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i

ABSTRACT

Generalized algebraic data types (GADTs) are a type system extension to alge-

braic data types that allows the type of an algebraic data value to vary with its

shape. The GADT type system allows programmers to express detailed program

properties as types (for example, that a function should return a list of the same

length as its input), and a general-purpose type checker will automatically check

those properties at compile time. Type inference for the GADT type system and

the properties of the type system are both currently areas of active research.

In this dissertation, I attack both problems simultaneously by exploiting the

symbiosis between type system research and type inference research. Deficiencies

of GADT type inference algorithms motivate research on specific aspects of the

type system, and discoveries about the type system bring in new insights that

lead to improved GADT type inference algorithms. The technical contributions

of this dissertation are therefore twofold: in addition to new GADT type system

properties (such as the prevalence of pointwise type information flow in GADT

patterns, a generalized notion of existential types, and the effects of enforcing the

GADT branch reachability requirement), I will also present a new GADT type

inference algorithm that is significantly more powerful than existing algorithms.

These contributions should help programmers use the GADT type system more

effectively, and they should also enable language implementers to provide better

support for the GADT type system.
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Chapter 1

INTRODUCTION

In this dissertation, I present my research on the type inference problem for gen-

eralized algebraic data types (GADTs). This chapter introduces the role of types

in programming languages, motivates generalized algebraic data types with two

examples of expression evaluators, and outlines both the technical challenges and

the contributions of this dissertation.

1.1 TYPE SYSTEMS

Type systems are a programming language feature that consists of two parts. The

first part of a type system is a formal language — the language of types — that

describes a set of properties that programs may have. The second part of a type

system is a set of type rules that defines a mathematical relation between types

and programs. These two parts work together to provide a formal framework for

describing program properties.

The first part of a type system, its language of types (or just types for short),

names program properties that are relevant to the type system. For example, here

are four types in the type system for the Haskell 98 programming language [14]:

Int Integer

[Int] List of integers

Int → Bool Function that maps integers to Boolean values
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forall a. [a] → Int Function that, for any type a,

maps lists of a elements to integers

One can think of types as a form of program documentation: like code comments,

they provide a way for programmers to describe program properties. However,

unlike code comments, which are free-form, types have a formally defined syntax,

which specifies what can and cannot be expressed through types.

The second part of a type system, its set of type rules, defines how programs

relate to types. In other words, the type rules define which programs have which

types in the type system. For example, here are four Haskell 98 programs and (to

the right of the :: symbol in each line) the types they have in the type system of

Haskell 98:

7+6 :: Int

7 == 6 :: Bool

λx → [x] :: Int → [Int] -- One type of λx → [x]

λx → [x] :: Char → [Char] -- Another type of λx → [x]

For example, you read the first line as “the program 7+6 has type Int.” This

kind of mathematical relation between programs and types is what makes types

fundamentally different from code comments. Unlike comments, which may be

ambiguous, or even wrong (with respect to the code that they describe), types are

precise and can be checked for consistency with the programs that they describe.

Such is the power of formalism.

In many type systems, the language of types is extensible: programmers can

add new vocabulary to the language by defining new data types. For example,

here is how one may define an algebraic data type of trees in Haskell 98:

data Tree a = Tip a | Fork (Tree a) (Tree a)
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The declaration consists of two parts that are separated by the = symbol. The

first names the data type (Tree) and its type argument (a). The second defines

the two data constructors (Tip and Fork) that constitute the Tree data type.

This declaration of the Tree data type extends the language of types so that

programmers can use types to describe programs that involve trees:

Tree Bool Tree of Boolean values

forall a. Tree a → a Function that, for any type a,

maps trees of a elements to a value of type a

The declaration of the Tree data type also extends the mathematical relation

between programs and types to cover programs that involve trees:

Tip 5 :: Tree Int

Tip (7 == 6) :: Tree Bool

Fork (Tip ’a’) (Tip ’c’) :: Tree Char

Since the type rules of a type system define a mathematical relation between

programs and types, they do not require that every program must have exactly

one type. The λx → [x] example (p. 2) demonstrates that a program may have

multiple types; at the other end of the spectrum, there may also be programs that

have no types. This possibility to deny a program a type provides a convenient

way for programming language designers to specify, with mathematical precision,

which programs they consider good and which ones they consider bad : formulate

the type rules so that only good program are well-typed.1

From this perspective, a type system is a reflection of its designers’ view on

which programs are good and which ones are bad, and a different criterion of good

vs. bad might lead to a different type system. One extremely common criterion is

1A well-typed program is a program that has at least one type.
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to consider a program “good” if it has a well-defined dynamic semantics,2 or, in

other words, if its runtime behavior is well-defined. Using a type system to enforce

this criterion leads to the long-established notion of type soundness (also called

type safety): a well-typed program should not go wrong [27, §3].3

Type soundness is an important design goal for type systems because a sound

type system is not only a formalism for program documentation, but also a for-

malism for program verification. In a programming language with a sound type

system, even if a programmer does not know what types a program might have,

merely knowing that the program has a type gives the programmer some basic

assurance about the runtime behavior of the program. The type system for the

Haskell 98 programming language is generally believed to be sound. However, this

belief cannot be proved because there is no completely formal description of either

the type system or the semantics for Haskell 98.

I should point out that, in addition to programming languages, type systems

also play an important role in mathematical logic and in proof systems. Russell,

for example, developed a theory of types to avoid logical paradoxes (that are due

to impredicativity) in a logical foundation of mathematics [51]. Another example

is the Curry-Howard correspondence [41], which suggests that typed programs are

equivalent to constructive proofs. This correspondence led to the Coq proof assis-

tant software [45], which allows its users to prove logical propositions by writing

typed functional programs. These roles of type systems are fascinating topics but

lie outside the scope of this dissertation.

2The dynamic semantics of a program is the result of running the program. In contrast, the
static semantics of a program is a property (such as its type) that can be determined statically.
The word “semantics” alone usually refers to dynamic semantics.

3The meaning of “go wrong” depends on the semantics of the programming language, which
may consider certain exceptions (such as divide-by-zero) as well-defined behavior. As a result,
the soundness of a type system is defined only with respect to a semantics of the language.
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1.2 TYPE SYSTEM INCOMPLETENESS

Type system soundness (i.e., a well-typed program should not go wrong) is a

powerful idea. Type system completeness (i.e., a program that cannot go wrong

should be well-typed) is likewise a powerful idea. If a type system is both sound

and complete with respect to an untyped dynamic semantics of the programming

language, a program would be well-typed if and only if it cannot go wrong at

runtime. This property makes a sound and complete type system a very valuable

addition to a programming language.

Unfortunately, designing a practical type system that is sound and complete

with respect to an untyped dynamic semantics of a general-purpose programming

language turns out to be a very difficult problem. More specifically, results in

computability theory (such as Rice’s Theorem [34]) suggest that our inability to

come up with a sound, complete, and practical type system for a Turing-complete

programming language may be due to a fundamental limit of formal reasoning.

Therefore, as a (necessary) practical compromise, type system researchers over-

whelmingly choose to design type systems that are sound but incomplete. It is

better to be safe (by rejecting some good programs) than to be sorry (by accept-

ing some bad programs).

In a sound type system, all bad programs are ill-typed (i.e., not well-typed).

A programmer must take care to write only well-typed programs because imple-

mentations of a typed programming language (such as Haskell), in an attempt to

prevent runtime errors, typically refuse to run (or to compile) ill-typed programs.

However, in an incomplete type system, some good programs are also ill-typed. If

a programming language implementation requires all programs to be well-typed in

an incomplete type system, the programmer may be compelled to modify a per-

fectly good program just for the sake of satisfying the (incomplete) type system.

As the following example shows, the need to appease an incomplete type system
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i := . . . ,−2,−1, 0, 1, 2, . . .

e := T | F | i | e⊕ e | e 6 e | (e, e) | fst(e) | snd(e)

JT K = True Boolean value

JF K = False Boolean value

JiK = i Integer

Ji⊕ jK = JiK + JjK Integer addition

Ji 6 jK = JiK ≤ JjK Integer comparison

J(x, y)K = 〈JxK, JyK〉 Cartesian product

Jfst(c)K = π1JcK Product left projection

Jsnd(c)K = π2JcK Product right projection

Figure 1.1: This figure shows the syntax and the semantics of a small expression

language e. The symbols +, ≤, 〈 〉, π1, and π2 represent mathematical operators.

can make programming unnecessarily awkward.

Figure 1.1 (p. 6) defines an expression language e of integers, Boolean values,

and Cartesian products. The operator J·K provides a denotational semantics for

the language by mapping expressions to mathematical objects. For example, here

is how one calculates the meaning of a program in this language:

Jsnd((2 6 5, 3))K = π2J(2 6 5, 3)K = π2〈J2 6 5K, J3K〉 = π2〈True, 3〉 = 3

The meaning of the program snd((2 6 5, 3)) is the (mathematical) integer 3. How

does one implement this expression language in Haskell 98?

Figure 1.2 (p. 7) shows an algebraic data type Term, whose structure directly

corresponds to the syntax of the expression language e in Figure 1.1 (p. 6). The
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data Term

= RepT -- T

| RepF -- F

| RepInt Int -- i

| RepPlus Term Term -- i⊕ j

| RepLeq Term Term -- i 6 j

| RepPair Term Term -- (x, y)

| RepFst Term -- fst(c)

| RepSnd Term -- snd(c)

Figure 1.2: Algebraic data type for the expression language.

Term data type defines a concrete representation of programs in the expression

language. For example, here is the representation of snd((2 6 5, 3)):

RepSnd (RepPair (RepLeq (RepInt 2) (RepInt 5)) (RepInt 3))

Figure 1.3 (p. 8) shows the eval function, which evaluates programs in the

expression language. The eval function uses case expressions to return different

results depending on the structure of the expression. In a case expression, the

sub-expression between case and of is its scrutinee, and the part after of is its

pattern-matching branches. In a pattern-matching branch, the part to the left of

the arrow (→) is its pattern, and the part to the right of the arrow is its body. A

case expression evaluates to the body of the first branch whose pattern matches

the structure of the scrutinee.

Since the evaluation result can have one of many types (e.g., it can be an

integer, a Boolean value, or a pair), I defined an auxiliary data type Value to

encapsulate the evaluation result. Each data constructor of the Value data type

(ValBool, ValInt, and ValPair) tags a value so that the type system can recover
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data Value

= ValBool Bool

| ValInt Int

| ValPair (Value, Value)

eval :: Term → Value

eval e = case e of

RepT → ValBool True

RepF → ValBool False

RepInt i → ValInt i

RepPlus i j → case eval i of

ValInt vi → case eval j of

ValInt vj → ValInt (vi + vj)

RepLeq i j → case eval i of

ValInt vi → case eval j of

ValInt vj → ValBool (vi <= vj)

RepPair x y → ValPair (eval x, eval y)

RepFst c → case eval c of

ValPair vc → fst vc

RepSnd c → case eval c of

ValPair vc → snd vc

Figure 1.3: Algebraic data type evaluator for the expression language.
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the type of the value at a later time. The eval function matches its parameter e

to the data constructors of the Term data type and evaluates each branch using

the semantics of the expression language (Figure 1.1, p. 6). Even though the eval

function faithfully implements the semantics of the expression language, it is not

ideal for the following two reasons:

1. Encapsulating the evaluation result in the Value data type (i.e., tagging)

is cumbersome. Both injecting results into and projecting results from the

Value data type incur runtime overhead and clutter up the implementation.

Due to its use of the Value type, this eval function is typically referred to

as a tagged evaluator.

2. Applying eval to a program whose semantics is undefined causes a runtime

pattern-matching failure. For example, applying eval to snd(3) (which is

represented by RepSnd (RepInt 3)) causes a pattern-matching failure be-

cause eval (RepInt 3) returns ValInt 3, but the case expression for the

result (in the last two lines of eval) expects a ValPair value. Adding error-

handling code to avoid pattern-matching failures (not shown in Figure 1.3)

clutters up the implementation even further.

These two aberrations have different causes. I introduced Value to appease the

Haskell 98 type system, which does not allow a function to return an integer in

some situations and a Boolean value in others. Runtime pattern-matching failures

can occur because the Term data type is too permissive: it allows programmers to

represent both good expressions (those whose semantics are defined according to

Figure 1.1, p. 6) and bad expressions (those whose semantics are undefined). For

example, snd(3) is a bad expression because its semantics is undefined: integers

do not have a right projection.

Jsnd(3)K = π2J3K = π2(3) = ?
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This inability to distinguish good expressions from bad ones is inherent in the

formulation of algebraic data types, which is a feature of the Haskell 98 type

system that governs user-defined types (such as Tree and Term).

1.3 GENERALIZED ALGEBRAIC DATA TYPES

To address these deficiencies, researchers recently proposed generalized algebraic

data types (GADTs) [17], which extend algebraic data types by allowing the type

of an algebraic data value to vary with the structure of the value. Figure 1.4 (p. 11)

shows a Haskell implementation of the expression language that uses the GADT

extension in the Glasgow Haskell Compiler [44, §7.5]. In this new implementation,

the Term data type has a type argument that represents the type of the value that

an expression should evaluate to. For example, here are three expressions in the

GADT Term data type:

RepT :: Term Bool

RepPair RepT (RepInt 3) :: Term (Bool, Int)

RepSnd (RepPair RepT (RepInt 3)) :: Term Int

The type argument of Term also allows the (Haskell) type system to reject bad

expressions. For example, the following two expressions are ill-typed:

RepSnd (RepInt 3) -- snd can be applied only to pairs

RepPlus RepT (RepInt 3) -- ⊕ can add only integers

In a way, the GADT Term data type extends the Haskell type system to cover

the expression language of Figure 1.1 (p. 6) so that only good expressions have

well-typed representations in the Haskell type system. The eval function for this

GADT Term data type (Figure 1.4, p. 11) resembles the denotational semantics of

the expression language (Figure 1.1, p. 6) and has neither of the problems in the

previous implementation (Figure 1.3, p. 8):
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data Term a where

RepT :: Term Bool

RepF :: Term Bool

RepInt :: Int → Term Int

RepPlus :: Term Int → Term Int → Term Int

RepLeq :: Term Int → Term Int → Term Bool

RepPair :: forall a b. Term a → Term b → Term (a,b)

RepFst :: forall a b. Term (a,b) → Term a

RepSnd :: forall a b. Term (a,b) → Term b

eval :: forall a. Term a → a

eval e = case e of

RepT → True

RepF → False

RepInt i → i

RepPlus i j → eval i + eval j

RepLeq i j → eval i <= eval j

RepPair x y → (eval x, eval y)

RepFst c → fst (eval c)

RepSnd c → snd (eval c)

Figure 1.4: Expression language in generalized algebraic data types.



12

1. In the type forall a. Term a → a of the eval function, the type of the

evaluation result is now matched to the type argument a of the type (Term

a) of the input expression, so there is no need to encapsulate (i.e., to tag)

the evaluation result in the Value data type. For this reason, this GADT

eval function is typically referred to as a tagless evaluator.

2. The GADT Term data type can represent only good expressions, so a bad

expression can no longer cause runtime failures in the eval function.

Generalized algebraic data types extend the Haskell 98 type system to recognize a

wider range of good programs by tracking fine-grained type information (such as

the expected result type of evaluating an expression). More specifically, they do so

by allowing programmers to use types to track inductive properties of the shape

of a data value. This ability to recognize more good programs reduces the need

to appease the type system and allows programmers to implement the expression

evaluation function in a style that is both more natural and more efficient.

Generalized algebraic data types are a general-purpose type system feature,

and tagless expression evaluators are only one of their many applications, which

also include balanced trees [38, §4.1], generic programming [37, §5.3], and monad

libraries [23]. Generalized algebraic data types are very useful, and type system

researchers have been working hard to improve GADT support in programming

language implementations. In this dissertation, I present my research in one area

of GADT support in programming language implementations: type inference for

programs that use generalized algebraic data types.

1.4 TYPE INFERENCE

To bring the theoretical benefits of type systems into practice, an implementation

of a typed programming language must accept only well-typed programs (which

are definitely good) and reject all ill-typed programs (which are potentially bad).
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In other words, the implementation must be able to distinguish, at compile time,

well-typed programs from ill-typed ones. A language implementation typically

identifies well-typed programs by either type checking or type inference:

Type checking algorithms check if a program has a specific type in a specific

context. Since a type checker4 checks a program against only one specific

type, a language implementation that employs type checking must rely on

programmer type annotations to inform the type checker what the expected

type of a program is.

Type inference algorithms decide if a program is well-typed in a specific con-

text, and, if so, then compute a type for that program. A language imple-

mentation that employs type inference does not require programmer type

annotations because a type inference algorithm, by design, should consider

all possible types when deciding if a program is well-typed.

Type inference reduces programmer workload because it allows language imple-

mentations to accept programs that do not have type annotations. This feature is

especially useful in early stages of software development where types tend to be in

a constant state of flux. Unfortunately, a type inference algorithm is much more

difficult to design than a type checking algorithm because it must decide if a pro-

gram is well-typed without knowing the expected type of the program. The type

inference problem for GADT programs is particularly difficult: leading experts in

the field have studied the problem [17, 32, 36, 42, 43], but there are still significant

weaknesses with all of the solutions that have been proposed to date. For example,

no previous type inference algorithms can infer a type for eval (Figure 1.4, p. 11)

without the assistance of a programmer type annotation.

4A type checking algorithm is also commonly referred to as a type checker.
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1.5 TECHNICAL CHALLENGES

What makes type inference for the GADT eval function so difficult? Previous

work in GADT type inference points to two reasons:

1. In the eval function, different pattern-matching branches in the same case

expression might have different types. For example, the body (True) of the

RepT branch has type Bool, but the body (i) of the RepInt branch has type

Int. The different types of different pattern-matching branches complicate

the GADT type inference problem because a type inference algorithm must

try to reconcile the differences.

2. The eval function uses polymorphic recursion [29], which allows it to invoke

itself on an instance of its own type. For example, the first recursive call

(eval i) in the body of the RepLeq branch assumes that eval has type

Term Int → Int, which is an instance of the type forall a. Term a →

a of the eval function. Since type inference with polymorphic recursion

is computationally undecidable [12, 21], one may expect type inference for

functions such as eval to be very difficult.

Note that eval is only one specific example of a GADT program, and this list

of two technical difficulties is by no means exhaustive. Type inference for some

other practical (and also seemingly reasonable) GADT programs may be difficult

for entirely different reasons, which include:

3. A well-typed GADT function need not have a single most-general type; in

fact, there are GADT functions that have infinitely many maximal types.5

The existence of multiple maximal types complicates the GADT type in-

ference problem because it suggests that one single type cannot adequately

5A type t of a program is maximal if the program does not have another type that is strictly
more general than t. A program has a most-general type if it has exactly one maximal type.



15

represent all the type information that a type inference algorithm inferred

from a program expression.

4. The type of a case scrutinee may depend on the structures of the GADT

pattern-matching branches in the case expression. The dependency compli-

cates the GADT type inference problem because it suggests that a type in-

ference algorithm should propagate type information from a GADT pattern-

matching branch to the case scrutinee in accordance with the dependency,

but the dependency itself is rather difficult to characterize.

As far as I know, the extent of these last two technical difficulties had never been

fully described in previous work. Paraphrasing Donald Rumsfeld, these unknown

unknowns — the things we did not know that we did not know — were perhaps

the most important reasons why GADT type inference was so difficult.

1.6 CONTRIBUTIONS

In this dissertation, I present Algorithm P , a novel type inference algorithm for

programs that use generalized algebraic data types. While Algorithm P does not

completely solve the aforementioned technical difficulties (§1.5), it does represent

a significant step toward understanding and solving these difficulties.

In contrast with previous algorithms that rely on type annotations [17, 32],

I designed Algorithm P to infer types for programs without type annotations.

Compared with previous algorithms that do not rely on type annotations [36, 42,

43], Algorithm P infers types for a much larger set of GADT programs, including

the GADT eval function in Figure 1.4 (p. 11), which lies beyond the capabilities

of all previous GADT type inference algorithms.

The design of Algorithm P relies heavily on the discoveries about generalized

algebraic data types that I made in the course of this dissertation research. Here

are two examples:
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� The traditional notion of existential types [22] is insufficient to explain why

some GADT programs are ill-typed. I extended existential types to general-

ized existential types (§4.2), which not only offers greater explanatory power

than existential types, but also helps Algorithm P to decide when it should

propagate type information from a GADT pattern-matching branch to the

type of the case scrutinee. (In contrast, the OutsideIn type inference algo-

rithm [36] never propagates type information in this direction, and its type

inference power suffers as a result.)

� Contrary to common belief, a more-general type of a GADT program is not

necessarily preferable to a less-general type. Making a case scrutinee type

overly general brings no practical benefit to programmers but allows more

opportunities for runtime pattern-matching failures. I proposed a criterion

for deciding whether a case scrutinee type is overly general (§6.2) and used

it to prevent Algorithm P from inferring overly-general scrutinee types.

I will discuss these discoveries in detail in this dissertation.

1.7 OUTLINE

I organized the remainder of this dissertation into seven chapters.

Chapter 2 provides background information on algebraic data types, generalized

algebraic data types, and the state of the art of the GADT type inference

problem. In §2.5, I classify the types related to a GADT pattern-matching

branch into six distinct type roles and describe an intriguing symmetry be-

tween these six type roles.

Chapter 3 introduces the Pointwise GADT type system, which I designed to

distinguish practical GADT programs from a specific class of pathological

programs that have counter-intuitive types. It restricts the GADT type
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system of Peyton Jones et al. [17] by requiring type information flow in a

GADT pattern to follow the pointwise structure, which I make precise by

formally defining pointwise unifiers and pointwise unification.

Chapter 4 describes the Non-Dependent GADT type system, which further re-

stricts the Pointwise GADT type system. I show that, contrary to conven-

tional wisdom, GADT type refinements are not the only feature that makes

GADT type inference difficult, and I propose the notion of generalized exis-

tential types to explain how the type of a case scrutinee may depend on the

structures of the corresponding pattern-matching branches.

Chapter 5 is devoted to the GADT branch reachability requirement, which is

a GADT type system design choice that requires every pattern-matching

branch to be potentially reachable. I discuss the pros and cons of this choice

and show how it breaks type preservation in GADT type systems. This

chapter also illustrates why restricting a type system need not necessarily

make the type inference problem easier.

Chapter 6 describes Algorithm P . I explain why Algorithm P , by design, does

not always infer the most-general type even when it exists: the most-general

type of a program is not necessarily its best type. I also explain how Algo-

rithm P uses GADT type refinements to reconcile the type inconsistencies

between GADT pattern-matching branches in a case expression.

Chapter 7 describes my Haskell implementation of Algorithm P and evaluates

its type inference capability using 30 GADT programs that I selected from a

wide range of application domains. Algorithm P infers types for 25 out of the

30 programs. In contrast, OutsideIn [36] infers a type for only 1 out of the

same 30 programs. Algorithm P is incomplete,6 and I discuss the technical

6Soundness and completeness of a type inference algorithm are different from soundness and



18

difficulties that lead to the five type inference failures in the evaluation.

Chapter 8 summarizes the contributions of this dissertation and discusses topics

of the dissertation that will most likely benefit from future work.

completeness of a type system. For a type inference algorithm, soundness means that the al-
gorithm accepts only well-typed programs, and completeness means that the algorithm accepts
all well-typed programs. Therefore, the incompleteness of Algorithm P states that Algorithm P
does not accept some well-typed programs.



19

Chapter 2

BACKGROUND

In this chapter, I introduce basic concepts such as programs and types, present

the ADT and the GADT type systems, and discuss the current state of the GADT

type inference problem.

2.1 NOTATION AND SYNTAX

The general area of this dissertation is programming languages and type systems,

so I start by introducing the notation and the syntax for programs and types.

Programs and types both consist of symbols in specific syntactic categories. For

example, an expression may contain variables and data constructors, and a type

may contain type variables and type constructors. Figure 2.1 (p. 20) describes

the meta-symbols that I use in this dissertation; each meta-symbol represents an

element in the corresponding syntactic category. For example, the meta-symbol

u represents a type (but not any specific type). Note that meta-symbols for type

constructors range not only over user-defined ones, but also over built-in type

constructors such as arrow (Arrow), pair (Pair), and triple (Triple). Figure 2.2

(p. 20) lists the mathematical notation I adopted in this dissertation. Note that

I use italic uppercase letters for both type constructors and sets; the intended

meaning should be clear from the context.

The ways that programmers can construct expressions from variables and data

constructors (or types from type variables and type constructors) are specified by

the syntax of programs and types. Figure 2.3 (p. 20) shows the syntax of types
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a, b, c, . . . Expressions

C, D, E, . . . Data constructors

u, v, w, . . . Variables

u, v, w, . . . Types

S, T , U , . . . Type constructors

α, β, γ, . . . Type variables

Xα, Xβ, Xγ, . . . Skolem type constants

θ, η, σ, . . . Type substitutions

Figure 2.1: Legend for program meta-symbols.

a
A finite sequence of a entities

(or the set of elements in the sequence)

[s/α] The substitution of s for α

dom(θ) The domain of the substitution θ

mgu(s ∼ t) A most-general unifier of s and t

U(s ∼ t) Unification of s and t

tyvar(s) The free type variables of s

S#T Sets S and T are disjoint

S ] T The union of disjoint sets S and T

Figure 2.2: Mathematical notation.

u = α | T u

e = u | C | λu . e | e e | let u = e in e | case e of {T u→ e}

Figure 2.3: Syntax of well-formed types and programs.



21

and programs I use in this dissertation. These syntax definitions are standard for a

statically-typed functional programming language. A type is either a type variable

(α), or a type constructor (T ) with a sequence of types (u) as its arguments.

Following convention, I require each type constructor to have a fixed arity (i.e.,

a specific type constructor is always applied to the same number of arguments).

Under this syntax, the types of functions, pairs, triples, quadruples, etc. have the

following forms:

Arrow u v Function from u to v

Pair u v Pair of u and v

Triple u v w Triple of u, v, and w

Quad u v w s Quadruple of u, v, w, and s

These forms adhere completely to the syntax of types, but they are also awk-

ward to write and difficult to read. In the interest of readability, I will instead

present these types using the following conventional notation:

u→ v Function from u to v

(u, v) Pair of u and v

(u, v, w) Triple of u, v, and w

(u, v, w, s) Quadruple of u, v, w, and s

An expression1 is either a variable (u), a data constructor (C), a function ab-

straction (λu . e), a function application (e e), an expression under a local definition

(let u=e in e), or a scrutinee with a set of pattern-matching branches (case e

of { T u→ e }). When I must refer to a specific program expression, I adopt the

syntactic conventions of the Haskell programming language (i.e., variable names

and type variable names begin with a lower-case letter, and data constructor and

1In a functional programming language, a program is nothing more than an expression, thus
the syntax of programs is identical to the syntax of expressions.
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type constructor names begin with an upper-case letter) [14] and set the entire

expression, including variables and data constructors, in typewriter font.

Types and programs are closely related constructs, and the standard way to

represent their relation is to use type judgments, which have the form Γ ` e : t

(read “under the type environment Γ, the expression e has type t”).2 Different

type systems include different type judgments, so the same expression under the

same type environment may have different types in different type systems, or it

may have a type in one type system but no type in another.

In the next two sections, I introduce two type systems that serve as the foun-

dation of my dissertation research.

2.2 ALGEBRAIC DATA TYPES

Algebraic Data Types (ADTs) are a programming language and type system fea-

ture that serves as the core of many functional languages such as Haskell [14] and

ML [28]. An algebraic data type3 allows a program to organize and to process data

using custom-defined data constructors. The following example4 illustrates how a

programmer can define an algebraic data type:

data Tree a where

Tip :: forall a. a → Tree a

Fork :: forall a. Tree a → Tree a → Tree a

2Following convention, a type judgment uses a single colon (:) to separate an expression
from its type. Program examples in this dissertation, which follows the syntax of the Haskell
programming language, use double colons (::) for the same role. The difference is due to history
and convention, and it has no significance otherwise.

3By convention, the term algebraic data type may refer to either a specific data type defined
by a programmer (such as Tree), or the type system that I will introduce later in the section.
The specific meaning is usually clear from the context.

4The program syntax in Figure 2.3 (p. 20) does not include the declaration of algebraic data
constructors, and the technical development in this dissertation assumes that data constructors
are defined a priori. When I need to discuss specifics in examples, I use the syntax proposed by
Peyton Jones et al. [17] and adopted in the Glasgow Haskell Compiler [44, §7.5].
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The Tree type consists of two data constructors (Tip and Fork) that can be

used in conjunction to define binary trees. Each data constructor has a type, and

each data constructor type consists of two parts. The part of a data constructor

type after the right-most arrow is the range type of the constructor; it describes the

type of the value that the data constructor constructs. Tip and Fork both have

range types Tree a because they are both data constructors of the Tree type.

The part of a data constructor type before the right-most arrow comprises the

argument types ; they describe the internal data values that each data constructor

encapsulates.

2.2.1 Constructing algebraic data

Programmers can use data constructors to construct algebraic data values. For

example, when applied to a value of type a, Tip constructs a Tree a value that

contains the a value. The constructed value represents a leaf node of a binary tree

(which contains a data element but no sub-trees). When applied to two values

of type Tree a, Fork constructs a new Tree a value that contains two Tree a

values. The constructed value represents an internal node of a binary tree (which

connects two sub-trees).

Algebraic data types support type parametrization, which allows programmers

to instantiate a data constructor type differently to accommodate different uses.

For example, the Tree type constructor has one type argument, which represents

the type of the data elements in the leaf nodes of a tree. By instantiating the type

argument to different types, programmers can define many different types of trees

using the same Tip and Fork data constructors. The following examples5 illustrate

type parametrization:

intTree1 :: Tree Int

5In the interest of readability, I use the concrete syntax of the Haskell programming language
for the program examples in this dissertation. See the Haskell language report [14] for details.
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intTree1 = Tip 5

intTree2 :: Tree Int

intTree2 = Fork (Tip 3) (Fork (Tip 9) (Tip 2))

boolTree :: Tree Bool

boolTree = Fork (Fork (Tip True) (Tip True)) (Tip False)

In the examples, the lines that contain a double colon (::) are type annota-

tions ; each annotation specifies the type of an upcoming expression definition. For

example, the first line specifies that an upcoming definition will bind intTree1 to

an expression with type Tree Int. In this dissertation, I make extensive use of

type annotations to document the types of expressions.

An algebraic data type may be parametrized by zero, one, or multiple types.

To support type parametrization, all data constructor range type arguments (i.e.,

all type arguments of the range type of a data constructor) in an algebraic data

type declaration must be distinct type variables. The range type of a data con-

structor is uniform if it satisfies this requirement. For example, the following data

constructors have uniform range types:

C1 :: forall a. a → T1 a

C2 :: forall a b. Int → T2 a b

C3 :: forall a b c. Bool → b → T3 a b c

The following data constructors have non-uniform range types:

C4 :: forall a. a → T4 [a]

C5 :: forall a. Int → T5 a a

C6 :: forall a b. Bool → b → T6 a b Bool

Using this new terminology, all data constructors in an algebraic data type

must have uniform range types.
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2.2.2 Destructing algebraic data

Data constructors serve a dual purpose: programmers can (as previously discussed)

use them to construct data values, and programmers can use them to destruct

data values. Here destruct does not mean destroy; rather it refers to the language

feature that a program uses to analyze the structure of an algebraic data value.

Typically this mechanism is provided by pattern-matching branches in a case

expression. Pattern-matching branches provide two kinds of information: the data

constructors to match, and the expression to evaluate for each possible match.

Here is an example:

sumTree :: Tree Int → Int

sumTree t = case t of

Tip i → i

Fork l r → sumTree l + sumTree r

The sumTree function computes the sum of the data elements in a binary tree of

integers. The body of the function is a case expression, which allows the function

to return different values based on the structure (Tip i or Fork l r) of the binary

tree. Each case expression consists of two parts: the scrutinee (t), which specifies

the value to be analyzed, and the pattern-matching branches (the two lines after

the keyword of).

A pattern-matching branch also consists of two parts. The part to the left of

the arrow (e.g., Fork l r) is the pattern of the branch; it describes a possible

top-level structure of the scrutinee. The part to the right of the arrow (e.g.,

sumTree l + sumTree r) is the branch body ; it specifies the value to return when

the structure of the scrutinee matches the pattern. The branch body accesses the

internal data value in the scrutinee (carried by the data constructor) through the

variable names listed in the pattern (l becomes the left sub-tree and r becomes

the right sub-tree). Going back to the example, the case expression in the body of
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sumTree says that the function returns the integer data value in leaf nodes, and for

internal nodes it returns the sum of the results from the sub-trees. The language I

study in this dissertation (Figure 2.3, p. 20) does not support nested patterns, so

every pattern must be a data constructor (Fork) followed by a sequence of distinct

variable names (l r) as its arguments.

2.2.3 Type system

In addition to the language features that programmers can use directly, algebraic

data types also come with a type system to ensure the internal coherence of pro-

grams. The ADT type system is not really a single type system, but rather a

family of type systems with slightly different feature sets. For this dissertation I

base my technical development on what is essentially the Milner type system [27]

with algebraic data types, existential types [22], and polymorphic recursion [29].

Each type system consists of two parts. The first part (Figure 2.3, p. 20) spec-

ifies the structural properties of types in the type system. The ADT type system

supports universal quantification over type variables — types with quantifiers are

polymorphic, and types without quantification are monomorphic. The ADT type

system requires that each data constructor should have a polymorphic type that

universally quantifies all its type variables. If a data constructor type contains

no type variables, this requirement is trivially satisfied without any quantification.

As I discussed earlier, the ADT type system also requires data constructor range

types to be uniform. In other words, the range type of a data constructor must be

a type constructor with distinct type variables as its arguments.

The second part of a type system consists of a set of type rules, each of which

defines a way to construct a valid type judgment for expressions in the language.

Each type rule consists of two parts separated by a horizontal line: the part above

the line states the requirements for the type judgment below the line. Figure 2.4

(p. 27) shows the type rules in the ADT type system, and I briefly describe each
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VAR

x : ∀α. t ∈ Γ s = inst[α](t)

Γ ` x : s

LAM

Γ{u : s} ` e : t

Γ ` λu . e : s→ t

CONS

C : ∀α. t s = inst[α](t)

Γ ` C : s

APP

Γ ` f : t1 → t2 Γ ` e : t1

Γ ` f e : t2

LETREC-P

Γ{u : ∀α. s} ` e : s α# tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e in d : t

CASE

Γ ` e : s Γ `p pi→ ci : s→ t

Γ ` case e of { pi→ ci } : t

ALT-ADT

C : ∀α.w → T γ α# tyvar(Γ, u, t)

θ = [u/γ] Γ{x : θ(w)} ` c : t

Γ `p C x → c : T u→ t

inst[α](t) = θ(t), where θ = [s/α], and s are arbitrary types

Figure 2.4: The ADT type system.
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rule in the type system:

VAR This rule looks up the type (t) of the variable (x) in the type environment

(Γ), which is a set that maps variable names to polymorphic types. The rule

also instantiates the universally-quantified type variables (α) in the type (t).

CONS This rule looks up the type (t) of a data constructor (C) in an implicit

global type environment, and it instantiates the universally-quantified type

variables (α) in the type (t).

LAM This rule types a function by requiring that the function body (e) has the

body type (t) of the function under the extended type environment that

maps the function argument (u) to the argument type (s) of the function.

APP This rule types a function application by typing the function (f) and its

argument (e) separately and requiring that the function must have a function

type. The domain of the function must have the same type (t1) as the

argument, and the range of the function must have the same type (t2) as the

entire application.

LETREC-P This rule types a let expression by checking that both the local

definition (e) and the body of the expression (d) have the appropriate types

(s and t) under the extended type environment that maps the locally-defined

variable (u) to a polymorphic type (∀α. s). Note that the let construct

supports recursive definitions: the body of the local definition (e) can refer

to the locally-defined variable (u).

CASE This rule types a case expression by typing the scrutinee (e) and the

pattern-matching branches (pi → ci) separately, and then requiring that all

branch types must be an arrow from the scrutinee type (s) to the case

expression type (t). This rule uses a special judgment for pattern-matching

branches, which I describe next.
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ALT-ADT This rule types a pattern-matching branch. Since a pattern-matching

branch is not an expression, I use `p (instead of `) in the type judgment for

pattern-matching branches to make the distinction clear.

Since a pattern destructs a value, this rule uses the data constructor type

backwards: the range type (T γ) of the constructor (C) becomes the type of

the pattern (C x), which instantiates to the scrutinee type (T u). The rule

then uses the instantiation substitution (θ) to refine the constructor’s argu-

ment types (w), which now become the types of the pattern-bound variables

(x). Finally, the rule types the branch body (c) under the type environment

extended with the types of the pattern-bound variables.

From the perspective of a type checking algorithm, the type judgment below

the horizontal line in each type rule — which includes the type environment, the

program expression, and the expected type — is given as input, and the algorithm

is responsible for filling in the remaining information to meet the requirements

stated above the horizontal line. For example, in the APP type rule, only the type

t2 is given as input, and a type checking algorithm must find a type t1 (if it exists)

that allows successful type checking for both the function and its argument. This

responsibility on type checking algorithms is a problem in the LETREC-P rule —

Henglein [12] and Kfoury et al. [21] proved that type inference with polymorphic

recursion (so named because the recursive binding u in e has a polymorphic type)

is computationally undecidable. One common work-around for this problem is to

replace LETREC-P with the two type rules in Figure 2.5 (p. 30).

The LETREC-M rule, which allows only monomorphic recursion (the recursive

binding u in e is restricted to a monomorphic type), admits a complete type infer-

ence algorithm [8, 27]. The LETREC-A rule, which allows polymorphic recursion,

requires programmer type annotation (by slightly extending the syntax for let

expressions) so that a type checking algorithm is no longer required to infer the
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LETREC-M

Γ{u : s} ` e : s α = tyvar(s) \ tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e in d : t

LETREC-A

Γ{u : ∀α. s} ` e : s α# tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e : ∀α. s in d : t

Figure 2.5: Type rules for annotated polymorphic recursion.

type of the local definition.

I choose not to employ this workaround. This choice implies that any type

checking or type inference algorithm for the ADT type system must necessarily be

incomplete (i.e., it must fail to accept some well-typed programs), but at the same

time it allows for the possibility that a type inference algorithm may support some

use of polymorphic recursion without programmer type annotations [12, 29, 48]. I

will say more about type inference with polymorphic recursion in Chapter 6.

2.3 GENERALIZED ALGEBRAIC DATA TYPES

Generalized algebraic data types (GADTs) [17] are an extension to the ADT type

system that support non-uniform data constructor range types. Researchers have

found GADTs useful in a wide variety of programming tasks: generalized tries

[6], AVL trees [38, §4.1], generic programming [6], arrow [30] and monad [23]

libraries, parsing combinators [1, 23], and tagless language interpreters [1, 6, 39].

The Glasgow Haskell Compiler has supported GADTs since version 6.4 in 2005

[44, §7.5], and GADTs have found their way into major software projects such as

Pugs [47], a leading Perl 6 implementation, and Darcs [46], a distributed revision

control system with advanced merge features.
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2.3.1 Previous work

Generalized algebraic data types, in their current form as a programming language

feature, can be traced back to a 1994 manuscript by Augustsson and Petersson

[1]. In the manuscript, they investigate an extension to algebraic data types that

allows data constructors with non-uniform range types (i.e., data constructors

whose range type arguments are not distinct type variables), and they propose

that the type rule for case expressions should combine scrutinee and pattern types

with unification [35].

Eight years later, in 2002, researchers again turned their attention to the prob-

lem of defining data constructors with non-uniform range types. Two papers, one

by Baars and Swierstra [2] and the other by Cheney and Hinze [5], independently

demonstrated the technique of using Leibniz’ Law (the identity of indiscernibles)

[10] to restrict the range types of data constructors in Haskell. This technique,

inspired by Weirich [50], encodes Leibniz’ Law into Haskell types as follows:

data Equal a b where

Leibniz :: forall a b. (forall f. f a → f b) → Equal a b

Note that the type variable f represents not a type, but a type constructor of

arity one (or, more precisely, of kind * → *). Since f is universally quantified, the

only non-diverging function that can be an argument of Leibniz is the identity

function, so the types a and b must be equal. With the Equal type, programmers

can now define data constructors with simulated non-uniform range types:

data Rep a where

RepInt :: Equal a Int → Rep a

RepBool :: Equal a Bool → Rep a

For the RepInt data constructor, its range type argument a must be equal to

Int because all values of type Equal x y that are constructed from non-diverging
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functions require x = y. Likewise, for the RepBool data constructor, its range

type argument a must be equal to Bool. In a data type with (simulated) non-

uniform constructor range types such as Rep, the type of an algebraic data value

varies with its structure. In other words, the structure of an algebraic data value

becomes connected to its type. This connection between the structure of values

and types allows programmers to harvest some of the power of dependent type

systems in the familiar setting of algebraic data types.

Once researchers recognized the usefulness of non-uniform constructor range

types, they worked to extend the ADT type system so that programmers no

longer had to manually invoke Leibniz equality. Two proposals, First-Class Phan-

tom Types by Cheney and Hinze [6] and Equality-Qualified Types by Sheard and

Pasalic [39], add type equations to data constructor declarations and extend the

type system to support those type equations. These two proposals are directly

comparable to the technique based on Leibniz’ Law, except that type equations

are more pleasant to use and incur no runtime overhead. Guarded Recursive

Datatype Constructors by Xi et al. [52] do away with type equations in the sur-

face language and instead allow programmers to specify non-uniform range types

for data constructors directly. Their type system, however, still relies on type

equations internally to check pattern-matching branches. All three proposals for

extending the ADT type system to support non-uniform constructor range types

appear to be equivalent [6, §6.6] [39, §6]. Compared to Intensional Polymorphism

by Crary et al. [7], which proposes a type system with a built-in singleton type,

these proposals provide a similar feature set, but with the additional benefit that

programmers can define new data types that suit their own needs.

Peyton Jones et al. [17, 18] are the first to use the term “Generalized Algebraic

Data Types” and the data type declaration syntax subsequently implemented in
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the Glasgow Haskell Compiler. In their type system, programmers specify non-

uniform range types for data constructors directly without resorting to type equa-

tions, and the type system checks pattern-matching branches using unification

without resorting to type equations. This type-equation-free formulation marks a

significant departure from previous work, but again this proposal by Peyton Jones

et al. appears to be equivalent to all previous proposals. This result should per-

haps not be surprising: type equations still exist conceptually in this type system;

only that they are now solved on-the-fly with unification and thus appear not as

equations, but as substitutions.

2.3.2 Features

My formulation of a GADT type system closely follows the GADT type system

of Peyton Jones et al. [17]. Since I will be introducing two new variations of the

GADT type system later in the dissertation, I will refer to the system that I am

now introducing as the plain GADT type system when there is a possibility of

confusion. In the rest of this section, I will demonstrate the plain GADT type

system through examples and then present its formal definition.

The GADT type system adds two new features to the ADT type system:

1. First, the GADT type system lifts the restriction that data constructor range

type arguments must be distinct type variables. In other words, the range

type arguments of a GADT data constructor can contain type constructors or

duplicated type variables or both. I call this feature GADT type arguments.

The Term data type in Figure 2.6 (p. 34) demonstrates this feature: the range

type arguments of data constructors vary from one constructor to another,

and the type argument a of an expression with type Term a represents the

type of the object-level term encoded by the expression. Here are three

examples:
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data Term a where

RepInt :: Int → Term Int

RepBool :: Bool → Term Bool

RepCond :: forall a. Term Bool → Term a → Term a → Term a

RepPair :: forall a b. Term a → Term b → Term (a, b)

eval :: forall a. Term a → a

eval e = case e of

RepInt i → i

RepBool b → b

RepCond b u v → if eval b then eval u else eval v

RepPair u v → (eval u, eval v)

Figure 2.6: This figure demonstrates a tagless expression evaluator in the GADT

type system. This example is similar to the one I presented in Figure 1.4 (p. 11)

but with a slightly different expression language. I assume that the programming

language supports if conditional expressions with the usual type and semantics.

The data constructors RepInt, RepBool, and RepPair of the Term data type have

non-uniform range types: the GADT type argument for each data constructor rep-

resents the type of the object-level term built from the constructor. The evaluation

function eval uses GADT type refinements to avoid tagging (i.e., encapsulating

the result of evaluation in another data type) and the associated runtime overhead.

This is one of the prime motivating examples for the GADT type system.
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term1 :: Term Int

term1 = RepInt 3

term2 :: Term (Bool, Int)

term2 = RepPair (RepBool True) (RepInt 5)

-- badTerm is not well-typed

badTerm = RepCond (RepBool True) (RepInt 3) (RepBool False)

The expression badTerm is not well-typed because its true branch has type

Term Int but its false branch has type Term Bool, which violates one of the

requirements encoded in the type of RepCond (i.e., the object-level terms in

the two branches of a conditional must have the same type). This example

demonstrates that GADT type arguments allow the type checker to help

programmers enforce structural constraints on algebraic data values.

2. Let us move on to the second new feature that the GADT type system adds

to the ADT type system. In a case branch that matches a GADT data

constructor, the pattern type of the branch (which is the range type of the

data constructor) can induce a type substitution that brings additional type

information into scope. We call the substitution a GADT type refinement.

GADT type refinements allow the branch body type and the types in the

environment to vary from one branch to another. The eval function in

Figure 2.6 (p. 34) illustrates this feature: the bodies of the RepInt and

RepBool branches have different types (Int and Bool, respectively). From

the type annotation, the case scrutinee e has type Term a, and the branch

bodies have type a. However, since the pattern RepInt i has type Term

Int (from the range type of RepInt), it induces a type refinement [Int/a]

(by unifying Term a with Term Int), and thus we can use an integer i as

the body of this particular branch (and similarly, the Boolean value b as the

body of the RepBool branch).
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I want to emphasize one particularly subtle consequence of the GADT type

refinement feature. While this feature allows types to vary between different GADT

pattern-matching branches,6 not all inter-branch type variations are acceptable to

the GADT type system. In other words, GADT type refinement weakens, but does

not completely eliminate, restrictions on the types of GADT pattern-matching

branches. One simple way to state the weakened restriction is that branch types

can vary only in accordance with the GADT type arguments of the branch pattern

types; this (weakened) restriction represents a basic type-coherence requirement

between GADT pattern-matching branches. The eval function, as I have shown,

obeys this restriction. The following function cross, in contrast, disobeys this

restriction, so it is not well-typed in the GADT type system:

cross e = case e of

RepInt i → True -- GADT type argument: Int, body type: Bool

RepBool b → 7 -- GADT type argument: Bool, body type: Int

Researchers have also studied type systems that further weaken the restriction

on GADT pattern-matching branches. Guarded Algebraic Data Types (note the

difference between Guarded and Generalized) by Simonet and Pottier [40] are a

general framework that allows programming language designers to attach type

constraints to data constructor types. Such constraints may include, but are not

limited to, type equations. In the specific case where the type constraints are type

equations, this work bears some resemblance to first-class phantom types [6]. In

the context of type inference, many researchers compare this work directly with

various formulations of the GADT type system [19, §6] [36, §9.2] [39, §7] [40,

§1.5.2] [43, §1], which underlines the belief that this work (with type equations as

constraints) is yet another formulation of the GADT type system.

