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  Abstract 

The use of virtualized environments continues to grow for efficient utilization of the 

available compute resources. Hypervisors virtualize the underlying hardware resources 

and allow multiple Operating Systems to run simultaneously on the same infrastructure. 

Since the hypervisor is installed at a higher privilege level than the Operating Systems in 

the software stack it is vulnerable to rootkits that can modify the environment to gain 

control, crash the system and even steal sensitive information. Thus, runtime integrity 

measurement of the hypervisor is essential. The currently proposed solutions achieve the 

goal by relying either partially or entirely on the features of the hypervisor itself, causing 

them to lack stealth and leaving themselves vulnerable to attack.  

We have developed a performance sensitive methodology for identifying rootkits in 

hypervisors from System Management Mode (SMM) while using the features of SMI 

Transfer Monitor (STM). STM is a recent technology from Intel and it is a virtual 

machine manager at the firmware level. Our solution extends a research prototype called 

EPA-RIMM, developed by Delgado and Karavanic at Portland State University. Our 

solution extends the state of the art in that it stealthily performs measurements of 

hypervisor memory and critical data structures using firmware features, keeps 

performance perturbation to acceptable levels and leverages the security features 

provided by the STM. We describe our approach and include experimental results using a 

prototype we have developed for Xen hypervisor on Minnowboard Turbot, an open 

hardware platform.  
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Chapter 1 : Introduction 

“With great power comes great responsibility.”1 

Virtualization efficiently utilizes ample hardware resources, keeps power consumption 

under check, reduces hardware deployment cost, and eases backups and recovery. For 

these reasons, the concept of virtualization has become popular. The computing world 

has seen a growing trend in the use of virtualized environments in infrastructure 

deployment, high performance computing environment, automation environment, and 

software testing [40], [41], [42], [43], [44]. Virtualization reduces infrastructure cost, 

eases resource management and allows efficient migration of resources and disaster 

recovery. Server farms, cloud infrastructure typically deploy virtualization software 

(hypervisor) for better utilization and management of resources. In the software stack, the 

hypervisor is generally installed at the highest privilege level, thus allowing each user to 

deploy their own operating system in isolation from each other. Each isolated operating 

system may run applications without creating any conflicts with other applications on 

separate operating system. The unique security features and advantages of hypervisors 

have increased their use in large-scale servers. 

1.1 Motivation 

Unfortunately, hypervisor being at the highest privilege level in the software stack causes 

it to become an interesting target for malware to launch an attack, gain control of the 

system, crash the system, and even steal sensitive information. There have been major 

security vulnerabilities reported repeatedly in hypervisors provided by different vendors 

[5], [9]. These risks have been studied by researchers to make hypervisors more secure 
                                                      
1 Benjamin “Ben” Parker (Amazing Fantasy #15) 
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[33], [34]. As the code base of hypervisors increases because of new development, new 

vulnerabilities are being discovered and before they are resolved, a malicious application 

can take advantage of this and disrupt the system. More recent hypervisors also focus on 

embedded, automotive and native-cloud-computing use cases along with its traditional 

infrastructure virtualization application [35]. This new focus increases the scope of attack 

vectors. The CVE database (Common Vulnerability and Exposure database) keeps a track 

of the vulnerabilities found in different softwares and hardware components [2]. Some of 

the vulnerabilities listed in this database could be leveraged by a malicious code to launch 

Distributed Denial of Service (DDoS) attack, steal sensitive information by elevating 

privilege of the virtual machine user, or obtain control of the entire system. Such attacks 

may jeopardize the privacy of individuals and industries or even threaten national 

security. Hence, along with the operating system kernel, it is necessary to measure the 

integrity of the hypervisor as well. A study done by Thongthua, A. et al., [33] shows that 

two currently deployed hypervisors, ESXi and XenServer, have high vulnerability. 

Different hypervisors exhibit different vulnerabilities. As identified by Tavis Ormandy 

[5], instructions and emulated IO devices are the most complex pieces of code in the 

virtualization software and have the potential to include the most vulnerabilities. 

Attackers can leverage the incorrect implementation or incorrect handling of instructions 

to gain access to the system.  

The Venom [9] vulnerability in QEMU’s virtual floppy disk controller (FDC) is one such 

example of vulnerabilities that can occur in emulated IO devices. It was a major 

vulnerability discovered in 2015 that affected many hypervisors like Xen, KVM and 
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VirtualBox. QEMU is a hardware resource emulator used by most hypervisors. Venom is 

a type of VMEscape attack allowing the attacker to send a data packet from virtual 

machine to overflow FDC’s data buffer and execute arbitrary code in the hypervisor 

context. Xen’s XSA (Xen Security Advisories) [9] currently lists about 212 security 

vulnerabilities reported in the last five years that can lead to memory corruption, denial of 

service, privilege escalation and VMEscape. During the same period about 75000 lines of 

code have been added to Xen’s code base [78]. So, there may still be undiscovered 

vulnerabilities in our hypervisors. Hence, we need a secure and effective mechanism to 

identify attacks against such undiscovered vulnerabilities, alert the administrator, and 

safeguard our servers, cloud infrastructure and embedded systems. Hence, it is necessary 

to measure the integrity of the hypervisor. 

De Souza et al., [36] perform an extensive study on the current security trends for 

measuring hypervisor integrity and suggest the requirements that should be followed by 

an integrity measurement solution to be effective and performance efficient. Among the 

techniques implemented for integrity measurement, System Management Mode (SMM) 

based Runtime Integrity Measurement Monitors (RIMMs) have proven to be more 

difficult to break by an attacker since SMM is embedded in the firmware, at a higher 

privilege level than the hypervisor. The current integrity measurement techniques [11], 

[12], [13], [14] face problems of either poor performance problems or are ineffective 

against higher privilege layer based attacks. 
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1.2 Objective 

The goal of this research is to develop a reasonably secure, performance aware solution 

to measure the integrity of the hypervisor from SMM.  

1.3 Approach 

We implement our approach as an extension to EPA-RIMM [21], a firmware based 

integrity measurement solution for kernels. It uses SMM to obtain the runtime context of 

the kernel for measuring its current state. EPA-RIMM takes into consideration the 

performance constraints that should be followed by an SMM module during its 

execution. It implements a unique scheduling technique during measurement that bounds 

the performance overhead. For these reasons, we choose EPA-RIMM as our base SMM 

based RIMM and build our solution upon it. We extend EPA-RIMM with STM for out-

of-context integrity measurement of VT-x capable hypervisor and demonstrate its 

effectiveness in detecting rootkits in such hypervisors. This work also demonstrates the 

performance efficiency of the method. We accomplish integrity checking without 

assistance from any extra hardware or even from the hypervisor. Finally, we present a 

comparative performance analysis of EPA-RIMM in STM vs. non-STM environment. 

Since this is a firmware-based approach, in our research we need to modify the system 

firmware, deploy the modified version and test it. Firmware being the most privileged 

and sensitive software it is locked by computer vendors in commercial products. Hence, 

it is not possible to use the commercially available products to implement and 

demonstrate our solution. Instead, we use open source hardware development boards, 

Minnowboard Turbot equipped with 64-bit Intel Dual Core Atom processor [16]. The 
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firmware of these boards is unlocked and can be changed to have custom-built firmware. 

The Minnowboards and systems deployed in server farms both have similar x86 

architecture, with the difference that the servers have higher compute capability and have 

more cores than Minnowboards. This makes the server systems faster and more efficient. 

Hence, Minnowboards are used in this work as proof-of-concept representation of 

servers. With this approach, we achieve an effective, small Trusted Computing Base 

(TCB), fast, persistent, extensible SMM based hypervisor integrity solution. 

An SMM-based hypervisor integrity measurement solution poses a challenge: 

understanding the hypervisor context for hypervisors that utilize hardware-based 

virtualization. Such hypervisors show a peculiar behavior when the processor switches 

context from non-SMM mode to SMM-mode. This behavior creates a semantic gap 

problem for the SMM-based measurement unit in which it cannot determine if the 

interrupted state was from the hypervisor or the hypervisor’s virtualized guest. We 

propose an effective and performance aware firmware solution that solves this problem. 

We do this using Intel’s SMM virtualization interface called SMI Transfer Monitor 

(STM) [15]. STM uses hardware-based virtualization technique to virtualize SMM itself. 

STM assists in gaining control over uncertain processor context behavior of hypervisors 

with VT-x hardware support; additionally, it creates a layer of trust over SMM.  

1.4 Thesis Statement 

A combination of SMM and STM can be used for performance efficient, reasonably 

secure, configurable integrity measurement of hypervisors. 
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1.5 Contributions 

1. Developed a novel technique to solve the SMM-hypervisor semantic gap 

problem: 

In a virtualized environment running VT-x (hardware virtualization) supported 

guests, upon System Management Interrupt (SMI) when all the processors enter 

SMM, there is no guaranteed knowledge of processor’s context before the 

interrupt. A processor may be operating either in hypervisor context or in a virtual 

machine’s context. This uncertainty makes it problematic to obtain hypervisor 

information in SMM with confidence. In this research, we implemented a novel 

technique that uses STM, a firmware based feature, to obtain out-of-context 

hypervisor status from SMM and eliminates the uncertain processor context 

problem. This technique is the basis for performing stealthy out-of-context 

hypervisor integrity checking. It eliminates the need of using special hardware 

components and avoids injecting instructions in the normal SMI exit code flow as 

implemented in HyperSentry [11]. Other SMM applications may also use this 

technique to retrieve hypervisor context. The usage of this module itself has a 

very low performance overhead. We plan to open source this module and 

integrate it with the current STM code base. 

2. Implemented STM enabling in the hypervisor and developed a set of fine-

grained permissions that should be set for hypervisor resources: 

In order to enable STM, both BIOS and the hypervisor should execute an STM 

setup handshake during the system initialization phase. The BIOS implementation 

of STM setup is part of the UEFI code base. Similarly, the hypervisor should 
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implement its part of the handshake during its initialization phase, acknowledge 

enabling of STM, and specify any resource access permissions that should be 

obeyed by the SMI handlers. We implement the missing hypervisor handshake 

mechanism in Xen’s kernel. We also developed a set of permissions that should 

be set over hypervisor resources to avoid illegal access by SMI handlers. System 

Management Mode being at the highest privileged level, it can access all the 

resources and memory of the hypervisor. On a system with these permissions not 

enabled, an SMM based rootkit may leverage the ability of SMM to tamper the 

software stack, steal sensitive information or even crash the entire system. We 

plan to release a patch of this work to the Xen Project team. 

3. Implemented a performance collector interface between STM and the host 

software and conducted a full investigation of STM performance: 

To get the STM performance data in the host software we designed and 

implemented an API interface between the hypervisor and STM. Using the data 

obtained from this interface, we present a detailed performance cost analysis of 

STM. To the best of our knowledge, this is the first STM performance study 

available for an STM configured system with cooperation between hypervisor and 

BIOS. 

