
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

Low-latency Estimates for Window-Aggregate Queries over Data
Streams
Amit Bhat
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Bhat, Amit, "Low-latency Estimates for Window-Aggregate Queries over Data Streams" (2011). Dissertations and Theses. Paper 161.

10.15760/etd.161

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/161?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.161
mailto:pdxscholar@pdx.edu


Low-latency Estimates for Window-Aggregate Queries over Data Streams

by

Amit Bhat

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

Thesis Committee:

David Maier, Chair

Leonard Shapiro

Kristin Tufte

Portland State University

c© 2011



i

ABSTRACT

Obtaining low-latency results from window-aggregate queries can be critical to

certain data-stream processing applications. Due to a DSMS’s lack of control over

incoming data (typically, because of delays and bursts in data arrival), timely re-

sults for a window-aggregate query over a data stream cannot be obtained with

guarantees about the results’ accuracy. In this thesis, I propose a technique, which

I term prodding, to obtain early result estimates for window-aggregate queries

over data streams. The early estimates are obtained in addition to the regular

query results. The proposed technique aims to maximize the contribution to a

result-estimate computation from all the stateful operators across a multi-level

query plan. I evaluate the benefits of prodding using real-world and generated

data streams having different patterns in data arrival and data values. I conclude

that, in various DSMS applications, prodding can generate low-latency estimates

to window-aggregate query results. The main factors affecting the degree of inac-

curacy in such estimates are: the aggregate function used in a query, the patterns

in arrivals and values of stream data, and the aggressiveness of demanding the es-

timates. The utility of the estimates obtained using prodding should be optimized

by tuning the aggressiveness in result-estimate demands to the specific latency and

accuracy needs of a business, considering any available knowledge about patterns

in the incoming data.
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Chapter 1

INTRODUCTION

When users base their time-critical decisions on results of queries in a data stream

processing application, producing timely responses for such queries becomes essen-

tial. In Sections 1.1 to 1.4 of this chapter, I examine the issues and the techniques

that relate to latency in computing window-query results over data streams. In

Section 1.5, I introduce my proposed technique for getting low-latency results for

window-aggregate queries, along with the summary of contributions of this thesis.

1.1 DATA STREAM PROCESSING

A wide range of applications that have been developed in the past three decades

use database management systems (DBMSs) for data processing. In a DBMS

(Figure 1.1(a)), data are stored on persistent storage devices [21]. Whenever a

user application needs to extract some information, the application submits one

or more queries to the DBMS. To process these queries, the system fetches the

required data from persistent storage to memory, processes the data as dictated

by the queries, and produces results as a set of data tuples. For example, a stock

trader interested in obtaining market trends over a month will use a DBMS query

against stored market data for the month.

To facilitate rapid data lookup, DBMSs associate indexes with the data, or

cache pre-computed query results called materialized views. Furthermore, to
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achieve faster query executions, DBMSs also perform optimizations by selecting

the most efficient among alternative query plans to evaluate a given query [22].

(a) DBMS (b) DSMS

Figure 1.1: Data processing models

A class of applications (hereafter, stream applications), which has emerged in

the past ten years, involves continuous processing of incoming data feeds that are

together termed a data stream. Typically, in stream applications, data processing

is followed by some time-critical decisions by the application users. For example,

a stock trader interested in making immediate sale or purchase decisions can use

stream applications to continuously analyze market data.

Traditional DBMSs are inadequate to fulfill data processing needs of stream ap-

plications [5]. First, the latency introduced by the DBMS data-processing model

— which involves storage, loading, and indexing — is unacceptable. Second, using

materialized views of data to quickly answer queries is not helpful, because, in

most stream applications, including the most recently arrived data in the query

result calculations is crucial to the subsequent decision making. For example,

in a temperature-monitoring application, the latest readings of temperatures re-

ported by the sensors must be included in the query processing to ensure proper

subsequent re-adjustments in cooler settings. A materialized view, which is a pre-

computed query result, will not include the very latest readings. Finally, DBMS

query-optimization goals, such as minimizing I/O or disk accesses, may not be
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suitable for processing data streams.

The systems that have been developed to enable stream applications to process

data streams are called data stream management systems (DSMSs) (Figure 1.1(b)).

In contrast to the ad hoc queries required by the DBMS applications, stream appli-

cations need queries to run continuously over unbounded data streams. Therefore,

the DSMS queries are sometimes called continuous queries (CQs). The output of

a CQ is a new data stream that contains results of query computations.

1.2 UNBOUNDED DATA ARRIVALS AND WINDOW QUERIES

In theory, data feeds never cease to arrive at a DSMS. Such potential unending data

arrival is problematic for two reasons. First, an unending input data stream can

cause a stateful operator (e.g., Join, DupElim) in a CQ to keep accumulating state

and eventually run out of memory. The DupElim operator, for example, produces

output by eliminating duplicate elements from its input. This operator would need

to maintain in its state each unique data-stream element. Such unbounded state

maintenance may cause the DSMS to run out of memory.

Second, a blocking operator (e.g., aggregate operators such as SUM, COUNT,

MAX) cannot produce output until it sees the entire input data. For example, a

CQ such as “Count the number of transactions for the stock symbol IBM” cannot

produce the correct transaction count until it has seen all the data feeds (at least

for IBM).

To overcome the aforementioned problems arising from the potential unending

nature of data streams, window CQs fragment an unbounded data stream into

bounded groups of tuples called windows [14, 18]. Grouping of tuples into windows

is usually based on a progressing data attribute such as timestamp or tuple-count.

Window CQs produce results for each window.

Typically, a DSMS user customizes windows in a CQ by specifying parameters
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such as the window duration (also called the window range) and frequency for cre-

ating a new window (also called the window slide). Such parameterized windowing

is apt for stream applications, because these applications usually involve analyzing

recent events over specific time spans — e.g., “temperature readings over the last

few hours”, “user clicks during the last one minute”, and “traffic speed readings

over the last 30 minutes”. Figure 1.2 shows examples of window queries.

Figure 1.2: Window Queries

A query window that is specified with the three parameters RANGE, SLIDE

and WINDOWING-ATTRIBUTE (e.g., timestamp, tuple-count) is called a sliding

window, and a query that involves a sliding window specification is called a sliding-

window query. See Figure 1.2. The sliding-window query Q1-1 asks a DSMS to

compute the average of vehicle speed readings from a traffic data stream S over

the most recent 5 minutes, and update the result every 1 minute (by consider-

ing the new current 5-minute window). Notice the WINDOW clause in Q1; the

parameter RANGE specifies the span for a window, and the parameter SLIDE

specifies the window-advancement stride. The WINDOWING-ATTRIBUTE is

not explicit in query Q1-1; the unit “min” for RANGE and SLIDE hints a DSMS
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that window range and slide are defined over timestamp. A DSMS may require

that a WINDOWING-ATTRIBUTE is explicitly specified in a query. For a given

WINDOWING-ATTRIBUTE, each window can be uniquely specified by the pair

window start time - window end time. For example, Figure 1.2 depicts two consec-

utive sliding windows — Window 0-5 and Window 1-6 — corresponding to query

Q1-1. (Another way to uniquely specify a window for a given WINDOWING-

ATTRIBUTE is to use window start time and RANGE, which together determine

window end time.)

A special case of sliding windows is tumbling windows, in which the parameters

SLIDE and RANGE have equal values. Query Q1-2 in Figure 1.2 is an example of

a tumbling window query. Note that all the tumbling windows are disjoint; e.g.,

Window 0-2, Window 2-4, and Window 4-6 shown in Figure 1.2 are all disjoint.

1.3 PUNCTUATIONS

Despite using window queries to fragment a potentially unbounded data stream,

DSMSs face a challenge in computing query results over windows. It is difficult for a

DSMS to ensure that all data that belong to a particular window have arrived at the

system. The difficulty arises due to the following observed phenomena pertaining

to stream data, which typically travel across networks. First, data in stream

applications may arrive at a DSMS out of order of their generation timestamps.

Such disorder in data occurs due to various reasons such as data rerouting across

a network, combining data from sources that are skewed in data generation time,

combining data that are delayed by different amounts, or disordered output from

some query operators (e.g., MULTI-JOIN [10]). Second, due to inherent delays

in networks, it is difficult to distinguish a lull (i.e., period of no input) in a data

stream from delays in data arrival. Third, multiple tuple attributes (e.g., start time

and end time in a Netflow record) may qualify to be a timestamp. Data may be

generated at a source in order according to one such attribute, while a query uses
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another qualifying attribute as a timestamp, on which data may be out of order.

Figure 1.3: Punctuated Data Stream

To overcome the aforementioned difficulty, several DSMSs use punctuations

[4, 13, 23, 28]. A punctuation is a special tuple in a data stream that marks the

end of a substream. The substream corresponding to a punctuation is identified

by predicate(s) and pattern(s) contained in the punctuation. Figure 1.3 depicts

a punctuated data stream S. S has schema (Timestamp, Value), and has tuples

〈Timestamp=t,Value=v〉, or, for short, 〈t,v〉. Notice the punctuations, which are

of the form [Predicate:(Timestamp≤t), Pattern:(Value=*)], or for short, [≤t,*].

A punctuation [≤t,*] informs the DSMS that tuples with Timestamps less than

or equal to t and with any (indicated by the regular expression“*”) Value will no

longer arrive at the system. Suppose a user registers a window CQ with RANGE=5

and SLIDE=1. When the DSMS sees the punctuation [≤5,*], the system has a

guarantee that all the tuples belonging to Window 0-5 (and also, any other window

that ends at a Timestamp less than 5) have been seen. Therefore, the system can
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close Window 0-5 (and any other open window that ends at a Timestamp less than

5) by producing the results, and removing corresponding state for the window.

Tucker, et al. [28] comprehensively discuss punctuation semantics.

Note that punctuation mechanisms vary slightly from one system to another.

Also, punctuations are known by different names in different systems; e.g., CTIs in

StreamInsight [4], and Heartbeats in Gigascope [13] and STREAM [23]. Further,

there are other DSMSs, such as Aurora [2], that do not use punctuations. These

systems either expect data to arrive in order, or sort data after they arrive at the

DSMS. Such systems, in case of order-sensitive operators, require an additional

argument, such as a slack, which indicates the degree of possible disorder in data.

1.4 RESULT LATENCY FOR WINDOW QUERIES

A typical data-stream tuple contains a timestamp (which indicates the tuple’s

generation time at its source, also called tuple’s application time) and a payload

(which is the tuple’s data, and can be comprised of multiple fields). The length

of time between the application time of the oldest tuple belonging to a window

and the time of the result production for the window is the result latency for the

window.

Another important notion related to time in stream applications is that of

system time, which represents the DSMS clock. I say that a query result for a

window is obtained in timely manner if the system time at which a DSMS generates

the result is the same as the window end time (after considering possible time-zone

skews between the data-stream source and the DSMS). A query result for a window

that is produced by a DSMS before the window end time is an early result. The

result that is produced by a DSMS on receiving an appropriate punctuation is the

final result. In this thesis, I denote application time with “t” and system time

with “T”.
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(a) Delays in Data Arrival

(b) Bursts in Data Arrival

Figure 1.4: Tuple and Punctuation Arrival Patterns

I discuss the challenges in obtaining timely results for window CQs in Sub-

section 1.4.1. Then, in Subsection 1.4.2, I describe why early results to window

queries are desirable in DSMS applications.
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1.4.1 Challenges in Getting Timely Results

Despite using punctuations to close windows, DSMSs do not have control over

the latency in producing window query results, for two reasons. One reason is

that tuples or punctuations may arrive late at the system. Figure 1.4(a) depicts a

snapshot of a sliding window (RANGE=5, SLIDE=1), and the corresponding data

arrivals at a DSMS. Tuples belonging to Window 1-6 arrive even after physical time

6 has elapsed. The punctuation closing this window arrives at a physical time T6,

which lies between 6 and 7. Thus, the DSMS cannot produce a query result for

Window 1-6 before time T6, which means the result for Window 1-6 is not produced

in timely manner. In other words, the logical boundary for Window 1-6 is extended

in physical time from 6 to T6 (shown with dashed lines in the Figure 1.4(a)).

The other reason for high latency is arrival of data in high-volume bursts. Such

bursts of data can overwhelm a DSMS’s processing capacity temporarily, thereby

causing delays in computation of window query results. Delays are possible despite

arrival of tuples and punctuations within the appropriate physical time boundaries.

Figure 1.4(b) depicts this situation. A high-volume data burst is symbolized by a

higher density of tuples (triangles) between physical times 3 and 4.

Figure 1.5 shows graphically a sample bursty arrival pattern in data consisting

of the records collected at wireless access points in the Dartmouth college campus

[15]. The graph in the figure shows the tuple count in each time bucket of 1 second.

Notice that some of these buckets, e.g., 30, 53, 54, 62, see a high count (400 to

800) of tuple arrivals, whereas a majority of the other buckets see a moderate tuple

count (0 to 300). A high-density portion (or simply, a burst) of data arrival will

cause a DSMS to see a temporary spike in the load of tuples to be processed. A

higher processing load may lead to longer processing time, and subsequently, to a

high result latency. Therefore, when a data stream with variations in data arrival

densities is input to a DSMS window query, I expect to see the corresponding

variations in the result latency for different windows: higher latency for windows
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that encompass high data-arrival counts, and lower latency for the other windows.

Figure 1.5: Bursts in Data in a Wireless Network

1.4.2 Desire for Early Results

Applications using a DSMS may involve time-critical decision making [4, 24].

Therefore, such applications would need low-latency responses for CQs. Examples

of such applications include network traffic monitoring, financial analysis, sensor

networks, and industrial process monitoring.

