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ABSTRACT

Purely functional languages—with static type systems and dynamic memory man-

agement using garbage collection—are a known tool for helping programmers to

reduce the number of memory errors in programs. By using such languages, we

can establish correctness properties relating to memory-safety through our choice

of implementation language alone. Unfortunately, the language characteristics that

make purely functional languages safe also make them more difficult to apply in a

low-level domain like operating systems construction. The low-level features that

support the kinds of hardware manipulations required by operating systems are not

typically available in memory-safe languages with garbage collection. Those that

are provided may have the ability to violate memory- and type-safety, destroying

the guarantees that motivate using such languages in the first place.

This work demonstrates that it is possible to bridge the gap between the require-

ments of operating system implementations and the features of purely functional

languages without sacrificing type- and memory-safety. In particular, we show

that this can be achieved by isolating the potentially unsafe memory operations

required by operating systems in an abstraction layer that is well integrated with

a purely functional language. The salient features of this abstraction layer are

that the operations it exposes are memory-safe and yet sufficiently expressive to

support the implementation of realistic operating systems. The abstraction layer

enables systems programmers to perform all of the low-level tasks necessary in

an OS implementation, such as manipulating an MMU and executing user-level



ii

programs, without compromising the static memory-safety guarantees of program-

ming in a purely functional language. A specific contribution of this work is an

analysis of memory-safety for the abstraction layer by formalizing a meaning for

memory-safety in the presence of virtual-memory using a novel application of non-

interference security policies. In addition, we evaluate the expressiveness of the

abstraction layer by implementing the L4 microkernel API, which has a flexible

set of virtual memory management operations.
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Chapter 1

INTRODUCTION

Software correctness is a persistent challenge that is increasingly relevant as com-

puters become more seamlessly integrated with every aspect of modern life. Soft-

ware controls the flight systems in planes and the brake systems in cars; a single

failure could have a catastrophic effect. Software protects our private health infor-

mation and sensitive financial data; identity theft is as simple as a software breach.

We rely on software for so much, yet we still do not have sufficient techniques for

assuring that it will not go wrong. In 1996, the Ariane 5 rocket exploded less

than 40 seconds after lift-off due to an incorrect conversion of a 64-bit floating

point number into a 16-bit integer [72]. More recently, undisclosed software prob-

lems with the braking system of the Toyota Prius automobile led to a recall of

more than 125,000 cars [1]. Huge public failures like these show that mistakes can

get through, even in well tested and widely deployed systems. Despite all of the

software engineering and validation techniques that have been developed over the

years, it is still not easy to produce software that is correct and secure.

One source of difficulty is that many real-world systems are written in low-

level programming languages like C or assembly language. Any complex program

is likely to contain bugs during development, but these languages lack strong static

typing and memory-safety guarantees that can protect against common program-

ming errors. Memory-safety violations—such as dereferencing a null pointer, writ-

ing beyond the bounds of an array, failing to free memory, or freeing memory more
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than once—are particularly prevalent in programs written in these languages due

to the direct and manual way that memory is managed.

Over the past few years, Coverity’s Scan project [15] has embarked on mas-

sive studies using static analysis tools to catalog the number and kind of errors

that exist in large, real-world, open source programs. Their 2009 study, for ex-

ample, covered 11.5 billion lines of code from 280 open source projects including

the Linux, FreeBSD, and NetBSD operating systems [14]. According to the Scan

project data, null pointer dereferences and resource leaks together make up roughly

50% of the errors found in open source software in both the 2008 and 2009 studies

(out of 27,752 defects found in the 2008 study and 38,453 defects found in the 2009

study). We classify both null pointer dereferences and resource leaks as memory-

safety violations. Other memory-safety violations—such as using memory after

it has been freed, accessing beyond the end of an array (buffer overflows), and

casting a value to a type with a larger representation (allowing the programmer

to inadvertently overwrite an adjacent value)—are also prevalent in the code stud-

ied by Coverity; these errors account for more than 10% of the remaining bugs.

Buffer overflows and failure to release resources properly also made it into the

2009 CWE/SANS Top 25 Most Dangerous Programming Errors list, a collabora-

tion between the SANS Institute and MITRE to identify the worst security risks

in software today [83]. Clearly, mistakes stemming from memory-safety violations

are a serious issue in real software.

With software failures becoming so common, even in widely deployed systems,

it is obvious that current techniques for implementing and vetting software are

not sufficient for preventing errors. The hardware industry faced a similar cross-

roads after the famously expensive Intel floating-point division bug in 1994 [50].

Since then, formal verification has become a major component of the hardware

development process at Intel and other major manufacturers [42]. After proving

that the hardware designs and implementations are correct, there is less that can
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go wrong when the systems are deployed to end users. Formal verification is a

powerful technique for increasing assurance and reducing bugs that can be applied

to components of the software stack to increase reliability in that domain as well.

1.1 CORRECTNESS IN OPERATING SYSTEMS

Operating systems are a particularly important category of software because of

their role at the base of a typical software stack. An operating system performs

privileged, low-level manipulations of hardware that higher level software compo-

nents depend on for their functionality. If the operating system goes wrong in

some way that results in a system crash, then every application running in the

system will be affected. Even if the operating system does not crash, it can still

leak information to the wrong place if it does not manage protection boundaries

between applications correctly. The degree of centralized control that an operating

system typically has in such a software stack creates a huge incentive to establish

the correctness of the OS implementation. All applications that run on top of

the operating system benefit from the correctness of the underlying layer, no mat-

ter what their ultimate function is, and operating system correctness provides a

foundation for reasoning about the correctness of the application layer. For these

reasons, correctness in the operating systems domain is a particularly important

problem.

The seL4 project—a joint work by researchers at NICTA, Open Kernel Labs,

and the University of New South Wales—verified the functional correctness of their

microkernel design and implementation, the first time that such a feat has been

accomplished for a general-purpose operating system [60]. Specifically, the team

proved a refinement of an abstract functional specification to a high-performance

C implementation via an executable model (derived from a Haskell prototype). In

their verification effort, they focused on the following four types of properties.



4

• Low-level invariants that establish the memory-safety of the implementation,

including, for example, that there are no null pointer dereferences.

• Typing invariants that establish the type-safety of the implementation be-

yond what is provided by the weak type system of C.

• Data structure invariants that establish correctness properties for data struc-

ture usage, for example, that a particular structure is accessed with consistent

assumptions about the structure’s layout throughout the entire program.

• Algorithmic invariants that describe kernel-specific properties of the imple-

mentation.

A key result of their proof is that the kernel is guaranteed to be free from all of

the common memory-safety violations that the Coverity project typically finds in

open source software: buffer overflows, null pointer dereferences, uses of pointers

at the wrong type, and memory leaks. Note, however, that the project required

considerable human effort: the executable model (written in Haskell) and the

associated C implementation are small, containing 5,700 lines of code and 8,700

lines of code, respectively, but the verification required roughly 160,000 lines of

Isabelle/HOL [76] script [60].

While this verification effort is impressive, it also demonstrates just how much

work is required to verify a piece of software as complex as an operating system.

The project took place over four years with at least a dozen participants, all of

whom are highly trained. The project members estimate that the verification ef-

fort alone (not including the implementation of the kernel or the design effort)

required 20 person years of effort [60]. Some of that work was invested in reusable

infrastructure building activities, but they still estimate that a similar verification

for a new kernel using the same methodology would require an additional 6 person

years, and probably more for someone without the expertise and knowledge built
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up during the course of the seL4 verification. The verification is not something

that can easily be repeated by a typical programmer, nor are the proofs directly

reusable. If we design a new kernel, or even modify the current seL4 implementa-

tion, then a significant fraction of the verification effort will need to be repeated

for the new software artifact. The seL4 team have verified their ARM implementa-

tion, but not their port to the x86 [60]. Certainly these artifacts could be verified

as well, but this shows that, even for relatively minor implementation differences,

the verification changes are time consuming enough to be a deterrent.

1.2 PURELY FUNCTIONAL LANGUAGES FOR MEMORY-SAFETY

We would like to obtain some of the assurance of a project like seL4 in a way that is

more scalable and reusable, without paying such a high cost for verification again

and again. One approach is to use a purely functional language1 for the implemen-

tation, rather than a low-level language like C. Purely functional languages offer

many language features with software engineering benefits, such as expressive type

systems, higher-order functions, polymorphism, abstract datatypes, and powerful

module systems. These mechanisms facilitate compile-time bug detection and the

development of clear, concise, and modular programs with a high degree of reuse.

Such benefits alone might be enough to recommend pure languages for operating

system implementations, but we are particularly interested in the fact that pure

functional languages provide memory-safety, garbage collection, and fine-grained

effect tracking in the type system. By implementing operating systems in a purely

functional language, it is possible to leverage these properties to automatically ob-

tain many of the guarantees that the seL4 team worked so hard to prove—the type

1Throughout this document we will use the terms purely functional languages and pure lan-

guages synonymously to refer to typed functional languages with pure semantics and dynamic

memory management using garbage collection. This feature set is typical for functional languages

with pure semantics, and is assumed in our work.
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system enforces them. For example, in the purely functional language Haskell [78],

it is impossible, in principle, to dereference a null pointer, so we know without any

testing or proofs that any code written in Haskell avoids such bugs2. Writing soft-

ware in a purely functional language has further benefits for reasoning because the

semantics are close to those of mathematical functions, so programs are amenable

to formal reasoning for establishing any properties that cannot be derived from

types alone.

In practice, however, it is often assumed that we cannot utilize the benefits of

purely functional languages in operating systems development because of a gap

between the requirements of operating systems implementations and the facilities

provided by standard purely functional languages. For example, these languages

provide strong safety guarantees—like memory-safety—by relying on a run-time

system that controls the layout and configuration of memory (with a garbage col-

lector to manage storage usage). However, a primary function of an operating

system is to manage the memory of the machine. Most language run-times do not

support the ability to access hardware memory-management facilities directly, in-

stead, the programmer must access these hardware features through foreign calls.

Foreign function interfaces allow programmers to work with low-level (and poten-

tially unsafe) functions and values in an otherwise pure language. Declarations

in the language introduce assumptions about the type of an externally defined

value or function, and everything is assumed to be used in a safe way. As we

will illustrate in the next section, an approach based on foreign function interface

definitions enables one to write powerful programs in pure languages with limited

restrictions due to the type system, at the cost of significantly weakening the safety

argument for the entire program. A mistake in the foreign code can destroy the

2The Foreign Function Interface extension to Haskell [12] does make it possible to dereference

a null pointer. In this case, we refer to Haskell 98 without extensions, but will cover the impact

of the foreign function interface separately.
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safety of the program completely.

1.3 EXAMPLE: LOW-LEVEL PROGRAMMING IN HASKELL

As a concrete example, let us examine the Foreign Function Interface (FFI) exten-

sion of the Haskell language [12], which enables Haskell programmers to perform a

variety of low-level programming tasks. For example, the FFI provides the ability

to call C functions, extending Haskell with new behaviors by adding new primitives.

Of course, there is no static typing or guaranteed memory-safety for the extensions

written in C, so using the FFI introduces proof obligations that must be satisfied

to avoid compromising the type- and memory-safety of the language. In addition

to the ability to call C functions, the FFI extension includes support libraries that

introduce unchecked pointer types, pointer arithmetic operations, and assignments

to memory through pointers, all within Haskell and with Haskell types. But if these

primitives are used incorrectly, they can corrupt the Haskell heap, invalidating all

of the Haskell type- and memory-safety properties! Essentially, the FFI extension

introduces the power of manual and direct memory management that we have in C,

along with all of its problems and potential for mistakes. The rationale for writing

operating systems in a purely functional language was to obtain the strong safety

benefits of the language, yet the facilities available for writing low-level software

break those very same strong properties.

1.4 ASSURANCE THROUGH A SMALL TRUSTED COMPUTING

BASE

To deal with the dangers of low-level memory manipulation, we consider an op-

erating system implementation in a purely functional language based on the idea

of a small trusted computing base (TCB). Lampson et al. [64] define the TCB of

a system as a “small amount of software and hardware that security depends on
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and that we distinguish from a much larger amount that can misbehave with-

out affecting security.” The basic idea is to isolate the essential services of the

system behind a small, well-defined software component. This component must

only be accessed through a restricted interface because the code in the TCB has

more privileges and therefore more potential to wreak havoc if an error occurs.

By keeping the TCB small and its interface well-defined, there is more hope of

constructing a system that is correct overall than with a monolithic design, partic-

ularly when the behavior of higher-level layers is limited to a set of safe lower level

operations. Many types of operating system kernels exist based on different TCB

design principles, including separation kernels [81, 21], microkernels [11, 2, 70], and

hypervisors [16, 29, 5].

In our work, we apply the trusted computing base approach to safe operating

systems programming in a purely functional language. The trusted computing

base should be a small set of essential services that are specifically designed for

writing operating systems. These services must be written in a low-level language

like C or in the unsafe portion of a purely functional language in order to perform

their function. However, these services can be added to the language run-time

system or packaged up as an abstraction layer that can be integrated with pro-

grams in the purely functional language, with the expectation that no code above

the abstraction layer will access the unsafe facilities of the language. Purity pro-

vides the ability to distinguish contexts that rely on the safe abstraction layer from

contexts that rely on unsafe language features using the type system. Figure 1.1

illustrates how the pieces fit together. For this approach to work, the operations

of the abstraction layer must be sufficiently expressive to support the implementa-

tion of real operating systems in the pure functional language, with no additional

reliance on a foreign function interface or other unsafe primitives. In addition, the

operations themselves must be memory-safe, even though their implementations

may use potentially unsafe operations on the underlying hardware. The client will
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Hardware

Potentially Unsafe Abstraction Layer

Implementation

Purely Functional Operating System

Implementation

Memory Safe Interface Abstraction

Layer

Figure 1.1: The system organization when dividing an operating system into an

unsafe abstraction layer and a purely functional layer.

not have access to pointers or direct memory writes or any of the other hazardous

facilities, just those operations that are essential for writing operating systems.

1.5 THIS WORK

The primary focus of this work is to design a set of operations that is memory-safe

and sufficiently expressive to support writing operating systems.

Thesis Statement: The gap between the requirements of operating

system implementations and the features of purely functional languages

can be bridged by isolating potentially unsafe memory operations in a

memory-safe abstraction layer that is well integrated with the func-

tional language.

In this dissertation, we work specifically with Haskell as the primary implemen-

tation language, though the main techniques should work for any purely functional

language and, in many respects, would even apply to the broader class of memory-

safe languages, such as Java. The primary contributions of this dissertation are as

follows:
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• A design of a functional, memory-safe abstraction layer that is sufficiently

expressive to support the implementation of real operating systems using

only the operations of the abstraction layer (Chapter 4).

• A formal definition of memory-safety for our system (Chapter 5).

• A formal model of the internal operation of the abstraction layer that pro-

vides a specification of the behavior for each function in the API and connects

the formal notion of memory-safety to our implementation (Chapter 5).

• An implementation of the abstraction layer design that is integrated with

the purely functional language Haskell (Chapter 6).

• An implementation of the L4 microkernel API [62] in Haskell, based on the

abstraction layer implementation (and without additional use of the Haskell

FFI), as a demonstration that the interface is sufficiently expressive to sup-

port the implementation of realistic operating systems (Chapter 7).

• An analysis of the cost of our approach through a targeted analysis of the

inter-process communication performance of the L4 implementation (Chap-

ter 8).

In the remainder of this dissertation, we will elaborate on each of these contribu-

tions in turn. Chapters 2 and 3 review relevant background material on operating

systems and Haskell programming. Chapters 4, 5, and 6 present the design,

formal model, and implementation of the abstraction layer, respectively. Chap-

ter 7 describes the L4 case study. Chapter 8 discusses the performance results

and demonstrates our approach to optimizing the L4 implementation. In the re-

maining chapters, we review related work (Chapter 9) and present conclusions

(Chapter 10).
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Chapter 2

BACKGROUND: CORE CONCEPTS OF INTEL IA32 PROCESSORS

In the design of our abstraction layer, we would prefer to remain as architec-

ture neutral as possible, but it is inevitable that certain hardware features will

be exposed when constructing an abstraction that is so close to the hardware.

CPU mechanisms such as registers, privileged mode execution, interrupts, and

hardware-supported virtual-address translation are important features that sup-

port operating systems development. Interrupt handling plays an important role

in our implementation of user program execution; we expose architecture-specific

details about interrupts and registers to support client-level interrupt handlers.

Memory management is an essential part of the design and memory-safety anal-

ysis for the abstraction layer; we abstract over some details in the API, but the

specification and implementation rely heavily on the specific features of the un-

derlying hardware. In this chapter, we present background material about our

target architecture, the Intel IA32 platform [52], that is necessary to understand

the abstraction layer design and implementation. We examine the fundamentals

of the execution environment, including the register set and interrupt-handling

mechanism, in Section 2.1 and review the virtual-to-physical address translation

mechanism in Section 2.2. Readers already familiar with these details may skip

ahead to the next chapter.
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2.1 EXECUTION ENVIRONMENT

In this section, we explain the essential concepts of the execution environment

available on the IA32 architecture. These facilities strongly influence the design

of the lowest levels of the abstraction layer. The goal of this section is to help

the reader develop enough familiarity with the hardware platform to understand

the abstraction layer design and the techniques used to execute user programs

in our implementation. Section 2.1.1 explains the register set of the platform;

Section 2.1.2 describes the modes of execution; Section 2.1.3 discusses faults and

interrupt handling; and Section 2.1.4 provides a brief introduction to port I/O. We

will present the abstraction layer mechanisms for exposing these concepts to client

kernels in Section 4.5, and address the implementation details in Section 6.8.

2.1.1 Registers

The registers of the machine store the execution state of the running program. The

IA32 architecture has eight general purpose registers, six segment registers, a flags

register that stores information about the state of the machine, and an instruction

pointer that stores the location of the next instruction to execute. Figure 2.1 shows

the names and sizes of these registers. Intuitively, the CPU can be programmed

to switch to a new program by loading a new set of values into these registers. If

we want an opportunity to return to the original program at a later stage, then

we must save the register values in memory before making the switch.

General purpose registers are available to store operands to computations, re-

sults of operations, and pointers into memory. The machine associates a special

semantics with the ESP register, though it is referred to as general purpose, which

is designated for holding the stack pointer of programs.

The segment registers each hold a segment selector that serves as an index

into the global descriptor table. The entries of the global descriptor table describe



13

Figure 2.1: The registers of the IA32 architecture. This fig-

ure is a reproduction of Figure 3-4 from the Intel Architectures

Software Developer’s Manual [52].

areas of memory, called segments, that may be used in programs to control access

to the linear address-space. At any given point, the CPU has access to up to

six distinct segments via the six segment registers. The access rights available on

each segment are defined by the corresponding entry in the global descriptor table.

There is a code segment for storing instructions (pointed to by the CS register) a

stack segment for storing the program stack (pointed to by the SS register), and

four data segments (pointed to by the DS, ES, FS, and GS registers). In our work,
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we use a flat memory model : all of the segments overlap and contain the entire

address space, as shown in Figure 2.21.

Figure 2.2: A flat memory model configuration. Every segment

overlaps and contains the entire address space of the machine.

This figure is a reproduction of Figure 3-6 from the Intel Archi-

tectures Software Developer’s Manual [52].

2.1.2 Modes of Execution

The IA32 has four modes of execution, called rings, that correspond to different

privilege levels. Lower numbered rings afford the executing code greater access to

hardware features. If software attempts to access functionality that is forbidden

1Our L4 implementation requires a special configuration of the GS register that does not fit

the flat memory model to satisfy a detail of the L4 specification. Special uses of the segment

registers like this can be incorporated into the implementation when necessary.
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in the current ring, the hardware faults and the execution of the offending code

is suspended (faults will be covered in Section 2.1.3). Ring 0 is typically used

for kernel code, while applications typically run in Ring 3. Rings 1 and 2 are

designed for operating system services like device drivers. Our abstraction layer

implementation, like many systems, only uses two privilege levels: kernel code runs

in Ring 0 (also called kernel-mode or supervisor mode) and all other code runs in

Ring 3 (also called user-level mode).

2.1.3 Faults and Interrupts

During the course of execution, running software may encounter an interrupt or

exception. There are three sources of interrupts and exceptions: external inter-

rupts from hardware devices, programmable software interrupts (triggered using

the INT n instruction), and faults due to program error conditions (such as division

by zero or attempts to access to supervisor-level hardware features from user-level).

For the purposes of this thesis, we will ignore the distinction between interrupts

and exceptions and will refer to both kinds of events simply as interrupts.

When an interrupt occurs, the CPU branches out of the currently executing

program to the handler for that particular event. A special data-structure called

the interrupt descriptor table (IDT) specifies the mapping between interrupts and

their associated handlers. Each interrupt is identified by a unique number called

an interrupt vector. When an interrupt with a particular vector number occurs,

control transfers to the handler associated with that vector in the IDT.

For code executing in user-mode, the occurrence of an interrupt causes the

processor to switch privilege level and begin executing in kernel-mode. The hard-

ware sets a new stack segment value and stack pointer so that the kernel-mode

interrupt handler does not need to share a stack with user programs. The values

describing the handler stack come from the task-state segment (TSS), which is

a special segment on IA32 that supports hardware-assisted task-switching. The
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abstraction layer implements task management in software, but we make funda-

mental use of the ability to install an interrupt-handler stack via the TSS. As we

will see in Section 6.8, we use the interrupt-handler stack for saving the register

state of user programs between executions. The client kernel may save the state

of multiple user programs simultaneously by creating multiple interrupt-handler

stacks (called fault-contexts in our design). These interrupt-handler stacks are only

used for saving the state of user programs—the Haskell code runs using a separate

kernel stack.

At the start of an interrupt handler, the hardware automatically pushes certain

parts of the register-state onto the stack. For user-mode interrupts, this state

contains the values of the instruction pointer, stack pointer, flags register, code

segment register, and stack segment register of the executing process. For kernel-

mode interrupts, the handler runs on the same stack as the original code, so the

hardware does not save the stack segment or stack pointer. In our abstraction

layer implementation, we save additional information about the state of user-mode

programs so that we have enough information to resume the program after handling

the interrupt. This information includes the general purpose registers, the data

segment registers, and the error code value for the interrupt (for faults that include

supplemental information about the nature of the exception in the form of an error

code). The hardware supports the ability to suppress interrupts using the CLI

instruction; we use this capability to disable interrupts in kernel-mode.

Interrupts are the mechanism that enable user-level code to transfer control

back to the kernel. For program-error exceptions, the kernel will typically repair

the fault and resume the original process (possibly with the help of an external

interrupt handler). For unrecoverable faults, the kernel may choose a new user-

level program to run after suspending or killing the faulting process. User-level

code may also request operations from the kernel using interrupts: system calls can

be implemented using software interrupts whose handlers invoke the appropriate
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routines within the kernel. Operating system developers can ensure that control

always returns to the kernel by configuring a recurring timer interrupt that trans-

fers control to the kernel at regular intervals. If timer interrupts are configured and

handled appropriately, then a user-process cannot take over the machine, even if it

never faults or issues a system call—the kernel will get an opportunity to execute

and make scheduling decisions when the next timer interrupt occurs.

2.1.4 Input/Output

Many PC devices (including timers, serial ports, the keyboard, mouse, and network

interfaces) are controlled by reading and writing data and control information to

specified ports through special in and out instructions. The CPU communicates

with these devices via one of sixteen interrupt lines available on the hardware.

These interrupt lines deliver interrupt requests (IRQs) to the processor via a multi-

plexer called the programmable interrupt controller (PIC). On the PC architecture,

the multiplexing behavior is divided between two circuits: a master PIC handles

IRQ 0 through IRQ 7 and a slave PIC handles IRQ 8 through IRQ 15. The ker-

nel enables, disables, or acknowledges interrupts on a particular line by writing

to the registers of the programmable interrupt controllers, which are connected to

specific ports. Only the master PIC communicates with the processor, so one of

its interrupt lines must be used for the slave to communicate interrupt requests

to the master. Many of the remaining lines have a standardized role on the PC

architecture. For example, the timer interrupt is usually associated with IRQ 0.
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2.2 VIRTUAL-MEMORY MANAGEMENT

Virtual memory enables different user-level processes to have independent views

of memory. Each view of memory contains a different mapping from virtual ad-

dresses—the addresses that a process reads and writes—to physical addresses—

addresses into the physical memory installed on the underlying machine. We refer

to the collection of mappings as an address-space and the set of mapped virtual

addresses as a virtual address-space. A process can only access memory locations

that are mapped in its virtual address-space. Any attempt to access an address

that is not mapped will cause a program exception called a page fault.

In this section, we provide an overview of the virtual-memory management

facilities available on IA32, including an in-depth look at the data structures

for translating virtual-addresses to physical-addresses. Section 2.2.1 introduces

the virtual-to-physical address translation structures; Section 2.2.2 discusses the

protection mechanisms available for controlling access to mappings; Section 2.2.3

presents detailed representation information about the data structures; and Sec-

tion 2.2.4 provides an example of updating the translation structures.

2.2.1 Address Translation Structures

Mappings are added to the virtual address space at the granularity of a memory

page, the size of which varies depending on the architecture of the machine. The

IA32 supports two sizes of physical page: four kilobytes and four megabytes. The

mechanism for accessing physical memory via a virtual address also varies depend-

ing on the architecture. On the IA32, the hardware supports virtual address spaces

by performing a translation between virtual and physical addresses in hardware by

reading translation tables that are themselves stored in physical memory pages.

Concretely, these tables are organized into a two-level data-structure. The first

level of the structure is a single table called the page-directory. Entries in the
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page-directory point to second level tables called page-tables. Page-tables store

the physical addresses of 4 KB physical pages (the target of a mapping). Each

page-directory and page-table is itself stored in a single 4 KB physical page. An

address-space is represented by a pointer to the beginning of a page-directory. The

hardware has a special register, called CR3, that stores the currently active ad-

dress space pointer. The value of this register determines the memory map that the

hardware will use to perform address translation. Figure 2.3 shows the two-level

page-table structure of the IA32 translation tables.

CR3

page-

directory

page-

table

page-

table

page-

table

Figure 2.3: On the IA32, virtual-to-physical address translations

are performed using a two-level data-structure that resides in

memory. Each virtual address space has a single first level table

called a page directory that points to potentially many second

level tables called page tables. We identify address spaces using

the address of the page directory in memory (a physical address),

which is stored in the CR3 register. In the figure, arrows indicate

a pointer from one structure to another.

The actual translation from virtual to physical addresses is performed by using
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the virtual address to access information in the two-level structure. Conceptually,

a virtual address consists of three distinct components: the page-directory index,

the page-table index, and the offset, as shown in Figure 2.4. The page-directory

index identifies the appropriate entry in the page-directory for this virtual address.

The page-directory entry tells us which page-table we should use for the next step

in the translation. The page-table index allows us to look up the page-table entry in

this particular page-table. The page-table entry stores the address of the physical

page that the virtual address in question maps to, if any. Combining the offset

(which can be thought of as an index into a memory page) and the address of the

physical page gives the final result: the physical address mapped to by a particular

virtual address. Figure 2.4 illustrates the translation process.

It is not always necessary to include the page-table step in a virtual-to-physical

address translation. When a large enough set of contiguous virtual addresses are

mapped to a contiguous set of physical addresses, we can store the physical address

in the page-directory entry instead of the page-table entry. Each page-directory

addresses 4 MB of memory, so such mappings have a size that is a multiple of

4 MB and must be aligned to a 4 MB boundary as well. Mappings made with

page-directory entries are said to be implemented with 4 MB pages, which are also

called superpages. Mappings made with page-tables are said to be implemented

with 4 KB pages, because this is the amount of memory addressed by a page-table

entry. Using superpages reduces the number of translation lookaside buffer (TLB)

entries occupied by a mapping. The TLB provides a cache of virtual-to-physical

address translations, which avoids the need for a page-directory look-up on every

memory access. Using fewer TLB slots on a large mapping reduces the frequency

with which entries must be invalidated to make room for new cached translations.

Superpages also save memory because they avoid the need for allocating page-

table storage. Figure 2.5 illustrates a virtual-to-physical address translation using

a superpage rather than a page-table.
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virtual

address
offsetpage-tablepage-directory
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page-directory entry
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page-directory
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page-table

physical page

index into

target page

Figure 2.4: Virtual to physical address translation on the IA32

using 4 KB pages. The most significant bits of the virtual ad-

dress are used as an index into the current page-directory (found

in the address specified by the CR3 register) to locate an appro-

priate page-table. The middle bits are then used as an index into

that page-table to find the physical page that the virtual address

is mapped to. The complete physical address is then computed

by using the low bits of the virtual address as an index into the

physical page.

2.2.2 Protection

The IA32 architecture supports process separation and access control through per-

page memory protection mechanisms. These protection mechanisms allow access

to be restricted based on the following conditions:

• Privilege level: Privilege level protection controls the privilege required to

access a mapping; the two possible values are user and supervisor. Proper
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Figure 2.5: Virtual to physical address translation on the IA32

using 4 MB pages. As with 4 KB mappings, the high bits of

the virtual address are used as an index into the current page-

directory (specified by the CR3 register). However, in this case,

the page-directory entry stores a physical address, rather than a

page-table location. The remainder of the virtual address (what

was the page-table index and the offset) is treated as the offset

from that physical address. The result of the translation is value

of the physical address stored in the page-directory entry added

to the offset.

configuration of privilege level permissions is essential for enforcing separa-

tion between the kernel and user programs. In our abstraction layer, we map

the kernel code and data in every address-space with supervisor permissions

so that the kernel can run in any space without any risk that a user program

will access or overwrite the kernel data. Any attempt by a user program to

access memory that is mapped with supervisor permissions causes a program
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error called a protection fault.

• Access Type: Protection based on access type allows us to set particular

areas of memory as read-only. Writing to a read-only mapping fails and

triggers a page fault.

Memory protection based on privilege and access type both play an important role

in the abstraction layer implementation.

2.2.3 Translation Table Formats

Figure 2.6 shows a detailed look at the format of each entry in a page-directory.

The top twenty bits contain a pointer to a 4 KB or 4 MB page; this enforces the

minimum alignment of the pointer and leaves the remaining twelve bits for extra

configuration information. Figure 2.6 also shows the format for page-table entries.

The formats of the two entry types are identical except that a page-table entry

will always contain a page base address pointing to a 4 KB page. A page-directory

entry may point to a 4 MB page or a 4 KB page; the expected format of the page

base address is indicated by Bit 7 of the page-directory entry format.

These formats also illustrate the protection mechanisms for controlling access

to installed memory mappings. Bit 0 indicates whether or not a particular page is

present ; the memory mapped by the entry can only be accessed when this bit is

set. Otherwise this memory cannot be read or written by the user or the kernel,

and any attempt to do so will cause a page fault. Bit 1 of each entry specifies

the read/write privilege for a page or set of pages. When this bit is set to zero

the corresponding memory is read-only, but when the bit is set, the memory can

be read and written. Bit 2 of each entry is called the user/supervisor bit. This

bit controls the privilege level protection for the mapping. If the bit is set, then

the memory mapped by the entry is accessible in both user- and kernel-mode;

otherwise the memory is accessible only in kernel-mode.
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Figure 2.6: Format for page-directory entries and page-table en-

tries (when using 4 KB pages). The top twenty bits contain the

aligned address of the memory being mapped. The low bits con-

tain configuration information, including permissions and mode

restrictions. This figure is a reproduction of Figure 3-14 from

the Intel Architecture Software Developer’s Manual [51].

In addition to dictating how a memory mapping may be accessed, the page-

directory and page-table entries also provide feedback about how the memory

described by a mapping has been accessed. This information is stored in the
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accessed and dirty bits (Bits 5 and 6 of the entries, respectively). The accessed bit

is set by the MMU when the page (or group of pages) has been read. The dirty bit

is set when the page has been written. The dirty bit is not used for page-directory

entries that point to page-tables, so it always corresponds to a single page of data.

2.2.4 Example: Adding a Virtual-To-Physical Mapping

As an example of address-space management in a typical IA32-based operating

system, consider the steps required to add a new virtual-to-physical mapping. To

make additional physical memory visible in an address-space, the operating system

must set up the relevant translation table entries to point to this physical memory.

The entries to modify are determined based on the location in the virtual address-

space where the physical memory will be mapped. The mapping procedure will be

different depending on the size of the memory area being mapped and whether or

not 4 MB superpages will be used. Assuming that we wish to add a mapping that

will use a single page-table, the operating system must take the following steps:

1. Find the appropriate page-directory entry. This entry can be found by using

the page-directory index bits from the virtual address where we would like

to add the mapping. Because we assume that the mapping will fit in a single

page-table, we know that we will only need to modify the memory pointed

to by a single page-directory entry.

2. Determine whether or not the page-directory entry already points to a page-

table.

3. If necessary, create a new page-table out of a free page of memory and update

the page-directory entry with the address of the new table.

4. Modify the appropriate entries of the page-table. The entries to modify are

determined by the page-table indexes of the virtual addresses for which we
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are adding mappings. We will modify one page-table entry per 4 KB page

of memory being mapped.

The procedure for mappings that are implemented with superpages is similar. The

key differences are that we will never need to allocate a page-table (Step 3) and

we will only modify page-directory entries and not page-table entries (Step 4).
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Chapter 3

BACKGROUND: FUNDAMENTALS OF HASKELL PROGRAMMING

Haskell is a strongly typed, purely functional programming language that origi-

nated in the late 1980s as an attempt to unify the many lazy, purely functional

languages that existed at that time [47]. Laziness and a pure semantics are key

defining features of Haskell. The term laziness indicates a non-strict, call-by-need

evaluation order, where the value of an expression will not be computed until that

value is actually needed by another part of the computation. Expressions with val-

ues that are not required are never evaluated. This characteristic of Haskell frees

the programmer from having to worry about execution order and wasted compu-

tation, but can have a surprising impact on performance and space usage when a

seemingly simple expression triggers the evaluation of many delayed computations.

Laziness fits naturally with a pure semantics—where functions do not perform any

side-effects—because the programmer will not be able to observe evaluation order

through the ordering of effects. The Haskell language provides a special mechanism

for tracking the use of effects in the type system so that side-effecting programs

can remain pure; we will cover this topic in Section 3.4.

In addition to laziness and purity, Haskell supports many of the standard func-

tional language mechanisms for abstraction and reuse, including a module system,

higher-order functions, polymorphism, and abstract datatypes. Memory-safety is

guaranteed with the help of dynamic memory management using garbage collec-

tion. The language is defined by the Haskell 98 Report [78], but there are numerous

extensions in common use, including the foreign function interface [12] (which is

essential for the abstraction layer implementation). Extensions supported by the
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Glasgow Haskell Compiler (GHC) [31] have become de facto standards and are

described in the GHC User’s Guide [91].

To illustrate the basic language features available in Haskell, consider the def-

inition of factorial:

factorial :: Int -> Int

factorial n = if n == 0 then 1 else n * factorial (n - 1)

This function takes a single integer argument and returns an integer result, as

specified by the type declaration on the first line. The code for factorial is a

single equation that names the argument n on the left-hand side of the definition.

Haskell supports pattern-patching in the left-hand side of definitions, but name

patterns like n match any value. The right-hand side defines the behavior of the

function. In this case, we multiply the value of n by the result of a recursive call

to factorial on n-1 unless n has already reached zero.

To illustrate the pattern matching facilities available in Haskell functions, we

can rewrite the definition of factorial as two equations that encode the stopping

condition n == 0 as a pattern rather than a conditional.

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * factorial (n - 1)

This definition implements exactly the same behavior as before. We now have

two equations: one for the base case and one for the recursive case. In the first

equation, we use the pattern 0 as an implicit test for whether or not the argument

to factorial equals zero. If the argument does equal zero, then the pattern

matches and the result that is returned from the function will be 1, the right-

hand side of the equation. If the argument is not zero, the pattern will not match

and the second equation will be used. The pattern n matches any value, so the

computation proceeds by executing the right-hand side of the second equation.
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The factorial example illustrates some basic elements of functional program-

ming in Haskell. In the remainder of this chapter, we will introduce other essential

concepts of Haskell that will appear in the code samples throughout the rest of

this dissertation. For a more comprehensive overview of Haskell, the reader is en-

couraged to seek out one of the textbooks on the subject [77, 49, 46]. Section 3.1

introduces datatypes and more sophisticated pattern matching constructs. Sec-

tion 3.2 demonstrates the use of parameterized datatypes such as lists. Section 3.3

describes a mechanism for defining predicates on types using type classes and qual-

ified types. Finally, Section 3.4 discusses the relationship between side-effects and

purity in Haskell. The concepts that we describe here are standard; readers already

familiar with Haskell may prefer to skip ahead to the next chapter.

3.1 DATATYPES

Algebraic datatypes are a fundamental abstraction mechanism in Haskell. The

language defines the most commonly used structures like pairs and lists (see Sec-

tion 3.2 for an in-depth look at lists) as well as a powerful mechanism for declaring

user-defined types. As a simple example, consider the definition of a basic binary

tree in Haskell.

data Tree = Branch Int Tree Tree

| Leaf

New datatypes are introduced by the keyword data. The left-hand side of the

definition provides a name for the new type; this is called the type constructor. The

right-hand side describes the values of the type with one or more value constructors

(referred to throughout the dissertation simply as constructors). Each of these

constructors takes zero or more arguments as necessary to produce a value of the

type. In our example, there are two constructors for values of type Tree: Branch

and Leaf. A Branch contains an integer describing the value stored at that node, a
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left subtree, and a right subtree, while a Leaf caries no data. We construct values

of type Tree by applying the value constructors to arguments of the appropriate

type. For example,

Leaf

Branch 5 Leaf Leaf

Branch 5 (Branch 4 Leaf Leaf) (Branch 6 Leaf Leaf)

all represent values of type Tree.

Functions over the Tree datatype can be defined using pattern matching to

distinguish the different kinds of values. The following function computes the

number of data values in a given binary tree.

size :: Tree -> Int

size (Branch v left right) = 1 + size left + size right

size Leaf = 0

As we saw in the factorial example, we can write functions using multiple equa-

tions where the cases are distinguished by pattern matching. The first equation

checks whether or not the Tree argument was produced with a Branch construc-

tor. If so, we call the function recursively on both of the branch’s subtrees and

increment the result. The second equation covers the case where the Tree is a

Leaf, though pattern matching on Leaf is not strictly necessary because there are

only two constructors. Leaf nodes do not carry data values, so we return zero in

this equation.

In fact, we can rewrite size using a wildcard pattern to avoid the unnecessary

binding of v and to avoid testing whether the value in the second equation is a

Leaf (we know by a process of elimination that it must be).

size :: Tree -> Int

size (Branch _ left right) = 1 + size left + size right

size _ = 0
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The definition is exactly the same as the one we examined previously, but with v

and Leaf replaced by the wildcard pattern, _.

An unsatisfying aspect of algebraic datatype definitions, like our binary tree

example, is that we have to remember the order of the constructor arguments when

pattern matching or constructing new values. The Haskell type-checker helps when

the arguments have different types (by signaling an error if we make a mistake),

but types alone do not always capture the semantics of the argument. For example,

the Branch constructor for the binary tree datatype takes two trees as arguments:

one for the left subtree and one for the right. If we accidentally confuse these two

parameters, there is nothing in the types that will help us. Particularly in larger

datatypes that are used in complicated programs, maintaining this mental state

can be unwieldy and error prone.

As an alternative to the previous datatype definition, we can use Haskell’s

record syntax to associate names with each of the arguments of a given value con-

structor. If we recast our binary tree definition using record syntax, for example,

then we obtain:

data Tree = Branch {

value :: Int,

left :: Tree,

right :: Tree

}

| Leaf

Given this definition, we can extract the left subtree of a branch b by writing

left b. Records allow us to create new values concisely as well, providing a

mechanism to define new values in terms of existing ones. For example, to replace

the integer stored in a binary tree branch record, b, with the number 40, we would

write b{ value = 40 }.

The definition of Tree as a record still permits us to define size in exactly the

same manner that we did previously, but we can also rewrite the definition to use
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the accessor names instead of using pattern matching.

size :: Tree -> Int

size Leaf = 0

size b = 1 + size (left b) + size (right b)

In this case, the named pattern b matches an entire branch, rather than just one

of its arguments. We reorder the equations so that the Leaf case appears first;

in this way we guarantee that every argument to the second equation is actually

a Branch. Applying the function left or right to a Leaf value would cause a

run-time error.

The data keyword is the primary mechanism for introducing new types in

Haskell, but the language does provide two additional mechanisms that are useful

in some circumstances. A datatype defined using the newtype keyword takes

exactly the same form as one defined using data; the difference is that a newtype

must have exactly one constructor with exactly one argument. Programmers use

newtype to create a wrapper for an existing type, be it a built-in type or a user-

defined type, with a new constructor that the programmer controls. For example,

we can make our binary tree example more abstract by hiding the fact that values

stored in the tree are integers. We create a type synonym for Int called TreeValue

that we will use to define our tree.

newtype TreeValue = TreeValue Int

Using the same name for the type constructor and the value constructor, as shown

in the definition of TreeValue, is common practice in datatype definitions with

only one constructor. This is possible because type and value constructors have

separate name-spaces. The datatype definition for Tree can now be written to use

TreeValue in place of Int.

data Tree = Branch TreeValue Tree Tree

| Leaf
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Declarations of this sort are very useful when designing an abstraction layer or

library, because they allow the programmer to use standard types without exposing

the library’s internal representations to its clients.

Types constructed with the newtype keyword are not type synonyms in the

truest sense of the word, because the two types involved in the definition are

not interchangeable. Haskell does provide a mechanism for defining actual type

synonyms using the type keyword. With type, the connection between the two

types is always visible—they are the same type. A type definition looks similar to

the other type declarations, but the right-hand side may only contain an existing

type with no constructors.

type TreeValue = Int

With this version of TreeValue, we can use the name TreeValue in place of Int

as documentation in a type signature, but the values of the two types are indistin-

guishable. This mechanism avoids the overhead of creating an extra constructor,

but it does not provide the strong guarantees of a true abstraction.

3.2 PARAMETERIZED DATATYPES

In addition to the simple kinds of datatypes that we saw in Section 3.1, Haskell

supports parameterized datatypes for capturing common structural patterns that

can be applied to any type (analogous to void pointers in C, templates in C++,

or generics in Java). A parameterized datatype definition takes the same form as

any other datatype declaration, but the type constructor takes one or more type

variable arguments that may be instantiated to any type. As an example, the tree

datatype from Section 3.1 can be defined to store values of any type, rather than

just integers.

data PTree a = PBranch a (PTree a) (PTree a)

| PLeaf
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The type of the value PLeaf is PTree a; there is nothing about this value that

constrains the type of a. In contrast, the type of PBranch 5 PLeaf PLeaf is

PTree Int; using the integer 5 in the value slot of the PTree specializes the

type variable a to Int. As another example, we could create the PTree value

PBranch "george" PLeaf PLeaf; this value has type PTree String.

Strings themselves illustrate the use of a very common parameterized datatype

in Haskell: lists. Strings are simply a type synonym for a list of characters.

type String = [Char]

Square brackets are the Haskell syntax for lists. A list that contains any kind of

value would have a type of the form [a] (where a is a type variable) while a list

that has been instantiated to a specific type would have a type of the form [Type].

Type variables always begin with a lower-case letter while type names always begin

with an upper case letter. We write list values using the square bracket syntax as

well:

[] -- the empty list :: [a]

[’z’] -- a singleton character list :: [Char]

[11, 40, 19] -- a three element integer list :: [Int]

[[1],[2]] -- a list of integer lists :: [[Int]]

The square brackets and commas are syntactic sugar for the actual list construc-

tors. We have already seen the empty list constructor, []. The other value con-

structor for lists is called cons ; it adds a new element to the front of an existing

list and is written using an infix colon operator. The definition of cons involves a

recursive use of [].

data [a] = [] | a : [a]

Rewriting our examples using the constructors explicitly, instead of the syntactic

sugar, gives us:
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[]

’z’ : []

11 : (40 : (19 : []))

(1 : []) : ((2 : []) : [])

Lists are a common datatype in Haskell that appear frequently in the code for our

abstraction layer in later chapters. Another common parameterized type is pairs

(also called tuples). Although we will not cover this datatype deeply here, it is

important to note that Haskell supports n-element tuples, for example, (a,b) and

(a, b, c, d). This syntax works at both the type and value level. There is no

single element pair, but there is a zero element pair, written () and pronounced

“unit”.

Defining functions on parameterized datatypes works in much the same as any

other declaration. Some functions are specific to a particular instantiation of a

parameterized type, but often there are interesting polymorphic functions as well.

The Haskell libraries include a multitude of functions on lists, many of which are

completely generic. An example that we use frequently in the abstraction layer

source code is the map function for applying a given function to every element of a

list.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (a:as) = f a : (map f as)

map takes two arguments: a higher-order function that turns values of type a into

values of type b and a list of values of type a. The definition of map will apply the

function to each element of the argument list, producing a list with elements of

type b. Functions are first class values that may be passed as arguments to other

functions by name; they are distinguished in the type by the parentheses around

the type of the higher-order argument.
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Container types like list and pair are an obvious use of polymorphism, but there

are many other programming patterns that we can capture using polymorphism.

A pattern that we see frequently in programming is the use of special values to

indicate failure. For example, the malloc function in C returns a pointer to a newly

allocated area of memory—unless the request fails, in which case it returns a null

pointer. The potential for error is not documented by the type, so you have to rely

on intuition and the library documentation to realize that the function might fail.

Worse yet, the null pointer is easily confused with a normal pointer to memory

(as evidenced by how frequently null pointer dereferences occur in practice). In

Haskell, we can encapsulate this pattern of an optional value (malloc either returns

a pointer or nothing) with a parameterized type called Maybe.

data Maybe a = Just a

| Nothing

Values produced with the Just constructor are equivalent to the values expressible

in the type a, but with an extra wrapper to lift them into the Maybe type. Nothing

is a special value that cannot be confused with a normal value of type a; it can be

interpreted as the absence of a valid value. If we were to define malloc in Haskell,

we might declare the result type of the function to be Maybe (Ptr a) (where

Ptr is another parameterized type), returning Nothing if the memory cannot be

allocated.

3.3 TYPE CLASSES AND QUALIFIED TYPES

Polymorphic functions on arbitrary types are extremely useful, but often in prac-

tice, we want to define polymorphic functions over a class of types that are con-

strained in some way. Consider the function for testing if a particular value is a

member of a list. We might be tempted to write the type for this function as

elem :: a -> [a] -> Bool
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because the function can operate on lists of any type. The problem is that elem as

declared must perform the same way on all types; how can elem determine if the

value is in the list when the equality comparison that is necessary to make that

determination might be different for different types?

Implementing elem in a polymorphic way requires the ability to define over-

loaded operators, like an equality test, that may have different implementations

on different types. This overloading is called ad hoc polymorphism, in contrast to

the parametric polymorphism that we examined in the previous section. Haskell

provides a mechanism to support ad hoc polymorphism called type classes; each

type class is associated with a set of overloadable functions [96, 55, 56]. There

are many standard classes in Haskell to support common operations such as com-

parison, numeric operations like addition, and displaying the values of a type. In

particular, the built-in class for equality comparisons that we need in elem is called

Eq, and is defined as follows:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

The Eq class defines two methods: == for testing equality and /= for testing in-

equality. We define implementations of these functions for a particular type by

declaring it as an instance of Eq. The instance declaration for the Boolean type,

Bool, provides an example of the syntax.

instance Eq Bool where

(==) True True = True

(==) False False = True

(==) _ _ = False

Type class declarations may provide default definitions for overloaded functions in

addition to declaring their types. Though our example definition of Eq only shows

the type signatures for the equality comparisons, the built-in definition of Eq does
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provide a default definition of /= in terms of ==. Thus, the instance declaration

for Bool only needs to provide a definition of ==.

Standard Haskell libraries define type class instances for many standard types,

but when we define our own types we might also wish to add instances for standard

type classes. We can declare an instance of Eq for our first version of binary trees

using the same pattern as for Bool.

instance Eq Tree where

(==) Leaf Leaf = True

(==) (Branch v1 l1 r1) (Branch v2 l2 r2)

= v1 == v2 && l1 == l2 && r1 == r2

(==) _ _ = False

The first equation states that two Leaf values are equal. The second equation

states that two Branch values are equal if all of the arguments to the constructor

are equal; here we rely on the instance of Eq on integers and on recursive calls to

the == function on trees that we are currently defining. The final equation is a

catch all for the two cases where the constructors are not the same; these values

will never be considered equal.

Now that we have an overloaded equality test, we are able to define the elem

function in a polymorphic way.

elem :: Eq a => a -> [a] -> Bool

elem _ [] = False

elem x (y:ys) = x == y || elem x ys

Note that the type signature includes some extra information. The clause Eq a is

a constraint on the type variable a indicating that the type a must be an instance

of the type class Eq. This reflects the use of the == method from the Eq class to

compare values of type a. A type containing such a constraint is called a qualified

type and it restricts the polymorphism of the elem function to the set of types

on which Eq is defined [55, 54]. A function may rely on multiple classes in its

definition; these constraints are all added to the left of the =>.
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example :: (C a, D b, E a) => a -> b -> c

In this example, there are two constraints on the type variable a—it should be an

instance of both C and E—and just one—D—on the type b.

As mentioned previously, there are several standard classes defined by the

Haskell libraries. Some examples are:

• Ord: Defines operations on totally ordered types. This class provides the

usual comparison operators (<, <=, >, and >=) as well as minimum and max-

imum operators.

• Show: Supports the conversion of values of the instance type into strings

(typically for printing to the screen). The most frequently used function from

the Show class is show :: a -> String.

• Storable: Allows values of the instance type to be transferred to and from

memory. This class is part of the foreign function interface, and includes

methods for directly accessing memory.

• Num: Supplies basic operations on numeric types like addition, subtraction,

and multiplication.

• Bounded: Provides operations that name the upper and lower bounds of a

type, maxBound and minBound.

For the full list, see the Haskell library documentation [32]. In addition to these

predefined classes, Haskell also allows the definition of new classes using the same

syntax that we saw in the earlier examples.

3.4 MONADS

Purity is one of the primary motivations for implementing operating systems in

Haskell. With a pure semantics, every function is a function in the mathematical



40

sense: the same set of inputs always produce the same output. Programs are easier

to reason about and debug because there is no hidden data flow. To develop an

understanding of purity in practice, consider the definition of a simple mathemat-

ical function like align. The align function takes an unsigned word argument

and zeros out the low n bits, where n is an integer parameter to the function.

align :: Word32 -> Int -> Word32

align w n = (w ‘shiftR‘ n) ‘shiftL‘ n

One technique for aligning a word is to shift the word right by the number of bits

to be cleared, then left, relying on the fact that the bits shifted in from the right

will be zeros. We define align with a straightforward application of the right- and

left-shift functions from the Haskell library for bit-level manipulation (Data.Bits).

Word32 is the name for the Haskell type of unsigned 32-bit words and is equivalent

to the C type unsigned int.

Comparing the Haskell definition to an equivalent definition in C illustrates a

superficial similarity.

unsigned int align(unsigned int w, int n) {

return (w >> n) << n;

}

The substantial part of both functions can be written in a single line using built-in

shift operators. Both contain a type signature indicating that the function takes

an unsigned word and an integer and returns an unsigned integer.

If we write the type for the two functions in a common syntax, then it would

appear exactly the same in both cases:

align :: Word32 -> Int -> Word32

The essential difference between the two definitions is that the C type of this form

and the Haskell type of this form do not mean the same thing. In C, a function

with this type may perform arbitrary side-effects, such as direct memory accesses,
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global variable manipulations, file I/O, and printing to the screen. The language

allows direct and unchecked access to any of the facilities available on the machine

from any point in any program. None of this information is reflected in the type.

In contrast, functions in Haskell do not perform any visible side-effects. A pure

Haskell function can never dereference a null pointer because we know from its

type that it does not access memory directly.

Purity in Haskell helps to identify bugs and prevents certain classes of error

from ever occurring. However, to deal with systems applications and many other

real-world tasks, our programs must somehow be allowed to perform side-effects.

