
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-2-2015

Hardware/Software Interface Assurance with Conformance
Checking
Li Lei
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Software Engineering Commons, and the Systems Architecture Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Lei, Li, "Hardware/Software Interface Assurance with Conformance Checking" (2015). Dissertations and Theses. Paper 2323.

10.15760/etd.2320

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2323?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2320
mailto:pdxscholar@pdx.edu

Hardware/Software Interface Assurance with

Conformance Checking

by

Li Lei

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Jingke Li

Suresh Singh

Fu Li

Portland State University

2015

i

ABSTRACT

Hardware/Software (HW/SW) interfaces are pervasive in modern computer sys-

tems. Most of HW/SW interfaces are implemented by devices and their device

drivers. Unfortunately, HW/SW interfaces are unreliable and insecure due to

their intrinsic complexity and error-prone nature. Moreover, assuring HW/SW

interface reliability and security is challenging. First, at the post-silicon validation

stage, HW/SW integration validation is largely an ad-hoc and time-consuming

process. Second, at the system deployment stage, transient hardware failures and

malicious attacks make HW/SW interfaces vulnerable even after intensive testing

and validation.

In this dissertation, we present a comprehensive solution for HW/SW interface

assurance over the system life cycle. This solution is composited of two major

parts. First, our solution provides a systematic HW/SW co-validation framework

which validates hardware and software together; Second, based on the co-validation

framework, we design two schemes for assuring HW/SW interfaces over the sys-

tem life cycle: (1) post-silicon HW/SW co-validation at the post-silicon validation

stage; (2) HW/SW co-monitoring at the system deployment stage.

Our HW/SW co-validation framework employs a key technique, conformance

checking which checks the interface conformance between the device and its refer-

ence model. Furthermore, property checking is carried out to verify system prop-

erties over the interactions between the reference model and the driver. Based on

ii

the conformance between the reference model and the device, properties hold on

the reference model/driver interface also hold on the device/driver interface. Con-

formance checking discovers inconsistencies between the device and its reference

model thereby validating device interface implementations of both sides. Property

checking detects both device and driver violations of HW/SW interface protocols.

By detecting device and driver errors, our co-validation approach provides a sys-

tematic and efficient way to validate HW/SW interfaces.

We developed two software tools which implement the two assurance schemes:

DCC (Device Conformance Checker), a co-validation framework for post-silicon

HW/SW integration validation; and CoMon (HW/SW Co-monitoring), a runtime

verification framework for detecting bugs and malicious attacks across HW/SW

interfaces. The two software tools lead to discovery of 42 bugs from four industry

hardware devices, the device drivers, and their reference models. The results have

demonstrated the significance of our approach in HW/SW interface assurance of

industry applications.

iii

DEDICATION

To the memory of my grandma, Binying

To my parents, Ruiling and Xiaoming

To my wife, Qi

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my advisor,

Prof. Fei Xie for his support, guidance, and encouragement. Fei taught me how to

conduct research systematically: how to identify research problems, how to seek for

practical solutions, and how to realize the proposed solutions. When I encountered

problems, he spent multiple hours discussing the problems with me and helping

me approach to the feasible solutions. During my Ph.D. study, he kept challenging

me to be a better student and a better researcher. Most importantly, Fei always

reminders me to carry out practical research to impact the real world. His research

philosophy will also benefit my future career and life.

I would like to thank my committee members, Prof. Fu Li, Prof. Jingke Li, and

Prof. Suresh Singh for their contributions to my dissertation. I highly appreciate

their perspectives on my research and precious feedbacks to my thesis.

Dr. Juncao Li has helped me a lot since he was a graduate student in Port-

land State University (PSU). His passionate attitude towards computer science

often motivates me to eagerly explore what I have not seen. His vision from the

industry guided me to develop practical solutions and tools. Dr. Kang Li hosted

my internship at Virtual Device Technologies (VDTech). He provided me many

valuable suggestions for my dissertation research and helped me compile my Ph.D.

research into a commercial software of VDTech. I would thank Juncao and Kang’s

generous help and constructive advices.

v

My study at Department of Computer Science in PSU would not have been

enjoyable without PSU professors and students. Prof. Bryant York enriched my

knowledge with his broad perspective of computer science. He also offered me

valuable feedbacks when I was writing my first academic paper. Prof. Cynthia

Brown gave me a lot of help and suggestions on my study and TA work during

my first year at PSU. I am deeply indebted to them. I would also like to thank

my fellow graduate students, Dr. Kecheng Hao, Bo Chen, Kai Cong, Christopher

Havlicek, Bin Lin, Disha Puri, and Zhenkun Yang. The discussions with them

benefited me a lot and made my Ph.D. study more enjoyable.

My grandma, Binying Xi, passed away during my Ph.D. study. I didn’t get

a chance to see her one last time. This dissertation is dedicated to her. I would

like to thank my parents, Ruiling Li and Xiaoming Lei, for their unconditional

supports and sacrifices throughout these years. I could never have achieved this

without their education and key values instilled in me. Last but not the least, I

would thank my wife, Qi Tong for her love and care. Over the past five years, Qi

shared every joyful moment with me and encouraged me to pass through every

trouble and frustration. She deserved greater thanks than what I could give.

vi

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 Challenges at Post-silicon Validation Stage 2

1.2.2 Challenges at System Deployment Stage 4

1.3 Overview of Our Approach . 4

1.3.1 HW/SW Co-validation Framework 5

1.3.2 HW/SW Interface Assurance Schemes 8

1.4 Related Work . 11

1.4.1 HW/SW Interface Assurance 11

1.4.2 Driver Testing and Monitoring 11

1.4.3 Device Testing and Validation 12

1.4.4 Symbolic Execution . 13

1.5 Dissertation Outline . 14

Chapter 2 Background . 15

2.1 QEMU and Virtual Devices . 15

2.2 Formal Device Model . 17

2.3 Büchi Pushdown System (BPDS) 18

2.3.1 Büchi Automaton (BA). 18

2.3.2 Labeled Pushdown System (LPDS). 19

vii

2.3.3 Büchi Pushdown System (BPDS). 19

2.4 Symbolic Execution . 21

Chapter 3 Post-silicon HW/SW Co-validation 22

3.1 Motivation and Overview . 22

3.2 Conformance Checking with Virtual Prototypes 25

3.2.1 Preliminaries . 26

3.2.2 Trace Recorder . 27

3.2.3 Conformance Checking Algorithm 27

3.3 Property Checking . 30

3.3.1 Virtual Prototype Instrumentations 32

3.3.2 Detecting Assertion Failures 32

3.4 Implementation . 34

3.4.1 Selective Capturing . 34

3.4.2 Incremental Trace Recording 35

3.4.3 Harness Generation for Virtual Prototypes 36

3.4.4 Termination of Symbolic Execution 38

3.4.5 Implementation Details . 39

3.5 Evaluation . 40

3.5.1 Experiment Setup . 40

3.5.2 Bug Detection . 41

3.5.3 Efficiency . 46

3.6 Summary . 48

Chapter 4 HW/SW Co-validation for DMA Interfaces 50

4.1 Motivation and Overview . 50

4.2 Our Approach . 52

4.2.1 Preliminaries . 52

4.2.2 DMA Interface Validation Framework 53

4.2.3 Conformance Checking over DMA Interfaces 54

4.3 Techniques for Checking DMA Interfaces 58

4.3.1 Record-on-write Policy . 58

4.3.2 Partial Recording of DMA Interface 60

4.3.3 Environmental Input Prediction 60

4.4 Evaluation . 63

4.4.1 Experiment Setup . 63

viii

4.4.2 Bug Detection . 63

4.4.3 Efficiency . 66

4.5 Summary . 67

Chapter 5 Optimizations for Conformance Checking 69

5.1 Motivation and Overview . 69

5.2 Thorough Conformance Checking 71

5.2.1 Problem and Motivation . 71

5.2.2 Thorough Conformance Checking Approach 72

5.3 Adaptive Concretization . 73

5.3.1 Preliminaries . 73

5.3.2 Our Approach . 74

5.3.3 Refinement Mode . 77

5.4 Evaluation . 77

5.4.1 Experiment Setup . 77

5.4.2 Bug Detection . 78

5.4.3 Efficiency . 79

5.4.4 False Positives of Concrete Mode 81

5.5 Related Work . 81

5.6 Summary . 82

Chapter 6 HW/SW Co-monitoring 83

6.1 Motivation and Overview . 83

6.1.1 Motivation . 83

6.1.2 Our Approach . 84

6.1.3 Contributions . 86

6.2 HW/SW Co-monitoring Framework 87

6.2.1 Overview . 87

6.2.2 Definitions . 89

6.2.3 Wrapper Driver . 90

6.2.4 Device Checking . 91

6.2.5 Property Checking . 93

6.3 Applications in Security . 96

6.3.1 Threat Model . 96

6.3.2 Detecting Malicious Attacks 99

6.4 Evaluation . 100

ix

6.4.1 Experiment Setup . 101

6.4.2 Attacks Detection . 102

6.4.3 Bug Detection . 104

6.4.4 Performance . 105

6.5 Related Work . 106

6.6 Summary . 107

Chapter 7 Conclusions and Future Work 110

7.1 Summary of Contributions . 111

7.2 Future Research Directions . 114

7.2.1 Pre-silicon HW/SW Co-validation 114

7.2.2 Detecting Hardware Trojan and Malwares in Virtual Devices 116

References . 118

x

LIST OF TABLES

3.1 Devices and virtual prototypes for HW/SW co-validation 41

3.2 Types of bugs in virtual prototypes and devices 43

3.3 Summary of driver bugs . 45

3.4 Test cases for evaluating HW/SW co-validation 46

3.5 Time and memory usages and false positives 47

4.1 Devices and virtual prototypes for DMA interface validation 63

4.2 Summary of device, virtual prototype, and driver bugs 65

4.3 Test cases for evaluating DMA interface validation 66

5.1 Devices and virtual prototypes for adaptive concretization 78

5.2 Summary of virtual prototype bugs 78

5.3 Test cases for evaluating adaptive concretization 79

5.4 Time and memory usages in adaptive concretization 80

6.1 Devices and FDMs for HW/SW co-monitoring 101

6.2 Summary of software attack injection 101

6.3 Summary of detected bugs . 102

xi

LIST OF FIGURES

1.1 Workflow of conformance and property checking 6

1.2 Two schemes of HW/SW interface assurance 9

2.1 Excerpts from the e1000 QEMU virtual device. 16

2.2 An example of symbolic execution. 20

3.1 Architecture of post-silicon HW/SW co-validation 24

3.2 Workflow of conformance checking 25

3.3 Workflow of property checking . 30

3.4 Assertions instrumented in the eepro100 virtual device 33

3.5 Excerpts of execution harness of e1000 virtual prototype 37

3.6 Excerpt of e1000 virtual device . 44

4.1 HW/SW co-validation framework for DMA interfaces 53

4.2 DMA interface implementations of eepro100 VD 56

4.3 Ring buffer structure of DMA memory 60

4.4 DMA bugs missed w/o environment input prediction 61

4.5 Time and memory usages of test cases under Recording Everything

(RE) and Record-on-write and Partial recording (RP) modes. The

usages with no recording (NR) are normalized to 1. Figure shows

ratios of RE and RP comparing to NR 67

5.1 Workflow of adaptive concretization 75

5.2 Numbers of inconsistencies under test cases 82

6.1 HW/SW co-monitoring of device and driver 84

6.2 HW/SW co-monitoring framework 88

6.3 Assertions instrumented in EEPRO100 FDM 95

6.4 Excerpts from 3c59x driver. 96

6.5 Work flow of a hardware trojan attacking OS through hooking sys-

tem calls . 98

xii

6.6 Time delayed in detecting attacks 103

6.7 CPU and memory usages of test cases under NAT. and MON. con-

figurations. The usages under NAT. configuration are normalized

to 1. 105

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION

Computer systems are pervasive ranging from smartphones to desktops and to

servers. Our daily life heavily depends on computer systems. For example, nowa-

days we intensively use tablets or laptops to access on-line banking account or

make purchase over the Internet. Moreover, we take the airplanes or cars, which

all embed electronic systems. Due to all these dependencies, computer systems

must be reliable and secure.

Hardware/Software (HW/SW) interfaces are pervasive in these computer sys-

tems. For example, about 70% Linux kernel implements device drivers [14] for op-

erating hardware devices and in Windows XP, there are over 35,000 device drivers

with over 100,000 versions of hardware devices [43]. However, HW/SW interfaces

are unreliable and insecure. Most system failures are caused by incorrect inter-

actions between the devices and their drivers [51]. In Windows XP, about 85%

system failures are caused by driver errors [55] and there are seven times more

driver failures than the errors caused by the rest part of Linux kernel [14]. To

exacerbate these matters, many of these failures are transient. They disappear on

a system reboot, often to resurface at a later time. What is even worse, the per-

vasive, deeply embedded, and strongly connected nature of these systems makes

2

them increasingly vulnerable to malfunctions, malicious attacks, and tampering.

Regarding to the error-prone and vulnerable nature of HW/SW interfaces, effective

HW/SW interface reliability and security assurances are highly desired.

1.2 PROBLEM STATEMENT

Assuring HW/SW interface reliability and security is difficult, not only due to the

intrinsic complexity of HW/SW interfaces, but also because of various challenges

posted at different stages of the system development life cycle. Generally, effective

HW/SW interface assurance is highly needed in two major stages of the system

life cycle: (1) system validation/testing stage; (2) system deployment stage. At

the system validation/testing stage, hardware and software are integrated once

the first version of the silicon hardware prototype is available. Such a stage where

validations are conducted on the real silicon prototype is also denoted as the post-

silicon validation stage. At the system deployment stage, HW/SW interfaces have

been released and deployed with the system to the end-users. We discuss the

difficulties and challenges at these two stages respectively.

1.2.1 Challenges at Post-silicon Validation Stage

New computer systems like smartphones and tablets, are entering the market place

at an ever-accelerating pace. This brings enormous pressures on the product de-

velopment teams to shorten the time-to-market. Moreover, according to recent

industry reports [29], validation accounts for nearly 60% of the overall product

cost. At the post-silicon validation stage, HW/SW integration validation, validat-

ing hardware and software together, is a major component of system validation. A

recent study [4] indicates that the cost of HW/SW integration validation has expe-

rienced significant increases. Therefore, regarding to the time-to-market pressure,

3

effective HW/SW integration validation is required. However, currently HW/SW

integration validation largely involves ad-hoc and manual work. There are several

key challenges:

1. Lack of HW/SW interface observation. HW/SW integration validation

often relies on testing the entire system with high-level application test sce-

narios. However, HW/SW interfaces are often not sufficiently observed and

certain interface bugs escape detection. For example, unspecified bit-flipping

in hardware interfaces often posts security threats and incurs unnecessary

power consumptions. However, without observing these bits in a systematic

and efficient manner, these bugs are not detected.

2. Difficulty in attributing HW/SW interface bugs. When a bug is

discovered in HW/SW integration validation, it is often unclear if it is a

hardware or software bug, due to the close involvement and interaction of

both hardware and software. For example, an invalid software command

to the hardware could trigger the hardware to hang. However, such a bug

usually appears as a hardware bug rather than a software bug as the hardware

stops responding to any new command.

3. Difficulty in debugging HW/SW interfaces. Hardware interacts with

its control software frequently, producing a huge number of I/O events. To

troubleshoot, the engineers usually have to sift through thousands of I/O

events and analyze them manually. To exacerbate this situation, as hardware

and software share a large range of I/O interface registers or memory, it is

often difficult to pinpoint the location of the bug. For example, Intel PCI

Ethernet adapter e1000 has 128KB I/O interface memory and produces more

than ten thousands of I/O events just for bringing up the driver. When an

4

error occurs, engineers often manually analyze each driver requests, which

incurs significant human effort.

1.2.2 Challenges at System Deployment Stage

At the system deployment stage, HW/SW interfaces are still vulnerable even after

many iterations of validation and testing. There are two major reasons. First,

transient hardware failures are common. According to several reports [3, 5, 48],

a significant number of reported failures cannot be reliably reproduced under the

same stimuli triggering the failures. Most of them are transient errors. Second, re-

cently HW/SW interfaces have become a major target of malicious attacks, entail-

ing serious security threats. For example, the infamous Stuxnet worm specifically

targets the interactions between programmable logic controllers and their control

software, ushering in a new era for virus and worm attacks [59]. Furthermore,

globalization of computer system production generates major concerns about po-

tential security backdoors planted in devices and drivers, which are increasingly

produced by third-party suppliers who may not be fully trustworthy [17].

Summary. Given the ubiquity and seriousness of these challenges at both the

post-silicon validation stage and the system deployment stage, it is highly de-

sired to develop systematic methods to validate HW/SW interfaces and automati-

cally detect and analyze interface bugs. Moreover, even after extensive validation,

HW/SW interfaces still need to be continuously protected against hardware tran-

sient failures and malicious attacks.

1.3 OVERVIEW OF OUR APPROACH

In this dissertation, we present a comprehensive solution for assuring HW/SW

interface reliability and security over the life cycle of computer systems. This

5

solution is composited of two major parts: (1) HW/SW co-validation framework;

(2) Two HW/SW interface assurance schemes: post-silicon HW/SW co-validation

and HW/SW co-monitoring. The HW/SW co-validation framework is central to

our assurance solution, which validates HW/SW interactions. The two assurance

schemes apply the co-validation framework in different fashions at the post-silicon

validation stage and the system deployment stage respectively.

1.3.1 HW/SW Co-validation Framework

Our co-validation framework employs a key technique, conformance checking, which

checks the conformance between a device and its reference model. The general work

flow of conformance checking has three steps: (1) recording the driver requests is-

sued to the device and the device interface state before each request. Essentially

we record a sequence of driver requests with device interface states. We denote

such a sequence as a device trace; (2) executing the reference model by taking

the recorded driver request sequence; (3) checking if there are any inconsistencies

in interface states between the device and the reference model. By discovering

their inconsistencies, conformance checking validates device interface implementa-

tions of both the device and the reference model. Through conformance checking,

the reference model shadows the device execution. Beyond conformance checking,

we conduct property checking which verifies system properties over the reference

model and driver interactions. As the reference model shadows the device execu-

tion, properties hold on the reference model and driver interface also hold on the

device/driver interface. Property checking discovers both device and driver viola-

tions of HW/SW interface protocols. Through the two-tier checking infrastructure,

our framework essentially validates the device/driver interactions.

Workflow. Figure 1.1 presents the workflow of our co-validation approach. We

6

Figure 1.1: Workflow of conformance and property checking

implement conformance and property checking in the engine, conformance and

property checker (CPC). It takes a device trace captured from the target device/-

driver interface, the reference model, and the system properties as inputs. CPC

carries out conformance and property checking over the device trace and outputs

driver and device bug reports. CPC can be conducted in two manners: (1) off-line

checking: the device trace is saved into trace files and CPC does conformance and

property checking off-line; (2) on-line monitoring: the device trace is captured

from device/driver interface at runtime while CPC does conformance and prop-

erty checking over the captured device trace simultaneously. Based on the two

manners, we develop two assurance schemes for different stages of the system life

cycle respectively (see Section 1.3.2).

Our framework entails four major techniques which are the key technical con-

tributions of this dissertation research. These techniques are described as follows.

1. Conformance checking with reference models. Conformance check-

ing detects the inconsistencies between the device and the reference model

by simulating the device behaviors over the reference model [38]. We use

7

a technique, symbolic execution [31], to simulate the device behaviors on

the reference model. Symbolic execution is used to overcome the limited

observability of hardware silicon. In HW/SW integration validation, the de-

vice internal registers are generally not observable. Moreover, the external

environment inputs to the device are also hard to capture. Conformance

checking models them using variables with symbolic values when replaying

the recorded device trace on the device. In this way, symbolic execution

covers all the possible values of the internal registers and the external envi-

ronment inputs.

2. Property checking. The property checker verifies these system properties

over the device indirectly through the reference model. Based on the confor-

mance between the device and the reference model, the property verified on

the reference model and the driver also holds on the device and the driver.

Property checking helps detect both device and driver errors in device/driver

interactions.

3. Adaptive concretization. Symbolic execution helps us overcome the lim-

ited observability challenge. However, it introduces significant overhead as it

usually explores a large number of program paths, which makes conformance

checking a time-consuming process. To address this challenge, we propose

an optimization, adaptive concretization, to reduce the overhead of symbolic

execution [36]. We exploit the fact that most of the virtual prototype states

conforming to the device state are generated by an execution path accessing

none of or only a few of symbolic values. Adaptive concretization elimi-

nates unnecessary symbolic values to prune unnecessary paths explored by

symbolic execution.

8

4. Extended conformance checking of DMA interfaces. The original

conformance checking aims to detect inconsistencies on device interface reg-

isters. However, besides interface registers, Direct Memory Access (DMA)

I/O interfaces are also an important type of HW/SW interfaces. To validate

DMA interfaces, we extend the conformance checking by capturing DMA

interface states and detecting DMA interface inconsistencies between the de-

vice and the reference model [37].