Thus, for a CQ over Window 1-6 in Figure 1.4, application users would like to

see the results close to time 6. Or, to gain advantage by getting early results, users

might desire to see the query results for window 1-6 early, say at Te6, which is a

time earlier than 6. For example, in stock trading, early query results might mean

early detection of market trends. An example of a window query that tracks stock

market trends is: “Report the stock symbols for which the difference between high

price and low price in a 5-minute window is greater than 10”.

Latency-accuracy tradeoff: An early window query result that is produced —
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despite the challenges described in Section 1.4.1 — to satisfy the stream applica-

tion needs may be inaccurate, since a DSMS may need to compute such an early

result for a window without considering all the tuples that belong to the window.

Furthermore, the lower the desired latency in an early result for a window, (poten-

tially) the lower the portion of data (belonging to the window) that is considered

for the result computation, and hence, the higher the potential inaccuracy in the

early result. Moreover, the tolerable degree of such inaccuracy (incurred in ex-

change of low result latency) might vary from one stream application to another.

Therefore, it would be desirable to enable stream applications to control the trade-

off between the latency gains in early window query results and the accuracy of

such results.

1.5 THESIS CONTRIBUTIONS

A technique to provide DSMSs control over the latency-accuracy tradeoff in window-

aggregate query results is the core contribution of this thesis. This technique, which

I call prodding, involves injection of special tuples in a data stream. I call these

injected tuples prods. A prod describes a subset of the data stream (or simply, a

substream). A DSMS operator interprets a prod as a demand for an estimate of

the query result over the substream described by the prod.

The work in this thesis consists of the following four components:

1. The prodding technique

Prodding deals with the latency issues discussed in Section 1.4 by allowing a

DSMS to produce early estimates of window query results. Such an estimate

is generated by a DSMS when it encounters a prod in a data stream. A

system enabled with prodding still produces a final window query result on

processing the appropriate punctuation.

2. Semantics for prods
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I describe how prods are processed at different operators in a window-aggregate

query plan. More specifically, I explain how prods are interpreted, translated,

and propagated by a windowing operator, and how prods affect states at an

aggregation operator.

3. Implementation

I have implemented a working prototype of prodding in NiagaraST DSMS.

In this prototype, I enable NiagaraST’s windowing and aggregate operators

with prod processing.

4. Evaluation

The usefulness of prodding is determined by latency gains achieved with early

result estimates for window-aggregate queries, togetherwith the accuracy of

these estimates. Result accuracy is not easy to define; the meaning of accu-

racy varies with data sets that are queried, and with aggregate functions in

the queries.

In my evaluation of prodding, I propose a broad definition for accuracy of a

result estimate. I measure latency gains and accuracy drops in such estimates

using the NiagaraST prodding prototype to process real-world and synthetic

data streams. I study the effects of varying aggressiveness in prodding (i.e.

how early a system asks a window for results) on the overall result latency

gains and result accuracy, using input data streams having different patterns

in data arrival and values.

It is also important to ensure that the implementation of prodding does not

impose significant overheads on a DSMS. I examine the possibility of any

such overheads by comparing latencies of final query results obtained with

and without use of prodding.

Based on my observed experimental results for different combinations of data
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sets and aggregate functions, I discuss the effectiveness of the prodding tech-

nique for real-world stream applications.
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Chapter 2

THE NIAGARAST DATA STREAM MANAGEMENT SYSTEM

The NiagaraST data stream management system, developed at Portland State

University (PSU), is a data-stream–processing derivative of Niagara [19], which is

an Internet query engine developed jointly by the University of Wisconsin-Madison,

Oregon Graduate Institute, and PSU. NiagaraST can process window queries over

data streams, and can handle data that arrive out of order. I implement and

evaluate a prototype of the prodding technique in the NiagaraST DSMS.

This chapter describes the technical features of NiagaraST that are relevant

to the work in this thesis. Section 2.1 gives a technical overview of NiagaraST.

Section 2.2 describes in detail the working of window-aggregates in NiagaraST.

Section 2.3 describes the paned implementation of window-aggregates.

2.1 NIAGARAST: TECHNICAL OVERVIEW

Output Stream(s)

Operator
TuplesTuples

Input Stream(s)

Figure 2.1: NiagaraST operator – a logical view

Figure 2.1 shows a high-level view of a typical NiagaraST operator (or sim-

ply an operator, for this discussion). An operator receives tuples from its input
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Tuple

− source stream
− sink stream

− page stream − page stream

Operator SinkStreamSourceStream

PageStream

TuplePagePageQueue

− to_source_queue
− to_sink_queue
− stream_capacity

− page_size

IsA

   (attribute, value)
−   collection of

OutputInput

− collection of
  tuple pages

Punctuation

Figure 2.2: Main objects in NiagaraST’s inter-operator communication

stream(s), processes the received tuples according to the operator’s function (e.g.,

Sum, Count, Select), and sends the resulting tuples to its output stream.

A query plan in NiagaraST is a directed graph of operators. Typically, a plan

will have a Scan operator at the bottom for data input, and a Construct operator

at the top for formatting result output. I omit Scan and Construct operators from

all the query plans depicted in this thesis, because these two operators do not affect

query-execution logic. An example of a NiagaraST query plan is shown in Figure
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2.3. We shall examine this query plan in detail when I discuss the execution of

query Q2-1 in Section 2.2.

Figure 2.2 shows a typical NiagaraST operator, and the objects that are in-

volved in NiagaraST inter-operator communication. An operator has associated

with it one or more source streams, which are its input streams, and sink streams,

which are its output streams. A source stream for one operator may be a sink

stream for some other operator.

Source and sink streams provide each operator a tuple-oriented interface for in-

put and output. Underneath, the implementation passes pages of tuples between

operators in a query plan. Such a page-oriented implementation avoids synchro-

nizing operators at per-tuple granularity. The pages of tuples that are in flight

between query operators are temporarily stored in the inter-operator buffers. An

operator may also have local state to store intermediate results.

Both source and sink streams contain a page stream object, and each page

stream object contains two page queues — a to source queue and a to sink queue

— which serve as inter-operator buffers for downstream (towards a sink) and up-

stream (towards a source) tuples respectively. (Upstream transmission of tuples

is useful to send interoperator feedback.) A page stream object also contains the

parameter stream capacity, which determines the number of tuple-pages in a page

queue. A tuple-page is a sequence of tuples. The parameter page size in a tuple-

page object determines the maximum number of tuples that can fit per page.

A tuple object is a collection of attribute values. The attributes that belong to a

tuple are determined by its schema. Each operator has one or more input schemas,

plus an output schema. A punctuation is a special data-stream element whose val-

ues are predicates or patterns. For example, a tuple that has schema S(timestamp,

sensor id, speed) will have values such as 〈10,2,55〉 (which means timestamp=10,

sensor id=2, and speed=55). A punctuation with the same schema, S, will have

values such as [≤10,2,*] (no more tuples with timestamps less than or equal to 10,
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and sensor id equal to 2 will be seen by the operator that has encountered this

punctuation), or [≤10,*,*] (no more tuples with timestamps less than or equal to

10 will be seen by the operator).

2.2 WINDOW AGGREGATES

When the prodding technique is used to demand early result estimates from

window-aggregate queries, two types of NiagaraST operators are mainly impacted

— the Bucket operator and an Aggregate operator. Bucket performs windowing

(i.e., mapping of each tuple to one or more windows) and an Aggregate operator,

such as WindowSum or WindowMax, that follows Bucket (in a typical window-

aggregate query plan) computes aggregates over windows [18].

Consider the sliding-window query Q2-1 (Figure 2.3), which computes sum of

volumes for 60-second windows over a vehicle-traffic data stream S, and updates

results every 20 seconds. Figure-2.3 also shows the NiagaraST query plan for Q2-1.

The input data stream S has schema (timestamp, sensor id, speed, volume) where

timestamp is in seconds. The Bucket operator maps tuples to windows by map-

ping the tuple timestamps to window-ids. The range of windows to which a tuple

belongs is determined by the two attributes wid from and wid to. The conversion

from timestamp to window-id takes two simple calculations:

wid from = timestamp / SLIDE,

wid to = (timestamp + RANGE) / SLIDE − 1

where “/” is an integer division. For example, the tuple t1〈211,1,54,25〉 (Figure-

2.3) gets wid from = 211/20 = 10, and wid to = (211+60)/20 − 1 = 12. Thus, t1

contributes to the sum for windows (or more precisely, windows with window-ids)

10, 11, and 12. As another example, tuple t4, which has timestamp 230, belongs

to (and therefore, contributes to the sum calculation for) windows 11, 12, and 13.

Bucket processes the timestamps in punctuations slightly differently. Wid from is

calculated as timestamp/SLIDE − 1, and wid to is set to a “*”. For example,
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window−id

<215, 1, 55, 20, wid_from=10, wid_to=12>
<216, 2, 50, 30, wid_from=10, wid_to=12>

[*, *, *, *, *, wid_from<10, wid_to=*]
<230, 2, 51, 20, wid_from=11, wid_to=13>
<235, 1, 54, 35, wid_from=11, wid_to=13>
<234, 2, 50, 20, wid_from=11, wid_to=13>

[*, *, *, *, wid_from<11, wid_to=*]
<245, 1, 56, 25, wid_from=12, wid_to=14>

.

.

.

t1<211, 1, 54, 25>
t2<215, 1, 55, 20>
t3<216,2, 50, 30>

p1[<220, *, *, *]
t4<230, 2, 51, 20>
t5<235, 1, 54, 35>
t6<234, 2, 50, 20>

p2[<240, *, *, *]
t7<245, 1, 56, 25>

<window−id=10, sensor_id=1, Sum=45> 
<window−id=10, senodr_id=2, Sum=30>
[window−id<10, sensor_id=*, Sum=*]

<window−id=11, sensor_id=1, Sum=35>
<window−id=11, sensor_id=2, Sum=40>
[window−id<11, sensor_id=*, Sum=*]

Bucket

WindowSum

Update

sensor_id Sum

State Table

Schema

 Window [RANGE=60s, SLIDE=20s]

Window−Sum Query − Q2−1

 from S

 Group By sensor_id

 Select Sum(volume)

451

10 302

11 801

11 702

Stream S (timestamp, sensor_id, speed, volume)

10

12 1051

<211, 1, 54, 25, wid_from=10, wid_to=12>

Figure 2.3: Window-Sum query plan in NiagaraST

Bucket translates the punctuation [timestamp≤240,*,*,*] into the punctuation

[*,*,*,*,wid from≤11,wid to=*]. Such translation of timestamps to window-ids
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by Bucket ensures that the subsequent window-aggregate operator correctly closes

windows. As with tuples, Bucket leaves the non-timestamp attributes in a punctua-

tion untouched. Group-wise punctuations on timestamps are translated by Bucket

to the group-wise punctuations on window-ids. For example., if the Bucket op-

erator in Figure 2.3 encounters a punctuation [timestamp≤240,sensor id=1,*,*,*],

it would translate this punctuation to [*,sensor id=1,*,*,wid from≤11,wid to=*],

and send the translated punctuation to the subsequent Window-Sum. Such trans-

lation retains the punctuation predicate on group for use by the window-aggregate

operator that follows Bucket in the query plan.

The window-aggregate operators in NiagaraST are stateful ; they typically con-

tain a state table (hereafter, just state) that holds a running aggregate per group

per window. For each tuple that arrives at a window-aggregate operator, the

window-aggregate updates the running aggregate values in its state for the tuple’s

group for all the windows that the tuple belongs to. For example, as shown in

Figure-2.3, Window-Sum stores in its state group-wise Sum values for each sen-

sor id per window.

On receiving a punctuation, a window-aggregate produces aggregate results

that are covered by that punctuation. For example, punctuation [*,*,*,*,wid from

≤10,*], which indicates that the Window-Sum operator will encounter no more

tuples with window-ids less than or equal to 10, allows Window-Sum to output

the Sum for all the open windows that have ids less than or equal to 10. Further,

Window-Sum purges from its state the aggregate values that the operator has

output. In this thesis, I refer to a punctuation, such as [*,*,*,*,wid from≤10,*],

that allows a window-aggregate to output all the aggregate results for a window, as

a window-closing punctuation. On receiving a group-wise punctuation, a window-

aggregate outputs results, and purges state for the groups that are covered by

the punctuation. For example, the Window-Sum operator shown in Figure 2.3,

on receiving the punctuation [*,sensor id=1,*,*,wid from≤10,*], purges state and
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emits results only for sensor id=1 for all the open windows with ids less than or

equal to 10.1

Grammatical data streams : Although punctuations allow the NiagaraST op-

erators to handle out-of-order data, the operators expect their input punctuated

data streams to be grammatical. A punctuated data stream S is grammatical if,

in S, no tuple t that matches the predicate(s) of a punctuation p follows p [28].

Every NiagaraST operator guarantees that its output data stream is grammatical,

given that the operator’s input data stream(s) are grammatical.

2.3 PANED IMPLEMENTATION

A time-efficient (and in some specific cases, space-efficient) way to implement

window-aggregates, as proposed by Li et al. [17], is to subdivide windows into

panes, calculate aggregates per pane, and roll up the pane-level aggregates into

window-aggregates. Figure-2.4 illustrates the paned approach.

Consider query Q2-2. With the paned approach, the DSMS subdivides each

60-second window into three 20-second panes, calculates the sum for each pane,

and uses the pane-level result to update the sum for all the windows that the pane

belongs to. For query Q2-2, each 20-second pane belongs to three consecutive

windows, and therefore, each pane-level result updates the sum for three windows.

