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Abstract

Spammers are continually looking to circumvent counter-measures seeking to slow

them down. An immense amount of time and money is currently devoted to hid-

ing spam, but not enough is devoted to effectively preventing it. One approach

for preventing spam is to force the spammer’s machine to solve a computational

problem of varying difficulty before granting access. The idea is that suspicious or

problematic requests are given difficult problems to solve while legitimate requests

are allowed through with minimal computation. Unfortunately, most systems that

employ this model waste the computing resources being used, as they are directed

towards solving cryptographic problems that provide no societal benefit. While sys-

tems such as reCAPTCHA and FoldIt have allowed users to contribute solutions

to useful problems interactively, an analogous solution for non-interactive proof-

of-work does not exist. Towards this end, this paper describes MetaCAPTCHA

and reBOINC, an infrastructure for supporting useful proof-of-work that is inte-

grated into a web spam throttling service. The infrastructure dynamically issues

CAPTCHAs and proof-of-work puzzles while ensuring that malicious users solve

challenging puzzles. Additionally, it provides a framework that enables the compu-

tational resources of spammers to be redirected towards meaningful research. To

validate the efficacy of our approach, prototype implementations based on OpenCV

and BOINC are described that demonstrate the ability to harvest spammer’s re-

sources for beneficial purposes.
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1

INTRODUCTION

Internet spammers are relentless. Although email spam is reducing (from 92.2%

in Aug 2010 to ≈ 70.5% in Jan 2012 ), the spam on social networking sites is edg-

ing up [49]. In 2011, approximately 4 million Facebook users received spam from

around 600,000 new or hijacked accounts each day [49, 71]. From there on, social

spam had risen 355% just during the first six months of 2013 [109]. Particularly,

the success rates of social spam are frightening: 0.13% of all spam URLs on Twit-

ter were visited by around 1.6 million unsuspecting users [55]. This click-through

rate is significantly higher than the ones of email spam which were reported at

0.003% - 0.006% [64]. Especially on Facebook, the mean spam conversion rate was

a staggering number of 47% [86]. This means that nearly half the Facebook users

who saw spam links or messages actually clicked on and read them. Furthermore,

traditional web applications such as blogs, e-commerce and forums are also suffer-

ing from the increased amount of social spam. With the expanding popularity of

OAuth protocol1, it is very common for web applications to be tightly integrated

with social network ecosystems. While this is convenient for the users, a compro-

mised account in a social networking site can spam not only the account’s friends,

but every web application using the OAuth features of the networking site. As

1The OAuth - Open Authentication - protocol allows the same user account to be used in
multiple websites. For example, a Wordpress blog that implements Facebook’s OAuth protocol
will allow anonymous users to use their Facebook’s accounts to post comments.
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a result, social networking sites and web applications in general have become the

new attractive venue for Internet spammers.

1.1 CURRENT ANTI-SPAM STRATEGIES AND CHALLENGES

Current methods for fighting spam in web applications can be classified in two

strategies: detection-based and prevention-based [59]. The detection-based meth-

ods classify a given data as spam or ham (not spam messages) whereas the prevention-

based ones make it difficult to send spam. A spam filter is a famous example of

detection-based methods. Spam filters work by employing various machine learning

algorithms and statistical techniques to discard malicious content while leaving un-

malicious data intact. By training the spam filters on a known set of large enough

spam and ham, the filters can determine how likely a new data is spam or ham

with up to 99.9% accuracy [108].

One drawback of spam detection methods is that they identify the malicious

contents only after the contents have been transported. For instance, a bot using

a hijacked account on Facebook to send spam to all of its friends only gets caught

after the messages have been transported through the network and arrived at

Facebook’s servers. Moreover, spam detection methods don’t punish malicious

behaviors enough; they only hide the malicious contents away from the legitimate

ones. Thus, a spam bot could use a strategy to attack many web applications for as

long as its resources are available. Since any statistical spam detection algorithm

will have a small false positive rate (known as Bayes error rate [38]), the strategy

will maximize the amount of malicious contents that gets to the web applications

undetected. As such, the Internet is clogged with endless spam traffic requiring

demanding computing resources to filter. To prevent this deluge traffic of spam,

several spam prevention methods are often employed, among them, CAPTCHA

and proof-of-work are two most common methods [59].

CAPTCHAs are special tests designed to tell computers and humans apart.
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The common types of CAPTCHAs usually use distorted texts and images that are

hard for computers but easy for humans to solve. However, a CAPTCHA can ef-

fectively protect an online transaction so long as there aren’t OCR algorithms that

can automatically “solve” or “break” it [92]. On average, an algorithm to break

CAPTCHAs only needs to have a precision rate as low as %1 to be considered suc-

cessful [26]. Once a class of CAPTCHAs is broken, the corresponding application

becomes defenseless against spam bots. In addition, CAPTCHAs are also prone

to outsourcing attacks where humans are used to solve CAPTCHAs en masse. A

major cause of success for these attacks is that CAPTCHAs don’t provide a way

to change the cost of solving them [76, 77]. Plus, the usability burden imposed by

CAPTCHAs [106] limits their use to only protecting infrequent transactions like

creating accounts. This leaves frequent transactions, like message posting, open

to abuse. Attackers exploit this loophole by hijacking accounts and using them to

send spam.

Proof-of-work is a different kind of spam prevention method that does not have

CAPTCHA’s usability issues and therefore, can be used in frequent transactions.

Proof-of-work often involves cryptographic algorithms whose results are challeng-

ing to find but easy to be verified. An application using the proof-of-work protocol

will require user’s devices to compute these algorithms as “work“. The applica-

tion’s servers will verify the outcomes of this work in order to grant users access to

certain services. This work will not require any user intervention which removes the

usability burdens of CAPTCHAs; however, the users will need to wait for a small

period of time in order to have their devices completing the work. On the other

hand, spammers will have to solve an increased amount of work corresponding to

the excessive amount of spam they sent. Furthermore, this paradigm enables an

application to price a transaction by varying the amount of work that needs to be

done as payment. In fact, proof-of-work systems are only effective if the price of

the transaction is based on the corresponding user’s reputation [67]. Such systems
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limit the number of spam messages an attacker can send by arbitrarily increasing

the resource cost for accepting the requests.

However, while the principle of proof-of-work seems effective in increasing the

cost of spam, existing systems of this kind have two main shortcomings. First,

the computing resources that the user’s devices spent in solving the proof-of-work

are wasted. Most of the proposed systems do not employ a useful computation

(a computation whose result can be reused for other purposes such as volunteer

computing) as a proof-of-work. It is crucial to note that while consuming some

computational resources of the devices is required by the proof-of-work protocol,

abandoning the results of those computations is undesirable. As a result, the proof-

of-work protocol solves one problem by increasing the cost of spam, but creates

another problem by wasting the user’s computing power. The second shortcoming

of current systems is the impracticality in constructing, supporting and deploy-

ing proof-of-work. Many proposed systems [42, 23, 60, 39, 62, 110] (i) demand

changes of the network layer or the application layer to allow the proof-of-work

protocol to operate, (ii) use only cryptographic functions to generate and verify

the proof-of-work, and (iii) restrict the proof-of-work functions to a limited class of

computations. Thus, creating a new proof-of-work for the former systems requires

numerous conditions to be met, thereby, making it complicated to create.

1.2 DESIGN GOALS

Motivated by the above observations, we want our fighting spam systems to retain

the strengths of CAPTCHAs and proof-of-work while addressing their weaknesses.

For instance our systems undertake current drawbacks of CAPTCHAs such as no

support to price a transaction dynamically based on user’s reputations, no backup

solution when one class of CAPTCHAs is broken and most importantly the usabil-

ity issues imposed by CAPTCHAs. Likewise, the systems tackle existing problems
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of the proof-of-work model such as no support for big classes of computation, wast-

ing computing cycles of the user’s devices for meaningless cryptographic functions

with no reusable results. Furthermore, we believe that a successful security model

should create a more pleasant user’s experience as well as protect a system against

improper behaviors. Ultimately, the systems should be flexible, practical and se-

cure that the community can adopt to solve real-world problems. Thus we setup

the following requirements for our systems as design goals:

Flexibility New systems or modifications are easy to be added with relatively

less effort than creating them from scratch. The systems can work with many

existing web applications with little extra overheads.

Practicality The systems are concerned with current usability and impractica-

bility issues and use well-known standards to solve those issues. The systems are

fast and efficient with acceptable latency for web transactions such as message

postings and account creations.

Security The systems are difficult for the adversaries to subvert. The systems

are dynamic and adaptable to new adversarial tactics while ensuring that legitimate

users are not encumbered.

1.3 OUR CONTRIBUTIONS

We designed and implemented the MetaCAPTCHA and reBOINC systems. Meta-

CAPTCHA is an application-agnostic spam prevention service for the web. Meta-

CAPTCHA adds metamorphism to address CAPTCHA’s usability, strengthens

proof-of-work’s flexibility and security while augmenting each. reBOINC lever-

ages MetaCAPTCHA’s infrastructures and improves the proof-of-work model to

support a green, flexible and practical computing model. The reBOINC system
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is designed to be a computational analogy to reCAPTCHA [101] - an anti-spam

system where half of the work being done goes towards digitizing text in scanned

books. As a result, computing resources spent for solving proof-of-work in the

reBOINC system directly benefit volunteer computing projects.

More specifically the MetaCAPTCHA and reBOINC systems:

• Seamlessly integrate the CAPTCHA and proof-of-work approaches. They

can dynamically issue proof-of-work or CAPTCHA puzzles while ensuring

that malicious users solve much “harder” puzzles — CAPTCHAs included

— than honest users.

• Support a variety of computations, as well as workloads from BOINC (The

Berkeley Open Infrastructure for Network Computing) [18, 11] - the most

widely adopted infrastructure for volunteer computing projects - as proof-of-

work. Therefore, the systems are not only green but also practical (require

little changes and support big classes of computations).

• Connect the pool of computing resources at the spammer’s disposal to the

large quantity of research projects that require computational resources. By

doing so, a win-win scenario is accomplished in that either a significant

amount of useful work is completed, or a considerable reduction in spam

is achieved.

• Randomly pick and deliver puzzles within a generic solver that eventually

executes those puzzles in the user’s web browser. Thus, the solver code

is metamorphic where it is changing randomly in each transaction. This

turns the reverse engineering problem around on the adversary who must

now attach a debugger to discover the solver’s execution steps.

• Use a Bayesian reputation service that can accurately predict a user’s rep-

utation score based on features configured by the web application. Since
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multiple web applications can be protected by our systems, the reputation

service provides global visibility on attacks across all those applications.

• Contain a modular puzzle library that can be configured with new types of

CAPTCHAs or proof-of-work puzzles while allowing the removal of those

types that are known to be “broken”. These puzzle library modifications

can be made by the web application without any change to its source code.

Furthermore, the variety of puzzles in the library ensures that breaking one

class of puzzles won’t compromise the systems as a whole.