4. Developed a prototype of EPA-RIMM-V: 

To validate our architecture, we develop and deploy the prototype on 

Minnowboards. We successfully perform integrity checking of memory, registers, 

and model specific registers for the Xen hypervisor. We evaluated the 

effectiveness of our model by simulating two rootkits that are representative of 
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the family of hypervisor rootkits, and detected them in subsequent measurement 

invocations. We plan to release the prototype as open source research 

infrastructure. 
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Chapter 2 : Background 

This work demonstrates a technique for integrity measurement of hypervisors from SMM 

using STM. We achieve the goal by combining concepts from three main areas: host 

software virtualization; security; and hardware execution environments. In this chapter, 

we summarize these three areas.  

2.1 Virtualization 

CPU virtualization allows to us run multiple applications or processes simultaneously on 

the same system. This enables efficient resource utilization. Virtualization can be applied 

to hardware as well, thus allowing multiple operating systems to share hardware 

resources. In this section we look at the concepts associated with hardware-based 

virtualization and the Xen open source hypervisor. 

2.1.1 Hypervisor 

The virtualization layer called the hypervisor creates virtual execution environments 

called Virtual Machines (VMs), allowing multiple Operating Systems to run on the same 

platform. The hypervisor abstracts the hardware resources in order to give each VM a 

consistent view of the hardware as a virtual resource. Each operating system runs on the 

allocated virtual resources in isolation from other operating systems. Each VM may be 

used to host different applications like a web server, mail server, database etc. All such 

applications that were earlier hosted on different physical systems can now be hosted on 

the same physical system but in different virtual environments.  

Two types of hypervisors are available in the market: Bare-Metal (Type-1) and Hosted 

(Type-2) hypervisors. Hypervisors are sometimes interchangeably also called Virtual 
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Machine Monitors (VMMs). Bare-Metal Hypervisors are directly installed on top of the 

firmware. Recent Bare-Metal hypervisors are supported by the platform’s virtualization 

instructions. On Intel platforms these are called VMX instructions, while on AMD 

architecture they are called SVM instructions [4], [79]. A hosted hypervisor is installed as 

an application in the operating system. There are two main implementation designs for 

virtualization: Hardware Virtualization and Paravirtualization. In Hardware 

Virtualization, the guest virtual machine, called hardware virtualized machine (HVM), is 

unaware of the existence of the underlying hypervisor software layer and relies on 

hardware virtualization technology to execute privileged instructions. While in 

Paravirtualization, the guest virtual machine is aware of the existence of the hypervisor. 

A Paravirtualized guest’s kernel is modified so that it can execute in cooperation with the 

hypervisor [1]. Since the Bare-Metal hypervisor is the primary software installed directly 

above firmware, its execution environment is termed VMX-root mode on Intel 

Architecture platforms.   

In this work we look at security challenges and solutions for Bare-Metal hypervisors and 

refer to them as hypervisor in the entire discussion.  

2.1.2 Guest System (Virtual Machine) 

Each Virtual Machine hosted on the hypervisor runs independently of other virtual 

machines in its own virtual environment, using the VMM interface for required 

resources. Each VM has its own complete software stack with software applications. The 

Virtual Machine’s execution environment is referred to as the VMX non-root mode. As 

mentioned in the previous section, guest systems can be of two types either 
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Paravirtualized or Hardware-Virtualized (HVM) depending on whether the guest 

Operating System is modified to run in a virtual environment or it is unmodified and 

takes advantage of the underlying hardware virtualization features to maintain its state. 

2.1.3 Virtual Machine Instructions 

Since in this work we are working on Intel architecture we explain here some of the 

VMX instructions. We also explain the life-cycle of a guest machine in terms of VMX 

instructions. There are two types of operations supported by Intel processors: VMX root 

and VMX non-root. During system initialization, the software can enter VMX operation 

by setting CR4.VMXE and then executing instruction VMXON from root privilege. To 

leave VMX mode, software should execute instruction VMXOFF. The host software that 

executes VMXON operates in VMX root mode after entering VMX. The guest VMs 

created by this software will execute in VMX non-root mode. Transitions between VMX 

root and VMX non-root mode are called VMX transitions. Processor transitions from the 

hypervisor into the guest are called VM Entry, and transitions from guest to hypervisor 

are called VM Exit. When the hypervisor launches the guest VMs for the first time it 

does so by executing instruction VMLAUNCH. All subsequent entries into guest are 

executed by instruction VMRESUME. The VM guest may request services from the 

hypervisor by executing instruction VMCALL. This instruction causes a VM Exit into 

the hypervisor. The hypervisor uses a data structure called the Virtual Machine Control 

Structure (VMCS), to save the processor state between VMX transitions. The lifecycle of 

VM guests and the hypervisor with VMX instructions is shown in Figure 2.1 [4].  
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2.1.4 VMCS 

As shown in Figure 2.2, the Virtual Machine Control Structure (VMCS) is a data 

structure maintained by the hypervisor for each of its hardware-virtualized (HVM) VMs. 

The hypervisor maintains a VMCS per virtual CPU of each guest. The processing state of 

the guest is saved in its respective VMCS during a context switch from the guest into the 

hypervisor. While re-entering the guest from the hypervisor the processing state of the 

guest is restored by reading its previously saved state from the VMCS. The hypervisor 

uses instruction VMPTRLD to load the appropriate VMCS in memory and switch 

control. The hypervisor may read data from the loaded VMCS using instruction 

VMREAD and write to it using instruction VMWRITE. To save the VMCS back to 

memory, the hypervisor uses instruction VMPTRST [4]. 

 
 Figure 2.1: Lifecycle of hypervisor and guest machines using Intel VMX instructions. 

 
Figure 2.2: VMCS Layout – A data structure per virtual CPU for each Virtual Machine of the 

Hypervisor. 
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2.1.5 Xen 

Xen is an open source bare-metal hypervisor that supports both Paravirtualized (PV) 

guests and Hardware Virtualized guests (HVM).  Xen execute its guests in environments 

called as Domains. The architecture is lightweight in which the hypervisor itself performs 

basic control operations, while management software performs the admission control, 

applies policy decisions and manages CPU sharing among guests. This management 

software is implemented in a privileged guest called Domain0 (Dom0) and the other 

unprivileged guests are known as DomainU (DomU).  Xen handles resource access and 

modification differently for PV and HVM guests. For successful functioning, PV guests 

require a modified OS kernel and need additional driver support, while HVM guests do 

not require any OS kernel modifications. 

Domain0: This is the first guest that Xen boots up after it is initialized. Dom0 is a PV 

guest that has elevated privileges and provides the management interface for all the 

guests. Hardware emulation for different resources is implemented in this domain. Dom0 

is responsible for managing how the resources are shared amongst the guests. It executes 

a hypercall to request Xen to perform any privileged instructions. Hypercalls are like 

Linux system calls and work between PV guests and the hypervisor. When Xen launches 

Domain0, it allocates the needed physical memory and manages its memory updates.   

HVM Guests: HVM guests are fully-virtualized guests with no modified kernel. When 

HVM guests are created, Xen assigns the guest a virtual memory region that the guest 

considers as real physical memory. All the updates to the guest’s page table are trapped 

and handled by the hypervisor. The processor state of the guest is maintained by the 
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hypervisor in the respective VMCS structure allocated for the guest. This VMCS 

structure holds the address of the page table the guest treats as the actual machine page 

table in the CR3 register field. When the processor executing in the HVM guest 

transitions into SMM on System Management Interrupt the SMM views the HVM guest’s 

processor state instead of the hypervisor’s processor state [29], [70]. 

2.2 Security 

Computer Security is a method of protecting the computer systems and the data that they 

store from unwelcome accesses or modifications. It also focuses on building systems that 

are dependable in the face of attack due to malicious software. Different types of 

malicious code or malware can cause different type of attacks like Denial of service, 

spoofing, tampering, privilege escalation, phishing or social engineering [54], [69]. In our 

work, we concentrate on rootkits, malicious software that targets the ring0 software.    

2.2.1 Malware 

Malware is a piece of software that has the ability to change the normal behavior of, gain 

unauthorized access to, or steal information from a computer or any software running on 

it. Malware is an umbrella term for spyware, keyloggers, rootkits, ransomware, Trojan 

horses, botnets, worms and viruses. Each type of malware is distinguished by the intent 

of the creator associated with it. Spyware steal sensitive information, keyloggers log the 

keyboard behavior specifically to gather passwords, rootkits attack the operating system 

or hypervisor and hide their traces, ransomware is deployed to extort money. Different 

malware can target different systems. The Mirari botnet was an IoT based malware 

responsible for launching a DDoS attack against the DYN DNS server [17]. WannaCry 
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ransomware was spread via a computer worm making it one of the biggest cyber-attacks 

[18]. Judy is an Android phone targeted adware deployed to make money for the 

attackers by generating ad revenue [19].  

2.2.2 Rootkit 

Rootkit is a software that gains access to the ring0 software and hides itself under 

authentic applications and tools and may perform malicious activities. Rootkits have the 

ability to hijack control flow by modifying return addresses, function pointers, kernel 

data structures or non-control data. In the virtualization environments, rootkits can hijack 

the interface between virtual machine and the hypervisor and in certain cases even the 

hypervisor itself. Once the hypervisor is compromised the entire environment including 

all the virtual machines running on the hypervisor can be affected. This is possible by 

exploiting vulnerabilities present at different layers. 

2.2.3 RIMM 

Runtime Integrity Measurement Mechanism is a method to measure the correctness of the 

system at any point in time while the system is running. This mechanism may include 

detecting resident malicious software, or corruption of privileged code and data 

structures.  

2.3 Hardware Execution Environments 

Hardware Isolation environments are processor features that provide an isolated 

environment in the application address space, firmware or as a new chip on the system 

itself. The primary purpose of these environments is to allow application developers, 
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system administrators or OEMs to execute critical code or store sensitive information 

such as cryptographic keys. Different processors provide different types of hardware 

execution environments. To run applications in an isolated environment, Intel x86 

processors provide SMM and SMM Transfer Monitor (STM) as firmware isolated 

environments, the Management Engine (Intel ME) as a separate on-board processor 

specially designed for security applications and Software Guard Extensions (Intel SGX). 

SGX consists of a set of special hardware instructions that application developers can use 

to create isolated environments in the ring3 application layer. AMD processors have 

Platform Security Processor (PSP), a separate processor from the main CPU designed for 

security applications similar to Intel ME. Along similar lines, ARM has TrustZone with 

SMM like functionality. Trusted Computing Group (TCG) provides another feature 

called Dynamic Root of Trust for Management (D-RTM) that they developed 

independently. D-RTM allows establishing trust in the ring0 kernel at any time instead of 

only at the time of system initialization. Intel implemented its version of Root of Trust for 

Management (RTM) as Intel Trusted Execution Technology (TXT) and AMD 

implemented it as Secure Virtual Machine (SVM) [53]. Intel’s TXT provides S-RTM 

(Static Root of Trust for Management), by measuring the components from the platform 

reset stage until the host software components against keys saved in Platform 

Configurable Registers (PCR) [39], [71]. 

