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Abstract 

 

We present two metrics to assist the performance analyst to gain a unified view of 

application performance in a hybrid environment: GPU Computation Percentage and 

GPU Load Balance.  We analyze the metrics using a matrix multiplication benchmark 

suite and a real scientific application.  We also extend an experiment management 

system to support GPU performance data and to calculate and store our GPU 

Computation Percentage and GPU Load Balance metrics.
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1. Introduction 
Single core processors have hit a performance wall because of heat dissipation and 

power requirements.  To overcome this the hardware industry started creating 

multicore CPUs.  Even with multiple cores, these CPUs lag behind Graphic 

Processing Units (GPUs) in raw floating point performance.  This is because the basic 

design philosophy between CPUs and GPUs is different.  CPUs devote a large portion 

of available die space to control logic and cache memory.  With GPUs a large portion 

of the die space is devoted to arithmetic units.  Thus, GPUs are able to perform 

floating point operations faster. 

 

The science community has taken notice of  GPU performance, and has ported 

scientific codes to GPUs.  Roeh et al. [35] have ported the two-point angular 

correlation function (TPACF) used in cosmological research achieving an approximate 

80 times speedup.  Phillips et al. [34] used GPUs to achieve a 7 times speedup for a 

molecular dynamic simulation.  These applications have seen a many fold increase in 

performance.  However, these efforts have been at small scale, utilizing one to two 

hundred compute devices.  The high performance computing community has also 

taken notice of GPUs.  Current multicore processors still limit the ability to achieve 

exascale computing because of power and heat dissipation.  To move forward from the 

current petascale computing to exascale computing GPUs will be used because of their 

floating point performance and power consumption.  This approach of adding GPUs as 

accelerators for CPUs is called hybrid computing [42]. 
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Programming for GPUs is not easy because of the different execution model of GPUs.  

With GPUs the programmer must create a kernel that executes on the GPU, divide the 

data into blocks, and explicitly move the data and kernel to the GPU device.  The 

kernel then executes asynchronously with code on the CPU.  Most performance tools 

provide performance data on the GPU or the CPU in isolation.  Therefore, the 

programmer has few tools available to talk about the overall performance of the 

program at a high level when working with multiple threads of execution and multiple 

kernel launches. 

 

To provide a unified view of a program’s performance we have developed two metrics 

targeting hybrid CPU/GPU environments.  Our approach is novel because it takes into 

consideration both the CPU and GPU, and it works with currently available tools (in 

other words, we don’t need an experimental device driver).  This type of performance 

analysis reduces program development time, allowing programmers, domain 

scientists, to perform more real science. 

 
 
 
 
 
 
 
 
 
  

Thesis Statement: 
 
The GPU Load Balance and GPU Computation Percentage metric are a 
useful starting point for modeling performance of hybrid CPU/GPU systems: 
GPU Load Balance characterizes load balance between CPU and GPU or 
multiple GPUs; and GPU Computation Percentage indicates high overhead 
for data movement between the CPU and the GPU. 
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In this thesis we discuss our investigation of these two metrics, and our performance 

study using these metrics. 

 

To calculate our metrics we gathered performance data using a GPU device centric 

performance tool and a performance tool that gathered performance data for the host 

CPU.  We then combined this data and stored it in an experiment management system.  

The experiment management system was extended to support GPU performance data 

and to calculate and store values for the metric we were investigating. 

 

The contributions of this work are: 

1. implementation of a benchmark suite 

2. a performance study in a hybrid environment 

3. implementation of a GPU Load Balance metric 

4. implementation of a GPU Computation Percentage metric 

5. enhancement of an existing performance database tool to handle applications 

run in a hybrid environment 

In the next section we discuss work related to ours.
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2. Related Work 
The most closely related work to ours includes benchmarks for hybrid environments 

and parallel performance tools. 

2.1. Benchmarks 
The Scalable Heterogeneous Computing (SHOC) benchmark suite [10], Rodinia [8], 

and the Parboil Benchmark suite [31] are a collection of benchmarks to test the 

performance of hybrid systems.  Like our work these benchmarks report the 

performance of hybrid systems.  However, these tools use benchmarks targeted for 

GPU performance problems, whereas we developed a benchmark suite for evaluating 

performance analysis methods and tools.  

2.2. Parallel Performance Tools 
Parallel performance tools related to our work can further be broken into CPU centric, 

GPU centric, and hybrid categories. 

2.2.1. CPU Centric 
There are a number of commercial and research parallel performance tools available.  

Commercial tools include Vampir [6].  The research community has developed a 

number of tools including HPC Toolkit [1], Scalasca [14], and TAU [38].  Of these, 

only TAU currently provides some support for gathering performance data in a hybrid 

environment. 

2.2.2. GPU Centric 
CudaProf [9] is Nvidia’s performance tool used to generate profiles for kernel 

executions and memory transfers.  It has a GUI front end and command line version.  
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To instrument an application, environment variables are set that indicate profiling is to 

be performance by the CUDA runtime system and the location of the configuration 

file.  CudaProf has some limitations.  The values reported for the performance 

counters do not represent the behavior of individual threads, but all the threads in a 

warp.  Also, the profiler can only use one of the streaming multiprocessors on the 

device.  Therefore, the performance counters don’t even represent the behavior of all 

the warps.  CudaProf can also impose significant overhead.  If any profile counters are 

enabled all kernel calls are blocking.  Normally kernel calls are non-blocking.  This 

change in behavior could have a significant impact on performance if work on the host 

and the device are expected to be overlapped. 

 

Nvidia Parallel Nsight [30] is a plugin for Visual Studio.  It is currently in open beta 

and allows for profiling, tracing, and debugging of Nvidia devices. 

 

 In addition to measurement tools, work has been done in modeling.  Hong and Kim 

[17] developed an analytical model for identifying performance bottlenecks.  This 

model takes into consideration memory level parallelism.  They developed two 

metrics for use with their model, memory warp parallelism and computation warp 

parallelism.  Memory warp parallelism is a measure of the number of memory 

requests that can be handled concurrently.  Computation warp parallelism is a measure 

of the work that can be completed while a warp is waiting for a memory request to 

complete.  Another performance model for kernels running on GPUs was developed 
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by Baghsorkhi et al. [1] that used a work flow graph to estimate a kernel's 

performance.  This work can be used with compilers to determine which optimizations 

to perform, and can allow a performance analysis to identify performance bottlenecks.  

Metrics introduced by this paper include SIMD pipeline latency, global memory 

latency, code divergence, and compute to global memory ratio. 

 

Schaa and Kaeli [37] developed a method for predicting the performance of an 

application when multiple GPUs are used.  A baseline is developed using a program 

that is deterministic and only uses a single GPU.  Metrics were created for per element 

and per subset average execution time.  An element is the smallest unit of 

computation, and a subset is an aggregation of elements.  Predicted execution time for 

the multi-GPU version of the code is calculated using the per element average and the 

number of GPUs. 

