
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2010

Performance Analysis of Hybrid CPU/GPU Environments
Michael Shawn Smith
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Smith, Michael Shawn, "Performance Analysis of Hybrid CPU/GPU Environments" (2010). Dissertations and Theses. Paper 300.

10.15760/etd.300

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/300?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.300
mailto:pdxscholar@pdx.edu

Performance Analysis of Hybrid CPU/GPU Environments

by

Michael Shawn Smith

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in
Computer Science

Thesis Committee:

Karen Karavanic, Chair
Wu-chang Feng

Bryant York

Portland State University
2010

i

Abstract

We present two metrics to assist the performance analyst to gain a unified view of

application performance in a hybrid environment: GPU Computation Percentage and

GPU Load Balance. We analyze the metrics using a matrix multiplication benchmark

suite and a real scientific application. We also extend an experiment management

system to support GPU performance data and to calculate and store our GPU

Computation Percentage and GPU Load Balance metrics.

ii

Table of Contents

Abstract.……………………………………………………………………………….. i
List of Tables.………………………………………………………………………... iv
List of Figures………………………………………………………………………… v
1. Introduction... 1
2. Related Work .. 4

2.1. Benchmarks.. 4
2.2. Parallel Performance Tools... 4

2.2.1. CPU Centric .. 4
2.2.2. GPU Centric .. 4
2.2.3. Hybrid ... 7

2.3. Conclusion ... 8
3. Performance Metrics ... 9

3.1. Background .. 9
3.2. GPU Computation Percentage Metric ..12
3.3. GPU Load Balance Metric...14

4. Benchmark Suite ..17
4.1. Single Device Matrix Multiplication..17

4.1.1. Naive Kernel...19
4.1.2. Tiled Kernel..19
4.1.3. Tiled + Shared Memory Kernel...20

4.2. Multiple Device Matrix Multiplication ..23
4.3. Memory Optimizations..26
4.4. Hybrid Matrix Multiplication...26
4.5. Problems Implementing Matrix Multiplication ..26

5. PerfTrack ...28
5.1. Work Done Extending PerfTrack...28

5.1.1. Machine Data ...28
5.1.2. Build Data ..29
5.1.3. Performance Results ...29
5.1.4. Wall Clock Time ..32
5.1.5. Multiple CUDA Prof Log Files...33
5.1.6. Metric Calculation ..33
5.1.7. Conclusion..34

6. Experimental Design ..36
6.1. Matrix Multiplication Benchmark..36
6.2. NAMD ..37
6.3. Instrumentation..38
6.4. Wyeast ..39

7. GPU Computation Percentage Case Study..41
7.1. Single Device Results ..42
7.2. Multiple Device Results...45
7.3. Hybrid Environment Results..48

 iii

7.4. Discussion ...49
8. GPU Load Balance Case Study ..51

8.1. Single Device Results ..51
8.2. Multiple Device Results...54
8.3. Hybrid Environment Results..56
8.4. Discussion ...57

9. NAMD Case Study ..60
10. Conclusions and Future Work ..62
11. References..64

iv

List of Tables

Table 1: Data movement device time ..14
Table 2: matrix sizes ...37
Table 3: meakin configuration...40
Table 4: wyeast01 and wyeast02 configuration..40
Table 5: Tesla S1070 configuration...40
Table 6: GPU Computation Percentage, paged memory single device44
Table 7: GPU Computation Percentage, pinned memory single device......................44
Table 8: GPU Computation Percentage, pinned memory, ..45
Table 9: GPU Computation Percentage, paged memory two devices.........................47
Table 10: GPU Computation Percentage, pinned memory two devices......................47
Table 11: GPU Computation Percentage, pinned memory, ..47
Table 12: GPU Computation Percentage, hybrid ...49
Table 13: GPU Load Balance, paged memory single device......................................53
Table 14: GPU Load Balance, pinned memory single device.....................................53
Table 15: GPU Load Balance, pinned memory,...53
Table 16: GPU Load Balance, paged memory two devices..55
Table 17: GPU Load Balance, pinned memory two devices.......................................55
Table 18: GPU Load Balance, pinned memory,...55
Table 19: GPU Load Balance, paged memory, hybrid ...57
Table 20: GPU Load Balance, pinned memory, hybrid..57
Table 21: GPU Load Balance, pinned memory,...57
Table 22: NAMD GPU Computation Percentage...60
Table 23: NAMD GPU Load Balance ...61

v

List of Figures

Figure 1: GPU Programming Design Pattern...10
Figure 2: Sample CUDA Application..12
Figure 3: Pd tiled ...20
Figure 4: Calculation of element (0,0) in block (0,0) ...20
Figure 5: Tiled kernel memory access pattern..21
Figure 6: Tiled+shared kernel phase 1...22
Figure 7: Tiled+shared kernel phase 2...23
Figure 8: Division of work between two threads..24
Figure 9: Multi-device matrix multiplication...25
Figure 10: GPU Device Resource Information ..29
Figure 11: CUDA Prof log entry ...29
Figure 12: PerfTrack Performance Results ..32

 1

1. Introduction
Single core processors have hit a performance wall because of heat dissipation and

power requirements. To overcome this the hardware industry started creating

multicore CPUs. Even with multiple cores, these CPUs lag behind Graphic

Processing Units (GPUs) in raw floating point performance. This is because the basic

design philosophy between CPUs and GPUs is different. CPUs devote a large portion

of available die space to control logic and cache memory. With GPUs a large portion

of the die space is devoted to arithmetic units. Thus, GPUs are able to perform

floating point operations faster.

The science community has taken notice of GPU performance, and has ported

scientific codes to GPUs. Roeh et al. [35] have ported the two-point angular

correlation function (TPACF) used in cosmological research achieving an approximate

80 times speedup. Phillips et al. [34] used GPUs to achieve a 7 times speedup for a

molecular dynamic simulation. These applications have seen a many fold increase in

performance. However, these efforts have been at small scale, utilizing one to two

hundred compute devices. The high performance computing community has also

taken notice of GPUs. Current multicore processors still limit the ability to achieve

exascale computing because of power and heat dissipation. To move forward from the

current petascale computing to exascale computing GPUs will be used because of their

floating point performance and power consumption. This approach of adding GPUs as

accelerators for CPUs is called hybrid computing [42].

 2

Programming for GPUs is not easy because of the different execution model of GPUs.

With GPUs the programmer must create a kernel that executes on the GPU, divide the

data into blocks, and explicitly move the data and kernel to the GPU device. The

kernel then executes asynchronously with code on the CPU. Most performance tools

provide performance data on the GPU or the CPU in isolation. Therefore, the

programmer has few tools available to talk about the overall performance of the

program at a high level when working with multiple threads of execution and multiple

kernel launches.

To provide a unified view of a program’s performance we have developed two metrics

targeting hybrid CPU/GPU environments. Our approach is novel because it takes into

consideration both the CPU and GPU, and it works with currently available tools (in

other words, we don’t need an experimental device driver). This type of performance

analysis reduces program development time, allowing programmers, domain

scientists, to perform more real science.

Thesis Statement:

The GPU Load Balance and GPU Computation Percentage metric are a
useful starting point for modeling performance of hybrid CPU/GPU systems:
GPU Load Balance characterizes load balance between CPU and GPU or
multiple GPUs; and GPU Computation Percentage indicates high overhead
for data movement between the CPU and the GPU.

 3

In this thesis we discuss our investigation of these two metrics, and our performance

study using these metrics.

To calculate our metrics we gathered performance data using a GPU device centric

performance tool and a performance tool that gathered performance data for the host

CPU. We then combined this data and stored it in an experiment management system.

The experiment management system was extended to support GPU performance data

and to calculate and store values for the metric we were investigating.

The contributions of this work are:

1. implementation of a benchmark suite

2. a performance study in a hybrid environment

3. implementation of a GPU Load Balance metric

4. implementation of a GPU Computation Percentage metric

5. enhancement of an existing performance database tool to handle applications

run in a hybrid environment

In the next section we discuss work related to ours.

 4

2. Related Work
The most closely related work to ours includes benchmarks for hybrid environments

and parallel performance tools.

2.1. Benchmarks
The Scalable Heterogeneous Computing (SHOC) benchmark suite [10], Rodinia [8],

and the Parboil Benchmark suite [31] are a collection of benchmarks to test the

performance of hybrid systems. Like our work these benchmarks report the

performance of hybrid systems. However, these tools use benchmarks targeted for

GPU performance problems, whereas we developed a benchmark suite for evaluating

performance analysis methods and tools.

2.2. Parallel Performance Tools
Parallel performance tools related to our work can further be broken into CPU centric,

GPU centric, and hybrid categories.

2.2.1. CPU Centric
There are a number of commercial and research parallel performance tools available.

Commercial tools include Vampir [6]. The research community has developed a

number of tools including HPC Toolkit [1], Scalasca [14], and TAU [38]. Of these,

only TAU currently provides some support for gathering performance data in a hybrid

environment.

2.2.2. GPU Centric
CudaProf [9] is Nvidia’s performance tool used to generate profiles for kernel

executions and memory transfers. It has a GUI front end and command line version.

 5

To instrument an application, environment variables are set that indicate profiling is to

be performance by the CUDA runtime system and the location of the configuration

file. CudaProf has some limitations. The values reported for the performance

counters do not represent the behavior of individual threads, but all the threads in a

warp. Also, the profiler can only use one of the streaming multiprocessors on the

device. Therefore, the performance counters don’t even represent the behavior of all

the warps. CudaProf can also impose significant overhead. If any profile counters are

enabled all kernel calls are blocking. Normally kernel calls are non-blocking. This

change in behavior could have a significant impact on performance if work on the host

and the device are expected to be overlapped.