Figure 2.5 shows the NiagaraST query plan for computing the Window-Sum

query Q2-2 using the paned implementation. Notice that panes are tumbling

windows, therefore each tuple affects just a single pane. A pane-level result is

emitted by the pane-aggregate operator when it receives a corresponding pane-

closing punctuation. Only the pane-level results (rather than every tuple in the

stream) update multiple window-level aggregates. As illustrated in Figure 2.5,

1NiagaraST generally expects punctuations to arrive often enough that there is one punc-
tuation per window. Thus, each such punctuation generally causes output of results from one
window, since earlier windows were covered by previous punctuations.
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Figure 2.4: 60 second windows subdivided into 20 second panes

each tuple updates just one state entry at the Pane-Sum operator, while each

pane-level result updates three entries in the window-level state. For example, the

tuples 〈211,1,54, 25〉, 〈215,1,55,20〉, and 〈216,2,50,30〉 update Pane-Sum’s single

state-table entry that corresponds to the pane- id 10. Only the pane-level sum

result for these tuples, i.e., the tuple 〈pane-id=10, sum=75〉, updates three state

table entries in the Window-Sum operator. Such savings in the number of state

updates per tuple result in improved execution time. Li et al. [17] demonstrate

the performance gains obtained using the paned approach to implement window-

aggregates. In their work, Li et al., also describe the space benefits in the paned

approach when this approach is used to compute sub-aggregation similar to that

in Gigascope [6]. They observe that for sub-aggregation implemented using panes,

the amount of buffering needed is significantly reduced.
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<255, 2, 54, 35>

.

.

Schema

 Window [Range=60s, Slide=20s]

 from S

 Select Sum(volume)

Bucket

12

11

10 75

State Table

150

210

Update

Sum

60

13

12

11

10 75

75

26

State Table

<215, 1, 55, 20, pane−id=10>
<216, 2, 50, 30, pane−id=10>

[*, *, *, *, *, pane−id<10]
<230, 2, 51, 20, pane−id=11>
<235, 1, 54, 35, pane−id=11>

Window−Sum

Pane−Sum

<pane−id=10, Sum=75, wid_from=10, wid_to=12> 
[pane−id=*, Sum=*, wid_from<10, wid_to=*]

<pane−id=11, Sum=75, wid_from=11, wid_to=13>
[pane−id=*, Sum=*, wid_from<11, wid_to=*]

<pane−id=12, Sum=60, wid_from=12, wid_to=14>
[pane−id=*, Sum=*, wid_from<12, wid_to=*]

Bucket

[window−id<10, Sum=*]

[window−id<11, Sum=*]
<window−id=12, Sum=60>
[window−id<12, Sum=*]

<window−id=11, Sum=75>

<234, 2, 50, 20, pane−id=11>

<245, 1, 56, 25, pane−id=12>
<255, 2, 54, 35, pane−id=12>

<265, 1, 55, 26, pane−id=13>

Stream S (timestamp, sensor_id, speed, volume)

Update

Update

<window−id=10, Sum=75> 

<pane−id=10, Sum=75> 
[pane−id<10, Sum=*]

<pane−id=11, Sum=75>
[pane−id<11, Sum=*]

<pane−id=12, Sum=60>
[pane−id<12, Sum=*]

[*, *, *, *, pane−id<11]

[*, *, *, *, pane−id<12]

[<260, *, *, *]

<245, 1, 56, 25>
[<240, *, *, *]

<234, 2, 50, 20>
<235, 1, 54, 35>
<230, 2, 51, 20>

[<220, *, *, *]
<216,2, 50, 30>

<215, 1, 55, 20>
<211, 1, 54, 25>

Window−Sum Query − Q2.1

Pane−id

SumWindow−id

<211, 1, 54, 25, pane−id=10>

<265, 1, 55, 26>
.

Figure 2.5: NiagaraST query plan for paned implementation of Window-Sum



23

In this thesis, I shall use the paned implementation of window-aggregates as

an example of a scenario wherein state is distributed across multiple operators in

a query plan. The prodding technique becomes particularly conducive to such a

scenario, because it becomes important to convey the urgency for a query-result

estimate over a particular window to all the operators that can contribute to the

estimate calculation. Such a result, whose production is triggered by prodding, is

a prodded or early result. In Section 3.3, using a paned implementation example, I

shall demonstrate how prodding synchronizes partial-result generation at multiple

stateful operators in a query plan to maximize the contributions to a prodded

result.



24

Chapter 3

THE PRODDING TECHNIQUE

Low-latency results for window-queries are important in various application do-

mains. In the case of financial trading, early results may give a strategic advantage

by allowing a user to quickly detect market trends. In the case of sensor networks,

such as temperature-monitoring networks, delays in detecting high-temperature

conditions may be costly (or sometimes fatal). In the case of traffic monitoring,

early detection of traffic conditions such as congestion may allow controllers to

take quick decisions such as rerouting the traffic.

In this chapter I describe my proposed technique, which I term prodding, to

obtain such low-latency results. Prodding offers DSMSs control over the latency-

accuracy balance in window-query results. I introduce the prodding technique in

Section 3.1. In Section 3.2, I discuss various sources that can enable prodding. I de-

scribe the application of the prodding technique to a multi-level window-aggregate

query plan in the Section 3.3. Finally, in Section 3.4, I discuss accuracy of the

early results produced by prodding.

3.1 THE PRODDING TECHNIQUE

A prod is a special stream element that signals a DSMS to produce output (which

may be an approximate result) that corresponds to a specific application time. To

specify which application time, a prod contains at least one predicate on application

time, although, a prod may also contain predicates or patterns on other tuple

attributes. A typical prod would look like {Timestamp≤t1,*,*,*...}, where t1 is a
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valid timestamp, and “*” matches any value.

The results produced by a DSMS in response to a prod are early results. Such

early results are a quick (and perhaps an incomplete) response produced by a

DSMS despite any possible delays (described in Section 1.4.1) in producing final

results, which are triggered by a punctuation. Early results may be produced with

a low latency, but such results may be compromised in their accuracy. I shall

discuss accuracy of early results in Section 3.4.

Although prods are structurally similar to punctuations — a prod triggers

output over a substream that is specified by the prod’s predicates or patterns —

there are important differences between these two types of data-stream elements.

First, prod processing may not (necessarily) result in purging of state at a (stateful)

DSMS operator. And, second, tuples matching a prod’s predicate may follow

the prod in a data stream. Contrast such a data stream with the grammatical

punctuated data streams described in the Section 2.2. A data stream that contains

both prods and punctuations is a prodded punctuated data stream.

Consider the window-sum query Q3-1 (Figure 3.1(a)) over the prodded punctu-

ated data stream S. Although I discuss prodding considering the NiagaraST-style

use of a Bucket operator followed by a Window-Aggregate operator (as shown

in Figure 3.1(a)), the proposed technique is applicable to window-query imple-

mentations in DSMSs other than NiagaraST where the bucketing functionality

may be implemented inside window-aggregate operators. Figure 3.1(b) shows the

query state after the query has processed the tuples 〈11,1,45,40〉, 〈23,2,46,20〉,

〈32,3,44,30〉, and 〈45,4,45,20〉 of S. The Window-Sum operator maintains in its

state table the running sum for window id 1. Figure 3.1(c) shows the query state

after the DSMS has processed the prod {50,*,*,*}. A Bucket operator processes a

prod the same way as it does a punctuation. The Bucket operator in the query plan
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(a) Window-Sum Query Plan Main Operators:

Bucket and Window-Sum

(b) Window-Sum Tuple Processing

(c) Window-Sum Prod Processing (d) Window-Sum Punctuation Processing

Figure 3.1: Prodding a Window-Sum Query

translates the prod {50,*,*,*} into the prod {*,*,*,*,wid from=1,wid to=*} (re-

member the window id computation described in Section 2.2), and passes the trans-

lated prod to the Window-Sum operator. On receiving such a prod, the Window-

Sum operator emits results corresponding to the predicates in the prod. The

NiagaraST prodding prototype marks the result produced in response to a prod

as ‘Early’. As shown in Figure 3.1(c), on receiving the prod {*,*,*,*,wid from=1,

wid to=*}, Window-Sum produces the result ‘110’ for window-id 1. Window-Sum,

after producing the corresponding results, outputs the prod without modifying it.
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The DSMS forms a new window on arrival of the first tuple belonging to that new

window. As shown in Figure 3.1(c), the tuple 〈52,1,48,26〉 causes the system to

form Window 2.

On receiving further tuples that belong to Window 1, Window-Sum updates

the state for window-id 1. Punctuations are processed as before: Bucket trans-

lates the punctuation [50,*,*,*] to the punctuation [*,*,*,*,wid from=1,wid to=*].

Window-Sum, on receiving a punctuation on window-id, releases results for the

window-id indicated in the punctuation (and in case of group-wise punctuations,

for the entries that also match the predicates on groups), and purges state entries

for all the emitted results. The system marks result produced in response to a

punctuation as ‘Final’. Thus, as shown in Figure 3.1(d), the Window-Sum on re-

ceiving the punctuation [50,*,*,*], emits the final windowed-sum of 135 for window

1, and purges the corresponding entry from its state table.

Operator state: In general, a window-aggregate may or may not purge state on

receiving a prod depending on where the operator is placed in a query plan. The

rule to determine whether a window-aggregate should purge state entries corre-

sponding to a prod is as follows:

State Purging Rule, R1: If a window-aggregate is the topmost among

the stateful operators in a query plan, the operator does not purge

state entries corresponding to the prods that it receives.

Otherwise, the window-aggregate purges the state entries for any

prods that it receives.

In NiagaraST, as described in Chapter 2, the regular (i.e., non-paned) imple-

mentation of a window-aggregate query has a single stateful operator, namely, the

window-aggregate operator. For example, in the query plan shown in Figure 3.1(a),



28

the Window-Sum is the only (and hence the topmost) stateful operator. There-

fore, according to the rule R1, after emitting the early Sum of 110 for window id

1, Window-Sum does not purge this Sum (entry) from its state. The rationale

for purging in rule R1 for the otherwise case — i.e., when the operator is not the

topmost stateful operator in the query plan — will become clearer when I discuss

prod processing in the paned implementation of window-aggregates (Section 3.3),

wherein there exists a window-aggregate operator that is not the topmost stateful

operator in the query plan.

Note that Rule R1 is applicable to the aggregate operators in the query plans

that include regular or paned implementation of window-aggregates. R1 may not

be more generally applicable to a query plan that includes more complex com-

binations of stateful operators — for example, query plans with more than two

aggregates, and query plans that include other stateful operators such as Join. I

discuss state purging in general query plans in Section 3.3.

Variety of prods: If a window query has a group-by clause, multiple early re-

sults (possibly, one per group) may be produced by the query after receiving a

prod. Or, query operators may receive group-wise prods — for example, the data

stream S in the following query Q3-2 may contain a prod {50,1,*,*}, which sig-

nals the DSMS to produce early results for the application time 50 and sensor id 1.

Query3-2: ‘‘Select Sum(volume) from S Window [RANGE=50, SLIDE=50]

Group by sensor id’’.

In theory, a prod, like a punctuation, may contain any combination of predi-

cates or patterns; even the requirement to include a predicate on application time

may be relaxed. Thus, a prod can be used to trigger query results over particular

substreams. In this thesis, I shall mainly consider prods that have at least one

application-timestamp predicate of the form “timestamp=t” or “timestamp≤t”,
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such that t is a valid value for time.

I call the technique of inserting prods in a data stream to signal a DSMS

to produce results corresponding to the substreams described in the prods the

prodding technique, or simply prodding.

3.2 SOURCES OF PRODS

DSMS

Stream

Prodding 
Stream

Output Stream

Punctuated Input 

(a) External Prodding Stream

Input Adaptor

Input
Stream

Prodded
Punctuated
Stream

DSMS

Output
Stream

Punctuated

(b) Prods Inserted by an Input Adapter

Query Processing

Punctuated
Stream

Punctuated
Input
Stream Prodder

Operator

DSMS

Ouput Stream

Prodded

(c) Time-progress-aware Prodder

DSMS

Punctuated
Stream

Punctuated
Input
Stream Query

Operator
Query
Operator

Query
Operator

Output Stream

Feedback Carrying Result−Urgency Information
Client

Trigger from

Prodder

Prodded

(d) Prodder Controlled via Feedback

Figure 3.2: Sources of Prods

The prodding technique is agnostic to the sources of prods. Figure 3.2 shows

some possible ways for inserting prods in a data stream.

A source of prods can come from outside a DSMS: (1) A seperate stream, in

addition to the input stream, may issue prods to a DSMS (Figure 3.2(a)) thereby

controlling query-result generation over the input stream. This separate stream

need not be a stream of prods; it can be a normal stream whose tuples are used

to generate prods. (2) Commercial data stream management software, such as

Microsoft’s StreamInsight [26], use a special program called input adapter to read

input streams from various external sources, and convert these streams into the
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format readable by the DSMS. Such an input adapter may be used to monitor

time progress, and, after every advance by certain time period, insert prods in the

input stream (Figure 3.2(b)).

Alternatively, the source of prods may be within a DSMS: (1) A DSMS query

plan itself may include an operator to monitor time and insert prods in a data

stream. I call such an operator a Prodder (Figure 3.2(c)). (2) The topmost oper-

ator in a query plan may have more information regarding query-progress needs.

So, such an operator may pass this progress requirement to its upstream operators

in the form of Feedback Punctuations [8] (Figure 3.2(d)). When the upstream-

propagating feedback reaches the prodding operator (the Prodder) in the query

plan, the Prodder inserts prods (having appropriate predicates) in the data stream.