In our work we focus on Intel processors, we utilize SMM and STM as hardware isolated 

environments to execute the integrity measurement unit.  
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2.3.1 System Management Mode (SMM) 

SMM is a privileged operating mode present on Intel processors since the 386SL 

processor as well as on AMD x86 processors [4], [79]. This mode is used to perform 

system-wide functions related to power management and system hardware control [4]. A 

system can enter SMM by asserting an System Management Interrupt (SMI) on the SMI# 

pin on the processor or via an SMI message received on the APIC bus. SMI is the highest 

privileged instruction and is a nonmaskable external interrupt. It has higher priority than 

any other interrupt even Non Maskable Interrupt (NMI). On an SMI the processor saves 

its current context and switches to a separate address space. The SMI handler then starts 

executing in this address space. SMM can be exited only by instruction RSM (resume) on 

Intel processors and with IRET instruction on AMD processors. On RSM or IRET, the 

saved processor state is restored and the processor starts executing from where it was 

interrupted. When the system enters SMM, the hostside execution is suspended. The SMI 

handler code and the processor save state are located in a dedicated memory location 

called SMRAM [3], [4]. On a multi-processor system, only one CPU executes the SMI 

handler while other CPUs spin wait until the SMI handler execution is completed. 

2.3.2 SMI Transfer Monitor (STM) 

The SMI Handler has the ability to access memory region beyond SMRAM. Thus, if an 

SMI handler is compromised, it can read or write any memory region [15]. One way to 

solve this problem is by de-privileging SMI handlers. The SMI handler can be de-

privileged only if there exists a higher privileged software than SMI handler such as the 
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STM. The SMI handler should be de-privileged in such a fashion that it should be able to 

access the required appropriate hardware resources for its normal operations [15]. 

Since both SMI handler and host software are distrustful of each other, a higher 

privileged trusted software is required to establish trusted communication between these 

two. The STM is a hypervisor at the SMM level, which acts as a trusted channel between 

the SMI handler and the host software. STM thus becomes the highest privilege software, 

with the SMI handler and the host software as its guests. It has access to the entire system 

and can restrict an SMI handler from accessing resources outside of its allocated address 

space. Since STM is at a higher privilege level than the SMI handler and the host 

software, both of these entities must agree on opting in to enable the STM. This opt-in 

should occur before host software starts running. During boot-time, STM is loaded in a 

special region of SMRAM called the Monitor Segment (MSEG). The STM memory 

layout in SMRAM is shown in Figure 2.4. On a TXT capable system, during system 

initialization state TXT verifies STM and then loads it into MSEG region, thus 

establishing S-RTM. 

The STM follows the SMI property that on an SMI all the CPUs must enter STM. Once 

all the processors enter the STM, one processor is elected to execute the SMI handler 

while other processors spin in a wait loop. To identify its guests and to store the 

processor state between context switches, STM keeps a VMCS (Virtual Machine Control 

Structure) for both. An exit from host software either from hypervisor or from the 

hypervisor’s virtual machine into STM due to SMI is called SMM VM exit since it is an 

exit from the host software. On receiving SMM VM exit, STM saves the current VMCS 
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pointer for the host software in its associated VMCS. It also stores the processor context 

in a special region called the save state area. The return from STM into host software is 

called an SMM VM entry since it is an entry into the host software. While on the return 

path, STM refers to the host software’s VMCS and the save state region to restore the 

processor context. An exit from STM into the SMM guest for SMI handler execution is 

accomplished with a call to VmResume. Once the SMI handler finishes its execution, it 

executes the RSM instruction that causes an exit into STM. The STM saves the essential 

processor state information for SMM guest in its VMCS. The STM also maintains a 

database of VMCS pointers for host software hypervisor’s (i.e. Xen) virtual machines. At 

the time of virtual machine creation, the host software hypervisor may execute a 

ManageVmcsDatabase VMCALL to request STM to store the newly created Virtual 

Machine’s VMCS pointer along with the access policy for this VM. The access policy 

enforces a restriction on the VM register states visible to the SMI handlers.  

In virtualized environments, the processor may be executing either in VMX root mode or 

in VMX non-root mode at any instant. If an SMI is triggered when the processor is 

operating in VMX root mode, STM saves the VMXON pointer in the host software’s 

VMCS region. Figure 2.3 (a) shows the flow when SMI occurs in VMX root 

environment. If an SMI is triggered when the processor is operating in VMX non-root 

mode, i.e. in the host software’s virtual machine context, STM saves the VMCS pointer 

for the virtual machine in the host software’s VMCS region. Figure 2.3 (b) shows the 

flow when SMI occurs in VMX non-root environment. 
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Figure 2.3: SMI behavior for Virtualized Environment - (Top to Bottom) (a) SMI Triggered when 

CPU is running in VMX root mode - It causes an SMM VM Exit into STM, it saves the VMXON pointer 

for Xen and transfers control to SMI Handler via VmResume. SMI Handler finishes its execution and 

returns via RSM. STM restores the state of the processor it previously stored and returns control to Xen. (b) 

SMI Triggered when CPU is running in VMX non-root mode - It causes an SMM VM Exit into STM, it 

saves the VMCS pointer for VM and transfers control to SMI Handler via VmResume. SMI Handler 

finishes its execution and returns via RSM. STM restores the state of the processor it previously stored and 

returns control to VM. 

 
Figure 2.4: STM Memory Layout – The Dark green part is the static STM image loaded in MSEG and 

the Light Green portion shows the region of MSEG used by STM image during its execution [15]. 
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Chapter 3 : Related Work 

In the past researchers have made attempts and proposed solutions to verify and protect 

different layers of the software stack. As the software evolved, along with it evolved 

rootkits trying to penetrate each layer. Hence, it is necessary to protect all of the layers of 

software running on the system. The approaches taken by researchers can be classified 

depending on the techniques implemented and software layer that it protects. This chapter 

takes a look into different rootkit detection techniques. 

3.1 Kernel Introspection 

Some approaches like rkscan [58], [59], St. Michael [60], LIDS [61] implement rootkit 

detection methods from within the kernel. This method gives them high privilege to 

inspect the ring3 layer (application layer) as well as ring0 layer (kernel layer). However, 

these detectors may be susceptible to attacks from the privileged layer-based rootkits 

before these rootkits are even detected. Hence, this technique suffers from self-protection 

and may be vulnerable to attacks. 

3.2 Kernel verification via Virtual Machine Introspection 

One way to secure the detector from a kernel level rootkit and overcome the problem of 

self-protection is to run the detector in a higher privilege level than the rootkit. A number 

of solutions have been developed to measure the kernel code from the hypervisor. 

Livewire [54], VMwatcher [56], VirtAv [57] are some of the solutions that implemented 

this concept to extract kernel knowledge and perform inspection over it to detect 

anomalous behavior. Hypervisor being at the highest privileged layer in the software 

stack is a very attractive layer for attackers to place their rootkits and take control over 
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the entire system on which it has been deployed. Again, these solutions also suffer from 

self-protection. This makes it essential to verify even the hypervisor. 

3.3 Hypervisor Verification 

Multiple researchers have tried to find solutions to measure the integrity of the hypervisor 

efficiently but unfortunately, they do not address all the concerns of hypervisor integrity 

checking and the performance constraints that should be followed by the measurement 

unit itself.  In the following section, we discuss these research methods and see how our 

approach of using SMM and STM for hypervisors addresses these concerns. 

3.3.1 In-context hypervisor verification 

One of the early works in this domain was HyperSafe [22], which illustrated an approach 

of securing the hypervisor by locking down the hypervisor code and static data pages and 

introducing pointer indexing for control flows. Even though their technique seems 

promising, non-control flow data like IDTR, MSRs also need verification and protection. 

In case a rootkit is able to change IDTR to point to a malicious IDT page then HyperSafe 

will be attesting the malicious IDT page instead of valid IDT page. The Event driven 

VMM monitoring [23] approach makes use of Instrumentation-based Privilege 

Restriction (IPR) and Address Space Randomization (ASR) techniques to securely 

perform in-context integrity measurement. This approach implements IPR with Shadow 

Page tables, accessible by a monitoring unit, and use ASR to randomly place the 

monitoring unit in memory during initialization phase.  
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3.3.2 Nested Virtualization 

CloudVisor [24] uses nested virtualization, running a VMM in a virtualized environment, 

to de-privilege VMM and secure the control transition channel between the hypervisor 

and the virtual machine. Using similar nested virtualization concept, Nezhad, A.S. et.al. 

[26], propose an architecture that uses many layered hypervisors each with varying and 

adjustable functionalities to secure the virtual machines. Nested hypervisors are 

vulnerable since they face similar threats as traditional hypervisors. 

3.3.3 Microhypervisors 

Some researchers have studied extending the secure microkernel approach developed for 

operating systems to virtualization as well. One such study is NOVA [47] that 

implements decomposed virtualization while supporting full virtualization. They 

decompose virtualization into fine-grained functional components as root-partition 

manager, multiple virtual machine monitors, device drivers and other system services and 

implement the principle of least-privilege among all of these components. 

3.3.4 Trusted Execution Environment based integrity monitoring 

In a study by Zhang, F. et al. [53] the authors present a detailed report on benefits and 

vulnerabilities in currently available hardware assisted Trusted Execution Environments 

(TEEs). Since these TEEs are supported by the hardware vendors themselves they can be 

used for trustworthy computing with no additional modifications to the system. SMM and 

STM are one of the many TEE available on Intel platforms. Although SMM was not 

primarily designed for security purposes, research using this mode for system health 

checking have shown that SMM can be an effective environment for an integrity monitor. 
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For example, HyperSentry [11], HyperCheck [12], HyperGuard [13] and SPECTRE [14]. 

Unfortunately, they face some serious shortcomings: for example HyperGuard and 

HyperCheck do not invoke the SMI handler stealthily. HyperGuard makes use of a 

system timer to trigger each SMI while HyperCheck uses Network Interface Card (NIC). 

A rootkit may poll for SMIs or specific inputs on these resources and scrub its attack 

before the integrity checker can measure the hypervisor. As studied by Delgado et al. [8] 

and recommended by Intel’s BITS tool [80] exceeding 1.5ms threshold for execution 

time in SMM may affect the execution of applications adversely. All of the above 

methods exceed this time constraint by orders of magnitudes: HyperSentry takes 35ms 

for measuring the integrity of hypervisor kernel. SPECTRE measures the integrity of 

Linux kernel, applications and heap and is able to detect heap overflow attacks and heap 

spray attacks. However, even this mechanism takes an execution time of at least 5ms. 

SMM faces semantic gap challenge for hypervisors executing on VMX enabled systems. 

HyperSentry addresses this problem while triggering SMI via IPMI BMC out-of-band 

communication channel to achieve stealthy SMI invocation. It uses performance counters 

to obtain the hypervisor context in case the SMI is triggered when the processor was 

executing in a VMX guest. To accomplish hypervisor integrity checking, the approach 

places the measurement agent inside the hypervisor context. However, locating a 

measurement agent inside the same context as compromised software’s context may lead 

to manipulation of results by an advanced rootkit.  

An STM based approach that is currently being researched at Trust Mechanisms, 

Information Assurance Research is STM/PE with XHIM [50]. The XHIM (Xen 
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Hypervisor Integrity Measurer) which is based on LKIM (Linux Kernel Integrity 

Measurer) [51] collects hypervisor state at a given moment and sends it to the DM 

(decision maker) for analysis. DM may be placed either on the same system as the target 

machine or on a different machine. The measurement agent exports hypervisor context 

information from the target machine, which may be vulnerable to network attacks. This 

approach relies on an SMI timer to invoke measurement agent. A rootkit in the kernel 

may disable the SMI timer, thus not allowing the measurement agent to run. 