1.3.2 HW/SW Interface Assurance Schemes

Our solution aims to provide HW/SW interface assurance over the computer sys-

tem life cycle. As Section 1.2 illustrated, HW/SW interface assurance is required

in two major stages of the system life cycle: the post-silicon validation stage and

the system deployment stage. Moreover, each stage has specific requirements for

assurance since the system operates under different environments and faces to

different kinds of users. We list these requirements as follows.

1. Requirements of post-silicon validation stage. At the post-silicon

validation stage, both hardware and software evolve over many iterations.

This stage requires the integration validation to fully check each version of

HW/SW interfaces and detect as many bugs as possible from both sides.

While the validation is conducted, a large amount of test cases are issued

to manipulate the HW/SW interface in different ways. As a result, a sig-

nificant number of traces are generated for analysis. Therefore, post-silicon

validation is often heavyweight and is required to be effective in detecting

errors.

2. Requirements of system deployment stage. At the deployment stage,

the device and its driver have been released. The device and the driver are

9

embedded into the production system and utilized by the end users. It is

often impossible to deploy the development-time validation tools with the de-

vice and the driver, and the validation overhead must be minimum. There-

fore, HW/SW co-validation in this stage must be lightweight and detects

faults under runtime performance constraints.

To meet the different requirements, we realize our HW/SW co-validation approach

in two assurance schemes respectively: (1) post-silicon HW/SW co-validation for

the development stage; (2) HW/SW co-monitoring for the deployment stage. Fig-

ure 1.2 illustrates how the two assurance schemes fit into the system life cycle.

They utilize the same underlying techniques, conformance and property checking.

However, there are three key differences between these two schemes.

Figure 1.2: Two schemes of HW/SW interface assurance

1. On-line and off-line. As Section 1.3.1 illustrated, conformance and prop-

erty checking can be carried out in two manners: off-line and on-line. Post-

silicon HW/SW co-validation is conducted in an off-line fashion. Since at the

10

post-silicon validation stage, a significant number of I/O events is produced

under intensive testing, the off-line approach does not introduce unneces-

sary runtime overhead and would not be disrupted by the system failures.

Oppositely, HW/SW co-monitoring is conducted as an on-line approach, as

the system failures should be caught immediately at runtime to protect the

target system.

2. Target device/driver interfaces. Post-silicon HW/SW co-validation val-

idates the preliminary versions of drivers and the device prototypes which

are silicon chips. The co-validation mainly focuses on detecting design flaws

in device/driver interfaces. HW/SW co-monitoring monitors the released

devices and drivers which have passed intensive testing process. Therefore,

HW/SW co-monitoring mainly focuses on detecting malicious exploits and

transient errors across device/driver interfaces at runtime.

3. Reference models. Comparing to our post-silicon HW/SW co-validation,

HW/SW co-monitoring uses a lightweight reference model which abstracts

unnecessary implementation details. The abstract reference model helps re-

duce runtime overhead introduced by conformance and property checking.

Our two assurance schemes have been realized in our two software tools, DCC

(Device Conformance Checker) and CoMon (HW/SW Co-monitoring) which im-

plement our HW/SW co-validation approach. We applied our two software tools

to four real industry designs. DCC and CoMon discovered 42 non-trivial bugs from

devices, drivers, and the reference models. Moreover, CoMon has successfully de-

tect all the malicious attacks across HW/SW interfaces.

11

1.4 RELATED WORK

This dissertation work is related to HW/SW interface assurance, driver testing and

monitoring, device validation and testing, and symbolic execution with its related

optimizations.

1.4.1 HW/SW Interface Assurance

There has been much research on HW/SW interface assurance in the pre-silicon

verification stage. HW/SW co-verification and HW/SW co-simulation are two

mainstream techniques. In HW/SW co-verification, model checking is widely

used [33, 39, 60, 41]. It verifies properties by analyzing the interface imple-

mentation statically; however, it often encounters the state explosion problem.

Our co-validation framework conducts validation over the execution trace cap-

tured at runtime which largely avoids the state explosion problem. Research on

co-simulation [8, 20, 23, 25, 47, 50, 52] typically utilizes design models of the hard-

ware and does not directly work with the implementation of the hardware/software

interfaces. Moreover, neither co-verification nor co-simulation is conducted in the

real environment, particularly on the real silicon devices. Therefore, how to elimi-

nate the false negatives and reproduce the detected bugs is often a major challenge.

Our approach is conducted on the real devices and drivers, all the detected bugs

are real bugs which have already occurred in the runtime system and these bugs

can be reproduced by replaying the I/O event sequence.

1.4.2 Driver Testing and Monitoring

Driver testing includes static analysis and dynamic testing. SDV [6] tests Win-

dows device drivers through static analysis of driver programs. It discovers bugs

12

that are related to incorrect usage of Windows Kernel API. This approach requires

Windows driver source code. Dynamic testing tools, such as Driver Verifier [42],

verifies the driver over the driver concrete execution trace. DDT [34], and Sym-

Drive [49], discover driver bugs by simulating different inputs to the target driver.

Both DDT and SymDrive use symbolic execution, to explore driver paths dur-

ing testing. Runtime monitoring is an alternative approach to driver reliability

assurance. Nooks [54] uses a mechanism called “shadow driver” to monitor the

runtime behaviors of the target Linux driver and replace the real driver to handle

driver exceptions. A similar approach [30] monitors the driver at runtime and

checks if the driver can survive when taking the faulty device inputs. Several

other approaches [58, 19, 61, 24] monitor the driver and use software module iso-

lation techniques to prevent driver errors from affecting operating systems. All

such driver quality assurance research focuses on detecting memory access fail-

ures, invalid kernel API usages, and how to protect the kernel from driver failures.

They seldom consider the device behaviors when testing the driver. Other ap-

proaches [30, 34] do analyze the hardware interface inputs at certain points of the

driver execution. However, without monitoring the critical part of device interfaces

and fully exploring the device states, device and driver violations of the HW/SW

interface protocol are often missed.

1.4.3 Device Testing and Validation

Device testing and validation are usually carried out at the post-silicon stage.

Post-silicon validation is performed on silicon prototypes and testing devices. A

significant amount of research has been focused on detecting and localizing bugs in

silicon chips. A major difficulty of post-silicon bug detection and localization is the

limited observability of silicon hardware internals. Several approaches [1, 46] have

13

developed hardware on-chip monitors to collect hardware execution traces with in-

ternal signals. Assertion-based verification [11, 26, 44] and formal method [18] have

been used to analyze and debug the execution traces from on-chip monitors. Our

approach also works on detecting and troubleshooting post-silicon bugs. Instead

of validating internal implementations of silicon hardware, we focus on HW/SW

interfaces.

In summary, current device and driver testing/validation methods mainly fo-

cus on one side of the HW/SW interface, rather than validating their integration

together. However, as devices and drivers are highly correlated by nature and their

interactions often follow complicated protocols. Discrete testing and validation are

not effective in detecting HW/SW interface errors.

1.4.4 Symbolic Execution

Symbolic execution [31] is widely used for software testing. SAGE [22], KLEE

[12], and S2E[13] use symbolic execution to test software systems that intensively

interact with environments. Other tools [57, 53, 7] also employ symbolic execution

to generate test cases for testing software programs. Symbolic execution often

suffers from the path explosion problem. There has been many research targeting

reducing the overhead of symbolic execution. A major effort has been to avoid

path explosions by pruning redundant paths. RWSet [10] and path subsumption [2]

employ a similar heuristic whereas a path which is identical to the one previously

explored can be safely pruned. In [35], a method is proposed for automatically

merging states to reduce the number of paths explored in symbolic execution.

Several other approaches [21, 53, 56] leverage the benefits of concolic execution to

partially concretize the target programs thereby the number of explored paths is

reduced. In our adaptive concretization, we reduce the number of explored paths

14

by concretizing some of the variables with symbolic values.

1.5 DISSERTATION OUTLINE

The reminder of this dissertation is organized as follows. Chapter 2 introduces

the background of our research. Chapter 3 presents our post-silicon HW/SW co-

validation including conformance and property checking. Chapter 4 elaborates

on how we extend our post-silicon HW/SW co-validation framework to validate

DMA interfaces. Chapter 5 presents our optimization algorithm of conformance

checking. Chapter 6 presents the HW/SW co-monitoring for HW/SW interface

assurance at the system deployment stage. In Chapter 7, we conclude and discuss

the future directions.

15

Chapter 2

BACKGROUND

In this chapter, we introduce some relevant concepts: QEMU virtual devices which

we adopt as our virtual prototypes, Formal Device Model (FDM) which is used as

the reference model in HW/SW co-monitoring, and symbolic execution with which

we replay driver requests on virtual devices and FDMs.

2.1 QEMU AND VIRTUAL DEVICES

QEMU [9] is a virtual machine that can emulate different processor architectures,

such as x86, SPARC, and ARM. It also emulates virtual devices for different pe-

ripheral devices, e.g., network adapters and mass storage devices.

A QEMU virtual device is a software component integrated into QEMU. We

illustrate the virtual device concept with the Intel e1000 network adapter, a PCI

(Peripheral Component Interconnect) device. As Figure 2.1 shows, the e1000 vir-

tual device has the following major components:

• PCI device state, as defined by E1000State, which keeps track of the PCI

device state;

• Device configuration, as defined by e1000 info, which stores the PCI configu-

ration information for this device (multiple configurations may be provided);

• PCI device functions: (1) the entry functions such as e1000 mmio writel

16

typedef struct E1000State_st {

PCIDevice dev;

NICState *nic;

NICConf conf;

uint32_t mac_reg[0x8000];

uint16_t phy_reg[0x20];

uint16_t eeprom_data[64];

......

} E1000State;

static PCIDeviceInfo e1000_info = {

.qdev.name = "e1000",

.qdev.desc = "Intel Gigabit Ethernet",

.vendor_id = PCI_VENDOR_ID_INTEL,

.device_id = E1000_DEVID,

.revision = 0x03,

.class_id = PCI_CLASS_NETWORK_ETHERNET,

......

};

static void e1000_mmio_writel(void *opaque, phys_addr_t addr, uint32_t val)

{

switch(addr){

case E1000_TDT:

set_tdt(s, addr, val); break;

......

}

}

static void set_tdt(E1000State *s, int index, uint32_t val)

{

s->mac_reg[index] = val;

start_xmit(s);

}

static void start_xmit(E1000State *s)

{ }

static ssize_t

e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)

{ }

Figure 2.1: Excerpts from the e1000 QEMU virtual device.

17

which are invoked by the QEMU VM when the driver issues I/O com-

mands;(2) the interface functions such as set tdt which are invoked through

the entry functions; (3) the module functions, for example, start xmit and

e1000 receive, which model the device internal transactions such as packet

transmission and reception.

2.2 FORMAL DEVICE MODEL

A FDM is an executable transaction-level model, specifying HW/SW interfaces and

hardware functionalities [41]. It is derived from the device specification and written

in a restricted subset of the C language with three key extensions: transaction,

non-determinism, and relative atomicity.

Transaction. The FDM focuses on the design logic rather than the implemen-

tation details of HW/SW interfaces and hardware functionalities. For example, a

data-transfer command is usually processed in multiple clock cycles; however, from

the perspective of the software, it may only be necessary to describe this command

as one hardware state transition. We define a hardware transaction to represent a

hardware state transition in an arbitrarily long but finite sequence of clock cycles.

Hardware transactions are atomic to software.

Non-determinism. A FDM utilizes non-determinism mainly in two ways: (1)

updating the state variables, which contributes to the data flow of the specification;

(2) deciding the conditions of branches or loops, which contributes to the control

flow of the specification. For both ways, the use of non-determinism abstracts away

unnecessary details. For example, one important utilization of non-determinism is

how a FDM models the hardware concurrency.

18

• Non-deterministic interleaving. Hardware is concurrent in nature. For ex-

ample, a network card processes driver commands and receives data concur-

rently. To specify such hardware concurrency, FDMs use a method, namely

non-deterministic interleaving, which has three steps: (1) identify the

concurrent modules (e.g., command unit, receive unit, etc.) of the target

hardware device; (2) specify the modules using separate C functions which

are defined as module functions; (3) non-deterministically invoke these mod-

ule functions in a hardware transaction function. When the transaction

function is executed multiple times, these module functions are executed in

a non-deterministic sequence. From the view point of software, the effect of

hardware concurrency is modeled by the set of hardware states after non-

deterministic many executions of the hardware transaction function.

Relative atomicity. Relative atomicity has two key ideas: (1) hardware transac-

tions are atomic from the viewpoint of software; and (2) Interrupt Service Routines

(ISRs) are atomic to other lower-priority software routines. In device/driver inter-

actions, when hardware fires an interrupt, the OS calls the ISRs that are registered

in the interrupt vector table sequentially until an ISR acknowledges its ownership

of the interrupt. During this process, only one ISR can run at a time and other

hardware interrupts are suppressed. The interrupted thread can continue its exe-

cution only after the interrupting ISR terminates.

2.3 BÜCHI PUSHDOWN SYSTEM (BPDS)

2.3.1 Büchi Automaton (BA).

A BA B [32] is a non-deterministic finite state automaton accepting infinite input

strings. Formally, B = (Σ, Q, δ, q0, F), where Σ is the input alphabet, Q is the

19

finite set of states, δ ⊆ (Q × Σ × Q) is the set of state transitions, q0 ∈ Q is the

initial state, and F ⊆ Q is the set of final states. B accepts an infinite input string

iff it has a run over the string that visits at least one of the final states infinitely

often. A run of B on an infinite string s is a sequence of states visited by B when

taking s as the input. We use q
σ→ q′ to denote a transition from state q to q′ with

the input symbol σ. A FDM is modeled as a BA, capturing device behaviors.

2.3.2 Labeled Pushdown System (LPDS).

A LPDS P [40] is a tuple (I,G,Γ,Δ, 〈g0, ω0〉) where I is the input alphabet, G is

a finite set of global states, Γ is a finite stack alphabet, Δ ⊆ (G×Γ)×I× (G×Γ∗)

is a finite set of transition rules, and 〈g0, ω0〉 is the initial configuration. LPDS

can take inputs, which is different from PDS. A LPDS transition rule is denoted

as 〈g, γ〉 τ
↪→ 〈g′, w〉, where τ ∈ I and ((g, γ), τ, (g′, w)) ∈ Δ. A configuration of P

is a pair 〈g, ω〉, where g ∈ G is a global state and w ∈ Γ∗ is a stack content. The

set of all configurations is denoted by Conf(P). A device driver is modeled as a

LPDS.

2.3.3 Büchi Pushdown System (BPDS).

A BPDS BP [40] is defined as the Cartesian product of a BA B and a LPDS P :
(1) the input alphabet of B is defined as the power set of the set of propositions

that may hold on a configuration of P (i.e. a symbol in Σ is a set of propositions);

(2) the input alphabet of P is defined as the power set of the set of propositions

that may hold on a state of B (i.e. a symbol in I is a set of propositions); and (3)

two labeling functions is defined as follows:

• LP2B : (G× Γ)→ Σ, associates the head of a LPDS configuration with the

set of propositions that hold on it. Given a configuration c ∈ Conf(P), we

20

void foo(int a, int b)

{

1: if (a > 5)

2: b = b + 1;

3: else

4: b = b - 1;

}

a: α, b: β
TRUE

a: α, b: β
α>5

a: α, b: β
α<=5

a: α, b: β+1
α>5

a: α, b: β-1
α<=5

Figure 2.2: An example of symbolic execution.

write LP2B(c) instead of LP2B(head(c)) for simplicity.

• LB2P : Q→ I, associates a state of B with the set of propositions that hold

on it.

BP = ((G × Q),Γ,Δ′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the Cartesian

product of B and P . A BPDS rule 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′ iff q
σ→ q′ ∈ δ,

σ ⊆ LP2B(〈g, γ〉) and 〈g, γ〉 τ
↪→ 〈g′, w〉 ∈ Δ, τ ⊆ LB2P(q). A configuration of BP is

referred to as 〈(g, q), ω〉 ∈ (G × Q) × Γ∗. The set of all configurations is denoted

as Conf(BP). The labeling functions define how B and P synchronize with each

other. 〈(g0, q0), ω0〉 is the initial configuration. 〈(g, q), ω〉 ∈ F ′ if q ∈ F . Basically,

the combination of the device and the driver is modeled as a BPDS, where the

driver is modeled as LPDS, the device is modeled as BA, and their interactions

are captured by labeling functions LP2B and LB2P . A path of BP is a sequence of

BPDS configurations, c0 ⇒BP c1 . . .⇒BP ci ⇒BP . . ., where ci ∈ Conf(BP), i ≥ 0.

21

2.4 SYMBOLIC EXECUTION

Symbolic execution [31] executes a program with symbolic values as inputs instead

of concrete ones and represents the values of program variables as symbolic ex-

pressions. Consequently, the outputs computed by the program are expressed as

functions of input symbolic values. The symbolic state of a program includes the

symbolic values of program variables, a path condition, and a program counter.

The path condition is a Boolean expression over the symbolic inputs; it accumu-

lates constraints which the inputs must satisfy for the symbolic execution to follow

the particular associated path. The program counter points to the next statement

to be executed. A symbolic execution tree captures the paths explored by the

symbolic execution of a program: the nodes represent the symbolic program states

and the arcs represent the state transitions.

We use the program in Figure 2.2 to illustrate how symbolic execution is con-

ducted. At the entry, a and b have symbolic values α and β, respectively, the

path condition is TRUE, and the program counter is 1. At the branching point, the

path condition is updated with conditions on the inputs to select between the two

alternative paths. At an assignment statement, the symbolic value of the relevant

variable is updated.

22

Chapter 3

POST-SILICON HW/SW CO-VALIDATION

3.1 MOTIVATION AND OVERVIEW

Post-silicon validation is a critical stage in the system life cycle. In this stage, not

only hardware silicon validation is conducted, but also HW/SW integration valida-

tion. A recent study [4] indicates that the cost of HW/SW integration validation

has increased significantly. As the complexities of systems grow, there are several

key challenges in the post-silicon integration validation:

1. Lack of HW/SW interface observation. In HW/SW integration vali-

dation, HW/SW are combined together and treated as a black box. To test

hardware and software combination, some common test scenarios are created

and issued from high-level applications. The testers can discover some bugs

by observing if there are any system errors or crashes. Nevertheless, HW/SW

interfaces are often not sufficiently observed and certain interface bugs will

not be detected.

2. Difficulty in attributing HW/SW interface bugs. When a bug is

discovered in HW/SW integration validation, it is often unclear if it is a

hardware bug or a software bug due to the close involvement and interaction

of both hardware and software.

3. Difficulty in debugging HW/SW interfaces. Hardware interacts with

its control software frequently, producing a huge number of I/O events. To

23

troubleshoot, the engineers usually have to sift through thousands of I/O

events and analyze them manually.

Regarding to these serious challenges of the HW/SW integration validation,

systematic and effective validation approaches are highly desired to validate both

hardware and software together. To conduct an effective co-validation over HW/SW

interfaces, a major challenge is how to design a reference model which can effec-

tively track the device behaviors. Recently, virtual prototyping has emerged as a

promising technique to enable early software development. A virtual prototype is

a system-level, executable software model of a hardware device with full observ-

ability. The device interface modeled by the virtual prototype is required to be

functionally equivalent to that of the silicon device. Thus, virtual prototypes can

be used as reference models and have a major potential in facilitating HW/SW

co-validation.

In this chapter, we present a HW/SW co-validation framework for post-silicon

HW/SW integration validation. We utilize the virtual prototype of the device as

a reference model for validating HW/SW interfaces. As Figure 3.1 shows, there

are two stages in our framework. We illustrate the two stages as follows.

1. Runtime recording: In the runtime recording stage, the device/driver

interactions are recorded, including the driver requests issued to the device

and the device interface state before each request. We denote the recorded

sequence of driver requests associated with the corresponding device interface

states as device trace. The framework saves the recorded device trace into

a trace file and inputs it to the conformance and property checker (CPC).

24

2. Off-line checking: In the off-line checking stage, CPC takes the trace file,

the virtual prototype of the device, and system properties governing the de-

vice/driver interactions as inputs. CPC performs conformance checking and

property checking. As a result, it reports the discovered bugs on device/-

driver interfaces.

CPC implements a two-tier checking infrastructure: conformance checking and

property checking. Conformance checking checks the interface register confor-

mance between the device and its virtual prototype, thereby validating the inter-

face implementations of both sides. Through conformance checking, the virtual

prototype shadows the device execution. Property checking leverages the virtual

prototype to expose the device state transitions and verifies the properties over

the virtual prototype/driver interactions. Based on the conformance between the

virtual prototype and the device, the properties violated in the virtual prototype-

/driver interface are also violated in the device/driver interface. By checking the

properties, invalid driver inputs to the device and invalid device interface state are

both detected.

OS

Figure 3.1: Architecture of post-silicon HW/SW co-validation

25

Outline. The reminder of this chapter is organized as follows. Section 3.2 presents

our conformance checking between the device and its virtual prototypes. Sec-

tion 3.3 illustrates the property checking based on conformance checking. In

Section 3.4, we present some implementation details for realizing our HW/SW

co-validation framework. Section 3.5 elaborates on experimental results.

