
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Summer 8-7-2015

Tweakable Ciphers: Constructions and Applications
Robert Seth Terashima
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Theory and Algorithms Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Terashima, Robert Seth, "Tweakable Ciphers: Constructions and Applications" (2015). Dissertations and Theses. Paper 2484.

10.15760/etd.2481

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2484?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2481
mailto:pdxscholar@pdx.edu

Tweakable Ciphers: Constructions and Applications

by

Robert Seth Terashima

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Thomas Shrimpton, Chair

John Caughman IV
James Hook
Mark Jones

Charles V. Wright

Portland State University
2015

Abstract

Tweakable ciphers are a building block used to construct a variety of cryptographic

algorithms. Typically, one proves (via a reduction) that a tweakable-cipher-based

algorithm is about as secure as the underlying tweakable cipher. Hence improving

the security or performance of tweakable ciphers immediately provides correspond-

ing benefits to the wide array of cryptographic algorithms that employ them. We

introduce new tweakable ciphers, some of which have better security and others of

which have better performance than previous designs. Moreover, we demonstrate

that tweakable ciphers can be used directly (as opposed to as a building block) to

provide authenticated encryption with associated data in a way that (1) is robust

against common misuses and (2) can, in some cases, result in significantly shorter

ciphertexts than other approaches.

i

Table of Contents

Abstract i

List of Tables iv

List of Figures v

Glossary of Abbreviations vi

1 Introduction 1
1.1 Notes on source material . 4

2 Preliminaries 5
2.1 Cryptographic primitives . 5
2.2 Game-playing proofs . 10
2.3 The birthday bound . 14

3 The LRW2 Tweakable Blockcipher 16
3.1 Prior TBC constructions . 16
3.2 The LRW2 TBC . 18

4 Wideblock Tweakable Ciphers 39
4.1 Motivation: full-disk encryption . 40
4.2 Previous constructions . 42
4.3 The Protected IV framework . 47
4.4 Concrete Instantiations of PIV . 51

4.4.1 Targeting efficiency at birthday-type security: TCT1 56
4.4.2 Aiming for beyond birthday-bound security: TCT2 59
4.4.3 Additional practical considerations 61
4.4.4 Instantiating Ṽ with conventional encryption 64

4.5 VCV design and implementation . 66
4.5.1 Removing finite field multiplication 67
4.5.2 Implementation . 67
4.5.3 Benchmarks . 68

ii

5 AEAD from Tweakable Ciphers 71
5.1 Encoding schemes . 75
5.2 AEAD via encode-then-encipher . 77
5.3 Proof of Theorem 7 . 81
5.4 Proof of Theorem 8 . 83

6 Conclusion 86
6.1 Subsequent work . 86
6.2 Looking forward . 88

Bibliography 89

iii

List of Tables

4.1 Computational costs of various wideblock tweakable ciphers 43
4.2 Primitives used by TCT1 and TCT2 54
4.3 VCV performance . 69

iv

List of Figures

3.1 The LRW tweakable blockcipher . 16
3.2 The LRW2 TBC . 19
3.3 Comparison of LRW2 security to birthday-bound security 20
3.4 Distance between oracle and ideal cipher outputs 25

4.1 FDE architecture . 39
4.2 Wideblock tweakable cipher constructions 44
4.3 Comparison of TCT1 and TCT2 security bounds 46
4.4 The PIV construction . 47
4.5 The TCT2 construction . 57

v

Glossary of Abbreviations

The table below contains a list of acronyms, with references to the text. Acronyms
for various wideblock tweakable ciphers appear in Table 4.1 (pg. 43).

AE Pg. 3 Authenticated Encryption: A type of cryptographic algorithm that
protects both the privacy and integrity of data.

AEAD Pg. 3 Authenticated Encryption with Associated Data: An AE algorithm
that also protects the integrity of unencrypted associated data.

AES Pg. 8 Advanced Encryption Standard: A widely used 128-bit blockcipher.
AEZ Pg. 3 (Not an acronym): Refers to both an AEAD algorithm and the wideblock

tweakable cipher from which it’s built.
CBC Pg. 40 Cipher block Chaining Mode: An encryption algorithm.
CTR Pg. 43 Counter Mode: An blockcipher-based encryption algorithm.
GCM Pg. 3 Galois Counter Mode: An AEAD algorithm.
IV Pg. 40 Initialization Vector: A input to an encryption algorithm that prevents

similar/identical plaintexts from generating related ciphertexts.
LRW Pg. 17 Liskov Rivest Wagner: A TBC with birthday-bound security. May also

refer to a disk-encryption algorithm that uses this TBC.
NH Pg. 56 Non-Linear Hash: A universal hash function.
OCB Pg. 2 Offset Tweak-based Code Book: An extremely fast AEAD algorithm.
PIV Pg. 47 Protected IV Mode: A modular framework for constructing wideblock

tweakable ciphers.
PRP Pg. 7 Pseudo-Random Permutation: A blockcipher is a PRP if it “looks

random” to a chosen-plaintext attacker.
SPRP Pg. 7 Strong Pseudo-Random Permutation: A blockcipher is a SPRP if it

“looks random” to a a chosen-ciphertext attacker.
STPRP Pg. 8 Strong Tweakable Pseudo-Random Permutation: A TBC is a

STPRP if it “looks random” to a a chosen-ciphertext attacker .
TBC Pg. 1 Tweakable Blockcipher: A generalization of a blockcipher, where each

key provides a large number of pseudorandom permutations.
TCT Pg. 42 Tweak-Counter-Tweak: TCT1 and TCT2 are wideblock tweakable ci-

phers offering birthday-bound and beyond-birthday bound security, respec-
tively.

TCTR Pg. 53 Tweaked Counter Mode: A wideblock tweakable cipher.
TPRP Pg. 8 Tweakable Pseudo-Random Permutation: A TBC is a TPRP if it

“looks random” to a chosen-plaintext attacker.
VCV Pg. 66 VHASH-Counter-VHASH: A wideblock tweakable cipher construction.
VHASH Pg. 67 (Not an acronym): A universal hash function.
XEX Pg. 17 XOR-Encrypted-XOR: A TBC with birthday-bound security.
XTS Pg. 15 XEX-based tweaked-codebook mode with ciphertext stealing: A

TBC with birthday-bound security.

vi

1. Introduction

A fundamental issue in cryptography is identifying assumptions that are both rea-

sonable and useful. For example, the assumption that factoring large numbers is

infeasible is generally regarded as satisfying both criteria.

In symmetric-key cryptography (i.e., cryptography where two or more parties

start with a shared secret), one often begins by assuming there exists some secure

blockcipher. Briefly, an n-bit blockcipher is an algorithm that takes two inputs: a

(random, secret) key and an n-bit string X, and outputs a second n-bit string, Y .

Anyone who knows the key can recover X from Y . The blockcipher is secure insofar

as absent knowledge of this key, the mapping from X-values to Y -values appears

random. Given a secure blockcipher, one can construct a variety of provably-secure

cryptographic algorithms, including encryption schemes and message-authentication

codes.

In a seminal paper [30], Liskov, Rivest, and Wagner argue that despite the past

popularity of blockciphers, blockciphers are the “wrong” primitive to start with. The

authors propose tweakable blockciphers (TBCs) as an alternative. A TBC functions

similarly to a regular blockcipher, except that it takes an additional input: a τ -bit

tweak. Instead of one random-looking mapping between n-bit strings, a TBC provides

2τ such maps — one for each tweak. To a third party that does not know the key,

each map should each appear random and independent of the others. This should

remain true even if the third party knows the corresponding tweak values.

1

TBCs are thus a much more powerful primitive than traditional blockciphers,

so it’s natural to wonder if a secure TBC could be constructed without being pro-

hibitively slow. Liskov, Rivest, and Wagner, however, showed how to build an efficient

TBC from a blockcipher in such a way that the former inherits (most of) the latter’s

security, and doesn’t incur too much of a performance loss.

Subsequent work has helped validate the paper’s central thesis that TBCs are

not only useful, but significantly more useful than traditional blockciphers. Rog-

away’s Offset Code Book (OCB) [48, 46] is an excellent case study, because it was

initially conceived of as a blockcipher-based algorithm [48], rather than TBC-based

one. When recast in terms of a TBC [46], an act which simply required viewing some

of OCB’s internal machinery as a single black box, the length of its security proof

dropped from from 19 pages to two. Moreover, although one would expect starting

with a more-powerful primitive to induce overhead, the change in perspective actu-

ally revealed opportunities for stream-lining the algorithm by removing unnecessary

machinery. This provides a rather compelling case for further investigating TBCs as

a cryptographic tool.

All TBCs are functionally equivalent in the sense that one could replace, e.g.,

OCB’s TBC with essentially any other TBC, and the resulting OCB variant would

inherit the new TBC’s performance and security characteristics. Thus, any advance-

ment in the design of TBCs has the potential to impact a wide array of cryptographic

algorithms. This raises the question,

How can we improve the performance and/or security properties of TBCs?

We shed some light on the answer. We define and prove the security properties

of LRW2 (which consists of two rounds of the TBC construction by Liskov, Rivest,

and Wagner [30]), as well as the two Tweak-Counter-Tweak constructions, TCT1, and

2

TCT2. (We introduced all three of these algorithms in prior publications [29, 53].)

Finally, we also refine TCT1 to produce VHASH-Counter-VHASH (VCV), a novel

TBC construction, and provide benchmarks for an implementation. These bench-

marks demonstrate that VCV likely1 outperforms competing “wideblock” TBCs in

software when AES is used as the underlying blockcipher. (AES is a widely supported

128-bit blockcipher.) The recent AEZ [23] algorithm is faster than VCV, but AEZ

offers a security proof only under a heuristic assumption.

Finally, we describe some of our other results from [53], which show how wideblock

TBCs, such as VCV, can be used to provide authenticated encryption with associ-

ated data (AEAD). (AEAD not only prevents a third party from learning information

about the plaintext, but it also prevents him from tampering with the ciphertext to

induces changes in a perhaps partially known plaintext.) The resulting ciphertexts

can, in some situations, be much shorter than could be achieved using traditional

methods. This results in significantly less bandwidth overhead when sending numer-

ous short messages, which in turn may lead to power savings for wireless devices.

Moreover, the algorithm is “nonce-misuse resistant” — it can continue to provide a

high degree of security even when programmers make certain types of mistakes when

using it. VCV out-performs the industry-standard Galois Counter Mode (GCM) [35]

by about 37% on older machines (Intel Core Duo), and is over twice as fast on newer

ones (i7-4770), despite having a strictly stronger set of security properties. The afore-

mentioned AEZ algorithm by Hoang, Krovetz, and Rogaway uses this TBC-to-AEAD

approach, built from a stripped-down version of AES.

1With the exception of AEZ, discussed later, were unable to obtain any optimized software im-
plementations of competing constructions, making comparisons difficult. However, these competing
constructions are required to perform certain computations sequentially (i.e., without the possibility
of software pipelining), permitting us to use a subset of these computations to establish a lower
bound on running times.

3

1.1 Notes on source material

Parts of this work appear in previous publications [29, 53] that were produced with

coauthors.

The LRW2 algorithm was first described in CRYPTO ’12 [29], coauthored with

Shrimpton and Landecker (this paper referred to the algorithm as CLRW2). The

LRW2 design and its security proof were my contribution to the paper; Shrimpton

assigned me the task of finding a TBC construction with beyond birthday-bound

security, and edited my proof write-up. Both Shrimpton and Landecker provided

valuable sounding boards in the search for viable constructions. The CRYPTO paper

includes other TBC-related results to which I was not a contributer, but LRW2 is the

paper’s central result.

The PIV tweakable cipher framework and its instantiations, TCT1 and TCT2,

originally appeared in an ASIACRYPT ’13 paper [53], coauthored with Shrimpton.

I had decided to pursue a “wideblock” tweakable cipher construction while interning

at Voltage Security. I devised and wrote the proofs, while Shrimpton edited them

and provided essential guidance in how to package and present the results. The other

results in this paper concern using wideblock tweakable ciphers to provide AEAD.

Although I again devised and wrote the proofs, this was a relatively minor task com-

pared to deciding what to prove; as best I can recall, these were joint decisions that

emerged over the course of several conversations. I believe the initial idea to inves-

tigate AEAD was Shrimpton’s, while the idea for handling multiple error messages

(and using these as a model for certain side channels) was mine.

The VCV variant is a modest but, I hope, worthwhile improvement on TCT1; its

design and implementation are my own work.

4

2. Preliminaries

This chapter introduces some standard cryptographic definitions and concepts. Read-

ers with a background in cryptography may safely skim or skip it.

Section 2.1 introduces the syntax of various cryptographic primitives, as well as

their associated security definitions. Next, Section 2.2 provides an example of a

“game-playing proof”. This type of proof is common in cryptography, and we shall

make extensive use of it. Finally, Section 2.3 describes the so-called “birthday para-

dox”, which plays a role in limiting how much data can be securely processed by

various cryptographic algorithms. We discuss it here because finding TBC construc-

tions that avoid the birthday paradox is one of our main contributions.

2.1 Cryptographic primitives

Blockciphers. An n-bit blockcipher is an invertible function that uses a secret key

to encrypt an n-bit string, producing an n-bit string as output. This mapping between

n-bit strings should appear essentially random to anyone who lacks knowledge of

the key. As previously discussed, blockciphers are a primitive used to construct

higher-level cryptographic algorithms (such as encryption algorithms that can encrypt

arbitrarily long bit strings).

More formally, we denote the set of n-bit strings as {0, 1}n, and the set of all

(finite) binary strings as {0, 1}∗. Let Perm (n) denote the set of all permutations on

{0, 1}n.

5

Definition 1 (Blockciphers). Let n and k be positive integers. A function E :

{0, 1}k × {0, 1}n → {0, 1}n is a blockcipher if for each key K ∈ {0, 1}k, EK(·) :=

E(K, ·) ∈ Perm (n).

This describes the syntax of blockciphers, but we still need to define what it

means for a blockcipher to be secure. Informally, a blockcipher E is secure if, given a

random key K, EK “looks like” a random permutation to those who don’t know the

key. Because the number of keys, 2k, is typically much less than |Perm (n)| = 2n!,

EK cannot be a uniformly random permutation; however, we can hope that as long

as K remains secret, no one will be able to distinguish it from one in practice.

In order to make this statement formal, we need to introduce the notion of an

adversary.

Adversaries and oracles. An adversary A is an algorithm that is provided with

black-box access to zero or more functions, O1, . . . ,O`, called oracles. That is, A

can query an oracle Oi at a point x to learn Oi(x). However, A doesn’t learn any-

thing about the oracle’s behavior at other points that couldn’t be inferred from this

information. We typically limit the number of queries an adversary is permitted to

make in order to model the presumed computational resource limitations of an attack.

Both adversaries and oracles may be probabilistic, and oracles may also retain state

between invocations. We write AO1,...,O` ⇒ b to denote the event that A outputs b

when equipped with the indicated oracles. Note that in general, b will be a random

variable whose distribution is governed by the (probabilistic) behavior of both A and

its oracles.

An adversary is adaptive if each of its queries can depend on the results of previous

queries. Adversaries are always assumed to be adaptive unless we explicitly state

otherwise.

6

(Strong) PRP security. Given a finite set S, letX
$←− S denote thatX is a random

variable uniformly distributed on S; in particular, K
$←− {0, 1}k indicates that K is

a random k-bit key and π
$←− Perm (n) is a random permutation on the set of n-bit

strings. Let K and π be so defined. To capture the notion that no one can efficiently

distinguish EK from π, we define the pseudorandom permutation (PRP) advantage

of an adversary A against E as:

Advprp
E (A) := Pr

[
AEK ⇒ 1

]
− Pr [Aπ⇒ 1] .

The intuition here is that A is some algorithm that submits a sequence of queries

x1, . . . , xq to an oracle O, receiving O(x1), . . . ,O(xq) as replies. Then A attempts to

guess if O = EK , in which case A outputs 1, or if O = π, in which case A outputs

0. If A always guesses correctly, then Advprp
E (A) = 1; if A doesn’t do better than

random guessing, then Advprp
E (A) = 0.

Similarly, we define the strong pseudorandom permutation (SPRP) security of A

against E as:

Advsprp
E (A) := Pr

[
AEK ,E

−1
K ⇒ 1

]
− Pr

[
Aπ,π

−1 ⇒ 1
]
.

Note that here, A is provided access to two oracles. So not only can A encrypt

messages of its choosing, it can also use its second oracle to decrypt ciphertexts of its

choosing.

Now, A could simply enumerate all 2k possible key values and output 1 if and

only if there is some key K ′ such that EK′(xi) = O(xi) for each i = 1, 2, . . . , q. For

typical n and k (e.g., n = k = 128), 2k � |Perm (n)|. In this case, Pr [Aπ⇒ 1] ≈ 0

for even modest values of q, while Pr
[
AEK ⇒ 1

]
= 1, giving us Advprp

E (A) ≈ 1.

7

But this “brute-force” strategy is not feasible for, e.g., 128-bit keys. Hence we will

usually restrict the class of adversaries under consideration to those running in time t

in some implicit model of computation; we informally deem E a PRP if Advprp
E (A) is

small (say, 2−60) for any A in this class. The consensus among cryptographers is that

there are blockciphers, such as AES, for which Advprp
AES(A) can safely be assumed to

be negligible for any A with realistic time constraints.

Tweakable blockciphers We are now in a position to define tweakable blockci-

phers and their close cousins, tweakable ciphers.

Definition 2 (Tweakable blockcipher.). Let k, τ , and n be positive integers. A

function Ẽ : {0, 1}k ×{0, 1}τ ×{0, 1}n×{0, 1}n is a tweakable blockcipher (TBC) if

for each key K ∈ {0, 1}k and tweak T ∈ {0, 1}τ , ẼK(T, ·) := Ẽ(K,T, ·) ∈ Perm (n).

Abusing notation, Ẽ−1
K (T, Y) is the unique X such that ẼK(T,X) = Y .

In other words, once equipped with a key, a TBC provides a family of permu-

tations — one for each tweak — whereas a traditional blockcipher provides only one.

This means that a TBC with key space {0, 1}k and tweak space {0, 1}τ is syntacti-

cally a blockcipher with key space {0, 1}k+τ . The distinction arises in the security

definition.

(Strong) TPRP security. Just as we defined a blockcipher’s security in terms of

its indistinguishability from a random permutation π, we define a tweakable blockci-

pher’s security in terms of its indistinguishability from Π, a family of (independent,

uniform) random permutations.

Fix positive integers τ , and n, and let

Π
$←− {f : {0, 1}τ × {0, 1}n → {0, 1}n : For all T ∈ {0, 1}τ , f(T, ·) ∈ Perm (n)} .

8

Again abusing notation, let Π−1(T, Y) be the unique X such that Π(T,X) = Y .

We define the (strong) tweakable pseudo-random permutation (TPRP) advantage

of an adversary A against Ẽ as:

Advp̃rp

Ẽ
(A) := Pr

[
AẼK ⇒ 1

]
− Pr

[
AΠ⇒ 1

]
,

Advs̃prp

Ẽ
(A) := Pr

[
AẼK ,Ẽ

−1
K ⇒ 1

]
− Pr

[
AΠ,Π−1 ⇒ 1

]
,

with probabilities over the randomness of A and the random variables K
$←− {0, 1}k

and Π. In other words, Ẽ is secure if, when equipped with a random secret key, A

is unable to tell it apart from a family of independent, random permutations. Note

that because A has oracle access to either ẼK or Π, A’s queries are of the form

(T,X) ∈ {0, 1}τ ×{0, 1}n —A gets to choose which tweak is used on any given query.

Tweakable ciphers are a generalization of TBCs. While a TBC can only operate

on fixed-length inputs, a tweakable cipher does not necessarily have this restriction;

however, a tweakable cipher must preserve the lengths of its inputs.

Given S ⊆ N, define {0, 1}S =
⋃
n∈S {0, 1}

n. Then:

Definition 3 (Tweakable ciphers). Fix a set S ⊆ N and positive integers k and τ .

Then a function Ẽ : {0, 1}k × {0, 1}τ × {0, 1}S → {0, 1}S is a tweakable cipher if

for any key K ∈ {0, 1}k, tweak T ∈ {0, 1}τ and positive integer n ∈ S, ẼK(T, ·) ∈

Perm (n) when restricted to n-bit inputs.