 

Ryoo et al. [36] have developed an auto-tuning approach that reduces the number of 

optimizations to consider when searching for an optimal configuration using the 

Pareto-optimal subset to prune the search space.  They developed an efficiency and 

utilization metric that are used in determining the performance of a configuration.  The 

efficiency of a configuration is a measure of the instructions that execute before the 

kernel finishes, and the utilization is a measure of compute resource usage.  

Measurements are done statically by analyzing PTX code and programmer supplied 

data. 
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Several other performance studies have been published.  Matrix multiplication was 

used by Ryoo et al. [36] to do a performance study of various levels of optimization.  

This is similar to our work, but they utilize GFLOPS, global memory to computation 

cycles ratio, GPU execution percentage, CPU-GPU transfer percentage, kernel 

speedup on the GPU, and application speedup benchmarks in their study.  We utilize 

our own metrics.  They only performed their study on a single device where we use 

multiple device and overlap CPU and GPU in our study.  Matrix multiplication on 

GPUs was studied by Allada et al. [1].  They compared the performance of matrix 

multiplication on a host CPU to the performance on a GPU.  They also measured 

available bandwidth between host and device.  An image registration application was 

ported by Bui and Brockman [7] to use GPUs.  They did a performance study to 

measure the speedup of their implementation. 

2.2.3. Hybrid 
TAUcuda [27] is an extension to TAU [38] that allows TAU to profile and trace 

CUDA kernels running on Nvidia GPUs.  This is an experimental approach because it 

relies on a call back interface that is, currently, only available in an experimental 

device driver from Nvidia.  TAUcuda includes metrics for kernel execution elapsed 

time, memory transfer elapsed time, and memory transfer size.  It also supports the 

default GPU counters. 
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Volkov and Demmel [43] did a performance study of matrix multiplication on GPU 

devices.  There study also included using multiple devices and overlapping device and 

host computation.  They also performed an in depth study of the device’s memory 

system performance, startup time for kernels, and arithmetic throughput.  

An equation to measure the amount of time to move data over the PCIe bus was also 

developed in this work. 

 

Teodoro et al. [41] use a framework for decomposing an application into components 

that can be run on a GPU or CPU.  A runtime system is used to determine if the 

component will be run on the host’s CPU or the device.  They studied application 

performance just using a GPU device, and in a hybrid environment using the CPU and 

GPU, and using a distributed memory system. 

2.3. Conclusion 
The novel aspects of our work are: our benchmark was implemented to test a 

performance tool instead of a GPU system; our work can be used in a hybrid 

environment with a production device driver; and our metrics can be applied to many 

applications in a hybrid environment.
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3. Performance Metrics 
Modeling the performance of hybrid systems is, currently, an open research question.  

Not a lot of work has gone into performance metrics for hybrid environments.   In this 

thesis we attempt to lay down some foundation for reporting the performance of 

hybrid systems.  To do this we define two metrics for performance of hybrid 

applications, GPU Computation Percentage and GPU Load Balance. 

3.1. Background 
Before discussing the metrics we’ll give an overview of GPU programming.  When 

writing applications targeted for GPUs the general design pattern is to allocate 

memory on the device, copy the data needed for the computation to the device, launch 

the kernel, and copy the results from the device to the host.  Figure 1 shows a diagram 

of this design pattern. 
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Figure 1: GPU Programming Design Pattern 
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Figure 2 is a sample program written in CUDA that uses this design pattern.  Lines 1 

through 3 define a kernel that just adds its arguments.  Inside main(), lines 6 to 14 

declare some variables.  These lines would correspond to the “serial code” block in 

Figure 1.  Memory is allocated on the device in lines 16 to 18 corresponding to the 

“allocate memory on dev” block in Figure 1.  Data is copied to the device on lines 20 

and 21 which corresponds to the “copy data to device” block in the figure.  Lines 23 -  

24 specify the number of threads that will execute the kernel.  The launching of the 

kernel (line 25) corresponds to the “launch kernel” block in Figure 1.  On line 27 we 

synchronize with the device so that the host will wait for the kernel to finish 

executing. This corresponds with the “synchronize thread” block in the figure.  Finally 

the result is copied from the device to the host on line 29. 
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Figure 2: Sample CUDA Application 

 

3.2. GPU Computation Percentage Metric  
Now that we have given a high level overview of GPU programming we’ll cover our 

first metric, GPU Computation Percentage (GCP).  Our goal for the GPU Computation 

Percentage metric is to indicate the amount of data movement overhead between the 

  1 __global__ void add(int *a, int *b, int *answer_dev) { 
  2     *answer_dev = *a + *b; 
  3 } 
  4  
  5 int main(int argc, char** argv) { 
  6     int a_host; 
  7     int *a_dev; 
  8     int b_host; 
  9     int *b_dev; 
 10     int answer; 
 11     int *answer_dev; 
 12  
 13     a_host = thread_id; 
 14     b_host = 3; 
 15  
 16     cudaMalloc((void **) &answer_dev, sizeof(int)); 
 17     cudaMalloc((void **) &a_dev, sizeof(int)); 
 18     cudaMalloc((void **) &b_dev, sizeof(int)); 
 19  
 20     cudaMemcpy(a_dev, &a_host, sizeof(int), 
cudaMemcpyHostToDevice); 
 21     cudaMemcpy(b_dev, &b_host, sizeof(int), 
cudaMemcpyHostToDevice); 
 22  
 23     dim3 dimGrid(1); 
 24     dim3 dimBlock(1,32); 
 25     add<<<dimGrid, dimBlock, 0>>>(a_dev, b_dev, answer_dev); 
 26  
 27     cudaThreadSynchronize(); 
 28  
 29     cudaMemcpy(&answer, answer_dev, sizeof(int), 
cudaMemcpyDeviceToHost); 
 30  
 31     return 0; 
 32 } 
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CPU and GPU.  For the GCP metric we wanted to use kernel wall clock time and data 

movement wall clock time.  Kernel wall clock time would have been the amount of 

time the kernel executed on a device plus the amount of time spent moving the kernel 

to the device and any other overhead associated with a kernel launch.  Data movement 

wall clock time would have been the wall clock time to move data to and from the 

device.  However, kernel launches and data movement can occur asynchronously with 

the host so we are not able to measure these directly. 

 

As an alternative we use kernel device time and data movement device time.  Kernel 

device time is the amount of time a kernel executes on a device.  This is reported as 

kernel gputime by CudaProf.  Data movement device time is the amount of time data 

movement functions spend executing on the device.  This is reported as function 

gputime by CudaProf for functions like cudaMemcpy().  