3.2 CONFORMANCE CHECKING WITH VIRTUAL PROTOTYPES

We present the basic workflow of conformance checking [38]. As illustrated in

Figure 3.2, the workflow has two major components: a trace recorder and a con-

formance checker.

The trace recorder records the driver request sequence to the device. The

conformance checker replays the sequence on the virtual prototype and checks the

conformance. The discovered inconsistencies are recorded. An inconsistency record

contains the inconsistent registers, the driver request causing the inconsistency, and

the virtual prototype execution trace under the driver request.

OS

Figure 3.2: Workflow of conformance checking

26

3.2.1 Preliminaries

Before discussing the details of this workflow, we first introduce our notion of

conformance, which is defined between the states of the device and its virtual

prototype. The state of the device is determined by the values of its interface and

internal registers. The interface registers of the device are observable while the

internal registers are generally not observable and are sometimes even unknown.

The virtual prototype is a model of the device. It models interface registers of the

device with a set RI of corresponding variables and defines a set RN of variables

to capture device internal behaviors. However, the variables in RN often have

no correspondence with the internal registers of the device. We define a virtual

prototype state as follows.

Definition 3.1. A virtual prototype state is denoted as V={VI , VN} where VI

is the device interface state, i.e., the assignments to variables in RI and VN is the

device internal state, i.e., the assignments to variables in RN .

We represent the device state with the same sets of variables: RI and RN .

The variables in RI are assigned values observed from the corresponding interface

registers of the device. The variables in RN are assigned symbolic values with no

constraints since the device internal is not observable.

Definition 3.2. A device state is denoted as S={SI , SN} where SI is the as-

signments to variables in RI and SN is the symbolic assignments to variables in

RN .

A concrete device state is a device state whose state variable values are all

concrete. A symbolic device state is a device state some of whose state variable

values are symbolic and there can also be constraints on these symbolic values. A

symbolic device state can be viewed as a set of concrete states. In our approach,

27

we treat both V and S as symbolic states, which can be viewed as two set of

concrete device states, denoted as set(V) and set(S) respectively. Based on this

generalization, Definition 3.3 defines the conformance between a device state and

a virtual prototype state.

Definition 3.3 (state conformance). A device state S and a virtual prototype state

V conform to each other if set(S) ∩ set(V)
= ∅.

To compute set(S)∩set(V), we denote the device state variables as var1, var2,

..., varn and the values of the state variables of S as V al(var1)S, V al(var2)S, ...,

V al(varn)S. We construct the expression of S as Expr(S): (var1 == V al(var1)S)

∧ (var2 == V al(var2)S) ∧ ... ∧ (varn == V al(varn)S). Similarly, assume the con-

straints of V as Cont(V), the expression of V , Expr(V), is (var1 == V al(var1)V)

∧ (var2 == V al(var2)V) ∧ ... ∧ (varn == V al(varn)V)) ∧ Cont(V). Given

Expr(S) and Expr(V), set(S) ∩set(V)
=∅ if and only if Expr(S) ∧ Expr(V) is

satisfiable.

3.2.2 Trace Recorder

The trace recorder captures: (1) each driver request issued to the device; (2) the

device interface state before each driver request is issued. A sequence of such

state-request pairs captured on the device can be viewed as a device trace. We

define such a device trace as T = 〈SI0 , D0〉, 〈SI1 , D1〉, ..., 〈SIn , Dn〉, where the pair
〈SIk , Dk〉 (0 ≤ k ≤ n) represents a driver request Dk to the current device interface

state SIk .

3.2.3 Conformance Checking Algorithm

The conformance checker replays T on the virtual prototype using symbolic execu-

tion. Algorithm 3.1 presents this workflow. It takes a device trace T and a virtual

28

prototype F as inputs. The conformance checking algorithm works as follows:

1. Initialize the virtual device state V0 to be S0 from T ′ and set k = 0.

2. Take the next driver request Dk of T ′ and symbolically execute the virtual

device from Vk on Dk. Symbolic execution may produce a set G of virtual

device states.

3. Check the conformance between G and Sk+1 (see below for details). If not

conforming, report an inconsistency; otherwise continue checking.

4. Set the virtual device state Vk+1 to be the silicon device state Sk+1; Increment

k and go to step 2.

5. The conformance checker terminates when it finishes the last driver request

of T ′.

Algorithm 3.1 conformance checking(T , F)

1: T ′ ← convert trace(T)

2: /* Take 〈Sk, Dk〉 from T ′*/

3: for k : 0→ n do

4: /*Set VP state Vk to be device state Sk*/

5: Vk ← Sk

6: /*Symbolically execute VP by taking Dk at Vk state*/

7: G← sym exec(F, Vk, Dk)

8: H ← conformance check(G,Sk+1)

9: if H == false then

10: report incon()

11: end if

12: end for

29

Major functions in Algorithm 6.1 are described below.

1. Given T = 〈SI0 , D0〉, 〈SI1 , D1〉, ..., 〈SIn , Dn〉, function convert trace gener-

ates a new device trace T ′ = 〈S0, D0〉, 〈S1, D1〉, ..., 〈Sn, Dn〉, where Sk(0 ≤
k ≤ n) is a device state derived from SIk . (cf. Definition 3.2).

2. Function sym exec symbolically executes the virtual prototype and generates

a set of virtual prototype states denoted as G = {gi | 0 ≤ i ≤ m}.

3. Function conformance check checks the conformance between G and the

next device state under Dk, denoted as Sk+1. Definition 3.4 defines their con-

formance. If G and Sk+1 conform to each other, function conformance check

returns true, otherwise, it returns false.

4. When function conformance check returns false, there is an inconsistency

and function report incon reports the inconsistency.

Definition 3.4 (Device Conformance). Given G = {gi | 0 ≤ i ≤ m} and Sk+1,

the virtual prototype and the device conform to each other at Dk if ∃gi ∈ G where

0 ≤ i ≤ m, set(Sk+1) ∩ set(gi)
= ∅ .

Discussions. Our conformance definition is essentially the conformance between

the interface states of the device and the virtual prototype since the internal vari-

ables of S have unconstrained symbolic values. Therefore, our algorithm may not

detect internal state non-conformance. Moreover, to reduce symbolic execution

complexities, we synchronize the virtual prototype state to the device state after

each drive request. This may miss inconsistencies that only surface after several

driver requests. Under this conformance definition, our approach is sound theo-

retically as symbolic execution explores all possible interface states of the virtual

prototype. Nevertheless in practice, for practicality and efficiency, our approach

30

may introduce false positives, i.e., false alarms, due to optimizations of symbolic

execution (cf. Section 3.4.4). Furthermore, our approach might also miss some de-

vice bugs. For example, if the virtual prototype and the device have a same error,

this error will not be discovered. In Section 3.3, we will show property checking

can help us detect such errors.

3.3 PROPERTY CHECKING

This section overviews our property checking design [37]. Based on the confor-

mance checking workflow described in Figure 3.2, we build a property checker over

the conformance checker in the off-line checking stage. As Figure 3.3 illustrates,

the property checker takes a trace file as its input, verifies the system properties

over the device state transitions exposed by the conformance checker, and reports

property failures.

S2

S1

S4

S3

Figure 3.3: Workflow of property checking

Property checking verifies two types of properties: (1) stateless properties,

31

the properties without involving device states; (2) stateful properties, the prop-

erties related to device states. Moreover, each type also contains two categories:

(1) device properties specifying how the device should behave in device/driver

interactions; (2) driver properties specifying how the driver should behave in de-

vice/driver interactions. As examples, we present four properties specified in the

eepro100 specification [27] as follows.

Property 1: If some register bits are marked as ”reserved”, the driver cannot

set these bits.

Property 2: If some register bits are marked as ”reserved”, the device cannot

set these bits.

Property 3: If the device Command Unit (CU) is not in SUSPENDED status,

the driver cannot send RESUME to the device.

Property 4: If the driver does not require the device to fire an interrupt

after the device completes the driver request, the device should never fire such

an interrupt.

Properties 1 and 2 are stateless properties while properties 3 and 4 are stateful

properties. Moreover, failures of properties 1 and 3 indicate driver violation of

device/driver interface protocols while failures of properties 2 and 4 indicate device

errors.

Remark. Conformance checking can detect device violations of device/driver

interface protocols. However, as Section 3.2.3 mentioned, conformance checking

may miss some device errors. By verifying the device properties, property checking

essentially provides a way to detect some of the device errors missed in conformance

checking.

32

3.3.1 Virtual Prototype Instrumentations

As we leverage the virtual prototype to infer the device state transitions, the vir-

tual prototype can be directly used as a validation vehicle. For property checking,

we instrument the virtual prototype with assertions generated from specified prop-

erties. In this way, while the conformance checker simulates the device behaviors

on the virtual prototype, the property checker detects if any assertion fails during

the simulation. Currently, we instrument the assertions manually. In future, we

will develop a method that allows the users to specify assertions and automatically

instruments the virtual prototype with the assertions. Figure 3.4 shows the four

assertions corresponding to properties 1, 2, 3, and 4 respectively. A special API

function dcc assert is used to specify these assertions.

3.3.2 Detecting Assertion Failures

The property checker evaluates the assertions when the conformance checker ex-

ecutes the virtual prototype. Symbolic execution of the virtual prototype usually

explores multiple program paths, we denote such a set of paths as P = {pi | 0 ≤
i ≤ n}. Definition 3.5 defines the condition that the property checker detects a

property violation.

Definition 3.5 (Property Violation). Given a property ψ, a set of paths P = {pi |
0 ≤ i ≤ n} explored under a driver request D, ψ is violated under D if ∀pi ∈ P ,

the assertion failure of ψ is reachable on pi.

The set P represents all the possible device behaviors under the driver request

D. Only if all of these possible behaviors lead to the violation of the property ψ,

the property checker can ensure there is an property violation in the device/driver

interface.

33

static void eepro100_cu_command(EEPRO100State * s, uint8_t val)

{

// Assertion for property 1

dcc_assert(!val & RESERVED_BITS);

// Assertion for property 3

if (s->cu_state != CU_STATE_SUSPENDED)

dcc_assert(val != CU_CMD_RESUME);

......

// Assertion for property 2

dcc_assert(s->mac[CU_CMD] & RESERVED_BITS);

}

static void eepro100_write_mdi(EEPRO100State *s, uint32_t val)

{

......

// Assertion for property 4

if (!val & MDIC_INT)

{

dcc_assert(!s->mac[SCB_INT] & MDI_INT);

}

}

Figure 3.4: Assertions instrumented in the eepro100 virtual device

34

Discussions. Our property checking has a major advantage in verifying stateful

properties. In the state of the art driver implementations, to runtime verify a

property related to the device states, the driver has to be instrumented to keep a

partial device state machine where only property-related states and corresponding

state transitions are modeled. This approach has three limitations: (1) modeling a

state machine for every property incurs redundant human efforts; (2) ad-hoc state

machine instrumentation is intrusive to the driver implementation; (3) the state

transitions inferred by the driver are sometimes out of synchronous with the real

device state transitions, as the driver hardly checks the real device states. Our

approach leverages the virtual prototype to systematically model and maintain

the complete device state machine while the normal workflow of the device/driver

interface is not affected. Furthermore, through conformance checking, the virtual

prototype is largely guaranteed to be synchronous with the device.

3.4 IMPLEMENTATION

This section presents the techniques for implementing our HW/SW co-validation

approach.

3.4.1 Selective Capturing

The trace recorder captures values of the interface registers of the device. However,

it is difficult to capture all interface registers since a device often has a large range

of interface registers. For example, Intel e1000 network adapter, a PCI device,

has 128KB of interface registers. Capturing all these registers incurs excessive

memory transactions, which will heavily degrade the system performance. To

address this problem, we propose a method, namely selective capturing, which

captures a smaller set of important registers rather than the complete set.

35

To decide which registers to capture, we statically analyze the virtual proto-

type [16]: symbolically execute the virtual prototype by using symbolic inputs

and record the registers accessed in execution. As the registers can be accessed

by using symbolic addresses, which may lead to an unnecessarily large range of

registers to record. Therefore, we only record the registers accessed by concrete

addresses. This may miss certain registers. As a supplement, we allow the user to

specify which registers they want to capture. Selective capturing does not affect

the soundness of our approach although it may miss inconsistencies.

3.4.2 Incremental Trace Recording

The trace recorder captures the device trace at runtime, which is a sequence of

driver requests associated with device interface states. In practice, testing a device

usually produces thousands of driver requests in a short period of time. As each

driver request corresponds to a set of captured registers, saving the complete device

trace would occupy a significant amount of memory and disk space. Moreover,

in post-silicon HW/SW co-validation, the trace recorder is usually running on

a testing machine with the target device while the conformance checker can be

running on any other machines. Therefore, transferring a trace file from the testing

machine to the checking machine costs significant time if the file size is large.

We observe that in a device trace, between two consecutive driver requests,

there is only a small number of interface registers whose values are changed. Based

on this observation, we develop an incremental trace recording method which only

records the interface registers whose values are changed instead of recording a

complete set of selected registers. This method has three steps:

1. Before the first driver request D0 is issued, the trace recorder captures the

interface state SI0 and saves it in the device trace T .

36

2. Before the driver requests Dk where the current device interface state is

SIk and 0 < k ≤ n, the trace recorder computes ΔSIk
, where ΔSIk

=

D(SIk , SIk−1
). The function D returns the different registers and their values

between SIk and SIk−1
. The trace recorder saves ΔSIk

in T .

3. Given a device trace TΔ = 〈SI0 , D0〉, 〈ΔSI1
, D1〉, ..., 〈ΔSIn

, Dn〉, for ΔSIk
(0 <

k ≤ n), the conformance checker recovers SIk by using function R where

R : {SIk−1
,ΔSIk

} → SIk . In this way, the conformance checker recovers T

based on TΔ and conduct the conformance checking in the native way.

3.4.3 Harness Generation for Virtual Prototypes

A virtual prototype is not a stand-alone program, which is executed as part of

the virtual platform. Therefore, we need an execution harness for symbolically

executing the virtual prototype. We generate an execution harness based on the

concepts of non-deterministic interleaving and symbolic inputs.

• Non-deterministic interleaving. As Section 2.2 illustrates, to capture the

hardware concurrency, it requires non-deterministic many executions of a

loop where the module functions are invoked non-deterministically. We define

such a loop as the main loop of the execution harness. The condition of the

main loop is a non-deterministic choice and module functions are invoked

non-deterministically in the main loop.

• Symbolic inputs. As outside environment inputs are not captured from the

device, we assign symbolic values to these input variables so that symbolic

execution can cover the possible inputs from the outside environment.

37

......

dcc_make_symbolic(buff, BUFF_SIZE, "buff");

dcc_make_symbolic(size, sizeof(uint32_t), "size");

//Non-deterministic many executions

while(choice()) {

//Non-deterministic interleaving

switch (choice()) {

// Respond to write/read registers

case 0: Access_Register(); break;

// Receive packets

case 1: e1000_receive(nc, buff, size); break;

// Do nothing

default: break;

}

......

Figure 3.5: Excerpts of execution harness of e1000 virtual prototype

38

Example. We illustrate harness generation using the e1000 network adapter. Fig-

ure 3.5 shows an excerpt from the harness we generate for the e1000 virtual proto-

type. There are two module functions: (1) Access Register; (2) e1000 receive.

The function Access Registermodels how the device responds to a driver request,

e.g., writing to or reading from a register. The function e1000 receive models

how the device receives packets from the network, which takes several input pa-

rameters. We call the function dcc make symbolic to assign symbolic values to

the input variables. The function choice() implements a non-deterministic choice

which returns a symbolic value. In the main loop, the two module functions are

invoked non-deterministically.

3.4.4 Termination of Symbolic Execution

Symbolic execution might not terminate when it encounters a loop without a stati-

cally known number of iterations, e.g., the main loop in the execution harness. We

refer to such a loop as an unbounded loop. To address this issue, we set constant

bounds for all such loops in the virtual prototype. We leverage runtime behaviors

of the virtual prototype in the QEMU virtual machine to decide the loop bound

for each unbounded loop. The method contains three steps:

1. We statically analyze the virtual prototype through symbolically executing

the virtual prototype using symbolic inputs, to identify the unbounded loops.

2. When the virtual prototype is running within the QEMU virtual machine,

for each unbounded loop identified by static analysis, we record the largest

number of iterations that the loop has been executed. If we encounter an un-

bounded loop while replaying the device trace, we use its recorded maximum

number of iterations as its bound.

39

3. As a supplement, we allow the user to adjust the loop bound for a specific

loop. For example, if using a large bound induces high time and memory

costs or even path explosions, the user may lower the bound.

Remarks. Loop bounding may lead to false positives since it potentially re-

duces the virtual prototype behaviors. However, we argue that the false positive

ratio is low due to two reasons. First, static analysis shows that for most un-

bounded loops, increasing the numbers of loop iterations does not affect the vir-

tual prototype interface state. Therefore, the conformance checking result will not

be affected most of the time. Second, the loop bounds cover most virtual proto-

type behaviors if the runtime test cases for identifying loop bounds have a high

coverage of the virtual prototype (herein we use the code coverage metrics such

as statement coverage). Moreover, a discovered false positive may be eliminated

thereafter by the user incrementing the loop bounds. However, since setting the

bounds too large may lead to high time and memory costs and even path explo-

sions, sometimes false positives cannot be completely eliminated. Therefore, the

user may need to search for a “sweet spot” to achieve minimum false positives with

reasonable symbolic execution costs.

3.4.5 Implementation Details

Trace Recorder Implementation

We implement our post-silicon HW/SW co-validation on Linux. The trace recorder

is implemented as a Linux kernel library. A standard Linux device driver always

calls Linux kernel functions to access its device. For instance, a driver calls function

writel to write a long integer to a device register. We hook these kernel functions.

As a result, the trace recorder is invoked to record the driver requests when the

driver calls these functions to issue requests.

40

Conformance and Property Checking

We construct our conformance and property checker using the symbolic execution

engine KLEE [12]. We modify KLEE in three aspects. First, we set the loop

bounds during symbolic execution. Second, we realize our own module for confor-

mance and property checking. Third, KLEE is a testing tool rather than just a

symbolic execution engine. It provides some functionalities which are unnecessary

in our approach. We remove these functionalities from KLEE. For example, KLEE

generates test cases for the explored paths, which is not essential for symbolic exe-

cution. We remove this functionality to avoid the I/O operations during symbolic

execution.

3.5 EVALUATION

In this section, we present our evaluation results including two parts: (1) design

flaws discovered in real industry designs; (2) performance of our post-silicon co-

validation framework with optimizations of conformance checking.

3.5.1 Experiment Setup

All experiments were conducted on a workstation with a dual-core Intel Pentium D

Processor at 3.20 GHz and 4GB of RAM, running Linux with kernel version 2.6.35.

The devices evaluated are three types of widely used network adapters. We use

their QEMU virtual devices as the virtual prototypes. Information of these devices

and their virtual prototypes are summarized in Table 3.1. It also shows the size

of the registers we selectively capture in each network adapter. The virtual device

size is measured in Lines of Code (LOC). Intel e1000, Intel eepro100, and Realtek

rtl8139 virtual devices are included in QEMU 0.15.1 source code. Broadcom bcm

5751 virtual device is newly created following the QEMU 0.15.1 requirements.

41

Table 3.1: Devices and virtual prototypes for HW/SW co-validation

Devices
Virtual Device

Size (LOC)

Selective Captured

Size (Bytes)

Intel e1000 Gigabit NIC 2099 1224

Broadcom bcm5751 Gigabit NIC 4519 412

Intel eepro100 10/100M NIC 2178 74

3.5.2 Bug Detection

Inconsistencies and Device Bugs

Conformance checking of our framework discovered 26 inconsistencies between the

three network adapters and their virtual prototypes under test: 12 in e1000, 8 in

bcm5751, and 6 in eepro100. By analyzing the inconsistency reports generated by

the conformance checker, there are 22 bugs from the virtual devices, and 4 bugs

from the devices. As the result shows, most of these inconsistencies are caused by

the bugs of the virtual devices. This is because on one hand the devices are stable

products which have gone through extensive testing and bug-fixing procedures; on

the other hand, their virtual prototypes are not heavily tested through any rigorous

testing procedures. However, these virtual prototype bugs are still possible to

appear in silicon prototypes at the early stage of hardware development, since these

bugs are common violations of hardware designs. We believe that if this approach

is conducted at the post-silicon validation stage before devices are released, it can

also discover many inconsistencies caused by the bugs of devices/prototypes.

Types of device bugs. We summarized the bugs which cause the inconsistencies.

As shown in Table 3.2, there are 9 types of device bugs we discovered by analyzing

the inconsistencies. Most of these bugs are very common violations of hardware

42

designs. For example, firing interrupts too many times and failing to fire interrupts

are both common defects in hardware devices. We discuss the device bugs and the

virtual prototype bugs respectively.

• Device bugs. The bugs of the first type are real device bugs. The device

updates the register specified as reserved in the device specification. This

bug can be serious since it may cause unnecessary device behaviors, expose

additional device information, and consume extra power.