Such upstream feedback may be triggered by a DSMS user pressing a GUI button

such as Refresh, which cause the DSMS to generate the latest estimates of results

for currently open window(s) (Figure 3.3). Note that aggressively refreshing the

GUI may cause the DSMS to prod the same window multiple times, each time

generating more recent estimates for the window.

3.3 PRODDING A QUERY PLAN

Letting the prods flow together with the data stream allows prods to sweep before

themselves partially computed results that are accumulated at operator states

across a query plan. Such sweeping allows DSMSs to maximize the portion of

data available in the system that will contribute to early result computation. In

this section, I describe prodding a query plan that has state accumulated at more

than one level in the plan. I use the paned implementation of a window-aggregate

(described in Section 2.3) as an example of such a query plan.

Consider the Window-Max query Q3-3 over traffic data stream S shown in Fig-

ure 3.4(a). Figure 3.4(b) shows the state of execution of Q3-3 after the query has

processed elements of S up to the tuple 〈125,2,46,45〉. Notice the paned-max values
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Figure 3.3: Refresh GUI for the Latest Result Estimates

accumulate in the state of the Pane-Max operator. At this stage in the execution,

Pane-Max cannot release the paned-max values to the downstream operators, be-

cause these values may be updated by the subsequent tuples in S. The paned-max

values can be released by Pane-Max only when it sees punctuations that close the

panes. The state of the query plan after processing the punctuations [110,*,*,*]

and [120,*,*,*] is shown in Figure 3.4(c). Bucket1 translates these punctuations

on timestamps to punctuations on pane-ids, and the Pane-Max operator upon re-

ceiving the translated punctuations releases downstream the paned-max values for

the panes covered by these punctuations. For example, the punctuation [120,*,*,*]

is translated by Bucket1 into the punctuation [*,*,*,*,pid from=11,pid to=*], and

the Pane-Max operator on receiving this translated punctuation sends to its down-

stream operator Bucket2 the paned-max results for the pane-id 11. On receiving

punctuations [*,*,*,*,pid from=10,pid to=*] and [*,*,*,*,pid from=11,pid to=*],

Pane-Max also purges the accumulated paned-max results for the panes 10 and
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11 from its state table (per Rule R1), and sends the punctuations downstream

without modifying them.

Bucket2 assigns window-ids to the paned-max tuples that come out of the

Pane-Max operator. For Q3-3, the RANGE of 30 seconds translates to a range

over 3 panes, and the 10-second SLIDE becomes a slide by 1 pane. Thus, the

range of window-ids affected by the pane-id 10 is given by wid from=10 and

wid to=12. At the Window-Max operator, the paned-max 55 is used to update

the windowed-max values held in the Window-Max state for the window-ids 10

to 12. Similarly, the paned-max of 52 from pane 11 updates the windowed-max

values for the window-ids 11 to 13. Notice that because 52 is smaller than the

previously computed windowed-max of 55 for the windows 11 and 12, the states

for these two windows are unaffected by the update. Bucket2 translates the punc-

tuations coming from Pane-Max that are on pane-ids to punctuations on window-

ids. E.g., Bucket2 translates the punctuations [*,*,*,*,pid from=10,pid to=*] and

[*,*,*,*,pid from=11,pid to=*] on pane-id to the window-id punctuations [*,*,*,*,

*,*,wid from=11,wid to=*] and [*,*,*,*,*,*,wid from=12,wid to=*]. Window-

Max, on receiving these punctuations, releases their corresponding windowed-max

values (55 in each case here), and purges the state for windows 10 and 11.

The subplan — Bucket1 followed by Pane-Max — next processes another tu-

ple 〈126,1,50,54〉, which updates the paned-max value for Pane 12 from 45 to

54. Bucket1 next sees the prod {130,*,*,*}, which is an indication to the query

that it should now produce results up to time 130 using whatever computa-

tions the query has performed so far. Bucket1 translates the prod {130,*,*,*}

to {*,*,*,*,pid from=12,pid to=*}. This translated prod on pane-id 12 causes the

Pane-Max operator to release the paned-max of 54 calculated for Pane 12 to Pane-

Max’s downstream operators, and to purge this paned-max from its state. Note

that such purging of state on receiving a prod complies with rule R1 described in

Section 3.1, because Pane-Max is not the topmost stateful operator in the query
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(a) Window Max Query Q3-3 (b) Building Panes

(c) Paned Results Emitted On Receiving Punc-

tuation

(d) Prod Processing in Pane-Max

(e) Final Result by Punctuation

Figure 3.4: Prod Processing in the Paned Implementation of Window-Max
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plan. Pane-Max also passes on the prod {*,*,*,*,pid from=12,pid to=*} unmodi-

fied to Bucket2.

Bucket 2 assigns window-ids to the paned-max tuples that come out of the Pane-

Max operator, and translates the pane-id prod {*,*,*,*,pid from=12,pid to=*} to

the window-id prod {*,*,*,*,*,*,wid from=12,wid to=*}. At the Window-Max

operator, the partial max 54 is used to update the current windowed-max for

windows 10 to 12. On receiving the prod {*,*,*,*,*,*,wid from=12,wid to=*},

Window-Max emits the windowed-max result (marked as ‘Early’) for Window

12. As per Rule R1, Window-Max does not purge state for Window 12, be-

cause Window-Max in this query plan is the topmost stateful operator. Re-

taining state here is necessary: Because S is not expected to be grammatical

with respect to prods, in S, more tuples for Window 12 may follow the prod

{*,*,*,*,*,*,wid from=12,wid to=*}. If the largest value for volume among the

tuples that arrive between the prod {*,*,*,*,*,*,wid from=12,wid to=*} and its

corresponding punctuation [*,*,*,*,*,*,wid from=12,wid to=*] is smaller than the

early windowed-max that Window-Max has output, then the final windowed-max

for Window 12 will be same as its early windowed-max. To accommodate such a

case where the early windowed-max is the overall result, retaining the early result

in the Window-Max state is necessary. A similar argument holds for the use of

Rule R1 in case of the paned implementation of the Window-Min operator.

R1 for cumulative aggregates: The state purging rule, R1, ensures correct

operation not only for Window-Max and Window-Min, but also for cumulative

aggregate functions such as Count, Sum, or Average computed over windows. For

example, in case of the paned implementation of Window-Sum, purging state on

receiving a prod at the Pane-Sum operator will ensure that the same subset of

data does not contribute more than once to the results calculated at Window-

Sum. Retaining state after processing prods at the Window-Sum ensures that the

final punctuated results are calculated correctly by including the contributions
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from all the tuples in a window.

Regardless of the use of prodding, a query eventually processes all the tuples

or punctuations as normal, i.e., as detailed in Section 2.3. Each tuple contributes

to the single pane that the tuple belongs to. Each pane-level result updates 3 (or,

in general RANGE/SLIDE) windows. A punctuation allows window-aggregates at

the pane and window level to emit windowed results and purge the result entries

from operator states. Because a prod purges state at the pane that it covers,

the first tuple belonging to the purged pane that follows the corresponding prod

recreates the state for the pane. For example, as shown in Figure 3.4(e), the tuple

〈126,1,40,58〉 creates a state entry with value 58 for the paned-max for pane 12.

Note that Bucket and window-aggregate operators are oblivious to such recre-

ation of a pane. What essentially happens is that a prod breaks a pane into

multiple sub-panes (call them pane-fragments). Whereas, in theory, a window has

fixed number of panes, the NiagaraST implementation of panes relaxes this re-

quirement, because a NiagaraST bucket relies solely on the pane-id in a tuple to

assign it to a range of windows. Furthermore, the existence of panes is transpar-

ent to a NiagaraST window-aggregate operator, which can accept any number of

inputs with the same window-id range.

Punctuations as usual let window-aggregates produce results and purge state.

The punctuation [130,*,*,*] causes Pane 12 to release the paned-max of 58 (marked

as ‘Final’), which updates windowed-max for the windows 12, 13, and 14. The

new paned-max 58 replaces the windowed-max of 54 previously held in the state

of window 12. On receiving the punctuation on Window 12, Window-Max outputs

the correct final windowed-max of 58. After emitting the final result, Window-Max

purges the state entry for Window 12.

Mis-timed prods: In Section 3.2, I discussed the sources of prods. It is possible

that a source of prods injects a prod too early or too late in a data stream. If

a prod arrives at a stateful operator when the prod’s corresponding window has
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not even been formed at the operator (i.e., if a prod reaches the operator before

any of its corresponding tuples), then the prod is too early for the operator. Such

premature prodding may occur for various reasons such as data being delayed too

long, or bursty data arrivals causing tuple-processing backlogs at some operators,

or a user trying to refresh a particular window too aggressively. A prod is too late

for a stateful operator if by the time the prod arrives at the operator, the state at

the operator for the window corresponding to the prod has been already purged

(by a punctuation). Such belated prodding may occur for reasons such as feedback

propagation delay, a late user refresh, or a high user-specified prodding offset to a

prodder.

All the stateful operators pass on a mis-timed prod downstream without up-

dating their own state or performing any computation. Similarly, all stateless

operators pass on the delayed or premature prods downstream without any pro-

cessing; the exception is the Bucket operator, which performs the appropriate

prod-translation regardless of when the operator encounters a prod.

Note that it is important that all the operators pass on the prods downstream,

because a prod that had no effect on one stateful operator’s results may still go on

to trigger early results from some other downstream operator. For example, a prod

that is too early for a pane may still affect the window encompassing the pane. Or,

a prod that is too late for a lower level aggregate may still go on to trigger result

generation at a higher level aggregate, which could not produce output earlier

in response to a timely prod, say, because an in-between multiple-input operator

(such as a Union or a Join) was awaiting data from some other input stream.

State purging in general: As described in Section 3.1, Rule R1 is applicable

only to the query plans that include regular or paned implementation of window-

aggregates. The decision regarding operator state purging in case of more complex

query plans may not be straightforward. For example, consider a sliding-window

query, call it Q3-4, that first computes Sum(volume) per sensor over data stream
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S in Figure 3.4(a), and then computes a Max of the sums over all the sensors.

The query plan for the paned implementation of Q3-4 will include a Pane-Sum

followed by a Window-Sum followed by a Window-Max. In such a query plan,

Pane-Sum can purge its state on receiving a prod, and emit incremental results

to the Window-Sum operator. However, Window-Sum needs to accumulate these

increments. The operator cannot purge its state unless it receives a punctuation,

because the topmost operator Window-Max maintains only the maximum of the

sums it receives, and loses all other results it receives from Window-Sum.

In general, there can be multiple operators, in a query plan, that need to accu-

mulate incremental results received from below in the query plan. Each operator

can be parameterized to denote whether the operator should act as an accumulator

of increments (by retaining its state after emitting a prodded result). Enabling a

DSMS to deduce the accumulating operators in a given query plan can be a subject

of future investigation.

Prodding alternatives: Note that the prodding approach, as described in this

chapter, involves a prod that flows across a query plan with the data stream.

Having a prod flow across the entire query plan leads to some latency even in

the early results. An alternative approach to prodding is to independently signal

one or more query operators to emit early results. However, in such approach to

prodding, achieving synchronization is complicated: we must first prod a lower

operator (in the query plan), then ensure that results from the lower operator

have arrived at the next higher operator, then prod the higher operator, and so

forth. A key challenge is that the time for the interoperator transfer of results is

unpredictable. I explain this challenge in more detail in Section 6.1.

A simpler but suboptimal alternative to get early query results is to prod a

single operator — probably the topmost aggregate operator in a query plan —

to produce results. Such operator-level prodding can be achieved by sending an

external signal to the operator being prodded, or by injecting a prod in a data
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stream just before the operator. However, operator-level prodding will not be

optimal when a multi-level query plan includes state distributed across multiple

query operators, and the state from more than one operator contributes to the

query-result computation. The issue in prodding any single operator in such a

multi-level query plan is as follows: If we prod just the topmost stateful operator,

the produced early result will not include contributions from the stateful operators

lower in the query plan. If we prod just an operator that is lower in a multi-level

query plan, such prodding will not cause higher-level operators to emit early results.

For example, in the plan for query Q3-3 (Figure 3.4), prodding only Window-Max

will cause the operator to emit early results that do not include contribution of

Pane-Max, whereas, prodding only Pane-Max will cause the pane-level contribution

to reach up to Window-Max but Window-Max will not be triggered to produce

window-level early results.

3.4 ACCURACY OF EARLY RESULTS

Despite using the strategy of prodding an entire query plan to maximize the contri-

bution that goes in early result computation, the early results may not be accurate,

because they do not include contribution by any tuples that arrive between the

prod and the punctuation for the window. The degree of deviation of an early

result from the corresponding final result (which is accurate given that the input

stream is grammatical with respect to punctuations) depends on where in the data

stream the prod occurs with respect to its corresponding punctuation (i.e., on what

percentage of the window’s tuples lie between the prod and the punctuation for

the window). The two other factors that affect the degree of inaccuracy in early re-

sults are: (a) the pattern of data values, and (b) the aggregate function being used.

In the rest of this section, I discuss accuracy of early results for different aggre-

gate functions assuming uniform distribution of the “values being aggregated” (or,

aggr-values for short) across data in a window. Note that when the distribution
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in the aggr-values is known to be different than uniform, the expected accuracy in

the early results will need a different treatment.