The remainder of the paper is sectioned as follows. Chapter 2 describes the

design, implementation and evaluation of MetaCAPTCHA and lays the foundation

for the reBOINC system. Next, chapter 3 details the design, implementation and

evaluation of reBOINC. The reBOINC system is the main contribution of this

paper where spammer computing resources are harvested to use for good purposes.

Chapter 4 outlines related work and Chapter 5 concludes this paper.
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2

METAMORPHIC PROOF-OF-WORK IN ONLINE APPLICATIONS

Spam is a problem that refuses to go away. An immense amount of time and money

is currently devoted to hiding spam, but not enough is devoted to effectively pre-

venting it. CAPTCHAs are a prevalent spam prevention mechanism, but are get-

ting harder for humans to solve and easier for programs to “break”. CAPTCHAs

also cannot prevent spam from hijacked accounts since they are mostly used dur-

ing account creation. In addition, CAPTCHAs doesn’t have a dynamic pricing

function where the difficulty of solving the CAPTCHAs can be controlled. Proof-

of-work approaches are gaining popularity, but current implementations are not ef-

fective enough and cannot be used by generic web applications. Towards this end,

this chapter presents MetaCAPTCHA, an application-agnostic spam prevention

service for web applications. It dynamically issues CAPTCHAs and proof-of-work

puzzles while ensuring that malicious users solve challenging puzzles with exponen-

tial growth. Furthermore, MetaCAPTCHA strengthens the proof-of-work model

by using metamorphic puzzle issuing and solving process. This metamorphic pro-

cess ensures that the adversaries wanting to attack MetaCAPTCHA will have to

continuously solve the reverse-engineering problem. We evaluate MetaCAPTCHA

in the context of a reference web application and show that 95% of honest users

hardly notice MetaCAPTCHA’s presence, whereas the remaining 5% are required

to solve very “easy” puzzles before accessing the application’s services.
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2.1 BACKGROUND

MetaCAPTCHA dynamically issues CAPTCHA and proof-of-work puzzles. We

now provide a brief background on each kind of puzzle.

2.1.1 CAPTCHA

CAPTCHA stands for “Completely Automated Public Turing-test to tell Comput-

ers and Humans Apart”. CAPTCHAs usually consist of images containing squiggly

characters that are easy for humans to read, but hard for programs to parse. The

idea is to allow humans to access the web application’s services while deterring

automated adversaries like bots. A popular implementation of the CAPTCHA is

the reCAPTCHA [101].

2.1.2 Proof-of-work

The proof-of-work model was first proposed by Dwork and Naor [42] to combat

email spam. The idea was to impose a per-email cost on senders, where, the cost

was in terms of computational resources devoted by the sender to compute the

pricing function. Once a sender proved that it correctly computed the pricing

function, the server would send the email. Effectively, sending bulk spam would

become “expensive” because computational resources are finite. The characteris-

tics of such a pricing function f was then described as follows:

1. “moderately” easy to compute

2. not amenable to amortization: given any l values m1, . . . ,ml, the cost of

computing f(mi) is similar to the cost of computing f(mj) where i 6= j. In

other words, no amount of pre-processing should make it easier to compute

f on any input.

3. Given x and y, it is easy to check if y = f(x)
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An example of a pricing function is one that finds partial hash collisions [22]. A

function fk : x → y is said to compute a k-bit partial hash collision on string x,

if given a hash function H, the first k bits of H(x) are equal to the first k bits of

H(y). Notice that fk(·) has all the properties required of a pricing function.

Although the proof-of-work approach seemed promising, Laurie and Clayton

[67] demonstrated in 2004 that reducing spam to 1% of normal email would require

delaying each message — including one that an honest user sends — by ≈ 6

minutes; a high price to pay for innocent users. This delay was computed based

on then current rates of spam, number of email users, and under the assumption

that 1 million compromised machines were spewing spam. Since then, spam has

increased by 18% to 74.2%, so we expect the aforementioned delay to be much

larger now.

To reduce this delay, Liu and Camp [68] proposed basing puzzle difficulties on

user reputation. The idea was that users with lower reputations would receive

harder puzzles than those with higher reputations. Since easier puzzles would be

much quicker to solve, honest users would experience a nominal delay when sending

messages where as malicious users may be significantly delayed. Thus, with an

accurate reputation system, the proof-of-work approach can be a practical, fair,

and effective technique for combating spam.

2.2 SYSTEM MODEL

This section describes the system model in which MetaCAPTCHA is applicable.

In general, interactive web applications where online transactions can be exploited

by spammers, such as message forums, webmail, social applications, and event-

ticket purchasing can employ MetaCAPTCHA for spam prevention. Heymann et

al. [59] provide an exhaustive discussion on the common characteristics of such

web applications.
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Figure 2.1: System model: user’s browser must show proof-of-work before the

web application accepts the user’s message. The dotted line indicates initial setup

performed by the web application to use the MetaCAPTCHA service.

An overview of the system model and high-level interactions between the Meta-

CAPTCHA service, the web client, and the corresponding web application is shown

in Figure 2.1. The interactions begin when a user attempts to perform an online

transaction. The web application allows the transaction to proceed only when it

has sufficient proof that the client completed the work it was assigned by Meta-

CAPTCHA.

The work is issued in the form of “puzzles”. Puzzles can be interactive, non-

interactive, or hybrid. Interactive puzzles are generally CAPTCHAs, whereas non-

interactive puzzles are pricing functions as described in Section 2.1.2. A hybrid

puzzle combines a CAPTCHA and a pricing function into one puzzle.

As shown in Figure 2.1, we treat the user separate from the browser while

collectively referring to them both as the client. This is due to the existence of

interactive puzzles that need user interaction to solve, and non-interactive puzzles

that are solved automatically by the browser.
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2.3 COMMUNICATION PROTOCOL

This section discusses the MetaCAPTCHA communication protocol. For simplic-

ity, we assume a scenario where a client is attempting to post a message. Note,

however, that MetaCAPTCHA can protect more general web transactions like

purchasing event tickets, creating accounts, etc.

A web client begins communicating with MetaCAPTCHA after being referred

by the corresponding web application. In this case, the application will refer a

client attempting to post a message to MetaCAPTCHA. The client will then need

to obtain and solve a puzzle. The idea is that the web application will allow

messages from only those clients that have successfully solved a puzzle issued by

MetaCAPTCHA. The communication protocol for obtaining and solving a puzzle

begins with authentication as explained in the next section.

2.3.1 Authentication

MetaCAPTCHA only issues puzzles to clients of participating web applications.

This requires MetaCAPTCHA to authenticate (i) the identity of the web appli-

cation, and (ii) the client is an authorized user of the web application. Meta-

CAPTCHA provides each web application with an API key K during a registra-

tion phase. The web application must keep K secret as it will later be used for

authenticating both the application itself and all its clients.

As implied by the system model in Section 2.2, a client is not given access to

the services provided by the web application until it shows proof of a correctly

solved puzzle. The only way to be issued a puzzle is to first show that the client

is an authorized user of a registered web application. A client does so by pre-

senting to MetaCAPTCHA a “server-ticket” issued by the web application. The

authentication protocol used is modeled around Kerberos [91], wherein the web ap-

plication acts as the Ticket-Granting-Server (TGS) for the MetaCAPTCHA service
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Figure 2.2: Kerberos authentication overview and how it relates to Meta-

CAPTCHA authentication. Figure adapted from Steiner et al. [91]

as shown in Figure 2.2 [cite steiner]. Notice that steps 1 and 2 of the Kerberos

protocol — where a client authenticates itself to Kerberos — are not required be-

cause MetaCAPTCHA assumes that it will be replaced by the web application’s

existing authentication mechanism (e.g password).

After a client submits a message, the web application returns a server-ticket

S1 = C||ID||HMAC(K,C||ID) containing client-specific information C, a web

application ID issued by MetaCAPTCHA during the registration phase, and a

Hash-based Message Authentication Code (HMAC) for C created using the web

application’s secret keyK (See Figure 2.3). The server-ticket S1 is called the puzzle-

request ticket and is sent by clients to MetaCAPTCHA for requesting puzzles.
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Figure 2.3: MetaCAPTCHA authentication and puzzle solution verification

When MetaCAPTCHA receives the puzzle-request-ticket S1, it verifies that the
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client is indeed a user of a registered web application. MetaCAPTCHA performs

this verification by checking the integrity of the HMAC included in the ticket. No-

tice that the correct HMAC can only be generated by a registered web application

because it includes that application’s unique API key.

Once the integrity of the HMAC is ascertained by MetaCAPTCHA, the client

is issued a puzzle to solve. Details of client-specific information C are presented in

Section 2.3.2.

2.3.2 Puzzle Delivery and Verification

MetaCAPTCHA only issues puzzles to authenticated clients as previously shown.

The hardness of the issued puzzle depends on the client-specific information C =

(timestamp, message data) sent by the client to MetaCAPTCHA during the au-

thentication phase. Here, timestamp indicates when the message was created (this

assumes the web application and MetaCAPTCHA are loosely time-synchronized);

message data contains the message text submitted by the client and any other

information related to it. MetaCAPTCHA uses the information in C to compute

a reputation score, which in turn is used to determine the puzzle difficulty level :

the amount of time a user’s browser must compute to provide sufficient proof-of-

work to the web application. In MetaCAPTCHA, higher reputation scores imply

more malicious clients. As a result, such clients are issued puzzles with increased

difficulty levels. The details of how reputation scores are computed, and how puz-

zles of varying difficulty are generated are presented in Sections 2.4.1 and 2.4.2

respectively.

It is important to note here that MetaCAPTCHA may issue multiple puzzles

during a single puzzle solving session. Puzzles are continuously issued until the

client has computed for an amount time similar to the estimated difficulty level.

Pre-determining a difficulty level eliminates the usual incentive of solving puzzles

faster. Furthermore, the estimated difficulty level is never directly revealed, thus
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Figure 2.4: The user’s web browser is continuously issued puzzles until it has spent

enough time computing. This amount of time is called the difficulty-level; the more

malicious the client, the higher the puzzle difficulty-level.

the client cannot make the decision to stop solving based on the amount of work

it needs to do. Figure 2.4 shows the puzzle solving protocol. More details are

presented in Section 2.4.2.

Once the user’s browser has solved all puzzles, it must send back the final

solution to MetaCAPTCHA. If the solutions are correct, MetaCAPTCHA will

issue the client a proof-of-work-ticket S2 = Ts||Te||HMAC(K,Ts||Te||S1), where

Ts and Te are the start and end time stamps of the puzzle solving session. The

client must present this ticket to the web application (see Figure 2.3), which will

then verify the ticket integrity before allowing the client to complete posting the

message. Additionally, if the difference between the current time and Te is greater

than some threshold tdiff , the client’s proof-of-work ticket is rejected.

2.4 SYSTEM COMPONENTS

In this section, we describe the main components of MetaCAPTCHA: the reputa-

tion service, the puzzle service, and the public API used by web applications and

their clients to access the aforementioned services. Briefly, the interactions be-

tween these individual components begin when MetaCAPTCHA receives a client’s

message. This message is first handled by MetaCAPTCHA’s reputation service,
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which determines the client’s reputation score. The puzzle service then uses this

score to generate and issue a puzzle of an appropriate difficulty. Figure 2.5 shows

an overview of the various MetaCAPTCHA components and interactions, while

the following sections describe each of them.