43

T
ab

le
3.
2:

T
y
p
es

of
b
u
gs

in
v
ir
tu
al

p
ro
to
ty
p
es

an
d
d
ev
ic
es

N
o
.

B
u
g
D
e
sc
ri
p
ti
o
n

N
u
m
.

D
e
v
ic
e
T
y
p
e

D
is
tr
ib
u
ti
o
n

1
R
es
er
ve
d
B
it
s/
R
eg
is
te
rs

ar
e
u
p
d
at
ed

4
D
ev
ic
e

e1
00
,
e1
00
0

2
G
en
er
at
e
u
n
n
ec
es
sa
ry

in
te
rr
u
p
ts

2
V
P

ee
p
ro
10
0,

e1
00
0

3
F
ai
l
to

ge
n
er
at
e
in
te
rr
u
p
ts

1
V
P

b
cm

57
51

4
F
ai
l
to

cl
ea
r
in
te
rr
u
p
ts

1
V
P

b
cm

57
51

5
F
ai
l
to

u
p
d
at
e
re
gi
st
er
s

7
V
P

ee
p
ro
10
0,

e1
00
0,

b
cm

57
51

6
U
p
d
at
e
re
gi
st
er
s
w
it
h
w
ro
n
g
va
lu
es

2
V
P

e1
00
0

7
T
w
o
or

m
or
e
re
gi
st
er
s
ar
e
ou

t
of

sy
n
c.

2
V
P

b
cm

57
51

8
R
eg
is
te
rs

re
se
t
to

in
co
rr
ec
t
va
lu
es

3
V
P

ee
p
ro
10
0,

e1
00
0,

b
cm

57
51

9
In
co
rr
ec
t
d
at
a
ty
p
es

fo
r
m
o
d
el
in
g
d
ev
ic
e
st
at
es

1
V
P

b
cm

57
51

10
V
P
d
o
es

n
ot

m
o
d
el

d
ev
ic
e
co
n
cu
rr
en
cy

3
V
P

ee
p
ro
10
0,

e1
00
0,

b
cm

57
51

44

static void

set_mdic(E1000State *s, int index, uint32_t val)

{

... ...

s->mac_reg[MDIC] = val |E1000_MDIC_READY;

set_ics(s, 0, E1000_ICR_MDAC);

}

Figure 3.6: Excerpt of e1000 virtual device

• Virtual prototype bugs. The bugs of second to fourth types are all related to

interrupts. The bugs from the fifth type to ninth type can cause the driver

to read incorrect values. These bugs often cause serious driver and system

errors or even crashes, and similar device errors have been reported [30].

Consequences of inconsistencies. These inconsistencies can have serious conse-

quences. Here we use an inconsistency found in Intel e1000 as an example. In this

scenario, the device driver writes certain values to register MDIC to transfer data

into the internal module of the device. After the data transfer finishes, according

to the value of a specific bit in register MDIC, the device determines whether to fire

an interrupt.

However, Figure 3.6 shows how the virtual prototype responds under such the

scenario by invoking the function set MDIC. In this function, no matter what is

the value of register MDIC, the virtual prototype always generates an interrupt by

invoking the interrupt function set ics. Due to this feature, the driver developed

on the virtual prototype may always expect an interrupt after the device finishes

transferring data. However, the device does not always generate an interrupt to

notify the driver when the data transfer is completed. Therefore, if the driver

45

is not well written, it will treat no interrupt as an incorrect data transfer in the

device, and report an exception by mistake. The driver’s normal work flow will be

disrupted on the device. By detecting such an inconsistency, our tool helps users

easily figure out why the driver does not work properly with the silicon device. This

case illustrates how our approach can help post-silicon device/driver co-debugging.

Property Checking and Driver Bugs

By using property checking, we detect two driver bugs shown in Table 3.3. Property

checking verified 31 properties in total, of which there are 10 stateless properties

and 21 stateful properties. These driver violations are harmful to the system.

Updating reserved and read-only registers are likely to incur unnecessary behaviors

of the devices.

Table 3.3: Summary of driver bugs

Bug Description Num. Bug Types Distribution

Update interface register

reserved bits
1

Stateless

Property Violation
eepro100

Update interfac register

read-only bits
1

Stateless

Property Violation
e1000

Summary. The results demonstrated that our framework addresses the first three

key challenges of HW/SW integration validation presented in Section 3.1. First,

our framework is effective to detect the design flaws in HW/SW interfaces. For

example, the discovered bug of updating the reserved bits can be easily missed if

the HW/SW interface is not observed. Second, our framework can easily identify

46

a HW/SW interface bug as a hardware bug or a software bug. For example, an in-

valid driver input often appears like a device bug as the device usually hangs under

the invalid input. By detecting the invalid input through property checking, the

framework clearly identifies this bug as a driver bug. Third, conformance check-

ing and property checking are carried out automatically, which reduces significant

human efforts.

3.5.3 Efficiency

We evaluate the efficiency of our approach, in terms of time usages, memory usages,

and false positive ratios. We issue four kinds of test cases to the network adapters

to collect device traces. These test cases are all common usages of network adapters

as shown in Table 3.4. “NIC test-suite” contains a family of typical test cases on

network interface controllers (NIC), which manipulate a NIC in different ways,

e.g., sending UDP packets and setting MTU size.

Table 3.4: Test cases for evaluating HW/SW co-validation

Test Cases Description

Reset Network Interface Bring down and then bring up the network interface

Ping Ping another network interface

Transfer files Copy large files with total size 3.2 GB

NIC test-suite A set of typical test cases on NIC

Time and memory usages

We evaluate the time and memory usages of conformance checking. Table 3.5

shows the results. The “Time Usage” column shows the average time usages for

47

the conformance checker processing each driver request of the device trace collected

under the test cases. We also recorded the maximum values of memory usages.

Consider that our approach is an offline checking approach, the time usage is

acceptable and the memory usage is low.

Table 3.5: Time and memory usages and false positives

Devices Test Cases
Time

Usage (sec)

Memory

Usage (MB)

Inconsistency

(Discovered

/Verified)

Reset NIC 0.24 212.60 8/8

e1000 Ping 2.92 300.00 8/8

Transfer files 3.11 308.14 12/9

NIC test-suite 3.06 288.23 11/11

Reset NIC 0.19 166.51 9/9

bcm5751 Ping 2.88 255.16 8/8

Transfer files 2.87 251.02 8/6

NIC test-suite 2.33 218.65 7/7

Reset NIC 0.26 207.73 4/4

eepro100 Ping 2.10 220.15 2/2

Transfer files 2.45 236.77 2/2

NIC test-suite 2.31 226.84 4/4

False positive ratios

To assess the number of false positives introduced by our optimizations, we verified

all the inconsistencies discovered. In the “Inconsistency” column of Table 3.5, we

show the numbers of discovered inconsistencies and verified inconsistencies.

48

Most of the inconsistencies are verified. We encountered false positives in the

traces of transferring files on e1000 and bcm5751 (marked as bold). Both virtual

prototypes have only one unbounded loop whose number of iterations affects the

virtual prototype interface state. The number of iterations of the loop depends

on the total size of packets received by the device between two consecutive driver

requests. In the virtual prototype, one iteration of the loop would receive a fixed

number of packets. Therefore, one iteration of the loop captures the device behav-

iors when the network traffic is modest. Occasionally when the network traffic is

heavy, it requires executing the loop more than once. Therefore, our setting the

bound to one produces false positives. Nevertheless, as we adjust the bound by

incrementing it to two, all previously encountered false positives are eliminated

while the time and memory costs remain modest. This demonstrates that (1)

our approach has a low false positive ratio; (2) The supplementary loop bounding

method is effective in eliminating false positives.

3.6 SUMMARY

We have presented an approach to HW/SW co-validation at post-silicon stage.

This approach entails two checking techniques: (1) conformance checking with vir-

tual prototypes; (2) property checking, which help detect errors in HW/SW inter-

face implementations between a device and its driver. Our co-validation framework

can effectively detect the bugs from the devices, the virtual prototypes, and the

drivers. Preliminary evaluation shows that our approach is useful and efficient.

In three network adapters, we discover many bugs while incurring low memory

and time usages. Furthermore, our validation framework has major potential in

addressing the key challenges of HW/SW integration validation presented in Sec-

tion 3.1. First, the framework records and validates the device interface state; thus

49

the errors in the interface registers are effectively detected. Second, the framework

identifies both the device and driver errors over the device/driver interface thereby

it can easily attribute device/driver interface bugs as device or driver bugs. Fi-

nally, our framework only requires minimum manual efforts, which significantly

saves validation human efforts.

50

Chapter 4

HW/SW CO-VALIDATION FOR DMA INTERFACES

4.1 MOTIVATION AND OVERVIEW

Direct Memory Access (DMA) is a way by which peripheral devices can directly

access the system memory without involving CPU. For most peripheral devices,

I/O interfaces based on Direct Memory Access (DMA) are a critical part of their

HW/SW interfaces. For example, in Intel EERPO100 Ethernet adapter specifica-

tion [27], 25% of all pages describe the DMA interface implementations. Therefore,

DMA interface validation is a critical task in HW/SW co-validation.

This chapter presents a HW/SW co-validation framework for validating DMA

interfaces. In general, a device interface includes interface registers and the DMA

interface. Chapter 3 presents an approach to conformance checking over device

interface registers. Our framework for validating DMA interfaces essentially ex-

tends the conformance checking in Chapter 3 to check the conformance on not only

interface registers but also the DMA interface. Thereby our extended approach

can detect not only DMA interface bugs but also new bugs in interface regis-

ters whose values have dependencies on DMA interface state. Nevertheless, the

straightforwardly extended conformance checking is not scalable to complicated

device designs due to two limitations:

1. Large overheads of recording DMA interface states. A DMA inter-

face is essentially a shared memory between the device and its driver. The

51

size of the DMA interface can be fairly large. For example, the Intel e1000

Ethernet adapter has 8 MB DMA memory. Therefore, recording the DMA

interface state, i.e., DMA memory state, under each driver request may heav-

ily degrade system performance.

2. Missed bugs due to imprecise environmental input simulation. A

large part of DMA-based I/O involves handling the environmental inputs,

e.g., receiving data in an Ethernet adapter. As conformance checking does

not record environmental inputs, it cannot simulate the DMA operations

under environmental inputs precisely on the virtual prototype. As a result,

some DMA interface bugs are often missed (cf. Section 4.3).

To address the challenges above, we developed three key techniques: (1) record-

on-write policy which records the DMA interface state only when it is updated;

(2) partial record which records part of a FIFO ring-based DMA memory in-

stead of the complete ring; (3) environmental input prediction which predicts

when the device receives inputs from its external environment, thereby facilitat-

ing precise simulation of the device behaviors on the virtual prototype. The first

two techniques reduce recording overheads. The last helps discover DMA interface

bugs related to environmental inputs.

We have applied our framework to four Ethernet adapters and their drivers

using their virtual prototypes from QEMU [9]. Our approach has discovered 12

bugs in DMA interface implementations of the devices, their virtual prototypes,

and their drivers. Moreover, the techniques for reducing recording overheads make

our framework applicable to two devices with complicated designs.

In summary, our co-validation of DMA interfaces framework makes following

key contributions:

52

1. We present a HW/SW co-validation framework for DMA interface imple-

mentations of devices and their drivers using their virtual prototypes.

2. Besides validating the DMA interface implementations, our extended con-

formance checking further validates interface registers related to the DMA

interface (see details in Section 4.2.3).

3. The three key optimizing techniques make our framework scalable and effec-

tive on real industry designs.

4.2 OUR APPROACH

4.2.1 Preliminaries

We first briefly review the work flow of DMA-based I/O. A DMA interface is a

piece of shared memory between the device and its driver and can be accessed

by both. The device and the driver exchange data and commands through the

shared memory. A data structure called descriptor is typically used in the DMA

work flow. The work flow of a device interacting with its driver through the DMA

interface is as follows.

1. The driver builds a descriptor d which contains a command c. The driver

puts d into the DMA interface and updates a special interface register Reg of

the device to notify the device that there is a command in the DMA interface.

2. Once Reg is updated, the device reads the descriptor d from the DMA in-

terface and executes the task specified by c.

3. When the device completes the task, it updates the status of d and writes

d back to the DMA interface. It may also update some relevant interface

registers.

53

From this work flow, it can be observed that two aspects of the DMA interface are

validated: (1) the device implementation of the DMA interface that handles the

DMA inputs; (2) the driver implementation that produces DMA inputs.

4.2.2 DMA Interface Validation Framework

As Figure 4.1 shows, our HW/SW co-validation framework is built on the confor-

mance checking work flow. It takes the virtual prototype and a trace file generated

from the trace recorder, and outputs an inconsistency report and a property failure

report. It consists of two major components as follows.

S2

S1

S4

S3

Figure 4.1: HW/SW co-validation framework for DMA interfaces

• Conformance checker. Conformance checking over interface registers in Sec-

tion 3.2 are extended to checking the conformance of both interface registers

54

and DMA interface states between the device and its virtual prototype. The

conformance checker detects errors not only in interface registers but also in

DMA interfaces. As the conformance checker simulates the device behaviors

over the virtual prototype and checks their conformance under each driver

request, the virtual prototype essentially shadows the device execution trace

and keeps track of the device state transitions. The device state transitions

exposed by the virtual prototype provides the foundation for property check-

ing.

• Property checker. Property checker is implemented in a same manner as the

property checking presented in Chapter 3. However, instead of verifying the

properties over the device/driver interactions across interface registers, the

property checker verifies the properties related to device/driver interactions

across the DMA interface. It observes the device state transitions through

the virtual prototype and detects if any property violation is possible over

the state transitions.

As our property checker is directly inherited from the property checking in

Chapter 3, we focus on presenting our extended conformance checking infrustrac-

ture.

4.2.3 Conformance Checking over DMA Interfaces

This section presents how we extend conformance checking to support the DMA

interface validation. The previous approach to conformance checking (cf. Sec-

tion 3.2) cannot validate DMA interface implementations.

55

Limitations of previous approach

The aim of validating DMA interface implementations is to detect two types of

bugs: those exactly in the DMA interface, which we refer to as DMA interface

bugs; and those in the interface registers whose values have dependencies on the

DMA interface state, which we refer to as DMA register bugs. The previous

approach does not record the DMA interface state at runtime. So it clearly misses

DMA interface bugs. When executing the virtual prototype, this approach models

the DMA interface state with symbolic values. So it also misses DMA register

bugs.

We use an example to illustrate how such a bug escapes. Figure 4.2 shows

how eepro100 processes a DMA driver command. Function pci dma read fetches a

descriptor which is stored in s→ cu desc. As labels P1 and P2 indicate, depending

on different commands, the device updates the CU state with different values and

fires interrupts.

The variable s→ cu desc is assigned symbolic values during symbolic execution

of the eepro100 virtual device (VD). As a result, symbolic execution of eepro100

virtual device covers all the three paths in Figure 4.2. We denote the three paths

as p1, p2, and p3. The path p1 follows the code where the branch condition at P1

is true. The path p2 follows the code where the branch condition at P1 is false and

branch condition at P2 is true. The path p3 follows the code where both of the

two branch conditions are false.

Assume that there is a DMA register bug, when the device follows p2, it fails to

update the cu state with cu suspend. When executing the virtual prototype, the

conformance checker also explores p3 where the cu state is consistent with the cu

state in the device. According to Definition 3.4, the conformance checker does not

discover this update failure. Instead, the extended approach uses concrete DMA

56

... ...

pci_dma_read(cb_address, &s->cu_desc, size);

... ...

P1: if (s->cu_desc & COMMAND_EL) {

// CU becomes idle, fire interrupt

set_cu_state(s, cu_idle);

eepro100_cna_interrupt(s);

}

P2: else if (s->cu_desc & COMMAND_S){

// CU becomes suspended, fire interrupt

set_cu_state(s, cu_suspend);

eepro100_cna_interrupt(s);

}

... ...

Figure 4.2: DMA interface implementations of eepro100 VD

inputs, therefore, only p2 is explored and the cu state is updated to cu suspend,

which is inconsistent with the device cu state. The bug is discovered. The evalu-

ation results show that our extended approach detected several bugs both in the

DMA interface and DMA registers (cf. Section 4.4).

Extended Conformance Checking

Our approach follows a similar work flow as the previous conformance checking,

but makes three key extensions:

57

1. Record concrete DMA interface states. In addition to the interface

registers, the trace recorder also records the DMA interface state at runtime.

2. Extend Device State Representation. We define a DMA interface state

as a set of DMA interface variables with their values. Given V = 〈VI , VN〉 and
S = 〈SI , SN〉 defined in Section 3.2.1, we extend the virtual prototype state as

VE = 〈VEI , VN〉, where VEI = 〈VI , VM〉, VM represents the virtual prototype

DMA interface state. Similar as VI , the values of VM can be either symbolic

or concrete. We define the extended silicon device state as SE = 〈SEI , SN〉,
SEI = 〈SI , SM〉, where SM represents the device DMA interface state. The

values of SM are concrete.

3. Report inconsistent DMA interface. The conformance checker checks

the conformance between VEI and SEI in the same manner as Definition 3.3

and Definition 3.4. If the virtual prototype and the device do not conform,

the conformance checker outputs inconsistency reports which contains incon-

sistencies of both interface registers and the DMA interface.

Remarks. The previous approach is sound theoretically. However in practice, it

might have false positives, i.e., false alarms. The virtual prototype might have un-

bounded loops which make symbolic execution non-terminating. A loop bounding

algorithm is used to set constant bounds for these loops dynamically. This algo-

rithm may reduce possible behaviors of the virtual prototype; therefore, producing

false positives. Our approach faces the same challenge. However, the chance of

false positives is lower than the previous approach in both DMA interface and

interface register conformance checking results. In the previous approach, most of

false positives are caused by bounding two kinds of loops: (1) ones whose loop con-

ditions depend on the environmental inputs; (2) the others whose loop conditions

58

depend on the DMA interface values. Our approach does not record environmental

inputs; therefore, we may still get false positives on the first kind of loops. How-

ever, as we record concrete DMA interface values, our approach eliminates false

positives caused by the second kind.

4.3 TECHNIQUES FOR CHECKING DMA INTERFACES

Our straightforwardly extended conformance checking over DMA interfaces has

two major challenges in scaling to real industry designs. First, capturing DMA

interfaces incurs a large runtime overhead. For example, when we evaluate our

approach on Intel e1000 Ethernet adapter, the computer system hangs and cannot

function normally when the trace recorder captures the DMA interface state. In

Section 4.3.1 and Section 4.3.2, we present two techniques to address this problem.

Second, the conformance checker may still miss DMA bugs related to handling

environmental inputs as it cannot predict when environmental inputs were handled.

We give an example and present our solution in Section 4.3.3.

4.3.1 Record-on-write Policy

The trace recorder records the DMA interface state before each driver request is

issued. However, in the device, the DMA interface is not updated at every driver

request, instead, the DMA interface state remains the same over a significant

number of consecutive driver requests. Therefore, it is unnecessary to record the

DMA interface state before each driver request. We develop a technique, the

record-on-write policy, to record the DMA interface only when it is updated.

59

Identifying DMA interface updates

The DMA interface is only updated by the device and its driver. There are three

scenarios where the updates occur: (1) the driver issues a command via the DMA

interface; (2) the device outputs to the external environment; (3) the device re-

ceives environmental inputs. In fact, the trace recorder only needs to record the

DMA interface under these scenarios. We show how to identify these scenarios

respectively.

• The first and second scenarios are all triggered by issuing driver requests.

Since the trace recorder intercepts all driver requests, by analyzing these

driver requests, it can identify the first two scenarios.

• For the third scenarios, we use the technique presented later in Section 4.3.3

to identify when the device receives environmental inputs.

Associating DMA interface states with driver requests

Record-on-write leads to a potential problem: for some driver requests, there is

no DMA interface state associated. However, when we replay the device trace on

the virtual prototype, the virtual prototype may still read DMA memory even it

does not update it. Therefore, for these driver requests without the associated

DMA interface state, we need to provide a valid DMA memory to the virtual

prototype. To address this problem, we implement a “copy-on-write” policy while

replaying the device trace. The DMA interface state associated with the current

driver request will be automatically inherited by the next driver request, if there

is no “write” on the DMA interface occurs between these two consecutive driver

requests. When there is a write operation on the DMA interface, the next driver

request uses its own associated DMA interface state.

60

4.3.2 Partial Recording of DMA Interface

A DMA interface of a device is not a flatten memory. Instead, it is typically

implemented as a ”ring buffer” data structure. As Figure 4.3 illustrates, the device

and the driver keep two indices called “head” and “tail”. When the driver allocates

a unit of memory to the device, it increments “tail”. Similarly, when the device

consumes a unit of memory, it increments “head”. The memory between “head”

and “tail” is considered as valid memory. The device fetches DMA descriptors

only from the memory units between “head” and “tail”.

DMA memory

as a ring buffer

Head (extract)

Tail (insert)

4
u
n
it
s
in

F
IF
O

Figure 4.3: Ring buffer structure of DMA memory

Since the device only touches the valid memory defined by “head” and “tail”,

when the trace recorder records a DMA memory, it does not need to record the

entire memory. Instead, it only records the valid memory. This way, we further

reduce the overhead incurred by DMA interface state recording.

