlier. So, we designed a new Mendler-style recursion

scheme that can express unVal. The new recursion scheme mprsi extends mpr

with an additional uncast operation. Recall that mpr has two abstract operations,

call and cast. So, mprsi has three abstract operations, call, cast, and uncast. In

the following paragraphs, we explain the design of mprsi step-by-step.

300

Let us try to define unVal using mpr∗→∗ and examine where it falls short.

mpr∗→∗ provides two abstract operations, cast and call, as it can be seen from the

type signature below:

mpr∗→∗ :: (∀r i.(∀i.r i → µ∗→∗ f i) -- cast
→ (∀i.r i → a i) -- call
→ (f r i → a i))→ µ f i → a i

We attempt to define unVal using mpr∗→∗ as follows:

unVal :: µ∗→∗ V (t1 → t2)→ (µ∗→∗ V t1 → µ∗→∗ V t2)
unVal = mpr∗→∗ ϕ where
ϕ cast call (VFun f) = ...

Inside the ϕ function, we have a function f :: (r t1 → r t2) over abstract recursive

values. We need to cast f into a function over concrete recursive values (µ V t1 →

µ V t2). We should not need to use call, since we do not expect to use any

recursion to define unVal. So, the only available operation is cast ::(∀i.r i → µ f i).

Composing cast with f , we can get (cast ◦ f) :: (r t1 → µ V t2), whose codomain

(µ V t2) is exactly what we want. But, the domain is still abstract (r t1) rather

than being concrete (µ V t1). We are stuck.

What additional abstract operation would help us complete the definition of

unVal? We need an abstract operation to cast from (r t1) to (µ V t1) in a

contravariant position. If we had an inverse of cast, uncast :: (∀i.µ f i → r i), we

could complete the definition of unVal by composing uncast, f , and cast. That is,

(uncast ◦ f ◦ cast) :: (µ∗→∗ V t1 → µ∗→∗ V t2). Thus, we can formulate mprsi∗→∗
with a naive type signature as follows:

mprsi∗→∗ :: (∀r i. (∀i.r i → µ∗→∗ f i) -- cast
→ (∀i.µ∗→∗ f i → r i) -- uncast
→ (∀i.r i → a i) -- call
→ (f r i → a i))→ µ f i → a i

mprsi∗→∗ ϕ (In∗→∗ x) = ϕ id id (mprsi∗→∗ ϕ) x

301

Although the type signature above is type-correct, it is too powerful. The

Mendler-style approach uses types to forbid, as ill-typed, non-terminating compu-

tations. Having both cast and uncast supports the same ability as freely pattern

matching over recursive values, which can lead to non-termination. To recover the

guarantee of termination, we need to restrict the use of either cast or uncast, or

both.

Let us see how this non-termination might occur. If we allowed mprsi∗→∗ with

the naive type signature above, we would be able to write an evaluator (similar

to vevalHOAS but for an untyped HOAS) that does not always terminate. This

evaluator would diverge for terms with self application. Here, we walk through the

process of defining an untyped HOAS with a dummy index. The base structures

for the untyped HOAS and its value domain can be defined as follows:

data ExpFu r t = Lamu (r t → r t) | Appu (r t) (r t)

data Vu r t = VFunu (r t → r t)

Fixpoints of the structures above represent the untyped HOAS and its value do-

main. Here, the index t is bogus; that is, it does not track the type of an HOAS

expression but remains constant everywhere. Using the naive version of mprsi∗→∗
above, we can write an evaluator similar to vevalHOAS for the untyped HOAS

(µ∗→∗ ExpFu ()) via the value domain (µ∗→∗ Vu ()), which would obviously not

terminate for some input.

Why did we believe that vevalHOAS always terminates? Because it evaluates

a well-typed HOAS, whose type is encoded as an index t in the recursive datatype

(Exp t). That is, the use of indices as types is the key to the termination property.

Therefore, our idea is to restrict the use of the abstract operations in mprsi∗→∗ by

enforcing constraints over their indices; in that way, we would still be able write

vevalHOAS for the typed HOAS, but would get a type error when we try to write

an evaluator for the untyped HOAS.

302

We suggest that some of the abstract operations of mprsi∗→∗ should only be

applied to the abstract values whose indices are smaller in size compared to the

size of the argument index. For the vevalHOAS example, we define being smaller

as the structural ordering over types, that is, t1 < (t1 → t2) and t2 < (t2 → t1). We

have two candidates for the type signature of mprsi∗→∗:

• Candidate 1: restrict uses of both cast and uncast
mprsi∗→∗ :: (∀r j. (∀i.(i < j)⇒ r i → µ∗→∗ f i) -- cast

→ (∀i.(i < j)⇒ µ∗→∗ f i → r i) -- uncast
→ (∀i. r i → a i) -- call
→ (f r j → a j))→ µ f i → a i

• Candidate 2: restrict the use of uncast only
mprsi∗→∗ :: (∀r j. (∀i. r i → µ∗→∗ f i) -- cast

→ (∀i.(i < j)⇒ µ∗→∗ f i → r i) -- uncast
→ (∀i. r i → a i) -- call
→ (f r j → a j))→ µ f i → a i

We strongly believe that the first candidate always terminates, but it might be

overly restrictive. Maybe the second candidate is enough to guarantee termination?

Both candidates allow defining vevalHOAS , because one can define unVal using

mprsi∗→∗ with either one of the candidates, but both forbid the evaluator over the

untyped HOAS, because neither supports extracting functions from the untyped

value domain.

We need further studies to prove the termination properties of mprsi. The

sized-type approach, discussed in Section 9.4, seems to be relevant for showing

the termination of mprsi. However, existing theories on sized-types are not di-

rectly applicable to mprsi because they are focused on positive datatypes, but not

negative datatypes.

303

10.2 CONVERSION BETWEEN DIFFERENT FIXPOINT TYPES

In Chapter 3, we introduced several Mendler-style recursion schemes by describ-

ing them in Haskell, following certain stylistic conventions. Most of the recursion

schemes, including mit and mpr, share the same standard fixpoint representation

in Haskell, denoted by µ, except those recursion schemes involving inverse opera-

tions, such as msfit. The recursion schemes involving inverse operations operate

on the inverse augmented fixpoint, denoted by µ̆. Recall the Haskell definitions of

the two different fixpoint type operators, µ and µ̆, at kind ∗, repeated below:

newtype µ∗ f = In∗ (f (µ∗ f)) -- mit∗, mpr∗, . . .

data µ̆∗ f a = In̆∗ (f (µ̆∗ f a)) | Inverse∗ a -- msfit∗
We want to establish an isomorphism,2 µ∗ f ' (∀a.µ̆∗ f a), between these two

fixpoint types, because we want the Nax language to have one fixpoint rather than

two. Naively thinking, there is likely to be a one-to-one mapping between the µ∗-

values and the µ̆∗-values that do not involve the constructor Inverse∗. Since µ∗ and

µ̆∗ look structurally isomorphic to each other excuding Inverse∗, one could expect

that the quantification ∀a in (∀a.µ̆∗ f a) would prevent the constructor Inverse∗
from appearing in values of type (∀a.µ̆∗ f a).

To establish an isomorphism between µ∗ and µ̆∗, we must construct two map-

ping (or coercion) functions of type µ∗ f → (∀a.µ̆∗ f a) and (∀a.µ̆∗ f a) → µ∗ f

(that are each other’s inverse). At first glance, we thought it would be easier to

find a mapping of type µ∗ f → (∀a.µ̆∗ f a) by replacing all the In∗s with In̆∗s.

However, contrary to our expectation, the other mapping turns out to be more

natural. We illustrate this by using the HOAS datatype as an example. At the

end of this section, we will contemplate on why this is so.

Figure 10.2 illustrates a mapping from (∀a.µ̆∗ E a) to µ∗ E implemented using

2It is more than an isomorphism since we want to preserve the structure as well. But, for
simplicity, we will just say isomorphism here.

304

msfit∗, where E is a base structure for the untyped HOAS. Since we have two

fixpoint type operators, µ̆∗ and µ∗, we can define two recursive datatypes from E :

Exp defined as (∀a.µ̆∗ E a) and Expr defined as µ∗ E . The function exp2expr ::

Exp → Expr implements the mapping from µ̆∗-based HOAS expressions to µ∗-

based HOAS expressions. Note, exp2expr is defined using msfit∗. This indicates

that the mapping from (∀a.µ̆∗ f a) to µ∗ f , for any given f , is admissible within

our theory, System Fi.

Figure 10.3 illustrates an incomplete attempt to define a mapping the other

direction. Finding a mapping from (µ∗ E) to (∀a.µ̆∗ E a) turns out to be difficult

(perhaps impossible). Instead, we found a possible candidate (expr2exp′)3 for a

mapping from Expr to (Exp′ Expr). The codomain (Exp′ Expr) is an instantiation

of (∀a.Exp′ a) where a is instantiated to Expr . To define expr2exp′, we need its

inverse function exp′2expr :: Exp′ Expr → Expr , whose implementation is struc-

turally identical to exp2expr in Figure 10.2, but its type signature instantiates a by

Expr . Note that exp′2expr is defined using msfit′, whose definition is structurally

identical to msfit∗, but recurses over values of µ̆∗ f a rather than (∀a.µ̆∗ f a).

We can prove that msfit′ always terminates by embedding it into System Fω (see

Figure 10.4). Thus, exp′2expr is admissible within our theory.

Lastly, we define expr2exp′ similar in structure to its inverse exp′2expr . Instead

of an abstract recursive call and an abstract inverse, we use general recursion and

the actual inverse function exp′2expr . Here, we use general recursion and pattern

matching against In∗ because we do not know of a Mendler-style recursion scheme

to define expr2exp′. We need further investigation on whether expr2exp′ would

always terminate and whether it is possible to make it work for Exp rather than

Exp′ Expr .