Hence, if Ẽ is a tweakable cipher, then
∣∣∣ẼK(T,X)

∣∣∣ = |X| for all (K,T,X) ∈

dom(Ẽ).

Definition 4 ((Almost) ∆-universal hash functions). Fix positive integers k, `, and

n, and let ε be a positive real number. Let + be a group operator on {0, 1}n. Let

H : {0, 1}k × {0, 1}` → {0, 1}n, and define HK(·) = H(K, ·). Then H is ε-almost

9

∆-universal (ε-A∆U) with respect to + if, for any C ∈ {0, 1}n and any distinct

X,X ′ ∈ {0, 1}`, Pr [HK(X)−HK(X ′) = C] ≤ ε. The probability is over the random

variable K
$←− {0, 1}k.

This is a strictly combinatorial property of H; there are no adversaries or com-

putational assumptions in this definition. If H is ε-A∆U with respect to ⊕ (bitwise

XOR; i.e., componentwise addition modulo two), then we refer to H as being ε-almost

XOR-universal (ε-AXU). Note that, in this case, addition and subtraction are the

same operation.

2.2 Game-playing proofs

We will often need to bound an expression of the form Pr
[
AR⇒ 1

]
−Pr

[
AI ⇒ 1

]
,

where A is some adversary and R and I are oracles (typically I will be some mathe-

matically ideal oracle, such as a random permutation, while R will be some real-world

object, such as a blockcipher equipped with a random key, whose security we are in-

vestigating).

To bound these expressions, we will make extensive use of so-called game-playing

proofs. The game-playing framework [5] was introduced by Bellare and Rogaway as

a means to facilitate cryptographic proofs. The framework is especially helpful in

reasoning about the sorts of conditional probabilities that arise when trying to prove

the (in)effectiveness of arbitrary adversaries. Because adversaries are permitted to

choose queries based on the results of earlier queries, this sort of reasoning can be

difficult and error-prone.

We first write an explicit program that, given A, describes the operation AR.

Because this program captures an interaction between A and an oracle, we refer to it

as a game. Then, starting from a first game, G0(A), we construct a sequence of games

10

G0(A), G1(A), . . . , Gn(A) such that Gn(A) behaves identically to AI (i.e., for any A,

the outputs of Gn(A) and AI are identically distributed). Typically, G0(A) will just

consist of “glue” that relays queries from A to R and responses from R to A, while

Gn(A) will do the same with respect to I. The interesting work lies in designing the

remaining games.

We have immediately that

Pr
[
AR⇒ 1

]
− Pr

[
AI ⇒ 1

]
=

n−1∑
i=0

(Pr [Gi(A)⇒ 1]− Pr [Gi+1(A)⇒ 1]) .

Now, instead of finding an upperbound for the left-hand side directly, we can find up-

perbounds for each individual term on the right-hand side. We construct intermediate

games G1(A), G2(A), . . . , Gn−1(A) with the aim of simplifying this task.

Example: Distinguishing a random function from a random permutation.

As an example, let ρ
$←− {f : {0, 1}n → {0, 1}n} be a random function mapping {0, 1}n

to {0, 1}n, and let π
$←− Perm (n) be a random permutation. We will show that for any

adversary A making at most q queries, Pr [Aπ⇒ 1] = Pr [Aρ⇒ 1] ≤ q2/2n. What

follows is essentially an annotated and semi-formal version of Black and Rogaway’s

proof [5].

The outline of our proof is as follows: We can define the random permutation π

by pulling values from the set {0, 1}n at random one at a time without replacement

to generate π(0), π(1), . . . , π(2n − 1) (we identify elements of {0, 1}n with integers in

the appropriate range). So let G0(A) generate π in this manner, and then use it to

respond to A’s queries. Alternatively, we could define π though lazy sampling : when

the adversary submits a new query X, we pull a value Y from {0, 1}n at random

without replacement and set π(X) = Y . Because this doesn’t change the distribution

11

on π, the adversary can’t tell the difference; hence, if we let G1(A) define π in this

manner, then we have

Pr [Aπ⇒ 1] = Pr [G0(A)⇒ 1] = Pr [G1(A)⇒ 1] .

Working from the other end, we can choose ρ by sampling ρ
$←− {f : {0, 1}n → {0, 1}n}

and use this to create game G4(A). Or, we could define ρ through lazy sampling —

this time choosing its output values by drawing from {0, 1}n with replacement to

create G3(A). We have:

Pr [Aρ⇒ 1] = Pr [G4(A)⇒ 1] = Pr [G3(A)⇒ 1] .

Now, the only difference between games G1 and G3 is that the former samples values

without replacement, whereas the latter samples them with replacement. But for

even modest values of n (say, n = 128) and a large number of queries (say, q = 240),

A will only be able to query a small fraction of the domain {0, 1}n. So intuitively, it

seems like our decision about whether or not to sample with replacement would be

unlikely to affect A’s output. We now proceed to make this argument quantitative.

Suppose that instead of sampling values without replacement, we sample values

until we happen upon one that hasn’t been chosen before, and then return that one

(we assume q ≤ 2n). It may take us a longer time to return a result, but we haven’t

actually changed distribution of π. And recall that an adversary accesses oracles in a

black-box fashion: it learns the value returned by a query, but nothing else. So let’s

use this method of defining π for G2(A).

Suppose, however, that you were the adversary, and, as a thought experiment,

that you were in fact able to watch some Oracle literally pulling numbers out of a

12

hat. How could easily could you tell the Oracle of G2(A) (which “loops” until it finds

a new value) apart from the Oracle of G3(A) (which always returns the first value

it draws)? The only way you could learn any information would be if the Oracle

happened to sample a previously chosen value, at which point the distinction would

be obvious. The Oracle’s behavior in the two games doesn’t diverge until this point

is reached — one could imagine that he even isn’t informed of what game he’s playing

unless this happens, so you can’t learn anything by watching him until then.

Games G2 , G3

Oracle f(X):

Y
$←− {0, 1}n

if Y has previously been returned then
bad ← true

Resample Y
$←− {0, 1}n until Y has not been previously returned

return Y

Listing 2.1: In Game G2, which includes the boxed statement, the oracle f imple-
ments a random permutation using lazy sampling. In Game G3, which excludes the
boxed statement, f instead implements a random function. An adversary’s ability to
distinguish one from the other is upperbounded by the probability that bad is ever
set to true.

We make this somewhat more formal by explicitly writing out the pseudocode for

these two games in Listing 2.1. The code for the two games differs only within an if

block, and this block begins by setting the boolean flag bad to true. (We adapt the

convention, here and throughout, that boolean values are initialized to false). As this

boolean value is monotonic — it can change from false to true but not the other way

around — the fundamental lemma of game-playing [5] tells us that

|Pr [G2(A)⇒ 1]− Pr [G3(A)⇒ 1]| ≤ Pr [G2(A) ; bad] = Pr [G3(A) ; bad] .

13

That is, the probability of bad being set is the same in either game, and is an upper-

bound for A’s advantage in distinguishing the two games.

But the probability of setting bad on a particular query is at most q/2n. Therefore,

using a union bound, the probability that this flag will ever be set is Pr [G3(A) ; bad] ≤

q2/2n. Collecting earlier results gives us Pr [Aπ⇒ 1]−Pr [Aρ⇒ 1] ≤ q2

2n
, as desired.

2.3 The birthday bound

The advantage of an adversary is typically a function of the number of queries that

it is permitted to make. For example, we will encounter a few TBCs Ẽ that are

built from a blockcipher E and have the property that for any adversary A making q

queries and running in time t, there exists some PRP adversary B making q queries

and running in time t′ ≈ t such that

Advp̃rp

Ẽ
(A) ≤ Advprp

E (B) +
cq2

2n+1
,

for some modest constant c. That is, A cannot “break” Ẽ unless there is some B (with

similar computational resources) that can “break” E. We have previously described

this informally by saying that Ẽ inherits E’s security.

But this statement tacitly assumes that cq2 � 2n+1. Security bounds that have an

O(q2/2n) term are referred to as having “birthday bounds”. This term is a reference

to the so-called birthday-paradox, which states that, given a room with q people and a

year with 2n days, the probability that there will be two people who share a birthday

is upperbounded by q2/2n. (This upperbound is a good approximation for smaller

values of q, and assumes that dates of birth are independent).

Birthday bounds are ubiquitous in cryptography — we saw an example in Sec-

tion 2.2. Roughly speaking, they arise when an algorithm with n bits of state “looks

14

random” unless an adversary can cause an internal state to be repeated.

In many cases, a birthday bound is not a problem. Consider the 128-bit AES

blockcipher: if q < 240, then q2/2128 < 2−48 ≈ 0.1 So an encryption algorithm with

birthday-bound security that uses AES can safely make 240 AES calls (assuming AES

is itself secure); because each AES block is 16 bytes, this corresponds to roughly 16

terabytes of data. However, there are circumstances where a birthday-bound becomes

problematic: when q can become large, or when n is small.

The former could occur when large amounts of data are processed or stored. For

example, the 16TB above becomes about 3.5TB if one uses the standard XTS [34]

disk-encryption algorithm where c = 4.5 [37]; it drops to under a terabyte if one

requires a 2−50 security bound instead of a 2−48 bound.

Similar problems emerge when n is small. Lightweight blockciphers have received

much attention recently (see, for example, the survey by Cazorla, Marquet, and Minier

[9]), where n ∈ {32, 48, 64} is typical. For n = 64, a security bound of even 2−40

requires q < 12, which translates to only 32KB. A TBC with a θ(q3/22n) security

bound, such as our LRW2 algorithm, raises this limit to about 5GB.

1We have asserted that 2−48 ≈ 0, begging the question of what numbers are “close enough” to
zero. This is ultimately a question of context and judgement. One can view the security bound as
the probability of a cryptographic attack succeeding; hence, a bound of 2−30 (roughly 1 in a billion)
may be sufficient for encrypting innocent text messages, while one may want a significantly lower
bound, such as 2−70, if one is protecting nuclear launch codes.

15

3. The LRW2 Tweakable Blockcipher

The previous chapter outlined scenarios in which a TBC with beyond birthday-bound

security would prove valuable. This chapter describes our LRW2 construction, which

guarantees such a bound. We begin in Section 3.1 with an overview of prior TBC

constructions. Section 3.2 introduces LRW2 and provides a proof of its security; the

proof is rather involved, and constitutes the bulk of this chapter.

3.1 Prior TBC constructions

Figure 3.1: The LRW TBC.

Blockcipher-based constructions. In their

seminal paper [30], Liskov, Rivest, and Wag-

ner propose two n-bit tweakable blockcipher con-

structions, both based on some underlying n-bit

blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n.

The first construction Ẽ : {0, 1}k × {0, 1}n ×

{0, 1}n → {0, 1}n is defined as Ẽ(T,X) =

EK(T ⊕ EK(X)). This TBC has birthday-bound

security: given an adversary A making q queries

and running in time t, there exists some other adversary B making q queries and

running in time t′ ≈ t such that Advp̃rp

Ẽ
(A) ≤ Θ

(
q2

2n

)
+ Advprp

E (B). However, Ẽ has

since received little attention because the two blockcipher invocations prevent it from

being competitive with the second construction in terms of performance. (Also note

16

that the length of the tweak must be the length of the block.)

The second construction, LRW : {0, 1}k+k′ × {0, 1}τ × {0, 1}n → {0, 1}n, requires

some ε-AXU hash function H : {0, 1}k
′
× {0, 1}τ → {0, 1}n. Given H and E, we

define LRW[H,E]K ‖K′(T,X) = HK′(T)⊕ EK(HK′(T)⊕ EK(X)). See Figure 3.1.

This LRW construction has a similar security bound to the first, provided that

ε = θ(2−n). Such a bound is obtainable using, for example, the polynomial hash [56]

PolyHash : {0, 1}n × {0, 1}nm → {0, 1}n given by

PolyHashK(X1X2 · · ·Xm) =
∑

XiK
i.

Here, multiplication and addition take place in the finite field F2n ; PolyHash is m/2n-

AXU by the Fundamental Theorem of Algebra.

The XE and XEX [46] TBCs likewise obtain birthday-bound security.

Minematsu’s TBC [38] can obtain better than birthday-bound security, but the

tweak length τ must be less than half of the block length n. Moreover, it requires

two blockcipher invocations to compute, and must re-key one of the underlying block-

ciphers each time the tweak changes. This incurs a significant performance penalty

because re-keying is an expensive operation intended to be amortized over multiple

blockcipher calls. On Intel’s Haswell chips, for example, the aeskeygenassist in-

struction must be invoked ten times to setup a 128-bit AES key; it has an inverse

throughput of eight cycles. (That is, although more than eight cycles may elapse

between when a single aeskeygenassist instruction is issued and when it completes,

the hardware pipeline can complete pending aeskeygenassist instructions at a rate

of one every eight cycles.) In contrast, the aesenc and aesenclast instructions,

which must also be invoked a combined ten times per AES call, have an inverse

throughput of only a single cycle [7].

17

Dedicated constructions. Building a TBC from a blockcipher allows the latter

to inherit the security of the former, with some loss. However, it’s natural to wonder

if constructing a TBC “from scratch” would provide a more efficient construction

(and perhaps provide more security, as well). The difficulty here is that establishing

the security of blockciphers from first principles has eluded cryptographers; instead,

specific blockciphers are only deemed trustworthy after withstanding years of expert

scrutiny. This problem is at least as hard in the context of TBCs, because TBCs are

more powerful objects.

Nonetheless, there have been attempts at constructing TBCs without using some

underlying blockcipher. The Hasty Pudding [52] cipher predates the formalization

of tweakable ciphers, and was an entry in the AES competition. Ferguson et al.

invented Threefish [17] for use with the Skein hash function, a finalist in the SHA-3

competition. More recently, Jean, Nikolić, and Peyrin [26] proposed constructions

that modify AES to support tweaks directly.

3.2 The LRW2 TBC

The centerpiece of this section is a TBC construction that provides beyond birthday-

bound security, admits a large tweakspace, and does not require re-keying of any

underlying object.

Given a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and a hash function family

H : KH×D → {0, 1}n, the LRW2 construction LRW2[H,E] : (KH)2× ({0, 1}k)2×D×

{0, 1}n → {0, 1}n is given by

LRW2[H,E]h1,h2,K1,K2(T,X) = LRW[H,E]h2,K2(T, LRW[H,E]h1,K1(T,X))

= EK2(EK1(X ⊕Hh1(T))⊕Hh1(T)⊕Hh2(T))⊕Hh2(T).

18

See Figure 3.2.

Figure 3.2: The LRW2TBC consists of two independently-keyed rounds of LRW
chained together. Both rounds use the same tweak.

The following theorem establishes LRW2’s security.

Theorem 1. Fix k, n > 0 and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.

Fix a non-empty set KH , and let D ⊆ {0, 1}∗. Let H : KH × D → {0, 1}n be an

ε-AXU function family. Let Ẽ = LRW2[H,E] be the LRW2 construction, defined

above. Let A be an adversary asking a total of q queries to its oracles, running in

time t. Let ε̂ = max{ε, 1/(2n − 2q)}. Then there exists an adversary B using the

same resources, such that

Advs̃prp

Ẽ
(A) ≤ 2Advsprp

E (B) +
4q3ε̂2

1− q3ε̂2
.

This bound requires some interpretation. Consider ε ≈ 2−n (since there are ef-

ficient constructions meeting this, such as PolyHash), and assume q ≤ 2n−2. Then

ε̂ ≤ 1/2n−1 ≈ 2−n for interesting values of n. Now the additive term in the bound is at

most p when q ≤ (p/(p+6))1/3ε̂−2/3, so for any small constant p we have q = O(22n/3).

Thus when Advsprp
E (B) is sufficiently small, LRW2 is secure as a tweakable-SPRP up

to about 22n/3 queries.1 Figure 3.3 gives a graphical comparison of our bound and

1We note that Advsprp
E (B) will be at least t/2k ≈ q/2k by exhaustive key search so, q = 22n/3

requires k > 2n/3, which is met by AES (k = n = 128) and DES (k = 56, n = 64).

19

0

1

S
ec
u
ri
ty

b
ou

n
d

0 20 40 60 80 100

log2 q

TCT2
TCT1
EME

Figure 3.3: The maximum advantage of an adversary making q queries against LRW2
(solid line) and constructions limited by the birthday bound, q2/2n (dashed line).
Here, n = 128, ε = 2−n, and we have assumed the Advsprp

E (B) term is negligible.

the standard birthday bound.

Proof overview. The proof of Theorem 1 is quite long and involved, so we’ll start

by giving a high-level overview of it. Proofs demonstrating birthday-bound security

for TBC constructions typically “give up” if the adversary can cause a collision at a

blockcipher input. In constructions like LRW and XEX, the TBC output is no longer

random, even when the blockcipher has been replaced by a random permutation. We

overcome this problem by using two rounds of LRW2, and showing that it takes two

independent collisions on the same query to force non-random LRW2 outputs.

The chief difficulty is ensuring that the second LRW2 round can withstand a

collision so long as there was not also one on the first round. To this end, we argue that

given a collision-free first round, the resulting distribution of LRW2 output values —

including those which require a second-round collision to obtain — is extremely close

to that of an ideal TBC.

The bulk of the proof is a sequence of games bounding the success probability of

an adversary in the information-theoretic setting, where the blockciphers have been

replaced by random permutations. The first three games address first-round collisions,

20

and show that the distribution of LRW2 outputs is consistent with that of an ideal

cipher unless there is simultaneous a second-round collision. Our next three games

address the case in which there is no first-round collision. By swapping the order

in which dependent random variables are assigned values, we can choose the output

early on in the game, and gain insight into the distribution by which it is governed.

This distribution is shown to be very close to the ideal one. The final two games are

used to derive an upper bound for the probability that the adversary can set a “bad

flag”, which would force the game to exhibit non-ideal behavior. In the end, we are

able to assume that the adversary is non-adaptive by giving it explicit control over

oracle return values. At that point, the ε-AXU property can be applied.

Proof. For notational simplicity, we write h1 for Hh1 , and h2 for Hh2 ; this should

cause no confusion. The majority of the proof will consider the construction LRW2

with EK1 and EK2 replaced with random permutations π1 and π2, which we write

as LRW2h1,h2,πi,π2 . At the end we can make a standard move to lift to the fully

complexity theoretic setting.

Let A be an adversary making q queries. If the i th query is to the left (encryption)

oracle, we denote the query with (Ti, Xi) and the response with Yi; if the query is to

the right (decryption) oracle, the roles of Xi and Yi are reversed. We denote by Yi

the set of permissible (tweak-respecting) return values for an encryption oracle query,

and similarly, Xi is the set of permissible return values for a decryption oracle query.

That is,

Yi = {0, 1}n \ {Yj : j < i, Tj = Ti}

Xi = {0, 1}n \ {Xj : j < i, Tj = Ti} .

Given a set S ⊆ {0, 1}n and a string x ∈ {0, 1}n we define S ⊕ x = {s⊕ x : s ∈ S}.

21

The permutations π1 and π2 are constructed lazily, while h1 and h2 are already defined.

Initially, boolean variables have the value false, integers are zero, and all other variable

types are undefined (equal to ⊥).

Game G4 of Listing 3.1 (pg. 33) simulates LRW2 exactly by lazily sampling values

for π1 and π2. Note that there is a certain symmetry between the encryption and

decryption oracles. This symmetry arises from the fact that LRW2 is the dual of

LRW2−1, in the sense that LRW2−1
h1,h2,π1,π2

(Y, T) = LRW2h2,h1,π
−1
2 ,π−1

1
(Y, T).

The bulk of this proof concerns showing that a sequence of games are identical, or

are identical until a specified event occurs (a boolean variable is set to true). When

arguing that transitions between games are correct in this sense, we will exploit the

above symmetry by limiting our discussion to changes in the encryption oracle, and

hence to queries made to that oracle; the arguments used to justify the corresponding

changes in the decryption oracle are practically identical. Therefore fix some value

i ∈ [1..q], and assume the i th query is to the encryption oracle.