 

Data movement device time is not exactly the same as data movement wall clock time, 

but it does give some indication of how much wall clock time was spent moving data 

to and from the device.  As seen in Table 1, empirical data shows that data movement 

time increases as the size of data increases.  If we could directly measure data 

movement wall clock time it would also increase as the amount of data increases. 
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Table 1: Data movement device time 
size (bytes) host to device 

transfer time (µsec) 
device to host 
transfer time (µsec) 

1,024 5 5 
1,048,576 342 318 
4,194,304 1377 2041 

16,777,216 5525 9545 
67,108,864 22156 37200 

268,435,456 88441 137025 
1,073,741,824 353846 524745 

 
The definition for the GPU Computation Percentage metric is shown in Equation 1.  

Kernel device time is the amount of execution time on the device for kernels, and 

device time is the amount of time kernel and data movement functions execute on the 

device. 

 
 (1) 

 
 

If no device time is spent moving data to the device the largest theoretical value of the 

metric is one.  A value of one would indicate that no data was moved to the device, 

but this is unlikely because at a minimum some data needs to be moved from the host 

to the device for the device to do meaningful work.  A high GPU Computation 

Percentage means that the data movement was effective.  At the other extreme, if no 

kernel was launched on the device the value of the metric would be zero.  A low GCP 

indicates that the developer needs to check data movement. 

3.3. GPU Load Balance Metric 
Our goal for the GPU Load Balance (GLB) metric is to show the load balance between 

the CPU and GPU or between multiple devices.  To achieve this we use device time 

  

! 

GCP =
kernel device time

device time
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and the application’s wall clock time.  Device time is the amount of time kernel and 

data movement functions execute on the device.  Wall clock time is the amount of 

time the application ran.  The definition of GPU Load Balance is shown in Equation 2. 

 
 

(2) 
 

 
The range of values for this metric are zero to one.  Values near zero indicate that a 

very small portion of the application executed on the device, and that the GPU device 

was mostly idle.  A value of one indicates that the  application used all of the GPU 

device’s available execution time.  This is a theoretical maximum because some time 

is consumed as overhead for the device’s runtime environment on the host, i.e. 

allocating memory on the device and launching kernels.  A high GPU Load Balance 

indicates a well balanced hybrid application or a device centric application.  When 

multiple GPU devices are used the GLB also indicates the load balance between the 

devices. 

 

This metric gives the programmer an indication of how much the application is using 

the device.  This is helpful in a hybrid environment where the application performs 

work on the device and host.  During development a value near zero would inform the 

developer that the application is hardly using the device, and prompt the developer 

that more investigation is needed to find parts of the code to run on the device to 

increase usage of the device.  If no more of the application can be run on the device a 

value near zero would indicate that it may be faster to run the application strictly on 

  

! 

GLB =
device time

wall clock time
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the host.  This could happen because overhead to run the kernel on the device is 

exceeding the amount of time the kernel executes on the device.  A value near one 

indicates that the application is using the device for the majority of the execution time.   

 

When used in a system with multiple devices a metric value is reported for each 

device.  In the multiple device environment the range of values is the same as 

discussed above, but is specific for each device.  This gives the programmer the added 

benefit of seeing the distribution of work among the devices.  For example, if one 

device has a high GPU Load Balance and the other has a GLB of zero, the second 

device is not being used at all and the programmer may want to investigate a better 

division of work to improve performance. 

 

A limitation of this metric is that it does not indicate how well optimized an 

application is for the device or host.  For example, a poorly tuned application could 

consume a large portion of device time creating a GPU Load Balance near one.  

However, if the application was optimized for the device, the GLB would decrease.  

The metric does not distinguish these two cases.
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4. Benchmark Suite 
To investigate the utility of our metrics we wanted to use a benchmark.  We needed an 

easily understandable benchmark that could have various levels of optimizations 

applied to it and studied.  We also wanted to be able to easily verify the correctness of 

the benchmark.  Our starting point was a single device implementation of matrix 

multiplication described by Kirk and Hwu [22].  We took the single device 

implementation and extended it to support multiple GPU devices, overlap CPU and 

GPU computation, use pinned memory, and use asynchronous memory transfers.  We 

feel this work may be of benefit to others studying GPU performance tools because it 

gives them an easily understandable benchmark that includes common GPU 

optimization strategies.  (Note: since the start of our project other benchmarks have 

been published [8, 10, 31].) 

4.1. Single Device Matrix Multiplication 
In this section we describe how matrix multiplication is performed using a single GPU 

device and the optimizations applied to matrix multiplication as described by Kirk and 

Hwu [22].  We use a 4 x 4 matrices to illustrate the process.  M and N are the two 

matrices to be multiplied and the result is stored in P. 

 

First, memory must be allocated and initialized on the host.  The matrices M, N, and P 

are allocated using malloc() as a one-dimensional array.  Since the matrices being 

multiplied are two-dimensional and the memory used to store the matrices is one-
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dimensional, a mapping is needed to map between an element’s location in the matrix 

and its location in memory. Equation 3 shows the formula to calculate an element’s 

index in memory allocated on the host.  Row is the row the element is in, column is 

the column the element is in, and width is the width of the matrices. 

(3) 
 
To find its row number Equation 4 is used: 

 
(4) 

 
 
To find its column number Equation 5 is used: 

 
(5) 

 
After the memory is allocated M and N are initialized to a default value.  Both M and 

N are initialized using Equation 6.  Matrix P is left uninitialized because the result 

generated by the device is copied from the device into this matrix. 

 
(6) 

 
Next, memory must be allocated on the device to store the M and N matrices, and 

memory needs to allocated on the device to store the result.  Memory is allocated on 

the device using cudaMalloc() of the same size as allocated on the host.  The matrices 

on the device are named Md, Nd, and Pd.  Now that memory is allocated on the device 

the M and N matrices are copied from the host to the device.  The matrix 

multiplication kernel (discussed below) is launched, the result calculated, and the 

result is stored in Pd on the device.  The Pd matrix is then copied from the device into 

  

! 

memory index =  row "width + column

  

! 

matrix row =
index

width

" 

# " 
$ 

% $ 

  

! 

matrix column = index%width

! 

matrix[row][column] = row + column+1
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matrix P on the host.  Once the result is in P the matrix can be printed or stored to 

disk. 

 

Three different levels of optimizations are applied to the matrix multiplication kernel.  

The optimization levels are naive, tiled, and tiled+shared memory.   

4.1.1. Naive Kernel 
The naive implementation described by Kirk and Hwu [22] does a straight forward dot 

product calculation.  This kernel is configured with a grid size of one block.  