Let us contemplate on why the coercion from (∀a.µ̆∗ E a) to µ∗ E exists,

3 We ended up using general recursion while defining expr2exp′. So, we do not know whether
expr2exp′ is total.

305

data E r = Lam (r → r) | App r r
type Expr = µ∗ E
type Exp′ a = µ̆∗ E a
type Exp = (∀a.Exp′ a) -- i.e., (∀a.µ̆∗ E a)
exp2expr :: Exp → Expr -- i.e., (∀a.µ̆∗ E a)→ µ∗ E
exp2expr = msfit∗ ϕ where
ϕ inv p2r (Lam f) = In∗ (Lam ((λx → p2r (f (inv x)))))
ϕ inv p2r (App e1 e2) = In∗ (App (p2r e1) (p2r e2))

Figure 10.2: Conversion from µ̆-values to µ-values using msfit.

msfit∗ :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)→ (∀a.µ̆∗ f a)→ a
msfit∗ ϕ r = msfit′ ϕ r
msfit′ :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)→ µ̆∗ f a → a
msfit′ ϕ (In̆∗ x) = ϕ Inverse∗ (msfit′ ϕ) x
msfit′ ϕ (Inverse∗ z) = z
exp′2expr :: Exp′ Expr → Expr -- i.e., µ̆∗ E (µ∗ E)→ µ∗ E
exp′2expr = msfit′ ϕ where
ϕ inv p2r (Lam f) = In∗ (Lam ((λx → p2r (f (inv x)))))
ϕ inv p2r (App e1 e2) = In∗ (App (p2r e1) (p2r e2))

expr2exp′ :: Expr → Exp′ Expr -- i.e., µ∗ E → µ̆∗ E (µ∗ E)
expr2exp′ (In∗ (Lam f)) = In̆∗ (Lam (λx → expr2exp′ (f (exp′2expr x))))
expr2exp′ (In∗ (App e1 e2)) = In̆∗ (App (expr2exp′ e1) (expr2exp′ e2))

Figure 10.3: An incomplete attempt to convert from µ-values to µ̆-values.

msfit :: (∀r .(a → r a)→ (r a → a)→ f (r a)→ a)→ µ̆∗ f Id a → a

msfit ϕ x = caseSum x unId (λf → f (ϕ Id))

Figure 10.4: Fω encoding of msfit′ in Haskell (see with Figure 3.18 on p.139).

306

but the coercion the other direction is difficult (perhaps impossible) to find. We

believe that msfit∗ can express more functions than mit∗ (e.g., showHOAS in

Figure 3.17). Then, it may be the case that values of (∀a.µ̆∗ f a) are in fact more

restrictive than the values of (µ∗ f). The additional expressiveness of msfit∗ may

be a compensation for the restrictions on the value of (∀a.µ̆∗ f a). In summary, we

strongly believe that (∀a.µ̆∗ f a) is a subset of (µ∗ f). From this observation, we

plan to design Nax with two fixpoints (µ̆ and µ) and built-in support for coercion

from inverse-augmented fixpoint types to standard fixpoint types (but not the

other direction).

In this section, we discussed what we should consider when using both mit

and msfit together. For some recursion schemes, it is quite trivial to establish

a theory for using them together. For instance, there is no problem using mpr

together with mit since mpr subsumes mit — we can implement mit in terms

of mpr. However, for some recursion schemes, such as mpr and msfit, it is not

trivial to establish a theory for using them together. Developing theories for using

such recursion schemes together is an important future work.

10.3 MONOTONICITY FROM POLARIZED KINDS

We first review the summary of discussions in Section 5.3 and then list future work

on monotonicity and polarized kinds.

Summary of the discussions in Section 5.3

In Section 5.3, we embedded Mendler-style course-of-values recursion into System

Fixi assuming monotonicity. Recall that kinds are polarized in System Fixi. For

instance, F : p∗ → ∗ is a type constructor that expects a type argument, whose

polarity is p, and returns a type. We discussed that, for a regular recursive datatype

(µ∗F), monotonicity amounts to its base structure (F : p∗ → ∗) being a functor.

307

When F is a functor, there exists fmapF : ∀X∗Y ∗.(X → Y)→ FX → FY , which

satisfies the desired properties of a functor.

We can generalizes the concept of “being a functor” to type constructors of

arbitrary kinds, and such type constructors are called monotone. A monotonicity

witness is a generalization of fmapF , which witnesses F being a functor, and its

type is called monotonicity, denoted by monκF . For example, monotonicity for

F at kind ∗ is denoted by mon∗F , thus, fmapF : mon∗F . More generally, when

the type constructor F has more than one argument, there can be more than one

notion of monotonicity for F . For example, consider F : p1κ1 → p2κ2 → ∗. We

say that F is monotone on its first argument when (X1 → X2) implies (FX1Y →

FX2Y) and that F is monotone on its second argument when (Y1 → Y2) implies

(FXY1 → FXY2). One possible notion of monotonicity for F is to require only

the first argument be monotone. Another possible notion is to require both of the

arguments be monotone.

We discussed in Section 5.3 that there are more than one notion of monotonicity

witness at higher kinds. For a non-regular recursive type (µp∗→∗F), where F :

pr(p∗ → ∗)→ (p∗ → ∗), there are two different notions of monotonicity.

monp∗→∗F = ∀Gp∗→∗
1 .∀Gp∗→∗

2 .(∀X.G1X → G2X)→ (∀X.F G1X → F G2X)

mon′p∗→∗F = ∀Gp∗→∗
1 .∀Gp∗→∗

2 .mon∗G1 →
(∀X∗.G1X → G2X)→
∀X∗1 .∀X∗2 .(X1 → X2)→ F G1X1 → F G2X2

The former, monp∗→∗F , requires F to be monotone on its first argument, which

is the recursive argument. We discussed that monp∗→∗F is sufficient for the em-

bedding of mcvpr over non-truly nested datatypes, such as powerlists.

The latter, mon′p∗→∗F , requires F to be monotone on both arguments (i.e.,

both the recursive argument and the index argument). We discussed that we

need this stronger notion of monotonicity in order to embed mcvpr over truly

308

nested datatypes, such as bushes, whose index involves the recursive argument in

its definition.

Future work on deriving monotonicity from polarized kinds.

According to the embedding of mcvprκ in Section 5.3, one needs to witness mono-

tonicity of F to ensure that mcvprκ always terminates for (µκF)-values. That is,

one must show the existence of monκF with the desired properties to use mcvprκ
with a termination guarantee. However, it is not desirable to require programmers

to manually derive monκF for each F . It more desirable for the language imple-

mentation to automatically derive a monotonicity witness for F . It would be even

better if the language type system can guarantee the existence of a monotonic-

ity witness by examining the polarized kind of F , rather than actually deriving

monotonicity for F by examining its definition.

For System F, it is known thatmon∗F exists for any positive F (i.e., F : +∗ → ∗

if given a polarized kind) [60]. However, it is still an open question whether any

F : +∗ → ∗ is monotone in higher-order polymorphic calculi, such as Fixi. In

Section 5.3, we proved that mon∗F exists for a certain class of F : +∗ → ∗, and

proof that mon∗F exists for any F : +∗ → ∗ in Fixi is left for future work.

We discussed that there are two notions of monotonicity at kind p∗ → ∗, one

(monp∗→∗F) for non-truly nested datatypes and the other (mon’p∗→∗F) for truly

nested datatypes. We conjecture that monp∗→∗F exists for any non-truly nested

F : +(p∗ → ∗) → (p∗ → ∗), and, that mon’+∗→∗F exists for any F : +(+∗ →

∗) → (+∗ → ∗). Proofs for such conjectures at higher kinds are also reserved for

future work.

309

10.4 KIND POLYMORPHISM AND KIND INFERENCE

We support rank-1 polymorphism at the kind level in our Nax implementation.

(e.g., Path in Figure 7.3 on page 248, Env in Figure 7.9 on page 258). However,

our theories (System Fi and Fixi) do not have kind polymorphism. We strongly

believe that rank-1 polymorphism at the kind level does not affect normalisation

and consistency, but it needs further investigation to confirm our belief.

In the Nax implementation, types are mostly inferred but kinds are always

annotated. For example, we must annotate κ in µ[κ] and In[κ], in addition to the

kind annotations in datatype declarations (data F : κ where · · ·). We believe

we only need kind annotations in datatype declarations. We can omit the kind

annotations in µ because µ is always followed by a type constructor, µF ; we can

always infer the kind of F . Similarly, we might be able omit or simplify the kind

annotation in In, because In is always followed by a term, In t; we can infer the

type of t, and we might have enough information to infer the kind for In.

We are also working on a new implementation of Nax with better syntax that

supports better kind inference and non-ambiguous fixpoint derivation. In our new

implementation, the kind is inferred for µ without any annotation. We have not

found a good way to completely infer the kind for In, but we found out that it is

enough to specify the arity of the kind. That is, write Inn instead of In[κ] where n is

the arity of κ. For example, in the new syntax, we write In3 instead of In[∗→∗→∗→∗],

In[∗→(∗→∗)→∗→∗], or In[∗→{Nat}→∗→∗], which is much more succinct, especially for

larger arities. Another change to the syntax is on the datatype declaration of

the GADT form. The syntax in our dissertation (data F : κ where · · ·) can be

ambiguous for deriving the fixpoint of F . For example, when F : (∗ → ∗)→ ∗ → ∗,

we can either take fixpoint of µF : ∗ → ∗, or µ(F t) : ∗ for some t : ∗. In the

current syntax, we simply choose the longest match, that is µF : ∗ → ∗. In the

new syntax, we change the datatype declaration syntax, similar to the syntax of

310

Agda’s, to clearly distinguish parameter arguments from index arguments. For

instance, (data F1 r : ∗ → ∗ where · · ·) or (data F0 t r : ∗ where · · ·), where

parameter arguments (t, r) appear on the left of the colon (:). Then, we can derive

fixpoints without ambiguity, always on the last parameter argument, for instance,

we would derive µF1 : ∗ → ∗ and µ(F0 t) : ∗.

311

Chapter 11

CONCLUSIONS

In this final chapter, we conclude the dissertation by restating our thesis and sum-

marizing the research in prior chapters (Section 11.1) that support it. Moreover,

we emphasize the significance of our contributions (Section 11.2) and outline the

limitations of our research (Section 11.3).

11.1 SUMMARY

Our thesis is that a language design based on Mendler-style recursion schemes and

term-indexed types leads to a system in the sweet spot that seamlessly unifies func-

tional programming and logical reasoning (via the Curry–Howard correspondence).

In Chapter 1, we characterized the sweet spot based on the four features that the

unified language system should support. They are: (1) a convenient programming

style, (2) an expressive logic, (3) a small theory, and (4) a simple implementation

framework.

In Chapter 2, we reviewed the two well-known polymorphic calculi, System F

and System Fω, to prepare the reader for our term-indexed calculi, System Fi
and System Fixi, in later chapters. We formalized these polymorphic calculi with

Curry-style terms and dividing typing contexts into two parts to show that our

term-indexed calculi are extensions of System Fω. We focused on the strong normal-

ization proofs of these systems because the strong normalization proof of System

Fi in Chapter 4 relies on the strong normalization of System Fω. In addition, we

reviewed the Hindley-Milner type system to prepare the reader for our discussion

312

of type inference in Nax (Chapter 8).

Chapter 3 explores Mendler-style recursion schemes, their hierarchical organiza-

tion, and their termination behaviors. We use Haskell to model the behavior of

the recursion schemes, write examples that illustrate characteristics of each of the

recursion schemes, and provide a semi-formal termination proof for some of them.

We used Haskell for two purposes.