4.3.3 Environmental Input Prediction

Motivation

As illustrated in Section 3.4.3, upon each driver request, the conformance checker

uses a non-deterministic choice to decide invoking EM or not. In this way, the

61

virtual prototype can capture the device behaviors under two possible scenarios:

(1) environmental inputs arrive; (2) no environmental input. However, there is

a potential to miss DMA interface bugs. We present such a concrete example.

When Intel eepro100 receives a packet from its external network, according to its

specification, after processing the packet, the device will set its status bit to value

1 in the DMA interface, indicating the completeness of packet reception. Assume

that the status update fails for some reason, as a result, the status bit remains 0

in the DMA interface (see Figure 4.4-(a)). However, this status bit has the same

value as no external input arrivals. In the virtual prototype, as Figure 4.4-(b)

shows, there are two paths including both reception (EM) and non-reception (Not

EM), the conformance checker covers both paths by symbolically executing the

virtual prototype. Therefore, although the DMA interface update fails, it is still

considered valid. This update failure will not be discovered.

DMA failure!

Status = 0

Status = 0

EM

(a) Device Trace

Status = 0

Status = 0 Status = 1

EMNot EM

(b) Virtual Prototype Traces

Figure 4.4: DMA bugs missed w/o environment input prediction

62

Solution

If the conformance checker knows when the device receives environmental inputs

while replaying the device trace, it can just invoke EM instead of trying both

branches. The bugs will not be missed. To realize this feature, we develop a

technique, environmental input prediction. Given a device trace T generated from

the device, environmental input prediction determines when the device receives

environmental inputs. We first summarize the typical work flow how a device

receives inputs from the external environment. When environmental inputs arrives,

the device processes these inputs. After the device finishes processing, it updates

the corresponding status of a descriptor in the DMA interface. Moreover, it fires

an interrupt to notify the driver by updating the interrupt register Rintr with a

specific value V alintr.

In a device trace T , given two consecutive driver requests Di and Di+1 (0 ≤ i),

there are two device interface states SIi and SIi+1
which are recorded before Di

and Di+1 respectively. If the value of Rintr in SIi is not V alintr and the value of

Rintr in SIi+1
is V alintr, the device receives environmental inputs between Di and

Di+1. We denote such a pattern of Rintr value change as P . When the conformance

checker replays T on the virtual prototype, if P is detected in Di and Di+1, the

conformance checker only invokes EM when it processes Di; otherwise, it does not

invoke EM. In this way, environmental input prediction helps avoid missing certain

bugs in the DMA interface.

63

4.4 EVALUATION

4.4.1 Experiment Setup

We have performed our experiments on a workstation with a dual-core Intel Pen-

tium D Processor with 4GB of RAM and Ubuntu Linux OS with 64-bit kernel

version 2.6.38. We applied our framework to four Ethernet adapters and their vir-

tual prototypes, QEMU virtual devices. Information about these devices and their

virtual devices are summarized in Table 4.1. The virtual device size is measured

in Lines of Code (LoC).

Table 4.1: Devices and virtual prototypes for DMA interface validation

Devices
Virtual Device

Size (LoC)
Basic Description

RealTek rtl8139 3544 RealTek 10/100M Ethernet Adapter

Intel eepro100 2178 Intel 10/100M Ethernet Adapter

Intel e1000 2099 Intel Gigabit Ethernet Adapter

Broadcom bcm5751 4519 Broadcom Gigabit Ethernet Adapter

4.4.2 Bug Detection

Our framework has detected 12 new bugs summarized in Table 4.2. There are 2

device bugs, 8 virtual prototype bugs, and 2 driver bugs. Since we conducted our

experiments over the stable products which have been released for many years,

there are only a few device bugs. However, the virtual prototype bugs that we

discovered are all common hardware design flaws. Therefore, our approach has

major potential in discovering bugs in silicon prototypes including FPGAs and

test devices. All the driver bugs are discovered by our property checking. Property

64

checking verified 26 properties in total, of which there are 9 stateless properties

and 17 stateful properties.

Most of these bugs can cause serious problems. Two of the interface register

bugs are related to missing interrupts, which often break down the normal driver

work flow and even cause driver and system crashes. DMA interface bugs cause

corrupted DMA memory, which can lead to driver misbehavior as the driver may

read incorrect status. A driver input with invalid descriptors is potential to incur

device misbehavior.

The results demonstrate that our framework is promising in handling the three

key challenges of HW/SW integration validation presented in Section 1.2. First,

our framework is effective to detect the design flaws in HW/SW interfaces. For

example, the discovered bug of updating the reserved bits in the DMA interface,

can be easily missed without observing HW/SW interface. Second, our framework

can easily identify a HW/SW interface bug as a hardware bug or a software bug.

For example, an invalid driver input often appears like a device bug as the device

usually hangs under the invalid input. By detecting the invalid input through

property checking, the framework clearly identifies this bug as a driver bug. Last

but not the least, detecting DMA register bugs shows that our approach improves

the effectiveness in validating device interface registers.

65

T
ab

le
4.
2:

S
u
m
m
ar
y
of

d
ev
ic
e,

v
ir
tu
al

p
ro
to
ty
p
e,

an
d
d
ri
ve
r
b
u
gs

N
o
.

B
u
g
D
e
sc
ri
p
ti
o
n

N
u
m
.

B
u
g
S
o
u
rc
e

B
u
g
T
y
p
e
s

D
is
tr
ib
u
ti
o
n

1
U
p
d
at
e
re
se
rv
ed

b
it
s
of

th
e
D
M
A

in
te
rf
ac
e

2
D
ri
ve
r

S
ta
te
le
ss

P
ro
p
er
ty

V
io
la
ti
on

ee
p
ro
10
0,

e1
00
0

2
U
p
d
at
e
re
se
rv
ed

b
it
s
in

th
e
D
M
A

in
te
rf
ac
e

2
D
ev
ic
e

D
M
A

in
te
rf
ac
e
b
u
g

e1
00
0,

b
cm

57
51

3
F
ai
l
to

fi
re

re
q
u
ir
ed

in
te
rr
u
p
t
w
h
en

D
M
A

op
er
at
io
n
s
h
av
e
er
ro
rs

1
V
P

D
M
A

re
gi
st
er

b
u
g

ee
p
ro
10
0

4
F
ai
l
to

fi
re

re
q
u
ir
ed

in
te
rr
u
p
t
w
h
en

th
e
D
M
A

d
es
cr
ip
to
r
n
u
m
b
er

is
lo
w

1
V
P

D
M
A

re
gi
st
er

b
u
g

e1
00
0

5
F
ai
l
to

ch
ec
k
if
D
M
A

d
at
a
is

ou
t-
sy
n
c
as

sp
ec
ifi
ca
ti
on

re
q
u
ir
es

1
V
P

D
M
A

re
gi
st
er

b
u
g

b
cm

57
51

6
In
co
rr
ec
tl
y
u
p
d
at
e
th
e
D
M
A

in
te
rf
ac
e

2
V
P

D
M
A

in
te
rf
ac
e
b
u
g

b
cm

57
51

7
F
ai
l
to

si
m
u
la
te

th
e
co
n
cu
rr
en
cy

of

p
ro
ce
ss
in
g
D
M
A

d
at
a

3
V
P

D
M
A

in
te
rf
ac
e
b
u
g

ee
p
ro
10
0,

e1
00
0,

b
cm

57
51

66

4.4.3 Efficiency

In this section, we evaluate the efficiency of our recording method with record-

on-write policy and partial recording, in terms of time and memory usages in the

runtime recording stage of the conformance checking work flow. The test cases

used in evaluation are described in Table 4.3. All these test cases heavily involve

DMA I/O operations.

Table 4.3: Test cases for evaluating DMA interface validation

Test Cases Description

Ping Ping another network interface

Small transfer Transfer a small file with size 2.4 MB

Large transfer Transfer a large file with size 3.2 GB

The test cases are issued under three configurations: (1) No Recording (NR)

mode: there is no recording conducted; (2) Recording Everything (RE) mode: the

recording method without the two proposed techniques, which records everything

in the DMA interface; (3) Record-on-write and Partial recording (RP) mode: the

method with record-on-write and partial recording techniques. We set the NR

mode as the baseline and the performance of the NR mode is normalized to 1.

Figure 4.5 shows the ratios of the RE and RP modes comparing to the NR mode.

In Figure 4.5, no data is provided for the RE mode in terms of e1000 and bcm5751

since the RE mode incurs a large overhead and the system hangs. By applying

record-on-write and partial recording techniques in the RP mode, recording DMA

interface states can be successfully and efficiently achieved.

The results demonstrate that our two optimizing techniques make recording

DMA interface states scalable to the devices with complicated designs such as e1000

and bcm5751, both Gigabit Ethernet adapters; for the devices such as eepro100 and

67

e1000

0.8

1

1.2

1.4

1.6

1.8

2

RE Time RP Time RE Memory RP Memory

rtl8139 bcm5751 eepr100

Ra
tio

s c
om

pa
rin

g
to

 N
R

m
od

e

Figure 4.5: Time and memory usages of test cases under Recording Everything

(RE) and Record-on-write and Partial recording (RP) modes. The usages with no

recording (NR) are normalized to 1. Figure shows ratios of RE and RP comparing

to NR

rtl8139, both 10/100M Ethernet adapters, record-on-write and partial recording

also noticeably reduce the recording overheads.

4.5 SUMMARY

This chapter has presented a HW/SW co-validation framework to validating the

DMA interface implementations. Our two-staged checking infrastructure helps

detect errors in DMA interface implementations of both a device and its device

driver. We discovered several bugs related to DMA interface implementations from

68

devices, their virtual prototypes, and their driver. Our validation framework has

major potential in addressing the key challenges of HW/SW integration validation

which are presented in Section 4.1. First, the framework records and validates the

DMA interface state; thus the errors in the DMA interface are detected effectively.

Second, the framework identifies both the device and driver errors over the DMA

interface thereby it can easily attribute device/driver interface bugs as device or

driver bugs. Finally, our framework only requires minimum manual efforts, which

significantly saves validation human efforts.

69

Chapter 5

OPTIMIZATIONS FOR CONFORMANCE CHECKING

5.1 MOTIVATION AND OVERVIEW

Chapter 3 presents an approach to post-silicon conformance checking of a hardware

device with its virtual prototypes. This approach symbolically executes the virtual

prototypes with the same driver request sequence to the device, and checks if the

interface states of the silicon and virtual prototypes are consistent. However, the

internal state of a device is hard to observe and the external environment inputs

to the device are also hard to capture. This approach uses symbolic execution

to tackle this problem. It models internal states and environment inputs using

variables with symbolic values when simulating the device behaviors on the vir-

tual prototype. This way symbolic execution covers all the possible values of the

internal state and environment inputs.

The approach presented in Chapter 3 has two major limitations.

1. Missing internal bugs. It checks the interface state conformance after

the virtual device processes each driver request. Before processing the next

driver request, it resets the internal states of the virtual device by assigning

them symbolic values. This way, the internal variable values, which have

already been concretized in simulation, are lost. Therefore it may miss cer-

tain internal bugs propagating to device interface registers after a few driver

requests later.

70

2. Incurring significant time usages. Symbolic execution introduces a sig-

nificantly overhead while exploring a large number of paths. This overhead

makes the approach a time-consuming process. In post-silicon conformance

checking, a driver request sequence is often composed of thousands of, even

millions of driver requests, which requires a long time to process. Therefore,

how to reduce time costs is a critical task to scale the conformance checking

approach.

In this section, we present a thorough and efficient approach to address the two

limitations above. Our proposed approach can detect the internal bugs. Rather

than resetting the virtual prototype internal state to symbolic values, our ap-

proach keeps the concrete values of the internal state after the virtual prototype

processes each driver request. Moreover, we propose an optimization, adaptive

concretization, to reduce the symbolic execution overheads. We exploit the fact

that most of virtual prototype states conforming to the device state are generated

by an execution path accessing none of or only a few of symbolic values. Adaptive

concretization eliminates unnecessary symbolic values to prune unnecessary paths

explored by symbolic execution.

We have evaluated the approach on three Ethernet adapters and their virtual

prototypes from QEMU virtual machine [9]. We discovered 25 inconsistencies,

behind which there are 25 device bugs including both interface and internal bugs

in either the devices or their virtual devices. Furthermore, the time usages have

been reduced by an order of magnitude.

71

5.2 THOROUGH CONFORMANCE CHECKING

5.2.1 Problem and Motivation

As Algorithm 3.1 describes, the native approach synchronizes the virtual prototype

state to the device state before processing each drive request (line 4). As the

internal state variables of a device are modeled as symbolic values without any

constraints, this synchronization causes the internal state variables with concrete

values in the virtual device to lose their values.

We use an example to illustrate how the native approach misses internal bugs.

This example is an device internal error of an Ethernet adapter as follows.

In 100 Mb/s link mode, internal clocks are slower, and access of an internal

register can lead to timeout. An unknown value is returned on the PCI Express

(PCIe) interface [28].

This bug happens when the internal register value propagates to the interface

register (PCIe interface) upon a driver request. We give a complete scenario as

follows. Let the buggy internal register be RegN , assume that there is a driver

sequence D0, ..., Di, ..., Dj, ..., Dn(0 ≤ i < j ≤ n), where Di updates RegN to a

concrete value val and Dj reads RegN and gets a value val′ from an interface

register RegI which the value of RegN propagates to. Essentially, the above error

occurs while val of RegN propagates to RegI , val
′ is not equal to val. In the

native approach, after the virtual prototype processes Di and the virtual prototype

conforms to the device, a new virtual prototype state Vi+1 is created for processing

Di+1 and RegN in Vi+1 is reset to a symbolic value α instead of val. Therefore, upon

the driver request Dj, the virtual prototype returns α to RegI . In the device, the

value is val′. The native approach returns true as symbolic value α can cover val′.

However, if the virtual prototype keeps the internal value val, this inconsistency

72

can be detected.

5.2.2 Thorough Conformance Checking Approach

We propose an approach to deal with the problem in Section 5.2.1. This approach

has the same workflow with the native approach except that it avoids synchronizing

the virtual prototype state to the device state in each iteration. Algorithm 5.1

illustrates the workflow.

Algorithm 5.1 thorough replay trace(T , F)

1: T ′ ← convert trace(T)

2: /*Initialize VD state V0 to be SD state S0*/

3: V0 ← S0

4: /* Take 〈Sk, Dk〉 from T ′*/

5: for k : 0→ n do

6: G← sym exec(F, Vk, Dk)

7: H ← conformance check(G,Sk+1)

8: if H == ∅ then
9: report incon()

10: Vk+1 ← Sk+1

11: else

12: Vk+1 ← construct next state(H)

13: end if

14: end for

In the new workflow, same as the native approach, function conformance check

generates a set of virtual device states H = {hi | hi
= ∅, 0 ≤ i ≤ m} where hi =

set(gj)∩ set(Sk+1), 0 ≤ j ≤ n. If H is an empty set, the virtual and devices do not

conform, we report this inconsistency and synchronize the next virtual device state

73

Vk+1 to the device state Sk+1. Otherwise, function construct next state constructs

Vk+1 as Vk+1 =
m⋃

i=0

hi. As Definition 3.1 illustrates, Vk+1 can be represented as a

pair 〈VIk+1
, VNk+1

〉 and ∀hi ∈ H, hi = 〈hiI , hiN 〉, 0 ≤ i ≤ m. The variables in the

virtual prototype state can be denoted as var and its value can be denoted as

V al(var). Algorithm 5.2 shows how to compute the Vk+1.

Algorithm 5.2 construct next state(H)

1: /*Constructing interface state.*/

2: VIk+1
← h0I

3: /*Constructing Internal State.*/

4: for each varj of VNk+1
do

5: V al(varj)Vk+1
←

m∨

i=0

V al(varj)hi

6: end for

7: return Vk+1

Notes. This approach takes the union of the conforming states, thereby all the

possibilities of virtual prototype internal states are reserved. Once an internal bug

occurs and propagates to an interface register in either the virtual or silicon device,

our approach reports an inconsistency when all the possible states of the virtual

prototype do not conform to the device.

5.3 ADAPTIVE CONCRETIZATION

5.3.1 Preliminaries

Definition 5.1 (Virtual Prototype Path). A virtual prototype path is a sequence

of branch conditions, denoted as π = c0, c1, ..., cn−1, cn, where ci (0 ≤ i ≤ n) is

a branch condition, a Boolean expression over device state variables and external

environment inputs. We refer to virtual prototype path as path for simplicity.

74

Definition 5.2 (Conforming Path). Given a virtual prototype state Vk and its

next virtual prototype state sets G = {gi | 0 ≤ i ≤ n} (cf. Section 5.2), ∀gi ∈ G,

there exists a virtual prototype path π, Vk transitions to gi following π, denoted as

Vk
π⇒ gi. Vk is the previous state of π and gi is the next state of π. Moreover, if gi

is a conforming state, we define π as a conforming path.

5.3.2 Our Approach

Motivation. The conformance checking approach assigns symbolic values to the

internal state variables and the external environment inputs. These variables with

symbolic values account for a significant overhead as symbolic execution explores

an enormous number of paths due to symbolic values. An intuitive idea is to assign

concrete values to these variables instead of symbolic ones. We observed that a

conforming path usually accesses none of, or only a small number of variables with

symbolic values. In other words, variables with symbolic values do not affect the

conformance checking results most of time. Therefore, we can adaptively concretize

these symbolic variables to reduce symbolic execution overhead.

We present an optimization, adaptive concretization, to optimize the confor-

mance checking approach. Figure 5.1 shows the workflow. Adaptive concretization

is a two-round of conformance checking. In the first round, we concretize (1) vir-

tual prototype internal variables and (2) external environment inputs, which all

have symbolic values originally. Then we check the conformance following the same

workflow of the conformance checking approach. We define this round as concrete

mode. However, as the concrete values we assigned to the variables might not be

the right values, the concrete mode may produce false alarms, i.e., false positives.

To eliminate these false positives, we conduct a second around using the original

virtual prototype where the internal state and external inputs all have symbolic

75

values. This round verifies the inconsistencies discovered in the concrete mode.

We define such a round as refinement mode.

Figure 5.1: Workflow of adaptive concretization

Concrete Mode. The conformance checking algorithm of the concrete mode is

shown in Algorithm 5.3. It takes a device trace T and a virtual prototype F as its

inputs.

Algorithm 5.3 follows the workflow of Algorithm 3.1 except three modifica-

tions: (1) function convert to conrete trace is applied instead of convert trace to

concretize device states in T ; (2) function concretize device concretizes the vir-

tual prototype F ; (3) when an inconsistency is discovered, the workflow enters the

refinement mode rather than directly reporting an inconsistency.

Given T = 〈SI0 , D0〉, 〈SI1 , D1〉, ..., 〈SIn , Dn〉, function convert to conrete trace

converts T to T ′ = 〈S0, D0〉, 〈S1, D1〉, ..., 〈Sn, Dn〉, where Sk = 〈SIk , SNk
〉(0 ≤ k ≤

n) derived from SIk . Instead of assigning symbolic values to internal state variables

of SNk
, function convert to conrete trace assigns value zero to variables of SNk

.

76

Algorithm 5.3 concrete mode(T , F)

1: T ′ ← convert to conrete trace(T)

2: F ′ ← concretize device(F)

3: /*Initialize VP state V0 to be device state S0*/

4: V0 ← S0

5: /* Take 〈Sk, Dk〉 from T ′*/

6: for k : 0→ n do

7: G← sym exec(F ′, Vk, Dk)

8: H ← conformance check(G,Sk+1)

9: if H == ∅ then
10: Vk+1 ← refinement mode(F, Vk, Sk+1, Dk)

11: else

12: Vk+1 ← construct next state(H)

13: end if

14: end for

Moreover, in function concretize device, external environment inputs to the virtual

prototype F are also concretized to zeros. As the values of some environment

input variables cannot be zero, for example, the value for modeling the received

packet size cannot be zero, function concretize device randomly picks up non-zero

concrete values in their valid ranges.

The reason we use zero rather than other concrete values for concretization is

because most of the internal state variables have zero as their initial values. By

setting zero, we can largely avoid introducing false positives in the concrete mode.

The zero value we use to concretize symbolic values should be treated as a special

concrete value. We denote such a value as 0sym, indicating this zero is concretized

from a symbolic value and will be recovered to the symbolic value in the refinement

77

mode. As discussed above, some environmental variables are concretized into non-

zero values. For these variables, we denote their random non-zero values as rsym

5.3.3 Refinement Mode

The refinement mode takes the virtual prototype F , a virtual prototype state Vk,

a device state Sk+1, and a driver request Dk as its inputs. It has the same work-

flow as presented in Algorithm 3.1. Additionally, it has two conversion functions

Con2Sym and Sym2Con. Function Con2Sym is invoked immediately when the

workflow enters the refinement mode. It replaces 0sym and rsym of virtual proto-

type variables with symbolic values. Function Sym2Con is invoked in the end of

refinement mode. It converts the next state Vk+1 generated in the refinement mode

from a symbolic state to a concrete state where symbolic values of internal state

variables are concretized to 0sym and rsym again. In this way, Vk+1 can be used in

the concrete mode. By recovering 0sym and rsym to symbolic values, the refinement

mode re-simulates the virtual prototype under the driver request leading to the

inconsistency in concrete mode. The inconsistency confirmed in the refinement

mode are reported as a real inconsistency.