In Game G5 of Listing 3.2 (pg. 34), we change what happens when there is a

collision at the first block cipher: we sample Yi from the ideal distribution, but raise

a bad flag if we also encounter a collision at the input of second block cipher (bad1)

or if Yi is already in the defined range (bad2). Game G6, in the same listing, is

identical to Game G5, except Yi is not reassigned after a bad flag is set. Hence

Pr [G4(A)⇒ 1] = Pr [G5(A)⇒ 1] ≤ Pr [G6(A)⇒ 1] + Pr [G6(A) : bad1 ∨ bad2] .

Next we modify the section of code in Game G6 that is executed when no collision

occurs at π1; i.e., when Xi ⊕ h1(Ti) 6= Xj ⊕ h1(Tj) for all j < i. Note that the random

variables Z and Yi are dependent. In Game G6, Z is chosen before Yi, but as long

as the joint distribution as preserved we may reverse this order. The resulting game

will be equivalent to Game G6. As always, the decryption oracle will be modified in

a similar manner.

22

To describe the correct distribution for Yi, partition {0, 1}n into four sets, S1,

S2, S3 and S4. These sets are defined with respect to an oracle query (Ti, Xi) such

that no collision occurs at π1; that is, such that Xi ⊕ h1(Ti) 6∈ Dom (π1). (When

referring to Dom (·) outside of pseudocode, we refer to the set of points at which the

function is defined at the instant the adversary makes its i th oracle call [and similarly

for Rng (·)]; the game currently being used to define the oracle should be clear from

context). For y ∈ {0, 1}n, we say y is permissible when y ∈ Yi, and y is possible when

Pr [Yi = y] > 0, given our assumption that Xi ⊕ h1(Ti) 6∈ Dom (π1) and the oracles’

execution histories for the first i− 1 queries.

Let S4 be the set of all non-permissible values. Note that if y is not permissible

(it has been returned on a query that used tweak Ti), then y is not possible (since

LRW2(Ti, ·) is a permutation and queries are distinct); hence S4 is a subset of the

impossible values. Let S3 be the set of impossible values that are permissible.

We now subdivide the set of possible values based on the conditional branch on

Line 6 in Game G6. Some values for Yi will only be returned if the choice of Z causes

a collision at π2, while others can only be assigned in the absence of such a collision;

the former will be S2, the latter S1. More formally, one can see that y is not possible

if and only if y ⊕ h2(Ti) ∈ Rng (π2) and π−1
2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng (π1)

Therefore let S1 = {y : y ⊕ h2(Ti) 6∈ Rng (π2)}, and let S2 be the set of all other

possible values.

23

In summary,

S1 = {y : y ⊕ h2(Ti) 6∈ Rng (π2)}

S2 =
{
y : y ⊕ h2(Ti) ∈ Rng (π2) , π−1

2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng (π1)
}

S3 = Yi \ (S1 ∪ S2)

=
{
y : y ⊕ h2(Ti) ∈ Rng (π2) , π−1

2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng (π1)
}
\ Yi

S4 = Yi = {Yj : j < i, Tj = Ti} .

When these sets are used in pseudocode, it is understood that they are defined at

the time the oracle call is made; although Rng (π1) (for example) may change as code

executes, S2 does not change until the next query. When referred to by a decryption

oracle, the definitions for these sets are the same up to the previously mentioned

duality.

We will now compute the probability that Yi will be in each of these sets (again,

under the assumption that there is no collision at the first block cipher; i.e, that

Li = Xi ⊕ h1(Ti) 6∈ Dom (π1)). Since S3 and S4 contain only impossible values,

Pr [Yi ∈ S3 ∪ S4 | Li 6∈ Dom (π1)] = 0. Let N =
∣∣∣Rng (π1)

∣∣∣. Given y ∈ S2 and

Li 6∈ Dom (π1), Yi = y if and only if Z = π−1
2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h2(Ti). This

value is in Rng (π1) by definition of S2, and so this event happens with probability

1/N . Hence,

Pr [Yi ∈ S2 | Li 6∈ Dom (π1)] = |S2| /N, and

Pr [Yi ∈ S1 | Li 6∈ Dom (π1)] = (N − |S2|)/N.

Ideally, Yi would be distributed as pTBC(y) := Pr
[
Y

$←−Yi ; Y = y
]

= 1/(2n −

|S4|) (for y 6∈ S4) and zero otherwise. However, we have shown that if there is no

24

collision at π1 on the i th query, then Yi is distributed as

plazy(y) := Pr [Yi = y | Li 6∈ Dom (π1)] =

N−|S2|
N |S1| if y ∈ S1

1
N

if y ∈ S2

0 if y ∈ S3 ∪ S4

See Figure 3.4.

Figure 3.4: The distribution governing an oracle output Y in Game G6 given a
collision at the first blockcipher input (solid line) compared to the distribution an ideal
cipher would provide (dashed line). For most parameters of interest, the statistical
distance between these distributions will be negligible.

Although this distribution is not quite what we want, we will show that it is close

enough (even against birthday-type attacks). In particular, the statistical distance

δ(plazy, pTBC) :=
1

2

∑
y∈{0,1}n

|plazy(y)− pTBC(y)| = max
S⊆{0,1}n

∑
y∈S

(plazy(y)− pTBC(y))

will be on the order of q2/22n. Geometrically, this quantity corresponds to half the

shaded area in Figure 3.4. It can also be viewed as the area above pTBC but below

plazy (or the other way around).

We integrate statistical distance into the game-playing proof by exploiting the

25

existence of a optimal coupling distribution Γ(plazy, pTBC) (see, e.g., Lemma 11.3 of

[40]). This distribution samples points from {0, 1}n × {0, 1}n and has the property

that when (Y, Y ′)
$←− Γ(plazy, pTBC):

1. For all y ∈ {0, 1}n, Pr [Y = y] = plazy(y) and Pr [Y ′ = y] = pTBC(y).

2. Except with probability δ(plazy, pTBC), Y = Y ′.

So in Game G7 (pg. 35), we sample (Y, Y ′)
$←− Γ(plazy, pTBC) and return Y . But

we also need to lazily sample a point Z for π1 that is consistent with our choice. If

Y ∈ S2, then our decision is forced. On the other hand, if Y ∈ S1, then we can choose

any value for Z ∈ S ′ = Rng (π1) ∩ {z : z ⊕ h1(Ti)⊕ h2(Ti) 6∈ Dom (π2)}. Sampling

Z
$←− S ′ uniformly satisfies the need for the joint distribution on (Z, Yi) to be identical

in Games G6 and G7; e.g., in Game G7, for any fixed z ∈ S ′:

Pr [Z = z] = Pr [Z = z | Yi ∈ S1] Pr [Y ∈ S1] =
1

|S ′|

(
N − |S2|

N

)
=

1

N
.

(By construction, |S ′| = N − |S2|).

Thus Pr [G6(A) ; bad1 ∨ bad2] = Pr [G7(A) ; bad1 ∨ bad2] and Pr [G6(A)⇒ 1] =

Pr [G7(A)⇒ 1] .

Then in GameG8, we return Y ′ instead of Y after sampling (Y, Y ′)
$←− Γ(plazy, pTBC).

Since Y 6= Y ′ only with probability δ(plazy, pTBC), most of the time these two games

will behave identically. We set bad3 when they do not:

Pr [G7(A) ; bad1 ∨ bad2]− Pr [G8(A) ; bad1 ∨ bad2] ≤ Pr [G8(A) ; bad3] ,

Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1] ≤ Pr [G8(A) ; bad3] .

Now that we return Y ′ instead of Y , the random variable Y serves no direct

26

function. So in Game G9, we forgo assigning Y . Instead, we sample Yi
$←−Yi, and

then set bad3 with probability δ(plazy, pTBC). Values for π1 and π2 are chosen as before.

Thus, Games G8 and G9 are equivalent.

At this point, Yi is always sampled from Yi, and once assigned, its value is never

changed.

In Game G10, we give the adversary control over what value is assigned to Yi (or

Xi, in the case of decryption queries), but insist that the value be in Yi or Xi, as ap-

propriate. Because the adversary can compute Yi and Xi, it may simulate the oracles

of Game G9 if desired; hence, he can set the bad flags in Game G10 with probability

at least as high as any adversary can set the corresponding flags in Game G9. The

oracle’s outputs are now deterministic, and may be (trivially) computed by the adver-

sary in advance. Hence, we may assume without loss of generality that the adversary

is non-adaptive.

For the rest of this proof, all probabilities will be with respect to the experiment

G10(A) (unless the experiment is explicitly stated).

Let Q be the event that for there exist i, j, and k (with j, k 6= i) such that

Xi ⊕ h1(Ti) = Xj ⊕ h1(Tj) and Yi ⊕ h2(Ti) = Yk ⊕ h2(Tk). That is, Q indicates the

i th query is responsible for collisions at both π1 and π2. Our strategy is to show that

Q is extremely unlikely, since it requires two independent collisions involving a single

query. Barring such a query, we can show that the probability of a bad flag being set

is very small.

By definition of Q and the ε-AXU property of H,

Pr [Q] ≤
q∑
i=1

∑
j,k 6=i

Pr [h1(Tj)⊕ h1(Ti) = Xj ⊕Xi] Pr [h2(Tk)⊕ h2(Ti) = Yk ⊕ Yi]

< q3ε2.

27

Define

βj = max
Ã

(
Pr
[
ÃG10 : badj | ¬Q

])
, and

βj(i) = max
Ã

(
Pr
[
ÃG10 : badj on query i | ¬Q

])
.

We consider the event in the latter definition to “trigger” even if it has also triggered

on an earlier query. (This definition assumes q is not so large that Pr [¬Q] = 0, but

since our bound becomes vacuous before this threshold, this is not an issue.) When

bounding βj(i), we will assume the i th query is made to the encryption oracle; as

before, the other case is symmetric.

Because bad2 can only be set if the conditions for Q are met, we immediately have

that β2 ≤ Pr [Q] ≤ q3ε2.

Note that bad1 is set on query i if and only if there exist j, k < i such that

Xi ⊕ h1(Ti) = Xj ⊕ h1(Tj) and π1(Li)⊕ h1(Ti)⊕ h2(Ti) = π1(Lk)⊕ h1(Tk)⊕ h2(Tk),

where we remind the reader that Li = Xi ⊕ h1(Ti). Our goal now is to bound

β1(i) = Pr [∃k < i : π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q]

· Pr [∃j < i : Li = Lj | ¬Q] ,

where, for brevity, we introduce R(i, k) = h1(Ti)⊕ h2(Ti)⊕ h1(Tk)⊕ h2(Tk).

Because queries are unique and LRW2(Ti, ·) is a permutation, Li = Lj is only

28

possible if Ti 6= Tj, bringing the ε-AXU property into scope. Hence

Pr [∃j < i : Li = Lj | ¬Q] =
Pr [∃j < i : Li = Lj ∧ ¬Q]

Pr [¬Q]

≤ Pr [∃j < i : Li = Lj]

1− q3ε2
≤ qε

1− q3ε2
.

We now wish to bound

Pr [∃k < i : π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q]

(this is other factor in our bound for β1(i)), so assume that there is some j < i such

that Li = Lj and that ¬Q.

Fix k ∈ [1..i− 1]. Consider the case that Li = Lk. Then π1(Li) = R(i, k) is

equivalent to h1(Ti)⊕ h1(Tk) = h2(Ti)⊕ h2(Tk). Because queries must respect per-

tweak permutivity, Ti 6= Tk; hence by the ε-AXU property of H, in this case β1(i) ≤ ε.

On the other hand, if Li 6= Lk, we will trace the execution history of the game

backwards to when the values eventually assigned to π1(Li) and π1(Lk) become deter-

mined. Define root(x) = min {m : Lx = Lm}. Let i′ = root(i), and let k′ = root(k).

Since Li = Lj for some j < i, it follows that i′ < i. Therefore, by our assumption

that Q does not occur, there is no ` 6= i′ such that Y` ⊕ h2(T`) = Yi′ ⊕ h2(Ti′). Hence

on query i′, π1(Li) is sampled from a set of size at least 2n− 2q; this sampling occurs

indirectly through the random variable Z, itself sampled either on Line 813 or 836,

depending on which oracle receives query i′.

Now we compute when the value of π1(Lk) = π1(Lk′) is determined. If there

is no ` < k′ such that Y` ⊕ h2(T`) = Yk′ ⊕ h2(Tk′), then π1(Lk′) is likewise sampled

indirectly from a set of size at least 2n−2q. However, if such an ` exists, then π1(Lk) =

π−1
2 (Yk′ ⊕ h2(Tk′))⊕ h2(Tk′)⊕ h1(Tk′), and we are forced to backtrack further to when

29

π−1
2 (Y` ⊕ h2(T`)) = π−1

2 (Yk′ ⊕ h2(Tk′)) was defined. Fortunately, our assumption that

the conditions for Q are not met saves us from having to backtrack far. Let `′ =

min {m : Y` ⊕ h2(T`) = Ym ⊕ h2(Tm)}. Then ¬Q implies `′ = root(`′). Hence on

query `′, π−1
2 (Y`′ ⊕ h2(T`′)) = π−1

2 (Y` ⊕ h2(T`)) is sampled, through Z, from a set of

size at least 2n−2q. In the first of these two cases, let r = k′; in the second, let r = `′.

After query r completes, the value which will be assigned to π1(Lk) is deterministic.

Suppose without loss of generality that i′ > r. Then π1(Li) = π1(Lk)⊕R(i, k)

only if on query i′, π1(Li) = π1(Li′) is assigned the unique value that makes the

former equation true; this happens with probability at most 1/(2n − 2q).

Let ε̂ = max(ε, 1/(2n − 2q)). Then

Pr [π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q] ≤ ε̂.

We have

β1 ≤
q∑
i=1

β1(i) ≤
q∑
i=1

i−1∑
k=1

qε̂2

1− q3ε̂
<

q3ε̂2

1− q3ε̂2
.

Our final task is to bound Pr [bad3] = δ(plazy, pTBC). For j = 1, 2, 3, define

∆j =
∑

y∈Sj (plazy(y)− pTBC(y)). Since for any y, y′ ∈ Sj, plazy(y) = plazy(y
′) (and

pTBC is constant in these sets), we have:

β3(i) = δ(plazy, pTBC) =
1

2
(|∆1|+ |∆2|+ |∆3|) .

The law of total probability tells us that ∆1 + ∆2 + ∆3 = 0, and, by construction of

S3, ∆3 ≤ 0. Further, since π−1
2 (S4)⊕ h2(Ti)⊕ h1(Ti) ⊆ Rng (π1), we have that for

y ∈ S2: plazy(y)− pTBC(y) = 1/N − 1/(2n − |S4|) ≥ 0. That is, ∆2 ≥ 0.

Therefore either ∆1 ≤ 0 (in which case δ(plazy, pTBC) = ∆2), or ∆1 > 0 (in which

case δ(plazy, pTBC) = −∆3). Hence, δ(plazy, pTBC) ≤ max(∆2,−∆3).

30

The quantity ∆2 can be bounded as follows:

∆2 = |S2|
(

1

N
− 1

2n − |S4|

)
≤ q

N(2n − |S4|)
(2n − |S4| −N)

≤ q

N(2n − q)
(2n −N) ≤ q

N(2n − q)
(2n − (2n − q))

=
q2

(2n − q)2
.

It remains to bound−∆3 = Pr
[
Y

$←−Yi ; Y ∈ S3

]
. Note that Y ∈ S3 only if there

exists j, k < i such that Xj ⊕ h1(Tj) = Xi ⊕ h1(Ti) and Yk ⊕ h2(Tk) = Y ⊕ h1(Ti).

We appeal to the ε-AXU property as before to argue that the probability of such j

and k existing is at most (qε)2.

In both cases, β3(i) = δ(plazy, pTBC) ≤ q2ε̂2. (Recall that ε̂ = max {ε, 1/(2n − 2q)}.)

Therefore β3 ≤ q3ε̂2. By the fundamental lemma of game playing,

Pr
[
ALRW2h1,h2,π1,π2

(·,·),LRW2−1
h1,h2,π1,π2

(·,·)⇒ 1
]

= Pr [G4(A)⇒ 1]

≤ Pr [G6(A)⇒ 1] + Pr [G6(A) : bad1 ∨ bad2]

≤ Pr [G9(A)⇒ 1] + Pr [G9(A) : bad1 ∨ bad2] + 2 Pr [G9(A) : bad3]

≤ Pr [G9(A)⇒ 1] + Pr [G10(A) : bad1 ∨ bad2] + 2 Pr [G10(A) : bad3]

≤ Pr [G9(A)⇒ 1] + β1 + Pr [Q] + 2β3

≤ Pr
[
AΠ(·,·),Π−1(·,·)⇒ 1

]
+

4q3ε̂2

1− q3ε̂2
.

Thus by a standard reduction argument, there exists a B such that

Advs̃prp
LRW2(A) ≤ 2Advsprp

E (B) +
4q3ε̂2

1− q3ε̂2
.

This completes the proof.

31

A note on an error in a previous version. An earlier version of this proof

[29] attempted to, in effect, construct Γ(plazy, pTBC) explicitly — but failed to do so

correctly: we erroneously made a tacit assumption that ∆1 ≥ 0. We thank Gordon

Procter for bringing this mistake to our attention. Procter also helpfully provided

a suggested patch [44], which uses an if/else clause in the game-playing proof to

address the two cases ∆1 ≥ 0 and ∆1 < 0 separately. We believe Procter’s solution

succeeds in fixing the problem. Ultimately, however, we decided to use a coupling

distribution to abstract the details of transitioning from plazy to pTBC. This simplifies

some of the arguments, but admittedly sacrifices some of the explicitness present in

Procter’s proof.

Attacks on simpler variants. Having seen our construction, one may wonder if

simpler variants work. For example, consider LRW2 without the first Hh2(T) XOR

operation, leaving

LRW2h1,h2,K1,K2(T,X) = EK2(EK1(Hh1(T)⊕X)⊕Hh1(T))⊕Hh2(T).

This variation permits a birthday-bound attack. Namely, an adversary could submit

queries in pairs, (Ti, X
′) and (Ti, X

′′), where X ′ and X ′′ are fixed, and a new random

tweak is used for each pair. By remembering the values LRW2(Ti, X
′)⊕ LRW2(Ti, X

′′),

which are independent of Hh2 , it could detect collisions in Hh1 , say by using a

hash table. That is, if Hh1(Ti) = Hh1(Tj), then LRW2(Ti, X
′)⊕ LRW2(Ti, X

′′) =

LRW2(Tj, X
′)⊕ LRW2(Tj, X

′′). The converse is false, but false positives could be

weeded out by testing a small number of X-values. Such an adversary would gain ad-

vantage close to one. Similar variations on LRW2 permit analogous attacks, though we

believe (but have not proven) that omitting the second Hh1(T) XOR operation yields

32

Game G4

Oracle LRW2(T,X):

i← i+ 1; Xi ← X; Ti ← T

Li ← Xi ⊕ h1(Ti)

if Li ∈ Dom (π1) then

Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

if Mi ∈ Dom (π2) then

Yi ← π2(Mi)⊕ h2(Ti)

else

Yi
$←− Rng (π2)⊕ h2(Ti)

π2(Mi)← Yi ⊕ h2(Ti)

else

Z
$←− Rng (π1); π1(Li)← Z

Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

if Mi ∈ Dom (π2) then

Yi ← π2(Mi)⊕ h2(Ti)

else

Yi
$←− Rng (π2)⊕ h2(Ti)

π2(Mi)← Yi ⊕ h2(Ti)

return Yi

Oracle LRW2−1(T, Y):

i← i+ 1; Yi ← Y ; Ti ← T

Ni ← Yi ⊕ h2(Ti)

if Ni ∈ Rng (π2) then

Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

if Mi ∈ Rng (π1) then

Xi ← π−1
1 (Mi)⊕ h1(Ti)

else

Xi
$←−Dom (π1)⊕ h1(Ti)

π−1
1 (Mi)← Xi ⊕ h1(Ti)

else

Z
$←−Dom (π2); π−1

2 (Ni)← Z

Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

if Mi ∈ Rng (π1) then

Xi ← π−1
1 (Mi)⊕ h1(Ti)

else

Xi
$←−Dom (π1)⊕ h1(Ti)

π−1
1 (Mi)← Xi ⊕ h1(Ti)

return Xi

Listing 3.1: Game G4 simulates LRW2 by using lazy sampling to define the random
permutations.