3.3.5 Additional hardware for integrity monitoring 

HyperWall [25] presents a different approach towards securing the VM from a malicious 

hypervisor. In their design, they propose to modify the microprocessor and the memory 

management unit and introduce new confidentiality and integrity protection (CIP) tables 

in memory to protect the memory of the guest virtual machines. Copilot [38] uses co-

processor based technique to introspect the system. In this technique copilot monitor is 

periodically triggered and it reads kernel data over a PCI device. A smart rootkit might 

scrub its attack base before the monitor is triggered and restore itself after the 

measurement.  

3.4 Hardware assisted isolated execution environment 

Other researchers have proposed creation of isolated environments to run critical 

applications. One such work is SICE [52] where the authors create an isolated execution 

environment using SMM for the critical application to run. This technique saves the 

critical context of the application before switching to a different application in the 

SMRAM. 
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3.5 Other SMM and STM based applications 

SMM and STM-based related research have looked into SMM-based malicious 

environment debugging, for example, MALT [63]. This capability could be useful while 

doing forensic analysis on the traces of the malware and the affected environment. SMM 

has also been used to protect login credentials with TrustLogin [64]. Dell holds a patent 

on using STM and SMM to sandbox SMI handlers and different SMM Drivers from each 

other [65]. This work aims at constraining resource accesses requested by the SMI 

handler to their own virtual environment.  

3.6 Security challenges of System Management Mode 

Some prior studies have shown that there is a possibility of system threat due to 

vulnerabilities in hardware-based TEEs including SMM [53], [66]. These vulnerabilities 

arise due to incorrect implementation of features in the environment. Research has shown 

some SMM-based rootkits [74], [75], [76], [77] and exploiting the SMM itself by cache 

poisoning [72] or by exploiting vulnerability in Intel’s TXT [73]. In the recent versions, 

these SMM vulnerabilities have been patched while adding some added security features 

to UEFI-SMM implementation such as restricted memory access to system memory [28]. 

Moreover, STM provides additional security by virtualizing SMM. STM may itself be 

validated via Static Root of Trust mechanism (SRTM) during system boot phase.    
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Chapter 4 : Prototype Design and Implementation 

In this chapter, we describe a novel method for detecting persistent rootkits in 

hypervisors from SMM. Our starting point for this work was an existing measurement 

tool under development at Portland State called EPA-RIMM.  We describe EPA-RIMM 

in Section 4.1. To extend EPA-RIMM for use with hypervisors we developed an STM-

based method to bridge the semantic gap between SMM and the Xen hypervisor, 

implementing the STM opt-in in Xen and developing an STM performance collector 

interface between Xen and STM. We call this modified version EPA-RIMM-V (EPA-

RIMM for Virtualized platforms). We describe the design and implementation of EPA-

RIMM-V in Section 4.2.   

4.1 EPA-RIMM 

EPA-RIMM is an SMM-RIMM framework developed by Delgado et al. [21] with the 

goal to provide quick detection of kernel or hypervisor rootkits by identifying unexpected 

changes in system state snapshots. It accomplishes this by periodically interrupting the 

running system to inspect sets of presumed static resources to identify changes, any of 

which would be a strong indicator of compromise. EPA-RIMM decomposes large 

integrity measurements to remain consistent with expectations regarding SMI latency. It 

implements a scheduler that facilitates a varying time budget for measurements allowing 

the performance-security tradeoff to be adjusted during runtime based on the threat 

landscape. EPA-RIMM architecture as shown in Figure 4.1 has the components 

Diagnosis Manager, Backend Manager, Host Communications Manager and Inspector. 

There are three key abstractions in the architecture: Checks, Tasks, and Bins. A Check is a 
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description of a system resource measurement, including a command and its arguments, a 

priority, and a decomposition target. Checks allow the administrator to specify 

measurements over sets of memory regions, Control Registers, and Model-Specific 

Registers (MSRs). Sample Checks include: “Static Kernel Code Sections” that measures 

the kernel code sections to identify code injections, the “IDTR” Check that verifies that 

the IDTR register does not point to a different Interrupt Descriptor Table structure, the 

“GDT” Check that measures the Global Descriptor Table (GDT) to determine if it has 

changed. Other Checks measure specific MSRs or CPU control registers (e.g. CR0, CR4), 

for example, to determine if the Supervisor Mode Execution Protection (SMEP) were 

disabled by malware. At runtime, Checks are decomposed into some number of Tasks, or 

partial resource measurements. Tasks are scheduled by filling Bins, where each Bin’s size 

is defined as the sum of the execution times of the Tasks it contains.  

The Backend Manager (BEM) receives Checks from the Diagnosis Manager and 

decomposes them into smaller Tasks to avoid prolonged SMM session times. The 

Backend Manager schedules Tasks by filling Bins based on a target Bin size. It signs and 

encrypts each Bin then provides it to the Host Communications Manager. The BEM 

receives back the Inspector’s signed and encrypted results. It decrypts the results and 

checks the signature to ensure that they came from the proper Inspector. The BEM 

merges individual Task results into a single Check result of true or false and sends the 

results to the Diagnosis Manager. The Host Communications Manager communicates 

with the Inspector either via an out-of-band mechanism or by an in-band mechanism. The 

Inspector is an SMI handler compiled into the BIOS and is initiated by an SMI. 
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The Inspector module of this RIMM computes the hash values of the specified 

measurements during the provisioning phase and writes the hash values back in the result 

descriptor. During the subsequent measurements, it utilizes these hash values previously 

computed to verify the current state of the system [21]. 

This model of EPA-RIMM addresses the SMI handler performance problem - Inspector 

can be executed close to 150µs time constraint. It can even successfully detect rootkits in 

hypervisor running a para-virtualized guest. However, it does not solve the problem of 

processor state uncertainty for VMX-supported hypervisors running HVM guests.  

 
Figure 4.1: The EPA-RIMM Architecture - The Diagnosis Manager is an application-level component 

that specifies the Checks to be performed. The Backend Manager decomposes the Checks into work units 

called Tasks and schedules these into Bins. The Host Communications Manager is a component of the 

Monitored node that forwards the Task-Bin to the Inspector and after inspection collects the results and 

returns the Task-Bin updated with results to the Backend Manager. The system analyzer component 

(Inspector) measures the ring0 software for anomalies and sends results back to Diagnosis Manager [21]. 
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4.2 Design of EPA-RIMM-V 

EPA-RIMM-V is divided into four components: hardware, firmware and the host 

software. Measuring virtualized environments required changes to the Inspector, the Host 

Communications Manager and the Backend Manager. In this section we detail these 

changes.  

4.2.1 Research Testbed 

For implementing our prototype, we need a platform that allows us to modify firmware, 

and a processor that supports STM. On the commercially available systems, the firmware 

is locked down for security reasons, thus restricting the user to change the firmware 

manually. Hence, we use an open source development board Minnowboard Turbot as our 

prototype system. This is an open source hardware platform with Intel Atom E3826 dual-

core processor, 2GB RAM, 1.46 GHz frequency [16]. This processor series supports 

Intel’s STM feature. We use UEFI as our firmware, since Minnowboard is UEFI 

firmware compatible, and open source EDK-II firmware development kit to develop and 

build UEFI, SMM and STM [27]. We use Xen 4.9 as our hypervisor and Ubuntu 14.04 

with Linux kernel 4.11 as Domain0. Xen and Ubuntu make up our host software. 

UEFI BIOS and binary object modules for Minnowboard are available as open source 

resources to build custom firmware images [28]. STM is also an open source project with 

its source code available on GitHub [30]. We use the most recent UEFI Minnowboard 

firmware version 0.97 for platform specific binaries. The EDK-II implementation of 

UEFI for this Minnowboard firmware version does not have complete support for STM. 

We updated the UEFI EDK-II build specification to support STM. STM is built in 
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isolation first, and then the binary generated during the build is integrated with EDK-II. 

The entire package is then compiled to get one single binary. During system boot up, in 

the platform initialization phase UEFI loads STM image in the MSEG region and opts-in 

to STM.   

4.2.2 Host Software 

We use an open source bare-metal hypervisor, Xen 4.9, as our host software. Xen runs 

Ubuntu 14.04 with Linux kernel 4.11 as Domain0. We use Ubuntu 16.04 as our HVM 

guest (DomainU).  

For every HVM guest Xen maintains a VMCS per virtual CPU to save the processor 

context between context switches. It maintains a unique pointer called VMXON for itself, 

which is used while executing VMXON instruction. To enable STM and use it, the host 

software should also do an opt-in. This opt-in is like a handshake between firmware and 

host software to setup STM. Host software should perform this step during its 

initialization phase before it starts running. We implement this opt-in mechanism in Xen. 

We also define and implement a set of fine-grained access policies over Xen’s resources, 

such that SMI handler will have restricted access to Xen’s resources.  

4.2.3 Implementation 

To completely implement and test our approach we made changes to Xen launch code for 

opt-in to STM, added a new module to STM to interpret hypervisor context from 

available VMCS and modified EPA-RIMM’s Inspector module to obtain hypervisor 

specific information from STM for inspection. We also modified EPA-RIMM’s Host 

Communications Manager module for special handling of hypervisors. Furthermore, to 
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analyze and collect STM performance data we implement a VMCALL interface between 

STM and host software. If performance collection is enabled as part of firmware 

compilation, this interface invokes a VMCALL to gather performance data from STM 

and report it to Xen. We also define a set of fine-grained resource access policies over 

Xen resources that STM enforce on the SMI handlers. 

4.2.4 STM Support in Xen 

Xen is the example hypervisor we have considered in our prototype to test our modified 

RIMM for detecting rootkits in the hypervisor. To enable STM, the ring0 software has to 

complete a handshake procedure with the firmware. This handshake is called the STM 

opt-in. This opt-in is performed during system initialization. Xen should perform this 

operation from VMX root mode. The current Xen kernel does not implement this opt-in. 

We introduce a new function, launch_stm(), which is executed at the end of Xen setup 

stage after hardware virtualization is enabled. This function executes a series of 

VMCALLs to enable STM. A VMCALL is an Intel VT-x instruction that allows guest 

software (Virtual Machine) to make a call for service to its underlying hypervisor. When 

a VMCALL is executed in VMX root mode, it invokes STM if Dual-Monitor Mode is 

supported on the processor and the firmware has done an opt-in to STM. If it is not 

supported or not enabled by the firmware it raises an error [4]. The following steps 

illustrate the STM initialization procedure in Xen: 

1. Check if firmware has activated Dual-Monitor mode: 

Bit 0 of IA32_SMM_MONITOR_CTL (0x9B) Model Specific Register 

(MSR) is the IA-32e mode SMM feature bit. This bit is set by firmware 
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during initialization process if it does an opt-in for STM. This step also checks 

whether hardware virtualization, Intel VT-x, is enabled.  