Given the uniform distribution of aggr-values in a data stream, the smaller the

percentage of trailing tuples — i.e., the tuples in a window that arrive between

the prod and the punctuation for the window — the smaller the degree of inac-

curacy in the early results. Let us examine this claim as it applies to different

aggregate functions used for windows in a data stream query: For aggregates such

as Average, Sum, or Count, each trailing tuple in a window potentially adds to the

degree of inaccuracy in the early result for the window. For Average, if the early

result is produced after processing substantial portion of the tuples in a window,

the deviation of the early results from true average will be slight. Such small inac-

curacy may be tolerable in application domains such as vehicle-traffic congestion

control (e.g., an approximate average of vehicle speeds over a time window can

be a sufficient indicator of the congestion condition). In the case of Count, each

trailing tuple adds one to the error. For Sum, the inaccuracy in the early results

will be directly proportional to the percentage of the trailing tuples for a window

(again because the values contributing to the Sum are uniformly distributed). For

aggregate functions such as Max and Min, the trailing tuples might contain the

actual maximum or minimum value. So, the early Max or Min may deviate ar-

bitrarily from the correct final maximum or minimum. Or, the true maximum or

minimum may have arrived at the system before the corresponding prod, thus giv-

ing accurate early results. For the assumed uniform distribution, the smaller the

percentage of trailing tuples, the more the chances of getting the actual maximum

or minimum (or, if not the actual, a value that is close to the actual maximum or

minimum) included in the early result.

In general, it is difficult to give a precise measure of the accuracy of the early

results: The distribution of the aggr-values in a data stream may not be known.

Even when such distribution is known, it is hard to compute the percentage of
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window data that contributes to the early result, because this percentage depends

on the combination of the time a window is prodded and the time-wise distribution

of the data arrival. Also, despite possible prior knowledge of the aforementioned

factors for a data stream, because of variability, the accuracy measure for a specific

early result can be only approximate. However, it is straightforward to compute

the accuracy of an early result once the corresponding final result is obtained.

This way, a stream application can monitor the early-result accuracy of a running

system over a period, giving users a practical measure of the usefulness of prodding

with a given degree of aggressiveness.
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Chapter 4

EVALUATION

It is important to evaluate the tradeoffs in prodding in terms of the prodded-

result latency gains together with the degree of accuracy of the early results. In

this chapter, I describe my experiments, conducted to evaluate various aspects of

prodding.

I discuss the run-time environment for the experiments and the query instru-

mentation I have used in Section 4.1. In Section 4.2, I evaluate whether prodding

imposes any significant overheads to a DSMS. Section 4.3 describes my experi-

ments to evaluate latency gains and accuracy of early results from queries over

real-world data streams that are subject to delivery delays (Section 4.3.1) or to

bursty data arrivals (Section 4.3.2). The prodded results, while obtained with low

latency, may compromise on accuracy. Further, the more aggressively you prod a

window, the lower should be the latency in getting early results, and, potentially,

the greater would be the degree of inaccuracy of the results. I study the effects of

prodding aggressiveness on the latency gains in early results and on the accuracy of

early results in Section 4.4. With increasing prodding aggressiveness, early-result

accuracy may degrade at different rates depending on the data (value) patterns

and the window-aggregate function being used. I conduct the prodding aggressive-

ness experiments over two different types of patterns exhibited in the data values

being aggregated — uniform distribution (Section 4.4.1) and normal distribution

(Section 4.4.2) — and for the aggregate functions Average, Count, Max, and Sum.

I close the chapter in Section 4.5 with a summary of the experiment observations

and a conclusion, based on these observations, about the applicability of prodding.
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4.1 ENVIRONMENT AND INSTRUMENTATION

I evaluate prodding using my implementation of the technique in NiagaraST. I

have performed all the experiments that I describe in this chapter on a computer

having an Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00 GHz with 4.00 GB RAM

and running a 64-bit Windows 7 Operating System. I have run the experiments

with the Java Virtual Machine’s maximum heap size of 192 MB. I set the inter-

operator buffers to contain 5 pages of tuples with each tuple page having the

capacity to contain 30 tuples per page.

I define the latency in producing a query result for a window as the difference

between the arrival time of the first tuple for the window at the first Bucket

operator in a query plan and the time of producing the result for the window. For

example, for a 5 minute window, say 5-10, if the first tuple arrives at time 5 and

the query result for the window is produced at time 11, then result latency is 6.

Similarly, if the first tuple for the window 5-10 arrives at time 7, and the query

result is produced at time 11, then the result latency is 4.

In the prototype used for my experiments, for each window, I tag the first tuple

belonging to the window with the system timestamp at which the tuple arrives at

the first Bucket operator in a query plan. Later, at the window-level aggregate

operator, I record: (a) the system time tagged (at the first Bucket operator) to the

first tuple of the window and (b) the system time of the production of aggregate

output for the window. The absolute difference between these two recorded times

for a window is its query result latency.

To simulate delivery of tuples as a data stream, I have designed a new operator,

which I call Streamer, that resides at the beginning of a query plan and delivers

tuples to the first query-plan operator according to the tuples’ application times-

tamps. In some of my experiments, to simulate possible data-delivery delays on

a network, I configure the Streamer to introduce random delays (up to a certain
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Table 4.1: Overheads of Prodding: Comparison of Result Latencies with and

without Prodding over 3 Different Data Streams

Data Stream Id Final Result Latency With

Prodding (Seconds)

Final Result Latency With-

out Prodding (Seconds)

Uniform 1500 11 11

Burst 2 6 6

Burst 4 6 6

degree) in the delivery of tuples. Such simulation of tuple delivery allows for cor-

relating application timestamps on a tuple to the system clock, and to demand

results corresponding to application time 10 at system (or user) time, say, 10 (or,

aggressively, at an earlier user time, say, 9).

4.2 OVERHEADS IN PRODDING

The benefits of prodding in terms of latency gains will be of interest to a DSMS

developer only if such benefits are not nullified by possible processing overheads

incurred by the prodding technique. Therefore, I first describe the experiments

that examine whether use of prodding has any significant overheads. Table 4.1

compares the latency of the final results obtained with and without employing the

prodding mechanism for three different data streams. The data streams and the

corresponding queries used for the comparison experiments in this section are from

among those I use in the Delay and Burst experiments in Sections 4.3.1 and 4.3.2,

respectively. (Compare the data stream ids in Table 4.1 to those in the Tables 4.2

and 4.3.)

As the Table 4.1 shows, the latencies for final results obtained with and without

prodding are very close. Getting such similar result latencies is reasonable, because
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prods are sparsely present in a data stream, and are processed in constant time.

The closeness of latencies in getting final results with and without prodding shows

that the latency gains obtained through prodding are true gains, and are not

obtained at the expense of delaying the final results, thereby enlarging the gap

between early and final results.

4.3 LATENCY GAINS

In this section, I discuss the results for the experiments that I have run to study the

latency gains and accuracy of early (interchangeably, prodded) results for window-

aggregate queries over data streams. I describe my experiments to evaluate the

prodding technique in case of data streams with delivery delays in Section 4.3.1,

and in case of data streams with bursty data arrivals in Section 4.3.2.

Aggr

Aggr

W1

W2

120s 120s 120s 120s 120s 120s 120s 120s

Sliding Windows

W0

Prodding W1 at 90 seconds in the Slide (P         = 25%)

Prodding W2 at 1  minute in the Slide (P         = 50%)

Figure 4.1: Prodding a Sliding Window with Different Degrees of Prodding Ag-

gressiveness (PAggr)

4.3.1 Latency Due to Data Delivery Delays

Delays in data arrival at a DSMS can lead to latency in computing window query

results over data streams. In a situation where data delivery delays cause such

latency, I expect prodding to provide timely estimates to window query results.

Figure 4.2 shows the result latencies (defined above in Section 4.1) against window-

ids for the paned implementation of the window query
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Figure 4.2: Latency Gains and Accuracy Curves for Q4-1 over Delayed Data Prod-

ded at 90 Seconds in a 2-Minute Slide

Q4-1: Select Sum(volume) from S

Window[Range 10min, Slide 2min]

where S is a prodded punctuated vehicle traffic data stream [1] with the schema

(starttime, volume, speed, occupancy, status). The traffic-data records are deliv-

ered to the system on the fixed reporting schedule of every 20 seconds. Therefore,

on average, 6 records are delivered to the system in a given period of 2 minutes.

Due to the delays in the sensor networks, the arrival gaps between two successive

tuples may be larger than 20 seconds. I use a Streamer operator (as described

in Section 4.1) configured to simulate data delivery at 20-second intervals with

possible (further) delays of up to 20 seconds. As one part of preprocessing for

this experiment, I insert, in the stream S, prods with timestamps such that each

window is prodded for a result at 90 seconds from the beginning of a (120 second)

slide (see Figure 4.1). As another part of preprocessing, I insert an appropriate
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punctuation after every increment by 120 seconds in the application timestamps

on the tuples.

A slide of 120 seconds implies that each new sliding window will end 120 seconds

further in time from its previous window. Therefore, a DSMS user will expect to see

a new Window-Sum every 120 seconds. Note that with the system configuration

described in Section 4.1, processing of 6 new tuples to compute a Sum aggregate

takes a negligible amount of time — the cause of result latency here can only be

the schedule of data delivery to the system.

Notice in Figure 4.2 that the latency gains in the early results are represented

by the gap between the latency graphs for the final (shown by *’s) and the early

(shown by solid triangles) results. The average gain in the result latency of the

early results over the latency in the final results is 616− 568 = 48 seconds. Thus,

for a slide of 2 minutes, we get early results in 120− 48 = 72 seconds on average.

See the accuracy curve at the top in the Figure 4.2. Final results are (100%)

accurate, since the streams are all grammatical with respect to punctuations. Let

Fv denote the final aggregate value for a window and Ev denote the corresponding

early value. I compute the average percentage accuracy (or, simply, accuracy for

the rest of this chapter) of early results as the average of [(Fv - Ev)/Fv] * 100

over all the results. The average accuracy of the early results for Q4-1 is 94.12%.

Such a degree of accuracy may be “good enough” in vehicle-traffic–monitoring

applications to indicate a congestion condition (by correlating the obtained early

volume estimates with the corresponding speed readings). In general, to improve

on the result accuracy, a user may choose to prod less aggressively (by tuning the

source of prodding to prod the DSMS for results after, say, 120 or 125 seconds

from the start of a slide). I study the relationship among prodding aggressiveness,

result accuracy, and latency gains in the early results in Section 4.4.

Computation of the average window result latencies and accuracies in this ex-

periment also includes the readings taken for the windows at the beginning and
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the end of the stream S. Such boundary-windows in a data stream are shorter than

the window range specified in a query, and hence do not represent a typical win-

dow in the query over the given stream. To reduce the contribution of boundary

windows in the experimental results, I observed latency gains of the early results

over longer data streams. I generated data streams of different lengths — spanning

1000, 1500, and 2000 seconds — with data values uniformly distributed. Each of

these three data streams contains about 500 tuples per 30-second window, and

is prodded at 7 seconds into a (10-second) slide during preprocessing. For these

three experimental runs, a Streamer simulates delivery of tuples according to their

application timestamps with added delays of up to 0.5 seconds for every tuple.

Over the generated streams, I executed the paned implementation of the query

Select Max(speed) from S

Window[Range=30 Second, Slide=10 Second].

As shown in Table 4.2, the system produces results with average early result accu-

racy maintained at 98 to 99%, and a steady average latency gain of near 3 seconds.

Table 4.2: Latency Gains over Delayed Data Streams for Various Lengths

Data Stream Id Description Average

Accuracy

Average

Latency

Gain

(Seconds)

Uniform 1000 Uniformly distributed data

stream 1000 seconds long

99.04 2.80

Uniform 1500 Uniformly distributed data

stream 1500 seconds long

99.48 3.02

Uniform 2000 Uniformly distributed data

stream 2000 seconds long

98.11 2.98
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4.3.2 Latency Due to Bursts in Data

Another important reason for high latencies in producing results for window queries

is data-arrival bursts that can temporarily overwhelm the processing capacity of a

system. To study prodding in case of such bursty data arrivals, I use the query

Q4-2: Select Max(counter) from S

Window[Range=5 Second, Slide=1 Second]

where S is a punctuated data stream of wireless network records obtained from

the Dartmouth college campus [15]. S has schema (timestamp, access point name,

counter, message). The values for counter in S are neither monotonically increasing

nor monotonically decreasing. There may be short runs of counter values within

a window that having increasing values of counter.

Query Plan

Bursty Data
Prodder

Subplan
Window−Aggregate

To−do

Expensive

Result Stream

Figure 4.3: Prodder and Expensive Operator in Burst Experiment Query Plan

The Expensive operator: For the experiments in this subsection, it is important

to ensure that the bursty portions of S temporarily overwhelm the system’s process-

ing capacity, while the non-bursty portions of S are processed in a timely manner.

To simulate such effects, I include in my query plan an operator that increases

the per-tuple processing cost by performing some dummy expensive work on each

tuple in the data stream. I call this operator Expensive1 (see Figure 4.3). With

1Rafael Fernandez has introduced, and used the Expensive operator in the experiments for
his PhD thesis.
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Expensive being part of my query plan, the windows that contain bursts of data

take longer to produce aggregate results. Expensive operates as follows: (a) It puts

all the tuples and punctuations it reads in a separate todo list, (b) spawns a thread

that reads tuples one by one from the todo list, performs an expensive operation

on each tuple read, and emits the tuple to the Expensive’s downstream operator

in the query plan, and (c) processes any prod it reads immediately, thereby let-

ting a prod bypass the todo list. Note that such operation of Expensive rescues a

prod from being delayed due to a burst in the data stream with which the prod is

flowing. In a real-world business application, such an Expensive operator may be

some expensive operation such as a Database table access (say, for a join), or an

expensive sub-plan in a query, or a pattern matching operation in case of String

data. For example, in a query like such as

Select count(word) from WordStream

where word foundIn(SomeText)

Window[Range=5 min, Slide=1 min]

where “foundIn” is an expensive search function.