In Haskell, this is accomplished using a special mechanism called a monad [94]. In

general, a monad consists of two parts: a parameterized datatype that names the

monad and a set of operations that define the side-effects supported by the monad.

For example, the IO monad captures interactions between Haskell and the outside

world, and defines operations for tasks such as printing to the screen or reading

from a file. A function that uses an operation defined in the IO monad will have

the monadic type IO a where a is a type variable representing the result of the

computation (as with the other parameterized types we have examined).

IO is the most pervasive effect in Haskell because so many programs rely on

interactions with the outside world in some capacity, whether it is a user interacting

with the program or a device that the program controls. In fact, every Haskell

program runs in the IO monad at some level, even if the program contains mostly

pure computation, because the entry point to a Haskell program is fixed to be

a function called main of type IO () (indicating that the function runs in the

IO monad and returns no data in the result). Still, there are many other useful

monads that are common in Haskell programs. The following examples of monads

defined by the standard Haskell libraries illustrate the kinds of side-effects that we

can capture using monads. Unlike the IO monad, the side-effects represented by

these monads are not persistent; they model side-effects in a pure way that does
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not affect the outside world.

• State: There are no global variables or stateful computations in pure Haskell.

We can model state by passing around any stateful components of our com-

putation as explicit parameters to every function, but this is clumsy and

error prone in practice. The State monad allows us to add state to our

Haskell programs without explicit parameters by encoding the state-passing

style implicitly.

• Read-Only State: A function might depend on environment data, supplied

by the calling context, that remains constant within the function but may

be extended or modified for functions it calls. As with state, we can address

this need by passing the environment as a parameter to every function or we

can use the Reader monad to pass around the environment implicitly.

• Failure: We saw in Section 3.2 that the Maybe datatype allows us to augment

any type with a special failure value called Nothing. In fact, the Maybe type is

also a monad that can be used to handle errors or exceptions. Computations

in the Maybe monad may produce the value Nothing, at which point the

monad will skip the remainder of the computation and return the value

Nothing.

• Exceptions: The Haskell libraries also provide a more traditional interface

that allows the programmer to try, catch, and throw named exceptions. This

functionality is defined by the Error monad.

These are just a few of the common effect patterns expressible as monads. See the

literature for more details about these and other examples [95, 65, 79].

Now that we have introduced monads, we can demonstrate how the obligatory

“Hello World” program is written in Haskell.
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helloWorld :: IO ()

helloWorld = putStrLn "Hello World!"

The helloWorld function runs in the IO monad so that it may print a line to

the standard output device using the Haskell library function putStrLn of type

String -> IO (). The function putStrLn is one of the many side-effecting oper-

ations supported by the IO monad.

Every monad contains some number of custom operations, like putStrLn, that

define the unique behavior of that monad. In addition to these custom operations,

there are two standard functions that must be defined for every monad. These

functions are called return and bind. The bind function, typically written as

>>=, allows us to sequence monadic expressions; execution order is important for

monadic computations because the side-effects in one monadic operation can affect

the outcome of later operations. The return function lifts pure values into the

monad so that we can use the entire pure subset of Haskell within our monadic

computations.

The type of the return function is simple: for each monad m, the associated

return function takes a value of any type and lifts it into the monad.

return :: a -> m a

For example, the return function for the IO monad would be a polymorphic function

with the following type:

return :: a -> IO a

The bind function connects the output of one monadic computation to the input

of the next, thus sequencing the two computations together. The type for bind

reflects this sequencing.

(>>=) :: m a -> (a -> m b) -> m b

The second argument to bind is a function; the definition of bind will apply the

function to the value produced by the first computation.
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As an example of how we might use bind in a real program, consider the function

for reading a line that is part of the standard IO monad library in Haskell.

getLine :: IO String

Executing the getLine function reads a line from the standard input device. We

can combine this function with putStrLn using bind to define a program that reads

a string supplied by the user and echoes that string back to the screen:

echoLine :: IO ()

echoLine = getLine >>= putStrLn

This function reads a line from standard in and prints the result using the putStrLn

operation.

The ability to sequence computations together allows us to define interesting

monadic functions, but connecting operations using explicit calls to bind is cum-

bersome when writing large programs. Haskell provides syntactic sugar known as

do-notation to enable seamless sequencing of monadic operations. We can rewrite

the echo example using do-notation as follows:

echoLine :: IO ()

echoLine = do line <- getLine

putStrLn line

Here we have the opportunity to give our intermediate result a name using the

syntax name <- ...; this name can be used to refer to that result at any later

point in the computation. We will use do-notation when writing monadic code

almost exclusively throughout the rest of the dissertation.

We can use do-notation in any monad that provides definitions for the standard

functions return and bind. For example, the Maybe monad allows us to string

together computations that might fail without explicitly checking the results of

the intermediate steps. Once a failure is encountered, the remaining computation

is abandoned and the result of the computation is Nothing. These failures can
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include explicit exceptions that occur when a step in the computation returns

Nothing, or implicit failures, like a non-exhaustive pattern match in a do-notation

pattern binding. If none of the steps fail, then the computation runs to completion

and produces a result wrapped in a Just constructor. The standard definitions of

the return and bind operations for the Maybe monad are as follows:

return :: a -> Maybe a

return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

(>>=) Nothing _ = Nothing

(>>=) (Just x) f = f x

The definition of bind illustrates how the threading process works: sequencing an

operation with a previous operation that failed produces Nothing. Just values are

threaded through the computation without modifying the value of the underlying

type.

As a simple example of using the Maybe monad, rather than just the type, let

us consider a function on binary trees that might fail: projecting the left subtree

of a branch. For a tree made with the Branch constructor, leftTree will return

the left subtree, but for a Leaf node, there will be no subtree to return. We can

write this function using the Maybe type to capture failure without making use of

monadic notation:

leftTree :: Tree -> Maybe Tree

leftTree t = case t of

Branch _ l _ -> Just l

Leaf -> Nothing

This definition checks the value t using a case expression instead of using multiple

equations; the two forms are equivalent. Using do-notation, we can write this same

function as:
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leftTree :: Tree -> Maybe Tree

leftTree t = do (Branch _ l _) <- return t

return l

We must use return twice: once to lift the pure tree value into the maybe monad

and once to lift the result of the computation (the left subtree). If t is a Leaf,

then the expression

(Branch _ l _) <- return t

will cause a pattern match failure, but this will be caught and the result of

leftTree will be Nothing. In this case, the use of do-notation does not make

the definition any clearer, but in larger examples where multiple functions with a

Maybe type are strung together this syntax can avoid a lot of syntactic noise.

Haskell does not limit us to the standard set of effects; programmers can easily

define new monads to capture their own effect patterns or side-effecting operations.

To create a new monad, the programmer must supply implementations for return

and bind that are appropriate for the new monad and define any non-standard

operations that implement the effects of the new monad. New monads may also

be created with monad building blocks called monad transformers. Most of the

standard monads have an associated monad transformer definition that adds the

functionality of that monad to another monad [69]. This allows us to combine the

effects of standard monads to produce custom monads that capture the necessary

effects for a particular program. For example, we can use monad transformers to

construct a monad that supports both exceptions and global state.

3.5 MODULES

The Haskell module system enables programmers to precisely control the types

and functions that are exported from one module to another. Type constructors

can be exported without making the value constructors for that type visible, and
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specific value constructors for a type might be exported while others remain hidden.

Our abstraction layer implementation relies on the precise control afforded by the

module system to enforce a strong abstraction boundary between the abstraction

layer and its clients.

A module definition gives a name to a Haskell module and optionally may

declare the list of types and functions that the module exports. Every definition

in the module will be exported when a specific export list is not supplied.

module M where ... -- everything exported

module M (f, g) where ... -- only functions f and g are exported

Recall our original definition of a binary tree, with a type constructor called Tree

and two value constructors called Branch and Leaf. If we wish to make the entire

datatype definition visible through a module, we use the following notation in the

export list:

module M (Tree(..)) where ...

Clients of this module will be able to construct arbitrary values of the Tree type.

Alternatively, we can export just the type constructor by omitting the (..).

module M (Tree) where ...

Now, other modules can refer to the type Tree but cannot make any values of

that type. M can guarantee properties of Tree values, for example, that every tree

is balanced, because it controls the production of every value. A middle ground,

which is less useful in this particular example, is to export just some of the value

constructors for a type. For example,

module M (Tree, Leaf) where ...

allows modules other than M to construct Leaf values but not branches.

We will not show many module definitions in the code samples throughout the

dissertation, but the abstraction mechanisms provided by the module system are
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essential for memory-safety enforcement in our implementation. The ability to

hide the functions and datatype representations used within the implementation is

crucial. Hiding value constructors for visible types allows us to use normal Haskell

values as capabilities when requesting restricted abstraction layer operations, be-

cause the key safety properties for the operation are already guaranteed at value

construction time.
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Chapter 4

A MEMORY-SAFE ABSTRACTION LAYER FOR OPERATING SYSTEM

CONSTRUCTION IN HASKELL

A major focus of this dissertation is the definition of a memory-safe abstraction

layer that is sufficiently expressive to support the implementation of real operat-

ing systems. To demonstrate the feasibility of the design, and to show that the

abstraction layer can be integrated with a purely functional language, we will also

provide an implementation of the abstraction layer as a Haskell library (see Chap-

ter 6). We call this Haskell library the H interface, and will use the term H as a

shorthand for both the design of the interface (indicating the types and functions

that make up our abstraction layer) and its implementation. The H interface is a

direct descendant of the abstraction layer of the same name from the House op-

erating system [39], although there are many differences between the original and

current versions of the API and implementation.

Figure 4.1 illustrates the relationship between the Haskell run-time system, the

H interface, and a Haskell operating system implementation. The H implementa-

tion runs on bare metal with support from the GHC run-time system; we will cover

this implementation in more detail in Section 6.3. A Haskell operating system may

access the types and operations of the H interface design, but not the details of the

implementation. We refer to the operating systems that run on top of H as client

kernels because they are clients of the H interface. Client kernels also have access

to the standard facilities of the Haskell run-time system, but we can only guarantee

memory-safety for clients that avoid calling the potentially unsafe primitives of the

Foreign Function Interface [12]. Applications run on top of a client kernel by using
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hardware

client

app

H

app

RTS

interface

implementation
safe RTS primitives

unsafe RTS primitives

Figure 4.1: The basic architecture of H. H runs on bare metal,

using support from the GHC run-time system for the portions

that are written in Haskell. Client kernels—operating systems

written using the primitives of the H interface design—run with

the support of the H implementation and the GHC run-time

system (because they are written in Haskell). Client kernels

are allowed to access the safe facilities of the run-time system,

but only the H implementation my use the potentially unsafe

primitives. Applications run on top of the client, making use

of the operating system API and, indirectly, H’s facilities for

executing arbitrary user binaries.

the operations for running user programs that are provided by the H interface.

In this chapter, we will introduce the operations of the H interface. This pre-

sentation will include a discussion of every type and function that is accessible to

clients through the public API. For the most part, details of the private imple-

mentation are left until Chapter 6. Details of the implementation that are directly

visible through the API—for example, the conditions necessary for a function to

succeed—or that affect the high-level memory-safety analysis of the design will be

included in this chapter.
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The memory management facilities of the abstraction layer are the distinguish-

ing feature of the H interface and are a core contribution of this dissertation. The

choices made in the design of the memory management primitives have a signifi-

cant impact on our ability to demonstrate memory-safety for our system and on

our potential ability to implement a variety of operating systems on top of the ab-

straction layer. This chapter introduces the essential abstraction layer operations

for managing physical and virtual memory and outlines the concepts that will form

the basis of our memory safety analysis (presented in Chapter 5). Though our fo-

cus is on memory management, we present every aspect of the abstraction layer

design for completeness. The H interface supports the following essential services

for constructing operating systems in Haskell:

• Memory management: H provides facilities for working with the virtual

memory management data structures described in Chapter 2. Clients of the

interface may modify the virtual address space seen by user-level programs

by adding a mapping, modifying the permissions on a mapping, or removing

an existing mapping. Clients may also add mappings to the kernel virtual

address space (the virtual-to-physical address translations that are accessible

within the operating system). H supports virtual memory management by

providing mechanisms for allocating and freeing virtual memory translation

tables that live in memory (including both page-directories and page-tables).

Correct and safe physical memory management is an essential component of

the H design.

• Protected execution of arbitrary user binaries: H supports user-mode

execution of programs written in any language. Our current implementation

assumes that user-level object files are stored in the ELF binary format [13].

Execution of a running user-level program is automatically paused when a

fault or interrupt occurs. Interrupt handlers within the H implementation
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save the state of that program so that it can be resumed again later. The

operating system that is written on top of H may access the register state

of suspended programs and use this information to respond appropriately to

system call requests, faults, or other events.

• Program module loading: The H interface passes bootloader modules

through to the operating system so that, for example, the OS can execute

programs that are loaded by the bootloader. H provides facilities that sup-

port mapping memory pages within an executable module to user-level pro-

grams.

• Low-level I/O operations: H allows unrestricted access to the I/O ports

on the underlying machine (IA32 in our implementation), following the orig-

inal design and implementation [39]. Allowing unrestricted access prevents

client kernels from enforcing resource management policies on I/O devices.

In this work we focus on safety with respect to virtual memory management,

but control over I/O devices is an interesting topic for future work.

• Debugging: H provides basic screen printing utilities for debugging during

the development process.

Many of the services are very similar to those that were available in earlier versions

of the H interface [39], particularly the aspects of the design that relate to user

program execution, I/O, and debugging.

The remainder of this chapter describes the design of the H interface in detail.

Section 4.1 describes the fundamental concepts that shape our memory-safety argu-

ment for the interface primitives. Section 4.2 provides an example that illustrates

the combination of static and dynamic checking that we employ to guarantee safety

in our implementation. Section 4.3 presents the basic data structures that we use

to describe memory and executable modules. Section 4.4 explains the facilities for
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managing virtual address-spaces. Section 4.5 covers user-process execution and

Section 4.6 covers I/O port access.

4.1 CHARACTERIZING MEMORY

Memory serves various purposes within a kernel implementation. Some pages store

kernel code and data, some are mapped to user processes for their code and data,

and—on the IA32—some store tables describing the translation from virtual to

physical addresses (see Section 2.2). From a correctness and safety perspective,

different operations are valid on a page of memory depending on its function in the

system at a particular moment in time. Kernel code pages, for example, should

never be mapped to a user thread, and in many cases should not be written to

by anyone once the boot process is complete. User code and data pages, on the

other hand, may be mapped freely and might even be shared among multiple user

processes. Finally, page-tables and page-directories need to be written to by the

client kernel, but only in very specific and limited ways.

We reflect the different roles of memory into our design by associating a dynamic

status value with each physical page of memory. The dynamic status reflects each

page’s current use in the system, which falls into one of four categories:

Normal Page: A page of memory that does not have any special semantics

associated with it by the kernel. Normal pages may contain user or kernel

data; they may also be shared between multiple user processes or between a

user process and the kernel if the client kernel requests such sharing.

Page-Directory Page: A page that is in use as a page-directory. In our model,

we assume that page-directory pages may be dynamically created from unal-

located normal memory pages during the execution of an operating system.

Page-Table Page: A page that is in use as a page-table. We distinguish page-

tables from page-directories because certain operations are only valid on
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page-directory pages. As with page-directories, page-tables can be dynami-

cally created from normal memory pages.

Environment Page: Any page that must be present for the kernel code to run.

This might include the code and heap for the run-time system as well as the

kernel code itself. In our implementation, this set includes the C and Haskell

heaps and the kernel code.

Status information plays an important role in protecting memory-safety for an

H-based system. Separating environment memory and translation table memory

(page-directories and page-tables) from user memory (allocated normal pages) is a

fundamental requirement for memory-safety in operating systems. We must ensure

that no user program can interfere with the virtual-to-physical memory mappings

of the kernel or other users and that no one can corrupt the execution environment1.

We will formally define this memory-safety property in Chapter 5. Tracking the

current usage of each memory page allows the interface implementation to enforce

memory-safety through dynamic checks that guarantee that a client of H never

changes the status of a page in an unsafe way.

Client kernels cannot subvert the intended scheme for protecting status tran-

sitions because H does not provide them with direct memory access. Instead,

client kernels control memory indirectly through the operations of the H interface.

In a sense, this splits the two hardware privilege levels that we traditionally rely

on for kernel implementations into three, with the third level being implemented

purely in software. An H client has the full power necessary to configure and run

the system—including setting the policies for how user programs will interact—

but every operation is checked for safety violations. The strong type system and

1We use the term execution environment to refer to the collection of services that have an

implicit role in the execution of user programs. This includes the run-time system, the C and

Haskell heaps, the code and data for H, and the code for the kernel.
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module system of Haskell give us confidence that the restrictions in place in the

software privilege level are effectively enforced. A client will never accidentally

circumvent the protections without a type error or other compile time warning.

A similar notion of reduced privilege through software controls also appears in

hardware virtualization systems where every hardware operation must go through

a virtual machine monitor [5]. The primary focus of the checking in virtual ma-

chine monitors is to ensure fair multiplexing of the machine resources rather than

memory-safety in the individual kernels, but the mechanisms for achieving resource

protection are similar.

We encode memory-safety properties in terms of page status values by re-

stricting the states in which certain status transitions may take place. Figure 4.2

illustrates the allowable transitions between status values. The safety of a partic-

ular transition typically depends on the current state of the page. For example,

a normal memory page can only be converted into a page-table or page-directory

if it is not currently mapped to any users. Some transitions are never allowed:

the set of environment pages is constant so no page can ever become or be con-

verted from such a page. This allows us to enforce strong separation between the

kernel (including H) and the execution environment without a complicated set of

run-time checks2.

2For the purposes of reasoning about memory-safety, we ignore the indirect effect that the

kernel has on the environment pages by executing. During the course of execution, the Haskell

run-time system will allocate and manipulate memory on the kernel’s behalf within the protected

environment pages. We assume that the run-time system functions correctly. Verifying that

GHC maintains a well-formed and memory-safe heap, where updates within client kernel data

structures do not affect the contents of H data structures, is an interesting but separate problem.
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Figure 4.2: The allowable transitions that memory pages may make between

different status assignments. A free page—a normal page that is not mapped

in any page-directory—may be turned into a page-table or a page-directory

page. H manages page-table memory, automatically freeing a page-table page

when it no longer contains any entries. The client explicitly allocates and frees

page-directories using the H API functions that we will cover in Section 4.4.1.

Environment pages never change status.

4.2 EXAMPLE: ADDING A MEMORY MAPPING IN H

Recall from Section 4.1 that an environment page is any page that is required for

the kernel to run, such as the implementation language heap or a page of the kernel

code. In the implementation of H, we ensure that such a page is never mapped to

a user process by making sure that the clients of H are never given a mechanism

for accessing those pages. Clients access memory through a memory handle, which

is a tightly controlled datatype for describing regions of physical memory. The

datatype, called PhysicalRegion, contains a description of the physical-address
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range it represents and a type that indicates whether the region represents normal

memory (RAM) or I/O memory (like the video RAM). We use the Haskell module

system to restrict client access to memory handles: when we export the datatype

from the module where it is defined, we export the type name, so that programmers

can refer to the type PhysicalRegion, but not the value constructor. By using

this approach, we can treat memory handles like an unforgeable capability, even

though they are just regular values.

H constructs PhysicalRegion handles that precisely describe the memory

available to the client—the physical memory on the machine that is not being used

for environment pages. The initialRegions primitive returns these handles.

initialRegions :: H [PhysicalRegion]

An essential requirement of the H implementation is that initialRegions con-

structs handles to the correct set of pages: no environment pages should be in-

cluded in the regions referenced by the handles and every other usable page of

memory should be included in exactly one region. The absence of environment

pages from the set of initial regions helps us to establish the correctness of the H im-

plementation overall: to be memory-safe, H should never construct a handle to any

environment page. The client generates new handles through the deriveRegion

primitive, which creates a PhysicalRegion handle to a sub-region of an existing

region (with the same physical type).

deriveRegion :: PhysicalRegion -> Fpage Physical -> Maybe PhysicalRegion

The key property of deriveRegion is that it never creates a handle to mem-

ory that is not contained in a PhysicalRegion that was returned by a call to

initialRegions. In this way, we establish an inductive argument in support of

the property that H does not create handles to environment pages. If the re-

gions exposed by initialRegions do not include any environment pages, and if

deriveRegion is implemented correctly, then deriveRegion will never return a
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handle to an environment page. Figure 4.3 illustrates the relationship between

these two primitives.

Physical Memory

Initial Regions:

Derive Region:

Figure 4.3: Illustrating the relationship between initialRegions and derive-

Region. initalRegions exposes the portion of physical memory that is not in

use for environment pages. In the diagram, available memory is shown in gray

while protected environment memory (that cannot have handles constructed

to it) is shown in white. deriveRegion creates new handles to sub-regions of

existing regions, but will not create a handle to any memory that lies outside

of the initial regions. In the diagram, unadorned arrows indicate a region that

can successfully be derived from an existing region, while arrows with a cross

through them indicate a region that cannot be derived because it combines

multiple existing regions or it includes environment pages.

To add a mapping to a virtual address-space, the client must supply H with

the handle for the physical memory to be mapped. This design ensures that the

client can never map any environment pages to a user process. We present the full
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design of the user-level memory management facilities in Section 4.4.2. Abstracting

over the details and datatypes that we have not covered yet gives the type for the

function that adds a new mapping:

addMapping :: PageMap -> VirtualAddressRange -> PhysicalRegion -> H Bool

PageMap is an abstraction for an address space. In the IA32 implementation of H,

the term page-map refers to the collection of mappings reachable through a page-

directory (see Chapter 2.2). We use this terminology to avoid over-specializing the

interface design to two-level tables. We sometimes refer to page-directories and

page-tables generically as page-map pages, but only in cases where the distinction

is not important. The VirtualAddressRange describes a range of virtual addresses

to be mapped—in general this range can be as small as a physical page and as

large as the amount of the available memory. The PhysicalRegion parameter is

a handle to physical memory. The result, of type Bool, indicates whether or not

the mapping was successfully added to the virtual address space.

Other properties discussed in Section 4.1—such as the requirement that a page-

table page is never mapped to a user process—cannot be expressed using types

alone because the role of each page may change over time. For these properties,

we rely on dynamic checks based on page status values at the time of a requested

operation. As an example of dynamic safety checks in the H interface, consider

the internal implementation of the addMapping function whose signature was given

earlier. This function must perform checking to ensure that the parameters are

valid and to ensure that the desired page-type properties hold. A physical region

can only be mapped if all of the pages that make up the region are normal pages—

mapping a page with page-table or page-directory status to a user program will

violate our desired memory-safety property. The addMapping function will only

add new memory mappings when the page status checks indicate that the operation

is safe.
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4.3 SYSTEM CONFIGURATION

In this section, we examine the low-level structures that are provided by H for

communicating information about the hardware configuration to a client kernel.

Section 4.3.1 presents the basic structures that H uses to represent memory, in-

cluding more specifics about the initialRegions and deriveRegion primitives.

Section 4.3.2 explains the mechanisms available in H for loading executable mod-

ules through a bootloader and mapping them into user space.

4.3.1 Physical Memory Configuration

The foundation of our correctness argument for H centers around the correct man-

agement of physical memory. One mechanism for controlling physical memory is to

statically restrict the set of memory pages that the client may access. We achieve

this by encapsulating the representation of memory pages as abstract types, im-

plemented using the Haskell module system.

Flexible Address Ranges

We introduce the notion of flexible address ranges for describing areas of memory.

In general, an area of memory is a range of addresses described by an arbitrary

start address and an arbitrary length. In practice, not all start addresses or lengths

are useful. For example, an operating system running on the IA32 architecture can

never map 512 bytes because the architecture does not allow memory mappings

that are smaller than a page (4096 bytes).

Following the example of L4 [62], we describe areas of memory with a type that

captures the implicit practical restrictions on area sizes and locations as explicit

restrictions on the values of that type. The restrictions on these flexible pages

(flexpages or fpages for short) are as follows:

• The size of a flexpage is 2n bytes for some natural number n, such that 2n is
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greater than or equal to the minimum page size on the target architecture.

This means that every byte in the flexpage is uniquely identified by an n-bit

offset.

• The start address of a flexpage is aligned to its size. This means that the

start address will be a multiple of the flexpage size.

Though the flexpage scheme does rule out some potentially useful address ranges

(e.g., some structures used in graphics programming take up an odd number of

pages), we have not encountered a case in practice where the size and alignment

requirements are overly restrictive. If necessary, the client can round up to the

next valid flexpage or use multiple flexpages to precisely describe a memory area

of interest. Flexpages can be used to describe both virtual and physical regions of

memory.

We define a new type for describing flexpage sizes called LogSize. The client

may freely construct values of this type, but the semantics of the type capture

the flexpage size requirements: LogSize represents the base-2 logarithm of the

total size in bytes. For example, a LogSize value of 12 corresponds to a region

of size 212 bytes. The only exception is that the LogSize value zero is special; it

encodes the zero-size flexpage, rather than a flexpage of length one. Some values

of LogSize are invalid on a particular architecture by the flexpage rules because

they correspond to region lengths that are less than a physical page. Such values

are treated as zero when they are used in the construction of flexpages.

Every flexpage is guaranteed to obey the size and alignment requirements be-

cause we hide the representation behind the private type Fpage a. The type

parameter a is meant to be either Physical or Virtual to distinguish the kind of

memory referred to by the flexpage. Thus, a flexpage describing a range of virtual

addresses would have the type Fpage Virtual.

data Physical
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data Virtual

Physical and Virtual are phantom types whose sole purpose is to refine the type

we give to address ranges. We cannot construct values of these types. We choose

this representation for flexpages to provide better documentation in the types and

to help avoid confusion between flexpages used for different purposes. We use the

same technique for addresses, representing both virtual and physical addresses as

32-bit words but using a phantom type to improve documentation.

type Addr a = HWord

As with flexpages, Physical and Virtual are the only intended instantiations of

the type parameter a for addresses.

With a private constructor, the client must create flexpages through the inter-

face function for making flexpages, called fpage. The arguments to fpage are the

base address of the memory area and the desired size.

fpage :: Addr a -> LogSize -> Fpage a

The constructor always returns a valid flexpage by aligning the base address to the

size. If the size is too small (less than the page size on the target architecture),

then the result will be a zero-size flexpage. We could make better use of the types

by returning a Maybe (Flexpage a) instead of the zero value of the flexpage type.

The choice does not impact safety. We choose the C-style failure model in this

case to provide a better match with the typical uses of the primitive in our L4

implementation.

Access Rights

Access rights control whether or not the contents of a particular region of memory

may be read, written, or executed. Every memory mapping has an independent

set of access rights associated with it, represented by the type Perms, so a single



63

physical page might be mapped with different permissions in two distinct address-

spaces. A client controls the assignment of access rights to memory regions through

the mapping management functions of the interface, which we will cover in Sec-

tion 4.4.2.

Regions of Physical Memory

At start-up, the H implementation reserves a portion of the physical memory

installed in the machine to use as environment pages. The rest of the available

memory on the machine is given to the client kernel to use for any purpose—for

page-table memory, for user-processes, or for its own kernel-specific data structures.

Some environment pages, such as the memory that stores the kernel code, have

the same location in any run of the system. Other protected areas of memory

are dynamically configured by H. For example, H chooses the size and location

of the Haskell heap based on the available memory of the machine. As we saw in

Section 4.1, these pages cannot be safely mapped to a user-process. Any remaining

memory becomes available to the client through initialRegions. Figure 4.4

illustrates the division of memory between the environment and the client.

We use flexible address ranges to describe the regions of physical memory that

are available to the client. Accordingly, the size and alignment restrictions on

flexpages also apply to regions: the size of a region must be a whole number of

physical pages and the start address must be aligned to the region’s size. Each

physical region also has a static type that describes the nature of the memory

contained in the physical region (normal RAM or memory-mapped IO pages).

data PhysicalType = RAM | IOM IOType

We support two kinds of memory-mapped I/O regions: video RAM and the frame

buffer for VBE graphics3. We consider this to be a proof of concept for exporting

3VBE (VESA BIOS Extension) is a graphics standard intended to simplify access to graphics
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Figure 4.4: During the bootstrapping process, H reserves a portion of phys-

ical memory for the kernel’s execution environment. The remaining memory

becomes available to the client for use as page-tables, page-directories, user

memory, and communication pages for sharing information between the kernel

and user processes.

I/O device information using physical regions, rather than an complete implemen-

tation. Other kinds of memory-mapped I/O could easily be supported by extending

IOType and adding the appropriate configuration code in H.

data IOType = VideoRAM

| FrameBuffer (Addr Physical) HWord

The arguments to the frame buffer constructor describe the location and size of

the buffer. We store this information so that a client can obtain precise informa-

tion about the frame buffer location, which may not have a valid region size or

devices without specific knowledge about the target hardware [3]. We expose the frame buffer to

support client-level graphics drivers, but this functionality is not used in existing clients of H.
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alignment. There may be additional VBE graphics information that a client imple-

menting VBE graphics will need from from the bootloader; any such information

can easily be added if necessary.

Now that we have introduced the types for describing address ranges and phys-

ical memory types, we can examine the implementation of the memory handle type

presented in Section 4.2. A PhysicalRegion is a record with two fields: a physical

flexpage representing the area described by the handle and a memory type.

data PhysicalRegion = PhysicalRegion {

region :: Fpage Physical,

memType :: PhysicalType

}

Clients of the interface can examine the contents of physical regions—such as

their size and type—but cannot create new values of the type. Recall from

Section 4.2 that clients access regions through a combination of two primitives:

initialRegions discovers the available memory on the machine and deriveRegion

creates sub-regions of those initial regions.

initialRegions :: H [PhysicalRegion]

deriveRegion :: PhysicalRegion -> Fpage Physical -> Maybe PhysicalRegion

We will cover the process of dividing physical memory into environment pages and

the other categories in detail in Section 6.3. For now, it is sufficient to understand

that H reserves a portion of physical memory that should not be accessed by the

client and that it creates PhysicalRegion handles to all of the areas of memory

that the client is allowed to use.

The following rules describe the relationship between an existing region and a

new region produced by deriveRegion. Assuming that the existing region starts

at physical address, start , and has a size, logsize, a deriveRegion request will

produce a valid sub-region of the original when the following properties are true
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of the new start address, new start , and size, new logsize:

new logsize ≥ pageSize

new logsize ≤ logsize

new start ≥ start

new start + 2new logsize ≤ start + 2logsize

new start mod (2new logsize) = 0

If these restrictions are met, then deriveRegion returns a new region based at

new start (start + off ) with size new logsize. Otherwise, the function returns

Nothing to indicate that the requested region could not be created.

4.3.2 User-Code Modules

The H interface provides limited support for managing the code and data placed

in memory by the bootloader. Currently, we only expose information about exe-

cutable multiboot modules to clients, but the design could be expanded to incorpo-

rate the rest of the multiboot standard. Executable modules have been sufficient

for running user-space programs in our L4 implementation (see Chapter 7).

There are two key pieces of information in an executable multiboot module: the

entry point to the module and a description of the memory that it occupies. The

entry point is simply a word that contains the starting address of the program. The

memory that is used by a module is described by a collection of physical regions.

data Module = Module {

modArea :: [PhysicalRegion],

modEntry :: HWord

}

As with physical regions, the client can examine the contents of an executable

module, but cannot construct new modules themselves. We represent module

memory as a list of physical regions because the number of pages occupied by a
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module may not fit the region size requirements. Clients are allowed to map module

memory to users, as with any memory described by a handle, but the physical

regions that are associated with bootloader modules are not exported through the

normal physical region interface (i.e., they are not contained in initialRegions).

We choose to separate the memory in this way to ensure that the distinction

between free memory and bootloader memory is clear to the client, even though

the client could ultimately use both types of memory in the same way.

The client discovers the modules loaded in the current run of the system using

the modules command, which returns a module descriptor for every executable

bootloader module except for the kernel. There would be a memory-safety violation

if the client could access the kernel module, because then the client could overwrite

its own code and the code for H.

modules :: H [Module]

There are no other operations for working with the Module type.

4.4 VIRTUAL-MEMORY MANAGEMENT

Virtual-to-physical memory mappings are a key component of memory-safety be-

cause they establish the views of memory accessible to user programs and the ker-

nel. The presence of a memory mapping can be seen as permission to read, modify,

or execute a particular page of memory. We enforce the desired separation between

entities in the system—the execution environment, the kernel, and the users—by

appropriately controlling these views. We rely on a combination of static, type-

based arguments and dynamic checking to enforce the safe construction of memory

mappings. We particularly focus on the safety of the virtual memory management

operations: page-directory creation and deletion (Section 4.4.1); adding, modi-

fying, and removing user-visible mappings (Section 4.4.2); adding kernel-visible

mappings (Section 4.4.3); and reading/writing memory mapped in kernel space
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(Section 4.4.3).

In addition to safety, generality is an important goal of the virtual memory

interface design. We hope to support user-level separation policies in client ker-

nels [82, 66] by providing expressive memory management functions that do not

include unnecessary policy of their own. A correct implementation of H will guar-

antee that there is no accidental flow between user programs—that is, no data

movement through memory that the client has not explicitly enabled through a

mapping operation—but not restrict intentional communication. For example,

memory-safety requires that page-directories and page-tables are not mapped to

users, but we do not impose any sharing policy on normal page sharing between

user-level programs or a user and the kernel. Throughout the design, our goal is to

supply mechanisms that do not preclude separation between user programs, rather

than a policy that enforces it [68].

4.4.1 Address Spaces

The virtual-address space of the machine is split into two components: user-space,

which contains the mappings for user-level programs and data; and kernel-space,

which contains the mappings for kernel code and data. We use the user/supervisor

bit in page table and page directory entries, as described in Section 2.2, to ensure

that memory in kernel-space is not accessible to user programs. Our implemen-

tation places the boundary between kernel-space and user-space at 3 GB so that

the kernel lives in high memory. The choice of boundary and kernel location is

arbitrary, but consistent with Linux [61].

Client kernels have total control over the user portion of the virtual address-

space. H will never place mappings in that area except for those explicitly re-

quested by the client. There are no restrictions on the virtual addresses that

can be mapped. Kernel-space is divided into two areas: one that H controls and

one that the client controls. H must own part of this address-space to protect
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the kernel code, H code and data, and Haskell run-time system. The remain-

der of the virtual address-space is managed by the client kernel. H identifies

the parts of kernel space that are available to the client through the constant

kernelMappableVirtualAddresses.

kernelMappableVirtualAddresses :: H [Fpage Virtual]

We describe the kernel controlled addresses as a list of flexpages describing the free

virtual-address ranges within kernel memory.

Clients manipulate the mappings of a user address-space by inserting and mod-

ifying entries in the page-map data structure. H provides access to page-maps

through a restricted set of operations, because page-map correctness is important

for the safety of the system. If a client could construct arbitrary page-maps, then

they could circumvent the protection mechanisms of H by corrupting H’s private

data or the execution environment itself (essentially, the client could obtain full

access to physical memory). We maintain the integrity of each page-map data

structure by defining a type called PageMap with a hidden representation. Clients

must use the interface to allocate page-maps in a controlled and safe way. When

allocating a page-map, H converts a free page of memory into a page-directory by

setting its status to the page-directory value and installing mappings for the envi-

ronment pages. If the argument to the conversion is not free, then the operation

will not be safe. Once the page has been converted, the client may not use that

page for any other purpose until the page-map is explicitly freed. We enforce this

restriction by dynamically checking the status of pages the client tries to map: any

with the page-directory status will not be mappable.

Page-map creation happens in two stages. First the client turns a page-

sized physical region into a new value called a page-map page. The function

createPageMapPage validates the size of a region and, if the size is correct, cre-

ates an unforgeable PageMapPage handle containing that region. Both page-

directories and page-tables are created from pages that have been pre-validated
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with createPageMapPage. A PageMapPage also stores information about where

the region should be mapped in the kernel virtual address space so that H may

read and write to the page. The second parameter to createPageMapPage is the

address where the client would like the page-map page to be mapped for H (which

must lie in the kernel controlled portion of the address space); the full details of

H’s access to page-map memory will be covered in Section 6.4.

createPageMapPage :: PhysicalRegion -> Addr Virtual

-> H (Maybe PageMapPage)

If the parameters pass the validity checks, then createPageMapPage returns a

page-map page that can be passed as an argument to the page-map creation func-

tion or supplied for H to use as a page-table (the H implementation allocates

page-tables on demand in the mapping functions using client-supplied memory

pages, we will cover these operations in Section 4.4.2).

allocPageMap :: PageMapPage -> H (Maybe PageMap)

Page-map allocation creates an empty page-directory (with the page-directory sta-

tus) that only contains the mappings for the environment pages. Before creating

the page-directory, allocPageMap will check if the page is free; this is a necessary

condition for safely creating a new page-directory. As a side effect, allocPageMap

will install an H-accessible mapping for the page-directory at the kernel virtual

address specified by the PageMapPage.

The client frees a page-map with the analogous function, freePageMap. The

result of freePageMap is a handle describing the memory previously occupied by

the page-directory and the memory for any page-tables that become free as a result

of the operation. These newly freed pages are returned as a PhysicalRegion list

for reuse by the client kernel.

freePageMap :: PageMap -> H [PhysicalRegion]
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Our implementation of H allows the current page-map to be freed by switching

to a default system page-map that only contains mappings for the environment

pages. A version of freePageMap that does not allow the current page-map to be

freed would also be a reasonable implementation choice, but would require a slight

adjustment to the type of the operation to signal failure.

Page-map management illustrates an important aspect of the H design: the

combination of static, type-based safety guarantees with run-time checks. There

are some properties that we can enforce entirely statically using Haskell datatypes.

For example, our implementation can rely on the fact that a PageMapPage cor-

responds to a single page of memory because the only function for creating a

PageMapPage checks that. Other properties are best enforced through a combina-

tion of static and dynamic checks. Through the implementation of allocPageMap,

we can be sure that every page with the page-directory status is mapped to an

address that H can read and write. We also know that H makes every such page

accessible through a PageMap handle. But even though the client cannot con-

struct PageMap values—except through allocPageMap—we cannot be sure that

every PageMap has the page-directory status. This asymmetry stems from the

fact that H clients can free PageMap values but H cannot reclaim the handles be-

cause they are just values that clients may hold onto even after the corresponding

page-directory has been freed. Thus, the H implementation must combine the

static information from types with dynamic status validity checks to be sure that

PageMap operations are safe. More details about the implementation techniques

used to guarantee safety will be covered in Sections 6.4 and 6.5.

4.4.2 User Memory

Each page-map structure has an independent set of mappings in the user portion of

the virtual address-space that control which memory is accessible to user processes.

The same physical memory may be mapped in the user area of many page-maps if
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so desired. The client modifies these mappings indirectly using the operations of H.

There are three essential operations available to the client: adding a new mapping

to a contiguous block of physical memory, modifying the read/write permissions

on an existing mapping, and removing a mapping. Each of the mapping functions

operate on a single previously allocated page-map.

As with the creation of PageMap objects, the client explicitly manages any

additional memory that H requires for page-map storage. For example, with a

two-level page-map, the function for adding a mapping might allocate a page-table

page in which to store the mapping. When the client removes mappings from a

page-map, the memory that stored those mappings will be freed and returned to

the client if the pages are no longer needed for other mappings. H never retains

control of any page that is not in use.

The addMapping operation adds mappings from a range of virtual addresses

(expressed as a flexpage) to a block of physical memory of the same size. By using

a PhysicalRegion value, we guarantee that the physical memory is safe for the

client to map to user programs.

addMapping :: [PageMapPage] -> PageMap -> Fpage Virtual

-> PhysicalRegion -> Perms -> H (Maybe Bool)

The additional arguments expose some of the complexity of addMapping that we

skirted over in its initial introduction in Section 4.2. The Perms argument spec-

ifies the access rights to attach to the mapping. These permissions control the

read/write/execute permission on the mapping, but not the user/supervisor set-

ting because all mappings added through addMapping must be in user-space. The

PageMap argument indicates the address-space where the mapping should be added.

The list of PageMapPages is a supply of pre-validated memory pages that the client

provides to H for page-table storage. In the current implementation of H, we al-

ways use zero or one of these pages. A Just result indicates success of the mapping

operation; the Boolean component indicates whether or not a PageMapPage was
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needed. For implementations that potentially use more than one PageMapPage,

the Boolean result may not be a good fit; a natural number indicating the number

of page-tables allocated would be more appropriate.

The modifyMapping function changes the permissions attached to an existing

mapping. As such, modifyMapping will never need to allocate new page-map

storage; it works with the structures that are already there. The arguments to

modifyMapping, in order, are the page-map to modify, the virtual flexpage of the

mapping to be modified, and the new permissions to attach to the mapping. The

result of modifyMapping indicates whether or not the modification succeeded.

modifyMapping :: PageMap -> Fpage Virtual -> Perms -> H Bool

If the virtual flexpage does not correspond to an existing mapping (either the

flexpage overlaps with the kernel portion of the virtual address-space or the flex-

page corresponds to memory that is not mapped in the specified page-map), then

the function does not change the page-map. We do not allow the client to set

the permissions of a mapping to nothing using this function—for that they must

use removeMapping. Attempting to do so causes modifyMapping to return False

without making any changes to the page-map.

The final operation on mappings is deletion. The function removeMapping

deletes the mapping that corresponds to a particular virtual flexpage. The argu-

ments to the function are the page-map to modify and the flexpage of the mapping

to be removed. The result is the list of pages that were freed by the operation.

removeMapping :: PageMap -> Fpage Virtual -> H (Maybe [PhysicalRegion])

The operation behaves optimistically and modifies any portion of the provided

flexpage that it can (even if some portion of the flexpage is not mapped in the

specified address space). The areas of memory that get modified by the operation

will always be flexpage-sized regions.
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The client may also read information about a user mapping that is already

present in a page-map, for example, whether or not a particular page is mapped,

and what the usage information is for a mapped page (whether the page has been

read or written). We represent page-map entry information with values of the type

MappingInfo. The client reads the mapping information for a particular page of

virtual memory using the function readMapping.

readMapping :: PageMap -> Addr Virtual -> H (Maybe MappingInfo)

The first argument is the page-map to examine and the second argument is a virtual

address in the page of interest. H aligns the virtual address argument to a page-

boundary, rounding down if necessary, and finds the information for that virtual

address by consulting the page-directory and page-table bits. If the page is not

mapped, then readMapping returns Nothing. Otherwise, the function returns a

MappingInfo object that the client can examine using accessor functions provided

by H.

mappingAddr :: MappingInfo -> Addr Physical

accessed :: MappingInfo -> Bool

dirty :: MappingInfo -> Bool

The mappingAddr function returns the physical address that the virtual page of

interest is mapped to. The client can also check whether or not the page has been

read with the accessed function, and whether or not the page has been written

with the dirty function.

4.4.3 Kernel Memory

H supports the ability to add kernel mappings that are visible in every virtual

address-space. The only constraint is that the mappings lie in the portion of

kernel-space not in use by H. Any memory that may be mapped to users may

be mapped into kernel space. We call these mappings client kernel mappings to
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distinguish them from the H mappings that we use internally for page-map pages.

The client manages the addresses where page-map pages are mapped, but, for

safety reasons, cannot control the actual mapping operations on such pages.

When the client adds a client kernel mapping, H returns a handle through

which the client can read and write the mapped memory. We represent handles

with the type KernelMapping, which is partially abstract. A KernelMapping con-

tains a virtual flexpage describing the mapped region, a physical region describing

the underlying memory, and a set of read/write permissions. Clients may access

these components of a KernelMapping but cannot construct a mapping handle

themselves.

We use kernel region handles to ensure that the client only accesses memory

that has been mapped. Without this requirement, the client might try to access

protected memory (the type of the mapping function guards against such behavior)

or the client might request a memory access that causes H to page fault. We choose

to prevent kernel faults through checking whenever possible. The lack of page faults

in H makes memory errors easier to find and debug.

Handles alone, however, are not enough to prevent page faults; it is also impor-

tant to guarantee that kernel mappings are accessed with valid permissions. We

take the approach that the client can control the permissions attached to kernel

mappings, even though this requires extra checking in the implementation of the

write operations. A simpler (and potentially more efficient) approach would be to

force all kernel mappings to have read/write permissions so that faults can never

occur.

Initially, there are no client-accessible mappings in the kernel memory area.

A client inserts mappings into this region by calling addKernelMapping with the

physical region to map to the kernel, the location in virtual memory at which to

add the mapping (as a virtual flexpage), the permissions to attach to the mapping,

and a Boolean value that indicates whether or not the new mapping should be user
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accessible.

addKernelMapping :: PhysicalRegion -> Fpage Virtual -> Perms

-> Bool -> H (Maybe KernelMapping)

A mapping cannot be added if the requested location for the mapping is not

fully contained in the available portion of the kernel address-space or if the target

memory is not a normal page.

The client accesses kernel mappings through interface read and write functions

called readKernelMapping and writeKernelMapping. These operations are sim-

ilar to the standard peek and poke functions in the IO monad except that they

are guaranteed to preserve memory-safety. The first argument to both functions is

the kernel mapping to access. The second argument is a word offset that specifies

where in the mapping to read or write. The read function returns the word that

lies at the requested offset, and the write function requires an extra parameter

containing the word to write to memory.

readKernelMapping :: KernelMapping -> HWord -> H HWord

writeKernelMapping :: KernelMapping -> HWord -> HWord -> H Bool

The offset parameter is implicitly forced to lie within the region described by the

specified kernel mapping. That is, old offset mod mapping size. The write oper-

ation may still fail because the permissions of the mapping may not be sufficient.

We also provide specialized read and write operations for accessing page-sized

kernel mappings (or the first page of a larger region). The maximum offset is

a static constant that corresponds to the page size on the machine. We use a

bounded type, Offset, to describe the restrictions on these accesses.

newtype Offset = Offset HWord

instance Bounded Offset where

minBound = Offset 0

maxBound = Offset (pageWords - 1)
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The specialized read and write functions behave similarly to the normal read and

write functions, except that the offset is constrained to lie in a single page. The

expectation, borne out in the performance results of Chapter 8, is that the spe-

cialized versions will be faster because the address validation is done relative to a

compile-time constant, rather than a parameter that must be read from the kernel

mapping structure at run-time.

readWordAtOffset :: KernelMapping -> Offset -> H HWord

writeWordAtOffset :: KernelMapping -> Offset -> HWord -> H Bool

These operations can be used on any kernel mapping regardless of its size, because

we never create a kernel mapping that is smaller than a page, but only to access

the first page of data. Typically we only use the specialized functions on page-

sized mappings, but avoiding a distinction between different kernel mapping sizes

prevents additional complications in the interface.

4.5 USER PROCESS EXECUTION

H defines a minimal set of constructs in support of user-level execution. We avoid

fixing a specific notion of thread or process, and instead provide the basic building

blocks necessary for managing such structures. In particular, we provide fault

contexts (a mechanism for saving and accessing the register state of user programs)

and interrupt/IRQ handling. With these low-level constructs, the client can define

a variety of higher-level representations of user code.

Our representation of register values is an abstraction of the register set on the

underlying machine which we define as an algebraic datatype called Register.

data Register

= EDI | ESI | EBP | BogusESP | EBX | EDX | ECX | EAX | DS | ES | FS

| GS | Handler | Code | EIP | CS | Eflags | ESP | SS

A fault context is a collection of the values contained in the registers when execu-

tion switches from user-mode to kernel-mode, along with some information that
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describes the reason for the mode switch (the nature of the interrupt or IRQ).

Typically the client only accesses the register values of the fault context because H

packages up the interrupt or IRQ information in the Interrupt and IRQ datatypes.

We omit the definition of these types here, but will discuss the details of their im-

plementation in Section 6.8.

We represent fault contexts using a handle type called FaultContext. The

client explicitly allocates fault contexts for running user programs. The client

kernel might use a single fault context to run many user programs (with the kernel

managing the register values between runs) or the client might allocate a separate

fault context for every user-level entity.

allocFaultContext :: H FaultContext

The client is not responsible for freeing the fault contexts that it creates: the

Haskell garbage collector automatically reclaims the associated memory.

The client accesses the information contained in any fault context register using

readRegister and writeRegister. These functions access a particular register

from a particular fault context.

readRegister :: FaultContext -> Register -> H HWord

writeRegister :: FaultContext -> Register -> HWord -> H ()

The register read and write functions always succeed.

H provides a single function for jumping to user-level code, called execute.

execute :: PageMap -> FaultContext -> H Interrupt

The inspiration for this function comes from the execContext primitive in the

original H interface [39]. We reuse many of the implementation techniques from

that implementation, with some minor adjustments, particularly to the way fault

contexts are handled . The client specifies the page-map to install prior to execu-

tion (which controls the memory that will be accessible) and the fault context to
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restore (which determines the starting state of the code). H sets up the machine

state according to these parameters and then switches the machine into user mode.

The user code begins executing at the instruction pointer stored in the fault con-

text parameter and continues running until control returns to the kernel through

an interrupt, fault, or IRQ (recall the process through which mode switches occur

that we described in Chapter 2). User-process execution is guaranteed to termi-

nate because H sets up a timer that will eventually interrupt the user program and

return control to the client.

When control returns to kernel-mode, H packages up the interrupt information

and returns that information to the client kernel. The interrupt format is specific

to the interrupts that may occur on the underlying hardware platform and is

defined as a datatype with one constructor per type of interrupt. Some interrupts

carry extra information, for example, an IRQ contains the number of the IRQ that

occurred (described by the IRQ type) and a page fault carries information about

the nature of the fault (the PageFaultErrorCode).

Interrupts and faults fall under the domain of H, but I/O interrupts are man-

aged by the client kernel. We supply functions for individually enabling, disabling,

and acknowledging a particular IRQ:

enableIRQ :: IRQ -> H ()

disableIRQ :: IRQ -> H ()

maskAckIRQ :: IRQ -> H ()

The IRQ management functions always succeed.

Originally, the H interface design allowed the client kernel some control over

interrupts and faults, namely, the ability to set whether or not interrupts occur in

kernel-mode, using the functions enableInterrupts and disableInterrupts [39].

enableInterrupts :: H ()

disableInterrupts :: H ()
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Though we think that control over kernel interrupts is an important part of the

API, our current implementation does not provide enough support for multi-

threaded kernels to allow kernel interrupts. We believe that better multi-threaded

support is possible by modifying our implementation to use multiple Haskell threads.

The H API would require some extension to enable the client to install Haskell

handlers for kernel interrupts. Then, the C-level interrupt handler could invoke

the appropriate Haskell handler (in a new thread) when a kernel-mode interrupt

occurs. These issues are an interesting topic for future work. Under the current

scheme, clients with a short path through the kernel should not encounter issues.

Other kernels will have to implement their own method for reducing the delay in

handling interrupts.

4.6 INPUT/OUTPUT

In this dissertation, we do not diverge significantly from the input/output facilities

of the original H design [39]. We support I/O port access by lifting the port opera-

tions of the underlying architecture into Haskell. We also provide basic debugging

facilities for use during kernel development.

4.6.1 Ports

The client kernel accesses I/O ports through a direct lifting of the underlying

assembly instructions for port access on the IA32. We do not consider safety

issues concerning I/O ports in this work. If client kernels avoid using DMA, the

port operations will not affect the integrity of the memory structures of the kernel.

In future designs it would be interesting to explore greater control over I/O ports

through the interface, for example, the ability to control an IOMMU.

Each port has a 16-bit port identification number with a fixed semantics on

the machine. We do not attach a semantics to port numbers, and simply represent



81

them using a type synonym for 16-bit words called Port. The client may read or

write a byte, a short, or a word to any port.

inB :: Port -> H HByte

inS :: Port -> H HShort

inW :: Port -> H HWord

outB :: Port -> HByte -> H ()

outS :: Port -> HShort -> H ()

outW :: Port -> HWord -> H ()

The port operations do not fail.

4.6.2 Debugging

H provides screen printing functionality for debugging purposes. Normally, clients

will implement their own printing functions for user programs, but during client

development it is very convenient to be able to print messages for testing and

debugging. Any impure function, such as output, must be in the H monad, but

we do not consider these functions to be a core part of the H design.