2. Allocate temporary VMCS per logical CPU: 

Execution of a VMCALL performs some initial checks on the VMCS 

associated with the VM that invoked this instruction. Intel VT-x does this 

before transferring control to STM. Since, we are executing in hypervisor’s 

context (VMX root mode), we need to create a temporary VMCS to record the 

current processor state and exit control information. 

3. Initiate resource list initialization on only one logical processor: 

On receiving this VMCALL, STM initializes the resource list and sets up the 

environment for running SMI handler as its guest. This VMCALL must be 

executed on only one logical CPU.   

4. Execute Start on all logical CPUs: 

In this step, STM launches the SMM guest. VMCALL for this step must be 

executed on all the logical CPUs.  

5. Execute protect resources on hypervisor critical resources. 

In this step, hypervisor specifies a list of its resources that it wants to protect 

from being tampered by SMI handlers. STM agrees to this resource list if the 

BIOS has not made a request for any of the resource specified. 

All the above steps are performed only if their previous step was successfully executed. If 

any of the step fails then changes are rolled back and STM is not enabled. 
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During system reset stage, all the services are stopped by the kernel. Similarly, during 

this stage, Xen should have a mechanism to safely opt-out of STM, thus disabling it. We 

implement this opt-out mechanism in the form of an API teardown_stm() before 

disabling VMX. VMX is disabled by executing VMXOFF instruction. The 

teardown_stm() API calls Stop STM VMCALL on all the logical CPUs. On receiving 

this VMCALL, STM does a reverse execution of the steps it performed during 

initialization time. For hypervisor resource protection, we specify read-only policy on 

Model Specific Registers (MSRs) and host software code with the ProtectResource 

VMCALL. This restricts all SMI handlers from modifying host software or MSRs, or 

Control Registers. The STM utilizes permissions set over the Enhanced Page Tables 

(EPT), MSR bitmaps, and VMCS controls to limit the SMI handler virtual machine’s 

access to these resources. 

4.2.5 Resolving the SMM-Hypervisor Semantic Gap 

To detect hypervisor modifications, an SMM based RIMM such as EPA-RIMM should 

be able to read the hypervisor context during verification. Hypervisors that support Intel’s 

VT-x feature and run hardware-assisted virtualized guests exhibit a unique behavior 

when interrupted due to SMI. During protected mode operation, the logical processors 

may be executing either in the VMX root mode or  in the VMX non-root mode. On SMI, 

the logical processor saves the current state of the operating environment internally to 

them and then enters SMM. This uncertain operating environment state before SMI 

causes uncertain processor context problem in SMM and thus the semantic gap between 

SMM and hardware virtualized hypervisors. Moreover, SMM can obtain VMX root 
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information only by reading the saved processor state. Hence, SMM needs an additional 

support mechanism to overcome this semantic gap problem and successfully read the the 

hypervisor state on each SMI.  

The authors of HyperSentry [11] solved this problem by instrumenting the SMM code 

flow. Whenever an SMI is generated from VMX non-root mode, they inject an 

instruction to force one core to jump from VMX non-root mode to VMX root mode 

unconditionally. From here the core re-enters SMM thus obtaining the VMX root context. 

Their technique introduces forced changes to the regular flow and relies on configuring 

performance counters and the Local APIC. There is the possibility that, if a rootkit is 

monitoring the SMI counter register, then it can detect the presence of the SMM RIMM 

and scrub its changes before HyperSentry can identify the rootkit. On each SMI, the SMI 

counter value gets incremented. 

To address this challenge, we develop a stealthier and more straightforward technique to 

extract hypervisor context. We use STM features to develop this technique. On an STM 

enabled system, the SMI counter does not get incremented. Thus an SMI generated will 

go undetected by a rootkit that is monitoring the SMI counter. 

To measure the integrity of the hypervisor, the Inspector needs to be able to read the 

hypervisor’s current CPU context. To overcome the semantic gap between the SMM and 

hypervisor and have guaranteed context of hypervisor state on every SMI, the EPA-

RIMM Inspector uses the assistance of STM. In this section, we describe the 

implementation details of a new function in STM that identifies the hypervisor context 

and stores the data in a special data structure to be shared with the SMI handler.  
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On creation of a new Virtual Machine guest, the hypervisor associates a data structure 

called Virtual Machine Control Structure (VMCS) on a per CPU basis with this guest.  

This structure keeps a record of the processor state for its respective specific guest. The 

processor uses this data structure while exiting and entering the guest. Each VMCS has a 

guest region, host region and control region. The guest region holds information related 

to the processor behavior for that specific Virtual Machine. The host region holds the 

processor behavior information for the hypervisor. Finally, the control region holds VM 

exit, entry, execution control information. On creation of VM, STM saves a record with 

the new machine’s VMCS pointer in its VMCS database with read write policies 

(degradation policies) as enforced by the hypervisor for the VMCS. Xen and STM both 

use VMCS in a similar fashion to store and restore the processor context of their 

respective guests while exiting and entering their virtual guest. We leverage this 

capability provided by Intel VT-x for reading hypervisor context from STM and sharing 

it with SMM. 

We introduce a new function Get_Executive_Monitor_Context that can be invoked via 

VMCALL interface between the SMI handler and STM. Using this VMCALL, Inspector 

can request hypervisor context from STM. The VMCALL function retrieves hypervisor 

specific information either from the Save State area or by loading a Virtual Machine’s 

VMCS and reading the host state region depending on the context from where the SMI 

was triggered. When the SMI is triggered from VMX root context, the SMI VMCS will 

have a pointer to VMXON, a special pointer to the hypervisor, and the Save State region 

will have the hypervisor’s processor state. According to Intel VT-x policies, if software 
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tries to load VMXON it results in a VmFail. Hence, in this case we read the data from 

Save State area and store it in a special descriptor MLE_VMM_DESCRIPTOR. On the 

other hand, if SMI is triggered from the VMX non-root context, SMI VMCS will hold the 

pointer to VMCS for the Virtual Machine and the Save State area will be populated with 

the guest context of VMCS. The guest region of VMCS holds the respective Virtual 

Machine specific information and the host region holds the hypervisor specific 

information. In the Get_Executive_Monitor_Context function we check the state in which 

the processor was executing before SMI. If a logical CPU was executing in a Virtual 

Machine, we load the respective VMCS and read the host region of the VMCS. After 

completion, we return MLE_VMM_DESCRIPTOR in a SMI handler allocated 4K aligned 

buffer. 

This function is executed by invoking VMCALL GetExecutiveMonitorContext with 

opcode STM_API_GET_EXECUTIVE_MONITOR_CONTEXT. The specifications of this 

VMCALL are as follows:  

Input Registers: 

EAX = STM_API_GET_EXECUTIVE_MONITOR_CONTEXT 

EBX = low 32 bits of caller allocated 4K aligned destination buffer. 

ECX = high 32 bits of caller allocated 4K aligned destination buffer. 

EDX = 0 
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Output Registers: 

CF = 0: No Error, EAX is set to STM_SUCCESS. Destination buffer contains the VMX-

root context. 

CF = 1: Error, EAX holds the error value. 

The flowchart in Figure 4.2 explains the flow for VMCALL 

GetExecutiveMonitorContext. 

 

Figure 4.2: GetExecutiveMonitorContext VMCALL Flowchart 

4.2.6 STM Performance Gathering 

For STM performance analysis, we implement a new VMCALL, GetPerformanceData, 

between host software and STM. This VMCALL allows the host software to request 
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performance statistics from STM.   These statistics are collected when the Ring0Manager 

issues a software SMI. Performance data collection is enabled via setting of a knob as 

part of the UEFI compilation process. This knob allows collecting execution time of 

different STM events. The current implementation of the performance collector allows 

for viewing the data only during STM shutdown phase and when UEFI is configured to 

operate in DEBUG mode. In a production environment, this data cannot be interpreted 

for analysis purpose by the host software. This VMCALL enables reporting the collected 

data upto that point to the host software. The host software invokes this VMCALL via 

opcode STM_API_GET_PERFORMANCE_DATA. The specifications of this VMCALL 

are as follows:  

Input Registers: 

EAX = STM_API_GET_PERFORMANCE_DATA 

EBX = low 32 bits of caller allocated 4K aligned destination buffer. 

ECX = high 32 bits of caller allocated 4K aligned destination buffer. 

EDX = page index  

Output Registers: 

CF = 0: No Error, EAX is set to STM_SUCCESS. Destination buffer contains the VMX-

root context. 

CF = 1: Error, EAX holds the error value. 
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Figure 4.3: GetPerformanceData VMCALL Flowchart 

4.2.7 Modifications to EPA-RIMM 

In order to use EPA-RIMM successfully to measure the integrity of the hypervisor 

environment, we make some modifications in its Host Communications Manager and its 

Inspector components.  

 Host Communications Manager  

In the current prototype of EPA-RIMM, the Host Communications Manager is 

implemented as a ring0 linux kernel module called Ring0Manager. In order to work with 

hypervisors, we execute Ring0Manager in Xen’s Dom0. Ring0Manager takes the Task-

Bin it received from the Backend Manager and forwards it to the Inspector via SMI. It 

also receives the results returned from the Inspector, after execution of SMI, back to the 

Backend Manager. Ring0Manager writes the Bin contents on a page and sends the virtual 

address of this page to the Inspector. Dom0 is the paravirtualized guest and the 
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management domain of Xen, and hence Xen creates a virtual address space for Dom0. 

This virtual space of Dom0 may not be contiguous in physical memory. SMM can 

translate the virtual address belonging to Xen’s address space to physical address to read 

the Bin. Hence, we modify Ring0Manager to write the Bin on a hypervisor page. In order 

to write Bin to a hypervisor page, we introduce a new hypercall copy_to_xen. This 

hypercall takes the Bin from Ring0Manager and the size of the Bin, allocates a Xen page 

and returns the page to the Ring0Manager. Now, the Inspector reads Bin from this page, 

and after completion of its execution writes results back to this page. On returning from 

SMI, Ring0Manager has copy contents back from the page SMI wrote to the local Bin 

buffer to send results to Backend Manager. We introduce another hypercall 

copy_from_xen that reads the page contents into the local Bin buffer.      

 Inspector 

When an SMI occurs, the context in which the CPU might be running is indeterminate. 

On a multi-processor system, on SMI, a CPU is chosen randomly to execute the SMI 

handler while the other CPUs spin wait for the SMI handler to complete its execution. 

This CPU may be different from the one on which the HCM generated a software SMI. If 

the chosen CPU were executing in the HVM guest context, then the context found by the 

Inspector is that of the HVM guest instead of the hypervisor. To resolve this problem and 

close the semantic gap problem in SMM, from the Inspector we make a VMCALL 

GetExecutiveMonitorContext to STM. The STM identifies the hypervisor context from 

the VMCS of the interrupted host software and returns the critical hypervisor 

information, CR3, CR4, IDTR, GDTR values, to the Inspector. Thus, our method avoids 
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using performance counters, modifying the SMI and RSM code flow and dependency on 

an in-context hypervisor measurement agent. When Inspector receives the Bin, it receives 

Bin’s virtual address. Inspector needs to convert this virtual address to physical address to 

read the Bin contents. Using the obtained CR3 information for the CPU currently 

executing SMI handler, the Inspector finds the physical location of the Bin. The Inspector 

invokes the VMCALL only for the CPU that carries the Bin address. This avoids multiple 

invocations of VMCALL for other CPUs and thus optimizes the Inspector performance. 