Nvidia Parallel Nsight [30] is a plugin for Visual Studio. It is currently in open beta

and allows for profiling, tracing, and debugging of Nvidia devices.

 In addition to measurement tools, work has been done in modeling. Hong and Kim

[17] developed an analytical model for identifying performance bottlenecks. This

model takes into consideration memory level parallelism. They developed two

metrics for use with their model, memory warp parallelism and computation warp

parallelism. Memory warp parallelism is a measure of the number of memory

requests that can be handled concurrently. Computation warp parallelism is a measure

of the work that can be completed while a warp is waiting for a memory request to

complete. Another performance model for kernels running on GPUs was developed

 6

by Baghsorkhi et al. [1] that used a work flow graph to estimate a kernel's

performance. This work can be used with compilers to determine which optimizations

to perform, and can allow a performance analysis to identify performance bottlenecks.

Metrics introduced by this paper include SIMD pipeline latency, global memory

latency, code divergence, and compute to global memory ratio.

Schaa and Kaeli [37] developed a method for predicting the performance of an

application when multiple GPUs are used. A baseline is developed using a program

that is deterministic and only uses a single GPU. Metrics were created for per element

and per subset average execution time. An element is the smallest unit of

computation, and a subset is an aggregation of elements. Predicted execution time for

the multi-GPU version of the code is calculated using the per element average and the

number of GPUs.

Ryoo et al. [36] have developed an auto-tuning approach that reduces the number of

optimizations to consider when searching for an optimal configuration using the

Pareto-optimal subset to prune the search space. They developed an efficiency and

utilization metric that are used in determining the performance of a configuration. The

efficiency of a configuration is a measure of the instructions that execute before the

kernel finishes, and the utilization is a measure of compute resource usage.

Measurements are done statically by analyzing PTX code and programmer supplied

data.

 7

Several other performance studies have been published. Matrix multiplication was

used by Ryoo et al. [36] to do a performance study of various levels of optimization.

This is similar to our work, but they utilize GFLOPS, global memory to computation

cycles ratio, GPU execution percentage, CPU-GPU transfer percentage, kernel

speedup on the GPU, and application speedup benchmarks in their study. We utilize

our own metrics. They only performed their study on a single device where we use

multiple device and overlap CPU and GPU in our study. Matrix multiplication on

GPUs was studied by Allada et al. [1]. They compared the performance of matrix

multiplication on a host CPU to the performance on a GPU. They also measured

available bandwidth between host and device. An image registration application was

ported by Bui and Brockman [7] to use GPUs. They did a performance study to

measure the speedup of their implementation.

2.2.3. Hybrid
TAUcuda [27] is an extension to TAU [38] that allows TAU to profile and trace

CUDA kernels running on Nvidia GPUs. This is an experimental approach because it

relies on a call back interface that is, currently, only available in an experimental

device driver from Nvidia. TAUcuda includes metrics for kernel execution elapsed

time, memory transfer elapsed time, and memory transfer size. It also supports the

default GPU counters.

 8

Volkov and Demmel [43] did a performance study of matrix multiplication on GPU

devices. There study also included using multiple devices and overlapping device and

host computation. They also performed an in depth study of the device’s memory

system performance, startup time for kernels, and arithmetic throughput.

An equation to measure the amount of time to move data over the PCIe bus was also

developed in this work.

Teodoro et al. [41] use a framework for decomposing an application into components

that can be run on a GPU or CPU. A runtime system is used to determine if the

component will be run on the host’s CPU or the device. They studied application

performance just using a GPU device, and in a hybrid environment using the CPU and

GPU, and using a distributed memory system.

2.3. Conclusion
The novel aspects of our work are: our benchmark was implemented to test a

performance tool instead of a GPU system; our work can be used in a hybrid

environment with a production device driver; and our metrics can be applied to many

applications in a hybrid environment.

 9

3. Performance Metrics
Modeling the performance of hybrid systems is, currently, an open research question.

Not a lot of work has gone into performance metrics for hybrid environments. In this

thesis we attempt to lay down some foundation for reporting the performance of

hybrid systems. To do this we define two metrics for performance of hybrid

applications, GPU Computation Percentage and GPU Load Balance.

3.1. Background
Before discussing the metrics we’ll give an overview of GPU programming. When

writing applications targeted for GPUs the general design pattern is to allocate

memory on the device, copy the data needed for the computation to the device, launch

the kernel, and copy the results from the device to the host. Figure 1 shows a diagram

of this design pattern.

 10

Figure 1: GPU Programming Design Pattern

 11

Figure 2 is a sample program written in CUDA that uses this design pattern. Lines 1

through 3 define a kernel that just adds its arguments. Inside main(), lines 6 to 14

declare some variables. These lines would correspond to the “serial code” block in

Figure 1. Memory is allocated on the device in lines 16 to 18 corresponding to the

“allocate memory on dev” block in Figure 1. Data is copied to the device on lines 20

and 21 which corresponds to the “copy data to device” block in the figure. Lines 23 -

24 specify the number of threads that will execute the kernel. The launching of the

kernel (line 25) corresponds to the “launch kernel” block in Figure 1. On line 27 we

synchronize with the device so that the host will wait for the kernel to finish

executing. This corresponds with the “synchronize thread” block in the figure. Finally

the result is copied from the device to the host on line 29.

 12

Figure 2: Sample CUDA Application

3.2. GPU Computation Percentage Metric
Now that we have given a high level overview of GPU programming we’ll cover our

first metric, GPU Computation Percentage (GCP). Our goal for the GPU Computation

Percentage metric is to indicate the amount of data movement overhead between the

 1 __global__ void add(int *a, int *b, int *answer_dev) {
 2 *answer_dev = *a + *b;
 3 }
 4
 5 int main(int argc, char** argv) {
 6 int a_host;
 7 int *a_dev;
 8 int b_host;
 9 int *b_dev;
 10 int answer;
 11 int *answer_dev;
 12
 13 a_host = thread_id;
 14 b_host = 3;
 15
 16 cudaMalloc((void **) &answer_dev, sizeof(int));
 17 cudaMalloc((void **) &a_dev, sizeof(int));
 18 cudaMalloc((void **) &b_dev, sizeof(int));
 19
 20 cudaMemcpy(a_dev, &a_host, sizeof(int),
cudaMemcpyHostToDevice);
 21 cudaMemcpy(b_dev, &b_host, sizeof(int),
cudaMemcpyHostToDevice);
 22
 23 dim3 dimGrid(1);
 24 dim3 dimBlock(1,32);
 25 add<<<dimGrid, dimBlock, 0>>>(a_dev, b_dev, answer_dev);
 26
 27 cudaThreadSynchronize();
 28
 29 cudaMemcpy(&answer, answer_dev, sizeof(int),
cudaMemcpyDeviceToHost);
 30
 31 return 0;
 32 }

 13

CPU and GPU. For the GCP metric we wanted to use kernel wall clock time and data

movement wall clock time. Kernel wall clock time would have been the amount of

time the kernel executed on a device plus the amount of time spent moving the kernel

to the device and any other overhead associated with a kernel launch. Data movement

wall clock time would have been the wall clock time to move data to and from the

device. However, kernel launches and data movement can occur asynchronously with

the host so we are not able to measure these directly.

As an alternative we use kernel device time and data movement device time. Kernel

device time is the amount of time a kernel executes on a device. This is reported as

kernel gputime by CudaProf. Data movement device time is the amount of time data

movement functions spend executing on the device. This is reported as function

gputime by CudaProf for functions like cudaMemcpy().

Data movement device time is not exactly the same as data movement wall clock time,

but it does give some indication of how much wall clock time was spent moving data

to and from the device. As seen in Table 1, empirical data shows that data movement

time increases as the size of data increases. If we could directly measure data

movement wall clock time it would also increase as the amount of data increases.

 14

Table 1: Data movement device time
size (bytes) host to device

transfer time (µsec)
device to host
transfer time (µsec)

1,024 5 5
1,048,576 342 318
4,194,304 1377 2041

16,777,216 5525 9545
67,108,864 22156 37200

268,435,456 88441 137025
1,073,741,824 353846 524745

The definition for the GPU Computation Percentage metric is shown in Equation 1.

Kernel device time is the amount of execution time on the device for kernels, and

device time is the amount of time kernel and data movement functions execute on the

device.

 (1)

If no device time is spent moving data to the device the largest theoretical value of the

metric is one. A value of one would indicate that no data was moved to the device,

but this is unlikely because at a minimum some data needs to be moved from the host

to the device for the device to do meaningful work. A high GPU Computation

Percentage means that the data movement was effective. At the other extreme, if no

kernel was launched on the device the value of the metric would be zero. A low GCP

indicates that the developer needs to check data movement.

3.3. GPU Load Balance Metric
Our goal for the GPU Load Balance (GLB) metric is to show the load balance between

the CPU and GPU or between multiple devices. To achieve this we use device time

!

GCP =
kernel device time

device time

 15

and the application’s wall clock time. Device time is the amount of time kernel and

data movement functions execute on the device. Wall clock time is the amount of

time the application ran. The definition of GPU Load Balance is shown in Equation 2.