Using a stripped down video driver written in C, the client can print a single

character to the screen. We implement utility wrappers on this simple function for

printing strings and lines.

putch :: Char -> H ()

putstr :: String -> H ()

putstrln :: String -> H ()

The printing functions are memory-safe, but they might fault if the video RAM is

not mapped in the current page-map. This is an exception to our usual philoso-

phy that H operations should prevent faults whenever possible and it did lead to

unexpected crashes during the early stages of developing H. An alternate imple-

mentation might use the serial port instead of the screen and avoid the issue of

page faults entirely.



82

Chapter 5

FORMALIZING OPERATING SYSTEM MEMORY-SAFETY AS A

NONINTERFERENCE PROPERTY

A primary motivation for implementing operating systems using Haskell is that the

language provides strong type- and memory-safety guarantees. From our choice of

implementation language alone, we know that our client kernels do not contain null

pointer dereferences, unsafe type casts, or any other safety errors1. The same type-

and memory-safety guarantees do not hold for the operations of the H interface,

because the H implementation uses potentially unsafe features of Haskell (such as

pointers), and foreign calls to C. For this code, we must demonstrate safety, rather

than relying on language-based guarantees.

Unfortunately, defining a memory-safety property for the H operations is not

straightforward. In programming languages, safety typically refers to the absence

of unchecked run-time errors with respect to the formal semantics of the language

and memory-safety refers to the absence of a collection of memory-related run-time

errors, such as a null-pointer dereference or a memory access outside the bounds of

an array. If the operations of the H interface have been implemented correctly, then

1The correctness of the Haskell compiler and the generated code is required for Haskell pro-

grams to be type- and memory-safe. For the purposes of this dissertation, we assume the cor-

rectness of the entire GHC implementation, including the compiler and run-time system. Like

many large systems, the correctness of GHC has been established through testing and through

a feedback loop between its large community of users and the developers. Ultimately, we would

like to implement H using a high-assurance run-time system, like the one that is currently under

development at Portland State University for the Habit language [73].
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they should be memory-safe according to this colloquial definition, but this notion

of memory-safety is not sufficient for our purposes. We want to guarantee that the

H operations preserve language-based memory-safety in our client kernels, but even

an H operation that is itself memory-safe with respect to the Haskell semantics can

corrupt the run-time system and introduce memory-safety errors into the client.

This is because the H operations have access to all of physical memory, including

the Haskell heap and run-time system data. Thus, for an H operation to preserve

language-based memory-safety at the client kernel level, we need a memory-safety

property for our H operations that is stronger than traditional definitions. In

addition to demonstrating that the H operations are memory-safe with respect to

the colloquial definition, we must also demonstrate that they do not corrupt the

Haskell run-time system or configure the virtual-memory translation tables in a

way that would enable such corruption by a client or user program.

The essential characteristics of the H interface with respect to run-time system

integrity can be expressed as two properties:

• Execution Environment Integrity: Memory occupied by the execution

environment should be distinct from memory that is used for other purposes.

No user-process or client kernel should be able to write to environment pages

or alter the mappings to those pages. As discussed in Section 4.1, the execu-

tion environment refers to all of the software components that are essential

for the client kernel to execute, including the run-time system, Haskell heap

pages, and C heap pages.

• Address-Space Integrity: Memory that implements the view in a partic-

ular address-space (such as a page-table or page-directory page) should be

distinct from the memory that is used for other purposes. No user-process

should be able to write to these pages. Client kernels should only write to

these pages using operations that are appropriate for their type.
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We define the memory-safety property for the H interface as the combination of

execution environment integrity, address-space integrity, and traditional memory-

safety. If our implementation of H satisfies this definition of memory-safety, then we

can be sure that our kernel will not crash because the run-time system has been

corrupted and that a buggy or malicious program running on top of H cannot

insert values into the Haskell heap. In the remainder of this chapter, we focus

on execution environment integrity and address-space integrity because these are

novel properties that have not been explored in other work. We leave the proof

that H is memory-safe in a traditional sense as future work (see Chapter 10).

To enforce execution environment integrity and address-space integrity within

the H implementation we utilize a combination of run-time checks and abstract

datatypes to make sure that no direct writes to the run-time system memory via

H operations are possible. Indirect writes to the Haskell heap during the course of

the H’s execution do occur, but the semantics of the language, assuming a correct

implementation, guarantee that such writes will not cause a type- or memory-safety

violation. If execution environment integrity and address-space integrity hold for

the H implementation, then we can ensure that the other system components do

not corrupt the run-time system using the following mechanisms:

• Client Kernels: Our client kernels are written entirely in the safe portion of

Haskell and do not make foreign calls. We can therefore rely on the safety of

Haskell for preventing unsafe accesses to the run-time system data because

the run-time system does not permit Haskell programs to access its data

structures or violate the safety guarantees of the language. Execution of the

client kernel will impact the values stored in the run-time system memory,

but not in a way that can cause memory-safety errors.

• User Programs: For user programs, we rely on hardware protection using

the MMU. When we configure the run-time system code and heap, we map
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all of the memory with kernel-only permissions. User programs always run

in user-mode and will fault if they attempt to access the run-time system

data.

We assume that client kernels behave in a safe way (when running on an uncor-

rupted run-time system) as part of our assumption that the GHC implementation

is correct, type-safe, and memory-safe. To verify that user-programs do not cor-

rupt the run-time system, we need to formalize the property that the execution

environment pages are always mapped with kernel-only permission, but do not

need to model any other aspects of user-process execution.

In the remainder of this chapter we will show how the execution environment

integrity and address-space integrity components of the memory-safety property

can be formalized as a separation property by instantiating the Rushby noninter-

ference framework [82]. We will connect the instantiation of the framework to our

implementation via an abstract model of the H operations. Establishing a formal

connection between the model and the implementation is an interesting topic, but

we do not tackle this work in this dissertation. Nevertheless we have attempted to

maintain an informal level of consistency between these two descriptions of H and

to point out any places where they diverge.

We begin by reviewing the Rushby framework for reasoning about noninter-

ference properties in Section 5.1. Section 5.2 discusses the notational style that

we will use throughout the chapter. Section 5.3 presents our instantiation of the

system state. Section 5.4 describes our division of the system into protection do-

mains and our instantiation of the various components of the Rushby framework

to support our memory-safety interpretation. Section 5.5 explains the safety prop-

erty in terms of our security policy between domains. Section 5.6 defines the static

invariants on the state that we expect all operations in our system to uphold. Sec-

tion 5.7 specifies the dynamic behavior of the key H operations. Section 5.8 defines

the execution function for our Rushby instantiation and sketches a proof that our
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instantiation satisfies the necessary properties set out by the Rushby framework.

5.1 BACKGROUND: RUSHBY’S NONINTERFERENCE FRAME-

WORK

This section summarizes Rushby’s framework for reasoning about system security

[82]. The basis of this framework is an abstract model of computer systems and a

representation of noninterference policies. Rushby uses these foundational elements

to define security, to formalize assumptions, and to prove that a system satisfying

those assumptions is secure.

5.1.1 System Model

Rushby [82] models computer systems as state machines. An action is a state trans-

former that also produces some output. The behavior of the system is specified

by the functions step and output ; step performs a single state transition whereas

output extracts the result of the action.

Definition 1. A system (machine), M, consists of

� a set of states, S, with an initial state s0 ∈ S,

� a set of actions, A, and

� a set of outputs, O,

together with execution functions,

� step :: S × A → S, and

� output :: S × A → O. �
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To express security constraints on the system, Rushby supplements the basic

execution model with a notion of protection domains and a security policy. Actions

in the system are partitioned into a set of domains, D , as specified by the function

dom :: A→ D . A reflexive binary relation on domains, (pronounced interferes),

expresses the security policy of the system.

 :: D × D → Bool

A domain u interferes with a domain v if information is allowed to flow from u to v ,

meaning that v can observe the effects of u’s actions. The symbol 6 (pronounced

does not interfere) represents the complement relation.

While the specific nature of states is abstract, the proof of the security def-

inition requires some mechanism for determining what information is observable

to a particular domain in each state. To this end, Rushby introduces an equiva-

lence relation, ∼ :: S × S × D → Bool , called the view-partitioning relation. Two

states, s and t , are equivalent from the perspective of a domain u, written s
u∼ t ,

if u cannot distinguish s and t . The precise meaning of ∼ is a parameter to the

formulation. This relation extends naturally to an equivalence, ≈, over a set of

domains, C .

s
C
≈ t ≡ ∀u ∈ C . s

u∼ t

A key characteristic of the model is the abstract nature of states, actions, and

outputs. System developers have significant flexibility in the instantiation of these

parameters, so the formulation can be applied to a wide variety of systems. The

output function is a good example of this flexibility. Bevier and Young [7] criticize

the use of output , because many systems do not produce output in the traditional

sense. Their model replaces output with a view function, that extracts a portion

of the state. However, the distinction between output and view is gratuitous, as

view is a valid instantiation of output in the Rushby framework.
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policy = {A B ,B  C}

0 1 2

A a1

''

B b1
''

C c1

(a) a1 interferes with c1 via in-

tervening action b1

0 1 2

A a1

++B b1

C c1

(b) a1 cannot interfere with c1

Figure 5.1: Intervening actions allow indirect interference between domains. A, B ,

and C are domains in a system. The policy contains A B and B  C . In the

diagram, columns represent execution steps, where the numeric label corresponds

to the state an action executes in (e.g., a1 executes in s0 producing s1). An arrow

between two actions indicates potential interference.

5.1.2 Characterizing Domain Interactions

A security policy specifies which domains are allowed to interfere, but does not

capture all information flow between domains. For example, consider a system

with three domains, A, B , and C , and a policy {A  B , B  C}, as pictured

in Figure 5.1. Though the policy does not explicitly state that A interferes with

C , information can flow from A to C indirectly through actions in B . If  is

transitive, then A interferes with C in all situations. However, we are concerned

with systems where  is not assumed to be transitive, so we need a strategy for

determining if information flow from A to C occurs in a particular sequence of

actions. A only interferes with C through B , so an action in A only interferes with

an action in C when an intervening action in B is present.

Rushby captures information flow between domains formally with a function

called sources of type A∗×D → ℘(D). The notation A∗ represents the set of finite

sequences whose elements belong to the set A. The empty sequence is denoted
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by [] and the sequence obtained by prepending a to as is denoted by (a:as). The

notation ℘(D) represents the set of subsets of the set D . Given a domain, u,

and a sequence of actions, α, sources(α, u) is the set of domains that might leak

information to u when α executes.

Definition 2. The function, sources, which determines via what domains infor-

mation can flow to a particular domain u, is defined as follows:

sources :: A∗ × D → ℘(D)

sources([], u) = {u}

sources(a:as, u) =



sources(as , u) ∪ {dom(a)}

if ∃v . v ∈ sources(as , u) ∧ dom(a) v

sources(as , u)

otherwise

Given a non-empty sequence of actions, (a:as), sources checks whether an action,

a, interferes with an action in sources(as , u). This condition is true if an inter-

vening action in as allows information to flow from dom(a) to u, or if the security

policy allows direct interference between dom(a) and u. �

Security under a noninterference policy means that actions not allowed to in-

terfere with a domain, u, are truly unobservable to u. Rushby captures this in-

terpretation of security by simulating system execution. Executing a sequence of

actions should produce the same results, from the perspective of u, as executing

the same sequence with non-interfering actions removed.

The function ipurge removes all actions that do not interfere with a particular

domain from a sequence of actions. The purge process relies on sources to ana-

lyze whether each action in the sequence may leak information to the domain in

question.
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Definition 3. We define a function, ipurge, which, given a list of actions, α, and

a domain, u, returns a list containing the actions in α that interfere with u.

ipurge :: A∗ × D → A∗

ipurge([], u) = []

ipurge(a : as, u) =

 a:ipurge(as , u) if dom(a) ∈ sources(a:as , u)

ipurge(as , u) otherwise

When α = a:as, ipurge uses sources to determine if a interferes with u. If not, a

is purged. �

Rushby models the execution of a sequence of actions with run, which is a

natural extension of step from Section 5.1.1.

run :: S × A∗ → S

run(s , []) = s

run(s , (a:as)) = run(step(s ,a), as)

We often wish to run a sequence of actions from the initial state, s0, or to extract

the output produced by an action following such an execution. The functions do

and test are shorthands for these two operations.

do :: A∗ → S

do(α) = run(s0, α)

test :: A∗ × A → O

test(α, a) = output(do(α), a)

We now use these functions to state Rushby’s formulation of system security:

Definition 4 (Security Property). Let s be the state that results from running an

arbitrary sequence of actions, α, from the initial state, and let t be the state that

results from running the corresponding purged list. A system is secure if the output

produced by executing any action is the same in s and t.

test(α, a) = test(ipurge(α, dom(a)), a) �
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5.1.3 Establishing Security

Rushby employs a technique called unwinding to prove that a system satisfies the

security property. Many noninterference formulations use this approach [7, 33, 93].

Unwinding establishes that a system with well-behaved state transitions is secure.

A set of unwinding conditions specify the expected properties of state transitions,

and the unwinding theorem links these conditions to the security property.

Rushby specifies three unwinding conditions—output consistency, local respect,

and weak step consistency—and proves that the security property holds for systems

that satisfy these conditions.

Definition 5 (Output Consistency). A system is output consistent if the output

produced by executing an action in equivalent states is the same in both states.

s
dom(a)∼ t ⇒ output(s , a) = output(t , a)

�

Definition 6 (Local Respect). A system locally respects the security policy if the

effect of an action, a, which may not interfere with a domain, u, is unobservable

to u. That is, the state produced by executing a is equivalent, from u’s perspective,

to the state before a executed.

dom(a) 6 u ⇒ s
u∼ step(s , a)

�

Definition 7 (Weak Step Consistency). A system is weakly step consistent if the

states that result from executing an action in equivalent states are equivalent.

s
u∼ t ∧ s

dom(a)∼ t ⇒ step(s , a)
u∼ step(t , a)

�
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Theorem 1 (Unwinding). Let be a policy and M a view-partitioned system that

is

1. output consistent,

2. weakly step consistent, and

3. locally respects  .

Then M is secure for  .

Rushby proves the unwinding theorem using properties of sources and ≈, the

details of which are in his paper [82].

5.2 NOTATION

We use Haskell syntax for the definitions and specifications presented in the re-

mainder of this chapter. We choose Haskell as the specification language in place of

a traditional mathematical notation to enable us to type check the model through-

out the development process. This approach is less formal than developing our

model of H directly in the language of a theorem prover. When instantiating the

Rushby framework using Haskell, we model the system state as a datatype. We

also model the set of domains, D , the set of actions, A, and the set of outputs, O ,

as types. The security policy is a relation between domains that we implement as

a function. All functions in the formalism are encoded as Haskell functions in our

instantiation.

Our model is not executable, but in our experience type checking alone was

still useful for catching bugs. Because we use types to represent the essential fea-

tures of the Rushby framework, the compiler acts as a consistency checker on the

definitions. Using a programming notation also helps us to avoid overlooking the
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behavior of cases that might be abstracted over in a purely mathematical defini-

tion. For example, the Haskell compiler provides warnings for incomplete pattern

matches, which indicates that we might have forgotten to insert the behavior of an

operation in one or more cases. Every property and specification that we present

in this chapter has been type checked to establish a minimum level of consistency.

Since developing the Haskell model, we have also translated the code into HOL

Light [43]. The translation was very direct and did not require any nontrivial

modifications to the specifications, giving us a greater degree of confidence in the

model. We present the Haskell model here because the reader will already be

familiar with the notation from our review in Chapter 3.

In some cases, aspects of the specification might be uncomputable or might

be semantically unclear when viewed through a Haskell lens. In particular, we

use mathematical constructs that are not defined in Haskell so that we can easily

express the appropriate properties in our specifications. For example, we introduce

the function forall of type (a -> Bool) -> Bool to express the property that a

particular predicate holds of every member of a type a. Throughout this chapter,

we will use the convention that

forall (\arg -> -- :: Type

p arg)

is equivalent to

∀arg ∈ Type. p arg

even though we do not provide a definition for the Haskell function forall in our

model. The specifications throughout this chapter also use an exists function of

type (a -> Bool) -> Bool that is an analog to the mathematical construct ∃.

Our uses of exists follows a similar notational convention to our uses of forall.
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5.3 MACHINE MODEL

As a starting point for our Rushby instantiation, we develop an abstract model

of IA32 hardware that is sufficiently expressive to describe the aspects of memory

management that are relevant for describing execution environment and address-

space integrity. The machine model serves as the state component of the Rushby

framework, and will ultimately help us to provide meaning for the memory-safety

property of our system. The representational choices that we make in the model

are important because they impact the aspects of system behavior that our safety

property will be able to capture. Any concept that we hope to describe with a

property in the remainder of the dissertation must have appropriate hooks in the

state. As such, our state will include high-level components that reflect the internal

state of H as well as low-level components that reflect the state of the machine. If

we do not capture enough details about the machine and H’s internal state, then

we will not be able to express the appropriate properties of our implementation

in our specifications. However, we also wish to avoid clouding the model with

extraneous information; if we include too many details about the machine that

are not directly related to our notion of memory-safety, then our specification will

become difficult to understand and to reason about.

Our ultimate goal is to capture the execution environment and address-space

integrity properties presented at the beginning of this chapter, so we use these

properties as the driving force guiding which concepts to include in our machine

model. Capturing these properties requires a fairly detailed model of the structure

of page-tables and page-directories so that we can reflect what happens to these

pages during updates. We must also distinguish between memory pages used for

different purposes, because we cannot protect environment and page-map pages if

we cannot identify them. We ignore many other details of the machine that do

not directly affect the interactions between the domains of the system (the client
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operating system, user programs, H, and the run-time system) and the protected

classes of memory. For example, the dirty bit of a page describes whether or not

that page has been written to and therefore provides information about the state

and history of that page. This information is essential for a high fidelity machine

model, and is potentially important for a model that aims to capture confidentiality

properties about information flow between domains. However, the value of this bit,

and even its existence, does not affect the integrity of the Haskell run-time system.

For this reason we leave dirty bits out of our memory model, along with many

other details of the machine that are not related to the properties at hand.

The rest of this section introduces the components that are necessary for our

model. Section 5.3.1 describes our representation of virtual and physical memory,

including the virtual-address translation hardware. Section 5.3.2 presents a higher

level view of memory in the form of physical and virtual memory regions. Sec-

tion 5.3.3 combines the fundamental concepts of the model into a state type that

will form the basis of our formalization.

5.3.1 Virtual and Physical Memory

As in the design of the interface, we associate a dynamic status with each page

of physical memory that reflects its current usage as an environment page, as a

page-directory page, as a page-table page, or as a normal page of client-controlled

memory. In the design chapter (Chapter 4) we explored the idea that the set of

operations available on different types of page are different. In the model, we go

one step further and distinguish the type of data stored in each page to capture

the semantics that H associates with each of these page types.

Table 5.1 catalogs the primitive types that we use to model physical and virtual

addresses. We build on these primitive types and introduce a datatype to represent

memory pages called Page. We model the Status type described in Section 4.1 by

encoding each possible status value as a constructor for the Page type. Here, we
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Name Width (bits) Description

SuperpageAddress 10 Address aligned to a 4 MB page bound-

ary. Corresponds to the top 10 bits of

an address.

SuperpageOffset 10 Offset into a 4 MB page (identifies a

4 KB page).

PhysicalPageAddress 20 Address aligned to a 4 KB phys-

ical page. Produced by combin-

ing a SuperpageAddress with a

SuperpageOffset.

PageDirectoryIndex 10 Index into a page-directory. Corre-

sponds to the top 10 bits of a virtual

address.

PageTableIndex 10 Index into a page-table. Corresponds

to the ten bits below the page-directory

index.

VirtualPageAddress 20 Address aligned to a 4 KB vir-

tual page. Produced by comb-

ing a PageDirectoryIndex with a

PageTableIndex.

Offset 12 Offset into a 4 KB page. Corresponds

to the low 12 bits of a virtual or physical

address.

PhysicalAddress 32 Address in physical memory. Produced

by combining a PhysicalPageAddress

with an Offset.

VirtualAddress 32 Address in virtual memory. Produced

by combing a VirtualPageAddress

with an Offset.

RegionLength 32 Length of a region of memory.

Table 5.1: The primitive types of the model. We break virtual and physical ad-

dresses into these fine-grained components to capture the meaning of each element

of an address in the types. This approach provides better documentation and

reflects the alignment constraints of various operations in the model.
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identify five possible status values for pages: environment, normal, page-directory,

page-table, and uninstalled. The addition of an uninstalled status value reflects

the fact that it is possible to address physical pages that are not available on

the machine; this possibility must be handled explicitly in the formal model for

completeness. Each constructor has a single argument that describes the data

currently contained in the page, except for uninstalled pages which contain no

data.

data Page = Environment PageData

| Normal PageData

| PageDirectory DirectoryPageData

| PageTable TablePageData

| NotInstalled

The use of different types for the contents of page directories, page tables, and

environment/normal pages reflects the semantic distinction between these pages

from the perspective of H. In this chapter, we will use the following predicates,

defined in the obvious way, to test the status of specific pages.

isEnvironment, isNormal, isPageDirectory, isPageTable,

isInstalled :: Page -> Bool

We use tests like these in the specification to describe conditions that must hold

for the set of pages with a particular status, especially in the well-formedness

definitions of Section 5.6.

Both environment pages and normal pages store generic data as far as H is

concerned. H will never write to or read from locations in these pages. We model

the contents of these pages so that we can model the execution of the full system:

the Haskell run-time system reads from and writes to the environment pages; a

kernel reads from and writes to normal pages that are mapped into kernel-space;

and user-level programs read from and write to normal pages that are mapped

into user-space. Because there are no special semantics associated with the data
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of these pages, we model their contents as bytes and a complete page as a function

from Offsets to bytes.

type PageData = Offset -> Word8

The semantics of the data contained in page-directories and page-tables is spec-

ified by the IA32 architecture. We model page-directory data as a function from a

page-directory index (the top ten bits of a virtual address) to a page-directory entry

(called DirectoryContents). Not all page-directory indexes contain an entry—we

explicitly represent this partiality with a Maybe type.

type DirectoryPageData = PageDirectoryIndex -> Maybe DirectoryContents

A page-directory entry is either a superpage (for entries that use a 4 MB page)

or a page-table (for entries that use 4 KB pages). A superpage entry contains

the physical address of the 4 MB page mapped by the entry. A page-table entry

contains one of these physical page addresses that points to the appropriate page-

table. We represent 4 KB-aligned PhysicalPageAddresses as a pair containing a

SuperpageAddress and a SuperpageOffset.

data DirectoryContents = Superpage SuperpageAddress

| Table PhysicalPageAddress

type PhysicalPageAddress = (SuperpageAddress,SuperpageOffset)

We model page-table data as a function from page-table indexes to page-table

entries. A page-table entry is simply the physical address of the 4 KB page mapped

by the entry.

type TablePageData = PageTableIndex -> Maybe PhysicalPageAddress

As with page-directories, the possibility for unmapped pages is captured with a

Maybe type.

We ignore permissions on page-directory and page-table entries. In our ex-

perience, read/write permissions complicate the formalization of properties that
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relate to virtual-to-physical address translation and are not necessary for capturing

our notion of memory-safety. Correct configuration of kernel mappings using the

user/supervisor bit is essential for defining the memory-safety property—because

the H implementation enforces separation between the run-time system and the

user-programs by configuring the run-time system pages to be accessible only in

kernel-mode—but we model this separation without directly encoding permissions

in the state by using well-formedness conditions (see Section 5.6). Any errors in

the configuration or specification will be caught through a violation of the top-level

security property, which assumes that every action produces a well-formed state,

rather than through a permissions check. We will examine the security property

in Section 5.5.

The page-directory and page-table indexes that serve as offsets into pages of

those types come from our representation of page-aligned virtual addresses as a

page-directory index paired with a page-table index, matching the semantics given

to virtual addresses by the hardware (see Section 2.2).

type VirtualPageAddress = (PageDirectoryIndex, PageTableIndex)

This is similar to the representation of PhysicalPageAddress described previously

as a superpage address paired with a superpage offset.

We model supervisor-only mappings by partitioning the virtual address-space

into a user-space component and a kernel-space component. Mappings that reside

in kernel-space are treated as though they are not accessible to user programs,

even though we do not explicitly model the distinction between user and supervisor

permission. User-space mappings are accessible to anyone. We keep the nature of

the user-kernel boundary abstract, but provide functions for testing which space

an address lies in.

isUserAddress, isKernelAddress :: VirtualAddress -> Bool

isUserPageAddress, isKernelPageAddress :: VirtualPageAddress -> Bool
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There are space testing functions for both page-aligned and non-aligned virtual

addresses. Certain operations of the model, such as adding a new user mapping,

are only valid for addresses in one portion of the address-space.

5.3.2 Memory Regions

As in the H design, regions of memory play an important role in our model. A

physical region is any contiguous range of physical pages. This simple notion of

regions leads to a simple representation as the address of the first page in the

region paired with the length of the region (in pages).

data PhysicalRegion = PhysicalRegion {

physRegionStart :: PhysicalPageAddress,

physRegionLength :: RegionLength

}

Our representation of physical regions in the model is more general than the repre-

sentation presented in the design chapter (see Section 4.3.1) because we allow any

grouping of contiguous physical pages. The flexpage constraints are convenient

when implementing operations on physical regions, but they are not essential to

the safety of the interface. The only restriction we place on physical regions in the

model is that the entire region must lie in available memory. A more refined model

could add the flexpage constraints to the PhysicalRegion type to more closely

approximate the level of the implementation.

Though our representation of regions is simple, it is not the best fit for some

of the properties that we would like to write about regions. For example, quantifi-

cation over the pages of a region occurs frequently, which might make a list or set

operation more ideal. We avoid these representations because they make it harder

to ensure that the pages of a given region are contiguous in physical memory. In-

stead, we define functions that map our representation onto structures that make
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property formulation easier. For example, toListPhysicalRegion enumerates the

pages contained in a particular region.

toListPhysicalRegion :: PhysicalRegion -> [PhysicalPageAddress]

memberPhysicalRegion determines whether a particular page is contained by a

given physical region.

memberPhysicalRegion :: PhysicalPageAddress -> PhysicalRegion -> Bool

Another useful function on regions calculates whether one region is a subregion of

another.

isPhysicalSubregion :: PhysicalRegion -> PhysicalRegion -> Bool

We track the initial set of physical regions (the regions that are returned by a

call to the interface primitive initialRegions) and the set of all active region han-

dles (the initial regions plus those that have been produced by a call to the interface

function deriveRegion) in a type called RegionState. This approach differs from

our implementation, where we use an abstract datatype to represent physical re-

gions and therefore do not need to track the set of active handles. We choose to

track set of active handles in the state of our model because we can quantify over

this set as a convenient mechanism for expressing properties about the memory

that is pointed to by region handles, for example, that a PhysicalRegion never

includes any environment pages. We will explore these properties in Section 5.6.

data RegionState = RegionState {

initialRegions :: Set PhysicalRegion,

allRegions :: Set PhysicalRegion

}

The initial regions and the set of all regions are tracked separately because H

provides a function for querying the set of initial regions at any time during system

execution.
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Virtual regions are handled in the same fashion as physical regions and describe

contiguous ranges of virtual pages.

data VirtualRegion = VirtualRegion {

virtRegionStart :: VirtualPageAddress,

virtRegionLength :: RegionLength -- in pages

}

As with physical regions, we define utility functions on virtual regions to make

working with them easier: toListVirtualRegion converts a virtual region into

the list of pages that the region contains and memberVirtualRegion tests if a

page belongs to a particular virtual region.

toListVirtualRegion :: VirtualRegion -> [VirtualPageAddress]

memberVirtualRegion :: VirtualPageAddress -> VirtualRegion -> Bool

Virtual regions must belong to either the user portion of the address space or

the kernel portion of the address space. We disallow regions that span both spaces

or that overflow. The predicates isUserRegion and isKernelRegion indicate

which portion of the address space a region describes.

isUserRegion, isKernelRegion :: VirtualRegion -> Bool

The virtual region must be entirely contained in the appropriate portion of the

address space for the corresponding predicate to return True. Thus, there is no

region for which both isUserRegion and isKernelRegion are both true but there

may be regions for which neither predicate holds.

5.3.3 Machine State

In our model, the state tracks the current page-directory (the CR3 register), the

reference page-directory, the status and contents of each page available on the ma-

chine, and the current set of region handles. The reference page-directory is a spe-

cial page-directory that contains all of the kernel-mappings, including the mappings
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for the Haskell run-time system. We use the reference page-directory to represent

kernel-only mappings in lieu of an explicit representation of the user/supervisor

bit. Any page that is mapped in the reference page-directory is treated as though

it were mapped with kernel-only permission in the hardware. We also use the refer-

ence page-directory as an implementation technique for ensuring that the run-time

system, H, and the kernel have the same view of memory in every address-space

(see Section 6.7). Modeling the reference page-directory in the state allows us to

formalize the property that every address space has a consistent view of kernel-

space.

data State = State {

cr3 :: PageDirectory,

reference :: PageDirectory,

status :: PhysicalPageAddress -> Page,

regions :: RegionState

}

type PageDirectory = PhysicalPageAddress

We represent CR3 and the reference page-directory as physical address pointers

to page-directories. We introduce a type synonym called PageDirectory for doc-

umentation. The page data is stored in a status component that maps physical

page addresses to the information about the corresponding physical pages. The

region handles are contained in a RegionState structure.

Not all values of the state type are acceptable. Some possible values of this type

might describe states that are unsafe or that H should never allow the system to

enter. In Section 5.6 we will formulate a series of well-formedness constraints that

describe the essential properties we expect of a memory-safe state. For example,

the set of region handles should never provide access to environment pages. In

a safe system, these constraints will hold on the initial state (s0 is well-formed),
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and every action in the system will produce a well-formed state given a well-

formed input state. This inductive argument will help us to demonstrate safety

for arbitrary executions of the system using only properties of the local transitions

from state to state. We will define a single predicate on states called wellFormed

that encompasses all of the well-formedness constraints of our model. In terms of

this predicate, the inductive argument corresponds to the following properties.

wellFormed s0

∀s ∈ State,∀op ∈ A.wellFormed s ⇒ wellFormed step(s , op)

Recall that A is the set of actions in the Rushby framework. We will examine the

specific nature of these actions for our system model in Section 5.4.1.

Example: Address Translation The state associated with page-directory pages

and page-table pages represents a mapping in memory that the hardware uses to

perform virtual-to-physical address translations. The constructs in our model pro-

vide a basis for defining this translation function. We model address translation in

hardware with two functions: translatePage computes the physical page address

that a virtual page address maps to in any page-directory and translation trans-

lates a virtual-address to a physical one in the current page-directory (CR3). In

both cases, the result is a Maybe value because of the potential that the requested

virtual address is not mapped.

translatePage is a general function that may be used to examine and com-

pare the mappings in any page directory. This function walks the hardware tables,

first examining the page-directory entry for the virtual-address and then (if nec-

essary), examining the appropriate page-table. We write translatePage using

do-notation in the Maybe monad (see Section 3.4) to handle failures within the

definition concisely (including pattern-match failures).

translatePage :: State -> PageDirectory -> VirtualPageAddress

-> Maybe PhysicalPageAddress
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translatePage s pd (pdi,pti)

= do PageDirectory dirpage <- return (status s pd)

pde <- dirpage pdi

case pde of

Table ppa -> do PageTable tablepage <- return (status s ppa)

tablepage pti

Superpage spa -> return (spa, toSuperpageOffset pti)

There are several places where the computation might fail because the page be-

ing translated is not mapped or because the data structures do not contain well-

formed data. For example, the status of the page-directory being traversed must

be PageDirectory. Some potential errors—like a page-directory entry that con-

tains a Table but does not point to a page with the PageTable status—represent

a misconfiguration of the system state and we would like to ensure that this never

happens in our implementation. Ensuring that every page pointed to by a Table

entry in a page-directory is a page-table in the current state is exactly the kind of

property that we will capture with well-formedness constraints in Section 5.6.

Translating a virtual address to a physical one in the current page-directory

may be accomplished with a straightforward invocation of translatePage on the

page-directory currently installed in cr3.

translate :: State -> VirtualAddress -> Maybe PhysicalAddress

translate s (vpa, off) = do ppa <- translatePage s (cr3 s) vpa

return (ppa, off)

Testing whether or not a particular page is mapped in a particular page-directory is

accomplished by testing if translatePage returns a value constructed with Just.

mappedPage :: State -> PageDirectory -> VirtualPageAddress -> Bool

mappedPage s pd vpa = isJust (translatePage s pd vpa)

Typically we only care if a page is unmapped in all page-directories, rather than

in some particular page-directory. The function unmappedPage is true when no

page-directory maps a given physical page.
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unmappedPage :: State -> PhysicalPageAddress -> Bool

unmappedPage s ppa

= forall (\pd -> -- :: PhysicalPageAddress

forall (\vpa -> -- :: VirtualPageAddress

case translatePage s pd vpa of

Nothing -> True

Just ppa’ -> ppa /= ppa’))

The wrapper unmappedNormalPage tests if a page has a normal status and is

unmapped in all page-directories.

unmappedNormalPage :: State -> PhysicalPageAddress -> Bool

unmappedNormalPage s ppa = isNormalPage s ppa && unmappedPage s ppa

These functions help us to express properties of translatePage more concisely in

our specification.

5.4 PROTECTION DOMAINS

In this section we continue the process of instantiating the Rushby formalism to

fit our system. We focus on the essential components of protection domains: the

set of domains in our system, the actions of those domains, and the portion of the

system state that is accessible to each domain. We define the policy that governs

interactions between domains in Section 5.5.

Protection domains are the unit of resource protection and they represent the

actors in a Rushby-style system. Each domain has a portion of the global state

that it may view—its resources—and a set of actions that it may perform—its

executable instructions. The security policy describes the effect that these actions

may have on the system state by specifying the domains that will be able to view

the results of a particular domain’s actions. For example, a separation kernel might

be formalized by instantiating the set of domains to be the set of user processes

with a security policy that states that no process may interfere with any other.
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In our system, the domains correspond to the basic components of our system:

the H interface; the client kernel; and the user programs. Each of these components

has a different privilege level and therefore has the ability to perform different

actions and to access different portions of the system state. In addition to these

three domains, we model the execution environment as a domain so that we can

capture the effect that the Haskell run-time system has on the system state during

execution. This gives the following list of domains, with the described set of

allowable behaviors:

E The environment domain. This domain is an abstract representation of the

Haskell run-time system. The environment domain may arbitrarily write to

any environment page and its view includes all of those pages. In this way,

we do not assume any particular behavior of the run-time system, but allow

the domain to observe any changes made to the environment memory during

another domain’s turn to execute.

H The H domain. This domain represents computations performed by the H

interface. The H domain can view all of the protected system state, but

should not write to environment pages. Otherwise, H has full control over

the system state, such as the status of each memory page, the contents of

page-map pages, and the set of memory handles. The actions available to

the H domain include all of the operations of the H interface design.

K The client kernel domain. This domain represents computations performed

by the client kernel. The client kernel domain can view the normal pages

that have been mapped into kernel-space and may write to these pages.

U The user program domain. We group all user programs together because we

are not concerned about interactions between individual user-level entities,

just the impact that these entities have on the system state as a group. The
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user domain can view all of the normal pages that have been mapped into

the user portion of the address space and can write to these pages.

We instantiate the set of domains, D, by defining a datatype with values that

correspond to each of these protection domains.

data D = E | H | K | U

5.4.1 Domain Actions

Each domain may perform certain actions that transform the system state. Ta-

ble 5.2 describes the set of actions available to each domain. The effects of an

action are restricted to the portion of the system state that the associated domain

is allowed to modify according to the security policy, which we will cover in Sec-

tion 5.5. Note that this may be a subset of the portion of the state that the domain

observes.

The actions of the H domain correspond to the operations available in the H

API. Though we do not formalize every H operation, the actions and specifications

correspond to a representative set of the H operations. We focus on the subset of

functions in H that are critical for memory-safety and ignore the facilities for I/O,

debugging, and module loading. The only operation that we do not include from

the memory management interface is modifyMapping for modifying the permissions

attached to a mapping, which is conceptually equivalent to removing the existing

mapping and then adding it back with the new permissions. In our current work we

do not model permissions, so there is no interesting behavior of modifyMapping

to specify. A write operation is available to the environment, kernel, and user

domains.

The set of actions, A, corresponds to a type with one constructor for each action

listed in Table 5.2. The arguments to the constructor are the parameters to the

action.
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E WriteE va val Write value val to location va, if va is within

the set of environment pages.

H DeriveRegionH pr ppa len Derive a new region with start address ppa

and length len from the existing region han-

dle pr.

AllocatePageDirectoryH ppa Convert the free normal page ppa into a

page-directory page.

FreePageDirectoryH pd Free the page-directory page pd.

AddMappingH pd pts pr vr Add a user-space mapping from the vir-

tual region vr to the physical region pr in

the address space represented by the page-

directory pd. Allocate page-tables from the

list of free normal pages pts as needed.

RemoveMappingH pd vr Remove the mapping to vr in address-space

pd.

AddKernelMappingH pr vr Add a kernel-space mapping from the virtual

region vr to the physical region pr.

ExecuteH pd Change the currently active page-directory

to pd.

K WriteK va val Write value val to location va, if va is within

the set of normal pages mapped in kernel

space.

U WriteU va val Write value val to location va, if va is within

the set of normal pages mapped in user

space.

Table 5.2: The actions of each protection domain. None of the actions have outputs

because their effect is observed through the state. We include write operations on

memory but not reads, because the ability to read is implicit in observation.
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data A = WriteE VirtualAddress Word8

| DeriveRegionH PhysicalRegion PhysicalPageAddress RegionLength

| AllocatePageDirectoryH PhysicalPageAddress

| FreePageDirectoryH PageDirectory

| AddMappingH PageDirectory [PhysicalPageAddress]

PhysicalRegion VirtualRegion

| RemoveMappingH PageDirectory VirtualRegion

| AddKernelMappingH PhysicalRegion VirtualRegion

| ExecuteH PageDirectory

| WriteK VirtualAddress Word8

| WriteU VirtualAddress Word8

None of the actions have outputs—their effect is observed through the state. Thus,

there is no need for an action like read, because the ability to read is implicit

in observation. We instantiate the Rushby function that maps actions to their

domain, called dom, in a straightforward manner.

dom :: A -> D

dom (WriteE _ _) = E

dom (DeriveRegionH _ _ _) = H

dom (AddMappingH _ _ _ _) = H

dom (RemoveMappingH _ _) = H

dom (AddKernelMappingH _ _) = H

dom (AllocatePageDirectoryH _) = H

dom (FreePageDirectoryH _) = H

dom (ExecuteH _) = H

dom (WriteK _ _) = K

dom (WriteU _ _) = U

The naming scheme for actions makes the mapping obvious—each action belongs

to the domain specified by the final letter of its name.

In Section 5.7 we will specify the appropriate behavior of each action in the

Rushby model as a relation between before and after states. These specifications

provide a connection between the abstract notion of memory-safety and the H
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implementation code. A correct implementation of an H operation must satisfy

the corresponding specification. The link between a functional action of type A

and the corresponding specification is provided by actionSpec:

actionSpec :: A -> (State -> State -> Bool)

actionSpec (WriteE va w) = writeE va w

actionSpec (DeriveRegionH pr ppa len) = deriveRegionH pr ppa len

actionSpec (AllocatePageDirectoryH ppa) = allocatePageDirectoryH ppa

actionSpec (FreePageDirectoryH pd) = freePageDirectoryH pd

actionSpec (AddMappingH pd pts pr vr) = addMappingH pd pts pr vr

actionSpec (RemoveMappingH pd vr) = removeMappingH pd vr

actionSpec (AddKernelMappingH pr vr) = addKernelMappingH pr vr

actionSpec (ExecuteH pd) = executeH pd

actionSpec (WriteK va w) = writeK va w

actionSpec (WriteU va w) = writeU va w

Though actionSpec relates all values of type State, we do not consider all possible

states to be valid. There are certain basic properties of states that must hold in

order for memory-safety to be meaningful in an H-based system. A state that

satisfies these properties is well-formed ; we will define well-formedness precisely

in Section 5.6. We integrate well-formedness into our model by projecting the

actionSpec relation to well-formed states (as described in Section 5.8.1); within

the relational specifications themselves we will therefore assume that the before

and after states are well-formed.

View-Partitioning We capture the notion of observable state through a set of

view types that represent the portion of the state that is accessible to each domain.

There is a distinct view type for each domain: EView describes the state of the

environment domain, HView describes the H domain state, KView describes the

kernel domain state, and UView describes the user domain state. We also define a

view function for each domain that extracts the portion of a particular state that

is visible to that domain.
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The environment domain observes the data of the environment pages. It implic-

itly relies on the virtual-to-physical mappings that allow environment page data

to be read and written, even though the environment cannot observe the contents

of page-directories and page-tables directly. A fundamental property of the envi-

ronment domain is that the environment will always have the same pages available

to it, no matter what address-space is currently active. Furthermore, no one may

alter the mappings for the environment domain pages, for example, by remapping

an environment page at a different virtual-address. By observing the environment

page data, and implicitly observing the mappings that link virtual addresses to

physical ones, the environment domain can also witness the existence of multiply

mapped physical pages. For example, if the environment domain has access to two

virtual-addresses that map to the same physical address, called v1 and v2, then

the domain has the potential to notice that writes to v1 change the data that is

accessible through v2.

We represent the view of the environment domain as a function from virtual

page addresses to the observable information about pages. The use of virtual ad-

dresses captures the implicit reliance on virtual-to-physical mappings. We define a

reference count function based on virtual addresses that computes how many pages

are also mapped to the same underlying physical page. We use the type Nat, for

natural numbers, to indicate that the reference count should not be negative. Using

this function, we define the observable information about a particular environment

page to be the contents of that page paired with the reference count for that page.

There is no observable data for pages that do not have an environment status.

data EView = EView {

eObservablePages :: VirtualPageAddress -> Maybe (PageData, Nat)

}

The view function of the environment domain finds the pages in the specified state

with the Environment type and constructs an EView value where precisely these
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pages are observable. We assume the existence of a list containing the addresses

of all available virtual page addresses, called allVirtualPages, for computing the

reference count.

viewE :: State -> EView

viewE s = EView observable

where observable vpa

= do ppa <- translatePage s (cr3 s) vpa

Environment contents <- return (status s ppa)

return (contents, referenceCount s (cr3 s) ppa)

referenceCount ::

State -> PhysicalPageAddress -> PhysicalPageAddress -> Nat

referenceCount s pd ppa

= length [translatePage s pd vpa == Just ppa | vpa <- allVirtualPages]

allVirtualPages :: [VirtualPageAddress]

Pages that are not a member of the environment will never be projected in the

observable list.

The H domain observes the entire system except for the contents of user and

kernel data pages. Thus, the view of H contains the current page-directory, the

status mapping for physical pages, the region handles, and the reference page-

directory. The pages function returns Nothing for pages whose status is Normal.

In this way, H can deduce that a physical address mapped to Nothing is Normal

but it cannot see the contents.

data HView = HView {

currentPdir :: PageDirectory,

pages :: PhysicalPageAddress -> Maybe Page,

hRegionHandles :: RegionState,

referencePdir :: PageDirectory

}
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The view function of the H domain projects cr3, the region handles, and the

reference page-directory from the specified state. The view also includes page

descriptions for all physical pages whose status is not Normal.

viewH :: State -> HView

viewH s = HView (cr3 s) pages (regions s) (reference s)

where pages ppa = case status s ppa of

Normal _ -> Nothing

page -> Just page

Unlike other domains, H may observe the contents and status of pages in its ob-

servable set. The association of each page with a status is a private part of the H

state, so other domains may only observe page contents.

The kernel observes the contents of kernel data pages and environment pages.

Though the kernel should not modify the environment data, it might distinguish

the state of the Haskell run-time system indirectly through its own execution. As

with the environment domain, we represent the observation function as a virtual

page mapping to capture the indirect effect of virtual-to-physical memory map-

pings. The observable data about a page includes its contents and its reference

count. Region handles are also observable, because they are a tool for communi-

cating information between H and the kernel.

data KView

= KView {

kObservablePages :: VirtualPageAddress -> Maybe (PageData, Nat),

kRegionHandles :: RegionState

}

The view function of the client kernel projects the region handles from the specified

state and locates all physical pages that either have the Environment status or have

the Normal status and are mapped at a kernel address.

viewK :: State -> KView

viewK s = KView observable (regions s)
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where

observable vpa

= do ppa <- translatePage s (cr3 s) vpa

let rcount = referenceCount s (cr3 s) ppa

case status s ppa of

Environment p -> return (p, rcount)

Normal p | isKernelPageAddress vpa -> return (p, rcount)

_ -> Nothing

The user domain observes normal pages of memory that are mapped in user

space. Users cannot observe the contents of environment pages because the user

programs are not writen in Haskell and therefore do not rely directly on the run-

time system to execute2. The data observable about user pages is the contents and

the reference count. For any pages outside of the observable set, the result will be

Nothing.

data UView = UView {

uObservablePages :: VirtualPageAddress -> Maybe (PageData, Nat)

}

The view function of the user domain projects those pages that have a Normal

status in the specified state and are mapped in a user-space address.

viewU :: State -> UView

viewU s = UView observable

where

observable vpa

= do ppa <- translatePage s (cr3 s) vpa

case status s ppa of

2Even if the user processes were written in Haskell, they would need to execute in their own

user-level run-time system to maintain adequate separation between the kernel and the user

processes. Thus, we would never expect user-level programs to be able to observe the execution

environment.
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Normal contents | isUserPageAddress vpa ->

return (contents, referenceCount s (cr3 s) ppa)

_ -> Nothing

To tie our notion of view types and projection functions into the Rushby frame-

work, we bring the per-domain definitions together into a unified view type and

view projection function.

data View = ViewE EView | ViewH HView | ViewK KView | ViewU UView

view :: D -> State -> View

view E s = ViewE (viewE s)

view H s = ViewH (viewH s)

view K s = ViewK (viewK s)

view U s = ViewU (viewU s)

By parameterizing over the domain being viewed, we abstract away from the spe-

cific domains of our system and create a generic operation that could be defined

in any Rushby instantiation to capture observable state.

The view function is the mechanism that we use to define Rushby’s view-

partitioning relation on states,
u∼. Recall that two states s and t are equivalent

from the perspective of domain u if u cannot distinguish s and t through its view

of the state.

viewEquiv :: D -> State -> State -> Bool

viewEquiv u s t = view u s == view u t

Note that the views of domains are not actually comparable in Haskell as written

because they contain functions. We define a symbol to represent the comparison

on functions so that we can type check our definitions and properties, but will

never compute this value. The intuitive meaning behind the comparison is that

functions within a view would produce the same output given the same input.

view also helps us to give meaning to the output function in the Rushby

model. H-based systems do not perform output in a traditional sense—all of the
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effects of operations are confined to the state. Thus, to obtain the execution

environment integrity and address-space integrity properties that we set out to

prove at the beginning of the chapter, we treat the output produced by an action

as the projection of the state visible by the domain of that action. Because outputs

are simply views, we instantiate the output type O to View.

type O = View

output :: (State, A) -> O

output (s, a) = view (dom a) (step (s,a))

Recall from Section 5.1 that step is an abstract function in the Rushby framework

that computes the state produced by executing an action a in a state s. We will

define step in Section 5.8. The outputs produced by running the same action in

two states will be equal when the states observable to that domain after executing

the action are equal. We will see when we discuss the policy of our system how

this captures our desired memory-safety properties.

Treating an action’s output as equivalent to the view of the action’s domain has

an interesting ramification: the output consistency unwinding condition of Rushby

now reduces to a special case of the weak step consistency. We sketch the proof of

this property of our instantiation in Section 5.8.

5.5 POLICY

At the beginning of this chapter we identified execution environment integrity and

address-space integrity as two key isolation properties for an H-based system. Ulti-

mately, these properties are simply a mechanism for realizing the intuitive notions

of memory-safety that we expect from our system, for example, that H does not

modify the Haskell heap directly even though H’s implementation uses the po-

tentially unsafe primitives that would allow it to do so. A security policy bridges

the gap between resource-level isolation properties and the intuitive understanding
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of memory-safety by capturing the interactions that occur between domains via

resources like memory. Essentially, the policy specifies the portion of the state

that a particular domain may affect: a domain A may modify the state that is

present in the view of any domain B where A  B . The absence of an inter-

ference relationship between two domains, written A 6 B , guarantees that B is

unaffected by the execution of A (in a system that correctly upholds the policy).

The security provided by a policy heavily depends on the system model used in

the instantiation because the set of domains, the representation of the state, and

the set of actions will influence the properties that can be captured by the policy.

In this section, we will examine the considerations that go into the construction of

a meaningful Rushby instantiation and the specific rationale behind some of our

modeling choices (Section 5.5.1). We will also present the security policy for our

system (Section 5.5.2).

5.5.1 Modeling Approach

To determine the appropriate security policy for our system, we must carefully

consider the desired interactions between domains from a memory-safety perspec-

tive. As mentioned previously, we want the policy to capture the fact that H does

not modify the Haskell heap. However, a memory-safe H implementation that does

not modify the Haskell heap is useless if the H API exports operations that allow

the client kernel or a user process to modify the heap directly or through some

chain of events. Thus, we would like the policy to reflect that neither the kernel

domain nor the user domain interferes with the environment domain. Along the

same lines, H will not be able to enforce safety if its data gets corrupted, so we

want a policy that protects H from the client and the user programs.

With these high-level memory-safety properties in mind, we can develop a se-

curity policy that will enforce the intended interactions between domains. We

present the steps involved in creating a meaningful noninterference policy here,
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even though some of the steps describe aspects of the model that were already

covered in earlier sections. The formulation of the security policy is tightly inter-

twined with the other concepts of the system model, so we present these steps as a

summary of the Rushby instantiation process, and as a way to provide some intu-

ition about the security policy we will develop throughout the rest of the section.

The first step in creating a policy is to identify the resources that will be

described by the security property. Essentially, this corresponds to the resources

that are modeled in the system state. In our case, the focus on memory-safety

narrows our attention to resources that relate to memory management. In other

systems, the resource of interest might be something like I/O ports or time. The

second step is to determine the granularity of the operations and observations

on that resource. The actions and views presented in Section 5.4 reflect our ideas

about the appropriate granularity in an H-based system. In particular, we focus on

memory pages because this is a natural fit with the operations of H (the H design

was in turn motivated by the granularity of memory management operations on

the hardware). A noninterference formulation of memory-safety for a programming

language might look very different, for example, using variables or words as the

granularity for memory operations. The final step in our Rushby instantiation

is to determine a security policy that captures the intended interactions between

domains. For example, we can express the fact that H cannot corrupt the run-time

system by creating a policy where H 6 E .

In general, we must strike a very delicate balance when crafting our noninter-

ference policy. The relationship between the set of domains, the observable state,

and the set of actions can be difficult to manage. Some common pitfalls include:

• Identifying Too Few Domains: Identifying the right set of domains is

crucial. Interference within a domain is impossible to capture except in very

special circumstances, so any system components that are grouped together

will be allowed to interact freely. For example, if we combined the H and
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environment domains into a single high-privilege domain, then we could not

prove that H does not corrupt the Haskell heap under our security policy.

• Inserting Too Few Policy Arrows: The policy arrows must accurately

reflect the observations that are possible given the system model (including

the effects of each action and the representation of the state). If the policy

does not accurately reflect the observable actions then we will not be able to

prove that the system implements the policy.

• Inserting Too Many Policy Arrows: In a system where every domain

interferes with every other domain, there is nothing interesting to be learned

from a noninterference proof. The policy must express enough noninterfer-

ence to capture the intended safety properties, like our H 6 E example.

There is a tension between this need and the requirement that the security

policy accurately reflects the observable actions in the system. The set of ac-

tions must be carefully chosen to model just those domain interactions that

contribute to the properties that we hope to capture.

We carefully chose the set of domains and the actions available to each domain

to support our ability to define a policy that enforces our desired memory-safety

policy. In this section, we will identify the interference relationships necessitated

by these choices.