For the experiments with bursty data sets, instead of inserting the prods in the

data stream as a part of preprocessing (like in the delay experiments described in

the previous subsection), I use a Prodder operator, which resides at the beginning

of the query plan (see Figure 4.3), and injects a prod into the data stream at

every 1-second interval of system time. Each prod triggers the prodded-result

computation for a new (1-second sliding) window. Thus, prodding here is used

mainly to get timely results even when the system encounters a data burst.

Figure 4.4 shows the data-arrival patterns in S as the number of tuples per

second. The circled parts of the curve are some of the regions that exhibit spikes

in data arrivals. Data-arrival spikes lead to temporarily high processing loads

for a DSMS Therefore, I expect query Q4-2 to produce results for the windows

corresponding to these spike-affected regions with a higher latency. We may also
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Figure 4.4: Data Arrival Bursts in a Wireless Network

see some prodded results for these windows. Another aspect to notice in Figure 4.4

is that the data burst at the circled region A is followed by a period of low-density

data arrivals, which may allow a DSMS to recover from possible data-processing

backlogs caused by spikes at A. In contrast, the bursts at the circled regions B

and C are followed by medium- to high-density data arrivals. In other words,

regions B and C represent more sustained bursts. Such a sustained burst may

preclude a DSMS from quickly eliminating the data-processing backlog, thereby

causing delays in the result production of some subsequent windows having low

data density.

For the windows that do not contain a data burst, the DSMS finishes the

result computation well before 1 second. For such windows, only the final results

are produced, because a prod (which comes after 1 second from the beginning of a

slide) for these windows is processed by the query operators after the final results

for the prodded window have been already produced. Therefore, while measuring

the latency gains in the burst experiments, I average latencies for only the windows



51

Figure 4.5: Q4-2 over Bursty Data Prodded at 1 Second in a 1-Second Slide

that have an early result.

As we see in Figure 4.4, sustained data bursts occur between windows 62 and

75. (Notice that the chosen bucket size of 1 Second in the figure equals the 1 Second

slide in the query Q4-2.) Therefore, between these two windows, final results are

produced with a high latency (see the latency plot in Figure 4.5). In this burst-

affected region of the stream, the outcomes of prodding become visible in the form

of early results. The effects of query-result-computation delays caused by data

bursts are cumulative, i.e., windows subsequent to the burst-affected windows are

also affected thereby incurring delays in their own result generation. Therefore,

we continue to see the early results until the bursts recede (which happens past

window 80).

Again, the accuracy curve is superimposed on the latency graph. Average

accuracy for the early results is 91.37%. Once again, to counter the contribution of

the boundary window results in the accuracy and latency calculations, I executed

query Q4-2 over twice and four times longer data streams with bursts in them.
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The configuration for the Prodder is unchanged, that is, it prods every second for

a result over a new 1-second slide. The results listed in Table 4.3 show that for

various lengths of bursty data streams, prodding continues to produce sustained

latency gains with average early-result accuracy of more than 97%.

Table 4.3: Latency Gains over Bursty Data Substreams with Various Burst Lengths

Data Stream Id Description Average

Accuracy

Average

Latency

Gain

(Seconds)

Burst 1 Bursty data stream with

˜14000 records

97.62 1.33

Burst 2 Bursty data stream with

˜28000 records

98.38 1.27

Burst 4 Bursty data stream with

˜56000 records

98.65 1.18

4.4 PRODDING AGGRESSIVENESS

Obtaining the right balance between window-query result latency and accuracy

is key in effectively using prodding. In this section, I define prodding aggressive-

ness, and describe my experiments to study how prodding aggressiveness affects

the latency-accuracy balance of early results. In particular, I study how prodding

aggressiveness affects latency gains and result accuracy for the window aggregate

functions Average, Max, Sum, and Count. I expect that result accuracy will vary

with the distribution of data values in a stream. I conduct two sets of experiments
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related to prodding aggressiveness: One using data generated with a uniform dis-

tribution of aggregate-attribute values (Section 4.4.1), and the other using data

generated with a normal distribution of the aggregate-attribute values (Section

4.4.2).

For a source that prods a DSMS to produce results over a window with slide

w at the system time that is p prior to the end (application) time of the window,

I define prodding aggressiveness (PAggr) as the percentage of w covered by p. For

example, for a window that is a result of a 120-second slide w, say from 12.00.00

to 12.02.00PM, if a source prods for results over the window with end application time

of 12.02.00PM at the system time 12.01.30 (that is, 30 seconds prior to the window end

time), then the PAggr of the source is 30/120∗100 = 25%. An alternative way to describe

prodding aggressiveness is: if a source prods a window 90 seconds into a (120-second)

slide, then PAggr is equal to (120− 90)/120 ∗ 100 = 25% (see window W1 in Figure 4.1).

For a given experiment, I measure average percentage latency gain (or, simply latency

gain, for this section) as [(FL−EL)/FL]∗100 where EL is the average latency of all early

results and FL is the average latency of all the corresponding final results. I measure

average percentage early-result accuracy (or, simply accuracy, for this section) as the

average of [(FV −|FV −EV |)/FV ] ∗ 100 over all pairs of early and final results, where FV

is the value of a final result and EV is the value of a corresponding early result.

The data that I use in both the sets of experiments are 95% dense with tuples

distributed more or less uniformly (timestampwise) across a window. By 95% dense, I

mean that the density parameter in my data generator is equal to 95, which indicates

that after generating a tuple with timestamp t, the data generator produces the next

tuple with timestamp t with probability 95%, and with timestamp t + 1 second with

probability 5%. In the experiments in this section, a window ranging over 30 seconds

typically contains about 540 tuples, and an input data stream runs from 0 to 2000

seconds. Using sparser windows would be less useful for two reasons: (a) Sparse windows

do not represent the case of system capacity being overwhelmed by high data volumes.

(b) The early-result accuracy for a sparse window may be largely dominated by the data
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values of the small number of tuples in a window that are processed after a corresponding

prod. The query I use for the experiments in this section is of the form

Select AGGREGATE(value) from S

Window [Range 30 Second, Slide 10 Second]

where AGGREGATE is Average, Max, Sum, or Count.

4.4.1 Uniform Distribution

Figure 4.6: Effects of Prodding Aggressiveness on Average Early-result Accuracy

and Latency Gains over a Stream with Uniform Data Values

Figure 4.6 shows the average window-aggregate query result latency gains (hereafter,

latency gains) and the average result accuracies (hereafter, result accuracies) against

prodding aggressiveness for the aggregate functions Average, Max, Sum, and Count over

a data stream S with the aggregate-attribute values uniformly distributed in the range 0

to 999. See that for all the aggregate functions in the graph, the latency gains increase

about linearly with the increase in the prodding aggressiveness. Such a linear increase

in latency gains is expected, because, the higher the PAggr, the earlier the aggregate

computation gets triggered for each window.

Notice how different degrees of PAggr affect the early result accuracies for the different

aggregate functions. After sampling sufficient data values, Average produces a close to
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correct answer. The 99.53% accuracy for Average when PAggr is equal to 10% decreases

only slightly to 99.03% when PAggr is increased to 50%. More remarkable is the flatness of

the Max accuracy curve — the average accuracy drops from 99.96% to only 99.93% when

PAggr changes from 10 to 50%. Note that to maintain high accuracy for Max, it suffices

that a single value — the true Max for the window or a value close to the true Max — is

covered in the early result computation. Therefore the early result accuracy for Max can

frequently be close to 100% (given that the data are not biased) as we can observe in the

figure for different degrees of prodding aggressiveness. In the Section 4.4.2, we shall see

that the early Max-result-accuracy graph over normally distributed data values shows

similar behavior in terms of maintaining high accuracy despite aggressive prodding.

For Sum and Count, as expected, the accuracy goes down with the increase in PAggr,

because fewer tuples are included in the early result computation. At 50% PAggr, the

average result accuracy for Sum is 79.5% , and that for Count is 79.87%.

4.4.2 Normal Distribution

Figure 4.7: Effects of Prodding Aggressiveness on Average Early-result Accuracy

and Latency Gains over Stream Having Normally Distributed Data Values with

Mean=500 and SD=100

The relationship among prodding aggressiveness, result accuracy, and latency gains
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for window-queries looks similar (to that in case of a uniform distribution) with a normal

distribution of aggregate-attribute values. Figure 4.7 shows the corresponding plots

obtained for a normal distribution of data values with mean equal to 500 and standard

deviation (SD) equal to 100. The accuracy graph for Max once again looks similar to the

Average graph. With SD equal to 100, the true (i.e., final) Max will be relatively (with

respect to higher SDs) close to the mean (because, as per the 68-95-99.7 rule for normal

distribution [7], nearly all values lie within three standard deviations). Therefore, the

early results have a high probability of including the true Max or a close-to–true Max

value in their computation. I executed the same query with normally distributed data

values for larger SDs — viz., SD = 400 and SD = 1000. Figures 4.8 and 4.9 show

the accuracy graphs corresponding to the two experiments. Plots for SD = 400 look

similar to those for SD = 100. For SD = 1000, the Average degrades more quickly,

albeit slightly, than the Max curve, which suggests that a higher variance in data values

has more adverse effects on the accuracy of early Averages than on the early Maxes.

The other two aggregate functions — Sum and Count — once again linearly degrade

in the early result accuracy with increasing PAggr, because proportionately fewer tuples

contribute to the computation.

The average-accuracy graphs for Average and Max in case of both uniformly and nor-

mally distributed data values demonstrate that prodding, in case of these distributions,

can produce low-latency answers for sliding-window Average queries or Max queries over

data streams, without significantly compromising result accuracy. For sliding-window

Sum and Count queries, result accuracy degrades linearly with increase in prodding

aggressiveness.

Worst case accuracies: The results discussed so far speak about the average accu-

racies of the early aggregates over several windows. The usefulness of this measure of

accuracy will be determined by whether an application is concerned more about the av-

erage accuracy of the results over several windows or is sensitive to the lower bound on

the worst-case early-result accuracy. For example, in an application using query Q4-3:

“Give the hourly count of the 5 minute windows having Max(Temperature) above 80

degrees”, it matters more to overall produce Max (Temperature) values that are close to
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Figure 4.8: Effects of Prodding Aggressiveness on Average Early-result Accu-

racy over Stream Having Normally Distributed Data Values with Mean=500 and

SD=400

Figure 4.9: Effects of Prodding Aggressiveness on Average Early-result Accu-

racy over Stream Having Normally Distributed Data Values with Mean=500 and

SD=1000

the true Max most of the time; an extremely inaccurate Max in an odd window affects

the final query output (of hourly count) by just one. In other words, in query Q4-3,

the degree of inaccuracy ceases to matter once the early estimate is below 80 degrees.
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Figure 4.10: Worst-case Accuracies for Early Results for 30-second Sliding Win-

dows over Data Values with SD=400 and Mean=500

Figure 4.11: Worst-case Accuracies for Early Results over 30-Second Tumbling

Windows over Data Values with SD=400 and Mean=500

On the other hand, the degree of inaccuracy may be critical for a query such as Q4-4:

“Give the difference between a Maximum and a Minimum stock price for IBM every

5 minutes”. In such a query, a highly deviant early answer can affect how the market

trends are perceived, thereby rendering the early results unreliable. Figure 4.10 shows

the worst-case accuracy curves corresponding to the average accuracy curves we saw in
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Figure 4.8 (SD = 400). Notice that Average still has high lower bounds (in the mid-90’s)

on the early estimate accuracy, whereas the worst-case accuracies for Max are signifi-

cantly lower than their corresponding average accuracies that we saw in Figure 4.8. The

worst-case accuracies for Count and Sum are lower yet — varying between low-70’s and

mid-50’s for the PAggr varying between 10 and 50%.

Prodding sliding vs. tumbling windows: Notice that the average, and even the worst-

case accuracies, studied so far in this section lie (often vastly) above 50%. Such high

values for accuracy have been possible because of the overlapping computations that

occur within sliding windows. Recall Figure 4.1. When a user (or some other source)

prods a 12-minute window that slides by 2 minutes with a PAggr of 50%, i.e, when the

user demands an early result at 1 minute into the slide, the (time) portion of the window

that contributes to the early result computation is 10 + 1 = 11 minutes, which is 91.66%

of the entire window. It is this overlap of tuples between two successive windows that

makes the sliding windows amicable to prodding. In case of tumbling windows, wherein

every window computes results over a fresh set of tuples, the accuracies (both worst-case

and average), at least in some cases, may degrade well below 50%. Figure 4.11 shows the

worst-case accuracies for Average, Max, Count, and Sum against PAggr for a 30-second

tumbling-window query. As in the earlier experiments, each window contains about 540

tuples and the input data stream runs for about 2000 seconds. As the curves in the figure

indicate, Average maintains reasonable accuracies (degrading from 87.13 to 65.96% with

increasing PAggr). For the other three aggregate functions, the (worst-case) accuracies

of the early result estimates are fairly low for tumbling window queries.

Caution in using prodding: Despite the high early-result accuracies observed in many

of the experiments described in this section, the prodding technique in general should

be used with caution: (a) The tolerable degree of the result approximation for a given

application should be taken into account. For example, getting 98% accurate (2-minute)

sliding window query results a minute early may be a profitable tradeoff in vehicle-traffic

monitoring or financial-trend-detection applications, but unacceptable in case of a fire-

detection application (wherein slight inaccuracy could be intolerable). (b) Any available

knowledge about the data patterns in a stream should be considered. For example, an
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early Max can be particularly vulnerable if data values arrive in ascending order within a

window (such data arrival patterns may be encountered when certain trends are building

at a data source, e.g., increase in traffic volume at the onset of congestion conditions).