The first is the availability of a type-correct syntax, an executable platform for

fast prototyping of examples, and a mature development environment of GHC for

experimenting with new ideas. We use a certain subset of Haskell that conforms to

the Mendler-style conventions. The discovery of our new Mendler-style recursion

combinator (msfit) was suggested by this method of experimentation.

The second purpose is the use of a subset of Haskell as an implementation of

System Fω. We illustrated a semi-formal termination proof of mit∗ and msfit∗ by

embedding them into this subset.

We organized the hierarchy of Mendler-style recursion schemes based on two

aspects: (1) the abstract operations they support and (2) the kind of a based

datatype they operate on.

The first aspect, the abstract operations, categorizes the family of Mendler-

style recursion schemes. All Mendler-style recursion schemes support the abstract

recursive call, which enables recursive calls over direct subcomponents of the ar-

gument value. Mendler-style iteration (mit) is the most basic family, supporting

only this one abstract operation. Other families of Mendler-style recursion schemes

additionally support their own characteristic operations. Mendler-style primitive

recursion (mpr) additionally supports an abstract cast operation, which enables

the programmer to access direct sub-components by casting from abstract recursive

values to concrete recursive values. Mendler style course-of-values iteration and

recursion (mcvit and mcvpr) additionally support the abstract out operation,

313

which enables access to deeper subcomponents.

We also discovered a new Mendler-style recursion scheme msfit, iteration with

syntactic inverses, which additionally supports abstract inverse operation. To sup-

port this abstract inverse operation, we needed to augment the fixpoint type oper-

ator with a syntactic inverse. We denoteds this abstract inverse as µ̆, to distinguish

it from the standard fixpoint type operator µ. We have discussed the ramifications

of having two different fixpoint types in Chapter 10.

The second aspect, the kinds of datatypes operated on, categorizes the indexing

structure of the recursive datatype within each family. Each family of Mendler-

style recursion schemes is a collection of many recursion combinators, one at each

kind. For instance, mit∗ iterates over regular datatypes with no type index (i.e.,

µ∗F where F : ∗ → ∗), mit∗→∗ iterates over datatypes with one type index (i.e.,

µ∗→∗F where F : (∗ → ∗) → (∗ → ∗)), and, more generally, mitκ iterates over

recursive datatypes of the form µκF where F : κ → κ. Mendler-style recursion

schemes are uniformly defined regardless of the kinds of datatypes they operate on.

That is, the definition of mitκ is identical regardless of κ, only its type signatures

depend on κ. Uniform definitions, regardless of indexing structure, is one of the

advantages of Mendler style over conventional (or, Squiggol) style. This advantage

allowed us to discover that simply-typed Higher-Order Abstract Syntax (HOAS)

evaluation can be expressed within System Fω. We were able to write a simply-

typed HOAS evaluator using msfit∗→∗.

The indexing structure discussed in Chapter 3 is restricted to type indices (as

opposed to term indices). To formulate Mendler-style recursion schemes over term-

indexed datatypes, we need to extend kinds. For instance, mitA→∗, where A is

a type, cannot be expressed in System Fω because A → ∗ is not a valid Fω-kind.

In later chapters, we extend Mendler-style recursion schemes over term-indexed

datatypes by formalizing two term-indexed calculi, which extend System Fω with

term indices.

314

The termination behaviors of Mendler-style recursion schemes can depend on

the particular recursion scheme. Some recursion schemes (mit, mpr, msfit) termi-

nate for arbitrary datatypes, while others (mcvpr, mcvit) terminate only for pos-

itive (or, monotone) datatypes. One of our contributions to the study of Mendler

style is finding a counterexample for the termination of the course-of-values it-

eration (and also recursion) over negative datatypes. In Chapter 5, we discussed

how to embed mcvpr into a strongly normalizing calculi, which is another original

contribution to the study of Mendler style.

Chapters 4 and 5 present two term-indexed calculi, System Fi and System Fixi.

Our term-indexed calculi serve as the theoretical basis for understanding the

Mendler-style recursion schemes over recursive types with term indices. By embed-

ding Mendler-style recursion schemes in our term-indexed calculi, we know that

those recursion schemes always terminate, because our term-indexed calculi are

strongly normalizing.

System Fi (Chapter 4) extends System Fω (which supports type indices) with

term indices. Term indices in System Fi are erasable1 unlike term indices in the

dependently-typed calculi. We establish strong normalization and logical consis-

tency of System Fi by term-index erasure, which projects a typing judgement in

System Fi into a typing judgement in System Fω. We have extended the un-

derstanding of Mendler-style recursion schemes over term-indexed datatypes. All

Mendler-style recursion schemes that are embeddable in System Fω, (e.g., mit,

msfit), can also be embedded into System Fi.

Similarly, System Fixi (Chapter 5) extends System Fixω with erasable term

indices. System Fixω is an extension of System Fω with polarized kinds and equi-

recursive fixpoint types. By term-index erasure, well-typed terms in System Fixi are

well-typed in System Fixω. Because Fixω is known to be strongly normalizing and

1 Well-typed terms in (Curry style) Fi are well-typed in Fω

315

logically consistent, we know that Fixi is also strongly normalizing and logically

consistent. There exists a reduction preserving embedding of the Mendler-style

primitive recursion (mpr) in System Fixi. This follows from the embedding of

mpr in System Fixω. In addition, we discovered an embedding of mcvpr (although

not a reduction preserving embedding) in System Fixi for monotone (or positive)

datatypes. Our embedding of mcvpr motivates further research into the open

question of whether a monotonicity witness is derivable from the polarized kinds

of type constructors.

In Chapters 6, 7, and 8, we introduce the Nax programming language, which is

based on our term-indexed calculi, Systems Fi and Fixi.

Chapter 6 provides a tutorial of Nax. We introduce the syntax and features

of the language using small example Nax programs. Nax supports language con-

structs, which are not directly part of the term-indexed calculi. For example, Nax

supports non-recursive datatype declarations and pattern matching over those non-

recursive datatypes, a fixpoint type operator (µ[κ]) and its constructor (In[κ]), and

several Mendler-style recursion schemes (mit, mpr, mcvpr, msfit) as primitive

constructs. Adding these constructs to the language would not invalidate strong

normalization or logical consistency, because these constructs are known to be

embeddable into term-indexed calculi.

Chapter 7 highlights the design principles of the type system of Nax. Extending

the kind syntax with the type indexed arrow kinds ({A} → κ) is the key design

element in Nax for supporting term indices. We compare our approach (Nax,

System Fi) of adding term indices with an alternative approach (GHC’s datatype

promotion) of adding term indices to a polymorphic language. In the alternative

approach, types are promoted to kinds (i.e., {A} is itself a kind) and terms are

promoted to types. Our approach has the advantage of allowing nested term indices

(i.e., term indices can have term-indexed types). The alternative approach has the

316

advantage of allowing data structures that contain types as elements.

We also compare these two approaches with the approach taken in Agda, a

dependently-typed language with both universe subtyping and universe polymor-

phism. Our approach is closely related to Agda’s universe subtyping, and the

alternative approach (GHC’s datatype promotion) is closely related to Agda’s uni-

verse polymorphism. We made these comparisons by programming extended ex-

amples of a type-preserving evaluator and a stack-safe compiler in three different

languages: Nax, Haskell (with datatype promotion), and Agda. These examples

also show that Nax supports certain levels of programming convenience. Each of

the programs written in each of the three different languages were about the same

size, despite the fact that Nax must define recursive types in two levels by taking

a fixpoint of a non-recursive datatype.

Chapter 8 describes the type inference in Nax. To support Hindley–Milner-

style type inference, Nax only allows rank-1 type polymorphism. One cannot gen-

erally infer types in System Fi or Fixi since they allow higher-rank polymorphism.

For programs involving only regular (i.e., non-indexed) datatypes, type inference

is exactly the same as Hindley–Milner type inference, requiring no type annota-

tions. For programs involving indexed datatypes, we require type annotations on

datatype declarations, case expressions, and Mendler-style recursion combinators,

but nowhere else. Our current implementation requires kind annotations on the

fixpoint type operator (µ[κ]) and its constructor (In[κ]), but we believe these kind

annotations can be inferred.

Chapter 9 discusses five categories of related work: Mendler-style co-recursion

schemes for possibly infinite structures, Mendler-style recursion schemes over mul-

tiple recursive values, dependently-typed Mendler-style induction, sized-types and

Mendler style, and a comparison of our approach with logical frameworks.

Chapter 10 summarizes some ongoing and future work. We are designing a

317

new Mendler-style recursion scheme useful for negative datatypes and studying the

relationship between two different fixpoint types (µ and µ̆). We plan to investigate

the derivation of monotonicity from polarized kinds. Moreover, we want to find

a rigorous proof for the assertion that rank-1 kind polymorphism does not break

logical consistency. Finally we would like to implement kind inference in Nax.

11.2 SIGNIFICANCE

Our main contribution is a logically consistent language design that supports all

recursive datatypes available in functional programming languages such as Haskell,

and in addition, term-indexed types. Our design steers the narrow path between

convenient programming and strong guarantees of program invariants, while taking

advantages of the strong points of both. Our language, Nax, is based on a small

theory and admits a simple implementation framework.

Our investigations into Mendler style uncovered two new aspects. First, we dis-

covered a useful recursion scheme (msfit) for negative datatypes The discovery of

msfit lead to the novel discovery that simply-typed HOAS evaluation is express-

ible within System Fω. Second, we generalized Mendler-style recursion schemes

over term-indexed datatypes. Generalization over term-indexed datatypes were

established by the formalization of our term-indexed calculi (System Fi and Fixi),

which extend the polymorphic calculi (System Fω and Fixω).

Our term-indexed calculi are small theories that can embed indexed datatypes

and their (Mendler-style) recursion schemes. That is, we do not need to extend

the calculi with primitive datatypes for theoretically modeling a practical language.

Datatypes and Mendler-style recursion schemes in Nax can be embedded into our

term-indexed calculi.

The Nax language implementation does not need an extra termination checker

because its termination is type-based. Once the program type checks, we know

that it terminates because Nax programs can be embedded into the term-indexed

318

calculi, which are strongly normalizing.

In addition, Nax supports a conservative extension of the Hindley-Milner type

inference in the presence of both type- and term-indices. This is made possible

by clarifying the required annotation sites in the programming language syntax,

rather than by ad-hoc type reconstruction from optional annotations appearing at

arbitrary locations. For the programs involving indexed types, we require anno-

tations on datatype declarations and their eliminators (i.e., case expressions and

Mendler-style recursion combinators), but nowhere else.

11.3 LIMITATIONS AND FUTURE WORK

We summarise several limitations of our term-indexed calculi and the Nax language

design.