Therefore, the size of matrix this kernel can calculate is limited by the maximum 

number of threads that can be in a block.  In the GPU devices used in this thesis, the 

maximum number of threads in a block is 512 threads.  Thus, the largest matrix that 

this kernel can calculate, that is a power of two, is 16 x 16.  To overcome this 

limitation a tiled kernel was implemented, as discussed in the next section. 

4.1.2.  Tiled Kernel 
To overcome the limited size of matrices that can be used with the naive 

implementation a tiled kernel was implemented.  The tiled implementation, as 

described by Kirk and Hwu [22], breaks the Pd matrix up into tiles that are the same 

dimension as the block size.  Each thread block then works on a smaller portion of the 

matrices.  Figure 3 shows how the 4 x 4 Pd matrix is divided into four blocks of size 2 

x 2. 

 



 20 

 
Figure 3: Pd tiled 

Figure 4 demonstrates how element (0,0) in Pd is calculated.  The (0,0) element in Pd is 

calculated by thread (0,0) in block (0,0) by doing a dot product calculation of the first 

row in Md and the first column in Nd.  Since each thread block is working on a small 

portion of Pd a larger matrix multiplication may be done.  

 

Figure 4: Calculation of element (0,0) in block (0,0) 

4.1.3.  Tiled + Shared Memory Kernel 
The tiled kernel allows larger matrices to be multiplied, but it accesses data in global 

memory multiple times.  When the M and N matrices are copied into Md and Nd on the 
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device they reside in global memory.  Global memory is larger, but slower than shared 

memory on the device.  As demonstrated in Figure 5 the tiled kernel access the same 

data in Md and Nd multiple times.  The element marked with a 2 in block (0,0) access 

the same row in Md as the element marked with a 1.  This means that to calculate 

element 1 and 2 the first row of Md is accessed twice.  If this row could be stored in 

shared memory the number of accesses to global memory would be decreased, 

improving performance.  Unfortunately, shared memory is a scarce resource and for 

larger matrices cannot fit all of the rows from Md and columns from Nd needed to 

perform the dot product.   

 
Figure 5: Tiled kernel memory access pattern 

 

To overcome the problem of limited shared memory, the Md and Nd matrices are tiled 

and the result is calculated in phases as described by Kirk and Hwu [22].  The tiles of 

Md and Md are moved into shared memory named Mds and Mds respectively.  The first 
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phase of our 4 x 4 matrix multiplication is shown in Figure 6.  In this phase a 2x2 tile 

of Md is moved into Mds and a 2x2 tile of Nd to moved into Nds and a dot product is 

performed with the values in Mds and Nds.  The partial result is stored in Pvalue1. 

 
Figure 6: Tiled+shared kernel phase 1 

The second phase of the matrix multiplication is shown in Figure 7.  In this phase 

another 2x2 tile of Md is moved into Mds and another 2x2 tile of Nd is moved into Nds 
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and a dot product is performed with the values in Mds and Nds.  The partial result is 

stored in Pvalue2.  The final result is stored in Pd by adding Pvalue1 and Pvalue2. 

 
Figure 7: Tiled+shared kernel phase 2 

 

4.2. Multiple Device Matrix Multiplication 
In this section we describe how we extended the single device matrix multiplication 

described in Section 4.1.  The CUDA programming model requires at least one host 

threads per device.  This means that each host thread needs to specify which device its 
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kernels are to be executed on.  The default is device 0.  Multiple host threads may 

specify the same device, but a host thread can only use one device at a time.  

Therefore, for a single application to use multiple devices it must create multiple 

threads of execution using OpenMP or pthreads.  In this thesis we use pthreads.  

Figure 8 shows how the calculation of P is divided between two threads.  The blue 

elements in Figure 8 are allocated to thread 0 and the red elements are allocated to 

thread 1.  Thread 0 calculates the top half of P and thread 1 calculates the bottom half 

of P.  Therefore thread 0 needs the top half of M and all of N, and thread 1 needs the 

bottom half of P and all of N. 

 

 
Figure 8: Division of work between two threads 

 
After the work has been divided each thread calculates its portion of P as shown in 

Figure 9.  Each thread copies its portion of M and all of N to Md and Nd on its device.  

Each thread launches the matrix multiplication kernel, and the thread’s partial result is 
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stored in Pd.  The matrix multiplication kernels are the same kernels outlined in 

Sections 4.1.1, 4.1.2, and 4.1.3.  Next, the thread’s partial result is moved from the 

device into the portion of P, on the host, that it calculated.  Blue elements in P are 

calculated by thread 0 and red elements are calculated by thread 1.  The result in P can 

then be stored on disk or checked for accuracy. 

 
Figure 9: Multi-device matrix multiplication 
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4.3. Memory Optimizations 
We extended the matrix multiplication benchmark to use pinned host memory, also 

called page-locked host memory.  This memory optimization allocates memory that 

won’t be paged by the operating system.  If the system has a front side bus this 

increases the bandwidth between the host and device [29]. 

 

We also extended the matrix multiplication to use asynchronous memory transfers.  

Asynchronous memory transfers are non-blocking on the host allowing the host to 

perform other work while the data is being transferred to and from the device.  Pinned 

memory is required by CUDA for  asynchronous memory transfers. 

4.4. Hybrid Matrix Multiplication 
We extended the matrix multiplication benchmark to work in a hybrid environment.  

We modified the code so that part of the multiplication is performed on the device and 

part on the host processor.  We accomplish this by partitioning the matrices as 

described in Section 4.2.  However, instead of having two devices perform the 

calculation, one device performs part of the calculation and the host performs the other 

part.  The partial results are then combined as usual. 

4.5. Problems Implementing Matrix Multiplication 
In this section we discuss some of the challenges we encountered implementing matrix 

multiplication for GPUs.  The initial version of matrix multiplication created a file 

with the matrices to be multiplied and a gold file.  The gold file contained a known 
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correct result.  The gold file was calculated using a simple matrix multiplication 

function on the host.  The matrix multiplication was performed using matrices with 

elements of a float type.   When the results where written to file they were cast to an 

unsigned int, and when the result was read from the file they were cast back to a float. 

 

The naive, tiled, and tiled plus shared memory implementations with this design 

worked with matrices up to 4096x4096.  They all produced results calculated on a 

GPU device that matched the gold result.  However, when we tried to extend the initial 

version to use multiple devices, pinned memory, or asynchronous memory transfers it 

would produce incorrect results for matrix sizes above 1024x1024.  Inspecting the 

incorrect result it was seen that part of the result was correct.  We suspected the cause 

of the bug was the type casting used during reading and writing of the matrices from 

files.  To test this theory we reimplemented the matrix multiplication using strictly 

unsigned int types and removing all the type casting.  This change immediately 

produced correct results for all optimization of matrix multiplication used and on all 

sizes of matrices used.  Our suspicion is that the type casting introduced rounding 

errors that become larger as the matrix multiplication was performed.  
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5. PerfTrack 
We needed a method to calculate, store, and analyze our GPU Computation 

Percentage and GPU Load Balance metrics.  PerfTrack [21] was chosen to manage the 

results for our metrics.  PerfTrack is an experiment management system designed for 

importing, storing, retrieving, and analyzing machine and performance data.  For 

example, it can be used to compare the GPU Computation Percentage of the matrix 

multiplication benchmark across different versions of the CUDA runtime system.  