(c) The formula to measure accuracy that I have defined in this section may not work

for all types of aggregate operations, and hence may need to be suitably redefined. For

example, some applications may be text-based, and need some other measure of accuracy

such as the Hamming distance between two text strings. An example of an aggregate

that returns a text value is a function that takes a stream of several strings and returns

the closest match to a pre-specified pattern.

Accuracy trends: Although controlling prodding-aggressiveness lets one control the

latency-accuracy balance, we cannot know beforehand how accurate query answers will

be with a specific degree of prodding aggressiveness. But a running value of a DSMS’s

early-result accuracy can be maintained at the output (see Figure 6.4, and the cor-

responding discussion). Based on the running accuracy over a period, the prodding-

aggressiveness can be adjusted. Such an adjustment could be made via an automated

feedback, or the adjustment may be manual, i.e., a user might monitor the degree of ac-

curacy over a period, and decide to prod less aggressively to improve result accuracy, or

prod more aggressively to gain on latency when the result accuracy is already adequate.

4.5 SUMMARY

Prodding can produce timely result estimates for window aggregate queries over data

streams. Some important factors that determine the usefulness of these estimates are:

the tolerable degree of result approximation for an application, the aggregate function

being used in a query, the use of sliding vs. tumbling windows in a query, and data-

arrival and value patterns in a stream. The trick is to achieve the optimum balance

between the latency gains in the early results and the accuracy of those results. Such a

balance can be achieved by fine-tuning the prodding aggressiveness, keeping in mind the

aforementioned factors as they apply to a given application.
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Chapter 5

RELATED WORK

The work related to the idea of generating low-latency early estimates for window-query

results followed by accurate final results can be broadly classified into the following

categories: (a) stream-relational or stream-warehouse systems that handle low-latency

streaming query answers while also maintaining historical integrity, (b) systems that

emit low-latency results followed by possible retractions or negative tuples, (c) DSMSs

that handle bursts through load shedding, and (d) the research in DBMSs on producing

running aggregation-query–result estimates together with confidence intervals for the

estimates. I consider these four categories of related work, one in each section of this

chapter.

5.1 STREAM-RELATIONAL AND STREAM-WAREHOUSING SYSTEMS

Krishnamurthy et al. describe Truviso’s [16] technique to handle very late data by

initially computing partial results, and then consolidating the partials into final results.

For continuous queries, the partial-to-final consolidation occurs immediately, whereas for

static queries over tables, the partials are consolidated into final results lazily, i.e., when

a query demands. Late consolidation allows Truviso to maintain historical integrity by

accounting for substantially late data. Truviso processes all input data by placing them

into appropriate partitions and computing partial results over individual partitions. Data

that arrive after their target partition has closed are processed by the system in a new

partition. The system processes all the partitions in parallel, using separate instances

of a query plan. Therefore, Truviso can serve newly arriving data and simultaneously

process very late data. To limit the total number of active partitions, a background
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process periodically runs over partials to roll up several partial results into a single

partial result.

What relates the prodding technique, which I have described in this thesis, to the

Truviso approach is the similarity between early and final results produced in prodding

and the partial and final results produced by Truviso. Whereas Krishnamurthy et al.

go on to describe the Truviso system architecture, which emphasizes use of parallel pro-

cessing wherever possible, the work in this thesis describes in detail the semantics of

prod processing by the prodding-enabled aggregate operators. The proposed prodding

semantics allow a source (of prods) to prod an entire query plan, thereby including con-

tribution from partial states across a query plan in early-result computation. Moreover,

the prodding technique also opens up ways to counter bursts, by triggering their sidelin-

ing inside an expensive part of a query plan. (Section 6.2 details the idea.) Further, the

prodding technique does not require parallel-processing capabilities. A limitation in the

prodding technique, and perhaps in all the systems that do not handle very late tuples as

in Truviso, is that they need to rely on grammatical nature of data streams with respect

to punctuations to ensure (100%) accuracy of the produced final results.

DataDepot [9], a stream-warehousing system, deals with bursty data arrivals by

prioritizing the updates of (user-specified) important tables to keep them as fresh as

possible. The system deals with delayed data by taking a conservative approach in query

answering, i.e., by computing query answers by including only the data records that are

below the low-water-mark, or the “safe trailing edge” as DataDepot refers to it. A safe

trailing edge is determined by punctuations in a data stream. Note that with window

queries, such a conservative approach would mean that a query cannot produce a result

for a window if part of the window lies above the low-water-mark. In such a situation,

use of prodding would allow the system to produce early estimates of query results. As

we saw in Chapter 4, such early estimates in many cases can be substantially accurate,

especially for sliding-window queries. Moreover, the accurate final results produced on

arrival of corresponding punctuations would help in maintaining the historical integrity

in the data archive.
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5.2 SYSTEMS SUPPORTING RETRACTIONS OR NEGATIVE TUPLES

In their work on CEDR [4], Barga et al. emphasize the need to produce DSMS query

output without blocking for complete (pertinent) data to arrive. They propose produc-

ing such output, and, if needed, retracting the previous output and inserting the correct

revised results. To model and handle such retractions, CEDR uses a tritemporal model

consisting for each event a system time (also called CEDR time) in addition to the event’s

occurrence and validity times. Using the notion of canonical history tables, which are

based on this tritemporal model, authors define three levels of consistency — strong

consistency, middle consistency, and weak consistency — having (from strong to weak

levels) decreasing result production latencies, but increasing chances of retractions. To

allow DSMS users to achieve latency-consistency trade-offs, CEDR enables its operators

with two components: (a) a consistency monitor and (b) an operational module. The

consistency monitor determines for how long to block the input in the operator buffer so

as to maintain the desired level of consistency, whereas the operational module performs

the regular operator function. By adjusting the buffer memory and the blocking to spe-

cific lengths of time, CEDR users can obtain a spectrum of consistency levels. Prodding

allows a DSMS to achieve latency-accuracy balance in a cleaner fashion, by having a prod

specify the exact desired time to see the query results. Moreover, a prod can denote in

its predicates the exact substream for which the system should emit a low-latency result.

Such a fine level of control is not offered in CEDR. Another subtle difference between

retractions in CEDR and prodding is that a retraction will occur only if there are late

tuples that can change the previously produced results, whereas a prodded result will

always have a corresponding final result even if the two results are the same.

Hammad et al. describe use of negative tuples to free sliding windows in a DSMS

from relying for progress on external input tuples or punctuations [11]. The authors

propose using a special operator, which they call Expire. The Expire operator resides

at the beginning of a query plan, and for each tuple, generates a negative tuple to

indicate when that tuple expires from a window. Because the use of negative tuples

generated by the Expire operator is purely based on time, Expire frees the system from
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relying on external input (tuples or punctuations) to ensure progress of sliding windows.

Although prods do not expire any tuples or close any windows, a source of prods does

free the system from relying on the arrival of tuples or punctuations in a data stream

for producing window query results. Furthermore, a user may choose to be aggressive

in prodding, and ask for early estimates to window query results, possibly even before

the application time at which a window should close. Accommodating such aggressive

demands of early query results in the negative tuple approach is unintuitive, because it

would require invalidating tuples before their appropriate expiration time.

5.3 LOAD SHEDDING

Tatbul et al. (using the Aurora DSMS) [25] and Babcock et al. (using the STREAM

DSMS) [3] have proposed load-shedding techniques to handle data-arrival bursts in a

DSMS. Aurora, on encountering a data burst that overwhelms the processing capacity

of the system, drops a subset of windows, thereby producing a subset of the accurate

results (also called subset results). The system uses a WindowDrop operator at the

beginning of a window-query plan. In a bursty situation, WindowDrop probabilistically

decides which (entire) windows to drop. To ensure subset results, WindowDrop marks

each tuple with a flag indicating whether or not the tuple can form a new window.

The goal of WindowDrop is to ensure generation of maximum subsets of original query

answers when the system encounters overwhelming data bursts. Tatbul et al. contrast

the subset-result approach with load shedding on the individual-tuple level. The authors

point out that such tuple-level load shedding leads to production of erroneous results,

whose impact may propagate downstream in the query plan.

The load-shedding technique in STREAM uses random-sampling operations over

input data. To perform sampling, the system uses load-shedding operators, called load-

shedders. Each load-shedder is parameterized with a sampling rate, which is the proba-

bility for including a tuple in a sample at the load-shedder. STREAM determines where

to place the load-shedders and how to set the sampling rate at each of them based on
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the statistics about the data streams such as the observed stream-arrival rates and op-

erator selectivities. To compensate for the aggregates calculated after dropping tuples,

the aggregate values are scaled appropriately to produce unbiased approximate answers.

Prodding currently handles bursts by providing early results using the part of the

window data that the system can process in a timely manner. The technique produces

accurate final answers with unavoidable delays that are caused by bursts. As future

work, I propose sidelining a burst, and processing it at the time of lulls in the system

so that the effects of busrts on the result latencies do not propagate to the subsequent

non-bursty windows. I further describe the idea in Section 6.2.

5.4 ONLINE AGGREGATION

The database counterpart that the prodding technique resembles is the work on online

aggregation by Hellerstein et al. [12]. The online aggregation technique enables users

to control latency-accuracy tradeoffs in results for aggregate queries over large data sets

by letting the users observe and control query execution through an online interface.

The interface gives a running estimate of the aggregate along with a confidence interval

and the percentage query completion. A user can choose to stop the query execution at

any time, say based on whether aggregate estimates are produced within user’s desired

confidence intervals. Thus, users can control the latency-accuracy trade-off for the query

answers on the fly. The online-aggregation interface starts displaying results after pro-

cessing the first tuple and updates the results at a time interval comfortable for a human

observer. Hellerstein et al. propose formulas to compute the confidence intervals that

are applicable to a wide variety of aggregate functions. Online aggregation also achieves

important goals, such as facilitating users’ control of relative progress among groups and

minimizing time to first “useful” estimates.

The online aggregation system does not compel users to pre-specify statistical mea-

sures, thereby eliminating the need for users to perform statistical computations in ad-

vance. The system obtains statistically meaningful estimates by ensuring random access

to the data. Such random data access is ensured by using techniques such as heap scans,
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index scans and sampling from indexes, which are feasible in case of stored data. To

ensure fairness in groupwise result generation, online aggregation may employ techniques

such as hybrid hashing and index striding, which again are available for use over database

systems.

Such control over data access is not possible in case of data streams, wherein the

query result computations may be running even before the entire data needed have

arrived at the system. Therefore, in DSMSs, it is difficult to provide a statistically

meaningful running confidence interval for aggregate-query result estimates. For future

work, I propose displaying a running measure of a DSMS’s overall accuracy of early

results over several windows. Such a measure would allow a user to control the latency-

accuracy balance by tuning prodding aggressiveness. I describe this idea in detail in the

next chapter (Section 6.2). Although the prodding technique allows users to pre-specify

the measure of prodding aggressiveness, such pre-specification by a human user is not

mandatory, because a prodding-enabled DSMS is agnostic of the sources of prods.
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Chapter 6

CONCLUSION AND FUTURE WORK

This research has addressed the low-latency result needs of data-stream applications.

Although the focus of the work has been window-aggregate queries over data streams,

the prodding technique introduced here is extensible to data stream queries in general.

This concluding chapter contains both the summary of the work and possible take-home

messages from this thesis.

In Section 6.1, I describe some key challenges I faced during this research. I believe

that considering these challenges would be useful for a future researcher who takes up

work similar to that in this thesis. I hint at some possible directions for further research

in Section 6.2. Finally, in Section 6.3, I sum up the work in this thesis with some

concluding remarks.

6.1 CHALLENGES

Stream

Prodder
    A

Prodder
    B

Prodder
    C

Prodder
    D

Operator A Operator B Operator C Operator D

Operator−level Prodder

Parameterized Prods

Possible Dedicated Prodders

Stream

Input Output

Figure 6.1: Operator-level Prodding
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Key aspects to consider in taking up work on “low-latency DSMS query-result esti-

mates” are: synchronization among query operators, streaming data delivery, and mea-

suring result-estimate accuracy.

Synchronization: In Chapter 3 (Sections 3.1 and 3.3), we saw why it is desirable to

prod not just an operator but an entire query plan. We saw how the prodding technique

lets a source (of prodding) prod an entire query plan — a prod travels across a query

plan, and sweeps ahead of itself the contributions from states across multiple query

operators. Here I describe an alternative approach to the design of prodding machinery,

which I considered as a candidate.

The idea in the alternative approach is to prod all the operators separately. Figure

6.1 shows how such an architecture would look. The example query plan shown in the

figure has four operators A, B, C, and D, and prodding machinery that prods each

operator individually. Note that the important issue in such a design is to synchronize

the prods in such a way that when an operator is prodded for early results, it has already

received the collective early contribution from all the operators upstream of it. Achieving

such synchronization would be challenging. Suppose all the prods are activated by the

centralized prodding machinery at once, and these prods reach all the operators at the

same time. In such a situation, none of the prodded operators will have any contribution

available from its upstream operators (because all the operators are just prodded). A

possible improvement would be to slightly delay the prods to each successive operator.

But it would be hard to tell with any guarantee what the delay should be, because the

time for interoperator transfer of tuples is not predictable. The main factors affecting

such interoperator tuple-transfer time are operator scheduling and the interoperator

buffer length.