Puzzle
Service

Reputation Service

DB

API
Client Server

Authenticators,
Session State,

Puzzles

Score
Classifier DB

Client Browser Application
Web

Akismet, etc.

Blacklist,

Training  DataPuzzle RequestPuzzle

Figure 2.5: Design of MetaCAPTCHA

2.4.1 Reputation Service

Proof-of-work systems that do not assign more “work” to malicious clients than

legitimate ones are easily circumvented [67]. Many existing systems do vary the

amount of work, but fail to characterize maliciousness appropriately. For example,

they base maliciousness on just one feature, such as system load [37, 61], a client’s

request rate [45, 44], contents of the request [111], or service demand [103, 104].

Without a defense-in-depth approach, it is unlikely that proof-of-work systems

will be able to deter automated adversaries. Additionally, if a reputation system

intends to be widely deployed, it must be capable of adapting to the needs of
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individual applications [68]. For example, Twitter may associate low reputation

with accounts that show aggressive following behavior [96], whereas Facebook may

do the same for accounts with abnormally large amount of ignored friend requests

[27]. MetaCAPTCHA’s reputation service addresses these issues by allowing ap-

plications to easily configure the features that will determine a client’s reputation

score, and then use a Naive Bayes classifier to generically predict the score based

on the values of the configured features.

The reputation score is the probability that a given message is spam as deter-

mined by a Naive Bayes classifier. A client’s reputation score is calculated when a

message is posted to a web application and that client doesn’t have an existing rep-

utation. The score is dependent on the features of the message and the client that

sent it. A feature is any metric with a finite set of values. For example, blacklist

status of the message’s source IP address, SpamAssasin score of the message, or

number of times the poster was “thanked”. Given such message features and any

other client-related features provided by the web application, MetaCAPTCHA’s

reputation service can generate the client’s reputation score.

An important characteristic of a reputation system is its ability to react to

a client’s changing reputation. For example, if a user’s account is hijacked by a

spammer, her account’s reputation worsens; however, once the threat from the

hijacker is neutralized (say, by a password change) the reputation goes back to

normal. Thus, a good reputation service must be capable of identifying these

changes and assigning scores accordingly. MetaCAPTCHA’s reputation service

adapts to reputation changes by incorporating time-varying features in determining

the reputation score. For example, relative account age, and relative number of

positive votes a user’s posts have received.

The reputation service is initialized by training the classifier using ground-truth

feature values for messages that have already been posted. Training information

about each message must include the values for each feature and its classification
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as spam or ham (not spam). The information about all messages is then fed to the

classifier, which builds a probability model to determine how likely a given new

message is spam. This likelihood or probability is called the reputation score and

its value ranges from 0 to 1 with higher scores implying more malicious users.

2.4.2 Puzzle Service

The puzzle service is responsible for authenticating users, using the contents of

their transaction (e.g. message, IP address) to obtain a reputation score from

the reputation service, converting that score to a puzzle difficulty, and finally,

issuing the user a puzzle of that difficulty. Note that the authentication protocol

was described in Section 2.3.1. Thus, in the following sections, we discuss the

remaining responsibilities of the puzzle service.

Reputation Score to Puzzle Difficulty

As mentioned before, puzzle difficulty is the amount of time a client must be kept

busy solving a puzzle. Traditionally, most puzzles have been CPU bound, caus-

ing devices with different processing speeds to solve the same puzzle for different

amounts of time. Abadi et al. highlighted this issue and proposed memory-bound

functions since memory access speeds vary much less across devices [16]. Memory

bound puzzles, unfortunately, are expensive to create and verify [40, 34]. Fur-

thermore, memory-bound puzzles limit the types of computation that can be per-

formed: we envisage a future where puzzles are generic computations whose results

are eventually reusable for solving larger problems like climate modeling, or curing

cancer [94].

MetaCAPTCHA’s approach is to first, determine the puzzle difficulty solely

based on the reputation score — in units of time — and then, continuously issue

puzzles until the client has computed for that pre-determined amount of time.

The benefit of this approach is that it gets rid of an adversary’s incentive to solve
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puzzles quicker (e.g. by offloading, or parallelizing the computation). What is

needed then, is a formula for converting the reputation score to a puzzle difficulty;

the rest of this section derives such a formula.

Intuitively, the formula must ensure that puzzle difficulty is proportional to the

reputation score since higher scores imply more malicious users. The remaining

questions, then, are (i) how fast should the difficulty grow with respect to the

reputation score? and (ii) for any given reputation score, what should the difficulty

value be to effectively reduce the amount of spam the web application receives?

The answer to Question (ii) is inspired by work on the impact of proof-of-work

systems on reducing spam by Laurie and Clayton [67]. We begin by fixing the

amount of spam reduction δ the web application seeks as a fraction of the total

number of spam messages sp it receives in time period tp. We can then determine

the maximum difficulty or amount of time tmax a spammer must be kept busy to

reduce the spam to sp − δsp:

tmax =
tp

sp(1− δ)

Notice that if the desired spam reduction δ = 1, the hardest puzzle a spammer

may have to solve would be infinitely long; causing MetaCAPTCHA to wait forever

for a solution! Since this is not feasible, the spam reduction fraction δ must be

judiciously chosen. Additionally, the tighter the choice of tp for the same sp, the

more accurate tmax will be. For example, assume a forum receives its first spam

message of the day at 8:00 am and last spam message at 5:00 pm. Then, choosing

tp = 9 hours as opposed to, say 24 hours, will lead to a more accurate value of

tmax.

Now, the answer to the question (i) depends on how accurately the reputation

service can determine a user’s reputation score; the more accurate it is, the less

time honest clients should have to spend solving puzzles. We will see later that

MetaCAPTCHA’s reputation service aptly assigns≈ 90% of spammers a score over
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0.95. Since the reputation service is fairly accurate, we must fashion a function

that grows slowly until large reputation scores and then steeply afterwards. In

the case of the reference web application used to evaluate MetaCAPTCHA (see

Section 2.6.1), we empirically settled on the exponential function with a growth

constant of 5. However, another web application could choose a different growth

constant based on the shape of the curve desired.

Given the aforementioned growth function and maximum puzzle difficulty tmax,

we can compute the corresponding maximum reputation score rmax:

tmax = e5rmax − 1

=⇒ rmax =
ln(tmax + 1)

5

We can then normalize the user’s current reputation score r with respect to rmax

and subsequently calculate puzzle difficulty t:

t = e5r·rmax − 1

=⇒ t = (tmax + 1)r − 1

Notice that when reputation score r = 1 (most malicious) the puzzle difficulty

t = tmax. Furthermore, when r = 0 (most honest), t = 0. This implies that an

honest user may not have to solve a puzzle at all, whereas a malicious user may

have to solve the hardest one.

Issuing Puzzles

Once the puzzle difficulty t is determined, the puzzle service randomly generates

a puzzle based on the list that is configured. The puzzle is then issued to the

client who must solve it and return a solution. If the solution is returned in

time t′ < t, then a new puzzle is chosen and issued. This process is repeated

until the client has computed for at least t amount of time. The idea behind

issuing several puzzles is to ensure that no user can complete an online transaction
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unless they have computed for a length of time ≥ t. An alternative is to first

determine how long it takes to solve a puzzle, and then just generate and issue

that puzzle. Unfortunately, the amount of time it takes to solve a puzzle varies

on different platforms, and so clients may get issued unfairly long or short puzzles

[16, 43]. For this reason, MetaCAPTCHA first computes the difficulty in units

of time, then the client is required to solve the puzzles accordingly. Also, notice

that the puzzle difficulty t is never revealed to the client, thus, there is no way

to know how long the computation will last. This creates a disincentive for bots

that would normally abandon puzzle computation altogether if t were known to

be large beforehand. An additional advantage of issuing multiple puzzles is that

each one can be randomly chosen, thus, preventing an attacker from being able

to predict the puzzles she will be issued. This eliminates a critical advantage an

adversary normally possesses: offline reverse engineering to find weaknesses. The

next section discusses the various puzzle types supported by MetaCAPTCHA.

Puzzle Types

Essentially, a puzzle type is a parameterized function. A puzzle-type with an

instantiated set of parameters is called a puzzle. Puzzles that require human inter-

action to solve (e.g. CAPTCHA) are called interactive puzzles, while those that

don’t (e.g. proof-of-work), are called non-interactive puzzles. MetaCAPTCHA

additionally supports hybrid puzzles that have both an interactive and a proof-

of-work component. The choice of which puzzle types to use depends on the web

application’s needs (See Figure 2.6).

Thus, MetaCAPTCHA is flexible and can be easily configured to support new

types of puzzles. In fact, MetaCAPTCHA is so named because it is a meta-

morphic puzzle issuing system and because it issues meta-puzzles rather than

specific puzzles. It is metamorphic because the client-side puzzle solver code is
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Figure 2.6: MetaCAPTCHA’s puzzle configuration dashboard.

non-deterministic. More specifically, the non-determinism results from issuing un-

predictable puzzles within a generic puzzle solver — the meta-puzzle. Thus, the

adversary has no way to know the client-side MetaCAPTCHA code beforehand.

Furthermore, issuing a meta-puzzle ensures that finding a weakness in one puzzle

type does not compromise MetaCAPTCHA as a whole. The following paragraphs

discuss the currently supported puzzle types.

Hint-based Hash-Reversal (non-interactive) Hash-reversal puzzles force clients

to reverse a given cryptographic hash of a random input, say x, with the k most

significant bits erased. However, they lack fine-grained difficulty control because

increasing k linearly, increases the solution search space exponentially. Hint-based

hash-reversal puzzles address this drawback by providing an additional hint : the

range of values to search.

Targeted Hash-Reversal (non-interactive) A targeted hash-reversal puzzle

[45] with difficulty d forces a client compute an expected number d of hashes before
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finding the right answer.

Modified Time-Lock (non-interactive) Time-lock puzzles [83] are based on

repeated squaring, a sequential process that forces the client to compute in a

tight loop for an amount of time that can be precisely controlled. Modified time-

lock puzzles on the other hand, retain most of the original properties of time-lock

puzzles, but are faster to generate and verify [46].

CAPTCHA (interactive) A reCAPTCHA [101] or Securimage [82] CAPTCHA

relayed to the client. MetaCAPTCHA only acts as a proxy for these CAPTCHA

services.

CAPTCHA+ (hybrid) A CAPTCHA+ puzzle includes a reCAPTCHA or Se-

curimage CAPTCHA along with a modified time-lock puzzle in the background.

The advantage of combining the approaches, in this case, is that changing the

difficulty of the time-lock puzzle changes the cost of solving the CAPTCHA. Con-

sequently, hybrid puzzles could circumvent CAPTCHA outsourcing attacks [76, 77]

since they enable the CAPTCHA solving cost to be changed.