We implemented rank-1 kind polymorphism, for the type constructors defined

by the top level datatype declarations, in the Nax language implementation. How-

ever, our term-indexed calculi do not have any form of kind polymorphism. We

strongly believe that rank-1 kind polymorphism for those type constructors should

not cause inconsistency, but further investigation is needed.

Nax does not yet have type equality built in. We know that we can encode

Leibniz equality over both types and terms in System Fi (see Section 4.2.3). How-

ever, we cannot define Leibniz equality as a user defined datatype in Nax because

the definition of Leibniz equality requires higher-rank polymorphism. We can, of

course, have a built-in Leibniz equality as a primitive construct in Nax. We know

that Leibniz equality over types have been useful in the context of higher-order

polymorphic lambda calculus [95]. Leibniz equality over term indices is definable

in the same manner as Leibniz equality over types, and can be built-in to Nax.

However, we are not yet sure how useful Leibniz equality over term indices would

be because it does not automatically give us induction principles, which are usually

expected for a more powerful provable equality over terms (e.g., proving symmetry

319

of natural number addition). Further studies are needed for such powerful term

index equality.

Mendler-style course-of-values recursion only terminates for monotone recursive

types. We conjecture that we can derive monotonicity from kinds, but it is an open

question as to whether doing so is a sound method. We need further theoretical

investigation into this difficult problem. Meanwhile, we plan to support ad-hoc

methods of deriving monotonicity by analyzing the syntactic structure of datatype

definitions in Nax.

Nax does not support datatypes that contain types (e.g. [Int, Bool]). This

is often useful for datatype generic programming. We can work around this by

reflecting a certain subset of types as term representations of types (a.k.a. type

universes). We plan to investigate whether we can extend Nax with first-class

datatype descriptions [27] that enable representing arbitrary types as terms.

Nax currently does not support any syntax for optional type annotations. Be-

cause types can be completely inferred (with the exception of for index transformer

annotations required on case expressions and Mendler-style recursion combinators),

including such support did not seem necessary. However, optional type annota-

tions can be useful for documentation purposes, especially for global definitions,

which are often reused as library functions in many other places.

We are thinking about supporting some implicit coercions (e.g. cast abstract

operation of mpr) in Nax to make the code more concise. This would allow Nax

programs to look even more similar to the code using general recursion. Similarly,

we can also support implicit conversion from the indexed augmented recursive

types (µ̆-values) to the standard recursive types (µ-values).

320

BIBLIOGRAPHY

[1] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order

Types. PhD thesis, Ludwig-Maximilians-Universität München, 2006.

[2] Andreas Abel. Type-based termination, inflationary fixed-points, and mixed

inductive-coinductive types, February 15 2012. URL http://arxiv.org/abs/

1202.3496. Comment: In Proceedings FICS 2012, arXiv:1202.3174.

[3] Andreas Abel and Ralph Matthes. Fixed points of type constructors and

primitive recursion. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,

CSL, volume 3210 of Lecture Notes in Computer Science, pages 190–204.

Springer, 2004. ISBN 3-540-23024-6. URL http://dx.doi.org/10.1007/

978-3-540-30124-0_17.

[4] Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Generalized iteration and

coiteration for higher-order nested datatypes. In Andrew D. Gordon, editor,

FoSSaCS, volume 2620 of LNCS, pages 54–69. Springer, 2003.

[5] Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration and coiteration

schemes for higher-order and nested datatypes. Theoretical Computer Science,

333(1-2):3 – 66, 2005. ISSN 0304-3975. doi: DOI:10.1016/j.tcs.2004.10.017.

[6] Ki Yung Ahn and Tim Sheard. A hierarchy of mendler style recursion

combinators: taming inductive datatypes with negative occurrences. In

Proceedings of the 16th ACM SIGPLAN international conference on Func-

tional programming, ICFP ’11, pages 234–246, New York, NY, USA, 2011.

http://arxiv.org/abs/1202.3496
http://arxiv.org/abs/1202.3496
http://dx.doi.org/10.1007/978-3-540-30124-0_17
http://dx.doi.org/10.1007/978-3-540-30124-0_17

321

ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.2034807. URL

http://doi.acm.org/10.1145/2034773.2034807.

[7] Ki Yung Ahn, Tim Sheard, Marcelo Fiore, and Andrew M. Pitts. System Fi:

a higher-order polymorphic lambda calculus with erasable term indices. In

Proceedings of the 11th international conference on Typed lambda calculi and

applications, TLCA ’13, 2013.

[8] H. Barendregt. Introduction to generalized type systems. Journal of Func-

tional Programming, 1(2):125–154, 1991.

[9] Gilles Barthe, Maria João Frade, E. Giménez, Luis Pinto, and Tarmo Uustalu.

Type-based termination of recursive definitions. Mathematical Structures in

Computer Science, 14(1):97–141, 2004. URL http://dx.doi.org/10.1017/

S0960129503004122.

[10] Bird and Meertens. Nested datatypes. In MPC: 4th International Conference

on Mathematics of Program Construction. LNCS, Springer-Verlag, 1998.

[11] Richard Bird and Ross Paterson. Generalised folds for nested datatypes.

Formal Aspects of Computing, 11:11–2, 1999.

[12] Richard S Bird. An introduction to the theory of lists. In M. Broy, editor,

Logic of Programming and Calculi of Discrete Design, pages 3–42. Springer-

Verlag, 1987.

[13] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall,

1997.

[14] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed

lambda-programs on term algebras. Theoretical Computer Science, 39:135–

154, 1985.

http://doi.acm.org/10.1145/2034773.2034807
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1017/S0960129503004122

322

[15] Edwin Brady. IDRIS —: systems programming meets full dependent types.

In PLPV, pages 43–54. ACM, 2011. ISBN 978-1-4503-0487-0.

[16] Edwin Brady and Kevin Hammond. Correct-by-construction concurrency:

Using dependent types to verify implementations of effectful resource usage

protocols. Fundam. Inform, 102(2):145–176, 2010.

[17] James Cheney and Ralf Hinze. A lightweight implementation of generics and

dynamics. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell,

Haskell ’02, pages 90–104. ACM, 2002. ISBN 1-58113-605-6. doi: 10.1145/

581690.581698.

[18] James Cheney and Ralf Hinze. First-class phantom types. Technical report,

Cornell University, 2003.

[19] Adam Chlipala. Parametric higher-order abstract syntax for mechanized se-

mantics. In Proceeding of the 13th ACM SIGPLAN international confer-

ence on Functional programming, ICFP ’08, pages 143–156, New York, NY,

USA, 2008. ACM. ISBN 978-1-59593-919-7. doi: http://doi.acm.org/10.1145/

1411204.1411226. URL http://doi.acm.org/10.1145/1411204.1411226.

[20] Alonzo Church. A set of postulates for the foundation of logic (2nd paper).

Annals of Mathematics, 34(4):839–864, October 1933.

[21] Alonzo Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5(1):56–68, 1940.

[22] Alonzo Church. The calculi of lambda-conversion. Annals of Mathematical

Studies, 6, 1941.

[23] D. Clement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple ap-

plicative language: Mini-ML. In ACM Conference on LISP and Functional

Programming, pages 13–27, August 1986.

http://doi.acm.org/10.1145/1411204.1411226

323

[24] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and

George C. Necula. Dependent types for low-level programming. In ESOP

’07, volume 4421 of LNCS. Springer, 2007. ISBN 978-3-540-71314-2.

[25] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,

R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,

J. T. Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl proof

development system. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

ISBN 0-13-451832-2.

[26] Thierry Coquand and Gérard Huet. The calculus of constructions. Rapport

de Recherche 530, INRIA, Rocquencourt, France, May 1986.

[27] Pierre-Evariste Dagand and Conor McBride. Transporting functions across

ornaments. In Proceedings of the 17th ACM SIGPLAN international confer-

ence on Functional programming, ICFP ’12, pages 103–114, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364544.

URL http://doi.acm.org/10.1145/2364527.2364544.

[28] Luis Damas. Type Assignment in Programming Languages. PhD thesis, Uni-

versity of Edinburgh, 1984. Also published as Technical Report CST-33-85,

Department of Computer Science.

[29] Luis Damas and Robin Milner. Principal type-schemes for functional pro-

grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’82, pages 207–212, New York,

NY, USA, 1982. ACM. ISBN 0-89791-065-6. doi: 10.1145/582153.582176.

URL http://doi.acm.org/10.1145/582153.582176.

[30] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recur-

sion for higher-order abstract syntax. In Philippe de Groote, editor, TLCA,

volume 1210 of LNCS, pages 147–163. Springer, 1997. ISBN 3-540-62688-3.

http://doi.acm.org/10.1145/2364527.2364544
http://doi.acm.org/10.1145/582153.582176

324

[31] Richard A. Eisenberg and Stephanie Weirich. Dependently typed program-

ming with singletons. In Proceedings of the 2012 symposium on Haskell sym-

posium, Haskell ’12, pages 117–130. ACM, 2012. ISBN 978-1-4503-1574-6.

doi: 10.1145/2364506.2364522.

[32] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes

with embedded functions (or, programs from outer space). In Proceedings of

the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’96, pages 284–294, New York, NY, USA, 1996. ACM. ISBN

0-89791-769-3. doi: http://doi.acm.org/10.1145/237721.237792. URL http:

//doi.acm.org/10.1145/237721.237792.

[33] Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion: in-

dexed types now! In Proceedings of the 2007 ACM SIGPLAN symposium

on Partial evaluation and semantics-based program manipulation, PEPM ’07,

pages 112–121. ACM, 2007. ISBN 978-1-59593-620-2. doi: 10.1145/1244381.

1244400. URL http://doi.acm.org/10.1145/1244381.1244400.

[34] Jacques Garrigue and Jacques Le Normand. Adding GADTs to OCaml: the

direct approach. In ML ’11: Proceedings of the 2011 ACM SIGPLAN work-

shop on ML. ACM, 2011.

[35] Gerhard Gentzen. Untersuchungen über das Logische Schliessen. Mathema-

tische Zeitschrift, 39:176–210, 405–431, 1935. English translation in [36].

[36] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, edi-

tor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,

Amsterdam, 1969. Translation of [35].

[37] Herman Geuvers. Inductive and coinductive types with iteration and recur-

sion. In B. Nordström, K. Pettersson, and G. Plotkin, editors, Informal Pro-

ceedings Workshop on Types for Proofs and Programs, B̊astad, Sweden, 8–12

http://doi.acm.org/10.1145/237721.237792
http://doi.acm.org/10.1145/237721.237792
http://doi.acm.org/10.1145/1244381.1244400

325

June 1992, pages 193–217. Dept. of Computing Science, Chalmers Univ. of

Technology and Göteborg Univ., 1992.