6A GADT pattern-matching branch is a pattern-matching branch whose pattern refers to a
GADT data constructor (i.e., a data constructor with non-uniform range type arguments).
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This belief is, however, misplaced. Guarded algebraic data types, even with

type equations as constraints, are fundamentally different from the GADT type

system. The plain GADT type system treats GADT type refinement as local

type assumptions; guarded algebraic data types treat the same type equations

as antecedent of a logical implication. This liberal treatment allows the cross

function to have the following type in the guarded algebraic data type system:

forall a b. (a=Int ⊃ b=Bool) ∧ (a=Bool ⊃ b=Int) ⇒ a → b

The ⊃ symbol represents logical implication (e.g., A ⊃ B means “A implies B”),

and the⇒ symbol serves only as a separator between type implication constraints

and the type of the function. Guarded algebraic data types accept more programs

than the plain GADT type system (cross is one example), but this expressive-

ness comes at a cost: types become more complicated, and (more importantly)

type checking no longer enforces basic type-coherence between pattern-matching

branches. A programming error that triggers a type error in the plain GADT type

system may, in guarded algebraic data types, leave the program well-typed but

with a much more complicated type. This permissiveness makes guarded algebraic

data types less useful from a software engineering perspective, and in the rest

of this dissertation I will consider only type systems that enforce type-coherence

between pattern-matching branches.

2.3.3 Type system

Figure 2.7 (p. 38) shows the definition of the GADT type system. Compared to the

ADT type system in Figure 2.4 (p. 27), the only difference is that the ALT-ADT

rule in the ADT type system is replaced by the ALT-GADT rule. For the rest of

this section I will explain the design of the ALT-GADT type rule, which specifies

type checking for GADT pattern-matching branches.
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VAR

x : ∀α. t ∈ Γ s = inst[α](t)

Γ ` x : s

LAM

Γ{u : s} ` e : t

Γ ` λu . e : s→ t

CONS

C : ∀α. t s = inst[α](t)

Γ ` C : s

APP

Γ ` f : t1 → t2 Γ ` e : t1

Γ ` f e : t2

LETREC-P

Γ{u : ∀α. s} ` e : s α# tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e in d : t

CASE

Γ ` e : s Γ `p pi→ ci : s→ t

Γ ` case e of { pi→ ci } : t

ALT-GADT

C : ∀α.w → T s α# tyvar(Γ, u, t)

θ = mgu(T u ∼ T s) θ(Γ{x : w}) ` c : θ(t)

Γ `p C x → c : T u→ t

inst[α](t) = θ(t), where θ = [s/α], and s are arbitrary types

Figure 2.7: The plain GADT type system.
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I mentioned earlier that the GADT type system adds two new features to the

ADT type system, and each of these new features requires changing the type rule

for pattern matching branches. The first feature, GADT type arguments, requires

changing the ALT-ADT rule for two reasons:

1. The ALT-ADT rule propagates type information only from the scrutinee type

to the pattern type, but GADT type arguments may contain type information

that needs to be propagated the other way around, and

2. The ALT-ADT rule assumes that all pattern types in the case expression

must have a common instance, but support for non-uniform constructor range

types in the GADT type system violates this assumption. For example, in

the eval function, the RepInt pattern has type Term Int, and the RepBool

pattern has type Term Bool. These two types are not unifiable and thus

have no common instance.

For these reasons, the ALT-GADT rule does not require that the scrutinee type

(T u) be an instance of the pattern type (T s). Instead, it requires only that the

scrutinee type be unifiable with the pattern type.

The second feature of the GADT type system, GADT type refinements, also

requires changing the ALT-ADT rule so that branch body type and types in the

environment may vary with the pattern type of each branch. To support this

feature, the ALT-GADT rule applies the most-general unifier of the scrutinee and

the pattern types (θ), not only to the types of the pattern-bound variables (w),

but also to the type environment (Γ) and to the type of the branch body (t).

The plain GADT type system is essentially the GADT type system of Peyton

Jones et al. [17] but without nested patterns and type annotations. The plain

GADT type system accepts only a subset of the programs that are well-typed in

the GADT type system of Peyton Jones et al., so its soundness follows from the

soundness of the GADT type system of Peyton Jones et al. [15, §3].
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2.4 INFERENCE FOR THE GADT TYPE SYSTEM

Ever since the conception of the GADT type system (and its equivalents), the type

inference problem for the GADT type system has been an area of active research

[17, 32, 36, 42, 43]. To this day, however, the GADT type inference problem

remains open, and leading language implementations such as the Glasgow Haskell

Compiler require programmer type annotations for virtually all definitions that

contain GADT patterns. In this section, I summarize the current state of the art

in this research area.

2.4.1 Technical challenges

What makes the GADT type inference problem difficult? Previous work in this

area points to three technical challenges:

1. The GADT type system lacks the principal type property. The principal

type property, sometimes also referred to as principal types, is a type system

property that every well-typed expression has a most-general type, which is

called the principal type of the expression [8]. This property is important

for type inference because it states that a type inference algorithm need

only infer one type for each well-typed expression, and that single type can

represent all other types of the expression.

The GADT type system lacks this useful property [6, 17, 42, 43]. Figure 2.8

(p. 41) shows the repId function adopted from Sulzmann et al. [43, §2.1].

The repId function has infinitely many valid types, none of which is more

general than any other. Since there is no reason to favor any one of these

types over all others, a complete type inference algorithm must consider all

of these possible types, which adds significant complication.

2. GADT type refinements allow pattern-matching branch bodies in a case
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repId :: forall a. Term a → [a] → [Int]

repId :: forall a. Term a → [[a]] → [[Int]]

repId :: forall a. Term a → [[[a]]] → [[[Int]]]

...

repId e x = case e of

RepInt i → x

RepBool b → [] -- Branch body is an empty list

Figure 2.8: This figure demonstrates a plain GADT program that does not have

a principal type. The repId function, which uses the Term data type I introduced

earlier (Figure 2.6, p. 34), has an infinite number of maximal types (i.e., types

that are not an instance of a more general type). I adopted this example from

Sulzmann et al. [43, §2.1], who first demonstrated that a plain GADT program

may have an infinite number of maximal types.
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expression to have different types [32, 36, 42, 43]. This feature makes type

inference difficult because, in the GADT type system, there is no unique

mapping from the body type of one branch to the body type of another, or

from a branch body type to the type of the enclosing case expression. A

type inference algorithm for the ADT type system can compute the type

of a case expression by unifying the types of its branch bodies; this simple

strategy does not work in the GADT type system. For example, in the eval

function (Figure 2.6, p. 34), the RepInt branch has body type Int, and the

RepBool branch has body type Bool. These two branch body types are not

unifiable, but eval remains well-typed in the GADT type system.

3. Many GADT programs use polymorphic recursion [6, 17, 32, 42, 43]. Poly-

morphic recursion [29], which allows a recursive definition to invoke itself

on an instance of its own type, is not a feature specific to the GADT type

system. For example, I also included this feature in my ADT type system

(§2.2). While polymorphic recursion is relatively rare in ADT programs, it

appears to be quite common in recursive GADT programs — since GADT

type arguments can reflect the structure of a value, even standard structural

recursion over a generalized algebraic data type may require polymorphic

recursion. For example, in the eval function, the first recursive call (eval

b) in the RepCond branch applies eval to an expression of type Term Bool,

which disagrees with the refined type (Term a) of the argument (e) in the

definition of eval. Therefore eval is well-typed only in a type system that

supports polymorphic recursion.

Unfortunately, Henglein [12] and Kfoury et al. [21] proved independently, by

reduction from semi-unification [20], that type inference with polymorphic

recursion is computationally undecidable. Since many GADT programs rely

on polymorphic recursion, type inference for the GADT type system might
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also be expected to be undecidable.

Even in the absence of polymorphic recursion, the decidability of the GADT

type inference problem remains open.

2.4.2 Computational decidability

There have been at least three claims pertaining to the decidability of the GADT

type inference problem. Simonet and Pottier [40, §4.2] claim that, with type

equations as constraints, type inference for guarded algebraic data types reduces

to a decidable constraint-solving problem, while Sulzmann et al. [43, §2.1] and

Schrijvers et al. [36, §4.3] claim that GADT type inference is computationally

undecidable. None of these claims settles the problem conclusively.

The claim by Simonet and Pottier has no bearing on the decidability of GADT

type inference because, contrary to popular belief, the GADT type system is not

equivalent to guarded algebraic data types with type equations as constraints. The

argument used by Sulzmann et al. assumes, without justification, that a complete

GADT type inference algorithm must enumerate all (possibly infinitely many)

maximal types of an expression. The argument used by Schrijvers et al. is built

on the equivalence of the following two problems:

� Simultaneous rigid E-unification, which is undecidable [9], and

� Type implication constraints from GADT pattern-matching branches.

This proposed equivalence is, however, invalid. There are at least two main

differences between these two problems:

1. The GADT type system requires that the antecedent of any type implication

generated from a pattern-matching branch must be consistent [36, §3.2]. In

my terminology, the scrutinee type and the pattern type must be unifiable.

The rigid E-unification problem, in contrast, places no such requirement.
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2. In a GADT type system without the antecedent consistency requirement, a

type implication with an inconsistent antecedent represents an unreachable

pattern-matching branch and therefore has a trivial solution. In the rigid

E-unification problem, a set of equations is interpreted as its congruence

closure, which is nontrivial even for “inconsistent” equations.

These differences between the two classes of problems are clearly illustrated

with this rigid E-unification example from Gallier et al. [11, Example 1.1]:

Let E = {f(a) = a, g(g(x)) = f(a)}. The rigid E-unification problem

of unifying g(g(g(x))) ∼ x under E has a solution θ = [g(a)/x]. Since

this derivation holds under θ(E) = {f(a) = a, g(g(g(a))) = f(a)}:

θ(g(g(g(x)))) = g(g(g(g(a)))) = g(f(a)) = g(a) = θ(x)

The substitution θ is a solution of the E-unification problem. g

A GADT type implication constraint solver would not accept the inconsistent

equations E as an antecedent. Even if it did, it would accept any substitution θ

as solution, instead of requiring θ(g(g(g(x)))) and θ(x) to be congruent modulo

θ(E). This example demonstrates that type implication constraints from GADT

pattern-matching branches are not equivalent to simultaneous rigid E-unification,

thus the argument used by Schrijvers et al. is also invalid.

With this conclusion that the computational decidability of GADT type infer-

ence remains open, I now move on to discuss the designs of existing GADT type

inference algorithms.

2.4.3 Previous work

The designs of existing GADT type inference algorithms mostly revolve around

the three technical difficulties that I discussed earlier in this section: the lack of
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principal types, GADT type refinements, and polymorphic recursion. There is a

solution that works for all three difficulties: ask the programmer. In other words,

let the type inference algorithm rely on programmer type annotations in difficult

spots. Though conceptually simple, this solution is not at all easy to implement:

the algorithm designers must identify where type annotations are necessary and

figure out how to propagate type information from the annotations (typically at

let bindings) to the places where they are needed.

Wobbly types The wobbly types algorithm by Peyton Jones et al. [17] is rep-

resentative of this design. This algorithm, which is based on Milner’s Algorithm

W [27], attaches a label to each type: a type is rigid if it can be traced back

to a programmer type annotation; otherwise the type is wobbly. The algorithm

operates in one of two modes depending on the label: it checks rigid types and

infers wobbly types. GADT type refinements apply only to rigid (i.e., programmer

annotated) types, so there is no ambiguity about whether a type should be refined.

The algorithm is sound, and it is also complete for suitably annotated programs.

Stratified type inference This work by Pottier and Régis-Gianas [32] improves

the modularity of the wobbly types algorithm by separating it into two strata: the

top stratum is a source-to-source transformation (called shape inference) that adds

type annotations by propagating existing annotations, and the bottom stratum

is a simple type inference algorithm that generates and solves type constraints

from program expressions. This separation makes it easier to change the way type

annotations propagate in a program, and the authors take advantage of this feature

by proposing and comparing two shape inference algorithms.

OutsideIn The OutsideIn algorithm by Schrijvers et al. [36] functions by gen-

erating and solving type constraints from program expressions. The name reflects

the design principle that the algorithm can propagate type information from the
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context into GADT pattern-matching branches, but not the other way around.

A good way to understand the OutsideIn algorithm is to consider it (concep-

tually) as having two strata, similar to how Pottier and Régis-Gianas described

their type inference algorithm. The top stratum of OutsideIn propagates type in-

formation aggressively by inferring the type of the entire program except for the

GADT pattern-matching branches, and the bottom stratum of OutsideIn uses the

inferred context type information to check the types of GADT pattern-matching

branches.

The top stratum of OutsideIn derives type information not only from type

annotations but also through type inference. In principle, this approach can reduce

the amount of mandatory type annotation by deriving the same type information

through type inference. Here is an example from the paper [36, §5.3]:

data T a where

T1 :: Int → T Bool

T2 :: forall a. [a] → T a

outIn e = case e of

T1 n → n > 0

T2 xs → null xs

From the T2 branch (which is not a GADT pattern-matching branch because

the data constructor T2 has a uniform range type), the top stratum of OutsideIn

infers forall a. T a → Bool as the type of outIn. The bottom stratum then

uses this type to check the T1 branch. Even though outIn contains a GADT pat-

tern, the OutsideIn algorithm accepts it without a type annotation because the top

stratum can derive the same type information from the T2 branch. (Neither wobbly

types nor stratified type inference can accept outIn without a type annotation.)

In practice, however, I believe that the benefits of using the OutsideIn strategy

to allow fewer type annotations are negligible because:
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1. Many GADT functions consist of nothing but a collection of GADT pattern-

matching branches that match the function arguments. The eval function

(Figure 2.6, p. 34) is one such example. The top stratum cannot derive any

type information from the context if there is no code in the context.

2. It may not be possible to create a context that has the right types to replace a

type annotation. For example, to make OutsideIn accept eval without type

annotations, a programmer must create an expression with type Term a →

a (or, equivalently, two expressions with types Term a and a) without using

type annotations or GADT patterns. This task turns out to be impossible:

the data constructors of Term build only values with types Term Int, Term

Bool, or Term (x,y) where x, y are both types. Therefore type annotation

remains necessary for the eval function.

The general characterization of the OutsideIn algorithm is similar to that of

wobbly types: OutsideIn is sound, and it is also complete for suitably annotated

(or suitably structured) programs.

Type inference via Herbrand constraint abduction This work by Sulz-

mann et al. [43] also takes a constraint-based approach to type inference. The

algorithm generates type implication constraints from program expressions, and

it solves the constraints by constraint abduction over the Herbrand domain [24].

To work around the lack of principal types in the GADT type system, Sulzmann

et al. restricts their constraint solver to intuitive solutions, which formalize the

principle that a maximal type should not contain any superfluous type informa-

tion. Combined with the requirement that solutions must also be sensible (which

is analogous to consistency in OutsideIn [36, §3.2]), restricting types to those that

correspond to intuitive solutions restores principal types in the GADT type sys-

tem. For example, this algorithm infers the following intuitive and sensible type

for the repId function (code reproduced from Figure 2.8, p. 41):
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repId :: forall a b. Term a → [b] → [b]

repId e x = case e of

RepInt i → x

RepBool b → []

The type inference via Herbrand constraint abduction algorithm is sound and

complete for the GADT type system restricted to “intuitive and sensible” types.

Type inference for guarded recursive data types This work by Stuckey and

Sulzmann [42] appears to be a precursor to type inference via Herbrand constraint

abduction [43]. It does not describe a concrete type inference algorithm, but

instead sketches a few ideas that may be applicable to the GADT type inference

problem. Stuckey and Sulzmann suggested that a type inference algorithm can

reconcile the (different) types of GADT pattern-matching branches by exhaustive

search over a finite solution space [42, §5]. To combat polymorphic recursion, they

sketched an iterative method that appears similar to the extension to AlgorithmW

proposed by Mycroft [29, §6]. Stuckey and Sulzmann suggested that this iterative

method may allow a type inference algorithm to accept some unannotated plain

GADT programs that use polymorphic recursion.

2.5 TYPES IN GADT PATTERN-MATCHING BRANCHES

As a part of this dissertation research, I conducted a systematic investigation of

how types relate in a GADT pattern-matching branch. The ALT-GADT type rule

(Figure 2.7, p. 38) completely specifies how the various types associated with a

GADT pattern-matching branch relate to each other. It is, however, difficult to

study the type relations directly from the rule, because the relations are obscured

by many trivial details — the name of the data constructor, variable names in the

pattern, the assumptions that the branch body makes on the type environment

— details that are only marginally relevant to the important question, which is
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The Parts of a Pattern Matching Branch

Sources of Types Pattern Matching Variable Binding Branch Body

Data Constructor Pattern Declared –

Local Scope – Instantiated Refined

Global Context Scrutinee – Outer

Figure 2.9: This figure shows the six type roles involved in the process of typing a

GADT pattern-matching branch.

how the plain GADT type system relates the various types associated with GADT

pattern-matching branches.

In this section, I introduce a classification of types in GADT pattern-matching

branches that I developed to illustrate the relations between those types.

2.5.1 Identifying attributes

Figure 2.9 (p. 49) shows how I classify the types in a GADT pattern-matching

branch into six type roles. This classification identifies the role of every type in

the ALT-GADT type rule (Figure 2.7, p. 38, also reproduced on p. 51) using two

of its attributes: the source of the type information (rows in Figure 2.9) and the

part of the pattern-matching branch that it describes (columns in Figure 2.9). I

now elaborate these two attributes.

Every type in the ALT-GADT type rule comes from one of the following three

sources, each of which corresponds to a row in Figure 2.9:

Data Constructor Types in this row come from the type of the data constructor

that appears in the pattern of the branch. These types are declared by the

programmer using data declarations in an enclosing context.
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Global Context Types in this row come from the type judgment being defined

by the ALT-GADT rule. In other words, they show up below the horizontal

line in the ALT-GADT rule.

Local Scope Types in this row do not have a single source; they are generated

by combining the data constructor types with the global context types.

Every type in the ALT-GADT type rule is associated with one of the following

three parts of a pattern-matching branch, each of which corresponds to a column

in Figure 2.9 (p. 49):

Pattern Matching Types in this column describe the case scrutinee and the

pattern part of a pattern-matching branch.

Variable Binding Types in this column describe the pattern-bound variables in

a pattern-matching branch.

Branch Body Types in this column either appear in the type environment or

describe the body of a pattern-matching branch. Types in the type environ-

ment are closely related (by the variable rule VAR) to types describing the

branch body, so it makes sense to treat them as a group. Schrijvers et al.

[36, §4.4, Footnote 4] also made a similar observation.

2.5.2 Decomposing ALT-GADT

Multiplying three rows by three columns gives nine positions in Figure 2.9 (p. 49),

each of which corresponds to a possible role for types in the ALT-GADT type

rule. Three of those roles are uninhabited: for example, nothing from the data

constructor type directly describes the branch body, and nothing from the global

context directly describes pattern-bound variables. The remaining six inhabited

roles correspond to the six labeled positions in Figure 2.9. Here are how types in
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the ALT-GADT type rule (reproduced here from Figure 2.7, p. 38) map to these

six inhabited roles:

ALT-GADT

C : ∀α.w → T s α# tyvar(Γ, u, t)

θ = mgu(T u ∼ T s) θ(Γ{x : w}) ` c : θ(t)

Γ `p C x → c : T u→ t

Pattern (Data Constructor, Pattern Matching)

This role is filled by the pattern type (T s), which is also the range type of

the data constructor (C) in the pattern.

Scrutinee (Global Context, Pattern Matching)

This role is filled by the type (T u) of the case scrutinee, which appears in

the context of the pattern-matching branch.

Declared (Data Constructor, Variable Binding)

This role is filled by the argument types (w) of the data constructor (C) in

the pattern. These types are a template for the types of the pattern-bound

variables, which I will describe next.

Instantiated (Local Scope, Variable Binding)

This role is filled by the types (θ(w)) of the pattern-bound variables (x).

The ALT-GADT rule generates them by instantiating the data constructor

argument types (w) with the most-general unifier (θ) of the scrutinee and the

pattern types. Intuitively, the most-general unifier carries type parametriza-

tion information from the scrutinee to the pattern-bound variables.

Outer (Global Context, Branch Body)

This role is filled by types in the type environment (Γ) and the type (t) of

the entire case expression.
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θ = mgu(Scrutinee ∼ Pattern)

Instantiated = θ(Declared)

Refined = θ(Outer)

Figure 2.10: Relations between type roles in ALT-GADT.

Refined (Local Scope, Branch Body)

This role is filled by types in the refined type environment (θ(Γ)), which

the ALT-GADT rule uses to type the branch body, and the type (θ(t)) of

the branch body (c). The ALT-GADT rule generates them by instantiating

the type environment (Γ) and the case expression type (t) with the most-

general unifier (θ) of the scrutinee and the pattern types. Intuitively, the

most-general unifier derives GADT type refinement from the GADT data

constructor and introduces them as local type assumptions in the scope of

the pattern-matching branch.

In the next subsection, I describe how this classification of type roles brings

out a hidden symmetry in the ALT-GADT type rule.

2.5.3 Symmetry in type roles

In this subsection, I describe an intriguing symmetry between the six type roles

of a GADT pattern-matching branch.7 The three equations in Figure 2.10 (p. 52)

summarize the relations between the six type roles in the ALT-GADT type rule.

At the most abstract level, type checking a GADT pattern-matching branch is

equivalent to checking the validity of these three type equations:

7The ideas that I describe in this subsection are not essential for the technical development
in the remainder of this dissertation.
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� The first equation, θ = mgu(Scrutinee ∼ Pattern), relates the two Pattern

Matching type roles (first column, Figure 2.9, p. 49). It uses unification [35]

to combine type information from Data Constructor with type information

from Global Context.

� The second equation, Instantiated = θ(Declared), relates the two Variable

Binding type roles (Figure 2.9, second column). It generates the types in

Local Scope by instantiating the types from Data Constructor.

� The third equation, Refined = θ(Outer), relates the two Branch Body type

roles (Figure 2.9, third column). It generates the types in Local Scope by

refining the types from Global Context.

The invariance of these equations under a permutation of type roles exhibits a

symmetry in the type roles of a GADT pattern-matching branch. This symmetry

explains the feeling of déjà vu when a programmer sees the following two programs

(do not worry about what they do; instead focus on how the same types appear

in different places in the two programs):

data T a b where

C :: forall b. b → T Int b

debitcard :: forall a. T a [Int] → a

debitcard e = case e of

C x → head x

data T a b where

C :: forall a. a → T a [Int]

badcredit :: forall b. T Int b → b

badcredit e = case e of

C y → [y]

(Outer swaps with Declared)

(Scrutinee swaps with Pattern)
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The Parts of a Pattern Matching Branch

Sources of Types Pattern Matching Variable Binding Branch Body

Data Constructor Pattern Declared –

Local Scope – Instantiated Refined

Global Context Scrutinee – Outer

Data Constructor (row 1)↔ Global Context (row 3)

Variable Binding (column 2)↔ Branch Body (column 3)

Sources of Types Pattern Matching Branch Body Variable Binding

Global Context Scrutinee Outer –

Local Scope – Refined Instantiated

Data Constructor Pattern – Declared

Figure 2.11: This figure illustrates a symmetry in the type roles of plain GADT

pattern-matching branches. Applying the attribute permutation in the middle to

the top table (reproduced from Figure 2.9, p. 49) produces the bottom table. The

attribute permutation naturally induces a type-role permutation (shown here as

the changing labels between the corresponding cells of the two tables), and the

invariance of the role relations (Figure 2.10, p. 52) under this induced type-role

permutation demonstrates the symmetry.
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I omitted the line between the unannotated type [Int] of x in debitcard

(Instantiated) and the unannotated type [Int] of [y] in badcredit (Refined). I

also omitted the lines that connect the types b, T Int b, and Int (of head x in

debitcard and y in badcredit) in the two programs.

Figure 2.11 (p. 54) illustrates this type symmetry using type roles. Consider

the following permutation of attributes that I used to classify types into roles:

Data Constructor↔ Global Context

Variable Binding↔ Branch Body

Comparing the two tables in Figure 2.11 (p. 54) reveals that the attribute permu-

tation induces the following permutation of type roles:

Scrutinee↔ Pattern

Instantiated↔ Refined

Declared↔ Outer

The equations in Figure 2.10 (p. 52), considered as a whole, are an invariant under

this role permutation, and the invariance exhibits a symmetry in the type roles.

This symmetry reveals two properties about the ALT-GADT type rule (and any

type checker that implements this rule):

1. At the abstract level, ALT-GADT is oblivious to the distinction between the

types from the data constructor and types from the context. This property

comes from the first attribute permutation:

Data Constructor↔ Global Context

2. At the abstract level, ALT-GADT is oblivious to the distinction between the

types of the pattern-bound variables and types of the branch body. This

property comes from the second attribute permutation:

Variable Binding↔ Branch Body



56

The properties hold because the permutation invariant, discussed in the beginning

of this subsection, is an abstract model of the ALT-GADT type rule.

To put it differently, this symmetry shows that, even though the instantiation

of pattern-bound variable types and the refinement of GADT branch body types

are two distinct features, they both rely on the same underlying mechanism. It is

possible, at least in principle, to permute the type roles in the input of a suitably

structured ALT-GADT type checker without affecting its proper functioning. In

other words, the new features that the GADT type system adds to algebraic data

types (§2.3) are not an ad hoc design, but a natural extension that transfers type

information symmetrically to Data Constructor and to Global Context types.

This type-role symmetry provides deep insight into the structure of a GADT

type checking algorithm. Unfortunately, it reveals very little about the structure

of GADT type inference algorithms. This difference is due to the first attribute

permutation that I used earlier:

Data Constructor↔ Global Context

While the distinction between the types from the data constructor and types from

the context may be superficial to a type checker, the distinction is fundamental to

a GADT type inference algorithm: the former (types from the data constructor)

are declared by the programmer, but the latter (types from the context) must be

inferred by the algorithm. This asymmetry between Data Constructor and Global

Context type roles partly explains why GADT type inference turns out to be more

difficult than ADT type inference.
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Chapter 3

THE POINTWISE GADT TYPE SYSTEM

The plain GADT type system uses unification [35] to combine type information

from the scrutinee and the pattern types of a pattern-matching branch. This ap-

proach is very general, but it also makes the plain GADT type system accept cer-

tain pathological functions with only counter-intuitive types. Thus, even though

programmers rarely take advantage of this generality, its mere existence signifi-

cantly complicates the type inference problem. In this chapter, I investigate this

phenomenon in depth and propose a variation of the plain GADT type system —

which I call the Pointwise GADT type system — that accepts most typical plain

GADT programs but rejects the pathological functions.

3.1 TYPES IN GADT PATTERNS

This chapter is dedicated to the Pattern Matching types (first column, Figure 2.9,

p. 49) in a GADT pattern-matching branch, so let us start by observing how type

information flows between scrutinee types and pattern types in a typical GADT

program.

3.1.1 Pointwise type information flow

Figure 3.1 (p. 58) shows a function isNat, which takes an integer list as argument

and returns as result a Boolean list of the same length. The scrutinee type and

the pattern type for its Nil branch are as follows:
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data Z

data S n

data L n a where

Nil :: forall a. L Z a

Cons :: forall n a. a → L n a → L (S n) a

isNat :: forall m. L m Int → L m Bool

isNat xs = case xs of

Nil → Nil

Cons y ys → Cons (y >= 0) (isNat ys)

Figure 3.1: This figure demonstrates a length-preserving list transformation func-

tion in the GADT type system. The function isNat maps each element in a list of

integers to a Boolean value: True if the element is a natural number, and False

otherwise. The L data type is a list type with two type arguments: the first tracks

the length of the list using Peano’s encoding of natural numbers, and the second

represents the type of the list elements. The type constructor Z represents the

length zero, and the type constructor S represents a length increment. Since both

the argument and the result of isNat are lists of length m, the type system guar-

antees that isNat must be a length-preserving list transformation function. This

is one of the standard applications of the GADT type system.
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Pattern Nil, Pattern Type L Z a

Scrutinee xs, Scrutinee Type L m Int

Since the isNat function is well-typed, these two types must be unifiable (see

the ALT-GADT rule in Figure 2.7, p. 38). The type information flow between

these two types is captured by their most-general unifier θ = [Z/m, Int/a]. The

following diagram visualizes the type information flow that θ represents:

Scrutinee Type

Pattern Type

L

L

m

Z

Int

a

In the diagram, the type constructors L match, so they are linked by a double

line. Type information, represented by arrows, flows from the first type argument

(Z) of the pattern type to the corresponding part m in the scrutinee type, and from

the second type argument (Int) of the scrutinee type to the corresponding part a

in the pattern type. Type information flow in θ is pointwise: the arrows, which

point either straight up or straight down, connect only the corresponding parts

of the scrutinee type and the pattern type. The diagram for the Cons branch in

isNat is similar:

Scrutinee Type

Pattern Type

L

L

m

(S n)

Int

a

Again, type information flows only between the corresponding parts of the two

types. The isNat function is not a special case: GADT patterns in a wide range

of applications exhibit the same pointwise structure in their type information flow.

To facilitate discussion, I use the following names to describe the two kinds of

pointwise type information flow in GADT patterns:
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� Parametric instantiation is pointwise type information flow from the scruti-

nee type to the pattern type. It corresponds to arrows that go straight up in

the diagrams. Parametric instantiation may occur in both ADT and GADT

patterns, and it is the only kind of type information flow supported by the

ADT type system.

� Type indexing is pointwise type information flow from the pattern type to

the scrutinee type. It corresponds to arrows that go straight down in the

diagrams. Type indexing is specific to GADT patterns and is not applicable

to ADT patterns: since an ADT data constructor must have a uniform range

type, an ADT pattern type contains no type information that must flow to

the scrutinee type, and thus there is no need for type indexing. As the

isNat function demonstrates, parametric instantiation and type indexing

can coexist in the same GADT pattern.

Given a GADT pattern-matching branch, the ALT-GADT type rule compares

the scrutinee type to the pattern type, and it propagates type information in the

specific-to-generic direction. Parametric instantiation occurs when the scrutinee

type is more specific than the pattern type, and type indexing occurs when the

converse is true.

In this chapter, I focus exclusively on the scrutinee and the pattern types in a

GADT pattern-matching branch; both parametric instantiation and type indexing

describe only type information flow between scrutinee types and pattern types.

In contrast, GADT type refinement, which I introduced in §2.3, describes type

information flow from a pattern type to the type of the enclosing case expression.

Type information flow that involves pattern-bound variables or the branch body

also brings up interesting issues, but I will save that discussion for later chapters

and limit the scope of this chapter to scrutinee types and pattern types.
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Why is pointwise type information flow so prevalent between scrutinee types

and pattern types? I attribute the prevalence to the principle of orthogonal de-

sign [33, Chapter 4], which, in the context of generalized algebraic data types,

suggests that programmers should represent orthogonal properties of an algebraic

data value with different type arguments of the type constructor. Let us consider

homogeneous lists as an example. Since the length of a list and the type of list

elements are orthogonal properties (e.g., an integer list may contain any number

of elements, and a list of length five may contain elements of any type), orthogonal

design calls for using different type arguments to represent these two properties.

Indeed, the L data type uses its first type argument to track the length of the list,

and its second type argument to represent the type of list elements. Since the

two type arguments of L represent orthogonal properties, the absence of cross type

information flow between them is only natural.

From this perspective, pointwise type information flow between scrutinee types

and pattern types is not a new invention — it is only a new phenomenon that

results from the long-standing principle of orthogonal design.

3.1.2 Unrestricted type information flow

The plain GADT type system places no restrictions on the type information flow

between the scrutinee type and the pattern type in a pattern-matching branch.

Since the ALT-GADT type rule (Figure 2.7, p. 38) uses unification [35] to com-

pute the type information flow between scrutinee types and pattern types, the

plain GADT type system has no problem dealing with GADT patterns that re-

quire non-pointwise type information flow. Most GADT programs, however, re-

quire only pointwise type information flow between scrutinee types and pattern

types. How does the plain GADT type system, which supports unrestricted type

information flow between scrutinee types and pattern types, compare against a

Pointwise GADT type system, which supports only pointwise type information
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data EquLR a b c where

EquL :: forall a b. EquLR a a b

EquR :: forall a b. EquLR a b b

vary e y = case e of

EquL → y == ’c’

EquR → [if y then 5 else 7]

Figure 3.2: This figure demonstrates a plain GADT program that requires non-

pointwise type information flow between the scrutinee types and the pattern types

of its GADT pattern-matching branches. The range type of the EquL data con-

structor equates the left-two type arguments of EquLR, and EquR does the same for

the right-two type arguments. Even though the two pattern-matching branches

in the vary function make arbitrarily different assumptions about the type envi-

ronment and have arbitrarily different types, the function remains well typed in

the plain GADT type system. All of its (infinitely many) types, however, make

essential use of non-pointwise type information flow between scrutinee types and

pattern types.

flow?

The plain GADT type system is obviously more expressive (i.e., it accepts more

programs) than the Pointwise GADT type system. This additional expressiveness

is, however, a mixed blessing: it also allows the plain GADT type system to accept

a class of pathological programs that have only counter-intuitive types. Figure 3.2

(p. 62) shows one such program. The vary function contains two pattern matching

branches, and the branch bodies require very different type judgments:

{y : Char} ` (y == ’c’) : Bool

{y : Bool} ` [if y then 5 else 7] : [Int]
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Typically, GADT type refinements allow branch body types to vary only with

the pattern type (or, more precisely, only with the GADT type arguments of the

matched data constructor). For example, in the eval function (Figure 2.6, p. 34),

the body of the RepInt branch (which has pattern type Term Int) has type Int,

and the body of the RepBool branch (which has pattern type Term Bool) has type

Bool. This close correspondence between the pattern type and the branch body

type helps programmers understand the structure of case expressions with GADT

patterns. The vary function does not share this nice property; its pattern types

say nothing about characters, Booleans, or lists of integers.

It is hard to imagine what types vary could possibly have. Surely vary must

not be well-typed in the plain GADT type system? Alas, it turns out that the

function is well-typed. Here are three of its infinitely many types:

forall q r. EquLR (Char, Bool) (q, r) (Bool, [Int]) → q → r

forall q r. EquLR (Bool, Char) (r, q) ([Int], Bool) → q → r

forall q r. EquLR (Bool, [Char]) (r, [q]) ([Int], [Bool]) → q → r

The function vary is well-typed, not because of parametric instantiation or type

indexing, but because of something else altogether. The repeated occurrences of

type variables in the data-constructor range types (a in the range type of EquL

and b in the range type of EquR) reflect parametric instantiations back as branch-

specific type indexing, so the type variables q and r can refine to different types

in different pattern-matching branches. The following diagram illustrates the type

information flow for the EquL pattern under the first type (of the three listed):

Scrutinee Type

Pattern Type

EquLR

EquLR

(Char, Bool)

a

(q, r)

a

(Bool, [Int])

b
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The type information flow illustrated in this diagram is not pointwise because

type information propagates from the first type argument to the second. The

occurrences of the type variable a serve as a back channel of type information

between different parts of the scrutinee type.

This example suggests that unification may be too powerful for combining type

information from scrutinee types and pattern types. Not only is the function vary

well-typed in the plain GADT type system, but so are the following variations,

which have different branch body types:

vary1 e y = case e of

EquL → y == [’c’] -- [Char], not Char

EquR → [if y then 5 else 7]

vary2 e y = case e of

EquL → y == ’c’

EquR → if y then 5 else 7 -- Int, not [Int]

Let expressions e1 and e2 be given such that each expression is well-typed under

the assumption that y has a monomorphic type. Regardless of what types e1 and

e2 have, or what requirements they place on y, the following variation varyX of

the function vary is well-typed in the plain GADT type system:

varyX e y = case e of

EquL → e1

EquR → e2

The existence of such functions seriously undermines programmers’ expectation

that the plain GADT type system always enforces type coherence across pattern-

matching branches. Current language implementations require type annotations

to accept functions like vary, and there are good arguments for continuing the

status quo:
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1. Designing a type inference algorithm for vary is difficult because the types

of the data constructors EquL and EquR are totally useless in computing the

type refinement for each branch.

2. The function vary has an infinite number of types that are not instances of

each other. Sulzmann et al. [43, §2.1] also demonstrated a GADT function

that has an infinite number of types (§2.4), but there is an important dif-

ference between the two examples. While the example by Sulzmann et al.

has infinite variations in the environment types, vary has infinite variations

in the scrutinee type, thus presenting a different challenge to type inference

algorithms.

3. Even if someone comes up with an algorithm that can infer a type for func-

tions such as vary, such a type inference algorithm may be undesirable from

a software engineering perspective. A type inference algorithm should be

nothing more than a labor-saving device; if it can infer types for programs

that are not obviously well-typed to programmers, then the inference algo-

rithm might just turn out be too clever for its own good.

Type inference for functions like vary is not only hard (arguments 1, 2) and

counterproductive (argument 3), it is also pointless because programmers rarely

write these kinds of functions (I present evidence in §3.3). However, to exclude

functions like vary from the design goals of a practical type inference algorithm,

there needs to be a formal criterion that separates vary from practical GADT

programs. I propose pointwise type information flow in GADT patterns as such a

criterion, and I will, in the remainder of the chapter, develop the Pointwise GADT

type system to formalize the pointwise type information flow restriction.
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3.2 TYPE SYSTEM

In this section, I propose pointwise unifiers, which are special idempotent most-

general unifiers that allow information to flow only between the corresponding

parts of two types.

3.2.1 Pointwise unifiers

Let us start with a way to identify a part of a type by address.

Definition 1. A path is a sequence of positive integers p = a1, a2, . . . , an that

serve as an “address” in a type. The expression t . p (read “subterm of t at p”)

identifies a specific subterm of a type t at path p:

t . ε = t

1 ≤ a ≤ m (T t1 . . . tm) . (a : r) = ta . r

a > m (T t1 . . . tm) . (a : r) is undefined

α . (a : r) is undefined

where ε represents the empty sequence, and (a : r) represents the number a followed

by the sequence r. Path p is valid in t if t . p is defined. If a path p is valid in both

s and t, s . p and t . p are pointwise counterparts of s and t. g

Example Let us consider paths in s = Either (a,b,c) Bool, illustrated here

as a type tree. The subscript next to each tree node label represents the path to

that particular subtree.
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Eitherε

(,,)1

a1,1 b1,2 c1,3

Bool2

To put it another way,

s . ε = Either (a,b,c) Bool s . 2 = Bool

s . 1 = (a,b,c) s . 1, 1 = a s . 1, 3 = c

Definition 2. Given types s and t, a substitution θ is a pointwise unifier of s ∼ t

(written as θ = pwu(s ∼ t)) if the following conditions hold:

A1. dom(θ) ⊆ tyvar(s, t),

A2. θ(s) = θ(t), and

A3. Let α ∈ dom(θ). If s . p = α, then t . p = θ(α). Similarly, if t . p = α, then

s . p = θ(α).

If the unification problem s ∼ t has a pointwise unifier, the types s and t are

pointwise unifiable. g

Examples Here I list two positive and three negative examples of pointwise

unifiers to demonstrate how Condition A3 in Definition 2 works:

1. θ = [Int/a, Bool/b] is a pointwise unifier of (Int,Bool) ∼ (a,b).

2. θ = [Int/a, Int/b] is not a pointwise unifier of a ∼ b because a ∈ dom(θ)

but θ(a) = Int 6= b, violating A3.

3. θ = [a/c, a/b] is a pointwise unifier of (b,a) ∼ (a,c).
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4. θ = [c/a, c/b] is not a pointwise unifier of (b,a) ∼ (a,c) because b ∈

dom(θ) but θ(b) = c 6= a, violating A3.

5. θ = [Int/a, Int/b] is not a pointwise unifier of (Int,a) ∼ (a,b) because

a ∈ dom(θ) but θ(a) = Int 6= b, violating A3. This particular problem does

not have a pointwise unifier.

I now state and prove some properties of pointwise unifiers, which I will use

in the upcoming analysis of the pointwise unification algorithm and the Pointwise

GADT type system. Since the definition of pointwise unifiers is symmetric, all

theorems still hold after switching s and t around.

I start with three lemmas that decide, in a pointwise manner, whether two

types are equal under substitution.

Definition 3. If a type t is built from a type constructor, then Tc(t) extracts the

name of the type constructor at the root of the type t. In mathematical notation,

Tc(T t1 . . . tm) = T

Tc(t) is undefined if t is a type variable. g

Lemma 1. Let types s, t, and substitution θ be given. θ(s) = t iff the following

conditions hold for all paths p valid in s:

1. p is valid in t,

2. If s . p is a type variable, then θ(s . p) = t . p.

3. If s . p is built from a type constructor, then t . p is also built from a type

constructor, and Tc(s . p) = Tc(t . p).

Proof. ⇒ Trivial.

⇐ I conduct this part of the proof by structural induction over s.
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Base Case. If s is a type variable, the only path valid in s is the empty path

ε, which must also be valid in t. From θ(s . ε) = t . ε we know θ(s) = t.

Induction Step. If s is built from a type constructor U , then we can assume

s = U s1 . . . sm. From Tc(s . ε) = U = Tc(t . ε) we know t = U t1 . . . tm, and I

now prove that θ(sa) = ta for all 1 ≤ a ≤ m.

Let a be given and r be a path valid in sa.

1. r is valid in ta because (a : r) is valid in s and t.

2. If sa . r is a type variable, then

θ(sa . r) = θ(s . (a : r)) = t . (a : r) = ta . r.

3. If sa . r is built from a type constructor, then ta . r is also built from a

type constructor, and Tc(sa . r) = Tc(ta . r). This condition holds because

Tc(s . (a : r)) = Tc(t . (a : r)).

By induction, θ(sa) = ta, and therefore θ(s) = t.

Lemma 2. Let types s, t be given such that, for all paths q valid in s and t,

Tc(s . q) = Tc(t . q) if they both exist. Then, if a path p is valid in s but not

valid in t, there exists a prefix p′ of p such that t . p′ is a type variable.

Proof. I conduct this proof by structural induction on t.

Base Case. If t is a type variable, then p′ = ε satisfies the lemma.

Induction Step. If t is built from a type constructor, then t = U t1 . . . tm.

Since p is valid in s but not valid in t, we can assume p = (a : r) where 1 ≤ a ≤ m.

Since Tc(s . ε) = Tc(t . ε) = U , we can assume s = U s1 . . . sm.

We know that, for all paths q such that Tc(sa . q) and Tc(ta . q) are both

defined, Tc(sa . q) = Tc(ta . q) because

Tc(sa . q) = Tc(s . (a : q)) = Tc(t . (a : q)) = Tc(ta . q)
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The path r is valid in sa but not valid in ta, so by induction there exists a prefix

r′ of r such that ta . r
′ is a type variable. Then t . (a : r′) is a type variable, and

p′ = (a : r′) satisfies the lemma.

Lemma 3. Let types s, t, and substitution θ be given. θ(s) = θ(t) iff the following

holds for all paths p valid in both s and t:

1. If s . p or t . p is a type variable, then θ(s . p) = θ(t . p).

2. If s . p and t . p are both built from type constructors, then

Tc(s . p) = Tc(t . p).

Proof. ⇒ Trivial by Lemma 1.

⇐ I conduct this proof by reduction to Lemma 1. Let p be a path valid in s,

then p may relate to s and t in the following ways:

1. p is valid in t, and either s . p or t . p is a type variable. Then θ(s . p) =

θ(t . p) = θ(t) . p.

2. p is valid in t, and both s.p and t . p are built from type constructors. Then

Tc(s . p) = Tc(t . p) = Tc(θ(t) . p).

3. p is not valid in t. By Lemma 2, there exists a prefix p′ of p such that p′ is

valid in t, t . p′ is a type variable, and θ(s . p′) = θ(t . p′). Without loss of

generality, let p be the concatenation of p′ and q. If s . p is a type variable,

then

θ(s . p) = θ((s . p′) . q) = θ(t . p′) . q = θ(t) . p

If s . p is built from a type constructor, then

Tc(s . p) = Tc((s . p′) . q) = Tc(θ(t . p′) . q) = Tc(θ(t) . p)

Applying Lemma 1 to s and θ(t) proves that θ(s) = θ(t).
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The next two theorems state that a pointwise unifier is an idempotent most-

general unifier.

Theorem 4. Let θ be a pointwise unifier of s ∼ t. θ is idempotent.

Proof. Let α ∈ dom(θ). Without loss of generality, I assume that there exists a

path p such that α = s . p. By Definition 2 and Lemma 3,

θ(α) = θ(s . p) = t . p = θ(t . p) = θ(θ(α))

Therefore θ is idempotent.

Theorem 5. Let θ be a pointwise unifier of s ∼ t. Then θ is also a most-general

unifier of s ∼ t.

Proof. Let η be a unifier of s ∼ t. I show that, for any type variable α, η(α) =

(η ◦ θ)(α), so θ is a most-general unifier of s ∼ t.

Let α be given. If α /∈ dom(θ), then (η ◦ θ)(α) = η(α).

If α ∈ dom(θ), then α ∈ tyvar(s, t). Without loss of generality, I assume that

α ∈ tyvar(s), so there exists a path p such that s . p = α. Then (η ◦ θ)(α) =

η(θ(s . p)) = η(t . p) = η(α).

Since η = η ◦ θ for all unifiers η, θ is a most-general unifier of s ∼ t.

Definition 4. I define θ Z S as the substitution θ with its domain restricted to

the set of type variables S. g

Definition 5. Given types s, t, and a path p valid in both s and t, I define the

substitution (θ . p) as θ Z tyvar(s . p, t . p). g

I use (θ . p) only when s and t are clear from the context. The next theorem

shows how a pointwise unifier of two types relates to the pointwise unifiers of their

pointwise counterparts.
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Theorem 6. Let θ be a pointwise unifier of s ∼ t. For every path p that is valid

in both s and t, (θ . p) is a pointwise unifier of s . p ∼ t . p.

Proof. Trivial by applying the definition of pointwise unifiers.

The next theorem states that a unifier that transfers information in only one

direction is a pointwise unifier.

Theorem 7. Let types u, v, and a substitution σ be given such that they satisfy

dom(σ) # tyvar(u) and dom(σ) ⊆ tyvar(v). If u = σ(v), then σ is a pointwise

unifier of u ∼ v.

Proof. Trivial by applying the definition of pointwise unifiers.