2.4.3 Public API

The public API allows web applications and their clients to access MetaCAPTCHA

services. The web applications use the server-side API to (i) register and maintain

its account with MetaCAPTCHA, and (ii) as described in Section 2.3.1, use the

account’s unique API key to generate puzzle-request tickets for all their clients.

Web application clients implicitly use the client-side API during an online trans-

action, e.g. posting a message. More specifically, the API method calls are em-

bedded in the client-side web page that accepts the online transaction (similar to

a CAPTCHA setup). When the user “submits” the transaction, the client-side

API is used to obtain a puzzle-request ticket from the web application and hand
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it over to the MetaCAPTCHA service. Once MetaCAPTCHA returns a puzzle,

the client uses the solver — also a part of the client-side API — to compute and

return the puzzle solution.

2.5 IMPLEMENTATION

MetaCAPTCHA has been deployed with public APIs which any interested party

can download and use. A beta version of the MetaCAPTCHA service can be found

at http://www.metacaptcha.com/. We now discuss the implementation details

of each MetaCAPTCHA component in Figure 2.5.

2.5.1 Reputation Service

The reputation service is implemented in PHP. Associated with this service is a

NoSQL database, MongoDB [15], which stores the feature data required to deter-

mine user reputation. Initially, the web application provides the rows of feature

data necessary to train a Naive Bayes classifier implemented in Java by the Weka

[69] library. The trained classifier is then saved and used later when classifying

new messages sent by the web application’s users. Instead of using the binary

classification — spam or ham — that usually is the output of a Naive Bayes clas-

sifier, the reputation service uses the probability distribution that the classifier

determines in the step before performing the classification. That distribution rep-

resents MetaCAPTCHA’s reputation score which is a percentage likelihood that a

given message is spam.

To enable the reputation service to compute accurate reputation scores, a web

application can provide existing message and user data for training the classifier.

In the case of our reference web application, a live discussion forum that employed

MetaCAPTCHA’s spam prevention services from Sep 1 to Oct 19th 2012, the

classifier was given the following feature values for each existing message in the

http://www.metacaptcha.com/
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forum:

• Relative “Thanks” or “Likes”: the proportion of positive votes received by

the sender of the message.

• Language: the language the forum message was written in.

• Relative account age: the proportion of time an account has been alive with

respect to the age of the forum.

• Relative post count: the proportion of total posts published by a given ac-

count.

• DShield “Attacks” attribute: number of packets, from the message’s source

to a distinct destination, that were blocked.

• GEOIP: an estimate of the distance between the message poster and forum

server.

• Blacklist score: reputation score of the message source from Spamhaus [95].

The higher the score, the more malicious the source.

• Akismet score: Akismet [17] is a spam detection service that assigns a score

of 1 to a message it thinks is spam and 0 otherwise.

• SA Score: the spam score as determined by the SpamAssassin [90] service

running with only the Bayes plugin. The Bayes plugin uses a Naive Bayes

classifier to determine the probability that the contents of a message resemble

spam. SpamAssasin assigns a spam score between 1 and 5 to each message;

5 indicating that a message is most likely spam and 1 indicating that its not.

• isSpam: “yes” if forum moderator flagged the message as spam, “no” other-

wise.
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2.5.2 Puzzle Service

The puzzle service is implemented in PHP with an instance of the MongoDB

database. The database stores credentials needed to authenticate a particular

web application’s client, to create and retrieve session details of the client solving

puzzles. The authentication credentials include the web application’s 96-bit API

key, and an application ID; the session details store the received server ticket (see

Sections 2.3.1, 2.3.2) and the amount of time the client has spent solving puzzles.

This amount of time when subtracted from the puzzle difficulty level determines if

the client needs a new sub-puzzle or not (see Section 2.4.2); the puzzles themselves

are stored in the database as members of JSON (JavaScript Object Notation)

objects and delivered in that format to clients. The parsing and execution of these

JSON objects by client-side JavaScript engines can be thought of as “solving” a

puzzle.

2.5.3 Client API

The client API includes JavaScript methods to request puzzles from MetaCAPTCHA,

execute or “solve” them, and return the result of the execution. These methods

must be embedded in an HTML form that accepts content from the users on be-

half of the web application. As part of “submitting” that form, the client API will

initiate the MetaCAPTCHA protocol to request a puzzle (see Section 2.3). The

puzzle will be returned as a JSON object that the client must parse, evaluate, and

then return the resulting value to MetaCAPTCHA.

The entire MetaCAPTCHA protocol occurs behind-the-scenes after a user

clicks the “Submit” button. This behind-the-scenes behavior is enabled by the

AJAX (Asynchronous JavaScript and XML) technique used to implement the

MetaCAPTCHA communication protocol. Furthermore, puzzle execution is also

pushed to the background by employing JavaScript worker threads [102] which are
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now supported in newer versions of most popular browsers.

2.5.4 Server API

The server API consists of ≈ 150 lines of PHP code and requires minor modi-

fications to the web application for its default configuration. The modifications

are similar to those required by existing CAPTCHA APIs like reCAPTCHA [101].

Web applications use the server API to receive a client’s message, issue the cor-

responding server ticket necessary to request a puzzle from MetaCAPTCHA, and

verify the proof-of-work presented by clients that have solved the issued puzzle

(see Section 2.3).

2.6 RESULTS

We now evaluate MetaCAPTCHA and show that its defense-in-depth approach

improves spammer identification, that this identification is accurate, and that it is

an efficient spam prevention service.

2.6.1 Experimental Setup

MetaCAPTCHA was evaluated on a server with a 2.4 GHz Intel Xeon quad-core

processor running Red Hat Linux on a 2.6.18 kernel. A live discussion forum active

from Sep 1 to Oct 19th 2012 employed MetaCAPTCHA as its spam prevention

service. MetaCAPTCHA’s effectiveness and performance have been evaluated in

the context of this forum. At the time, the forum had 2282 messages from 485

users in 112 sub-forums containing 997 conversation threads. Upon registration,

the forum provided most of this historical user and message data to help train

MetaCAPTCHA’s Naive Bayes classifier in identifying spam. Since the provided

data was considered ground-truth, a part of it was used to train the classifier and

the rest to evaluate it. The classification (spam or ham) was then compared with
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ground-truth to judge the classifier’s effectiveness. The data consisted of values

for all features described in Section 2.5.1 for each of 1442 messages posted to the

forum. We now describe the experiments used to evaluate MetaCAPTCHA.

2.6.2 Defense-in-Depth

Defense-in-depth strategy should yield better user reputation when using multiple

features as opposed to using only one or a few. Recall that a user’s reputation score

is the probability that the user’s message is spam. This probability is determined

by the Naive Bayes classifier. If the probability that a message is spam is higher

than the probability that it is not, the classifier tags the message as spam. There-

fore, the better the classifier is at identifying spam, the better it is at identifying

spammers and assigning appropriate reputation scores.
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Figure 2.7: Defense-in-depth: using multiple features for spam classification is

better than using one or a few. “Total” implies that all-of-the above features were

used for training the classifier.

We evaluated the spam identification accuracy of the classifier by using stan-

dard machine learning techniques. The idea was to measure the classifier’s precision

and recall ; precision is the fraction of messages that are actually spam (or ham)

among those classified as spam (or ham); recall is the fraction of actual spam (or
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ham) that gets classified correctly. A commonly used combined metric is the har-

monic mean of precision and recall, called the F-measure. Higher the F-measure,

better the classifier is at identifying spam.

We used 10-fold cross-validation to train and test the classifier on feature data

for 1442 messages. During each train-and-test run we limited the set of features

that the classifier could use. More specifically, in all but the last run, the classifier

was trained on one distinct feature. However, in the last run, it was trained on

all features together. The F-measure was then computed and plotted for each of

the runs. We can see in Figure 2.7 that the classifier’s F-measure is largest when

using all features together than when using any single one.

2.6.3 Reputation Accuracy

We evaluated the accuracy with which MetaCAPTCHA’s reputation service dis-

tinguished between spammers and honest users. To do this, we first divided forum

users into one of three categories, (i) spammers : those who sent only spam, (ii)

non-spammers : those who sent no spam, and (ii) mixed : those who sent both spam

and ham. Here, ’users’ implies the senders of messages included in ground-truth

information provided by the forum. After the categorization, there were 99 mes-

sages sent by non-spammers, 240 messages sent by spammers, and 151 messages

sent by mixed users in the test set (34% of ground-truth data picked uniformly

at random). We then fed these messages to MetaCAPTCHA’s classifier and ex-

tracted the reputation scores from the output (note that reputation scores range

from 0 to 1 and higher scores imply more malicious users). Finally, we plotted a

CDF of reputation scores for each category of users.

Figure 2.8 (a) shows that ≈ 90% of spammers have reputation scores over

0.95, whereas ≈ 99% of non-spammers got a reputation of 0.065 or less. Among

the honest users, only one suffered the ill fate of being assigned a reputation of

0.88, whereas 94% were assigned a reputation of zero — implying that they did
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(a) Reputation score accuracy
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Figure 2.8: Reputation Accuracy: CDF of reputation scores and puzzle difficulties

assigned to spammers, non-spammers, and mixed users (those that sent at least 1

spam and 1 ham)

not solve a puzzle at all!

Although reputation scores have accurately identified spammers from non-

spammers, MetaCAPTCHA’s success depends on issuing harder puzzles to ma-

licious users. This requires evaluating the function that converts reputation score

to puzzle difficulty (see Section 2.4.2). We first computed the maximum puzzle

difficulty tmax = 6.82 hrs based on time period tp = 1 month, number of spam

messages sp seen in that month, and a spam reduction factor δ = 0.6. We then
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Figure 2.9: MetaCAPTCHA performance

plotted a CDF, shown in Figure 2.8 (b), of the difficulty of puzzles issued to spam-

mers, non-spammers, and mixed users for each message they sent. We can see

that in this scenario, ≈ 90% of spammers solved a puzzle over 6 hrs long, ≈ 5% of

non-spammers solved a puzzle between 7.2 secs and 8.4 minutes long, and ≈ 95%

of non-spammers solved no puzzles at all.
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2.6.4 Performance

We evaluated the performance of MetaCAPTCHA in terms of CPU usage, memory

consumption, and time spent in authenticating and issuing puzzles to users. We

used Apache JMeter [93], a Java application that load-tests servers, to generate 1 -

100 concurrent puzzle requests incrementing each time by 20 to MetaCAPTCHA.

Each test run (e.g. 1, 20, 40, etc.) was repeated over a 100 times and the aver-

age measurement (e.g. CPU usage) was plotted against the number of concurrent

connections. The 95% confidence interval for the mean of each measurement was

also calculated. However, the intervals might be too small to spot in the graphs.

Figures 2.9 (a) - (c) show the amount of time, CPU, and memory consumed to

authenticate the user, determine reputation score and puzzle difficulty, and gen-

erate the first puzzle. Although the time consumed was not prohibitive, we were

interested in determining where most of it was used. A more detailed analysis,

shown in Figure 2.10, revealed that a majority of the time was spent in the repu-

tation service when querying other remote services like Akismet [17], and blacklists

like Spamhaus [95]. In the future, we hope to eliminate remote queries and mirror

the applicable blacklists to significantly reduce the time required for issuing the

first puzzle. Note that after the first puzzle, issuing subsequent ones only requires

generating a new random puzzle (without the need for computing puzzle difficulty,

or authenticating the user). Figures 2.9 (d) - (f) depict the resources consumed

while issuing subsequent puzzles.