33

Games G5 , G6

Oracle LRW2(T,X):

i← i+ 1; Xi ← X; Ti ← T

Li ← Xi ⊕ h1(Ti)

if Li ∈ Dom (π1) then

Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

Yi
$←−Yi

if Mi ∈ Dom (π2) then

bad1 ← true

Yi ← π2(Mi)⊕ h2(Ti)

else

if Yi ⊕ h2(Ti) ∈ Rng (π2) then

bad2 ← true

Yi
$←− Rng (π2)⊕ h2(Ti)

π2(Mi)← Yi ⊕ h2(Ti)

else

Z
$←− Rng (π1); π1(Li)← Z

Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

if Mi ∈ Dom (π2) then

Yi ← π2(Mi)⊕ h2(Ti)

else

Yi
$←− Rng (π2)⊕ h2(Ti)

π2(Mi)← Yi ⊕ h2(Ti)

return Yi

Oracle LRW2−1(T, Y):

i← i+ 1; Yi ← Y ; Ti ← T

Ni ← Yi ⊕ h2(Ti)

if Ni ∈ Rng (π2) then

Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

Xi
$←−Xi

if Mi ∈ Rng (π1) then

bad1 ← true

Xi ← π−1
1 (Mi)⊕ h1(Ti)

else

if Xi ⊕ h1(Ti) ∈ Dom (π1) then

bad2 ← true

Xi
$←−Dom (π1)⊕ h1(Ti)

π−1
1 (Mi)← Xi ⊕ h1(Ti)

else

Z
$←−Dom (π2); π−1

2 (Ni)← Z

Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

if Mi ∈ Rng (π1) then

Xi ← π−1
1 (Mi)⊕ h1(Ti)

else

Xi
$←−Dom (π1)⊕ h1(Ti)

π−1
1 (Mi)← Xi ⊕ h1(Ti)

return Xi

Listing 3.2: Game G5 behaves identically to Game G4, except we set a flag if either
(1) there are collisions at the inputs to both blockciphers or (2) there is a collision at
the input of the first and the output of the second. Game G6 is the same, except we
resample Yi after setting one of these flags.

34

Games G7 , G8

Oracle LRW2(T,X):

i← i+ 1; Xi ← X; Ti ← T

Li ← Xi ⊕ h1(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Li ∈ Dom (π1) then

Mi ← π1(Li)⊕H
Yi

$←−Yi
if Mi ∈ Dom (π2) then

bad1 ← true

else

if Yi ⊕ h2(Ti) ∈ Rng (π2) then

bad2 ← true

π2(Mi)← Yi ⊕ h2(Ti)

else

(Y, Y ′)
$←− Γ(plazy, pTBC)

Yi ← Y ′;

if Y 6= Y ′ then

bad3 ← true

Yi ← Y

if Yi ∈ S2 then

Z ← π−1
2 (Yi ⊕ h2(Ti))⊕H

else if Yi ∈ S1

Z
$←− Rng (π1) \ (Dom (π2) ⊕H)

π2(Z ⊕H)← Yi ⊕ h2(Ti)

π1(Li)← Z

Mi ← π1(Li)⊕H
return Yi

Oracle LRW2−1(T, Y):

i← i+ 1; Yi ← Y ; Ti ← T

Ni ← Yi ⊕ h2(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Ni ∈ Rng (π2) then

Mi ← π−1
2 (Ni)⊕H

Xi
$←−Xi

if Mi ∈ Rng (π1) then

bad1 ← true

else

if Xi ⊕ h1(Ti) ∈ Dom (π1) then

bad2 ← true

π−1
1 (Mi)← Xi ⊕ h1(Ti)

else

(X,X ′)
$←− Γ(plazy, pTBC)

if X 6= X ′ then

bad3 ← true

Xi ← X ′; Xi ← X

if Xi ∈ S2 then

Z ← π1(Xi ⊕ h1(Ti))⊕H
else if Xi ∈ S1

Z
$←−Dom (π2) \ (Rng (π1) ⊕H)

π−1
1 (Z ⊕H)← Xi ⊕ h1(Ti)

π−1
2 (Ni)← Z

Mi ← π−1
2 (Ni)⊕H

return Xi

Listing 3.3: In Game G7, we use a coupling Γ to sample random variables from the
distribution of Game G6 (plazy) and the distribution of an ideal TBC (pTBC). We
return the former. In Game G8, we return the latter instead.

35

Game G9

Oracle LRW2(T,X):

i← i+ 1; Xi ← X; Ti ← T

Li ← Xi ⊕ h1(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Li ∈ Dom (π1) then

Mi ← π1(Li)⊕H
Yi

$←−Yi
if Mi ∈ Dom (π2) then

bad1 ← true

else

if Yi ⊕ h2(Ti) ∈ Rng (π2) then

bad2 ← true

π2(Mi)← Yi ⊕ h2(Ti)

else

Yi
$←−Yi

V
$←− {w ∈ R : 0 ≤ w ≤ 1}

if V < δ(plazy, pTBC) then bad3
$←− true

if Yi ∈ S2 then

Z ← π−1
2 (Yi ⊕ h2(Ti))⊕H

else if Yi ∈ S1

Z
$←− Rng (π1) \ (Dom (π2) ⊕H)

π2(Z ⊕H)← Yi ⊕ h2(Ti)

π1(Li)← Z

Mi ← π1(Li)⊕H
return Yi

Oracle LRW2−1(T, Y):

i← i+ 1; Yi ← Y ; Ti ← T

Ni ← Yi ⊕ h2(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Ni ∈ Rng (π2) then

Mi ← π−1
2 (Ni)⊕H

Xi
$←−Xi

if Mi ∈ Rng (π1) then

bad1 ← true

else

if Xi ⊕ h1(Ti) ∈ Dom (π1) then

bad2 ← true

π−1
1 (Mi)← Xi ⊕ h1(Ti)

else

Xi
$←−Xi

V
$←− {w ∈ R : 0 ≤ w ≤ 1}

if V < δ(plazy, pTBC) then bad3
$←− true

if Xi ∈ S2 then

Z ← π1(Xi ⊕ h1(Ti))⊕H
else if Xi ∈ S1

Z
$←−Dom (π2) \ (Rng (π1) ⊕H)

π−1
1 (Z ⊕H)← Xi ⊕ h1(Ti)

π−1
2 (Ni)← Z

Mi ← π−1
2 (Ni)⊕H

return Xi

Listing 3.4: Since the previous game discarded one of the coupled random variables,
we no longer use the coupling distribution here. Instead, we sample directly from the
ideal distribution but still set bad3 with probability δ(plazy, pTBC).

36

Game G10

Oracle LRW2(T,X, Y):

i← i+ 1; Xi ← X; Ti ← T

Yi
$←− Y

Li ← Xi ⊕ h1(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Li ∈ Dom (π1) then

Mi ← π1(Li)⊕H
if Mi ∈ Dom (π2) then

bad1 ← true

else

if Yi ⊕ h2(Ti) ∈ Rng (π2) then

bad2 ← true

π2(Mi)← Yi ⊕ h2(Ti)

else

V
$←− {w ∈ R : 0 ≤ w ≤ 1}

if V < δ(plazy, pTBC) then bad3
$←− true

if Yi ∈ S2 then

Z ← π−1
2 (Yi ⊕ h2(Ti))⊕H

else if Yi ∈ S1

Z
$←− Rng (π1) \ (Dom (π2) ⊕H)

π2(Z ⊕H)← Yi ⊕ h2(Ti)

π1(Li)← Z

Mi ← π1(Li)⊕H
return Yi

Oracle LRW2−1(T, Y,X):

i← i+ 1; Yi ← Y ; Ti ← T

Xi
$←−X

Ni ← Yi ⊕ h2(Ti)

H ← h1(Ti)⊕ h2(Ti)

if Ni ∈ Rng (π2) then

Mi ← π−1
2 (Ni)⊕H

if Mi ∈ Rng (π1) then

bad1 ← true

else

if Xi ⊕ h1(Ti) ∈ Dom (π1) then

bad2 ← true

π−1
1 (Mi)← Xi ⊕ h1(Ti)

else

V
$←− {w ∈ R : 0 ≤ w ≤ 1}

if V < δ(plazy, pTBC) then bad3
$←− true

if Xi ∈ S2 then

Z ← π1(Xi ⊕ h1(Ti))⊕H
else if Xi ∈ S1

Z
$←−Dom (π2) \ (Rng (π1) ⊕H)

π−1
1 (Z ⊕H)← Xi ⊕ h1(Ti)

π−1
2 (Ni)← Z

Mi ← π−1
2 (Ni)⊕H

return Xi

Listing 3.5: Game G10 gives the adversary control over Yi values. Such an adversary
can set bad flags at least as easily as adversaries for Game G9 can. Additionally,
adversaries for Game G10 are, without loss of generality, non-adaptive.

37

a construction secure against adversaries constrained to chosen-plaintext attacks.

One might also wish to try setting K2 = K1. While we know of no attacks here,

modifying our proof to accommodate this change would be non-trivial. In particular,

bounding β1 required us to trace back through a game’s execution history to determine

when π1 became defined at particular points; this task would be messier and more

difficult to verify if π2 = π1. Still, this may merit future investigation.

38

4. Wideblock Tweakable Ciphers

File System

Virtual Disk Partition
(Exposes plaintexts)

FDE

Physical Disk
(Stores ciphertexts)

Figure 4.1: FDE works by trans-

parently encrypting data before it

is written to the physical disk.

We have examined TBC constructions that in-

herit the block length of some underlying block-

cipher, typically 64 or 128 bits. In some con-

texts, however, we desire a TBC that operates on

a much larger domain — e.g., 512 or 4096 bytes.

In still other contexts, we desire tweakable ciphers

which, as the reader may recall from Definition 3,

support variable input lengths.

Section 4.1 motivates the study of these so-

called “wideblock” TBCs by discussing the con-

straints that preclude traditional encryption in

the context of full-disk encryption. Next, Sec-

tion 4.2 discusses previous wideblock TBC con-

structions and their limitations. We then introduce the Protected Initialization Vec-

tor framework in Section 4.3. We refer to it as a framework because it contains

two modular components which can be implemented using a variety of algorithms.

Section 4.4 specifies two sets of algorithms to use for these components, yielding

the Tweak-Counter-Tweak wideblock TBCs, TCT1 and TCT2. These two wideblock

TBCs, which we published earlier [53], address some of the limitations of previous

constructions. Finally, in Section 4.5 we refine TCT1 to obtain VCV, and provide

39

benchmarks for our implementation.

4.1 Motivation: full-disk encryption

Most major operating systems include support for full-disk encryption. Windows

uses Microsoft’s BitLocker, Mac OS uses FileVault (or FileVault 2), while Linux

systems, including Android, can use dm-cyrpt. The above systems do not encrypt

individual files; rather, they work at a lower level of abstraction and encrypt disk

sectors. Working at this layer permits encryption to be file-system agnostic and

prevents file-system metadata such as file sizes and directory structure from leaking.

Bitlocker uses cipher block chaining (CBC) encryption, a standard blockcipher-

based algorithm. CBC, like most other standard encryption algorithms, takes an

initialization vector (IV) as one of its inputs. (The purpose of an IV is to prevent

the same message from being encrypted into the same ciphertext every time, and

to prevent similar messages from resulting in similar ciphertexts.) IVs are typically

generated at random and then stored or transmitted along with the ciphertext, but

Bitlocker instead hashes the sector ID to obtain a fixed IV for that sector. FileVault

uses AES-XTS [34], an encryption scheme based on a the XEX TBC that encrypts

each 16-byte block using a tweak obtained by concatenating the sector ID with the

current block’s offset into the sector. Linux’s dm-crypt supports both of these algo-

rithms, among others.

These modes seem sufficient in “stolen-laptop” scenarios (provided the laptop isn’t

stolen while the drive is decrypted), but fail to defend against more sophisticated

attacks. For example, an attacker who can see the encrypted disk image at different

times can determine which 16-byte blocks have changed when AES-XTS is used, or

determine the first modified 16-byte block of each sector when CBC is used. Even

40

more worrisome is an attacker who tampers with the ciphertext to induce changes

in the corresponding plaintext. For example, an attacker who knows what sector a

CBC-encrypted system binary is saved to can, with some surmountable restrictions,

transform the binary into malware by flipping carefully chosen bits of the ciphertext!

The situation is less severe with AES-XTS, because an attacker can only corrupt 16-

byte blocks of his choosing (or revert them to a previous state). A modified ciphertext

block will result in a randomized plaintext block. There are times, however, where

even this capability would be problematic; in a white paper [16], Microsoft engineers

express concerns over such an attacker being able to toggle sensitive boolean registry

settings.

Traditional cryptography would solve the problem of leaking what 16-byte blocks

have changed by using a new IV each time a sector is re-encrypted. However, this

remedy is unavailable here because it would require a place to store the IVs, forcing

the file system to either use smaller logical disk sectors or to touch multiple physical

sectors each time a logical sector is accessed. Performance constrains rule out both

solutions. Similarly, a traditional solution to the tampering attacks would be to

include message authentication codes — the cryptographic equivalent of checksums —

in each disk sector. But again, this would require extra information to be stored on

the disk, raising the same issues as before.

This is where wideblock tweakable ciphers come in. Given a tweakable cipher

Ẽ : {0, 1}k×{0, 1}τ ×{0, 1}s → {0, 1}s, we could encrypt an s-bit sector S by setting

the ciphertext to be C = ẼK(SectorID, S). Note that |S| = |C|, so this operation

can be done without changing the sector size or number of sectors. Furthermore, if

Ẽ is a TPRP, then tampering with a ciphertext will essentially randomize the entire

s-bit plaintext: adversaries are denied the ability to conduct the precision tampering

that CBC affords them, and their ability to corrupt plaintexts is much more coarse-

41

grained than with AES-XTS. Finally, although an adversary who sees the encrypted

disk image at different points in time can determine what sectors have changed, he

cannot determine where those changes occurred with any finer granularity.

We will discuss further applications of wideblock tweakable ciphers in Chapter 5.

For now, we turn our attention to constructions.

4.2 Previous constructions

Researchers have developed three general approaches for constructing wideblock tweak-

able ciphers from n-bit blockciphers; examples are shown in Figure 4.2. Each approach

has yielded a series of increasingly refined algorithms.

We contribute a new, top-down approach that leads us to the first beyond-

birthday-bound secure tweakable cipher suitable for encrypting long inputs (i.e.,

longer than the block length of an underlying blockcipher). Table 4.1 and Figure 4.3

compare existing algorithms with our new Tweak-Counter-Tweak TCT1 and TCT2

constructions in terms of computational cost and security, respectively. TCT1 is the

first tweakable cipher to require only a single blockcipher invocation and no extra

finite field multiplications for each additional n bits of input, while TCT2 is the first

to provide beyond-birthday-bound security (and still gets away with a fixed number

of finite field multiplications).

Note that the finite field operations counted in Table 4.1 take hundreds of cycles

in software [32, 2], whereas their cost relative to an AES blockcipher invocation is

much lower in hardware [33]. In modern Intel chips, which include some hardware

support for both AES and finite field multiplication, the relative cost of these opera-

tions depends on the specific architecture. On Ivy Bridge, AES has about twice the

throughput of finite field multiplications, whereas on the newer Haswell chips finite

42

field multiplication is slightly faster than AES [18].

Cost

Cipher [BC] F2n× [Zw+] [Z2w] Ref.

HCTR ` 2`+ 2 – – [55]
CMC 2`+ 1 – – – [21]
EME 2`+ 1 – – – [22]
EME∗ 2`+ 3 – – – [19]
PEP `+ 5 4`− 6 – – [12]
HCH `+ 3 2`− 2 – – [11]
TET ` 2` – – [20]
HEH `+ 1 `+ 2 – – [50, 51]

TCT1 `+ 1 5 2`
(
n
w

)2
2`
(
n
w

)2
–

TCT2 2`+ 8 32 4`
(
n
w

)2
4`
(
n
w

)2
–

Table 4.1: Tweakable ciphers and their computational costs for `n-bit inputs. Costs mea-
sured in n-bit blockcipher calls [BC], finite field multiplications F2n×, and ring operations
[Zw+] and [Z2w], for some word size w. Typically, ` = 32 for FDE, and we anticipate
n = 128, w = 64.

The first approach for constructing tweakable ciphers, “encrypt-mix-encrypt”, is

used by CMC [21], EME [22], and EME∗ [19], which employ two rounds of encryption

separated by a light-weight “mixing layer”. CMC is the first in this line of work,

and can be used to encrypt strings whose lengths are integral multiples of n. EME

improves on CMC by allowing encryption and decryption to be parallelized, and

EME∗ extends the domain to include strings of arbitrary length.

Naor and Reingold [42] proposed the “hash-ECB-hash” approach, which sand-

wiches a layer of ECB-mode encryption between two invertible hashes. Informally,

the role of the hashing layers is to diffuse the input. The PEP [12] mode of opera-

tion employs this approach. TET [20] and HEH [50] provide various improvements,

notably in terms of performance. In each case, the two hashing layers require finite

field multiplications. A variant of HEH described by Sarkar [51], however, manages

to halve the number of multiplications that are required.

The final approach is “hash-CTR-hash”. CTR refers to Counter Mode, a stan-

43

Plaintext

Invertible Block-Wise Universal Hash

Invertible Block-Wise Universal Hash

Ciphertext

T

T

Plaintext (R)Plaintext (L)

Hash

Ciphertext (R)Ciphertext (L)

Hash

T

T

Plaintext

S +T

Compute/Add offsets

Add offsets

Compute/Add offsets

Plaintext

S' +T

Figure 4.2: Three approaches for constructing wideblock tweakable ciphers. Top:
Hash-ECB-Hash. Middle: Hash-CTR-Hash. Bottom: Encrypt-Mask-Encrypt. In
these diagrams, EK is a blockcipher with key K, and T is the tweak. Note that in
all three cases, changing a single bit of the plaintext will affect the entire ciphertext
(and vice versa).

44

dard encryption algorithm that in this context is sandwiched between two layers of

hashing. The hashing layers are not invertible, but provide the mechanism by which

the first output bits become dependent on every input bit. Examples include HCTR

[55], which initially offered rather poor security bounds, and HCH, which provides

birthday-bound security and requires only a single blockcipher key. Chakraborty and

Nandi [10] later gave a birthday-bound-security proof for HCTR.

We mention the LargeBlock constructions due to Minematsu and Iwata [39], since

they provide ciphers with beyond-birthday-bound security. These do not support

tweaking, but it seems plausible that they could without significant degradation of

performance or security. These constructions overcome the birthday bound by using

2n-bit blockciphers as primitives, which are in turn constructed from an n-bit TBC.

To our knowledge, LRW2 is the most efficient n-bit TBC with beyond-birthday-bound

security that supports the necessary tweakspace (Minematsu’s TBC [38] limits tweak

lengths to fewer than n/2 bits). Compared to TCT2, instantiating the LargeBlock

constructions with this primitive ultimately requires an extra six finite field multipli-

cations for each n bits of input. Thus, we suspect the LargeBlock designs would be

impractical even if adding tweak support proves feasible.

A construction due to Coron, et al. [14], which we refer to as CDMS (after the

authors), builds a 2n-bit TBC from an n-bit TBC, providing beyond-birthday-bound

security in n. Like PIV, CDMS uses three rounds of a Feistel-like structure. However,

our middle round uses a variable-input-length tweakable cipher, and we require a

weaker security property from the round. This allows PIV to efficiently process long

inputs. That said, CDMS provides an excellent way to implement a highly-secure 2n-

bit TBC, and we will use it for this purpose inside of TCT2 to build F̃ . (Nesting CDMS

constructions could create (2mn)-bit tweakable blockciphers for any m > 1, but again,

this would not be practical.) We note that Coron, et al. were primarily concerned

45

with constructions indifferentiable from an ideal cipher, a goal quite different from

ours.

The Thorp shuffle [41] and its successor, swap-or-not [24], are highly-secure ci-

phers targeting very small domains (e.g., {0, 1}n for n ≤ 64). Swap-or-not could

almost certainly become a variable-input-length tweakable cipher, without changing

the security bounds, by using domain separation for each input length and tweak in

the underlying PRF. Essentially, one would make an input-length parameterized fam-

ily of (tweakable) swap-or-not ciphers, with independent round-keys for each length.