The next theorem states that, if two pointwise-unifiable types do not share type

variables, you can factor their pointwise unifier into two separate substitutions.

Theorem 8. Let θ be a pointwise unifier of s ∼ t, and

θs = θ Z tyvar(s) θt = θ Z tyvar(t)

If tyvar(s) # tyvar(t), there exists a type u such that:

θs(s) = θ(s) = θ(t) = θt(t) θs(u) = t θt(u) = s

In other words, the following diagram commutes.

u s

t θ(t) θ(s)

θt

θs

θt

θs
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Proof. It is trivial to prove that

θs(s) = θ(s) = θ(t) = θt(t)

Let u = sfθ t where I define the prune operator (fθ) as follows:

if α ∈ dom(θ) α fθ y = α

if α ∈ dom(θ) xfθ α = α

(T x1 . . . xn) fθ (T y1 . . . yn) = T (x1 fθ y1) . . . (xn fθ yn)

I can prove, by structural induction, that the following properties hold:

1. u is uniquely defined,

2. If path p is valid in u and u . p = α is a type variable, then α ∈ dom(θ), and

either s . p = α or t . p = α, and

3. If path p is valid in u and u.p is built from a type constructor, then Tc(s.p) =

Tc(t . p) = Tc(u . p).

I omit the proof. Now I use these properties to prove that θs(u) = t (the proof

for θt(u) = s is similar and omitted). Let p be a path such that u . p is a type

variable. If u . p = s . p, then

θs(u . p) = θs(s . p) = θ(s . p) = t . p

because θ is a pointwise unifier of s ∼ t. If u . p = t . p, then

θs(u . p) = θs(t . p) = t . p

as t . p /∈ dom(θs). Applying Lemma 1 proves θs(u) = t.
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3.2.2 Pointwise unification

In this subsection, I present a pointwise unification algorithm. Intuitively, the

algorithm finds type variables that should be in the domain of a unifier, and checks

that all occurrences of those type variables satisfy condition A3. It works in three

phases: counterpart collection, conflict resolution, and unifier generation. I present

each phase in turn, along with the lemmas that I use to prove the correctness of

pointwise unification at the end of this subsection.

Counterpart collection This phase computes s . t, the unifiable pointwise

counterparts of s and t that have all matching top-level type constructors stripped

off. Here are some examples:

(x → y) . (Int → Bool) = {(x, Int), (y, Bool)}

(x → x) . (y → z) = {(x, y), (x, z)}

(Bool, b, Char) . (a, Int, a) = {(Bool, a), (b, Int), (Char, a)}

(Either a Int) . (Either b Bool) = ⊥

Counterpart collection for the last example fails because Int and Bool are not

unifiable. Here is the formal definition:

α . t = {(α, t)}

t . α = {(t, α)}

(T s1 . . . sn) . (T t1 . . . tn) = (s1 . t1) ∪ · · · ∪ (sn . tn)

(T1 s1 . . . sm) . (T2 t1 . . . tn) = ⊥ if T1 6= T2

The symbol ⊥ indicates failure. I define ⊥ ∪ e = e ∪ ⊥ = ⊥, so any local failure

implies global failure. When two pairs (x, y) and (y, x) are both present in a set,

I arbitrarily keep one and drop the other, so for example {(x, y), (y, x)} becomes

{(x, y)}. Counterpart collection does not check any property specific to pointwise

unifiers; s . t = ⊥ implies that s and t are not unifiable.
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Lemma 9. s . t 6= ⊥ iff for all path p such that Tc(s . p) and Tc(t . p) both

exist, Tc(s . p) = Tc(t . p).

Lemma 10. If (x, y) ∈ (s . t), then x or y is a type variable, and there exists a

path p such that x = s . p and y = t . p.

Lemma 11. Given path p valid in s and t, if s . p or t . p is a type variable, then

(s . p, t . p) ∈ (s . t) or (t . p, s . p) ∈ (s . t).

These three lemmas are easily proved by induction over the definition of s . t.

Conflict resolution The conflict resolution phase enforces conditions A2 and

A3 in Definition 2. This phase is defined by a rewrite system 7−→ that orients a

set of pairs, so that the first component of each pair is a type variable that appears

nowhere else. The set rewrites to ⊥ if no such orientation exists. Some examples:

{(x, Int), (y, Bool)} is in normal form

{(x, y), (x, z)} 7−→ {(y, x), (z, x)}

{(Bool, a), (b, Int), (Char, a)} 7−→ ⊥

And here is the definition.

α ∈ tyvar(E), β /∈ tyvar(E) {(α, β)} ] E 7−→ {(β, α)} ] E

α 6= β, {α, β} ⊆ tyvar(E) {(α, β)} ] E 7−→ ⊥

α /∈ tyvar(E) ∪ tyvar(T s) {(T s, α)} ] E 7−→ {(α, T s)} ] E

α ∈ tyvar(E) ∪ tyvar(T s) {(T s, α)} ] E 7−→ ⊥

α ∈ tyvar(E) ∪ tyvar(T s) {(α, T s)} ] E 7−→ ⊥

Conflict resolution fails if s . t 7−→∗ ⊥. Note that each rewrite rule transforms

only one element in the set; this property reflects the pointwise nature of pointwise

unifiers.
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Lemma 12. The rewrite system 7−→ is confluent and strongly normalizing over

finite sets of pairs of types.

Proof. I establish strong normalization through a measure n(E) that counts the

number of one-step rewrites for E. The value n(E) is finite for every finite E,

every rewrite reduces n(E) by at least 1, and n is always nonnegative. Thus every

rewrite sequence must be finite.

I establish confluence through local confluence and strong normalization. Proof

of local confluence is trivial because each element in E can trigger at most one

rewrite, and the rewrite associated with an element (x1, y1) is not affected by

replacing another element (x2, y2) with (y2, x2).

Lemma 13. If X 6= ⊥ and X 7−→∗ ⊥, then X 7−→ ⊥.

Proof. I prove this by induction over the rewrite sequence.

Base Case. If X 7−→∗ ⊥ happens in one step, then X 7−→ ⊥.

Induction Step. If X 7−→∗ ⊥ happens in n steps (n > 1), then there exists

X ′ and X ′′ such that X 7−→∗ X ′ 7−→ X ′′ 7−→ ⊥. I show that X ′ 7−→ X ′′ 7−→ ⊥

implies X ′ 7−→ ⊥, and applying the induction principle completes the proof.

There are six rewrites for X ′ 7−→ X ′′ 7−→ ⊥; since they are all similar, I will

prove only one case and omit the others. Suppose

X ′ = {(α′, β′)} ] E ′ 7−→ {(β′, α′)} ] E ′ = X ′′

X ′′ = {(α′′, β′′)} ] E ′′ 7−→ ⊥

α′ ∈ tyvar(E ′), β′ /∈ tyvar(E ′), α′′ 6= β′′, {α′′, β′′} ⊆ tyvar(E ′′)

Then clearly β′ 6= α′′, β′ 6= β′′, (α′′, β′′) ∈ E ′, thus

X ′ = {(α′′, β′′)} ] Y ′ α′′ 6= β′′, {α′′, β′′} ⊆ tyvar(Y ′)

And therefore X ′ 7−→ ⊥.
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Unifier generation This phase turns a properly-oriented set of type pairs into

a substitution. If E 6= ⊥,

subE(α) =

t if (α, t) ∈ E

α otherwise

Pointwise unification I have now introduced all three phases of the pointwise

unification algorithm. To compute a pointwise unifier of two types s and t, simply

compute s . t 7−→∗ E such that E is in normal form. If E 6= ⊥, then subE

is a pointwise unifier of s ∼ t. The following theorem proves the soundness and

completeness of the algorithm.

Theorem 14. If types s, t are pointwise unifiable, counterpart collection and

conflict resolution both succeed. In addition, if s . t 7−→∗ E such that E is in

normal form and E 6= ⊥, then subE is a pointwise unifier of s ∼ t.

Proof. I start with the first statement. Assuming that s, t are pointwise unifiable,

then there exists a pointwise unifier θ of s ∼ t. We know that Tc(s.p) = Tc(t.p)

for all paths p such that Tc(s.p) and Tc(t.p) both exist (Lemma 3), so s . t 6= ⊥

(Lemma 9).

Now I prove that s . t 67−→ ∗⊥. From Lemma 13, it is sufficient to prove that

s . t 67−→ ⊥. Let us consider each possible rewrite to ⊥ as follows:

1. If s . t = {(α, β)} ] E ′, then there exists a path p such that α = s . p and

β = t . p (Lemma 10). If α 6= β, then either α ∈ dom(θ) or β ∈ dom(θ).

Without loss of generality I assume α ∈ dom(θ). For all paths q, s . q = α

implies t . q = β, t . q = α implies s . q = β, so α /∈ tyvar(E ′), and

{(α, β)} ] E ′ 67−→ ⊥.

2. If s . t = {(T s, α)} ] E ′, then there exists a path p such that T s = s . p,

α = t . p (Lemma 10), and α ∈ dom(θ) (Lemma 3). For all paths q, s . q = α
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implies t.q = T s, and t.q = α implies s.q = T s. Therefore α /∈ tyvar(E ′),

and {(T s, α)} ] E ′ 67−→ ⊥.

3. If s . t = {(α, T s)} ] E ′, then the same reasoning as in the previous case

shows that {(α, T s)} ] E ′ 67−→ ⊥.

The analysis shows that s . t 67−→ ⊥, therefore s . t 67−→ ∗⊥.

I now prove the second statement: subE is a pointwise unifier of s ∼ t. I

start by showing that subE is a substitution. Let (α, y) ∈ E and (α, y′) ∈ E. If

y 6= y′, then E 7−→ ⊥, which contradicts the assumption that E is in normal form.

Therefore y = y′ and subE(α) is uniquely defined.

Finally, I check subE against Definition 2.

A1. dom(subE) ⊆ tyvar(E) = tyvar(s . t) = tyvar(s, t).

A2. θ is a unifier of x ∼ y for any (x, y) ∈ s . t; from Lemma 3 and Lemma 11,

we know θ is a unifier of s ∼ t.

A3. Let α ∈ dom(subE), and without loss of generality assume α ∈ tyvar(s).

Then there exists a path p such that s . p = α. I first prove p is valid in t

by contradiction. Assume to the contrary that p is invalid in t. Since s . t

exists, there is a prefix q of p such that t . q = β. Then,

{(β, s . q), (α, subE(α))} ⊆ E or

{(s . q, β), (α, subE(α))} ⊆ E

Since q is a prefix of p, α ∈ tyvar(s . q), so E is not in normal form, contra-

dicting the assumption. Therefore p is valid in t.

Now I prove t . p = subE(α) by contradiction. Assume to the contrary that

t . p 6= subE(α). Then, given E 6= ⊥,

{(α, t . p), (α, subE(α))} ⊆ E or

{(t . p, α), (α, subE(α))} ⊆ E
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Both cases imply that E is not in normal form, contradicting the assumption.

Thus t . p = subE(s . p). The case where α ∈ tyvar(t) is similar and omitted

here.

Therefore subE is a pointwise unifier of s ∼ t.

This proof shows that pointwise unification is sound and complete. Given two

input types, pointwise unification computes their pointwise unifier if it exists, and

the algorithm fails if the input types are not pointwise unifiable.

In the last part of this section, I present a formal definition of the Pointwise

GADT type system.

3.2.3 Formal definition

Parametric instantiation and type indexing are easy for programmers to under-

stand because they have a simple structure: type information flows only between

the pointwise counterparts of the scrutinee type and the constructor range type.

In this subsection, I define the Pointwise GADT type system, which accepts only

pattern-matches that follow this simple structure of information flow.

The Pointwise GADT type system is nearly identical to the plain GADT type

system (§2.3): they are built on the same programming language and place iden-

tical restrictions on data constructor types. Figure 3.3 (p. 80) shows the type

rules of the Pointwise GADT type system, which are identical to the plain GADT

type system (Figure 2.7, p. 38) except that here pointwise unifier (pwu) in the

ALT-PTWISE type rule replaces most-general unifier (mgu) in the ALT-GADT

type rule. The Pointwise GADT type system is a minimal adaptation of the plain

GADT type system that enforces pointwise type information flow between scruti-

nee types and pattern types.

Since θ = pwu(s ∼ t) implies θ = mgu(s ∼ t) (Theorem 5, p. 71), the ALT-

GADT type rule accepts all type judgments that the ALT-PTWISE type rule does.
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VAR

x : ∀α. t ∈ Γ s = inst[α](t)

Γ ` x : s

LAM

Γ{u : s} ` e : t

Γ ` λu . e : s→ t

CONS

C : ∀α. t s = inst[α](t)

Γ ` C : s

APP

Γ ` f : t1 → t2 Γ ` e : t1

Γ ` f e : t2

LETREC-P

Γ{u : ∀α. s} ` e : s α# tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e in d : t

CASE

Γ ` e : s Γ `p pi→ ci : s→ t

Γ ` case e of { pi→ ci } : t

ALT-PTWISE

C : ∀α.w → T s α# tyvar(Γ, u, t)

θ = pwu(T u ∼ T s) θ(Γ{x : w}) ` c : θ(t)

Γ `p C x → c : T u→ t

inst[α](t) = θ(t), where θ = [s/α], and s are arbitrary types

Figure 3.3: The Pointwise GADT type system.
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Similarly, since θ = [u/γ] implies θ = pwu(T γ ∼ T u) (Theorem 7, p. 72), the

ALT-PTWISE type rule also accepts all type judgments that the ALT-ADT type

rule does. In other words, every expression well-typed in the ADT type system

is also well-typed in the Pointwise GADT type system, and every expression well-

typed in the Pointwise GADT type system is also well-typed in the plain GADT

type system.

Like the plain GADT type system, the Pointwise GADT type system also

guarantees the type safety of well-typed programs. The proof of soundness is

trivial because every well-typed Pointwise GADT program is also a well-typed

plain GADT program.

3.3 EXPRESSIVENESS

The Pointwise GADT type system is more expressive than the ADT type system,

but less expressive than plain GADT type system. This statement, while correct,

says very little about how the Pointwise GADT type system measures up to the

plain GADT type system. Can it accept the plain GADT programs that practical

programmers write? What are some of the plain GADT programs that it rejects?

Is it difficult to reimplement such examples so that they become well-typed in the

Pointwise GADT type system?

The answers to these questions have profound implications for the practicality

of a type inference algorithm designed for the Pointwise GADT type system. In

this section, I answer these questions.

3.3.1 Case studies

As a rough gauge on how practical plain GADT programs in the wild fare in

the Pointwise GADT type system, I studied the Omega programs that Sheard

prepared for the 2006 Spring School on Generic Programming [37] and the 2007
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Central European Functional Programming School [38].1 These program examples

cover a wide range of applications; all involving significant use of GADTs:

� Dimensional types [37, §4],

� Tagless term interpreter [38, §5.7],

� N -way zip (two implementations) [37, §5.3],

� Shape-indexed binary-tree paths [38, §3.3],

� AVL tree insertion and deletion [38, §4.1],

� Red-black tree insertion [38, Appendix A], and

� Witness for integer-arithmetic theorems [38, §3.7].

I conducted the case studies by copying the programs from the aforementioned

two lecture notes, translating nested patterns into nested case expressions, and

checking that the scrutinee type and the pattern type of each pattern-matching

branch are pointwise unifiable. I performed all the checking manually, which is

not as difficult as it may sound — in the common case where neither the scrutinee

type nor the pattern type contains repeated occurrences of the same type variable,

unifiability of the two types (which is required by the plain GADT type system)

directly guarantees pointwise unifiability.

The studies find that Pointwise GADTs are expressive enough to type all of

these computations. The AVL-tree example, which uses GADTs to enforce the

balance invariant, requires some refactoring; all other examples are well-typed in

the Pointwise GADT type system as they were written. (I will discuss the AVL-tree

example in greater detail later in this section.) This result is, in some sense, not

surprising: since programmers tend to follow the principle of orthogonal design by

1I studied all the programs in the lecture notes, except those that depend on other features
of the Omega language, such as staged computation and type-level functions.
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encoding different properties of a data value with different type indices, pointwise

unification — which compares only the pointwise counterparts of the scrutinee

type and the constructor range type — should be all that is necessary to type

programs written in this manner.

In addition to these practical plain GADT programs, the Pointwise GADT

type system also accepts some manufactured plain GADT programs that are not

designed for a practical application. For example, the repId function (Figure 2.8,

p. 41) is also well-typed (and in fact has the same infinite set of maximal types) in

the Pointwise GADT type system. This example demonstrates that the Pointwise

GADT type system, like the plain GADT type system, also lacks the principal

type property.

3.3.2 Rejected programs

Another way to study the expressiveness of the Pointwise GADT type system is to

study GADT programs that require non-pointwise type information flow between

scrutinee types and pattern types — in other words, the well-typed plain GADT

programs that the Pointwise GADT type system rejects. In this subsection, I first

show three such program examples, and then I explain how to rewrite them as

well-typed Pointwise GADT programs.

First example My first example is the function vary (Figure 3.2, p. 62), which

I discussed in §3.1. Here I complement the earlier discussion by presenting a proof

that vary is not well-typed in the Pointwise GADT type system.

Theorem 15. The function vary (Figure 3.2, p. 62) is not well-typed in the

Pointwise GADT type system.

Proof. Assume to the contrary that vary is well-typed in the Pointwise GADT

type system. From its definition, we can assume that its argument e has type
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EquLR u v w, where u, v, and w are types. I perform the proof by analyzing what

types u, v, and w can be.

1. If vary is well-typed in the Pointwise GADT type system, the types u, v, and

w must not all be type variables. Proof. Assume to the contrary that they

are all type variables, then e has five possible types (modulo type variable

renaming):

EquLR p p p

EquLR p p q

EquLR p q p

EquLR p q q

EquLR p q r

None of them leads to a valid type of vary. For example, assume e has

type EquLR p q r. The only options left for the type of y are p, q, r, or s

(another type variable), or T z, and none of them allows y to have type Char

in the EquL branch and type Bool in the EquR branch. Therefore, u, v, and

w are not all type variables.

2. If vary is well-typed in the Pointwise GADT type system, the types u, v,

and w must be identical. Proof. Without loss of generality, assume that u is

not a type variable. Since the EquL branch is well-typed, we know that the

following unification problem has a pointwise unifier θ.

EquLR u v w ∼ EquLR a a b

Since u is not a type variable, θ(a) = u, and by Definition 2 we know u = v.

Applying a similar argument to the EquR branch shows v = w.

3. If vary is well-typed in the Pointwise GADT type system, the branch bodies

of the EquL and the EquR branches must be well-typed under the same type
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environment as the case expression. Proof. Consider the EquL branch. Given

that t is not a type variable, the unification problem

EquLR t t t ∼ EquLR a a b

has only one pointwise unifier θ = [t/a, t/ b]. Since {a, b}# tyvar(Γ), we

know θ(Γ) = Γ. The case for the EquR branch is similar and omitted.

The final fact requires that the argument y of vary has the same type in the

EquL and the EquR pattern-matching branches, contradicting the assumption. So

vary is not well-typed in the Pointwise GADT type system.

Even though the proof is quite involved, there is an intuitive explanation on

why vary is not well-typed in the Pointwise GADT type system. Typing vary

in the plain GADT type system requires a trick: a type of vary must associate

different occurrences of a pattern type variable with different types in the scrutinee

type. For example, in the first type that I gave in §3.1, the type variable a in the

range type of EquL corresponds to both (Char,Bool) and (q,r).

Pointwise unification requires that a type variable must always correspond to

a single type. The following diagram illustrates this requirement: u = v must hold

because (EquLR a a b) . 1 = (EquLR a a b) . 2. This requirement prevents the

aforementioned trick, thus vary must be ill-typed in Pointwise GADTs.

EquLR a a b EquLR u v w

a

a

u

v

.1
.2

.1
.2

θ

θ
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data Split a b where

Whole :: Split Int Int

Parts :: forall a b. Split (Int, a) (b, Bool)

joint :: forall x. Split x x → x

joint e = case e of

Whole → 7

Parts → (3, True)

Figure 3.4: A non-pointwise plain GADT program.

Second example Figure 3.4 (p. 86) shows another well-typed plain GADT pro-

gram that is rejected by the Pointwise GADT type system. The joint function

is, in some ways, a mirror image of vary, which is my first example. Here the

repeated type variable occurrences appear in the scrutinee type instead of in the

pattern type, and the join function relies on the non-pointwise type information

flow to obtain the GADT type refinement [(Int, Bool)/x] in the Parts branch.

The following diagram illustrates the type information flow in the Parts pattern:

Scrutinee Type

Pattern Type

Split

Split

x

(Int, a)

x

(b, Bool)

Theorem 16. The function joint is not well-typed in Pointwise GADTs.

Proof. Assume to the contrary that joint is well-typed in Pointwise GADTs.

From the definition, we can assume that its argument e has type Split u v where

u and v each represents a type. To make joint well typed, the following unification
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data AVL n where

Leaf :: AVL Z

Node :: forall l r m. Balance l r m →

AVL l → Int → AVL r → AVL (S m)

data Balance l r m where

Less :: forall n. Balance n (S n) (S n)

Same :: forall n. Balance n n n

More :: forall n. Balance (S n) n (S n)

Figure 3.5: This figure demonstrates the AVL data type by Sheard [38, §4.1]. The

AVL data type defines AVL balanced binary trees, and it uses Peano’s encoding

of natural numbers (Figure 3.1, p. 58) to track the depth of a tree. By using

types to enforce the AVL balance invariant (the depths of the two sub-trees of an

internal node may differ only by at most one level), the AVL data type ensures that

a well-typed program cannot violate the balance invariant. The Balance data type

represents the balance factor of a tree: −1 (Less), 0 (Same), or 1 (More).

problems must have pointwise unifiers:

Split u v ∼ Split Int Int

Split u v ∼ Split (Int, a) (b, Bool)

The existence of pointwise unifiers requires that u and v be different type variables,

and there is no way to express the result type of the function. So joint is not

well-typed in the Pointwise GADT type system.

Third example I mentioned earlier that the AVL-tree example by Sheard [38,

§4.1] is not well-typed in the Pointwise GADT type system. The data type, which

I show in Figure 3.5 (p. 87), serves as my third example.
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The AVL data type has only one type argument, which represents the depth

of a tree. The data type uses this type argument to enforce the invariant that

the balance factor of an internal node must be −1 (the right sub-tree is deeper

than the left by one level), 0 (the two sub-trees have equal depth), or 1 (the left

sub-tree is deeper than the right by one level). Instead of using three separate

data constructors (each with a different type) to represent an internal node with

each balance factor, the AVL data type employs a separate Balance data type to

represent the balance factor of the node. The Balance value in Node associates

three different types: the depth of the left sub-tree (l), the depth of the right

sub-tree (r), and the maximum of the two depths (m).

Since only l and r are existentially quantified in Node (but not m), the Balance

value naturally propagates type information from the type variable m to both l and

r. This propagation constitutes non-pointwise type information flow, and it is the

reason why the Pointwise GADT type system rejects the tree-rotation functions

(excerpt here):

rotr :: forall h. AVL (S (S h)) → Int → AVL n →

Either (AVL (S (S h))) (AVL (S (S (S h))))

rotr tree y c = case tree of

Node bal a x b → case bal of

Same → ...

The following diagram illustrates the non-pointwise type information flow in

the inner Same pattern (dashed arrows between occurrences of the pattern type

variable n indicates non-pointwise type information flow):

Scrutinee Type

Pattern Type

Balance

Balance

l

n

r

n

(S h)

n
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3.3.3 Workarounds

Do these three rejected program examples reflect any serious limitations in the

expressiveness of the Pointwise GADT type system? My answer is no because all

three examples can be rewritten as well-typed Pointwise GADT programs simply

by following the principle of orthogonal design.

The vary function (Figure 3.2, p. 62) persuades the plain GADT type system

into typing the EquL and the EquR pattern-matching branches under arbitrarily

different type environments. This extreme level of flexibility exhibited by the plain

GADT type system is arguably more of a curse than a blessing, and programmers

are well advised to reimplement the vary function in the following way:

data W a where

W1 :: Char → W Bool

W2 :: Bool → W [Int]

vary :: forall r. W r → r

vary e = case e of

W1 y → y == ’c’

W2 y → [if y then 5 else 7]

This reimplemented function is clearer, arguably easier to understand, and well-

typed in the Pointwise GADT type system. The second example joint, while not

nearly as objectionable as vary, is also easily reimplemented as the following well-

typed Pointwise GADT program:

data U a where

U1 :: U Int

U2 :: U (Int, Bool)

joint :: forall x. U x → x

joint e = case e of
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U1 → 7

U2 → (3, True)

The third example is perhaps the most important because it arises out of a

practical application. Recall that the problem with the rotr function is that the

AVL data type forces the programmer to propagate type information in two steps:

first to m using the Node pattern, then to the existential types l and r using the

inner Same pattern. The following refactoring solves this problem:

data AVL n where

Leaf :: AVL Z

NodeL :: forall m. AVL m → Int → AVL (S m) → AVL (S (S m))

NodeS :: forall m. AVL m → Int → AVL m → AVL (S m)

NodeM :: forall m. AVL (S m) → Int → AVL m → AVL (S (S m))

rotr :: forall h. AVL (S (S h)) → Int → AVL n →

Either (AVL (S (S h))) (AVL (S (S (S h))))

rotr tree y c = case tree of

NodeS a x b → ...

By using three different data constructors to represent internal nodes with dif-

ferent balance factors, I eliminated the existential types l, r in the Node data

constructor and the inner pattern Same in the original rotr function. Type in-

formation flow in the patterns are now pointwise, and the new rotr function is

well-typed in the Pointwise GADT type system.

3.4 SUMMARY

In this chapter, I focused on the mechanism that the GADT type systems use

to support parametric instantiation and type indexing. I argued that, although

unification gets the job done, it is too powerful for this purpose, because it allows
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the plain GADT type system to accept some programs that programmers may not

expect to be well-typed.

I proposed the Pointwise GADT type system, which separates practical plain

GADT programs from such pathological programs. The Pointwise GADT type

system works just like the plain GADT type system, except that it uses pointwise

unifiers to support parametric instantiation and type indexing. Since a pointwise

unifier propagates information only between the pointwise counterparts of the uni-

fied types, I believe that programmers should find it easier to see why a program

is well-typed in the Pointwise GADT type system.

The Pointwise GADT type system is less expressive than the plain GADT type

system, but the case studies I conducted indicate that most extant plain GADT

programs are also well-typed in the Pointwise GADT type system. I attribute

this phenomenon to the long-standing principle of orthogonal design, and I have

shown that this principle is also useful for refactoring plain GADT programs into

well-typed Pointwise GADT programs.

In the end, separating practical plain GADT programs from pathological ones

is only a means to an end. The real purpose of the Pointwise GADT type system

is to simplify the design of GADT type inference algorithms. I will describe how

the Pointwise GADT type system fails to fulfill this promise in Chapter 5 — but

only after showing you a further simplification of the plain GADT type system in

the next chapter.
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Chapter 4

THE NON-DEPENDENT GADT TYPE SYSTEM

The Pointwise GADT type system, which I introduced in Chapter 3, simplifies

the GADT type inference problem by excluding certain pathological plain GADT

programs that are not obviously well-typed (§3.1). This simplified type system

has the advantage of accepting a wide variety of practical plain GADT programs.

However, like the plain GADT type system, it is also extremely complicated, and

it offers few clues about how one should attack the type inference problem.

This chapter introduces the Non-Dependent GADT type system, which further

simplifies the type inference problem by eliminating GADT type refinements from

the Pointwise GADT type system. Unlike the Pointwise GADT type system, the

Non-Dependent GADT type system is no longer expressive enough to accept most

practical plain GADT programs. However, by eliminating one major source of

technical complexity (i.e., GADT type refinements), the Non-Dependent GADT

type system brings forward the relationship between existential types and GADT

patterns, which leads to an important breakthrough in the type inference problem.

4.1 GADT WITHOUT TYPE REFINEMENTS

Recall that the plain GADT type system (§2.3) introduces two new features to the

ADT type system. The first feature, GADT type arguments, supports non-uniform

data constructor range types. The second feature, GADT type refinements, allows

the types of pattern-matching branch bodies to vary with the type arguments of

the branch pattern types.
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Every program that uses GADT type refinements must also use GADT type

arguments, because a uniform data constructor range type induces only a trivial

GADT type refinement (which renames type variables). The converse, however, is

not true: a program may use GADT type arguments alone without using GADT

type refinements: it simply ignores all extra type information brought into scope

by GADT patterns. I call a program that can be typed under this restriction a

Non-Dependent GADT program, and I now present three examples.

4.1.1 Examples

My first example of a Non-Dependent GADT program is the function inc1b in

Figure 4.1 (p. 94). The data types PTa and PTb both represent a pair of two

types; they differ only in that Pa is an ADT constructor (for the PTa data type)

with two distinct type variables a, b as its range type arguments, and that Pb is a

GADT constructor (for the PTb data type) with a single type (a, b) as its range

type argument. The functions inc1a and inc1b are, for all practical purposes,

equivalent: they both return one plus the first component of a pair. However,

due to differences between PTa and PTb, inc1a is an ADT function, and inc1b

is a Non-Dependent GADT function because its Pb pattern induces only a trivial

GADT type refinement.

My second example of a Non-Dependent GADT program is the function tail

in Figure 4.1. This function, which uses the length-indexed list data type that I

introduced in Figure 3.1 (p. 58), returns the tail of a non-empty list. In contrast

with the typical tail function,1 which diverges (i.e., fails) when applied to the

empty list, this function always succeeds: its argument type (L (S k) a) guaran-

tees that a programmer cannot apply tail to the empty list (which has type L Z

a). It is a Non-Dependent GADT function because the Cons pattern of its sole

1For example, the one implemented in the standard prelude of the Haskell language.
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data PTa a b where

Pa :: forall a b. a → b → PTa a b

data PTb a where

Pb :: forall a b. a → b → PTb (a, b)

inc1a :: forall n. PTa Int n → Int

inc1a e = case e of

Pa x y → x+1

inc1b :: forall n. PTb (Int, n) → Int

inc1b e = case e of

Pb x y → x+1

tail :: forall k a. L (S k) a → L k a

tail xs = case xs of

Cons y ys → ys

null :: forall m b. L m b → Bool

null xs = case xs of

Nil → True

Cons y ys → False

Figure 4.1: This figure shows three Non-Dependent GADT programs: inc1b, tail,

and null. The latter two programs (tail and null) use the length-indexed list

data type that I introduced in Figure 3.1 (p. 58).
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branch induces only a trivial GADT type refinement.

My third example of a Non-Dependent GADT program is the function null

in Figure 4.1. This function, which also uses the length-indexed list data type

from Figure 3.1, checks if a list is empty. The type of the case scrutinee xs is

L m a, and both patterns in the case expression induce nontrivial GADT type

refinements: [Z/m] for the Nil pattern, and [S n/m] for the Cons pattern. However,

since the body of neither branch uses the extra type information provided by the

GADT type refinements, null remains a Non-Dependent GADT function.

These examples showcase the wide variety of Non-Dependent GADT programs.

In particular, they include functions whose types constrain the shape of their input

arguments (such as tail) and predicates on GADT values (such as null), both of

which are common in GADT programs. Since a pattern-matching branch cannot

take advantage of GADT type refinements in the Non-Dependent GADT type

system, the type inference problem should, in principle, become much simpler. In

the next subsection, I examine how existing type inference algorithms perform on

these Non-Dependent GADT program.

4.1.2 Type inference testing

A paper on GADT type inference is incomplete without a paragraph or two explain-

ing why the problem is so hard. And, without exception, the explanations and the

accompanying code examples focus on GADT type refinements [17, 32, 36, 40, 43].

For example, Schrijvers et al. wrote [36, §9.2]:

Type inference for unannotated programs turns out to be extremely hard.

The difficulty lies in the fact that GADT pattern matches bring into

scope local type assumptions.

Since type inference for the ADT type system (sans polymorphic recursion) has

been completely solved [27], implicit in these explanations is the consensus that
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GADT type refinements are the only significant feature that distinguishes GADT

programs from ADT programs.

From the consensus, Non-Dependent GADT programs (which do not require

GADT type refinements to type check) should be similar to ADT programs, and

type inference for Non-Dependent GADT programs should not be too difficult.

Alas, it turns out that all existing GADT type inference algorithms are incom-

plete for Non-Dependent GADT functions without type annotations. This result

indicates that the current wisdom, which states that the difficulty of GADT type

inference arises solely from GADT type refinements, is wrong, and there is more

to the story than meets the eye. In this subsection, I will explain what happens

behind the scenes. Existing GADT type inference algorithms roughly fall into two

categories, and I will start by describing how algorithms in each category perform

when applied to Non-Dependent GADT functions.

Scrutinee-major algorithms These type inference algorithms compute the

scrutinee type of a pattern-matching branch differently depending on the shape

of the pattern type. If the pattern type is uniform (i.e., its type arguments are

distinct type variables), these algorithms proceed using the standard type inference

algorithm for ADT pattern-matching branches. If the pattern type is non-uniform,

the algorithms consider the branch a GADT pattern-matching branch, and they

compute the scrutinee type by inferring the type of the case scrutinee (possibly

assisted by type annotations). Previous work in this category includes wobbly

types [17], stratified type inference [32], the OutsideIn algorithm [36], and type

inference via Herbrand constraint abduction [43].

Scrutinee-major algorithms require type annotations for the functions inc1b

and tail. Inferring the scrutinee types for these two functions require using type

information from the GADT pattern-matching branches, which scrutinee-major

algorithms are inherently incapable of doing. Note that scrutinee-major algorithms
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can infer the type of inc1a but not the type of inc1b: since these algorithms use

a syntactic criterion to distinguish GADT patterns from ADT patterns, they are

unable to recognize (or to take advantage of) the ADT-like characteristic of the

inc1b function.

Pattern-major algorithms Pattern-major algorithms infer the scrutinee type

of a pattern-matching branch differently depending on whether a type annotation

is available. If there is a type annotation, these algorithms use the annotation

to compute the type of the case scrutinee as the scrutinee type of the branch.

When there is no type annotation, they compute the scrutinee type of a pattern-

matching branch from the pattern-type of the branch. If a case expression has

multiple pattern-matching branches, these algorithms require that the type of the

case scrutinee must be a common instance of all pattern types. The type inference

algorithm in the latest Omega language [38] interpreter (Version 1.4.3) appears to

be the only previous work in this category.

Pattern-major algorithms require a type annotation for the null function be-

cause, without it, they would infer both L Z a (the type of the pattern Nil) and L

(S n) a (the type of the pattern Cons y ys) as the type of the case scrutinee xs,

which then leads to type inference failure because these two types are not unifiable.

Type inference for inc1b and tail succeeds without type annotations.

Discussion Existing GADT type inference algorithms perform poorly at infer-

ring the types of Non-Dependent GADT functions. Different algorithms fail in

different ways, and none of the algorithms can infer the types of all three Non-

Dependent GADT functions (inc1b, tail, and null) from Figure 4.1 (p. 94).

These failures indicate that Non-Dependent GADT programs are significantly dif-

ferent from ADT programs. Contrary to the consensus, GADT type refinements

are not the only significant feature that distinguishes GADT programs from ADT



98

programs. What, then, is the unacknowledged feature that distinguishes Non-

Dependent GADT programs from ADT programs?

The answer is the use of type indices: Non-Dependent GADT programs allow

programmers to choose between parametric instantiation and type indexing; ADT

programs do not have this feature because they do not support type indexing.

Recall from §3.1 that parametric instantiation refers to pointwise type informa-

tion flow from the scrutinee type to the pattern type, and type indexing refers

to pointwise type information flow from the pattern type to the scrutinee type.

Type information flows from the specific to the generic, so parametric instantia-

tion occurs when the scrutinee type is more specific than the pattern type, and

type indexing occurs when the converse is true.

Deciding the specificity of a scrutinee type is a nontrivial task because, even for

Non-Dependent GADT programs, there is no single best answer. Making the scru-

tinee type more specific (pattern-major algorithms take this idea to the extreme)

facilitates parametric instantiation, which is essential for the inc1b function. In

contrast, making the scrutinee type more general (scrutinee-major algorithms take

this idea to the extreme) allows it to be consistent (i.e., unifiable) with different

pattern types, which is essential for the null function. To support Non-Dependent

GADT programs, a type inference algorithm must make sensible choices on the

appropriate specificity of each scrutinee type in the program. I will continue this

discussion in §4.2 after introducing the Non-Dependent GADT type system.

4.1.3 Type system

The Non-Dependent GADT type system is nearly identical to the Pointwise GADT

type system (§3.2): they are built on the same programming language and place

identical restrictions on data constructor types. Figure 4.2 (p. 99) shows the type

rules of the Non-Dependent GADT type system, which are identical to the Point-

wise GADT type system (Figure 3.3, p. 80) except that here the ALT-NONDEP
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VAR

x : ∀α. t ∈ Γ s = inst[α](t)

Γ ` x : s

LAM

Γ{u : s} ` e : t

Γ ` λu . e : s→ t

CONS

C : ∀α. t s = inst[α](t)

Γ ` C : s

APP

Γ ` f : t1 → t2 Γ ` e : t1

Γ ` f e : t2

LETREC-P

Γ{u : ∀α. s} ` e : s α# tyvar(Γ) Γ{u : ∀α. s} ` d : t

Γ ` let u = e in d : t

CASE

Γ ` e : s Γ `p pi→ ci : s→ t

Γ ` case e of { pi→ ci } : t

ALT-NONDEP

C : ∀α.w → T s α# tyvar(Γ, u, t)

θ = pwu(T u ∼ T s) ρ = SKdom(θ) ρ(Γ){x : θ(w)} ` c : ρ(t)

Γ `p C x → c : T u→ t

SKS(α) = [Xα/α] for all α ∈ S

inst[α](t) = θ(t), where θ = [s/α], and s are arbitrary types

Figure 4.2: The Non-Dependent GADT type system.
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type rule replaces the ALT-PTWISE type rule. The Non-Dependent GADT type

system is a minimal adaptation of the Pointwise GADT type system that removes

GADT type refinements from GADT pattern-matching branches.

In contrast with the Pointwise GADT type system, the Non-Dependent GADT

type system applies the pointwise unifier (θ) of the scrutinee type (T u) and the

pattern type (T s) only to the argument types (w) of the matched constructor

(C). This mechanism is necessary to compute the types (θ(w)) of the variables

(x) bound in the pattern (C x). Instead of applying the same unifier to the outer

type environment (Γ) and the type (t) of the case expression, the ALT-NONDEP

applies a Skolemization substitution (ρ) that replaces each type variable α in the

domain of the unifier with a unique type constant Xα. Each type constant Xα is

uninhabited and not equal to any other type, so the Skolemization mechanism en-

sures that the branch body (c) cannot take advantage of any local type information

that would have been introduced by the pointwise unifier θ.

The functions inc1b, tail, and null (Figure 4.1, p. 94) are well-typed in the

Non-Dependent GADT type system. The function eval (Figure 2.6, p. 34) is

not well-typed in the Non-Dependent GADT type system because it uses GADT

type refinements to type its return value (which has type a). The repId function

(Figure 2.8, p. 41) is well-typed in both the Pointwise and the Non-Dependent

GADT type systems. However, while repId has infinitely many maximal types in

the Pointwise GADT type system, it has only one maximal type (which is also its

principal type) in the Non-Dependent GADT type system:

repId :: forall a b. Term a → [b] → [b]

All other maximal types of repId, including those shown in Figure 2.8 (p. 41), are

invalid because the ALT-NONDEP type rule instantiates the type variable a to Xa

(the Skolem type constant that corresponds to a) instead of to Int.

Since Skolemization affects type indexing but not parametric instantiation, the
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ALT-NONDEP type rule accepts all type judgments that the ALT-ADT type rule

does. Also, since Skolem type constants carry no type information whatsoever, it is

always safe to replace a Skolem type constant with any type, so the ALT-PTWISE

type rule accepts all type judgments that the ALT-NONDEP type rule does. In

other words, every expression well-typed in the ADT type system is also well-typed

in the Non-Dependent GADT type system, and every expression well-typed in the

Non-Dependent GADT type system is also well-typed (and in fact may have more

types) in the Pointwise GADT type system.

4.2 GENERALIZING EXISTENTIAL TYPES

Recall from §2.5 that every GADT pattern-matching branch has six associated type

roles (Figure 2.9): Pattern, Declared, Instantiated, Refined, Scrutinee, and Outer.

Given the first four type roles, it is the responsibility of a GADT type inference

algorithm to infer types in the remaining two roles: Scrutinee, and Outer. In the

plain and the Pointwise GADT type system, Refined and Outer are related by

the GADT type refinement of the pattern-matching branch (§2.5). Since the Non-

Dependent GADT type system does not support GADT type refinements, here

Refined and Outer become, for all practical purposes, equivalent. In other words,

type inference for the Outer type role is trivial. I therefore turn my attention to

the problem of inferring the scrutinee type.

Existing type inference algorithms use one of two strategies for inferring the

scrutinee type of a pattern-matching branch, and the main point of contention is

the specificity of the scrutinee type. Scrutinee-major algorithms say that patterns

should never contribute type information to the scrutinee type. Pattern-major al-

gorithms, in contrast, say that patterns should contribute all their type information

to the scrutinee type (unless the programmer says otherwise). Neither approach is

ideal; the discussion in §4.1 shows how one fails exactly where the other succeeds.

I therefore propose the following compromise: a pattern should contribute only as
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much type information as it must to ensure that the branch is well-typed.

How much type information must a pattern contribute to the scrutinee type?

The answer to this question turns out to have deep connections with existentially

quantified type variables in GADT patterns. In this section, I will introduce the

notion of generalized existential types and use this new idea to develop an algo-

rithm for inferring the scrutinee types of Non-Dependent GADT pattern-matching

branches.

4.2.1 Existential types

In this subsection, I present background information on existential types in the

ADT type system. The ideas in this subsection were first proposed by Laüfer

and Odersky [22], and they serve as the foundation for my proposal of generalized

existential types (to be introduced in the next subsection).

An existential type is a locally-quantified type variable in the type of a data

constructor. When a constructor is used as an expression (to construct a value), an

existential type behaves like a regular type variable. When a constructor is used

as a pattern (to destruct a value), the pattern-matching branch must treat an

existential type as an unknown type. More concretely, the branch body must not

make any assumptions about the existential type (i.e., no instantiation), and types

outside the pattern-matching branch must not depend on the existential type (i.e.,

no escape). These restrictions are necessary because the type of a pattern-matching

branch provides no type information about the existential types introduced by the

pattern, so any assumption on existential types can potentially compromise type

safety.

In the ADT type system, an existential type is a type variable that appears in

only the argument types (but not in the range type) of a data constructor. By this

characterization, existential types are an intrinsic property2 of a data constructor.

2A property of a thing is intrinsic if it depends only on the thing itself, and it is extrinsic
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Here is an example of a data constructor with an existential type:

data AppT a where

App :: forall a b. (b → a) → b → AppT a

app :: forall a. AppT a → a

app e = case e of

App f x → f x

The type variable b in the type of App is an existential type because it does not

appear in the range type AppT a of the App data constructor. The App pattern in

the app function brings the type b into scope, and the pattern-matching branch

obeys the aforementioned “no instantiation” and “no escape” restrictions. Here

are two negative examples, each of which violates one of the two restrictions:

appInt :: forall a. AppT a → a

appInt e = case e of

App f x → f 3 -- ill-typed due to instantiation

arg :: forall a b. AppT a → b

arg e = case e of

App f x → x -- ill-typed due to escape

The appInt function is not well-typed because its App branch body assumes

that the existential type b is Int. The arg function is not well-typed because its

result type depends on (is) the existential type b introduced by the App pattern.

4.2.2 Generalized existential types

The characterization of existential types for the ADT type system (reviewed in the

previous subsection) is inadequate for the Non-Dependent GADT type system.

if it depends on a relationship between a thing and other things [49]. For example, mass is an
intrinsic property of a physical object, but weight is an extrinsic property of a physical object.
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The ADT characterization is certainly not wrong: a well-typed Non-Dependent

GADT program should still adhere to the “no instantiation” and “no escape” re-

strictions for pattern-bound type variables that do not appear in the pattern type.

The ADT characterization is, however, inadequate: there are sometimes other type

variables that should also be subject to the same two restrictions. Existential types

in the Non-Dependent GADT type system play an important role in deciding the

appropriate specificity of scrutinee types, so in this subsection I will introduce a

complete characterization of existential types in the Non-Dependent GADT type

system. For the lack of a better name, I shall call it generalized existential types.

Definition 6. Consider the ALT-NONDEP rule in the Non-Dependent GADT

type system (reproduced from Figure 4.2, p. 99):

ALT-NONDEP

C : ∀α.w → T s α# tyvar(Γ, u, t)

θ = pwu(T u ∼ T s) ρ = SKdom(θ) ρ(Γ){x : θ(w)} ` c : ρ(t)

Γ `p C x → c : T u→ t

Given a pattern-matching branch C x → c whose typing is described by the

ALT-NONDEP rule, I define the generalized existential types of the pattern C x as

the set of type variables (α \
⋃
θ dom(θ)) where the set union ranges over all valid

choices of θ in the ALT-NONDEP type rule. g

Let us start with an example on how to apply this definition. Here is the null

function reproduced from Figure 4.1 (p. 94):

data L n a where

Nil :: forall a. L Z a

Cons :: forall a n. a → L n a → L (S n) a

null :: forall m b. L m b → Bool

null xs = case xs of
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Nil → True

Cons y ys → False

What are the generalized existential types in the Cons branch? Its scrutinee

type (L m b) and its pattern type (L (S n) a) have two pointwise unifiers (they

differ only in the orientation of renaming), and both are valid choices of θ:

θ1 = [S n/m, a/b] and θ2 = [S n/m, b/a]

Here α = {n, a}, dom(θ1) = {m, b}, dom(θ2) = {m, a}, so the type variable n is the

only generalized existential type in the Cons branch. A similar derivation should

show that the Nil branch has no generalized existential types.

Generalized existential types are well-defined for all GADT pattern-matching

branches that are accepted by the ALT-NONDEP type rule. Pointwise unifiers,

like most-general unifiers, are unique up to the orientation of variable renaming.

Therefore, an algorithm can always enumerate all valid choices of θ because the

set of valid choices is always finite.

Generalized existential types, like existential types, are not an addition to an

existing type system. Instead, they describe a property, or, in other words, a logical

consequence that follows from the definition of the type system. Definition 6 does

not describe a new type system feature — the feature was put into place when I

introduced the ALT-NONDEP type rule in Figure 4.2 (p. 99). Some may even say

that generalized existential types came into existence when the plain GADT type

system was first proposed in previous work — only that no one discovered them

until now.