2.7 SECURITY ANALYSIS

MetaCAPTCHA’s goal is to address threats from automated adversaries like spam

bots. The following paragraphs discuss those threats and how MetaCAPTCHA

defends against them.
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Figure 2.10: Breakdown (%) of the time spent in issuing the first puzzle. Notice

that 68% of the time is spent in the reputation service due to all the remote queries

that happen there.

Bots may attempt to post spam in the web application. However, with Meta-

CAPTCHA protections in place, those attempts will result in a puzzle-request-

ticket. Thus, preventing any efforts to directly post spam.

Bots may attempt to show proof-of-work without ever doing the work. However,

they will be unable to forge a proof-of-work-ticket without the web application’s

secret API key.

Bots could present a proof-of-work-ticket for one message, but try to post an-

other. However, since proof-of-work-tickets contain a digest of the original message,

the ticket’s verification will fail when associated with a new message.

Bots could replay old proof-of-work-tickets. However, as mentioned in Section

2.3.2, clients only have a small amount of time tdiff to submit the proof-of-work

ticket. Thus, the same ticket cannot be replayed after tdiff time.

Bots could find short-cut methods to solve puzzles. However, since Meta-

CAPTCHA forces adversaries to solve puzzles for a pre-determined amount of

time (the puzzle difficulty), solving a puzzle faster will only result in more puzzles

to solve.

Bots may attempt to reuse the solutions of puzzles solved in the past. Recall,
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that puzzles are randomly selected and parameterized before being issued. Thus,

bots will have to store an old puzzle in hopes of finding an exact match sometime

in the future. We conjecture that this probability is negligible for the types of

puzzles currently supported.

MetaCAPTCHA could be the target of a DoS attack where a flood of puzzle

requests causes it to create states for an unsustainable number of puzzle sessions.

However, effects of such attacks can be mitigated by using puzzle outsourcing

techniques [105].

MetaCAPTCHA determines a user’s reputation based on information related

to messages posted by that user (e.g. contents, source IP). This may be a privacy

concern for those who may trust the web application with their messages, but

not MetaCAPTCHA. A possible solution to this problem is to eliminate privacy-

sensitive features from being used for determining reputation. The drawback,

however, would be reduced reputation score accuracy. Another way, would be

to empower the application to provide a local reputation score based on privacy-

sensitive features. This local score could then be combined with the one determined

remotely by MetaCAPTCHA to provide an accurate characterization of reputation.

We hope to explore these avenues in future research.

Currently, MetaCAPTCHA issues puzzles without considering the platform

it will be solved on. Thus, some clients may solve puzzles for longer than the

amount of time determined by MetaCAPTCHA. One possibility is to use browser

fingerprinting techniques [78] to determine the client’s CPU speed and then issue

puzzles accordingly. We also hope to address this direction of research in future

work.
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3

VOLUNTEER COMPUTING WORKLOADS AS USEFUL

PROOF-OF-WORK

Spammers are continually looking to circumvent counter-measures seeking to slow

them down. One approach for dealing with spam is to force the spammer’s machine

to solve a computational problem of varying difficulty before granting access. The

idea is that suspicious or problematic requests are given more difficult problems to

solve while legitimate requests are allowed through with minimal computation. Un-

fortunately, most systems that employ this model waste the computing resources

being used, as they are directed towards solving cryptographic problems which

provide no societal benefit. While systems such as reCAPTCHA and FoldIt have

allowed users to contribute solutions to useful problems interactively, an analogous

solution for non-interactive proof-of-work does not exist. Towards this end, this

chapter describes reBOINC, a system for supporting useful proof-of-work that is

integrated into a web spam throttling service. reBOINC provides a framework

that enables the computational resources of spammers to be redirected towards

meaningful research. To validate the efficacy of the approach, prototype imple-

mentations based on OpenCV and BOINC are described that demonstrate the

ability to harvest spammer’s resources for beneficial purposes.
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3.1 reBOINC APPROACH

3.1.1 Challenges and Solutions

One of the challenges in leveraging BOINC is that the workloads are specifically

designed to run on the operating system (OS). In the reBOINC approach, the same

applications must be adapted to operate on web browsers without compromising

the utility of the whole scheme. For example, reBOINC allows binary applications

delivered from a BOINC project to run on a client’s web browser without additional

software installed on that client’s machine. As BOINC is not modeled for the web

environment, making it work without extensive modification is difficult. When run

natively on top of a full-fledged OS, the applications have full access to existing

system libraries. In contrast, web browsers typically have limited access to such

OS facilities.

One possible solution is to rewrite the binary applications in current browser

scripting languages such as Javascript. Unfortunately, reimplementing BOINC sci-

entific applications in Javascript is prone to error, requires significant development

cost on a per-application basis, and results in poor performance. To address this

problem, reBOINC utilizes Native Client (NaCl), an open-source technology that

allows secure native execution of binary code within web browsers. NaCl enables

an adapted version of BOINC applications to run on web browsers with minimal

modification.

The second challenge is that the concept of useful computations is generally

new to the web browser. There is very little practical support to run scientific

code on a modern web browser. Perhaps the closest analogous application is the

use of Javascript to mine Bitcoins [2]. While Bitcoin computations are good for

generating monetary value, the software itself can not be used for arbitrary scien-

tific computations that benefit society. To address this challenge and to support

large classes of useful computations on the web, reBOINC adapts the Open Source
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Computer Vision Library (OpenCV) to run within web browsers. Since OpenCV

is used in a wide-range of image processing and computer vision applications,

adapting the library to the NaCl environment allows reBOINC to support a large

number of existing BOINC applications. As a result, reBOINC enables thousands

of existing, useful, CPU-intensive algorithms in the area of object detection, object

recognition, statistical machine learning and more.

Another challenge is that the coarse granularity of BOINC applications is not

suitable for web applications. In order for the reBOINC approach to work, it re-

quires client browsers to download a large amount of BOINC scientific software and

data. The size of this software is large and their calculations can potentially take

a long time to finish. These characteristics are unwelcome in the fast, per-request

nature of the web. In addition, such computations are complete non-starters for

users on smartphones and tablets. With mobile access to web services rapidly

growing, any counter-measure must ensure the quality of the user experience.

To meet this challenge, reBOINC uses a credit-based approach towards the

use of its challenges. Rather than requiring work to be done on a per-transaction

basis, reBOINC challenges are only issued on events that are rare for normal users

to encounter. Specifically, challenges are typically targeted for delivery at account

creation or during account recovery. Thus, after account establishment, as long as

the account has not been hijacked or used in an anti-social manner, users directly

access the web application unimpeded. In contrast, because spammer accounts are

shut down rather quickly, spammers are required to create accounts continuously

and would thus be forced to execute the computations often. In this manner, not

only is the granularity problem addressed, but also the usability problem that the

reBOINC proof-of-work protocol has with mobile devices.

Lastly, the most important challenge is the fact that the solutions of the useful

computations are not easily verified. Useful computations in reBOINC are general-

purpose, outsourced computations from the BOINC projects. These computations
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are fundamentally different from traditional proof-of-work puzzles in that the so-

lutions are not known apriori. To address this, a significant amount of work has

been done on verifiable computations. Research has resulted in solutions such as

using trusted hardware [85, 32], assuming failures are independent and replicating

the computation [70, 72, 57, 28, 19], auditing [75] or attestation [81, 87], and us-

ing probabilistically checkable proofs where the computations can be verified with

small probability of being wrong [66, 50, 48, 20, 21, 88, 56].

While most of these solutions are robust, they fall under one of the categories:

assuming trust in the hardware or the middleware; requiring detailed knowledge

of the intermediate results; or altering the software to enforce checkable proofs

and cryptographic functions. However, these conditions are unsuitable for the re-

BOINC approach since (a) reBOINC’s goal is to keep minimal modification to

the client browsers as well as the BOINC projects and (b) requiring hardware

trust, detailed knowledge of the software or infusing checkable proofs and cryp-

tographic algorithms to scientific computations would incur significant developer

overhead. Towards this end, reBOINC employs a variety of simple security tech-

niques including support for metamorphism1 and replication2. These techniques

allow reBOINC to securely channel useful computations as proof-of-work without

adding significant additional development cost.

3.1.2 System Model

The reBOINC system is constructed on top of MetaCAPTCHA - a currently run-

ning proof-of-work anti-spam web service built in our previous work [41, 13]. The

reBOINC system, to our knowledge, is the first system built on a working spam

1The useful computations are issued using many kind of proof-of-work whose answers are
known and unknown.

2Issuing the same useful computation to multiple clients in order to catch discrepancies.
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Figure 3.1: System model: The client browser has to compute useful computations

in order to gain a signed cookie (the proof-of-work) from the reBOINC system.

Solid arrows represent requests, dashed ones represent responses and dotted ones

are periodic communications and/or one-time setup.

throttling web service, to leverage the workloads from scientific research as proof-

of-work.

The reBOINC system model consists of web applications that need protection

against attacks, a volunteer computing network (VC network), and clients running

a modern web browser. The model forces client browsers to perform a useful com-

putation from the VC network before releasing resources from the web applications

being protected. The web applications need to perform a one-time registration with

our service in order to install an anti-spam plugin. The model does not require

special modification to the VC network. However, the network needs to have its

binary executable ported to the NaCl platform and its workloads configured to

work with the reBOINC system. The porting process is a standard procedure in

supporting new platforms in most VC networks such as in BOINC. The model

also requires the web browsers to support native execution of binary code. Cur-

rently, Google Chrome and Chromium are the only two browsers supporting this

technology.
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Figure 3.1 illustrates the high-level interactions of all the components of the

reBOINC model. First a client browser requesting certain resources such as reg-

istering an account will be required to show his proof-of-work. This request will

be redirected to the reBOINC system where the description of how to obtain that

proof will be retrieved. At this state, instead of using traditional proof-of-work,

the system describes the computations of the useful proof-of-work. Additional

data may be downloaded from the VC network to compute the work according to

the proof description. When the work is done, the answers are submitted to the

reBOINC system and a signed cookie is created if the answers were correct. This

cookie is used to release the protected resources from the web applications. Since

the useful proof-of-work and answers are outsourced computations from the VC

network, synchronization phases are needed periodically where the results are sub-

mitted to the network and new workloads are streamed back to the reBOINC sys-

tem.

3.1.3 Threat Model

The security threats relevant to the former model mainly come from the client

browsers. Although the reBOINC model is similar to the volunteer computing one

in that the owners of the utilizing machines are not trusted, reBOINC faces an

enormous amount of relentless spammers whereas the volunteer computing only

has a fraction of cheaters. In reBOINC’s security model, the client browsers are

completely untrusted and assumed to be unfaithful. In contrast, the web applica-

tion and the VC network are assumed to be trusted components.