While still offering reasonable performance and unmatched security for very small in-

puts, the result would be wildly impractical for the large domains we are considering:

swap-or-not’s PRF needs to be invoked at least 6b times to securely encipher a b-bit

input (below that, the bound becomes vacuous against even q = 1 query), and disk

sectors are often 4096 bytes. Also, to match TCT2’s security, the PRF itself would

need to be secure beyond the birthday bound (with respect to n).

0

1

S
ec
u
ri
ty

b
ou

n
d

0 20 40 60 80 100

log2 q

TCT2
TCT1
EME

Figure 4.3: Security bounds for TCT1, EME and TCT2, all using an underlying 128-
bit primitive and 4096-bit inputs, typical for FDE. The EME curve is representative
of other prior construction.

46

4.3 The Protected IV framework

T

T

Figure 4.4: The PIV[F̃ , Ṽ] tweakable cipher. Input T is the tweak, and X = XLXR is a
plaintext string of length at least N bits.

We begin by introducing our high-level abstraction, PIV, shown in Figure 4.4. Let

T = {0, 1}τ for some τ ≥ 0, and let Y ⊆ {0, 1}∗ be such that if Y ∈ Y , then {0, 1}|Y | ⊆

Y . Define T ′ = T ×Y . Fix an integer N > 0. Let F̃ : K′×T ′×{0, 1}N → {0, 1}N be

a tweakable blockcipher and let Ṽ : K×{0, 1}N×Y → Y be a tweakable cipher. From

these, we produce a new tweakable cipher PIV[F̃ , Ṽ] : (K′ ×K)×T ×X → X , where

X = {0, 1}N × Y . As shown in Figure 4.4, the PIV composition of F̃ , Ṽ is a three-

round Feistel construction, working as follows. On input (T,X), let X = XL ‖ XR

where |XL| = N . First, create an N -bit string IV = F̃K′(T ‖XR, XL). Next, use this

IV to encipher XR, creating a string YR = ṼK(IV, XR). Now create an N -bit string

YL = F̃K′(T ‖ YR, IV), and return YL ‖ YR as the value of PIV[F̃ , Ṽ]K′,K(T,X). The

inverse PIV[F̃ , Ṽ]−1
K′,K(T, Y) is computed in the obvious manner.

At first glance, it seems that nothing interesting has been accomplished: we took

anN -bit TBC and a tweakable cipher, and produced a tweakable cipher with a slightly

larger domain. The underlying tweakable cipher, however, only needs to have a very

47

weak type of security property, which we now proceed to define.

The strong-RND (SRND) advantage of an adversary A against a TBC Ẽ is:

Advs̃rnd
Ẽ

(A) = Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K (·,·)⇒ 1

]
− Pr

[
A$(·,·),$(·,·)⇒ 1

]
where the $(·, ·) oracle always outputs a random string equal in length to its second

input: |$(T,X)| = |X| for all T and X. Adversaries are nonce-respecting if the

transcript of their oracle queries (T1, X1), . . . , (Tq, Xq) does not include Ti = Tj for

any i 6= j. Trivially, a TBC cannot be secure against general adversaries; A could, for

example, query (T,X) to its first oracle to obtain Y , then query (T, Y) to its second

oracle and compare the result to X. Hence SRND security is only meaningful if the

TBC is used in some mode of operation that allows a reduction to a nonce-respecting

(or similar) adversary. Such is the case with PIV.

Theorem 2. Let sets T ,Y , T ′,X and integer N be as above. Let F̃ : K′ × T ′ ×

{0, 1}N → {0, 1}N be a tweakable blockcipher, and let Ṽ : K × {0, 1}N × Y → Y be a

tweakable cipher. Let PIV[F̃ , Ṽ] be as just described. Let A be an adversary making

q < 2N/4 queries totaling µ bits and running in time t. Then there exist adversaries

B and C, making q and 2q queries, respectively, and both running in O(t) time such

that Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

Ṽ
(B) + Advs̃prp

F̃
(C) + 4q2

2N
, where B is nonce-respecting

with queries totalling µ− qN bits in length.

The first thing to notice is that the variable-input-length portion of the PIV compo-

sition, Ṽ , need be SRND-secure against nonce-respecting adversaries only. As we will

see in the next section, it is easy to build efficient schemes meeting this requirement.

Only the fixed-input-length portion, F̃ , needs to be secure against STPRP adversaries

that can use arbitrary querying strategies. (Recall from pg. 8 that STPRP adversaries

control the tweak, and have access to both encryption and decryption oracles.) Thus

48

the PIV composition promotes nonce-respecting security over a large domain into full

STPRP security over a slightly larger domain.

The intuition for why this should work is made clear by the picture. Namely, if

F̃ is a good STPRP, then if any part of T or X is “fresh”, then the string IV should

be random. Hence it is unlikely that an IV value is repeated, and so nonce-respecting

security of the Ṽ component is enough. Likewise when deciphering, if any part of

T, Y is “fresh”.

The term 4q2/2N accounts for collisions in IV and the difference between F̃ and a

random function. This is a birthday-bound term in N , the block length of F̃ . Since

most TBC designs employ (one or more) underlying blockciphers, we have deliberately

chosen the notation N , rather than n, to stress that the block length of F̃ can be

larger than that of some underlying blockcipher upon which it might be built. Indeed,

we’ll see in the next section that, given an n-bit blockcipher (and a hash function),

we can build F̃ with N = 2n. This gives us hope of building beyond birthday-bound

secure variable-input-length STPRPs in a modular fashion; we will do so, and with

relatively efficient constructions, too.

It will come as no surprise that, if one does away with the lower F̃ invocation

and returns IV ‖ YR, the resulting composition does not generically deliver a secure

STPRP. On the other hand, it is secure as a TPRP (just not a strong TPRP). This

can be seen through a straight-forward modification of the PIV security proof.

Proof. Fix a message space {0, 1}S (S ⊆ N), a tweakspace T , and a non-negative

integer n ≤ min(S). Let A be an adversary making at most q queries and running in

time t. Halevi and Rogaway [22] show that

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

PIV[F̃ ,Ṽ]
(A) +

q(q − 1)

2min(S)+1
.

49

This result is essentially a PRF–PRP switching lemma for TBCs, and reduces our

problem to that of bounding Advs̃rnd
PIV[F̃ ,Ṽ]

(A).

We begin in the information-theoretic setting, and consider E [Ṽ] = PIV[Π, Ṽ],

where Π
$←− BC(N) is an ideal cipher. The oracles in Game 11 simulate E [Ṽ] and

E [Ṽ]−1 using lazy sampling to define Π, so Pr
[
AE[Ṽ],E[Ṽ]−1 ⇒ 1

]
= Pr [G11(A)⇒ 1].

In Game 12, we no longer resample “illegal” values when defining Π. The only

changes in the code occur after a boolean “bad” flag is set to true; by the Fundamental

Lemma of Game-Playing,

Advs̃rnd
E[Ṽ]

(A) ≤
(
Pr [G12(A)⇒ 1]− Pr

[
A$(·,·),$(·,·)⇒ 1

])
+ Pr [G12(A) ; bad1 ∨ bad2 ∨ bad3]

Note that in Game G12, Ṽ is never queried using the same tweak twice. Hence we

may consider a third game (not shown), Game G13, in which Ṽ is replaced by an

oracle $(·, ·) that always returns a random string equal in length to its second input.

By a reduction standard argument, there exists some nonce-respecting adversary B

making q queries and running in O(t) time such that

Pr [G12(A)⇒ 1]− Pr [G13(A)⇒ 1] ≤ Advs̃rnd
Ṽ

(B).

We now have

Advs̃rnd
E[Ṽ]

(A) ≤
(
Pr [G13(A)⇒ 1]− Pr

[
A$(·,·),$(·,·)⇒ 1

])
+ Pr [G12(A) ; bad1 ∨ bad2 ∨ bad3] + Advs̃rnd

Ṽ
(B).

However, note that now each the first N bits of each oracle output (corresponding

50

to Z ′i) are always uniformly random in Game G12, and when we switch from Ṽ to

$(·, ·) in the next game, the remaining bits also become uniformly random. Hence

Pr [G13(A)⇒ 1] = Pr
[
A$(·,·),$(·,·)⇒ 1

]
.

Our final task is to bound the probability that A sets a bad flag in Game G12.

The probability that bad1 is set during query j is less than j/(2N − 2j). Similarly,

the probabilities of bad2 and bad3 being set are at most 2j/(2N − 2j) and 2j/2N ,

respectively. Therefore the probability that at least one flag is set during query j is

at most 3j/(2N − 2j) + 2j/2N .

Taking the union bound over j ∈ 1, 2, . . . , q gives us

Pr [G11(A) ; bad1 ∨ bad2 ∨ bad3] ≤ q2

(
1.5

2N − 2q
+

1

2N

)
.

Since q < 2N/4, 1.5/(2N − 2q) < 3/2N . Collecting our previous results and using a

standard reduction argument to return to the computational setting completes the

proof:

Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ Advs̃rnd

Ṽ
(B) + Advs̃prp

F̃
(C) +

4q2

2N
,

where C makes 2q queries, B makes q queries of total length µ − qN bits without

repeating a tweak, and both run in O(t) time.

4.4 Concrete Instantiations of PIV

Instantiating a PIV composition requires two objects, a (fixed-input-length) tweakable

blockcipher F̃ with an N -bit block length, and a variable-input-length tweakable

cipher Ṽ . In this section we explore various ways to instantiate these two objects,

under the guidance of Theorem 2 and practical concerns.

Theorem 2 suggests setting N to be as large as possible, so that the final term is

51

Games G11 , G12

Oracle E`(T,X):

j ← j + 1

Tj ← T ‖X[N + 1..]

IVj
$←− {0, 1}N \ [(..Π] [Tj])

Π[Tj](X[1..N])← IVj
IV ← IVj
if IVj ∈ {IVi : i < j} then

bad1 ← true

IVj
$←− {0, 1}N \ {IVi : i < j}

IVj ← IV // Rollback to “real” value

Zi ← Ṽ [IVj](X[N + 1..])

T ′j ← T ‖ Zi
Z ′i

$←− {0, 1}N

if IVj ∈ dom(Π[T ′j]) then

bad2 ← true

Z ′i ← Π[T ′j](IVj)

else if Z ′i ∈ [(..Π] [T ′j])

bad3 ← true

Z ′i
$←− {0, 1}N \ [(..Π] [T ′j])

Π[T ′j](IVj)← Z ′i
return Z ′i ‖ Zi

Oracle E−1
` (T, Y):

j ← j + 1

Tj ← T ‖ Y [N + 1..]

IVj
$←− {0, 1}N \ dom(Π[Tj])

Π[Tj]
−1(Y [1..N])← IVj

IV ← IVj
if IVj ∈ {IVi : i < j} then

bad1 ← true

IVj
$←− {0, 1}N \ {IVi : i < j}

IVj ← IV

Zi ← Ṽ [IVj]
−1(Y [N + 1..])

T ′j ← T ‖ Zi
Z ′i

$←− {0, 1}N

if IVj ∈ [(..Π] [T ′j]) then

bad2 ← true

Z ′i ← Π[T ′j]
−1(IVj)

else if Z ′i ∈ dom(Π[T ′j])

bad3 ← true

Z ′i
$←− {0, 1}N \ dom(Π[T ′j])

Π[T ′j](Z
′
i)← IVj

return Z ′i ‖ Zi

Listing 4.1: Game G11, which includes the boxed statements, simulates PIV[Π, Ṽ]
by defining Π through lazy sampling. Game G12, which does not include the boxed
statements, never invokes Ṽ with the same tweak twice, and the oracles in this game
always return values with a random n-bit prefix. All boolean variables are silently
initialized to false.

52

vanishingly small for any realistic number of queries. But for this to be useful, one

must already know how to build a TBC F̃ with domain {0, 1}N for a large N , and

for which Advs̃prp

F̃
(C) approaches q2/2N . To our knowledge, there are no efficient

constructions that permit Advs̃prp

F̃
(C) to be smaller than O(q3/22n) when using an

n-bit blockcipher as a starting point. (A recent result by Lampe and Seurin [28]

shows how to beat this security bound, but at a substantial performance cost.) A

construction by Coron, et al., which will be discussed in more detail shortly, does

meet this bound1 while providing N = 2n.

So we restrict our attention to building TBC F̃ with small N . In particular, we

follow the common approach of building TBCs out of blockciphers. Letting n be the

blockcipher block length, we will consider N = n, and N = 2n. In the former case,

Theorem 2 only promises us security up to roughly q = 2n/2, which is the birthday

bound with respect to the blockcipher. With this security bound in mind, we can

use simple and efficient constructions of both F̃ and Ṽ . On the other hand, when

N = 2n, Theorem 2 lets us hope for security to roughly q = 2n queries. To realize

this hope we will need a bit more from both F̃ and Ṽ , but we will still find reasonably

efficient constructions delivering beyond birthday bound security.

In what follows, we will sometimes refer to objects constructed in other works.

These are summarized for convenience in Table 4.2 on pg. 54.

An efficient variable-input-length tweakable cipher. We will start by consid-

ering general methods for constructing Ṽ . Recall that Ṽ need only be secure against

adversaries that never repeat a tweak. In Listing 4.2, we see an analogue of con-

ventional Counter Mode (CTR) encryption, but over an n-bit TBC Ẽ instead of a

blockcipher. We call the result tweaked-Counter Mode (TCTR). Within a call (T,X)

1However, nesting this construction to provide a variable-input-length tweakable cipher is pro-

53

Name Description Ref

LRW Birthday-bound TBC. Requires blockcipher E and ε-AXU func-
tion H.

LRW[H,E](K,L)(T,X) = EK(X ⊕HL(T))⊕HL(T)

[30]

PolyHashmn ε-AXU function with domain ({0, 1}n)m and ε = m/2n.

PolyHashmnL (T1T2 · · ·Tm) =
m⊕
i=1

Ti ⊗ Li,

all operations in F2n

[56]

NH[νw, 2tw] ε-AU hash function. Fix word size w > 0. Requires ν even, inputs
are νw bits; here ε = 1/2tw. Define:

HK1 ‖ ··· ‖Kν (X1 · · ·Xν) =

ν/2∑
i=1

(K2i−1+wX2i−1)·(K2i+wX2i) mod 22w.

NH[ν, t]K1 ‖ ··· ‖Kν+2(t−1)
(M) = HK1···Kν (M)‖ · · · ‖HK2t−1···Kν+2t−2(M)

[6]

LRW2 TBC with beyond-birthday-bound security. Requires blockcipher E
and ε-AXU function H.

LRW2[H,E](K1,K2)(T,X) = LRW[H,E]K1(T, LRW[H,E]K2(T,X))

[29]

CDMS Feistel-like domain extender for TBC Ẽ.

CDMS[Ẽ]K(T, L ‖R) = ẼK(10 ‖ T ‖R′, L′) ‖R′

where R′ = ẼK(01 ‖ T ‖ L′, R) and L′ = ẼK(00 ‖ T ‖R,L).

[14]

Table 4.2: Our PIV implementations, TCT1 and TCT2, use the above constructions
from prior works.

54

procedure TCTR[Ẽ]K(T,X):

X1, X2, . . . , Xν
n←X

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Yi ← ẼK(Ti, Zi)⊕Xi

Return Y1, Y2, . . . , Yν

procedure TCTR[Ẽ]−1
K (T, Y):

Y1, Y2 . . . , Yν
n← Y

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Xi ← Yi ⊕ ẼK(Ti, Zi)

Return X1, . . . , Xν

Listing 4.2: The TCTR tweakable cipher.

to TCTR, each n-bit block Xi of the input X is processed using a per-block tweak Ti,

this being determined by a function g : T ′ × N → T of the input tweak T and the

block index i.

Consider the behavior of TCTR when g(T, i) = T . The following result is easily

obtained using standard techniques.

Theorem 3. Let Ẽ : {0, 1}k ×T × {0, 1}n → {0, 1}n be a tweakable blockcipher, and

let TCTR[Ẽ]K and TCTR[Ẽ]−1
K be defined as above, with g(T, i) = T ∈ T . Let A be

a nonce-respecting adversary that runs in time t, and asks q queries, each of length

at most `n bits (so, µ ≤ q`n). Then for some adversary B making at most q` queries

and running in time O(t), Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B) + 0.5q`2/2n.

We note that the bound displays birthday-type behavior when ` = o(
√
q), and is

tightest when ` is a small constant. An important application with small, constant `

is full-disk encryption. Here plaintexts X would typically be 4096 bytes long, so if

the underlying TBC has block length n = 128, we get ` = 256 blocks.2

Extending tweakspaces. In PIV, the TBC F̃ will need to handle long tweaks.

Fortunately, a result by Coron, et al. [14] shows that one can compress tweaks using

hibitively inefficient.
2Actually, slightly less than this when used in the PIV composition, since the first N bits are

enciphered by F̃ .

55

an ε-AU hash function at the cost of adding a q2ε term to the tweakable cipher’s TPRP

security bound. In particular, we will use (a slight specialization of) the NH hash,

defined by Black, et al. [6]; NH[r, s]L takes r-bit keys (|L| = r), maps r-bit strings

to s-bit strings, and is 2s/2-AU; see Table 4.2 (pg. 54) for the description. Given a

TBC Ẽ, ẼNH denotes the resulting TBC, whose tweakspace is now the domain of NH,

rather than its range.

4.4.1 Targeting efficiency at birthday-type security: TCT1

Let us begin with the case of N = n.

We will use LRW for the fixed-input length portion. We implement LRW’s ε-AXU

hash function with PolyHash, and then extend the tweak space using a fast ε-AU hash

function3 as described above.

The TCT1 Construction. Fix k, n > 0, and let N = n. Let E : {0, 1}k×{0, 1}n →

{0, 1}n be a blockcipher, and let PolyHashmn, and NH be as defined in Table 4.2.

Then define TCT1 = PIV[F̃ , Ṽ], where to obtain a τn-bit tweakspace and domain

{0, 1}{n,n+1,...,`n} we set:

1. n-bit TBC F̃ = LRW[PolyHash2n, E]NH[(`+τ)n,2n], i.e. LRW with its tweakspace

extended using NH. The keyspace for F̃ is {0, 1}k×{0, 1}2n×{0, 1}(`+τ)n, with

key K ′ partitioning into keys for E, PolyHash2n, and NH[(` + τ)n, 2n]. (Since

NH supports only fixed length inputs, we implicitly pad NH inputs with a 1 and

then as many 0s as are required to reach a total length of (` + τ)n bits.) The

tweakspace for F̃ is {0, 1}{0,1,2,...,(`+τ−1)n}.

3Indeed, one can show that composing an ε-AU hash function with an ε′-AXU hash function
yields an (ε + ε′)-AXU hash function; however, we find it convenient to work on a higher level of
abstraction.

56

Figure 4.5: The TCT2 construction (top). TCT2 takes τn-bit tweaks, and the input length
is between 2n and `n bits, inclusive. Here, F̃ is implemented using the 2n-bit CDMS
construction coupled with the NH hash function (bottom left). Both Ṽ and the TBC Ẽ
used inside of CDMS are implemented using LRW2[PolyHashrn, E] (bottom right), with
r = 6 and r = 2, respectively. The function Pad maps s to s‖10(`+1)n−1−|s|. In the diagram
for CDMS, the strings 00T̃ , 01T̃ , and 10T̃ are padded with 0s to length 5n before being
used.

57

2. Variable-input-length tweakable cipher Ṽ = TCTR [LRW[PolyHashn, E]] with

the TCTR function g : {0, 1}n × N→ {0, 1}n as g(T, i) = T . The keyspace for

Ṽ is {0, 1}k × {0, 1}n, with key K partitioning into keys for E and PolyHashn.

The tweakspace for Ṽ is {0, 1}n, and its domain is {0, 1}{0,1,...,(`−1)n}.

Putting together Theorems 2,3, and results from previous works [6, 30], we have the

following security bound.

Theorem 4 (STPRP-security of TCT1). Define TCT1 as above, and let A be an ad-

versary making q < 2n/4 queries and running in time t. Then there exist adversaries

B and C, both running in time O(t) and making (`−1)q and 2q queries, respectively,

such that Advs̃prp
TCT1[E](A) ≤ Advprp

E (B) + Advsprp
E (C) + 32q2

2n
+ 4q2(`−1)2

2n
.