(2)

The range of values for this metric are zero to one. Values near zero indicate that a

very small portion of the application executed on the device, and that the GPU device

was mostly idle. A value of one indicates that the application used all of the GPU

device’s available execution time. This is a theoretical maximum because some time

is consumed as overhead for the device’s runtime environment on the host, i.e.

allocating memory on the device and launching kernels. A high GPU Load Balance

indicates a well balanced hybrid application or a device centric application. When

multiple GPU devices are used the GLB also indicates the load balance between the

devices.

This metric gives the programmer an indication of how much the application is using

the device. This is helpful in a hybrid environment where the application performs

work on the device and host. During development a value near zero would inform the

developer that the application is hardly using the device, and prompt the developer

that more investigation is needed to find parts of the code to run on the device to

increase usage of the device. If no more of the application can be run on the device a

value near zero would indicate that it may be faster to run the application strictly on

!

GLB =
device time

wall clock time

 16

the host. This could happen because overhead to run the kernel on the device is

exceeding the amount of time the kernel executes on the device. A value near one

indicates that the application is using the device for the majority of the execution time.

When used in a system with multiple devices a metric value is reported for each

device. In the multiple device environment the range of values is the same as

discussed above, but is specific for each device. This gives the programmer the added

benefit of seeing the distribution of work among the devices. For example, if one

device has a high GPU Load Balance and the other has a GLB of zero, the second

device is not being used at all and the programmer may want to investigate a better

division of work to improve performance.

A limitation of this metric is that it does not indicate how well optimized an

application is for the device or host. For example, a poorly tuned application could

consume a large portion of device time creating a GPU Load Balance near one.

However, if the application was optimized for the device, the GLB would decrease.

The metric does not distinguish these two cases.

 17

4. Benchmark Suite
To investigate the utility of our metrics we wanted to use a benchmark. We needed an

easily understandable benchmark that could have various levels of optimizations

applied to it and studied. We also wanted to be able to easily verify the correctness of

the benchmark. Our starting point was a single device implementation of matrix

multiplication described by Kirk and Hwu [22]. We took the single device

implementation and extended it to support multiple GPU devices, overlap CPU and

GPU computation, use pinned memory, and use asynchronous memory transfers. We

feel this work may be of benefit to others studying GPU performance tools because it

gives them an easily understandable benchmark that includes common GPU

optimization strategies. (Note: since the start of our project other benchmarks have

been published [8, 10, 31].)

4.1. Single Device Matrix Multiplication
In this section we describe how matrix multiplication is performed using a single GPU

device and the optimizations applied to matrix multiplication as described by Kirk and

Hwu [22]. We use a 4 x 4 matrices to illustrate the process. M and N are the two

matrices to be multiplied and the result is stored in P.

First, memory must be allocated and initialized on the host. The matrices M, N, and P

are allocated using malloc() as a one-dimensional array. Since the matrices being

multiplied are two-dimensional and the memory used to store the matrices is one-

 18

dimensional, a mapping is needed to map between an element’s location in the matrix

and its location in memory. Equation 3 shows the formula to calculate an element’s

index in memory allocated on the host. Row is the row the element is in, column is

the column the element is in, and width is the width of the matrices.

(3)

To find its row number Equation 4 is used:

(4)

To find its column number Equation 5 is used:

(5)

After the memory is allocated M and N are initialized to a default value. Both M and

N are initialized using Equation 6. Matrix P is left uninitialized because the result

generated by the device is copied from the device into this matrix.

(6)

Next, memory must be allocated on the device to store the M and N matrices, and

memory needs to allocated on the device to store the result. Memory is allocated on

the device using cudaMalloc() of the same size as allocated on the host. The matrices

on the device are named Md, Nd, and Pd. Now that memory is allocated on the device

the M and N matrices are copied from the host to the device. The matrix

multiplication kernel (discussed below) is launched, the result calculated, and the

result is stored in Pd on the device. The Pd matrix is then copied from the device into

!

memory index = row "width + column

!

matrix row =
index

width

"

"
$

% $

!

matrix column = index%width

!

matrix[row][column] = row + column+1

 19

matrix P on the host. Once the result is in P the matrix can be printed or stored to

disk.

Three different levels of optimizations are applied to the matrix multiplication kernel.

The optimization levels are naive, tiled, and tiled+shared memory.

4.1.1. Naive Kernel
The naive implementation described by Kirk and Hwu [22] does a straight forward dot

product calculation. This kernel is configured with a grid size of one block.

Therefore, the size of matrix this kernel can calculate is limited by the maximum

number of threads that can be in a block. In the GPU devices used in this thesis, the

maximum number of threads in a block is 512 threads. Thus, the largest matrix that

this kernel can calculate, that is a power of two, is 16 x 16. To overcome this

limitation a tiled kernel was implemented, as discussed in the next section.

4.1.2. Tiled Kernel
To overcome the limited size of matrices that can be used with the naive

implementation a tiled kernel was implemented. The tiled implementation, as

described by Kirk and Hwu [22], breaks the Pd matrix up into tiles that are the same

dimension as the block size. Each thread block then works on a smaller portion of the

matrices. Figure 3 shows how the 4 x 4 Pd matrix is divided into four blocks of size 2

x 2.

 20

Figure 3: Pd tiled

Figure 4 demonstrates how element (0,0) in Pd is calculated. The (0,0) element in Pd is

calculated by thread (0,0) in block (0,0) by doing a dot product calculation of the first

row in Md and the first column in Nd. Since each thread block is working on a small

portion of Pd a larger matrix multiplication may be done.

Figure 4: Calculation of element (0,0) in block (0,0)

4.1.3. Tiled + Shared Memory Kernel
The tiled kernel allows larger matrices to be multiplied, but it accesses data in global

memory multiple times. When the M and N matrices are copied into Md and Nd on the

 21

device they reside in global memory. Global memory is larger, but slower than shared

memory on the device. As demonstrated in Figure 5 the tiled kernel access the same

data in Md and Nd multiple times. The element marked with a 2 in block (0,0) access

the same row in Md as the element marked with a 1. This means that to calculate

element 1 and 2 the first row of Md is accessed twice. If this row could be stored in

shared memory the number of accesses to global memory would be decreased,

improving performance. Unfortunately, shared memory is a scarce resource and for

larger matrices cannot fit all of the rows from Md and columns from Nd needed to

perform the dot product.

Figure 5: Tiled kernel memory access pattern

To overcome the problem of limited shared memory, the Md and Nd matrices are tiled

and the result is calculated in phases as described by Kirk and Hwu [22]. The tiles of

Md and Md are moved into shared memory named Mds and Mds respectively. The first

 22

phase of our 4 x 4 matrix multiplication is shown in Figure 6. In this phase a 2x2 tile

of Md is moved into Mds and a 2x2 tile of Nd to moved into Nds and a dot product is

performed with the values in Mds and Nds. The partial result is stored in Pvalue1.

Figure 6: Tiled+shared kernel phase 1

The second phase of the matrix multiplication is shown in Figure 7. In this phase

another 2x2 tile of Md is moved into Mds and another 2x2 tile of Nd is moved into Nds

 23

and a dot product is performed with the values in Mds and Nds. The partial result is

stored in Pvalue2. The final result is stored in Pd by adding Pvalue1 and Pvalue2.

Figure 7: Tiled+shared kernel phase 2

4.2. Multiple Device Matrix Multiplication
In this section we describe how we extended the single device matrix multiplication

described in Section 4.1. The CUDA programming model requires at least one host

threads per device. This means that each host thread needs to specify which device its

 24

kernels are to be executed on. The default is device 0. Multiple host threads may

specify the same device, but a host thread can only use one device at a time.

Therefore, for a single application to use multiple devices it must create multiple

threads of execution using OpenMP or pthreads. In this thesis we use pthreads.

Figure 8 shows how the calculation of P is divided between two threads. The blue

elements in Figure 8 are allocated to thread 0 and the red elements are allocated to

thread 1. Thread 0 calculates the top half of P and thread 1 calculates the bottom half

of P. Therefore thread 0 needs the top half of M and all of N, and thread 1 needs the

bottom half of P and all of N.

Figure 8: Division of work between two threads

After the work has been divided each thread calculates its portion of P as shown in

Figure 9. Each thread copies its portion of M and all of N to Md and Nd on its device.

Each thread launches the matrix multiplication kernel, and the thread’s partial result is

 25

stored in Pd. The matrix multiplication kernels are the same kernels outlined in

Sections 4.1.1, 4.1.2, and 4.1.3. Next, the thread’s partial result is moved from the

device into the portion of P, on the host, that it calculated. Blue elements in P are

calculated by thread 0 and red elements are calculated by thread 1. The result in P can

then be stored on disk or checked for accuracy.

Figure 9: Multi-device matrix multiplication

 26

4.3. Memory Optimizations
We extended the matrix multiplication benchmark to use pinned host memory, also

called page-locked host memory. This memory optimization allocates memory that

won’t be paged by the operating system. If the system has a front side bus this

increases the bandwidth between the host and device [29].

We also extended the matrix multiplication to use asynchronous memory transfers.

Asynchronous memory transfers are non-blocking on the host allowing the host to

perform other work while the data is being transferred to and from the device. Pinned

memory is required by CUDA for asynchronous memory transfers.

4.4. Hybrid Matrix Multiplication
We extended the matrix multiplication benchmark to work in a hybrid environment.

We modified the code so that part of the multiplication is performed on the device and

part on the host processor. We accomplish this by partitioning the matrices as

described in Section 4.2. However, instead of having two devices perform the

calculation, one device performs part of the calculation and the host performs the other

part. The partial results are then combined as usual.