The security model assumes that the communications from a client browser to a

web application, and the redirecting data from a client browser to the reBOINC sys-

tem are properly signed so that any tampering can be detected. In the re-

BOINC system, this data signing and checking is handled by the MetaCAPTCHA’s

APIs and web application plugins (MetaCAPTCHA is modeled around Kerberos



41

[80] - an authentication granting and signing protocol). The model also assumes

that the augmented anti-spam web service such as MetaCAPTCHA is functioning

properly and has the ability to judge the maliciousness of requests to determine the

amount of computation a client browser must perform (i.e. a reputation service).

3.2 SYSTEM COMPONENTS

The reBOINC approach relies on several essential components to operate including

Native Client (NaCl), the Berkeley Open Infrastructure for Network Computing

(BOINC), the Open Source Computer Vision project (OpenCV) and the Meta-

CAPTCHA anti-spam web service.

3.2.1 Native Client

NaCl is a technology developed by Google to allow untrusted binaries to run safely

in a sandboxed environment in the web. Experiments have shown that this tech-

nology enables C/C++ applications to run in the browsers with near native speed

[107]. An NaCl application composes of a binary executable file and dependency

libraries, and a manifestation file that describes the instructions to load the pro-

gram for different processors. The application is compiled using the NaCl GCC

toolchain and downloaded to the browser over HTTP requests.

The technology supports communication with Javascript, extending the infras-

tructure of the web browser. The communication is allowed through an asyn-

chronous message posting system where each side will have a listener to interpret

the message event on the other side. Currently, only Google Chrome and the

Chromium browser support NaCl as a built-in module. The module is enabled

automatically when an NaCl application is initialized through the Chrome Web

Store. Otherwise, the users must manually enable it.
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3.2.2 BOINC

BOINC is an open-source client-server middleware infrastructure for volunteer and

grid computing [18]. To participate in volunteer computing projects using BOINC,

a volunteer participant must register an account at the project webpage as well as

install and log in to the software on the OS. The software will then automatically

download useful computations and run them while the computer is idle.

A BOINC project consists of three main components. The first is the BOINC

server which stores, schedules and distributes workunits (BOINC’s terminology for

workloads) to a volunteer’s machine as well as collecting the results. A workunit

is a single task with input files to be executed by the client software running on

the volunteer’s OS. The server has two CGI scripts to allow communication with

its client software via HTTP. One script performs the scheduling role to distribute

workunits and to receive the result, while the other handles actual result’s files

uploaded by the client software.

The second component is the BOINC client software which runs on the OS of

the volunteer’s machines. The client software authenticates with different BOINC

projects before receiving any workload. After authenticating, the software fetches

the scientific applications for its processor along with the workunits. These ap-

plications will be executed by the client software at a certain point on the OS.

When finished, the software submits the result to the appropriate BOINC servers.

This client software allows a single participant’s machine to contribute to multiple

volunteer computing projects.

The last component is the BOINC scientific application which is a custom

program usually written in C/C++ by scientists to carry out useful computations.

The application is executed with input downloaded from the BOINC server when

the participant’s computer is idle. In order to support multiple projects with a

single client software, each project has its own configuration file set up during the

first time the software authenticates with the BOINC servers.
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3.2.3 OpenCV

OpenCV is an open-source, cross-platform library that facilitates real-time com-

puter vision applications. Due to its complexity, there is currently no support to

run OpenCV on web browsers. By adapting the library to the web, however, a

large class of useful computations are enabled since there are a myriad applications

that require some form of image processing and recognition. Adapting OpenCV to

run on a web browser is challenging because OpenCV uses a synchronous, block-

ing I/O model whereas web browsers use an asynchronous, non-blocking one. The

library also requires a file system API that supports persistent storage in order to

implement its I/O operations. To overcome this challenge, reBOINC adapts the

file I/O calls in OpenCV to an existing library supporting a virtual memory file

system. The library allows NaCl applications which use OpenCV to run in many

operating systems without user intervention.

3.2.4 MetaCAPTCHA

Many web sites use CAPTCHAs to protect themselves against automated ad-

versaries. Previous work on metamorphic CAPTCHAs has resulted in the Meta-

CAPTCHA3 web service which dynamically supports a variety of anti-spam counter-

measures based on both CAPTCHAs and computational puzzles. Our implementa-

tion of reBOINC leverages MetaCAPTCHA’s existing infrastructure and user-base

in order to demonstrate the utility of useful computations in thwarting automated

attacks.

As depicted in Figure 3.2, there are three distinct components of the Meta-

CAPTCHA web service: a server, a middleware for the client browser and a plugin

for the web applications. The server constructs, stores and distributes proof-of-

work puzzles to its clients. The server also implements a reputation service to

3http://www.metacaptcha.com

http://www.metacaptcha.com
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Figure 3.2: MetaCAPTCHA anti-spam web service overview

intelligently deliver more difficult puzzles to adversarial requests while allowing

legitimate requests to go through.

The client is comprised of a web browser that wants to access protected re-

sources from a participating web application. The client browser will contact the

server with a signed request. This request will be routed through MetaCAPTCHA

to determine a difficulty level and the proof-of-work challenges to use. The client

browser then solves the different computations until the server signals completion.

The middleware that manages the execution on the client browser is a

Javascript application. This application is involved whenever the client requests

resources from a MetaCAPTCHA-protected web application. When invoked, the

middleware dynamically instantiates the sub-puzzles the server issues the client in

an iterative manner. The browser is then forced to solve each one successfully in
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order to proceed.

The plugin is a module for web applications seeking to use MetaCAPTCHA to

thwart spammers. Each participating web application embeds and configures this

plugin to protect resources in its website. When configured, the plugin will contain

an API key and a shared secret key to ensure secure communication between the

web application and the MetaCAPTCHA service.

The MetaCAPTCHA server contains two services to throttle spam attacks: the

puzzle service and the reputation service. The puzzle service supports the creation

and execution of the proof-of-work puzzles to be carried out by the client browsers.

It assembles the input data and puzzle solvers according to client’s reputation and

request. It then sends these back to the middleware to execute. When the results

are submitted from the client, the service validates the output and authorizes the

request to the protected resources assuming the answers were correct.

The reputation service is essentially a spam filter module with machine learning

capability. However, instead of deciding whether a request is spam or not, the

service produces an analog value to determine how likely the request is a malicious

one. This analog value is then handled by the puzzle service to generate client

puzzles with appropriate difficulties. This construction of MetaCAPTCHA allows

flexibility in the kind of computational puzzles that are employed. For example,

the service supports interactive puzzles (reCAPTCHA), non-interactive puzzles

(time-lock, hash reversal) and hybrid ones which combine the other two kinds of

puzzles [41].

3.3 DESIGN

3.3.1 reBOINC Proof-of-work Model

In a typical cryptographic proof-of-work model, the system is designed so that

the anti-social clients are punished leaving the resources protected for legitimate
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clients. This model works since cryptographic functions can be constructed to

have a special property such that the solutions to the functions are hard to find

but relatively easy to verify. In order for computations to be useful, the solutions to

reBOINC computations from third-parties typically do not have such a property,

making it difficult to detect unfaithful execution. For example, an adversary can

exploit the system by finding a shortcut to skip the work being asked without

computing appropriate answers.

To overcome these challenges, reBOINC leverages well-known techniques from

malware and outsourced computing to strengthen the system’s resilience against

adversaries. These techniques include the Metamorphic Chain of Computations for

preventing adversaries from predicting system’s behaviors; the Probabilistic Check

of Duplicated Result for ensuring that the work verification process is relatively fast;

and the Computational Banking System with Recovery for preventing persistent

abusive behavior.

Metamorphic Chain of Computations

Unlike traditional BOINC networks where users are generally volunteers with a

few cheaters, the reBOINC network consists of a large population of spammers

that hunt for ways to exploit the system. For this reason, finding methods to

obstruct the adversaries from understanding the system is a step toward a more

secure system. Inspired by the way malware changes its forms during execution, the

reBOINC system randomizes the types of computations and the binary executables

while the client browser is computing. An adversary who wants to launch an

attack against the network will essentially have to reverse engineer the chain as it

is executing using a debugger.
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Probabilistic Check of Duplicated Result

In the reBOINC model, it is impossible to determine the validity of the result since

the computations are from third-parties. Even when the result can be validated,

there is no guarantee that verifying the result will be significantly quicker than

computing them. Similar to reCAPTCHA, reBOINC addresses this challenge by

precomputing a small subset of the useful computations to determine the result.

These precomputed computations are randomly inserted into the chain of useful

computations. When the results come back from the client, they are checked by

the system to determine the validity of the whole chain. If any of the known

computations have incorrect results, the entire chain is rejected and the user’s IP

is suspended from the system. Note that random verification checks can also be

randomly performed at any point after the useful work has been submitted by the

client.

Computational Banking System with Recovery

Prevention of anti-social behavior in reBOINC is a continuous process. In our

system, upon performing the useful work, clients are given a computational credit

that the system tracks. Credits are deducted from the client when it behaves in-

appropriately such as by sending spam or by submitting incorrect computations.

When the client’s credit reaches zero, that account is banned from further posting

until the client has solved a new chain of useful computations. This way, a com-

promised account or an adversary who attempts to bypass the computation will

not be able to abuse the system for long. In addition, we argue that this method

mitigates the impact of false positives as legitimate users are asked to recover their

account by contributing to research that benefits society.
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Figure 3.3: reBOINC system overview. The dotted boxes are reBOINC modifica-

tions to the MetaCAPTCHA service.

3.3.2 MetaCAPTCHA Modifications

To facilitate the creation and execution of useful computations, reBOINC aug-

ments both the puzzle service and the reputation service of MetaCAPTCHA to

support useful computational capabilities. The two adapted services are the com-

putational banking service and the useful puzzle service. These adapted services

channel meaningful workloads from BOINC and convert them to proof-of-work.

This adaptation retains the model and the practicality of MetaCAPTCHA. Figure
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3.3 represents the full system model of reBOINC woven into the MetaCAPTCHA

infrastructure.

The useful puzzle service orchestrates the chain of useful computations for the

client browsers. It dictates how many computations are enough until a registra-

tion application is complete, where to get the workload from, and what specific

computation the client needs to do. By building into the existing infrastructure

of MetaCAPTCHA, the service is able to randomly switch between different kinds

of computations that MetaCAPTCHA supports. For example, a BOINC scientific

application and a group of control functions whose results are known can be in-

tertwined to form a chain of computations. This makes it more difficult for the

adversary to predict and fake the results of useful computations.

Computational Banking Service

Figure 3.4 illustrates the architecture of the computational banking service which

implements the credit-based recovery strategy. The service augments the existing

reputation service of MetaCAPTCHA. Since useful computations are intended to

be used at account registration, there typically isn’t sufficient information for the

reputation service to determine whether or not the account sign-up is fraudulent.

As a result, the computational banking service can be configured to allocate a



50

C
o
n
tr

o
ll
er

Useful Puzzle Service

Synchronizer

Morpher

Validator

App 1

BOINC Wrapper

. . .