Before moving on to the actual policy, let us consider one final example that

illustrates the tensions that arise when designing a system model for a noninter-

ference instantiation. When modeling Haskell execution in our system, we chose

to introduce an action in the environment domain, WriteE, that may change any

location in the Haskell heap. This action is designed to represent the execution of

a Haskell program on top of the run-time system, such as H or the client kernel.

In this treatment of execution, we do not need to introduce any operation where
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a domain other than the environment makes changes to the state that are observ-

able to the environment domain. Alternatively, we could model the relationship

between the execution of Haskell programs and the changes that happen in the

heap explicitly. Both H and the kernel would then include an action, haskellStep,

that would nondeterministically change some portion of the heap to reflect alloca-

tion, collection, and computation. Aside from the fact that the alternative model

is more complex, this would be a perfectly valid way to represent Haskell execu-

tion. The problem is that our policy would need to include the interference arrows

H  E (H interferes with the run-time environment) and K  E (the client

kernel interferes with the run-time environment) to accurately capture the observ-

able actions of the system. With this model, we cannot prove that H does not

corrupt the Haskell heap because we cannot distinguish legitimate modifications

from illegitimate ones. The policy H  E states that all interference from H to

E is allowed, so an incorrect H implementation that corrupts the heap (and would

cause a client kernel to crash) still satisfies the security policy. In noninterference

models, it is essential that one only model the aspects of information flow that

affect the desired security property, in our case memory-safety, so that the policy

does not become so broad as to permit invalid system behaviors.

The actions of Section 5.4 are carefully crafted to support a policy that will

enforce the high-level memory-safety properties that we are interested in while

providing a good match for the design described in Chapter 4. Throughout the

rest of the section, we will examine each domain and each action to determine the

appropriate policy connections to other domains. Though the policy is guided by

the actions in this sense, the actions were also guided by the desired policy during

the process of designing the model.
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5.5.2 Interference Between Domains

We build our policy by examining the semantics of the actions in each domain.

Starting with the environment domain, there is only one action available to the

domain—writeE—which modifies a value in an environment page. As such, any

domain that can view environment page data can be affected by the execution of

E. In the views presented in Section 5.4, both H and K observe the environment

pages because these domains are written in Haskell (the language supported by

E) and therefore directly depend on the state of the Haskell heap to execute. If

we had an additional environment E’ containing a Java run-time system, then

any system component written in Java would depend on (and therefore observe)

E’. The environment domain itself also observes the environment page data. In

our system, all domains observe the state of their domain. Though this may

seem obvious, there are meaningful secure systems where it is essential that the

state a domain can observe is disjoint from the state the domain can write to.

Collecting these policy constraints leads us to introduce three policy arrows for

the environment domain:

E  E

E  H

E  K

Already, we have introduced a policy arrow that impacts our security argument.

We originally said that only H may modify the page-directories and page-tables,

and that we would like to capture this by demonstrating that no domains interfere

with H. But this claim is too strong—the environment domain must interfere

with H. However, we expect that the environment domain will interfere with H

through a very limited interface, namely the environment pages, and will not write

to any of the data pages owned by H. This is an assumption of our model and

implementation—we trust the run-time system to execute correctly within its own
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memory area. By encoding the interactions between the run-time system and the

other actors in the security policy, we have made the nature of this assumption

explicit.

The H domain has many actions that we need to consider, because these are the

actions that critically impact the memory-safety of the system. The operational

specifications for these actions are complex (we will examine them in Section 5.7),

but fortunately the memory-safety policy is simple. H may interfere with every

domain except the environment.

H  H

H  K

H  U

H interferes with the kernel by modifying the virtual-to-physical memory mappings

that the kernel may access and by extending the set of region handles available for

memory mappings. H interferes with the user domain by changing the virtual-to-

physical memory mappings in user-space. The bootstrapping code of H constructs

the initial view of the environment, but after that point H may not change anything

in the environment domain. We do not model the behavior of the bootstrapping

code, but rather assume an initial state that occurs after the set up process com-

pletes.

The kernel domain does not have much power in our model. We purposefully

leave its behavior and policies abstract. The only action available to the kernel

is to write to kernel-mapped pages, writeK. If the underlying physical memory

being written to is also mapped in a user accessible address, then the user domain

will observe a kernel write. Thus, K may interfere with U.

K  K

K  U
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We choose a model where K does not interfere with H. This comes from our rep-

resentation of actions where each H API function is modeled as an action in the H

domain that may occur at any time. This is similar to the treatment of Haskell ex-

ecution. By modeling actions in this way, we do not need to introduce any actions

in K that interfere with H. The only kernel action is a write function and certainly

this should not modify the H data structures. We think that associating actions

with the callee rather than the caller is a useful technique in general for model-

ing abstraction barriers in a noninterference framework. Without this technique,

interference appears across abstraction boundaries in the policy and nothing can

be learned about the system from the security property (a classic complaint about

noninterference frameworks).

The user domain is just as abstract as the kernel domain. The user may write

to user-mapped pages via the function writeU, which may be observable to the

kernel domain if the same physical memory is mapped in kernel space.

U  K

U  U

Note that U does not interfere with H , even though, in the real implementation,

the user domain can perform actions that change the hardware state in ways that

are observable to H . For example, U might change the value of the dirty bit for a

page by writing to that page. Such changes do not affect the integrity of the H data

structures, so we do not need to include a policy arrow U  H when modeling our

memory-safety property. The model supports a proof of the unwinding conditions

for this policy by abstracting away the portions of the state that are not relevant

to memory-safety. Thus, if we were to model the dirty bits in the machine state,

then the view of U would include these bits so that user actions could make

modifications, but the view of H would not, to reflect the fact that H should not

rely on the value of the dirty bits in any operations.
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In the future it would be interesting to extend the techniques used for mod-

eling memory-safety in H to examine process separation in a specific kernel, like

seL4 [60]. Effectively reasoning about process safety in a realistic kernel will most

likely require a dynamic security policy, rather than the static policy illustrated

here, to account for domain creation and deletion. Our earlier work extends the

Rushby framework to support the ability to formalize dynamic noninterference

policies of this sort [66].

policy = {E  E ,E  H ,E  K ,

H  H ,H  K ,H  U ,

K  K ,K  U ,

U  K ,U  U }
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Figure 5.2: The security policy of our system. The environment interferes with H

and the kernel because they depend on the environment to run. H interferes with

the kernel and the users by the same reasoning. The kernel and the user domains

interfere freely with each other in our model because we do not put any restrictions

on their communication through memory. All domains interfere with themselves.

We bring the policies of each domain together in Figure 5.2 to illustrate the
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overall interactions between the domains. From the figure, we can see that no do-

main interferes with the environment domain (except itself) and that only the envi-

ronment domain interferes with H. This policy matches our definition of memory-

safety: the environment domain represents the environment pages and the H do-

main represents the page-table and page-directory pages; if these domains are not

interfered with then the integrity of the corresponding pages will be maintained.

Thus, if our system obeys the security policy, then we can conclude that our de-

sired memory-safety property holds. By design, memory-safety is guaranteed by

our system organization and the available set of actions. Unfortunately, the ac-

tions may be implemented in a way that introduces violations of the policy and

thereby the memory-safety property. In Sections 5.6 and 5.7 we will explore the

properties that our action implementations must satisfy in order to enforce the

security policy.

5.6 WELL-FORMEDNESS

Well-formedness conditions codify the basic configuration properties that are nec-

essary to support memory-safety in an H-based system. These conditions express

what it means for a value of the state type to be valid. Many of the well-formedness

constraints relate directly to the invariants presented in the design chapter (Chap-

ter 4), while others reflect more fundamental assumptions about the machine

model. For example, we require that the CR3 register always points to a valid

page-directory. We connect well-formedness to memory-safety by specifying that

every action in our system will produce a well-formed state (given a well-formed

input state) if the operation is memory-safe.

We do not relate well-formedness to the unwinding conditions of the Rushby

framework directly, but anticipate that well-formedness of states will be essential

to any proof of the security property. The well-formedness conditions are such that
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we would not expect the domains to satisfy the security policy from Section 5.5

if the actions did not maintain well-formedness. Section 5.8 illustrates the use of

well-formedness conditions for demonstrating aspects of the unwinding conditions.

5.6.1 CR3 and Reference Page-Directory Are Page-Directories

We define a well-formedness constraint on states to describe the property that

the CR3 register, represented by the cr3 state component, must point to a page-

directory. The same property must also hold of the reference page-directory. These

predicates are true if the page pointed to by the appropriate state component has

a page-directory status.

cr3IsPageDirectory :: State -> Bool

cr3IsPageDirectory s = isPageDirectory (status s (cr3 s))

referenceIsPageDirectory :: State -> Bool

referenceIsPageDirectory s = isPageDirectory (status s (reference s))

The reference page-directory reflects a known good view of kernel-space that an

implementation can use as a baseline when creating new page-directories. In the

model, the reference directory helps us to express properties of the kernel-space

mappings and the view of memory seen by privileged domains such as the Haskell

run-time system and H. We define several well-formedness constraints that describe

the characteristics of the reference page-directory and its relationship to the other

page-directories in the system.

5.6.2 Reference Page-Directory Maps Kernel-Space Addresses

The first characteristic of the reference page-directory that we capture through

well-formedness is the notion that this directory only maps kernel-space addresses.

No user-space mappings may be present. The formulation uses the translatePage

function from Section 5.3.3.
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referenceMapsKernelAddresses :: State -> Bool

referenceMapsKernelAddresses s

= forall (\vpa -> -- :: VirtualPageAddress

isKernelPageAddress vpa

|| isNothing (translatePage s (reference s) vpa))

If any user virtual page addresses are mapped in the state, then this well-formedness

condition is false, otherwise it is true.

5.6.3 Reference Page-Directory Maps Every Environment Page

The next important property of the reference directory is that it contains a map-

ping to every environment page in the system. According to the design presented

in Chapter 4 and the operation specifications in Section 5.7, no operation will ever

create a new environment page. If all environment pages are mapped in every

state, then the set of pages that are observable to the environment domain will

not change from state to state. This is important for memory-safety because our

security policy states that no domain is allowed to interfere with the environment

domain. If H (or a client kernel) could change the pages observable to the environ-

ment domain then this policy would not hold. Establishing that the environment

pages are mapped in the reference directory is the first step towards ensuring the

policy.

referenceContainsEnvironment :: State -> Bool

referenceContainsEnvironment s

= forall (\ppa -> -- :: PhysicalPageAddress

not (isEnvironment (status s ppa))

|| exists (\vpa -> -- :: VirtualPageAddress

case translatePage s (reference s) vpa of

Nothing -> False

Just ppa’ -> ppa == ppa’))
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The formulation of referenceContainsEnvironment quantifies over each physical

page address. For any environment page, there must exist a virtual page address

whose translation in the reference page-directory equals the address of the envi-

ronment page.

5.6.4 All Page-Directories Contain Reference Mappings

The previous property establishes that every environment page is mapped in the

reference page-directory. If we can establish that every other page-directory in the

system contains the same kernel-space mappings as this directory, then we can

guarantee that there is a consistent view of kernel-space no matter which page-

directory CR3 points to. From this we can deduce that the set of pages accessible

to the environment domain does not change from state to state. We express this

property in Haskell by quantifying over each kernel-space virtual page address

in pages with a page-directory status. The translation of the virtual address in

a given page-directory must match the translation of the same address in the

reference directory.

pageDirectoriesContainReference :: State -> Bool

pageDirectoriesContainReference s

= forall (\ppa -> -- :: PhysicalPageAddress

case status s ppa of

PageDirectory _ ->

forall (\vpa -> -- :: VirtualPageAddress

isUserPageAddress vpa ||

(translatePage s (reference s) vpa

== translatePage s ppa vpa))

_ -> True)

This property ignores the translation of user-space addresses. None are mapped in

the reference directory and we expect user-space mappings to be different in the

other page-directories.
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5.6.5 Environment Pages Are Only Mapped to Addresses That Are

Mapped in the Reference Page-Directory

In addition to protecting the mappings of the environment domain, we need to

ensure the integrity of the run-time system data. H has direct access to the envi-

ronment memory through the unsafe operations of the FFI, but we trust H not to

purposefully manipulate this memory. The operation specifications will help us to

validate that H does not modify the environment data accidentally. Client kernels

cannot modify the environment data because of the privilege restrictions imposed

by H in software: H does not expose any operation that would allow a client to

modify environment memory. For the user domain, we use hardware rings to en-

force separation between user processes and the execution environment. The final

property of the reference directory captures the requirement that all mappings to

environment pages are present in the reference directory. Because the reference

directory contains no user-space mappings, this is equivalent to saying that no

environment page is ever reachable through a user-space address.

environmentOnlyInReference :: State -> Bool

environmentOnlyInReference s

= forall (\pd -> -- :: PhysicalPageAddress

forall (\vpa -> -- :: VirtualPageAddress

case translatePage s pd vpa of

Just ppa -> not (isEnvironment (status s ppa))

|| mappedPage s (reference s) vpa

Nothing -> True))

The environmentOnlyInReference property is false if any page-directory con-

tains a mapping to an environment page that is not also present in the reference

directory.
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5.6.6 Mapped Pages Are Available

Another dimension of our memory-safety property is the protection of page-directory

and page-table contents. This aspect of memory-safety depends on the dynamic be-

havior of the H operations because, unlike environment pages, the set of pages with

the page-table and page-directory status is not fixed. Still, there are fundamental

properties that must hold of the translation table structures (which correspond

to the status field of the state) in order for them to be well-formed. The first

such property states that no virtual address maps to a physical address that is

not installed on the machine. A table/directory entry must contain nothing or a

mapping to available memory.

mappedPagesAreAvailable :: State -> Bool

mappedPagesAreAvailable s

= forall (\pd -> -- :: PhysicalPageAddress

case status s pd of

PageDirectory _ ->

forall (\vpa -> -- :: VirtualPageAddress

case translatePage s pd vpa of

Nothing -> True

Just ppa -> isInstalledPage s ppa)

_ -> True)

We quantify over page-directories and virtual page addresses. The value of the

property mappedPagesAreAvailable will be false if the translation function indi-

cates there is a mapping installed but no such page exists.

5.6.7 Page-Table Pointers Are Page-Tables

We also define a well-formedness property that ensures that page-directory entries

are consistent with the rest of the state. In particular, if a page-directory entry

contains a page-table pointer, but the page pointed to by that address is not a

page-table according to the status field of the state, then something is wrong.
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Maybe an incorrect pointer was installed in the directory or maybe the status

was not appropriately updated, but we will not necessarily be able to protect the

contents of the page-table in such a state.

tablePointersArePageTables :: State -> Bool

tablePointersArePageTables s

= forall (\ppa -> -- :: PhysicalPageAddress

forall (\pdi -> -- :: PageDirectoryIndex

case status s ppa of

PageDirectory pd ->

case pd pdi of

Just (Table ppa’) -> isPageTable (status s ppa’)

_ -> True

_ -> True))

We specify tablePointersArePageTables by quantifying over all possible page-

directory entries (any index into a page with the page-directory status). The

property is true if every entry that maps to a table entry points to a page with the

page-table status.

5.6.8 Regions Are Consistent and Disjoint From Environment

The last component of the state is the set of region handles. The first well-

formedness constraint on region handles simply provides consistency between the

two components of the RegionState. Recall from Section 5.3.3 that we track the

set of initial regions and the set of all regions. The initial regions must be a subset

of the total set of regions.

initialRegionsAreRegions :: State -> Bool

initialRegionsAreRegions s

= Set.isSubsetOf (initialRegions r) (allRegions r)

where

r = regions s
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The region handles describe the memory that may be used by client kernels for their

own purposes. This includes mapping memory to the user domain and mapping

memory into the free portion of kernel-space with read-write access for the kernel

domain. If the memory described by the regions included any environment pages,

then it would be possible to violate the policy that no domains interfere with

the environment. The property environmentOnlyInReference would be violated

if the client mapped environment memory to the user domain, but we cannot

avoid extra kernel-space mappings to the environment with the properties we have

examined so far. Instead, we provide a strong guarantee that the kernel cannot

access the environment memory by defining a well-formedness constraint stating

that no region handle contains a reference to an environment page.

regionsAreNotEnvironment :: State -> Bool

regionsAreNotEnvironment s

= not (any (existsRegion isEnvironmentPage)

(Set.elems (allRegions (regions s))))

isEnvironmentPage is a predicate that tests the status of a physical address in a

particular state. We define similar predicates on the other status types as well.

isEnvironmentPage :: State -> PhysicalPageAddress -> Bool

isEnvironmentPage s ppa = isEnvironment (status s ppa)

isNormalPage, isPageDirectoryPage, isPageTablePage, isInstalledPage

:: State -> PhysicalPageAddress -> Bool

regionsAreNotEnvironment is true for states where the region handles do not

contain a reference to any physical page with the status Environment.

5.6.9 Putting It All Together

We use these well-formedness constraints to express the idea that there are certain

fundamental properties enforced by every operation in the system by constraining
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the allowed values of State to the well-formed set. We formulate a predicate on

states called wellFormed that encompasses all of the well-formedness constraints

on states.

wellFormed :: State -> Bool

wellFormed s = cr3IsPageDirectory s &&

referenceIsPageDirectory s &&

referenceMapsKernelAddresses s &&

referenceContainsEnvironment s &&

pageDirectoriesContainReference s &&

environmentOnlyInReference s &&

mappedPagesAreAvailable s &&

tablePointersArePageTables s &&

initialRegionsAreRegions s &&

regionsAreNotEnvironment s

The well-formedness conditions capture our intuition for what properties will be

necessary to prove the unwinding conditions described in Section 5.1. Most corre-

spond to the informal invariants that we created during the process of designing

and implementing H to enforce our notion of memory-safety. It is possible that

the set of well-formedness conditions is not sufficient to prove the unwinding con-

ditions, but the predicate can be extended as necessary.

5.7 CONNECTING THE MODEL AND IMPLEMENTATION

Well-formedness provides the baseline for a well-behaving system. The next step

in assuring memory-safety is to specify the effects of each action of the model.

Specifying the permitted behavior of each action will make the interactions between

domains more concrete and will help us to gain confidence that the security policy

holds between our domains. We present the action specifications as relations on

well-formed states. We opted against a functional style that directly describes the

transformation each action performs on states because we found that approach
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forced us to specify details that are not relevant for safety. Our goal is to present

a specification that supports memory-safety and prevents memory leaks via the H

operations with a minimal number of extraneous details. The specifications serve

as a further instantiation of the actions presented in Section 5.4.1 and provide a

foundation for future verification work.

A particular benefit of the relational style is that nondeterminism is built in.

Given a particular before state, the relational specification of an action may hold

for many different after states. This property of the relational model allows us to

leave aspects of the system that are not relevant for safety out of the model. For

example, when we specify the behavior of user program execution, we can ignore

any changes that occur in user memory pages. The manner in which a user program

changes the contents of these pages is irrelevant to our safety argument and, with a

relational model, we can leave these contents unspecified. This is in stark contrast

to a functional model where we must specify a single result state that describes the

particular changes a user program makes to memory, even though we do not care

about these values. Nondeterminism must be added to such a model explicitly, for

example, by using an oracle to generate values, but the overall specification will be

more complicated. Of course, the downside to the nondeterminism of the relational

model is that the gap between the specification and the actual implementation

(where actions are functions) is larger than with a functional model. We choose

to start with the relational model because it is easy to capture the properties of

interest, knowing full well that a refinement into a functional model will likely be

an important stepping stone on the path to any full verification of H.

A further benefit of the relational style is that it separates the demonstra-

tion that the actions produce well-formed states from the demonstration that the

actions refine their specification. Specifying the connection of the action speci-

fications to the functions of our H implementation is straightforward; there is a
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single action specification, op that corresponds to each memory management op-

eration, opImp, in H. We must show that, for every action op in the model, the

implementation opImp

• preserves well-formed states

∀s ∈ State. wellFormed s ⇒ wellFormed (opImp s)

• implements the specification when the action is possible

∀s ∈ State.

wellFormed s ∧ (∃s’. actionSpec op s s’)⇒

actionSpec op s (opImp s)

• and preserves the system state when the action is invalid

∀s ∈ State.

wellFormed s ∧ (∀s’. ¬(actionSpec op s s’))⇒

opImp s = s

An implementation that satisfies these properties is a valid instantiation for the

action that corresponds to op in our Rushby model. Proving that our implemen-

tation satisfies these properties is future work. Note that well-formedness alone is

not sufficient for memory-safety because some aspects of a correct implementation

rely on the dynamic behavior of the operation.

5.7.1 Specification of WriteE

The first action in our model is the WriteE operation of the environment domain.

WriteE has additional arguments of type VirtualAddress (the location to write)

and Word8 (the value to write). The intended behavior of WriteE is to modify

a location in one of the pages owned by the environment domain. According to

the security policy (see Section 5.5), the environment domain can interfere with

itself and H, but should only write to pages with the environment status. Thus,



137

in our specification, writeE is true when the contents of a single byte in a single

environment page change. writeE is false if the status of any page changes or if

the contents of any non-environment page change.

writeE :: VirtualAddress -> Word8 -> State -> State -> Bool

writeE va val state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& regions state == regions state’

&& case translate state va of

Nothing -> False

Just (ppa,off) ->

forall (\someppa -> -- :: PhysicalPageAddress

if someppa /= ppa

then status state someppa == status state’ someppa

else case status state someppa of

Environment pdata ->

case status state’ someppa of

Environment pdata’ ->

pdata’ == updatePageData off val pdata

_ -> False

_ -> False)

The first few conjuncts are frame rules stating that this operation does not change

the cr3 or reference page-directory settings and that it does not change the set of

region handles. The only state component that is relevant for the writeE operation

is the status field. We will see similar frame rules in each of our specifications—

each of our actions only modifies a portion of the state.

5.7.2 Specification of DeriveRegionH

The DeriveRegionH action creates a new region handle from an existing one. The

additional arguments are the starting region (of type PhysicalRegion) and the

parameters for the new region: a start address of type PhysicalPageAddress and
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a length of type RegionLength. The most important property of this action is

that it maintains our inductive argument on regions: if the initial regions do not

point to any environment memory then no region we create will either. We specify

this by requiring that the starting region is a member of the existing handle set

and that the new region being created is a subregion of the starting one. The set

of all regions in the after state must contain exactly one more region handle than

the set of all regions in the before state, and this handle must match the region

description given by the start and length arguments.

deriveRegionH :: PhysicalRegion -> PhysicalPageAddress -> RegionLength

-> State -> State -> Bool

deriveRegionH pr ppa len state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& status state == status state’

&& initialRegions (regions state) == initialRegions (regions state’)

&& Set.member pr allOld

&& isPhysicalSubregion newRegion pr

&& Set.isSubsetOf allOld allNew

&& goodDerivedRegion (Set.toList (Set.difference allNew allOld))

where

allOld = allRegions (regions state)

allNew = allRegions (regions state’)

newRegion = PhysicalRegion ppa len

goodDerivedRegion [r] = r == newRegion

goodDerivedRegion _ = False

The derive region action only modifies the set of all region handles; deriveRegionH

will be false if any other state component changes.

5.7.3 Specification of AllocatePageDirectoryH

AllocatePageDirectoryH turns a physical page into a page-directory page. There

are important safety issues at play in this operation, because the physical page
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could introduce a channel for the user domain or kernel domain to access page-

directory contents. Page-directory pages are owned by the H domain, so this would

violate the security policy. We prevent such a channel by specifying that the page

being converted must not be mapped in any portion of any address space. The

page must also have the normal status, because a page with any other status is

currently in use by H or the environment. For allocatePageDirectoryH to be

satisfied, the status of the newly created page-directory must match the reference

page-directory (containing all of the same kernel-space mappings and no user-space

mappings) and the status of all other pages must be unchanged.

allocatePageDirectoryH :: PhysicalPageAddress -> State -> State -> Bool

allocatePageDirectoryH ppa state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& regions state == regions state’

&& unmappedNormalPage state ppa

&& forall (\someppa -> -- someppa :: PhysicalPageAddress

if someppa /= ppa

then status state someppa == status state’ someppa

else status state’ someppa

== status state’ (reference state’))

5.7.4 Specification of FreePageDirectoryH

FreePageDirectoryH is the essentially the inverse of AllocatePageDirectoryH:

the action frees a page-directory page and converts it to an unmapped normal

page. We specify freePageDirectoryH using allocatePageDirectoryH with the

additional condition that the physical page must be zeroed in the after state. The

page zeroPageData is a constant that maps every offset to zero.
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freePageDirectoryH :: PageDirectory -> State -> State -> Bool

freePageDirectoryH pd state state’

= allocatePageDirectoryH pd state’ state

&& case status state’ pd of

Normal pagedata -> pagedata == zeroPageData

_ -> False -- never happens

zeroPageData :: PageData

freePageDirectoryH requires that the page-directory does not contain any user

mappings when it is freed. This is stronger than the requirements of the actual

H implementation—we specify as part of the API that the page-directory should

be empty of user mappings but allow the free to proceed in all cases. To make

H match the specification, we would need to revise the type of the freePageMap

operation to permit failure if the operation is invoked on a non-empty directory.

This semantic dimension of free is not critical for memory-safety, but can introduce

space leaks if any page-tables that are in use for mappings are not reclaimed.

5.7.5 Specification of AddMappingH

Adding a mapping to the user portion of the address-space is the most complicated

action in our model. We split the specification into two parts: addMapping speci-

fies most of the behavior of adding a mapping (in such a way that removeMappingH

will be the inverse operation) and addMappingH supplements the addMapping spec-

ification with requirements that are specific to AddMappingH. The AddMappingH

action adds a mapping from a virtual region to a physical region in a specified

page-directory. When adding the mappings, H may need to allocate page-tables

to support the translation of the addresses of the virtual region. As we saw in the

design chapter (see Section 4.4.2), the client kernel provides the memory for these

page-tables. We model this by including a parameter to the add mapping action

that is a list of physical pages that may be converted into page-tables as needed.
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This gives addMapping and addMappingH the following type:

addMapping, addMappingH :: PageDirectory -> [PhysicalPageAddress]

-> PhysicalRegion -> VirtualRegion -> State -> State -> Bool

An important semantic difference between the two specifications is that addMapping

expects a precise list of the set of page-tables that are needed for the operation

while addMappingH expects a superset of the necessary page-tables.

Due to the large number of parameters with very specific semantics, much of

the complexity of the specification stems from the parameter validation properties.

The specification must handle the following conditions:

• The address specified as the page-directory to add the mappings to must

actually be a page-directory in the before state.

• Each of the potential page-table pages must be a free page. This corresponds

to having a normal status and not being mapped in any page-directory.

• None of the potential page-tables may lie within the physical region to be

mapped.

• All of the pages within the physical region must be mappable, which corre-

sponds to having the normal status.

• The virtual region and physical region parameters must be regions of the

same length.

• The virtual region must entirely consist of user-space addresses (this action

cannot add kernel-space mappings).

• None of the virtual addresses within the virtual region should be mapped—

we do not allow over-mappings via this action.

These properties appear following the frame rules (AddMappingH does not change

cr3, reference or regions) in addMapping.
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addMapping pd pts pr vr state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& regions state == regions state’

&& isPageDirectoryPage state pd

&& case status state pd of

PageDirectory pdirdata -> True

_ -> False

&& all (unmappedNormalPage state) pts

&& all (\ppa -> not (memberPhysicalRegion ppa pr)) pts

&& all (isNormalPage state) (toListPhysicalRegion pr)

&& physRegionLength pr == virtRegionLength vr

&& isUserRegion vr

&& forall (\somevpa -> -- :: VirtualPageAddress

if memberVirtualRegion somevpa vr

then translatePage state pd somevpa == Nothing

else translatePage state pd somevpa

== translatePage state’ pd somevpa)

The final conjunct, which specifies that the pages of the virtual region are not

mapped, also specifies the relationship between the virtual-to-physical translation

of the before state and the after state. For any page that is not in the virtual

region, the translation must not be affected by the AddMappingH action.

The remainder of the specification is solely focused on the relationship between

the before and after states. The fundamental property we expect as a result of

adding a mapping is that, in the after state, each page address in the virtual region

maps to the corresponding page address in the physical region.

&& and (zipWith isMappedTo (toListVirtualRegion vr)

(toListPhysicalRegion pr))

isMappedTo is a locally-defined utility that tests if the translation of a given virtual

address matches a given physical address. Here, pd is the same as the page-

directory argument of addMapping.
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isMappedTo vpa ppa = translatePage state’ pd vpa == Just ppa

Note that the relational style allows us to specify the observable change to the

translation tables (that the addresses within the virtual region are now mapped

to the appropriate physical addresses) without specifying the mechanism. For

example, an implementation of this specification is free to use superpages or not.

With a functional model we would have to make a commitment about what is

ostensibly an implementation detail here.

The effect of AddMappingH on pages of memory that do not lie in the physical

region being mapped should be limited in a memory-safe system. Pages in the set

of new page-tables will have the page-table status in the new state and must be

installed in a page-directory entry of the page-directory being modified. Environ-

ment pages and all normal pages that are not in the set of new page-tables do not

change. We allow the contents of the page-directory being modified and of any

page-table to change.

&& forall (\someppa -> -- :: PhysicalPageAddress

if elem someppa pts

then tableMappedInDirectory state’ pd someppa

else case (status state someppa, status state’ someppa) of

(Normal pagedata, Normal pagedata’) ->

pagedata == pagedata’

(PageTable _, PageTable _) -> True

(PageDirectory pdirdata, PageDirectory pdirdata’) ->

someppa == pd || pdirdata == pdirdata’

(Environment pagedata, Environment pagedata’) ->

pagedata == pagedata’

(NotInstalled, NotInstalled) -> True

_ -> False)

Allowing any page-table to change is somewhat weak—there is a specific set of

page-tables that we expect to change because they are part of the translation of
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the addresses in the virtual region. This set of page-tables is difficult to identify

in an abstract fashion. The weaker property will not allow any safety violations

because the translations implemented by the page-tables must be predictable (only

the translations for the pages being mapped change), but the specification might

allow some unexpected safe behaviors.

In addition to the parameter validation properties we discussed previously,

addMappingH requires that the list of potential page-tables does not contain any

duplicates and that the physical region being mapped is a member of the set of all

regions. Note that the implementation does not need to check that the physical

region provided to AddMappingH is a member of the valid region set because the

Haskell type system ensures that only valid members of the PhysicalRegion type

are passed as parameters to the H operation.

addMappingH :: PageDirectory -> [PhysicalPageAddress] -> PhysicalRegion

-> VirtualRegion -> State -> State -> Bool

addMappingH pd pts pr vr state state’

= length (nub pts) == length pts

&& Set.member pr (allRegions (regions state))

&& any isAddMappingTables (inits pts)

where

isAddMappingTables used = addMapping pd used pr vr state state’

We identify the precise set of page-tables needed for addMapping by specifying

that addMappingH is true so long as some sublist of the potential page-table list

(calculated using the function inits) satisfies the addMapping specification when

combined with the other parameters.

5.7.6 Specification of RemoveMappingH

The reverse of adding a mapping is removing a mapping with removeMappingH.

This operation is essentially the inverse of addMapping: it removes the mappings

from the specified virtual region to some underlying physical region and frees
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some number of page-tables. We expect all of the preconditions of addMapping—

for example, that the page-table pages are unmapped normal pages and that

the virtual region does not map to any memory—to be the post-conditions of

removeMappingH. The challenge in specifying the remove operation as the inverse

of addMapping is that we must determine the underlying physical region and the

list of page-tables that become free so that they may be supplied as arguments to

the addMapping relation. These values can be calculated using the before and after

states. We assume the existence of a list containing every value of the physical

page address type, called allPhysicalPages, for use in computing the list of freed

page-tables.

removeMappingH ::

PageDirectory -> VirtualRegion -> State -> State -> Bool

removeMappingH pd vr state state’

= case translatePage state pd (virtRegionStart vr) of

Nothing -> False

Just ppa -> let pr = PhysicalRegion ppa (virtRegionLength vr) in

addMapping pd pts pr vr state’ state

where

pts = filter freedPageTable allPhysicalPages

freedPageTable ppa

= case (status state ppa, status state’ ppa) of

(PageTable _, Normal pagedata) -> pagedata == zeroPageData

_ -> False

allPhysicalPages :: [PhysicalPageAddress]

The use of addMapping as opposed to addMappingH is important. We allow the

remove operation to unmap regions of memory that do not correspond to physical

regions in the set of regions handles. For example, if the region A is mapped using

addMappingH and the adjacent region B is also mapped using addMappingH, we

permit an invocation of removeMappingH that deletes the mapping to the region
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A ∪ B in a single call, even if A ∪ B is not in the region handle set. This will

not introduce safety issues because we will never unmap anything that was not

mapped and the specification for adding a mapping ensures that all user mappings

correspond to valid physical regions.

5.7.7 Specification of AddKernelMappingH

Adding a kernel mapping is conceptually similar to adding a user mapping, but is

much simpler because we assume that the page-tables for kernel-space are preallo-

cated. Thus, there are no potential page-tables to manage in the specification of

AddKernelMappingH. We know that the view of kernel-space is consistent in every

page-directory from our well-formedness conditions, so there is no need to specify

a page-directory to update either. The remaining arguments are a physical region

and a virtual region. We specify many of the same requirements for these param-

eters as we did for the parameters to addMappingH: the region lengths must be

the same, the pages of the physical region must mappable, and the physical region

must be in the set of region handles. For kernel mappings, the virtual region must

contain only addresses that lie in kernel-space.

addKernelMappingH ::

PhysicalRegion -> VirtualRegion -> State -> State -> Bool

addKernelMappingH pr vr state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& regions state == regions state’

&& Set.member pr (allRegions (regions state))

&& all (isNormalPage state) (toListPhysicalRegion pr)

&& physRegionLength pr == virtRegionLength vr

&& isKernelRegion vr

The relationship between the before and after states is very similar to the relation-

ship that we specified for user mappings. Only the virtual-to-physical translation
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for pages in the virtual region being mapped may change. We express this require-

ment as two properties. First we state that the virtual-to-physical translation for

any address that does not belong to the virtual region will not change.

&& forall (\somevpa -> -- :: VirtualPageAddress

memberVirtualRegion somevpa vr

|| translatePage state (reference state) somevpa

== translatePage state’ (reference state’) somevpa)

Next, we state that the contents of physical memory stays the same, except for

page-table pages, which might be modified to reflect the new virtual-to-physical

mappings in kernel-space.

&& forall (\someppa -> -- :: PhysicalPageAddress

if tableMappedInDirectory state (reference state) someppa

then isPageTable (status state’ someppa)

else status state someppa == status state’ someppa)

In the after state, each page address of the virtual region will be mapped to the

corresponding page address in the physical region.

&& and (zipWith isMappedTo (toListVirtualRegion vr)

(toListPhysicalRegion pr))

where

isMappedTo vpa ppa

= translatePage state’ (reference state’) vpa == Just ppa

We describe the update to the kernel-space mappings in terms of the reference

page-directory. The kernel-space mappings of every other page-directory must

also be updated to match the reference page-directory in order for the action to

produce a well-formed state.

5.7.8 Specification of ExecuteH

We deliberately model very little of the user domain’s state and, in turn, very

little of the behavior of H with respect to the user domain. Though the manner
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in which H saves and restores user registers is important for correctness, it does

not affect our ability to protect the data structures of H or the run-time system.

That is, incorrect management of user data does not impact memory-safety. We

still model the H action for executing a user process, but the connection to the

implementation is loose because we only specify the behavior that relates to the

memory-safety critical portions of the state. In our model, the only observable

effect of ExecuteH is that the current page-directory changes. The argument to

ExecuteH is the address of the page to install as a page-directory. The value of

cr3 in the after state must equal this page.

executeH :: PageDirectory -> State -> State -> Bool

executeH pd state state’

= reference state == reference state’

&& status state == status state’

&& regions state == regions state’

&& case status state pd of

PageDirectory _ -> cr3 state’ == pd

_ -> False

We verify the status of the page-directory argument, but this is not strictly speak-

ing necessary. Well-formedness already specifies that the value of cr3 in the after

state be a valid page-directory. We include the property for documentation and to

help line up the specification with the mechanism for enforcing well-formedness in

the implementation.

5.7.9 Specification of WriteK

The final actions of our model are the write operations for the kernel and user

domains. The specifications for these operations are very similar. WriteK modifies

a single location in the set of pages that the kernel domain may access. This set

is equivalent to the set of pages with normal status that are mapped to a kernel-

space address. writeK is true when a single value in a single kernel-space mapped
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normal page changes. writeK is false if the contents of any other page change or

if the status of any page changes. We define writeK in terms of an abstract write

predicate, writeA, that we will also use in the specification of WriteU.

writeA :: VirtualAddress -> Word8 -> State -> State -> Bool

writeA va val state state’

= cr3 state == cr3 state’

&& reference state == reference state’

&& regions state == regions state’

&& case translate state va of

Nothing -> False

Just (ppa,off) ->

forall (\someppa -> -- :: PhysicalPageAddress

if someppa /= ppa

then status state someppa == status state’ someppa

else case status state someppa of

Normal pdata ->

case status state’ someppa of

Normal pagedata’ ->

pdata’ == updatePageData off val pdata

_ -> False

_ -> False)

writeK :: VirtualAddress -> Word8 -> State -> State -> Bool

writeK va val state state’

= writeA va val state state’

&& isKernelAddress va

5.7.10 Specification of WriteU

The writeU specification is identical to writeK except that the user domain may

modify normal pages that are mapped to a user-space address, rather than a kernel-

space address. Otherwise the relationship between the before and after states is

exactly the same. We use writeA to express this common relationship.
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writeU :: VirtualAddress -> Word8 -> State -> State -> Bool

writeU va val state state’

= writeA va val state state’

&& isUserAddress va

5.8 VERIFYING MEMORY-SAFETY

Verifying memory-safety for the model of H, and ultimately the implementation,

are important steps for increasing the assurance of the abstraction layer. A proof

of the unwinding conditions is particularly important, because such a proof is

necessary to demonstrate that our instantiation of the Rushby framework is valid.

In this section, we complete the instantiation of the Rushby framework by providing

a definition of the step function that connects our action specifications to our

noninterference model. We also state the theorem that the completed instantiation

satisfies the unwinding conditions. The proof of this theorem remains as future

work, but we outline the expected high-level proof structure and sketch some the

basic steps that it requires. Chapter 10 will cover our ongoing and future work to

complete the proof and to formally verify the unwinding conditions for our model

of H.

5.8.1 Completing the Rushby Instantiation

Recall from Section 5.1.1 that the Rushby framework models system execution

using a state transformer function:

step :: (S ,A)→ S .

This function produces the state that results from applying a given action in a

particular state. The step function is the final piece that is missing from our system

instantiation, which, according to the definition in Section 5.1.1, is a machine M

that consists of:
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• a set of states, S , (defined in Section 5.3);

• a set of actions, A, (defined in Section 5.4.1);

• a set of outputs, O (also defined in Section 5.4.1);

• an execution function, step :: S × A→ S ; and

• an output function, output :: S × A→ O (defined in Section 5.4.1).

The action specifications presented in Section 5.7 describe the intended effect of

each action on the system state, so our definition of step should collect each of

these action meanings into a single execution function. However, the relational

style of our specifications is not a natural fit with the step function because it

allows a single action to produce an arbitrary number of valid result states.

To bridge the gap between our specification and the semantics of step within

the Rushby framework, we introduce an intermediate property,

canStepTo :: State → A→ State → Bool ,

which describes a relational notion of step.

canStepTo s a s ′ = wellFormed s ∧ wellFormed s ′ ∧ actionSpec a s s ′

canStepTo s a s ′ is true for any well-formed states s and s ′ where the after state s ′

is reachable from the before state s via the action a. This property encapsulates

the notion that the two states are related by the specification for action a by

projecting the actionSpec relation to well-formed states.

We can use canStepTo to produce the set of all after states that are related to

a particular before state by an action. For example,

relatedStates s a = [s’ | s’ <- allStates, canStepTo s a s’]

-- allStates = list of all values of type State

describes the set of states that are related to s by a. We use relatedStates to

define step by returning an arbitrary state from the set of possible after states.
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We know that it is possible to pick an arbitrary state in this way by the axiom of

choice. If there are no after states related to a particular before state—for example,

because the before state is not well-formed—then step acts as the identity function.

step :: (State, Action) -> State

step (s, a) = case relatedStates s a of

[] -> s

states -> pickArbitrary states

We design this definition of step with the invariants of Sections 5.3.3 and 5.7 in

mind:

• every action produces a well-formed after state when applied to a well-formed

before state; and

• given a valid action, a, in a before state, s , the after state, s ′ will satisfy

actionSpec a s s ′.

In our definition of step, invalid actions cannot modify the state, because an imple-

mentation should block such actions without allowing them to make any changes

to the system. In practice, an implementation would likely return error informa-

tion to the actor describing the cause of the failure (for example, an integer error

code). We do not model return values of operations at all in our formalization, so

invalid actions appear to be no-ops in our definition of step.

5.8.2 Properties of the H Specification and System Model

In order for our instantiation of Rushby to be valid, the system model must satisfy

the three unwinding conditions, which ensure that actions in the system behave in

a way that is consistent with the policy. One goal of the policy for our instantiation

is to enforce the execution environment integrity property, ensuring that the run-

time system cannot be corrupted. Thus, an important part of the proof of the

unwinding conditions will involve demonstrating that no other domain can interfere
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with the environment domain. In this section, we present two supporting lemmas

that we have already identified as relevant to a complete proof that actions of other

domains are not visible to the environment, and sketch their proofs to illustrate

the kind of techniques that are useful for verifying the unwinding conditions.

Lemma 1 (No H Changes to Environment Mappings). No action belonging to the

H domain modifies the virtual-to-physical memory mappings for any memory page

with the Environment status:

∀s ∈ State, pd ∈ PageDirectory , vpa ∈ VirtualPageAddress , a ∈ Action.

dom(a) = H ∧ isEnvironmentPage s (translatePage s pd vpa) ⇒

translatePage s pd vpa = translatePage (step(s , a)) pd vpa

Proof Sketch. There are seven cases: one for each action belonging to the H do-

main. DeriveRegionH, AllocatePageDirectoryH, and FreePageDirectoryH do

not modify any memory mappings and this property is clearly stated in the spec-

ification of each action. Thus, we prove the lemma in a straightforward manner

for each of these cases. The lemma is more difficult to prove for the AddMappingH,

RemoveMappingH, and AddKernelMappingH cases, because these actions do change

the virtual-to-physical mappings for a set of addresses. We must demonstrate that

the mappings visible to the environment domain remain constant even in the pres-

ence of these updates to the virtual-memory translation structures. Let us examine

the particular case of AddMappingH as an example of how we might proceed.

Case: AddMappingH The AddMappingH action takes four parameters: a page-

directory in which to add new mappings, a list of physical addresses that correspond

to pages that may be turned into page-tables, a physical region to map, and a

virtual region in which to add the new mappings. In order for the lemma to be

true, the following properties must hold of our definition:
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(i) The virtual region must not contain any address that is already mapped to

a page with the environment status;

(ii) The physical region must not contain any pages that have the Environment

status; and

(iii) No page supplied as a possible page-tables may have the Environment status.

The first property stems from a line in the specification that states that the vir-

tual region can only be mapped if it contains entirely user-level addresses. When

combined with the well-formedness conditions environmentOnlyInReference—

which states that pages with the Environment status are not mapped to any

addresses that are not mapped in the reference page-directory—and the condition

referenceMapsKernelAddresses—which states that the reference page-directory

does not map any user-level addresses—we can conclude that the action will not

map any virtual region that is already mapped to an environment page. We can

establish the second property from the fact that AddMappingH will only map physi-

cal pages that belong to a physical region contained in the allRegions component

of the system state. The well-formedness condition regionsAreNotEnvironment

guarantees that no such region contains a page with the Environment status, so

the specification for AddMappingH upholds the second property. The third property

is covered by the following line in the specification,

all (unmappedNormalPage state) pts

which states that every element of pts, the list of page-table pages, must be a

free page with the Normal status. Thus, none of the page-table pages can be envi-

ronment pages. Having demonstrated these three key properties, we can conclude

that the lemma holds for AddMappingH.

The requirements for proving the RemoveMappingH and AddKernelMappingH

cases are very similar to the AddMappingH case, as are the specifications of these
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actions. RemoveMappingH is defined with the same specification as AddMappingH,

so the proof should be very similar (though dealing with unmapping rather than

mapping). The specification for AddKernelMappingH is largely the same but with

some simplifications because kernel mappings do not need to allocate page-tables.

Next, let us examine the proof for ExecuteH, the final case necessary for this

lemma.

Case: ExecuteH ExecuteH installs a given page-directory as the current page-

directory by changing the value of CR3 in the state. The specification states that

any page with the PageDirectory status may be installed in this way. We can

use the well-formedness conditions to demonstrate that even this weak restric-

tion is sufficient to ensure that ExecuteH cannot modify the virtual-to-physical

memory mappings of the environment domain. The well-formedness condition

pageDirectoriesContainReference tells us that any page with the PageDirectory

status will contain all of the mappings that are present in the reference page-

directory. When combined with referenceContainsEnvironment—which states

that the reference page-directory includes mappings to all of the pages with the

Environment status—and the condition environmentOnlyInReference—which

states that there are no mappings to environment pages that are not contained

in the reference page-directory—we can conclude that every PageDirectory con-

tains the same mappings to the environment pages. Thus, the environment domain

will not be able to distinguish the mappings available in any page-directory in a

well-formed state.
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Lemma 2 (No H Changes to Environment View). No action belonging to the H

domain modifies the view of the environment domain:

∀s ∈ State, a ∈ Action. dom(a) = H ⇒ s
E∼ step(s , a)

Proof Sketch. The view of the environment domain includes the location, contents,

and reference count for each memory page that is mapped with the Environment

status. We know that no H action changes the location at which an environment

page is mapped from Lemma 1. The reference count of an environment page

will not change unless a virtual-to-physical mapping for that page is added or

removed, so we can also conclude that no H action changes the reference count as

a consequence of Lemma 1. We can prove that no action changes the contents of

an environment page by examining the specification of each action.

The specifications for DeriveRegionH and ExecuteH include frame conditions

stating that they do not modify the status of any page. The status value of an en-

vironment page includes its contents, so these actions cannot change the contents

of an environment page. AllocatePageDirectoryH and FreePageDirectoryH will

only change the status of the page provided as an input value, which the specifica-

tion states must not be an environment page. The specifications for AddMappingH

and RemoveMappingH explicitly state that the data contained in any page with the

Environment status does not change. The specification for AddKernelMappingH

states that all physical memory stays the same except for pages with the PageTable

status.

5.8.3 Proving the Unwinding Conditions

Now that we have completed the definition of our system and built a collection

of lemmas describing some of its properties, we can prove that our instantiation

of the Rushby framework is valid. If our system is indeed a valid instantiation,
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then we can conclude that our system also satisfies the Unwinding Theorem from

Section 5.1.3 and that our action specifications enforce the execution environment

integrity and address space integrity properties.

Theorem 2 (Valid Instantiation). The definitions provided throughout this chapter

for the components of the Rushby framework,

(i) the machine, M ,

(ii) the set of domains, D, and

(iii) the policy that governs domain interactions,

form a valid instantiation that satisfies the unwinding conditions.

Proof Sketch: We present an outline of the high-level steps necessary to prove the

correctness of Theorem 2. A full proof remains as future work (see Chapter 10).

Step 1: Unfold the definition of step to produce subgoals in terms of canStepTo.

We begin with the unfolding for local respect, which is defined directly in

terms of step:

dom(a) 6 u ⇒ s
u∼ step(s , a).

For the case where there exists at least one state that is related to s by

a, unfolding the definition of step gives the following statement of local

respect:

dom(a) 6 u ⇒ s
u∼ pickArbitrary (relatedStates s a)

For the case where no related state exists, the right-hand side of the prop-

erty reduces to s
u∼ s , which is trivially true. If we let s ′ equal an arbitrary

state that is related to s by a, then the property reduces to:

dom(a) 6 u ∧ canStepTo s a s ′ ⇒ s
u∼ s ′



158

by substitution.

A similar unfolding technique applies to weak step consistency, which has

the following definition in terms of step,

s
u∼ t ∧ s

dom(a)∼ t ⇒ step(s , a)
u∼ step(t , a)

The intermediate proof steps follow the same pattern as in local respect, so

we skip straight to the final representation where s ′ has been substituted

for an arbitrary state that is related to s by a and t ′ is an arbitrary state

that is related to t by a.

s
u∼ t ∧ s

dom(a)∼ t ∧ canStepTo s a s ′ ∧ canStepTo t a t ′ ⇒ s ′
u∼ t ′

As before, the property is trivially true if there is no after state that is

related to the before state by the action.

Step 2: Demonstrate that output consistency reduces to weak step consistency

under our instantiation of the output function output . Recall the definition

of output consistency from Section 5.1.3:

s
dom(a)∼ t ⇒ output(s , a) = output(t , a).

Expanding the definition of output gives us:

s
dom(a)∼ t ⇒ view (dom(a)) (step(s , a)) = view (dom(a)) (step(t , a)).

Now the right-hand side of the arrow is equivalent to our definition of the

view-partitioning relation.

s
dom(a)∼ t ∧ s

dom(a)∼ t ⇒ step(s , a)
dom(a)∼ step(t , a)

Applying the same unfolding techniques that we employed in Step 1 for

local respect and weak step consistency, we obtain,

s
dom(a)∼ t ∧ canStepTo s a s ′ ∧ canStepTo t a t ′ ⇒ s ′

dom(a)∼ t ′.
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Recalling the definition of weak step consistency,

s
u∼ t ∧ s

dom(a)∼ t ∧ canStepTo s a s ′ ∧ canStepTo t a t ′ ⇒ s ′
u∼ t ′

we can see that output consistency is now equivalent to weak step consis-

tency in the special case where u equals dom(a). Thus, in future efforts

to verify the correctness of our system, it will be sufficient to prove just

the local respect and weak step consistency unwinding conditions for our

actions.

Step 3: Prove local respect by cases. The proof of local respect splits into twelve

top-level cases. These cases come directly from the definition of the prop-

erty, which quantifies over all noninterfering actions.

dom(a) 6 u ∧ canStepTo s a s ′ ⇒ s
u∼ s ′

A noninterfering action is one that belongs to a domain that does not

interfere with some other domain. There are six cases in our security policy

where one domain is guaranteed not to interfere with another: E 6 U ,

H 6 E , K 6 E , U 6 E , K 6 H , and U 6 H . To prove local

respect we must prove that all of the actions in each of the noninterfering

domains do not produce observable effects in the state of the uninterfered

with domain. Each of E , K , and U only have one action, whereas the H

domain contains seven. Instantiating the definition of local respect gives

us the following proof obligations, accompanied by a brief discussion of

the intuition behind the proof of each property:

(a) canStepTo s WriteE s ′ ⇒ s
U∼ s ′

This case describes the fact that a write performed by the environ-

ment domain must not be observable to any user-level programs. We
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use hardware-based protection to ensure that user-level programs can-

not access the environment pages, which are mapped with kernel-only

permission. Thus, our implementation must always map the envi-

ronment pages with kernel-only permissions. The well-formedness

condition environmentOnlyInReference describes the fact that the

environment pages are only mapped in the reference page-directory,

which, according to the referenceMapsKernelAddresses condition,

contains only kernel-mapped addresses. Thus, these two aspects of

well-formedness combine to ensure that all well-formed states satisfy

the necessary correctness criteria to make this case of local respect

true.

(b) canStepTo s DeriveRegionH s ′ ⇒ s
E∼ s ′

Lemma 2 demonstrates that no action belonging to the H domain

modifies the view of the environment domain. The DeriveRegionH

action belongs to the H domain, so we can conclude that any suc-

cessful step via this action does not affect E ’s view.

(c) canStepTo s AllocatePageDirectoryH s ′ ⇒ s
E∼ s ′

Follows from Lemma 2, similarly to the previous case.

(d) canStepTo s FreePageDirectory s ′ ⇒ s
E∼ s ′

Follows from Lemma 2.

(e) canStepTo s AddMappingH s ′ ⇒ s
E∼ s ′

Follows from Lemma 2.

(f) canStepTo s RemoveMappingH s ′ ⇒ s
E∼ s ′

Follows from Lemma 2.