We note that if the Inspector needs the context of other CPUs for measurement purposes, 

it may invoke the VMCALL to request data for these CPUs. Thus, the Inspector has the 

context of the hypervisor regardless of the context the CPU was executing in before SMI. 

With this method, we are able to do out-of context hypervisor inspection. Figure 4.4 

shows the updated EPA-RIMM-V framework with STM enabled on Monitored node.    
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Figure 4.4: EPA-RIMM in STM enabled system – The Inspector on receiving the Task-Bin (4) makes a 

request to STM via VMCALL GetExecutiveMonitorContext to obtain the hypervisor specific processor 

context (5). This VMCALL services the request and returns results (6). Once the Inspector receives details 

it reads the Bin to perform measurement as specified in the Task (7) and returns results (8). 
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Chapter 5 : Effectiveness 

In this chapter, we describe experiments conducted to verify the effectiveness of the 

prototype designed to detect rootkits in the hypervisor. We demonstrate rootkit detection 

by EPA-RIMM-V in the hypervisor by simulating known attack behavior. Xen Security 

Advisories (XSA) regularly releases Xen vulnerabilities and patches for them. The list 

suggests that there are vulnerabilities present that can cause guest machines to launch 

attacks based on denial of service, privilege escalations and execution of arbitrary code in 

the hypervisor [9], [31]. These attacks may be achieved by illegal access of either Xen 

kernel functions, privileged registers or memory. In our experiment, we simulate attack 

behavior that modifies kernel memory, the Interrupt Descriptor Table register and the 

Interrupt Descriptor Table. These simulated attacks may be accomplished by leveraging 

one or more vulnerabilities in the OS kernel and Xen kernel like CVE-2017-17566, CVE-

2017-17045, or CVE-2017-15588. We demonstrate that it is possible to detect such an 

attack that causes hypervisor resource modification with EPA-RIMM-V. Once, such an 

anomaly is detected the Diagnosis Manager can alert the administrator of the system 

being under potential attack.  

We perform hypervisor memory and register verification on the prototype running Xen 

4.9 and Ubuntu14.04, with Linux kernel 4.11 as Domain0 and Ubuntu 16.04 as HVM 

guest.  
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5.1 EPA-RIMM-V Runtime Flow 

In order to understand the experiments performed for integrity measurement, we first 

look at the runtime flow of EPA-RIMM-V. We perform the integrity measurement in two 

phases, namely, the provisioning phase and the measurement phase.  

Provisioning Phase. During the provisioning phase, the Diagnosis Manager initiates a 

good hash measurement collection Check. This Check is initiated for kernel code region, 

Control Registers, and Model-Specific Registers (MSRs). For kernel code memory, we 

read Xen kernel functions from /proc/xen/xensyms file. This file contains the address 

mapping of the currently running Xen kernel functions. We find the address location of 

the kernel in memory and divide it into 4K blocks of memory. We assume that the 

provisioning phase is performed right after boot, when the system has not yet come under 

the influence of malicious software. The Diagnosis Manager then provisions these 4K 

memory blocks as Checks. The Backend Manager decomposes these Checks into Tasks 

and sends them to the Inspector. Since this is the provisioning phase, the Inspector hashes 

the current state of the system and records the hash values in the Task structure. These 

initial hashes are stored with the Backend Manager to be later used for comparison during 

the measurement phase.  

Measurement Phase. Once the Backend Manager gets all the good hash values for Xen 

resources, the measurement phase commences. The Diagnosis Manager now schedules 

Checks for verification of the current state of Xen. These Checks may be scheduled 

periodically or at random intervals. During this phase, the Backend Manager decomposes 

Check into Tasks and records original hash values stored for that specific Task. This Task 
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could be memory measurement Task, control register measurement Task or MSR 

measurement Task. The Backend Manager creates a Bin of Tasks, encrypts it and sends 

the Bin to the Host Communications Manager, which forwards it to the Inspector. When 

the Inspector receives the Bin, it decrypts Bin and reads each Task to find out what 

measurement must be performed. The Inspector then hashes the current state of the 

system and checks it against the hash value passed by the Backend Manager. If the hash 

values match, Inspector reports the current state as good state in the results field of the 

Task. If the hash values do not match then the Inspector reports this as an error state of 

the system. Inspector also records entry, exit times and execution times encryption, 

decryption, hashing functionalities. These statistics are later used to conduct performance 

analysis. In the next sections we describe Xen rootkit simulation and its detection with 

EPA-RIMM-V. 

5.2 Hypervisor Kernel Code Memory corruption detection  

A rootkit may leverage vulnerabilities like Venom, to escalate its privilege and inject 

shell code to overwrite the original good kernel code with malicious content. We 

demonstrate the identification of a rootkit that corrupts kernel memory by simulating a 

hypervisor code corruption attack, modifying function ‘xenoprof_log_event’. 

During the provisioning phase, EPA-RIMM-V recorded a good hash value for the 4K 

memory block range containing this function. We then compromise the function memory 

by overwriting it using the debug capability of EPA-RIMM-V. In subsequent runs, the 

EPA-RIMM-V Inspector performed a SHA-256 hash on the memory block range and the 
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Inspector computed current hash value did not match the provisioned hash values. The 

change was detected and reported to the Diagnosis Manager.  

5.3 IDTR corruption detection  

The Interrupt Descriptor Table (IDT) is a data structure that maintains the interrupt 

handler entry points. An appropriate handler is invoked from this table as a response to an 

interrupt or exception. The Interrupt Descriptor Table Register (IDTR) holds the address 

for the IDT. This table is fixed at system boot time and does not change. If an attacker 

can compromise either the IDT or IDTR then potentially a malicious IDT or a malicious 

interrupt handler may be added. Thus, an attacker would be able to execute the custom 

malicious handler by invoking the corresponding interrupt. We demonstrate the 

identification of a rootkit that corrupts IDTR, by simulating an IDTR corruption via a 

malicious Xen hypercall. This hypercall creates a duplicate copy of the original Interrupt 

Descriptor Table and points the IDTR to this duplicate IDT. During the provisioning 

phase when the IDTR measurement is enabled, EPA-RIMM-V collected a good hash 

value for this register. In subsequent runs when IDTR inspection is scheduled after the 

exploit has been deployed, the EPA-RIMM-V Inspector performed a SHA-256 hash on 

the current value of the IDTR and the change was detected. 

5.4 IDT corruption detection  

Similar to IDTR corruption, an attacker may modify one of the existing handlers in the 

IDT or replace it with a new interrupt handler. We demonstrate that EPA-RIMM-V can 

detect a rootkit that modifies the IDT. We simulate an attack to modify an interrupt 

handler from the IDT. During the provisioning phase, with the IDT measurement 
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enabled, EPA-RIMM-V collected a good hash value for this table. In subsequent runs 

after the exploit has been deployed, EPA-RIMM-V Inspector performed a SHA-256 hash 

on the current value of IDT and the change was detected. 

5.5 Conclusions 

In this chapter, we demonstrated the capability of EPA-RIMM-V to detect modifications 

to the kernel code section, IDT register and IDT of the Xen hypervisor. 
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Chapter 6 : Performance 

In this chapter, we describe the experiments conducted to analyze the performance of 

EPA-RIMM-V. Our focus is on the performance of the Inspector that contains the code 

running in SMM, since that time must be bounded to avoid potentially serious 

perturbation.  First, we present a performance model for EPA-RIMM-V in Section 6.1, 

followed by baseline SMM latency guidelines in Section 6.2, description of the 

performance measurement methodology we apply in Section 6.3 and in Section 6.4 we 

present our evaluation and results.  

6.1 Performance Model 

We evaluate the performance of EPA-RIMM-V in an STM-enabled environment using 

the following model formulated by Delgado and Karavanic [21]: 

Equation 1: EPA-RIMM performance model 

𝑇𝑚  =  𝑇𝑒𝑛𝑡𝑟𝑦  +  𝑇𝑤𝑜𝑟𝑘  +  𝑇𝑒𝑥𝑖𝑡 

𝑇𝑒𝑛𝑡𝑟𝑦: This is the transition time from Xen into SMI handler when an SMI occurs.   

𝑇𝑤𝑜𝑟𝑘: This is the time taken by the Inspector to perform verification of the Bins provided 

by the Backend-Manager. This time may vary with the size of the Task [21]. 

𝑇𝑒𝑥𝑖𝑡: This is the transition time out of the SMI handler and back to the instruction where 

the processor was interrupted before SMI occurred.  

For measuring the STM performance during SMI transitions, we break down 𝑇𝑒𝑛𝑡𝑟𝑦 and 

𝑇𝑒𝑥𝑖𝑡 as follows: 

Equation 2: 𝑻𝒆𝒏𝒕𝒓𝒚 for EPA-RIMM-V 

𝑇𝑒𝑛𝑡𝑟𝑦  =  𝑆𝑀𝐼𝑒𝑛𝑡𝑒𝑟  + 𝑆𝑇𝑀𝑒𝑛𝑡𝑒𝑟  + 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑒𝑛𝑡𝑒𝑟 
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• 𝑆𝑀𝐼𝑒𝑛𝑡𝑒𝑟: Time taken by processor to transition from the source of SMI into 

STM. 

• 𝑆𝑇𝑀𝑒𝑛𝑡𝑒𝑟: Execution time in STM during 𝑇𝑒𝑛𝑡𝑟𝑦 

• 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑒𝑛𝑡𝑒𝑟: Time taken by processor to exit STM and enter SMI handler, 

which is EPA-RIMM-V’s Inspector in our prototype.  

𝑇𝑒𝑥𝑖𝑡 can be broken down as: 

Equation 3: 𝑻𝒆𝒙𝒊𝒕 for EP-RIMM-V 

𝑇𝑒𝑥𝑖𝑡  =  𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑒𝑥𝑖𝑡  +  𝑆𝑇𝑀𝑒𝑥𝑖𝑡  +  𝑆𝑀𝐼𝑒𝑥𝑖𝑡 

• 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑒𝑥𝑖𝑡: Time taken by processor to exit from EPA-RIMM Inspector and 

enter STM. 

• 𝑆𝑇𝑀𝑒𝑥𝑖𝑡: Execution time in STM during 𝑇𝑒𝑥𝑖𝑡.  

• 𝑆𝑀𝐼𝑒𝑥𝑖𝑡: Time taken by processor to exit STM and resume execution of host 

software that was interrupted due to SMI. 

𝑇𝑤𝑜𝑟𝑘 for EPA-RIMM-V from the performance model includes an additional cost of 

executing the VMCALL GetExecutiveMonitorContext to get the hypervisor’s context. 

Hence the 𝑇𝑤𝑜𝑟𝑘 can be expressed as: 

Equation 4: 𝑻𝒘𝒐𝒓𝒌 for EPA-RIMM-V 

𝑇𝑤𝑜𝑟𝑘 =  𝑇𝑤𝑜𝑟𝑘−𝐸𝑃𝐴−𝑅𝐼𝑀𝑀  + 𝑇𝑉𝑀𝐶𝐴𝐿𝐿 

• 𝑇𝑤𝑜𝑟𝑘−𝐸𝑃𝐴−𝑅𝐼𝑀𝑀: Time taken by EPA-RIMM framework to perform 

measurement. 