The generalized existential types of a pattern are all the pattern-bound type

variables that should not escape or be instantiated. Here is an informal argument

to support this statement:

� If a pattern-bound type variable γ is not a generalized existential type, then

γ ∈ dom(θ) for a valid θ. If θ(γ) is a type variable, then γ escapes without



106

causing a type error. If θ(γ) is not a type variable, then γ is instantiated

without causing a type error. In either case there is no need to restrict γ

from escape or instantiation.

� If γ is a generalized existential type, then γ ∈ α and γ /∈ dom(θ) for all valid

θ. Since γ /∈ dom(θ), the pattern-matching branch body must not make any

assumptions about γ (no instantiation). Since γ ∈ α and α# tyvar(Γ, u, t),

types outside the scope of the pattern-matching branch must not depend on

γ (no escape).

Generalized existential types are a conservative extension to existential types.

More specifically, the generalized existential types of an ADT pattern are identical

to the existential types of the ADT data constructor. Let C in the ALT-NONDEP

rule be an ADT constructor, then s must be a sequence of distinct type variables.

Since [u/s] is a valid choice of θ, and (dom(θ) ∩ α) ⊆ s for all valid choices of θ,

the generalized existential types of the pattern C x must be (α \ s), which matches

the existential types of the data constructor C.

Figure 4.3 (p. 107) shows why this conservative extension is necessary in the

Non-Dependent GADT type system. The main part of this figure contains three

diagrams, each of which illustrates one kind of interaction between the Pattern

Matching and the Variable Binding type roles (§2.5) in a GADT pattern-matching

branch. For example, the middle diagram is an abstract representation of type

interactions in the following pattern-matching branch:

data T a b b where

C :: forall a b c d. a → b → c → d → T a b c

f :: forall x y z. T x y z → . . .

f e = case e of

C p q r s → . . .
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Pattern Declared

Scrutinee Instantiated

T a b c a b c

T x y z x y z

T a b c a b c d

T x y z x y z ?

T [a] b c a b c

T x y z ? y z

No existential types

Existential type (d) in an ADT pattern

Generalized existential type (a) in a GADT pattern

Figure 4.3: This figure illustrates existential types and generalized existential

types. Existential types appear when the unifier of the scrutinee type and the

pattern type provides no information (represented by dotted arrows) about a type

variable introduced by the pattern. In an ADT pattern, this situation happens

only for type variables that do not appear in the pattern type (middle diagram).

In a GADT pattern, it can happen even for type variables that do appear in the

pattern type (bottom diagram). Thus the characterization of existential types is

no longer adequate in GADT type systems.
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The range type of the data constructor (T a b c) appears at top-left of the dia-

gram, the argument types (a b c d) of the data constructor appear at top-right,

the type (T x y z) of the scrutinee (e) appears at bottom-left, and the types (x

y z ?) of pattern-bound variables (p q r s) appear at bottom-right. Please see

§2.5 for a detailed description of type roles in a GADT pattern-matching branch.

I use the following symbols in the diagrams:

� Solid vertical arrows in the left half of a diagram denote type information

flow between the scrutinee type and the pattern type of a branch. Up arrows

represent parametric instantiation; down arrows represent type indexing. To-

gether the arrows represent a most-general unifier θ between the scrutinee

type and the pattern type. All type variables that appear in the domain of

θ have solid vertical arrows pointing to them.

� Dotted curved arrows that cross from the left half of a diagram to the right

half indicate how type systems transfer parametric instantiation type infor-

mation from the Pattern type role to the Declared type role. These dotted

arrows link pattern type variables at the end of solid up arrows to the same

type variables in the argument types of the matched data constructor.

� Solid down arrows in the right half of a diagram represent the instantiation

from the Declared type role to the Instantiated type role. They link data

constructor type variables in the domain of θ (which all have dotted arrows

pointing to them) to the (instantiated) types of pattern-bound variables.

� Dashed down arrows in the right half of a diagram represent unknown types

of pattern-bound variables that correspond to generalized existential types.

They all originate from type variables that have no dotted arrows pointing to

them, which reflects the intuition that generalized existential types are type

variables introduced by a pattern that receive no parametric instantiation

type information from the scrutinee type.
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In the ADT type system, pattern types are always uniform (i.e., the type

arguments of a pattern type are always distinct type variables), so every type

variable that appears in the pattern type can obtain type information from the

scrutinee type (top diagram). The only pattern-introduced type variables that

cannot obtain type information from the scrutinee type are those that do not

appear in the pattern type (e.g., d in the middle diagram), so the characterization

of existential types makes sense in the ADT type system. In the Non-Dependent

GADT type system, in contrast, even a type variable that appears in the pattern

type (e.g., a in the bottom diagram) may be unable to obtain type information

from the scrutinee type (e.g., due to the scrutinee type being less specific than the

pattern type), so the traditional characterization of existential types is no longer

adequate, and a generalization becomes necessary to capture these new kinds of

existential types.

Generalized existential types differ from existential types in two ways:

1. Generalized existential types are a property of patterns, not a property of

data constructors. This observation explains why existential types require

special treatment only when a data constructor is used as a pattern, but not

when the same constructor is used as an expression.

2. Generalized existential types are an extrinsic property instead of an intrinsic

property. Unlike an intrinsic property, which is inherent to a thing itself,

an extrinsic property also depends on the context of the thing. Existential

types are intrinsic because they depend only on the type of the data con-

structor. Generalized existential types are extrinsic because they depend on

the scrutinee type (T u) from the context.

The second point is particularly noteworthy because it suggests that a type

inference algorithm has some influence over the generalized existential types of a

pattern. Existing type inference algorithms support existential types by checking
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against their instantiation and escape in each pattern-matching branch. This ap-

proach, however, is insufficient for generalized existential types because they are

extrinsic and thus cannot be identified a priori. To support generalized existential

types, a type inference algorithm must work backwards: it must first identify in-

stantiated and escaped type variables in a pattern, and then adjust the specificity

of the scrutinee type so that those instantiated or escaped type variables become

regular (as opposed to generalized existential) types.

Given a Non-Dependent GADT pattern-matching branch whose typing is as

described in Definition 6 (p. 104), a type variable γ introduced by the pattern

(C x) is a regular type if and only if it satisfies the following conditions:

1. γ ∈ tyvar(T s),

2. Every occurrence of the type variable γ in the pattern type (T s) has a

pointwise counterpart in the scrutinee type (T u), and

3. All pointwise counterparts of γ in the scrutinee type (T u) are identical.

These conditions come from the definition of pointwise unifiers (Definition 2).

Intuitively, a type variable in a pattern type is a regular type if the scrutinee type

provides complete and consistent type information at the corresponding positions.

If a type variable introduced by a pattern does not appear in the pattern type, or

if the scrutinee type provides only incomplete or inconsistent type information at

positions corresponding to the occurrences of the type variable, then it must be

considered a generalized existential type.

Examples In the Non-Dependent GADT type system, generalized existential

types are preferable to existential types because they offer greater explanatory

power. I illustrate this point with two examples. My first example is the inc1b

function (reproduced from Figure 4.1, p. 94)
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data PTb a where

Pb :: forall a b. a → b → PTb (a, b)

inc1b :: forall n. PTb (Int, n) → Int

inc1b e = case e of

Pb x y → x+1

Why is PTb u → Int not a valid type of inc1b? The notion of existential

types provides no help because Pb has no existential types. Generalized existential

types, in contrast, offer a simple explanation. The type variable a in the pattern

type PTb (a, b) does not have a pointwise counterpart in the scrutinee type PTb

u, so a must be a generalized existential type. Since the branch body requires

instantiating the type a of x to Int, the type system must reject inc1b under the

type PTb u → Int.

My second example is the tail function (reproduced from Figure 4.1, p. 94):

data L n a where

Cons :: forall a n. a → L n a → L (S n) a

tail :: forall k a. L (S k) a → L k a

tail xs = case xs of

Cons y ys → ys

Why is L m a → L k a not a valid type of tail? The notion of existential

types (again) provides no help, and generalized existential types (again) offer an

explanation. The type variable n in the pattern type L (S n) a1 does not have

a pointwise counterpart in the scrutinee type L m a, so n must be a generalized

existential type. Since n in the type L n a1 of ys escapes from the branch body

as the type k in the context, the type system must reject tail under the type L

m a → L k a.

There is a general principle at work here. Earlier I stated that the key to Non-

Dependent GADT type inference is to infer a scrutinee type that is neither too



112

specific nor too general. It is easy to see how a scrutinee type can be too specific:

it is too specific when it makes the scrutinee type inconsistent (i.e., not unifiable)

with a pattern type. The examples I presented here provide the other side of the

story: how a scrutinee type could be too general. A scrutinee type is too general

when it fails to provide consistent type information about instantiated and escaped

pattern type variables (and thus forces the instantiated/escaped type variable to

become a generalized existential type). I will use this insight to develop a scrutinee

type inference algorithm in the next subsection.

Other type systems So far, I have described generalized existential types only

in the context of the Non-Dependent GADT type system, but they are not specific

to this type system: Definition 6 is equally applicable to the Pointwise and the plain

GADT type systems. Even though the characterization is identical, generalized

existential types in different type systems may have different properties.

For example, in the Pointwise and the Non-Dependent GADT type systems, a

pattern type variable that has no pointwise counterpart in the scrutinee type must

be considered a generalized existential type. This property, however, does not hold

in the plain GADT type system. Consider the joint function (reproduced from

Figure 3.4, p. 86) in the plain GADT type system:

data Split a b where

Whole :: Split Int Int

Parts :: forall a b. Split (Int, a) (b, Bool)

joint :: forall x. Split x x → x

joint e = case e of

Whole → 7

Parts → (3, True)

The type variable a in the Parts pattern type Split (Int, a) (b, Bool)

does not have a pointwise counterpart in the scrutinee type Split x x, but a is
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not a generalized existential type because θ, which unifies the pattern type with

the scrutinee type, maps a to Bool. It is more difficult to characterize generalized

existential types in the plain GADT type system (than it is in the Pointwise or

the Non-Dependent GADT type system) because it does not regulate the type

information flow between the pattern type and the scrutinee type.

4.2.3 Inferring scrutinee types

In the Non-Dependent GADT type system, generalized existential types arise in

a pattern-matching branch when the scrutinee type lacks sufficient information to

instantiate all type variables that are introduced by the pattern. In other words,

the more detailed the scrutinee type is, the fewer generalized existential types there

will be in a pattern-matching branch. Turning this statement backwards suggests

a strategy for inferring the scrutinee type from a pattern-matching branch: if a

pattern-introduced type variable violates the no-instantiation/no-escape rule for

generalized existential types, then a type inference algorithm must add sufficient

detail to the scrutinee type so that the instantiated/escaped type variable is not

considered a generalized existential type. In this subsection, I describe an algo-

rithm that uses this strategy.

Figure 4.4 (p. 114) shows a type inference algorithm for Non-Dependent GADT

pattern-matching branches. The algorithm infers the type of a pattern-matching

branch by first inferring the type of the branch body (c) under a suitable type

environment, and then deciding an appropriate level of specificity for the scrutinee

type based on the type inference result for the branch body. (Due to the lack of

GADT type refinements in the Non-Dependent GADT type system, inferring the

branch body type is trivial — the body type of the branch is the same as the type

of the branch body.) The algorithm computes a scrutinee type for the branch in

three steps:

1. The first step is to compute the set γ of pattern-bound type variables that
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infer(Γ, C x → c) =

let (∀α.w → T s) = lookup(C) where α fresh

(η, t) = infer(Γ{x : w}, c)

γ = α ∩ (dom(η) ∪ tyvar(rng(η)) ∪ tyvar(t))

in if γ * tyvar(s) then ⊥

else if γ = ∅

then (η, T µ→ t) where µ fresh

else (η, η(transcb(γ, T s))→ t)

transcb(γ, t) =

if γ# tyvar(t)

then µ where µ fresh

else case t of

U w → U 〈transcb(γ, z) | z ∈ w〉

ν → ν

Figure 4.4: This figure describes a type inference algorithm for Non-Dependent

GADT pattern-matching branches. The notation 〈f(x) | x ∈ w〉 means applying

f to a sequence of types w. The algorithm follows the basic structure of Milner’s

Algorithm W [27]: the result of type inference is an idempotent type substitution

for the type environment and a type of the expression. Due to the lack of GADT

type refinements, the body type of the branch is identical to the type of the branch

body (t). The type variables in γ either escaped or were instantiated in the branch

body, so the algorithm first checks that γ are not existential types, and it then

transcribes γ from the pattern type (T s) to the scrutinee type using transcb so

that γ are not considered generalized existential types. The algorithm returns a

failure symbol ⊥ if the existential type checking fails.
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either escaped or have been instantiated by the branch body. The algorithm

computes γ as the intersection of pattern-bound type variables (α) with

the union of instantiated (dom(η)) and escaped (tyvar(rng(η)) ∪ tyvar(t))

type variables. This distinction of instantiated and escaped type variables

is imprecise, but confusion between the two does not matter here because it

does not affect their union.

2. The second step is to check that the set γ contains no existential types (or,

equivalently, that every type variable in γ appears in the pattern type T s).

Type inference for the pattern-matching branch fails if the check does not

succeed. This step enforces the first condition (p. 110) for γ to be regular

(as opposed to generalized existential) types.

3. The third step is to transcribe all occurrences of γ in the pattern type (T s)

to the scrutinee type. The algorithm invokes transcb to compute a minimal

(i.e., least specific) copy of the pattern type that keeps all occurrences of γ

in their original positions. In the special case where γ is empty (which makes

transcb return a fresh type variable as result), the algorithm returns a fresh

type T µ as the scrutinee type. This step enforces the last two conditions

(p. 110) for γ to be regular (as opposed to generalized existential) types.

Effective functioning of the algorithm requires that the type substitution η,

returned from the type inference of the branch body (c), should not contain any

superfluous type variable renaming. Superfluous type variable renaming in η may

mislead the algorithm into (falsely) believing that a type variable escaped or has

been instantiated, which may either cause existential type check failure, or make

the inferred scrutinee type more specific than necessary.

The main part of the type inference algorithm, which infers the scrutinee type

of the pattern-matching branch, is relatively isolated from the rest of the algorithm.

It does not require access to the type environment (Γ), the argument types (w) of
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the matched constructor, or the internal structure of the branch body (c). All it

needs are the pattern type (T s), the type variables (α) introduced by the pattern,

the type variables in the inferred branch body type (tyvar(t)), and the inferred

type substitution (η). The dependency on the type inference result of the branch

body is particularly significant: it echoes my earlier observation that generalized

existential types are an extrinsic property rather than an intrinsic one, and that

type inference algorithms should play an active role in shaping the generalized

existential types of a pattern matching branch by adjusting the specificity of the

scrutinee type.

Examples I now conclude this subsection by running the algorithm through the

three Non-Dependent GADT program examples in Figure 4.1 (p. 94). The first

example is the inc1b function (reproduced here):

data PTb a where

Pb :: forall a b. a → b → PTb (a, b)

inc1b e = case e of

Pb x y → x+1

Inferring the type of the branch body (x+1) returns t = Int and η = [Int/a]

as result. The algorithm computes γ = {a} as the only instantiated pattern type

variable, the transcb invocation returns PTb (a, u), and the algorithm computes

η(PTb (a, u)) = PTb (Int, u) as the scrutinee type of the branch. The second

example is the tail function (reproduced here):

data L n a where

Nil :: forall a. L Z a

Cons :: forall a n. a → L n a → L (S n) a

tail xs = case xs of

Cons y ys → ys
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Inferring the type of the branch body (ys) returns t = L n a and η = [ ] (i.e.,

the identity substitution) as result. The algorithm computes γ = {n} as the only

escaped pattern type variable, the transcb invocation returns L (S n) b, which

the algorithm uses as the scrutinee type of the branch. The third example is the

null function (reproduced here):

null xs = case xs of

Nil → True

Cons y ys → False

The two pattern-matching branches are structurally similar, so I will use only

the Nil branch in my demonstration. Inferring the type of the branch body (True)

returns t = Bool and η = [ ] (i.e., the identity substitution) as result. Since there

are no escaped or instantiated pattern type variables, the algorithm computes

γ = ∅ and returns L m b as the scrutinee type of the branch.

4.3 SUMMARY

In this chapter, I studied the nature of Non-Dependent GADT programs, which

are GADT programs that do not require GADT type refinements. Even though

most previous work on GADT type systems invariably focused on GADT type

refinements, Non-Dependent GADT programs remain substantially different from

ADT programs. I demonstrated that type-indexing plays an important role in Non-

Dependent GADT programs, and that programmers must decide the appropriate

specificity of each branch scrutinee type based on the context.

I proposed generalized existential types, which generalize existential types in

the ADT type system. They have several uses: they relate scrutinee types to the

types of pattern-bound variables, they describe the appropriate level of scrutinee

type specificity in different contexts, and they suggest a strategy for inferring the

types of Non-Dependent GADT pattern-matching branches.
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The research I presented in this chapter began with an anomaly regarding

existing GADT type inference algorithms (incompleteness for programs that do

not require GADT type refinements). The investigation of this anomaly lead to

the discovery of generalized existential types, which then culminated in a type

inference algorithm for Non-Dependent GADT pattern-matching branches. Such

cycles of research are a recurring theme in this dissertation: limitations of type

inference algorithms motivates type system research, and deeper insight into the

type system, in turn, leads to breakthroughs in the design of new type inference

algorithms.

Encouraged by the nice properties of the Non-Dependent GADT type system

(for example, even the repId function (Figure 2.8, p. 41) has a principal type),

and armed with the type inference algorithm for Non-Dependent GADT pattern-

matching branches (typically the most difficult subject for type inference), I set

out to implement a Non-Dependent GADT type inference algorithm. I did end up

with a prototype system that infers the types of all three examples in Figure 4.1

(p. 94), but the system fell (very) short of my expectations. The cycle of research

renews, and I have the details in the next chapter.
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Chapter 5

SIMPLIFICATIONS TO COMPLICATIONS

The focus of this chapter is on the GADT branch reachability requirement (§5.1),

which is a fairly well-known feature that has some obscure consequences. I discuss

how this feature evolves in the Pointwise GADT (§5.2) and in the Non-Dependent

GADT (§5.3) type systems, and, where applicable, I also discuss how the various

incarnations of this feature affect the designs of GADT type inference algorithms

in general. These discussions, in contrast with the earlier chapters, explore a new

area in the design space of GADT type systems and should (I hope) serve as a

cautionary tale on the intricacies of type system design.

GADT type inference is a difficult problem. To make the problem tractable, I

have proposed two simplifications to the plain GADT type system: using pointwise

unifiers to combine the scrutinee type and the pattern type in a pattern-matching

branch (Chapter 3), and eliminating GADT type refinements in GADT pattern-

matching branches (Chapter 4). Do these simplifications actually make the type

inference problem more tractable?

The answer is both yes and no. These two simplifications are essential to the

Non-Dependent GADT pattern-matching branch type inference algorithm (§4.2),

and presenting them as restricted versions of the plain GADT type system really

clarifies the nature of these simplifications. There is, however, a hidden drawback:

the type rules that enforce these simplifications interact badly with some common

type inference algorithm designs. In this chapter, I explain why type inference for

these simplified GADT type systems remains difficult, even if one knows how to

infer the types of GADT case expressions.
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5.1 GADT BRANCH REACHABILITY REQUIREMENT

In the ADT type system, every pattern-matching branch in a case expression has

the same type. To the type system, every branch looks the same, so the type

system is oblivious to the reachability (or the lack thereof) of a pattern-matching

branch. A GADT type system, in contrast, allows the pattern types of different

pattern-matching branches to have different types. This type system feature allows

a GADT type system to identify, statically, some pattern-matching branches that

are unreachable at runtime. If the scrutinee type and the pattern type of a branch

are inconsistent, then a value that matches the pattern can never flow to the case

scrutinee, so the branch must be unreachable. This ability to identify unreachable

branches presents a design choice to GADT type system designers: should a GADT

type system accept programs with unreachable branches, or should it reject such

programs? In this section, I weigh the pros and cons of each choice and explore how

the choices affect the designs of GADT type systems and GADT type inference

algorithms.

5.1.1 GADT and branch reachability

The reachability of a pattern-matching branch indicates whether the branch may

affect the behavior of the program. If the answer is yes, then the branch is reach-

able; otherwise the branch is unreachable. Reachability is an extrinsic property;

the same branch may be reachable in one context and unreachable in another. In

a GADT type system, a pattern-matching branch with inconsistent scrutinee type

and pattern type must be unreachable. This criterion is sound (it never mistakes a

reachable branch as unreachable) but incomplete (it may consider an unreachable

branch as reachable).

Figure 5.1 (p. 121) shows an unreachable pattern-matching branch with the

drop function. Since the type of Nil (i.e., L Z a) is inconsistent with the type
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drop :: forall k a. L (S k) a → L k a

drop xs = case xs of

Nil → Nil

Cons y ys → ys

Figure 5.1: This figure shows a GADT function that has an unreachable branch.

The drop function, which uses the length-indexed list type (Figure 3.1, p. 58),

computes the tail of a non-empty list. The Nil branch, which makes drop return

the empty list unchanged, is unreachable under the given type. The unreachable

branch makes drop ill-typed in the plain GADT type system.

of xs (i.e., L (S k) a), the Nil value will never flow to the case scrutinee (xs),

therefore the Nil branch will never be taken and is thus unreachable. Echoing my

earlier statement that reachability is an extrinsic property, here the reachability

of Nil depends on the type of the case scrutinee. If I had instead given drop the

following type:

drop :: forall a. L Z a → L Z a

Under this type, the Nil branch would become reachable, but the Cons branch

would become unreachable (because the type of xs requires that only the empty

list can flow to the case scrutinee).

There are a few ways to check the consistency between the scrutinee type and

the pattern type of a branch. A type system may check if they are unifiable [17,

§4.3] or if their equality is satisfiable [36, §3.2] (which is basically the same thing).

Regardless of the underlying mechanism, the important idea is that a GADT type

system can decide, statically, that some pattern-matching branches will never be

taken at runtime.
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The ability to identify unreachable GADT pattern-matching branches forces a

type system designer to make a design decision. A GADT type system can accept

programs with unreachable branches, or, alternately, it can reject programs with

unreachable branches. The first option is acceptable because unreachable branches

are harmless. The second option is also acceptable because unreachable branches

are useless. Nonetheless, this is not a decision to be taken lightly — as I will show

in this section, both options have far-reaching consequences.

It is straightforward to incorporate either option into a GADT type system.

The plain GADT type system (§2.3) is an example that adopts the second option.

By requiring the scrutinee type and the pattern type of a branch to be unifiable,

the ALT-GADT type rule ensures that only reachable branches may appear in a

well-typed program. To adopt the first option (accepting programs with unreach-

able branches), I can simply add the following type rule, which also types GADT

pattern-matching branches, to the plain GADT type system:

ALT-FAIL

C : ∀α.w → T s α# tyvar(Γ, u, t)

(T u) is not unifiable with (T s)

Γ `p C x → c : T u→ t

The ALT-FAIL type rule, which I adapted from Vytiniotis et al. [15, Figure 4],

states that any pattern-matching branch whose scrutinee type is inconsistent (i.e.,

not unifiable) with the pattern type is also well-typed. Note that the branch body

(c) is never mentioned in the requirement of the type judgment (the part of the

type rule that is above the horizontal line). This design is driven by the following

two considerations:

1. Since the branch is unreachable, it does not really matter what the branch

body is. Nothing in the branch body can compromise type safety, so there

really is no reason to check the branch body.
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2. Since the scrutinee type is inconsistent with the pattern type, there is no way

to build a combined type environment that is needed to check the branch

body. In other words, there is no clear criterion on what the body of an

unreachable branch should (or should not) look like, so the very concept of

checking the branch body in ALT-FAIL is ambiguous.

Even though it is both easy and safe to build GADT type systems that accept

unreachable branches, such type systems are undesirable (compared to the ones

that reject unreachable branches) from a software engineering perspective. Here

are a few reasons why accepting unreachable branches is a bad idea:

� Doing so makes the behavior of a function dependent on its type. The drop

function (Figure 5.1, p. 121) demonstrates the problem: depending on what

its type is, it is either an identity function of the empty list or a tail function

of non-empty lists (but never both at the same time). This feature is likely

to confuse programmers.

� Doing so may cover up programming errors. The following map function on

length-indexed lists (Figure 3.1, p. 58) demonstrates the problem:

map f xs = case xs of

Nil → Nil

Cons y ys → Cons (f y) (mpa f ys)

There is a typo in the Cons branch: the map function is misspelled as mpa,

which is not a name bound in the scope of the branch body. However, in a

type system that accepts unreachable branches, this incorrect map function

remains well-typed under the following type:

map :: forall a b c. a → L Z b → L Z c
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This type does not fix the typo; it merely covers up the programming error by

making the Cons branch unreachable. This ability to cover up errors makes

a type system less useful as a debugging tool.

� Doing so may cover up type annotation errors. I demonstrate this problem

using the isNat function (Figure 3.1, p. 58), which has the following type:

isNat :: forall m. L m Int → L m Bool

What if a confused programmer, who is unfamiliar with the type argument

ordering of L, gives it the following type instead?

isNat :: forall m. L Int m → L Bool m

A type system that accepts unreachable branches would happily accept this

incorrect type because it makes both pattern-matching branches in isNat

unreachable. This ability to ignore type annotation errors also makes a type

system less useful as a debugging tool.

Perhaps due to these downsides, the second option (i.e., rejecting unreachable

branches) has now become a de facto standard for GADT type systems. To the

best of my knowledge, the target type system of wobbly types [15, §3] and guarded

algebraic data types [40] are the only previous work on GADT-like type systems

that accept programs with unreachable branches. All other previous work, as

well as all GADT type systems that I presented in this dissertation, adopt the

more practically useful option of enforcing the reachability requirement of GADT

pattern-matching branches.

5.1.2 Restricting reachability enforcement

In the previous subsection, I argued that requiring pattern-matching branches to

be reachable is sensible from a software engineering point of view because pro-

grammers typically avoid writing dead code. This very requirement, however, is
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also absurd from the language semantics point of view because the whole point of a

case expression is that only one branch gets taken. Despite all the things I said in

the last subsection, unreachable branches are an essential part of the programming

language, and their complete elimination would make case expressions a much less

useful tool for practical programming.

All GADT type systems in existence resolve this technical contradiction (that

they must both accept and reject unreachable branches) by using let expressions

to delimit the effects of the branch reachability requirement. More specifically, in

a GADT type system, a local let definition defines a scope for the branch reach-

ability requirement, and the type system requires only that a pattern-matching

branch appears reachable in the limited context of the local let definition. As

I mentioned earlier, branch reachability is extrinsic (i.e., context-dependent), so

restricting the scope of the context in which a branch must appear reachable can

significantly affect the enforcement of the branch reachability requirement.

The expression e1 in Figure 5.2 (p. 126) demonstrates this mechanism. Since

the locally-defined null function is invoked only once with Nil as its argument, the

Cons branch is clearly unreachable in the context of the entire e1 expression. In

the restricted context of the locally-defined null function, however, both the Nil

and the Cons branches appear reachable because null could (hypothetically) be

invoked with a list of any length as argument. Since the plain GADT type system

enforces the branch reachability requirement only in the context of the local let

definition, it accepts e1 as well-typed. In contrast, consider the expression e3,

which defines the same computation as e1 but expresses null as an anonymous

function instead of through a local let definition. Without the local let definition,

the plain GADT type system enforces the branch reachability requirement over the

entire e3 expression, so it must reject e3 due to branch reachability violation.
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e1 = let null :: forall m a. L m a → Bool

null xs = case xs of

Nil → True

Cons y ys → False

in null Nil

-- e2 is not well typed under the following type of null

e2 = let null :: forall a. L Z a → Bool

null xs = case xs of

Nil → True

Cons y ys → False

in null Nil

-- e3 is not well typed and has no valid type

e3 = (λxs . case xs of

Nil → True

Cons y ys → False) Nil

Figure 5.2: This figure demonstrates the consequences of the GADT branch reach-

ability requirement. Expression e1 is well-typed in the plain GADT type system,

but e2 and e3 are not because they violate the branch reachability requirement.

Since e2 is identical to e1 except that the type variable m is replaced by the type

constructor Z, these two expressions show that the plain GADT type system is

not substitutive. Since taking one reduction step from e1 results in e3, these two

expressions show that the plain GADT type system does not satisfy type preser-

vation. See Figure 3.1 (p. 58) for the definition of the data type L.
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How does a local let definition limit the scope of the GADT branch reacha-

bility requirement? Recall that GADT type systems detect unreachable pattern-

matching branches by inconsistency between scrutinee types and pattern types.

When an expression flows to a case scrutinee directly without an intermediate

let-bound variable, the type of expression must match the type of the scrutinee.

For example, since Nil flows directly to xs in e3, xs must have type L Z a. This

correspondence allows the plain GADT type system to detect that the Cons branch

in e3 is unreachable. In contrast, when an expression flows to a case scrutinee

indirectly through a let-bound variable, the type of the expression is disentangled

with the type of the scrutinee. There is no direct connection because the general-

ized type variables in the (polymorphic) type of the local definition are instantiated

(i.e., replaced by fresh types) on every reference. Since Nil flows to xs indirectly

through the variable null in e1, the type of xs is disentangled with the type of

Nil, and the Cons branch remains potentially reachable to the type system.

In the ADT type system, let expressions serve only one role: they provide a

mechanism for introducing recursive local definitions with polymorphic types. In

GADT type systems, they take on a new role: they restrict the enforcement of the

branch reachability requirement. This new role makes let expressions an essential

part of a GADT type system because they are the only way programmers can use

GADT case expressions without risking branch reachability violations.

I want to make two more points before moving on. First, no one designed the

LETREC-P type rule (which is used in the plain GADT type system to type let

expressions) specifically to restrict the branch reachability requirement. This type

rule, which also appears in the ADT type system (Figure 2.4, p. 27), was proposed

by Mycroft [29] in 1984 based on earlier work by Milner [27] in 1978. This happy

coincidence shows that seemingly unrelated type system features can interact in

unexpected ways, so type system designers should exercise extreme caution when

adding features to (or removing features from) a type system.
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Second, there is no intrinsic connection between generalizing the type of a local

definition and restricting the GADT branch reachability requirement. While the

LETREC-P type rule uses the former to achieve the latter, there is no reason

why it has to work this way. Indeed, it is possible to incorporate only one of

these two type system features without the other. To restrict the GADT branch

reachability requirement without generalizing the type of the local let definition,

one can replace LETREC-P with the following LETREC-D type rule:

LETREC-D

Γ{u : ∀α. s} ` e : s dom(θ) # tyvar(Γ) Γ{u : θ(s)} ` d : t

Γ ` let u = e in d : t

Conversely, to generalize the types of local definitions without restricting the

branch reachability requirement, one can use explicit type consistency constraints

to represent the branch reachability requirement in the type system, and include

the type constraints from a local let definition as part of its type. For example,

such a GADT type system may give the null function in e1 (Figure 5.2, p. 126)

this qualified type in the let body (the ∼ symbol represents type consistency):

null :: forall m n a. (m ∼ Z) ∧ (m ∼ S n) ⇒ L m a → Bool

Using the type consistency constraints, the type system can now reject null Nil

in the let body of e1 because (Z ∼ S n) is not satisfiable.

5.1.3 Consequences of enforcing reachability

Though the GADT branch reachability requirement has seen tremendous uptake

in the research community, this design decision is not without its quirks:

1. Enforcing the branch reachability requirement makes a GADT type system

non-substitutive (so that Γ ` e : t no longer implies θ(Γ) ` e : θ(t) for an

arbitrary type substitution θ), and
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2. Using local let definitions to restrict the scope of the branch reachability

requirement forces a GADT type system to violate type preservation under

the standard small-step operational semantics.

Both consequences are significant. The first affects how researchers establish

the safety property of a GADT type system, and the second affects the designs

of GADT type inference algorithms. Figure 5.2 (p. 126) demonstrates these two

consequences with examples:

1. The expressions e1 and e2 are identical, except that the null function has

a more specific type in e2 than in e1. The null function in e1 is well-typed,

but the null function in e2 is not (because the Cons branch is unreachable).

This pair of functions demonstrates that the plain GADT type system (or

any GADT type system that adopts the branch reachability requirement) is

not substitutive. In other words, an instance of a valid type of an expression

may not be a valid type of the same expression.

2. The expression e3 is the result of taking one reduction step from e1 (the

reduction replaces references of null in the let body with its definition).

Since e1 is well-typed, but e3 is ill-typed (again, because the Cons branch

is unreachable), this pair of expressions demonstrates that the plain GADT

type system (or any GADT type system that uses local let definitions to

restrict the branch reachability requirement) violates type preservation. In

other words, a well-typed expression may reduce to an expression that is

ill-typed.

This loss of type preservation deserves some elaboration. Even though type

preservation and progress are a common strategy for proving type safety, type

preservation is not a necessary condition for type safety. One can still prove the

type safety of the plain GADT type system by embedding it into a more general
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Well-Typed Plain GADT Programs

(with only reachable branches)

Well-Typed Plain GADT Programs

(possibly with unreachable branches)

Safe Programs

Figure 5.3: Embedding of GADT type systems.

type system that accepts unreachable branches (and thus has type preservation).

Once the more general type system is proven safe, type safety of the plain GADT

type system immediately follows (Figure 5.3, p. 130). Indeed, Peyton Jones et al.

[17, §6.1] used this strategy to prove the soundness of their GADT type system.1

Furthermore, since the plain GADT type system has a type-erasure semantics, the

loss of type preservation has no effect on language implementations either. These

discussions show that the loss of type preservation is less of a problem than it may

first appear, and gaining the ability to restrict the branch reachability requirement

at the cost of type preservation is, in my opinion, a very favorable trade.

5.1.4 Type inference

Earlier, I discussed the effects that the GADT branch reachability requirement has

on the plain GADT type system. Since the design of a type inference algorithm

relies heavily on the properties of the target type system, the branch reachability

1The published conference paper, however, does not say that the target type system differs
from the source type system in that the former accepts unreachable branches but the latter does
not. This difference is briefly discussed only in the companion technical appendix [15, §3], which
suggests that the authors were perhaps not fully aware of its significance.
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requirement must also have some influence on GADT type inference algorithms.

In this subsection, I describe one such influence and explore ways that a GADT

type inference algorithm can enforce the branch reachability requirement.

Since the plain GADT type system is an extension to the ADT type system, a

natural way to design a GADT type inference algorithm is to extend an ADT type

inference algorithm. An obvious candidate is the AlgorithmW proposed by Milner

[27], which is the earliest and the most well-known ADT type inference algorithm

of all. Algorithm W is mostly compositional;2 it collects type information from a

program through depth-first traversal of the program’s abstract-syntax tree. Given

a type environment Γ and an expression e, a successful run of AlgorithmW returns

a type substitution θ and a type t such that θ(Γ) ` e : t is a valid type judgment

in the ADT type system.

Algorithm W , which works by collecting and accumulating type information

from a program, relies on the property that the ADT type system is substitutive

(i.e., applying a type substitution to a valid type judgment always yields a valid

type judgment). Unfortunately, the plain GADT type system is not substitutive

due to the branch reachability requirement, so a GADT type inference algorithm

must either make substantial changes to Algorithm W , or else adopt an entirely

different structure.

Previous work on GADT type inference suggests three approaches to alleviate

the non-substitutive nature of the plain GADT type system:

1. The first approach is to prohibit type substitutions on GADT scrutinee type

variables in the type inference algorithm. The wobbly types algorithm [17],

which adopts this approach, calls such type variables rigid (as opposed to

wobbly). Since the type inference algorithm applies type substitutions only

2AlgorithmW is only mostly compositional because it uses the inferred types of the local let
definition to infer the type of the let body. Completely compositional type inference is possible
[3, 4] but makes the treatment of let expressions considerably more complicated.
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to the substitutive part of the GADT type system, the branch reachability

requirement no longer causes any difficulties. The reliance on type annota-

tions to distinguish type variables that can be substituted from those that

cannot is the main limitation of this approach.

2. The second approach is to exclude GADT pattern-matching branches from

type inference. Once type inference for the rest of the program completes,

the algorithm enters a separate phase that checks the types and the reach-

ability of GADT pattern-matching branches. The OutsideIn algorithm [36]

adopts this approach. Since the algorithm checks GADT branch reachability

last, there is no danger of a pattern-matching branch becoming unreachable

due to subsequently-discovered type information. The inability to use type

information from GADT pattern-matching branches for type inference is the

main limitation of this approach.

3. The third approach is to represent GADT branch reachability as explicit

type constraints in the type inference algorithm. These explicit type con-

straints capture the consistency requirement between the scrutinee and the

pattern types of each pattern-matching branch, and the type inference algo-

rithm checks these type constraints to ensure that any new type information

discovered during type inference does not make a pattern-matching branch

unreachable. Type inference via Herbrand constraint abduction [43] adopts

this approach. Other than slightly complicating the type inference algorithm,

this approach has no obvious limitations.

These approaches suggest that the GADT branch reachability requirement does

not create any fundamental difficulty for GADT type inference algorithms. Still,

there is a price in terms of the increased complexity of type inference algorithms,

and as I will show, the price will only become steeper as I introduce more changes

into the plain GADT type system.
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5.2 POINTWISE BRANCH REACHABILITY

Like the plain GADT type system, the Pointwise GADT type system (§3.2) also

enforces the GADT branch reachability requirement. The Pointwise GADT type

system, however, has a stronger notion of consistency than the plain GADT type

system: it requires the scrutinee type and the pattern type of a branch to be point-

wise unifiable instead of merely unifiable. This stronger consistency requirement

arises because the Pointwise GADT type system uses pointwise unifiers to combine

scrutinee types and pattern types.

Using pointwise unifiers to type GADT pattern-matching branches has some

clear benefits: it rejects certain pathological GADT programs by upholding the

principle of orthogonal design (Chapter 3), and it leads to a set of conditions for

identifying the generalized existential types in a GADT pattern (Chapter 4). In

this section, I explore the other side of the story: the obligation to maintain point-

wise unifiability between scrutinee types and pattern types during type inference.

I will show that this seemingly trivial obligation is anything but: it significantly

complicates type inference by interacting with standard type inference algorithm

designs in obscure and convoluted ways.

5.2.1 Not pointwise, but unifiable

Ensuring that two types are unifiable, as required in a plain GADT type inference

algorithm, is straightforward: the algorithm simply tries to unify the two types. If

unification succeeds, the two types are unifiable. Otherwise, the two types are not

unifiable, and type inference fails with an error. That is all there is to it.

A Pointwise GADT (or Non-Dependent GADT) type inference algorithm can

easily adapt the same strategy to ensure that two types are pointwise unifiable:

just perform the same steps but replace unification with pointwise unification. This

adaptation is, however, inadequate for a complete type inference algorithm because
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data P a b c where

P1 :: forall a. P Int a [a]

P2 :: forall a b c. a → b → c → P a b c

topple v w = case P2 v v w of

P1 → True

P2 a b c → False

Figure 5.4: This figure demonstrates a Non-Dependent GADT program whose

type inference requires recovering from a pointwise unification failure. Note that

the principal type (P x x y) of the case scrutinee (P2 v v w) is not pointwise

unifiable with the pattern type (P Int a [a]) of the P1 branch, but the topple

function remains well-typed in the Non-Dependent GADT type system.

pointwise unification failures may be recoverable (thus they need not imply type

inference failure). This curious phenomenon, which occurs when two types are

unifiable but not pointwise unifiable, is best explained with an example.

Figure 5.4 (p. 134) shows the topple function, which is well-typed in both the

Pointwise GADT and the Non-Dependent GADT type systems. Assuming that

the variable v has type x and the variable w has type y, a Pointwise GADT type

inference algorithm infers that the case scrutinee has type P x x y, and it checks

that this type is pointwise unifiable with the pattern type P Int a [a] of the P1

branch. The check fails because, as the following diagram shows, these two types

are unifiable, but not pointwise unifiable:

Scrutinee Type

Pattern Type

P

P

x

Int

x

a

y

[a]
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In the Pointwise GADT type system, the scrutinee type and the pattern type

are inconsistent (because they are not pointwise unifiable). However, from the

perspective of the type system, which tracks only types and not values, the P1

branch remains reachable (the scrutinee type and the pattern type are unifiable,

so the data constructor P1 may still flow to the case scrutinee). This kind of minor

type consistency violation does not exist in the plain GADT type system, and a

Pointwise GADT type inference algorithm should deal with it gracefully instead

of hastily reporting type inference failure.

The type inference algorithm should restore pointwise unifiability by making

the scrutinee type more specific. In this example, if the algorithm infers P Int Int

[Int] as the type of the case scrutinee (P2 v v w), this new scrutinee type would

be consistent with the pattern type of the P1 branch, and type inference for the

topple function would succeed with the type Int → [Int] → Bool.

The topple function is not a special case, and the same fix also works for

other similar examples. In the Pointwise GADT type system, if a scrutinee type

and a pattern type are unifiable but not pointwise unifiable, a type inference algo-

rithm can always recover pointwise unifiability by making the scrutinee type more

specific. I show how in this subsection.

Figure 5.5 (p. 136) shows the pointwise completion algorithm, which I designed

to restore pointwise unifiability between two types. Let s and t be two types such

that tyvar(s) # tyvar(t). If s and t are unifiable, pointwise completion computes

a most-general substitution σ such that σ(s) is pointwise unifiable with t. If they

are not unifiable, pointwise completion signals an error by returning the special

symbol ⊥.

The structure of the pointwise completion algorithm somewhat resembles that

of the pointwise unification algorithm (§3.2). For example, the first three branches

of patch correspond to the three failure rewrites in the conflict resolution phase of

pointwise unification. The fourth branch of patch matches only when pointwise
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pwc(s, t) = patch(id) where

patch(σ) = case (σ(s) . t) of

{(α, T x)} ] E | α ∈ tyvar(E) → patch([T η/α] ◦ σ), η fresh

{(α, T x), (y, β)} ] E | ndom(y,E), β ∈ tyvar(T x) → patch([T η/α] ◦ σ), η fresh

{(x, β), (y, β)} ] E | ndom(y,E), x 6= y →

if mgu(x ∼ y) 6= ⊥ then patch(mgu(x ∼ y) ◦ σ) else ⊥

E → if E = ⊥ then ⊥ else σ

ndom(S y,E) = True

ndom(γ,E) = γ ∈ tyvar(E)

Figure 5.5: This figure shows the pointwise completion algorithm, which computes

a most-general type substitution σ from two types s, t such that σ(s) is pointwise

unifiable with t. The algorithm fails if s and t are not unifiable.

unification of σ(s) ∼ t succeeds (E 6= ⊥) or fails in the counterpart collection

phase (E = ⊥). The resemblance is by design:

� When pointwise unification succeeds, pointwise completion succeeds imme-

diately because σ(s) and t are already pointwise unifiable.

� When pointwise unification fails in the counterpart collection phase, σ(s)

and t are not unifiable, so pointwise completion fails.

� When pointwise unification fails in the conflict resolution phase, a unifier θ

of σ(s) ∼ t, if it exists, requires non-pointwise type information flow. In

this case, the pointwise completion algorithm applies a substitution to σ(s)

in an attempt to propagate local type information and thus eliminate the

non-pointwise type information flow in θ.

The heart of the pointwise completion algorithm lies in the first three branches

of patch, which deal with the non-trivial case of conflict resolution failure:
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� The first branch matches when one occurrence of α in σ(s) corresponds to

T x in t, but another occurrence of α in σ(s) does not. The algorithm deals

with this disagreement by refining α to a fresh type T η.

� The second branch matches when one occurrence of β in t corresponds to y

in σ(s), but another occurrence of β, which appears in T x in t, does not

correspond to anything in σ(s). The algorithm tries to generate a pointwise

counterpart for the second occurrence of β in T x by refining α to a fresh

type T η.

� The third branch matches when two occurrences of β in t corresponds to

different types (x and y) in σ(s). The algorithm resolves this disagreement

by unifying x and y so that these two occurrences of β correspond to the

same type (mgu(x ∼ y)(x) = mgu(x ∼ y)(y)).

Pointwise completion is, in a way, an enhanced version of pointwise unification.

Unlike the pointwise unification algorithm, which fails when the two input types

require non-pointwise type information flow to unify, the pointwise completion

algorithm eliminates the non-pointwise type information flow by identifying and

propagating the non-local type information between the two types. Pointwise

completion is sound (Theorem 27, p. 245), complete (Theorem 30, p. 250), and

terminating (Theorem 22, p. 237). I present a proof of these three properties in

Appendix A.

Example I demonstrate pointwise completion using the scrutinee type and the

pattern type of the P1 branch in the topple function (Figure 5.4, p. 134). To

recover the consistency between these types, the Pointwise GADT type inference

algorithm computes pwc(P x x y, P Int a [a]).

Figure 5.6 (p. 138) shows the successive calls to patch in the evaluation process;

rows in the table represent calls to patch in chronological order. While the type
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σ σ(s) . t Branch Taken

id {(x, Int)} ] {(x, a), (y, [a])} 1st (recurses)

[Int/x] {(y, [a])} ] {(Int, a)} 2nd (recurses)

[Int/x, [d]/y] {(d, a), (Int, a)} ] {} 3rd (recurses)

[Int/x, [Int]/y, Int/d] {(Int, a)} 4th (returns σ)

Figure 5.6: Pointwise completion in action.

substitution σ grows with each recursive call, the set σ(s) . t shrinks (due to

the propagation of local type information), and in the end the evaluation succeeds

with the answer [Int/x, [Int]/y, Int/d]. It is simple to check that σ(P x x y) =

P Int Int [Int] is pointwise unifiable with P Int a [a], so pointwise completion

succeeds in computing a more specific scrutinee type that is consistent with the

pattern type of the P1 branch.

5.2.2 Interaction with let expressions

Adding pointwise completion to a Pointwise GADT type inference algorithm ap-

pears to solve the problem of maintaining the type consistency (i.e., pointwise

unifiability) between scrutinee types and pattern types. The solution is, however,

incomplete because pointwise completion works by making scrutinee types more

specific, and this mechanism breaks the standard type inference approach for let

expressions. I give the details in this subsection.

Algorithm W (like other type inference algorithms based on it) infers a poly-

morphic type for a local let definition by inferring the type of the definien and

then universally quantifying all type variables in the type of the definien that do
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data P a b c where

P1 :: forall a. P Int a [a]

P2 :: forall a b c. a → b → c → P a b c

trip u v =

let f w = case P2 u v w of

P1 → True

P2 a b c → False

in v+3

Figure 5.7: This figure demonstrates a Non-Dependent GADT program where the

type of a local let definition is affected by code in the let body. This interfer-

ence prevents a type inference algorithm from generalizing the type of a local let

definition using only type information that is locally available.

not appear free in the outer type environment [27]. This tried-and-true recipe is

safe because, in the ADT and the plain GADT type systems, a type variable that

does not appear free in the type environment is totally unconstrained. In other

words, since the type inference algorithm will never find any additional information

about such a type variable, there is no harm in making the type of the local let

definition polymorphic in that type variable. Furthermore, this recipe is also con-

venient because it allows a type inference algorithm to make type generalization

decisions using only type information that is available locally.