(g) canStepTo s AddKernelMappingH s ′ ⇒ s
E∼ s ′

Follows from Lemma 2.
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(h) canStepTo s ExecuteH s ′ ⇒ s
E∼ s ′

Follows from Lemma 2.

(i) canStepTo s WriteK s ′ ⇒ s
E∼ s ′

The specification of WriteK states that the action will only modify a

virtual address that is mapped to a physical page with the Normal

status type. Thus, WriteK cannot be used to modify environment

pages or the translation pages that affect the view of the environment

domain.

(j) canStepTo s WriteU s ′ ⇒ s
E∼ s ′

WriteU and WriteK share a common specification, except for the por-

tion of the action description that states whether user or kernel ad-

dresses are changed, so the same reasoning applies as in the previous

case.

(k) canStepTo s WriteK s ′ ⇒ s
H∼ s ′

Some of the rationale applied in the E case applies here, namely,

that WriteK will only change the data that is contained in normal

pages. The view of the H domain does not permit it to observe

the contents of normal pages, so writes to normal pages will not be

observable. The frame conditions in the WriteK specification ensure

that the reference page-directory and regions state components, both

of which are observable to H , do not change. The action does not

change the status of any page. Thus, no state component that H can

observe is modified by WriteK, so the view of the state seen by H in

the before and after state will be the same.

(l) canStepTo s WriteU s ′ ⇒ s
H∼ s ′

As described earlier, WriteU is specified in terms of the same relation
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as WriteK so the same rationale applies as in the previous case.

At the time of writing, we have mechanically verified cases (a), (b), (h), (i),

(j), (k), and (l), following the basic intuition described here. We anticipate

that proving the cases that relate to mappings management will be more

complex than the proofs so far, but are hopeful that the sketches presented

here will help direct us towards a proof architecture that minimizes the

difficulty.

Step 4: Prove weak step consistency by cases. Recalling the definition of weak

step consistency that we derived in Step 1,

s
u∼ t ∧ s

dom(a)∼ t ∧ canStepTo s a s ′ ∧ canStepTo t a t ′ ⇒ s ′
u∼ t ′

we can see that this proof will require 40 cases: one per action for each of

the four protection domains.

We can eliminate 12 of these 40 cases immediately because weak step

consistency can be derived from local respect for any action, a, such that

dom(a) does not interfere with u. Recall the definition of local respect:

dom(a) 6 u ∧ canStepTo s a s ′ ⇒ s
u∼ s ′.

canStepTo s a s ′ is an assumption of weak step consistency, so when

dom(a) 6 u, we can conclude that s
u∼ s ′. Similarly, we can conclude

that t
u∼ t ′ using local respect. The assumption s

u∼ t combined with

transitivity of ∼ gives us the desired conclusion, s ′
u∼ t ′.

It remains to prove the remaining 28 cases where the domain of the action,

a, is permitted to interfere with the domain, u. Intuitively, weak step

consistency captures the property that information cannot flow from a
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S

(view (dom(a)), view u)

��

a
// P(S )

view u

��

Vdom(a) × Vu
// P(Vu)

Figure 5.3: An illustration of the intuition behind weak step consistency. S repre-

sents the set of states, Vdom(a) represents the view of the acting domain, and Vu

represents the view of the domain u. With our relational specification, a single

before state will be related to a set of after states by an action, a. For weak step

consistency to hold, there must exist a function (represented by the dotted line)

from Vdom(a) × Vu to P(Vu).

third-party domain (a domain that is neither the actor nor the domain,

u) to u. We can express this property by saying that the view of u in

the after state must be a function of the views of dom(a) and u in the

before state. To handle nondeterministic actions, we express the property

by saying that the set of u views in the possible after states is a function

of the before views. Figure 5.3 illustrates this intuition.

To complete the proof of weak step consistency, we can employ the same

reasoning techniques that were used in the proof sketches of Lemma 1,

Lemma 2, and local respect. Specifically, we must demonstrate the exis-

tence of a function from the before views to the set of after views in each

case. We sketch the proof of an example case in more detail to illustrate

the application of these techniques to weak step consistency.

Example Case: Let a = WriteE va val and u = H .

In this case, we must prove that a write action in the environment domain

does not update the state in such a way that information from the K or
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U domains becomes visible through the view of H . By design, WriteE

stores val in memory at virtual-address va and should not make any other

changes to the state. We can see from the specification of WriteE that va

must map to a page with the Environment status in the before state in

order for there to be any related after states. The status of all other physi-

cal pages, which includes their contents, does not change. The contents of

environment pages are within H ’s view, so H can observe the data value

that is written. Thus, we must show that the views of E and H contain

all of the information necessary to perform the write, because otherwise H

might be able to distinguish the after states, s ′ and t ′, based on invisible

differences between the before states, s and t .

The only information used to perform the write is the virtual-to-physical

mapping for the page address va. H can observe the virtual-to-physical

mappings for every page-directory, including the reference page-directory,

which is used by the environment domain. To connect this explanation to

the intuition presented in Figure 5.3, we can also construct the function

that maps VE × VH to P(VH ):

\(e :: EView, h :: HView) ->

if isJust (eObservablePages e (fst va)) then {h’} else {}

where

h’ = h{ pages = pages’ }

pages’ ppa = if ppa == ppa’ then page’ else pages h ppa

ppa’ = translatePageH h (referencePdir h) (fst va)

page’ = case pages h ppa’ of

Just (Environment pagedata) ->

let pagedata’ off =
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if off == snd va then val else pagedata off

in Just (Environment pagedata’)

x -> x

Here, translatePageH is simply a specialized version of translatePage

that performs the address translation using the structures in the H state,

rather than a global state. By defining this function, and by our previous

argument that WriteE only uses information from VE × VH , we can con-

clude that weak step consistency holds in this case. We leave the proof of

the remaining 27 cases as future work.

5.8.4 Model Validation

Though our proof of the unwinding conditions is still incomplete, just the act of

sketching out the proof has already led to minor changes in the formalization. The

model presented in this chapter incorporates the appropriate adjustments, but in

this section we describe the rationale for the changes in to illustrate the process of

identifying and correcting an oversight in the model.

The first change concerned the view functions for observing memory in the

environment, kernel, and user domains. The views in the original model did not

contain any notion of a reference count on pages (see Section 5.4.1 for a discussion

of domains and their views). The view of each domain was a partial mapping from

virtual page address to contents without any additional information, which seemed

like a reasonable abstraction for the functionality provided by virtual memory on

the IA32. Unfortunately, weak step consistency cannot be proved with the original

view definitions. The problem is best illustrated through an example, shown in

Figure 5.4.
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virtual page

addresses

s1 t1 t2 t3s2 s3

P1 P2

view of E in state s view of E in state t

identical

physical pages

(a) s
u∼ t

virtual page

addresses

WriteE

s1 t1 t2 t3s2 s3

value changed

by WriteE

no longer

equal to P1

P1 P2

view of E in state s view of E in state t

(b) s
u

6∼ t

Figure 5.4: Motivation for reference counts in the views of the environment, ker-

nel, and user domains. A domain can observe the fact that a particular physical

page is multiply mapped because a single write will change the value of more than

one location. However, without reference counts, the domain will not be able to

distinguish two states with different multiple mapping configurations. This is a vi-

olation of weak step consistency, because executing the same action in (seemingly)

equivalent before states will not produce equivalent after states.
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In Figure 5.4(a), the states s and t are indistinguishable because the visible

virtual addresses all map to the same values. However, a single WriteE action

produces states that are no longer equivalent because of the hidden sharing, as

shown in Figure 5.4(b). Weak step consistency guarantees that the after states

produced by executing an action in equivalent before states will be equivalent,

which is not true in this case. We can conclude from this example that physical

page sharing between multiple virtual addresses is an important part of the envi-

ronment domain’s view. After making this observation, we updated the view of

the environment domain to include a reference count that reflected page sharing.

The same rationale applies for the kernel and user domains, so we added reference

counts to their views as well.

Another change we made to the model was to introduce the page status value

NotInstalled. During the course of developing the model, we experimented with

a few different approaches for handling the possibility that some addressable pages

of physical memory may not be present in a given system configuration. At one

point, we explicitly included a parameter describing the list of installed pages and

constructed all of our specifications using forall and exists operators over this list.

This approach did seem like a good fit once we began to think about mechanization,

so we were motivated to introduce the status value NotInstalled.

5.9 SUMMARY

In this chapter, we provided a definition of memory-safety for the H interface in

terms of a noninterference security policy. We instantiated the Rushby frame-

work [82] to formalize two novel properties called execution environment integrity

and address-space integrity that supplement the traditional definition of memory-

safety. These integrity properties ensure that the Haskell run-time environment
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cannot be corrupted, even when we use potentially unsafe operations in the imple-

mentation of H.

Our work in this dissertation introduces the framework and methodology for

reasoning about memory-safety as a noninterference property. Much future work

remains before we can conclude that our implementation of H is memory-safe

according to our definition. In particular, we must:

• Demonstrate that H is memory-safe according to the colloquial definition

(for example, that no H operation should dereference a null pointer).

• Prove the unwinding conditions for the specifications described in Section 5.7.

We have sketched some of the steps necessary for this proof in Section 5.8

and formally verified a few cases, but a complete proof is necessary before

we can conclude that the specifications are memory-safe.

• Establish a formal connection between the model and the implementation.

Without formally connecting the specifications to the real operations of H,

we cannot use our formalism to conclude anything about the operations that

are actually called by client kernels. Section 5.7 describes the properties

that a valid instantiation must satisfy; we must prove these properties of our

implementation to establish that our implementation is memory-safe.

As we pursue these topics, it is possible that we will need to make changes to certain

aspects of the formalization presented here. In particular, the specifications, the

well-formedness constraints, and the implementation of the H primitives might

not satisfy the properties above without some modification. For example, the

well-formedness conditions might be insufficient, in which case we would add any

necessary constraints on the state.
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Chapter 6

IMPLEMENTING THE ABSTRACTION LAYER

In this chapter we describe the implementation of the abstraction layer. We focus

on the essential implementation techniques, rather than providing an exhaustive

catalog of every function and its implementation. Sections 6.1 and Section 6.2

describe our implementation of H using a monad with fine-grained type constraints

captured by type classes. Section 6.3 explains the bootstrapping code in H and the

techniques that are used for communicating hardware configuration information to

the client kernel. Section 6.4 discusses our approach to managing page-tables and

page-directories. Section 6.5 describes the implementation of the techniques for

enforcing memory-safety. Section 6.6 presents the implementation of the function

that adds user-space mappings. Section 6.7 explains our implementation of kernel-

space mappings. Finally, Section 6.8 explains our mechanism for executing user

programs from Haskell.

6.1 SAFELY ENCAPSULATING THE ABSTRACTION LAYER OP-

ERATIONS

We implement the H interface as a monad that supports precisely those operations

that we described in the abstraction layer design in Chapter 4. This monad, called

H, replaces the IO monad as the base monad in an H-based system. Under the

hood, we implement the H monad using the facilities of the IO monad, but the

underlying implementation is not observable to the client kernel. Clients of the H

interface cannot access any effectful operations that are not explicitly exported by
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the H monad. All of the unsafe functionality from the IO monad is inaccessible

because of the static scoping mechanisms available through the Haskell module

system. Figure 6.1 illustrates this design.

IO monad

H monad

client

kernel

Figure 6.1: The H monad interface. Though we implement the

H monad using the potentially unsafe features of the IO monad,

the Haskell compiler ensures that client kernels only access the

H monad operations.

The H monad is essentially a wrapper for the IO monad representation. Be-

cause the representation is hidden, we can also store private local state needed by

the H implementation without being concerned that the state will be corrupted

by a client kernel. The local state could be anything that we find useful in the

implementation of H; for example, we introduce a single state component for track-

ing the virtual addresses where page-tables and page-directories are mapped (these

mappings allow H to read and write page-tables/directories without page faulting).

We track the virtual address mappings for page-tables and page-directories us-

ing the Haskell library type for dictionaries called Map (defined in the standard

library Data.Map). The HMap dictionary maps physical addresses to virtual ad-

dresses. The physical addresses represent the physical locations of page-tables or
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page-directories that we would like to access in the implementation of H. The vir-

tual addresses correspond to locations in kernel-space through which H can access

the specified physical page without faulting. We assume that the arbitrary physi-

cal and virtual addresses permitted by the HMap type are aligned to the page-size

on the machine. A physical page that is not in the dictionary cannot be accessed

by H.

type HMap = Map (Addr Physical) (Addr Virtual)

Section 6.4 will cover more details about this mechanism for physical memory

access in H.

We incorporate our dictionary into the H monad using a state monad trans-

former with the IO monad as the base. We define H as a newtype with a hidden

constructor so that the client cannot observe the representation of the monad.

newtype H a = H { unH :: ST HMap IO a }

unH extracts the underlying computation from inside the H monad constructor. We

use unH as a convenience within the implementation of the monad; this function

is also hidden from the client.

Within the definition of our H primitives, we use the liftIO operation to embed

computations from the IO monad into the H monad. This is necessary because

many of the low-level services that H uses to provide operating system support, for

example, foreign function calls, must run in the IO monad. For monads constructed

with a monad transformer, a value from the underlying monad can be turned into

a value of the transformed type (in this case, H) using a function called lift, as

shown in the definition of liftIO.

liftIO :: IO a -> H a

liftIO m = H (lift m)

It is crucial that the client cannot access liftIO: this function converts any IO
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operation into an H operation and would eliminate our ability to distinguish po-

tentially unsafe computations from safe ones if used improperly. We rely on the

module system, covered in Chapter 3.5, to restrict calls to this function.

The only operation available to the client is the run operation that executes a

computation of type H and produces a result of type IO. We must include such

a function because we cannot change the type of the main function required by

Haskell: the client kernel must contain a top-level function called main of type

IO (). We intend for the client to invoke runH only once in the main function to

produce a type-correct program. The client could produce unsafe code by running

the safe H component of their program interspersed with unsafe IO operations, but

the violation of the intended H model would be obvious from inspecting the code.

runH :: H a -> IO a

runH (H m) = do (x,_) <- (unST m) Map.empty

return x

We run an H computation by supplying the state-monad run function with an

initial value (an empty memory map) for the state component.

6.2 TYPE CLASSES FOR FINE-GRAINED EFFECT TRACKING

The H monad allows a client kernel to access the abstraction layer operations in a

tightly controlled, safe way. The type alone tells us which side-effects a function

might perform: a monadic type H a signals that a function may perform any

side effect defined by the H monad while a non-monadic type guarantees that the

function is side effect free. Expressing this kind of explicit effect tracking using

types is one of the benefits to writing our kernel in Haskell, but the granularity of

the effect tracking is still fairly coarse because of the diversity of effects available

through H. Most functions that run on top of H will only require a subset of the H

monad’s functionality, but a type of the form H a does not allow us to distinguish

which of H’s operations a particular function might use.
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In Chapter 3 we demonstrated how type classes allow us to express predicates

on Haskell types. In particular, we can define predicates on monadic types that

capture dependencies on specific monadic operators. For example, a timer inter-

rupt handler that has no arguments and only accesses the port I/O functionality

of H can be written with the type:

timerInterrupt :: (Port m) => m ()

The Port m constraint indicates that timerInterrupt depends on the functional-

ity defined in the Port class. The definition of Port includes all of the H functions

for accessing I/O ports. We know from the type alone that timerInterrupt will

not access any of the H operations that are not described in the Port class—the

type is a static guarantee that timerInterrupt does not modify any user map-

pings, delete any page-directories, or execute any user programs (which would be

rather surprising behavior for a timer interrupt handler, after all).

The client may use these classes in isolation to define functions with precise

types or in combination to create functions that access a variety of the effects

available through H. The timerInterrupt function is an example of the former

case. In contrast, consider the function for creating a new thread from our L4

kernel: this function allocates a fault context for the new thread and might allocate

a new page-directory (if we are creating the thread in a new address-space). If the

thread is being created in a new address-space, the function must also set up some

initial user-space mappings in the new page-directory. Using the predicates defined

in Table 6.1, we give createThread the following type:

createThread :: (Execution m, UserMemory m, Paging m) => m ()

Decomposing the H monad into fine-grained classes allows us to give more refined

types to the functions of the client kernel, strengthens our compiler-checked docu-

mentation, and has the potential to make verification easier. The set of behaviors

that are possible in the timerInterrupt function are much more limited than
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Class Name Class Operations Class Name Class Operations

Paging allocPageMap IRQControl enableIRQ

freePageMap disableIRQ

createPageMapPage maskAckIRQ

UserMemory addMapping Execution allocFaultContext

modifyMapping readRegister

removeMapping writeRegister

readMapping execute

KernelMemory addKernelMapping Modules modules

readKernelMapping

writeKernelMapping

readWordAtOffset

writeWordAtOffset

Port inB Debug putch

inS putstr

inW putstrln

outB

outS

outW

Table 6.1: The division of the H interface functions into type classes. See Chapter 4

for the details of each of these functions.

those in the createThread function, which is useful knowledge for both formal

and informal reasoning.

To demonstrate the mechanism for defining type classes on monadic types

in Haskell, we will examine the definition of the UserMemory type class and the

accompanying definitions that are necessary to use the class in our client kernels

with H. As shown in Table 6.1, the UserMemory class describes the operations on

the user-portion of the address-space. It contains four operations: adding a user-

space mapping; modifying the permissions on a user-space mapping; removing a

user-space mapping; and reading an existing mapping.
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The first step in our definition of UserMemory is to declare the class and the

functions that it supports.

class Monad m => UserMemory m where

addMapping :: [PageMapPage] -> PageMap -> Fpage Virtual

-> PhysicalRegion -> Perms -> m (Maybe Bool)

modifyMapping :: PageMap -> Fpage Virtual -> Perms -> m Bool

removeMapping :: PageMap -> Fpage Virtual -> m (Maybe [PhysicalRegion])

readMapping :: PageMap -> Addr Virtual -> m (Maybe MappingInfo)

Note that the declaration of UserMemory includes a signature for each of the op-

erations in the H interface that performs user-space mappings, but replaces each

use of the H type constructor with a type variable m. Because UserMemory de-

fines a predicate on monadic types, we include the constraint Monad m for the type

variable m.

We declare two instances of the UserMemory class. The first describes how the

functions of UserMemory are implemented for H, binding the overloaded names

to the non-overloaded primitives defined by the H interface implementation. The

name Impl.addMapping refers to the H implementation of the addMapping function

that is defined in a module called Impl, and so on.

instance UserMemory H where

addMapping = Impl.addMapping

modifyMapping = Impl.modifyMapping

removeMapping = Impl.removeMapping

readMapping = Impl.readMapping

The second instance is for monads constructed with a monad transformer. This

allows us to use the functions of UserMemory in transformed versions of the H

monad, for example, a monad that adds a state component to H using a state-

monad transformer.
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instance (MonadT t, Monad (t m), UserMemory m) => UserMemory (t m) where

addMapping sr pm r fp p = lift (addMapping sr pm r fp p)

modifyMapping pm fp p = lift (modifyMapping pm fp p)

removeMapping pm fp = lift (removeMapping pm fp)

readMapping pm va = lift (readMapping pm va)

The definitions in the transformer instance lift the definitions of the UserMemory

functions into the transformed monad. The ability to use the functions of H in

transformed versions of the monad is important in our case study (Chapter 7),

where we will incorporate kernel-specific state-components on top of H.

The definitions for the other type classes follow the same pattern. These classes

are easy to define and modify, so client kernel developers can create any organi-

zation of the H operations that turns out to be useful. In our case study, the

compiler-checked documentation was useful during development and many func-

tions did end up with very precise types. However, the organization presented here

did not capture the common patterns of side-effect usage as well as it could, in par-

ticular, with respect to the Debug class. Adding a simple print statement to track

down a bug required us to modify the type signature for the problematic function,

as well as the signatures for all of the calling functions, their calling functions, etc.

In a future version of the implementation, we would construct the H type classes

differently so that debugging facilities are available in all H operations, rather than

creating a special type class for debug operations. This would reduce the number

of type signature modifications needed during debugging.

6.3 BOOTING

The H interface executes with support from a modified version of the GHC run-

time system [31]1. The modifications allow us to run Haskell programs on bare

1The original effort to port the GHC run-time system to bare metal was done by Jérémy

Bobbio and Sébastian Carlier as part of the hOp project (unfortunately, the project website is no
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metal by removing GHC’s dependencies on an underlying operating system. The

fundamental services provided by the run-time system, such as garbage collection

and program execution, are not affected, but some of GHC’s higher-level library

features need to be removed.

Even though the run-time system is designed to run on bare metal, certain

facilities must be in place before Haskell code can start executing. For example,

we must explicitly set aside memory for the Haskell heap because there is not

an underlying operating system to provide memory to GHC on demand. In this

section, we present the bootstrapping tools that help us to reserve memory for

the run-time system, H, and the client kernel, as well as the mechanisms through

which we communicate configuration information safely from the start-up code to

the client kernel.

The primary function of the bootstrapping code is to divide the available phys-

ical memory between the execution environment and the client kernel. Along the

way, H performs the following initialization and configuration tasks:

• Allocate and Initialize Page Status Values: Every page of physical

memory has an associated status value that H uses to enforce memory-safety

(as discussed in Section 4.1 and Chapter 5). The bootstrapping code is

responsible for allocating and initializing the data structure that tracks status

information throughout the execution of H (see Section 6.5 for details about

this data structure and its operations).

• Initialize the Haskell Heap: Our Haskell code cannot run until we provide

the run-time system with memory for a heap. H selects a portion of the

longer online). Andrew Tolmach and Thomas Hallgren developed the first version of the run-time

system used in the H interface in conjunction with their work on the House operating system [39].

Our current work is based on a version of the run-time system created by Kenneth Graunke [34]

using patches to GHC created by Adam Wick for the HaLVM project [40] at Galois, Inc. [28].
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custom RTS library

GHC run-time system

Haskell H interface code

client kernel

C and ASM 

H interface code

H accesses configuration

data stored in C

H starts client by invoking

Haskell main function

H provides

heap memory

to GHC

hardware

Figure 6.2: The low-level architecture of H. A custom run-time

system library provides GHC with bare metal implementations

of important system services, such as timers. The C portion of

H configures the system and provides the GHC run-time system

with memory for the Haskell heap. Once the bootstrapping

process is complete, H invokes the main function of the client

kernel and we begin executing Haskell code.

available physical memory, registers this memory with the run-time system,

and updates the status of the pages to reflect their new use as protected

environment pages.

• Save Module Information From Grub2: H passes the set of executable

modules from Grub to the client kernel by constructing safe Haskell wrappers

of the raw module descriptors (see Section 4.3.2). To enable us to construct

these wrappers later, the bootstrapping code saves the module descriptors in

a persistent data structure that is accessible from Haskell.

2Grub is a bootloader package maintained by the GNU Project [37]. It runs before the kernel

and passes on important configuration information from the BIOS, and information about data

loaded on the machine, such as user programs and the kernel (in the form of modules).
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• Configure Kernel Space Mappings: The bootstrapping code is respon-

sible for setting up the reference page-directory that we use to guarantee

a consistent view of kernel-space in all address spaces. We will cover the

specific design of the reference page-directory in Section 6.7.

• Compute the Initial Regions: Any free memory remaining after the rest

of the initialization tasks is passed on to the client kernel via the primitive

initialRegions. The bootstrapping code computes the free areas of mem-

ory and saves a description of these initial regions in a data structure that

the Haskell code can access later.

Once all of the configuration and initialization tasks are complete, we can begin

executing Haskell code. H calls into Haskell by invoking the main function of

the client kernel. The client kernel begins running and may request configuration

data from the Haskell H interface, such as the set of initial regions. H handles

such a request by using the FFI to access the information that we saved in C

during the bootstrapping process. Figure 6.2 illustrates these components of the

H architecture and the start-up procedure.

All of the configuration information computed during start-up is stored in C

arrays. The Haskell code processes this raw description of the data to create

Haskell data structures that H safely exports to the client. As an example of

this technique, let us consider the implementation of the modules function, which

returns the set of executable modules loaded by Grub (see Section 4.3.2 for more

information about the modules function).

The boot-time information about modules comes from a bootloader by Mark P.

Jones, called mimg, that runs after Grub and before the kernel initialization code.

When mimg runs, it generates headers that describe the layout of physical memory,

which the kernel initialization code parses to create the module structures. Each

header is three words long with the following format:



180

address of first byte address of last byte entry point

The first word contains the start address of the region being described, the second

contains the end address of the region, and the third contains the entry point of the

module (if it is executable). An entry point of 0xFFFFFFFF signals that module

is not executable. We access the array of headers by creating a pointer to the array

using the FFI.

foreign import ccall unsafe "memory.h & hdrs"

c_hdrs :: Ptr (Ptr HWord)

The foreign keyword signals that we are creating a foreign function that we will

import from C (a ccall). The portion of the declaration that is in quotes describes

the location and name of the C variable or function being accessed. In the example,

the declaration imports the C variable hdrs with the Haskell name c_hdrs. The

keyword unsafe signals to the compiler that an imported function does not call

any Haskell functions (which requires extra bookkeeping).

Within the header array, the first element of the array contains the number

of entries. The remaining entries follow the previously described header format.

We assume that the first header describing an executable module refers to the

kernel. All other executable modules from the headers array will be exported to

the client kernel by modules. The compile-time configuration of the system must

ensure that the ordering invariant holds, because exporting the kernel module

would potentially allow the kernel code to be overwritten.

The modules function, shown in Figure 6.3, parses the header array and returns

a list of Module structures. Much of the work done by modules is to split the regions

described by the array into smaller flexpage-sized regions so that we can export

the memory area occupied by each module using the PhysicalRegion type (see

Section 4.3.2 for a discussion of this design choice). We use a function from the

bootstrapping code (written in C) called c_regionToFlexpages to do the splitting.
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modules :: H [Module]

modules =

liftIO $

do hdrPtr <- peek c_hdrs

numHdrs <- peekByteOff hdrPtr 0

fpPtr <- mallocBytes 160

ms <- mapM (readModule hdrPtr fpPtr)

[1..numHdrs]

free fpPtr

return (tail (catMaybes ms))

where

nextPage e = align (e+(1<<<12)) 12

createRegion :: Ptr HWord -> Int

-> IO PhysicalRegion

createRegion fpPtr i =

do fpval <- peekByteOff fpPtr i

let fp = Fpage fpval

return (PhysicalRegion fp RAM)

readModule :: Ptr HWord -> Ptr HWord -> Int

-> IO (Maybe Module)

readModule hdr fp i =

do entry <- peekByteOff hdr (12*i)

if entry /= 0xffffffff

then do first <- peekByteOff hdr (12*i-8)

last <- peekByteOff hdr (12*i-4)

nfps <- c_regionToFlexpages first

((nextPage last) - 1) fp

rs <- mapM (createRegion fp)

[0,4..(4*(nfps-1))]

return (Just (Module rs entry))

else return Nothing

Figure 6.3: The modules function. This function processes the module configu-

ration information supplied by the bootstrapping code in C to produce a list of

Haskell Module structures.

foreign import ccall "memory.h regionToFlexpages"

c_regionToFlexpages :: HWord -> HWord -> Ptr HWord -> IO Int

c_regionToFlexpages takes the start and end address of the region to be broken

up and returns a corresponding list of flexpages in an array supplied by the caller.

We allocate this array explicitly from the Haskell heap as temporary storage and

then process the result to create a list of physical regions occupied by a module.

For simplicity we allocate enough space to hold the maximum possible flexpages

that c_regionToFlexpages could generate. This is a waste of space and could

be optimized in future versions, but we only expect modules to be called once
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during start-up so the overhead should not be significant. The actual parsing of

the headers array is done using the pointer access functions peek and peekElemOff

defined in the foreign function interface.

Initial region information is communicated from C to Haskell to the client using

essentially the same approach that we use for communicating module data. When

the bootstrapping code begins executing, an array of header information, passed on

from mimg, accurately describes the available memory on the machine. Through-

out the bootstrapping process, we allocate portions of that available memory for

the Haskell heap and for various configuration data arrays. When we finally enter

Haskell, the headers array no longer provides an accurate description of memory

usage, so the bootstrapping code must save a new description of available memory

that accounts for all of our allocations. To make the generation of PhysicalRegion

values easier, the C code stores flexpage-sized regions of memory that the Haskell

code can use without any additional processing. As before, we import the array

containing the free regions using the FFI.

foreign import ccall unsafe "memory.h & initial_regions"

c_initial_regions :: Ptr (Ptr HWord)

The start-up code guarantees that this pointer is appropriately initialized before

we begin executing Haskell code; it is never modified after that point.

The implementation of initialRegions (shown in Figure 6.4) turns each flex-

page in the initial regions array into a PhysicalRegion to export to the client.

We read the length of the array from the first word and map the region construc-

tion function across the remaining entries. All of these regions are initialized with

normal RAM as the region type. The memory mapped I/O regions are initialized

via a different mechanism: we explicitly construct each I/O region in Haskell and

combine the results into a list called ioRegions. We currently only include video

RAM in the initial regions, but the set of supported I/O regions is easily extensible

(we have already added the support necessary for the VBE frame buffer, but this
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initialRegions :: H [PhysicalRegion]

initialRegions = liftIO $ do fps <- peek c_initial_regions

numfps <- peekByteOff fps 0

ramrs <- mapM (newR fps) [4,8..(4*numfps)]

iors <- ioRegions

return (ramrs ++ iors)

where

newR :: Ptr HWord -> Int -> IO PhysicalRegion

newR fpPtr i = do fpval <- peekByteOff fpPtr i

return (PhysicalRegion (fpageFromWord fpval) RAM)

Figure 6.4: The initialRegions procedure. The bootstrapping code produces an

array of flexpages that describe the free memory on the machine that has not been

claimed for kernel purposes. The initialRegions procedure processes this array

to create physical region handles that cannot be forged by the client.

functionality is not thoroughly tested). initialRegions combines the result of

the region processing for conventional memory with the ioRegions list to produce

the set of available physical regions.

6.4 PRECISE KERNEL CONTROL OVER PAGE-MAP MEMORY

Client kernels have full control over the memory that H will use to store page-

tables and page-directories in the H interface design. Clients also specify the

virtual addresses where these pages of memory should be be mapped in kernel-

space. The H implementation must track all of the physical pages and virtual

addresses that the client has supplied for the interface to use. Section 6.1 presented

the mechanism for tracking client-supplied memory in the monad, whereas this

section describes the implementation techniques that we employ to allow client

control over page-map memory in a way that is memory-safe and that prevents
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kernel page faults. We present the routines that help H to enforce safe status

transitions in the implementation of memory operations and the approach that we

use to guarantee that H will not page fault during memory management operations,

even when accessing client-supplied page-tables and page-directories that can only

be mapped at client-chosen virtual addresses.

The PageMapPage type introduced in Section 4.4.1 is an abstraction for repre-

senting either a page-table or page-directory page that the client wishes to donate

to H. A page-map page contains a page-sized physical region that will be used to

store the table or directory and a kernel-space virtual-address where the page will

be mapped. We define the type in a straightforward fashion using a record with a

field for each component.

data PageMapPage = PageMapPage {

physicalPage :: PhysicalRegion,

mappedAddr :: Addr Virtual

}

Each PageMapPage must satisfy certain invariants in order for H to safely use the

page: the physical region component must be a single page of normal RAM and

the virtual address must be a kernel-space address that is available to the client for

mapping. The client-accessible function constructing values of the PageMapPage

type checks that the invariants hold on the physical region virtual address that

the client is attempting to turn into a page-map page. The utility function

isKernelMappableVirtualAddress tests if a particular address is in the set of

kernelMappableVirtualAddresses (introduced in Section 4.4.1), and will be pre-

sented in Section 6.7.

createPageMapPage :: PhysicalRegion -> Addr Virtual

-> H (Maybe PageMapPage)

createPageMapPage pr@(PhysicalRegion _ RAM) va

| regionSize pr == pageBits

= do isClientAddr <- isKernelMappableVirtualAddress va
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if isClientAddr then return (Just (PageMapPage pr va))

else return Nothing

createPageMapPage _ _ = return Nothing

H will never create a PageMapPage that does not satisfy the invariants and there is

no other mechanism available to the client for creating values of the PageMapPage

type.

Once the client creates a PageMapPage, they can supply that page to any H

function that might need to allocate a page-directory or page-table. The physical

page and the virtual address contained in the page-map page remain free until H

actually needs the memory. At that point, H performs any state-dependent safety

checks that could not be performed in advance, converts the status of the page to

the appropriate type (page-table or page-directory, depending on the context in

which the page is being used), and installs a mapping from the specified virtual

address to the physical page.

The addHMapping function (shown in Figure 6.5) is responsible for adding the

association between the physical region and the virtual address to the HMap dic-

tionary. Before updating the dictionary, addHMapping must make sure that the

virtual address component is not already mapped to a page-table or page-directory

in the dictionary. After a successful call to addHMapping, the HMap dictionary will

contain an entry for the page-map page. We do not modify the status of the page

here; the caller updates the status (and checks the safety of the transition) as

appropriate for the intended use of the page.

Installation of the virtual-to-physical mapping where H can read and write

the page-map page is handled by the utility installPageMapPage, also shown in

Figure 6.5. installPageMapPage adds a kernel-space mapping from the virtual

address contained in the page-map page to the start address of the physical region

component. The implementation ensures that the mapping will be visible in every

address space. (We will cover the techniques for adding mappings in Sections 6.6
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addHMapping :: PageMapPage -> H Bool

addHMapping (PageMapPage pr va) =

do inuse <- isMappedToH va

if inuse then return False

else do update (\hms -> ins hms)

return True

where

paddr = regionStart pr

ins = Map.insert paddr va

installPageMapPage :: PageMapPage -> H Bool

installPageMapPage pmp =

do vpdir <- systemPageMapMappedAddress

pt_addr <- liftIO $

c_find_pt vpdir (mappedAddr pmp)

if pt_addr == (-1) then return False else

do liftIO $

c_add_table_entries vpt vfp ps 0 0x7

return True

where

vpt = fromIntegral pt_addr + kernelSpace

vfp = fpageToWord

(fpage (mappedAddr pmp) pageBits)

ps = regionStart (physicalPage pmp)

Figure 6.5: Utilities for validating and installing a PageMapPage. The addH-

Mapping function adds an entry to the HMap dictionary for a particular page-

map page after making sure that the virtual address component is free. The

installPageMapPage function adds a mapping in kernel space from the virtual

address component of a page-map page to the physical page component. The

address-space manipulations are done with the help of the C functions c find pt

and c add table entries—these functions will be covered in more depth in Sec-

tion 6.6. systemPageMapMappedAddress is a pointer to our implementation of the

reference page-directory presented in Chapter 5.

and 6.7.)

As we saw in Chapter 4, H automatically returns the memory for any page-

tables that become free as the result of a removeMapping operation. Client kernels

explicitly free page-directories using the freePageMap operation. Before returning

one of these pages to the client, H must remove the entry for the page from the
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HMap dictionary. As with the utilities for creating a page-map page, the caller is

responsible for updating the status of the page as appropriate.

removeHMapping :: Addr Physical -> H ()

removeHMapping pa = update

(\(hms::HMap) -> Map.delete pa hms)

The implementation of removeHMapping uses the state-monad function update

(which applies a given function to the state) in conjunction with the library func-

tion Map.delete to modify the HMap dictionary.

Allowing the client to control the physical and virtual memory that H uses for

page-tables and directories guarantees that we always reserve precisely the right

amount of memory for page-map storage. If we did not allow the client to control

page-map pages in this way, then H would need to designate areas of memory

statically for page-map storage. Undoubtedly the static solution would lead to an

underutilization of resources or a premature exhaustion of the memory pool (even

if there were free pages/addresses available in the client kernel). Instead, with

our dynamic approach, H must do some extra tracking and dynamic checking to

ensure that the memory-safety invariants of the system are never violated and that

H does not page fault. However, we improve memory utilization and allow clients

greater flexibility to define their own memory management policies.

6.5 ENFORCING SAFE PAGE STATUS TRANSITIONS

As we saw in Section 4.1, each page of physical memory has a dynamic status

that reflects its current usage in the system. We identified four types of physical

memory—page-directory pages, page-table pages, normal pages, and environment

pages—and defined a limited set of transitions between these page types. Run-time

checking of every transition is a fundamental part of our memory-safety enforce-

ment mechanism. Every H operation must satisfy the specification described in
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Section 5.7, and, more generally, the high-level memory-safety property introduced

in Chapter 5. In this section, we will examine the implementation of page status

tracking in H and the utilities that H uses to validate status transitions during

execution.

We represent dynamic status values in the interface using a Haskell datatype.

The datatype has four constructors—Protected, Reserved, PageMapHandle, and

Mapped—that correspond directly to the four roles for memory—environment pages,

page-table pages, page-directory pages, and normal pages—respectively.

data Status = Protected | Reserved | PageMapHandle | Mapped HWord

The Mapped constructor takes a single argument that serves as a reference count

for the number of times that a particular page is currently mapped. Reference

counting is an important part of our mechanism for ensuring that user processes

are never able to access memory when it is in use by the kernel for paging structures

or other data.

We track page status values in an array that maps each page of physical memory

to an integer status value. We define the array in C and create a Haskell interface

to the standard operations on the array. We use a C array so that we can easily

initialize the status array in the start-up code for H: the start-up code configures

the environment and set of available pages, and initializing the status values during

boot prevents us from having to package this information up to pass to Haskell.

Each integer status value maps to a value of the Status type that we defined in

Section 4.1: −1 corresponds to a Protected environment page, −2 corresponds to

a Reserved page-table page, −3 corresponds to a PageMapHandle page-directory

page, and any number greater than or equal to 0 corresponds to a Mappable normal

page. For normal pages, the status value also captures a reference counter, that

is, the number of places where the page is currently mapped.

The interface to the status array contains three functions that we lift into

Haskell using the foreign function interface: an operation for reading the status
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of a page, an operation for modifying the status of a page, and an operation for

modifying the status of many pages. For the single-page functions, the argument

of type HWord is the address of the page whose status is being accessed; for the

region update function the arguments of type HWord are the addresses of the start

and end of the region.

foreign import ccall "memory.h readPageStatus"

c_readPageStatus :: HWord -> IO Int

foreign import ccall "memory.h updatePageStatus"

c_updatePageStatus :: HWord -> Int -> IO ()

foreign import ccall "memory.h updateRegionStatus"

c_updateRegionStatus :: HWord -> HWord -> Int -> IO ()

These functions do not perform any checking or validation; they rely on the calling

function to validate any transition being requested before modifying the array.

Throughout the implementation of H, we will update status values using wrapper

functions that lift the behavior of these basic primitives into the H monad and

check to make sure that the status transition being performed is safe.

Reading the status array does not introduce any safety issues, so the wrapper

function is very simple. We read the integer status value from the array and

convert this number into a Status value with the toEnum function. We define

a custom instance of the Enum class—which describes operations for converting

between integers and datatypes, including the conversion functions toEnum and

fromEnum—for the Status type using the previously described mappings between

integers and the constructors of this type.

readPageStatus :: Addr Physical -> H Status

readPageStatus page

= do status <- liftIO $ c_readPageStatus page

return (toEnum status)
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We assume that the status array never contains an invalid number—we rely on

the correctness of the initialization code and the status array update functions to

enforce this property.

Correctly managing the status array is crucial from a memory-safety perspec-

tive. If we allow an invalid transition to occur by writing an invalid value into

the array, the system loses the ability to protect the integrity of environment and

page-map pages. We define the predicate checkTransition to validate a possible

page status transition before we actually update the status array. This predicate

reads the current status of a specified page and checks whether or not the pro-

posed new status represents a valid transition. checkTransition is false when we

attempt to modify the status of an environment page or convert a normal page

that is mapped to a user into a page-table or page-directory.

checkTransition :: Status -> Addr Physical -> H Bool

checkTransition new pa

= do old <- liftIO $ c_readPageStatus pa

case (toEnum old, new) of

(Protected, _) -> return False

(_, Protected) -> return False

(Mapped 0, Reserved) -> return True

(_, Reserved) -> return False

(Mapped 0, PageMapHandle) -> return True

(_, PageMapHandle) -> return False

(_, _) -> return True

If checkTransition returns True, then we know that updating the status array

with the proposed value will be safe.

To modify the status of a single page, we validate the safety of the requested

transition using checkTransition, updating the underlying status only if the tran-

sition turns out to be safe.
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updatePageStatus :: Addr Physical -> Status -> H Bool

updatePageStatus pa status

= do proceed <- checkTransition pa status

if proceed

then liftIO $ c_updatePageStatus pa (fromEnum status)

else return ()

return proceed

The result of updatePageStatus indicates whether or not we successfully updated

the page status.

To modify the status of an entire region, we must validate the status transitions

for the pages of the region individually. We again use checkTransition for this

purpose. A region update may only proceed if all of the status transitions are safe.

updateRegionStatus :: Addr Physical -> Addr Physical -> Status -> H ()

updateRegionStatus start end status

= do proceeds <- mapM (checkTransition status)

[start, start+pageSize..end]

if and proceeds

then liftIO $ c_updateRegionStatus start end (fromEnum status)

else return ()

The status update functions are private to the implementation of H, even though

the update functions only allow safe transitions. H relies on the correctness of

the status array and the client kernel cannot be permitted to affect H’s internal

structures.

In addition to the basic primitives for manipulating status settings, we define

a number of utility functions that make updating the status values of an entire

region easier. For example, we frequently need to increment the reference count

for a mappable region, even if the reference count of the individual pages is not

the same.
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incrementMappedCount :: PhysicalRegion -> H ()

incrementMappedCount pr

= do refCounts <- mapM readCount pagelist

if (all (>= 0) refCounts)

then zipWithM_ updatePage refCounts pagelist

else return ()

where

start = regionStart pr

pagelist = [start, start+pageSize..regionEnd pr]

readCount x = do count <- readPageStatus x; return (fromEnum count)

updatePage refCount paddr

= updatePageStatus paddr (Mapped (fromIntegral refCount+1))

If any page in the region is not mappable, then incrementMappedCount will fail,

possibly after updating the status for a portion of the region. The caller is responsi-

ble for checking that the pages of the region are actually mappable before invoking

this function. The analogous function, decrementMappedCount, decrements the

reference count of every page in a mappable region.

The status manipulation functions defined in this section provide a basis for

enforcing memory-safety in the memory-management functions of the interface. As

an example, let us consider the definition of allocPageMap. We first introduced

this function in Section 4.4.1 as the operation that converts a PageMapPage into a

page-directory.

allocPageMap :: PageMapPage -> H (Maybe PageMap)

allocPageMap pmpage

= do usable <- updatePageStatus page PageMapHandle

if usable

then do added <- addHMapping pmpage

installed <- installPageMapPage pmpage

if added && installed

then do liftIO $ c_alloc_pdir (mappedAddr pmpage)

return (Just (PageMap page))
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else return Nothing

else return Nothing

where

page = regionStart (physicalPage pmpage)

The first step in allocating a page-directory is to make sure that converting the

supplied page-map page into a page-directory will be safe. We invoke the func-

tion updatePageStatus for this purpose: if the page-map page is not free, then

updatePageStatus will return false and we will not proceed with the page-directory

allocation. Otherwise, the transition is safe and we update the page status. Once

we know that the page-directory can be allocated, we add a mapping for the page-

directory to the HMap dictionary using addHMapping, install a virtual-to-physical

mapping for H using installPageMapPage, and initialize the page-directory using

c_alloc_pdir. We return a PageMap to the client that contains the physical ad-

dress of the page-directory, but we hide this representation using a private newtype

constructor.

newtype PageMap = PageMap { pdir :: Addr Physical }

We use the address, rather than a pointer, because we never access the page-map

structure directly from Haskell.

6.6 DIVISION OF CODE BETWEEN C AND HASKELL

We implement the H interface using a combination of Haskell and C code, with

a small amount of assembly for accessing the hardware registers. Throughout the

implementation, we employ a strategy for dividing the code between C and Haskell

that places any potentially unsafe operations in C and any dynamic checking or

parameter validation needed for safety in Haskell. As a result, many operations

that could be coded in Haskell directly are instead implemented in C. We choose

this strategy for simplicity: each portion of the implementation is responsible for
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maintaining certain structures and invariants and the interface between the two

languages is clear. Note that the total amount of the unsafe code is the same

regardless of the approach; the techniques that would be necessary to implement

the potentially unsafe operations in Haskell have the potential to break type- and

memory-safety if used improperly.

In this section, we will demonstrate our approach to partitioning the interface

by examining the implementation of the addMapping function that we introduced

in Section 4.4.2. addMapping installs a new virtual-to-physical mapping in user-

space, using the C API to modify the underlying translation table structures as

necessary. The specifics vary with the nature of the mapping: the C API provides

functions for adding page-directory entries and adding page-table entries so that

superpages can be used wherever possible. The C API also defines functions related

to page-table management; there are primitives for locating an existing page-table,

installing a new page-table in a page-directory, uninstalling a page-table from a

page-directory, and zeroing a page. Table 6.2 summarizes the name, type, and

function of each primitive we will need in the definition of addMapping.

The implementation of addMapping is relatively complex because of the various

safety and correctness conditions the function must handle. The algorithm for

adding a mapping includes steps that perform the following tasks:

• Parameter Validation: The client specifies the virtual address range to

map and the physical region that the address will map to as parameters.

The virtual address region must be fully contained in user-space (to avoid

mapping over the kernel environment) and the physical region must be map-

pable in the current state (to avoid giving the user control over a page-table

or environment page).

• Determining the Mapping Type: The size of the memory region being

mapped determines the underlying mechanism that we will use to add the
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Function Description

zero_page

unsigned vaddr

Zero a page of memory. The parameter vaddr must be

mapped in the current address-space. We use this function

before installing a client-supplied page as a page-table or page-

directory and before freeing a page to a user.

find_pt

unsigned vpdir

unsigned vaddr

Find the page-table that corresponds to a particular virtual-

address. The argument vpdir is the address of the page-

directory where the page-table should be searched for—this

must be a kernel-space virtual address that is mapped in the

current page-directory. The function returns the physical ad-

dress of the underlying page-table, if one exists, and −1 oth-

erwise.

install_pagetable

unsigned vpdir

unsigned vaddr

unsigned ptab

Install a newly allocated page-table into the page-directory

specified by vpdir. We use the virtual address argument,

vaddr, to calculate the appropriate index within vpdir to

modify. The function assumes that vpdir is mapped and that

the entry being modified is not already in use.

add_table_entries

unsigned vptab

unsigned fp

unsigned phys

unsigned useraccess

unsigned perms

Add entries to a page-table. We use this function when map-

ping less than 4 MB of memory into an address-space. vptab

is the virtual-address of the page-table being modified; this

address must be mapped in the current page-directory. fp

is a flexpage that describes the virtual region being mapped;

phys is the first physical address in the mapping, useraccess

specifies whether or not the mapping will be user-accessible;

and perms defines the read/write permissions for the mapping.

We require that the size of fp is less than 4 MB.

add_dir_entries

unsigned vpdir

unsigned fp

unsigned phys

unsigned useraccess

unsigned perms

The analog of add_table_entries for adding page-directory

entries. We use this function to add superpage mappings

when a region of memory larger than 4 MB is being mapped.

vpdir is the mapped virtual address of the page-directory

being modified. The other parameters are the same as

add_table_entries. We require that the size of fp is greater

than or equal to 4 MB.

Table 6.2: The C API for managing page-tables and page-directory entries.
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mapping: for mappings smaller than 4 MB we use page-tables while for larger

mappings we use superpages (this is always possible because of the size and

alignment restrictions on flexpages).

• Page-Table Allocation: If the mapping will use a page-table, addMapping

must determine whether or not a page-table is already in place at the appro-

priate page-directory entry. If a page-table is not in place, then addMapping

will allocate a new page-table using a page-map page supplied by the client.

Our implementation will never allocate more than one page-table because the

alignment and size restrictions on flexpages guarantee that superpage entries

may be used for any region that cannot be mapped with a single page-table.

• Updating the Page-Table or Page-Directory: The addMapping func-

tion uses the C API to modify a page-table or page-directory as appropriate

for the mapping type.

To make the implementation more digestible, we break the definition of addMapping

into a number of small functions that roughly correspond to these tasks. The rest

of the section presents the definitions of these functions.

The first step in the algorithm for adding a mapping is to validate the virtual

and physical region parameters supplied by the client. The physical region must

be mappable in the current state, meaning that none of the pages contained in the

region are a page-table, page-directory, or environment page. The virtual region

must be entirely contained in user-space and the two regions must be the same

size.

validParameters :: PhysicalRegion -> Fpage Virtual -> H Bool

validParameters phys vfp

= do validTarget <- regionIsMappable phys

return (validTarget

&& (fpageEnd vfp < kernelSpace)

&& (fpageSize vfp == regionSize phys))
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The result of validParameters is true when the parameters satisfy all of the

required conditions.

We determine the mapping type by looking at the size of the virtual flexpage be-

ing mapped. A size value greater than or equal to 22 bits indicates that the flexpage

is large enough to use superpages for the mapping. The rest of the implementation

for this case is simple: we simply invoke the C API function for adding directory

entries to map the region (c_add_directory_entries is the Haskell wrapper for

add_directory_entries—we use the convention of adding a c_ prefix for all of

the C API functions).

checkMappingType :: Addr Virtual -> PageMapPage -> Fpage Virtual

-> PhysicalRegion -> H (Maybe Bool)

checkMappingType vpdir pmp vfp phys

| fpageSize vfp >= 22 =

do liftIO $

c_add_directory_entries vpdir fpw (regionStart phys) 1 perms

return (Just False)

Adding a mapping using a page-table is more complicated because we must deter-

mine whether or not a page-table already exists for the address range we would

like to modify. We use the C API function find_pt to look for an existing page-

table. The next step of the algorithm is determined by the result of this function:

when a page-table is present we modify the page-table entries straightaway using

mapWithoutAllocation; otherwise we allocate a new page-table along the way

using mapWithAllocationIfSafe.

| otherwise =

do pt_addr <- liftIO $ c_find_pt vpdir fpw

if pt_addr /= (-1)

then mapWithoutAllocation (fromIntegral pt_addr) vfp phys

else mapWithAllocationIfSafe vpdir pmp vfp phys

where

fpw = fpageFromWord vfp
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We return a Maybe Bool value from checkMappingType that indicates whether or

not the mapping succeeded (the Maybe component) and whether or not we needed

to allocate a page-table (the Bool component).

The definition for mapWithoutAllocation is a relatively straightforward wrap-

per for the C function that adds page-table entries. We use a lookup function

on the state component of the H monad called getHMappedAddress to determine

where the page-table of interest is mapped in the kernel virtual address-space.

getHMappedAddress :: Addr Physical -> H (Addr Virtual)

After we modify the page-table entries, we update the status for the physical region

using the incrementMappedCount from Section 6.5.

mapWithoutAllocation :: Addr Physical -> Fpage Virtual -> PhysicalRegion

-> H (Maybe Bool)

mapWithoutAllocation pt_addr vfp phys =

do vptab <- getHMappedAddress pt_addr

liftIO $ c_add_table_entries vptab (fpageFromWord vfp)

(regionStart phys) 1 perms

incrementMappedCount phys

return (Just False)

mapWithoutAllocation always succeeds. The result indicates to the caller that

we did not need to allocate a new page-table.