However, it needed to be extended to support hybrid system data and GPU 

performance data. 

5.1. Work Done Extending PerfTrack 
In this section we discuss work done to extend PerfTrack to import machine and GPU 

performance data. 

5.1.1. Machine Data 
PerfTrack’s machine data gathering scripts were extended to search for GPU devices 

on a node.  To support GPU performance data the machine resource hierarchy, which 

describes a system, was updated to include GPU devices.  Next, a utility was 

implemented that queried a device for its properties.  The machine data gathering 

scripts were then updated to use this query utility to add resource information for the 

GPU devices on the node.  Figure 10 shows the resource information automatically 

gathered by our extension to the machine data gathering scripts. 
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Figure 10: GPU Device Resource Information 

5.1.2. Build Data 
Before PTdFgen.py can be used to create a PTDF for performance results, a build file 

and run file are needed.  These files were created manually as outlined in PerfTrack’s 

documentation. 

5.1.3. Performance Results 
To import a CUDA Prof log into PerfTrack we need to be able to convert a CUDA 

Prof log entry into a PerfTrack performance result.  Each CUDA Prof log entry 

contains a time stamp and method name, followed by the metric values gathered.  A 

log entry is shown in Figure 11.  This entry shows the time the MatrixMulKernel2 

kernel was launched, the GPU time, CPU time, grid size, block size, and static shared 

memory per block metrics. 

 

 
 

Figure 11: CUDA Prof log entry 
 

timestamp=[ 610.000 ] method=[ _Z16MatrixMulKernel2PfS_S_i ] 
gputime=[ 17.120 ] cputime=[ 40.000 ] gridSize=[ 1, 1 ] 
blockSize=[ 16, 16, 1 ] staSmemPerBlock=[ 44 ] 
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To convert the CUDA Prof log entry we need to map the log entry to a PerfTrack 

performance result.  A PerfTrack performance result consists of a context, 

performance tool, metric, metric value, units, start time, and stop time.  A context is 

created for each method in the CUDA Prof log and the method in the log entry is 

associated with this context.  A performance result is created for each metric in the 

CUDA Prof log entry.  The performance tool for each performance result is 

“CudaProf.”  The metric value is the value in the log entry between the “[“ and “[“.  

The units for the performance entry are based on the metric.  For example, time 

metrics are in microseconds and memory size metrics are in bytes.  The start and stop 

attributes of a performance result are not used and left as “noValue.” 

 

The basic strategy to parse the CUDA Prof log file is to find each log entry and to 

extract the metric and metric values from the entry.  To extract the metric and its 

value, a list of regular expressions for the known metrics is iterated over.  Each metric 

regular expression in the list is used to search the log entry.  If a match is found, a 

performance result is created for the found metric and the performance result is added 

to the execution. 

 

This procedure allows PTdFgen.py to generate a PTDF file.  However, as initially 

implemented the PTDF would not successfully load into PerfTrack.  Some metric 

values in the CUDA Prof log are multidimensional.  For example, the value for the 

block size metric is a two dimensional result of the height and width of the kernel’s 
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block configuration.  To overcome this problem, the single block size metric was 

broken into two metrics, a block size X metric and a block size Y metric.  Another 

problem encountered with the initial implementation was with the gpu start timestamp 

and gpu end timestamp metrics.  As reported by CUDA Prof, these metrics have a hex 

value.  For example, 11b46a729843c880.  As the performance results in the PTDF file 

are loaded into PerfTrack they are cast to a float.  This creates a problem because these 

hex values can’t be immediately cast to floats.  To solve this problem the hex values 

were first converted to an integer which in turn could be cast to a float as the PTDF 

was loaded into PerfTrack. 

 

Our initial approach causes us to lose information: there is no way to associate a 

specific performance result with one particular function call.  Figure 12 shows the 

performance results gathered for a run of the matrix multiplication application.  

Several performance results are shown for the CPU time metric for the memcpyHtoD 

method, but there is no way to see which call to memcpyHtoD the metric value is 

associated with.  In the future we plan to tag the log data as we parse it. 
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Figure 12: PerfTrack Performance Results 

 

5.1.4. Wall Clock Time 
A CUDA Prof log file does not include the application’s wall clock time for the 

application’s entire execution.  To overcome this we used the time utility to measure 

the application’s wall clock time.  The output from time was appended to the CUDA 

Prof log file. 

 

During parsing of the log file, as explained above, the output from the time utility was 

searched for.  If it was found, the wall clock time was extracted from the output, and a 

performance result added to the execution resource in PerfTrack.  This solution 
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worked for applications that used a single device, but when multiple devices were 

used a problem became evident. 

 

When multiple devices are used, CUDA Prof needs to be configured to output the log 

data for each device into a separate log file.  Thus, if an application uses two devices 

there should be two log files, with each log file containing the performance data for a 

GPU device.  We changed our data loading step to load wall clock time independently 

instead of appending to the log file. 

5.1.5. Multiple CUDA Prof Log Files 
Another problem was discovered after CUDA Prof was configured to generate a log 

file for each device.  When multiple devices were used an additional log file was 

created.  For example, if two devices were used three log files were created.  The first 

log file would contain header information specifying it was for device 0, but contain 

no performance data.  The second log file would contain header information 

specifying it was for device 0 and contain the performance data for device 0.  The 

third file would contain the header information and performance data for the second 

device.  We assume the header correctly identifies the device per log and ignore the 

log file with no data. 

5.1.6. Metric Calculation 
In this section we discuss how PerfTrack was extended to calculate the GPU 

Computation Percentage and GPU Load Balance metrics.  The GPU Computation 

Percentage metric is discussed in Section 7, and the GPU Load Balance is discussed in 
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Section 8.  As described in Section 5.1.3 the CUDA Prof log files are parsed to extract 

performance data gathered by CUDA Prof and import it into PerfTrack.  During this 

procedure the application’s wall clock time is also imported into PerfTrack.  Since the 

data needed to calculate the metric is available at this time it was decided to calculate 

the value of the metrics.  Doing the calculation at this time instead of when data is 

retrieved from PerfTrack provides a performance benefit because the metric’s value 

isn’t recalculated each time the user requests this information.  It can be immediately 

retrieved from the database. 