Proof. Using Theorem 2 and security bounds from the respective works cited in Ta-

ble 4.2,

Advs̃prp
TCT1[E](A) ≤ 4q2

2n
+ Advs̃rnd

Ṽ
(t′, q) + Advsprp

F̃
(t′, 2q)

≤ 4q2

2n
+

[
q(`− 1)2

2n
+ Advp̃rp

LRW[PolyHashn,E](t
′, (`− 1)q)

]
+

[
24q2

2n
+

4q2

2n
+ Advsprp

E (t′, 2q)

]
≤ 4q2

2n
+

[
q(`− 1)2

2n
+

3q2(`− 1)2

2n
+ Advprp

E ((`− 1)q, t′)

]
+

[
28q2

2n
+ Advsprp

E (t′, 2q)

]
≤ 32q2

2n
+ +

q(`− 1)2

2n
+

3q2(`− 1)2

2n
+ Advprp

E ((`− 1)q, t′)

+ Advsprp
E (t′, 2q).

58

This algorithm requires 2k+ (3 + τ + `)n bits of key material, including two keys

for Ẽ. As we show at the end of this section, we can get away with a single key for

E with no significant damage to our security bound, although this improvement is

motivated primarily by performance concerns.

Thus TCT1 retains the security of previous constructions (see Figure 4.3 for a vi-

sual comparison), and uses arithmetic in rings with powers-of-two moduli, rather than

in a finite field. This may potentially improve performance on some architectures.

4.4.2 Aiming for beyond birthday-bound security: TCT2

Now let us consider the PIV composition with N = 2n. For the fixed-input-length

component, we can use Coron et al.’s [14] CDMS construction to get a 2n-bit TBC

from an n-bit TBC, and implement the latter using LRW2. Table 4.2 describes

both constructions.4 We again extend the tweakspace using NH. (To stay above

the birthday bound, we set the range of NH to {0, 1}2n). Ultimately, setting F̃ =

CDMS[LRW2]NH is secure against up to around 22n/3 queries.

LRW2 also gives us a way to realize a beyond birthday-bound secure variable-

input-length component, namely Ṽ = TCTR[LRW2[E,H], at least for ` = o(q1/4).

(We’ll see how to avoid this restriction, if desired, in a moment.)

We are now ready to give our second fully concrete PIV composition, TCT2, tar-

geted at applications that would benefit from beyond birthday-bound security. This

algorithm requires us to nest four layers of other constructions, so we provide an illus-

tration in Figure 4.5 (pg. 57). Again we emphasize that the (admittedly significant)

cost of F̃ can be amortized.

TCT2 supports τn-bit tweaks and has domain {0, 1}{2n,2n+1,...,`n}.

4We note that for CDMS[Ẽ], we enforce domain separation via Ẽ’s tweak, whereas the authors

of [14] use multiple keys for Ẽ. The proof of our construction follows easily from that of the original.

59

The TCT2 Construction. Fix k, `, n, τ > 0, and let N = 2n. Let E : {0, 1}k ×

{0, 1}n → {0, 1}n be a blockcipher, and let PolyHash`n, and NH be as defined in

Table 4.2. Then define TCT2 = PIV[F̃ , Ṽ], where:

1. F̃ = CDMS
[
LRW2[PolyHash6n, E]

]NH[(`+τ−1)n,4n]
. The keyspace for F̃ is {0, 1}2k×

{0, 1}12n×{0, 1}(`+τ−1)n, with key K ′ partitioning into two keys for E, two keys

for PolyHash6n, and a key for NH[`n, 4n]. The tweakspace for F̃ is {0, 1}τn.

2. Ṽ = TCTR
[
LRW2[PolyHash2n, E]

]
, with the TCTR function g : {0, 1}n×N→

{0, 1}n as g(T, i) = T . The keyspace for Ṽ is {0, 1}2k × {0, 1}4n with key K

partitioning into two keys for E and two keys for PolyHash2n. The tweakspace

for Ṽ is {0, 1}2n, and its domain is {0, 1}{0,1,2,...,(`−2)n}.

TCT2 requires 4k+ (`+ τ + 15)n bits of key material. We have the following security

result.

Theorem 5 (STPRP-security of TCT2). Define TCT2 as above, and let A be an

adversary making q queries and running in time t, where 6q, `q < 22n/4. Then there

exist adversaries B and C, both running in O(t) time and making (` − 1)q and 6q

queries, respectively, such that Advs̃prp
TCT2

(A) ≤ 2Advprp
E (B) + 2Advsprp

E (C) + 12q2

22n +

q(`−1)2

2n
+ 6`3q3

22n−2−`3q3 + 64q3

22n−2−63q3 .

60

Proof. Using Theorem 2 and security bounds for the various components [6, 14, 29],

Advs̃prp
TCT2

(A) ≤ 4q2

22n
+ Advs̃rnd

Ṽ
(t′, q) + Advsprp

F̃
(t′, 2q)

≤ 4q2

22n
+

[
q(`− 1)2

2n
+ Advp̃rp

LRW2[H2n,E](t
′, (`− 1)q,)

]
+

[
4q2

22n
+

4q2

22n
+ Advs̃prp

LRW2[H6n,E](t
′, 6q,)

]
≤ 12q2

22n
+
q(`− 1)2

2n
+

6`3q3

22n−2 − `3q3
+

64q3

22n−2 − 63q3

+ 2Advprp
E (t′, (`− 1)q) + 2Advsprp

E (t′, 6q).

Some of the constants in this bound are rather significant. However, as Figure 4.3

shows, TCT2 nevertheless provides substantially better security bounds than TCT1

and previous constructions.

4.4.3 Additional practical considerations

Several variations and optimizations on TCT1 and TCT2 are possible. We highlight

a few of them here. None of these changes significantly impact the above security

bounds, unless otherwise noted.

Reducing the number of blockcipher keys. In the case of TCT1, we can use

a single key for both LRW instances provided we enforce domain separation through

the tweak. This allows us to use a single key for the underlying blockcipher, which,

in some situations, may allow for significant implementation benefits (for example,

by allowing a single AES pipeline). One method that accomplishes this is to replace

LRW[PolyHash2n, E]NH[(`+1)n,2n] with LRW[PolyHash3n, E]f(ε,·) and LRW[PolyHashn, E]

with LRW[PolyHash3n, E]f(·,ε). Here, f is a 2−n-AU function with keyspace {0, 1}3n×

61

{0, 1}`n, taking inputs of the form (X, ε) (for some X ∈ {0, 1}n) or (ε, Y) (for some

Y ∈ {0, 1}{0,1,...,`n}), and outputting a 3n-bit string. Let fL(X, ε) = 02n ‖ X and

fL(ε, Y) = 1n‖NH[(`+1)n, 2n]L(Y). The function f described here is a mathematical

convenience to unify the signatures of the two LRW instances, thereby bringing tweak-

based domain separation into scope; in practice, we imagine the two instances would

be implemented independently, save for a shared blockcipher key. We note that TCT2

can be modified in a similar manner to require only two blockcipher keys.

Performance optimizations. If we need only a tweakable blockcipher (i.e., only

need to handle inputs of a predetermined length), we can use NH[`n, 2n] in place of

NH[(`+1)n, 2n] by adjusting our padding scheme appropriately. This change reduces

the length of the tweak, and hence the number of operations performed during the

NH computations. We emphasize that in the TCTR portion, the PolyHash functions

only need to be computed once, since each LRW invocation uses the same tweak. The

corresponding optimizations apply to TCT2, as well.

A näıve implementation of TCT2 would make a total 72 finite field multiplications

during the first and third rounds (a result of evaluating PolyHash6n twelve times).

We can cache an intermediate value of the PolyHash6n hash used inside of CDMS

(four n-bit tweak blocks are constant per invocation), and this saves 32 finite field

multiplications. Precomputing the terms of the polynomial hash corresponding to

the domain-separation constants eliminates 12 more multiplications, leaving 28 in

total. Four more are required during the Ṽ phase, giving the count of 32 reported in

Table 4.1.

Handling large message spaces. Both TCT1 and TCT2 are designed with FDE

applications in mind. In particular, they require ` to be fixed ahead of time, and

62

require more than `n bits of key material.

These limitations are a consequence of using the NH hash function; however, a

simple extension to NH (described by the original authors [6]) accommodates ar-

bitrarily long strings. Fix a positive integer r and define NH∗L(M1M2 · · ·Mν) =

NHL(M1) ‖ NHL(M2) ‖ · · · ‖ NHL(Mν) ‖ 〈|M | mod rn〉, where |Mi| = rn for i < ν,

|Mν | ≤ rn, and NHL abbreviates NHL[rn, 2N]. Thus defined, NH∗ is 2−N -almost

universal, has domain {0, 1}∗, and requires rn bits of key material. This modification

shifts some of the weight to the PolyHash hash; we now require eight extra finite field

multiplications for each additional rn bits of input. As long as r > 4, however, we

require fewer of these multiplications when compared to previous hash-ECB-hash or

hash-CTR-hash constructions.

With these modifications, the final two terms in TCT1’s security bound (Theo-

rem 4) would become 8q2/2n + 600q2`2/r22n + 4q2(` − 1)2/2n, where `n is now the

length of the adversary’s longest query, ` > 2.5r, and the remaining terms measure

the (S)PRP security of the underlying blockcipher. We also assume 2n ≥ rn, so that

|M | mod rn can be encoded within a single n-bit block. Although the constant of

600 is large, we note that setting r = 16, for example, reduces it to a more comfort-

able size — in this case to less than three. The bound for TCT2 changes in a similar

manner. (Note that, if 2n−2 ≥ rn, then we can use a single n-bit block for both the

tweak domain-separation constants and 〈|M | mod rn〉.)

Beyond birthday-bound security for long messages. When ` is not bounded

to some small or moderate value, TCT2 no longer provides beyond-birthday-bound

security. The problematic term in the security bound is q(`−1)2/2n. To address this,

we return to TCTR (Figure 4.2) and consider a different per-block tweak function.

In particular, g(T, i) = T ‖ 〈i〉. In the nonce-respecting case, the underlying TBC

63

Ẽ is then re-tweaked with a never-before-seen value on each message block. Again,

think about what happens when Ẽ is replaced by an ideal cipher Π: in the nonce-

respecting case, every block of plaintext is masked by the output of a fresh random

permutation. In other words, every block returned will be uniformly random. Thus

we expect a tight bound, in this case. Formalizing this logic yields the following

theorem.

Theorem 6. Let Ẽ : {0, 1}k ×T × {0, 1}n → {0, 1}n be a tweakable blockcipher, and

let TCTR[Ẽ]K and TCTR[Ẽ]−1
K be defined as above, with g : T ′×N→ T an arbitrary

injective mapping. Let A be a nonce-respecting adversary that runs in time t, and

asks q queries of total length at most µ = σn bits. Then there exists some adversary B

making at most σ queries and running in time O(t) such that Advs̃rnd
TCTR[Ẽ]

(A) ≤

Advp̃rp

Ẽ
(B).

Consequently, using this variation of TCTR in Theorems 4 and 5 would remove

the q(` − 1)2 term from the bounds, thereby lifting message length concerns. Note

that, if this change is made, then g(T, i) needs to be computed up to ` times per

invocation, rather than just once. This problem may be mitigated by using the

XEX [46] TBC in place of LRW, which makes incrementing the tweak extremely fast

without significantly changing our security bound.

When the above changes are made, TCT1 and TCT2 offer efficient tweakable ci-

phers on an unbounded domain, losing security guarantees only after O(2n/2) (resp.,

O(22n/3)) bits have been enciphered.

4.4.4 Instantiating Ṽ with conventional encryption

To further highlight the flexibility surfaced by our compositional approach, we point

out that Ṽ can be realized directly using conventional blockcipher-based encryption.

64

Consider the implementation of Ṽ , Ṽ −1 shown in Listing 4.3. We recognize this

immediately as counter-mode encryption, but with the initial value T surfaced as an

input to make it a tweakable cipher. (Rogaway [47] formalized this as a “nonce-based

encryption scheme”.)

procedure CTRK(T,X):

X1, X2, . . . , Xb
n←X

for i = 1 to b do
Yi ← EK(T + i)⊕Xi

return Y1Y2 · · ·Yb

Listing 4.3: Counter mode (CTR) can be used to instantiate Ṽ .

Unfortunately, we cannot use the main PIV security statement, Theorem 2, with

this F̃ , because it is not SRND-secure against nonce-respecting adversaries. Nonethe-

less, examination of the proof of Theorem 2 shows that it can be modified to work.

To that end, we introduce a new notion of security, SRND$:

Advs̃rnd$

Ẽ
(A) = Pr

[
K

$←−K : AẼK(·),Ẽ−1
K (·)⇒ 1

]
− Pr

[
A$(·),$(·)⇒ 1

]
.

Given Ẽ with tweakspace T and message space X , the oracle EK takes a query

X ∈ X and: (1) samples T
$←− T , (2) returns EK(T,X). Oracle E−1

K behaves likewise

on input Y ∈ X , sampling T
$←− T and returning E−1

K (T, Y). With this, one can state

an alternative composition theorem.

Lemma 1. Let sets T ,Y , T ′,X , integer N , TBC F̃ and tweakable cipher Ṽ be as

described in Theorem 2. Let A be an adversary making q < 2N/4 queries and running

in time t. Then there exist adversaries B and C, making q and 2q queries, respectively,

and both running in O(t) time such that Advs̃prp

PIV[F̃ ,Ṽ]
(A) ≤ 5q2

2N
+ Advs̃rnd$

Ṽ
(B) +

Advs̃prp

F̃
(C).

65

Then a standard proof shows that the CTR TBC in Figure 4.3 is SRND$-secure, up

to a birthday bound, if E is secure as a PRP.

Lemma 2. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher, and let CTR be as in

Figure 4.3. Let A be an adversary running in time t, and ask asking q queries, these

totalling at most µ = σn bits. Then Advs̃rnd$

Ṽ
(A) ≤ σ2/2n + Advprp

E (B), where B

asks at most σ queries, and runs in time O(t).

Thus, one could compose counter-mode encryption with F̃ based on LRW to build an

efficient, birthday-bound-secure STPRP.

Here we point out that there is much similarity between the SIV construction of

Rogaway and Shrimpton [49], and PIV using this counter-mode Ṽ . Indeed, one can

view F̃K′(T ‖ X[N + 1..], X[1..N)) as a special kind of PRF (one with invertibility

properties), that takes input (T,X) and returns a “synthetic IV” for use in counter-

mode. The second application of F̃K′ then serves to hide this synthetic IV in way that

leaves it recoverable to those in possession of key K ′. The SIV construction achieves

both privacy and authenticity by using the IV as a plaintext authenticator, too. In

the next chapter, we’ll look at generic ways to build authenticated encryption with

the PIV composition.

4.5 VCV design and implementation

In this section, we introduce a novel wideblock tweakable cipher called ”VHASH-

CTR-VHASH” (VCV) that is a refinement of TCT1. VCV completely removes TCT1’s

finite field multiplications, simplifying its implementation and offering the potential

for performance improvements. We also discuss implementation issues and provide

benchmarks.

66

4.5.1 Removing finite field multiplication

Recall that TCT1 employs LRW, and that LRW in turn requires an ε-AXU hash

function. These hash functions are typically instantiated using PolyHash, which eval-

uates a polynomial (with coefficients determined by the input) in F2n at the point

encoded by the key K ∈ 2n. However, finite field multiplications in, e.g., F2128 are

expensive (between roughly 63% and 245% the cost of an AES call in modern CPUs

[18], in terms of throughput). Although TCT1 succeeds in limiting the number of

multiplications to a small constant (that doesn’t grow with the input length), these

multiplications still incur a performance penalty and complicate implementations.

However, LRW[H,E] can work with a group operator + that need not be ⊕ ,

provided H is ε-A∆U with respect to +:

LRW[H,E](K,L)(T,X) = EK(X +HL(T)) +HL(T).

Although this generalization is not explicit in the original paper [30], the authors list

UMAC’s hash function [6] among the possible instantiations, indicating they had this

generalization in mind. In any case, the security proof carries through as-is.

We opted to instantiate VCV by using LRW[VHASH,AES] for the fixed input-

length component of PIV, where VHASH is the hash function used by VMAC [15, 27].

VHASH (specifically, VHASH-128) is 2−120-ADU with respect to addition in Z2
64. This

corresponds to two standard unsigned 64-bit additions.

4.5.2 Implementation

We used a modified form of Ted Krovetz’s public-domain VMAC code5 for our

VHASH implementation. To take advantage of instruction-level parallelism, we in-

5http://fastcrypto.org/vmac/

67

http://fastcrypto.org/vmac/

terleaved instructions for the final VHASH calculation with the AES-NI instructions

for the CTR-mode component of VCV.

In some architectures, this interleaving largely hides the latency of the VHASH

calculation. On an i7-4770 with 4096-byte blocks, for example, VHASH runs at 0.31

cpb, while CTR-AES runs at 0.65 cpb; thus, one would expect VCV to run at best at

0.31 + 0.31 + 0.65 = 1.27 cpb in the absence of pipelining (this conservatively ignores

the remaining cost of the two LRW computations). However, our implementation

runs at 1.08 cpb on this architecture. The difference is the equivalent of 61% the

stand-alone VHASH cost.

When AES-NI instructions are not available, our implementation falls back to

using the OpenSSL library. (OpenSSL itself supports AES-NI instructions, but using

OpenSSL functions instead of our specialized interleaved code reduces throughput by

about 1/3.)

4.5.3 Benchmarks

We compare the throughput of our VCV implementation to both GCM-AES-1286

and CTR-AES-128 in Table 4.3. The GCM-AES-128 comparisons are interesting for

two reasons: (1) VCV can be used for the same purpose as GCM, i.e., authenticated

encryption, despite offering a strictly stronger type of security (STPRP vs. AEAD)

and (2) although we were unable to obtain any optimized software implementations

for HEH or HCTR-style tweakable ciphers, GCM performance should provide an

approximate lower bound for these modes because it requires a blockcipher invocation

and a finite field multiplication for each n bits of input (cf. Table 4.1). Meanwhile,

EME will likely operate at less than half the throughput of CTR-AES-128, since

the latter requires two AES invocations per n bits of input, with no possibility of

6i.e., Galois Counter Mode (GCM) implemented with the version of AES that uses 128-bit keys.

68

parallelism between the two passes though the plaintext.

Garćıa reports [31] that EME is between 2.21 and 2.34 times as slow as CTR-

AES-128 on a 4KB buffer, suggesting that this estimation works in EME’s favor (the

ratio changes with the architecture). Moreover, EME performed substantially better

than HCTR and HEH (2.77 cpb compared to 3.97 and 4.33 cpb, respectively; we

emphasize, though, that as these tests were performed on an i5-2400, they cannot

be compared directly to our own results.) Unfortunately, we were unable to obtain

the source code and so could not run these tests on the same machines as our VCV

benchmarks.

CPU VCV (4KB) GCM (8KB) CTR (4KB)

Broadwell i7-4770 (3.4 GHz) 1.08 1.77 0.64 (2x = 1.28)
Ivy Bridge i5-3570 (3.4 GHz) 1.41 2.98 0.71 (2x = 1.42)
Core2 DUO E8400 (3.0 GHz) 9.60 16.01 7.79 (2x = 15.58)

Table 4.3: Performance of VCV, GCM, and CTR in cycles per byte on various archi-
tectures. Garćıa reports [31] that EME operates at less than half the speed of CTR
on an i5-2400.

For VCV and CTR, we performed the benchmarks by timing how long it took

to repeatedly encrypt a 4KB buffer 100,000 times. For GCM, we used OpenSSL’s

native benchmark on an 8KB buffer (this works in GCM’s favor when performance is

measured in cycles per byte) with the native engine selected (openssl speed -evp

aes-128-gcm). Both our VCV implementation and OpenSSL 1.0.1f were compiled

using gcc 4.8.2 with the optimization level set to -O2. In neither case did performance

significantly improve with -O3. We used Intel’s optimized AES-NI implementation

for CTR [25] when available, which outperforms the OpenSSL implementation.

In all cases, VCV significantly outperforms GCM. On Broadwell and Core2 chips,

VCV also outperforms the estimated cycles-per-byte lower-bound for EME, but pro-

vides similar performance on Ivy Bridge. Hence, we suspect VCV would do at least

69

as well as an optimized software implementation of any of the modes of Table 4.1.