The definition of mapWithAllocationIfSafe is further broken up into pieces

that handle the extra steps required to allocate a new page-table. This function

tries to convert the supplied page-map page into a page-table by setting its status

value to Reserved. If this update fails then the page-map page was not free and

we cannot use it to allocate a new table.

mapWithAllocationIfSafe :: Addr Virtual -> PageMapPage -> Fpage Virtual

-> PhysicalRegion -> H (Maybe Bool)

mapWithAllocationIfSafe vpdir ptab vfp phys =
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do safe <- updatePageStatus (regionStart (physicalPage ptab)) Reserved

if safe then mapWithAllocation vpdir vfp phys

else return Nothing

Once we know that the page-map page is safe to use as a page-table, we proceed

with the installation process. First we install a mapping to the page in kernel-space

and add a link between the physical and virtual addresses in the HMap dictionary.

mapWithAllocation :: Addr Virtual -> Fpage Virtual -> PhysicalRegion

-> H (Maybe Bool)

mapWithAllocation vpdir =

do success <- installPageMapPage ptab

success’ <- addHMapping ptab

if success && success’

then do liftIO $ allocateAndModifyTable vpdir vfp phys

incrementMappedCount phys

return (Just True)

else return Nothing

If adding the kernel-space mapping for the page-table succeeds, then we proceed

with the actual installation of the page-table into the appropriate page-directory

and add the entries that represent the new mapping.

allocateAndModifyTable :: Addr Virtual -> Fpage Virtual

-> PhysicalRegion -> IO ()

allocateAndModifyTable vpdir vfp phys =

do c_zero_page (mappedAddr ptab)

c_install_pagetable vpdir fpw (regionStart (physicalPage ptab))

c_add_table_entries (mappedAddr ptab) (fpageToWord vfp)

(regionStart phys) 1 perms

As with mapWithoutAllocation, we increment the reference count for the pages

of the physical region after the mapping has been successfully installed.

The top-level definition of addMapping kicks off the process by checking the

parameters and invoking the checkMappingType function.
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addMapping :: [PageMapPage] -> PageMap -> Fpage Virtual

-> PhysicalRegion -> Perms -> H (Maybe Bool)

addMapping [] _ _ _ _ = return Nothing

addMapping (ptab:_) (PageMap pdir) vfp phys perms =

do parametersok <- validParameters phys ptab vfp

if parametersok

then do vpdir <- getHMappedAddress pdir

checkMappingType vpdir

else return Nothing

The equations demonstrate an additional constraint on the parameters of the

addMapping function: we require that the client provides at least one potential

page-table page, regardless of the type of mapping that will be done. Future

implementations of the interface could relax this constraint.

The definition of addMapping demonstrates the algorithm that we use to add

virtual-to-physical mappings in a safe way. All of the safety checking and validation

is done in Haskell, while all of the manipulations of the translation table data

structures are done in C. The implementations of our other mapping functions are

very similar so we omit their definitions here. All of the functions of the interface

use the same basic pattern where safety critical checks are performed in Haskell

while potentially unsafe computations are performed in C.

6.7 THE KERNEL VIRTUAL-ADDRESS SPACE

As discussed in Section 4.4.3, H allows the client kernel to add kernel mappings that

are visible in every virtual address-space. The client only has access to a portion

of the kernel virtual-address space—the rest is reserved by H for the execution

environment and other H data. In this section, we discuss the techniques that we

use to implement kernel mappings and the operations available to the client for

modifying kernel-space.
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The start-up code partitions the kernel virtual-address space into a client-

controlled area and an H-controlled area based on the amount of memory that

we need to keep mapped in H. We report this division of kernel-space to the client

using the same techniques that we employed for lifting the initial regions through

the interface in Section 6.3: we define an array in C containing the virtual flex-

pages that belong to the client-controlled area and convert the array into a Haskell

list using a small wrapper function. The client reads the list of kernel-mappable

virtual addresses to determine which kernel-space address it is allowed to map.

kernelMappableVirtualAddresses :: H [Fpage Virtual]

We also define utilities that test whether or not a particular address falls in the

set of client-controlled addresses. We use this function to validate virtual-address

values passed to H as parameters; any function that adds a mapping in kernel-space

must check that the mapping will fall in the appropriate range.

isKernelMappableVirtualAddress :: Addr Virtual -> H Bool

The addresses in the client-controlled area may be used for any purpose. The client

adds a mapping to one of these addresses using an addKernelMapping function

that behaves similarly to the function for adding a user mapping.

Allowing the client to add mappings in kernel-space increases the difficulty of

maintaining a consistent view of kernel memory in every address-space. Consis-

tency between address-spaces is a critical property for the H-controlled portion of

kernel-space (otherwise we might enter an address-space where the Haskell heap

is not mapped, for example), but consistency for client-controlled mappings is

arguably less important. We considered a design that only added new kernel map-

pings to the current address space, requiring the client kernel to add the mapping in

other address-spaces explicitly. Ultimately, we decided against this design because

we did not want to allow page faults to happen in the kernel.
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To enforce consistency for client-controlled mappings, we need a mechanism

for modifying all of the page-directories at once. Explicitly modifying every page-

directory in the system every time the client adds a kernel mapping is possible,

but may not be practical because of the additional per-mapping overhead. Instead,

we use an implementation technique that guarantees that new mappings will be

visible in every address-space with a single update. The trick is to ensure that

the kernel portion of each page-directory is immutable and identical. When we

allocate a new address-space, it gets initialized with a copy of the values from

a reference page-directory. Within the reference page directory, the entries that

correspond to H-controlled addresses are mapped to kernel code and data. The

client-controlled addresses are mapped to page-tables that we pre-allocate during

start-up. Because every address-space uses the same page-tables to map the same

set of addresses, updates to page-table entries will automatically be seen in every

address-space. Figure 6.6 illustrates this configuration. We avoid the need to

update page-directories individually, but we pay a cost in (potentially wasted)

space by allocating the page-tables for kernel-space before they are needed.

The implementation of addKernelMapping is shown in Figure 6.7. Adding a

kernel-space mapping is similar to adding a user-space mapping, except that we

will never need to allocate a page-table and we will never map a region using

superpage entries. The algorithm contains the following steps:

• Parameter Validation and Region Splitting: Only kernel-space ad-

dresses that are in the client-controlled portion of kernel-space may be mapped

using addKernelMapping. The physical region to which the virtual address

range will be mapped must be mappable (no page currently in use as a page-

table, page-directory, or environment page), and the length of the physical

and virtual regions must be the same. For regions that are larger than 4 MB,

addKernelMapping splits the region into a collection of small regions that

are all less than or equal to 4 MB in size.
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Figure 6.6: Implementing a consistent view of kernel-space

across every address-space. The mappings in the H-controlled

portion of kernel-space (all kernel-space addresses not in the

client-controlled area) do not change over time, so we can sim-

ply install these entries in every new page-directory that we cre-

ate. The mappings for client-controlled addresses may change,

but they will always be mapped via the same set of page-tables.

We initialize a page-directory by installing the page-table ad-

dresses for the shared kernel-space tables. Thus, when any of

the page-table entries is modified, the effect will be seen in every

address-space.

• Adding Page-Table Entries For Each Region: We use the C API func-

tion for adding new page-table entries (called c_add_table_entries, see

Section 6.6) to add the new mappings. We use the reference page-directory

to locate the appropriate page-tables to modify for simplicity, though we

could copy the appropriate mappings from the current page directory.
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addKernelMapping :: PhysicalRegion -> Fpage Virtual -> Perms -> Bool -> H (Maybe KernelMapping)

addKernelMapping phys vfp perms user =

do validTarget <- regionIsMappable phys

mappablefp <- isKernelMappableVirtualFlexpage vfp

if validTarget && mappablefp && (fpageSize vfp == regionSize phys)

&& length mrs == length rs

then do vpdir <- systemPageMapMappedAddress

performMappings vpdir rs (split vfp)

else return Nothing

where userbit = if user then 1 else 0

mrs = map (deriveRegion phys) (split (region phys))

rs = catMaybes mrs

performMappings vpdir regions vfpages =

do pt_addrs <- liftIO $ mapM (c_find_pt vpdir) fpws

zipWithM3_ addKernelMappings pt_addrs regions fpws

return (Just kmapping)

where fpws = map fpageToWord vfpages

kmapping = KernelMapping { kernelFpage = vfp,

kernelRegion = phys,

kernelPerms = perms,

kernelAddress = nullPtr ‘plusPtr‘ fpageStart vfp

}

addKernelMappings pt_addr phys fpw =

if pt_addr == (-1) then error "missing kernel page-table"

else let vptab = fromIntegral pt_addr + kernelSpace

in liftIO $ c_add_table_entries vptab fpw (regionStart phys) userbit perms

Figure 6.7: The implementation of the addKernelMapping function. The algo-

rithm is similar to addMapping, but we avoid the complexity of page-table allo-

cation because we pre-allocate all of the tables for kernel-space during start-up.

Unlike addMapping, addKernelMapping may only map regions using page-tables,

so the implementation splits large regions into a collection of 4 MB-sized regions

before invoking the standard page-table modification function (using a function

for splitting flexpages called split).
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• Constructing a KernelMapping Handle: If the mapping operation is suc-

cessful, we provide the client kernel with a handle to the memory through

which the kernel-mapping can be read and written. The handle, represented

with the type KernelMapping, contains all of the information that is nec-

essary for H to check the validity of future memory accesses, as well as a

pointer for actually performing the reads and writes. Neither the pointer nor

the constructor for the type are observable to the client.

We do not implement a remove operation on kernel-mappings because of our policy

that kernel code will not fault. We have no way to revoke or invalidate the kernel-

mapping handles owned by the client, so there would be no way to protect memory

accesses if the client could remove kernel mappings. Relaxing the requirement that

the kernel does not fault or implementing a more elaborate capability system are

both valid options if there turned out to be a strong use-case for kernel-mapping

removal.

6.8 USER-PROGRAM EXECUTION

From the perspective of an H-based kernel, executing a user-program is concep-

tually similar to calling any other H function. The client invokes the execute

operation from the H interface, supplying a description of the program to be run,

and at some point later H returns to the client with a description of the interrupt

that brought us back into kernel-mode. The implementation of execute maintains

the illusion of simplicity: all of the complexity is handled by an assembly-language

routine that we call when we wish to start a user program. This routine does not

return to Haskell until the user-program has executed and produced an interrupt,

but to the Haskell code, the assembly function behaves the same as any other FFI

call.

Figure 6.8 illustrates the relationship between each of the components in our
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Figure 6.8: The H mechanism for executing a user program. We

split the definition of the H function execute into Haskell and

assembly-language portions. The assembly-language function is

in turn split into a “start” component that performs the con-

text switch to user code and a “return” component that resumes

Haskell execution as if we were returning from a normal func-

tion. An interrupt handler written in assembly is responsible for

saving the register state of the user-program before returning to

Haskell.

user-program execution implementation. The Haskell function execute initiates

the process by calling our execution function written in assembly, which in turn

context-switches to the user code. When an interrupt occurs, we enter an assembly-

language handler in kernel-mode that saves the register state of the program and

returns to Haskell via a special function that behaves as if we were returning from

a normal call. In the rest of this section, we will explore each of the components

that make up user-program execution in more depth.
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The assembly function takes two parameters: a pointer to the program’s saved

register state and the physical address of the page-directory to install. The FFI

does not allow us to call assembly functions directly, so we invoke the function via

a C wrapper.

extern unsigned asm_execute(unsigned pmap, unsigned* fault_context);

foreign import ccall unsafe "execution.h asm_execute"

c_execute :: HWord -> Ptr HWord -> IO HByte

Within asm_execute, we save the kernel’s register state, set the new page-directory,

and restore the register state of the user program. Once the proper user state is

in place, we issue the iretl instruction to return to the user program at the point

where it was interrupted.

The FaultContext type introduced in Section 4.5 encapsulates our represen-

tation of the register state for user programs. We save the register state of user

programs in blocks of memory that we allocate from the Haskell heap and access

via a pointer3.

newtype FaultContext = FaultContext (Ptr HWord)

The client cannot observe the internal representation of FaultContexts, but may

read or write the value of individual registers using the H functions readRegister

and writeRegister (as explained in Section 4.5).

When we execute a user process, we install a pointer to the appropriate fault-

context in the stack pointer field (called ESP0) of the task-state-segment (see

Section 2.1.3). When we switch to kernel-mode upon receiving an interrupt, the

3We choose to allocate FaultContexts from the heap so that FaultContext values can be

garbage collected. We perform the allocation using the function mallocForeignPtrBytes to

avoid the need for a finalizer—the run-time system will collect the fault-context memory when

the pointer is no longer in use.
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hardware installs this pointer as the active stack pointer in the ESP register. This

allows us to save the registers of the running program by pushing the values onto

the current stack in the interrupt handler. When we resume the user program after

servicing an interrupt, we pop the saved values off the stack into the registers and

the user state is restored. The client has full control over how many stacks H will

use. For example, the client can allocate a single fault-context on which all user

programs will run or the client can allocate a distinct fault-context for every user

thread.

The H function execute is essentially a Haskell wrapper for the c_execute

function that sets up all of the user state and returns from the interrupt. The

client kernel provides execute with a PageMap specifying the page-directory to

install for the user program and a FaultContext containing the program’s register

state. execute sets the ESP0 field of the task-state-segment to point to the fault-

context and then invokes c_execute to return to the user program.

execute :: PageMap -> FaultContext -> H Interrupt

execute (PageMap pm) fc@(FaultContext fcPtr)

= do liftIO $ pokeByteOff c_tss_esp0 0 (fcPtr ‘plusPtr‘ fcLen)

vector <- liftIO $ c_execute pm fcPtr

code <- readRegister fc Code

faultAddr <- liftIO $ peek c_last_fault_addr

return (vectorToInterrupt vector code faultAddr)

where

fcLen = 76

When c_execute returns, we know that the user program has executed and pro-

duced an interrupt described by vector. We return a high-level description of

the interrupt that occurred by converting the numeric vector into a value of the

Interrupt type.

data Interrupt

= DivideError
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| NMIInterrupt

| ExternalInterrupt IRQ

| ProgrammedException HByte

...

The Interrupt type contains a constructor for representing each of the possible

results from c_execute. We omit most of the definition because it is a straight-

forward encoding of the semantics of the IA32 interrupt vectors.

6.9 SUMMARY

In this chapter, we outlined the techniques employed for implementing the abstrac-

tion layer, with a particular focus on the mechanisms that allow us to run Haskell

code on bare metal, to run user-level C programs, and to enforce memory-safety

in the H operations. An important aspect of the implementation that we have not

covered is its size: Table 6.3 shows the source lines of code in the abstraction layer,

broken down by language. The total size of the interface is about 3000 lines of

code, with more than half of code written in C. We have not made a significant

attempt to optimize the implementations of the H interface operations, so it is

possible that the size could be decreased with additional implementation effort.

Purpose Language Source Lines of Code

Implementation Haskell 1096

Implementation C 1633

Implementation ASM 491

Interface Haskell 241

Table 6.3: The source lines of code for H in Haskell, C, and Assembly Language.

We count the interface code (special modules to be imported by clients that include

a restricted set of module exports and the H type class instances) separately from

the implementation code.
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Chapter 7

CASE STUDY: INTER-PROCESS COMMUNICATION IN L4

The design of the H interface is only successful if the resulting API is sufficiently

expressive to support the construction of operating systems in purely functional

languages. In this chapter, we demonstrate the expressiveness of our abstraction

layer by showing how it can be used to implement a version of the L4 microker-

nel API [62] in Haskell using the operations of the H interface. L4 is a second-

generation microkernel with several designs and implementations [70, 57, 75, 84].

The wealth of existing implementations demonstrates that L4 is mature and pop-

ular enough to make it a “real world” system, and supplies us with a baseline for

evaluating the performance of our architecture.

An essential characteristic of L4 is that the kernel only includes features that

absolutely cannot reside at user-level for functional or security reasons [70]. Many

features that one typically expects from an operating system, such as device drivers

and memory management, are instead implemented outside of the kernel as user-

level servers [38]. To support user-level memory management, L4 must provide

a sophisticated set of virtual memory management primitives as part of the ker-

nel API. The L4 virtual memory API is sufficiently expressive to support a wide

range of user-level applications, including a port of Linux that runs as a user-level

server [44] and a platform for secure application execution [30] with GUI sup-

port [23]. If the primitives of H are sufficiently general to implement the L4 API,

then we have reason to be confident that H could also support the implementation

of other systems.

We successfully implemented the major system calls of L4 using the H interface.
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The implementation is based on the X2 API [62]. Our implementation includes

address space management, thread management and scheduling, message- and

memory-based inter-process communication, and the start-up protocols for threads

and address spaces. Though we do not implement every feature described in the

API, our kernel is sufficiently full-featured to allow us to run a realistic L4 program.

We think that this set of functionality sufficiently demonstrates the utility of our

abstraction layer and that a fully API-compliant version of L4 could be completed

as future work with additional engineering effort.

In this chapter we will present our implementation of the L4 inter-process com-

munication (IPC) system call. We choose to focus on this aspect of L4 because it

is a central service provided by the operating system in a microkernel architecture,

and has long been used as a benchmark for evaluating the viability of microkernel

designs and implementations. The original focus of L4 was to demonstrate that

good performance was possible in a microkernel. IPC performance was the pri-

mary target [44, 70, 71]. As a result, many modern L4 implementations of IPC are

finely tuned. L4 provided a contrast to earlier microkernel designs such as Mach [2]

whose IPC performance was sufficiently poor to hinder their adoption. Over time,

security and separation issues in IPC have become increasingly important in the

L4 community as well, leading to secure variants of the original design such as

seL4 [84] and L4.sec [59, 25]. Haskell has previously been used as a prototyping

tool in the design of an L4 kernel, but never as the implementation language due

to performance concerns [18].

Our presentation of IPC includes an explanation of many fundamental con-

cepts of the L4 design, as necessary to explain the algorithms and data-structures

that appear in the IPC code. Section 7.1 discusses threads and address spaces.

Section 7.2 introduces the basic concepts of IPC and the data-structures that we

use to represent messages. Section 7.3 discusses an L4-specific data-structure for

managing memory mappings. Section 7.4 describes the monad in which our kernel
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runs. Section 7.5 explains how we handle errors that come up during IPC process-

ing. The remaining sections cover the IPC algorithm itself. Section 7.6 presents

the rendezvous component of IPC: connecting a sender to a willing receiver. Sec-

tion 7.7 outlines the process for transferring data from the sender to the receiver.

The performance of our L4 kernel will be covered in Chapter 8.

7.1 THREADS

Threads are an important abstraction in L4. Each thread is associated with an

address space that provides the resource context in which the thread will execute.

The Thread type describes the important features of a thread, such as the address-

space in which the thread executes, called its parent.

data Thread = Thread {

parent :: HWord, -- Domain owning this thread

threadId :: ThreadId, -- global identifier

halted :: Bool, -- currently halted?

scheduler :: ThreadId, -- scheduler thread’s ID

priority :: HWord, -- priority (set by scheduler)

timeleft :: HWord, -- time left to run

timeslice :: Timeslice, -- time to run per time scheduled

quantum :: Quantum, -- total time to execute

context :: FaultContext, -- saved register state

waiting :: [ThreadId], -- threads sending to this

status :: ThreadStatus, -- ready/waiting/etc

utcb :: UTCB -- thread control block

}

The threadId is a unique global identifier for the thread. halted, scheduler,

priority, timeleft, timeslice, and quantum are parameters related to thread

scheduling that we ignore in our discussion of IPC. A thread’s context contains

the register state from the last time the thread was suspended (see Section 4.5).

The waiting queue stores the identifiers of threads that are waiting to send a
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message to this thread; we will cover this topic in Section 7.6. The status field

contains information about the execution state of the thread, for example, whether

it is runnable, inactive, or blocked waiting to send an IPC message. utcb stores

the location of the thread’s user-level thread control block (UTCB).

Every thread in the system has a UTCB, which is a structure in memory

that is accessible to both the thread and the kernel. The thread uses the UTCB

to communicate system call parameters to the kernel—such as the data to be

transferred by an IPC—and the kernel uses the UTCB to pass results back to the

thread—such as an error code or the incoming data from an incoming message.

The UTCB also contains configuration information about the thread, such as its

pager, interrupt handler, and global identifier. We define a datatype where each

constructor represents a field in the UTCB1.

data UTCBField

= MyGlobalId | ProcessorNo | UserDefinedHandle

| Pager | ExceptionHandler | COPPreemptFlags

| ErrorCode | XferTimeouts | IntendedReceiver

| ActualSender | ThreadWord0 | ThreadWord1

| MR1 | MR2 | MR3 | MR4 | MR5 | MR6 | MR7 | MR8 | MR9 | MR10

| MR11 | MR12 | MR13 | MR14 | MR15 | MR16 | MR17 | MR18 | MR19 | MR20

| MR21 | MR22 | MR23 | MR24 | MR25 | MR26 | MR27 | MR28 | MR29 | MR30

| MR31 | MR32 | MR33 | MR34 | MR35 | MR36 | MR37 | MR38 | MR39 | MR40

| MR41 | MR42 | MR43 | MR44 | MR45 | MR46 | MR47 | MR48 | MR49 | MR50

| MR51 | MR52 | MR53 | MR54 | MR55 | MR56 | MR57 | MR58 | MR59 | MR60

| MR61 | MR62 | MR63

| BR0

| InvalidField

The collection of fields that begin with MR are called message registers. As we

will see in Section 7.2, the message registers are the locations that are used for

1We do not implement the buffer register fields of the UTCB because we do not implement

the string item functionality of the L4 API.
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data transfer during an IPC message. BR0 is a buffer register that stores an IPC

parameter called the acceptor. We access the fields of a UTCB using the functions

readUTCBField and writeUTCBField.

readUTCBField :: (KernelMemory m) => UTCB -> UTCBField -> m HWord

writeUTCBField :: (KernelMemory m) => UTCB -> UTCBField -> HWord -> m ()

These functions provide direct access to the memory that stores each UTCB using

the KernelMemory portion of the H API (see Sections 6.2 and 4.4.3).

Essentially, each address space consists of a PageMap (see Section 4.4.1) that de-

scribes the memory mappings available in that space. Internally, we track some ad-

ditional information about each address space in a data-structure called a Domain.

data Domain = Domain {

space :: PageMap,

domainId :: HWord,

privileged :: Bool,

numThreads :: Int,

numActive :: Int

}

The space field contains the page-map for the address-space. domainId is a unique

identifier for the space. We include this feature for implementation purposes—

address spaces do not have global identifiers that are visible through the L4 API.

Instead, address spaces are referred to by a space specifier, the thread identifier

of a thread associated with the address space of interest. A privileged address

space has extra rights in an L4-based system, for example, certain system calls like

thread creation may only be performed by a thread in a privileged address space.

The number of threads, numThreads, tracks the count of threads whose parent is

this domain. Some of these threads may be inactive, so we separately track the

number of active threads, numActive. The kernel frees a domain when it no longer

contains any threads.
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7.2 IPC MESSAGES

Threads communicate using the IPC system call of the L4 API. IPC in L4 is

synchronous, so both the sender and the receiver must invoke the IPC system call

before a message transfer can proceed. There are two potential phases to every

IPC operation: a send and a receive. Any given IPC request may include just a

send, just a receive, or both. One of the arguments to IPC is the identifier of the

thread the caller wishes to communicate with. When a thread is sending an IPC,

it must specify the identifier of the intended receiver. Receiving threads have more

leeway. A receiver may indicate a specific sender in its request using the intended

sender’s identifier or the receiver may specify one of two special identifiers:

• anythread is a thread identifier that matches any thread in the system.

• anylocalthread is a thread identifier that matches any thread in the same

address space as the receiver.

There is a third constant of the thread identifier called nilthread that does not

match any thread. One use of nilthread is to indicate to the kernel which phases

of IPC a particular call should include, for example, setting the receiver argument

to nilthread requests an IPC with no send phase.

The IPC mechanism allows for both direct data transfer and memory sharing.

In a typical L4-based system, a user-level pager controls all non-kernel memory and

acts as the memory manager for the rest of the system. This pager makes use of the

memory sharing facilities of IPC to map memory into other address spaces. I/O

and interrupts are handled by user-level servers as well; the kernel merely provides

support for getting the information to the appropriate handler thread. When

an interrupt occurs, the kernel catches the event and creates an IPC message on

behalf of the faulting thread. The message is sent to the appropriate handler for

the interrupt type, which might be different from thread to thread. The message
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contains data that describes the fault or event, but unlike normal messages, the

data is passed directly in the message and is not read from the message registers

of the sending thread. When the handler thread is done processing the event, the

handler sends a message back to the faulting thread, which is caught by the kernel.

The kernel completes the processing of the interrupt, for example, by restarting

the faulting thread.

Each of the special message types has different processing requirements in the

kernel. The L4 manual defines a protocol that characterizes the interactions be-

tween the kernel (acting on behalf of the faulting thread) and the user-level fault

handler. We introduce a datatype in our L4 implementation to represent the dif-

ferent kinds of messages that may be sent.

data SendType = FromMRs

| SInterrupt

| SPageFault HWord HWord Perms

| SException HWord HWord

| SPreempt Clock

A message sent FromMRs is a normal message. (MR is an abbreviation for message

register.) Each thread in L4 has 64 memory-mapped message registers that the

thread may use to pass data in an IPC message. During the course of a normal

IPC operation, the data being sent is transferred from the message registers of the

sending thread to the message registers of the receiver. An SInterrupt message is

the message the kernel sends when an I/O interrupt occurs. There is one interrupt

handler thread per I/O interrupt, so no extra information about the nature of the

interrupt is needed. The interrupt is disabled until the kernel receives a response

from the handler thread. An SPageFault message notifies the memory manager

of a thread that the thread page faulted. The kernel sends the pager the address

where the fault occurred, the instruction pointer of the faulting thread, and the

type of fault (read or write). SException alerts a thread’s exception handler. The
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message carries the interrupt vector of the exception and the error code. The final

message type is SPreempt, which notifies the scheduler of a thread that the thread

has been preempted because it exhausted its available time to run. The message

contains the time at which the preemption occurred.

We also define a type to describe the kinds of messages that may be received.

Most of the receive messages have an analog in SendType.

data ReceiveType = ToMRs -- normal IPC message

| RInterrupt -- interrupt response message

| RPageFault -- page fault response message

| RException -- exception response message

| RStartup -- IP/SP of a new thread for start up

ToMRs describes a normal message where the payload of the message will be trans-

ferred into the message registers of the receiver. RPageFault, RInterrupt, and

RException are the replies to SPageFault, SInterrupt, and SException, respec-

tively. The RStartup message is sent to a thread by its pager when the thread

begins executing. The start-up message contains the initial stack pointer and in-

struction pointer values for the receiving thread. The kernel uses these values to

set the appropriate registers of the receiver.

The message registers contain the payload of an IPC message for both direct

data transfer messages and memory sharing requests. In the case of a direct data

transfer, the contents of the message registers are untyped from the perspective

of the kernel—it simply moves the data from the sender to the receiver. In the

case of a memory sharing request, the message registers contain descriptions of the

mapping operation to be performed. The kernel must process these typed items

and modify the address space of the receiver as appropriate for the request before

copying the descriptions into the receiver’s message registers.



218

There are two data structures in L4 that describe memory sharing requests:

map items and grant items2. A thread requests to share memory with another

thread by sending an IPC message with one or more of these data structures stored

in its message registers. A map item requires two message registers for storage

and contains: a flexpage that describes the region to be mapped, the permissions

to attach to the memory when it is mapped in the address space of the receiving

thread, and a send base parameter that is used to reconcile any differences between

the amount of memory that the sender is trying to map and the amount of memory

that the receiver is willing to receive. The receiver specifies the window in which

to add the new mappings in a parameter called the acceptor. The acceptor is a

flexpage that indicates the starting address where mappings will be placed as well

as a maximum amount of memory to map. Grant items are very similar to map

items but have different semantics. When a thread sends a grant item to another

thread it gives up its own rights to the memory being sent during the transfer.

The function reconcileFpages calculates the actual send window and receive

window to use for a memory sharing operation based on the value of the map or

grant item, the acceptor of the receiver, and the send base specified by the sender.

reconcileFpages :: HWord -> HWord -> HWord -> (L4Fpage, L4Fpage)

We introduce the type L4Fpage to describe the send and receive windows. In L4,

a flexpage is conceptually similar to the flexpages described in H, except that an

L4 flexpage also includes a set of permissions to attach to the region of memory.

data L4Fpage = L4Fpage { vflexpage :: Fpage Virtual, perms :: Perms }

The result of reconcileFpages is a new source region and a new destination

region that are guaranteed to have the same size. If no reconciliation is possible

2The API describes a third request type for copying large blocks of data called a string item,

but we do not implement this functionality.
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(for example, because the receiver is not willing to accept any memory mappings),

then this guarantee is satisfied by returning nilpage as both the send and receive

window.

The kernel reads the acceptor and the message data parameters to IPC from

thread UTCBs. The other parameters to the system call—the intended IPC part-

ner, the amount of time the caller is willing to wait for the operation to complete,

and the type of the message (its SendType or RecvType)—are packaged up into

an IPCType value that describes the request being made. In some cases these pa-

rameters will be read from registers when the IPC system call interrupt is received

by the kernel, while in other cases the message will be created by the kernel in

response to other events, such as page faults.

data IPCType = Sending { partner :: ThreadId,

timeout :: Timeout,

stype :: SendType }

| Receiving { partner :: ThreadId,

timeout :: Timeout,

rtype :: ReceiveType }

In our implementation, we only allow two possible timeout values: zero and infinity

(any non-zero value). A zero timeout indicates that the thread is not willing to

block waiting for the IPC; the system call will return if the intended partner is not

ready. An infinite timeout indicates that the thread will block indefinitely; when

the intended partner makes a matching request the thread will wake up. The L4

API allows for clock-triggered timeouts where the kernel wakes up a blocked thread

after a certain amount of time, but our current implementation does not support

this aspect of the L4 API.

An IPCType value captures basic information about an IPC message, whether

that IPC occurs immediately following a system call request or at some point later

when the partner for the operation makes their IPC request. The status field

of the Thread data structure indicates the current state of the thread: blocked
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waiting for an IPC, ready to run, halted, or inactive. When an IPC operation gets

blocked because the partner is not ready, the kernel saves the IPCType for later

use. We encode these possible states with the ThreadStatus type.

data ThreadStatus = Runnable

| Blocked IPCType

| Inactive

| Halted

The parameter of the Blocked constructor describes the pending IPC, whereas

Runnable, Inactive and Halted threads do not need any additional context.

7.3 THE MAPPING DATABASE

The mapping database is an L4-specific kernel data structure that records the

relationships between memory mappings that are shared by user threads. This

structure helps us to manage the relatively complex address-space interactions

that are possible using the L4 API. For example, a thread running in an address

space may map memory to another address-space that may in turn share the

mapping with additional parties. At some later point, the original thread may

wish to revoke access to the memory from the other address spaces, including the

derived mappings that it has no direct knowledge of. The mapping database is a

tree that captures all of the relevant information for performing such a revocation.

Revocation corresponds to the L4 system call unmap but is also necessary during

IPC because the API allows threads to add a new mapping in an area of virtual

memory that is already mapped (implicitly removing the original mapping first).

We represent the mapping database as a list of trees. Each tree describes a

memory mapping—the physical area occupied by the mapping, the address-space

to which the memory is mapped, the virtual address region where the mapping lies,

and the permissions with which the memory is mapped—as well as any mappings
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that have been derived from it through sharing. The tree datatype, MapTree, is a

record containing a field for each of these pieces of information.

type MappingDB = [MapTree]

data MapTree = MapTree {

mtregion :: PhysicalRegion,

ownerSpace :: PageMap,

varea :: Fpage Virtual,

mtperms :: Perms,

children :: [MapTree]

}

The elements of the top-level list of trees correspond to the regions of physical

memory that the kernel maps into user-space directly, rather than as the result

of a sharing request. In L4, all free memory is initially mapped to a privileged

memory manager address-space called σ0 by the kernel. The children of a tree

identify mappings of a region from one user-process to another.

There are three basic operations on the mapping database, which correspond

to the three system call requests that user threads may use to affect memory

mappings:

• shareMapping: Sharing a mapping is used to handle a map item request

through IPC—it maps a specified region of memory to some target address-

space without modifying the source address-space. In terms of the mapping

database, sharing a mapping corresponds to adding a new entry to the chil-

dren of the source mapping.

• replaceMapping: Replacing a mapping is used to handle a grant item

request through IPC—it maps a specified region of memory to some target

address-space and removes it from the source address-space. In terms of the

mapping database, replacing a mapping corresponds to transferring control

of a node in the tree, including of the children, to a new address space.
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• restrictMapping: Restricting a mapping reduces the permissions that are

attached to a particular region of memory, possibly to zero (unmapping the

memory). The unmap system call relies on this functionality. In terms of

the mapping database, restricting a mapping modifies the permissions on an

existing node and its children.

Each of these operations is predicated on the assumption that the source address-

space owns the memory that corresponds to the mappings that are being manip-

ulated. For example, to map the page at virtual-address x from address-space A

to B , there must be a node in the mapping database with A as the owner space

and page x as a sub-region of the virtual area. If a requested mapping database

operation is valid, then the mapping database operations update both the page-

maps of the address-spaces (using the H API) and the database as appropriate.

In the remainder of this section we will examine the types and behavior of these

functions individually.

In addition to the three operations that correspond directly to L4 system calls,

we introduce a fourth operation for initializing the mapping database. We install

the kernel-to-user virtual-memory mappings (those regions of memory directly

mapped to a user address-space from the kernel) with the function mapRegion.

Without this step, there would be no user-level mappings available for threads to

share. The primary use for mapRegion is to set up the initial state of sigma0,

which receives mappings to all available physical memory during the kernel initial-

ization process. Because the memory mapped by mapRegion passes directly from

the kernel to a user, the mapping does not need to be derivable from an existing

user-space mapping. In fact, the opposite constraint holds: mapRegion will only

respect the semantics of the mapping database if the memory being mapped does

not overlap any existing mappings in the database.

The type of mapRegion reflects the fact that the operation potentially modifies
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the mapping database structure as well as the user-level portion of an address-

space (recall that the UserMemory type class encapsulates user-level mapping func-

tions from H). The mapping database is accessed within the implementation of

mapRegion through a state component that is present in the L4 kernel monad (see

Section 7.4 for more details).

mapRegion :: (StateMonad MappingDB m, UserMemory m)

=> [PageMapPage] -> PageMap -> Fpage Virtual -> PhysicalRegion

-> Perms -> m (Maybe Bool)

The arguments to mapRegion are: a list of page-map pages to use for page-table

allocation (if necessary), the page-map to modify, a virtual-flexpage that describes

where to install the mapping, a region that corresponds to the physical memory

to be mapped, and the permissions to attach to the mapping. The result indicates

whether or not the operation completed successfully. We omit the code for this

(and the other mapping database operations) for brevity.

shareMapping and replaceMapping each add a memory mapping to a target

address-space that is derived from an existing mapping in a source address-space.

The only difference is in the effect that the operations have on the source address-

space when adding the mapping. As such, the type signatures for the two functions

appear very similar.

shareMapping ::

(StateMonad MappingDB m, StateMonad [PhysicalRegion] m, UserMemory m)

=> [PageMapPage] -> PageMap -> L4Fpage -> PageMap -> L4Fpage

-> m (Maybe Bool)

replaceMapping ::

(StateMonad MappingDB m, StateMonad [PhysicalRegion] m, UserMemory m)

=> [PageMapPage] -> PageMap -> L4Fpage -> PageMap -> L4Fpage

-> m (Maybe Bool)

As with mapRegion, the first argument to both functions is a list of pages that
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H may use for page-tables as necessary. The first page-map and L4Fpage de-

scribe the source of the mapping and the second describe the target. The imple-

mentation searches the mapping database for a tree whose owner space matches

the source page-map and whose virtual area contains the requested range in the

L4Fpage. The permissions are automatically downgraded if the operation attempts

to share/replace a mapping with greater permissions than the source itself has.

The result indicates whether or not the operation succeeded. Failure stems from

an invalid source mapping or a list of potential page-tables that is not sufficient to

complete the operation. Any existing mappings in the target virtual area will be

implicitly removed by the share/replace operation.

The function restrictMapping modifies the permissions attached to an ex-

isting mapping, including all of the derived mappings. Reducing the permissions

on a mapping to nothing removes that mapping. The permission restriction may

be applied to the source mapping and all derived mappings, or just the derived

mappings while leaving the source mapping alone.

restrictMapping ::

(StateMonad MappingDB m, StateMonad [PhysicalRegion] m, UserMemory m)

=> PageMap -> Fpage Virtual -> Perms -> Bool -> m MappingInfo

The type for restrictMapping is similar to the operations so far: the page-map

specifies the address-space, the virtual flexpage specifies the area to modify, and

the permissions value specifies the new permissions. The additional components

of the type are the Boolean value to control source mapping restriction and the

MappingInfo result which describes the current state of the accessed and dirty bits

of the memory region.

7.4 MANAGING STATE WITH THE KERNEL MONAD

Our L4 kernel runs in an extension of the H monad called Kernel. This monad

captures the side effecting behaviors that are specific to L4 and not provided by
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H. These behaviors could include any side effects that are available in Haskell, but

in our implementation we only use the state monad. We introduce several state

components that correspond to key kernel data structures and add them onto the

H monad using the monad transformer for the state monad.

7.4.1 Kernel Memory Allocator

The foundation of the Kernel monad is an allocator that tracks the free mem-

ory available to the kernel. There are two components to the allocator monad: a

list of virtual addresses and a list of page-sized physical regions. The virtual ad-

dresses represent locations in kernel-space where we are allowed to add mappings.

The initial state is derived from the kernelMappableVirtualAddresses constant

in H. The physical regions represent free pages of physical memory. This pool

is initialized using a portion of the physical memory given to the kernel by the

initialRegions function.

type Allocator = ST [Addr Virtual] (ST [PhysicalRegion] H)

We define wrapper functions on the standard state monad get and set operations

(which read and write to the state component, respectively) for allocating and

freeing virtual addresses and physical pages.

allocMappableVirtualAddress :: (StateMonad [Addr Virtual] m)

=> m (Maybe (Addr Virtual))

freeMappableVirtualAddress :: (StateMonad [Addr Virtual] m)

=> Addr Virtual -> m ()

allocPhysicalPage :: (StateMonad [PhysicalRegion] m, Debug m)

=> m (Maybe PhysicalRegion)

freePhysicalPage :: (StateMonad [PhysicalRegion] m, Debug m)

=> PhysicalRegion -> m ()

The most common use for the virtual-address allocator is to find a location to map

page-table and page-directory pages so that the pages may be read and written by
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H. Similarly, the most common use for the physical page allocator is to allocate

memory to back page-tables and page-directories. Thus, a typical pattern is to

allocate a physical page and a virtual-address together. allocPageMapPage com-

bines the two operations into a single function and produces a PageMapPage that is

ready to supply as an argument to H (recall from Section 4.4.1 that a PageMapPage

combines a free physical page with a kernel-mappable virtual address).

allocPageMapPage ::

(StateMonad [PhysicalRegion] m, StateMonad [Addr Virtual] m, Paging m)

=> m (Maybe PageMapPage)

allocPageMapPage

= do mpage <- allocPhysicalPage

mvaddr <- allocMappableVirtualAddress

case (mpage, mvaddr) of

(Just page, Just vaddr) -> createPageMapPage page vaddr

(Nothing, Nothing) -> return Nothing

(Nothing, Just vaddr) -> do freeMappableVirtualAddress vaddr

return Nothing

(Just page, Nothing) -> do freePhysicalPage page

return Nothing

Conversely, freePageMapPage frees a PageMapPage.

freePageMapPage ::

(StateMonad [PhysicalRegion] m, StateMonad [Addr Virtual] m)

=> PageMapPage -> m ()

freePageMapPage pmp = do freePhysicalPage (physicalPage pmp)

freeMappableVirtualAddress (mappedAddr pmp)

The result of allocPageMapPage is a Maybe value because of the possibility that

either the physical memory pool or the virtual-address pool is empty.
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7.4.2 Kernel State

We build on the allocator monad to manage the rest of the L4 state. We divide the

state into two components: the mapping database and a System data structure

that stores all of the other kernel data.

type Kernel = ST System (ST MappingDB Allocator)

The System data structure tracks various information about the kernel, such as the

queue of runnable threads, the identifier of the thread that is currently executing,

and the system clock.

data System = System {

runnable :: [ThreadId],

current :: ThreadId,

clock :: Clock,

threadMap :: Map ThreadId Thread,

domainMap :: Map HWord Domain

}

The threadMap and domainMap fields are essential: they track the state of every

thread and address-space in the system. Recall from Section 7.1 that a Thread

describes a thread’s state and a Domain describes an address-space’s state. The

threadMap maps global thread identifiers to thread structures using Haskell’s built-

in dictionary type, Map. The domainMap is the analog for address-spaces and maps

domain identifiers to domain structures. We access the mapping database and

system state components using the standard monad operations get and set.

7.5 ERROR HANDLING

During the process of performing an IPC, various error conditions might occur

that should be reported to the calling thread. For example, if a thread requests to

send a message to a thread that does not exist, then we report that no partner can
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be found. We introduce a datatype that categorizes the possible error conditions,

including a value for the absence of any error.

data IPCError = NoError

| Timeout

| NoPartner

| Canceled

| Protocol

NoError corresponds to a successful IPC operation. A Timeout error occurs when

the intended partner is not waiting for a message but the sender or receiver specified

they did not wish to wait. A NoPartner error occurs when the specified partner

does not exist. A pending IPC may be aborted through an L4 system call named

exchange registers, resulting in the Canceled error being sent to the thread that

was blocked waiting. A Protocol violation happens when the kernel is expecting

one of the special messages described by SendType and RecvType but the format

of the message being processed does not match.

When the sending thread encounters an error, we communicate information

about the problem to the user program by writing an error descriptor value in the

error code field of the thread’s UTCB. We signal that the thread should check this

error code by setting a bit in message register zero (stored in the machine register

ESI on IA32). If the thread was running at the time of the IPC, then we restart

the thread. Most of the functionality for signaling the error is implemented in the

function setError; this allows us to share common code between the functions

that signal sender errors and receiver errors. The HWord argument named recv

distinguishes a call to setError from a sending thread (recv value of 0) from a

call by a receiving thread (recv value of 1).
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setError :: (StateMonad System m, Execution m, KernelMemory m) =>

Thread -> Bool -> HWord -> IPCError -> m ()

setError t running recv err

= let ecode = ((fromIntegral (fromEnum err)) <<< 4) .|. recv

in do writeUTCBField (utcb t) ErrorCode ecode

mr0 <- readRegister (context t) ESI

writeRegister (context t) ESI (setBit mr0 15)

restartThread t running

sendError :: (StateMonad System m, Execution m, KernelMemory m) =>

Thread -> Bool -> SendType -> IPCError -> m ()

sendError st running FromMRs err = setError st running 0 err

sendError t running _ _ = stopThread t running

Receiver errors are handled in much the same way.

recvError :: (StateMonad System m, Execution m, KernelMemory m) =>

Thread -> Bool -> ReceiveType -> IPCError -> m ()

recvError rt running ToMRs err = setError rt running 1 err

recvError t running _ _ = stopThread t running

The Enum instance of the ErrorCode type maps error code constructors to the

appropriate numeric value to be stored in the UTCB. By using this technique, we

will only have to update one place in the code if the mapping ever changes and we

reduce the potential for mistakes that could be caused by using the wrong hard-

coded error code value. However, we do introduce the construction and destruction

of unnecessary values (and in turn garbage) that are not essential for the compu-

tation. Perhaps defining error code constants at the top-level would be a better

trade off between functional style and performance in future design iterations.

7.6 THREAD RENDEZVOUS

The rendezvous component of IPC handles all aspects of the operation except for

the actual transfer of data. The primary task is to locate a partner for the thread
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making the request. When a partner cannot be found, the rendezvous algorithm

either saves the state of the thread so that it can complete the operation later

or else sets an error code and resumes the thread. We organize the code so that

the rendezvous portion of the code always stores any error that occurs, even if it

occurs during message transfer.

Recall from Section 7.2 that each IPC message potentially includes a send

phase, a receive phase, or both. In our implementation, we define a top-level

function that corresponds to each phase.

send :: Thread -> IPCType -> Kernel ()

recv :: Thread -> IPCType -> Kernel ()

The Thread argument describes the state of the calling thread. The IPCType

contains the parameters. Here there is an invariant that is not captured in the

type: send should only be invoked with a IPCType value that matches the Sending

constructor and recv should only be invoked with a Receiving value.

Sending threads must specify the global thread identifier of the intended re-

ceiver as a parameter to IPC3. Receivers may specify a global identifier, any-thread,

or any-local-thread. Because of these differences, the partner location protocol is

different for send and recv. In the send operation, we simply read the Thread

structure of the intended receiver from the thread-map and check if that thread is

waiting to receive a message from the sender. If the intended receiver is waiting to

receive a message from the sender, then we try to transfer the message, possibly

getting an error. If the receiver is not waiting, then the operation cannot proceed.

If the sender specified an infinite timeout, then we block the thread and return

to the scheduler; otherwise we signal an error and resume the thread. Figure 7.1

shows the code for send.

3We do not implement communication via local thread identifiers, although communication

between local threads is still supported via global identifiers.
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send :: Thread -> IPCType -> Kernel ()

send st send@(Sending to tout stype) =

do mrt <- readThread to

case mrt of

Nothing -> sendError st True stype NoPartner

Just rt -> case (status rt) of

Blocked (Receiving rid _ rtype) | idmatch rt rid ->

do ipcerr <- transferMessage st stype rt rtype

if ipcerr == NoError

then do insertThread rt{status=Runnable}

insertRunnable rt{status=Runnable}

nextPhase st{status=Blocked send} True

else do recvError rt False rtype ipcerr

sendError st True stype ipcerr

_ -> {- partner not blocked receiving -}

if tout == Zero

then sendError st True stype NoPartner

else do insertThread st{status=Blocked send}

let ws’ = waiting rt ++ [sid]

insertThread rt{waiting = ws’}

done

where

sid = threadId st

idmatch rt rid = (rid == anythread)

|| (rid == sid)

|| (rid == anylocal && parent st == parent rt)

Figure 7.1: The send phase of an IPC operation. This function locates the specified

receiver and saves any errors that occur to the sender’s message registers. Mes-

sage transfer, which we will cover in Section 7.7, is handled by transferMessage.

The nextPhase utility restarts the sending thread or initiates a receive phase, as

appropriate.
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We introduce a utility called nextPhase to handle restarting the sending thread

once the send phase completes. The code for this function is shown in Figure 7.2.

For send-only IPCs, we resume executing the sending thread immediately. Other-

wise, we initiate the receive phase of the IPC request as appropriate for the message

type being processed. If the send was a normal transfer from message registers,

then the receive parameters come directly from the message registers of the caller

as well. In all other cases, the kernel forges the parameters for the receive opera-

tion because it is acting on behalf of a faulting or otherwise incapacitated thread.

As we saw in the discussion of SendType and RecvType in Section 7.2, many of the

message types come in pairs: SInterrupt/RInterrupt, SPageFault/RPageFault,

and SException/RException. In these cases, nextPhase generates a receive re-

quest of the appropriate type based on information from the current message. An

SPreempt message does not have a receive phase, but causes the kernel to stop

the running thread. Senders without a receive phase are restarted immediately or

added to the kernel’s runnable queue.

The algorithmic outline for recv is similar to send: locate a sending thread,

transfer the message to the receiver, signal any error that occurs, and restart the

sender and receiver. The key difference between the two phases is that partner

location is more complicated in the receive phase because threads may request to

receive a message from a specific thread (described by its global identifier), any

local thread, or any thread in the system.

The first step in the receive algorithm is to locate a partner that is waiting to

send a message to this thread. The receiver may specify a specific thread as the

sender using its global ID or the receiver may request to receive from a broader

group of threads (either any thread in the system or any thread in the thread’s

local address space). The locatePartner function looks up the Thread structure

for a thread that matches the specification of the receiving thread. If the receiver

specified a specific sender, then we read the structure that corresponds to that
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nextPhase :: Thread -> Bool -> Kernel ()

nextPhase t running

= case (status t) of

Blocked (Sending pid _ SInterrupt) ->

insertThread t{status = Blocked (Receiving pid Infinite RInterrupt)}

Blocked (Sending pid _ (SPageFault _ _ _)) ->

insertThread t{status = Blocked (Receiving pid Infinite RPageFault)}

Blocked (Sending pid _ (SException _ _ _)) ->

insertThread t{status = Blocked (Receiving pid Infinite RException)}

Blocked (Sending _ _ FromMRs) | not (halted t) ->

do from <- readRegister (context t) EDX

if from == nilthread

then restartThread t running

else do tout <- readRegister (context t) ECX

let rcv = Receiving from (recvTimeout tout) ToMRs

t’ = t{ status = Blocked rcv }

insertThread t’

if running then recv t’ rcv else insertThread t’

Blocked (Sending _ _ (SPreempt _)) ->

stopThread t running

_ -> restartThread t running

Figure 7.2: Restart a sending thread by initiating a receive phase or resuming the

thread’s execution. The steps to take are determined by the type of the message

that was just sent and whether or not the sending thread was running at the time

the message was processed.
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recv :: Thread -> IPCType -> Kernel ()

recv rt recv@(Receiving from tout rtype)

= do mst <- locatePartner

case mst of

Nothing -> noPartner

Just st -> checkPartner st

where

noPartner :: (StateMonad System m, Execution m, KernelMemory m) => m ()

noPartner | from == anythread = timeout rt

| from == anylocal = timeout rt

| otherwise = recvError rt True rtype NoPartner

timeout :: (StateMonad System m, Execution m, KernelMemory m) => Thread -> m ()

timeout rt | tout == Zero = recvError rt True rtype NoPartner

| otherwise = do insertThread rt{status=Blocked recv}

done

checkPartner :: Thread -> Kernel ()

checkPartner st

= do mrt’ <- readThread (threadId rt)

let rt’ = fromJust mrt’

let rid = threadId rt’

case (status st) of

Blocked (Sending sid _ stype) | sid == rid ->

do ipcerr <- transferMessage st stype rt’ rtype

if ipcerr == NoError

then do restartThread rt’ True

nextPhase st False

else do recvError rt’ True rtype ipcerr

sendError st False stype ipcerr

_ -> timeout rt

Figure 7.3: The receive phase of an IPC operation. This function locates a sender

by looking up a specified thread or searching the receiver’s waiting queue. When

a sender can be found, checkPartner transfers a message from the sender and

stores any errors that occur in both threads’ message registers.
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thread identifier. If the receiver specified a broader group of senders, then we

search the receiver’s waiting queue to find an appropriate thread.

locatePartner :: (StateMonad System m) => m (Maybe ThreadId)

locatePartner

| isGlobalId from = readThread from

| from == anythread = findAny (waiting rt)

| from == anylocal = findLocal (waiting rt) []

| otherwise = return Nothing

We use the functions findAny and findLocal to search the waiting queue. findAny

returns the first thread identifier in the waiting queue of the receiver. findLocal

returns the first identifier where the thread belongs to the same domain as the

receiving thread.

findAny :: (StateMonad System m) => [ThreadId] -> m (Maybe ThreadId)

findLocal :: (StateMonad System m) => [ThreadId] -> m (Maybe ThreadId)

The result of locatePartner is a Maybe Thread to reflect the fact that the receiver

might have specified the identifier of a thread that does not exist or that the waiting

queue might be empty (or not contain any local threads).

The remainder of the code for recv is shown in Figure 7.3.

7.7 MESSAGE TRANSFER

Once the kernel identifies a sender and receiver that are ready to communicate

via IPC, we are ready to transfer the message from the sender to the receiver.

In some cases a message transfer simply involves moving data from one location

to another, but in other situations IPC requires more involved processing by the

kernel. For example, a thread start-up message signals the kernel to set a thread’s

EIP and ESP registers to particular values. Even during normal message transfers,

L4 allows users to send typed items to map or grant memory; these items cause
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the kernel to modify the address-space of the receiving thread (and sometimes the

sender as well in the case of a grant operation).

To handle the complexity of the message transfer operation, we divide the

implementation into three functions that handle different aspects of the process.

• transferUntyped copies data from the message registers of the sender to

the message registers of the receiver. This data is not processed by the kernel

in any way.

• transferTyped copies typed items from the sender’s message registers to

the receiver’s message registers. Each typed item corresponds to a memory

sharing request that potentially affects the address-spaces of the threads and

the mapping database. We introduce a utility called transferTypedItem

to handle the processing. transferTyped invokes this utility for each typed

item being sent and copies the ones that are successfully processed to the

receiver.

• transferMessage is the top-level message transfer function. This function

checks that the type of message being sent and the type of message being re-

ceived are compatible, and if they are, transferMessage performs any type-

specific kernel processing (such as setting EIP). transferMessage invokes

functions for copying untyped and typed items from the message registers as

appropriate for the type of message being processed.