4.5. Problems Implementing Matrix Multiplication
In this section we discuss some of the challenges we encountered implementing matrix

multiplication for GPUs. The initial version of matrix multiplication created a file

with the matrices to be multiplied and a gold file. The gold file contained a known

 27

correct result. The gold file was calculated using a simple matrix multiplication

function on the host. The matrix multiplication was performed using matrices with

elements of a float type. When the results where written to file they were cast to an

unsigned int, and when the result was read from the file they were cast back to a float.

The naive, tiled, and tiled plus shared memory implementations with this design

worked with matrices up to 4096x4096. They all produced results calculated on a

GPU device that matched the gold result. However, when we tried to extend the initial

version to use multiple devices, pinned memory, or asynchronous memory transfers it

would produce incorrect results for matrix sizes above 1024x1024. Inspecting the

incorrect result it was seen that part of the result was correct. We suspected the cause

of the bug was the type casting used during reading and writing of the matrices from

files. To test this theory we reimplemented the matrix multiplication using strictly

unsigned int types and removing all the type casting. This change immediately

produced correct results for all optimization of matrix multiplication used and on all

sizes of matrices used. Our suspicion is that the type casting introduced rounding

errors that become larger as the matrix multiplication was performed.

 28

5. PerfTrack
We needed a method to calculate, store, and analyze our GPU Computation

Percentage and GPU Load Balance metrics. PerfTrack [21] was chosen to manage the

results for our metrics. PerfTrack is an experiment management system designed for

importing, storing, retrieving, and analyzing machine and performance data. For

example, it can be used to compare the GPU Computation Percentage of the matrix

multiplication benchmark across different versions of the CUDA runtime system.

However, it needed to be extended to support hybrid system data and GPU

performance data.

5.1. Work Done Extending PerfTrack
In this section we discuss work done to extend PerfTrack to import machine and GPU

performance data.

5.1.1. Machine Data
PerfTrack’s machine data gathering scripts were extended to search for GPU devices

on a node. To support GPU performance data the machine resource hierarchy, which

describes a system, was updated to include GPU devices. Next, a utility was

implemented that queried a device for its properties. The machine data gathering

scripts were then updated to use this query utility to add resource information for the

GPU devices on the node. Figure 10 shows the resource information automatically

gathered by our extension to the machine data gathering scripts.

 29

Figure 10: GPU Device Resource Information

5.1.2. Build Data
Before PTdFgen.py can be used to create a PTDF for performance results, a build file

and run file are needed. These files were created manually as outlined in PerfTrack’s

documentation.

5.1.3. Performance Results
To import a CUDA Prof log into PerfTrack we need to be able to convert a CUDA

Prof log entry into a PerfTrack performance result. Each CUDA Prof log entry

contains a time stamp and method name, followed by the metric values gathered. A

log entry is shown in Figure 11. This entry shows the time the MatrixMulKernel2

kernel was launched, the GPU time, CPU time, grid size, block size, and static shared

memory per block metrics.

Figure 11: CUDA Prof log entry

timestamp=[610.000] method=[_Z16MatrixMulKernel2PfS_S_i]
gputime=[17.120] cputime=[40.000] gridSize=[1, 1]
blockSize=[16, 16, 1] staSmemPerBlock=[44]

 30

To convert the CUDA Prof log entry we need to map the log entry to a PerfTrack

performance result. A PerfTrack performance result consists of a context,

performance tool, metric, metric value, units, start time, and stop time. A context is

created for each method in the CUDA Prof log and the method in the log entry is

associated with this context. A performance result is created for each metric in the

CUDA Prof log entry. The performance tool for each performance result is

“CudaProf.” The metric value is the value in the log entry between the “[“ and “[“.

The units for the performance entry are based on the metric. For example, time

metrics are in microseconds and memory size metrics are in bytes. The start and stop

attributes of a performance result are not used and left as “noValue.”

The basic strategy to parse the CUDA Prof log file is to find each log entry and to

extract the metric and metric values from the entry. To extract the metric and its

value, a list of regular expressions for the known metrics is iterated over. Each metric

regular expression in the list is used to search the log entry. If a match is found, a

performance result is created for the found metric and the performance result is added

to the execution.

This procedure allows PTdFgen.py to generate a PTDF file. However, as initially

implemented the PTDF would not successfully load into PerfTrack. Some metric

values in the CUDA Prof log are multidimensional. For example, the value for the

block size metric is a two dimensional result of the height and width of the kernel’s

 31

block configuration. To overcome this problem, the single block size metric was

broken into two metrics, a block size X metric and a block size Y metric. Another

problem encountered with the initial implementation was with the gpu start timestamp

and gpu end timestamp metrics. As reported by CUDA Prof, these metrics have a hex

value. For example, 11b46a729843c880. As the performance results in the PTDF file

are loaded into PerfTrack they are cast to a float. This creates a problem because these

hex values can’t be immediately cast to floats. To solve this problem the hex values

were first converted to an integer which in turn could be cast to a float as the PTDF

was loaded into PerfTrack.

Our initial approach causes us to lose information: there is no way to associate a

specific performance result with one particular function call. Figure 12 shows the

performance results gathered for a run of the matrix multiplication application.

Several performance results are shown for the CPU time metric for the memcpyHtoD

method, but there is no way to see which call to memcpyHtoD the metric value is

associated with. In the future we plan to tag the log data as we parse it.

 32

Figure 12: PerfTrack Performance Results

5.1.4. Wall Clock Time
A CUDA Prof log file does not include the application’s wall clock time for the

application’s entire execution. To overcome this we used the time utility to measure

the application’s wall clock time. The output from time was appended to the CUDA

Prof log file.

During parsing of the log file, as explained above, the output from the time utility was

searched for. If it was found, the wall clock time was extracted from the output, and a

performance result added to the execution resource in PerfTrack. This solution

 33

worked for applications that used a single device, but when multiple devices were

used a problem became evident.

When multiple devices are used, CUDA Prof needs to be configured to output the log

data for each device into a separate log file. Thus, if an application uses two devices

there should be two log files, with each log file containing the performance data for a

GPU device. We changed our data loading step to load wall clock time independently

instead of appending to the log file.

5.1.5. Multiple CUDA Prof Log Files
Another problem was discovered after CUDA Prof was configured to generate a log

file for each device. When multiple devices were used an additional log file was

created. For example, if two devices were used three log files were created. The first

log file would contain header information specifying it was for device 0, but contain

no performance data. The second log file would contain header information

specifying it was for device 0 and contain the performance data for device 0. The

third file would contain the header information and performance data for the second

device. We assume the header correctly identifies the device per log and ignore the

log file with no data.

5.1.6. Metric Calculation
In this section we discuss how PerfTrack was extended to calculate the GPU

Computation Percentage and GPU Load Balance metrics. The GPU Computation

Percentage metric is discussed in Section 7, and the GPU Load Balance is discussed in

 34

Section 8. As described in Section 5.1.3 the CUDA Prof log files are parsed to extract

performance data gathered by CUDA Prof and import it into PerfTrack. During this

procedure the application’s wall clock time is also imported into PerfTrack. Since the

data needed to calculate the metric is available at this time it was decided to calculate

the value of the metrics. Doing the calculation at this time instead of when data is

retrieved from PerfTrack provides a performance benefit because the metric’s value

isn’t recalculated each time the user requests this information. It can be immediately

retrieved from the database.

The toolParser.py module was extended to calculate the metric values. A method was

added that searches the log file for the needed information to calculate the metric

values. Once found it calculates the metric values and adds them to the execution

resource. By adding it to the execution resource it makes the metric available in

PerfTrack when performance data on the execution is retrieved.

5.1.7. Conclusion
In this section we have discussed the work we’ve done so far to import CUDA Prof

log files into PerfTrack. Several problems were found:

• multidimensional metric values

• nonnumeric metric values

• associating performance result with specific function call

• extraneous CUDA Prof log file

 35

The solution to the multidimensional metric values and metric hex values have been

implemented. The problem with associating performance results with a specific

function call in the call graph is left for future work.

 36

6. Experimental Design
In this section we discuss our experiment goals and how we designed our experiments.

The goals of our experiments are to investigate the utility of the GPU Computation

Percentage and GPU Load Balance metrics. We do this by performing a performance

study of a simple matrix multiplication benchmark and a real scientific application in a

hybrid environment. We then analyze the results from the experiments.

In this section we discuss:

• the sizes and configurations of matrices used

• background information on the scientific application used

• how the scientific application was configured

• how the matrix multiplication benchmark and scientific application where

instrumented

• the system the experiments were run on

We begin by discussing how we implemented the matrix multiplication benchmark.

6.1. Matrix Multiplication Benchmark
In this section we cover how the matrix multiplication benchmark was configured for

our experiments. Table 2 shows the dimensions and memory sizes of matrices used.

A 16 x 16 matrix was chosen because it is the largest matrix supported by the naive

matrix multiplication kernel as discussed in Section 4.1.1. The smallest matrix size

supported by the tiled and tiled plus shared memory kernels is 16 x 16. This is

 37

because the matrix needs to be at least as large as the tile used in these optimizations,

which is 16 x 16. A 32 x 32 matrix is included so that each thread used, in the

multiple device portion of this case study, has at least the minimum sized matrix

needed for the tiled and tiled plus share memory optimized kernels. All elements in

the matrices are unsigned int data types.