[38] Herman Geuvers. A short and flexible proof of strong normalization for the

calculus of constructions. In Peter Dybjer, Bengt Nordström, and Jan M.

Smith, editors, TYPES, volume 996 of Lecture Notes in Computer Science,

pages 14–38. Springer, 1994. ISBN 3-540-60579-7. URL http://dx.doi.org/

10.1007/3-540-60579-7_2.

[39] Herman Geuvers. Induction is not derivable in second order dependent type

theory. In Proceedings of the 5th international conference on Typed lambda

calculi and applications, TLCA’01, pages 166–181, Berlin, Heidelberg, 2001.

Springer-Verlag. ISBN 3-540-41960-8. URL http://dl.acm.org/citation.

cfm?id=1754621.1754639.

[40] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse,

et son application à l’élimination des coupures dans l’analyse et la théorie

des types. In Proceedings 2nd Scandinavian Logic Symposium, pages 63–92,

Amsterdam, 1971. North-Holland.

[41] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de

lâĂŹarithmétique dâĂŹordre supérieur. PhD thesis, PhD thesis, Universit e

Paris VII, 1972.

[42] Warren D. Goldfarb. The undecidability of the second-order unification prob-

lem. Theoretical Computer Science, 13(2):225 – 230, 1981. ISSN 0304-

3975. doi: http://dx.doi.org/10.1016/0304-3975(81)90040-2. URL http:

//www.sciencedirect.com/science/article/pii/0304397581900402.

[43] T. Hagino. A Categorical Programming Language. PhD thesis, University of

Edinburgh, 1987.

http://dx.doi.org/10.1007/3-540-60579-7_2
http://dx.doi.org/10.1007/3-540-60579-7_2
http://dl.acm.org/citation.cfm?id=1754621.1754639
http://dl.acm.org/citation.cfm?id=1754621.1754639
http://www.sciencedirect.com/science/article/pii/0304397581900402
http://www.sciencedirect.com/science/article/pii/0304397581900402

326

[44] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. In Symposium on Logic in Computer Science, pages 194–204. IEEE

Computer Society Press, June 1987.

[45] Susumu Hayashi. Singleton, union and intersection types for program extrac-

tion. In Theoretical Aspects of Computer Software (Sendai, Japan), number

526 in LNCS, pages 701–730. Springer, September 1991.

[46] Fritz Henglein. Type inference with polymorphic recursion. ACM Trans.

Program. Lang. Syst., 15(2):253–289, April 1993. ISSN 0164-0925. doi: 10.

1145/169701.169692. URL http://doi.acm.org/10.1145/169701.169692.

[47] Jacques Herbrand. Recherches sur la Théorie de la Démonstration. PhD

thesis, University of Paris, 1930.

[48] J. Roger Hindley. The principal type-scheme of an object in combinatory

logic. Transactions of the American Mathematical Society, 146:29–60, 1969.

[49] Ralf Hinze. Efficient generalized folds. In Johan Jeuring, editor, Proc. of 2nd

Workshop on Generic Programming, Tech. Report UU-CS-2000-19, Dept. of

Computer Science, Utrecht Univ. July 2000.

[50] W. A. Howard. To H.B. Curry: The formulae-as-types notion of construction.

In J. Hindley and J. Seldin, editors, Essays on Combinatory Logic, Lambda

Calculus, and Formalism. Academic Press, 1969.

[51] Antonius J. C. Hurkens. A simplification of Girard’s paradox. In Typed

Lambda Calculus and Applications, pages 266–278, 1995.

[52] Patricia Johann and Neil Ghani. Foundations for structured programming

with GADTs. In POPL, pages 297–308, 2008.

http://doi.acm.org/10.1145/169701.169692

327

[53] Oleg Kiselyov and Chung-chieh Shan. Lightweight static capabilities. Electr.

Notes Theor. Comput. Sci, 174(7):79–104, 2007.

[54] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed hetero-

geneous collections. In Haskell 2004: Proceedings of the ACM SIGPLAN

workshop on Haskell, pages 96–107. ACM, 2004. ISBN 1-58113-850-4. doi:

http://doi.acm.org/10.1145/1017472.1017488.

[55] Chuan-kai Lin. Practical Type Inference for GADT Type System. PhD the-

sis, Department of Computer Science, Portland State University, Portland,

Oregon, USA, 2010.

[56] Yitzhak Mandelbaum and Aaron Stump. GADTs for the OCaml masses. In

ML ’09: Proceedings of the 2009 ACM SIGPLAN workshop on ML. ACM,

2009.

[57] Clare E. Martin, Jeremy Gibbons, and Ian Bayley. Disciplined, efficient,

generalised folds for nested datatypes. Formal Aspects of Computing, 16(1):

19–35, 2004.

[58] Ralph Matthes. Monotone fixed-point types and strong normalization. In

In Proceedings of CSL 1998, Lecture Notes in Computer Science. Submitted,

pages 1076–1993. IEEE Press, 1998.

[59] Ralph Matthes. Extensions of System F by Iteration and Primitive Recursion

on Monotone Inductive Types. PhD thesis, Ludwig-Maximilians Universität,

May 1998.

[60] Ralph Matthes. Monotone (co)inductive types and positive fixed-

point types. Information Theories and Applications, 33(4–5):309–328,

1999. URL ftp://ftp.tcs.informatik.uni-muenchen.de/pub/matthes/

publ/fics98.ps.gz.

ftp://ftp.tcs.informatik.uni-muenchen.de/pub/matthes/publ/fics98.ps.gz
ftp://ftp.tcs.informatik.uni-muenchen.de/pub/matthes/publ/fics98.ps.gz

328

[61] Ralph Matthes. An induction principle for nested datatypes in intensional

type theory. Journal of Functional Programming, 19(3-4):439–468, June 2009.

[62] Conor Thomas McBride. Agda-curious?: an exploration of programming with

dependent types. In Proceedings of the 17th ACM SIGPLAN international

conference on Functional programming, ICFP ’12, pages 1–2. ACM, 2012.

ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364529.

[63] Erik Meijer and Graham Hutton. Bananas in space: extending fold and unfold

to exponential types. In Proceedings of the seventh international conference

on Functional programming languages and computer architecture, FPCA ’95,

pages 324–333, New York, NY, USA, 1995. ACM. ISBN 0-89791-719-7. doi:

http://doi.acm.org/10.1145/224164.224225. URL http://doi.acm.org/10.

1145/224164.224225.

[64] N. P. Mendler. Recursive types and type constraints in second-order lambda

calculus. In LICS, pages 30–36, 1987.

[65] N. P. Mendler. Inductive types and type constraints in the second-order

lambda calculus. Ann. Pure Appl. Logic, 51(1-2):159–172, 1991.

[66] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348–375, 1978.

[67] Alexandre Miquel. A model for impredicative type systems, universes, inter-

section types and subtyping. In LICS, pages 18–29. IEEE Computer Society,

2000.

[68] Alexandre Miquel. The implicit calculus of constructions. In TLCA, pages

344–359, 2001.

[69] Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure

http://doi.acm.org/10.1145/224164.224225
http://doi.acm.org/10.1145/224164.224225

329

type systems. In Roberto M. Amadio, editor, FoSSaCS, volume 4962 of Lecture

Notes in Computer Science, pages 350–364. Springer, 2008.

[70] Alan Mycroft. Polymorphic type schemes and recursive definitions. In Pro-

ceedings of the 6th Colloquium on International Symposium on Programming,

pages 217–228, London, UK, UK, 1984. Springer-Verlag. ISBN 3-540-12925-1.

URL http://dl.acm.org/citation.cfm?id=647326.721798.

[71] Ulf Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Department of Computer Science and Engineering,

Chalmers University of Technology, SE-412 96 Göteborg, Sweden, September

2007.

[72] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell. O’Reilly,

August 2008.

[73] Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion: Mixing dependent

types and Hindley-Milner type inference. Technical report, Rice University,

2006. URL http://www.metaocaml.org/concoqtion/.

[74] Ross Paterson. Control structures from types. Unpublished draft, 1993.

[75] Christine Paulin-Mohring. Inductive definitions in the system Coq - rules and

properties. In Marc Bezem and Jan Friso Groote, editors, TLCA, volume 664

of LNCS, pages 328–345. Springer, 1993. ISBN 3-540-56517-5.

[76] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the

ACM SIGPLAN 1988 conference on Programming Language design and Im-

plementation, PLDI ’88, pages 199–208, New York, NY, USA, 1988. ACM.

ISBN 0-89791-269-1. doi: http://doi.acm.org/10.1145/53990.54010. URL

http://doi.acm.org/10.1145/53990.54010.

http://dl.acm.org/citation.cfm?id=647326.721798
http://www.metaocaml.org/concoqtion/
http://doi.acm.org/10.1145/53990.54010

330

[77] Frank Pfenning. Logical frameworks—A brief introduction. In H. Schwichten-

berg and R. Steinbrüggen, editors, Proof and System-Reliability, volume 62 of

NATO Science Series II, pages 137–166. Kluwer Academic Publishers, 2002.

Lecture notes from the Marktoberdorf Summer School, July 2001.

[78] Brigitte Pientka. Beluga: programming with dependent types, contex-

tual data, and contexts. In Proceedings of the 10th international confer-

ence on Functional and Logic Programming, FLOPS’10, pages 1–12, Berlin,

Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12250-7, 978-3-642-12250-

7. doi: 10.1007/978-3-642-12251-4 1. URL http://dx.doi.org/10.1007/

978-3-642-12251-4_1.

[79] Adam Brett Poswolsky. Functional programming with logical frameworks. PhD

thesis, New Haven, CT, USA, 2008. AAI3342732.

[80] Dag Prawitz. Natural Deduction: A Proof-Theoretic Study, volume 3 of Stock-

holm Studies in Philosophy. Almqvist & Wiksell, Stockholm, 1965.

[81] John Alan Robinson. A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12(1):23–41, 1965.

[82] Chung-Chieh Shan. A static simulation of dynamic delimited control. Higher

Order Symbol. Comput., 20:371–401, December 2007. ISSN 1388-3690. doi:

10.1007/s10990-007-9010-4.

[83] Tim Sheard. Languages of the future. In Companion to the 19th annual

ACM SIGPLAN conference on Object-oriented programming systems, lan-

guages, and applications, OOPSLA ’04, pages 116–119. ACM, 2004. ISBN

1-58113-833-4. doi: 10.1145/1028664.1028711.