The trip function in Figure 5.7 (p. 139) demonstrates how pointwise comple-

tion interferes with this ability to make local type generalization decisions. This

phenomenon, which shows that change in the GADT branch reachability require-

ment affects the typing of let expressions, echoes my earlier observation that let

expressions are an integral part of a GADT type system. I will explain how a
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Pointwise GADT type inference algorithm based on Algorithm W infers the type

of trip, and then I will show that the type inferred for the local let definition f

would be invalid in the Pointwise GADT type system.

Let us begin. Type inference for trip starts with type inference for f, and its

definien has a most-general type z → Bool (where z is the type of w). Assuming

that u has type x and v has type y in the environment, the case scrutinee P2 u

v w has type P x y z. Since the scrutinee type is pointwise unifiable with the

pattern types of both the P1 and the P2 branches, the type inference algorithm

confirms that the definien of f makes no assumptions about the types of u, v,

and w. The type variable z does not appear in the type environment of the let

expression, so the type inference algorithm infers the type of f by binding z with

a universal quantifier as follows:

f :: forall z. z → Bool

So far so good. Next, the type inference algorithm moves on to infer the type of

the let body (v+3), which requires v to have type Int. With this newly discovered

information, the type of the case scrutinee in f now becomes P x Int z, which

is inconsistent with the pattern type P Int a [a] of the P1 branch:

Scrutinee Type

Pattern Type

P

P

x

Int

Int

a

z

[a]

In other words, f is now ill-typed in the Pointwise GADT type system due to

type information discovered in the let body. This situation can never happen in

the plain GADT type system, but it can in the Pointwise GADT type system.

Normally, pointwise completion can fix the problem by replacing z with [Int].

The type variable z, unfortunately, has already been generalized in the type of f,

so it is no longer possible to apply the type substitution on z. The type inference
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algorithm is stuck and thus must report failure. In hindsight, the earlier decision

to generalize z was a mistake. Type inference for trip would have succeeded had

the algorithm inferred the following monomorphic type for f:

f :: z → Bool

Under this type, z is free in the type environment, so the type inference algorithm

can apply the type substitution [[Int]/z] to restore the type consistency between

the scrutinee type and the pattern type of the P1 branch.

What went wrong? Earlier, while playing the role of a type inference algorithm,

I observed that the type consistency requirement between the scrutinee type and

the pattern types places no restrictions on the type z of w. As it turns out,

this observation is correct only when the type y of v is unconstrained. Once the

type variable y is replaced by a more specific type (Int in this example), type

consistency breaks down. To restore pointwise type information flow, the type

inference algorithm must also make z more specific, which works only if z was

not generalized. And therein lies the rub: what becomes of z depends on what

becomes of y, but the type variable y appears free in the type environment of f.

Should the type inference algorithm generalize z? Neither choice is ideal:

� Generalizing z in the type of f, as the trip function shows, leads to type

inference failure when the type variable y becomes instantiated.

� Not generalizing z in the type of f makes the type of f unnecessarily restric-

tive if the type variable y is never instantiated.

To make the right call, the type inference algorithm must know what ultimately

becomes of y, but this information is simply unavailable when the algorithm infers

the type of the local let definition f. Once again, the strengthened GADT branch

reachability requirement in the Pointwise GADT type system (that scrutinee types

must be pointwise unifiable with pattern types) significantly complicates the type

inference problem.
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5.2.3 Type inference

In this section, I showed that the pointwise reachability requirement complicates

the GADT type inference problem in two ways:

1. A complete type inference algorithm must (sometimes) restore pointwise

unifiability by making the scrutinee types more specific, and

2. This mandate of making scrutinee types more specific as necessary breaks

the tried-and-true recipe of inferring the types of local let definitions. More

specifically, the set of type variables to generalize when inferring the type of

a local let definition now depends on both the context and the body of the

let expression.

There are at least three approaches that a Pointwise GADT (or Non-Dependent

GADT) type inference algorithm can use to deal with these complications:

1. Instead of using pointwise completion to deal with the first complication,

a type inference algorithm can simply report failure when a scrutinee type

is not pointwise unifiable with the pattern type. This approach is easy to

implement but makes the type inference algorithm incomplete. For example,

type inference for topple (Figure 5.4, p. 134) would fail.

2. A type inference algorithm can use pointwise completion to restore pointwise

unifiability and infer the types of let expressions as in Algorithm W . The

algorithm reports type inference failure when it needs to specialize a type

variable that has already been generalized. This approaches also makes the

type inference algorithm incomplete (but to a lesser degree than the first).

For example, type inference for topple (Figure 5.4, p. 134) would succeed,

but type inference for trip (Figure 5.7, p. 139) would fail.
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3. A type inference algorithm can use explicit type constraints to track the

instantiations of polymorphic types. The constraints associate each instan-

tiated type with the original polymorphic type, so when the type inference

algorithm retroactively specializes a type variable that has already been gen-

eralized, it can propagate the new type information (on the generalized type

variable) uniformly to all instantiations of the type variable. This approach

makes the type inference algorithm significantly more complicated than the

previous two approaches, but it can allow successful type inference for both

topple (Figure 5.4, p. 134) and trip (Figure 5.7, p. 139).

These approaches suggest that the complications I described in this section are

solvable, if type inference algorithm designers are willing to cope with additional

design complexity or to sacrifice completeness. The pointwise branch reachability

requirement does not prohibit compositional type inference, but it may have made

compositional type inference prohibitively expensive.

5.3 NESTED NON-DEPENDENT GADT BRANCHES

So far I have described type inference complications due to the GADT branch

reachability requirement (§5.1) and additional complications due to the pointwise

branch reachability requirement (§5.2). In this section, the trend continues, and I

now show how the elimination of GADT type refinements in the Non-Dependent

GADT type system complicates the type inference problem even further.

Let me start with how the branch reachability requirement affected the design

of the Non-Dependent GADT type system. I designed the Non-Dependent GADT

type system (§4.1) to meet the following two requirements. First, Non-Dependent

GADT patterns should not introduce any local type assumptions. Second, every

well-typed Non-Dependent GADT program should also be a well-typed Pointwise

GADT program. These two requirements appear orthogonal: the first prohibits
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divert :: forall n a. L n a → Bool

divert xs =

case xs of

Cons y ys → case xs of

Nil → False

rematch :: forall n a. L n a → Bool

rematch xs =

case xs of

Nil → True

Cons y ys → case xs of

Cons w ws → False

Figure 5.8: This figure demonstrates the role that GADT type refinements play

in enforcing the GADT branch reachability requirement. The divert function

is ill-typed in all GADT type systems due to branch reachability violation, but

rematch is ill-typed only in the Non-Dependent GADT type system (which, due

to the elimination of GADT type refinements, is not expressive enough to detect

that the inner Cons branch is reachable). See Figure 3.1 (p. 58) for the definition

of the data type L.

GADT type refinements, and the second requires, among other things, that the

type system enforces the branch reachability requirement.

These two requirements are, unfortunately, not orthogonal. The divert func-

tion (Figure 5.8, p. 144) demonstrates that GADT type refinements sometimes

play a role in enforcing the GADT branch reachability requirement in the plain

GADT type system. The divert function contains two nested case expressions

that match the same scrutinee (xs) against different data constructors, so it is
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Plain GADT Non-Dependent GADT

w/ refinement w/o refinement Skolemization

Cons pattern L (S m) b L (S m) b L (S m) b

xs (outer) L n a L n a L n a

xs (inner) L (S m) a L n a L Xn a

Nil pattern L Z c L Z c L Z c

Nil reachable? No Yes No

Figure 5.9: This table illustrates how three GADT type systems (the plain GADT

type system, the plain GADT type system without GADT type refinements, and

the Non-Dependent GADT type system) check the reachability of the inner Nil

branch in the divert function (Figure 5.8, p. 144).

clear that the inner (Nil) branch must be unreachable.

The left column of Figure 5.9 (p. 145) shows how the plain GADT type system

catches the unreachable branch. The type system uses GADT type refinement to

refine the type of the scrutinee (xs), and then unifying the refined scrutinee type

(L (S m) a) with the pattern type (L Z c) of the Nil branch. The failure to unify

L (S m) a with L Z c indicates that the Nil branch is unreachable, so the plain

GADT type system rejects the divert function. The middle column of Figure 5.9

(p. 145) shows what happens without GADT type refinement: the scrutinee of the

inner case expression would still have type L n a (despite that xs has already

been successfully matched against the Cons y ys pattern), and the plain GADT

type system would accept the divert function as well-typed.

This situation creates a technical contradiction: the Non-Dependent GADT

type system must enforce the GADT branch reachability requirement, but the

enforcement relies on GADT type refinement, which is the very feature I wish to
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eliminate in this type system. I ended up adopting a compromise in the design:

instead of applying the GADT type refinement to the type environment and the

type of the case expression, the ALT-NONDEP type rule (Figure 4.2, p. 99)

substitutes Skolem type constants for type variables in the domain of the GADT

type refinement. This compromise has the following effects:

� On the plus side, this design helps the Non-Dependent GADT type system

reject the divert function. The right column of Figure 5.9 (p. 145) shows

that the scrutinee of the inner case expression now has type L Xn a (where

Xn is an uninhabited Skolem type constant). Since L Xn a is not unifiable

with L Z c, the Non-Dependent GADT type system agrees with the plain

GADT type system and considers the Nil branch unreachable.

� On the minus side, substituting Skolem type constants for type variables

could cause the Non-Dependent GADT type system to mistake a reachable

branch for an unreachable one. The rematch function in Figure 5.8 (p. 144)

demonstrates this problem. The inner Cons branch is definitely reachable

because the scrutinee (xs) of the inner case expression has already been

matched against the Cons data constructor. Unfortunately, without GADT

type refinement, the Non-Dependent GADT type system is not sufficiently

expressive to establish the reachability of this inner Cons branch, so it must

consider this inner branch unreachable and reject the rematch program.

This inability to type certain nested case expressions with the same scrutinee

is an unintended side effect of Non-Dependent GADT type system design. Since

the Non-Dependent GADT type system was never intended for practical use, this

reduction in expressiveness has little practical impact. The requirement to reject

these nested case expressions, however, adds another layer of complexity on top

of the already complicated Pointwise GADT type inference algorithms. The hope

that I harbored at the end of Chapter 4 — that all the simplifications may lead to
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a simple and complete Non-Dependent GADT type inference algorithm — turned

out to be unfounded. Incorporating the simplifications into the type rules did not

make the type inference problem much simpler, instead it merely traded one set

of difficulties for another.

5.4 SUMMARY

This chapter describes a few recurring themes that occurred throughout my disser-

tation research. These recurring themes represent principles of type system design

that became apparent to me in the course of type inference research.

First, seemingly independent type system features may interact in unexpected

ways. For example, local let definitions delimit the GADT branch reachabil-

ity requirement (§5.1), and GADT type refinements play a role in enforcing the

branch reachability requirement (§5.3). These interactions can affect type system

properties (such as type preservation) and type inference algorithm design, so it is

important to identify the feature interactions in a type system.

Due to these (sometimes obscure) interactions between type system features,

making a type system more restrictive (i.e., to accept fewer programs) does not

necessarily make the type system simpler. More specifically, restricting a type

system can make one aspect of the type system simpler, but it is also likely to

make another aspect of the type system more complicated. Examples include:

� Enforcing branch reachability makes GADT type systems non-substitutive

and breaks type preservation (§5.1),

� Requiring scrutinee types and pattern types to be pointwise unifiable inter-

feres with the generalization of local let definition types (§5.2), and

� Eliminating GADT type refinements interferes with the enforcement of the

GADT branch reachability requirement (§5.3).
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In a type system where features are tightly connected (which is most of them),

a local change can have far-reaching consequences. In principle, the consequences

could work in your favor, but unfortunately that was not how they turned out in

my case. Each successive type system simplification further complicates the type

inference problem, and the complications then cause substantial increases in the

design complexity of type inference algorithms. And in return for what? The mere

ability to systematically reject certain classes of programs (which are all perfectly

safe by virtue of being well-typed in an unrestricted type system).

In the beginning of this chapter, I asked whether these simplifications actually

make the type inference problem more tractable. The answer remains both yes

and no. Yes, the simplifications can guide a type inference algorithm in inferring a

type for a pattern-matching branch. No, enforcing the simplifications where they

serve no purpose (i.e., everywhere except pattern-matching branches) is counter-

productive because it makes the type inference algorithm more complicated than

it needs to be. Since the simplifications do not contribute to type safety, their

selective enforcement is a harmless way to make a type inference algorithm both

simpler and more powerful.

To summarize, complete type inference for artificially restricted type systems

can be a fool’s errand because ensuring soundness (i.e., that the algorithm fails

for safe programs that lie outside the artificial restriction) tend to end up as the

most complicated aspect of type inference algorithm design. Instead, it is better

to develop incomplete type inference algorithms for an unrestricted type system.

You may lose some bragging rights (there will be no completeness theorem), but

the end result will be both simpler and more powerful. With this lesson at heart,

I present a plain GADT type inference algorithm in the next chapter.



149

Chapter 6

GADT TYPE INFERENCE WITH ALGORITHM P

In this chapter, I present Algorithm P , which I designed for type inference in the

plain GADT type system. Due to the difficulty of the GADT type inference prob-

lem (§2.4), I did not design Algorithm P in an attempt to achieve complete type

inference. Instead, I designed it with the more practical goal of inferring types

(without relying on type annotations) for as many well-typed GADT programs

as possible. Even though Algorithm P is an incomplete type inference algorithm,

its type inference power still represents a significant step forward compared to

existing GADT type inference algorithms. The design of Algorithm P takes ad-

vantage of several plain GADT type system properties that I described earlier in

this dissertation:

� Prevalence of pointwise type information flow in GADT patterns (§3.3),

� Generalized existential types in GADT branches (§4.2), and

� How GADT branch reachability interacts with local let definitions (§5.1).

In this chapter, I focus on the design of Algorithm P itself; readers who prefer

a more example-oriented discussion on the capabilities of Algorithm P may skip

ahead to Chapter 7.

6.1 OVERALL STRUCTURE

In this section, I describe the overall structure of Algorithm P . Recall from §2.3

that the plain GADT type system extends the ADT type system by replacing
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the ALT-ADT type rule (for ADT pattern-matching branches) with the ALT-

GADT type rule (for GADT pattern-matching branches). To take advantage of

the commonality between these two type systems, I designed Algorithm P as an

extension to Algorithm W , which is a well-known type inference algorithm for the

ADT type system. In this section, I focus on the parts of Algorithm P that are

not directly related to type inference for case expressions, and I will leave details

of type inference for GADT case expressions to the following two sections.

6.1.1 Foundation

I designed Algorithm P based on Milner’s Algorithm W [27] and its extension

proposed by Mycroft [29] that adds support for polymorphic recursion. In this

subsection, I briefly review Algorithm W and Mycroft’s extension.

Algorithm W is a complete type inference algorithm for the ADT type system

without polymorphic recursion [8]. More specifically, it is complete for the set of

type rules in Figure 2.4 (p. 27) but with the LETREC-P type rule (for polymorphic

recursion) replaced by the LETREC-M type rule (for monomorphic recursion) in

Figure 2.5 (p. 30). It works by collecting and accumulating type information from

a program through depth-first traversal of the program abstract-syntax tree: given

type environment Γ and expression e, a successful run of Algorithm W returns an

idempotent type substitution θ and a type t such that θ(Γ) ` e : t is a valid type

judgment in the ADT type system.

To illustrate what Algorithm W looks like, Figure 6.1 (p. 151) shows how it

infers the type of a function application (f e) under a type environment Γ. It infers

the type of the function f under Γ and the type of the argument e under θ1(Γ).

It uses unification1 to compute types for f and e that are consistent with respect

1Neither Algorithm W nor Algorithm P uses pointwise unifiers or pointwise unification. In
the context of these two algorithms, the term unification always refers to the algorithm proposed
by Robinson that computes most-general unifiers [35].
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infer(Γ, f e) =

let (θ1, t1) = infer(Γ, f)

(θ2, t2) = infer(θ1(Γ), e)

θ3 = U(θ2(t1) ∼ t2 → β) β fresh

in (θ3 ◦ θ2 ◦ θ1, θ3(β))

Figure 6.1: This figure shows the part of Algorithm W that infers the type of a

function application. This algorithm is reproduced from Milner’s 1978 paper on

type polymorphism [27, §4.1].

to the APP type rule (for function application, Figure 2.4, p. 27), and it returns

θ3(β) as the type of the function application (f e) under the type environment

(θ3 ◦ θ2 ◦ θ1)(Γ).

I chose Algorithm W as the foundation for Algorithm P because it is simple,

well understood, and widely known. There is, however, a slight problem with this

choice: AlgorithmW does not support type inference with polymorphic recursion.

Polymorphic recursion, which allows a recursive definition to invoke itself on an

instance of its own type, is prevalent in GADT programs. Due to this prevalence,

a practical GADT type inference algorithm must support polymorphic recursion.

Instead of abandoning AlgorithmW , I adopted the extension proposed by Mycroft

that adds support for polymorphic recursion to Algorithm W [29].

Figure 6.2 (p. 152) shows Mycroft’s extension to Algorithm W for type infer-

ence with polymorphic recursion. The expression snippet (u=e) in the first line

represents the local definition in the let expression (let u = e in d), and here the

equal sign works as an infix polymorphic recursion fixpoint operator. Mycroft’s al-

gorithm first assumes that the recursive reference u has the fully polymorphic type

∀α. α in e, and it then iteratively specializes the (overly general) assumed type of
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infer(Γ, u=e) = polyrec(id, ∀α. α) where

polyrec(θ1, x) =

let (θ2, t) = infer(Γ{u : x}, e)

γ = tyvar(t) \ tyvar(Γ{u : x})

y = ∀γ. t

in if θ2(x) = y

then (θ2 ◦ θ1, y)

else polyrec(θ2 ◦ θ1, y)

Figure 6.2: This figure shows Mycroft’s extension to Algorithm W for type infer-

ence with polymorphic recursion. The name “id” on the first line represents the

identity type substitution. This algorithm is adapted from Mycroft’s 1984 paper

on polymorphic recursion [29, §6].

u until the iteration reaches a fixpoint. Even though this extension, which Mycroft

proposed in 1984, predates the development of GADT type systems, my experience

suggests that it also works well in Algorithm P for plain GADT programs that

require polymorphic recursion.

Of course, since type inference with polymorphic recursion is computationally

undecidable [12, 21], Mycroft’s algorithm will loop forever on some programs. To

ensure termination of Algorithm P , I placed a limit on the number of iterations

that polyrec can make. If polyrec finds a fixpoint within the iteration limit, type

inference for the recursive definition succeeds. If, however, it reaches the iteration

limit before finding a fixpoint, type inference for the recursive definition fails.
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6.1.2 Compositionality

In this subsection, I describe a modification I made to Algorithm W to improve

compositionality in Algorithm P . This modification does not improve the power of

Algorithm P . Instead, it simplifies the development of Algorithm P , and it makes

the behavior of the algorithm more predictable to programmers.

AlgorithmW , which is the foundation of Algorithm P , performs type inference

in a mostly-compositional manner. One notable exception to this compositionality

appears in the way AlgorithmW infers a type for a function application (f e): type

inference for the argument e depends on the type inference result for the function f

(Figure 6.1, p. 151). In other words, Algorithm W exhibits a left-to-right bias. In

addition to function applications, this bias also affects other language constructs

that contain multiple sub-expressions (such as case expressions).

I want to eliminate this bias in Algorithm P for the following two reasons:

1. The bias introduces sideways type information flow (e.g., from a function

to its arguments), which makes it difficult for programmers to predict or

to understand the propagation of type information during type inference.

Since type inference for case expressions in Algorithm P can be sensitive

to the amount of type information available from the context, any sideways

type information flow could hinder programmers’ ability to understand the

behavior of Algorithm P .

2. In general, compositional type inference algorithms are easier to design than

algorithms that are not compositional. A non-compositional type inference

algorithm (such as Algorithm W) must ensure that the type environment

used for type inference is always up-to-date (with respect to the type infor-

mation discovered during type inference), and it must always compose type

substitutions in the right order. Both requirements clutter the algorithm

specification and make refactoring more difficult than it need to be.
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infer(Γ, f e) =

let (θ1, t1) = infer(Γ, f)

(θ2, t2) = infer(Γ, e)

η = US(θ1 ∼ θ2)

θ3 = U(η(t1) ∼ η(t2)→ β) β fresh

in (θ3 ◦ η ◦ θ1, θ3(β))

Figure 6.3: This figure shows McAdam’s proposal for compositional type inference

for function application. Note that θ3 ◦ η ◦ θ1 = θ3 ◦ η ◦ θ2 because η unifies θ1

with θ2. This algorithm is reproduced from McAdam’s 1999 paper on substitution-

unification [26, Figure 6].

The modification that I made to AlgorithmW in Algorithm P was inspired by

McAdam’s work on substitution-unification [26]. In his work, McAdam proposed

the substitution-unification algorithm US, which unifies type substitutions instead

of types. Given idempotent type substitutions θ1 and θ2, US(θ1 ∼ θ2) computes a

most-general idempotent type substitution η such that η ◦ θ1 = η ◦ θ2. McAdam

calls η a most-general unifier of θ1 and θ2.

McAdam proposed a modification to Algorithm W that eliminates the left-to-

right bias by using substitution-unification. Figure 6.3 (p. 154) shows McAdam’s

proposal. Here, type inference for the argument (e) no longer depends on the type

inference result for the function (f). Since θ1 and θ2 are independent type substitu-

tions, McAdam combines them by substitution-unification instead of substitution

composition.

This strategy for compositional type inference is a step in the right direction.

Unfortunately, it is applicable only to expressions that contain two parts (such as

function application) because the algorithm US cannot unify more than two type
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substitutions at once. McAdam did propose a näıve algorithm that unifies a set of

type substitutions using US [25, §4.6]; the algorithm, however, does not help with

the problem because it turns out to be correct only for sets that contain exactly

two substitutions. Due to the large number of ways that the domains of a set of

substitutions may overlap, directly extending US to unify an arbitrary number of

substitutions appears to require extensive and non-trivial modifications.

After repeated failures to extend the algorithm US, I developed the notion of

substitution-combination to replace substitution-unification. Given a set of idem-

potent type substitutions S = {θ1, . . . , θn}, C(S) computes a most-general idem-

potent type substitution ρ such that the following condition holds:

∀ t1, t2. ∀ θ. (θ ∈ S) ∧ (θ(t1) = θ(t2)) ⊃ ρ(t1) = ρ(t2)

This condition states that ρ unifies any pair of types t1 and t2 that are unified by

any element θ of S (the ⊃ symbol represents logical implication). Substitution-

combination is closely related to substitution-unification: given two unifiable type

substitutions θ1 and θ2, the following equations hold modulo variable renaming:

C({θ1, θ2}) = US(θ1 ∼ θ2) ◦ θ1 = US(θ1 ∼ θ2) ◦ θ2

Unlike substitution-unification, it is easy to compute C(S) for a set of idempotent

type substitutions S = {θ1, . . . , θn}:

C(S) = U((α1, . . . , αn) ∼ (θ1(α1), . . . , θn(αn))) where αi = dom(θi)

For example,

C({[(b,c)/a], [Int/b, Bool/c]}) = U((a, (b, c)) ∼ ((b,c), (Int, Bool)))

By unifying every type variable α in the domain α of a type substitution θi with

θi(α), the substitution-combination algorithm ensures that C(S) contains all (and

nothing but) the type equations implied by the type substitutions in the set S.
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infer(Γ, f e) =

let (θ1, t1) = infer(Γ, f)

(θ2, t2) = infer(Γ, e)

θ3 = U(t1 ∼ t2 → β) β fresh

ρ = C({θ1, θ2, θ3})

in (ρ, ρ(β))

Figure 6.4: Function application type inference in Algorithm P .

As an example of how Algorithm P achieves compositional type inference using

substitution-combination, Figure 6.4 (p. 156) shows how it infers the type of a

function application. Note that Algorithm P computes θ1, θ2, and θ3 independently

and combines them all with substitution-combination. This compositional strategy

addresses both of my concerns about the left-to-right bias in Algorithm W : there

is no sideways type information flow, and the type inference algorithm can combine

type substitutions irrespective of ordering.

6.1.3 Branch reachability

The plain GADT type system requires every pattern-matching branch in a well-

typed program to be potentially reachable (§5.1). Since reachability is an extrinsic

property of a GADT pattern-matching branch (i.e., it depends on both the branch

and its context), enforcing GADT branch reachability in a compositional type

inference algorithm tends to require non-local changes to the algorithm. In this

subsection, I describe how Algorithm P enforces the GADT branch reachability

requirement.

Algorithm P enforces the GADT branch reachability requirement by turning

the consistency (i.e., unifiability) between scrutinee types and pattern types into
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explicit type constraints. Whenever Algorithm P infers a new type substitution,

it applies the substitution to the scrutinee types in the constraints and checks that

the scrutinee types in the constraints remain consistent (i.e., unifiable) with the

pattern types. If the check fails, Algorithm P reports type inference failure due to

violation of the GADT branch reachability requirement.

Instead of giving a full account of how Algorithm P enforces GADT branch

reachability here, I will illustrate this feature through an example. Consider the

expression e1 (reproduced here from Figure 5.2, p. 126):

e1 = let null :: forall m a. L m a → Bool

null xs = case xs of

Nil → True

Cons y ys → False

in null Nil

Applying Algorithm P to the case expression in the local let definition of null

produces the following type constraints:

(L m a ∼ L Z b) and (L m a ∼ L (S n) c)

Here L m a is the type of the case scrutinee xs, L Z b is the pattern type of the

Nil branch, and L (S n) c is the pattern type of the Cons branch. Algorithm P

generates one constraint for each pattern-matching branch, and each constraint

represents the reachability of the corresponding branch. In this example, since

both constraints contain two consistent types, both branches are reachable.

Type constraints in Algorithm P have an unusual feature: they cannot appear

in polymorphic types. In many type systems with type constraints, generalizing

a constrained type (i.e., a type that is subject to a type constraint) produces a

polymorphic constrained type. For example, consider the following Haskell type

that uses the type classes feature [14, §4.1]:
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Eq a ⇒ a → a → Bool

The type constraint (Eq a) restricts a to types in the Eq class. Generalizing this

type produces the following polymorphic type:

forall a. Eq a ⇒ a → a → Bool

Note that the type variable a in the constraint (Eq a) is universally quantified

with the rest of the polymorphic type. Instantiating this polymorphic type also

produces a fresh copy of the type constraint:

Eq a1 ⇒ a1 → a1 → Bool

This example shows that including type constraints in a polymorphic type helps

type systems to keep track of type constraints through type generalization and

instantiation. Algorithm P does not keep (branch reachability) type constraints

in a polymorphic type because, unlike other type systems, it does not want to keep

track of the type constraints through type generalization and instantiation. For

example, Algorithm P infers the following polymorphic type for null:

forall m a. L m a → Bool

Instead of this constrained polymorphic type:

forall m a. (L m a ∼ L Z b) ∧ (L m a ∼ L (S n) c)⇒ L m a→ Bool

Dropping type constraints when generalizing the type of a local let definition

allows Algorithm P to restrict the enforcement of GADT branch reachability as

required by the plain GADT type system (§5.1).
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6.2 BRANCH TYPE INFERENCE

Let us move on to the more interesting part of Algorithm P : type inference for

case expressions in plain GADT programs. This is the part of Algorithm P that

is most difficult to design because it must confront the lack of principal types in

the plain GADT type system and use GADT type refinements appropriately to

resolve inconsistencies between the body types of pattern-matching branches in

the case expression. Here, heuristics play an important role: in situations that

require an arbitrary decision, instead of resorting to backtracking search, I try to

make Algorithm P choose the option that, based on available type information,

best matches (my understanding of) programmers’ intuition.

Figure 6.5 (p. 160) outlines how Algorithm P performs type inference for case

expressions. The algorithm in the figure collects type information from multiple

sources, and most of its design difficulty comes from finding appropriate ways to

combine the collected information in a useful manner. Figure 6.6 (p. 161) briefly

describes each variable that appears in the algorithm, and it summarizes the input

and output of each type inference step in a chart to facilitate navigation. Each

column in the chart corresponds to a step (or a local definition) in the algorithm;

the � symbol marks its arguments, and the � symbol marks its results. Each row in

the chart represents a variable in the algorithm; the � symbol marks its definition,

and the � symbol marks its uses.

The chart suggests that the algorithm works in two phases. The first phase

(steps 0–9) consolidates all type information about the case expression into the

placeholder type variable β, the unified scrutinee type s, and the type substitutions

ηi (one for each pattern-matching branch). The second phase (steps A–F) uses the

consolidated type information from the first phase to produce the type inference

result for the case expression. In this section, I describe the first phase, and I will

talk about the second phase in the next section.
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0 infer(Γ, case e of { pi→ ci }) = res where

1 β fresh

2 (θ0, u0) = infer(Γ, e)

3,4 (θi, ui, xi) = inferALT(Γ, β, pi→ ci) for all 1 ≤ i ≤ n (§6.2.1)

5 u = comm(x1, . . . , xn) (§6.2.2)

6 θ = U((u, . . . , u) ∼ (u0, u1, . . . , un))

7 s = θ(u)

8,9 ηi = C({θ, θ0, θi, U(ui ∼ xi)}) for all 1 ≤ i ≤ n

A κ = tyvar(s) ∩ (∪i dom(ηi))

B γ = tyvar(s) \ κ

C trt = tabulate(κ, η1, . . . , ηn) (§6.3.1)

D btt = tabulate(tyvar(Γ) ∪ {β}, η1, . . . , ηn) (§6.3.1)

E ρ = reconcile(γ, trt, btt) (§6.3.2)

F res = (ρ, ρ(β))

Figure 6.5: This figure shows how Algorithm P infers a type for a GADT case

expression. The numbers preceding each step in the algorithm correspond to the

column labels in Figure 6.6 (p. 161), which also provides a short description of

each variable that appears in this algorithm.
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F E D C B A 9 8 7 6 5 4 3 2 1 0

· · � · · · · · · · · � � � · � Γ — Input type environment

� · � · · · · · · · · � � · � β — Branch body type placeholder

· · · · · · � � · · · · · � θ0 — Type subst from case scrutinee

· · · · · · · · · � · · · � u0 — Type from case scrutinee

· · · · · · · � · · · · � θ1 — Type subst from branch #1

· · · · · · · � · � · · � u1 — Scrutinee type from branch #1

· · · · · · · � · · � · � x1 — Pattern type from branch #1

· · · · · · � · · · · � θ2 — Type subst from branch #2

· · · · · · � · · � · � u2 — Scrutinee type from branch #2

· · · · · · � · · · � � x2 — Pattern type from branch #2

· · · · · · · · � � � u — Scrutinee-type specialization template

· · · · · · � � � � θ — Unifier of scrutinee types

· · · · � � · · � s — Unified scrutinee type

· · � � · � · � η1 — Complete type subst for branch #1

· · � � · � � η2 — Complete type subst for branch #2

· · · � � � κ — Scrutinee type indices

· � · · � γ — Scrutinee type parameters

· � · � trt — Type refinement table

· � � btt — Branch type table

� � ρ — Type subst for case expression

� res — Result for case type inference

� Variable definition

� Variable reference

(θ1, u1, x1) = inferALT(Γ, β, p1→ c1)

θ = U((u, u, u) ∼ (u0, u1, u2))

btt = tabulate(tyvar(Γ) ∪ {β}, η1, η2)

Figure 6.6: This figure illustrates the steps and the intermediate results when

Algorithm P (Figure 6.5, p. 160) infers a type for a case expression that has two

branches. Each row shows the uses � and the definition � of a variable, and each

column corresponds to one step of type inference (see the algorithm line numbers

and annotations above the chart).
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6.2.1 Single-branch type inference

Figure 6.7 (p. 163) shows how Algorithm P infers the type of a GADT pattern-

matching branch. This algorithm closely resembles the Non-Dependent GADT

pattern-matching branch type inference algorithm (Figure 4.4, p. 114), which I

already described in detail in §4.2. Therefore in this subsection I describe only the

modifications that I made in the Algorithm P rendition.

The most obvious change in Figure 6.7 is that inferALT has a slightly different

interface from infer, which is used in Algorithm W :

(θ, u→ t) = infer(Γ, p → c)

(θ ◦ [t/β], u, x) = inferALT(Γ, β, p → c)

Here (θ, t) is the result of type inference for the branch body, u is the inferred

branch scrutinee type, and x is the branch pattern type. The inferALT function

uses its type variable argument β to embed the inferred branch body type t into

the returned type substitution θ ◦ [t/β], and it also returns the pattern type x as

part of the result. I designed the new interface of inferALT to accommodate the

needs of case expression type inference in Algorithm P .

A more significant change lies in the treatment of pattern-bound type variables

that find their way into the branch body type or the type environment. Recall

that all GADT type systems I presented in this dissertation prohibit escape and

instantiation of generalized existential type variables (§4.2). Both Non-Dependent

GADT type inference (Figure 4.4, p. 114) and Algorithm P (Figure 6.7, p. 163)

fail immediately if an existential type (i.e., a type variable that is introduced by a

pattern but does not appear in the pattern type of the branch, see §4.2) appears in

the branch body type or the type environment. The algorithms, however, behave

differently if the type variable in question does appear in the pattern type.

Non-Dependent GADT type inference takes a proactive approach: it specializes

the inferred scrutinee type so that the pattern type variable is not considered a
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inferALT(Γ, β, C x → c) =

let (∀α.w → T s) = lookup(C) where α fresh

(η, t) = infer(Γ{x : w}, c)

τ = α ∩ (dom(η) ∪ tyvar(rng(η)) ∪ tyvar(t))

γ = {γ | γ ∈ α ∧ retain(α, η, γ)}

in if τ * tyvar(s) then ⊥

else if γ = ∅

then ([t/β] ◦ η, T µ, T s) where µ fresh

else ([t/β] ◦ η, η(transcb(γ, T s)), T s)

retain(α, η, γ) = case η(γ) of

U w → True

ν → ∃κ ∈ α. κ 6= γ ∧ ν ∈ tyvar(η(κ))

transcb(γ, t) =

if γ# tyvar(t)

then µ where µ fresh

else case t of

U w → U 〈transcb(γ, z) | z ∈ w〉

ν → ν

Figure 6.7: This figure shows how Algorithm P infers a type for a GADT pattern-

matching branch (cf. Figure 4.4, p. 114). This algorithm has a slightly different

interface from the rest of Algorithm P : it returns the branch body type through

substitution on the placeholder type variable β, and it returns both the inferred

scrutinee type and the pattern type of the branch.
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listId xs = case xs of

Nil → Nil

Cons y ys → Cons y ys

Figure 6.8: Length-indexed list identity function.

generalized existential type in the Non-Dependent GADT type system (and thus

can legally escape from the branch). Algorithm P , in contrast, takes the wait-and-

see approach. It does nothing during type inference for a pattern-matching branch

and instead opts to deal with the problem later.

I adopted the wait-and-see attitude in Algorithm P because, in the presence

of GADT type refinements, a single pattern-matching branch contains insufficient

information to detect escaped type variables accurately. The listId function in

Figure 6.8 (p. 164) illustrates the problem. Consider the following results from

applying Algorithm P to the Cons branch:

� Branch scrutinee type: L m b

� Branch pattern type: L (S n) a

� Branch body type: L (S n) a

By Definition 6 (p. 104), the type variable n is a generalized existential type. Since

n appears in the branch body type, the proactive approach requires specializing the

scrutinee type to L (S k) b. In the Non-Dependent GADT type system, which

does not support GADT type refinements, the proactive approach is appropriate

because a generalized existential type that appears in the branch body type will

definitely escape from the branch (and make the branch ill-typed).

However, in the plain GADT type system, which does support GADT type

refinements, the proactive response may be premature: a generalized existential
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type that appears in the branch body type need not necessarily escape. In the

listId example, if Algorithm P infers the type L m b for the case expression

(which it will), then there would be no escape because the generalized existential

type n is “recaptured” by the GADT type refinement [S n/m]. That is not all:

the proactive response (of specializing the scrutinee type) is not only premature

but also counterproductive. Since the specialized scrutinee type L (S k) b is not

unifiable with the pattern type L Z a of the Nil branch, the proactive approach

will cause type inference failure for listId due to branch reachability violation.

To avoid these problems with the proactive response to the potential escape of

generalized existential types, when inferring the type of a single pattern-matching

branch, Algorithm P considers only the instantiated pattern type variables for

specializing the branch scrutinee type.

6.2.2 Scrutinee-type specialization

The reference chart for Algorithm P (Figure 6.6, p. 161) states that the scrutinee

type unifier θ, which the algorithm uses to compute the unified scrutinee type s,

combines type information from four sources (for a two-branch case expression):

� The type inferred from the case scrutinee (u0),

� The scrutinee type inferred from branch #1 (u1),

� The scrutinee type inferred from branch #2 (u2), and

� The scrutinee-type specialization template (u).

The first three types are pretty self-explanatory, and in this subsection I explain

what the fourth type — the scrutinee-type specialization template — is and why

I included it in Algorithm P .
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head xs = case xs of

Cons y ys → y

Figure 6.9: This figure shows the head function for length-indexed lists (cf. the

tail function in Figure 4.1, p. 94). See Figure 3.1 (p. 58) for the definition of the

Cons data constructor.

Earlier I described how the idea of generalized existential types relates to the

appropriate specificity of a branch scrutinee type (§4.2). For a GADT pattern-

matching branch to be well-typed, its scrutinee type must be specific enough to

support escaped and instantiated pattern type variables (i.e., type variables that

are bound by the pattern of the branch). At the same time, the GADT branch

reachability requirement (§5.1) dictates that the scrutinee type of a branch must

remain general enough to retain the reachability of all pattern-matching branches

in the case expression. These two opposing demands work in tandem to define

the appropriate specificity of a case scrutinee type.

There are, however, some situations where the two opposing demands do not

completely fix the specificity of a case scrutinee type. Figure 6.9 (p. 166) shows

the head function, which demonstrates one such situation. The function has the

following two types (plus many more that are not listed here):

head :: forall m a. L m a → a

head :: forall n a. L (S n) a → a

The first type is valid: since the type variable n, which appears in the pattern type

L (S n) a of the Cons branch, does not escape or become instantiated, there is

no need to make the scrutinee type L m a more specific. The second type is also

valid: since head does not have a Nil branch, the (more specific) scrutinee type L

(S n) a cannot cause any branch reachability violations.
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Both types are valid. But which one is better? The first type is more general

— in fact, it is the most general type of head. The second type, however, is more

informative: it clearly states that head is defined only for non-empty lists, and it

makes the GADT type checker enforce this precondition at compile time. Most

programmers should agree that the second type is better than the first.

Programs such as head add an interesting twist to GADT type inference. In

GADT type systems, a more general type is not necessarily better than a more

specific one, and the most-general type (even when one is available) may not be

the “best” type in practice. As a result, a GADT type inference algorithm should

sometimes infer types that are not the most-general. The design decisions then

become where, when, and how specific.

The where part is easy: Algorithm P infers more specific types only for case

scrutinees (and it tries to infer the most-general types elsewhere). The when part

is also easy: Algorithm P makes the type of a case scrutinee more specific when

all pattern types in the case expression have a common top-level structure that

does not appear in the case scrutinee type. For example, in the head function,

all pattern types (there is only one) are of the form L (S x) y, so Algorithm P

decides that it should make the inferred scrutinee type L m a more specific. The

last part, how specific, is closely related to the when. Algorithm P makes the case

scrutinee type only specific enough to share the same top-level structure with all

pattern types in the case expression.

Algorithm P uses the scrutinee-type specialization template u to represent the

common top-level structure in pattern types (Figure 6.6, p. 161). It computes u

with the comm function, which implements a simplified version of least-general

generalization [31] by extracting common top-level type constructors from a set of

types into a new type. Here are a few examples:

comm(L (S n) a) = L (S k) b

comm(Maybe Int, Maybe a) = Maybe b
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comm(Maybe Int, Maybe Bool) = Maybe b

comm((a, a), (b, b)) = (c, d)

Since u contains the common top-level structure that is shared by all pattern

types, Algorithm P specializes the inferred case scrutinee type by unifying u with

other sources of scrutinee type information (as I described in the beginning of this

subsection).

The way Algorithm P specializes an inferred case scrutinee type is not just a

clever type inference trick — it reflects the following fundamental principle about

the quality of case scrutinee types:

The best type for a case scrutinee is the one that best matches2 the

pattern types of the branches in the case expression.

In the ADT type system, all pattern types are uniform (§2.2), so the principle

states that the most-general scrutinee types are the best ones in the ADT type

system. In GADT type systems, where pattern types may be non-uniform, the

best scrutinee types are not necessarily the most-general ones, but the ones that

best approximate the common structure of the pattern types. These more-specific

scrutinee types restrict the values that can flow to the case scrutinee, but that is

actually a good thing: the whole point of using GADT type systems is to allow

such finer distinctions.

I now end this subsection by demonstrating how scrutinee-type specialization

makes Algorithm P more powerful than it would otherwise be. In addition to the

aforementioned benefits, a more specific scrutinee type also induces GADT type

refinements that are more discriminating (and thus have greater typing power).

The wrap function in Figure 6.10 (p. 169) demonstrates this effect. To determine

2Here I use the phrase “best match” informally. For a formal measure of how well two types
match, one can count the number of type constructors in their most-general unifier (the fewer
the better). Inconsistent types, which have no unifier, are the worst matches of each other.
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data T a where

T1 :: T (Maybe Int)

T2 :: T (Maybe Bool)

wrap e = case e of

T1 → [3]

T2 → [True]

Figure 6.10: An example for scrutinee-type specialization.

which one of T a and T (Maybe b) is the better case scrutinee type for the wrap

function, let us consider the GADT type refinements induced by each choice. The

scrutinee type T a induces the following pair of GADT type refinements:

� [Maybe Int/a] for the T1 branch, and

� [Maybe Bool/a] for the T2 branch.

In contrast, the scrutinee type T (Maybe b), which Algorithm P infers for wrap

using scrutinee-type specialization, induces this pair of GADT type refinements:

� [Int/b] for the T1 branch, and

� [Bool/b] for the T2 branch.

This second pair of GADT type refinements is more useful than the first. Unlike

the first pair of type refinements, which cannot reconcile the branch body types

[Int] and [Bool] in wrap, the second pair can do so with [b]. By specializing

the inferred scrutinee types, Algorithm P strips off common top-level structure in

GADT type refinements from different branches. As a result, the type refinements

become more discriminating, which allows Algorithm P to infer types for more

GADT programs.
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data D x y z where

D1 :: D Int Bool a

D2 :: D [b] [c] b

refine e = case e of

D1 → (3, True)

D2 → ([True], [])

Figure 6.11: Running example for branch type reconciliation.

6.3 GADT TYPE REFINEMENTS

To infer a type for a case expression, a GADT type inference algorithm must com-

bine type information from all pattern-matching branches in the case expression

through judicious use of GADT type refinements. In this section, I explain how

Algorithm P accomplishes this task.

The plain GADT type system lacks principal types (§2.4) because GADT type

refinements allow a GADT pattern-matching branch to have multiple maximal

types (which are not instances of one another). The lack of principal types for

GADT pattern-matching branches, which leads to the lack of principal types for

GADT programs, complicates the type inference problem because most existing

algorithms infer only one type for each expression.

Having multiple GADT pattern-matching branches in a case expression adds

an interesting twist to the problem because different branches can place different

demands on the type of the case expression. On the plus side, even if individual

branches have no principal types, competing demands from different branches may

give the case expression a principal type. On the minus side, the principal type,

if it exists, does not come for free: a type inference algorithm must sort through

competing demands to infer a type for the case expression as a whole.
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To demonstrate the second phase of case expression type inference in Algo-

rithm P , I will use the refine function in Figure 6.11 (p. 170) as the running

example for this section. Using this example, I will show how Algorithm P or-

ganizes type information from pattern-matching branches and how it uses GADT

type refinements to resolve inconsistent type information between branches.

6.3.1 Tabulating branch types

Let me start by summarizing the intermediate type inference result for the case

expression in refine from the first phase (steps 0–9) of Algorithm P . Under the

type environment Γ = {e : m}, the branch body type placeholder β = n, and the

pattern types x1 = D Int Bool a (for the D1 branch) and x2 = D [b] [c] b (for

the D2 branch), the first phase produces the following three results:

� s = D x y z

� η1 = [Int/x, Bool/y, z/a, (D Int Bool z)/m, (Int,Bool)/n]

� η2 = [[z]/x, [c]/y, z/b, (D [z] c z)/m, ([Bool],[d])/n]

The unified scrutinee type s contains all currently known information about the

type of the case scrutinee. The type substitutions η1 and η2 contain all currently

known type information about the D1 and the D2 branches, which includes:

� Parametric instantiation (on pattern type variables a and b). For example,

in the D1 branch, the pattern type variable a is instantiated to the type z.

� Type indexing (on scrutinee type variables x and y). For example, in the D2

branch, the scrutinee type variable x refines to the type [z].

� Environment types (substitution on the environment type variable m). For

example, the body of the D1 branch assumes m in the type environment Γ to

be (D Int Bool z).
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� Body types (substitution on the placeholder type variable n). For example,

the body of the D2 branch has type ([Bool], [d]).

The second phase of case expression type inference in Algorithm P uses the

following pieces of type information as input: tyvar(Γ)∪ {β}, tyvar(s), η1, and η2.

Even though m represents the type of the scrutinee e in the type environment Γ,

Algorithm P does not treat m differently due to its special status. As far as the

algorithm is concerned, m is just another type variable in tyvar(Γ) and therefore

does not warrant special treatment.

Since the type substitutions η1 and η2 contain all type information about the

D1 and the D2 branches, Algorithm P no longer needs other pieces of branch type

information such as x1 or θ1. Type substitutions are, however, not very easy to

work with, so Algorithm P tabulates the type information contained in η1 and η2

into two tables:

� The type refinement table (trt) lists the GADT type refinements that are

available in each branch. Each row in the table corresponds to a branch,

and each column corresponds to a type index variable in the scrutinee type.

Each cell in the table shows the GADT type refinement for a specific type

index in a specific branch. Only the rows in the table are ordered.

� The branch type table (btt) lists the Refined type role (which consists of the

branch body type and the types in the environment, see §2.5, Figure 2.9,

p. 49) for each branch. Each row in the table corresponds to a branch, and

each column corresponds to either the placeholder type variable β or a type

variable in the type environment. Each cell in the table shows the type

assumed for a specific type variable in the body of a specific branch. Only

the rows in the table are ordered.