Table 2: matrix sizes

Dimension memory size (bytes)
16 x 16 1,024
32 x 32 4,096

512 x 512 1,048,576
1,024 x 1,024 4,194,304
2,048 x 2,048 16,777,216
4,096 x 4,096 67,108,864
8,192 x 8,192 268,435,456

16,384 x 16,384 1,073,741,824

Several levels of optimization are investigated. We use a naive, tiled and tiled plus

share memory optimized kernels, and three levels of memory optimizations are used

with each kernel: paged, pinned, and pinned with asynchronous memory transfers.

Each kernel optimization/memory optimization combination was executed 105 times.

These runs were performed on one and two GPU devices.

6.2. NAMD
In our experiments we used a full scientific application, called NAMD [33]. NAMD

is an application for molecular dynamic simulations.1 It was extended by Phillips et

1 NAMD was developed by the Theoretical and Computational Biophysics Group in
the Beckman Institute for Advanced Science and Technology at the University of
Illinois at Urbana-Champaign.

 38

al. [34] for use with GPUs. We chose NAMD because it is a real world application for

doing real science that has already been ported to use GPUs. We configured NAMD

to simulate the Satellite Tobacco Mosaic Virus (STMV) [13]. We downloaded the

example STMV simulation from

http://www.ks.uiuc.edu/Research/namd/utilities/stmv/. The simulation configuration

was modified by changing the following configuration variables to the specified

values:

• timestep 0.15

• fullElectFrequency 5

• stepspercycle 5

• outputEnergies 100

• numsteps 120

NAMD’s support for GPUs is still under development. So, these configuration values

were obtained through trial and error so that we could complete a full simulation.

6.3. Instrumentation
CudaProf was used to instrument the application, and gather device performance data.

The profiler was configured to gather timestamps. By selecting just timestamps it

automatically includes the gputime and cputime for each method executed on the

device and for kernel calls. We ran the application on wyeast01 and wyeast02 as

described in Section 6.4.

 39

To gather wall clock time we used the external time [40] command. It has a

resolution of a hundredth of a second. The gettimeofday() system call with a

resolution of a microsecond was considered after the results were gathered. It was not

used because it would have required modification of the scientific application’s source

code to insert the system call and output the timing results. The application’s wall

clock time could have also been calculated using CUDA event streams. Event streams

have a resolution of milliseconds. The disadvantage to using CUDA event streams is

that it would have made our methodology CUDA specific and would have required

modification to the scientific application’s source code as well.

6.4. Wyeast
We used a portion of Wyeast in our experiments. Wyeast is a cluster in the High

Performance Computing Lab at Portland State University. Our experiment system

consisted of two nodes from Wyeast named wyeast01 and wyeast02, a node named

meakin was used as a login and testing node, an Nvidia S1070, and a Netgear gigabit

switch used to connect the three nodes. The Nvidia S1070 consists of four T10

compute devices. Two devices are connected to wyeast01 and wyeast02 via a host bus

adapter. The configuration for meakin is described in Table 3.

 40

Table 3: meakin configuration
CPU (2) Intel Xeon E5504 2.0GHz
Memory 12GB
OS Ubuntu server 9.04 (Jaunty Jackalop)
Linux Kernel 2.6.28.18
Nvidia Driver 195.36
CUDA Runtime Version 3.0
Device 0 Tesla C1060
 CUDA Capability: 1.3
 Memory: 4GB
Device 1 Quadro NVS 295
 CUDA Capability: 1.1
 Memory: 256MB

The configuration for wyeast01 and wyeast02 is described in Table 4.

Table 4: wyeast01 and wyeast02 configuration
CPU Intel Xeon E5520 2.27GHz
Memory 12GB
OS CentOS 5.4
Linux Kernel 2.6.18.164
Nvidia Driver 195.36
CUDA Runtime Version 3.0
Devices (2) Tesla T10 Processor

The configuration for the S1070 is shown in Table 5.

Table 5: Tesla S1070 configuration
Devices (4) Tesla T10 Processor
 CUDA Capability: 1.3
 Memory: 4GB

 41

7. GPU Computation Percentage Case Study
Our target environment is a hybrid environment that consists of host CPUs and GPU

devices used as accelerators. The host could have multiple GPU devices available, or

the environment could be a cluster with devices attached to each host node.

We wanted a tool that would assist the developer while writing programs for this

hybrid environment. One performance bottleneck for hybrid environments is moving

data between the host and device. We wanted a tool that would tell the developer if

the additional computation completed on the device was worth the cost in overhead.

To achieve this goal we considered several metrics including acceleration execution

time, unaccelerated execution time, speedup, kernel executions per second, and

percentage of PCIe bus bandwidth. Initially we wanted to measure when data was

being moved between the host and device, and when data was being moved between

devices. We felt that being able to measure this, it would help use develop the tool

needed to assist the developer writing programs for a hybrid environment.

We investigated for a means to measure the amount of data moving across the PCIe

bus and couldn’t find an acceptable solution. CudaProf reports the amount of data

moved to and from the device for memory copies, but it doesn’t report data movement

for non-memory copies, e.g. kernel calls and device management functions. Also

memory copies can occur asynchronously which would make it problematic to

 42

correlate when data was being transferred to/from multiple devices. Another idea was

to instrument the CUDA runtime itself; however, the CUDA runtime is essentially a

black box because it is close source proprietary software. We also considered

hardware to instrument the PCIe bus, but we did not have this in our budget and we

wanted to develop a software based solution.

We eventually settled on two metrics that could be calculated using results form

CudaProf or any other tool that could instrument a GPU; GPU Computation

Percentage and GPU Load Balance. Our goal for the GPU Computation Percentage

metric is to indicate the amount of data movement overhead between the CPU and

GPU. The definition of GPU Computation Percentage (1) is repeated below.

(1)

7.1. Single Device Results
Table 6 to Table 8 show the mean GPU Computation Percentage for the matrix

multiplication benchmark using a single device. For the data in Table 6 no memory

optimization was used, in Table 7 pinned memory was used, and in Table 8 pinned

memory with asynchronous memory transfers was used. The naive column shows the

metric value for naive kernel, the tiled column shows the metric values for the tiled

kernel, and the tiled+shared column shows the metric values for the tiled with shared

memory kernel.

!

GCP =
kernel device time

device time

 43

First we examine the naive kernel. The mean GPU Computation Percentage for all

three memory optimizations was very similar, ranging from 0.52 to 0.56.

Next we examine the tiled kernel. The mean GCP for the 16x16 problem size ranged

from 0.52 to 0.57. At this problem size it may be faster to do the computation strictly

on the host. For problem sizes 512x512 and larger the mean GCP ranged from 0.95 to

1.00. In all of these cases, the device spent more time doing work than was spent

transferring data; therefore, the overhead of transferring data to the device was

justified.

Examining the tiled plus shared memory kernel, the mean GPU Computation

Percentage for the 16x16 problem size ranged from 0.40 to 0.45. For problem sizes

512x512 and larger the mean GPU Computation Percentage ranged from 0.75 to 0.99.

Comparing the GPU Computation Percentage of the tiled kernel and the tiled plus

shared memory kernel, the GPU Computation Percentage was lower for the tiled plus

shared memory kernel in all cases. When an optimization is applied to a kernel the

kernel’s device time will decrease, but the data movement device time will stay the

same. This causes the GPU Computation Percentage to decrease even though there

was a speedup in the benchmark.

 44

Comparing the GPU Computation Percentage for the matrix multiplication benchmark

using paged memory, pinned memory, and pinned memory with asynchronous

memory transfers we did not see a noticeable difference. This is because of how the

benchmark was implemented. Asynchronous memory transfers are nonblocking for

the host. This allows the host to continue working while data is transferred to the

device. Even with the asynchronous memory transfers the device still needs all the

data before it can continue and the host still waits for work on the device to complete

before it continues.

Table 6: GPU Computation Percentage, paged memory single device
matrix size naive tiled tiled+shared

16x16 0.56 0.57 0.45
512x512 - 0.95 0.75

1024x1024 - 0.96 0.82
2048x2048 - 0.97 0.88
4096x4096 - 0.99 0.94
8192x8192 - 0.99 0.97

16384x16384 - 1.00 0.99

Table 7: GPU Computation Percentage, pinned memory single device
matrix size naive tiled tiled+shared

16x16 0.52 0.52 0.40
512x512 - 0.95 0.75

1024x1024 - 0.97 0.84
2048x2048 - 0.98 0.91
4096x4096 - 0.99 0.95
8192x8192 - 0.99 0.98

16384x16384 - 1.00 0.99

 45

Table 8: GPU Computation Percentage, pinned memory,
asynchronous memory transfers, single device
matrix size naive tiled tiled+shared

16x16 0.52 0.52 0.40
512x512 - 0.95 0.75

1024x1024 - 0.97 0.84
2048x2048 - 0.98 0.91
4096x4096 - 0.99 0.95
8192x8192 - 0.99 0.98

16384x16384 - 1.00 0.99

7.2. Multiple Device Results
Table 9 to Table 11 show the mean GPU Computation Percentage for the matrix

multiplication benchmark using two devices. For the data in Table 9 no memory

optimization was used, in Table 10 pinned memory was used, and in Table 11 pinned

memory with asynchronous memory transfers was used. The naive column shows the

metric value for naive kernel, the tiled column shows the metric values for the tiled

kernel, and the tiled+shared column shows the metric values for the tiled with shared

memory kernel.