5.4 EVALUATION

5.4.1 Experiment Setup

All experiments were conducted on a workstation with a dual-core Intel Pentium D

Processor at 3.20 GHz and 4GB of RAM, running Linux with kernel version 2.6.35.

We evaluated three widely used network adapters and their QEMU virtual devices

as virtual prototypes. Information of these devices and their virtual devices are

summarized in Table 5.1. The virtual device size is measured in Lines of Code

(LOC).

78

Table 5.1: Devices and virtual prototypes for adaptive concretization

Devices
Virtual Device

Size (LOC)
Basic Description

Intel e1000 2099 Intel Gigabit Ethernet Adapter

Broadcom bcm5751 4519 Broadcom Gigabit Ethernet Adapter

Intel eepro100 2178 Intel Megabit Ethernet Adapter

Table 5.2: Summary of virtual prototype bugs

No. Bug Description Num. Distribution

1 Internal read-only register is updated 1 bcm5751

2 Reserved bits of internal registers are updated 1 bcm5751

5.4.2 Bug Detection

In this section, we demonstrate that (1) our new approach can detect all the

previous bugs discovered by the native approach; (2) our approach detects several

internal bugs which cannot be discovered by the native approach.

To demonstrate that our optimized approach does not reduce the capacity

comparing to the native approach, we preform the test cases triggering the previous

inconsistencies between devices and virtual prototypes. The results shows that our

approach detects all the previous bugs.

One important improvement of our approach is to detect internal bugs. In the

experiment, the approach detects 2 internal bugs in virtual prototypes. All these

internal bugs cannot be caught by the native approach. Figure 5.2 shows the details

of these bugs. The experiment does not find any device internal bugs. The reason

is that the devices are stable products which have gone through extensive testing

79

and bug-fixing procedures. However, these virtual prototype bugs are still possible

to show up in silicon prototypes at the early stage of hardware development, since

these bugs are common violations of hardware designs. We believe that if this

approach is conducted at the post-silicon testing stage before devices are released,

it can also discover the device internal bugs as well.

Table 5.3: Test cases for evaluating adaptive concretization

Test Cases Description

Reset Network Interface Bring down and then bring up the network interface

Ping Ping another network interface

Transfer files Copy large files with total size 3.2 GB

NIC test-suite A set of typical test cases on NIC

5.4.3 Efficiency

We evaluate the efficiency of our approach, in terms of time usages, memory usages,

and false positives in the concrete mode. We issue four kinds of test cases to the

network adapters to collect device traces. These test cases are all common usages

of network adapters as shown in Table 5.3. “NIC test-suite” contains a family of

typical test cases on network interface controllers (NIC), which manipulates a NIC

in different ways, e.g., sending UDP packets and setting MTU size.

Time usages

We calculate the average time usages to process 100 driver requests in each test

cases. Table 5.4 summarizes the results. The time have been reduced an order

of magnitude by using the optimized approach. The time usages are reduced

80

Table 5.4: Time and memory usages in adaptive concretization

Time Usage (sec) Memory Usage (MB)

Devices Test Cases Native Optimized Native Optimized

Reset NIC 31.28 1.83 233.41 225.26

e1000 Ping 366.28 45.10 336.21 330.24

Transfer files 415.05 48.29 336.63 331.57

NIC test-suite 351.13 18.36 288.79 288.33

Reset NIC 26.31 0.88 169.01 168.32

bcm5751 Ping 305.11 42.05 284.25 279.47

Transfer files 294.84 48.23 273.23 261.69

NIC test-suite 261.77 23.79 225.95 225.93

Reset NIC 28.79 0.61 251.62 243.81

eepro100 Ping 236.51 16.62 261.31 259.63

Transfer files 210.44 16.70 262.96 258.99

NIC test-suite 215.57 8.63 261.34 258.38

less in the test cases “Ping” and “Transfer files” than the other two test cases.

The reason is that these two test cases involve receiving packets. The test case

involving receiving packets has more false positives introduced in the concrete

mode, as the conforming paths usually access many symbolic variables representing

the environmental inputs. Therefore, in these two test cases, the approach often

requires the refinement mode and the time usages are increased. (See Section 5.4.4

for the number of false positives in the concrete mode under each test cases).

81

Memory usages

We evaluate the memory usages in the same way as evaluating time usages. As

Table 5.4 shows, the results suggest that our optimized approach has almost same

memory usages with the native approach. Consider that the memory usages are

not too high, the memory resource costs are acceptable.

5.4.4 False Positives of Concrete Mode

The effectiveness of adaptive concretization heavily depends on the number of

false positives of the concrete mode. To explain the effectiveness of our optimized

approach better, we record the number of the false positives. In this experiment,

we collect the numbers of inconsistencies produced by the concrete mode and

the refinement mode, denoted as α and β respectively. As a result, the false

positives can be computed as α minuses β. Figure 5.2 shows the results. All

the inconsistencies are counted while our optimized approach processes 100 driver

requests.

As Figure 5.2 shows, our approach does not introduce too many false positives

in the concrete mode. The highest case is 3 false positives out of 100 driver requests.

This demonstrates adaptive concretization is efficient. In addition, we find that

test cases involving receiving packets have more false positives.

5.5 RELATED WORK

Many research have been done for reducing symbolic execution overheads. A major

effort is to avoid path explosions by pruning redundant paths. RWSet [10] and

path subsumption [2] employ a similar heuristic whereas a path which is identical

to the one previously explored can be safely pruned. Kuznetsov et al. [35] propose

a method of automatically merging states to reduce the number of paths explored

82

0

2

4

6

8

10

12

14

16

Concrete Refinement

e1000 bcm5751 eepro100

Figure 5.2: Numbers of inconsistencies under test cases

in symbolic execution. Several other approaches [21, 53, 56] leverage the benefits of

concolic execution to partially concretize the target programs thereby the number

of explored paths is decreased.

5.6 SUMMARY

In this section, we have presented the optimization approach to thoroughly and

efficiently checking the virtual prototype and device conformance. By keeping

virtual prototype internal state, the conformance checking is extended to detection

of internal bugs. While employing adaptive concretization, symbolic execution

time usages are reduced significantly. These optimizations make the conformance

checking efficient and scalable to the hardware devices with complicated designs.

83

Chapter 6

HW/SW CO-MONITORING

6.1 MOTIVATION AND OVERVIEW

6.1.1 Motivation

We have presented our HW/SW co-validation framework for post-silicon stage in

previous chapters. However, post-silicon validation is not sufficient: when the sys-

tem is released, HW/SW interfaces are still vulnerable even after many iterations

of testing and validation. In fact, assuring HW/SW interface reliability and secu-

rity faces different challenges comparing to the post-silicon stage. There are three

major challenges: (1) hardware transient errors are abundant in our daily life; (2)

device drivers can be easily hijacked to exploit HW/SW interface vulnerabilities,

sometimes, even the driver itself is malicious. (3) Recently hardware trojans are

more and more prevalent, where the malicious attacks can be easily launched to

target on HW/SW interfaces. Therefore, it is highly desired to develop a sys-

tematic approach which can effectively monitor HW/SW interfaces to detection of

defects and malicious attacks across HW/SW interfaces.

Our post-silicon HW/SW co-validation is conducted off-line. At the deployment

stage, it is not realistic to deploy the off-line validation framework. Therefore, we

need to develop an on-line monitoring framework to conduct conformance and

property checking. In this section, we present our on-line monitoring approach,

HW/SW co-monitoring, which simultaneously monitors a hardware device and its

84

driver at runtime and reports device and driver errors.

6.1.2 Our Approach

We present HW/SW co-monitoring, a novel approach to conducting HW/SW co-

verification at runtime. As shown in Figure 6.1, the foundation of this approach

is a formal device model (FDM), a transaction-level, executable model which cap-

tures the device behaviors. This approach is based on the co-execution of the

FDM and device where the FDM shadows the device execution. Based on the co-

execution, our approach entails three major techniques to realize runtime HW/SW

co-verification:

• Runtime concolic execution of the FDM and driver where the driver is run-

ning concretely while the FDM is executed symbolically;

• Runtime detection of divergence between the device and FDM, namely device

checking;

• Runtime verification of system-level properties against the device and driver

indirectly on the FDM and driver.

Device Driver

Hardware Device

HW/SW
Interface

OS

Device
Specification

Interface
Specification

Properties+
Formal Device
Models (FDM)

Model
GenerationEvents

Driver
Specification

CPC

Figure 6.1: HW/SW co-monitoring of device and driver

85

In the runtime concolic execution, symbolic execution of the FDM helps over-

come a critical challenge in runtime HW/SW co-verification. Ideally, runtime co-

verification can be done by directly observing the device states, the driver states

and their interactions. However, in practice, observing the device internal states

is difficult. Therefore, we utilize the FDM as a reference model of the device and

we symbolically execute the FDM under the same driver requests, while the device

internal states are modeled as symbolic values in the FDM. As a result, symbolic

execution of the FDM explores all possible device internal behaviors at runtime.

We implement device checking by examining whether the device behaviors con-

form to the FDM. Detecting the nonconformance between the FDM and device

serves two purposes: (1) Device bugs or unintended behaviors can be discovered;

(2) If no nonconformance detected, properties holding on the FDM/driver interface

also hold on the device/driver interface. Essentially, co-monitoring conducts run-

time verification over the device and the driver indirectly through the FDM/driver

co-verification.

We carry out the runtime co-verification over the FDM and the driver by

building upon previous work on automata-theoretic approach to HW/SW co-

verification [40]. The previous approach verifies HW/SW interface properties over

the FDM and the driver statically. The FDM and the driver are modeled as a

Büchi Automaton (BA) and a Labeled Pushdown System (LPDS) respectively

while their combinations are modeled as a Büchi Pushdown System (BPDS). To

verify system properties, reachability analysis is carried out over the BPDS by

exploring the BPDS state space and the FDM and the driver are executed sym-

bolically. Our approach also models the FDM/driver composition as a BPDS and

explores the BPDS state space to verify system properties. However, our run-

time co-verification explores the BPDS state space in a concolic way: the driver is

86

executed concretely while the FDM is explored symbolically.

This concolic exploration is the key to adapting static co-verification to runtime

monitoring. The concolic exploration of BPDS brings three benefits: (1) symbolic

execution helps cover possible device behaviors at runtime; (2) concrete execution

of the driver largely constrains the state space, avoiding state space explosions; (3)

concrete execution eliminates the need for modeling the environment for exercising

the driver.

HW/SW co-monitoring essentially provides a unified solution for detecting and

analyzing HW/SW interface defects. By efficiently monitoring the device, the

driver, and their interface, it can discover most types of defects in HW/SW inter-

faces, ranging from hardware transient errors to driver bugs to malicious exploits.

Moreover, by monitoring the device as well as the driver, HW/SW co-monitoring

can easily identify a HW/SW interface defect as a hardware bug or a software bug.

We evaluated our approach on four Ethernet adapters and their Linux drivers.

We simulated malicious exploits from both hardware and software across HW/SW

interfaces. Our approach can successfully detect these injected malicious exploits.

Moreover it detected several real bugs and security vulnerabilities. By analyzing

these bugs, we showed that they either cause serious system failures or bring poten-

tial security issues. The results demonstrate that hardware/software co-monitoring

has major potential in improving system reliability and security.

6.1.3 Contributions

HW/SW co-monitoring makes four major contributions to improving system reli-

ability and security.

• It realizes runtime HW/SW co-verification by leveraging concolic execution,

which detects errors and unintended behaviors in both devices and drivers.

87

• It helps narrow down an error from a HW/SW composition into a hardware

violation of specification, a software violation of specification, or an interface

error.

• It provides a mechanism for early detection of malicious exploits of HW/SW

interface vulnerabilities, thereby facilitating mechanisms for protection be-

fore impact from the exploits affects the rest of the system.

• It facilitates detection of and protection against transient hardware failures.

Such failures will be prevented from propagating deep into the system and

devices and drivers will be brought back to normal modes.

6.2 HW/SW CO-MONITORING FRAMEWORK

6.2.1 Overview

This section gives an overview of our approach. As Figure 6.2 shows, the frame-

work of HW/SW co-monitoring consists of three major components: a wrapper

driver, a symbolic execution environment (SEE), and a property monitor (PM).

The wrapper driver is used to capture the device state, the driver state, and the

interactions between the device and the driver. The SEE symbolically executes

the FDM by taking the driver request sequence as inputs, which realizes the co-

execution with the device. Based on the co-execution, the SEE conducts device

checking to ensure that the FDM shadows the device execution. The PM enforces

a set of system properties which specify how the device and driver interact with

each other. The PM carries out runtime HW/SW co-verification, which we call

property checking. Basic functionalities of device checking and property checking

are described as follows.

88

Formal Device
Model

OS

Driver Events

Device States

Property Monitor

FDM States

Symoblic Execution
Environment(SEE)

Driver Events

Wrapper Driver

Device

Driver

Figure 6.2: HW/SW co-monitoring framework

• Device Checking. The goal of device checking is to detect the divergence

between the FDM and the device. We leverage a previous technique, con-

formance checking [38], which checks if the device behaviors conform to the

FDM with symbolic execution. Through device checking, the device errors

can be detected and if no divergence between the device and FDM, the FDM

can be used as a model of the device for property checking.

• Property checking. PM carries out property checking based on device check-

ing. It verifies system properties over the device and driver, indirectly over

the composition of the FDM and driver. By property checking, invalid driver

inputs or incorrect device interface states during device/driver interaction can

be discovered.

89

6.2.2 Definitions

Based on the notion of conformance checking in previous work [38], we propose

the definition of conformance between the FDM and the device. According to [38],

a hardware device state is composited by a set of interface state variables denoted

as RI and a set of internal state variables denoted as RN . We model a FDM state

in the same way as the device state. A FDM state is defined as follows.

Definition 6.1. A FDM state is denoted as V = 〈VI , VN〉 where VI is the device

interface state, i.e., the assignments to variables in RI and VN is the device internal

state, i.e., the assignments to variables in RN .

A device state is defined as follows. Since at runtime the device internal state

cannot be observed, we assign symbolic values to the device internal state variables.

Definition 6.2. A device state is denoted as S = 〈SI , SN〉 where SI is the

assignments to variables in RI and SN is the symbolic assignments to variables in

RN .

A FDM state or a device state can be viewed as a symbolic state if some of

whose state variables values are symbolic. As Section 2.3 illustrates, a FDM can

be modeled as a BA, B = (Σ, Q, δ, q0, F). In this way, a FDM state V can be

modeled as a set of BA states V = {vi | vi ∈ Q, i>0}. Moreover, as a device state

shares the same format as the FDM state. A device state S can be also modeled as

a set of BA states. The conformance of a device state and a FDM state is defined

as follows.

Definition 6.3 (State Conformance). A device state S conforms to a FDM state

V if S ∩ V
= ∅.

90

As both V and S can be treated as a set of BA states, V represents all the

possible BA states that the FDM may have and S represents all the possible BA

states that the device may have. The condition S ∩V = ∅ indicates that the FDM
state and the device state cannot be the same, i.e., the device and FDM executions

diverge at runtime.

6.2.3 Wrapper Driver

The wrapper driver captures: (1) the driver request issued to the device; (2) the

device interface state before the driver request issued. Once a new driver request

is issued, the wrapper driver sends a state-request pair to SEE. We denote such

a state-request pair as 〈SI , α〉 where SI is the device interface state and α is the

current driver request.

Ideally, to verify HW/SW interfaces, the wrapper driver needs to capture the

device state, the driver state, and the driver requests issued to the device. In our

current implementation, property checking only checks the properties related to

the driver requests and the device states, but not to the driver states. Therefore,

the wrapper driver does not capture the driver states. For future work, we will

extend our wrapper driver to capture the driver states.

Selective Capturing

The wrapper driver captures the device interface state: the device registers and

their values. However, a peripheral device often has a large range of registers.

Capturing all the registers heavily degrades the system performance. Previous

work [38] proposes selective capturing: instead of all registers, only a small set

of registers, important to device functionalities, are captured. For example, the

reserved registers are typically not captured. Our wrapper driver adopts selective

91

capturing as our basic capturing method.

Sampling Reserved Registers

Selective capturing helps capture the registers important to the device functionali-

ties. However, directly adopting this method does not fully meet our requirements

for monitoring the device. In HW/SW co-monitoring, our framework monitors

not only whether the defined behaviors are correct but also whether there are any

undefined or abnormal behaviors. For example, the changes in reserved register

values indicate potential malicious behaviors in the device interface. Reserved reg-

isters can be used to place the software program for code injection (see a concrete

example in Section 6.3.1). As a result, the wrapper driver should capture reserved

registers as well.

However capturing reserved registers faces a similar problem: the range of

reserved registers is often large. To address this problem, we develop a method,

namely reserved register sampling. We capture one reserved register every few

registers. Our sample method works for the following reasons: (1) for large injected

code, sampling can easily hit part of it; (2) for small injected code, we increase the

chance of detection by sliding the sample windows every time we capture.

6.2.4 Device Checking

SEE conducts runtime device checking. It symbolically executes the FDM while

continuously taking the state-request pairs from the wrapper driver. Algorithm 6.1

presents the work flow of runtime device checking. It takes a FDMM as inputs.

Our device checking work flow has the following steps:

1. SEE gets the first request-state pair and intiaize FDM state V with the device

interface state SI ;

92

2. SEE symbolically executes the FDM with the driver request α and the FDM

state V ;

3. SEE checks the conformance between the set of possible FDM next states G

and the device next state S ′;

4. If the device conforms to the FDM, we construct the next FDM state and

assign it to V , go to step 2. Otherwise, we report a device error.

The functions in Algorithm 6.1 are described as follows.

1. Receiving Requests. Function receive state request() is invoked to wait for

and receive a state-request pair 〈SI , α〉 from the wrapper driver.

2. Device State Construction. Given a device interface state SI , based on Def-

inition 6.2, construct device state constructs a device state S = 〈SI , SN〉
where state variables in SN are assigned symbolic values.

3. Symbolic Execution. Function sym exec symbolically executes the FDMM
and generates a set of FDM states, which is denoted as G.

4. Conformance Checking. As discussed above, symbolic execution of a FDM

may produce a set of FDM states G = {gi | 0 ≤ i ≤ n}. The next

device state received from the wrapper driver is denoted as S ′. Function

conformance check checks the conformance between the device and FDM.

We define their conformance based on G and S ′ in Definition 6.4. Function

conformance check returns a set of the FDM states conforming to the device

state, denoted as H = {hi | 0 ≤ i ≤ m}.

5. Device Error Report. If the set H is empty, no conforming FDM state is

produced, i.e., the FDM does not conform to the device at driver request α,

93

function report device error is invoked to record the device error, including

the FDM execution trace, the driver request, and the state variables of the

device, which are not equal to the state variables of the FDM.

6. Next State Construction. If H is not empty, the FDM and the device

conform to each other at α. Based on H = {hi | 0 ≤ i ≤ m}, func-

tion construct next State constructs the next FDM state V ′ as follows:

V ′ =
m⋃

i=1

(set(hi) ∩ set(S ′)).

Definition 6.4 (Device Conformance). Given the set of FDM states G={gi | 0 ≤
i ≤ n} and the device state S ′, the device conforms to the FDM at α if ∃gi ∈ G

where 0 ≤ i ≤ n, S ′ ∩ gi
= ∅.

6.2.5 Property Checking

Property monitor verifies the enforced system properties over the BPDS represent-

ing the driver and the FDM. Device checking provides the foundation of property

checking in two aspects. First, conformance checking between the FDM and de-

vice ensures that the FDM shadows the device execution trace. As a result, the

property holding on the FDM/driver interface also holds on the device/driver in-

terface. Second, the symbolic execution of the FDM with the concrete driver

execution verifies the enforced system properties.

Runtime Verification of System Properties

Property checking conducts reachability analysis over the BPDS by leveraging our

concolic exploration of the FDM and the driver. To detect if a property is violated,

we implement a special method for runtime verification. In the static HW/SW co-

verification, a property ψ is violated as long as there is a BPDS path where ¬ψ is

94

reachable. However, this method cannot be used in our runtime verification since

we cannot observe the device internal states and we model possible device internal

states with symbolic variables. From the existence of such a BPDS path, it is

insufficient to conclude it is a property violation. Therefore, we develop a method

for property violation detection that is more conservative: only if the property is

violated under all possible situations, we report a property violation.

As mentioned in Section 6.2.4, the symbolic execution of the FDM with the

concrete driver execution explores the BPDS state space. Under a single driver

request α, the execution of the FDM and the driver explores a set of BPDS paths,

denoted as P. Based on this notion, Definition 6.5 gives the condition where the

property is violated.