No

Request

Answers

Yes

WU

Puzzles

No

Yes

Correct
No

Blacklist

Yes

Yes

Chain

Cookie

Useful

App 2 App n

No

Comput.

Banking
Service

Puzzle Service

Useful

Puzzles

HasHas

Figure 3.5: Useful Puzzle Service Architecture

fixed length computation as specified by the web application being protected. The

client accounts will obtain a credit value corresponding to this computation after

they have successfully computed the chain. This credit remains with the account

until it is used in an anti-social manner and is only taken away when the account

behaves poorly.

Useful Puzzle Service

The architecture of the useful puzzle service is depicted in Figure 3.5. The service

handles two different requests, an answer to a computation and a request for

new proof-of-work. The answer is checked for correctness by a validator which

implements the probabilistic check of duplicated result strategy. The request for

new proof-of-work is handled by a morpher that implements the metamorphic

chain of computations model. The morpher decides the chain of computations to be

issued to the client. The morpher also decides the workunits and the kind of useful
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computations for the client browser. Then the morpher wraps the computation

as a BOINC wrapper computation and hands this wrapper to MetaCAPTCHA’s

puzzle service. This BOINC wrapper allows NaCl applications to be executed in

MetaCAPTCHA’s middleware.

BOINC Server Component

The BOINC server is an external but essential component of our system. It can

be owned and operated by any organization over the Internet, not only by the

reBOINC operators. This means that a reBOINC system can connect with as

many BOINC projects as it is compatible with. The compatibility can be achieved

by porting the BOINC scientific applications and configuring the projects for the

Native Client platform. By having this wide support, our architecture can create a

broader impact since a large number of existing BOINC projects can be executed

by web browsers, making it possible to connect a large pool of useful computations

with an enormous number of web clients.

3.3.3 Architecture and Communication

Since the system depends on third-parties to provide meaningful workloads, it is

easy for others to support and communicate with the system. With that design

goal in mind, the system requires minimal modification to the BOINC codebase.

Towards this end, the system is designed so that the reBOINC servers, combined

with the client browsers, act as regular BOINC client software. This combination

is relatively straight-forward since NaCl on the browser and the BOINC client

software support a similar programming model. The reBOINC servers effectively

behave as a BOINC client, but rather than executing the workloads themselves,

they manipulate the input and outsource the computational package in the NaCL

version to the users’ browsers. In fact, our communication protocol doesn’t require

any modification to BOINC source code at all. The only major code revamp is
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porting the scientific application from the native system libraries to the NaCl ones.

However, this is just a standard process in working with any platform the BOINC

project supports.

Figure 3.6 shows how the combination mimics the communications of the

BOINC client software. The communication process consists of a one-time, per

BOINC project configuration stage, a real-time scheduling stage and a result han-

dling stage.

Configuration Stage

A BOINC client needs to have a registered account and configured attributes to

instruct the BOINC server to get what application and when. Similarly, the re-

BOINC system stores the registered accounts for many BOINC projects as well

as their configured attributes and scientific applications. This configuration state

(Steps a and b in Figure 3.6) will setup the XML authentication files of each

BOINC project, precompute some workunits and cache the NaCl applications of

BOINC projects in the system.
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Scheduling Stage

The scheduling stage is effectively how the reBOINC system uses its useful ser-

vices to provide meaningful workloads. Steps 1-5 in Figure 3.6 illustrate this

stage. When an HTTP request is made from the client browser, the reBOINC sys-

tem reads the appropriate BOINC projects from its database. The useful services

transform the request into a BOINC wrapper puzzle for a specific scientific appli-

cation. The system then hands the puzzle back to the client browser as a chain of

computations.

Result Handling Stage

The result handling stage is controlled by the synchronizer. Since the results com-

ing from the client browsers are not completely trusted, they are held in our server

to validate until another client browser confirms the same result. Subsequently,

the collection of confirmed results will be sent to the appropriate BOINC server

and the workload cycle is completed. This stage corresponds to Steps c and d in

Figure 3.6.

3.4 IMPLEMENTATION

There are three key components to the reBOINC system: the useful services,

the BOINC wrapper, and a prototype NaCl application of a BOINC project that

supports an environmental monitoring project in Oregon.

3.4.1 Useful Services

The useful services are written in PHP using a NoSQL database (MongoDB).

The services employ a cron job to periodically fetch new workloads from various

BOINC projects. These workloads are then parsed to get input file URLs and

workunit information. The workunits are stored in the database in two sets, one
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with already computed answers and one without. The computed set consists of

answers generated by both the server and the clients. The server generates the

computed set during the configuration stage for every new BOINC project, then

the set is populated with verified results submitted by the clients.

When a client browser needs to be issued a computation, the useful services

check the database for the current progress of the client. If that client browser

is new (e.g. has never created an account in the protected web application), the

services create a new chain of computations by mixing the unanswered workunits

with answered ones, then they associate the workunits with binary executables and

send the client the first computation. Upon completion, the next computation in

the chain is fetched and returned to the client browser until the chain is complete.

When a result is submitted to the server by a client browser, the services verify

the validity of the result by checking it against the chain of computations in the

database. If the result belongs to a known computation in the chain, it is compared

with a stored answer. An incorrect result will get the client’s IP suspended from

the system whereas a correct one will have the next computation in the chain

returned to the client. If the whole chain was correctly verified, the system creates

a signed cookie and returns it to the middleware where it will be used to allow the

client browser to access the protected web application.

3.4.2 BOINC Wrapper

The BOINC wrapper’s task is to provide an easy way to execute and control NaCl

scientific applications on the web browser. The wrapper is written in Javascript

and delivered to a client upon being issued a useful proof-of-work computation.

First, the wrapper loads an HTML iframe from the server into the current web

page of the client. Since this iframe resides on the reBOINC server, any changes

to the NaCl applications can be reflected in the iframe without intervention to

the user’s browsers or the web application’s plugins. This iframe is also used to
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(a) Example fish ladder image (b) Manual fish counting

Figure 3.7: Bonneville Dam Fish Ladder

bypass the cross-domain policy of the browser since it allows resources from the

server embedded in the iframe, and the iframe to have the same origin. Next,

the wrapper loads NaCl applications in the server into objects in the iframe. The

iframe’s script initializes the applications with workunit information and executes

them. Finally, when results are returned from the applications, they are returned

back to the middleware where they will be submitted for verification.

3.4.3 NaCl Application

To demonstrate the utility of the reBOINC system, we have been developed a

proof-of-concept prototype that involves counting fish. To protect salmon runs in

the Pacific Northwest, dams have fish ladders that salmon must climb to spawn.

From an environmental policy standpoint, it is essential that an accurate measure

of the number of salmon passing through is taken in order to quantify the impact

the dam has on salmon populations. This measurement impacts the decision as

to how much water the dam releases every day. To support this, cameras are

pointed at the ladder [98] and a full-time employee is tasked with counting them

for several hours a day. Figure 3.7(a) shows an example image captured from the

camera pointed at the Bonneville Dam fish ladder and Figure 3.7(b) shows the set
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up used to count fish. Currently, the counting is performed manually by taking

samples across several hours in the day and extrapolating to determine a final daily

estimate of fish passing through the ladder. This manual process is expensive to

perform and, as a result, the Bonneville Power Administration has sought out

researchers to automate the task. Fish counting is particularly desirable in the

context of this project since it is work that is continuously generated and involves

implementing an image recognition algorithm that can be easily adapted as useful

proof-of-work.

We have set up a prototype NaCl-friendly BOINC project for the fish counting

application. The application is implemented using C++ and the OpenCV library.

The OpenCV library itself was ported to the NaCl environment and built as a

dynamic library. This library is linked with the application to allow OpenCV-

enabled executables to be run on the web without any additional software installed.

In addition, the application and the OpenCV library were equipped with a virtual

memory file system in order to handle asynchronous I/O operations.

When invoked by the iframe’s script, the browser will accept workunit informa-

tion and additional data URLs from reBOINC. After that, the application down-

loads a series of images and a classifier cascade for object detection. Next, the im-

ages and classifier files are mapped into virtual files allowing the OpenCV library

to access them. Then, the application uses OpenCV object detection functions to

recognize the coordinates of the fish in each image and returns the result to the

wrapper.

3.5 EVALUATION

To evaluate reBOINC, we examine both its client-side and the server-side perfor-

mance. On the client-side, we measure the user experience while running scientific
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Figure 3.8: Browser’s resource ultilization while running NaCl fish counting appli-

cation and watching Youtube videos in 360p, 720p and 1080p format.

applications and the performance of the applications running in the browser com-

pared to native OS. We compare this performance with the performance of a sim-

ilar implementation of the application in Javascript. We show that our prototype

application provides significantly better performance than a Javascript implemen-

tation. On the server-side, we evaluate the server’s utilization and performance in

constructing useful proof-of-work, validating results and synchronizing data with

the BOINC network. While there is room for improvement, our results show that

the approach is feasible.
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Figure 3.9: Performance of fish counting application running on OS vs. NaCl vs.

Javascript

Latency Peak Memory Mean Memory

New Useful PoW 522.02± 4.9× 101 ms 9.64± 8.8× 10−1 Mb 6.96± 4.0× 10−4 Mb

Verify Answer 14.70± 2.2 ms 5.88± 3.2× 10−1 Mb 5.29± 1.1× 10−3 Mb

Stream Workloads 42.31± 6.3 ms 0.79± 6.0× 10−4 Mb 0.75± 2.8× 10−4 Mb

Submit Answers 43.03± 5.0 ms 1.17± 1.1× 10−1 Mb 1.15± 1.1× 10−1 Mb

Table 3.1: The reBOINC server performance and overheads

3.5.1 Client User Experience

We measured the resource utilization of the browser while running the fish counting

application for about eight minutes on Google Chrome v31.0.1650.57 on a x86 64

testing machine. The machine was equipped with 8Gb of RAM and an Intel i7

2.4Ghz processor running on Ubuntu 12.04, Kernel v3.5.0. We compared this with

the resource utilization of watching three popular Youtube videos for the same

duration in 360p, 720p and 1080p video quality. The measurements were done

by using the ps utility on Ubuntu to capture the utilization of Google Chrome

processes. The tool was setup to take a sample of the browser’s utilization every
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one to three seconds.

Figure 3.8 (a) and (b) shows the CPU usage in percentage and memory usage in

Mb of the browser on the y axis over time on the x axis respectively. The memory

usage of the application was 3-6 times less than watching videos on Youtube. On

the other hand, the CPU usage of the application is more similar to watching a

Youtube video at 360p quality format in the first minute. However, in the long

run, the average CPU usage of the application went down to 4.2 ± 3.2% of the

total CPU power while the average usage of the lowest video quality was as high

as 7.0±2.5%. This result indicates the feasibility of running scientific applications

on a modern web browser as the impact of executing this particular workload is

comparable to watching a video on Youtube.