First we examine the naive kernel. The mean GPU Computation Percentage for all

three memory optimizations was very similar. Ranging from 0.55 to 0.65. At this

problem size it may be faster to run the computation strictly on the host.

Next we examine the tiled kernel. The mean GPU Computation Percentage for the

32x32 problem size ranged from 0.60 to 0.64. Like the naive kernel, it may be faster

to do the computation strictly on the host for this problem size. For problem sizes

 46

512x512 and larger the mean GPU Computation Percentage ranged from 0.93 to 1.00.

In all of these cases, the device spent more time doing work than was spent

transferring data; therefore, the overhead of transferring data to the device was

justified.

Examining the tiled plus shared memory kernel, the mean GPU Computation

Percentage for the 16x16 problem size ranged from 0.43 to 0.47. For problem sizes

512x512 and larger the mean GPU Computation Percentage ranged from 0.67 to 0.98.

For device efficiencies near 0.5 the amount of time transferring data was about the

same as the time spend doing computation. This GPU Computation Percentage value

leads us to conclude that it would be more efficient to run problem sizes with GPU

Computation Percentage near 0.5 on a single device. We need to look at wall clock

time to confirm this. Comparing the GPU Computation Percentage of the tiled kernel

and the tiled plus shared memory kernel, the GPU Computation Percentage was lower

for the tiled plus shared memory kernel in all cases.

Comparing the GPU Computation Percentage for both tiled and tiled plus shared

memory matrix multiplication benchmark using paged memory in Table 9 with the

GPU Computation Percentage for the matrix multiplication benchmark using pinned

memory in Table 10 we see tiled plus shared kernel on problem sizes 1024x1024 and

larger show a noticeable difference in GPU Computation Percentage. This suggests

data movement was decreasing.

 47

Table 9: GPU Computation Percentage, paged memory two devices
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1

32x32 0.65 0.55 0.64 0.63 0.47 0.47
512x512 - 0.93 0.93 0.67 0.67

1024x1024 - 0.94 0.94 0.72 0.65
2048x2048 - 0.95 0.95 0.80 0.80
4096x4096 - 0.97 0.97 0.89 0.88
8192x8192 - 0.98 0.98 0.93 0.93

16384x16384 - 0.99 0.99 0.96 0.96

Table 10: GPU Computation Percentage, pinned memory two devices
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1

32x32 0.61 0.62 0.60 0.60 0.43 0.43
512x512 - 0.93 0.93 0.67 0.67

1024x1024 - 0.95 0.95 0.76 0.76
2048x2048 - 0.97 0.97 0.86 0.86
4096x4096 - 0.98 0.98 0.92 0.92
8192x8192 - 0.99 0.99 0.96 0.96

16384x16384 - 1.00 1.00 0.98 0.98

Table 11: GPU Computation Percentage, pinned memory,
asynchronous memory transfers, two devices

matrix size naive tiled tiled+shared
 dev 0 dev 1 dev 0 dev 1 dev 0 dev 1

32x32 0.62 0.62 0.60 0.60 0.43 0.43
512x512 - 0.93 0.93 0.67 0.67

1024x1024 - 0.95 0.95 0.76 0.76
2048x2048 - 0.97 0.97 0.86 0.86
4096x4096 - 0.98 0.98 0.92 0.92
8192x8192 - 0.99 0.99 0.96 0.96

16384x16384 - 1.00 1.00 0.98 0.98

 48

7.3. Hybrid Environment Results
Table 12 shows the mean GPU Computation Percentage for the matrix multiplication

benchmark overlapping CPU and GPU computation. In Case A no memory

optimization was used, in Case B pinned memory was used, and in Case C pinned

memory with asynchronous memory transfers was used. The naive column shows the

metric value for naive kernel, the tiled column shows the metric values for the tiled

kernel, and the tiled+shared column shows the metric values for the tiled with shared

memory kernel.

First we examine the naive kernel. The mean GPU Computation Percentage for all

three memory optimizations was very similar, ranging from 0.61 to 0.65.

Next we examine the tiled kernel. The mean GCP for the 32x32 problem size ranged

from 0.60 to 0.64. At this problem size it may be faster to do the computation strictly

on the host. For problem sizes 512x512 and larger the mean GPU Computation

Percentage ranged from 0.93 to 0.98. In all of these cases, the device spent more time

doing work than was spent transferring data; therefore, the overhead of transferring

data to the device was justified.

Examining the tiled plus shared memory kernel, the mean GPU Computation

Percentage for the 16x16 problem size ranged from 0.43 to 0.47. For problem sizes

512x512 and larger the mean GPU Computation Percentage ranged from 0.67 to 0.92.

 49

Comparing the GPU Computation Percentage of the tiled kernel and the tiled plus

shared memory kernel, the GCP was lower for the tiled plus shared memory kernel in

all cases. The low GCP for the tiled plus shared memory kernel on a 32x32 matrix

suggest that it would be more efficient to run those problem sizes strictly on a device;

in fact the wall clock times for these runs (1.2 seconds, 1.8 seconds, 1.8 seconds)

indicate worsening performance as we increase optimizations.

Table 12: GPU Computation Percentage, hybrid

matrix size naive tiled tiled+shared
 A B C A B C A B C

32x32 0.65 0.61 0.62 0.64 0.60 0.60 0.47 0.43 0.43
512x512 - - - 0.93 0.93 0.93 0.67 0.67 0.67

1024x1024 - - - 0.95 0.95 0.95 0.75 0.77 0.77
2048x2048 - - - 0.96 0.97 0.97 0.82 0.86 0.86
4096x4096 - - - 0.98 0.98 0.98 0.90 0.92 0.92

7.4. Discussion
Our goal for the GPU Computation Percentage metric is to indicate the amount of data

movement overhead between the CPU and GPU. Our results indicate that it can be

used for this purpose. Looking at the results for a single optimization, e.g. tiled with

paged memory, the GCP increases as the problem size increases. We expect this to

happen with matrix multiplication because more computation is being done as the

problem size increases. However, the metric falls short when comparing the GPU

Computation Percentage of different kernel optimizations, e.g. tiled versus tiled plus

shared memory, because the faster kernel has a lower GCP. The tiled plus shared

memory optimization reduces the kernel device time, but the data movement time

 50

stays the same. The decrease in GPU Computation Percentage is counter intuitive one

might expect that the faster kernel would have a higher GPU Computation Percentage.

Also, the GPU Computation Percentage metric doesn’t definitively say that the cost of

moving data to and from the device was justified. For example, a kernel may run

extremely fast on the device and provide a significant performance improvement over

the host, but still have a low GPU Computation Percentage because of how fast it

executed on the device.

 51

8. GPU Load Balance Case Study
Our goal for the GPU Load Balance metric is to show the load balance between the

CPU and GPU or between multiple devices. The definition of GPU Load Balance (2)

is shown below.

(2)

A low GPU Load Balance indicates that the device was idle. A high GPU Load

Balance indicates that the work was well balanced between the CPU and GPU or it

was device centric.

8.1. Single Device Results
Table 13 to Table 15 show the mean GPU Load Balance for the matrix multiplication

benchmark using a single device. For the data in Table 13 no memory optimization

was used, in Table 14 pinned memory was used, and in Table 15 pinned memory with

asynchronous memory transfers was used. The naive column shows the metric value

for naive kernel, the tiled column shows the metric values for the tiled kernel, and the

tiled+shared column shows the metric values for the tiled with shared memory kernel.

In some cases the mean GPU Load Balance in Table 13 to Table 15 is being reported

as 0.00. A kernel was executed on the device for all the experiments, and we verified

the kernel device times are non zero; however, the external time utility was used to

measure wall clock time, and it only has a resolution of a hundredth of a second.

!

GLB =
device time

wall clock time

 52

Therefore, we only have two decimal places of precision and these very small values

are rounding to zero.

First we examine the naive kernel. The mean GPU Load Balance for all three memory

optimizations was zero. This suggests that very little of the device’s available

computation time was used.

Next we examine the tiled kernel. The mean GPU Load Balance for the 16x16 to

1024x1024 problem sizes was near zero as well. Only for the 4096x4096 and larger

problem sizes was the GPU Load Balance above 0.5. This suggests that the matrix

multiplication benchmark was only device centric for these larger problem sizes.

For the tiled plus shared memory kernel, the GPU Load Balance was less than 0.5 for

most of the 16x16 to 4096x4096 problem sizes. Comparing the GPU Load Balance of

the tiled kernel and the tiled plus shared memory kernel, the GPU Load Balance was

lower for the tiled plus shared memory kernel in most cases.

Comparing the GPU Load Balance for the matrix multiplication benchmark using

paged memory, pinned memory, and pinned memory with asynchronous memory

transfers we did not see a noticeable difference.