Definition 6.5 (Property violations). Given a property ψ, a set of BPDS paths

P = {pi | 0 ≤ i ≤ n} explored under a driver request α, ψ is violated under α if

∀pi ∈ P , ¬ψ is reachable on pi.

The set P represents all possible device and behaviors under the current driver

request α. Only if all of these possible behaviors lead to the violation of the

property ψ, the PM can ensure there is an invalid driver request triggering the

violation.

Implementation of Property Checking

Since the PM only maintains a relatively small set of properties, we integrate

the PM into the SEE. This way, we leverage the FDM and driver executions to

explore the BPDS state space and the FDM can be directly used as a validation

vehicle. For property checking, we first specify the properties in assertions and

then instrument the FDM with the assertions. While the device checker simulates

the device behaviors with the FDM, the PM detects if any assertions fail during

95

the simulation. Currently we instrument the assertions manually. In future, we

will develop a method that allows the users to specify assertions in a certain format

and automatically instruments the assertions.

We use a system property from EEPRO100 as an example to show how we

specify an assertion and instrument the assertion into the FDM. The property

specified in EEPRO100 specification [27] is as follows. As Figure 6.3 shows, a

special API function comon assert is used to instrument the property.

Property: If the device Command Unit (CU) is not in SUSPENDED status, the

driver cannot send RESUME to the device.

static void eepro100_cu_command(EEPRO100State* s,

uint8_t val)

{

// Assertion to enforce the example property

if (s->cu_state != CU_STATE_SUSPENDED)

comon_assert(val != CU_CMD_RESUME);

......

}

Figure 6.3: Assertions instrumented in EEPRO100 FDM

Note. The system properties that the PM can verify depend on the device in-

terface state, the driver requests, and the driver state. However, as mentioned in

Section 6.2.3, in our current implementation, the PM only verifies the properties

involving the driver request and device interface state. We will extend the PM to

verify properties related to driver states in future work.

96

6.3 APPLICATIONS IN SECURITY

As mentioned in Section 6.1.2, our approach can be used in not only detecting

device or driver bugs but also catching malicious exploits of HW/SW interface

vulnerabilities. In this section, we elaborate on the types of malicious behaviors

across HW/SW interfaces. Furthermore, for each category of malicious attacks,

we present how our HW/SW co-monitoring framework detects these attacks.

6.3.1 Threat Model

Software Attack

Hardware interfaces exposed to software are vulnerable. These vulnerabilities can

be exploited by malicious software. In device/driver interfaces, device specifica-

tions usually specify system rules which the driver should follow. As a consequent,

if the driver issues invalid commands which do not follow the rules, the device can

be easily driven to unresponsive state. For example, in Intel eepro100 Ethernet,

if the device driver issues a command to activate the device when the device is

already at the “active” state, the device will be driven to an unresponsive state.

Malicious software can issue invalid commands to crash or hang the device.

while (ioread16(ioaddr + Wn7_MasterStatus))

& 0x8000)

;

Figure 6.4: Excerpts from 3c59x driver.

97

Hardware Attack

Software interface to hardware is vulnerable as well. Improper handling of hard-

ware inputs can easily cause the driver hang or even the system crash. Figure 6.4

shows an example which is illustrated by [30]. Function “ioread” reads a data

from the device. If the value read from the device is not proper. The driver will

loop forever. This example shows that the driver vulnerabilities can be exploited

by malicious hardware. The malicious hardware can feed incorrect inputs to the

driver which might crash or hang the driver.

Except the malicious hardware inputs to the driver, there are other attacks

which can be done by hardware especially by hardware trojans. We list some of

them as follows.

• Denial of Services (DoS). Besides issuing invalid inputs to the driver, hard-

ware trojans can make the device unresponsive to any incoming data and

commands.

• Stealing user secretes. In many systems, devices are used to encrypt password

and data. Hardware trojans residing in devices can observe the encryption

key. Moreover, they can reuse available hardware resources to send over the

key through the network.

• Code injection. Hardware trojans can also have potential to injected code

into the runtime system, i.e., the code injected by the hardware trojan is

executed in the OS kernel. For example, DMA attack is a way to access the

physical memory via DMA. Several examples have demonstrated that DMA

attacks can inject code into the OS kernels. Furthermore, modern peripheral

devices usually have a large piece of Memory-Mapped I/O (MMIO) registers

which can be accessed by CPU as accessing the normal physical memory.

98

Moreover, a significant portion of MMIO registers is reserved which should

be not used by either software or hardware. Therefore, hardware trojans can

easilly place the injected code into the MMIO interface without affecting the

normal system logic. We have implemented a DMA attack which gains the

root privilege of the OS through code injection, described as follows.

System_call:
CFI_STARTPROC simple
CFI_SIGNAL_FRAME
… ...
/*CFI_REGISTER rflags,r11*/
SWAPGS_UNSAFE_STACK

 … ...

System_call:
CFI_STARTPROC simple
CFI_SIGNAL_FRAME
… ...
/*CFI_REGISTER rflags,r11*/
SWAPGS_UNSAFE_STACK

 … ...

System Memory (RAM)

MMIO Registers Reserved
DMA

Module

Interrupt Descriptor Table (IDT)

MMIO Registers Reserved
DMA

Module

Ethernet Controller

OS

Hardware

Div. by zero 0x0 0xeeffeeff

...

...

System Call

...

Interrupt0

...

.. ...

... ...

l 0x80 0xbbffeeff

... ...

0x128 0xbbffeeee

... ...

DMA Memory

Internal
Modules

0xffffeebb80

.. ...

128 0xbbffeeee

.. ...

y

0xffffeebb

Injected Code

Overwrite IDT
entry with DMA

User-level Program

Hardware
Trojan

e

Internal
Modules

are
nn

Figure 6.5: Work flow of a hardware trojan attacking OS through hooking system

calls

Example. Figure 6.5 shows the work flow of this attacking scenario. In

this example, a hardware trojan in an Ethernet controller takes over the

OS by injecting code through DMA attacks. It has two steps: (1) Placing

the code to be executed in MMIO reserved registers; (2) Hooking system

calls by modifying the Interrupt Descriptor Table (IDT) through DMA. As

a result, when each system call is executed, the injected code is executed

first. Moreover, injected code is executed in the OS kernel space which has

99

root privilege. Essentially the injected can do everything. In this example,

it opens the SSH port and create an account with “sudo” privilege.

6.3.2 Detecting Malicious Attacks

Our HW/SW co-monitoring infrastructure can detect the HW/SW malicious be-

haviors by monitoring hardware interfaces and software inputs to hardware. We

explain how our approach detects each category of malicious attacks respectively.

Detecting Software Attacks

The property monitor in our framework can help detection of software attacks to

hardware. In the property monitor, a set of system properties and security policies

are enforced. By verifying these properties at runtime, malicious driver commands

which violate the property can be detected.

Detecting Hardware Attacks

• Detections of DoS. When the device generates an invalid inputs to the driver

or the device stops working, its interface state is incorrect. In HW/SW co-

monitoring, the invalid interface state will lead to interface inconsistencies

between the hardware device and the FDM. Therefore, our runtime device

checking can successfully detect DoS attacks.

• Detections of stealing user privacy. The hardware trojan which steals en-

cryption keys finally has to employ the network device to send over the key.

In Ethernet adapters, there are several registers, called statistics registers,

which record counts of packet receiving and transmitting. Hardware trojans

are usually embedded in its own hijacked module, which cannot easily ma-

nipulate the Ethernet adapter to avoid recording extra packet transmission.

100

In this way, there are inconsistencies of statistics registers. By detecting

these inconsistencies, the device checker in our framework can detect the

underlying user secrete leaks

• Detections of code injection. As mentioned in Section 6.3.1, a large MMIO

reserved registers are an ideal location for the hardware trojan to place their

code to be executed, as this will not affect the normal system work flow.

Once the injected code has been placed in MMIO interface, there must be

an inconsistency of reserved registers between the device and the FDM. By

monitoring reserved registers, our device checker can uncover the malicious

behaviors over the reserved registers including code injection.

In the evaluation section, we simulate the concrete scenarios for each type of

malicious attacks. The results show that our framework can detect them success-

fully (see Section 6.4.2 for more details).

6.4 EVALUATION

This section evaluates our approach from three aspects. First, we simulate four

hacking scenario through HW/SW interfaces. By applying our framework, we

demonstrated that our approach can successfully detect malicious attacks through

HW/SW interfaces in reasonable delays. Second, we present several real device

bugs and driver bugs, which shows that HW/SW co-monitoring detects real defects

and vulnerabilities. Third, we evaluate the overhead introduced by our framework,

demonstrating our approach is efficient.

101

6.4.1 Experiment Setup

We have performed our experiments on a workstation with a dual-core Intel Pen-

tium D Processor with 4GB of RAM and Ubuntu Linux OS with 64-bit kernel

version 2.6.38. We applied our framework to four Ethernet adapters and their

FDM generated from their QEMU virtual devices. Information about these de-

vices and their FDM are summarized in Table 6.1. The FDM size is measured in

Lines of Code (LoC).

Table 6.1: Devices and FDMs for HW/SW co-monitoring

Devices
FDM

Size (LoC)
Basic Description

RealTek rtl8139 2211 RealTek 10/100M NIC

Intel eepro100 1032 Intel 10/100M NIC

Intel e1000 1432 Intel Gigabit NIC

Broadcom bcm5751 2103 Broadcom Gigabit NIC

Table 6.2: Summary of software attack injection

Driver Property Description Consequence

rtl8139
The driver should not start new transaction

when another transaction is in progress
Device hangs

eepro100
The driver should not issue START while

the device is working already
system hangs

e1000
The driver should not issue command when

MDIC is not clear
Device hangs

bcm5751
The driver should not start new EEPROM

transaction when previous update is not finished
Device hangs

102

Table 6.3: Summary of detected bugs

No. Description Dev./Drv. Num.

1 Driver writes a value to a read-only register. eepro100 1

2 Driver updates the reserved register bits e1000 1

3 Device updates reserved registers eepro100 2

4 Device updates reserved registers e1000 2

6.4.2 Attacks Detection

To demonstrate the capacity of catching malicious attacks, we injected several

malicious attacks issued from both devices and drivers. To simulate malicious

hardware, we modified the QEMU virtual devices which emulates the devices listed

in Table 6.1. By using virtual devices, we can easily injected our hacking scenarios.

On one hand, our virtual machine acts as a real physical machine where modified

virtual devices act as malicious hardware. On the other hand, our framework

utilizes the FDMs specifying the correct hardware behaviors. Malicious behaviors

can be detected as there are inconsistencies between the generated FDMs and the

injected virtual devices. To simulate malicious software, we directly modify the

Linux drivers.

We simulate three malicious attacks which are all described in Section 6.3.1.

We elaborate on more details as follows.

• Software Violation of System Properties (SVSP). The invalid soft-

ware commands can easily hang or crash the device. We modify the drivers

to issue malicious commands violating the system properties. Thereby the

device or the system hangs. For each driver, we simulate one violation of

a system property. The system properties violated and the consequence of

103

corresponded violations are summarized in Table 6.2.

• Hardware DoS Attacks (HDoS). We simulate a hardware trojan in

QEMU virtual devices. By sending a special UDP packet to the target

system, the hardware trojan is triggered, which issues an attack making the

device stop working and unresponsive to any incoming driver requests.

• Hardware Device Attacks (HDA). As Section 6.3.1 describes, a hard-

ware trojan can inject code through DMA attacks through device interfaces

exposed to the system. In the evaluation, we simulate a hardware trojan

which takes over the OS by injecting code through DMA attacks.

0

0.2

0.4

0.6

0.8

1

1.2

eepro100 rtl8139 e1000 bcm 5751

SVSP HDoS HCI

Ti
m

e(
se

co
nd

s)

HCI

SVSP

HDoS

Figure 6.6: Time delayed in detecting attacks

The results show that our framework successfully detected the malicious at-

tacks. Figure 6.6 shows the corresponded delay in seconds which means the time

from the attacks occurs to the attacks have been detected. According to Figure 6.6,

we can clearly see that the delay is small in eepro100 and rlt8139 while it is rela-

tively high in e1000 and bcm5751. The reason is because eepro100 and rtl8139 are

104

all 10/100M adapters which have smaller interface memory, comparing to e1000

and bcm5751. As a result, the sizes of captured registers are smaller in eepro100

and rtl8139, which incur less overhead at runtime.

6.4.3 Bug Detection

Our approach can detect errors from both devices and drivers. We discuss device

bugs and driver bugs respectively.

• Driver bugs. In the four Linux drivers with their devices, our approach de-

tects two real driver bugs. This two bugs generally violates system proper-

ties and can cause serious problems. For example, in the second driver bug,

updating the reserved registers is the same behavior as the code injection

example we demonstrate in Section 6.3.1.

• Device bugs. We discovered four real device bugs, which are all related to un-

specified hardware behaviors, e.g., the register values are changed randomly

and reserved register bits are touched. This phenomenon is the same as code

injection through reserved registers. As these behaviors are unknown to the

system and device drivers, which should be considered as security threats.

Summary. All the bugs discovered occur on HW/SW interfaces, and involve

interactions between drivers and devices. By discovering these bugs, it demon-

strates the capacity of our framework in detecting the bugs and malicious exploits

crossing HW/SW boundaries. Furthermore, when such a bug happen, it is hard

to identify which side of device/driver goes wrong. For example, invalid software

command can drive the device hang. It appears like a hardware error rather than a

software defect as the device is unresponsive. However, our framework can clearly

identify which side is wrong and the reason. Therefore, our approach is not only

105

useful in detecting bugs but also helpful in troubleshooting the bugs.

6.4.4 Performance

In this section, we evaluate the overhead introduced by our HW/SW co-monitoring

framework. We mainly focuses on CPU and memory usages. We evaluate CPU

and memory usages under three test cases. These test cases are common usages of

an Ethernet adapter, including “load driver”, “scp files”, and “reset device”.

0

0.5

1

1.5

2

2.5

3

Load
driver

SCP
Packets

Reset
device

Load
driver

SCP
Packets

Reset
device

Load
driver

SCP
Packets

Reset
device

Load
driver

SCP
Packets

Reset
device

NAT. CPU MON. CPU NAT. Memory MON. Memory

rtl8139 eepro100 bcm5751e1000

Ra
tio

s C
om

pa
rin

g
to

 N
AT

. C
on

fig
ur

at
io

n

Figure 6.7: CPU and memory usages of test cases under NAT. and MON. config-

urations. The usages under NAT. configuration are normalized to 1.

We compare the CPU and memory usages of two configurations. The first

one is the native system without our co-monitoring framework, denoted “NAT”.

The second one is the monitored system with our framework, denoted as “Mon”.

Figure 6.7 shows the results, where the usages in NAT. are normalized to 1. The

results show that under most of test cases, our co-monitoring approach introduces

106

reasonable overhead. In the “scp files” scenario, the CPU usages are large. The

reason is because under “scp files” incurs intensive data transfer as well as de-

vice/driver events, our framework is intensively executed and introducing large

overhead. Moreover, as the FDMs of e1000 and bcm5751 are more complicated,

the overheads on them are larger than other two devices. We discuss the potential

optimizations to minimize the introduced overhead in Section 6.6.

6.5 RELATED WORK

Our approach is close to the approaches described as follows.

Lei, et al. [38, 37] propose a post-silicon conformance checking approach to

checking if a virtual device conforms to its silicon device. It captures silicon device

traces at runtime and checks the conformance with the virtual device by processing

the captured traces offline. We apply this technique to check if the device conforms

to the FDM at runtime. Our approach has two major improvements: (1) HW/SW

co-monitoring is an on-line approach, monitoring device/driver interactions while

the system is running; (2) we utilize a FDM as a golden reference abstracting

unnecessary details, which makes runtime checking efficient.

Li, et al. [40] present an automata-theoretic approach to hardware/software

co-verification. Such an approach models a hardware/software combination as a

BPDS by synthesizing a BA representing hardware and a LPDS representing soft-

ware. It uses model checking techniques to explore the state space of BPDS to

detect property violations. In our approach, we use BPDS to represent hardware/-

software interface and conduct runtime verification.

107

6.6 SUMMARY

Our approach can be further improved in two aspects. First, how to efficiently gen-

erate a FDM with respect to the hardware specification. Second, how to minimize

the overhead of co-monitoring.

FDM generation. Recently virtual prototypes are widely used to enable early

software development before silicon hardware is available [45]. The FDM and the

virtual prototype of a device are both rooted in the device specification. Therefore,

we can reuse the implementations of the virtual prototype to build its correspond-

ing FDM. Building FDMs from virtual prototypes has two benefits. First, extend-

ing virtual prototypes avoids duplicated efforts. Second, in the validation stage,

a virtual prototype usually has already gone through a number of conformance

checking iterations and has been thoroughly validated. Reusing virtual prototype

implementations can help develop high-quality FDMs. In future work, we will

developed a systematic approach to deriving the FDM from the virtual prototype.

Reducing runtime overhead. As we discussed in Section 6.4.4, the major

performance downgrade is caused by intensive device/driver events. As for each

driver request, our framework symbolically executes the FDM under the driver

request, intensive driver request traffic will lead to significant overhead incurred

by symbolic execution. Therefore, if we can reduce the number of driver requests

triggering symbolic execution of FDM, the runtime performance will be improved.

A potential solution to address the performance issue is “caching” the driver re-

quest and FDM state transitions. Since the device and the driver often work under

repeated scenarios, for example, an Ethernet adapter and its driver repeatedly re-

ceive and send packets, the same driver request and FDM state often appear many

108

times. For this reason, we can “cache” the driver request and FDM state tran-

sitions explored by symbolic execution of the FDM. If we encountered the same

driver request and the FDM state, we can directly fetch the FDM state transi-

tions without invoking symbolic execution. Thereby, the overhead introduced by

symbolic execution will be reduced.

This chapter has presented a HW/SW co-monitoring approach, which moni-

tors a hardware device and its driver simultaneously. By monitoring the device,

the driver, and their interfaces, the bugs and malicious behaviors appear over de-

vice/driver interfaces. We evaluate our approach on four devices and drivers. The

results are promising: (1) our approach detected all the malicious attacks injected

in devices and drivers; (2) our approach also discovered several real bugs from

both devices and drivers; (3) our approach introduced reasonable overhead into

the runtime system. The results demonstrate that our approach is effective and

efficient in providing an early detection of bugs and malicious exploits through

HW/SW interfaces.

109

Algorithm 6.1 Device Checking(M)

1: 〈SI , α〉 ← receive state request()

2: S ← construct device state(SI)

3: /*Initialize FDM state V to be device state S*/

4: V ← S

5: while α
= NULL do

6: /*Symbolically execute FDM taking α at V state.*/

7: G← sym exec(M, V, α)

8: 〈S ′
I , α

′〉 ← receive state request()

9: S ′ ← construct device state(S ′
I)

10: H ← conformance check(G,S ′)

11: if (H
= ∅) then
12: report device error()

13: abort()

14: end if

15: V ′ ← construct next State(H)

16: V ← V ′

17: α← α′

18: end while

110

Chapter 7

CONCLUSIONS AND FUTURE WORK

HW/SW interfaces are pervasive in all kinds of computer systems ranging from

smart phones, tablets to personal computers to cloud servers. These systems have

high requirements on reliability and security. However, assuring HW/SW inter-

face reliability and security is difficult, not only due to the intrinsic complexity of

HW/SW interfaces, but also various challenges posted in different stages of the

computer system life cycle. At the post-silicon validation stage, HW/SW integra-

tion validation is challenging as it is lack of effective methods for bug detection and

troubleshooting. At the system deployment stage, hardware transient errors, hard-

ware trojans, and software virus make HW/SW interfaces insecure and unreliable

as well.

This dissertation research has successfully demonstrated that HW/SW interface

defects and vulnerabilities can be effectively detected through the systematic co-

validation over HW/SW interfaces. Moreover, our two-schemed assurance solution

has major potentials in addressing the challenges of the HW/SW interface assur-

ance over the system life cycle: (1) the HW/SW co-validation facilitates HW/SW

integration testing/debugging at post-silicon stage; and (2) HW/SW co-monitoring

provides the foundation for continuously protecting HW/SW interfaces after the

system has been released.

111

7.1 SUMMARY OF CONTRIBUTIONS

This dissertation presents a comprehensive solution for validating HW/SW inter-

faces over the system life cycle. The dissertation makes following major contribu-

tions:

1. Conformance checking with virtual prototypes. Conformance check-

ing addresses two major problems in the current industry practice: (1) lack

of transaction-level validation methods for validating silicon hardware; (2)

Difficulty of migrating drivers from virtual platforms to the real silicon hard-

ware. We discuss the contribution of conformance checking from these two

aspects. First, the state of the art post-silicon validation and debugging

mainly focuses on the circuit level implementations which requires embedding

hardware monitors into circuits. Conformance checking essentially provides

an effective and light-weight method from the operating system level which

does not require any hardware support. Second, due to the inconsistencies

between the device and its virtual prototype, drivers developed over virtual

prototypes often do not work readily on silicon devices because of either sil-

icon device bugs or driver bugs hidden on virtual devices. By detecting the

inconsistencies between the virtual prototypes and the devices, conformance

checking provides a systematic and efficient way to (1) expose the virtual

prototype or device errors; (2) reveal the causes of driver bugs hidden on

the virtual prototypes. According to thees two contributions, conformance

checking technique is expected to have a broad impact on not only hardware

validations but also HW/SW integration testing.