• 𝑇𝑉𝑀𝐶𝐴𝐿𝐿: Time taken by VMCALL GetExecutiveMonitorContext to retrieve 

hypervisor context. 

This breakdown of 𝑇𝑚 in different components is as shown in Figure 6.1 
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Figure 6.1: SMI Round Trip Time components 

6.2 Latency Guidelines 

To get a baseline measurement for SMI latency with STM enabled on Minnowboard, we 

measure the cost of issuing basic software SMI by writing 0 to port 0xB2 and by taking 

CPU timestamps before and after SMI is issued. Writing 0 to port 0xB2 invokes a no-op 

SMI handler. Here the processor is interrupted from its current execution sate, transitions 

into SMI handler and immediately returns to its interrupted state. We measure this cost 

for a sequence of 1000 SMIs. The average time to process each SMI was found to be 

135µs, as opposed to 112µs on a system where STM is not enabled. We attribute this 

additional time of 23µs to extra work performed by STM and the additional transition 

costs the processor incurs to transition to and from STM. With this SMI, from the 

performance model in Equation 1, 𝑇𝑤𝑜𝑟𝑘 is essentially non-existent and the total cost is 

incurred by 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡. 

6.3 Methodology 

We measure the performance of the prototype for a Xen kernel code region (memory) 

and register measurements. Performance of the prototype depends on the size of 

measurement performed by the Inspector.  
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The size of memory measurement is determined by the size of the memory being 

examined during an SMI as specified in the Task. The Check decomposition module of 

the Backend Manager determines the memory decomposition size in the Task. We collect 

a list of Xen kernel code section from /proc/xen/xensyms file for Xen kernel version 4.9. 

The total size of the Xen kernel code is 4MB. We study the performance impact for 

memory decompositions of sizes 0.5K, 1KB, 2KB, 4KB and 8KB. For each of these 

decomposition sizes, we account the wall clock time taken to process one Task per Bin 

scheduled at a frequency of one Bin per second. Similarly, to measure EPA-RIMM-V’s 

performance while measuring the integrity of Xen registers, we schedule one register 

measurement Task per Bin at a frequency of one Bin per second. We use instruction 

‘rdtsc’ around SMI trigger instruction in the Ring0Manager to record round trip time 

taken for each Bin per SMI. This round-trip time is 𝑇𝑚. To study 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡 times 

we record time stamps at various locations in the STM code base where processor enters 

and exits STM. We record these timestamps in a special STM performance data structure, 

STM_PERF_DATA. Ring0Manager collects these stats from STM with VMCALL 

GetPerformanceData after the measurement phase. 

In the current prototype an SMI is initiated by writing to port B2 from the Host 

Communications Manager. To get accurate performance data, we need to handle two 

factors: 1. Processor C-States and 2. Device interrupts.  

Processor C-States: Intel CPUs have idle-power saving state known as C-states. These 

states throttle the power consumed by a core and drop the core in an idle state ranging 

from C0 to C6. C0 state is the non-idle state while C6 state is the highest idle state. While 
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transitioning between C-states, processor incurs some latency [67], [68]. To avoid 

including these impacts in the SMI performance costs, we set the CPU frequency to its 

highest and set the cores to run in the non-idle C0 state to avoid C-State transition 

latencies.  

Device Interrupts: We observed on Xen that device interrupts were queued for later 

processing if they fired when the CPU was in SMM. This is because SMIs take 

precedence over all other interrupts. Once the host software resumes from SMI, the Xen 

scheduler schedules the previously queued higher priority interrupts before returning to 

Ring0Manager. This causes a deviation in the 𝑇𝑒𝑥𝑖𝑡 time and an anomaly in the Bin 

statistics. The effect of these interrupts on SMI round trip time for 1K memory 

measurement can be observed in Figure 6.2. This effect is also illustrated in Table 6-1, 

where the column ‘No Instruction Serialization’ shows the 𝑇𝑒𝑥𝑖𝑡 times when interrupts are 

not disabled and the ‘Instruction Serialization’ column shows the 𝑇𝑒𝑥𝑖𝑡 times when 

interrupts are disabled. Hence, for reliable data collection, we also disable interrupts 

which effectively serializes the instructions for the round-trip time measurements. 

Table 6-1: Effect on 𝑻𝒆𝒙𝒊𝒕 time due to Instruction Serialization – All times are in microseconds. 

 No Instruction Serialization  Instruction Serialization 

Mean 149 140 

Minimum 60 64 

Maximum 481.5 153 

Std. Deviation 65 8.5 
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Figure 6.2: Effect of interrupts due to Xen’s virtual machine on SMI round trip time – (Top to 

Bottom) a) When interrupts are enabled these take priority before exit time is recorded in the 

Ring0Manager. b) Interrupts are disabled before recording the Bin start timestamp and enabled after Bin 

end timestamp is recorded.    

6.4 Evaluation Result and Analysis 

In this section we evaluate the cost of every component, 𝑇𝑚, 𝑇𝑤𝑜𝑟𝑘, 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡, in 

the performance model for the EPA-RIMM-V prototype. To study 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡 we 

enabled performance knob in STM during compile time. Recording performance data 

itself adds an overhead of 55µs to the baseline SMI latency. 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡 analysis 

shows the performance of STM and the latency it adds to an SMM-based RIMM 

virtualized by STM. Later in the section, we present our analysis on the impact of EPA-
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RIMM-V on the performance of applications from different categories. We also 

compared the performance of EPA-RIMM for native kernel and EPA-RIMM-V for 

hypervisors and present our results in this section. 

6.4.1 EPA-RIMM-V SMI Performance Evaluation 

In Figure 6.3 we study the round-trip latencies for measuring Xen memory hash divided 

into different sizes and CR4 register measurement. These latencies follow the above 

performance evaluation model from Equation 1. This graph is plotted for average 

latencies obtained after running 500 Tasks of each resource. From the graph, we can see 

that 𝑇𝑤𝑜𝑟𝑘 increases as the size of the memory we are measuring increases, i.e. size of the 

work being done by Inspector increases. 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡 remain the same across all the 

Tasks. 

 

 
Figure 6.3: SMI Round Trip Time for Xen 

kernel code region and register measurement. – 

This figure shows the total Bin cost (𝑇𝑚) as a factor 

of 𝑇𝑒𝑛𝑡𝑟𝑦, 𝑇𝑤𝑜𝑟𝑘 and 𝑇𝑒𝑥𝑖𝑡  as defined in the 

Performance model. 

Figure 6.4: Inspector execution time by EPA-

RIMM-V – This cost has two components, the 

original 𝑇𝑤𝑜𝑟𝑘 of EPA-RIMM Inspector 

(𝑇𝑤𝑜𝑟𝑘−𝐸𝑃𝐴−𝑅𝐼𝑀𝑀) and the additional 𝑇𝑉𝑀𝐶𝐴𝐿𝐿  due 

to hypervisor context retrieval. 
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6.4.2 Inspector Performance Evaluation 

We study the overhead added by the VMCALL to 𝑇𝑤𝑜𝑟𝑘−𝐸𝑃𝐴−𝑅𝐼𝑀𝑀 in Figure 6.4. EPA-

RIMM-V invokes the VMCALL GetExecutiveMonitorContext to obtain the hypervisor 

context for the processor which is executing the Inspector. We do this to optimize the 

performance of Inspector. Inspector invokes this VMCALL for locating the Bin each time 

an SMI is fired for EPA-RIMM-V measurement. This VMCALL adds an overhead of 

approximately 7µs to the total 𝑇𝑤𝑜𝑟𝑘 accounted under 𝑇𝑉𝑀𝐶𝐴𝐿𝐿. For memory 

measurement, Inspector has the required context from the first VMCALL and does not do 

any more invocations of GetExecutiveMonitorContext VMCALL. During register 

measurement, Inspector measures the hash of value of the register on all the CPUs. Thus, 

it requires the context of hypervisor on all the processors. To get context on other CPUs, 

Inspector invokes GetExecutiveMonitorContext VMCALL to request data for other 

CPUs. CR4 measurement is a type of register measurement and Inspector measures the 

hash values of CR4 on all the CPUs on the system. Since our prototype is a dual core 

system, the Inspector requires only one additional VMCALL during register 

measurement. Hence, for CR4 measurement 𝑇𝑉𝑀𝐶𝐴𝐿𝐿 adds approximately 12 µs overhead 

to the total 𝑇𝑤𝑜𝑟𝑘. 

6.4.3 SMI enter Performance Evaluation 

We studied 𝑇𝑒𝑛𝑡𝑟𝑦 by recording timestamps at various entry points in the STM code 

execution path. As seen in Figure 6.3, 𝑇𝑒𝑛𝑡𝑟𝑦 remains fairly constant for any type of 

resource measurement. The time taken during 𝑇𝑒𝑛𝑡𝑟𝑦 at various stages for 0.5K memory 

measurement and CR4 measurement is as shown in Figure 6.5 a) and b). 
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6.4.4 SMI exit Performance Evaluation 

We studied 𝑇𝑒𝑥𝑖𝑡 by recording timestamps at exit points in the STM code execution path. 

As seen in Figure 6.3, 𝑇𝑒𝑥𝑖𝑡 also remains constant for any type of resource measurement. 

The time taken during 𝑇𝑒𝑥𝑖𝑡 at various stages for 0.5K memory measurement and CR4 

measurement is as shown in Figure 6.5 c) and d). 

For both 𝑇𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑒𝑥𝑖𝑡 STM adds a latency of 4.5µs while context switch from host 

software to STM and from Inspector to STM in respective cases take most of processor 

execution time during SMM entry and exit.  

6.4.5 Total Memory Measurement Time 

For a constant rate of issuing Bins at 1 Task Bin per second, 8KB queue takes 0.38 

seconds to measure the entire Xen kernel code section, whereas 4KB queue takes 0.58 

seconds. Figure 6.6 shows the total time taken to measure Xen kernel memory when 

divided into different memory sizes. It can be inferred from this graph that it takes longer 

to measure the entire kernel if partitioning size is small. Even though the per Bin 

measurement time is smaller for smaller memory size Tasks, depending on the need and 

urgency of measuring the memory, the administrator should adjust the memory sizes to 

be verified at a given time. 
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Figure 6.5: 𝑻𝒆𝒏𝒕𝒓𝒚 and 𝑻𝒆𝒙𝒊𝒕 analysis on STM enabled environment. – (Clockwise starting from Top 

Left) a) 𝑻𝒆𝒏𝒕𝒓𝒚for Memory measurement b) 𝑻𝒆𝒏𝒕𝒓𝒚for CR4 measurement c) 𝑻𝒆𝒙𝒊𝒕for CR4 measurement d) 

𝑻𝒆𝒙𝒊𝒕for Memory measurement  

                
Figure 6.6: Total time to measure entire Xen kernel code memory – Entire memory is partitioned in 

different chunk sizes from 0.5K to 8K. Each of this chunk is verified separately. The total time to measure 

all the chunks of a memory decomposition size is displayed in this graph. 
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6.4.6 Application Performance 

We studied the impact of EPA-RIMM-V on application performance by running 

benchmark applications with the Phoronix test suite. We chose to test the performance of 

Cachebench, pybench, C-ray and ffmpeg applications. Cachebench exercises memory 

and cache, pybench tests the system’s Python performance, c-ray is a multi-threaded 

application that exercises the CPU, and ffmpeg performs multi-threaded audio/video 

encoding. We measured the performance of these applications for light, medium and 

heavy intensity of SMM measurements and compared them with baseline measurements 

when there were no SMIs on the system. For light measurement we chose 2 0.5K 

memory measurements per second, for medium we ran 4 0.5K memory measurements 

per second and for heavy intensity SMM workload we ran 51 64K memory 

measurements per second. As seen in the graph in Figure 6.7, C-ray and ffpmpeg are 

most affected under heavy SMM workload. EPA-RIMM-V affects all the applications at 

minimum for light and medium SMM workload. 