 53

Table 13: GPU Load Balance, paged memory single device
matrix size naive tiled tiled+shared

16x16 0.00 0.00 0.00
512x512 - 0.02 0.00

1024x1024 - 0.10 0.02
2048x2048 - 0.41 0.13
4096x4096 - 0.82 0.51
8192x8192 - 0.96 0.85

16384x16384 - 0.99 0.95

Table 14: GPU Load Balance, pinned memory single device

matrix size naive tiled tiled+shared
16x16 0.00 0.00 0.00

512x512 - 0.01 0.00
1024x1024 - 0.06 0.01
2048x2048 - 0.31 0.09
4096x4096 - 0.74 0.38
8192x8192 - 0.94 0.78

16384x16384 - 0.99 0.93

Table 15: GPU Load Balance, pinned memory,
asynchronous memory transfers, single device

matrix size naive tiled tiled+shared
16x16 0.00 0.00 0.00

512x512 - 0.01 0.00
1024x1024 - 0.06 0.01
2048x2048 - 0.31 0.09
4096x4096 - 0.74 0.37
8192x8192 - 0.94 0.78

16384x16384 - 0.99 0.93

 54

8.2. Multiple Device Results
Table 16 to Table 18 show the mean GPU Load Balance for the matrix multiplication

benchmark using two devices. For the data in Table 16 no memory optimization was

used, in Table 17 pinned memory was used, and in Table 18 pinned memory with

asynchronous memory transfers was used. The naive column shows the metric value

for naive kernel, the tiled column shows the metric values for the tiled kernel, and the

tiled+shared column shows the metric values for the tiled with shared memory kernel.

In some cases the mean GPU Load Balance in Table 16 to Table 18 is being reported

as 0.00. A kernel was executed on the device for all the experiments, and we verified

the kernel device times are non zero; however, the external time utility was used to

measure wall clock time, and it only has a resolution of a hundredth of a second.

Therefore, we only have two decimal places of precision and these very small values

are rounding to zero.

For the naive kernel the mean GPU Load Balance for all three memory optimizations

were zero. The result for the tiled kernel run on two devices was similar to the results

for the tiled kernel run on a single device. Comparing the results for the tiled plus

shared memory kernel run on a single device and on two devices it was noticed that

with two devices the kernel became device centric at problem sizes 8192x8192 instead

of the 4096x4096 problem size. Comparing the GPU Load Balance of the tiled kernel

and the tiled plus shared memory kernel, the GPU Load Balance was lower for the

tiled plus shared memory kernel in all cases.

 55

Table 16: GPU Load Balance, paged memory two devices

matrix size naive tiled tiled+shared
 dev 0 dev 1 dev 0 dev 1 dev 0 dev 1

32x32 0.00 0.00 0.00 0.00 0.00 0.00
512x512 - 0.01 0.01 0.00 0.00

1024x1024 - 0.05 0.05 0.01 0.01
2048x2048 - 0.25 0.25 0.08 0.08
4096x4096 - 0.69 0.69 0.32 0.32
8192x8192 - 0.93 0.93 0.69 0.69

16384x16384 - 0.98 0.98 0.91 0.91

Table 17: GPU Load Balance, pinned memory two devices
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1

32x32 0.00 0.00 0.00 0.00 0.00 0.00
512x512 - 0.01 0.01 0.00 0.00

1024x1024 - 0.03 0.03 0.01 0.01
2048x2048 - 0.17 0.17 0.04 0.04
4096x4096 - 0.56 0.56 0.23 0.23
8192x8192 - 0.88 0.88 0.61 0.61

16384x16384 - 0.97 0.97 0.85 0.85

Table 18: GPU Load Balance, pinned memory,
asynchronous memory transfers, two devices

naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1
32x32 0.00 0.00 0.00 0.00 0.00 0.00

512x512 - 0.01 0.01 0.00 0.00
1024x1024 - 0.03 0.03 0.01 0.01
2048x2048 - 0.17 0.17 0.04 0.04
4096x4096 - 0.56 0.56 0.23 0.23
8192x8192 - 0.88 0.88 0.61 0.61

16384x16384 - 0.97 0.97 0.85 0.85

 56

8.3. Hybrid Environment Results
Table 19 to Table 21 show the mean GPU Load Balance for the matrix multiplication

benchmark overlapping CPU and GPU computation. For the data in Table 19 no

memory optimization was used, in Table 20 pinned memory was used, and in Table 21

pinned memory with asynchronous memory transfers was used. The naive column

shows the metric value for naive kernel, the tiled column shows the metric values for

the tiled kernel, and the tiled+shared column shows the metric values for the tiled with

shared memory kernel.

In some cases the mean GPU Load Balance in Table 19 to Table 21 is being reported

as 0.00. A kernel was executed on the device for all the experiments, and we verified

the kernel device times are non zero; however, the external time utility was used to

measure wall clock time, and it only has a resolution of a hundredth of a second.

Therefore, we only have two decimal places of precision and these very small values

are rounding to zero.

The mean GPU Load Balance for all problem sizes was near zero for all three kernels

across all the memory optimizations. This is because the host execution dominated

the execution time.

 57

Table 19: GPU Load Balance, paged memory, hybrid
matrix size naive tiled tiled+shared

32x32 0.00 0.00 0.00
512x512 - 0.01 0.00

1024x1024 - 0.01 0.00
2048x2048 - 0.01 0.00
4096x4096 - 0.01 0.00

Table 20: GPU Load Balance, pinned memory, hybrid

matrix size naive tiled tiled+shared
32x32 0.00 0.00 0.00

512x512 - 0.01 0.00
1024x1024 - 0.01 0.00
2048x2048 - 0.01 0.00
4096x4096 - 0.01 0.00

Table 21: GPU Load Balance, pinned memory,

asynchronous memory transfers, hybrid
matrix size naive tiled tiled+shared

32x32 0.00 0.00 0.00
512x512 - 0.01 0.00

1024x1024 - 0.01 0.00
2048x2048 - 0.01 0.00
4096x4096 - 0.01 0.00

8.4. Discussion
Looking at the data in Table 13 to Table 18 it can be seen that the GPU Load Balance

increases as the matrix size is increased. This is because more work is being

performed on the device and device execution time is dominating the total execution

time. For the small matrices the overhead to allocate memory and launch the kernel

dominates the execution time. However, for the larger matrices, kernel execution

dominates the execution time.

 58

Looking at the data in Table 13 to Table 18 it can be seen that the tiled optimization

has a higher GPU Load Balance than the tiled plus shared memory optimization. This

is because the matrix multiplication application strictly uses the devices for

calculations, and the tiled plus shared memory optimization decreases the amount of

time spent executing on the device.

Comparing the single device versions with the two device versions it can be seen that

the two device version has a lower GPU Load Balance. This is because the matrix

multiplication is being divided among the devices, thus each device is being used less.

The pinned memory versions also have lower GPU Load Balance than the paged

memory version. This is because the memory transfers between the host and device

are occurring faster, which decreases the device time reported by CudaProf for these

memory transfers.

Comparing the pinned memory version with the pinned memory with asynchronous

memory transfer version it can be seen they have nearly identical results.

Investigating this it was realized that no additional streams were used. If no streams

are created all memory transfers to and from the device occur on the default stream

which causes them to be serialized. Thus, to see a performance improvement when

using asynchronous memory transfers streams also need to utilized.

 59

Our goal for the GPU Load Balance metric was to show the developer the load

balance between the CPU and GPU or between multiple GPUs. The GPU Load

Balance metric shows that the GPU Load Balance is increasing as the problem size

increases. This is as expected because the matrix multiplication benchmark becomes

more device centric as the problem size increases. The two device version of the

matrix multiplication benchmark shows that the work was balanced between the

devices. This is expected because we implemented it to evenly divide the work.

 60

9. NAMD Case Study
In the previous case studies we explored the GPU Computation Percentage metric and

GPU Load Balance metric using a matrix multiplication benchmark. In this case study

we investigate these metrics using NAMD that utilizes GPUs to perform computations

that are overlapped with computation on the host CPU.

NAMD was configured to simulate STMV. The simulation was run ten times using

one GPU device and ten times using two GPU devices. The mean GCP is shown in

Table 22.

Table 22: NAMD GPU Computation Percentage
single device two devices

dev 0 dev 0 dev 1
0.99 0.98 0.98

Since the GPU Computation Percentage was greater than 0.5 more time was spent

doing computation on the device than moving data to the device. We found similar

results for the tiled matrix multiplication kernel with problem sizes 512x512 and

larger. We also found similar results for the tiled plus shared memory matrix

multiplication kernel on most of the problem sizes 4096x4096 and larger. The high

GPU Computation Percentage results indicate that the data movement overhead was

low for NAMD.

The mean GPU Load Balance is shown in Table 23. The GPU Load Balance with one

device was 0.44. When used with two devices the GPU Load Balance for NAMD

 61

decreased to between 0.28 and 0.29. We found similar results for the tiled matrix

multiplication kernel with paged memory on a single device at problem size

2048x2048, and for the tiled plus shared memory matrix multiplication kernel with

paged memory on a single device at problem size 4096x4096.

Table 23: NAMD GPU Load Balance
single device two devices

dev 0 dev 0 dev 1
0.44 0.29 0.28

The GPU Load Balance for NAMD when run with two devices indicates that the work

was nearly balanced between the two devices. However, the percentage of time the

devices were used decreased from the single device simulation.

 62

10. Conclusions and Future Work
We conducted this thesis work as a starting point to model the performance of hybrid

CPU/GPU systems. To accomplish this we defined two metrics: GPU Computation

Percentage and GPU Load Balance. Our goal for the GPU Computation Percentage

metric is to indicate the amount of data movement overhead between the CPU and

GPU. Our results indicate that GPU Computation Percentage can be used to show the

data movement overhead. However, between optimizations of a kernel the GPU

Computation Percentage decreases. This is counter intuitive in the sense that "better"

yields a lower value, as does "worse."

Our goal for the GPU Load Balance metric is to indicate the load balance between the

CPU and GPU or between multiple GPUs. We found that it can be used to indicate

load balance. When used with a single device it indicated how device centric the

matrix multiplication benchmark and NAMD were. When used with multiple devices

it indicated how balanced the work was between the devices.