[84] Tim Sheard. Putting curry-howard to work. In Proceedings of the 2005 ACM

SIGPLAN workshop on Haskell, Haskell ’05, pages 74–85, New York, NY,

http://dx.doi.org/10.1007/978-3-642-12251-4_1
http://dx.doi.org/10.1007/978-3-642-12251-4_1

331

USA, 2005. ACM. ISBN 1-59593-071-X. doi: http://doi.acm.org/10.1145/

1088348.1088356. URL http://doi.acm.org/10.1145/1088348.1088356.

[85] Tim Sheard and Emir Pasalic. Two-level types and parameterized mod-

ules. J. Funct. Program., 14(5):547–587, September 2004. ISSN 0956-

7968. doi: 10.1017/S095679680300488X. URL http://dx.doi.org/10.

1017/S095679680300488X.

[86] Tim Sheard, Jim Hook, and Nathan Linger. GADTs + extensible kind system

= dependent programming. Technical report, Portland State University, 2005.

URL http://cs.pdx.edu/˜sheard/.

[87] W. W. Tait. A realizability interpretation of the theory of species. In

R. Parikh, editor, Logic Colloquium, volume 453 of Lectures Notes in Mathe-

matics, pages 240–251, Boston, 1975. Springer-Verlag.

[88] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s

Guide, Version 7.0.1, 2010. URL http://www.haskell.org/ghc/.

[89] Tarmo Uustalu. Natural Deduction for Intuitionistic Least and Greatest Fixed-

point Logics, with an Application to Program Construction. PhD thesis (Dis-

sertation TRITA-IT AVH 98:03), Dept. of Teleinformatics, Royal Inst. of

Technology, Stockholm, May 1998.

[90] Tarmo Uustalu and Varmo Vene. Mendler-style inductive types, categorically.

Nordic Journal of Computing, 6(3):343–361, 1999.

[91] Tarmo Uustalu and Varmo Vene. Primitive (co)recursion and course-of-value

(co)iteration, categorically. Informatica, Lith. Acad. Sci, 10(1):5–26, 1999.

[92] Tarmo Uustalu and Varmo Vene. Coding recursion à la Mendler (extended

http://doi.acm.org/10.1145/1088348.1088356
http://dx.doi.org/10.1017/S095679680300488X
http://dx.doi.org/10.1017/S095679680300488X
http://cs.pdx.edu/~sheard/
http://www.haskell.org/ghc/

332

abstract). In Johan Jeuring, editor, Proc. of 2nd Workshop on Generic Pro-

gramming, Tech. Report UU-CS-2000-19, Dept. of Computer Science, Utrecht

Univ., pages 69–85. 2000.

[93] Tarmo Uustalu and Varmo Vene. The recursion scheme from the cofree recur-

sive comonad. Electr. Notes Theor. Comput. Sci, 229(5):135–157, 2011. URL

http://dx.doi.org/10.1016/j.entcs.2011.02.020.

[94] Varmo Vene. Categorical Programming with Inductive and Coinductive Types.

PhD thesis (Diss. Math. Univ. Tartuensis 23), Dept. of Computer Science,

Univ. of Tartu, August 2000.

[95] Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, type equality, and

higher-order polymorphism. Journal of Functional Programming, 20(02):175–

210, 2010.

[96] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: encoding

higher-order abstract syntax with parametric polymorphism. In Proceed-

ings of the eighth ACM SIGPLAN international conference on Functional

programming, ICFP ’03, pages 249–262, New York, NY, USA, 2003. ACM.

ISBN 1-58113-756-7. doi: http://doi.acm.org/10.1145/944705.944728. URL

http://doi.acm.org/10.1145/944705.944728.

[97] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through

dependent types. In Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, PLDI ’98, pages 249–257.

ACM, 1998. ISBN 0-89791-987-4. doi: 10.1145/277650.277732.

[98] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype

constructors. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’03, pages 224–235. ACM,

2003. ISBN 1-58113-628-5. doi: 10.1145/604131.604150.

http://dx.doi.org/10.1016/j.entcs.2011.02.020
http://doi.acm.org/10.1145/944705.944728

333

[99] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-

itrios Vytiniotis, and José Petro Magalh aes. Giving Haskell a promotion. In

Typed Languages Design and Implementation (TLDI’12), Jan 2012.

334

INDEX

abstract operation, 237, 279, 286, 312
cast, 126, 228, 300
inverse, 138
recursive call, 138, 227, 228
uncast, 300
unroll, 108, 109

abstract recursive type, 126, 138, 228
anamorphism, 279
answer type, 103

backquote, 230
balanced binary tree, 232
base datatype, 102
bush, 120, 122, 307

catamorphism, 92, 98, 103
Church encoding, 153
Church style, 35, 37
co-data, 279
co-recursive datatype, 281
combining function, 103, 104, 137
compiler

stack-safe, 247
consistent, 9
constructor function, 223, 224
contravariant, 12, 30
conventional, 13, 21

iteration, 103
nested datatype, 120

counterexample
Mendler-style course-of-values iteration,

112
course-of-values recursion, 129
covariant, 12, 30
Curry style, 35, 37, 156
Curry–Howard, 3, 18

datatype
co-recursive, 281
GADT, 121
generalized algebraic, 121
indexed, 121, 123, 142, 144, 263
inductive, 12
mixed-variant, 95, 297
mutually recursive, 123
negative, 13, 20, 94, 95, 98, 110, 144,

297
nested, 98, 114, 307
non-regular, 114
parametrized, 102
positive, 13, 20
recursive, 12
regular, 98, 102, 287
term-indexed, 154, 242
truly nested, 120

datatype promotion, 240, 254
dependent type, 24, 92, 240, 288
deriving fixpoint, 224
destructor, 281
direct subcomponent, 228

evaluation, 39
evaluator

simply-typed HOAS, 142
type-preserving, 242

factorial, 128, 229
Fibonacci, 107, 129, 229
fixpoint, 18, 94, 102, 224, 243

conversion, 303
equi-recursive, 184, 192
inverse-augmented, 102, 138
iso-recursive, 192

335

standard, 99
term, 18
type, 18

fixpoint derivation, 309
fold, 92
foldr, 103
functor, 103

GADT, 121, 240
generalized algebraic datatype, see GADT
generic instance, 77, 78
generic instantiation, 83

Higher-Order Abstract Syntax, see HOAS
higher-rank polymorphism, 92, 105, 138
Hindley–Milner, 75, 263
histomorphism, 98, 107
HOAS, 95, 132, 236

evaluation, 142
simply-typed, 142
string formatting, 141
untyped, 142

implicit conversion, 290
index, 123, 230, 310
index erasure, 211
index transformation, 234
index transformer, 233, 263
indexed datatype, 142, 263
indexed type, 232
inductive datatype, 12
interpretation

kind, 71
STLC, 41
System F, 55
System Fω, 71
type, 40
type constructor, 71

iteration, 92

Kan extension
left, 173

right, 172
kind

polarized, 30, 306, 308
type-indexed, 155

kind arrow, 260
kind inference, 309
kind polymorphism, 261, 309

lambda calculus
simply-typed, 35

Leibniz equality, 172, 318
let-polymorphic, 75
lightweight, 240
logical consistency, 9
logical framework, 291
Lucas, 129

Mendler style, 92
Mendler-style, 14, 17, 18, 21, 22, 24, 25,

27–30, 32–34, 67, 69, 297, 319
co-iteration, 279
co-recursion, 279
co-recursion scheme, 279
combinators, 91
course-of-values iteration, 106, 112, 123
course-of-values recursion, 126, 306
induction, 287
iteration, 96, 104, 119
iteration with syntactic inverses, 131
lexicographic recursion, 286
multiple values, 279, 284
open-iteration, 148
primitive recursion, 96–98, 126, 288
primitive recursion with a sized index,

297
recursion combinators, 91, 225
recursion schemes, 311
Sheard–Fegaras iteration, 145
simultaneous iteration, 284

mixed-variant, 30
monotonicity, 30, 306, 308, 319

336

witness, 307
monotype, 77
mutually recursive datatype, 123

negative, 30
negative datatype, 95
nested datatype

bush, 115
powerlist, 115

nested term index, 257
neutral terms, 41
non-conventional, 14
non-recursive function, 128
normalization, 9, 18, 39
normalizing terms, 40

parameter, 123, 230, 310
parametrized datatype, 102
pattern matching, 225, 263
polarity, 30
polarized kind, 30, 306, 308
polymorphic lambda calculus

Milner’s, 75
System F, 45
System Fi, 153
System Fixi, 184
System Fω, 59

polymorphic type, 24
polymorphism

impredicative, 49
polytype, 77
positive, 30
positivity, 30
powerlist, 64, 115, 307
predecessor, 128
primitive recursion, 128, 290
progress, 39

recurrence relation, 129
recursive caller, 104
recursive datatype, 12
recursive type, 222

reduction preserving, 129, 283
regular datatype, 98, 102, 153, 287

saturated, 41
saturated set, 41
saturated subset, 41
simply-typed lambda calculus, see STLC
singlton type, 259
sized type, 288
Squiggol, 13
STLC, 35
strong normalization, 9, 38

MRec, 96
STLC, 40, 43
System F, 55
System Fi, 183
System Fixi, 211
System Fω, 69

subject reduction, 38
subtyping, 289
synonym, 223
System F, 45
System Fi, 153

additional constructs, 154
System Fixi, 184, 306
System Fixω, 96
System Fω, 59, 96

tail, 128
term index, 230, 235, 246

abstraction, 155
application, 155
nested, 257
polymorphism, 155

term-indexed datatype, 242
termination

Mendler-style iteration, 148
Mendler-style iteration with syntactic

inverses, 139
Mendler-style primitive recursion, 96,

150

337

type-based, 288
truly nested datatype, 120, 307
two-level type, 94, 221
type, 223

dependent, 24, 240, 288
fixpoint, 222, 303
index, 121, 123, 230
indexed, 230, 232
parameter, 121, 123, 230
polymorphic, 24
recursive, 222
sized, 288
synonym, 223

type constructor, 153, 223
type equality, 318
type index, 121, 230
type inference, 75, 263

algorithm W, 87
type parameter, 121
type preservation, 38
type safety, 39
type scheme, 75, 77
type-based termination, 288

advantage, 289
typing rules

declarative, 75, 80, 265
syntax-directed, 75, 84, 265

unfold, 279
universally quantified, 230
universe, 254

polymorphism, 254, 256
subtyping, 254, 255

vector, 122, 154, 234, 235, 250

weak head expansion, 41
well-sortedness, 254

338

Appendix A

THE PROOF FOR COMPLETENESS OF W

Proof of Theorem 2.4.4:

For any Γ and t, there exist S ′, where dom(S ′) ⊆ FV(Γ), and A′ such that

S ′Γ s̀ t : A′
W (Γ, t) (S,AW) ∧ ∃R.

(
S ′Γ = R(SΓ) ∧ R(SΓ(AW)) v A′

)
Proof. By induction on recursive call step of the algorithm W .

case (x) From the Vars rule, we know that S ′σ ∈ S ′Γ, where σ ∈ Γ, and S ′σ v

A′. By definition of v, A′ has the form S ′A[B1/X1] · · · [Bn/Xn] where σ =

∀X1 . . . Xn.A.