We note that the recent AEZ tweakable cipher [23] claims performance comparable

to CTR. It obtains this by using a scaled-back variant of AES that uses four rounds

instead of the standard ten. Hence, unlike VCV, one cannot prove that AEZ is secure

under the assumption that AES is secure. There are, however, heuristic arguments

suggesting that AEZ is safe, regardless. A comparison to VCV over four-round AES

wouldn’t be particularly meaningful, since these same heuristic arguments would not

apply to VCV.

70

5. AEAD from Tweakable Ciphers

We now turn our attention to a new use of PIV (and other tweakable ciphers), that

of building authenticated encryption with associated data (AEAD) [45] via a gener-

alization of Bellare and Rogaway’s “encode-then-encipher” [4]. Bellare and Rogaway

show that when messages are augmented with a nonce and redundancy, one can ob-

tain authenticated encryption [3] simply by passing these encoded messages directly

through an SPRP-secure blockcipher with a sufficiently large domain. (Similar tricks

do not work if the primitive is merely IND-NM or IND-CCA secure [1].) We revisit

encode-then-encipher in the tweakable setting. In particular, we precisely identify

the salient properties of the mapping from header-message pairs (H,M) to tweakable

cipher inputs (T,X), and explore where best to apportion state, randomness, and

redundancy in this encoding.

Our results answer natural questions regarding the relationship between tweakable

ciphers and nonce-based encryption. But there remains the question of why one would

adopt this method, given the existence of highly efficient AEAD schemes, such as OCB

[48, 46]. In addition to its simplicity, there are two important, practical advantages

of our approach:

(1) It admits the use of multiple decryption error messages, while remaining robust

against side-channel attacks that seek to exploit them (e.g., padding oracles).

(2) It can eliminate bandwidth overhead by leveraging nonces, randomness and

71

redundancy already present in plaintext inputs.

The first point holds because, loosely, changing any ciphertext bit results in randomiz-

ing every resulting plaintext bit. Thus, descriptive error messages, e.g. bad padding

or bad seq number, cannot be leveraged to forge useful future ciphertexts. We also

remark that, under our approach, nonce repetitions only leak equality of plaintexts.

As an example of the second point, messages in protocols that include sequence

numbers, human-readable fields, or padding likely contain useful nonces and redun-

dancy. In these cases, the encoding step of encode-then-encipher is implicit, acting as

an assumed model for how information is encoded into bit strings before being passed

down the stack to encrypt.

Before moving on to formal definitions for our encode-then-encipher scheme, we

will provide a brief example of what we have in mind in order to motivate certain

departures from the standard AEAD formulation. Given a header H and a message

M , we need to encode (H,M) into a tweakable cipher input, (T,X). What if we

choose a nonceN of some fixed length, set T = N‖H, andX = N‖M? We are already

sending H down the wire, but our ciphertext cannot simply be C = ẼK(T,X) because

we also need N to decrypt. So our ciphertext should be (N,C). In this example,

T = N‖H was an encoded header, and X = N‖M was an encoded message. However,

we wish to consider encoding schemes separately from tweakable ciphers, so we will

discard the symbols T and X in favor of H and M , respectively. The mapping from

H to H = N ‖H is non-deterministic, but can be completely reproduced provided one

knows N . We therefore refer to N as our reconstruction information. (Note that the

message encoding function needs the reconstruction information, and therefore has

a different signature than the header encoding function; further, the reconstruction

information should not depend onM). The recipient computes Ẽ−1
K (H,C) and verifies

72

that N is a prefix.

Authenticated encryption with associated data. An authenticated encryption

scheme with associated data is a tuple Ψ = (K, E ,D) consisting of a key-generation

algorithm K, an encryption algorithm E , and a decryption algorithm D. For simplic-

ity, we assume the key-generation algorithm K samples a key from a non-empty set of

the same name. The encryption algorithm, which may be randomized or stateful, is a

mapping E : K×H×M→ R×{0, 1}∗. Thus, encryption takes a key K ∈ K, a header

H ∈ H ⊆ {0, 1}∗, and a message M ∈M ⊆ {0, 1}∗, and returns some reconstruction

information R ∈ R, along with a ciphertext C. We write (R,C)
$←− EK(H,M) to

mean running EK on (H,M), this returning (R,C). The deterministic decryption

algorithm is a mapping D : K×H×R× {0, 1}∗ →M∪ Errors, where Errors is a set

such thatM∩Errors = ∅. (We do not insist that |Errors| = 1.) For proper operation,

we require that Pr [DK(H, EK(H,M)) = M] = 1 for all K ∈ K, H ∈ H and M ∈M.

If E is stateful, this must hold for all states.

Let us discuss this formalization of AEAD. First, in practice, the header H will be

sent in the clear along with the ciphertext (e.g., when the header is needed for routing),

but our encode-then-encipher AEAD schemes may encode H into some related H

for internal use. If this encoding is non-deterministic, we use the reconstruction

information R to deliver whatever is needed by decryption to properly reconstruct

this H from H. For example, R may consist of a counter, some random bits, or some

redundancy. (It may also be the empty string.)

To avoid constructions that are trivially insecure by virtue of writing message or

key bits into R, we require the following. Given any sequence of inputs {(Hi,Mi)}i≤q

and any two sequences of possible outcomes {(Ri, Ci)}i≤q and {(R′i, C ′i)}i≤q, we must

73

have that for any H ∈ H, M,M ′ ∈M, K,K ′ ∈ K, and r ∈ R,

Pr [R = r | EK(Hi,Mi) = (Ri, Ci) for i ≤ q] =

Pr [R′ = r | EK′(H ′i,M ′
i) = (R′i, C

′
i) for i ≤ q]

where (R,C)
$←− EK(H,M) and (R′, C ′)

$←− EK(H,M ′), the states of EK and EK′ being

conditioned on the two transcripts, respectively. That is, R (hence, R′) can depend

only on H, q, and coins tossed by EK on the query that generates R.

Second, by allowing |Errors| > 1, we let our AEAD schemes return multiple,

distinct error messages. This can be useful in practice for, say, diagnostics within

a protocol session. Often, allowing decryption to return multiple error messages

has been problematic in practice; witness the various “padding oracle” attacks on

SSL/TLS [54, 8, 43]. For our encode-then-encipher AEAD schemes, such attacks will

not be a concern.

AEAD security notions. Our desired privacy notion is indistinguishability of ci-

phertexts from random bits. However, we do not require the recovery information to

be random (e.g., R might be a counter), so we modify the usual IND$-CPA notion

slightly. To be specific, we measure the privacy of an AEAD scheme Ψ via the follow-

ing advantage: Advpriv
Ψ (A) = Pr

[
K

$←−K ; AEK(·,·)⇒ 1
]
−Pr

[
K

$←−K ; A$K(·,·)⇒ 1
]
.

Here, $K(·, ·) is an oracle that on input (H,M), computes (R,C)
$←− EK(H,C), sam-

ples Y
$←− {0, 1}|C|, and returns (R, Y).

The authenticity goal for our AEAD scheme is integrity of ciphertexts, INT-

CTXT [3]. Namely, we define Advint-ctxt
Ψ (A) = Pr

[
K

$←−K ; AEK(·,·),DK(·,··) Forges
]

where the boolean event Forges is true if and only if A asks a query (H,R,C) to

its DK oracle such that (1) DK(H,R,C) 6∈ Errors, and (2) no prior query to EK(·, ·)

74

returned (H,R,C). Without loss of generality, A halts as soon as Forges becomes

true.

5.1 Encoding schemes

Informally, an encoding algorithm is responsible for reformatting its input, injecting

randomness, state or redundancy, while decoding validates and distills out the original

input data.

Fix a message spaceM, a header spaceH, an encoded message spaceM⊆ {0, 1}∗,

and an encoded header space H ⊆ {0, 1}∗. All of these sets must be non-empty (but

could equal {ε}). Also fix a set Errors such that Errors ∩M = ∅.

As mentioned earlier, we need two types of encoding functions. A header encoding

function EncodeH : H → H maps headers to encoded headers, possibly in some

random or stateful fashion. We require there to be a non-empty set R and a bijection

〈·, ·〉 : R×H → H with the property that for all H, EncodeH(H) = 〈R,H〉 for some

R ∈ R. In other words, we should always be able to recover H from EncodeH(H),

and any particular output of EncodeH(H) can be reconstructed from H given the

corresponding R. We call EncodeH an (H,R,H)-encoder (leaving 〈·, ·〉 implicit).

A message encoding scheme EncodeMsg = (EncodeM,DecodeM) consists of a mes-

sage encoding function EncodeM : H ×M → M and a message decoding function

DecodeM : H×M→M∪ Errors. We allow EncodeM to be randomized or stateful.

We require DecodeM(H,M) = M ∈M if and only if Pr
[

EncodeM(H,M) = M
]
> 0

for some state of EncodeM; otherwise, DecodeM(H,M) ∈ Errors (note that we allow,

for example, DecodeM(H,M) = (⊥, H,M) ∈ Errors). The DecodeM algorithm must

be deterministic, and all algorithms should run in linear time. We call EncodeMsg a

(H,M,H,M,Errors)-encoding scheme.

75

We only consider encoding functions having an associated maximal stretch, de-

fined to be the smallest s ∈ N such that, for all H ∈ H, H ∈ H, and M ∈ M,

|EncodeH(H)| ≤ |H|+ s and
∣∣EncodeM(H,M)

∣∣ ≤ |M |+ s.

Encoding scheme properties. Our encode-then-encipher AEAD security theo-

rems will surface two key properties of the encoding mechanisms.

The first property speaks to the likelihood that an encoding scheme can be made

to repeat outputs.

Let A be an adversary that asks q queries (not necessarily distinct) to an oracle

f , receiving Y 1, Y 2, . . . , Y q in response, and that halts by outputting these values.

(Think of f as a message — or header-encoding function.) Without loss of generality,

we can assume A is deterministic. Let δ : N → [0, 1] be a function. Generalizing the

definition from [4], we say f is (d, δ)-colliding if

Pr
[
Af ⇒ (Y 1, . . . , Y q) : ∃i1 < . . . < id such that Y i1 = · · · = Y id

]
≤ δ(q).

This notion is only defined for d ≥ 2. Given a (d, δ)-colliding oracle, we may assume,

without loss of generality that δ(0) = δ(1) = 0.

The second property captures the probability that a random string (of a given

length) is a valid encoding. One can think of this as a measure of the density of

encodings. Thus, let ε ∈ R be a real number. The we say the (H,M,H,M,Errors)-

encoding scheme EncodeMsg = (EncodeM,DecodeM) is ε-sparse if for all positive

integers n and all H ∈ H, |{C ∈ {0, 1}n : Decode(H,C) 6∈ Errors}| /2n ≤ ε.

76

procedure EK(H,M):

H ← 〈R,H〉 $←− EncodeH(H)

M
$←− EncodeM(H,M)

return R, ẼK(H,M)

procedure DK(H,R,C):

H ← 〈R,H〉
M ← Ẽ−1

K (H,C)

return DecodeM(H,M)

Listing 5.1: The AEAD scheme Ψ[EncodeH,EncodeMsg, Ẽ]. Reconstruction infor-
mation R allows decryption to reconstruct H from the header. (This is in lieu of
sending H as part of the ciphertext, or forcing the calling application to replace H
with H.) All authenticity checks are implicitly carried out by DecodeM .

5.2 AEAD via encode-then-encipher

Now, let Ẽ : K×H×M→M be a tweakable cipher. Let EncodeH be a (H,R,H)-

encoder, and let EncodeMsg = (EncodeM,DecodeM) be an (H,M,H,M,Errors)-

encoding scheme, for some non-empty sets H, M, and R. From these, we define

an encode-then-encipher AEAD scheme Ψ[EncodeH,EncodeMsg, Ẽ] in Figure 5.1. As

a simple example, let EncodeH prepend an 64-bit counter R to the header H, and

EncodeM(H,M) return M ‖ 080. Then EncodeH is (2, 0)-colliding, and EncodeM is

2−80-sparse (but (2, 1)-colliding). We point out that all authenticity checks implicitly

take place inside of the DecodeM function.

Security theorems and discussion. Here we give the privacy and authenticity

security statements for our encode-then-encipher AEAD scheme. We’ll give the state-

ments first, and then discuss what they imply. Proofs follow the discussion.

Theorem 7 (Privacy). Let Ψ = Ψ[EncodeH,EncodeMsg, Ẽ] be defined as in Fig-

ure 5.1. Let s be the maximal stretch of EncodeMsg, s′ be the maximal stretch of

EncodeH, and let m be the length of the shortest M ∈M satisfying DecodeM(H,M) 6=

Errors for some H ∈ H. Let A be an adversary making q queries totaling µ bits, and

running in time t. Then if EncodeH is (d, δH)-colliding and EncodeM is (2, δM)-

77

colliding for some δM that is increasing and convex on {0, 1, . . . , q}, there is an ad-

versary B such that

Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) +

(
δM(d− 1) +

(d− 1)(d− 2)

2m+1

)⌈
q

d− 1

⌉
+

(
δM(q) +

q(q − 1)

2m+1

)
δH(q)

where B makes q queries of total length at most µ+q(s+s′) bits and runs in time O(t).

Theorem 8 (Authenticity). Let Ψ[Ẽ] = Ψ[EncodeH,EncodeMsg, Ẽ] be defined as in

Figure 5.1. Let s be the stretch of EncodeMsg, s′ be the maximal stretch of EncodeH,

and define m as the length of the shortest M ∈M satisfying DecodeM(H,M) 6= Errors

for some H ∈ H. Let A be an adversary making qE (resp., qD) queries totaling µE

(resp., µD) bits to its encryption (resp., decryption) oracle, and running in time t.

Then if EncodeM is ε-sparse and qE + qD < 2m−1, there is an adversary B such that

Advint-ctxt
Ψ[Ẽ]

(A) ≤ Advs̃prp

Ẽ
(B) + 2qDε.

where B makes qE forward-queries of total length (µE + qEs) bits, qD inverse-queries

of total length (µD + qDs
′) bits, and runs in O(t) time.

To begin our discussion of these results, consider the case that EncodeH is (2, 0)-

colliding. Then the privacy bound (Theorem 7) simplifies to Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B).

This is intuitive, because, if the tweak H never repeats, then the outputs ẼK(H,M)

are uniformly random strings for any valid encoding of (H,M) intoM ; EncodeH(H,M) =

M suffices. Thus, good encodings of the header H can substantially reduce the burden

placed upon encoding of (H,M) into M .

This case generalizes nicely. Say that we can assume that the probability of

EncodeH producing any H more than d times, for some small constant d � q, is

78

negligible. Then the final term in the bound can effectively be ignored. The second

term is roughly qδM(d) + q/2m+1. Now, notice that δM is evaluated at d, not q, and

so qδM(d) can be made negligible by encoding a reasonable amount of randomness

into M (e.g. log(q) bits). For some natural choices of EncodeMsg then, q/2m+1 will

be the dominating term, where m is the shortest length of M . But to achieve good

authenticity bounds, which we will turn to momentarily, m is unlikely to let q/2m+1

ruin the bound.

We point out that in the un-tweakable setting considered in [4], privacy must be

achieved by encoding randomness or state into M . The presence of the tweak allows

us to shift these “extra” bits into the encoding of the header, which potentially reduces

the number of bits that must be cryptographically processed.

In the extreme case thatH is fixed across all queries (perhaps by design, or perhaps

a result of a faulty implementation), the construction reverts to the un-tweakable

setting. In this case, EncodeH is (2, 1)-colliding, we recover, essentially, the bound

of Bellare and Rogaway [4]. (But note that we consider indistinguishability from

random bits, which is stronger than the privacy notion considered there.)

Turning now to the authenticity bound (Theorem 8), note that if EncodeM inserts

b redundant bits (so ε ≈ 2−b) and qE + qD � 2m, the second term of our authenticity

bound is approximately qD/2
b. Thus, if the tweakable cipher Ẽ has STPRP-security

up to (say) 280 queries (e.g., an appropriately instantiated PIV with N = 256), then

encoding the header with a nonce, and the message with 80 bits of redundancy, yields

an AEAD scheme with roughly 80-bit privacy and authenticity guarantees, and one

that can tolerate nonce-misuse.

We note that the proof of Theorem 8 can be easily modified to show that the

stated bound holds even if the adversary controls the coins and state of EncodeM

and EncodeH. Additionally, we assume only that decryption oracle queries are not

79

redundant — adversaries are not assumed to respect any nonces encoded into the

headers or messages.

Relationship to deterministic authenticated encryption. Motivated by the

key-wrapping problem, Rogaway and Shrimpton [49] introduce deterministic au-

thenticated encryption (DAE). The encryption and decryption algorithms of a DAE

scheme take a header string as an auxiliary input, as in the AEAD case. However,

both algorithms are required to be deterministic. The corresponding security notion

considers only adversaries that never repeat queries (or that make redundant queries

to a decryption oracle).

Our encode-then-encipher AEAD scheme may be viewed as a DAE scheme, pro-

vided the EncodeM and EncodeH algorithms are deterministic. One can easily show

that the DAE security of a scheme is upper bounded by the sum of its privacy and

authenticity bounds, as given in Theorems 7 and 8. We note that, under the as-

sumption that adversaries do not repeat queries, the privacy bound from Theorem 7

reduces to Advp̃rp

Ẽ
(B) + q2/2m+1 for some adversary B. Obtaining this result re-

quires trivial proof modifications, and generalizes a result from [49], which considers

EncodeM(H,M) = M ‖ 0s.

Subsequent work. In a recent paper [23], Hoang, Krovetz, and Rogaway intro-

duced a security notion they term robust authenticated encryption. In order to meet

this security definition, it must be not only be difficult for an adversary to forge a

ciphertext, but being able to find one or more forgeries should not increase the ad-

versary’s ability to make further forgeries. This property is valuable if bandwidth

restrictions permit only small authentication tags. The authors observe that tweak-

able ciphers provide this stronger form of security.

80

5.3 Proof of Theorem 7

Proof. Let Π
$←− BC(H,M) be a random cipher. Let Ψ[Π] be the AEAD scheme

obtained by replacing ẼK and Ẽ−1
K with Π and Π−1, respectively, everywhere in

the algorithms of Ψ[EncodeH,EncodeMsg, Ẽ]. Let EΠ be the corresponding encryp-

tion algorithm. We begin by observing that Pr
[
AEK(·,·)⇒ 1

]
− Pr

[
AEΠ(·,·)⇒ 1

]
≤

Advp̃rp

Ẽ
(B), for the standard adversary B that simulates EK or EΠ, depending on

its own oracle. This leaves us with Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) + Pr

[
AEΠ(·,·)⇒ 1

]
−

Pr
[
K

$←−K ; A$K(·,·)⇒ 1
]
.

Now we proceed by a sequence of games. Let s be the stretch of EncodeM.

Game G1 implements EΠ, using lazy-sampling to define Π. In particular, on the

i-th query (Hi,Mi), Game G1 computes the encodings H i,M i, and then samples

a potential value Si to assign to Π(H i,M i). This value will be valid so long as

Π(H i,M i) has not already been set, and as long as Si has not been used with H i

before; otherwise, Game G1 sets bad1 or bad2, and then reassigns Si an appropriate

value.

Since Game G2 is identical to Game G1 until bad1 or bad2 is set, we have

Pr
[
AEΠ(·,·)⇒ 1

]
= Pr [G1(A)⇒ 1]

= Pr [G1(A)⇒ 1 ∧ (bad1 ∨ bad2)]

+ Pr [G1(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

≤ Pr [G2(A) ; bad1 ∨ bad2] + Pr [G2(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

where in the final line we use an alternative formulation of the fundamental lemma of

game-playing [5]. Now, notice that in Game G2, the value of Si is always uniformly

random in {0, 1}|Mi|+s, and EΠ’s outputs are independent of each Mi. Consequently

81

we can postpone assigning values to each Mi until after A halts. This in turn allows

us to postpone checking to see if bad1 or bad2 should be set without altering the

probability that they will be. We make both these changes to create Game 3 (so

Pr [G2(A) ; bad1 ∨ bad2] = Pr [G3(A) ; bad1 ∨ bad2]). Thus,

Pr [G2(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)] = Pr [G3(A)⇒ 1 ∧ ¬(bad1 ∨ bad2)]

≤ Pr [G3(A)⇒ 1] = Pr
[
K

$←−K ; A$K(·,·)⇒ 1
]

where the final equality follows from the fact that in Game G3, each Si is sampled

independently and uniformly at random from the set of appropriately sized strings.