The message transfer function succeeds even when the kernel cannot copy the

entire message because some of the memory sharing requests were not valid. The

only failures we encounter in our implementation at this stage are protocol errors;

these occur when a special message is being sent but the format does not match

the format specified in the L4 API.

The transferMessage function takes the sending thread, the type of message
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being sent, the receiving thread, and the type of message being received as param-

eters.

transferMessage :: Thread -> SendType -> Thread -> ReceiveType

-> Kernel IPCError

We introduce one equation for each valid combination of send-type and receive-

type. Any invalid combinations are caught by a catch-all equation that returns a

protocol error.

The first equation implements normal message transfer. A description of the

message is available through the ESI register of the sender, which semantically

corresponds to MR0. This descriptor contains the number of untyped words

and the number of typed items to be processed. transferMessage uses the

transferUntyped and transferTyped functions to perform the transfer.

transferMessage st FromMRs rt ToMRs

= do -- read message information --

mr0 <- readRegister (context st) ESI

-- transfer message --

mrt <- transferUntyped (utcb st) (utcb rt) MR1 (mr0 .&. 0x3f)

t’ <- transferTyped st rt mrt ((mr0 >>> 6) .&. 0x3f)

-- store updated message tag --

let mr0’ = mr0 .&. 0xffff003f .|. (t’ <<< 6)

-- store sender information --

writeRegister (context rt) ECX (threadId st)

writeRegister (context rt) ESI mr0’

return NoError

The kernel writes the message descriptor into the receiver’s register, updating the

number of typed items to reflect the number of items that were successfully shared.

The global identifier of the sender is also passed on to the receiver.

To send a page fault message, the kernel writes information describing the fault

into the message registers of the receiver. This information includes the address
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of the fault, the instruction pointer of the faulting thread, and the permissions

with which the location was accessed. In addition to transferring the page fault

data, the kernel constructs a message descriptor for the message and saves it in

the receiver’s MR0.

transferMessage st (SPageFault addr eip rwx) rt ToMRs

= let mr0 = (0xffe <<< 20) .|. (rwx <<< 16) .|. 2

in do writeRegister (context rt) ESI mr0

writeRegister (context rt) ECX (threadId st)

writeUTCBField (utcb rt) MR1 addr

writeUTCBField (utcb rt) MR2 eip

writeUTCBField (utcb rt) MR3 (threadId st)

writeUTCBField (utcb st) BR0 (1<<<4)

return NoError

The mapping from page fault data to registers is part of an L4 protocol that the

page fault handler uses to parse the message.

After processing a page fault, the handler responds by sending a reply to the

faulting thread. Again, the format is specified by an L4 protocol. The kernel

expects a message with a single typed item (which corresponds to two typed-item

words). This typed item specifies a map or grant item to add to the receiver’s

address-space that will service the page fault. The kernel processes the typed item

as with any other using the transferTypedItem utility.

transferMessage st FromMRs rt RPageFault

= do mr0 <- readRegister (context st) ESI

if ((mr0 >>> 6) .&. 0x3f) /= 2

then return Protocol

else do mti <- transferTypedItem st MR1 rt False

case mti of

Nothing -> return Protocol

Just _ -> return NoError

A protocol error occurs if the message being sent does not have the right format
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or if the typed item cannot be processed successfully.

The remaining equations for transferMessage rely on similar implementation

techniques to those we have examined so far. For messages being sent in response to

a fault or exception to a handler, the kernel writes information describing the fault

into the message registers of the receiver. For messages being sent from message

registers, the kernel reads the parameters from the registers, checks that they obey

the appropriate protocol, and updates the receiving thread as appropriate for the

message type. We omit the complete code.

The kernel transfers untyped data between threads using transferUntyped.

This function transfers one untyped item at a time from a specified source UTCB to

a specified destination UTCB. The field being copied and the number of remaining

untyped items in the message are also parameters.

transferUntyped :: (KernelMemory m) => UTCB -> UTCB -> UTCBField

-> HWord -> m UTCBField

transferUntyped sutcb rutcb f num

| num <= 0 = return f

| otherwise = do val <- readUTCBField sutcb f

writeUTCBField rutcb f val

transferUntyped sutcb rutcb (succ f) (num - 1)

When the number of remaining items reaches zero, transferUntyped returns the

next field where data should be copied from. This will be the starting point for

transferring typed items. To transfer an untyped item, the function reads a value

from the UTCB of the source and writes it to the UTCB of the destination.

The algorithm for transferring typed items is conceptually similar, but is made

more complicated by the possibility that transferring a typed item can fail. Be-

cause of this potential failure, we must track the number of typed items that are

successfully processed so that we can supply this number to the receiver. We must

also track the source message register UTCB field and the destination message

register UTCB field separately, because they will not necessarily be the same. We
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implement transferTyped using a recursive helper function that tracks all of the

relevant information.

transferTyped :: (StateMonad System m, StateMonad [PhysicalRegion] m,

StateMonad [Addr Virtual] m, StateMonad MappingDB m,

KernelMemory m, Paging m, UserMemory m, Debug m)

=> Thread -> Thread -> UTCBField -> HWord -> m HWord

transferTyped st rt f num = transferTyped’ f f num 0

where

transferTyped’ sf rf n acc

| n <= 0 = return acc

| otherwise

= do mti <- transferTypedItem st sf rt (n /= 0)

case mti of

Nothing -> transferTyped’ (next sf) rf (n-1) acc

Just (w1,w2) ->

do writeUTCBField (utcb rt) rf w1

writeUTCBField (utcb rt) (succ rf) w2

transferTyped’ (next sf) (next rf) (n-1) (acc+1)

next = succ . succ

Typed items are processed using transferTypedItem, which is shown in Fig-

ure 7.4. When a transfer succeeds, transferTyped copies the map or grant item

into the UTCB fields of the receiver. In any case, we continue processing the

message until we reach the end of the typed item list.

7.8 SUMMARY

In this chapter we provided a basic overview of our L4 implementation and an

in-depth look at our approach to IPC. We will cover the performance of IPC in

Chapter 8. Table 7.1 describes the size of our L4 kernel, in source lines of code,

overall and for our IPC implementation alone. The overall line count includes all of

the code (outside of H) in the implementation. This includes our implementation
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transferTypedItem ::

(StateMonad System m, StateMonad [PhysicalRegion] m, StateMonad [Addr Virtual] m,

StateMonad MappingDB m, KernelMemory m, Paging m, UserMemory m, Debug m)

=> Thread -> UTCBField -> Thread -> Bool -> m (Maybe (HWord,HWord))

transferTypedItem st si rt more

= do base <- readUTCBField (utcb st) si

fpage <- readUTCBField (utcb st) (succ si)

acceptor <- readUTCBField (utcb rt) BR0

let (snd, rcv) = reconcileFpages fpage acceptor (base .&. 0xfffffc00)

msd <- readDomain (parent st)

mrd <- readDomain (parent rt)

case (msd, mrd) of

(Just sd, Just rd) ->

do mpmp <- allocPageMapPage

case mpmp of

Nothing -> return Nothing

Just pmp ->

do b <- mapFunction (testBit base 1) [pmp] (space sd) snd (space rd) rcv

case b of

Nothing -> return Nothing

Just False -> do freePageMapPage pmp

return (Just (setBitTo base 0 more, l4FpageToWord rcv))

Just True -> return (Just (setBitTo base 0 more, l4FpageToWord rcv))

_ -> return Nothing

where

mapFunction b = if b then replaceMapping else shareMapping

Figure 7.4: Process a single map or grant item. This function uses the operations of

the mapping database (and in turn H) to modify the address space of the receiving

thread (in the case of map and grant) and the address space of the sender (in the

case of grant). The result is an updated typed item that reflects any changes

made to the mapping area due to a mismatch between the sent flexpage and the

receiver’s acceptor.
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of thread scheduling, thread creation and deletion, and address-space management.

Description Source Lines of Code

L4 Kernel 2119

IPC 320

Mapping Database 242

Table 7.1: The source lines of code for our L4 implementation. Source lines of

code do not include blank lines or comments.

All of the code was written in Haskell using the H interface; no extra foreign calls

or potentially unsafe primitives were needed. The total lines of code is just over

2,100. Even when combined with the size of the primitives for H (presented in

Section 6.9), the size of the kernel is around 5,300 lines of code. Typical C/C++

implementations of L4 are around 10,000 lines of code, though this is not truly

a fair comparison because these other kernels may be more portable or support

more of the API. Using Haskell does not seem to be a tremendous advantage or

disadvantage when it comes to code size in this application.
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Chapter 8

PERFORMANCE RESULTS

In designing and implementing the H interface, our focus is on the safety prop-

erties of the interface rather than the performance. However, performance is an

important characteristic of systems software and we must address the performance

costs that come with our approach to safety. In this chapter, we will evaluate

the performance of H in the context of the L4 inter-process communication im-

plementation. We choose to analyze the performance of L4, rather than directly

examining H, for the following reasons:

• Comparability: L4 has numerous implementations which allows us to eval-

uate our performance results against an equivalent system that does not

contain the safety overheads introduced by an H and that is written in a

low-level language. There is no directly comparable system to H, so an eval-

uation of the H primitives in isolation would be artificial.

• Relevance: The H interface allows programmers to construct operating

systems in Haskell. Even if the H primitives are fast, we must consider the

overheads that stem from writing our operating system on top of the interface

using Haskell. By using a kernel-level benchmark, we can observe the cost

of the architecture as a whole.

By comparing to an optimized C system that does not contain the same kinds of

safety checks or the additional indirection of a low-level abstraction layer, we can

provide an initial estimate of the performance cost of an H-based system compared

to a traditional approach to systems software development.
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Our goal is to analyze the performance of an H-based system, rather than to

demonstrate that our L4 kernel achieves performance on par with a production

C kernel. Neither H nor our implementation of L4 were implemented with per-

formance or optimization as a priority, so we expect poor performance to start.

The initial results demonstrate that it is feasible to implement operating systems

in a safe language without introducing memory-safety violations and to quantify

the costs of a naive approach to implementing such systems. Much as the L4

architects demonstrated that microkernels could perform well through targeted

optimization [70, 71], it might be possible that turning a similar eye to kernels

built using the H architecture (as well as further research into compiling functional

languages) will allow us to increase performance and ultimately demonstrate the

viability of the safe language approach.

To demonstrate that our initial results do not reflect the best possible per-

formance reachable with our approach, we devote a portion of this chapter to

optimization techniques for an H-based system. The optimizations improve the

performance of our IPC implementation significantly. We focus our optimization

energy on the IPC implementation discussed in the previous chapter as a proof of

concept, but we use general Haskell optimization techniques that can be applied

to the entire kernel.

The remainder of this chapter presents our performance analysis. Section 8.1

describes the mechanisms we use to evaluate IPC, the environment in which we

run our tests, and the profiling techniques we use to measure the Haskell run-time

system behavior. Section 8.2 presents our initial results. Section 8.3 demonstrates

techniques for optimizing the key components of an H-based system: the algorithms

that run on top of the interface, the interface itself, and the code generated by the

Haskell compiler. Section 8.4 summarizes the effects of our optimizations and our

overall performance results.
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8.1 TEST CONSTRUCTION AND MEASUREMENT

ENVIRONMENT

The starting point for our performance evaluation is a standard L4 benchmark

called ping-pong. This benchmark measures IPC performance by creating two

threads—“ping” and “pong”—and calculating the average time it takes for these

threads to send and receive a series of IPC messages of different sizes. Ping-pong

can be configured such that either the threads run in different address spaces (an

inter-address-space measurement); or the threads run in the same address space

but communicate using the normal IPC system call; or the threads run in the same

address space and communicate using a special IPC call that is optimized for local

communication. All of our measurements use the inter-address-space variant.

Ping-pong reports two statistics about IPC: the average number of CPU cycles

taken and the average time per message. The cycle count is measured using the

IA32 instruction rdtsc, which reads the processor’s time-stamp counter register.

The initial value of the time-stamp counter after a processor reset is zero. Subse-

quently, the processor increments the time-stamp counter on every clock cycle [53].

The elapsed time is measured using the L4 system call SystemClock, which reads

L4’s internal clock. We implement the L4 clock in our kernel by configuring a

timer at a particular frequency and incrementing the clock appropriately on each

timer interrupt.

The source code for our experiments comes from the University of Karlsruhe

Pistachio distribution of L4 [63]. The following pseudo-code describes the basic

algorithm of the test:

create two threads "ping" and "pong"

for i = 0, 4, 8, ..., 60:

read clock/cycle count

for ROUNDS times:

send i words of data from ping to pong
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send i words of data from pong to ping

read clock/cycle count

compute average cycles and time taken per message

The loop-variable i controls the amount of data that is transferred by each message

(in words). We measure the average IPC time for payloads in the range 0 to 60

words, incrementing the size by 4 words with each loop. ROUNDS controls the

number of IPC messages that are sent with each payload size. The original source

code for ping-pong uses a ROUNDS value of 128K. The original source also uses a

32-bit cycle counter, so we lower the number of ROUNDS in our Haskell benchmarks

to avoid problems with overflow1.

We run our experiments on an HP Mini 110 net-book with a 1.66 GHz Atom

N455 processor with a 512 KB L2 cache and 1 GB of RAM. Our platform during

development and optimization was a VirtualBox [92] machine with 256 MB of

RAM running on a 2.33 GHz MacBook Pro. The VirtualBox environment was

beneficial because it provided fast feedback about changes to the code and made it

easy to set up new tests. In particular, VirtualBox was very useful for identifying

the optimal garbage collector settings for the L4 kernel because of the sheer number

of tests that needed to be evaluated. We discuss the details of the garbage collector

experiments in Section 8.2.3—these are the only experiments where we will report

results collected on a virtual platform rather than hardware.

For all of the experiments, we set the Haskell heap size to 16 MB. Other pa-

rameters of the garbage collector vary across the test suite. For the initial mea-

surements, the garbage collector is configured with the default settings of GHC

1On a 1.66 GHz processor, the 32-bit cycle counter will wrap every 232∗(1/1, 660, 000, 000), or

2.59, seconds. We must choose a value for ROUNDS such that all of the IPC calls will complete

in less than this amount of time. In our experiments we used a value of 7,128. We decided against

changing the source to use a 64-bit cycle counter to minimize the changes to the test harness;

the benchmark is already parameterized by ROUNDS so that was a minor change.
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(version 6.8.2) [31].

In the rest of this section, we will provide a closer look at the code being

evaluated and the Haskell-specific mechanisms we put in place for measuring our

kernel. Section 8.1.1 explores the steps taken through the kernel during each IPC

request; these are the aspects of our implementation that will be measured by

our experiments. Section 8.1.2 discusses the extensions that we make to H, L4,

and ping-pong to obtain more detailed information about the performance of our

Haskell kernel, including the percentage of time spent in garbage collection.

8.1.1 Anatomy of an IPC Request

In this section, we review the steps that an IPC request takes on its way into

the Haskell kernel as well as the basic components of our IPC implementation.

Section 6.8 and Chapter 7 cover these topics, respectively. We review the steps

here in preparation to evaluate the performance of the IPC implementation: we

will measure the number of cycles that our kernel spends in each phase of the

implementation in Section 8.2.1. These fine-grained measurements are the starting

point of our performance analysis. Each phase of the algorithm is a potential

source of inefficiency—and an opportunity for optimization. Figure 8.1 illustrates

the path of an IPC and the connections between each of the phases.

Context-Switching A user program sends an IPC message by invoking the

appropriate system call via the IA32 instruction INT n. Control transfers back to H

via a kernel-mode interrupt handler that gets invoked by the hardware. We resume

execution in H midway through the execute function—recall from Section 6.8 that

execute runs a user program by calling out to C—and then we return a description

of the interrupt to the client kernel. Between the moment when the user program

issued the system call interrupt and the moment when the client kernel receives the
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Figure 8.1: The flow of execution through the kernel when a user program

issues an IPC request. The interrupt handler passes control back to H

which then returns to the client kernel. The client kernel handles the IPC

request, invokes the scheduler to restart the user program, and calls H to

switch the processor back to user-mode.

interrupt information the program passes through an assembly language interrupt-

handler, a C wrapper for that assembly function, and then finally enters Haskell.

The program travels through a similar path in reverse when we return to user-

mode. We refer to each transition from a user-mode C program to a kernel-mode

Haskell kernel (or vice versa) as a context switch.

In Section 8.2.1 we will measure the cost of context switches indirectly by

computing the difference between the total time for each IPC and the time that

is spent in the Haskell kernel. This technique provides an approximation of the
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context-switching cost, but also includes other overheads that have nothing to do

with context switching. Laziness is one culprit: any computation that has not been

forced by the time we return to C will be executed before we return to user-mode.

Thus, it can appear that certain costs are part of context-switching even though

they originated in a different area of the program. In Section 8.2.2 we examine a

test that specifically targets context-switching time so that we can obtain a more

accurate measurement.

Scheduling The scheduling loop manages the execution of user programs. Each

time we enter the loop, we look for a runnable user thread, load its saved state,

and run the thread using the execute function from H. When execute returns,

we decode the interrupt that we received from the user thread and invoke the

appropriate handler in the kernel.

The interrupt decoding portion of the scheduling loop is inefficient: at the

assembly language level we knew precisely which interrupt had occurred but the

process of returning via execute requires us to decode the interrupt again. We

could reduce the time spent in scheduling by invoking the appropriate Haskell

handlers directly without going via execute. Such an approach would require

some re-architecting of H, but would be feasible if the extra scheduling time turns

out to be a bottleneck. We measure the scheduling time by subtracting the total

time spent in the IPC system call handler from the time spent in the Haskell kernel.

Sender Rendezvous The rest of the phases that an IPC request passes through

are steps in the IPC implementation itself, rather than kernel overheads. In general,

the path of a particular IPC might vary depending on the type of the IPC request

(send-only, receive-only, or send-and-receive) and on whether or not the desired

partner is ready to send or receive. In the IPC messages produced by ping-pong,

there is no such variety. Every message is a send-and-receive request and the tests
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are structured such that the sender always succeeds in transferring a message while

the receiver always waits. We take advantage of these patterns when structuring

our IPC profiling points and focus our measurements more heavily on the steps of

the send phase of the implementation.

The sender rendezvous phase of IPC is where the sending thread attempts to

locate the intended receiver of its IPC message. The kernel must look up the cur-

rent status of the intended receiver to verify that that thread is waiting to receive

a message from the sending thread. The algorithm is not inherently complex, but

involves a number of state monad accesses and data structure manipulations.

Transfer Message The transfer message phase performs the real work of IPC.

It determines the type of IPC message being sent, coordinates the transfer of the

untyped words and typed data from the sender to the receiver (as appropriate

for the message type), and updates the message registers of the receiver with a

description of the message. For evaluation purposes, we measure the time spent

in transfer message and the time spent in the transfer untyped phase (the phase

that transfers untyped words) separately.

Transfer Untyped The transfer untyped phase copies the untyped words of a

message from the sender to the receiver. Most of the cost of an IPC message comes

from this phase, and we will take an in-depth look at the cost of our implementation

in Section 8.3.

Thread Restart Once the kernel transfers a message from the sender to the

receiver, both threads are ready to run again. The receiver automatically be-

comes runnable—there is no other state the thread can enter. The sender becomes

runnable unless their IPC request also included a receive phase. In that case, the

kernel constructs the appropriate receive request and invokes the receive phase of

the implementation. The thread restart cost is the time between the completion
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of the transfer message phase and the start of the receive phase (all send requests

in the ping-pong test also include a receive phase).

Receive Phase The receive phase encompasses all of the work done to receive

a message. In the ping-pong tests, we know by construction that the messages are

always transferred in the send phase and that the receiver always blocks. Thus,

our measurements of the receive phase examine the cost of searching for an accept-

able sender and blocking when such a sender is not found. There is an inherent

inefficiency in our implementation with respect to this benchmark: we know that

the sender cannot complete its receive phase because the intended partner of the

receive phase just became runnable (the intended sender is the thread that was

the receiver in the last message transfer). All of the computation spent looking

up the sender is wasted. A future optimization would be to prioritize the thread

that just unblocked (because it is runnable) or to check if the receive phase will be

pointless in advance. There are papers that study these kinds of trade-offs for L4

implementations [80].

8.1.2 Haskell Profiling on Bare Metal

The ping-pong benchmark from Pistachio [63] reports two statistics about the pro-

gram under test: the average cycles taken per message transfer and the average

time taken per message transfer (in microseconds). The cycle count is collected

via rdtsc and the microsecond count is determined by querying the L4 System-

Clock system call. In a Haskell program, there are additional sources of potential

inefficiencies that are not easily measured using the existing system calls or hard-

ware functions, such as the amount of time spent in garbage collection. To help

us understand our performance results more deeply, we extended our H and L4

implementations to support the collection of rdtsc-style cycle counts from within

Haskell and to support some simple garbage collection profiling. This section will
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cover some details of these profiling extensions.

Note that the standard distribution of GHC includes sophisticated profiling

tools for understanding the performance of Haskell programs [91]. Unfortunately,

our bare metal port of the GHC run-time system cannot support the usual profiling

mechanisms, because they rely heavily on OS-level timing facilities for collecting

data and on an underlying file system for reporting the data. Ultimately, adapting

the real profiling tools to work in a bare metal environment would be a valuable

exercise that would greatly improve our ability to understand the performance of

Haskell kernels. The profiling tools presented here are a stop-gap to enable us to

collect data without spending too much extra engineering effort.

Garbage Collection Profiling Dynamic memory management with garbage

collection is a key mechanism for enforcing memory-safety in Haskell, but it is

important to understand the overheads that it introduces. We implement basic

garbage collection profiling tools that allow us to determine how much of our exe-

cution time is being spent on garbage collection, the effect of various optimizations

on the garbage collection behavior of the program, and the impact of different run-

time system parameter settings. To implement these tools, we must extend the

run-time system of GHC to track the information of interest. This information is

in turn exported via H and L4 so that we can query the garbage collection statistics

from user programs.

In GHC, garbage collection occurs in a run-time system function that is called

GarbageCollect. Because of the profiling tools that are normally part of GHC,

the GarbageCollect function already contains hooks to support statistics gather-

ing and program profiling. At the start of every garbage collection, the function

stat_startGC is called. Normally, this function starts any garbage collection re-

lated statistics gathering. At the end of every garbage collection, an analogous

function, stat_endGC, is called.
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void GarbageCollect(...) {

... initialization ...

stat_startGC();

.. do garbage collection ...

stat_endGC();

... clean up ...

}

We add our profiling instrumentation to stat_startGC and stat_endGC to guar-

antee that the code is called exactly once per garbage collection. We introduce

a run-time system variable that counts the number of garbage collections (incre-

mented in stat_startGC) and a variable that accumulates the number of cycles

spent in garbage collection throughout the life of the system. We compute the

cycle count by querying rdtsc once in stat_startGC and once in stat_endGC

and adding the difference to our accumulator.

To collect the garbage collection statistics, we need to export the values of our

counters through the H interface to the client kernel. We export the run-time

system accessor functions to the client by adding straightforward FFI wrappers of

the functions to the H interface. These H functions allow the client to query the

garbage collection statistics, but do not introduce any safety issues.

foreign import ccall unsafe "getGarbageCollections"

getGarbageCollections :: IO HWord64

getNumCollections :: H HWord64

getNumCollections = liftIO $ getGarbageCollections

foreign import ccall unsafe "stat_getElapsedGCTime"

getElapsedGCTime :: IO HWord64

getCollectionTime :: H HWord64

getCollectionTime = liftIO $ getElapsedGCTime
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We also add two new system calls to our L4 kernel so that user programs can

query the current number of garbage collections and the time spent in garbage

collection throughout the kernel’s execution so far. Our version of ping-pong uses

these system calls to integrate garbage collection statistics into the experimental

results that are reported for each test.

In-Kernel Profiling Haskell programs do not have access to the normal hard-

ware mechanisms for taking timing measurements without making a foreign func-

tion call. But client kernels are not allowed to invoke the foreign functions directly,

so we extend H with an interface to the rdtsc counter to allow in-kernel profiling

measurements. The in-kernel profiling tools allow us to start and stop cycle count

measurements at any point in our Haskell code so that we can obtain fine-grained

information about where time is being spent. To support in-kernel profiling, we

add three new functions to the Debug class of the H interface:

startMeasurement :: HWord -> H ()

stopMeasurement :: HWord -> H ()

readMeasurement :: HWord -> H HWord32

Each function takes a word as a parameter: this word is an identifier for the mea-

surement being taken. We allow a fixed number of simultaneous measurements;

the maximum is arbitrarily set to eight. The semantics of each function is straight-

forward: startMeasurement starts the timer for a particular measurement using

rdtsc; stopMeasurement stops a measurement; and readMeasurement returns the

average number of cycles taken for a particular measurement. The counter is reset

every time that the measurement is read. Although this is not a good design for a

general profiling suite, it was well-suited to our particular use-case.

We implement the measurement functions in C so that we can access the rdtsc

counter using inline assembly instructions. The H functions that are exposed

to client kernels simply lift the C functions into Haskell. As with the garbage
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collection profiling functions, we add a system call that allows the user program

to call the readMeasurement function so that we can report the results of in-

kernel profiling from the user-level program. This approach minimizes the extent

to which the profiling extensions impact the performance results. By designing

readMeasurement to compute the average cycle count and clear the counter, we

only needed to expose one primitive to user-level programs.

8.2 INITIAL MEASUREMENTS

The initial measurements of our L4 kernel using ping-pong reflect the performance

of a naive H-based operating system without any optimization. We choose these

measurements as our starting point to provide a baseline against which to compare

our optimized implementations. Section 8.2.1 presents the initial results for the

Haskell kernel including a breakdown of the time spent in each phase of IPC.

Section 8.2.2 takes an in-depth look at the cost of context-switching between a

kernel written in Haskell and a user program written C. Section 8.2.3 examines the

role of garbage collection in the initial results and provides a comparison between

different run-time system configurations.

8.2.1 Ping-Pong Performance

We expect there to be costs that accompany the use of an H-based architecture.

The additional dynamic checks that we include in the H primitives to enforce

memory-safety, the abstraction barrier that we place between the client kernel

and the machine, and our choice of Haskell as an implementation language are

all potential drains on performance. We compare the performance of our kernel

to the Pistachio distribution [63] of L4 to obtain a real measure of the cost of

safety in our approach. Pistachio is written in C++ and is highly optimized,

so it serves as a reasonable representative of the “typical” approach to operating
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systems. Furthermore, Pistachio is based on the same version of the L4 API as our

implementation (X2 [62]), so the two kernels are directly comparable in terms of

functionality. We use the Pistachio implementation of ping-pong for all of our IPC

measurements. Table 8.1 shows the results from running the inter-address-space

variant of ping-pong on Pistachio for a one-way IPC on our test platform.

Words Cycles µs

0 1,270 0.76

4 1,332 0.80

8 1,337 0.80

12 1,348 0.81

16 1,354 0.81

20 1,365 0.82

24 1,371 0.82

28 1,379 0.82

32 1,389 0.83

36 1,395 0.83

40 1,405 0.84

44 1,410 0.84

48 1,422 0.85

52 1,427 0.85

56 1,435 0.86

60 1,446 0.86

Table 8.1: Result of running ping-pong on Pistachio in our experimental envi-

ronment. Ping-pong tests the average number of cycles and average time in mi-

croseconds required to send various numbers of words over IPC (from 0 to 60 in

increments of 4).

To test the Haskell kernel, we run a slightly modified version of ping-pong that

reports garbage collection statistics in addition to the standard results. We use
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the garbage collection profiling from Section 8.1.2 to calculate the total number

of garbage collections that occur during all IPC messages of a certain size (for

example, 321 garbage collections occur when testing IPC with a payload of zero

words). We use a total count of garbage collections rather than an average per

message because the number of collections per message is less than one. Table 8.2

presents our initial results.

We expected the performance of our initial implementation to be poor, but

even so these results are a bit disappointing. Examining the data, we see that our

kernel takes roughly 30,000 additional cycles for every additional 4 words of data

that we transfer. When we do not transfer any words of data, the Haskell kernel

is 67 times worse than Pistachio, but by the time we reach 60 words our kernel is

368 times worse. We might expect a high cost for using the H interface, but would

not expect such a large number of cycles to be spent for each word transferred.

This suggests that something costly is happening in the routine that transfers data

between the sender and the receiver.

Our understanding of the algorithmic structure of the code suggests that we

should examine the transferUntyped function that copies untyped words from

the sender to the receiver. We use the in-kernel profiling tools introduced in Sec-

tion 8.1.2 to calculate the number of cycles that are spent in that function (on

average). We also measure the average cycles spent in the other phases of IPC

discussed in Section 8.1.1: overhead/context-switching, scheduling, sender ren-

dezvous, transfer message, thread restart, receive phase, and garbage collection.

The measurements for these phases are shown in Table 8.3. By measuring each

phase of the algorithm, we can determine the most profitable places to spend our

optimization energy and learn more about the behavior of our program. Note that

the total cycles per IPC is worse for the measurements that use in-kernel profiling;

this slowdown is due to the cost of the profiling measurements themselves.
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Words Cycles µs GCs × P

0 85,223 53 321 67

4 119,324 73 451 90

8 149,068 89 583 111

12 178,781 106 715 133

16 208,498 126 845 154

20 237,995 142 978 174

24 267,410 162 1,109 195

28 296,954 179 1,240 215

32 326,074 195 1,373 235

36 355,614 215 1,503 255

40 385,259 232 1,635 274

44 414,741 251 1,766 294

48 444,155 268 1,897 312

52 473,276 285 2,030 332

56 502,743 301 2,160 350

60 532,215 318 2,292 368

Table 8.2: Initial results for our Haskell implementation of L4 on H. The table

shows the number of words transferred over IPC, the average cycles taken per

message, the average time in microseconds per message, and the total number of

garbage collections that occurred during the test (not per IPC). The final column is

the ratio between the average cycles taken for a particular test and the equivalent

result from Pistachio (see Table 8.1 for the full results). This number indicates

how many times slower our implementation is than the Pistachio baseline.

The results in Table 8.3 confirm that our implementation of transferUntyped

is the source of the high cost for transferring each word. The base cost of execut-

ing transferUntyped when no data is transferred is 3,530 cycles. This increases

by roughly 30,000 cycles for every 4 words to a peak of 450,265 cycles when 60
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Words OH Sch. SR TM TU Rst. Rcv. GC Total

0 6,789 26,194 7,903 14,710 3,530 16,395 24,085 1,471 101,077

4 7,184 26,486 7,895 14,732 35,996 17,035 24,127 2,041 135,496

8 7,552 26,191 8,057 14,849 65,945 17,032 24,310 2,639 166,575

12 7,986 25,808 7,948 14,998 95,358 17,103 24,456 3,191 196,848

16 8,375 25,497 7,920 14,850 125,435 17,148 24,395 3,728 227,348

20 8,974 25,098 7,953 15,114 154,878 17,120 24,510 4,350 257,997

24 9,423 24,698 8,009 15,144 184,812 17,253 24,505 4,930 288,774

28 10,137 24,131 8,058 15,161 214,211 17,284 24,493 5,540 319,015

32 10,668 23,505 8,037 15,122 243,620 17,290 24,555 6,102 348,899

36 11,425 22,872 7,982 15,145 273,235 17,336 24,583 6,621 379,199

40 12,259 22,127 7,997 15,058 303,063 17,515 24,634 7,185 409,838

44 12,967 21,579 8,028 15,213 332,575 17,291 24,464 7,775 439,892

48 13,979 20,528 7,962 15,306 362,215 17,319 24,695 8,410 470,414

52 14,622 20,131 8,119 15,148 391,677 17,310 24,652 8,921 500,580

56 15,606 19,147 8,143 15,180 420,793 17,303 24,661 9,501 530,334

60 16,771 18,007 7,991 15,289 450,265 17,312 24,742 10,079 560,456

Table 8.3: A breakdown of the cycles spent in each phase of the IPC implemen-

tation. OH stands for overhead and includes the time spent to context-switch

between the Haskell kernel and the C user program. Sch. is the time spent in the

scheduling loop. SR stands for send rendezvous, TM stands for transfer message,

and TU stands for transfer untyped. Rst. describes the phase of IPC spent restart-

ing the thread. Rcv. is the time spent in the receive phase of the IPC operation.

The phases are explained in detail in Section 8.1.1.

words are transferred. These results indicate that transferUntyped is an ap-

propriate place to start our performance analysis. Copying data should have a

relatively low, constant cost, so there should be hope to improve the performance

of transferUntyped through optimization. Section 8.3 will provide a detailed
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walk-through of the transferUntyped implementation and show that our original

implementation has (and realizable) opportunities for optimization of its perfor-

mance.

8.2.2 Context-Switching Time

Before moving on to optimization, we will take a closer look at some of the base

costs involved in our Haskell kernel. This section examines the cost of context-

switching between the Haskell kernel and a user program written in C. In the

previous section, we measured the cycles spent for “context-switching”. This mea-

surement provides a rough estimate of how many cycles our L4 implementation

requires to enter and leave the kernel, but it also includes other overheads such as

the cycles required for the profiling functions and misattributed costs due to lazi-

ness. To isolate the actual time taken to switch between the user and the kernel,

we created a new test specifically to measure the cost of context-switches.

The context-switch test works much like ping-pong except that the user pro-

gram invokes a “no-op” system call instead of IPC. The interrupt passes through

assembly to H to the Haskell kernel as explained in Section 4.5. In the kernel, the

interrupt handler returns immediately. As in ping-pong, we execute the no-op sys-

tem call several thousand times and compute the average cycles per context-switch

using rdtsc. Over 115,000 tests, the average number of cycles taken for a context

switch is 3,289 cycles. This reflects the path of a single crossing from user-to-kernel

mode or kernel-to-user mode—the round-trip of a system call requires two such

switches. The context-switch time is consistent with the overhead of transferring

zero words of data that we measured in Section 8.2.1.

We perform the context switch from Haskell to C using an optimized version of

the execute primitive from Section 4.5. Recall that the original definition of the

execute primitive returns an Interrupt data structure to describe the user event

that brought control back to the kernel:
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execute :: PageMap -> FaultContext -> H Interrupt

Creating the Interrupt data structure is wasteful because it introduces an addi-

tional case-split on the interrupt vector and allocates extra space. Context-switches

via this primitive take an average of 3,517 cycles. Our alternative primitive, called

executeWithoutAllocation, returns the interrupt vector that caused the switch

to kernel model as a raw byte:

executeWithoutAllocation :: PageMap -> FaultContext -> H HByte

For page fault handling, we also need to add a primitive that accesses the address

where the last fault occurred:

readLastFaultAddress :: H HWord

All of the other information contained in an Interrupt, such as the error code of

a fault, is accessible through existing H operations.

Switching to the non-allocating version of execute reduced the overall context-

switch time by roughly 7% and the time spent in garbage collection by 20%. We use

the alternative primitive in all of our tests (including our initial results). Despite

these improvements, it does not appear that the use of an Interrupt structure is

the most significant bottleneck in context switching. Pistachio completes an entire

IPC in less time than a single switch into the Haskell kernel takes, so we know that

we are a long way from the limits imposed by the machine. There are no obvious

bottlenecks in the code, so it is not clear whether the context-switching overhead

is inherent in our use of Haskell or if it is simply a product of the H design for

executing user code. Further analysis and improvement of the context-switching

time is an interesting topic for future work.

8.2.3 The Effect of Garbage Collection

Garbage collection is an inherent cost for a Haskell kernel. In the results of Ta-

ble 8.3, we saw that garbage collection did not appear to be a significant bottleneck
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in IPC when compared to the other phases of the algorithm. As another perspec-

tive on the cost of garbage collection, Table 8.4 compares the average time spent

in garbage collection to the average time spent in IPC overall (measured in mi-

croseconds) for each of the IPC payloads. In most cases, garbage collection takes

less than 2% of the total time.

Words GC µs Per IPC µs Per IPC Time in GC

0 0.73 53 1.38%

4 1.05 73 1.45%

8 1.36 89 1.52%

12 1.68 106 1.58%

16 2.04 126 1.62%

20 2.40 142 1.69%

24 2.70 162 1.67%

28 3.04 179 1.70%

32 3.34 195 1.70%

36 3.74 215 1.74%

40 4.06 232 1.75%

44 4.41 251 1.76%

48 4.73 268 1.77%

52 5.06 285 1.78%

56 5.39 301 1.79%

60 5.68 318 1.79%

Table 8.4: Portion of time spent in garbage collection in our initial results. By

comparing the average number of microseconds spent in garbage collection to the

average number of microseconds spent in IPC overall, we see that garbage collection

is only 1–2% of our total IPC cost.

While 2% of IPC execution time may not seem significant, garbage collection

is still important because of secondary effects that are not obvious from garbage
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collection profiling alone. In a garbage collected language, the programmer does

not typically control the placement of data structures in memory and they may

be moved during garbage collection to another address. From an algorithmic per-

spective the programmer does not care—their program produces the same result

no matter where their data structures live. But from a performance perspective

the results might be very different: moving the data structures of the running pro-

gram can have significant cache effects that are invisible to the programmer except

through testing.

GHC allows the user to control many configuration settings for the run-time

system [91]. We experimented with two of these parameters in an attempt to

understand the effects of garbage collection and to identify the optimum garbage

collector settings for the L4 kernel. The “-A” flag controls the size of the initial

allocation area and has a default size of 256 KB. The “-g” flag controls the number

of generations and has a default setting of 2.

Figures 8.2 and 8.3 illustrate the impact that various garbage collection settings

have on IPC performance. We vary the allocation area used by the collector

between 256 KB and 4096 KB in combination with either 2, 3, or 4 generations.

We then compare the best fit line for the data produced by each test. The best-fit

line takes the form a + bn, where a is the base cost (in cycles) and b is the cost

of transferring each additional word. Figure 8.2 illustrates the impact the garbage

collection settings have on the base. Four generations and an allocation area of

4096 KB clearly produces the lowest base cost, most likely because fewer garbage

collections are performed. Figure 8.3 describes the changes to the gradient of the

best fit line with each setting. In this case the combination of four generations with

a 4096 KB allocation area has the worst gradient while a setting of two generations

with a 512 KB allocation area has the lowest cost per word.

The graphs alone do not indicate which settings are the best, but they provide

us with a guide to the data sets. Using the graphs to navigate the results, we
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Figure 8.2: The effect of garbage collector allocation area size and number of gener-

ations on IPC. These tests measure the base-line cost, where no data is transferred

(a 0 word IPC). For a best-fit line of the form a + bn found using linear regression,

this figure represents the impact of the parameter settings on the base number of

cycles per IPC, a.
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generations on IPC. For a best-fit line of the form a + bn, this figure represents

the impact of the parameter settings on the additional cycles needed per word of

data transferred, b.



266

determined that an allocation area that is 512 KB large and two generations lead

to the best performance for our L4 kernel. Even though garbage collection was only

2% of our overall IPC time, changing the garbage collection settings improved IPC

time by 7–12% and reduced garbage collection time by 53%. This is likely due to

the secondary effects of reduced garbage collection, such as better cache behavior

in the client kernel. We will use the optimal settings for all of our experiments

throughout the rest of the chapter.

8.3 OPTIMIZING THE KERNEL

The performance results for our Haskell kernel indicate a high base cost for our

approach to safety—which includes writing the client-kernel in Haskell, accessing

hardware through an additional layer of indirection, and adding safety checks that

are not always present in other kernel implementations—as well as a significant

per-word overhead in the implementation of transfer untyped. Not all of these

costs are inherent—they indicate areas in need of optimization. In this section,

we will examine the code of transferUntyped to identify the sources of that

function’s poor performance and to illustrate techniques for optimizing an H-based

system. Though we examine the techniques in the context of the transfer untyped

phase, they use general mechanisms for optimizing Haskell programs that should

apply equally well to all aspects of the L4 implementation, but that would require

additional engineering effort.

The source of performance inefficiencies in a Haskell program is often less obvi-

ous than in a program written in a lower-level language because Haskell programs

are garbage collected, lazily evaluated, and written in a source language that is

much more abstract than the machine they will eventually run on. In an H-based

system, there are additional subtleties because issues might lie in the interface

implementation, the kernel implementation, or in the design of the interface itself.
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We identify three aspects of the L4 implementation to focus on when optimizing

our kernel:

• Algorithm Design: An advantage of Haskell is that the language facil-

itates abstraction and allows the programmer to create concise programs

that are easy to understand. However, the choice of abstractions can signifi-

cantly affect performance. For example, the programmer might make heavy

use of datatypes; this technique could potentially hurt performance due to

construction/destruction time and garbage collection.

• Interface Design: In designing the primitives of the H interface, we at-

tempted to anticipate the needs of operating systems implementers and to

create the minimum sufficient interface. Unfortunately, a primitive will not

always be the most performant abstraction on the first attempt. This point

is illustrated by the original execute function, which creates an unnecessary

data structure and increases our context-switching time. Once we see how the

primitives get used in kernel implementations, we can revise the design and

implementation of the primitives to eliminate unanticipated inefficiencies.

• Quality of Generated Code: GHC allows the programmer to annotate

their Haskell code to control many facets of their compiled program, such as

the inlining behavior of the compiler on certain functions, the representation

of datatypes, and the strictness of function parameters. Targeted use of these

annotations can significantly improve the performance of Haskell programs.

Attention to each of these categories is essential for achieving good performance. In

the rest of this section, we examine the algorithmic complexity of the transfer un-

typed function (Section 8.3.1), the H facilities for copying memory (Section 8.3.2),

and the use of compiler annotations within H and L4 (Section 8.3.3).
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8.3.1 Identifying Algorithmic Inefficiencies

In the L4 implementation, we employ a coding style that makes heavy use of

abstractions to capture common patterns and emphasize code clarity. This cod-

ing style is extremely beneficial during development: abstractions enable better

type-based documentation, improve debugging, and allow localized changes to the

implementation. Unfortunately, choosing the wrong abstractions can create sig-

nificant performance issues. Our initial experiments show that removing certain

abstractions improves the performance of IPC. Abstraction itself is not to blame;

the problem is that we designed many of our abstractions before we understood

the ways in which the abstractions would be used in the kernel implementation.

As a simple example, consider the implementation of transferUntyped. We

define the message transfer function as a recursive function that transfers one word

of data per call. The parameters to the function are the sender’s UTCB structure,

the receiver’s UTCB structure, the UTCB field currently being transferred (recall

from Section 7.1 that we defined a datatype with one constructor per UTCB field

to document the mapping between field names and addresses), and the number of

remaining words to transfer.

transferUntyped :: (KernelMemory m) => UTCB -> UTCB -> UTCBField

-> HWord -> m UTCBField

transferUntyped sutcb rutcb f num

| num <= 0 = return f

| otherwise = do val <- readUTCBField sutcb f

writeUTCBField rutcb f val

transferUntyped sutcb rutcb (succ f) (num - 1)

We use the utility functions readUTCBField and writeUTCBField to access the

thread UTCBs. Each iteration of transferUntyped moves one word and makes

a tail recursive call, incrementing the field being accessed and decrementing the

number of words left to transfer (the function returns when there are no words
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left). This code seems innocuous enough and the algorithm being implemented

by the function is clear, but the per-word transfer cost of more than 7,000 cycles

indicates that something costly is happening under the surface. By examining the

definitions of the read and write operations on UTCB structure, the issues will

become more clear.

Each UTCB structure is a pair containing the KernelMapping through which

we can access the UTCB memory and an Addr Virtual describing the location

of the UTCB (because each kernel-mapping can contain more than one UTCB

structure).

type UTCB = (KernelMapping, Addr Virtual)

To read a field from a UTCB, we use the H function readWordAtOffset (intro-

duced in Section 4.4.3).

readWordAtOffset :: KernelMapping -> Offset -> H HWord

readWordAtOffset reads the value stored at a particular offset in a region of mem-

ory mapped in kernel-space. The offset must lie in the first page of the mapped

region (arbitrary offsets are read with readKernelMapping); the Offset type cap-

tures the intended bounds on the offset. The utility readUTCBField is a straight-

forward wrapper for readWordAtOffset. The function extracts the kernel mapping

that we will read from the supplied UTCB, computes the offset into the kernel map-

ping where the UTCB lies, and adds the UTCB offset to the offset of the message

register being accessed to produce an appropriate call to readWordAtOffset.

readUTCBField :: (KernelMemory m) => UTCB -> UTCBField -> m HWord

readUTCBField utcb field

= readWordAtOffset (fst utcb)

(Offset (fromIntegral (utcbOffset utcb + fromEnum field)))

There are a few things that we should notice about this code:
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• We read from the same KernelMapping each time we call readUTCBField

during the transfer untyped phase of IPC (the kernel-mapping describes

the sender’s UTCB, which does not change). Despite this consistency, we

will take the first element of the sender UTCB pair to find the appropriate

KernelMapping every single time we transfer a word.

• We recompute the offset of the sender’s UTCB within the kernel-mapping

for each word transferred as well, even though this value is also constant.

• The UTCBField datatype adds inefficiency: we allocate unnecessary values

and incur costs to convert field names back and forth to integer offsets. A

datatype seemed like a nice abstraction for keeping track of the UTCB offsets,

and had nice implications for safety, but we are not getting any benefit from

the abstraction here, just the cost of destructing the value.

The code for writeUTCBField has exactly the same problems, plus the additional

cost of checking whether or not the writeWordAtOffset function succeeded. Mak-

ing this check is wasteful because we do not do anything useful when a failure does

occur. writeWordAtOffset only fails if the client writes to a read-only page; once

our initial testing confirms that the UTCB pages are configured correctly, we can

be sure that this check will always succeed.

writeUTCBField :: (KernelMemory m) => UTCB -> UTCBField -> HWord -> m ()

writeUTCBField utcb field val

= do b <- writeWordAtOffset

(fst utcb)

(Offset (fromIntegral (utcbOffset utcb + fromEnum field)))

val

if b then return () else error "error: utcb write error"

The readUTCBField and writeUTCBField functions demonstrate how important it

is to consider abstractions in the final context in which they will be called. Neither
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function is problematic in and of itself (though the safety checks do make these

operations more expensive that a normal read or write in C); the performance

issues stem from the fact that we invoke these functions in a loop.

To avoid the repeated computations of our initial implementation, we break the

abstractions for reading/writing UTCB fields and inline the calls to the functions

readWordAtOffset and writeWordAtOffset in the definition of transferUntyped.

We also eliminate the use of UTCBField values in the data transfer loop by incre-

menting the offsets directly. We remove the argument of type UTCBField from

the transferUntyped function because it is unnecessary; the untyped words al-

ways start at MR1. Ultimately we would like to remove the UTCBField abstraction

from the kernel entirely, but for now we leave the rest of the implementation alone

and return a UTCBField value from transferUntyped for compatibility with the

existing interfaces.

transferUntyped :: (KernelMemory m) => UTCB -> UTCB -> HWord

-> m UTCBField

transferUntyped sutcb rutcb numleft

= transferUntypedItem (sutcboff+1) (rutcboff+1) numleft

where

utcbOffset utcb = ((mask (snd utcb) utcbalign) + 256) ‘div‘ 4

rutcbloc = fst rutcb

rutcboff = utcbOffset rutcb

sutcbloc = fst sutcb

sutcboff = utcbOffset sutcb

transferUntypedItem readaddr writeaddr num

| num <= 0

= return (toEnum (fromIntegral (writeaddr - rutcboff)))

| otherwise

= do val <- readWordAtOffset sutcbloc (Offset readaddr)

writeWordAtOffset rutcbloc (Offset writeaddr) val

transferUntypedItem (readaddr+1) (writeaddr+1) (num-1)

The structure of the algorithm is the same as the original implementation, but we
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now use a helper function to implement the recursion. The helper function copies

a word of data from a specific source offset to a specific destination offset until all

of the words have been transferred.

The performance improvement we see when moving to the inlined version of

untyped data transfer is staggering. Table 8.5 shows the average cycles and mi-

croseconds per IPC, the speedup of the new implementation over the original

implementation, and the comparison to Pistachio. Because we are targeting the

function that copies words from the sender to the receiver, the impact of the new

algorithm is more pronounced as we transfer more words. The cycle count speedup

is 22% when transferring just 4 words—increasing to 75% for the peak of 60 mes-

sage registers. The total time spent in garbage collection for all tests decreased by

64% in the optimized version. See Section 8.4 for a graphical comparison of all of

the optimizations discussed in this section.

Inspired by the improvements we achieved through inlining, we decided to

experiment with the H read and write functions themselves. Our implementa-

tion of transferUntyped uses the read/writeWordAtOffset operations from H,

but these functions require us to allocate Offset values for describing the offset

we would like to access. H provides additional read and write functions called

readKernelMapping and writeKernelMapping that take normal words as offsets

instead:

readKernelMapping :: KernelMapping -> HWord -> H HWord

writeKernelMapping :: KernelMapping -> HWord -> HWord -> H Bool

readKernelMapping and writeKernelMapping may access any offset within a

KernelMapping, not just an offset within the first page.

We reimplemented transferUntyped to use the functions readKernelMapping

and writeKernelMapping for transferring data from the sender to the receiver,

hoping to save cycles on the construction, destruction, and garbage collection of
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Words Cycles µs GCs Speedup × P

0 86,336 52 323 -1% 68

4 92,505 56 339 22% 69

8 95,295 57 357 36% 71

12 98,775 60 374 45% 73

16 101,386 61 390 51% 75

20 104,362 63 406 56% 76

24 107,497 64 423 60% 78

28 110,250 67 440 63% 80

32 113,421 68 457 65% 82

36 116,303 70 473 67% 83

40 119,165 73 491 69% 85

44 122,169 74 507 71% 87

48 125,564 75 523 72% 88

52 127,909 77 540 73% 90

56 130,726 80 561 74% 91

60 134,316 81 573 75% 93

Table 8.5: The result of inlining the read/write word functions from the H interface

directly into our inner loop. The speedup column compares the cycles per message

in the inlined implementation to the performance of the unoptimized version. As

in Table 8.2, the “× P” column indicates how many times slower the algorithm

under test is than Pistachio.
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Offset values. The new code was exactly the same as our optimized implementa-

tion except for the use of these functions. Surprisingly, this simple change was up to

5 times slower than the version using readWordAtOffset and writeWordAtOffset,

most likely due to the fact that the bounds checks are based on dynamic constants

stored in records rather than static constants. It is also possible that we are

not paying a high cost for Offset values anyway because of compiler optimiza-

tions. Finally, there are implementation differences that make readWordAtOffset

and writeWordAtOffset more strict. We will see an example in the next section

where strictness alone causes a similar performance disparity between two small

functions. Our experiment demonstrates that subtle choices in the API design and

implementation can significantly impact the performance of the client kernel. In

the next section we will specifically examine the effects of an optimization at the

interface level to improve our performance even further.

8.3.2 Role of H Primitive Design in Performance Results

The design choices we make in the H interface strongly influence the algorithms

that will be used in the client kernel because the client cannot access low-level

hardware features via any other mechanism. Sometimes our design choices affect

the memory-safety argument for H in an essential way and therefore cannot be

optimized significantly. More often though, the design decisions reflect an attempt

to anticipate the needs of kernel implementers, and they do not need to be set

in stone. In this section, we describe the addition of a new primitive to the H

interface to demonstrate the impact of interface design on performance and the

ease with which we can extend the interface.

In our previous definitions of transferUntyped, we always copied one word of

data at a time from the sender to the receiver using the read and write functions

of the H interface. In each call to read or write, we must check that the offset

being accessed falls within the first page of the KernelMapping argument in order
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for the access to be safe. (The kernel-mapping may be longer than one page, but

these functions are optimized to use static checks; every kernel-mapping is at least

one page long.) The writeWordAtOffset performs an additional check on the

permissions of the mapping to ensure that we do not page fault in kernel-mode.

Thus, we incur two checks for every word we read and three for every word we

write.

readWordAtOffset :: KernelMapping -> Offset -> H HWord

readWordAtOffset km off@(Offset offset)

| off >= minBound && off <= maxBound

= liftIO $ peekElemOff (kernelAddress km) (fromIntegral offset)

| otherwise = ...

writeWordAtOffset :: KernelMapping -> Offset -> HWord -> H Bool

writeWordAtOffset km off@(Offset offset) value

| (kernelPerms km) .&. w /= 0 && off >= minBound && off <= maxBound

= do liftIO $

pokeElemOff (kernelAddress km) (fromIntegral offset) value

return True

| otherwise = ...