From VarW rule, we know that S = ∅ and AW = A[X ′1/X1] · · · [X ′n/Xn]

where X ′1, . . . , X ′n are fresh.

Let R = S ′, then, we are done.

case (λx.t) We want to show that

S ′Γ s̀ λx.t : A→ B

W (Γ, λx.t)
 (S, SX → BW) ∧ ∃R.

(
S ′Γ = R(SΓ) ∧

R(SΓ(SX → BW)) v A→ B

)

Without loss of generality, we can choose A = X, since we can choose S ′

accordingly such that S ′X = A. Then, we have

S ′Γ s̀ λx.t : S ′X → B

W (Γ, λx.t)
 (S, SX → BW) ∧ ∃R.

(
S ′Γ = R(SΓ) ∧

R(SΓ(SX → BW)) v S ′X → B

)

339

By induction, we know that

S ′(Γ, x : X) s̀ t : B

W ((Γ, x : X), t) (S,BW) ∧ ∃R.
(
S ′(Γ, x : X) = R(S(Γ, x : X))
∧ R(S(Γ, x : X)(BW)) v B

)

By Proposition 2.4.3, S ′Γ ` λx.t : S ′X → B is sufficient to assume that

S ′(Γ, x : X) s̀ t : B.

By applying AbsW rule to W ((Γ, x : X), t) (S,BW) where X fresh, we

have W (Γ, λx.t) (S, SX → BW).

From S ′(Γ, x : X) = R(S(Γ, x : X)), we know that S ′Γ = R(SΓ) and

S ′X = R(SX).

If we can show that R(SΓ(SX → BW)) v S ′X → B, we are done. Since

R(SΓ(SX → BW)) = R(SΓ(SX))→ R(SΓ(BW)), what we need to show are

R(SΓ(SX)) v S ′X and R(SΓ(BW)) v B. The former is true by Proposition

2.4.2 and the facts that S ′X = R(SX) and X /∈ dom(Γ) since X is fresh:

R(SΓ(SX)) = R(S(Γ(X))) = R(S(X)) = S ′X v S ′X. The latter is true

since R(SΓ(BW)) v R(S(Γ, x : X)(BW)) v B.

case (t s) We want to show that

S ′Γ s̀ t s : B
W (Γ, t s)

 (S3 ◦ S2 ◦ S1, S3X) ∧ ∃R.
(
S ′Γ = R((S3 ◦ S2 ◦ S1)Γ) ∧
R((S3 ◦ S2 ◦ S1)Γ(S3X)) v B

)

Note that we can use S3X instead of (S3 ◦ S2 ◦ S1)X since X /∈ dom(S2) ∪

dom(S1) because X has been picked fresh after S2 and S1 has been computed

in AppW rule. So, (S3 ◦ S2 ◦ S1)X = S3X.

Since S ′Γ = R((S3 ◦ S2 ◦ S1)Γ), we can replace S ′Γ with S ′′((S3 ◦ S2 ◦ S1)Γ)

without loss of generality. Then, what we want to show is

S ′′((S3 ◦ S2 ◦ S1)Γ) s̀ t s : B′

W (Γ, t s)
 (S3 ◦ S2 ◦ S1, S3X) ∧ ∃R.

(
S ′′((S3 ◦ S2 ◦ S1)Γ) = R((S3 ◦ S2 ◦ S1)Γ)
∧ R((S3 ◦ S2 ◦ S1)Γ(S3X)) v B′

)

340

(A.0.1)

By induction and (Apps), we know that

S ′1Γ s̀ t : At
W (Γ, t)
 (S1, A1) ∧ ∃R1.

(
S ′1Γ = R1(S1Γ) ∧
R1(S1Γ(A1)) v At

) (A.0.2)

S ′2(S1Γ) s̀ s : As
W (S1Γ, s)
 (S2, A2) ∧ ∃R2.

(
S ′2(S1Γ) = R2(S2(S1Γ)) ∧
R2(S2(S1Γ)(A2)) v As

) (A.0.3)

From S ′1Γ = R1(S1Γ) in the conclusion of (A.0.2), we can replace S ′1Γ with

S ′2(S1Γ) in (A.0.2) without loss of generality, as follows:

S ′2(S1Γ) s̀ t : At
W (Γ, t)
 (S1, A1) ∧ ∃R1.

(
S ′2(S1Γ) = R1(S1Γ) ∧
R1(S1Γ(A1)) v At

)

From S ′2(S1Γ) = R1(S1Γ), R1 must be a substitution equivalent to S ′2 for all

free type variables of S1Γ. That is, dom(S ′2) ⊆ dom(R1) and S ′2X = R1X

for any X ∈ dom(S ′2). Note that S ′2(S1Γ(A1)) v R1(S1Γ(A1)). So, we can

choose R1 = S ′2 without loss of generality, as follows:

S ′2(S1Γ) s̀ t : At
W (Γ, t)
 (S1, A1) ∧

(
S ′2(S1Γ) = S ′2(S1Γ) ∧
S ′2(S1Γ(A1)) v At

)

Removing the trivial equation S ′2(S1Γ) = S ′2(S1Γ) from above, we have

S ′2(S1Γ) s̀ t : At
W (Γ, t) (S1, A1) ∧ S ′2(S1Γ(A1)) v At

(A.0.4)

Similarly, from (A.0.2), we know that

S ′3(S2(S1Γ)) s̀ s : As
W (S1Γ, s) (S2, A2) ∧ S ′3(S2(S1Γ))A2)) v As

(A.0.5)

We can choose S ′3 = S ′′′ ◦ S3 and S ′2 = S ′′′ ◦ S3 ◦ S2. Here, we rely on the

fact that S3 is a most general unifier. Recall that unify(A,B) succeeds when

341

the two types A and B are unifiable and the resulting subsitutiion is a most

general unifier for those two types. If S3 were not a most general unifier, it

might make the closures of A1 and A2 too specific so that v relations A.0.5

no longer hold. So our choice S ′3 = S ′′′ ◦ S3 for A.0.5 is a most probable

candidate – that is, nothing else could work if this choice doesn’t work. The

choice S ′2 = S ′′′ ◦S3 ◦S2 for A.0.4 is made accordingly to match S ′3 = S ′′′ ◦S3.

Then, by the syntax drived typing rule (Apps), At = As → B′. Thus, the

premises of (A.0.4) and (A.0.5) are sufficient to assume the premise of what

we want to prove, by Proposition 2.4.4. Note that left-hand sides of the

logical conjuctions in the conclusions, W (Γ, t) (S1, A1) and W (S1Γ, s)

(S2, A2), cocincides with the recursive call in the W algorithm (AppW), since

we are proving by induction on the recursive call step of the algorithm W .

All we need to check is that the right-hand sides of (∧) in the conclusions of

(A.0.4) and (A.0.5) are neccessary conditions for the right-hand side of (∧)

in the conclusion of what we want to prove.

Consider the right-hand side of (∧) in the conclusion of (A.0.4), replacing S ′2
with our choice of S ′2 = S ′′′ ◦ S3 ◦ S2:

(S ′′′ ◦ S3 ◦ S2)(S1Γ(A1)) v As → B′

We can replace A1 in terms of A2 and X as follows:

(S ′′′ ◦ S3 ◦ S2)(S1Γ(A1))

= S ′′′(S3(S2(S1Γ))(S3(S2A1))) by Proposition 2.4.2

= S ′′′(S3(S2(S1Γ))(S3A2 → S3X)) by unification in (AppW)

= S ′′′(S3(S2(S1Γ))(S3A2 → S3X))

= S ′′′((S3 ◦ S2 ◦ S1)Γ(S3A2 → S3X)) v As → B′

Since closure operation and substitutions distribute over (→), we have

S ′′′((S3 ◦ S2 ◦ S1)Γ(S3A2)) v As ∧ S ′′′((S3 ◦ S2 ◦ S1)Γ(S3X) v B′ (A.0.6)

342

Consider the right-hand side of (∧) in the conclusion of (A.0.5):

(S ′′′ ◦ S3)(S2(S1Γ)(A2))

= S ′′′(S3(S2(S1Γ))(S3A2))) by Proposition 2.4.2

= S ′′′((S3 ◦ S2 ◦ S1)Γ(S3A2)) v As

Note that above is exaclty the same as the left-hand side of (∧) in A.0.6,

which is expected due to the nature the unification.

We are done by choosing S ′′ = S ′′′ and R = S ′′′ in what we want to show

(A.0.1). Consider the right-hand side of (∧) in the conclusion, replacing both

S ′′ and R with S ′′′:S ′′′((S3 ◦ S2 ◦ S1)Γ) = S ′′′((S3 ◦ S2 ◦ S1)Γ)

∧ S ′′′((S3 ◦ S2 ◦ S1)Γ(S3X)) v B′

Note that left-hand side of (∧) is trivially true and the right-hand side exactly

matches the right-hand side of (A.0.6).

case (let x = s in t) We want to show that
S ′Γ s̀ let x = s in t : A′2

W (Γ, let x = s in t)
 (S2 ◦ S1, A2) ∧ ∃R.