In the future we would like to investigate the metrics using a distributed memory

system, with device to device memory transfers, and with different kernel

configurations. Future work would also include implementing an optimized matrix

multiplication benchmark for the host.

 63

In PerfTrack we would like to develop an easier method for correlating performance

results between GPU devices.

In order to get to get a complete view of CPU and GPU performance data we would

like to instrument the CUDA runtime system directly. This approach would not be as

portable and requires access to a proprietary code base; but would allow us to get a

more accurate estimate of data movement overheads.

 64

11. References
[1] L. Adhianto et al., “HPCToolkit: Tools for performance analysis of optimized

parallel programs” in Concurrency and Computation: Practice and Experience,
2010, to be published.

[2] V. Allada et al., “Performance analysis of memory transfers and GEMM
subroutines on NVIDIA Tesla GPU cluster,” in IEEE International Conference on
Cluster Computing and Workshops, 2009, New Orleans, LA, 2009, pp. 1-9.

[3] S. Baghsorkhi, et al., “An adaptive performance modeling tool for GPU
architectures,” in PPoPP '10: Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel computing, Bangalore, India, 2010, pp. 105-
114.

[4] A. Bakhoda, et al., “Analyzing CUDA workloads using a detailed GPU
simulator,” in IEEE International Symposium on Performance Analysis of Systems
and Software, Boston, MA, 2009, pp. 163-174.

[5] J. Brandt, et al., “Ovis-2: A robust distributed architecture for scalable RAS,” in
IEEE International Symposium on Parallel and Distributed Processing, Miami,
FL, 2008, pp. 1-8.

[6] H. Brunst, et al., “Tools for Scalable Parallel Program Analysis - Vampir VNG
and DeWiz,” in Distributed and Parallel Systems: Cluster and Grid Computing, Z.
Juhasz, P. Kacsuk and D. Kranzlmüller, Eds. Kluwer International Series in
Engineering and Computer Science, New York, NY: Springer, pp. 93-102.

[7] P. Bui and J. Brockman, “Performance analysis of accelerated image registration
using GPGPU,” in GPGPU-2: Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, Washington, D.C., 2009, pp 38-45.

[8] S. Che, et al., “Rodinia: A benchmark suite for heterogeneous computing,” in
IEEE International Symposium on Workload Characterization, Austin, TX, 2009,
pp. 44-54.

[9] Nvidia. (July 7, 2010). CUDA_Profiler_3.0.txt [Online]. Available:
http://developer.nvidia.com/object/cuda_3_1_downloads.html.

[10] A. Danalis, et al., “The Scalable Heterogeneous Computing (SHOC)
benchmark suite,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, Pittsburgh, PA, 2010, pp. 63-74,
2010.

[11] S. Dhawan, “Introduction to PCI Express-a new high speed serial data bus,” in
2005 IEEE Nuclear Science Symposium Conference Record, Fajardo, 2005, pp.
687-691.

[12] Z. Fan, et al., “GPU Cluster for High Performance Computing,” in
Proceedings of the ACM/IEEE SC2004 Conference Supercomputing, Pittsburgh,
PA, 2004, pp. 47.

[13] Peter L. Freddolino, et al., “Molecular Dynamics Simulations of the Complete
Satellite Tobacco Mosaic Virus”, Structure, vol. 14, issue 3, pp. 437-449, Mar.
2006.

 65

[14] M. Geimer, et al., “The Scalasca performance toolset architecture,” in
Concurrency and Computation: Practice and Experience, vol. 22, issue 6, pp. 702-
719, Apr. 2010.

[15] Ubuntu man pages. (June 23, 2010). gettimeofday() [Online]. Available:
http://manpages.ubuntu.com/manpages/jaunty/en/man2/gettimeofday.2.html.

[16] D. Goddeke, et al., “Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster,” in Parallel Computing, vol. 33, issue 10-11, pp. 685-699,
Nov. 2007.

[17] K. Govindaraju, et al., “High performance discrete Fourier transforms on
graphics processors,” in SC '08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, Austin, TX, 2008, pp. 1-12.

[18] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in ISCA '09: Proceedings
of the 36th annual international symposium on Computer architecture, Austin,
TX, 2009, pg. 152-163.

[19] S. Huang, et al, “On the energy efficiency of graphics processing units for
scientific computing,” in IEEE International Symposium on Parallel & Distributed
Processing, Rome, 2009, pp. 1-8.

[20] D. Jamsek and E. Van Hensbergen, “Experiences with hybrid clusters,” in
IEEE International Conference on Cluster Computing and Workshops, New
Orleans, LA, 2009, pp. 1-4.

[21] K. Karavanic, et al., “Integrating Database Technology with Comparison-
based Parallel Performance Diagnosis: The PerfTrack Performance Experiment
Management Tool,” in SC '05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, Seattle, WA, 2005, pp. 39.

[22] D. Kirk and W. Hwu. in Programming Massively Parallel Processors.
Burlington, MA: Morgan Kaufmann Publishers, 2010.

[23] V. Kindratenko, et al., “GPU Clusters for High-Performance Computing,” in
Workshop on Parallel Programming on Accelerator Clusters - PPAC'09, New
Orleans, LA, 2009, pp. 1-8.

[24] J. Kohn and W. Wiliams, “ATExpert,” in Journal of Parallel Distributed
Computing, vol. 18, issue 2, pp. 205-222, 1993.

[25] O. Lawlor, “Message passing for GPGPU clusters: CudaMPI,” in IEEE
International Conference on Cluster Computing and Workshops, New Orleans,
LA, 2009, pp. 1-8.

[26] W. Liu, et al., “Performance Predictions for General-Purpose Computation on
GPUs,” in International Conference on Parallel Processing, Xi'an, 2007, pp. 50.

[27] A. Maloney, et al., “An Experimental Approach to Performance Measurement
of Heterogeneous Parallel Applications using CUDA,” in Proceedings of the 24th
ACM international Conference on Supercomputing, Tsukuba, Ibaraki, Japan, 2010,
pp. 127-136.

[28] C. Muller, et al., “A Compute Unified System Architecture for Graphics
Clusters Incorporating Data Locality,” in IEEE Transactions on Visualization and
Computer Graphics, vol. 15, issue 4, pp. 605-617, 2009.

 66

[29] Nvidia. (February 2010). NVIDIA CUDA Programming Guide [Online].
Available: http://developer.nvidia.com/object/cuda_3_1_downloads.html.

[30] Nvidia. (June 28, 2010). Nvidia Parallel Nsight [Online]. Available:
http://developer.nvidia.com/object/nsight.html.

[31] Parboil Benchmark Suite. (June 28, 2010). [Online]. Available:
http://impact.crhc.illinois.edu/parboil.php.

[32] D. Pase and W. Williams, “A Performance Tool for The CRAY T3D,” in
Workshop on Debugging and Performance Tuning, 1994.

[33] James C. Phillips, et al., “Scalable molecular dynamics with NAMD,” in
Journal of Computational Chemistry, vol. 26, pp. 1781-1802, 2005.

[34] J. Phillips, et al., “Adapting a message-driven parallel application to GPU-
accelerated clusters,” in SC '08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, Austin, TX, 2008, pp. 1-9.

[35] D. Roeh, et al., “Accelerating cosmological data analysis with graphics
processors,” in GPGPU-2: Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, Washington, D.C., 2009, pp. 1-8.

[36] S. Ryoo, et al., “Program optimization space pruning for a multithreaded gpu,”
in CGO '08: Proceedings of the sixth annual IEEE/ACM international symposium
on Code generation and optimization, Boston, MA, 2008, pp. 195-204.

[37] D. Schaa, and D. Kaeli, “Exploring the multiple-GPU design space,” in IPDPS
'09: Proceedings of the 2009 IEEE International Symposium on Parallel &
Distributed Processing, Rome, 2009, pp. 1-12.

[38] S. Shende and A. Malony, “The TAU Parallel Performance System,” in
International Journal of High Performance Computing Applications, vol. 20, issue
2, pp. 287-331, May 2006.

[39] M. Showerman, et al., “QP: A heterogeneous multi-accelerator cluster,” in
Proceedings of the 10th LCI International Conference on High-performance
Clustered Computing, Pittsburgh, PA, 2009.

[40] Ubuntu man pages. (June 23, 2010). time command man page [Online].
Available: http://manpages.ubuntu.com/manpages/jaunty/en/man1/time.1.html.

[41] G. Teodoro, et al., “Coordinating the use of GPU and CPU for improving
performance of compute intensive applications,” in IEEE International Conference
on Cluster Computing and Workshops, New Orleans, LA, 2009, pp. 1-10.

[42] The Hybrid Multicore Consortium. (July 10, 2010). [Online]. Available:
http://computing.ornl.gov/HMC/index.html

[43] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in SC '08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, Austin, TX, 2008, pp. 1-11.

[44] S. Williams, et al., “Roofline: an insightful visual performance model for
multicore architectures,” in Communications of the ACM, vol. 52, issue 4, pp. 52,
65-76, Apr. 2009.

[45] S. Yamagiwa and K. Wada, “Performance study of interference on GPU and
CPU resources with multiple applications,” in IEEE International Symposium on
Parallel & Distributed Processing, 2009, Rome, 2009, pp. 1-8.

	Portland State University
	PDXScholar
	1-1-2010

	Performance Analysis of Hybrid CPU/GPU Environments
	Michael Shawn Smith
	Let us know how access to this document benefits you.
	Recommended Citation

	thesis-final