 

The toolParser.py module was extended to calculate the metric values.  A method was 

added that searches the log file for the needed information to calculate the metric 

values.  Once found it calculates the metric values and adds them to the execution 

resource.  By adding it to the execution resource it makes the metric available in 

PerfTrack when performance data on the execution is retrieved. 

5.1.7. Conclusion 
In this section we have discussed the work we’ve done so far to import CUDA Prof 

log files into PerfTrack.  Several problems were found: 

• multidimensional metric values 

• nonnumeric metric values 

• associating performance result with specific function call 

• extraneous CUDA Prof log file 
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The solution to the multidimensional metric values and metric hex values have been 

implemented.  The problem with associating performance results with a specific 

function call in the call graph is left for future work.
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6. Experimental Design 
In this section we discuss our experiment goals and how we designed our experiments.  

The goals of our experiments are to investigate the utility of the GPU Computation 

Percentage and GPU Load Balance metrics.  We do this by performing a performance 

study of a simple matrix multiplication benchmark and a real scientific application in a 

hybrid environment.   We then analyze the results from the experiments. 

 

In this section we discuss: 

• the sizes and configurations of matrices used 

• background information on the scientific application used 

• how the scientific application was configured 

• how the matrix multiplication benchmark and scientific application where 

instrumented 

• the system the experiments were run on 

 

We begin by discussing how we implemented the matrix multiplication benchmark. 

6.1. Matrix Multiplication Benchmark 
In this section we cover how the matrix multiplication benchmark was configured for 

our experiments.  Table 2 shows the dimensions and memory sizes of matrices used.  

A 16 x 16 matrix was chosen because it is the largest matrix supported by the naive 

matrix multiplication kernel as discussed in Section 4.1.1.  The smallest matrix size 

supported by the tiled and tiled plus shared memory kernels is 16 x 16.  This is 
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because the matrix needs to be at least as large as the tile used in these optimizations, 

which is 16 x 16.  A 32 x 32 matrix is included so that each thread used, in the 

multiple device portion of this case study, has at least the minimum sized matrix 

needed for the tiled and tiled plus share memory optimized kernels.  All elements in 

the matrices are unsigned int data types. 

 
Table 2: matrix sizes 

Dimension memory size (bytes) 
16 x 16 1,024 
32 x 32 4,096 

512 x 512 1,048,576 
1,024 x 1,024 4,194,304 
2,048 x 2,048 16,777,216 
4,096 x 4,096 67,108,864 
8,192 x 8,192 268,435,456 

16,384 x 16,384 1,073,741,824 
 
Several levels of optimization are investigated.  We use a naive, tiled and tiled plus 

share memory optimized kernels, and three levels of memory optimizations are used 

with each kernel: paged, pinned, and pinned with asynchronous memory transfers.  

Each kernel optimization/memory optimization combination was executed 105 times.  

These runs were performed on one and two GPU devices.  

6.2. NAMD 
In our experiments we used a full scientific application, called NAMD [33].  NAMD 

is an application for molecular dynamic simulations.1  It was extended by Phillips et 

                                                
1 NAMD was developed by the Theoretical and Computational Biophysics Group in 
the Beckman Institute for Advanced Science and Technology at the University of 
Illinois at Urbana-Champaign. 
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al. [34] for use with GPUs.  We chose NAMD because it is a real world application for 

doing real science that has already been ported to use GPUs.  We configured NAMD 

to simulate the Satellite Tobacco Mosaic Virus (STMV) [13].  We downloaded the 

example STMV simulation from 

http://www.ks.uiuc.edu/Research/namd/utilities/stmv/.  The simulation configuration 

was modified by changing the following configuration variables to the specified 

values: 

• timestep 0.15 

• fullElectFrequency 5 

• stepspercycle 5 

• outputEnergies 100 

• numsteps 120 

 

NAMD’s support for GPUs is still under development.  So, these configuration values 

were obtained through trial and error so that we could complete a full simulation.  

6.3. Instrumentation 
CudaProf was used to instrument the application, and gather device performance data.  

The profiler was configured to gather timestamps.  By selecting just timestamps it 

automatically includes the gputime and cputime for each method executed on the 

device and for kernel calls.  We ran the application on wyeast01 and wyeast02 as 

described in Section 6.4. 
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To gather wall clock time we used the external time [40] command.  It has a 

resolution of a hundredth of a second.  The gettimeofday() system call with a 

resolution of a microsecond was considered after the results were gathered.  It was not 

used because it would have required modification of the scientific application’s source 

code to insert the system call and output the timing results.  The application’s wall 

clock time could have also been calculated using CUDA event streams.  Event streams 

have a resolution of milliseconds.  The disadvantage to using CUDA event streams is 

that it would have made our methodology CUDA specific and would have required 

modification to the scientific application’s source code as well. 

6.4. Wyeast 
We used a portion of Wyeast in our experiments.  Wyeast is a cluster in the High 

Performance Computing Lab at Portland State University.  Our experiment system 

consisted of two nodes from Wyeast named wyeast01 and wyeast02, a node named 

meakin was used as a login and testing node, an Nvidia S1070, and a Netgear gigabit 

switch used to connect the three nodes.  The Nvidia S1070 consists of four T10 

compute devices.  Two devices are connected to wyeast01 and wyeast02 via a host bus 

adapter.  The configuration for meakin is described in Table 3. 
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Table 3: meakin configuration 
CPU (2) Intel Xeon E5504 2.0GHz 
Memory 12GB 
OS Ubuntu server 9.04 (Jaunty Jackalop) 
Linux Kernel 2.6.28.18 
Nvidia Driver 195.36 
CUDA Runtime Version 3.0 
Device 0 Tesla C1060 
 CUDA Capability: 1.3 
 Memory: 4GB 
Device 1 Quadro NVS 295 
 CUDA Capability: 1.1 
 Memory: 256MB 

 
The configuration for wyeast01 and wyeast02 is described in Table 4. 

Table 4: wyeast01 and wyeast02 configuration 
CPU Intel Xeon E5520 2.27GHz 
Memory 12GB 
OS CentOS 5.4 
Linux Kernel 2.6.18.164 
Nvidia Driver 195.36 
CUDA Runtime Version 3.0 
Devices (2) Tesla T10 Processor 

 
The configuration for the S1070 is shown in Table 5. 

Table 5: Tesla S1070 configuration 
Devices (4) Tesla T10 Processor 
 CUDA Capability: 1.3 
 Memory: 4GB 
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7. GPU Computation Percentage Case Study 
Our target environment is a hybrid environment that consists of host CPUs and GPU 

devices used as accelerators.  The host could have multiple GPU devices available, or 

the environment could be a cluster with devices attached to each host node. 