(
S ′Γ = R((S2 ◦ S1)Γ) ∧
R((S2 ◦ S1)Γ(A2)) v A′2

)

By induction, we know that
S ′1Γ s̀ s : A′1

W (Γ, s) (S1, A1) ∧ ∃R1.
(
S ′1Γ = R1(S1Γ) ∧ R1(S1Γ(A1)) v A′1

)
(A.0.7)

S ′2(S1Γ, x : S1Γ(A1)) s̀ t : A′2
W ((S1Γ,x:S1Γ(A1)),t)

 (S2,A2) ∧ ∃R2.
(
S′2(S1Γ,x:S1Γ(A1))=R2(S2(S1Γ,x:S1Γ(A1)))

∧ R2(S2(S1Γ,x:S1Γ(A1))(A2))vA′2

)
(A.0.8)

From S ′1Γ = R1(S1Γ) in the conclusion of (A.0.7), we can replace S ′1Γ with

S ′2(S1Γ) in (A.0.7) without loss of generality, as follows:
S ′2(S1Γ) s̀ s : A′1

W (Γ, s) (S1, A1) ∧ ∃R1.
(
S ′2(S1Γ) = R1(S1Γ) ∧ R1(S1Γ(A1)) v A′1

)

343

From S ′2(S1Γ) = R1(S1Γ), R1 must be a substitution equivalent to S ′2 for all

free type variables of S1Γ. That is, dom(S ′2) ⊆ dom(R1) and S ′2X = R1X

for any X ∈ dom(S ′2). Note that S ′2(S1Γ(A1)) v R1(S1Γ(A1)). So, we can

choose R1 = S ′2 without loss of generality, as follows:

S ′2(S1Γ) s̀ s : A′1
W (Γ, s) (S1, A1) ∧

(
S ′2(S1Γ) = S ′2(S1Γ) ∧ S ′2(S1Γ(A1)) v A′1

)
Removing the trivial equation S ′2(S1Γ) = S ′2(S1Γ) from above, we have

S ′2(S1Γ) s̀ s : A′1
W (Γ, s) (S1, A1) ∧ S ′2(S1Γ(A1)) v A′1

Using above and Lemma 2.4.1, we have

S ′2(S1Γ), x : A′1 s̀ t : A′2

S ′2(S1Γ) s̀ s : A′1
S ′2(S1Γ(A1)) v A′1

S ′2(S1Γ), x : S ′2(S1Γ(A1)) v S ′2(S1Γ), x : A′1
S ′2(S1Γ), x : S ′2(S1Γ(A1)) s̀ t : A′2

which can be summarized as

S ′2(S1Γ), x : A′1 s̀ t : A′2 S ′2(S1Γ) s̀ s : A′1
S ′2(S1Γ), x : S ′2(S1Γ(A1)) s̀ t : A′2

By Proposition 2.4.5, we have

S ′2(S1Γ) s̀ let x = s in t : A′2
∃A′1. (S ′2(S1Γ), x : A′1 s̀ t : A′2 ∧ S ′2(S1Γ) s̀ s : A′1)

S ′2(S1Γ), x : S ′2(S1Γ(A1)) s̀ t : A′2
(A.0.9)

Note that the assumption of (A.0.9), S ′2(S1Γ) s̀ let x = s in t : A′2, implies

both the assumption of (A.0.7) instantiated by S ′1 = S ′2 ◦S1 and the assump-

tion (A.0.8). So, we can merge the conclusion of (A.0.7) and the conclusion

of (A.0.8) instantiated by S ′1 = S ′2 ◦ S1 in order to synthesize what we want

to prove.

Applying LetW rule to left-hand arguments of ∧ in the conclusions of (A.0.7)

and (A.0.8), we get W (Γ, let x = s in t) (S2 ◦ S1, A2).

344

Let R2 = R in the right-hand side in the conclusion of (A.0.8). Then, we get

∃R.
(
S ′2(S1Γ) = R((S2 ◦ S1)Γ) ∧ R((S2 ◦ S1)Γ(A2)) v A′2

)
by similar steps

we took for the case (Abss).

In summary, we get

S ′2(S1Γ) s̀ let x = s in t : A′2
W (Γ, let x = s in t)
 (S2 ◦ S1, A2) ∧ ∃R.

(
S ′2(S1Γ) = R((S2 ◦ S1)Γ) ∧
R((S2 ◦ S1)Γ(A2)) v A′2

)

which is almost exactly what we want to prove, except that S ′2(S1Γ) is used

in place of S ′Γ.

Without loss of generality, we can use S ′2(S1Γ) instead of S ′Γ. By Proposition

2.4.5, S ′Γ s̀ let x = s in t : A′2 implies S ′Γ s̀ s : A′1 for some A′1. Applying

(A.0.7) to S ′Γ s̀ s : A′1 with S ′1 = S ′, we have S ′Γ = R1(S1Γ) for some R1.

345

Appendix B

PROOFS IN THE METATHEORY OF SYSTEM Fi

This appendix contains proofs of propositions in Section 4.3.

Proof of Proposition 4.3.1:

` ∆ ∆ ` F : κ
` κ : �

Proof. By induction on the derivation.

case (V ar) Trivial by the second well-formedness rule of ∆.

case (Conv) By induction and Lemma 4.3.1.

case (λ) By induction, we know that ` κ : �.

By the second well-formedness rule of ∆, we know that ` ∆, Xκ since we

already know that ` κ : � and ` ∆ from the property statement.

By induction, we know that ` κ′ : � since we already know that ` ∆, Xκ

and that ∆, Xκ ` F : κ′ from induction hypothesis.

By the sorting rule (R), we know that ` κ → κ′ : � since we already know

that ` κ : � and ` κ′ : �.

case (@) By induction, easy.

case (λi) By induction we know that · ` A : ∗. By the third well-formedness rule

of ∆, we know that ` ∆, iA since we already know that · ` A : ∗ and that

` ∆ from the property statement.

By induction, we know that ` κ : � since we already know that ` ∆, iA and

that ∆, iA ` F : κ from the induction hypothesis.

346

By the sorting rule (Ri), we know that ` A→ κ : � since we already know

that · ` A : ∗ and ` κ : �.

case (@i) By induction and Proposition 4.3.2, easy.

case (→) Trivial since ` ∗ : �.

case (∀) Trivial since ` ∗ : �.

case (∀i) Trivial since ` ∗ : �.

The basic structure of the proof for Proposition 4.3.2 on typing derivations is

similar to above. So, we illustrate the proof for most of the cases, which can be

done by applying the induction hypothesis, rather briefly. We elaborate more on

interesting cases (∀E) and (∀Ei) which involve substitutions in the types resulting

from the typing judgments.

Proof of Proposition 4.3.2:

∆ ` Γ ∆; Γ ` t : A
∆ ` A : ∗

Proof. By induction on the derivation.

case (:) Trivial by the second well-formedness rule of Γ.

case (: i) Trivial by the third the well-formedness rule of ∆.

case (=) By induction and Lemma 4.3.2.

case (→I) By induction and well-formedness of Γ.

case (→E) By induction.

case (∀I) By induction and well-formedness of ∆.

case (∀E) By induction we know that ∆ ` ∀Xκ.B : ∗.

By the kinding rule (∀), which is the only kinding rule able to derive ∆ `

∀Xκ.B : ∗, we know that ∆, Xκ ` B : ∗.

Then, we use the type substitution lemma (Lemma 4.3.4(1)).

347

case (∀Ii) By induction and well-formedness of ∆.

case (∀Ei) By induction we know that ∆ ` ∀iA.B : ∗.

By the kinding rule (∀i), which is the only kinding rule able to derive ∆ `

∀iA.B : ∗, we know that ∆, iA ` B : ∗.

Then, we use the index substitution lemma (Lemma 4.3.4(2)).

	Portland State University
	PDXScholar
	Fall 12-16-2014

	The Nax Language: Unifying Functional Programming and Logical Reasoning in a Language based on Mendler-style Recursion Schemes and Term-indexed Types
	Ki Yung Ahn
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	I Prelude
	Introduction
	Programming and Formal Reasoning
	The Curry–Howard correspondence
	Logical consistency and strong normalization
	Datatypes and recursion schemes

	Motivation
	Thesis
	Mendler-style recursion and term-indexed types
	Restriction on recursive types for normalization
	Justification of Mendler style as a design choice.
	Term-indexed types, type inference, and datatypes

	Contributions
	Contributions related to Mendler style
	Contributions to the theory of term-indexed types
	Contributions towards the Nax language design
	Contributions identifying open problems

	Chapter organization

	Polymorphic type systems
	Simply-typed lambda calculus
	Strong normalization
	Motivations for polymorphic type systems

	System F
	Encoding datatypes in System F
	Subject reduction and strong normalization

	System F
	Encodings of datatypes in System F
	Strong normalization

	The Hindley–Milner type system
	Syntax
	Declarative typing rules
	Syntax-directed typing rules
	The type inference algorithm W

	II Mendler style
	Mendler-style recursion schemes
	Introduction
	Background - Termination and Negativity
	Historical progression
	Roadmap to a tour of the Mendler-style approach

	Defining regular recursive datatypes
	Conventional iteration for regular datatypes
	Mendler-style iteration for regular datatypes
	Mendler-style course-of-values iteration for regular datatypes
	Mendler-style iteration and course-of-values iteration over negative datatypes
	Mendler-style iteration and course-of-values iteration over non-regular datatypes and mutually recursive datatypes
	Nested datatypes
	Indexed datatypes (GADTs)
	Mutually recursive datatypes

	Mendler-style primitive recursion (mpr)
	Mendler-style iteration with syntactic inverses
	Formatting HOAS
	F encoding of * and msfit*
	Evaluating Simply Typed HOAS
	A graph datatype with cycles and sharing
	Additional Mendler-style combinators

	Properties of recursion combinators

	III Term-Indexed Lambda Calculi
	System Fi
	System Fi
	Design of System Fi
	System Fi compared to System F

	Embedding datatypes and Mendler-style iterators
	Embedding datatypes using Church-encoded terms
	Embedding recursive datatypes as two-level types
	Leibniz index equality

	Metatheory
	Well-formedness properties and substitution lemmas
	Erasure properties
	Strong normalization and logical consistency

	System Fixi
	System Fixi
	Polarities
	Equi-recursive type operator fix

	Embedding datatypes and primitive recursion
	Embedding course-of-values recursion
	General form for the embedding of course-of-values recursion
	Embedding unrollers
	Deriving uniform embeddings of the unrollers
	Properties of unrollers

	Metatheory of Fixi
	Strong normalization and logical consistency
	Syntactic conditions for well-behaved course-of-values recursion

	IV Nax Language
	Introduction to Features of the Nax Language
	Two-level types
	Creating values
	Synonyms, constructor functions, and fixpoint derivation
	Mendler combinators for non-indexed types
	Types with static indices
	Mendler-style combinators for indexed types
	Recursive types of unrestricted polarity but restricted elimination
	Lessons from Nax

	Design Principles of Nax's Type System
	Introduction
	The trilingual Rosetta Stone
	Type-preserving evaluator for an expression language
	Generic Paths parametrized by a binary relation
	Stack-safe compiler for the expression language

	Discussion
	Universes, kinds, and well-sortedness
	Nested Term Indices and Datatypes Containing Types

	Related Work
	Summary and Future Work

	Type Inference in Nax
	SmallNax
	SmallNax with Mendler-style recursion
	A review of monomorphic recursion and polymorphic recursion
	Typing rules for Mendler-style recursion combinators

	SmallNax with GADTs
	Existential type variables
	Generalized existential type variables and index transformers

	V Postlude
	Related work
	Mendler-style co-iteration and co-recursion
	Mendler-style recursion schemes over multiple values
	Simultaneous iteration
	Lexicographic recursion

	Mendler-style induction
	Type-based termination and sized types
	Logical Frameworks based on the -calculus

	Future work
	Another Mendler-style recursion scheme for mixed-variant datatypes
	Conversion between different fixpoint types
	Monotonicity from polarized kinds
	Kind polymorphism and kind inference

	Conclusions
	Summary
	Significance
	Limitations and future work

	Bibliography
	Index
	Appendix
	Appendix The Proof for Completeness of W
	Appendix Proofs in the metatheory of System Fi