To recap, at this point we have

Advpriv
Ψ (A) ≤ Advp̃rp

Ẽ
(B) + Pr [G3(A) ; bad1 ∨ bad2]

We need an upper bound for Pr [G3(A) ; bad1 ∨ bad2]. Therefore suppose that A

has just generated its output after running in G3. We will first bound the probability

that bad1 gets set. Let N =
∣∣{H i : i ≤ q

}∣∣ be the number of distinct tweak encodings

generated during the course of the game. Let R1, R2, . . . , RN ⊆ {1, 2, . . . , q} be

equivalence classes characterized by the property that i and j are in the same class if

and only if H i = Hj. The probability that bad1 will be set is at most
∑

k δM(|Rk|).

Note that the upper bound is obtained by summing the values of the increasing

convex function δM at the points |R1| , |R2| , . . . , |RN | where |R1|+|R2|+· · ·+|RN | = q.

Consequently the bound is largest (for fixed q) when N = 1 and R1 = {1, 2, . . . , q}.

Let Capped denote the event that each |Rk| < d; then Pr [G3(A) ; ¬Capped] ≤ δH(q).

Given that Capped occurs,
∑

k δM(|Rk|) is largest when N = dq/(d− 1)e and |Rk| =

82

d− 1 for k = 1, 2, . . . , N − 1. We have

Pr [G3(A) ; bad1] ≤ Pr [G3(A) ; bad1 | Capped]

+ Pr [G3(A) ; bad1 | ¬Capped] Pr [G3(A) ; ¬Capped]

≤ δM(d− 1)d q

d− 1
e+ δM(q)δH(q).

By a similar argument,

Pr [G3(A) ; bad2] ≤ Pr [G3(A) ; bad2 | Capped]

+ Pr [G3(A) ; bad2 | ¬Capped] Pr [G3(A) ; ¬Capped]

≤ (d− 1)(d− 2)

2m+1
d q

d− 1
e+

q(q − 1)

2m+1
δH(q),

since the standard i 7→ i(i−1)/2m+1 birthday bound (for the probability of a collision

among i independent random variables sampled uniformly from {0, 1}m) meets the

criterion of an increasing convex function. This completes the proof.

5.4 Proof of Theorem 8

Proof. Let B be the STPRP adversary that simulates the INT-CTXT experiment for

A and outputs 1 if A would set Forges to true. Then Advint-ctxt
Ψ (A) ≤ Advs̃prp

Ẽ
(B) +

Advint-ctxt
Ψ[Π] (A), where Ψ[Π] is the scheme obtained by replacing ẼK and Ẽ−1

K with

Π and Π−1, respectively, everywhere in the algorithms of Ψ, and Advint-ctxt
Ψ[Π] (A) is

defined in the natural way (with probabilities over the random choice of Π, rather

than K).

Consider GameG4. By defining Π through lazy sampling, we have Advint-ctxt
Ψ[Π] (A) =

Pr [G4(A) ; Forges]. Note that in the code for the DΠ oracle, we do not need to check

83

Games G1 , G2

Oracle EΠ(H,M):

i← i+ 1; Mi ←M

H i ← 〈r,Hi〉
$←− EncodeT (Hi)

M i
$←− EncodeM (H i,Mi)

Si
$←− {0, 1}|M|

if Si ∈ [(..Π] (H i, ·)) then

bad2 ← true

Si
$←− {0, 1}|M| \ [(..Π] (H i, ·))

if M i ∈ dom(Π(H i, ·)) then

bad1 ← true

Si ← Π(H i,M i)

Π(H i,M i)← Si
return r ‖ Si

Game G3

procedure Main(A):

b
$←−AE(·,·)

for i← 1 to q do

M i
$←− EncodeM (H i,Mi)

if M i ∈ dom(Π(H i, ·)) then

bad1 ← true

if Si ∈ [(..Π] (H i, ·)) then bad2 ← true

Π(H i,M i)← Si
return b

Oracle EΠ(H,M):

i← i+ 1; Mi ←M

H i ← 〈r,Hi〉
$←− EncodeT (Hi);

Si
$←− {0, 1}|M |+s

return r ‖ Si

Listing 5.2: Games for the proof of Theorem 7. Boxed commands are omitted in
Game G2, causing the EΠ oracle to always return random strings. We use Game G3 to
bound the probability that this change can be detected by an adversary (as measured
by the probability that a bad will be set).

84

Game G4

Oracle EΠ(H,M):

H ← 〈r,H〉 $←− EncodeT (H)

M
$←− EncodeM(H,M)

if M 6∈ dom(Π(H, ·)) then

Π(H,M)
$←− {0, 1}|M| \[(..Π] (H, ·))

return r ‖ Π(H,M)

Oracle DΠ(H, r, C):

H ← 〈r,H〉
M

$←− {0, 1}|C| \ dom(Π(H, ·))
Π(H,M)← C

M ← DecodeM(H,M)

if M ∈ Errors then Forges← true

return M

Listing 5.3: Game G4 simulates the IND-CTXT experiment for SE [Π].

if Π−1(H, Y) has already been defined; this possibility is excluded by the fact that A

does not repeat queries to DΠ, and does not send DΠ a value previously returned by

EΠ (while preserving the header).

Fix some query to DΠ. The probability that A forges on this query is equal to the

probability that the corresponding, randomly chosen value ofM is a valid encoding.

There are at most 2|Y |ε valid encodings of the correct length, andM is sampled from

a set of size at least 2|Y | − (qE + qD). Consequently, A forges on this query with

probability at most 2|Y |ε/(2|Y | − (qE + qD)) < 2mε/(2m − 2m−1) = 2ε. A union bound

completes the proof.

85

6. Conclusion

We have contributed novel TBC constructions that provide beyond-birthday-bound

security (LRW2 and TCT2), and others that provide standard birthday-bound security

more efficiently (TCT1 and VCV). Moreover, we have shown how wideblock tweak-

able ciphers can provide authenticated encryption with associated data in a way that

is robust against common implementation errors, and that can leverage pre-existing

randomness and redundancy in plaintexts to improve security. In the process of prov-

ing the security properties of the PIV framework, we believe we have also advanced

the central thesis of Liskov, Rivest, and Wagner: namely, that tweakable blockciphers

permit short, easily verified proofs, and are therefore the “right” starting point for

symmetric-key cryptography.

Our contributions to the design and use of tweakable ciphers were concurrent with

those of other researchers. We briefly describe some of the results that have expanded

on our own, and then discuss directions for further research.

6.1 Subsequent work

Recall that our first major result was quantifying how much additional security could

be obtained by using two rounds of LRW instead of one. We showed that the result,

LRW2, is secure as long as an attacker is limited to q � 22n/3 queries, where n is

the block size. This naturally raises the question of how much security r rounds of

LRW could provide. We conjectured in our original paper [29] that r rounds would

86

be sufficient as long as q � 2rn/(r+1).

In a follow-up work, Lampe and Seurin [28] proved that this bound holds for 2r

rounds, but likewise conjectured that r rounds would be sufficient. This remains an

open problem.

Others have explored ways of constructing TBCs directly, rather than from an

underlying blockcipher. The advantage of this approach is that it offers the possibility

of more efficient constructions; the cost is that security proofs are impossible or rely

on heuristic models. For example, proofs in the ideal cipher model treat a blockcipher

as though it were chosen uniformly at random from the set of all possible blockciphers.

Jean, Nikolić, and Peyrin described the TWEAKEY framework [26] for modifying

so-called key-alternating blockciphers (of which AES is an example) to transform

them into TBCs. Mennink [36] constructed a TBC that is secure for all q � 2n, but

the security proof is in the ideal cipher model. Cogliati, Lampe, and Seurin have

announced [13] that their forthcoming CRYPTO 2015 paper shows LRW2 provides

beyond-birthday-bound security even when both instances of the randomly keyed

blockcipher are replaced with, public, random permutations (the hash function still

has a secret key). More generally, 2r rounds of this variant permit q � 2rn/(r+1)

queries, and again the authors conjecture that r rounds are sufficient for this bound.

Hoang, Krovetz, and Rogaway [23] introduced the AEZ wideblock tweakable ci-

pher. AEZ uses a stripped-down version of AES under the hood, and thus its security

does not reduce to the security of (full strength) AES; however, the authors presented

some informal arguments that truncating AES is safe in the specific context of AEZ.

The benefit of this approach is that AEZ becomes extremely fast in software: the au-

thors reported a throughput of about 0.7 cycles per byte. Moreover, they expanded

on our AEAD-from-tweakable-cipher results and prove that using tweakable ciphers

provides what they describe as robust authenticated encryption.

87

6.2 Looking forward

While the recent trend towards using heuristic models to analyze TBC constructions

may at first appear problematic, we hope that it proves to be a step towards standard-

izing a dedicated TBC algorithm. Such a TBC would occupy a position similar to

the one AES enjoys today: our confidence in its security would rest on sustained, un-

successful cryptanalysis rather than a standard-model reduction to some underlying

primitive. Security proofs in heuristic models would serve to bolster this confidence.

TBC-based algorithms, including VCV, would be able to immediately make use of

the new primitive, benefiting from its improved efficiency and, one would hope, its

security.

However, it will be some time before a TBC algorithm makes it through some

standardization process and resists cryptanalysis long enough to garner support from

the cryptographic community. Until then, blockcipher-based TBC constructions will

continue to offer a versatile and trustworthy foundation for symmetric-key cryptog-

raphy.

88

Bibliography

[1] Jee Hea An and Mihir Bellare. Does encryption with redundancy provide authen-
ticity? In Birgit Pfitzmann, editor, Advances in Crptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 512–528. Springer,
2001.

[2] DiegoF. Aranha, Julio Lpez, and Darrel Hankerson. Efficient software implemen-
tation of binary field arithmetic using vector instruction sets. In Michel Abdalla
and PauloS.L.M. Barreto, editors, Progress in Crptology – LATINCRYPT 2010,
volume 6212 of Lecture Notes in Computer Science, pages 144–161. Springer,
2010.

[3] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions andanalysis of the generic composition paradigm. Journal of
Cryptology, 21(4):469–491, 2008.

[4] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 317–330. Springer Berlin Heidelberg,
2000.

[5] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
frameworkforcode-basedgame-playingproofs. In Serge Vaudenay, editor, Ad-
vances in Crptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 409–426. Springer, 2006.

[6] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
secure message authentication. In Michael Wiener, editor, Advances in Crptology
– CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages 216–
233. Springer, 1999.

[7] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. AES-based
authenticated encryption modes in parallel high-performance software. IACR
Cryptology ePrint Archive, 2014:186, 2014.

[8] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password
interception in a SSL/TLS channel. In Dan Boneh, editor, Advances in Crptology

89

– CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–
599. Springer, 2003.

[9] Mickaël Cazorla, Kevin Marquet, and Marine Minier. Survey and benchmark of
lightweight block ciphers for wireless sensor networks. IDEA, 64(128):34, 2013.

[10] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
In Kaisa Nyberg, editor, Fast Software Encryption, volume 5086 of Lecture Notes
in Computer Science, pages 289–302. Springer, 2008.

[11] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-encrypt-hash approach. In Rana Barua and Tanja Lange,
editors, Progress in Cryptology – INDOCRYPT 2006, volume 4329 of Lecture
Notes in Computer Science, pages 287–302. Springer Berlin Heidelberg, 2006.

[12] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. In Matthew Robshaw, editor,
Fast Software Encryption, volume 4047 of Lecture Notes in Computer Science,
pages 293–309. Springer, 2006.

[13] Benot Cogliati, Rodolphe Lampe, and Yannick Seurin. Tweaking Even-Mansour
ciphers. Cryptology ePrint Archive, Report 2015/539, 2015.

[14] Jean-Sbastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin. A
domain extender for the ideal cipher. In Daniele Micciancio, editor, Theory of
Cryptography, volume 5978 of Lecture Notes in Computer Science, pages 273–
289. Springer Berlin Heidelberg, 2010.

[15] Wei Dai and Ted Krovetz. VHASH security. IACR Cryptology ePrint Archive,
2007:338, 2007.

[16] Niels Ferguson. AES-CBC+ Elephant diffuser: A disk encryption algorithm for
Windows Vista, 2006.

[17] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein hash function. Sub-
mission to NIST, 2010, 2008.

[18] Shay Gueron. AES-GCM software performance on the current high end CPUs as
a performance baseline for CAESAR competition. Directions in Authenticated
Ciphers (DIAC), 2013.

[19] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapaleeswaran Viswanathan, editors,
Progress in Cryptology – INDOCRYPT 2004, volume 3348 of Lecture Notes in
Computer Science, pages 315–327. Springer Berlin Heidelberg, 2005.

90

[20] Shai Halevi. Invertible universal hashing and the TET encryption mode. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of
Lecture Notes in Computer Science, pages 412–429. Springer Berlin Heidelberg,
2007.

[21] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 482–499. Springer Berlin Heidelberg, 2003.

[22] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, Topics in Cryptology – CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 292–304. Springer Berlin Heidelberg, 2004.

[23] VietTung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption: AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, volume 9056 of
Lecture Notes in Computer Science, pages 15–44. Springer, 2015.

[24] VietTung Hoang, Ben Morris, and Phillip Rogaway. An enciphering scheme based
on a card shuffle. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 1–13. Springer Berlin Heidelberg, 2012.

[25] Intel. Intel IPSec v3 library. https://downloadcenter.intel.com/download/
22972/Optimized-IPSec-Cryptographic-Library, February 2015.

[26] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology – ASIACRYPT 2014, volume 8874 of Lecture Notes in
Computer Science, pages 274–288. Springer Berlin Heidelberg, 2014.

[27] Ted Krovetz. Message authentication on 64-bit architectures. In Eli Biham and
AmrM. Youssef, editors, Selected Areas in Cryptography, volume 4356 of Lecture
Notes in Computer Science, pages 327–341. Springer Berlin Heidelberg, 2007.

[28] Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptoti-
cally optimal security. In Shiho Moriai, editor, Fast Software Encryption, volume
8424 of Lecture Notes in Computer Science, pages 133–151. Springer Berlin Hei-
delberg, 2014.

[29] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable block-
ciphers with beyond birthday-bound security. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Crptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 14–30. Springer, 2012.

91

https://downloadcenter.intel.com/download/22972/Optimized-IPSec-Cryptographic-Library
https://downloadcenter.intel.com/download/22972/Optimized-IPSec-Cryptographic-Library

[30] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science, pages 31–46. Springer Berlin Heidelberg,
2002.

[31] Mancillas López. Efficient hardware implementation of some tweakable encipher-
ing schemes. Master’s thesis, Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional, 2007.

[32] J. Luo, K.D. Bowers, A. Oprea, and L. Xu. Efficient software implementations
of large finite fields GF(2n) for secure storage applications. ACM Transactions
on Storage (TOS), 8(1):2, 2012.

[33] Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. Reconfigurable hardware impementations of tweakable enciphering
schemes. IEEE Transactions on Computers, 59:1547–1561, 2010.

[34] L. Martin. XTS: A mode of AES for encrypting hard disks. Security Privacy,
IEEE, 8(3):68–69, May 2010.

[35] David McGrew and John Viega. The galois/counter mode
of operation (gcm). Submission to NIST. http://csrc. nist.
gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf, 2004.

[36] Bart Mennink. Optimally secure tweakable blockciphers. In Fast Software En-
cryption, Lecture Notes in Computer Science. Springer, 2015.

[37] Kazuhiko Minematsu. Improved security analysis of XEX and LRW modes. In
Eli Biham and AmrM. Youssef, editors, Selected Areas in Cryptography, volume
4356 of Lecture Notes in Computer Science, pages 96–113. Springer, 2007.

[38] Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable block
cipher. In Orr Dunkelman, editor, Fast Software Encryption, volume 5665 of
Lecture Notes in Computer Science, pages 308–326. Springer Berlin Heidelberg,
2009.

[39] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable
blockcipher: Extending FSE 2009 proposal. In Liqun Chen, editor, Cryptography
and Coding, volume 7089 of Lecture Notes in Computer Science, pages 391–412.
Springer Berlin Heidelberg, 2011.

[40] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

92

[41] Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a
small domain. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 286–302. Springer
Berlin Heidelberg, 2009.

[42] M. Naor and O. Reingold. On the construction of pseudo-random permutations:
Luby-rackoff revisited. In Proceedings of the twenty-ninth annual ACM sympo-
sium on Theory of computing, pages 189–199. ACM, 1997.

[43] KennethG. Paterson and Arnold Yau. Padding oracle attacks on the ISO CBC
mode encryption standard. In Tatsuaki Okamoto, editor, Topics in Crptology –
CT-RSA 2004, volume 2964 of Lecture Notes in Computer Science, pages 305–
323. Springer, 2004.

[44] Gordon Procter. A note on the CLRW2 tweakable block cipher construction.
IACR Cryptology ePrint Archive, 2014:111, 2014.

[45] Phillip Rogaway. Authenticated-encryption with associated-data. In ACM Con-
ference on Computer and Communications Security, pages 98–107, 2002.

[46] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In PilJoong Lee, editor, Advances in Crptology
– ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages
16–31. Springer, 2004.

[47] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal Roy and Willi
Meier, editors, Fast Software Encryption, volume 3017 of Lecture Notes in Com-
puter Science, pages 348–358. Springer, 2004.

[48] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Proceedings
of the 8th ACM conference on Computer and Communications Security, pages
196–205. ACM, 2001.

[49] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Serge Vaudenay, editor, Advances in Crptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 373–390.
Springer, 2006.

[50] Palash Sarkar. Improving upon the TET mode of operation. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, Information Security and Crptology – ICISC 2007,
volume 4817 of Lecture Notes in Computer Science, pages 180–192. Springer,
2007.

[51] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) univer-
sal hash functions. IEEE Trans. Inf. Theor., 55(10):4749–4760, October 2009.

93

[52] Rich Schroeppel and H Orman. The hasty pudding cipher. AES candidate
submitted to NIST, page M1, 1998.

[53] Thomas Shrimpton and R. Seth Terashima. A modular framework for building
variable-input-length tweakable ciphers. In Kazue Sako and Palash Sarkar, edi-
tors, Advances in Crptology – ASIACRYPT 2013, volume 8269 of Lecture Notes
in Computer Science, pages 405–423. Springer, 2013.

[54] Serge Vaudenay. Security flaws induced by cbc padding applications to SSL,
IPSEC, WTLS. . . . In Lars R. Knudsen, editor, Advances in Cryptology – EU-
ROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
534–545. Springer Berlin Heidelberg, 2002.

[55] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
Information Security and Cryptology, volume 3822 of Lecture Notes in Computer
Science, pages 175–188. Springer, 2005.

[56] M.N. Wegman and J.L. Carter. New hash functions and their use in authentica-
tion and set equality. Journal of computer and system sciences, 22(3):265–279,
1981.

94

	Portland State University
	PDXScholar
	Summer 8-7-2015

	Tweakable Ciphers: Constructions and Applications
	Robert Seth Terashima
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	List of Tables
	List of Figures
	Glossary of Abbreviations
	Introduction
	Notes on source material

	Preliminaries
	Cryptographic primitives
	Game-playing proofs
	The birthday bound

	The LRW2 Tweakable Blockcipher
	Prior TBC constructions
	The LRW2 TBC

	Wideblock Tweakable Ciphers
	Motivation: full-disk encryption
	Previous constructions
	The Protected IV framework
	Concrete Instantiations of PIV
	Targeting efficiency at birthday-type security: TCT1
	Aiming for beyond birthday-bound security: TCT2
	Additional practical considerations
	Instantiating V"0365V with conventional encryption

	VCV design and implementation
	Removing finite field multiplication
	Implementation
	Benchmarks

	AEAD from Tweakable Ciphers
	Encoding schemes
	AEAD via encode-then-encipher
	Proof of Theorem 7
	Proof of Theorem 8

	Conclusion
	Subsequent work
	Looking forward

	Bibliography