Algorithm P uses these two tables to combine type information from different

branches. Basically, it uses the branch type table (btt) to identify inconsistent
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types between the branches, and it then searches the type refinement table (trt)

in an attempt to reconcile the inconsistency by applying GADT type refinements.

Algorithm P uses the tabulate function to build these two tables. Given a set of

type variables {α1, . . . , αm} and a sequence of type substitutions (η1, . . . , ηn), the

tabulate function builds the following table:

Type Variables

Branch α1 α2 · · · αm

1 η1(α1) η1(α2) · · · η1(αm)

2 η2(α1) η2(α2) · · · η2(αm)
...

...
...

. . .
...

n ηn(α1) ηn(α2) · · · ηn(αm)

To build the branch type table (btt) for the refine example, Algorithm P invokes

tabulate({m, n}, η1, η2), which builds the following table:

Branch Types

Branch m n

D1 D Int Bool z (Int,Bool)

D2 D [z] [c] z ([Bool],[d])

For reference, here are the type substitutions η1 and η2, which I reproduced from

the beginning of this subsection:

η1 = [Int/x, Bool/y, z/a, (D Int Bool z)/m, (Int,Bool)/n]

η2 = [[z]/x, [c]/y, z/b, (D [z] c z)/m, ([Bool],[d])/n]

Building the type refinement table (trt) is slightly more complicated because Al-

gorithm P must first decide on the columns of the table (which correspond to

the type indices in the unified scrutinee type). The algorithm computes the type

indices κ as the scrutinee type variables that appear in the domain of any branch
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type substitution ηi (Figure 6.5, p. 160), and for the refine example it computes

κ = {x, y}. This approach works best if an algorithm implementation can orient

the type substitutions ηi to minimize the size of κ (identifying a type parameter

as a type index is harmless but could cause unnecessary type inference failures).

Invoking tabulate(κ, η1, η2) builds the following type refinement table:

Refinements

Branch x y

D1 Int Bool

D2 [z] [c]

Note that there is no column for z because z is not a type index.

Since Algorithm P applies GADT type refinements by matching a column in

the type refinement table to a column in the branch type table, it is sometimes

easier to follow the algorithm if I set the two tables side-by-side as follows:

Refinements Branch Types

Branch x y m n

D1 Int Bool D Int Bool z (Int,Bool)

D2 [z] [c] D [z] [c] z ([Bool],[d])

The reader should keep in mind that there remain two separate tables whose

contents have very different semantics.

6.3.2 Applying type refinements

In this subsection, I describe the reconcile function, which combines type infor-

mation from the pattern-matching branches in the case expression. The function

accepts the following three pieces of type information as input:

� The scrutinee type parameters γ = tyvar(s) \ κ,
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� The type refinement table (trt), and

� The branch type table (btt).

In return, reconcile computes a type substitution ρ so that (ρ, ρ(β)) is the type

inference result for the case expression. In other words, ρ contains the combined

type information from all pattern-matching branches in the case expression.

Type variable classification In reconcile, Algorithm P classifies the type vari-

ables that appear in the two tables (example for refine shown here) into five

groups. Type variables in each group serve a different function and thus requires

a slightly different treatment:

Refinements Branch Types

Branch x y m n

D1 Int Bool D Int Bool z (Int,Bool)

D2 [z] [*c] D [z] [*c] z ([Bool],[d])

1. The first group is type indices ; each type variable in this group corresponds

to a column in the type refinement table. In the refine example, the type

indices are x and y. A type index represents different type refinements in

different branches.

2. The second group is outer type variables ; each type variable in this group

corresponds to a column in the branch type table. In the refine example,

the outer type variables are m and n. These type variables are in the Outer

type role (§2.5), and Algorithm P applies GADT type refinements across

branches by substituting a type index for an outer type variable.

3. The third group is type parameters ; they are the scrutinee type variables that

do not provide GADT type refinements. In the refine example, the only
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type parameter is z. In Algorithm P , type parameters transfer type infor-

mation directly across branch boundaries. They are the only type variables

that are not subject to GADT type refinements and therefore can appear in

multiple rows in the two tables.

For each row in the two tables that corresponds to a branch, Algorithm P replaces

all type variables in the row (except type parameters) with fresh type variables.

This renaming step prevents unintended type information propagation between

branches. Since the two branches in refine share only the type variable z (which

is a type parameter), the renaming step is not strictly necessary in this example,

and I will skip it here to avoid confusion.

4. The fourth group is pattern type variables ; they are the type variables that

appear in the (renamed) type refinement table but are neither type indices

nor type parameters. In the refine example, the only pattern type variable

is c. These type variables are akin to generalized existential types (§4.2),

and Algorithm P replaces them with Skolem type constants (shown in the

table with the * prefix) to prevent their escape and instantiation.

5. The fifth group is the body type variables ; they are the type variables in the

(renamed) branch type table that do not belong to any of the previous four

groups. In the refine example, the only body type variable is d. These type

variables are not directly accessible from the context of the case expression

because they exist only in the scope of a specific pattern-matching branch.

Column type consistency The goal of the reconcile function is to combine the

types in the branch type table into a type substitution ρ on the outer type variables

(which correspond to the columns in the branch type table). Every column in the

branch type table falls into one of the following three categories:
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1. If all types in a column are consistent and contain no Skolem type constants,

then all branches place consistent demands on the outer type variable of the

column. I call such a column a consistent column. It is easy to infer a type

substitution on the outer type variable: unifying all types in the column will

do the trick.

2. If a column contains two types that are inconsistent, then there must be

two branches that place contradictory demands on the outer type variable

of the column. I call such a column an inconsistent column. Reconciling the

contradictory demands requires applying GADT type refinements.

3. If a Skolem type constant appears in a column, then the corresponding pat-

tern type variable may escape through the outer type variable of the column.

I also call such a column an inconsistent column, and preventing the pattern

type variable from escaping also requires applying GADT type refinements.

Tactics for inconsistent columns Algorithm P has two tactics for extracting

information from an inconsistent column in the branch type table.

1. If all types in the inconsistent column are built from the same type construc-

tor, Algorithm P destructs the column by replacing the outer type variable

of the column with a fresh type built from the same type constructor. Each

type argument for the destructed type constructor forms a new column in

the branch type table.

2. Alternatively, if the (btt) column is unifiable with exactly one column in the

type refinement table (trt), Algorithm P applies GADT type refinements by

replacing the outer type variable of the (btt) column with the type index of

the (trt) column.

By design, Algorithm P never applies these tactics to a consistent column. In

other words, it applies GADT type refinements only if there are no alternatives
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(i.e., only in case of type inconsistencies that cannot be reconciled by other means).

Similarly, Algorithm P applies GADT type refinements only if there is a unique

matching column in the type refinement table. In other words, it applies GADT

type refinements only when there is no ambiguity about which type index to use.

Both designs help Algorithm P behave in a conservative and predictable manner.

Example I now demonstrate the two tactics using the refine example:

ρ = id

Refinements Branch Types

Branch x y m n

D1 Int Bool D Int Bool z (Int,Bool)

D2 [z] [*c] D [z] [*c] z ([Bool],[d])

The tables preceding this sentence (reproduced from p. 175) show the inputs

of the reconcile function after Algorithm P Skolemizes the pattern type variables.

The type substitution ρ (shown above the tables) starts as the identity substitu-

tion, and it will grow as Algorithm P extracts more information from the branch

type table. Here, columns m and n are both inconsistent; since Algorithm P does

not require a specific order when dealing with inconsistent columns, I (randomly)

choose to work on the m column first. Both types in the m column are built from

the type constructor D, so Algorithm P destructs the column and replaces m with

the fresh type (D o p q):

ρ = [(D o p q)/m]

Refinements Branch Types

Branch x y o p q n

D1 Int Bool Int Bool z (Int,Bool)

D2 [z] [*c] [z] [*c] z ([Bool],[d])
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Note that ρ has recorded the type substitution on m, and the m column in the

branch type table is replaced by three new columns (o, p, and q), which correspond

to the three type arguments of the data constructor D.

Next, I choose to work on the p column. Column p illustrates what I call an

opposable thumb: an outer type variable that needs to have different top-level type

constructors in different branches. Opposable thumbs are useful to Algorithm P

because they clearly indicate the need for GADT type refinements, and they often

contain enough information to identify the exact type refinements to apply. Here,

the p column is unifiable with exactly one column (y) in the type refinement table,

which means that y is the only type index whose type refinements can reconcile

the inconsistencies for the outer type p. Therefore, Algorithm P applies to p the

GADT type refinements that are induced by y: it replaces p with y and removes

the p column from the branch type table:

ρ = [(D o y q)/m, y/p]

Refinements Branch Types

Branch x y o q n

D1 Int Bool Int z (Int,Bool)

D2 [z] [*c] [z] z ([Bool],[d])

Note that ρ now also includes the type substitution on p. Algorithm P has

applied each tactic once, and two inconsistent columns (o and n) remain. Since a

branch type table may have many inconsistent columns, Algorithm P repeatedly

applies the tactics until there are no applicable inconsistent columns left, and I

will do the same in this demonstration. Next I destruct the n column:
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ρ = [(D o y q)/m, y/p, (r,s)/n]

Refinements Branch Types

Branch x y o q r s

D1 Int Bool Int z Int Bool

D2 [z] [*c] [z] z [Bool] [d]

Next I apply GADT type refinements from the x column to the o column:

ρ = [(D x y q)/m, y/p, (r,s)/n, x/o]

Refinements Branch Types

Branch x y q r s

D1 Int Bool z Int Bool

D2 [z] [*c] z [Bool] [d]

Next I apply GADT type refinement from the x column to the r column, but

things are a little different this time around: the two columns have a nontrivial

most-general unifier σ = [Bool/z]. To apply the GADT type refinement from x,

Algorithm P checks that σ does not replace a type parameter with a type that

contains Skolem type constants (it does not because σ(z) = Bool), and it applies

σ to both tables as follows:

ρ = [(D x y q)/m, y/p, (x,s)/n, x/o, x/r]

Refinements Branch Types

Branch x y q s

D1 Int Bool Bool Bool

D2 [Bool] [*c] Bool [d]

Note that all occurrences of z in the tables are replaced by Bool. There is

only one inconsistent branch s left, which Algorithm P eliminates by applying the
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GADT type refinement y. Unifying the columns s and y produces the most-general

unifier σ = [*c/d], which replaces d with a Skolem type constant. Since d is not a

type parameter, the escape check does not apply, so Algorithm P does not report

an error. Applying σ to the tables produces no observable effect because the only

occurrence of d is removed along with the rest of the s column:

ρ = [(D x y q)/m, y/p, (x,y)/n, x/o, x/r, y/s]

Refinements Branch Types

Branch x y q

D1 Int Bool Bool

D2 [Bool] [*c] Bool

At this point, neither tactic is applicable to the only remaining column in the

branch type table, so the iterative process in the reconcile function ends.

Final steps Since Algorithm P has exhausted its tactics, it checks the final

branch type table for consistency:

� Are there any Skolem type constants left in the branch type table? Type

inference fails if the answer is yes, because the yes answer indicates that a

pattern type variable escaped from a branch.

� Are all the rows in the branch type table unifiable? Type inference fails if

the answer is no, because the no answer indicates type inconsistencies that

are beyond the capabilities of the two tactics employed by Algorithm P .

The final branch type table in the retain example, which contains a single

consistent column q, passes both tests, so Algorithm P unifies the rows in the

table with the outer type variable q to produce the type substitution [Bool/q].

Composing it with ρ from the previous step produces the final result for reconcile:

ρ = [(D x y Bool)/m, y/p, (x,y)/n, x/o, x/r, y/s, Bool/q]
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This type inference result ρ, combined with the placeholder type variable β and

the type environment Γ, states that the case expression in the refine function

has type (x,y) under the assumption that the case scrutinee e has type D x y

Bool. In other words, the refine function has the following type:

refine :: forall x y. D x y Bool → (x, y)

This result concludes my demonstration of how Algorithm P applies GADT type

refinements to reconcile type inconsistencies between pattern-matching branches.

Discussion Algorithm P relies on opposable thumbs to determine inconsistent

columns and to identify the appropriate GADT type refinements that it should

apply to reconcile the inconsistencies (p. 179). In the refine example, opposable

thumbs readily arise from the branches themselves. In other programs, however,

their formation may rely on additional type information from the context. This

potential dependency on contextual type information is why compositionality is

important for the predictability of Algorithm P (§6.1).

Observant readers may have noticed that the type Algorithm P inferred for

refine (which is also its only type) requires non-pointwise type information flow

between the scrutinee type and the pattern type of the D2 branch:

Scrutinee Type

Pattern Type

D

D

x

[b]

y

[c]

Bool

b

Algorithm P achieves this feat by classifying b (which appears in the tables as z)

as a type parameter, so it can specialize it to Bool and rely on non-pointwise type

information flow to propagate this type specialization.
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6.4 SUMMARY

In this chapter, I presented Algorithm P , which I designed to infer types for plain

GADT programs. My goal for Algorithm P was not to achieve completeness, but

to test (and to push) the boundaries of GADT type inference in the total absence

of programmer type annotations.

Algorithm P follows a conservative design strategy; it relies heavily on ideas

and previous work by Milner [27], Mycroft [29], and McAdam [26]. Its structure is

largely conventional, and most of the new machinery is isolated in the parts of the

algorithm that deal with GADT pattern-matching branches and case expressions.

The relatively unobtrusive extension from Algorithm W to Algorithm P should

make the new type inference machinery easier to understand and to implement in

other type inference systems.

The behavior of Algorithm P is similarly conservative by design. Algorithm P

is refinement-averse; it tries to avoid applying GADT type refinements whenever

possible. Even when GADT type refinements are necessary, Algorithm P applies

them only if it can identify a unique type index to use. This conservative design

helps Algorithm P mimic the behavior of Algorithm W (which is already familiar

to many programmers), and it should make the behavior of Algorithm P easier for

programmers to predict and to understand.

The design of Algorithm P takes advantage of many properties of the plain

GADT type system. For example, Algorithm P specializes the inferred type of a

case scrutinee based on the principle that a scrutinee type should be a good match

to the pattern types. In other situations, however, type system properties are not

very useful for judging design decisions. For example, both the proactive and the

wait-and-see approaches to dealing with the escape of generalized existential type

variables will likely be wrong for infinitely many programs. Making good decisions

in these situations may rely more on cognitive sciences than on mathematics, and
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I try to make do with my intuition and experiences.

Of course, an important, outstanding question is “does it really work?” In the

next chapter I will illustrate the power and the limitations of Algorithm P through

32 program examples.



185

Chapter 7

ALGORITHM P BY EXAMPLE

In the previous chapter, I described the design of Algorithm P . Does it actually

work in practice? In this chapter, I try to answer this question by demonstrating

Algorithm P through 32 program examples. I selected these examples from my

type inference algorithm test suite, which contains 145 test cases. I designed a few

of the selected examples to illustrate specific features of Algorithm P ; the others

came from the following applications domains:

� Dimensional types [37, §4],

� Length-indexed lists,

� Generic N -way zip [37, §5.3],

� Tagless term interpreters [38, §5.7],

� Functional reactive programming [30],

� Monad libraries,

� Type equality witnesses,

� Integer ordering witnesses [38, §3.7],

� Shape-indexed binary-tree paths [38, §3.3],

� Balance-indexed AVL trees [38, §4.1], and

� Color-indexed red-black trees [38, Appendix A].
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The following table shows the distribution of program examples:

Well-typed examples for which type inference succeeds 25

Well-typed examples for which type inference fails 5

Ill-typed examples for which type inference fails 2

Total 32

Of particular interest are the five well-typed examples for which type inference

fails. They illustrate limitations of Algorithm P and highlight possible starting

points for future work, and I will discuss these examples in §7.5.

7.1 ALGORITHM IMPLEMENTATION

I developed Algorithm P as a Haskell program. This program is currently the only

complete specification of the algorithm. The algorithm implementation consists of

854 lines of code (excluding comments and blank lines), which includes 154 lines of

source language definition for the Frown parser generator [13]. The complete source

code of the implementation is listed in Appendix B. To help me evaluate design

decisions and prevent regression during development, I maintained a suite of test

programs, which currently has 805 lines of code with 146 top-level definitions. Type

inference for the entire test suite takes about three seconds on an IBM ThinkPad

X30 laptop computer manufactured in 2003.

The algorithm implementation uses a source language syntax that is similar to

the Haskell syntax I used throughout this dissertation, but with the requirement

that constructs with a variable number of parts (such as local let definitions and

pattern-matching branches in case expressions) must enclose those parts in curly

brackets and separate them with semicolons. For example, here is what the null

function in Figure 4.1 (p. 94) looks like in this modified syntax:

null xs = case xs of
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{ Nil → True

; Cons y ys → False }

I also made three changes to data type declarations:

1. There is no need to declare empty data types (i.e., data types that have no

data constructors),

2. There is no need to specify the arity of the type constructor when declaring

a new data type, and

3. There is no need to explicitly quantify type variables in a data constructor

declaration.

For example, here is how I would declare length-indexed lists (Figure 3.1, p. 58)

for the Algorithm P implementation:

data L where

{ Nil :: L Z a

; Cons :: a → L n a → L (S n) a }

Note that declarations for the empty S and Z data types have disappeared, the

declaration for L now says data L instead of data L n a, and the explicit forall

quantification in the declared types of Nil and Cons is now implicit.

The algorithm implementation provides built-in support for natural numbers

and pairs; programmers are responsible for declaring all other (generalized) alge-

braic data types as necessary. Figure 7.1 (p. 188) defines seven data types that

appear throughout the examples in this chapter. Note that the Haskell list data

type [a] is now named (La a) with data constructors N and C, and the Haskell

Either type is now named E with data constructors L and R. All other types in

the figure appear in either the Haskell 98 standard prelude [14, §8] or an earlier

chapter of this dissertation, so I list them without further explanation.
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data Bool where -- Boolean data type

{ True :: Bool ; False :: Bool }

data Maybe where -- Option data type

{ Nothing :: Maybe a

; Just :: a → Maybe a }

data Ord where -- Ordering relation data type

{ LT :: Ord ; EQ :: Ord ; GT :: Ord }

data E where -- Tagged union (sum) data type

{ L :: a → E a b

; R :: b → E a b }

data La where -- Standard homogeneous list (ADT)

{ N :: La a

; C :: a → La a → La a }

data L where -- Length-indexed list (GADT)

{ Nil :: L Z a

; Cons :: a → L n a → L (S n) a }

data Term where -- Tagless term expressions

{ RepInt :: Int → Term Int

; RepBool :: Bool → Term Bool

; RepCond :: Term Bool → Term a → Term a → Term a

; RepSnd :: Term (a, b) → Term b

; RepPair :: Term a → Term b → Term (a, b) }

Figure 7.1: Basic data types in type inference examples.
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-- forall a b. L (S a) b → b

head e = case e of

{ Cons x xs → x }

-- forall a b. L (S a) b → L a b

tail e = case e of

{ Cons x xs → xs }

-- forall a b. L a b → Bool

null e = case e of

{ Nil → True

; Cons x xs → False }

Figure 7.2: Non-Dependent GADT type inference examples.

7.2 NON-DEPENDENT PROGRAMS

In this section, I focus on Non-Dependent GADT programs, which are about the

simplest GADT programs of all. Figure 7.2 (p. 189) shows three functions that

operate on length-indexed lists (cf. Figure 4.1, p. 94). The Haskell-style comment

above each example is not part of the example; I use the comments to show the

results produced by the implementation. If type inference succeeds (which is the

case for all three examples in Figure 7.2), the comment above each example lists

the type inferred for the example. If type inference fails (as in Figure 7.6, p. 194),

the comment shows the error message.

Algorithm P successfully infers types for the Non-Dependent GADT programs

(head, tail, and null) in Figure 7.2. Due to scrutinee type specialization (§6.2),

Algorithm P does not infer the most-general type for head. The following type of

head is strictly more general:

head :: forall a b. L a b → b
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-- forall a. Term a → Maybe Int

term3 e = case e of

{ RepInt i → Just 3

; RepBool b → Nothing }

-- forall a b. Term a → La b → La b

repId e x = case e of

{ RepInt i → x

; RepBool b → N }

Figure 7.3: Type inference without principal types.

Even though the inferred type of head is less general than the one I listed here,

the inferred type is better because it prevents programmers from applying head to

Nil and causing a runtime pattern-matching failure. The head example echoes the

principle for deciding the specificity of a scrutinee type (§6.2): the scrutinee type

should be specific where the pattern types are specific, and it should be general

where the pattern types are general.

7.2.1 Type refinement aversion

Figure 7.3 (p. 190) shows two Non-Dependent GADT programs that also have

additional types in the plain GADT type system. In other words, a type inference

algorithm can choose to infer either a type that requires GADT type refinements

or a type that does not. I already described repId in some detail in §2.4, and here

are two types of term3:

term3 :: forall a. Term a → Maybe a

term3 :: forall a. Term a → Maybe Int

Note that the two types are not instances of each other, and that only the first
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of the two types requires GADT type refinements. Algorithm P is, by design,

refinement-averse (§6.3): it avoids applying GADT type refinements unless there

is a clear need for them. As Figure 7.3 shows, Algorithm P infers the second

of the two types for term3 and the most-general Non-Dependent GADT type for

repId (whose other maximal types all require GADT type refinements; see §4.1).

Refinement aversion helps Algorithm P choose between competing maximal types

in a way that is easy for programmers to understand.

Figure 7.4 (p. 192) shows a Non-Dependent GADT program rotate that ro-

tates a red-black tree by recombining its three subtrees differently according to

the two Dir arguments. Refinement aversion helps Algorithm P infer a type for

rotate that introduces no local type information in the RNode branch, which is

what programmers expect for this function.

7.2.2 Type equality witnesses

There are, however, some programs for which refinement aversion does not work

very well. Figure 7.5 (p. 193) shows the Equ data type, whose only value Refl

witnesses that the two type arguments of Equ are identical (cf. the Equal data

type in §2.3). Programs that manipulate type-equality witnesses, such as the

functions equ1 and equ2 in Figure 7.5, are useful mostly because of their types:

equ1 :: forall a b. Equ a b → a → b

equ2 :: forall a b. Term a → Term b → Maybe (Equ a b)

Under these types, equ1 converts between values of (witnessed) equal types, and

equ2 returns a type-equality witness if its two arguments represent object-level

values with the same (object-level) type. In contrast, the types that Algorithm P

infers for these functions are much less useful: equ1 is an identity function with

an extra argument, and equ2 returns a trivial witness of reflexivity (i.e., a type is

equal to itself).
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data RoB where

{ Leaf :: RoB Black Z

; RNode :: RoB Black n → Int → RoB Black n → RoB Red n

; BNode :: RoB cL m → Int → RoB cR m → RoB Black (S m) }

data Dir where

{ LeftD :: Dir ; RightD :: Dir }

-- forall a. Dir → Int → RoB Black a → Dir → Int →

-- RoB Black a → RoB Red a → RoB Black (S a)

rotate dir1 pE sib dir2 gE uncle tree = case tree of

{ RNode x e y → case dir1 of

{ RightD → case dir2 of

{ RightD → BNode (RNode x e y) pE (RNode sib gE uncle)

; LeftD → BNode (RNode uncle gE x) e (RNode y pE sib) }

; LeftD → case dir2 of

{ RightD → BNode (RNode sib pE x) e (RNode y gE uncle)

; LeftD → BNode (RNode uncle gE sib) pE (RNode x e y) } } }

Figure 7.4: This figure shows a red-black-tree rotation function rotate and the

type Algorithm P infers for the function. The rotate function is adapted from

the 2007 summer school notes by Sheard and Linger [38, Appendix A].
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data Equ where

{ Refl :: Equ a a }

-- forall a b. Equ a a → b → b

equ1 e x = case e of

{ Refl → x }

-- forall a b c. Term a → Term b → Maybe (Equ c c)

equ2 x y = case x of

{ RepInt i → case y of

{ RepInt j → Just Refl

; RepBool b → Nothing }

; RepBool c → case y of

{ RepInt j → Nothing

; RepBool b → Just Refl } }

Figure 7.5: Type inference for type equality witnesses.

It is hard to design an algorithm that infers useful types for equ1 and equ2

because there are so many choices. Here I list three more for equ1:

equ1 :: forall a b. Equ [a] [b] → a → b

equ1 :: forall a b c. Equ a b → (a → Int) → b → Int

equ1 :: forall a b c. Equ a b → Equ b c → Equ a c

This list of three types merely scratches the surface of all useful types that equ1

may have. A type inference algorithm may infer one, but probably not three,

and definitely not all of the useful types for equ1. Therefore, while Algorithm P

can definitely use some improvement, the ultimate limitation lies not in the type

inference algorithm, but in the language of types.
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data K where

{ KInt :: Int → K Int

; KPair :: a → b → K (a, b) }

-- ERROR: A pattern type escapes in equalize

gext7x e = case e of

{ KInt i → Nothing

; KPair a b → Just a }

-- ERROR: A branch is unreachable

gext8x e = case e of

{ KInt i → Nothing

; KPair a b → Just (a+3) }

Figure 7.6: Generalized existential types in type inference.

7.2.3 Generalized existential types

My next examples in Figure 7.6 (p. 194) demonstrate how Algorithm P deals

with escape (gext7x) and instantiation (gext8x) of generalized existential type

variables (§4.2). Algorithm P correctly rejects both (ill-typed) programs, and the

different error messages reflect the different ways that it deals with generalized

existential type escape and instantiation (§6.2):

Escape Algorithm P infers a scrutinee type for a branch without considering

whether a generalized existential type might escape, and only at the end of

case expression type inference does it check that no generalized existential

type escapes. This wait-and-see approach allows Algorithm P to infer types

for programs that use GADT type refinements to prevent escape, and it also

allows Algorithm P to identify escaped generalized existential types as an

individual failure mode. The gext7x function demonstrates escape.
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Instantiation In contrast, Algorithm P deals with an instantiated generalized ex-

istential type by specializing the scrutinee type (§4.2). I adopted this proac-

tive approach because an instantiated generalized existential type is unlikely

to go away without specific remedial action by Algorithm P . This approach

always completely eliminates the instantiation problem, but it could cause a

different problem later in the type inference process. The gext8x function

demonstrates instantiation.

Algorithm P infers K u as the case scrutinee type for the gext7x function

(Figure 7.6, p. 194). Since the (generalized existential) type of the variable a

(introduced by the pattern KPair a b) escapes, Algorithm P rejects gext7x with

a descriptive message. The gext8x function requires instantiating the type of a

(bound by the pattern KPair a b) to Int, so Algorithm P infers K (Int, v) as

its case scrutinee type. Since this scrutinee type is not unifiable with the pattern

type K Int of the KInt branch, Algorithm P concludes that the KInt branch is

unreachable and rejects gext8x for branch reachability violation.

The examples in this section indicate that Algorithm P is very effective at type

inference for Non-Dependent GADT programs.

7.3 GADT TYPE REFINEMENTS

In addition to Non-Dependent GADT programs, Algorithm P can also infer types

for programs that require GADT type refinements. Due to its refinement-averse

nature, Algorithm P applies GADT type refinements only when it detects one of

the following three situations during type inference (§6.3):

1. A generalized existential type variable is about to escape,

2. Contextual type information suggests GADT type refinements, or

3. The body types of two branches form an opposable thumb.
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data Avl where

{ Tip :: Avl Z

; LNode :: Avl n → Int → Avl (S n) → Avl (S (S n))

; SNode :: Avl n → Int → Avl n → Avl (S n)

; MNode :: Avl (S n) → Int → Avl n → Avl (S (S n)) }

-- forall a. Avl a → Int → Avl (S (S a)) →

-- E (Avl (S (S a))) (Avl (S (S (S a))))

rotl u v w = case w of

{ SNode a x b → R (MNode (LNode u v a) x b)

; LNode a x b → L (SNode (SNode u v a) x b)

; MNode k y c → case k of

{ SNode a x b → L (SNode (SNode u v a) x (SNode b y c))

; LNode a x b → L (SNode (MNode u v a) x (SNode b y c))

; MNode a x b → L (SNode (SNode u v a) x (LNode b y c)) } }

Figure 7.7: This figure shows the type Algorithm P infers for the rotl function,

which performs a left-rotation on a balance-indexed AVL tree. The rotl function

is adapted from the 2007 Summer School Notes by Sheard and Linger [38, §4.1].

In this section, I demonstrate how these situations help Algorithm P apply GADT

type refinements during type inference.

7.3.1 Generalized existential type escape

Type inference for the rotl function in Figure 7.7 (p. 196) demonstrates how

Algorithm P uses the first situation to help it apply GADT type refinements.

GADT type refinements are important in this example because they allow the

rotl function to have a more general type. Without GADT type refinements, the

most-general type of rotl would be as follows:
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rotl :: forall a. Avl (S a) → Int → Avl (S (S (S a))) →

E (Avl (S (S (S a)))) (Avl (S (S (S (S a)))))

This refinement-free type of rotl states that its first argument must be a tree of

height one (or greater), and its second argument must be a tree of height three (or

greater). In contrast, the type Algorithm P infers for rotl (Figure 7.7) is better

because it allows rotl to accept shorter trees as arguments.

Algorithm P applies GADT type refinements while inferring a type for rotl

to prevent a generalized existential type from escaping. Consider the inner-most

MNode branch, which appears in the last line of the rotl function. Here are the

types Algorithm P infers for the branch:

� Branch pattern type: Avl (S (S m))

� Branch scrutinee type: Avl (S k)

� Branch body type: Avl (S (S (S m)))

By Definition 6 (p. 104), the type variable m is a generalized existential type. Since

m also appears in the branch body type, Algorithm P must take action to prevent

it from escaping. As luck would have it, this branch induces the type refinement

[S m/k]. So, to capture m, Algorithm P applies the type refinement and rewrites

the branch body type into Avl (S (S k)).

This example shows how possible escape of generalized existential types helps

Algorithm P apply GADT type refinements.

7.3.2 Contextual type information

Type inference for the fdFun function in Figure 7.8 (p. 198) demonstrates how

Algorithm P uses the second situation to help it apply GADT type refinements.

GADT type refinements are important in this example because they allow the
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data FunDesc where

{ FDI :: FunDesc a a

; FDC :: b → FunDesc a b

; FDG :: (a → b) → FunDesc a b }

-- forall a b. FunDesc a b → a → b

fdFun e = case e of

{ FDI → λx → x

; FDC b → λx → b

; FDG f → f }

Figure 7.8: This figure shows the type Algorithm P infers for the fdFun function,

which evaluates a function description arrow to a function. The fdFun function is

adapted from the 2005 paper on functional reactive programming optimization by

Nilsson [30, §4.1].

fdFun function to have a more general type. Without GADT type refinements,

the most-general type of fdFun would be as follows:

fdFun :: forall a. FunDesc a a → a → a

This refinement-free type restricts fdFun to function descriptions with the same

domain and range, so it is less general than the type inferred by Algorithm P .

The FDI branch in fdFun is essentially the same as the Refl branch in equ1

(Figure 7.5, p. 193), and, as I explained earlier, the right type for such a branch

really depends on the intention of the programmer. As luck would have it, the FDG

branch reveals the programmer’s intention with its type:

FunDesc a b → a → b
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Using this piece of type information, which originates completely outside of the

FDI branch, helps Algorithm P to narrow down the type for the FDI branch and

successfully infer the expected type for the fdFun function.1

This example shows how type information from the context of a branch helps

Algorithm P to apply GADT type refinements.

7.3.3 Opposable thumbs

Type inference for the gadt1 function in Figure 7.9 (p. 200) demonstrates how

Algorithm P uses the third situation to help it apply GADT type refinements.

GADT type refinements are important in this example because gadt1 does not

have a type in the Non-Dependent GADT type system.

Algorithm P applies GADT type refinements while inferring a type for gadt1

because it detects an opposable thumb: an inconsistency between the body types

of two branches. Consider the body types of the two branches in gadt1:

� Branch body type (Nil): L Z a

� Branch body type (Cons): L (S n) b

Since these two branch body types are inconsistent (i.e., they are not unifiable),

a type of gadt1 must use GADT type refinements to reconcile the inconsistency.

The opposable thumb makes Algorithm P overcome its refinement-aversion and

apply GADT type refinements to infer a type for gadt1.

The functions term1 and term7 (Figure 7.9, p. 200) also demonstrate how

opposable thumbs make Algorithm P apply GADT type refinements during type

inference. The opposable thumb in term1 is pretty obvious:

1The OutsideIn algorithm by Schrijvers et al. [36] uses this same approach to infer the types
of GADT programs. It is no coincidence that fdFun is the only program (out of 30 well-typed
programs) in this chapter whose type the OutsideIn algorithm can successfully infer without
programmer type annotations.
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-- forall a b. L a b → L a b

gadt1 e = case e of

{ Nil → Nil

; Cons x xs → Cons x xs }

-- forall a. Term a → a

term1 e = case e of

{ RepInt i → i

; RepBool b → b }

-- forall a b. Term a → (a → Maybe b) → Maybe b

term7 e f = case e of

{ RepInt i → f 3

; RepBool b → f True

; RepPair u v → Nothing }

Figure 7.9: Type inference with GADT type refinements.

� Branch body type (RepInt): Int

� Branch body type (RepBool): Bool

Just as in gadt1, this inconsistency forces Algorithm P to apply GADT type

refinements to infer a type for term1. The situation for term7 is slightly more

interesting because it involves three branches and types in the environment. Con-

sider the inferred type of f in each of the three branches in term7:

� Type of f (in RepInt branch): Int → c

� Type of f (in RepBool branch): Bool → d

� Type of f (in RepPair branch): x
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Note that the type of f is totally unconstrained in the RepPair branch because f

does not appear in that branch. Even though the type of f in the RepPair branch

is consistent with any type, the types of f in the RepInt and RepBool branches are

inconsistent, and this single inconsistency is enough to form an opposable thumb.

As a result, Algorithm P applies GADT type refinements and successfully infers

a type for the term7 function.

In this section, I demonstrated that Algorithm P can indeed infer types for

programs that require GADT type refinements and that it can do so without

programmer type annotations. In the next section, I will present more program

examples that require not only GADT type refinements but also polymorphic

recursion.

7.4 POLYMORPHIC RECURSION

Polymorphic recursion is quite common in recursive GADT programs because a

GADT data constructor may have a non-uniform range type (§2.3). Since GADT

type arguments can reflect the structure of a value, even structural recursion over

a generalized algebraic data type may require polymorphic recursion. Therefore a

GADT type inference algorithm must provide support for polymorphic recursion

to be practically useful.

Instead of developing a type inference algorithm specifically for polymorphic

recursion over GADT data values, I adopted an iterative algorithm proposed by

Mycroft to infer the types of general polymorphic recursive functions (§6.1). Type

inference with polymorphic recursion is undecidable [12, 21], so I restrict this

algorithm to only a small number of iterations2 to ensure termination.

Figure 7.10 (p. 202) lists three recursive GADT programs (length-indexed list

2I used 20 iterations as the limit in my implementation. However, experiment shows that even
a limit of 3 iterations is sufficient for Algorithm P to produce the same result for all programs
in my test suite.



202

-- forall a b. L a b → Int

length l = case l of

{ Nil → 0

; Cons x xs → 1 + length xs }

-- forall a b c. (a → b) → L c a → L c b

map f l = case l of

{ Nil → Nil

; Cons x xs → Cons (f x) (map f xs) }

-- forall a. Term a → a

eval4 x = case x of

{ RepInt i → i

; RepBool b → b

; RepCond u a b → case eval4 u of

{ True → eval4 a

; False → eval4 b }

; RepSnd u → case eval4 u of { (x, y) → y }

; RepPair a b → (eval4 a, eval4 b) }

Figure 7.10: This figure shows the types Algorithm P infers for three functions

that conduct polymorphic recursion on length-indexed lists (length, map) and on

tagless term representations (eval4).
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length, length-indexed list map, and a tagless term interpreter eval4). Although

the type inference algorithm for polymorphic recursion is not specifically tailored

for GADT programs, it still performs quite well and successfully infers the types

that programmers expect of these programs.

The Mycroft algorithm performs well because these programs contain so much

redundant type information that Algorithm P does not need to rely on recursive

references for type information. For example, let me take the map function and

replace its recursive reference with an undefined expression:

map f l = case l of

{ Nil → Nil

; Cons x xs → Cons (f x) (undefined f xs) }

Even though the recursive reference has been erased, the branch body types still

exhibit an opposable thumb, which enables Algorithm P to apply GADT type

refinements and infer a type for map. Since the recursive reference is not essential

to type inference, the Mycroft algorithm can incrementally specialize the inferred

type for map without causing type inference failure for the case expression.

Luckily, this phenomenon (the abundance of type information) appears to be

common among recursive GADT programs. This abundance allows Algorithm P

to infer types for many different programs:

� Generic N -way zip (Figure 7.11, p. 204),

� Shape-indexed tree search and extraction (Figure 7.12, p. 205),

� Reified state monad (Figure 7.13, p. 206), and

� AVL-tree node insertion (Figure 7.14, p. 207).

The examples in this section demonstrate that, although type inference with

polymorphic recursion is generally undecidable, Algorithm P can still support
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data Zip2 where

{ Zero2 :: Zip2 u (La u)

; Succ2 :: Zip2 u v → Zip2 (w → u) (La w → v) }

-- forall a b. Zip2 a b → a → b

zip2 n f =

let { z2 = zipS n f z2

; zipZ e = case e of

{ Zero2 → N

; Succ2 n → λys → zipZ n }

; zipS e f r = case e of

{ Zero2 → C f r

; Succ2 n → λys → case ys of

{ N → zipZ n

; C z zs → zipS n (f z) (r zs) } } }

in z2

Figure 7.11: This figure shows the type Algorithm P infers for the zip2 function,

which implements generic N -way zip for lists. The zip2 function is adapted from

the 2006 Spring School Notes by Sheard [37, §5.3].
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data Tree where

{ End :: a → Tree Nd a

; Fork :: Tree u a → Tree v a → Tree (Fk u v) a }

data Path where

{ Here :: Path Nd

; ForkL :: Path x → Path (Fk x y)

; ForkR :: Path y → Path (Fk x y) }

-- forall a b. (a → Bool) → Tree b a → La (Path b)

find f t = case t of

{ End m → case f m of

{ True → C Here N

; False → N }

; Fork x y → append (map ForkL (find f x))

(map ForkR (find f y)) }

-- forall a b. Path a → Tree a b → b

extract p t = case p of

{ Here → case t of

{ End m → m }

; ForkL p1 → case t of

{ Fork x y → extract p1 x }

; ForkR p1 → case t of

{ Fork x y → extract p1 y } }

Figure 7.12: This figure shows the types Algorithm P infers for the find and the

extract function. The former returns shape-indexed tree paths from a search, and

the latter extracts a value at a specific path in a tree. These functions are adapted

from the 2007 Summer School Notes by Sheard and Linger [38, §3.3].
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data State where

{ Bind :: State s a → (a → State s b) → State s b

; Return :: a → State s a

; Get :: State s s

; Put :: s → State s () }

-- forall a b. State a b → a → (a, b)

runState e s = case e of

{ Return a → (s, a)

; Get → (s, s)

; Put u → (u, ())

; Bind m k → case runState m s of

{ (s1, a1) → runState (k a1) s1 } }

Figure 7.13: This figure shows the type Algorithm P infers for runState, which

evaluates a computation in a reified state monad (cf. Figure 7.22, p. 217).

polymorphic recursion in a practical setting. This conclusion echoes Henglein’s

observation that theoretical intractability of type inference problems need not af-

fect the practical utility of type inference algorithms [12, §6]. Now that I have

demonstrated the capabilities of Algorithm P , I will end this chapter by discussing

some of its limitations through a few more examples in the next section.

7.5 ALGORITHM LIMITATIONS

Even though Algorithm P is quite powerful, it is still incomplete: there are some

well-typed practical GADT programs whose types it cannot infer. In this section,

I discuss four limitations of Algorithm P and demonstrate them with examples.
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-- forall a. Int → Avl a → E (Avl a) (Avl (S a))

ins i t = case t of

{ Tip → R (SNode Tip i Tip)

; SNode a x b → case compare i x of

{ EQ → L t

; LT → case ins i a of

{ L a → L (SNode a x b)

; R a → R (MNode a x b) }
; GT → case ins i b of

{ L b → L (SNode a x b)

; R b → R (LNode a x b) } }
; LNode a x b → case compare i x of

{ EQ → L t

; LT → case ins i a of

{ L a → L (LNode a x b)

; R a → L (SNode a x b) }
; GT → case ins i b of

{ L b → L (LNode a x b)

; R b → rotl a x b } }
; MNode a x b → case compare i x of

{ EQ → L t

; LT → case ins i a of

{ L a → L (MNode a x b)

; R a → rotr a x b }
; GT → case ins i b of

{ L b → L (MNode a x b)

; R b → L (SNode a x b) } } }

Figure 7.14: This figure shows the type Algorithm P infers for the ins function,

which adds a node to a balance-indexed AVL tree. This function uses the Avl data

type and the rotl function from Figure 7.7 (p. 196). The ins function is adapted

from the 2007 Summer School Notes by Sheard and Linger [38, §4.1].
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data Deg where

{ Fd :: Int → Deg F

; Kd :: Int → Deg K

; Cd :: Int → Deg C }

-- forall a. Deg a → Deg a → Deg a

plus a b = case a of

{ Fd u → case b of { Fd v → Fd (u+v) }

; Kd u → case b of { Kd v → Kd (u+v) }

; Cd u → case b of { Cd v → Cd (u+v) } }

Figure 7.15: This figure shows the type Algorithm P infers for the plus function,

which adds two temperature measures in the same unit. The plus function is

adapted from the 2006 Spring School Notes by Sheard [37, §4].

7.5.1 Local type reconciliation

The first limitation of Algorithm P is the design decision to reconcile the branch

body types in a case expression directly in the scope of the case expression. In

other words, Algorithm P reconciles the branch body types without considering

other branches that appear elsewhere in the program. This design appears to work

quite well, and it is powerful enough to link GADT type indices in nested case

expressions. For example, Algorithm P infers that plus (Figure 7.15, p. 208) adds

only temperatures in the same unit, and that zipWith (Figure 7.16, p. 209) zips

only lists of equal length (into a list also of equal length).

This decision to reconcile branch body types locally also helps Algorithm P

reject some well-typed plain GADT programs that may trigger runtime pattern-

matching failures due to missing branches. The gadt7o function in Figure 7.17

(p. 209) is one such example. It has this type in the plain GADT type system:
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-- forall a b c d. (a → b → c) → L d a → L d b → L d c

zipWith f a b = case a of

{ Nil → case b of

{ Nil → Nil }

; Cons x xs → case b of

{ Cons y ys → Cons (f x y) (zipWith f xs ys) } }

Figure 7.16: Type inference for length-indexed zipWith.

-- ERROR: Cannot unify different type constructors

gadt7o e =

( case e of { Nil → True },

case e of { Cons x xs → False } )

Figure 7.17: Type inference for clashing case expressions.

gadt7o :: forall a b. L a b → (Bool, Bool)

However, regardless of what argument one applies gadt7o to, the function always

returns a pair with one diverging component. If the argument is Nil, the second

component of the pair diverges due to pattern-matching failure; otherwise the

first component diverges. Algorithm P cannot infer a type for gadt7o because it

infers two inconsistent types for e (L Z a and L (S n) b) separately from the two

case expressions in the program. The gadt7o function shows that Algorithm P is

incomplete, but programmers may welcome this incompleteness because they want

to avoid writing programs that trigger pattern-matching failures.

My next example on local type reconciliation, in contrast, comes from a prac-

tical application and does not diverge. Figure 7.18 (p. 210) shows the delmin o
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data Zero where

{ IsZ :: Zero Z ; NotZ :: Zero (S n) }

-- forall a. Avl a → Zero a

empty t = case t of

{ Tip → IsZ

; LNode a x b → NotZ

; SNode a x b → NotZ

; MNode a x b → NotZ }

-- ERROR: A pattern type escapes in equalize

delmin o t = case t of

{ LNode a x b → case empty a of

{ IsZ → (x, L b)

; NotZ → case delmin o a of

{ (y, k) → case k of

{ L a → (y, rotl a x b)

; R a → (y, R (LNode a x b)) } } }
; SNode a x b → case empty a of

{ IsZ → (x, L b)

; NotZ → case delmin o a of

{ (y, k) → case k of

{ L a → (y, R (LNode a x b))

; R a → (y, R (SNode a x b)) } } }
; MNode a x b → case delmin o a of

{ (y, k) → case k of

{ L a → (y, L (SNode a x b))

; R a → (y, R (MNode a x b)) } } }

Figure 7.18: This figure shows the Algorithm P type inference error message for

the delmin o function, which removes the left-most node from a balance-indexed

AVL tree. The delmin o and the empty functions use the Avl data type and the

rotl function from Figure 7.7 (p. 196). They are adapted from the 2007 Summer

School Notes by Sheard and Linger [38, §4.1].
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function, which deletes the left-most internal node of a non-empty AVL tree. It

has the following type in the plain GADT type system:

delmin o :: forall a. Avl (S a) → (Int, E (Avl a) (Avl (S a)))

If removing the left-most node reduces the height of the tree by one level, the

delmin o function returns the new tree using the left injection L. If the height of

the tree remains unchanged, it returns the result using the right injection R.

Type inference for delmin o fails because Algorithm P took a wrong turn while

inferring the type of the second IsZ branch (which is inside the SNode branch).

Here, since empty a matches IsZ, a must be Tip, and the type of SNode (Fig-

ure 7.7, p. 196) requires b to be Tip as well. If Algorithm P tries to reconcile all

pattern-matching branches in delmin o at the same time, it would see that the

type constructor Z in the type Avl Z of b requires GADT type refinement (be-

cause of opposable thumbs from left-injections in other branches). In this inner

case expression, however, there are no other left injections (removing a node from

a perfectly-balanced tree never decreases its height), so refinement-aversion pre-

vents Algorithm P from applying a GADT type refinement to the type of b. This

decision ultimately leads to type inference failure for delmin o.