 

We wanted a tool that would assist the developer while writing programs for this 

hybrid environment.  One performance bottleneck for hybrid environments is moving 

data between the host and device.  We wanted a tool that would tell the developer if 

the additional computation completed on the device was worth the cost in overhead.    

 

To achieve this goal we considered several metrics including acceleration execution 

time, unaccelerated execution time, speedup, kernel executions per second, and 

percentage of PCIe bus bandwidth.  Initially we wanted to measure when data was 

being moved between the host and device, and when data was being moved between 

devices.  We felt that being able to measure this, it would help use develop the tool 

needed to assist the developer writing programs for a hybrid environment. 

 

We investigated for a means to measure the amount of data moving across the PCIe 

bus and couldn’t find an acceptable solution.  CudaProf reports the amount of data 

moved to and from the device for memory copies, but it doesn’t report data movement 

for non-memory copies, e.g. kernel calls and device management functions.  Also 

memory copies can occur asynchronously which would make it problematic to 
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correlate when data was being transferred to/from multiple devices.  Another idea was 

to instrument the CUDA runtime itself; however, the CUDA runtime is essentially a 

black box because it is close source proprietary software.  We also considered 

hardware to instrument the PCIe bus, but we did not have this in our budget and we 

wanted to develop a software based solution. 

 

We eventually settled on two metrics that could be calculated using results form 

CudaProf or any other tool that could instrument a GPU; GPU Computation 

Percentage and GPU Load Balance.  Our goal for the GPU Computation Percentage 

metric is to indicate the amount of data movement overhead between the CPU and 

GPU.  The definition of GPU Computation Percentage (1) is repeated below. 

(1) 
 
 
 

 

7.1. Single Device Results 
Table 6 to Table 8 show the mean GPU Computation Percentage for the matrix 

multiplication benchmark using a single device.  For the data in Table 6 no memory 

optimization was used, in Table 7 pinned memory was used, and in Table 8 pinned 

memory with asynchronous memory transfers was used.  The naive column shows the 

metric value for naive kernel, the tiled column shows the metric values for the tiled 

kernel, and the tiled+shared column shows the metric values for the tiled with shared 

memory kernel. 

  

! 

GCP =
kernel device time

device time
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First we examine the naive kernel.  The mean GPU Computation Percentage for all 

three memory optimizations was very similar, ranging from 0.52 to 0.56. 

 

Next we examine the tiled kernel.  The mean GCP for the 16x16 problem size ranged 

from 0.52 to 0.57. At this problem size it may be faster to do the computation strictly 

on the host.  For problem sizes 512x512 and larger the mean GCP ranged from 0.95 to 

1.00.  In all of these cases, the device spent more time doing work than was spent 

transferring data; therefore, the overhead of transferring data to the device was 

justified. 

 

Examining the tiled plus shared memory kernel, the mean GPU Computation 

Percentage for the 16x16 problem size ranged from 0.40 to 0.45.  For problem sizes 

512x512 and larger the mean GPU Computation Percentage ranged from 0.75 to 0.99.  

Comparing the GPU Computation Percentage of the tiled kernel and the tiled plus 

shared memory kernel, the GPU Computation Percentage was lower for the tiled plus 

shared memory kernel in all cases.  When an optimization is applied to a kernel the 

kernel’s device time will decrease, but the data movement device time will stay the 

same.  This causes the GPU Computation Percentage to decrease even though there 

was a speedup in the benchmark. 

 



 44 

Comparing the GPU Computation Percentage for the matrix multiplication benchmark 

using paged memory, pinned memory, and pinned memory with asynchronous 

memory transfers we did not see a noticeable difference.  This is because of how the 

benchmark was implemented.  Asynchronous memory transfers are nonblocking for 

the host.  This allows the host to continue working while data is transferred to the 

device.  Even with the asynchronous memory transfers the device still needs all the 

data before it can continue and the host still waits for work on the device to complete 

before it continues. 

Table 6: GPU Computation Percentage, paged memory single device 
matrix size naive tiled tiled+shared 

16x16 0.56 0.57 0.45 
512x512 - 0.95 0.75 

1024x1024 - 0.96 0.82 
2048x2048 - 0.97 0.88 
4096x4096 - 0.99 0.94 
8192x8192 - 0.99 0.97 

16384x16384 - 1.00 0.99 
 

Table 7: GPU Computation Percentage, pinned memory single device 
matrix size naive tiled tiled+shared 

16x16 0.52 0.52 0.40 
512x512 - 0.95 0.75 

1024x1024 - 0.97 0.84 
2048x2048 - 0.98 0.91 
4096x4096 - 0.99 0.95 
8192x8192 - 0.99 0.98 

16384x16384 - 1.00 0.99 
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Table 8: GPU Computation Percentage, pinned memory, 
asynchronous memory transfers, single device 
matrix size naive tiled tiled+shared 

16x16 0.52 0.52 0.40 
512x512 -  0.95 0.75 

1024x1024 - 0.97 0.84 
2048x2048 - 0.98 0.91 
4096x4096 - 0.99 0.95 
8192x8192 - 0.99 0.98 

16384x16384 - 1.00 0.99 
 

7.2. Multiple Device Results 
Table 9 to Table 11 show the mean GPU Computation Percentage for the matrix 

multiplication benchmark using two devices.  For the data in Table 9 no memory 

optimization was used, in Table 10 pinned memory was used, and in Table 11 pinned 

memory with asynchronous memory transfers was used.  The naive column shows the 

metric value for naive kernel, the tiled column shows the metric values for the tiled 

kernel, and the tiled+shared column shows the metric values for the tiled with shared 

memory kernel. 

 

First we examine the naive kernel.  The mean GPU Computation Percentage for all 

three memory optimizations was very similar.  Ranging from 0.55 to 0.65.  At this 

problem size it may be faster to run the computation strictly on the host. 

 

Next we examine the tiled kernel.  The mean GPU Computation Percentage for the 

32x32 problem size ranged from 0.60 to 0.64.  Like the naive kernel, it may be faster 

to do the computation strictly on the host for this problem size.  For problem sizes 
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512x512 and larger the mean GPU Computation Percentage ranged from 0.93 to 1.00.  

In all of these cases, the device spent more time doing work than was spent 

transferring data; therefore, the overhead of transferring data to the device was 

justified. 

 

Examining the tiled plus shared memory kernel, the mean GPU Computation 

Percentage for the 16x16 problem size ranged from 0.43 to 0.47.  For problem sizes 

512x512 and larger the mean GPU Computation Percentage ranged from 0.67 to 0.98.  

For device efficiencies near 0.5 the amount of time transferring data was about the 

same as the time spend doing computation.  This GPU Computation Percentage value 

leads us to conclude that it would be more efficient to run problem sizes with GPU 

Computation Percentage near 0.5 on a single device.  We need to look at wall clock 

time to confirm this.  Comparing the GPU Computation Percentage of the tiled kernel 

and the tiled plus shared memory kernel, the GPU Computation Percentage was lower 

for the tiled plus shared memory kernel in all cases. 