6.4.7 EPA-RIMM-V vs. EPA-RIMM Native 

We compared the performance of EPA-RIMM with EPA-RIMM-V and found that EPA-

RIMM-V on an average adds an overhead of 17 µs to EPA-RIMM’s performance 

because of STM. This overhead is very minor considering there is a virtualization layer in 

the firmware that constraints the SMI handlers from illegally accessing host side memory 

and solves the semantic gap problem from hypervisors and SMM. Figure 6.8 shows the 

comparison between EPA-RIMM without STM and EPA-RIMM-V. 
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Figure 6.7: Application Benchmark Performance for EPA-RIMM-V 

 
Figure 6.8: EPA-RIMM-V vs. EPA-RIMM-Native Memory Measurement comparison 

6.5 Conclusion 

Performance results of EPA-RIMM-V shows that our prototype comes very close to 

meeting the SMI latency guidelines. When SMIs are scheduled less frequently at two or 

four 0.5K Tasks per second, the CPU intensive applications observe a performance 

degradation of up to 3%. We observed that transitions between host-software and STM 

and between SMI handler and STM add the maximum latency to the performance of 
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EPA-RIMM-V. In Table 6-2 we show a comparison of SMI duration and frequency of 

different SMM based RIMMs for Virtualized environments. Despite combining EPA-

RIMM model’s scheduling and decomposition technique, with the SMM de-privileging 

property of STM and its SMM-hypervisor semantic gap resolution capability, EPA-

RIMM-V is able to perform orders of magnitude better than currently researched SMM-

based RIMMs. Thus, by applying decomposition and correct host software access 

policies with STM, EPA-RIMM-V can be an effective practical approach for SMM-based 

RIMM.  

Table 6-2: Comparison of SMI time taken by different SMM RIMMs – Frequency indicates the 

measurements initiated for a time 

SMM RIMM SMI Duration Frequency 

HyperCheck 40ms 1 per second 

HyperSentry 35ms 1 per 8 or 16 second 

SPECTRE 5 to 32ms 16 per second to 1 per 5 

seconds 

EPA-RIMM (no STM) 

Minnowboard 

  0.26ms+ Dynamic 

EPA-RIMM (with STM) 

Minnowboard 

  0.28ms+ Dynamic 

Goal   0.15ms Not specified 
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Chapter 7 : Security Analysis of EPA-RIMM-V 

Assumptions: We assume that this prototype is being run on Intel TXT and Intel TPM 

capable and enabled the system. Intel TXT assists with static boot time verification of 

Xen and STM. Hence, we assume that when the system boots it loads a pristine Xen 

kernel and when Xen is initialized and opts-in to STM the state of the hypervisor is 

pristine. EPA-RIMM-V gathers the initial good data of the kernel critical data structures 

during the provisioning process. We also assume that SMRAM is secured by hardware 

protections and the page table and MSR protections set by STM. 

STM: We list some scenarios that could be used to attack STM and how the EPA-

RIMM-V infrastructure catches these attacks. 

1. Loading malicious STM: An attacker could attempt to load a malicious STM via 

modification of the flash chip if it was not properly protected. However, as the 

STM is designed to work with Intel TXT and undergoes a measurement by an 

authenticated code module (ACM) prior to its launch which is reported in TPM 

PCR 17, Xen would be able to detect that the STM measurement was not 

consistent with expectations and choose not to launch the STM.  

2. Removing VMCS from STM’s VMCS Database: A Xen rootkit could try to 

remove the guest VMCS from the STM’s VMCS database by firing a 

ManageVmcsDatabase VMCALL from Xen. However, when the STM is working 

on GetExecutiveMonitor VMCALL to locate the VMCS in the database, it will 

fail and would return an error to the Inspector. The Inspector would not be able to 

produce the specified measurement and will be caught by Backend Manager. 
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3. STM Teardown: A rootkit may attempt to disable STM by launching a command 

for STM teardown. In case of Xen measurements, Inspector checks whether STM 

is present. If it finds STM absent, then it does not proceed with the measurement 

and returns. BEM will catch a missing result and thus it can potentially flag this as 

STM missing.     

4. Tampering with the VMCS of Guest virtual machines of Xen: In some 

scenarios, a hypervisor rootkit could tamper with the VMCS region itself for a 

VM guest thus attempting to making it difficult for STM to read the guest VMCS 

for Xen’s context.  

a) A rootkit could attempt to delete a VMCS region for a guest, remove its entry 

from STM’s VMCS Database and create a new VMCS for this guest but not 

register it with STM’s VMCS Database. In this case, during the 

GetExecutiveMonitorContext VMCALL, STM would not be able to locate the 

VMCS in the database thus returning an error state to Inspector. Inspector on 

receiving this error will return without proceeding with the measurement, and 

the BEM will catch it.  

b) In another case, the rootkit may delete the VMCS region for the guest but not 

delete it from the STM’s VMCS database. During the 

GetExecutiveMonitorContext VMCALL and attempt to read from the VMCS 

address stored in the database will trigger an error and the Inspector will catch 

it, and it will be propagated to the BEM. 
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Chapter 8 : Conclusion 

In this section we summarize our work, discuss future work, and conclude. 

8.1 Summary 

Hypervisors are popular in environments such as Cloud Infrastructure and Data Centers 

because of their multiple advantages over traditional operating systems like reduced 

hardware cost and power consumption, better error and disaster recovery. They have also 

become popular amongst the software intruders’ community since hypervisors have 

access to all the resources of the virtual machines hosted on them. Multiple works in the 

past have shown that it is possible to compromise different hypervisors mainly because of 

the vulnerable code introduced in these softwares. Industries are continuously looking for 

new methods to secure their infrastructure while maintaining performance efficiency. 

Although effective, current methodologies are not performant. We developed EPA-

RIMM-V an SMM-based RIMM that combines on-chip hardware features of SMM and 

STM for rootkit detection in the hypervisor. We demonstrated that it is possible to detect 

rootkits in hypervisors using a novel technique implemented in STM with minimum SMI 

performance overhead. We implemented a prototype for gathering of out-context 

hypervisor state information. This method takes approximately 7µs to execute in SMM 

and solves the problem of uncertain processor state in SMM for VT-x enabled 

hypervisors. We implemented STM enabling in Xen, which is currently not present in 

Xen’s code base. This enabling feature can be easily ported to other hypervisors as well. 

We also present a full study of STM performance evaluation that can help other 

researchers understand the overall impact of STM to the system’s performance. We 
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developed a new performance collector interface between STM and Xen that can be used 

by analysts for studying performance impact due to different STM modules.  

8.2 Future Work 

This research opens new possibilities of extending EPA-RIMM-V to solve other 

problems. One such problem is the capability of performing Virtual Machine integrity 

measurement from SMM with EPA-RIMM-V. Virtual Machines serve as the primary 

workspace for running user applications. Earlier studies [58], [59], [60], [61] have shown 

the necessity of securing the kernel from malicious applications. Malicious applications 

and kernels serve as one of the primary sources to leverage hypervisor vulnerabilities and 

launch attacks against the infrastructure itself. For these reasons, it is required even to 

monitor the security of the virtual machines. By obtaining the virtual machine semantics 

from the hypervisor, monitoring of virtual machine can be accomplished [54], [56], [57]. 

As we have seen, even hypervisors are vulnerable and placing a monitoring unit in a 

vulnerable hypervisor may make the integrity checker vulnerable to attacks. SMM is 

comparatively more secure since it is difficult to detect and compromise. Also, with 

STM, SMM can be hardened by virtualizing it and imposing access restriction rules.   

This research may also be extended to monitor the SMI handlers. The current techniques 

rely on the presence of a co-processor and SMM instrumentation to periodically send the 

status information to the monitoring unit on the co-processor [62]. Using EPA-RIMM-

V’s framework, the SMM monitor may reside in the STM and periodically check the 

health of the handlers. This technique avoids having to rely on extra hardware on the 

system and implement methods to overcome the semantic gap between the main 
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processor and the co-processor. Implementing a VM monitor and SMM monitor would 

make EPA-RIMM an end-to-end solution for complete system monitoring via SMM. 

Researchers could use the performance collector interface between STM and Xen to 

study the performance behavior of different modules of STM and UEFI and their impact 

on overall SMM execution. 

8.3 Conclusions 

In this thesis we have shown that a combination of SMM and STM can be used for 

performance efficient, reasonably secure, configurable integrity measurement of 

hypervisors.  The key contributions of this thesis are: 

1. Developed a novel technique to solve the SMM-hypervisor semantic gap 

problem: 

In this research, we implemented a novel technique that uses STM, a firmware 

based feature, to obtain out-of-context hypervisor status from SMM and 

eliminates the uncertain processor context problem. This technique is the basis for 

performing stealthy out-of-context hypervisor integrity checking. It eliminates the 

need of using special hardware components and avoids injecting instructions in 

the normal SMI exit code flow as implemented in HyperSentry [11]. Other SMM 

applications may also use this technique to retrieve hypervisor context. The usage 

of this module itself has a very low performance overhead. We plan to open 

source this module and integrate it with the current STM code base. 

2. Implemented STM enabling in hypervisor and developed a set of fine-

grained permissions that should be set for hypervisor resources: 
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a. We implemented the missing hypervisor-STM handshake mechanism in 

Xen’s kernel.  

b. We developed a set of permissions that should be set over hypervisor 

resources to avoid illegal access by SMI handlers. We plan to release a 

patch of this work to Xen Project team. 

3. Implemented a performance collector interface between STM and the host 

software and conducted a full investigation of STM performance: 

To get the STM performance data in the host software we implemented an API 

between the hypervisor and STM. Using the data obtained from this interface, we 

present a detailed performance cost analysis of using STM. To the best of our 

knowledge, this is the first STM performance study available for an STM 

configured system with cooperation between hypervisor and BIOS. 

4. Developed a prototype of EPA-RIMM-V: 

We designed and implemented a prototype of EPA-RIMM-V, and used it to 

perform integrity checking of memory, registers, and model specific registers for 

Xen hypervisor. We evaluated the effectiveness of our model by simulating two 

rootkits that are representative of family of hypervisor rootkits and detected them 

in subsequent measurement invocations. We plan to release the prototype as open 

source enabling researchers to experiment with it and further advance the 

research. 
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