112

2. HW/SW co-validation framework. Our HW/SW co-validation approach

is built upon the conformance checking approach. It provides a comprehen-

sive solution to address the challenges in HW/SW integration testing: (1)

lack of HW/SW interface observation; (2) difficulty in attributing HW/SW

interface bugs; (3) difficulty in troubleshooting HW/SW interfaces. First, our

framework employs the trace recorder, which efficiently observes the HW/SW

interfaces. Second, when encountering a HW/SW interface bug, based on the

conformance checking result, we can clearly see if it is a hardware bug. More-

over, by analyzing the property checking result, it will identify the bug as

a software property violation, i.e., a software bug or a hardware property

violation, i.e., a hardware bug. Third, our co-validation framework automat-

ically analyzes the trace produced by the HW/SW interface, largely saving

human efforts. Our co-validation approach based on conformance checking

can detect the bugs ranging from the devices, the virtual prototypes, and the

drivers.

3. Adaptive concretization. Symbolic execution and other formal analysis

techniques, such as model checking, often face the state explosion problem,

which incurs significant overhead. To address this challenge, concolic ex-

ecution and abstraction refinement are two common ways which are often

used. Concolic (a portmanteau of concrete and symbolic) testing is a hybrid

testing technique that integrates concrete execution with symbolic execu-

tion. Abstraction refinement is an iterative process where the target model

or program is abstracted first, then it is added with more details when the

counterexamples are discovered. Adaptive concretization borrows the ideas

from both concolic execution and abstraction refinement: (1) we partially

concretize the state variables of the model and make them symbolic again

113

when a counterexample is discovered. Adaptive concretization essentially

provides an alternative approach in formal analysis to reducing symbolic ex-

ecution overhead. It is particularly effective for dealing with the case where

concretizations are correct most of time. Our research dissertation demon-

strated that adaptive concretization significantly improves the efficiency of

conformance checking and scales it to complicated hardware designs.

4. HW/SW co-monitoring. HW/SW co-monitoring is a relative new idea

which realizes runtime HW/SW co-verification. The most important feature

of HW/SW co-monitoring is concolic exploration of the HW/SW interface

model, i.e., the BPDS. Concolic execution leverages the runtime execution

trace of the system to reduce the verification overhead. We believe that

concolic exploration is a practical way to realize efficient runtime verification

over the system. The idea of concolic exploration can be applied to not only

runtime HW/SW co-verification but also pure software or hardware runtime

verification as well.

5. Evaluation. This dissertation research has been realized in two software

tools, DCC (Device Conformance Checker) and CoMon (Co-Monitoring).

These two software tools have been applied to 4 real industry hardware de-

vices, the device drivers, and their reference models (virtual prototypes and

FDMs). They discovered 42 real bugs ranging from the devices to the drivers

and to the reference models. Although all these four devices have been re-

leased for several years, which have gone through rigorous testing procedures,

our approach is still able to find these non-trivial bugs. All these results

demonstrate that our approach has a significant potential in validating real

industry hardware and software designs.

114

7.2 FUTURE RESEARCH DIRECTIONS

7.2.1 Pre-silicon HW/SW Co-validation

Motivation. As virtual prototypes are widely adopted for early software de-

velopment, HW/SW integration validation is generally moved forward from the

post-silicon validation stage to the pre-silicon validation stage where the silicon

hardware has not been available yet. At the pre-silicon validation stage, HW/SW

interface assurance is also challenging as due to following reasons: (1) the hard-

ware designs including specifications, RTL designs, and virtual prototypes evolve

very quickly. It is difficult for software developers to keep synchronous with hard-

ware designs; (2) there is often a large divergence between a RTL design and its

corresponded virtual prototype since they are developed by separated teams. As

a result, there is always a concern that the driver developed over the virtual pro-

totype might have hidden bugs which will be revealed in the post-silicon stage;

(3) although virtual prototypes are white-boxes which might help troubleshoot

HW/SW interface bugs, HW/SW interface debugging is still difficult. There are

two reasons: first, driver developers or system testers do not fully understand hard-

ware devices and virtual prototypes; second, troubleshooting an interface bug is

still a time-consuming process. It requires sifting through logs recording HW/SW

interface interactions and even digging into virtual prototype internals.

Solution. Adapting our post-silicon HW/SW co-validation framework for pre-

silicon co-validation is a promising direction to address the above problems. The

pre-silicon HW/SW co-validation entails three techniques: (1) conformance check-

ing among the different versions of virtual prototypes and device RTL designs;

(2) conformance checking between a RTL model and its corresponded virtual pro-

totype; (3) property checking over the driver and the virtual prototype. These

115

three techniques address the three challenges respectively: (1) conformance check-

ing among different versions help quickly identify the differences between each two

versions of virtual prototypes and RTL designs. This helps driver developers un-

derstand the new features and the reason why the driver does not work on the new

virtual prototype; (2) conformance checking between RTL and virtual prototypes

help detect bugs in both RTL designs and virtual prototypes thereby discovering

design defects at the early stage; (3) property checking and conformance checking

together can automatically analyze HW/SW interface traces and pinpoint the root

cause of a HW/SW interface bug. This will save human efforts on troubleshooting.

Research Challenges. There are several research tasks to develop the pre-silicon

HW/SW co-validation: (1) the method for conformance checking among different

versions of virtual prototypes; (2) the method for conformance checking among

different versions of RTL models; (3) the method and algorithm for conformance

checking between a RTL model and its virtual prototype. For conformance check-

ing between two virtual prototypes, first, we can extract the simulation trace from

the virtual platform where one of the virtual prototypes is executed together with

its driver. Second, we replay the simulation trace to the other virtual prototype

and compare their states. For conformance checking between two RTL models, we

can use the same method as conformance checking of virtual prototypes. However,

there are two research problems which need to be addressed: first, how to properly

extract the simulation trace and what information would be included? Second,

what is the algorithm to compare their states? As to conformance checking be-

tween a RTL design and its virtual prototype, a potential approach is to extract

the simulation trace from the RTL simulator, replay the trace to the virtual pro-

totype, and check their conformance. Nevertheless, a RTL model is a clock-driven

model and virtual prototypes are usually modeled at transaction-level. A major

116

challenge is how to properly sample the RTL model simulation trace and check the

conformance against virtual prototype.

7.2.2 Detecting Hardware Trojan and Malwares in Virtual Devices

HW/SW co-monitoring is demonstrated as an effective method in detecting hard-

ware trojans at the system deployment stage. However, the hardware trojans

should be discovered as early as possible. Therefore, it is also desired to detect

hardware trojans at the post-silicon validation stage. However, hardware trojans

manufactured in third-part IP modules are usually deeply embedded in the chip,

which are quite difficult to triggered under the validation environment.

There are two major problems to be addressed for detecting hardware trojans:

(1) how to generate effective test cases to trigger hardware trojans? (2) how to

effectively discover hardware trojans when they are triggered? We plan to use

FDMs as reference models for test case generation and trojan detection. Our

approach entails following techniques.

1. Enhancing FDM with undefined behaviors. FDMs have already been

demonstrated as effective and abstract reference models in HW/SW co-

monitoring. A FDM models all the device correct behaviors defined by

specifications. However, to detect hardware trojans, we should focus on the

hardware undefined or even malicious behaviors which are out of boundary of

the FDM. Thereby the FDM should be enhanced to include not only correct

behaviors but also the undefined and malicious behaviors.

2. Automatic test generation with FDM. Some existing approach [15] has

demonstrated that virtual prototypes can be used as references for generat-

ing high-quality test cases. These test cases can be used for testing silicon

117

hardware. We leverage this idea for generating test cases to trigger hard-

ware trojans with our enhanced FDMs. As a FDM defines unknown and

malicious behaviors of the device, corresponded test cases triggering these

behaviors can also be generated. These test cases can be applied to trigger

the hardware trojans in silicon hardware.

3. Conformance checking for detecting hardware trojans. To detect

hardware trojans when they are triggered, we apply our conformance check-

ing approach over the FDM and the silicon device. The FDM services as

a reference model and the malicious behaviors appearing over the device

interface will be detected.

Malwares in Virtual Devices

Recently hyperviors or Virtual Machine Monitors (VMM) are widely used to pro-

vide system virtualizations in cloud computing. A significant component of a

hypervisor or a VMM is a number of virtual devices which emulate the hard-

ware devices for guest operating systems. Hypervisors or VMMs can be malicious:

malwares or virus in virtual devices can easily propagate into the guest systems

through HW/SW interfaces. Thereby it is also highly desired to detect malwares

in virtual devices. Our hardware trojan detection method can be also applied to

detect malwares in virtual devices.

118

REFERENCES

[1] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard

Memmi, and Dave Miller. A reconfigurable design-for-debug infrastructure

for socs. In Proceedings of the 43rd Annual Design Automation Conference

(DAC), pages 7–12, New York, NY, USA, 2006. ACM.

[2] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Symbolic execution

with abstract subsumption checking. In Proceedings of the 13th International

Conference on Model Checking Software (SPIN), pages 163–181, Berlin, Hei-

delberg, 2006. Springer-Verlag.

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Fail-stutter fault

tolerance. In Proceedings of the Eighth Workshop on Hot Topics in Operating

Systems (HOTOS), pages 33–, Washington, DC, USA, 2001. IEEE Computer

Society.

[4] Ran Avinun. Concurrent hardware/software development platforms speed

system integration and bring-up.

[5] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and

Jiri Schindler. An analysis of latent sector errors in disk drives. In Proceedings

of the 2007 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), pages 289–300, New

York, NY, USA, 2007. ACM.

119

[6] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichten-

berg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah

Ustuner. Thorough static analysis of device drivers. In Proceedings of the

1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006

(EuroSys), pages 73–85, New York, NY, USA, 2006. ACM.

[7] Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Struc-

tural coverage of feasible code. In Proceedings of the 5th Workshop on Au-

tomation of Software Test (AST), pages 59–66, New York, NY, USA, 2010.

ACM.

[8] D. Becker, R. K. Singh, and S. G. Tell. An engineering environment for

hardware/software co-simulation. In Proceedings of the 29th ACM/IEEE De-

sign Automation Conference (DAC), pages 129–134, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[9] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Pro-

ceedings of the Annual Conference on USENIX Annual Technical Conference

(USENIXATC), pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[10] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. RWset: attacking

path explosion in constraint-based test generation. In Proceedings of Interna-

tional Conference on Tools and Algorithms for the Constructions and Analysis

of Systems (TACAS), 2008.

[11] M. Boule, J. Chenard, and Z. Zilic. Adding debug enhancements to assertion

checkers for hardware emulation and silicon debug. In Computer Design, 2006.

International Conference on (ICCD), pages 294–299, Oct 2006.

[12] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and

120

automatic generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI), pages 209–224, Berkeley, CA, USA, 2008. USENIX

Association.

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A plat-

form for in-vivo multi-path analysis of software systems. In Proceedings of the

Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 265–278, New York, NY,

USA, 2011. ACM.

[14] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson En-

gler. An empirical study of operating systems errors. In Proceedings of the

Eighteenth ACM Symposium on Operating Systems Principles (SOSP), pages

73–88, New York, NY, USA, 2001. ACM.

[15] Kai Cong, Fei Xie, and Li Lei. Automatic concolic test generation with vir-

tual prototypes for post-silicon validation. In Proceedings of the International

Conference on Computer-Aided Design (ICCAD), pages 303–310, Piscataway,

NJ, USA, 2013. IEEE Press.

[16] Kai Cong, Fei Xie, and Li Lei. Symbolic execution of virtual devices. In

Proceedings of the 2013 13th International Conference on Quality Software

(QSIC), pages 1–10, Washington, DC, USA, 2013. IEEE Computer Society.

[17] Semiconductor Research Corporation and Computing Community Consor-

tium. Research needs for secure, trustworthy, and reliable semiconductors,

2013.

[18] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang”. Backspace:

121

Formal analysis for post-silicon debug. In Formal Methods in Computer-Aided

Design, 2008 (FMCAD), pages 1–10, Nov 2008.

[19] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C.

Necula. Xfi: Software guards for system address spaces. In Proceedings of the

7th Symposium on Operating Systems Design and Implementation (OSDI),

pages 75–88, Berkeley, CA, USA, 2006. USENIX Association.

[20] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarro-

daychik, and O. Yamamo. A hardware-software co-simulator for embedded

system design and debugging. In Proceedings of the 1995 Asia and South Pa-

cific Design Automation Conference (ASP-DAC), New York, NY, USA, 1995.

ACM.

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 213–223,

New York, NY, USA, 2005. ACM.

[22] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox

fuzzing for security testing. Queue, 10(1):20:20–20:27, January 2012.

[23] R. K. Gupta, C. N. Coelho, Jr., and G. De Micheli. Synthesis and simulation of

digital systems containing interacting hardware and software components. In

Proceedings of the 29th ACM/IEEE Design Automation Conference (DAC),

pages 225–230, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[24] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.

Tanenbaum. Fault isolation for device drivers. In Proc. of International Con-

ference on Dependable Systems and Networks, 2009.

122

[25] A. Hoffman, T. Kogel, and H. Meyr. A framework for fast hardware-software

co-simulation. In Proceedings of the Conference on Design, Automation and

Test in Europe (DATE), pages 760–765, Piscataway, NJ, USA, 2001. IEEE

Press.

[26] Alan J. Hu, Jeremy Casas, and Jin Yang. Efficient generation of monitor

circuits for gste assertion graphs. In Proceedings of the 2003 IEEE/ACM

International Conference on Computer-aided Design (ICCAD), pages 154–

159, Washington, DC, USA, 2003. IEEE Computer Society.

[27] Intel. Intel 8255x 10/100 Mbps Ethernet Controller Family – Open Source

Software Developer Manual, 1.3 edition, January 2006.

[28] Intel. Intel Ethernet Controller X540 Specification Update, Revision 2.6, 2013.

[29] ITRS. International technology roadmap for semiconductors, 2011 edition.

http://www.itrs.net.

[30] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating

hardware device failures in software. In Proceedings of the ACM SIGOPS

22Nd Symposium on Operating Systems Principles (SOSP), pages 59–72, New

York, NY, USA, 2009. ACM.

[31] James C. King. Symbolic execution and program testing. Commun. ACM,

19:385–394, July 1976.

[32] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton University Press, 1994.

[33] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and Hüsnü

123

Yenigün. Combining software and hardware verification techniques. Formal

Methods in System Design (FMSD), 21(3):251–280, November 2002.

[34] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Testing closed-

source binary device drivers with DDT. In Proceedings of the 2010 USENIX

Conference on USENIX Annual Technical Conference (USENIXATC), pages

12–28, Berkeley, CA, USA, 2010. USENIX Association.

[35] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.

Efficient State Merging in Symbolic Execution. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 193–204, New York, NY, USA, 2012. ACM.

[36] Li Lei, Kai Cong, and Fei Xie. Optimizing post-silicon conformance checking.

In Computer Design, 2013 IEEE 31st International Conference on (ICCD),

pages 499–502, 2013.

[37] Li Lei, Kai Cong, Zhenkun Yang, and Fei Xie. Validating direct memory access

interfaces with conformance checking. In Proceedings of the 2014 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 9–16,

Piscataway, NJ, USA, 2014. IEEE Press.

[38] Li Lei, Fei Xie, and Kai Cong. Post-silicon conformance checking with virtual

prototypes. In Proceedings of the 50th Annual Design Automation Conference

(DAC), pages 29:1–29:6, New York, NY, USA, 2013. ACM.

[39] Juncao Li, Xiuli Sun, Fei Xie, and Xiaoyu Song. Component-based abstrac-

tion and refinement. In Proceedings of the 10th International Conference on

Software Reuse (ICSR), volume 5030 of Lecture Notes in Computer Science,

pages 39–51, Berlin, Heidelberg, May 25-29 2008. Springer.

124

[40] Juncao Li, Fei Xie, Thomas Ball, Vladimir Levin, and Con McGarvey. An

automata-theoretic approach to hardware/software co-verification. In Pro-

ceedings of the 13th International Conference on Fundamental Approaches to

Software Engineering (FASE), volume 6013 of Lecture Notes in Computer

Science, pages 248–262. Springer, March 20-28 2010.

[41] Juncao Li, Fei Xie, Thomas Ball, Vladimir Levin, and Con McGarvey. Formal-

izing hardware/software interface specifications. In Proceedings of the 2011

26th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), pages 143–152, Washington, DC, USA, 2011. IEEE Computer

Society.

[42] Microsoft. Driver Verifier (DV).

http://msdn.microsoft.com/en-us/library/windows/hardware/ff545448.aspx,

2008.

[43] Brendan Murphy and Mario R. Garzia. Software reliability engineering for

mass market products. Software Reliabilty Engineering, 8(1), December 2004.

[44] José Augusto Miranda Nacif, Flávio Miana de Paula, Harry Foster, Clau-

dionor José Nunes Coelho Jr., and Antônio Otávio Fernandes. The chip is

ready. am i done? on-chip verification using assertion processors. In Pro-

ceedings of 11th IFIP/IEEE International Conference on Very Large Scale

Integration (VLSI-SOC), 2003.

[45] Shannon Nelson and Peter Waskiewicz. Virtualization: Writing (and testing)

device drivers without hardware. In Proceedings of Linux Plumbers Confer-

ence, 2011.

[46] Sung-Boem Park and Subhasish Mitra. IFRA: Instruction footprint recording

125

and analysis for post-silicon bug localization in processors. In Proceedings of

the 45th Annual Design Automation Conference (DAC), pages 373–378, New

York, NY, USA, 2008. ACM.

[47] Claudio Passerone, Luciano Lavagno, Massimiliano Chiodo, and Alberto

Sangiovanni-Vincentelli. Fast hardware/software co-simulation for virtual pro-

totyping and trade-off analysis. In Proceedings of the 34st Annual Design

Automation Conference (DAC), pages 389–394, New York, NY, USA, 1997.

ACM.

[48] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure

trends in a large disk drive population. In Proceedings of the 5th USENIX

Conference on File and Storage Technologies (FAST), pages 2–2, Berkeley,

CA, USA, 2007. USENIX Association.

[49] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. Symdrive: Test-

ing drivers without devices. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation (OSDI), pages 279–292,

Berkeley, CA, USA, 2012. USENIX Association.

[50] James A. Rowson. Hardware/software co-simulation. In Proceedings of the

31st Annual Design Automation Conference (DAC), pages 439–440, New

York, NY, USA, 1994. ACM.

[51] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming

device drivers. In Proceedings of the 4th ACM European Conference on Com-

puter Systems (EuroSys), pages 275–288, New York, NY, USA, 2009. ACM.

[52] Luc Séméria and Abhijit Ghosh. Methodology for hardware/software co-

verification in C/C++. In Proceedings of the 2000 Asia and South Pacific

126

Design Automation Conference (ASP-DAC), pages 405–408, New York, NY,

USA, 2000. ACM.

[53] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit test-

ing engine for c. In Proceedings of the 10th European Software Engineering

Conference Held Jointly with 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC/FSE), pages 263–272, New

York, NY, USA, 2005. ACM.

[54] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and

Henry M. Levy. Recovering device drivers. ACM Trans. Comput. Syst.,

24(4):333–360, November 2006.

[55] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reli-

ability of commodity operating systems. ACM Trans. Comput. Syst., 23:77–

110, February 2005.

[56] Aaron Tomb, Guillaume Brat, and Willem Visser. Variably interprocedural

program analysis for runtime error detection. In Proceedings of the 2007

International Symposium on Software Testing and Analysis (ISSTA), pages

97–107, New York, NY, USA, 2007. ACM.

[57] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input gen-

eration with java pathfinder. In Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA), pages

97–107, New York, NY, USA, 2004. ACM.

[58] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

Efficient software-based fault isolation. In Proceedings of the Fourteenth ACM

127

Symposium on Operating Systems Principles (SOSP), pages 203–216, New

York, NY, USA, 1993. ACM.

[59] Wikipedia. Stuxnet. http://en.wikipedia.org/wiki/Stuxnet.

[60] Fei Xie, Guowu Yang, and Xiaoyu Song. Component-based hardware/software

co-verification for building trustworthy embedded systems. Journal of Systems

and Software (JSS), 80(5):643–654, May 2007.

[61] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,

Matthew Harren, George Necula, and Eric Brewer. Safedrive: Safe and recov-

erable extensions using language-based techniques. In Proceedings of the 7th

Symposium on Operating Systems Design and Implementation (OSDI), pages

45–60, Berkeley, CA, USA, 2006. USENIX Association.

	Portland State University
	PDXScholar
	Spring 6-2-2015

	Hardware/Software Interface Assurance with Conformance Checking
	Li Lei
	Let us know how access to this document benefits you.
	Recommended Citation

	Hardware/Software Interface Assurance with Conformance Checking