7.5.2 Compositionality

The second limitation of Algorithm P is its compositional structure (§6.1), which

requires type inference for a pattern-matching branch to use only type information

from the branch. The fdComp1 function in Figure 7.19 (p. 212) illustrates the

problem with compositional type inference. It has the following most-general type

in the plain GADT type system:

fdComp1 :: forall a b c. FunDesc a b → FunDesc b c → FunDesc a c

My specific implementation of Algorithm P infers a less general type for fdComp1

because it makes a wrong guess. The following situation arises when Algorithm P
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-- forall a b. FunDesc a b → FunDesc b b → FunDesc a b

fdComp1 fd1 fd2 =

let { o f g x = f (g x) }

in case fd1 of

{ FDI → fd2

; FDC b → case fd2 of

{ FDI → fd1

; FDC c → FDC ((fdFun fd2) b)

; FDG g → FDC ((fdFun fd2) b) }

; FDG f → case fd2 of

{ FDI → fd1

; FDC c → FDC c

; FDG g → FDG (o (fdFun fd2) f) } }

Figure 7.19: This figure shows the suboptimal type Algorithm P infers for the

fdComp function, which composes two function description arrows. This function

uses the FunDesc data type and the fdFun function from Figure 7.8 (p. 198). The

fdComp function is adapted from the 2005 paper on functional reactive program-

ming optimization by Nilsson [30, §4.1].
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tries to infer a type for fd1 in the second inner case expression (in the last four

lines of fdComp1):

� Branch pattern type (FDI): FunDesc x x

� Branch scrutinee type (FDI): FunDesc b c

� Type of fd1 (in FDI branch): FunDesc a x

Since the type variables b and c both refine to x in the FDI branch, there are two

ways to type fd1 outside the scope of the FDI branch:

fd1 :: FunDesc a b

fd1 :: FunDesc a c

Choosing the first type would allow Algorithm P to infer the most-general type for

fdComp1. Unfortunately, my implementation (arbitrarily) picks the second type,

and this wrong guess unifies the type variables b and c, so my implementation

ends up inferring the less general type shown in Figure 7.19 (p. 212).

The problem is not that my implementation made the wrong guess. Instead,

the guess should not have been necessary in the first place: the variable f, which is

bound in the FDG f pattern, has the unambiguous type a → b. Since fd1 matches

the FDG f pattern in this part of the program, there should be no ambiguity that

the type of fd1 is FunDesc a b. However, due to its compositional design, Algo-

rithm P cannot access type information about the case scrutinee when inferring

a type for a pattern-matching branch body. Thus it must guess the type of fd1,

and the wrong guess ultimately results in an inferred type that is suboptimal.

7.5.3 Lack of backtracking search

I now move on to the third limitation: Algorithm P does not use backtracking

search when reconciling the body types of different branches. In other words, it
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data Zip1 where

{ Zero1 :: Zip1 (La u) (La u)

; Succ1 :: Zip1 (La u) v → Zip1 (La (w → u)) (La w → v) }

-- ERROR: Cannot unify different type constructors

zip1o n f =

let { apply f x = f x

; z1 n1 fs = case n1 of

{ Zero1 → fs

; Succ1 n2 → λxs → z1 n2 (zipWith apply fs xs) } }

in z1 n (repeat f)

Figure 7.20: This figure shows the Algorithm P type inference error message for the

zip1o function, which implements genericN -way zip for lists (cf. zip2, Figure 7.11,

p. 204). The zip1o function is adapted from the 2006 Spring School Notes by

Sheard [37, §5.3].

relies on specific conditions (such as opposable thumbs, §7.3) to identify where

GADT type refinements are necessary, and what are the appropriate type indices

to use. This simplified design is sufficient for many programs because GADT case

expressions typically contain enough structure to create these specific conditions.

However, there is no guarantee that this expectation holds for every program, and

Figure 7.20 (p. 214) shows an example where it fails.

The zip1o function, which also implements N -way zip (cf. zip2, Figure 7.11,

p. 204), has the following type in the plain GADT type system:

zip1o :: forall a b. Zip1 (La a) b → a → b

Type inference for zip1o fails because Algorithm P cannot decide the type of fs
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in the local let definition z1. The problem arises because a single type (which

I call w) in the Zero1 branch corresponds to two inconsistent types in the Succ1

branch. Here is how w appears in the Zero1 branch:

� Body type of the Zero1 branch: w

� Type of fs in the Zero1 branch: w

And here are the corresponding types in the Succ1 branch:

� Body type of the Succ1 branch: La x → y

� Type of fs in the Succ1 branch: La (x → u)

Note that the first type is a function, and the second type is a list. The type w in

the Zero1 branch is consistent with either of the two corresponding types in the

Succ1 branch, so there is no opposable thumb. However, since a function type is

inconsistent with a list type, the type correspondence between the two branches

entails an indirect inconsistency. Without backtracking search, Algorithm P can-

not reconcile this indirect inconsistency, and therefore type inference for zip1o

fails with a unification error.

7.5.4 Polymorphic recursion

The last limitation concerns functions that require polymorphic recursion. Since

type inference with polymorphic recursion is undecidable, and Algorithm P sup-

ports polymorphic recursion with an iterative algorithm (§6.1, §7.4), there must

be programs for which type inference fails due to reaching the iteration limit. The

leq o function in Figure 7.21 (p. 216), which computes a witness that one natural

number is less than or equal to another, is one such program. It has the following

infinite set of types in the plain GADT type system:
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data Nat where

{ Zn :: Nat Z

; Sn :: Nat n → Nat (S n) }

data NatLeq where

{ LeZ :: NatLeq Z b

; LeS :: NatLeq a b → NatLeq (S a) (S b) }

-- ERROR: Mycroft iteration limit reached

leq o k = case k of

{ Zn → LeZ

; Sn n → LeS (leq o n) }

Figure 7.21: This figure shows the Algorithm P type inference error message for

the leq o function, which computes a witness for the ordering relation of two

natural numbers. The leq o function is adapted from the 2007 summer school

notes by Sheard and Linger [38, §3.7].

leq o :: forall a. Nat a → NatLeq a a

leq o :: forall a. Nat a → NatLeq a (S a)

leq o :: forall a. Nat a → NatLeq a (S (S a))

...

Algorithm P fails to infer a type for leq o because the NatLeq data type and

the leq o program lack sufficient structure to show how the two type arguments

of NatLeq should be related. As a result, polymorphic recursion type inference in

Algorithm P generates the following sequence of types, none of them valid, before

reaching the iteration limit:

leq o :: forall a b. Nat a → NatLeq a (S b)
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-- ERROR: A pattern type escapes in equalize

runState o e s = case e of

{ Return a → (s, a)

; Get → (s, s)

; Put u → (u, ())

; Bind m k → case m of

{ Return a → runState o (k a) s

; Get → runState o (k s) s

; Put u → runState o (k ()) u

; Bind n j → runState o (Bind n (λx . Bind (j x) k)) s } }

Figure 7.22: This figure shows the Algorithm P type inference error message for

the runState o function, which evaluates a computation in a reified state monad.

The runState o function uses the State data type from Figure 7.13 (p. 206).

leq o :: forall a b. Nat a → NatLeq a (S (S b))

leq o :: forall a b. Nat a → NatLeq a (S (S (S b)))

...

This example suggests that type inference with polymorphic recursion works well

only for programs with sufficient structure, so that Algorithm P knows how to

apply GADT type refinements to the types that vary in recursive invocations.

My last example is the runState o function from Figure 7.22 (p. 217), which

expands the evaluation of Bind by analyzing its first argument with a nested case

expression (cf. runState, Figure 7.13, p. 206). It has the same type as runState

does in the plain GADT type system:

runState o :: forall a b. State a b → a → (a, b)

Type inference for runState o fails because Algorithm P cannot find a GADT
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type refinement for the variable s in the inner case expression against m. The

variable s appears four times in this case expression:

� As the second argument of runState o in the Return branch,

� As the second argument of runState o in the Get branch,

� As the argument of k in the Get branch, and

� As the second argument of runState o in the Bind branch.

To infer the type of runState o using Mycroft’s algorithm, Algorithm P starts

by assuming that runState o has a fully polymorphic type (i.e., forall a. a)

and then gradually specializes this assumed type. Due to this initial condition, all

but the third occurrence of s provide no useful type information to Algorithm P

in the first Mycroft iteration. Assuming that m has type State a b, the third

occurrence of m states only that s has type a or b but not which. Without a way

to break the tie, Algorithm P has no choice but to declare failure. This example

suggests that Algorithm P may have problems with tail-recursive GADT programs

that also require polymorphic recursion.

7.6 SUMMARY

In this chapter, I demonstrated Algorithm P through 32 program examples. The

programs come from a wide range of application domains, and they show that

Algorithm P represents a significant step toward practical type inference for plain

GADT programs. They also exercise many features of Algorithm P :

� Scrutinee type specialization (head, Figure 7.2, p. 189, also §6.2)

� Refinement aversion (Figure 7.3, p. 190, also §6.3)

� Generalized existential type property enforcement (Figure 7.6, p. 194)
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� Type refinements through escape prevention (Figure 7.7, p. 196)

� Type refinements through contextual information (Figure 7.8, p. 198)

� Type refinements through opposable thumbs (Figure 7.9, p. 200)

� Polymorphic recursion support (Figure 7.10, p. 202)

Algorithm P is, of course, not without its faults, and some of the examples help

demonstrate common causes of type inference failure for programs that are well-

typed in the plain GADT type system:

1. Algorithm P does not work well with general type equality witness types

(Figure 7.5, p. 193) because it lacks sufficient information to apply GADT

type refinements. In some situations it resorts to guessing, and sometimes it

makes the wrong guesses (Figure 7.19, p. 212).

2. Algorithm P does not work well when there are type inconsistencies that

arise only between pattern-matching branches in different case expressions

(Figure 7.18, p. 210).

3. Algorithm P does not work well with nested case expressions that refer to

variables that have already been matched (Figure 7.19, p. 212) because its

compositional design prohibits top-down type information propagation from

the case scrutinee to the pattern-matching branches.

4. Algorithm P is not well-equipped to deal with indirect type inconsistencies

between branches (Figure 7.20, p. 214) because it does not use backtracking

search to reconcile the body types of different branches.

5. Programs that conduct polymorphic recursion in a relatively unstructured

fashion (Figure 7.21, p. 216) could cause Algorithm P to loop (which gets

cut off after a small number of iterations).
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6. Algorithm P does not work well with programs that rely on recursive refer-

ences to convey type information that is not otherwise available (Figure 7.22,

p. 217) because Mycroft’s algorithm makes the initial assumption that re-

cursive references have fully-polymorphic types (§6.1).

These limitations represent obvious starting points for future work. That said,

since Algorithm P successfully infers types for 25 out of the 30 well-typed plain

GADT programs that I presented in this chapter, there is reason to be optimistic

that many practical GADT programs will naturally avoid these pitfalls without

special accommodation by the programmers.
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Chapter 8

CONCLUSION

I started this dissertation research with the goal of designing a practical GADT

type inference algorithm that does not require programmer type annotations. The

development of this type inference algorithm prompted me to investigate various

properties of the plain GADT type system, and this research effort advanced the

state of the art in two research areas — GADT type system characterization and

GADT type inference. This outcome suggests that the challenges of designing a

practical GADT type inference algorithm may not lie in any inherent technical

difficulty, but merely our lack of understanding of the GADT type system.

In this chapter, I conclude the dissertation by summarizing my contributions

and discussing possible areas for future work.

8.1 CONTRIBUTIONS

This dissertation makes technical contributions in five areas of research that are

related to programming languages and type systems:

Research methodology First, this dissertation demonstrates that the develop-

ment of a type inference algorithm can be an effective approach to type system

research. I speculate that this effectiveness is due to two reasons. First, the type

inference problem, which encourages a systematic exploration of all well-typed

programs, helps researchers come up with atypical program examples. These ex-

amples, such as the vary function in §3.1 (Figure 3.2, p. 62), are instrumental for
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uncovering unexpected type system properties. Second, a type inference algorithm

codifies the intuition that a type is an abstract interpretation of a program, so type

inference failures correspond directly to deficiencies in the abstract interpretation.

This connection, which I exploited in §4.1, helps researchers identify well-typed

programs for which our collective understanding remains incomplete (and are thus

worthy of a careful study). It is time for more researchers to start seeing diffi-

cult type inference problems for what they are — research opportunities to gain a

deeper understanding of type systems.

GADT type system properties Second, in this dissertation I describe three

new major properties of the plain GADT type system:

� Generalized existential types provide an extrinsic characterization of how

a GADT pattern-matching branch restricts the escape and instantiation of

type variables (§4.2),

� The plain GADT type system violates type preservation due to the GADT

branch reachability requirement (§5.1), and

� Local let definitions can restrict the enforcement of the branch reachability

requirement in the plain GADT type system (§5.1).

In addition, I also explained why guarded algebraic data types are not equiva-

lent to other GADT type systems (§2.3), refuted two undecidability claims for the

GADT type inference problem (§2.4), described a symmetry in the ALT-GADT

type rule for GADT pattern-matching branches (§2.5), showed a pathological plain

GADT program whose two GADT pattern-matching branches can have arbitrar-

ily different types (§3.1), and proposed a principle for judging the quality of case

scrutinee types (§6.2). These discoveries should benefit researchers, educators, and

practical programmers who work with GADT programs.
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Type system design Third, this dissertation contains multiple examples and

discussions on the intricacies of type system design. In addition to presenting two

complete type systems (Pointwise GADT, §3.2, and Non-Dependent GADT, §4.1)

that restrict the plain GADT type system, I also sketched type system changes that

disentangle the two roles of local let definitions (type polymorphism and limiting

branch reachability enforcement) in the plain GADT type system (§5.1). To illus-

trate the complications that could arise from a seemingly innocent design decision,

I devoted Chapter 5 to the GADT branch reachability requirement. I presented

arguments both for and against the requirement, described how the requirement

interacts with other (seemingly independent) type system features, explained how

the requirement evolves as GADT type systems become more restrictive, and dis-

cussed how all these consequences affect the GADT type inference problem. All

the discussions combine into a comprehensive example on why type system design-

ers must tread lightly when adding features to (or removing features from) a type

system.

Programming principles and practice Fourth, I conjectured that, although

the plain GADT type system permits arbitrary type information flow between

the scrutinee type and the pattern type of a GADT pattern-matching branch, in

practice programmers rarely take advantage of this generality. I supported the

conjecture with case studies (§3.3), and I speculated why the conjecture holds in

practice. I observed that pointwise type information flow between scrutinee types

and pattern types is a consequence of the principle of orthogonal design, and I

showed how this principle helps programmers turn a plain GADT program into a

Pointwise GADT program that is easier to understand. This connection between

type systems and programming principles suggests that cognitive sciences may

have a rightful place in future type system research projects.
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GADT type inference Finally, in this dissertation I presented Algorithm P ,

which is a type inference algorithm that is capable of inferring the types of many

practical plain GADT programs. I designed Algorithm P using all the discoveries

I presented in this dissertation; the algorithm is, in some sense, a summary of the

dissertation as a whole. Algorithm P is significantly more powerful than existing

plain GADT type inference algorithms: it successfully infers the types for 25 out

of the 30 well-typed programs in Chapter 7, which I selected from a wide range

of application domains. In comparison, the OutsideIn algorithm by Schrijvers et

al. [36] can infer the type of only one (fdFun, Figure 7.9, p. 200) in the absence

of programmer type annotations. Algorithm P proves that, although GADT type

inference is difficult in principle, it can also be practically viable by exploiting the

internal structures that are common in practical GADT programs.

8.2 FUTURE WORK

Even though Algorithm P performs significantly better than existing GADT type

inference algorithms such as OutsideIn, there are still many aspects of the algo-

rithm that warrant further research. Here are five possible areas for future work

on Algorithm P :

Type inference power As the examples in §7.5 demonstrated, Algorithm P

still has problems inferring the types for many practical plain GADT programs.

For example, in some cases (such as fdComp1 in Figure 7.19, p. 212) type inference

fails because Algorithm P does not propagate type information from the context

into a GADT case expression. In other cases (such as runState o in Figure 7.22,

p. 217) type inference fails because type inference for polymorphic recursion in

Algorithm P interferes with the type inference for GADT case expression. There

is no obvious reason why an algorithm cannot do better in these situations, and

research opportunities abound.
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Error reporting It is essential for a practical type inference algorithm to pro-

duce informative error messages because programmers often need help to find and

to fix type errors. It is even more important for an incomplete practical type

inference algorithm to produce informative error messages because type inference

may fail even if the program is well-typed (in which case there is no error to fix).

Algorithm P , as presented in Chapter 6, does not include any facility for error

reporting, and the Haskell implementation produces only generic error messages.

More work is necessary to categorize the failure modes of Algorithm P and to

identify the best ways to explain those errors to the programmer.

Algorithm structuring Following the example of Milner’s Algorithm W [27],

Algorithm P uses explicit type substitutions to represent type information that

it discovers during type inference. This traditional design, however, is no longer

in fashion: some type inference algorithms represent type substitutions implicitly

using mutable variables [16] to achieve greater efficiency, and others forgo type

substitutions altogether and instead reduce type inference to constraint solving

[36, 40] to improve modularity. More work is necessary to investigate how one can

adapt Algorithm P to these two new designs.

Formal verification In Chapter 6, I presented Algorithm P only informally by

sketching the type inference algorithm for GADT case expressions. Due to the

design complexity of the algorithm, I have been unable to come up with a simple

description of Algorithm P , and the lack of a simple description in turn prevents

proof of type inference soundness and termination. As of now, the only complete

description of Algorithm P is the Haskell implementation. More work is necessary

to define an abstract formal description of Algorithm P and to provide a formal

proof of correctness.
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Feature enhancements The plain GADT type system, for which I designed

Algorithm P , captures the essence of generalized algebraic data types. This type

system, however, lacks many features that are supported by modern functional

programming language implementations such as the Glasgow Haskell Compiler.

Here are a few examples:

� Type annotations,

� Nested patterns in pattern-matching branches,

� Qualified types (e.g., type classes in Haskell),

� Higher-kinded type variables, and

� Rank-N polymorphism.

More work is necessary to extend Algorithm P to these programming language

and type system features. And, tying back to the idea of using type inference as a

research vehicle, I am certain that the efforts to extend Algorithm P will lead to

some interesting discoveries about how generalized algebraic data types interact

with these other type system features.
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Appendix A

CORRECTNESS OF POINTWISE COMPLETION

In this appendix, I prove the correctness of pointwise completion, which I

introduced in §5.2 (Figure 5.5, p. 136) as a way to recover pointwise unifiability

between scrutinee types and pattern types.

A.1 TERMINATION

In this section, I prove that pwc(s, t) terminates.

Definition 7. Let types s, t be given. I define the function size, which takes the

explicit error token ⊥ or a set containing pairs of types as argument, as follows:

size(S) =

0 if S = ⊥∑
(x,y)∈S count(y) otherwise

count(x) =

1 if x = α

1 +
∑

x∈s count(x) if x = T s

I designed size such that size(s . t) counts the number of symbols (i.e., type

constructors and type variables) in the set (s . t) that come from t. g

The following lemma establishes an upper bound on size(s . t).

Lemma 17. For all types s, t, count(t) ≥ size(s . t).

Proof. Trivial by structural induction over s.
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Given a substitution σ, the following lemma describes a way to compute σ(s) . t

from s . t. To simplify the presentation and the usage of the lemma, in this

proof I extend the set union operator ∪ to propagate the explicit failure token ⊥.

More precisely,

S ∪ T =

⊥ if S = ⊥ or T = ⊥

Set union of S and T if S and T are both sets

I also extend the aggregate union operator
⋃

in a similar fashion.

Lemma 18. Let s, t be types such that s . t 6= ⊥. For any substitution σ,

σ(s) . t =
⋃

(x,y)∈(s.t) σ(x) . y

Proof. Trivial by structural induction over s.

The following two lemmas state basic properties of summation.

Lemma 19. Let S and T be finite disjoint sets, and f be a function that maps

elements in S and T to natural numbers. Then

∑
x∈S f(x) +

∑
x∈T f(x) =

∑
x∈(S∪T ) f(x)

Proof. Trivial by set induction over S.

Lemma 20. Let S and T be finite sets, and f be a function that maps elements

in S and T to natural numbers. Then

∑
x∈S f(x) +

∑
x∈T f(x) ≥

∑
x∈(S∪T ) f(x)

Proof. Informally, the relation holds because every element in S ∪ T must appear

either in S or in T .
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Let J = S ∩ T and K = S \ J (set S minus J), so S = J ]K. Then

∑
x∈S f(x) +

∑
x∈T f(x) =

∑
x∈J f(x) +

∑
x∈K f(x) +

∑
x∈T f(x)

≥
∑

x∈K f(x) +
∑

x∈T f(x)

=
∑

x∈(K∪T ) f(x)

=
∑

x∈(K∪(J∪T )) f(x)

=
∑

x∈(S∪T ) f(x)

The derivation completes the proof.

Lemma 21. Let S be a finite set of pairs of types, then

size(S) ≥ size(
⋃

(x,y)∈S x . y)

Proof. Le me begin by partitioning S into two disjoint subsets J and K.

J = {(x, y) | (x, y) ∈ S, x . y 6= ⊥}

K = {(x, y) | (x, y) ∈ S, x . y = ⊥}

The set D contains pointwise counterparts collected from elements of J .

D =
⋃

(x,y)∈J x . y

The following derivation shows the desired inequality; comments in parentheses

describe the derivation step right above each comment.

size(S) = size(J) + size(K)

(Equality holds by Definition 7 and Lemma 19 because S = J ]K.)

≥ size(J)
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(Inequality holds because size(K) ≥ 0.)

=
∑

(x,y)∈J count(y)

≥
∑

(x,y)∈J size(x . y)

(Inequality holds by Lemma 17.)

=
∑

(x,y)∈J
∑

(x′,y′)∈(x.y) count(y′)

(Equality holds by Definition 7.)

=
∑

(x,y)∈J, (x′,y′)∈(x.y) count(y′)

≥
∑

(x′,y′)∈D count(y′)

(Inequality holds because for every pair of types (x′, y′) ∈ D, there exists a pair

of types (x, y) ∈ J such that (x′, y′) ∈ (x . y).)

= size(D)

= size(
⋃

(x,y)∈J x . y)

≥ size(
⋃

(x,y)∈(J∪K) x . y)

(Inequality holds by definition of K and because size(⊥) = 0.)

= size(
⋃

(x,y)∈S x . y)

The derivation completes the proof.

Theorem 22. For all types s, t, pwc(s, t) terminates.

Proof. I conduct the proof by showing that under fixed types s and t, patch(σ)

terminates for all substitutions σ. To show that patch(σ) terminates, I show that

there exists a size measure m(σ) that decreases in a well-founded domain for

every recursive call to patch. More specifically, m satisfies the following

inequalities, each derived from a recursive call in patch:
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1. m(σ) > m([T η/α] ◦ σ) where σ(s) . t = {(α, T x)} ] E, and η are fresh

type variables,

2. m(σ) > m([T η/α] ◦ σ) where σ(s) . t = {(α, T x), (y, β)} ] E, and η are

fresh type variables, and

3. m(σ) > m(mgu(x ∼ y) ◦ σ) where σ(s) . t = {(x, β), (y, β)} ] E, and the

types x and y are unifiable.

I define m(σ) = size(σ(s) . t). The function m returns natural numbers, which

are a well-founded domain with respect to the relation >. Now I verify that m

satisfies the three aforementioned inequalities.

1. Let me start by defining the set K as follows:

K = {([T η/α](u), w) | (u,w) ∈ E}

For every (u′, w′) ∈ K, there exists a type u′′ such that (u′′, w′) ∈ E and

u′ = [T η/α](u′′), so size(E) ≥ size(K). Now,

m(σ) = size(σ(s) . t)

= size({(α, T x)} ] E)

= size({(α, T x)}) + size(E)

(Equality holds by Definition 7 and Lemma 19.)

= count(T x) + size(E)

= 1 +
∑

u∈x count(u) + size(E)

>
∑

u∈x count(u) + size(E)

= size({(η1, x1), . . . , (ηn, xn)}) + size(E) where {x1, . . . , xn} = x
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(Equality holds by expanding summation.)

= size(T η . T x) + size(E)

= size([T η/α](α) . T x) + size(E)

≥ size([T η/α](α) . T x) + size(K)

≥ size([T η/α](α) . T x) + size(
⋃

(x′,y′)∈K x′ . y′)

(Inequality holds by Lemma 21.)

= size([T η/α](α) . T x) +

size(
⋃

(x′,y′)∈{([T η/α](u),w) | (u,w)∈E} x
′ . y′)

(Equality holds by expanding K using its definition.)

= size([T η/α](α) . T x) +

size(
⋃

(x′,y′)∈{(u,w) | (u,w)∈E} [T η/α](x′) . y′)

(Equality holds by moving [T η/α] to the summand.)

= size([T η/α](α) . T x) + size(
⋃

(x′,y′)∈E [T η/α](x′) . y′)

≥ size(([T η/α](α) . T x) ∪ (
⋃

(x′,y′)∈E [T η/α](x′) . y′))

(Inequality holds by Lemma 20.)

= size((
⋃

(x′,y′)∈{(α,T x)}[T η/α](x′) . y′) ∪

(
⋃

(x′,y′)∈E [T η/α](x′) . y′))

(Equality holds because F (x) =
⋃
x′∈{x} F (x′).)

= size(
⋃

(x′,y′)∈({(α,T x)}∪E) [T η/α](x′) . y′)

= size(
⋃

(x′,y′)∈(σ(s).t) [T η/α](x′) . y′)

= size(([T η/α] ◦ σ)(s) . t)
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(Equality holds by Lemma 18.)

= m([T η/α] ◦ σ)

2. If I define E ′ = {(y, β)} ] E, then σ(s) . t = {(α, T x)} ] E ′, and the same

argument as in the previous point shows that m(σ) > m([T η/α] ◦ σ).

3. Let me start by defining the set K as follows:

K = {(mgu(x ∼ y)(u), w) | (u,w) ∈ E}

For every (u′, w′) ∈ K, there exists a type u′′ such that (u′′, w′) ∈ E and

u′ = mgu(x ∼ y)(u′′), so size(E) ≥ size(K). Now,

m(σ) = size(σ(s) . t)

= size({(x, β), (y, β)} ] E)

= size({(x, β), (y, β)}) + size(E)

= 2 + size(E)

> 1 + size(E)

= size({(mgu(x ∼ y)(x), β)}) + size(E)

= size({(mgu(x ∼ y)(x), β)} ∪ {(mgu(x ∼ y)(y), β)}) + size(E)

(Equality holds because mgu(x ∼ y)(x) = mgu(x ∼ y)(y).)

= size(mgu(x ∼ y)(x) . β ∪mgu(x ∼ y)(y) . β) + size(E)

(Equality holds because for all types u, u . β = {(u, β)}.)

= size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) + size(E)

≥ size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) + size(K)

≥ size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) +

size(
⋃

(x′,y′)∈K x′ . y′)
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(Inequality holds by Lemma 21.)

= size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) +

size(
⋃

(x′,y′)∈{(mgu(x∼y)(u),w) | (u,w)∈E} x
′ . y′)

(Equality holds by expanding K using its definition.)

= size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) +

size(
⋃

(x′,y′)∈{(u,w) | (u,w)∈E} mgu(x ∼ y)(x′) . y′)

(Equality holds by moving mgu(x ∼ y) to the summand.)

= size(
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) +

size(
⋃

(x′,y′)∈E mgu(x ∼ y)(x′) . y′)

≥ size((
⋃

(x′,y′)∈{(x,β),(y,β)} mgu(x ∼ y)(x′) . y′) ∪

(
⋃

(x′,y′)∈E mgu(x ∼ y)(x′) . y′))

(Inequality holds by Lemma 20.)

= size(
⋃

(x′,y′)∈({(x,β),(y,β)}∪E) mgu(x ∼ y)(x′) . y′)

= size(
⋃

(x′,y′)∈(σ(s).t) mgu(x ∼ y)(x′) . y′)

= size((mgu(x ∼ y) ◦ σ)(s) . t)

(Equality holds by Lemma 18.)

= m(mgu(x ∼ y) ◦ σ)

The size measure m(σ) satisfies all the conditions, so patch(σ) terminates, and

pwc(s, t) terminates.
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A.2 SOUNDNESS

Lemma 23. If patch(σ) = σ′ and σ′ 6= ⊥, then there exists a substitution θ such

that σ′ = θ ◦ σ.

Proof. Trivial by induction over the recursive calls of patch.

Lemma 24. Let θ and σ be idempotent substitutions. The substitution (θ ◦ σ)

is idempotent if dom(σ) # tyvar(rng(θ)).

Proof. It is trivial to show that the following relations hold.

dom(θ ◦ σ) ⊆ dom(θ) ∪ dom(σ)

tyvar(rng(θ ◦ σ)) = tyvar(rng(θ)) ∪ (tyvar(rng(σ)) \ dom(θ))

The binary operator \ subtracts the second set from the first. To show that

(θ ◦ σ) is idempotent, I show dom(θ ◦ σ) # tyvar(rng(θ ◦ σ)) as follows:

1. dom(θ) # tyvar(rng(θ)) because θ is idempotent,

2. dom(σ) # (tyvar(rng(σ)) \ dom(θ)) because σ is idempotent,

3. dom(θ) # (tyvar(rng(σ)) \ dom(θ)) because of the set subtraction, and

4. dom(σ) # tyvar(rng(θ)) is given.

Since dom(θ ◦ σ) # tyvar(rng(θ ◦ σ)), (θ ◦ σ) is idempotent.

Lemma 25. If tyvar(s) # tyvar(t), then pwc(s, t) maintains the invariant that,

for every call to patch(σ), σ is an idempotent substitution, tyvar(σ(s)) # tyvar(t),

and σ(t) = t.
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Proof. I conduct the proof by structural induction over the call graph of

pwc(s, t), which, except for the initial call to pwc(s, t), consists entirely of calls to

patch. This lemma is equivalent to the following three properties, which are

derived from the calls to patch:

1. The identity substitution id is idempotent, id(t) = t, and

tyvar(id(s)) # tyvar(t).

2. [T η/α] ◦ σ is idempotent, ([T η/α] ◦ σ)(t) = t, and

tyvar(([T η/α] ◦ σ)(s)) # tyvar(t), where σ is idempotent, σ(t) = t, and

tyvar(σ(s)) # tyvar(t).

3. mgu(x ∼ y) ◦ σ is idempotent, (mgu(x ∼ y) ◦ σ)(t) = t, and

tyvar((mgu(x ∼ y) ◦ σ)(s)) # tyvar(t), where {(x, β), (y, β)} ∈ σ(s) . t, σ is

idempotent, σ(t) = t, and tyvar(σ(s)) # tyvar(t).

I shall prove each property in turn.

1. Trivial.

2. Since η are fresh and [T η/α] is idempotent, by Lemma 24 I know that

([T η/α] ◦ σ) is idempotent.

Since α /∈ tyvar(t) and σ(t) = t, I know ([T η/α] ◦ σ)(t) = t. Since

tyvar(([T η/α] ◦ σ)(s)) ⊆ tyvar(σ(s), T η), η are fresh, and

tyvar(σ(s)) # tyvar(t), I know tyvar(([T η/α] ◦ σ)(s)) # tyvar(t).

3. The substitution mgu(x ∼ y) is idempotent, and

tyvar(rng(mgu(x ∼ y))) ⊆ tyvar(x, y) ⊆ tyvar(σ(s)). Since σ is idempotent,

tyvar(σ(s)) # dom(σ), so tyvar(rng(mgu(x ∼ y))) # dom(σ). By Lemma 24

I know mgu(x ∼ y) ◦ σ is idempotent.

Since dom(mgu(x ∼ y)) ⊆ tyvar(x, y) ⊆ tyvar(σ(s)), I know

(mgu(x ∼ y) ◦ σ)(t) = t. Since tyvar(rng(mgu(x ∼ y))) ⊆ tyvar(σ(s)),
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tyvar((mgu(x ∼ y) ◦ σ)(s)) ⊆ tyvar(σ(s)). Since tyvar(σ(s)) # tyvar(t),

tyvar((mgu(x ∼ y) ◦ σ)(s)) # tyvar(t).

The analysis completes the proof.

Lemma 26. Let types s, t and substitution σ be given. If patch(σ) = σ, then

patch(σ) must take the fourth pattern-matching branch.

Proof. I will conduct this proof by contradiction.

Assume to the contrary that patch(σ) takes one of the first three branches. Let

us look at each branch in turn.

1. In the first branch, σ(s) . t = {(α, T x)} ] E, and

patch(σ) = patch([T η/α] ◦ σ). If patch([T η/α] ◦ σ) = ⊥, then

patch(σ) = ⊥ 6= σ, contradicting my assumption.

If patch([T η/α] ◦ σ) = σ′ 6= ⊥, by Lemma 23, there exists a substitution θ

such that σ′ = θ ◦ [T η/α] ◦ σ. By Lemma 25 I know that σ is idempotent,

so (α, T x) ∈ σ(s) . t implies α /∈ dom(σ). However, α ∈ dom(σ′), so

patch(σ) = σ′ 6= σ, contradicting my assumption.

Therefore patch(σ) does not take the first branch.

2. In the second branch, if I define E ′ = {(y, β)} ] E, then

σ(s) . t = {(α, T x)} ] E ′, and patch(σ) = patch([T η/α] ◦ σ).

Applying the same arguments as in the first branch shows that patch(σ)

does not take the second branch.

3. In the third branch, σ(s) . t = {(x, β), (y, β)} ] E and x 6= y. If

mgu(x ∼ y) = ⊥, then patch(σ) = ⊥ 6= σ, contradicting my assumption. If

mgu(x ∼ y) 6= ⊥, then patch(σ) = patch(mgu(x ∼ y) ◦ σ), and there are two

possible cases:
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(a) patch(mgu(x ∼ y) ◦ σ) = ⊥, then patch(σ) = ⊥ 6= σ, contradicting my

assumption.

(b) patch(mgu(x ∼ y) ◦ σ) = σ′ 6= ⊥, then there exists a substitution θ

such that σ′ = θ ◦mgu(x ∼ y) ◦ σ. Since σ(x) 6= σ(y) but

σ′(x) = σ′(y), patch(σ) = σ′ 6= σ, contradicting my assumption.

Therefore patch(σ) does not take the third branch.

The analysis proves that patch(σ) must take the fourth branch.

Theorem 27. If tyvar(s) # tyvar(t), pwc(s, t) = σ, and σ 6= ⊥, then

tyvar(σ(s)) # tyvar(t), and σ(s) and t are pointwise unifiable.

Proof. It is easy to show tyvar(σ(s)) # tyvar(t) by Lemma 25, so I focus on

proving that σ(s) and t are pointwise unifiable. I will conduct this proof by

contradiction.

Assume to the contrary that σ(s) and t are not pointwise unifiable. Since the

pointwise unification algorithm is sound, pointwise unification of σ(s) and t must

fail. There are four ways pointwise unification can fail, and I show that, in each

case, pointwise unification failure leads to contradiction. The four possible

pointwise unification failures are:

1. Pointwise unification fails if σ(s) . t = ⊥,

2. Pointwise unification fails if σ(s) . t = {(α, β)} ] E,

where α 6= β and {α, β} ⊆ tyvar(E),

3. Pointwise unification fails if σ(s) . t = {(T x, α)} ] E,

where α ∈ tyvar(E) ∪ tyvar(T x), and

4. Pointwise unification fails if σ(s) . t = {(α, T x)} ] E,

where α ∈ tyvar(E) ∪ tyvar(T x).
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Since pwc(s, t) = σ, the evaluation of pwc(s, t) must end in a call to patch(σ),

which returns its argument σ unchanged. Let us look at how each pointwise

unification failure affects the evaluation of patch(σ):

1. Let σ(s) . t = ⊥, then patch(σ) = ⊥, which contradicts with my

assumption patch(σ) = σ 6= ⊥.

2. Let σ(s) . t = {(α, β)} ] E such that α 6= β and {α, β} ⊆ tyvar(E). By

Lemma 25, I can further refine this case into three sub-cases:

(a) σ(s) . t = {(α, β), (α, T x)} ] E ′, where β ∈ tyvar(T x). Then,

patch(σ) takes the first branch, and, by Lemma 26, patch(σ) 6= σ,

which contradicts with my assumption patch(σ) = σ.

(b) σ(s) . t = {(α, β), (S y, β)} ] E ′, where α ∈ tyvar(S y). Then,

patch(σ) takes the third branch, and, by Lemma 26, patch(σ) 6= σ,

which contradicts with my assumption patch(σ) = σ.

(c) σ(s) . t = {(α, β), (δ, T x), (S y, γ)} ] E ′, where α ∈ tyvar(S y),

β ∈ tyvar(T x), α 6= δ, and β 6= γ. Then, patch(σ) takes the second

branch, and, by Lemma 26, patch(σ) 6= σ, which contradicts with my

assumption patch(σ) = σ.

Since all three sub-cases contradict my assumption that patch(σ) = σ, this

case contradicts my assumption that patch(σ) = σ.

3. Let σ(x) . t = {(T x, α)} ] E such that α ∈ tyvar(E) ∪ tyvar(T x). By

Lemma 25, I know α /∈ T x, so α ∈ tyvar(E), and I can further refine this

case into two sub-cases:

(a) σ(x) . t = {(T x, α), (β, S y)} ] E ′, where α ∈ tyvar(S y). Then,

patch(σ) takes the second branch, and, by Lemma 26, patch(σ) 6= σ,

which contradicts with my assumption patch(σ) = σ.
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(b) σ(x) . t = {(T x, α), (S y, α)} ] E ′. Then, patch(σ) takes the third

branch, and, by Lemma 26, patch(σ) 6= σ, which contradicts with my

assumption patch(σ) = σ.

Since both sub-cases contradict my assumption that patch(σ) = σ, this case

contradicts my assumption that patch(σ) = σ.

4. Let σ(s) . t = {(α, T x)} ] E such that α ∈ tyvar(E) ∪ tyvar(T x). By

Lemma 25, I know α /∈ T x, so α ∈ tyvar(E), and I can further refine this

case into two sub-cases:

(a) σ(x) . t = {(α, T x), (S y, β)} ] E ′, where α ∈ tyvar(S y). Then,

patch(σ) takes the first branch, and, by Lemma 26, patch(σ) 6= σ,

which contradicts with my assumption patch(σ) = σ.

(b) σ(x) . t = {(α, T x), (α, S y)} ] E ′. Then, patch(σ) takes the third

branch, and, by Lemma 26, patch(σ) 6= σ, which contradicts with my

assumption patch(σ) = σ.

Since both sub-cases contradict my assumption that patch(σ) = σ, this case

contradicts my assumption that patch(σ) = σ.

The analysis shows that pointwise unification for σ(s) ∼ t must succeed, because

any failure contradicts with my assumptions. Since pointwise unification is

sound, σ(s) and t must be pointwise unifiable.

A.3 COMPLETENESS

Lemma 28. Let types s, t and substitutions µ, θ be given such that

tyvar(s) # tyvar(t), tyvar(θ(s)) # tyvar(t), and µ is a pointwise unifier of θ(s) ∼ t.

If s . t = {(y, β)} ] E and ndom(y, E) is true, then β ∈ dom(µ).
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Proof. Consider θ(y).

If θ(y) = T x, then µ(θ(y)) = µ(β) implies that β ∈ dom(µ).

If θ(y) = γ, then y must be a type variable α, and α 6= β. I show that

α /∈ dom(µ), therefore β ∈ dom(µ). From ndom(α,E) I know that one of the

following conditions must hold:

1. (α, r) ∈ E where s 6= β. Since β in t and r in t are both pointwise

counterparts of γ in θ(s), γ /∈ dom(µ), and therefore β ∈ dom(µ).

2. (T x, η) ∈ E such that α ∈ tyvar(T x). In this case, η ∈ dom(µ),

µ(η) = T x = µ(T x), therefore γ /∈ dom(µ), and β ∈ dom(µ).

The analysis completes the proof.

Lemma 29. Let types s, t and substitution θ be given so that

tyvar(s) # tyvar(t), tyvar(θ(s)) # tyvar(t), and that θ(s) is pointwise unifiable

with t. Then, pwc(s, t) maintains the invariant that, for every call to patch(σ),

there exists a substitution ρ such that θ(s) = (ρ ◦ σ)(s).

Proof. I conduct the proof by structural induction over the call graph of

pwc(s, t), which, except for the initial call to pwc(s, t), consists entirely of calls to

patch. This lemma is equivalent to the following four properties, each derived

from a call to patch:

1. There exists a substitution ρ such that θ(s) = (ρ ◦ id)(s),

2. There exists a substitution ρ such that θ(s) = (ρ ◦ [T η/α] ◦ σ)(s), where

σ(s) . t = {(α, T x)} ] E, α ∈ tyvar(E), η are fresh type variables, and

there is a substitution ρ′ such that θ(s) = (ρ′ ◦ σ)(s),

3. There exists a substitution ρ such that θ(s) = (ρ ◦ [T η/α] ◦ σ)(s), where

σ(s) . t = {(α, T x), (y, β)} ] E, ndom(y, E) is true, β ∈ tyvar(T x), η are
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fresh type variables, and there is a substitution ρ′ such that

θ(s) = (ρ′ ◦ σ)(s), and

4. There exists a substitution ρ such that θ(s) = (ρ ◦mgu(x ∼ y) ◦σ)(s), where

σ(s) . t = {(x, β), (y, β)} ] E, ndom(y, E) is true, x 6= y, the types x and y

are unifiable, and there is a substitution ρ′ such that θ(s) = (ρ′ ◦ σ)(s).

Let µ be a pointwise unifier of θ(s) ∼ t. I shall prove each property in turn:

1. Defining ρ = θ satisfies the property.

2. To prove ρ exists, I need to show that ρ′(α) = T u for some types u. I prove

this property by contradiction.

Assume to the contrary that ρ′(α) = β. Since T x in t is a pointwise

counterpart of β in θ(s), µ(β) = T x. From α ∈ tyvar(E), I know that

either (α,w) ∈ E where w 6= T x, or (S y, γ) ∈ E where α ∈ tyvar(S y). Let

us look at the two cases:

� If (α,w) ∈ E, then w in t is also a pointwise counterpart of β in θ(s).

However, µ(β) = T x 6= w, so µ is not a pointwise unifier of θ(s) ∼ t,

contradicting my assumption.

� If (S y, γ) ∈ E, then there is an occurrence of β in θ(s) that does not

have a pointwise counterpart in t. Since β ∈ dom(µ), µ is not a

pointwise unifier of θ(s) ∼ t, contradicting my assumption.

Since both cases lead to contradiction, ρ′(α) cannot be a type variable.

Since T x in t is a pointwise counterpart of ρ′(α) in θ(s), ρ′(α) = T u for

some types u. Then, defining ρ = ρ′ ◦ [u/η] satisfies the property because

(ρ′ ◦ ([u/η] ◦ [T η/α]) ◦ σ)(s) = (ρ′ ◦ [T u/α] ◦ σ)(s) = (ρ′ ◦ σ)(s) = θ(s)
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3. To prove ρ exists, I need to show that ρ′(α) = T u for some types u. I prove

this property by contradiction.

Assume to the contrary that ρ′(α) = γ. Since T x in t is a pointwise

counterpart of γ in θ(s), µ(γ) = T x. By Lemma 28, β ∈ dom(µ), and from

β ∈ tyvar(T x), I have µ(γ) = T x 6= µ(T x), contradicting my assumption

that µ is a unifier of θ(s) ∼ t.

Since ρ′(α) is not a type variable, and T x in t is a pointwise counterpart of

ρ′(α) in θ(s), ρ′(α) = T u for some types u. Then, defining ρ = ρ′ ◦ [u/η]

satisfies the property because

(ρ′ ◦ ([u/η] ◦ [T η/α]) ◦ σ)(s) = (ρ′ ◦ [T u/α] ◦ σ)(s) = (ρ′ ◦ σ)(s) = θ(s)

4. To prove ρ exists, I need to show that ρ′(x) = ρ′(y). By Lemma 28,

β ∈ dom(µ). Since ρ′(x) in θ(s) and ρ′(y) in θ(s) are both pointwise

counterparts of β in t, I know ρ′(x) = µ(β) = ρ′(y).

Since mgu(x ∼ y) computes the most general unifier of x ∼ y, there exists a

substitution ρ such that ρ′ = ρ ◦mgu(x ∼ y), and the substitution ρ thus

defined satisfies θ(s) = (ρ ◦mgu(x ∼ y) ◦ σ)(s).

The analysis shows that pwc(s, t) maintains the desired invariant and completes

the proof.

Theorem 30. Let types s, t be given such that tyvar(s) # tyvar(t). Suppose

there exists a substitution θ such that tyvar(θ(s)) # tyvar(t) and θ(s) is pointwise

unifiable with t. Then, pwc(s, t) = σ′ 6= ⊥ and there is a substitution ρ such that

θ(s) = (ρ ◦ σ′)(s).

Proof. Let µ be a pointwise unifier of θ(s) ∼ t, and let dom(θ) ⊆ tyvar(s)

without loss of generality. Since pwc(s, t) terminates, there exists a substitution σ



251

such that pwc(s, t) evaluates to patch(σ), and patch(σ) evaluates to a result σ′

without further recursive calls.

By Lemma 29, there exists a substitution ρ such that θ(s) = (ρ ◦ σ)(s). Let ρ′ be

ρ with domain restricted to tyvar(σ(s)), so θ(s) = (ρ′ ◦ σ)(s). By Lemma 25,

tyvar(σ(s)) # tyvar(t), so ρ′(t) = t. The following derivation shows that µ ◦ ρ′ is a

unifier of σ(s) ∼ t.

(µ ◦ ρ′)(σ(s)) = µ((ρ′ ◦ σ)(s)) = µ(θ(s)) = µ(t) = (µ ◦ ρ′)(t)

Since σ(s) is unifiable with t, σ(s) . t 6= ⊥. If σ(s) . t = {(x, β), (y, β)} ] E,

then x and y must be unifiable (because every unifier of σ(s) ∼ t is a unifier of

x ∼ y), so patch(σ) 6= ⊥.

Since patch(σ) evaluates to σ′ without further recursive calls, σ′ = σ, and

(ρ ◦ σ′)(s) = (ρ ◦ σ)(s) = θ(s).
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Appendix B

HASKELL IMPLEMENTATION OF ALGORITHM P

This appendix contains the complete source code of my Algorithm P

implementation in Haskell. Algorithm P is a type inference algorithm I developed

for the plain GADT type system; please consult Chapter 6 for an informal

description of Algorithm P and Chapter 7 for an evaluation of the algorithm.

B.1 MAIN MODULE

The Run.hs source file contains the main procedure and other glue code that

connect the source language parser to the Algorithm P implementation.

-- Time -stamp: <2010-04-01 14:27:11 cklin >

module Main where

5 import Control.Monad (unless)

import Data.List (partition)

import Data.Maybe (isJust)

import qualified Data.Map as Map

10 import Common

import Types

import Front

import Monad

import Inference

15

---------

type IdentType = (Ident , [String], Maybe Type)

20 makeConsE :: Program -> ConsE

makeConsE (Decl _ cx) = toMap cons where

tuple = (",", ConsTy tupleType)

unit = ("()", ConsTy (TyCon "()" []))

cons = unit : tuple : map make cx

25 make (Cons dc t) = (dc, ConsTy t)
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inferPrograms :: [Program] -> [IdentType]

inferPrograms px =

let (dx, vx) = partition declP px

30 consE = Map.unions (map makeConsE dx)

in runTi (mapM (inferProgram consE) vx) 1

inferProgram :: ConsE -> Program -> Ti IdentType

inferProgram _ (Info doc) =

35 return ("Doc", doc , Nothing)

inferProgram consE (Value x e) =

do let let_e = Let [(x, e)] (Var x)

(w, mt) <- arrestTi (inferTop consE let_e)

return (x, w, mt)

40

declP :: Program -> Bool

declP (Decl _ _) = True

declP _ = False

45 ---------

printIT :: IdentType -> IO ()

printIT (x, w, Nothing) =

do let oops = "Type inference failed for " ++ x

50 unless (x == "Doc") (putStrLn oops)

putStrLn (unlines w)

printIT (x, w, Just _) =

do putStrLn (last w)

putStrLn (unlines $ init w)

55

main :: IO ()

main = do p <- parseFile "Examples.lhs"

mapM_ printIT (inferPrograms p)

B.2 GENERAL UTILITY FUNCTIONS

The Common.hs source file contains general-purpose utility functions that I use in

the type inference algorithm.