3.5.2 Client NaCl Performance

We implemented an additional OS version of the fish counting application in

C/C++ and OpenCV to run on the testing machine. The OS version used the

same algorithms and similar code that were used in the NaCl version. Similarly, a

pure Javascript version of the application using a Javascript library for object de-

tection [4] was also implemented. The Javascript library was a port of the OpenCV

Haar Feature-based Cascade Classifier algorithm [99] employed in the OS and NaCl

version. To make sure that our experimental results were comparable, we used the

same classifier object and image data set on all runs. The NaCl and Javascript

fish counting application running on Google Chrome was benchmarked to compare

with the performance of the OS one. The three versions were run 100 times to

count fish on different input sizes varying from 25 to 100 images incrementing each

run by 25. The time it took for each run to count all the fish in the images (e.g

25, 50, 75 etc.) was recorded.

Figure 3.9 shows the performance of the NaCl version compared to the other
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two. The result shows that the NaCl implementation of the fish counting appli-

cation runs only 68% slower than the native OS version. Comparing this to the

Javascript implementation which runs about 11-12 times slower than the OS ver-

sion, the performance of the NaCl application is extremely fast. This is also a

signficant improvement over the fastest benchmark of Javascript which runs about

200% slower than native performance [5].

3.5.3 Server Performance

The server hosting reBOINC used a 2.4 GHz Intel Xeon quadcore processor, 24Gb

of memory with Red Hat Enterprise v5.10 on a 2.6.18 kernel. We set up client

scripts to force the server to issue 1000 useful computations, to verify subsequent

answers, and to stream workloads from and submit results to a BOINC server.

The time it took for the server to handle each request type was recorded and the

amount of memory consumed was measured using the XDebug extension of PHP.

We benchmarked two different memory usages, a peak memory which described

the maximum amount of memory reBOINC consumed at that measured time, and

a mean memory usage. Table 3.1 shows average latency, peak memory and mean

memory usage of four different types of requests the reBOINC server handles.

The results show that verifying answers, streaming workloads from and submit-

ting results to the BOINC server is very fast with little impact on the server’s mem-

ory. In contrast, constructing a new useful proof-of-work challenge takes longer

and consumes more memory. While an average latency of 500ms per new useful

proof-of-work is undesirable for a fast, real-time web application, it is more tolera-

ble for reBOINC since such computations are infrequently issued. The request for

new useful proof-of-work occurs rarely at creation and account recoveries. Thus,

most of the requests handled by the server are for verifying answers which runs

relatively fast.
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3.6 LIMITATIONS AND FUTURE WORK

In its current state, reBOINC has several limitations. While it has been shown

that a large, fixed, up-front cost to account creation can make the economics of

certain spammer strategies untenable [51], in an ideal situation, one would like to

give the adversarial account setups a much larger computation to perform com-

pared to legitimate account setups [68]. This is especially the case when the ad-

versary’s resources are extensive [67]. Unfortunately, there often isn’t sufficient

information to tell the two apart. To address this challenge, we are looking to aug-

ment reBOINC by leveraging MetaCAPTCHA’s legacy metrics such as geographic

information, IP and network address blacklists to determine the per-account com-

putation a client must perform.

In addition, while we have considered a simplistic use model, we aim to explore

new modes of applying useful puzzles in which the amount of work performed de-

termines the account capabilities given to clients. For example, a user who wants

to join a web forum and immediately post an unmoderated message might be

forced to compute all of the computational credit up front. However, a user who

doesn’t mind posts being temporarily moderated could be allowed to join with

smaller up front computation. This particular user could then complete the neces-

sary computation in the background to be granted unmoderated access. Similarly,

upon initial account setup, a user could only be allowed to post messages in a ”col-

lapsed mode”, while they perform the useful computations in the background. The

posts would then be automatically promoted upon successful creation of sufficient

computational credit.

Another issue with reBOINC is that it is difficult to ensure consistent user

experience across multiple web clients. For example, a client with a fast machine

will be able to complete the computations without any glitches while a slower one

will take longer and might introduce lags to the browsers. The system needs to
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make sure that the performance of the issued computations it is running is not

too intensive to create lags as well as not too easy allowing the adversaries to

process the computations in batch. Furthermore, different scientific computations

have different computational requirements. For instance, an image detection algo-

rithm will consume mostly CPU and GPU powers of the client machine while a

data mining application uses significant amount of virtual memory. To cover such

cases, the system can adjust the performance of the applications by (1) bench-

marking the scientific software on an average machine before publishing the work;

(2) benchmarking the client hardware before receiving work from the server; (3)

and monitoring client performance at real-time to reduce glitches. In addition,

these benchmarks need to employ security techniques to prevent the adversaries

from faking themselves as very weak machines in order to receive only easy work.

Finally, the accessibility of reBOINC is limited since only Google Chrome and

Chromium browsers support native code execution. Furthermore, Chrome requires

NaCL applications to be distributed through Chrome Webstore otherwise the NaCl

module will not be enabled. Future directions include support for Asm.js and

PNaCl. Asm.js is an open-source technology supported by both Firefox and Google

Chrome to allow languages such as C/C++ and Java to be compiled into a strict

subset of Javascript. This strict subset adds additional optimizations which enable

Javascript to run at near native speed. PNaCl is a portable version of NaCl, this

version allows NaCl applications to run on Chrome without the need to distribute

them through the webstore.
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4

RELATED WORK

CAPTCHA

The term CAPTCHA is proposed by Blum et al. [25] for interactive tests that

can distinguish humans and computers apart. CAPTCHAs come in many shapes

and forms. The most common type is textural CAPTCHA which requires users

to identify distorted and degraded texts [101, 82, 100, 30, 31, 84, 47, 33]. A

different type of CAPTCHA is the image-based one where users are required to

identify content or characteristics of an image such as orientation [53, 54], flipped

vs. non-flipped [24], dog vs. cat [14], labels of images [36], face recognition [73].

Audio-based is another kind of CAPTCHA that usually requires users to identify

words in a noisy environment [29, 89], this CAPTCHA is especially helpful for the

visually impaired people. However, CAPTCHAs are not always fun to solve, so

systems like Mollom [74] selectively issue them to only those users that appear to

be posting spam.

Proof-of-work

Dwork and Naor first introduced the concept of a pricing function (also known as

proof-of-work or client puzzle) to combat email spam. A prominent proof-of-work

system that discourage spam includes Hashcash, a system that requires senders

to attach “postage” to e-mail [23]. The postage is a partial hash collision on a

string derived from the recipient’s email address. Another proof-of-work solution

for throttling email spam was presented by Zhong et al. [111]. However, unlike
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Hashcash, their system based puzzle difficulty on the “spamminess” of the message.

Kaiser and Feng [62], Feng and Kaiser [46], Kaiser and Feng [63] proposed kaPoW,

a reputation-based proof-of-work system to discourage spam in webmail and ticket

selling web applications. There have also been proposals to put proof-of-work

to good use. MetaCAPTCHA incorporates the features of above proof-of-work

systems while augmenting them with a generic puzzle issuing mechanism and a

comprehensive reputation service.

Useful Proof-of-work

The idea of useful proof-of-work was first proposed by Jakobsson and Juels [60].

The idea is that a computational effort invested in solving the proof can be reused

for a meaningful purpose. Diament et al. [39], Zhang et al. [110] revised the useful

proof-of-work construction to offload the computations of the servers to the client

side as countermeasures against denial-of-service attacks. These systems require

the clients to execute specific workloads of the server in order to gain access to the

service. This robust construction prevents the server resources from depleting and

at the same time benefits the system with additional computing power. Similarly,

da Costa Cordeiro et al. [35] developed a model for using useful puzzles for identity

management and prevention of Sybil attacks in distributed systems.

Bitcoin can be regarded as useful proof-of-work system even though the sys-

tem heavily depends on cryptographic functions. In a Bitcoin system, each user

contributes to computations whose result can be reused as digital currency [79].

The system allows the users to find a nonce that when hashed with the network’s

block header will satisfy a particular condition. When found, the result will be

populated through the network to prevent double-spending and therefore obtain

their monetary value. In similar fashion, reCAPTCHA [101] is a spam prevention

service where the result of solving the CAPTCHAs helps digitizing books. The

service uses text-based interactive puzzles where a user has to correctly enter the
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characters presented in an image. By combining a known and unknown text in

the images, the puzzle uses the result submitted by the users to interpret scanned

manuscripts.

Outsourced Computations on the Web Browsers

Outsourced computation is not a new topic; however, its advancement on browsers

has been very limited due to the fast-paced, per-request characteristic of the web.

Karame et al. [65] offered a unique model to this problem by executing outsourced

computations on the browser as micropayments for web applications. This model

is web-friendly since it enables the users to read online newspapers for free while

their browsers are utilized to compute useful computations. In a different way,

researchers at the University of Washington are developing a system called Lind -

a secure, lightweight cloud computing environment using NaCl in the web browser

[6]. The system could allow the server to issue arbitrary computations to its clients

using the web browser as a computing platform. Another system called Gridbee

developed by researchers at BME IK has similar capabilities [12]. The system is

an adapted BOINC framework which supports scientific computations on the web

browsers using Javascript and NaCl applications.
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5

CONCLUSION

Spam is a perpetual problem that threatens the quality of content on the Internet.

However, existing spam fighting systems are not generic and practical enough to

be deployed on the web, plus their pricing functions are moderately fixed. As

such, these systems are often too simple allowing the spammers to study and

subvert them. Furthermore, current methods of proof-of-work spam throttling

systems are effective but are not sustainable since the computational power of the

users is wasted. While there is a large community that supports sustainable and

meaningful use of computational power such as volunteer computing, there is not

a system that leverages these characteristics to fight spam.

MetaCAPTHCA and reBOINC address these problems. MetaCAPTCHA seam-

lessly integrates the CAPTCHA and proof-of-work approaches while augmenting

each: it can dynamically issue proof-of-work or CAPTCHA puzzles while ensur-

ing that malicious users solve “harder“ puzzles than honest users. In addition,

the puzzles issued by MetaCAPTCHA are completely nondeterministic making it

difficult to be subverted. We evaluated MetaCAPTCHA in the context of a web

application and showed that 95% of honest users hardly noticed MetaCAPTCHA’s

presence, whereas the remaining 5% were required to solve very “easy” puzzles be-

fore accessing the application’s services. reBOINC tackles the problem of wasting

the computational resources of clients in the proof-of-work model. The reBOINC

system also demonstrates that in practice, the proof-of-work model can employ var-

ious kind of useful computations whose results help to solve the world’s demanding
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problems. Additionally, our evaluations have demonstrated that executing inten-

sive scientific calculations as proof-of-work in web browsers is feasible with modest

impact on the user-experience. To support this, reBOINC sets up a flexible struc-

ture so that new volunteer computing projects can plug into the network with

minimal modification to both parties including large applications that depend on

complex libraries such as OpenCV.

At a high-level, reBOINC and MetaCAPTCHA are a practical attempt to

build an infrastructure that connects the rapidly growing demand for computing

power needed by scientific research with the vast spammers supply of comput-

ing resources. As a result, the infrastructure can be part of a win-win scenario

where either the scientific communities have access to greater resources to solve

demanding problems or the web applications can reduce their spam load.
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