Streaming data delivery: A typical way to test a DSMS’s operation is to read an

input data stream from a file. Such an input stream may be generated by a test-data

generator, which timestamps and punctuates data according to the testing needs. For

example, Microsoft’s StreamInsight team uses an event generator to produce test data

streams according to declarative specifications by a tester [20]. To accommodate a

tester’s desired temporal properties in a generated data stream, StreamInsight’s event
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generator augments generated tuples with suitable application timestamps. The event

generator ensures time progress in a generated data stream by injecting CTI (current

time increment, similar to a punctuation) events in the data stream. Such an approach

of relying on application timestamps and CTIs is useful to test the correctness of DSMS

behavior. But when the tester’s intention is also to study a DSMS’s output latency, which

may be influenced by data delivery aspects — viz., delays and bursts, it is essential to

simulate data delivery to the DSMS in streaming fashion.

Observing a DSMS’s output latency over data streams subject to delivery delays or

bursts has been a central aspect of the work in this thesis. Therefore, it was important

to simulate such aspects in the data delivery to a DSMS. The varying densities in appli-

cation timestamps in my test data streams — obtained from real-world applications and

programmatically generated — represented data bursts. Further, the effects of these

data bursts were simulated by the use of a Streamer operator (introduced in Section

4.1), which fed the data streams to the NiagaraST prodding prototype according to the

application timestamps of the tuples. To simulate the effects of data delivery delays, the

Streamer takes the average tuple-delivery delay as a parameter and delivers tuples with

the specified delays.

Accuracy of the estimates: Once the mechanism to obtain early estimates to DSMS

window-query results is in place, the next step is to measure the accuracy of the esti-

mates obtained. To measure the accuracy of a result estimate, the estimate needs to be

compared with the true final result. Making such comparison at the time of early-result

generation is not possible, because the final result is not yet known. Moreover, even if

such comparison is made when the final result becomes available (as described in sections

3.4, 4.4.2 and 6.2), it is not straightforward to talk about an estimate’s accuracy based

on the early-final result comparison; aggregate result values and their interpretation typ-

ically will be application dependent. An approach might be to facilitate specification of

a user-defined function that compares two values — an estimate and a final, and returns

a quality level for the estimate. When computing the quality level, such a function can

also consider the time gap between the production of the early and the final aggregate

values being compared.
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6.2 FUTURE WORK

This thesis has opened up a few ideas that can be taken up for research in the future. I

describe three such ideas in this section.

(a) Deprioratized burst processing: After emitting an early query result for a window,

a prodding-enabled DSMS continues processing the trailing portion of the data that

belong to the window. In case of a data-burst–affected (or, simply, a burst-affected)

windows, this trailing portion can be large, causing high-latency final-result production

for the window. Such high latency in producing the final result for one window implies

that the DSMS will start processing the subsequent window(s) late (assuming absence

of DSMS-dedicated parallel processing capabilities), thereby possibly delaying their final

result output even though these subsequent windows do not have high data density.

To address this issue, prodding can be empowered with a new tuple-processing strategy

that prevents (final result) delay effects of a data burst on one window from cumulatively

spreading to subsequent non-burst-affected windows. The idea is to sideline the part of

the data after the prod in a burst-affected window and start processing the data from the

next window. The sidelined part of the burst can be processed when the system has excess

processing capacity, say, during an input lull. Figure 6.2 shows a query plan similar to

the one in Figure 4.3, which we saw in connection with the burst experiments described

in Section 4.3.2. Figure 6.2 shows the added burst handling logic, which sidelines, at the

expensive query subplan, the portion of data in the burst-affected window that follows

a prod for the window.

Figure 6.3 shows early and final result curves for the query Q4-2 (from Section 4.3.2)

run without (Figure 6.3(a)) and with (Figure 6.3(b)) the burst-handling logic. Notice the

circled regions in the two graphs. When the trailing portion of data in a burst-affected

window is sidelined, the latency in final results for the several following windows is low.

In other words, the use of burst handling logic has flattened (or punctured) the burst.

Moreover, because the final results in the windows subsequent to the burst-affected one

are not cumulatively delayed, early results are needed less frequently (notice in the Figure

6.3(b) that the number of early results (solid triangles) is much lower than that in Figure



71

Subpaln

Bursty Data
Prodder

To−do

Result StreamBurst
Handling
Logic

Sidelined
Tuples

Query Plan

Expensive

Window−Aggregate

Figure 6.2: Sidelining Portions of Bursty Data

(a) Burst Processing Continued After Prod-Processing

(b) Burst Processing Canceled After Prod-Processing

Figure 6.3: Burst Processing Strategies



72

6.3(a)).

Several aspects of the aforementioned burst-processing strategy need further investi-

gation. For one, Figure 6.3(b) shows the results of an implementation wherein the system

never processes the sidelined portion of the bursts, in effect dropping the sidelined tuples;

thus, the implemented burst-processing technique reduces to load-shedding. The algo-

rithm to handle the sidelined portion of tuples at the expensive portion (or subplan) of a

query seems straightforward. Whenever there is no other tuple to process at Expensive,

pick the next tuple from the sidelined list and process it. But if the system is at least

moderately busy for a decent length of time, the burst-affected windows can be starved

for the production of their final results. Some strategy should be explored to avoid an

indefinite hold on the sidelined portion of tuples, maybe by processing such tuples with

a low priority. For example, the system could be parameterized to process a sidelined

tuple after processing every 3 new tuples. Such a strategy may be termed deprioratized

burst processing.

Another aspect to consider is the grammaticality of results (as discussed in the Sec-

tion 2.2). Until the sidelined burst is processed, the corresponding punctuation cannot

be released. Furthermore, to maintain grammaticality of the query output, none of the

subsequent punctuations can be released, because tuples with older timestamps are yet

to be processed. Therefore, even though the final results for the windows subsequent to

a burst may be ready, these results cannot be emitted by the system. The challenge in

maintaining the grammaticality of the query output may be handled by altering the inter-

pretation of punctuations in the system to range punctuations, as described by Tucker in

his dissertation [27]. A range punctuation on an attribute, say the timestamp attribute,

describes a range (rather than just an upper bound) of timestamps between which no

future tuples will be seen by the system. Use of range punctuations will allow a DSMS to

emit final results (and punctuations) for a non-burst–affected window, while the system

has held up data and punctuations for an earlier burst-affected window. The resulting

out-of-order production of punctuations will not make the result stream ungrammatical,

because a range punctuation covers only a certain range of (say) timestamps rather than

all timestamps below a certain watermark.
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Assessing the suitability of burst sidelining together with the use of range punctua-

tions is a topic for future investigation. The burst-sidelining strategy will be very useful

in applications where, once the early output for a window is used to answer a stream-

ing query, the corresponding final result is not immediately needed, but is eventually

required for the historical integrity of data archives.

Figure 6.4: Monitoring Running Accuracy

(b) Prioratizing substream results: Application of prods for prioritizing early outputs

of subgroups or substreams using the predicate field(s) inside a prod should be studied

further. Although the semantics that I describe in Chapter 3 cover such use of prods,

the benefits of prodding obtained by specifying complex patterns inside a prod predicate

should be tested over data streams from different real-world applications.

(c) Accuracy Monitoring: As we saw in Section 5.4, in a DSMS, it is not possible to

produce a confidence interval for early results using the statistical techniques described

by Hellerstien et al. in their work on online aggregation [12]. In DSMS applications,

such confidence intervals would let the users tune the prodding aggressiveness (PAggr)

for a running query: increase PAggr if the result confidence is adequate and more latency

gains are desirable or decrease PAggr if the confidence intervals are not satisfactory. An

alternative technique that seems feasible for DSMSs is to compute the accuracies of

early results (by comparing them with the corresponding final results when the finals

are produced), and to monitor the overall running accuracy of the system for a given

PAggr. An application user can then assess the ongoing overall accuracy, and if needed,

adjust the PAggr. More ambitiously, such adjustment can be automated via a feedback
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mechanism. Figure 6.4 gives a schematic of the feedback idea.

6.3 CONCLUDING REMARKS

Because of the inherent possibility of delays or bursts in data streams, a DSMS appli-

cation cannot control the result latency of window queries over data streams without

potentially compromising the accuracy of results. What a DSMS can control is the

latency-accuracy tradeoff for the results. Using the prodding technique, a DSMS can

generate window query result estimates — whose latency can be controlled by the sys-

tem — followed by accurate final window query results.

The prod-processing mechanism ensures that partial states accumulated across a

query plan contribute to the computation of early result estimates. In other words, the

proposed prodding technique sweeps an entire query plan for a result, and not just the

topmost aggregate operator (in the plan).

The prodding prototype developed in NiagaraST has been useful for evaluating the

benefits of early results — I measured the latency gains and the accuracy of early query

results over data streams having different data-arrival patterns and different patterns in

the aggregate-attribute values.

Based on the results observed in my experiments, I believe that the prodding tech-

nique can be beneficial in various scenarios — the technique can produce early query-

result estimates whose utility can be optimized by tuning the prodding aggressiveness.

I remark that such tuning should be done considering the specific latency and accu-

racy needs of business, and if available, knowledge about patterns in the incoming data

streams.
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[10] Golab, L., and Özsu, M. T. Processing sliding window multi-joins in continu-

ous queries over data streams. In Proceedings of the 29th international conference

on Very large data bases - Volume 29 (2003), VLDB ’2003, VLDB Endowment,

pp. 500–511.

[11] Hammad, M., Aref, W. G., Franklin, M. J., Mokbel, M. F., and Elma-

garmid, A. K. Efficient Execution of Sliding-Window Queries Over Data Streams,

2003.

[12] Hellerstein, J. M., Haas, P. J., and Wang, H. J. Online aggregation. SIG-

MOD Rec. 26 (June 1997), 171–182.

[13] Johnson, T., Muthukrishnan, S., Shkapenyuk, V., and Spatscheck, O.

A heartbeat mechanism and its application in gigascope. In VLDB ’05: Proceed-

ings of the 31st international conference on Very large data bases (2005), VLDB

Endowment, pp. 1079–1088.

[14] Kang, J., Naughton, J. F., and Viglas, S. D. Evaluating Window Joins over

Unbounded Streams. In In ICDE (2003).

[15] Kotz, D., Henderson, T., Abyzov, I., and Yeo, J. CRAW-

DAD data set dartmouth/campus (v. 2009-09-09). Downloaded from

http://crawdad.cs.dartmouth.edu/dartmouth/campus, Sept. 2009.

[16] Krishnamurthy, S., Franklin, M. J., Davis, J., Farina, D., Golovko, P.,

Li, A., and Thombre, N. Continuous analytics over discontinuous streams. In



77

SIGMOD ’10: Proceedings of the 2010 international conference on Management of

data (New York, NY, USA, 2010), ACM, pp. 1081–1092.

[17] Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A. No pane, no

gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD

Record 34 (2005), 2005.

[18] Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A. Semantics

and evaluation techniques for window aggregates in data streams. In SIGMOD ’05:

Proceedings of the 2005 ACM SIGMOD international conference on Management

of data (New York, NY, USA, 2005), ACM, pp. 311–322.

[19] Naughton, J., Dewitt, D., Maier, D., Aboulnaga, A., Chen, J., Galanis,

L., Kang, J., Krishnamurthy, R., Luo, Q., Prakash, N., Ramamurthy, R.,

Shanmugasundaram, J., Tian, F., Tufte, K., and Viglas, S. The Niagara

Internet Query System. IEEE Data Engineering Bulletin 24 (2001), 27–33.

[20] Raizman, A., Ananthanarayan, A., Kirilov, A., Chandramouli, B., and

Ali, M. An extensible test framework for the Microsoft StreamInsight query pro-

cessor. In Proceedings of the Third International Workshop on Testing Database

Systems (New York, NY, USA, 2010), DBTest ’10, ACM, pp. 2:1–2:6.

[21] Ramakrishnan, R., and Gehrke, J. Database Management Systems. McGraw-

Hill, Inc., New York, NY, USA, 2003.

[22] Silberschatz, A., Korth, H. F., and Sudarshan, S. Database Systems Con-

cepts. McGraw-Hill Higher Education, 2001.

[23] Srivastava, U., and Widom, J. Flexible time management in data stream sys-

tems. In PODS ’04: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems (New York, NY, USA, 2004), ACM,

pp. 263–274.



78

[24] Tatbul, N., and Zdonik, S. Window-aware load shedding for aggregation queries

over data streams. In VLDB ’06: Proceedings of the 32nd international conference

on Very large data bases (2006), VLDB Endowment, pp. 799–810.

[25] Tatbul, N., and Zdonik, S. Window-aware load shedding for aggregation queries

over data streams. In Proceedings of the 32nd international conference on Very large

data bases (2006), VLDB ’06, VLDB Endowment, pp. 799–810.

[26] Torsten Grabs, Roman Schindlauer, R. K. J. G. Introducing Microsoft

StreamInsight. White paper, Microsoft SQL Server 2008 R2 StreamInsight, Septem-

ber 2009. Available online (26 pages).

[27] Tucker, P. A. Punctuated Data Streams. PhD thesis, 2005. AAI3184366.

[28] Tucker, P. A., Maier, D., Sheard, T., and Fegaras, L. Exploiting punctu-

ation semantics in continuous data streams. IEEE Transactions on Knowledge and

Data Engineering 15 (2003), 2003.


	Portland State University
	PDXScholar
	1-1-2011

	Low-latency Estimates for Window-Aggregate Queries over Data Streams
	Amit Bhat
	Let us know how access to this document benefits you.
	Recommended Citation


	tmp.1373056213.pdf.z8hPB