-- Time -stamp: <2010-03-10 17:33:14 cklin >

module Common where

5 import Control.Monad (liftM)

import Data.List ((\\) , nub , nubBy)

import Data.Map (Map , findWithDefault , fromList , toList)

type Endo a = a -> a

10

bug :: String -> a

bug msg = error ("BUG: " ++ msg)
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same :: Eq a => [a] -> Bool

15 same [] = True

same xs = and (zipWith (==) (tail xs) xs)

unique :: [a] -> Maybe a

unique [x] = Just x

20 unique _ = Nothing

unions :: Eq a => [[a]] -> [a]

unions = nub . concat

25 unionMap :: Eq b => (a -> [b]) -> [a] -> [b]

unionMap f = unions . map f

map1st :: (a -> b) -> [(a, c)] -> [(b, c)]

map1st f = map (\(u, v) -> (f u, v))

30

nub1st :: Eq a => Endo [(a, b)]

nub1st = nubBy (\(a, _) (c, _) -> a == c)

overlaps :: Ord a => [a] -> [a] -> Bool

35 overlaps = any . flip elem

subset :: Eq a => [a] -> [a] -> Bool

subset ux wx = null (ux \\ wx)

40 lookupX :: Ord k => k -> Map k a -> a

lookupX = findWithDefault (bug "Missing key in lookupX ")

lookupZ :: Ord k => k -> Map k k -> k

lookupZ k = findWithDefault k k

45

-- This is a version of Map.fromList that checks that there are no

-- duplicate keys in the input association list.

toMap :: (Ord k, Show k) => [(k, a)] -> Map k a

50 toMap assoc =

let keys = map fst assoc

dups = nub (keys \\ nub keys)

in if null dups then fromList assoc

else bug (" Duplicate keys " ++ show dups)

55

B.3 DATA TYPE DEFINITIONS

The Types.hs source file defines data types for terms, types, and lexical tokens.

It also provides some utility functions for the Type data type.

-- Time -stamp: <2010-05-13 23:35:27 cklin >

module Types where
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5 import Control.Monad (guard)

import Data.List ((\\) , intercalate , nub)

import qualified Data.Map as Map

import Common

10

--------- Program abstract syntax tree types

type Ident = String

type Branch = (Pat , Term)

15

data Term

= Var Ident

| Con String

| Int Integer

20 | App Term Term

| Lam Ident Term

| Let [(Ident , Term)] Term

| Case Term [Branch]

deriving (Eq , Show)

25

data Pat

= PatCon String [Ident]

| PatInt Integer

deriving Eq

30

data Type

= TyVar Ident

| TyCon String [Type]

| TyMeta Int

35 | TySkol Int

deriving Eq

data Data

= Data String [Ident]

40 deriving (Eq , Show)

data Cons

= Cons String Type

deriving (Eq , Show)

45

data Program

= Value Ident Term

| Decl Data [Cons]

| Info [String]

50 deriving (Eq , Show)

--------- Lexical analyzer token types

data Terminal

55 = LexOp -- +

| LexDef -- =

| LexArr -- ->

| LexLam -- \

| LexSemi -- ;

60 | LexComa -- ,

| LexType -- ::
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| LexParL -- (

| LexParR -- )

| LexBraL -- {

65 | LexBraR -- }

| LexVar Ident -- identifier

| LexCon String -- Constructor

| LexInt Integer -- 42

| LexData -- data (keyword)

70 | LexWhere -- where (keyword)

| LexCase -- case (keyword)

| LexOf -- of (keyword)

| LexLet -- let (keyword)

| LexIn -- in (keyword)

75 | LexNext

| LexDoc String

| LexError

deriving (Eq , Show)

80 --------- Type inference engine data structures

type Subst = Map.Map Int Type

type Rename = Map.Map Int Int

type Type2 = (Type , Type)

85

-- The (polymorphic) variable types and the (polymorphic) data

-- constructor types no longer contain a list of their free type

-- variables because the list is easily reconstructed with freeType.

90 data VarTy = VarTy Type

data ConsTy = ConsTy Type

type VarE = Map.Map Ident VarTy

type ConsE = Map.Map String ConsTy

95

mapVarE :: Endo Type -> Endo VarE

mapVarE = Map.map . mapVarTy

mapVarTy :: Endo Type -> Endo VarTy

100 mapVarTy f (VarTy t) = VarTy (f t)

--------- Frequently used types

botType = TyVar "a"

105 intType = TyCon "Int" []

arrType t1 t2 = TyCon "->" [t1, t2]

plusType = arrType intType (arrType intType intType)

tupleType = arrType varx (arrType vary tuple)

where tuple = TyCon "," [varx , vary]

110 varx = TyVar "x"

vary = TyVar "y"

--------- General type utility functions

115 metaP :: Type -> Bool

metaP (TyMeta _) = True

metaP _ = False
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consP :: Type -> Bool

120 consP (TyCon _ _) = True

consP _ = False

deCons :: [Type] -> Maybe (String , [[Type ]])

deCons tx =

125 let consTc (TyCon tc _) = tc

consAx (TyCon _ ax) = ax

in do guard (tx /= [])

guard (all consP tx)

guard (same (map consTc tx))

130 return (consTc (head tx), map consAx tx)

-- Collect free or meta type variables in either a type or a type

-- environment.

135 collectType :: Eq a => Endo (Type -> [a])

collectType f = walk where

walk (TyCon _ tas) = unions (map walk tas)

walk t = f t

140 freeType :: Type -> [Ident]

freeType = collectType free where

free (TyVar tv) = [tv]

free _ = []

145 skolType :: Type -> [Int]

skolType = collectType skol where

skol (TySkol idx) = [idx]

skol _ = []

150 skolTypes :: [Type] -> [Int]

skolTypes = unionMap skolType

metaType :: Type -> [Int]

metaType = collectType meta where

155 meta (TyMeta idx) = [idx]

meta _ = []

metaTypes :: [Type] -> [Int]

metaTypes = unionMap metaType

160

metaVarE :: VarE -> [Int]

metaVarE = unionMap (metaType . unwrap) . Map.elems

where unwrap (VarTy t) = t

165 -- Separate the type of a user -defined data constructor into a list of

-- argument types and the range type. Used in pattern matching.

spine :: Type -> ([Type], Type)

spine = walk [] where

170 walk ax (TyCon "->" [t1, t2]) = walk (t1:ax) t2

walk ax t =

if consP t then (reverse ax , t)

else bug "Malformed data constructor type"

175 -- Check if a meta type variable appears in multiple elements of the
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-- list of types. Multiple occurrences in one element does not count.

multiP :: [Type] -> Int -> Bool

multiP tx = flip elem multi where

180 skol = concat (map skolType tx)

meta = concat (map metaType tx)

tvs = meta ++ skol

multi = nub (tvs \\ nub tvs)

185 --------- Pretty -printing types and constraints

instance Show Pat where

show (PatCon "," ax) = paren (intercalate ", " ax)

show (PatCon tc ax) = unwords (tc:ax)

190 show (PatInt i) = show i

instance Show Type where

show = showType

195 showType (TyVar tv) = tv

showType (TyMeta idx) = ’?’ : show idx

showType (TySkol idx) = ’!’ : show idx

showType (TyCon "->" [t1 , t2]) =

unwords [showType1 t1, "->", showType t2]

200 showType (TyCon "," [t1 , t2]) =

paren (concat [showType1 t1, ", ", showType t2])

showType (TyCon tc ax) =

unwords (tc : map showType2 ax)

205 paren :: String -> String

paren str = concat ["(", str , ")"]

showType1 t@(TyCon "->" _) = paren (showType t)

showType1 t = showType t

210

showType2 t@(TyCon "," _) = showType t

showType2 t@(TyCon _ (_:_)) = paren (showType t)

showType2 t = showType1 t

215 showLocal :: (Ident , VarTy) -> String

showLocal (x, vt) = unwords [x, "::", show vt]

instance Show VarTy where

show (VarTy t) = showPolyType t

220

instance Show ConsTy where

show (ConsTy t) = showPolyType t

showPolyType t = quant ++ show t where

225 btvx = freeType t

only ax s = if null ax then "" else s

quant = only btvx (unwords (" forall" : btvx) ++ ". ")
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B.4 SOURCE PROGRAM PARSER

The Front.g source file defines a parser for a simple functional programming

language. I use the Frown parser generator [13] to produce a Haskell source file

Front.hs that implements the parser specified in this source file.

-- Time -stamp: <2010-06-15 10:56:02 cklin >

module Front where

5 import Types

import Data.Char

import Data.List

import System.IO

10 %{

Terminal = LexOp as "+"

| LexDef as "="

| LexArr as "->"

| LexComa as ","

15 | LexSemi as ";"

| LexLam as "\\"

| LexType as "::"

| LexParL as "(" | LexParR as ")"

| LexBraL as "{" | LexBraR as "}"

20 | LexVar {Ident}

| LexCon {String}

| LexInt {Integer}

| LexData | LexWhere

| LexCase | LexOf

25 | LexLet | LexIn

| LexNext

| LexDoc {String}

| LexError ;

30 top {[ Program ]} ;

top {[]} : ;

{p} | LexNext , top {p} ;

{d:p} | decl {d}, LexNext , top {p} ;

35 decl {Program} ;

decl {Value v (foldr Lam t ax)} : LexVar {v}, vars {ax}, "=", term {t} ;

{Decl (Data c ax) cx} | LexData , LexCon {c}, vars {ax},

conb {cx} ;

{Info doc} | docs {doc} ;

40

docs {[ String ]} ;

docs {[c]} : LexDoc {c} ;

{c:cx} | LexDoc {c}, docs {cx} ;

45 vars {[Ident]} ;

vars {[]} : ;

{v:ax} | LexVar {v}, vars {ax} ;
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conb {[Cons]} ;

50 conb {[]} : ;

{cx} | LexWhere , "{", cons {cx}, "}" ;

cons {[Cons]} ;

cons {[Cons c t]} : LexCon {c}, "::", tsig {t} ;

55 {Cons c t:cx} | LexCon {c}, "::", tsig {t}, ";",

cons {cx} ;

tsig {Type} ;

tsig {t} : ftsig {t} ;

60 {arrType t u} | ftsig {t}, "->", tsig {u} ;

ftsig {Type} ;

ftsig {TyCon c ax} : LexCon {c}, stsig {ax} ;

{t} | atsig {t} ;

65

stsig {[Type]} ;

stsig {[t]} : atsig {t} ;

{t:tx} | atsig {t}, stsig {tx} ;

70 atsig {Type} ;

atsig {TyVar v} : LexVar {v} ;

{TyCon c []} | LexCon {c} ;

{TyCon "()" []} | "(", ")" ;

{TyCon "," [u, v]} | "(", tsig {u}, ",", tsig {v}, ")" ;

75 {t} | "(", tsig {t}, ")" ;

term {Term} ;

term {t} : sterm {t} ;

{App (App (Var "+") t) u} | sterm {t}, "+", term {u} ;

80 {Lam a u} | "\\", LexVar {a}, "->", term {u} ;

{Case c bx} | LexCase , term {c}, LexOf ,

"{", cases {bx}, "}" ;

{Let dx t} | LexLet , "{", defs {dx}, "}",

LexIn , term {t} ;

85

sterm {Term} ;

sterm {t} : aterm {t} ;

{App t u} | sterm {t}, aterm {u} ;

90 aterm {Term} ;

aterm {Var v} : LexVar {v} ;

{Con c} | LexCon {c} ;

{Int i} | LexInt {i} ;

{Con "()"} | "(", ")" ;

95 {t} | "(", term {t}, ")" ;

{App (App (Con ",") u) v} | "(", term {u}, ",", term {v}, ")" ;

defs {[(Ident , Term )]} ;

defs {[(v, foldr Lam t ax)]} : LexVar {v}, vars {ax}, "=", term {t} ;

100 {(v, foldr Lam t ax):dx} | LexVar {v}, vars {ax}, "=", term {t},

";", defs {dx} ;

cases {[(Pat , Term )]} ;

cases {[(p, t)]} : pat {p}, "->", term {t} ;
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105 {(p, t):cx} | pat {p}, "->", term {t},

";", cases {cx} ;

pat {Pat} ;

pat {PatCon c px} : LexCon {c}, vars {px} ;

110 {PatCon "," [u, v]} | "(", LexVar {u}, ",", LexVar {v}, ")" ;

{PatInt i} | LexInt {i} ;

}%

frown remain = fail (show (take 10 remain ))

115

--------- Parse programs in files

parseFile :: String -> IO [Program]

parseFile file =

120 do program <- readFile file

top (segment program)

--------- Lexical analysis: top -level function

125 skiplf :: String -> String

skiplf = dropWhile (’\n’ /=)

copydoc :: String -> ([ String], String)

copydoc (’\n’:cs@(’-’:’-’:_)) = (doc:docs , rest)

130 where (doc , wt) = span (’\n’ /=) cs

(docs , rest) = copydoc wt

copydoc cs = ([], cs)

segment :: String -> [Terminal]

135 segment [] = [LexNext]

segment (’\n’:cs@(’\n’:’-’:’-’:_)) =

let (doc , wt) = copydoc cs

in LexNext : (map LexDoc doc ++ segment wt)

segment (’-’:’-’:cs) = segment (skiplf cs)

140 segment (’\n’:’>’:cs) = LexNext : segment (skiplf cs)

segment (’\n’:’\n’:’>’:cs) = LexNext : segment (skiplf cs)

segment (’\n’:cs@(’\n’:_)) = LexNext : segment cs

segment (c:cs) | isSpace c = segment cs

segment input =

145 let (word , wt) = span isIdentChar input

(symbol , st) = span isSymChar input

in if null word

then lexSymbol symbol ++ segment st

else lexIdent word : segment wt

150

--------- Lexical analysis: symbols and operators

isIdentChar :: Char -> Bool

isIdentChar c = isAlphaNum c || c == ’_’

155

isSymChar :: Char -> Bool

isSymChar c = not (isIdentChar c || isSpace c)

keysyms0 :: [(Char , Terminal )]

160 keysyms0 = [(’;’, LexSemi), (’,’, LexComa),

(’\\’, LexLam),
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(’(’, LexParL), (’)’, LexParR),

(’{’, LexBraL), (’}’, LexBraR )]

165 -- Note that here I use the same token , LexOp , to represent three

-- different integer binary operators. This is hack , but as long as we

-- only type (but not evaluate) the programs , there really is no need to

-- distinguish the operators , which all have the same type.

170 keysyms :: [(String , Terminal )]

keysyms = [("+", LexOp), ("=", LexDef),

("*", LexOp), ("/", LexOp),

("->", LexArr), ("::", LexType )]

175 lexSymbol :: String -> [Terminal]

lexSymbol [] = []

lexSymbol symbol@(s:sx) =

case lookup s keysyms0 of

Just token -> token:lexSymbol sx

180 Nothing -> case lookup symbol keysyms of

Just token -> [token]

Nothing -> [LexError]

--------- Lexical analysis: keywords and identifiers

185

keywords :: [(String , Terminal )]

keywords = [(" data", LexData), ("where", LexWhere),

("case", LexCase), ("of", LexOf),

("let", LexLet), ("in", LexIn )]

190

lexIdent :: String -> Terminal

lexIdent word =

if all isDigit word then LexInt (read word)

else if isUpper (head word) then LexCon word

195 else if isLower (head word) then

case lookup word keywords of

Just token -> token

Nothing -> LexVar word

else LexError

200

B.5 TYPE INFERENCE MONAD

The Monad.hs source file defines a type inference monad Ti. It also provides

some utility functions for the Ti monad.

-- Time -stamp: <2010-03-31 20:47:48 cklin >

module Monad where

5 import Control.Monad (liftM , mapM_ , when)

import Data.Maybe (isJust)
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import Types

import Common

10

type EndoTi a = a -> Ti a

--------- Type inference monad and its combinators

15 -- Type inference state consists of a sequence number for generating

-- fresh meta type variables and a list of strings that record diagnosis

-- and error messages in reverse chronological order.

type TiS a = (Int , [String], a)

20 type TiM a = TiS (Maybe a)

newtype Ti a =

Ti { unTi :: Int -> TiM a }

25 instance Monad Ti where

fail w = Ti $ \s -> (s, ["ERROR: " ++ w], Nothing)

return a = Ti $ \s -> (s, [], Just a)

m >>= k = Ti $ \s -> mapJust bind (unTi m s) where

bind (s1, w1, v1) = (s2 , w2 ++ w1 , v2)

30 where (s2 , w2, v2) = unTi (k v1) s1

die :: Ti a

die = Ti $ \s -> (s, [], Nothing)

35 mapJust :: (TiS a -> TiM b) -> TiM a -> TiM b

mapJust _ (s, w, Nothing) = (s, w, Nothing)

mapJust f (s, w, Just a) = f (s, w, a)

runTi :: Ti a -> Int -> a

40 runTi m s = a where (_, _, Just a) = unTi m s

-- Arrest any failure in a monadic computation. The arrested

-- computation returns Nothing if a failure occurred.

45 catchTi :: Ti a -> Ti (Maybe a)

catchTi m = Ti $ m1 where

m1 s = (s1, w, Just x)

where (s1 , w, x) = unTi m s

50 succeedTi :: Ti a -> Ti Bool

succeedTi = liftM isJust . catchTi . catchNotes

-- Unleash the inner Maybe monad. Warning: all messages in the

-- attempted computations , error or otherwise , are discarded. To

55 -- preserve the messages , set the verbose flag to True.

verbose = False

attemptTi :: [Ti a] -> Endo (Ti a)

60 attemptTi ax final = attempt ax where

attempt [] = final

attempt (m:mx) =

do (w, result) <- arrestTi m

when verbose (mapM_ (mesg . ("o " ++)) w)
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65 case result of

Just a -> return a

Nothing -> attempt mx

-- Generate fresh meta type variables , or just the serial number.

70

newMetaTv :: Ti Type

newMetaTv = liftM TyMeta newMetaIndex

newMetaIndex :: Ti Int

75 newMetaIndex = Ti $ \s -> (s+1, [], Just s)

freshenTv :: [a] -> Ti [Type]

freshenTv = mapM (const newMetaTv)

80 freshenIndex :: [a] -> Ti [Int]

freshenIndex = mapM (const newMetaIndex)

freshenTyCon :: EndoTi Type

freshenTyCon (TyCon tc ax) = liftM (TyCon tc) (freshenTv ax)

85 freshenTyCon v = bug ("Non -constructor type " ++ show v)

renameToNew :: [Int] -> Ti Rename

renameToNew xs = liftM (toMap . zip xs) (freshenIndex xs)

90 -- Write to or read from the internal messages store. Unlike the fail

-- function , the mesg function writes a message without declaring a

-- failure. The catchNotes function erases all messages , even if the

-- transformed computation fails.

95 mesg :: String -> Ti ()

mesg w = Ti $ \s -> (s, [w], Just ())

replay :: [String] -> Ti ()

replay = mapM_ mesg

100

arrestTi :: Ti a -> Ti ([ String], Maybe a)

arrestTi = catchNotes . catchTi

catchNotes :: Ti a -> Ti ([ String], a)

105 catchNotes m = Ti m1 where

m1 s = (s1, [], liftM attach x)

where (s1 , w, x) = unTi m s

attach a = (reverse w, a)

110 -- To ensure freshness of newly generated type variables in the presence

-- of hard -coded type variables in the Ti computation (for example , in

-- unit tests), we choose 100 as the initial sequence number. The

-- programmer should make sure that all hard -coded meta type variables

-- have index numbers < 100.

115

initSeq :: Int

initSeq = 100

trapTi :: Ti a -> Maybe a

120 trapTi m = runTi (catchTi m) initSeq
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examineTi :: Ti a -> IO (Maybe a)

examineTi m =

let (w, v) = runTi (arrestTi m) initSeq

125 in do mapM_ putStrLn w

return v

B.6 TYPE SUBSTITUTION FUNCTIONS

The Substitution.hs source file provides type unification, type substitution

combination, and other utility functions on type substitutions.

-- Time -stamp: <2010-05-14 11:08:06 cklin >

module Substitution where

5 import Data.List ((\\) , union)

import qualified Data.Map as Map

import Types

import Common

10 import Monad

--------- General substitution utility functions

-- Construct a substitution. This factory function checks that the

15 -- mapping is idempotent and reports an error otherwise. Note that

-- compoSub (and perhaps other too) can produce identity mappings (e.g.,

-- [x/x]) in the associative list , so the algorithm must sanitize the

-- mapping (to mp0) to avoid tripping the idempotency checking.

20 makeSub :: [(Int , Type)] -> Subst

makeSub mp =

let mp0 = filter (\(i, t) -> TyMeta i /= t) mp

dom = map fst mp0

rng = unionMap (metaType . snd) mp0

25 in if overlaps dom rng

then bug "Mapping is not idempotent"

else toMap mp0

zeroSub :: Subst

30 zeroSub = Map.empty

oneSub :: Int -> Type -> Subst

oneSub = Map.singleton

35 nullSub :: Subst -> Bool

nullSub = Map.null

-- Compute the domain and the range of a substitution.

40 domSub :: Subst -> [Int]
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domSub = Map.keys

rngSub :: Subst -> [Type]

rngSub = Map.elems

45

metaSub :: Subst -> [Int]

metaSub sub = domSub sub ‘union ‘ metaTypes (rngSub sub)

-- Apply a substitution to a type. Since substitution mappings are

50 -- idempotent , there is no need for iterative application.

zonk :: Subst -> Endo Type

zonk sub = replace where

replace (TyCon tc ax) = TyCon tc (map replace ax)

55 replace t@(TyMeta i) = Map.findWithDefault t i sub

replace (TySkol i) | Map.member i sub =

bug "Substitution on Skolem type"

replace t = t

60 -- Apply a substitution directly to a meta type variable index.

zonkIndex :: Subst -> Int -> Type

zonkIndex sub i = Map.findWithDefault (TyMeta i) i sub

65 -- Rename meta type variables in a type. Unlike substitutions , this

-- dedicated renaming function does not care about the orientation of

-- type variable renaming.

renameMeta :: Rename -> Endo Type

70 renameMeta ren = replace where

replace (TyCon tc ax) = TyCon tc (map replace ax)

replace (TyMeta i) = TyMeta (lookupZ i ren)

replace t = t

75 -- Replace free type variables with (supposedly fresh) meta type

-- variables. Not strictly a substitution , but ...

instType :: Map.Map Ident Int -> Endo Type

instType inst = replace where

80 replace (TyCon tc ax) = TyCon tc (map replace ax)

replace (TyVar tv) = TyMeta (lookupX tv inst)

replace t = t

-- Compute a substitution that forces the second type (t) to have the

85 -- same top -level type constructor as the first type (c) .

imprintTc :: Type -> Type -> Ti Subst

imprintTc c t =

do u <- freshenTyCon c

90 unify2 u t

-- The skolemize function computes a substitution that replaces meta

-- type variables with Skolem types that have the same indices. The

-- unskolemize function replace Skolem types to their corresponding meta

95 -- type variables.

skolemize :: [Int] -> Subst
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skolemize = makeSub . map skol

where skol m = (m, TySkol m)

100

unskolemize :: Endo Type

unskolemize = replace where

replace (TyCon tc ax) = TyCon tc (map replace ax)

replace (TySkol i) = TyMeta i

105 replace t = t

-- Compose two substitutions. The function uses nub1st to arbitrate

-- (favoring sub2) when the domains overlap. Composition is not

-- commutative , and tv(rng(sub1)) must be disjoint from dom(sub2) with

110 -- the exception of reverse renaming (see example ).

-- zonk sub1 (zonk sub2 t) == zonk (compoSub sub1 sub2) t

-- compoSub [x/y] [y/x] == [x/y]

compoSub :: Subst -> Endo Subst

115 compoSub sub1 sub2 = makeSub (nub1st (mp2 ++ mp1)) where

mp1 = Map.toList sub1

mp2 = Map.toList (Map.map (zonk sub1) sub2)

compoSubs :: [Subst] -> Subst

120 compoSubs = foldl compoSub zeroSub

-- Restrict the domain of a substitution.

restrictSub :: [Int] -> Endo Subst

125 restrictSub mx = Map.filterWithKey relevant

where relevant i _ = i ‘elem ‘ mx

-- Apply an idempotent variable renaming to a both the domain and the

-- range of a substitution. Here is an example:

130 -- switchMetaSub [a/x, b/y] [T x/y] == [T a/b]

switchMetaSub :: Rename -> Endo Subst

switchMetaSub ren = makeSub . map switch . Map.toList

where switch (i, t) = (lookupZ i ren , renameMeta ren t)

135

-- Restrict an idempotent substitution to the parts that have nontrivial

-- effects on the given set of type variables. More specifically , the

-- function restricts the domain to the type variables of interest , and

-- then it eliminates trivial type variable mappings (i.e., renaming ).

140

shaveSub :: [Int] -> Endo Subst

shaveSub mx sub = shaven where

trimmed = restrictSub mx sub

nontriv = multiP (rngSub trimmed)

145 keep (TyMeta i) = nontriv i || elem i mx

keep _ = True

shaven = Map.filter keep trimmed

-- Extend a substitution such that every meta type variable in the input

150 -- list dom is in the domain of the extended subsitution.

divertSub :: [Int] -> EndoTi Subst

divertSub dom sub =

do let gap = dom \\ domSub sub
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155 fresh <- freshenTv gap

let fill = makeSub (zip gap fresh)

return (compoSub fill sub)

--------- Plain unification functions

160

unify :: [Type2] -> Ti Subst

unify [] = return zeroSub

unify ((t1, t2):tx) =

do this <- unify2 t1 t2

165 let norm (u1 , u2) = (zonk this u1 , zonk this u2)

rest <- unify (map norm tx)

return (compoSub rest this)

unify2 :: Type -> Type -> Ti Subst

170 unify2 (TyVar _) _ = bug "Bound type variable in unify2"

unify2 _ (TyVar _) = bug "Bound type variable in unify2"

unify2 (TyMeta i1) (TyMeta i2) | i1 == i2 = return zeroSub

unify2 (TyMeta i1) t2 = unifyMeta i1 t2

unify2 t1 (TyMeta i2) = unifyMeta i2 t1

175 unify2 (TySkol i1) (TySkol i2) | i1 == i2 = return zeroSub

unify2 (TySkol _) _ = fail "Cannot unify with a Skolem type"

unify2 _ (TySkol _) = fail "Cannot unify with a Skolem type"

unify2 (TyCon tc1 ax1) (TyCon tc2 ax2) =

if tc1 == tc2 && length ax1 == length ax2

180 then unify (magic $ zip ax1 ax2)

else fail "Cannot unify different type constructors"

unifyMeta :: Int -> Type -> Ti Subst

unifyMeta i t =

185 if elem i (metaType t)

then fail "Unification produces an infinite type"

else return (oneSub i t)

unifyTypes :: [Type] -> Ti Subst

190 unifyTypes [] = unify []

unifyTypes tx = unify (zip (tail tx) tx)

-- Unifiability testing. If the given type equations / types are

-- satisfiable , return a most -general unifier as evidence. The function

195 -- uses trapTi to present a non -monadic interface.

unifiable :: [Type2] -> Maybe Subst

unifiable = trapTi . unify

200 unifiableTypes :: [Type] -> Maybe Subst

unifiableTypes = trapTi . unifyTypes

--------- Substitution unification algorithm

205 -- Compute a most -general common instance of the input substitutions.

-- This algorithm is so much simpler than McAdam ’s substitution

-- unification , and it extends naturally to more than two substitutions.

combineSub :: Subst -> EndoTi Subst

210 combineSub sub1 sub2 = combineSubs [sub1 , sub2]
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combineSubs :: [Subst] -> Ti Subst

combineSubs = unify . map1st TyMeta

. concatMap (magic . Map.toAscList)

215

--------- Substitution orientation bias

-- The "magic" switch controls how the algorithm orients type

-- substitutions , which in turn affects how it picks type parameters and

220 -- type indices by breaking the symmetry in scrutinee and pattern types.

-- With magic turned off (i.e., magic = id), the algorithm exhibits the

-- bias that type indices come before type parameters. With magic

-- turned on (i.e., magic = reverse), the algorithm exhibits the

-- opposite bias: type parameters come before type indices. The magic

225 -- does not formally change the expressiveness of Algorithm P, but it

-- does seem to fit currently programming practices better (and it

-- allows the implementation to infer expected types for both runState_o

-- and fdComp1 ).

230 magic = reverse

B.7 BRANCH TYPE INFERENCE

The Branches.hs source file provides utility functions that support type

inference for GADT pattern-matching branches.

-- Time -stamp: <2010-05-12 14:23:36 cklin >

module Branches where

5 import Control.Monad (liftM , unless)

import Data.List ((\\) , transpose)

import Data.Maybe (isJust , mapMaybe)

import qualified Data.Map as Map

10 import Types

import Common

import Monad

import Substitution

15 --------- Branch type manipulation functions

-- Create a minimal (i.e., most general) type that has all the specified

-- meta type variables in the same position as the input type.

20 transcribe :: [Int] -> EndoTi Type

transcribe keep = render where

render t@(TyMeta i) =

if i ‘elem ‘ keep

then return t else newMetaTv

25 render (TyCon tc ax) =

if metaTypes ax ‘overlaps ‘ keep
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then liftM (TyCon tc) (mapM render ax)

else newMetaTv

render (TyVar _) =

30 bug "Bounded type variable in transcribe"

render (TySkol _) =

bug "Skolem type in transcribe"

-- Compute a scrutinee type from the branch scrutinee type templates and

35 -- type indexing substitutions. We use the extractTc function to

-- specialize the scrutinee type , which ensures that GADT type

-- refinements for each scrutinee type variable do not all have the same

-- top -level type constructor.

40 scrutineeType :: [Subst] -> [Type] -> Ti Subst

scrutineeType sub_branch scrutinees =

do unifier <- unifyTypes scrutinees

sub <- reach (mapM (combineSub unifier) sub_branch)

let indices = metaType (zonk unifier $ head scrutinees)

45 indexing = map (branchTypes sub) indices

extract <- liftM fst (extractTc indexing)

return (compoSub extract unifier)

-- The Split type describes how a meta type variable (represented by the

50 -- Int value) appears in each pattern -matching branch , and the

-- branchTypes function is its factory function.

type Split = (Int , [Type])

55 branchTypes :: [Subst] -> Int -> Split

branchTypes sub i = (i, indexed) where

indexed = map (flip zonkIndex i) sub

zonkSplit :: Subst -> Endo Split

60 zonkSplit sub (i, tx) = (i, map (zonk sub) tx)

-- The extractTc function extracts common top -level type constructors in

-- the branch types and apply them to the corresponding type variables.

-- extractTc [(x, [Int])] == ([Int/x], [])

65 -- extractTc [(x, [T Int , T Bool ])] == ([T y/x], [(y, [Int , Bool ])])

-- extractTc [(x, [Bool , T Int ])] == ([], [(x, [Bool , T Int ])])

extractTc :: [Split] -> Ti (Subst , [Split ])

extractTc [] = return (zeroSub , [])

70 extractTc ((i, tx) : ux) =

case deCons tx of

Nothing ->

do (sub , vx) <- extractTc ux

return (sub , (i, tx) : ux)

75 Just (tc, ax) ->

do ix <- freshenIndex (head ax)

let newTc = TyCon tc (map TyMeta ix)

uax = zip ix (transpose ax)

(sub , vx) <- extractTc (uax ++ ux)

80 return (compoSub sub (oneSub i newTc), vx)

-- The matchTc function is similar to extractTc , except that it requires

-- only that the branch types be coercible to a single type constructor.
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-- The function reports failure if the condition is not met.

85

matchTc :: Split -> Ti (Subst , [Split ])

matchTc (i, tx) =

case deCons (filter consP tx) of

Nothing -> fail "Cannot match type constructors"

90 Just (tc, ax) ->

do let template = TyCon tc (head ax)

imprint <- mapM (imprintTc template) tx

let imprinted = zipWith zonk imprint tx

(inst , vx) <- extractTc [(i, imprinted )]

95 sub <- combineSubs (inst : imprint)

return (sub , vx)

-- Skolemize all occurrences of pattern type variables to prevent the

-- type indexing process from introducing unintentional instantiations

100 -- (which can create new generalized existential types == BAD).

freeze :: [Int] -> Endo ([Split], [Split])

freeze excl (indexing , env) = (skol indexing , skol env) where

pattern_v = unionMap (metaTypes . snd) indexing \\ excl

105 skol = map (zonkSplit (skolemize pattern_v ))

equalize :: Split -> Ti Subst

equalize (i, tx) =

if null (skolTypes tx)

110 then attemptTi [unifyTypes (TyMeta i : tx)]

(fail "Cannot reconcile branch body types")

else fail "A pattern type escapes in equalize"

-- Reconcile the mapping from environment meta type variables to branch

115 -- types into a single type substitution with the help of type indexing.

reconcile :: [Int] -> ([Split], [Split ]) -> Ti (Subst , [Split])

reconcile params = driver zeroSub . freeze params where

120 -- The driver function repeatedly invokes the matcher until it

-- reaches a fixed -point (at which point the matcher cannot make

-- more progress), and then it returns the combined matching along

-- with the unsolved branch types.

125 driver prev (indexing , variety) =

do result <- mapM matcher variety

sub <- combineSubs (map fst result)

let update = map (zonkSplit sub)

unsolved = update (concatMap snd result)

130 combined <- combineSub prev sub

let param_inst = map (zonkIndex combined) params

unless (null (skolTypes param_inst ))

(fail "A pattern type escapes in reconcile ")

if nullSub sub

135 then return (combined , unsolved)

else driver combined (update indexing , unsolved)

-- The matcher function tries to reconcile pattern types that are

-- not unifiable by either matching them to a unique type index or

140 -- matching (and unwrapping) a top -level type constructor.
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where

matcher variety@(_, tx) =

if isJust (unifiableTypes tx) && null (skolTypes tx)

145 then return (zeroSub , [variety ])

else attemptTi [matchIndex variety , matchTc variety]

(return (zeroSub , [variety ]))

matchIndex (i, tx) =

150 let runSnd f (x, y) = do { z <- f y ; return (x, z) }

couple = runSnd (unifiable . zip tx)

in case mapMaybe couple indexing of

[(k, sub)] -> let index = oneSub i (TyMeta k)

in return (compoSub index sub , [])

155 _ -> fail "Cannot find unique matching type index"

--------- Branch reachability constraints

-- We use Type2 to represent the type -level (potential) reachability of

160 -- a branch. The first component is the scrutinee type , and the second

-- component is the pattern type. The Reach type represents the

-- reachability constraints in disjunctive normal form: nested patterns

-- are linked by conjunctions , and non -nested patterns (whether in the

-- same case expression or not) are linked by disjunctions.

165

type Reach = [[ Type2]]

-- A trivial reachability constraint is the disjunction of an empty

-- conjunction (True), which differs from an empty disjunction (False).

170

trueR :: Reach

trueR = [[]]

-- Since inferred type substitutions should never affect the pattern

175 -- types , the zonkR function applies the substitution only to the

-- scrutinee types (first component of the pair).

zonkR :: Subst -> Endo Reach

zonkR = map . map1st . zonk

180

-- Add a nested pattern to a reachability constraint.

attachR :: Type2 -> Endo Reach

attachR r = map (r:)

185

-- Check the satisfiability of a reachability constraint: type equations

-- in each conjunction must be simultaneously unifiable.

checkR :: [Int] -> EndoTi Reach

190 checkR ix r =

do reach (mapM_ unify r)

return r

reach :: Endo (Ti a)

195 reach m = attemptTi [m] (fail "A branch is unreachable ")
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B.8 PROGRAM TYPE INFERENCE

The Inference.hs source file implements Algorithm P .

-- Time -stamp: <2010-05-05 15:07:22 cklin >

module Inference (inferTop) where

5 import Control.Monad

import Data.List ((\\) , intersect , nubBy , union)

import qualified Data.Map as Map

import Types

10 import Common

import Monad

import Substitution

import Branches

15 --------- Type instantiation and generalization

instantiate :: EndoTi Type

instantiate t =

do let btvx = freeType t

20 inst <- liftM (zip btvx) (freshenIndex btvx)

return (instType (toMap inst) t)

names :: [String]

names = expand ("" : names) (map (:[]) [’a’..’z’])

25 where expand ax bx = [ a ++ b | a <- ax, b <- bx ]

generalize :: [Int] -> Endo Type

generalize outer t = zonk (toMap gen) t where

gen = zip (metaType t \\ outer) (map TyVar names)

30

--------- Constructor and variable type lookup functions

lookupCons :: ConsE -> String -> Ti Type

lookupCons consE dc =

35 case Map.lookup dc consE of

Nothing -> fail (" Unknown constructor " ++ dc)

Just (ConsTy t) -> instantiate t

lookupVar :: VarE -> Ident -> Ti Type

40 lookupVar varE v =

case Map.lookup v varE of

Nothing -> fail (" Unknown variable " ++ v)

Just (VarTy t) -> instantiate t

45 --------- Type inference for top -level definitions

inferTop :: ConsE -> Term -> Ti Type

inferTop consE e =

do let vx = ["+", "undefined "]

50 tx = [plusType , botType]

env = (consE , vars vx tx)
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(_, _, t) <- inferType env e

return (generalize [] t)

55 --------- Main type inference algorithm

type Env = (ConsE , VarE)

type Result = (Subst , Reach , Type)

60 var :: Ident -> Type -> VarE

var x t = Map.singleton x (VarTy t)

vars :: [Ident] -> [Type] -> VarE

vars xs = Map.map VarTy . toMap . zip xs

65

zonkE :: Subst -> Endo VarE

zonkE = mapVarE . zonk

simple :: Type -> Result

70 simple t = (zeroSub , trueR , t)

inferType :: Env -> Term -> Ti Result

inferType (consE , varE) = infer where

showEnv = mapM_ (mesg . showLocal) . Map.assocs

75 metaE = metaVarE varE

-- Type inference in an extended variable type environment. I use

-- the left -bias property of Map.union to implement shadowing.

80 inferVar newE =

inferType (consE , Map.union newE varE)

-- This wrapper function applies the inferred substitution to the

-- reachability constraint , and check that the refined reachability

85 -- constraint is satisfiable.

infer e =

do (sub , r, t) <- infer ’ e

trimmed <- checkR (metaType t ++ metaE) (zonkR sub r)

90 return (restrictSub metaE sub , trimmed , t)

infer ’ (Int _) = return (simple intType)

infer ’ (Con c) = liftM simple (lookupCons consE c)

infer ’ (Var v) = liftM simple (lookupVar varE v)

95

-- This type inference algorithm for function application is taken

-- from the paper "On the Unification of Substitutions in Type

-- Inference" by Bruce J. McAdam.

100 infer ’ (App f e) =

do (sub_f , r_f , t_f) <- infer f

(sub_e , r_e , t_e) <- infer e

t_r <- newMetaTv

sub_r <- unify2 t_f (arrType t_e t_r)

105 sub <- combineSubs [sub_f , sub_e , sub_r]

return (sub , union r_f r_e , zonk sub t_r)

infer ’ (Lam u e) =



275

do t_u <- newMetaTv

110 (sub , r, t_e) <- inferVar (var u t_u) e

return (sub , r, arrType (zonk sub t_u) t_e)

infer ’ (Let l e) =

do (sub_l , r_l , vE) <- inferLocal l

115 showEnv vE

(sub_e , r_e , t_e) <- inferVar vE e

sub <- combineSub sub_l sub_e

return (sub , union r_l r_e , zonk sub t_e)

120 infer ’ (Case e w) =

do (sub_e , r_e , t_e) <- infer e

(sub_wx , r_w , i_b , t_s) <- inferBranches w

-- Combine the inferred type of the case scrutinee with the

125 -- requirement from the pattern -matching branches. The flip

-- in the computation for sub_branches is important to avoid

-- type variable renaming from scrutinee type variables.

unifier <- unify2 t_e t_s

130 let scrutinee = zonk unifier t_s

sub_ctx <- combineSub sub_e unifier

sub_branches <- mapM (flip combineSub sub_ctx) sub_wx

-- Fill in the empty (unconstrained) positions in the branch

135 -- type substitutions.

let dom = unionMap domSub sub_branches

indices = metaType scrutinee ‘intersect ‘ dom

params = metaType scrutinee \\ indices

140 i_body = i_b : metaE

labels = indices ‘union ‘ i_body

map_wx <- mapM (divertSub labels) sub_branches

-- Compute how GADT type refinement in each branch affects

145 -- the scrutinee and the environment / body type variables.

let indexing = map (branchTypes map_wx) indices

branches = map (branchTypes map_wx) i_body

150 -- Compute a single type substitution to represent the

-- varying type assumptions inferred from each

-- pattern -matching branch. This is the part of the

-- algorithm that takes advantage of type indexing.

155 (match , unmatched) <- reconcile params (indexing , branches)

tie <- (combineSubs <=< mapM equalize) unmatched

sub <- combineSub match tie

return (sub , union r_e r_w , zonkIndex sub i_b)

160

-- Infer the types of pattern matching branches. This function

-- computes a single scrutinee type for all branches , but it does

-- not attempt to resolve differences in environment and branch body

-- types (which may require using type indexing ).

165
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inferBranches :: [Branch] -> Ti ([ Subst], Reach , Int , Type)

inferBranches branches =

do i_body <- newMetaIndex

inferred <- mapM (inferBranch i_body) branches

170 let (sub , rx , scrutinees) = unzip3 inferred

unifier <- scrutineeType sub scrutinees

let r = zonkR unifier (unions rx)

175 scrutinee = zonk unifier (head scrutinees)

unified_sub <- mapM (flip combineSub unifier) sub

return (unified_sub , r, i_body , scrutinee)

-- Infer the type of a single pattern -matching branch. The integer

180 -- i represents a placeholder meta type variable for the branch body

-- type; see comment at the end of the function for the meaning of

-- the returned substitution.

inferBranch :: Int -> Branch -> Ti (Subst , Reach , Type)

185 inferBranch i (p, e) =

do (newE , pattern) <- patternType p

(sub_e , r_e , t_e) <- inferVar newE e

-- To avoid false positives in recognizing generalized

190 -- existential types , we trim the inferred type substitution

-- sub_e to retain only the mappings that are relevant.

let i_e = metaType t_e

i_local = metaVarE newE

195 i_env = unions [metaE , i_local , i_e]

i_pat = metaType pattern

eta = shaveSub i_env sub_e

eta_local = shaveSub i_pat eta

200 -- Compute the set v_esc of instantiated or escaped pattern

-- type variables and check for existential type violations.

let i_ext = intersect (metaSub eta ‘union ‘ i_e) i_local

unless (i_ext ‘subset ‘ i_pat)

205 (fail "Existential type escape or instantiation ")

-- Compute a most general scrutinee type by transcribing

-- instantiated type variables from the pattern type to the

-- scrutinee type. Use the computed scrutinee type to update

210 -- the reachability constraint for the branch.

copy <- transcribe (metaSub eta_local) pattern

scrutinee <- if metaP copy

then freshenTyCon pattern

215 else return (zonk eta copy)

let r = attachR (scrutinee , pattern) r_e

-- The ordering of "pattern" and "scrutinee" matters: placing

-- the pattern type first avoids generating trivial renaming

220 -- from scrutinee type variables to pattern type variables.

-- Such renaming makes the type inference algorithm mistake

-- ADT type variables for GADT type variables and could cause



277

-- type inference failure for some ADT case expressions.

225 refinement <- unify2 pattern scrutinee

-- The substitution sub combines two different kinds of type

-- information into one. With domain restricted to the

-- scrutinee type variables , it represents GADT type

230 -- refinements for the branch (sub_ps ). With domain

-- restricted to the outer environment type variables , it

-- represents the assumptions that the branch makes on the

-- environment (eta). With domain restricted to i, it

-- represents the type of the branch body.

235

sub <- combineSubs [refinement , eta , oneSub i t_e]

return (sub , r, scrutinee)

-- Given a pattern , compute a pattern type and construct a

240 -- corresponding type environment fragment for the pattern -bound

-- variables.

patternType :: Pat -> Ti (VarE , Type)

patternType (PatInt _) = return (Map.empty , intType)

245 patternType (PatCon c xs) =

do (t_ax , t_p) <- liftM spine (lookupCons consE c)

unless (length t_ax == length xs)

(fail "Data constructor arity mismatch ")

return (vars xs t_ax , t_p)

250

-- Infer polymorphic types for recursive local let definitions using

-- Mycroft ’s extension to Algorithm W (described in "Polymorphic

-- Type Schemes and Recursive Functions", 1984). The function

-- returns , among other things , a type environment fragment for

255 -- local definitions.

inferLocal :: [(Ident , Term)] -> Ti (Subst , Reach , VarE)

inferLocal locals = mycroft limit zeroSub fullpoly where

(ux , ex) = unzip locals

260 fullpoly = repeat (TyVar "a")

-- Since Mycroft ’s fix rule is only a semi -algorithm , we must

-- enforce termination by limiting the number of iterations.

-- The limit defined here is fairly conservative; a limit of 3

265 -- is sufficient for all the included examples.

limit = 20

mycroft 0 _ _ = fail "Mycroft iteration limit reached"

270 mycroft n init types =

do result <- arrestTi (refinePoly init types)

case result of

(w, Nothing) -> do { replay w ; die }

(w, Just (sub , r, sigma)) ->

275 if sigma /= map (zonk sub) types

then mycroft (n-1) sub sigma

else do replay w

return (sub , r, vars ux sigma)
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280 -- Infer polymorphic types for local definitions under a

-- substitution and a polymorphic type environment. Unlike in

-- the Hindley -Milner type inference algorithm , we do not unify

-- the types in the environment and the inferred types of the

-- local definitions.

285

refinePoly sub_init types_init =

do let env_init = vars ux types_init

inferred <- mapM (inferVar env_init) ex

let (subs , rx , tx) = unzip3 inferred

290 sub <- combineSubs (sub_init : subs)

let outer = metaVarE (zonkE sub varE)

types_new = map (zonk sub) tx

sigma_new = map (generalize outer) types_new

return (sub , unions rx , sigma_new)

295
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