The bounds checks are necessary to enforce memory-safety, but the sheer number

of checks we perform during an IPC transfer suggests that we do not have the right

interface primitive for the kernels that we want to implement.

The heart of the problem is that we must validate every memory access inde-

pendently. If we copy the data in a block, rather than one word at a time, we can

validate the entire data transfer with just a few bounds checks. We do not need

to check every intermediate memory access if the starting and ending offsets both

fall within the bounds of the kernel mapping that is being accessed. Recogniz-

ing this, we introduce a new H primitive called memcopy, similar to the standard

memcopy operation available in C, that provides the ability to copy multiple words

from a source kernel-mapping to a destination kernel-mapping with a single call.
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The safety guarantees are exactly the same as with a bulk copy implemented via

multiple calls to read/writeWordAtOffset.

memcopy ::

KernelMapping -> HWord -> KernelMapping -> HWord -> HWord -> H ()

memcopy source sstart dest dstart numwords

| ((kernelPerms dest) .&. w) == 0

|| sstart < 0 || dstart < 0

|| sstart + numwords > pageSize - 1

|| dstart + numwords > pageSize - 1

= error "bad parameters to memcopy"

| otherwise

= liftIO $ loop soffset doffset numwords

where

loop :: Int -> Int -> HWord -> IO ()

loop s d n = if n == 0 then return ()

else do val <- peekElemOff sourceaddr s

pokeElemOff destaddr d val

loop (s+1) (d+1) (n-1)

sourceaddr = kernelAddress source

destaddr = kernelAddress dest

soffset = fromIntegral sstart

doffset = fromIntegral dstart

The memcopy function takes five arguments. The first two describe the source of

the data to be copied: the source includes the KernelMapping where the data

will be read from and the offset from which to begin copying data. Similarly, the

destination includes the KernelMapping where the data will be written to and

the offset where memcopy should begin writing. The final argument specifies the

number of words to copy.

We redefined transferUntyped yet again to use memcopy instead of the per-

word read and write functions that we used to copy data between the sender

and the receiver in the optimized version of Section 8.3.1. Table 8.6 shows the
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Words Cycles µs GCs Speedup × P

0 90,776 56 336 -5% 71

4 91,408 54 336 1% 69

8 91,510 56 336 4% 68

12 91,470 54 336 7% 68

16 92,193 56 340 9% 68

20 92,348 56 341 12% 68

24 92,659 56 343 14% 68

28 92,922 56 345 16% 67

32 93,236 56 347 18% 67

36 93,556 56 349 20% 67

40 93,651 57 351 21% 67

44 94,024 56 352 23% 67

48 94,353 56 354 25% 66

52 94,572 57 355 26% 66

56 94,805 57 357 27% 66

60 94,768 57 359 29% 66

Table 8.6: Performance of IPC when using a multi-word copy to transfer IPC

messages instead of individual read/write word functions. The speedup column

compares these results to the inlined implementation in Section 8.3.1.

performance of IPC after this change, including a calculation of the speedup of

IPC compared to the previously optimized results. As we transfer more words, the

impact of the multi-word copy becomes more significant. This is to be expected

because the issue with the old primitives was the high per-word transfer cost that

they imposed on IPC. The cost of the memcopy version is higher when we do not

transfer any words because the implementation unnecessarily incurs the checking

cost when no data will be transferred. This is easily fixable by modifying the caller

of transferUntyped—the new version should only be called when there is actually
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data to be copied across.

Though the memcopy operation is specific to the transferUntyped routine,

adding a new primitive to optimize the performance of a common operation is a

general technique for optimizing an interface. This is one of the generic techniques

that we will consider when pursuing future efforts to improve the performance of

L4.

8.3.3 Using Compiler Pragmas to Fine-Tune Performance

GHC performs many optimizations while compiling Haskell code that are not al-

ways obvious to the programmer from looking at the source. To give the pro-

grammer more control over the program that will actually run, GHC provides a

wealth of compiler annotations that influence the behavior of the compiler directly

and indirectly during the optimization phase. In this section, we examine a few

of the techniques for controlling the behavior of GHC-generated code: strictness

annotations, data structure unpacking, and inlining pragmas. The full selection

of annotations is described in the GHC user’s manual [91]. We apply these tech-

niques to our kernel, focusing on the transfer untyped phase of IPC, and examine

the performance results.

Strictness annotations are a very powerful, albeit subtle, mechanism for con-

trolling the behavior of a Haskell program. They allow the programmer to force

the evaluation of a value whose computation might otherwise be delayed until a

later point in the program. A strictness annotation is written !. Some changes to

the strictness of a Haskell program inherently improve performance, but the real

importance of strictness annotations comes from the secondary effects that they

induce. Properly placed strictness annotations can enable better function inlining

and more constructor elimination by the compiler. The presence or absence of

those optimizations can be significant. For example, a bug in our initial imple-

mentations of readWordAtOffset and writeWordAtOffset made those functions
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lazy in the Offset parameter (recall that these functions take a KernelMapping

and the Offset in that mapping to access). This strictness difference alone slowed

down our version of transferUntyped with these functions inlined (presented in

Section 8.3.1) by up to 248%. The garbage collection time in the lazier version

went up by 220%. All because of a strictness difference in two parameters!

To illustrate the use of strictness annotations in a Haskell program, we will

examine the definition of memcopy that we presented in the previous section. We

focus on the definition of the inner loop that actually transfers the data.

loop :: Int -> Int -> HWord -> IO ()

loop !s !d n = if n == 0 then return ()

else do val <- peekElemOff sourceaddr s

pokeElemOff destaddr d val

loop (s+1) (d+1) (n-1)

Our original definition of loop did not include strictness annotations on s and d.

Although it appeared that we were creating a strict function that uses the source

address s to read a value and the destination address d to write a value, we were

actually building a delayed computation (called a thunk). We need to force the

evaluation of s and d explicitly, as shown in the new definition of loop, because

otherwise these values will not actually be demanded within the loop code.

Another annotation available with GHC is the UNPACK pragma. We use unpack

annotations to signal the compiler to unpack the contents of a constructor field

into the constructor itself, effectively eliminating a level of indirection. Unpacking

is the analog of inlining for data structures. This pragma is always used in con-

junction with a strictness annotation. As an example, consider the definition of

the KernelMapping datatype that we rely on in the definition of memcopy.

data KernelMapping = KernelMapping {

kernelFpage :: {-# UNPACK #-}!(Fpage Virtual),

kernelRegion :: {-# UNPACK #-}!PhysicalRegion,

kernelPerms :: {-# UNPACK #-}!Perms,
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kernelAddress :: {-# UNPACK #-}!(Ptr HWord)

}

Each field of the KernelMapping record can be unpacked to inline the definition

and unbox the value into the definition of KernelMapping. Thus, when we access

a field of KernelMapping, such as kernelFpage, we will be able to use the value

of the field directly. Unpacking is not always a win though: if an unpacked data

structure is used in an unoptimized function, the values may have to be reboxed

before they can be used.

The final compiler pragma we will discuss in this section allows the programmer

to specify inlining behavior for a particular function. For example, we could specify

{-# INLINE memcopy #-}

to tell the compiler to inline the memcopy function or

{-# NOINLINE memcopy #-}

to signal that we would not like memcopy to be inlined. In our experience, the

compiler typically does a much better job inlining when you do not use an INLINE

pragma. For example, in the memcopy example, we observed a performance degra-

dation when we added an inline pragma.

Despite the bad results we experienced by explicitly inlining memcopy, there are

places in our L4 implementation where inlining pragmas are helpful. For example,

the L4 kernel utilizes a plethora of state monad get/set variants for accessing

specific components of the L4 state. These functions cannot always be inlined

because of overloading. The readThread utility reads a Thread structure from

the thread map of the L4 system state using its thread id. We can add an inline

pragma to the definition as follows.

{-# INLINE readThread #-}

readThread :: (StateMonad System m) => ThreadId -> m (Maybe Thread)

readThread !tid = do sys <- get

return (lookup (identifier tid) (threadMap sys))
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Words Cycles µs GCs Speedup × P

0 77,233 46 269 15% 61

4 77,875 47 272 15% 58

8 78,356 47 273 14% 59

12 78,691 47 275 14% 58

16 79,485 47 277 14% 59

20 79,993 49 280 13% 59

24 80,342 49 281 13% 59

28 80,386 49 282 13% 58

32 81,160 49 284 13% 58

36 81,852 49 285 13% 59

40 82,386 50 288 12% 59

44 82,795 50 289 12% 59

48 83,372 50 291 12% 59

52 83,827 50 293 11% 59

56 84,428 52 295 11% 59

60 84,766 50 296 11% 59

Table 8.7: Performance of IPC when using strictness annotations and compiler

pragmas for datatype unpacking and inlining in the essential components that

affect IPC. The speedup column compares these results to the multi-word copy

implementation in Section 8.3.2.

Our experiments indicate that explicitly inlining readThread improves the overall

performance of IPC. We also add a strictness annotation to the thread identifier

argument to prevent the computation from being delayed.

Table 8.7 summarizes the results of a variety of small optimizations through

compiler annotations. The most significant changes are making the inner loop of

memcopy strict and using unpacked strict fields in the data structures that memcopy
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relies on. This is the only area where we invested focused effort on optimiza-

tion. We also added strictness annotations to some of the scheduling and state

monad read/write utilities, but we did not optimize the calling code of any of

these functions so the optimizations will have limited impact. We observe modest

performance improvements over the unoptimized memcopy-based implementation

in Section 8.3.2. Our final results indicate that our kernel is about 60 times slower

than Pistachio, although there is still plenty of room for improvement by optimiz-

ing the other phases of IPC.

So far, our optimization efforts have mostly affected the transfer untyped phase

of IPC. Though we focused on optimizing the transfer of untyped words, the com-

piler annotations do impact the performance of other phases of IPC. A difficult

aspect of optimizing Haskell code by trying to control the compiler is that the an-

notations do not always improve performance. Table 8.8 shows the breakdown of

the cycles spent in each phase of IPC: many parts of IPC are faster than the origi-

nal implementation but some are slower. These results are comparable to Table 8.3

in Section 8.2.1. One notable result is that the overhead is much lower and more

consistent than in the initial measurements. In general, the increased strictness

we added through our annotations made the cost per phase much more consistent,

even in phases where the performance got worse (such as thread restart).

8.4 SUMMARY

Sections 8.3.1, 8.3.2, and 8.3.3 describe incremental optimizations to our original

IPC implementation. In this section, we evaluate the overall effectiveness of our

optimization techniques by comparing the performance of each variant of IPC. We

also compare the cycles spent in each phase of IPC in our final implementation to

the initial IPC breakdown from Section 8.2.1.

Figure 8.4 illustrates the performance of each IPC algorithm. Figure 8.4(a)
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Words OH Sch. SR TM TU Rst. Rcv. GC Total

0 3,102 22,742 6,140 17,549 474 18,412 16,688 920 86,027

4 3,143 22,605 6,073 18,408 482 18,456 16,686 932 86,785

8 2,600 22,779 6,069 18,759 490 18,574 16,593 948 86,812

12 2,790 22,712 6,150 19,209 489 18,583 16,597 941 87,471

16 2,120 22,990 5,973 20,510 507 18,810 16,418 917 88,245

20 3,075 22,865 6,085 20,398 493 18,557 16,644 931 89,048

24 2,754 22,760 6,077 20,800 485 18,564 16,612 940 88,992

28 2,654 22,859 6,115 21,252 482 18,500 16,607 977 89,446

32 2,657 22,953 6,064 21,681 486 18,529 16,617 974 89,961

36 2,788 22,803 6,150 22,180 481 18,439 16,615 979 90,435

40 2,932 22,757 6,079 22,639 479 18,477 16,591 990 90,944

44 2,487 22,782 6,096 23,033 496 18,598 16,641 984 91,117

48 2,710 22,724 6,139 23,669 494 18,526 16,622 988 91,872

52 2,749 22,797 6,019 24,084 484 18,568 16,609 995 92,305

56 2,620 22,803 6,126 24,531 500 18,642 16,591 1,008 92,821

60 3,247 22,867 6,096 25,214 483 18,668 16,601 1,006 94,182

Table 8.8: A breakdown of the cycles spent in each phase of the optimized IPC im-

plementation. Our optimization efforts targeted the transfer untyped (TU) phase

of the algorithm, and we see a significant reduction in the number of cycles as

compared to the original breakdown we saw in Table 8.3. OH stands for overhead

and includes the time spent to context-switch between the Haskell kernel and the

C user program. Sch. is the time spent in the scheduling loop. SR stands for send

rendezvous, TM stands for transfer message, and TU stands for transfer untyped.

Rst. describes the phase of IPC spent restarting the thread. Rcv. is the time spent

in the receive phase of the IPC operation. The phases are explained in detail in

Section 8.1.1.
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(b) The results of the optimized IPC implementations.

Figure 8.4: The effects of each optimization presented in this chapter on the overall

performance of IPC as measured by the ping-pong benchmark. Figure 8.4(a)

demonstrates that all of our optimizations achieve an improvement over the initial,

unoptimized implementation. Figure 8.4(b) focuses on the optimizations alone to

more clearly demonstrate the effects of each modification.
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includes our initial results. From this graph, it is clear that each algorithm pro-

vides an improvement over the unoptimized implementation. Figure 8.4(b) only

shows the optimized versions to make a comparison between these three versions

easier. As one would hope, each subsequent optimization performs better than

the previous implementation. Note, however, that the cost per word is higher

in the optimized memcopy implementation than in the normal implementation of

memcopy; it appears from the graph that if enough words are transferred then

memcopy will eventually outperform the optimized version. This phenomenon is

likely caused by unexpected side effects from our unpacked data structures. Un-

packing data type definitions has the potential to speed up computations, but can

cause a slowdown when the calling code is not also optimized. Because we fo-

cused on a single routine, we may have introduced additional inefficiencies in other

phases of the IPC algorithm. The per-phase breakdown of IPC costs in Table 8.8

is consistent with this analysis.

Figure 8.5 illustrates the performance change between the the initial IPC mea-

surement and the most optimized version. Each line in the graph represents a

single phase of the IPC algorithm. The x-axis is the number of message regis-

ters that were sent in a particular test and the y-axis is the ratio between the

final results and the initial results. Even though each optimization pass improved

the overall IPC performance, some phases of the algorithm perform worse in the

optimized version.

Unsurprisingly, the transfer untyped phase where we spent all of our optimiza-

tion energy performs much better in the optimized implementation than in the

initial implementation. The time spent on garbage collection and overhead is also

lower. The reduction in overhead may be due to the increased strictness of the

optimized program. In the original implementation, any computations that were

delayed due to laziness were ultimately forced when we switched back to user-mode

(if not before). As such, computations that had nothing to do with overhead or
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Figure 8.5: The overall effect of optimization on each phase of the IPC algorithm.

Figure 8.5(a) illustrates the ratio between the cycles taken per IPC in the final

implementation and the original implementation. Transfer untyped—the function

where we focused our optimization energy—improves dramatically while the im-

pact on other phases varies (some perform slightly better and some perform slightly

worse). Figure 8.5(b) focuses on the phases of IPC other than transfer untyped.

We see the most improvement in the number of cycles taken for overhead and

garbage collection.
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context-switching could appear in this phase of IPC. The portions of IPC devoted

to sender rendezvous and the receive phase also improve somewhat, while thread

restart is not particularly effected. Scheduling is faster on small numbers of mes-

sage registers and slower for large numbers of message registers. Transfer message

is the only phase that performs significantly worse in the optimized version—this

is the obvious place to look next for further optimization opportunities. Because

transfer message is using all of the same data structures as transfer untyped, but

is not optimized to allow the kernel to make use of the strictness and unpacking

annotations, the performance of this routine is the most negatively affected by

the changes we made to improve the performance of transfer untyped. Further

improvements to transferUntyped may also be possible.

The techniques we presented in Section 8.3 demonstrate that it is possible to

improve the performance of an H-based system dramatically through targeted op-

timization. Section 8.3.1 examined the algorithmic behavior of the untyped data

transfer function and confirmed that we can obtain large performance improve-

ments through refactoring. The rest of the L4 kernel is coded in a similar style

and makes heavy use of abstractions throughout: both in functions that capture

common patterns (potentially introducing redundant computation) and in data

structures that provide type-based documentation to help eliminate mistakes (in-

creasing the cost of storing and manipulating simple data like words). Now that

we have working H interface and L4 implementations, there is potential to recon-

sider these abstractions to increase performance. Further performance gains may

be possible by adding additional strictness annotations and by experimenting with

inlining and unpacked datatypes as in Section 8.3.3. Though we are not currently

aware of any API issues, a targeted optimization of a particular IPC phase or other

kernel function might unearth more inefficiencies. The experiments that we have

presented in this dissertation provide strong evidence that, by pursuing algorith-

mic, API, and compiler optimizations, we have the potential to further reduce the
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performance gap between our Haskell kernel and typical L4 implementations.
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Chapter 9

RELATED WORK

In this chapter, we relate the concepts of the H interface design and implementation

to existing work in the fields of operating systems and programming languages. We

focus on the core topic areas of system architecture (Section 9.1), functional op-

erating systems (Section 9.2), programming language environments (Section 9.3),

verified operating systems (Section 9.4), safe operating systems (Section 9.5), and

virtualization (Section 9.6).

9.1 SYSTEM ARCHITECTURE

Separation between policy and mechanism is a fundamental concept in many mod-

ern systems, including H. The Hydra system is an important example of this con-

cept for the operating systems domain [68]. The primary goal of the Hydra design

is to enable user-processes to control resource allocation policies for the system.

User-processes cannot be given free reign because of safety and fairness issues, so

the kernel mechanisms are designed to balance control and safety. For example,

Hydra implements a parameterized scheduler. Key scheduling parameters, such as

the amount of time that each process should run before being stopped, are pro-

vided by per-process user-level schedulers. The mechanisms introduced in Hydra

were very influential on future systems, particularly the microkernel community,

and very similar mechanisms in support of user-level policies appear in kernels like

L4 [62] and Mach [2].

The H interface aims to strike much the same balance between policy and
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mechanism in a setting where the client is itself an operating system. We strive to

minimize policies in H that are not directly related to safety because any policy

in H restricts the applicability and flexibility of the abstraction layer. Much of

our design effort was devoted to the mechanisms that support client control over

page-map pages and the kernel virtual address-space. Providing these mechanisms

in a safe way presents a challenge, and guaranteeing that the client policies do not

introduce safety violations is a major theme of our safety analysis.

Unlike Hydra, we do not need to manage the complexity of multiple compet-

ing policies because H is designed for use by a single client at any given time.

In Hydra, each user-process might set its own policy for resource usage. Hydra

must be an arbiter between these processes to ensure safety and fairness. In some

ways, the competition between user-processes is analogous to the competition for

resources between the environment, the H interface, and the client in our system.

The difference in our setting is that the run-time system and H interface resource

allocation policies are fixed; only the client’s memory usage policy will vary at

run-time.

9.2 FUNCTIONAL OPERATING SYSTEMS

The idea of applying functional programming languages to the operating systems

domain has a long history. Many of the early examples represent a very different

era in pure functional programming before monadic I/O was incorporated into

programming practice. As such, the focus of these works is on mechanisms for

handling effects, using techniques for stream processing and I/O in a continuation-

passing style. These challenges are very different from those we encounter today.

Early examples of functional operating systems include Nebula [58] and the Kent

Applicative Operating System (KAOS) [17, 89].

The Hello [26] project implements an operating system in Standard ML and
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addresses various language design and efficiency issues, such as how to access hard-

ware devices and how to handle interrupts in a garbage-collected language. It

builds on the results of the Fox project, where Standard ML was used for systems

programming. In particular, it includes FoxNet, an efficient implementation of the

TCP/IP protocol stack [8]. Compared to these projects, a significant new feature

of the H interface is its support for controlling memory management hardware,

which allows us to run code written in other languages safely.

Though unpredictable performance results sometimes occur in Haskell due to

laziness, it is possible to write lazy functional programs that satisfy real-time guar-

antees. The Embedded Gofer project extended the Haskell language specifically to

support programming embedded devices [98, 97]. The language extensions provide

access to I/O device registers and asynchronous exception support for handling in-

terrupts, as well as the implementation and adoption of an incremental garbage

collector to satisfy the guarantees that are necessary in real-time environments.

The techniques employed in Embedded Gofer are a useful guide if we extend H

to support real-time guarantees. For performance reasons alone, experiments with

different garbage collector implementations would be interesting.

9.3 PROGRAMMING LANGUAGES

Some people consider the use high-level functional languages to implement operat-

ing systems to be too much of a departure from traditional systems programming

techniques. A less radical approach is to add safety to a low-level language. There

are a number of programming languages that support a greater degree of safety

than C, while still supporting the low-level and imperative features that are tradi-

tionally associated with operating systems programming. The nature of the safety

guarantees and the programming constructs available varies widely with these safe

systems languages.
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Cyclone was not designed specifically for systems programming, but as a safe

replacement for C. Cyclone’s focus is on maintaining the transparency and control

that programmers enjoy with C, including direct control over resources such as

memory, while providing strong type- and memory-safety guarantees [36, 35]. Just

as in Haskell, Cyclone prevents common memory-safety errors like buffer overflows

and null pointer dereferences. Certain properties, like bounds checks on arrays,

must be dynamically checked at run-time. A great feature of Cyclone is that run-

time checks are eliminated by the compiler whenever possible, for example, when

an array access can be statically determined to be in-bounds. Cyclone achieves

safety without using garbage collection by employing a region-based type-system

that manages the scope and life-span of pointers.

Cyclone provides the same level of protection against memory-safety errors as

higher-level languages like Haskell. A Cyclone programmer cannot dereference a

null pointer or free memory twice, but still maintains a high degree of control

over resources. Implementing an operating system in Cyclone would not require

a special interface like H because the language already supports direct control

over resources in a safe way. However, the existence of the H interface allows us

to express memory-safety guarantees that are specific to the operating systems

domain (as we saw in Chapter 5); these kinds of properties are not captured au-

tomatically by Cyclone’s language facilities. We could write an H-like abstraction

layer in Cyclone, but Haskell provides many important features that we utilized in

the construction of H. The Haskell type system is more expressive than the type

system of Cyclone; when combined with Haskell’s module system we are able to

create a strong abstraction barrier between the H internals and the client oper-

ating system. This abstraction barrier is an essential part of our memory-safety

argument. Because Cyclone provides the power of C in a memory-safe language,

we could greatly increase the assurance argument for H by recoding the low-level

portions of our implementation in Cyclone instead of C.
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On the other end of the spectrum is Modula-3—a type-safe, object oriented

language with garbage collection that was designed specifically for systems pro-

gramming [74]. Like Haskell, Modula-3 supports isolation between components via

a powerful module system. Potential safety violations introduced by the user of

unsafe code, like foreign function calls, are explicitly documented in the program.

Modula-3 supports the implementation of safe operating systems like Spin [6],

which we will cover in Section 9.5. Though Modula-3 is a powerful language for

safe systems programming, its imperative nature and lack of a pure semantics

makes Modula-3 programs less amenable to reasoning.

The BitC programming language aims to cover the middle ground by including

many of the features traditionally associated with high-level languages in a way

that will be amenable to systems programming [9, 86, 85]. Resource control and

transparency are central to this philosophy. For example, BitC provides machine-

level, fixed size representations of types and control over data layout. BitC supports

garbage collection, but also allows the programmer to write code that does not

perform dynamic allocation. Another goal of BitC is assurance; the designers

intend to develop a formal mechanized semantics for the language. Other features

of BitC include polymorphism, datatypes, pattern matching, and higher order

procedures. Though BitC is not pure, it is type-safe and supports type classes.

When BitC matures it will be a viable platform for developing safe operating

systems (see the discussion of Coyotos in Section 9.5).

Another interesting line of related work relates to foreign function interface

design. The construction of safe foreign function interfaces avoids the kinds of

vulnerabilities that necessitate the use of an abstraction layer to support memory-

safe low-level programming in high-level languages. One approach is to type check

unsafe foreign code as if it were code in the safe native language to catch errors

that would otherwise be permitted by the foreign type system. This approach has

been applied to OCaml’s C foreign function interface and successfully uncovered a
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number of bugs in existing foreign code [27]. An interesting challenge arises from

the fact that C code can observe that there are values of different types with the

same representation. The designers of the OCaml to C system use type inference

to determine what OCaml type should be assigned to a value based on its usage

in C. They use dataflow analysis to ensure that C code properly registers any

pointers it has into the OCaml heap and makes the appropriate dynamic checks

and offset calculations when accessing OCaml datatypes. Such a system would

greatly improve our ability to assure the behavior of the foreign calls that we use

in the implementation of the abstraction layer, and might even eliminate the need

for such an abstraction layer. The major complexity that we foresee relates to

the fact that our foreign calls can change the system state in ways that are not

accounted for in the OCaml to C type system, such as modifying a page-table.

The Scheme community has a long history of trying to incorporate operat-

ing systems features into the run-time system of the language. This is a differ-

ent exercise than trying to expose operating systems constructs built on top of a

(nearly) standard run-time system, but must address many of the same safety and

protection issues. The DrRacket (formerly DrScheme) programming environment

supports GUI services, a notion of protection domain specifically related to GUI

elements (the integrity of the GUI of the environment itself must be maintained),

the ability to halt a program, and the ability to reclaim a program’s resources if

it has gone awry [24]. Wick and Flatt added support for process-based memory

accounting in a shared heap [99]. These are higher level concerns than we address

with the H interface because they deal with issues of process management, but it

is interesting to note that the division between environment structures and client

structures is a key distinction in both systems.

A variety of techniques have also been developed in the Java community for

adding operating system support to the language in a safe way. Java operating

systems can provide the same level of memory-safety as Haskell, and in theory
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encounter similar challenges to reconcile control over resources with garbage col-

lection and other run-time system services. In practice, the mechanisms necessary

to overcome these challenges are very different between Java systems and the H

interface because the interface that the language run-times present to the program-

mer are so different.

The KaffeOS operating system, like DrScheme, treats the language run-time as

the operating system kernel [4]. KaffeOS extends the normal Java run-time system

with support for resource management, isolation between software components,

and shared memory based communication. Essentially, this creates a notion of

process in Java. KaffeOS makes use of the user/kernel CPU modes to protect

kernel objects from being accessed by user processes. KaffeOS has the power to

manage CPU and memory resources, to terminate a process, and to reclaim a

process’ memory upon termination, much like a traditional operating system.

The high level of the interface to DrScheme and KaffeOS means that many pol-

icy decisions (such as when to terminate a thread or how to partition resources) are

made inside the respective run-time systems. This characteristic restricts the abil-

ity to write general purpose operating systems in either setting without modifying

the run-time core itself. By contrast, these policy decisions are implemented in the

Haskell client of an H-based system. No modification of the H implementation or

the Haskell run-time system is required. The services exposed by H are designed to

facilitate writing operating systems kernels in a safe language with minimal special

purpose support from a run-time system. Process separation is supported in the

traditional way using hardware-based protection techniques. It would be interest-

ing to combine the techniques for run-time system supported processes with the

techniques from H for memory-safe operating system construction to obtain the

benefits of memory- and type-safety at every level of the system.

Luna also introduces a notion of separated tasks in Java, but unlike KaffeOS,

Luna relies fully on the type system to guarantee isolation [45]. The boundaries
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between software processes are expressed in the types, making distinctions between

tasks explicit. A major contribution of Luna is the design and implementation of

a mechanism for communicating between tasks that supports accurate resource

accounting and maintains strong isolation boundaries. Inter-task communication

happens via a special type called a remote pointer; these pointers allow data ob-

jects to be shared between tasks but can be dynamically revoked at any time.

Luna is implemented through a combination of source-level and run-time system

extensions, with most of the support for the new features being provided by the

RTS. Though Luna addresses a very different aspect of systems programming than

H—inter-process communication rather than virtual-memory management—both

systems face the challenge of integrating operating systems features into a safe lan-

guage. The Luna designers heavily emphasize the notion of “types as capabilities”

that is at the heart of our design for H. Remote pointers provide a mechanism for

revocation that, if available for data values in Haskell, would eliminate the need

for many of the dynamic status checks in the H implementation.

The Sing# language—a type-safe, garbage collected extension of C#—has also

been used for operating systems development. We delay discussion of this topic un-

til Section 9.5 where we present the Singularity operating system [22, 48], which is

implemented in Sing#. The Habit programming language [90], which is a Haskell-

like language designed specifically for systems programming, is highly relevant to

our work on the H interface, but we delay our discussion of it until Chapter 10

because the the concepts are Habit are tightly integrated with our planned future

work.

9.4 VERIFIED OPERATING SYSTEMS

The seL4 microkernel [60] is closely related to our work in that both projects share

the goal of creating formally verified operating systems. The difference between
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the two projects lies in the approach. The seL4 team achieved the ultimate goal

of verifying a complete operating system using a traditional implementation of

their operating system design in C. That verification was a refinement proof of

an abstract functional specification to the high-performance C implementation via

an executable model written in Haskell. The only problem with this approach

is the cost, approximately 20 person years of effort, and the lack of potential for

reuse [60]. Our approach is to demonstrate that we can obtain a subset of the

memory-safety properties proved by the seL4 team automatically by using a pure

functional language for operating systems implementation rather than a low-level

and non-memory-safe language like C.

We are hopeful that the techniques used by the seL4 team to verify their op-

erating system could also be used to verify our abstraction layer implementation.

That would give us a greater degree of assurance in the correctness of our design

and implementation. Furthermore, unlike the seL4 implementation, the H interface

could be reused as the basis for many different operating system implementations,

thus allowing us to reap the benefits of the verification effort multiple times over.

Because the potentially unsafe operations of the client operating systems would be

isolated in H, there would be less need to apply formal verification techniques to

the client code.

Verve is a type- and memory-safe operating system that is verified using a very

different approach than seL4, making use of automated verification tools rather

than interactive theorem proving [100]. The architecture of Verve is very similar

to the architecture of H-based operating systems. The services of a traditional

operating system kernel are split into two layers: a critical low-level layer that

provides essential abstractions of the hardware (called the Nucleus) and a higher-

level kernel written in a type- and memory-safe language (typed assembly language

produced via C#). The Nucleus of Verve is a direct analog to H, although the

services provided by the two interfaces are very different. The Nucleus is lower-level
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in some respects, allowing clients to install their own interrupt handlers directly

into the IDT, for example, but higher-level in others, providing drivers for the

keyboard and the screen. The most significant difference between the two interfaces

is the treatment of memory. Verve is designed around the idea of software processes

where isolation is enforced using the type system. Supporting virtual memory

management operations introduces new challenges for maintaining language-based

safety properties. Our work with H demonstrates safety, albeit informally, even

in the presence of client-controlled hardware processes. Exciting areas of future

work would include writing H in the BoogiePL language, and experimenting with

encoding memory-safety for hardware processes using Hoare logic so that the H

implementation could be automatically verified using the same tools as the Verve

Nucleus.

9.5 SAFE OPERATING SYSTEMS

The SPIN operating system is an extensible system that supports the flexible

construction of safe operating system components using the language-based ab-

straction barriers of their implementation language, Modula-3 [6]. The designers

of SPIN wished to avoid implementing application-specific services at user-level—

such as custom page fault handlers—because of the high cost of context switching

between kernel and user mode. Instead, such application-specific services are im-

plemented as kernel extensions that run in the same address space as the kernel.

The SPIN design supports a capability-based interface to the core kernel services

that a kernel extension might access to ensure protection of the SPIN data struc-

tures. Protection domains within the kernel address space are simply distinct

name-spaces that are protected statically by the Modula-3 compiler. Though the

ultimate system architecture of SPIN is fairly different from systems that we might

construct using our abstraction layer, their use of capabilities is similar to the way
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that datatypes are used as tokens in the H interface API and their use of protected

name-spaces is similar to the way that we protect the internals of the H interface

using abstraction barriers in Haskell. An advantage that our approach has over

SPIN is the use of a pure functional language (Modula-3 is impure and impera-

tive). Operating systems that are written on top of H can make use of the effect

tracking facilities of Haskell to reduce the occurrence of bugs and pure functional

languages are more amenable to formal reasoning than a language like Modula-3.

Furthermore, we take steps to formally characterize the safety guarantees that our

abstraction layer supports (see Chapter 5, while in SPIN they are left implicit.

The KeyKOS, EROS, and Coyotos systems reflect a long history of work in the

realm of secure operating systems. KeyKOS was a successful production kernel

first developed in the 1970s, with much of the attention in the design going to

robustness, reliability and security [41, 10]. KeyKOS is an operating system that

uses a capability model to enforce security. The system is divided into a set of

fundamental objects that are the targets of all operations. The semantics of these

operations describe the protection model for the system. EROS is an implemen-

tation of the KeyKOS design focused on the performance and correctness of the

capability mechanism [87, 88]. The EROS developers verified that the capability

mechanism provides confinement, showing essentially that the capabilities protect

the integrity of system objects from unauthorized modification. The techniques

employed to formalize confinement are similar to those that we employed to de-

scribe memory-safety for H. Coyotos is a follow-on project to EROS that aims to

more fully realize the high-assurance potential of the system. The confinement

proof for EROS was done for a high-level model, not the real system. In Coyotos,

the developers hope to prove the essential security properties for the actual imple-

mentation. A key part of this endeavor is the development of a new language that

will be amenable to verification—the developers will use the BitC programming

language for the Coyotos implementation and make use of BitC’s formal semantics
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in any security proofs [85]. The security goals of all these systems are very similar

to the goals of the H interface. It is interesting to note that, even though our

implementations rely on very different techniques to achieve security—capabilities

versus a language-based abstraction barrier—the formalization techniques and es-

sential security properties are very similar.

The Singularity project takes the idea of software-based isolation from SPIN

even further. In Singularity, all user processes, drivers, and other system com-

ponents run in the highest privilege address space with the kernel [22, 48]. The

type-safety of the implementation language, Sing# (a type-safe, garbage collected

extension of C#), provides software-based isolation between these components,

despite the shared address space. A novel feature of the Singularity operating

system is an efficient message-passing mechanism that supports communication

between components in the system. The communication channels in Singularity

are strongly typed. Resource ownership is tracked using a linear type system to

ensure isolation by guaranteeing that blocks of memory are never owned by more

than one process. Statically verified channel contracts provide additional assurance

that components interact correctly. The result is a system with strong isolation

guarantees that use a combination of modern language techniques, like memory-

and type-safety, and verification techniques.

The Singularity project relies on some of the same essential features of modern

programming languages as we do, in particular memory-safety and a strong, static

type system. In some ways, the type system of Sing# is more expressive than the

type system of Haskell. Linear types would enable us to avoid much of the dynamic

checking that needs to be done in the implementation of the abstraction layer.

The ability to express, and statically verify, resource interactions (like the channel

contracts in Singularity) could also be useful for establishing memory-safety of the

H interface. However, the Sing# type system is less expressive in other ways, for

example, the language does not support Haskell’s ability to track effects. Despite
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the similar mechanisms for achieving safety, the goal of our work is different than

that of Singularity. We aim to provide a library for writing operating systems

in Haskell, rather than to construct a single system with a specific property, like

isolation. Another difference is that we provide the ability to run code in any

language, which Singularity does not support [22].

9.6 VIRTUALIZATION

Virtual machine monitors attempt to multiplex hardware invisibly across multi-

ple operating systems. This goal differs from that of our abstraction layer, where

we want to expose the hardware to a single OS. Despite the different goals, our

abstraction layer does share some common features with virtual machine monitor

designs, in particular with paravirtualization systems like Xen [5]. A paravirtual-

ized system does not provide binary compatibility for operating systems, rather,

each guest operating system must be ported to run on the virtual machine moni-

tor. The VMM exports a low-level, hardware-like interface, so the modifications to

the guest are analogous to porting to a new architecture or base library. Though

an operating system designer that wishes to use our abstraction layer must also

reimplement their design in a functional programming language, the modifications

to the architecture-level primitives will be similar to a port to Xen.

Much like the H interface, Xen provides an interface of hypervisor calls that

guest VMs use to request privileged operations. Memory management and CPU

management are particularly important aspects of the Xen design. When managing

memory, the guest cannot modify page tables directly. The primary focus is on

exporting a safe set of API calls that cannot be invoked by a guest OS in a way

that corrupts the internal structures of Xen or disrupts the execution of another

guest. Unlike our work, the designers of Xen do not formally characterize the

safety guarantees of their API. For limited resources, like memory, Xen uses a
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static partitioning among guests. Though the H interface only supports a single

guest operating system, the facilities for dynamic memory exchange between the

abstraction layer and the guest might be useful in a system like Xen for enabling

dynamic system configurations without sacrificing the strong isolation properties

that are currently present between Xen VMs.
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Chapter 10

CONCLUSIONS

In this dissertation, we have demonstrated that it is possible to bridge the gap

between the requirements of operating system implementations and the features

of purely functional languages. We accomplished this goal by isolating the poten-

tially unsafe operations that are required by operating systems in a memory-safe

abstraction layer called the H interface. The H interface design is integrated with

the purely functional language Haskell to support the development of memory-

safe Haskell operating systems that do not make direct use of the foreign function

interface.

An essential property of the H interface is memory-safety. The meaning of the

term memory-safety is a bit murky in the operating systems domain, but we have

identified two critical memory-safety issues that are relevant in the context of the H

interface: no part of the system, including the H operations, should be permitted to

affect the Haskell run-time system and no user program or client of the H interface

should have direct access to the memory management hardware. We formalized

these properties using the Rushby noninterference formalism [82] and connected

the abstract formalism to our implementation with a relational specification of the

memory management functions in H.

We demonstrated the expressiveness of the H interface by implementing the L4

microkernel API using the abstraction layer primitives. No special workarounds or

uses of the foreign function interface were necessary. L4 supports user-level memory

management, so the set of virtual memory management primitives is particularly

rich. The experience of developing L4 using H was a positive one. Implementing
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L4 in a strongly typed, memory-safe environment made bugs easy to detect when

they occurred (relative to our experience implementing part of the H library in C)

and helped us to catch many errors at compile time.

Performance is another important characteristic of H. Our goal was never to

produce the best performing L4 implementation ever, but our approach to safety is

not useful if the techniques are so inherently poorly performing that the resulting

systems are unusable. We evaluated the performance of our approach using an

IPC benchmark for L4. The performance of our L4 implementation is significantly

worse than a comparable C kernel, so there is room for improvement. We have

demonstrated techniques for optimizing Haskell programs in general and H-based

systems in particular. Though we only applied these optimizations to a narrow

area of our program, the changes radically improved the performance of IPC. These

experiments illustrate the potential to optimize performance throughout the L4

and H implementations.

The major contributions of this dissertation are:

• The design and implementation of a memory-safe abstraction layer for imple-

menting operating systems in a purely functional language. The abstraction

layer is sufficiently expressive to support the implementation of real operat-

ing systems in Haskell. Our implementation of the L4 microkernel provides

evidence of the abstraction layer’s expressivity.

• A formalism for describing memory-safety by instantiating an abstract non-

interference framework. We identify the properties that are necessary and

meaningful for a Haskell library that controls the memory management hard-

ware of the underlying machine and demonstrate a unique use of noninter-

ference.

• A performance analysis of a bare metal Haskell program. The bare metal
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execution environment for Haskell is not well suited to performance mea-

surement. We introduced facilities for analyzing the performance of our

Haskell kernel and outlined an optimization path for any H-based system.

We demonstrated the utility of the proposed optimizations by employing

them to reduce the cost of transferring 60 words in an L4 IPC message in

our kernel, producing a final version that was more than 6 times faster than

the original. Our kernel is 60 times slower than the Pistachio implementation

in C compared to 368 times slower before optimization.

FUTURE WORK

Our work opens up many avenues for future exploration. Some of these topics are

direct extensions of the work presented here, while others represent substantially

new directions for our work.

Haskell Device Drivers and Other Systems Applications

The H interface demonstrates a technique for encapsulating the potentially unsafe

operations necessary for operating systems in a memory-safe Haskell library. Here,

memory-safety is specifically linked to the operating systems domain, as are the

specific primitives defined in the abstraction layer. There are many other systems

programming applications, such as device drivers, that may require access to a

different set of hardware facilities than are supported by H. The implementer of

a Haskell device driver would encounter the same issues that motivated H when

working with the foreign function interface directly. However, we can apply the

same techniques for abstraction, interface design, and safety analysis in these ap-

plication areas to encapsulate the necessary behaviors for all aspects of systems

programming.
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Performance Optimization

In this work, we were able to improve upon our initial performance results signif-

icantly by applying targeted optimizations to the inner loop that performs data

transfer during an IPC message. Even with these improvements, the performance

of our Haskell kernel is significantly worse than standard C implementations. For-

tunately, there are many optimization opportunities that remain. Chapter 8 de-

scribed three essential areas to focus on when optimizing an H-based system: al-

gorithmic design, better abstractions in the H interface, and improved code gen-

eration through compiler annotations. There are also opportunities for deeper

modifications (and possibly significant performance gains) by examining the effi-

ciency of the data structures used by H, both internally and as they are exposed

to the client.

Within the IPC implementation alone, the scheduling, transfer message, and

thread restart phases take many more cycles than one would expect. These are

obvious areas to direct our optimization energy next. By applying the techniques

outlined in this dissertation to these new aspects of the algorithm, we hope to

further reduce the overhead of IPC.

Verification

Verification is an obvious area to focus on in our future work. A formal proof of

the unwinding conditions for our Rushby instantiation is our first priority. Proving

the unwinding conditions is sufficient to demonstrate memory-safety for our speci-

fication and would go a long way towards validating our approach. Completing the

proof of the unwinding conditions will give us the opportunity to turn our atten-

tion upward toward higher level properties of Haskell operating systems, such as

user-program separation, or downward, to a full verification of our implementation.

To this end, we have begun a joint project to formally verify the unwinding
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conditions. The Haskell specification and system model have been translated into

a formal model in HOL Light [43]. Using this model, we have mechanically verified

our earlier sketch that the output consistency unwinding condition reduces to weak

step consistency (see Section 5.4.1). A proof of local respect is currently in progress,

while the verification of weak step consistency remains as future work.

Completing the proof of the unwinding conditions for the H specification will

allow us to pursue properties of Haskell operating systems that depend on memory-

safety. Separation properties have been a particular focus of our past work [66,

67, 39], and are an interesting area to pursue in the context of a Haskell operat-

ing system. Our experience defining memory-safety in terms of a noninterference

security policy will provide valuable insight into any future efforts in this domain.

Operating Systems Exploration

Through the H interface, we hope to enable a wide range of operating systems

exploration in Haskell. We demonstrate the feasibility of such exploration through

our L4 implementation, but this is just one of many possibilities. We are keen

to see how H generalizes by using the interface to implement other operating

systems. One obvious candidate is the House operating system that originated

the idea for H in the first place [39]; the API provided by the abstraction layer

presented in this dissertation is radically different from the original version of H,

and porting House to the new interface would be a valuable learning experience.

Virtual machine monitors are another interesting domain; H was not specifically

designed to support VMMs, so such a project would potentially push the interface

design in exciting new directions.

Another dimension of systems exploration is in programming language research

to better facilitate safe systems programming. Many of the ideas generated by this

work, and the challenges that we encountered when using Haskell for operating sys-

tems programming, have influenced the design of a new language being developed
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at Portland State University called Habit [90]. Habit aims to provide the level

of resource control that is necessary for systems programming, including control

over memory layout and direct access to memory through references [20, 19], in

a strongly typed functional language. Unlike other languages in this space, Habit

retains all of the features that made Haskell an attractive candidate for our work—

purity, monadic effects and type classes—along with many other valuable features

of safe languages like garbage collection. The addition of a powerful module system

is planned. From an assurance perspective, Habit greatly improves upon Haskell

because it will provide a verified run-time system [73], whereas Haskell’s 50,000

line C run-time is always the elephant in the room when it comes to assurance

arguments. There are opportunities for improvements in the performance space as

well. Besides the fact that Habit allows more direct control over resources, which

should be an automatic performance win, one of the language’s major departures

from Haskell is that Habit is strict. Laziness caused unpredictable and severe

performance problems in our IPC implementation, as mentioned in Section 8.3.3;

there is hope that a strict language will simplify the optimization process and even

avoid certain performance problems entirely.

Extending the connection between Habit and the H interface is also a promising

topic for future work. Many of the features implemented by H are unnecessary in

Habit—the language supports safe facilities for systems programming already, in-

cluding many of the features necessary for writing an operating system. However,

some aspects of H must be primitive to the language and are not yet part of the

Habit design, such as the ability to control the memory management hardware.

Work is underway on the Habit project to support the addition of new primitives

in a modular way that incorporates the verification contract between the primi-

tive and the rest of the system explicitly. This provides a perfect opportunity to

integrate the essential memory management facilities of H fully into Habit. Mov-

ing from an H-based platform in Haskell to a fully integrated operating systems
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programming environment in Habit will give us all of the safety and engineer-

ing benefits of Haskell, but with better performance, greater assurance, and more

control over resources.

A further benefit of connecting the H primitives to Habit is that the dynamic

checks necessary for safety could be generated by the compiler when an H primitive

is used, rather than being an integral part of the H primitive itself. In this way,

the compiler could insert safety checks in precisely those places where they are

necessary. In the implementation of H we do not have any information about the

context in which a primitive is called, so we must always assume the call is unsafe

and perform run-time checks for each one. We expect that there are many contexts

that are statically known to be safe. Cyclone illustrates the feasibility of this idea

for memory-safety checks in a C-style language and we expect the techniques would

apply equally well to our notion of memory-safety. Though there are many other

bottlenecks in H, reducing the number of run-time checks would certainly improve

performance.
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versity of Technology, 1981.



317

[59] Bernhard Kauer. L4.sec implementation - kernel memory management.

Diploma Thesis, Dresden University of Technology, May 2005.

[60] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,

Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:

Formal verification of an OS kernel. In Jeanna Neefe Matthewsand Thomas

Anderson, editor, Proceedings of the 22nd ACM SIGOPS Symposium on

Operating Systems Principles (SOSP 2009), pages 207–220, New York, NY,

USA, October 2009. ACM.

[61] Greg Kroah-Hartman. Linux Kernel in a Nutshell. O’Reilly & Associates,

Inc., Cambridge, MA, USA, 2007. http://www.kroah.com/lkn.

[62] L4ka Team. L4 eXperimental Kernel Reference Manual, January 2005.

[63] L4Ka::Pistachio website. http://os.ibds.kit.edu/l4ka/projects/

pistachio.

[64] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Au-

thentication in distributed systems: theory and practice. ACM Trans. Com-

put. Syst., 10(4):265–310, 1992.

[65] John Launchbury and Simon L Peyton Jones. State in Haskell. Lisp and

Symbolic Computation, 8:293–341, December 1995.

[66] Rebekah Leslie. Dynamic intransitive noninterference. In Proceedings of the

First IEEE International Symposium on Secure Software Engineering, March

2006.

[67] Rebekah Leslie, Levent Erkök, and Flemming Andersen. Formalizing in-

formation flow in a Haskell hypervisor. In Proceedings of the Workshop on

Microkernels for Embedded Systems, Sydney, Australia, January 2007.



318

[68] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism

separation in Hydra. In Proceedings of the Fifth ACM Symposium on Oper-

ating Systems Principles, SOSP ’75, pages 132–140, 1975.

[69] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod-

ular interpreters. In Proceedings of the 22nd ACM Symposium on Principles

of Programming Languages (POPL 1995), pages 333–343, 1995.

[70] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the

14th ACM Symposium on Operating System Principles (SOSP 1993), pages

175–188, 1993.

[71] Jochen Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles (SOSP 1995), pages 237–

250, 1995.

[72] Jacques-Louis Lions. ARIANE 5, Flight 501 failure, report by the inquiry

board, 1996.

[73] Andrew McCreight, Tim Chevalier, and Andrew P. Tolmach. A certified

framework for compiling and executing garbage-collected languages. In Paul

Hudak and Stephanie Weirich, editors, ICFP, pages 273–284. ACM, Septem-

ber 2010.

[74] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1991.

[75] NICTA. NICTA L4 website. http://ertos.nicta.com.au/research/l4.

[76] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,

2002.



319

[77] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.

O’Reilly Media, Inc., 1st edition, 2008.

[78] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised

Report. Cambridge University Press, 2003.

[79] Simon L. Peyton Jones and Philip Wadler. Imperative functional program-

ming. In Proceedings of the Twentieth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 71–84, 1993.

[80] Sergio Ruocco. User-level fine-grained adaptive real-time scheduling via tem-

poral reflection. In Proceedings of the 27th IEEE Real-Time Systems Sympo-

sium (RTSS 2006), 5-8 December 2006, Rio de Janeiro, Brazil, pages 246–

256, December 2006.

[81] John Rushby. The design and verification of secure systems. In Proceedings of

the Eighth ACM Symposium on Operating System Principles (SOSP 1981),

pages 12–21, December 1981. (ACM Operating Systems Review , Vol. 15, No.

5).

[82] John Rushby. Noninterference, transitivity, and channel-control security poli-

cies. Technical report, December 1992.

[83] SANS Institute and MITRE. 2009 CWE/SANS top 25 most dangers pro-

gramming errors. http://cwe.mitre.org/top25, 2009.

[84] seL4 website. http://www.ertos.nicta.com.au/research/sel4.

[85] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup, Swaroop Sridhar,

and Mark Miller. Towards a verified, general-purpose operating system ker-

nel. In Proceedings of the NICTA Workshop on Operating System Verifica-

tion, pages 1–19, October 2004.



320

[86] Jonathan Shapiro, Swaroop Sridhar, and Scott Doerrie. The BitC Language

Specifiction, 2008.

[87] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast

capability system. In Proceedings of the 17th ACM Symposium on Operating

Systems Principles, SOSP 1999, pages 170–185, 1999.

[88] Jonathan S. Shapiro and Samuel Weber. Verifying the EROS confinement

mechanism. In Proceedings of the IEEE Symposium on Security and Privacy,

2000.

[89] W. Stoye. Message-based functional operating systems. Science of Computer

Programming, 6:291–311, May 1986.

[90] The High Assurance Systems Programming Team. The Habit Programming

Language: The Revised Preliminary Report, November 2010.

[91] The GHC Team. The Glorious Glasgow Haskell Compilation System

User’s Guide, Version 7.0.2, 2011. http://www.haskell.org/ghc/docs/

7.0-latest/users_guide.pdf.

[92] VirtualBox website. http://www.virtualbox.org.

[93] David von Oheimb. Information flow control revisited: Noninfluence = Non-

interference + Nonleakage. In Proceedings of the European Symposium on

Research in Computer Security (ESORICS 2004), volume 3193 of LNCS,

pages 225–243. Springer, 2004.

[94] Philip Wadler. Comprehending monads. In Mathematical Structures in Com-

puter Science, pages 61–78, 1992.

[95] Philip Wadler. The essence of functional programming. In Ravi Sethi, editor,

Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL 1992), pages 1–14. ACM, 1992.



321

[96] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less

ad-hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL 1989), pages 60–76, 1989.

[97] Malcolm Wallace and Colin Runciman. Extending a functional program-

ming system for embedded applications. Software Practice and Experiences,

25(1):73–96, 1995.

[98] Malcolm Wallace and Colin Runciman. Lambdas in the liftshaft—functional

programming and an embedded architecture. In Proceedings of the Seventh

International Conference on Functional Programming Languages and Com-

puter Architecture (FPCA 1995), pages 249–258. ACM, 1995.

[99] Adam Wick and Matthew Flatt. Memory accounting without partitions.

In Proceedings of the 4th International Symposium on Memory Management

(ISMM 2004), pages 120–130. ACM, 2004.

[100] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated ver-

ification of a type-safe operating system. In Benjamin G. Zorn and Alexander

Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI 2010), pages 99–110.

ACM, June 2010.


	Portland State University
	PDXScholar
	1-1-2011

	A Functional Approach to Memory-Safe Operating Systems
	Rebekah Leslie
	Let us know how access to this document benefits you.
	Recommended Citation


	tmp.1373300478.pdf.oJL3H