 

Comparing the GPU Computation Percentage for both tiled and tiled plus shared 

memory matrix multiplication benchmark using paged memory in Table 9 with the 

GPU Computation Percentage for the matrix multiplication benchmark using pinned 

memory in Table 10 we see tiled plus shared kernel on problem sizes 1024x1024 and 

larger show a noticeable difference in GPU Computation Percentage.  This suggests 

data movement was decreasing. 
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Table 9: GPU Computation Percentage, paged memory two devices 
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 

32x32 0.65 0.55 0.64 0.63 0.47 0.47 
512x512 - 0.93 0.93 0.67 0.67 

1024x1024 - 0.94 0.94 0.72 0.65 
2048x2048 - 0.95 0.95  0.80 0.80 
4096x4096 - 0.97 0.97 0.89 0.88 
8192x8192 - 0.98 0.98 0.93 0.93 

16384x16384 - 0.99 0.99 0.96 0.96 
 

Table 10: GPU Computation Percentage, pinned memory two devices 
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 

32x32 0.61 0.62 0.60 0.60 0.43 0.43 
512x512 - 0.93 0.93 0.67 0.67 

1024x1024 - 0.95 0.95 0.76 0.76 
2048x2048 - 0.97 0.97 0.86 0.86 
4096x4096 - 0.98 0.98 0.92 0.92 
8192x8192 - 0.99 0.99 0.96 0.96 

16384x16384 - 1.00 1.00 0.98 0.98 
 

Table 11: GPU Computation Percentage, pinned memory, 
asynchronous memory transfers, two devices 

matrix size naive tiled tiled+shared 
 dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 

32x32 0.62 0.62 0.60 0.60 0.43 0.43 
512x512 - 0.93 0.93 0.67 0.67 

1024x1024 - 0.95 0.95 0.76 0.76 
2048x2048 - 0.97 0.97 0.86 0.86 
4096x4096 - 0.98 0.98 0.92 0.92 
8192x8192 - 0.99 0.99 0.96 0.96 

16384x16384 - 1.00 1.00 0.98 0.98 
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7.3. Hybrid Environment Results 
Table 12 shows the mean GPU Computation Percentage for the matrix multiplication 

benchmark overlapping CPU and GPU computation.  In Case A no memory 

optimization was used, in Case B pinned memory was used, and in Case C pinned 

memory with asynchronous memory transfers was used.  The naive column shows the 

metric value for naive kernel, the tiled column shows the metric values for the tiled 

kernel, and the tiled+shared column shows the metric values for the tiled with shared 

memory kernel. 

 

First we examine the naive kernel.  The mean GPU Computation Percentage for all 

three memory optimizations was very similar, ranging from 0.61 to 0.65. 

 

Next we examine the tiled kernel.  The mean GCP for the 32x32 problem size ranged 

from 0.60 to 0.64.  At this problem size it may be faster to do the computation strictly 

on the host.  For problem sizes 512x512 and larger the mean GPU Computation 

Percentage ranged from 0.93 to 0.98.  In all of these cases, the device spent more time 

doing work than was spent transferring data; therefore, the overhead of transferring 

data to the device was justified. 

 

Examining the tiled plus shared memory kernel, the mean GPU Computation 

Percentage for the 16x16 problem size ranged from 0.43 to 0.47.  For problem sizes 

512x512 and larger the mean GPU Computation Percentage ranged from 0.67 to 0.92.  
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Comparing the GPU Computation Percentage of the tiled kernel and the tiled plus 

shared memory kernel, the GCP was lower for the tiled plus shared memory kernel in 

all cases.  The low GCP for the tiled plus shared memory kernel on a 32x32 matrix 

suggest that it would be more efficient to run those problem sizes strictly on a device; 

in fact the wall clock times for these runs (1.2 seconds, 1.8 seconds, 1.8 seconds) 

indicate worsening performance as we increase optimizations. 

 
Table 12: GPU Computation Percentage, hybrid 

matrix size naive tiled tiled+shared 
 A B C A B C A B C 

32x32 0.65 0.61 0.62 0.64 0.60 0.60 0.47 0.43 0.43 
512x512 - - - 0.93 0.93 0.93 0.67 0.67 0.67 

1024x1024 - - - 0.95 0.95 0.95 0.75 0.77 0.77 
2048x2048 - - - 0.96 0.97 0.97 0.82 0.86 0.86 
4096x4096 - - - 0.98 0.98 0.98 0.90 0.92 0.92 

 

7.4. Discussion 
Our goal for the GPU Computation Percentage metric is to indicate the amount of data 

movement overhead between the CPU and GPU.  Our results indicate that it can be 

used for this purpose.  Looking at the results for a single optimization, e.g. tiled with 

paged memory, the GCP increases as the problem size increases.  We expect this to 

happen with matrix multiplication because more computation is being done as the 

problem size increases.  However, the metric falls short when comparing the GPU 

Computation Percentage of different kernel optimizations, e.g. tiled versus tiled plus 

shared memory, because the faster kernel has a lower GCP.  The tiled plus shared 

memory optimization reduces the kernel device time, but the data movement time 
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stays the same.  The decrease in GPU Computation Percentage is counter intuitive one 

might expect that the faster kernel would have a higher GPU Computation Percentage.  

Also, the GPU Computation Percentage metric doesn’t definitively say that the cost of 

moving data to and from the device was justified.  For example, a kernel may run 

extremely fast on the device and provide a significant performance improvement over 

the host, but still have a low GPU Computation Percentage because of how fast it 

executed on the device. 
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8. GPU Load Balance Case Study 
Our goal for the GPU Load Balance metric is to show the load balance between the 

CPU and GPU or between multiple devices.  The definition of GPU Load Balance (2) 

is shown below. 

 
 

(2) 
 
 

A low GPU Load Balance indicates that the device was idle. A high GPU Load 

Balance indicates that the work was well balanced between the CPU and GPU or it 

was device centric. 

8.1. Single Device Results 
Table 13 to Table 15 show the mean GPU Load Balance for the matrix multiplication 

benchmark using a single device.  For the data in Table 13 no memory optimization 

was used, in Table 14 pinned memory was used, and in Table 15 pinned memory with 

asynchronous memory transfers was used.  The naive column shows the metric value 

for naive kernel, the tiled column shows the metric values for the tiled kernel, and the 

tiled+shared column shows the metric values for the tiled with shared memory kernel. 

 

In some cases the mean GPU Load Balance in Table 13 to Table 15 is being reported 

as 0.00. A kernel was executed on the device for all the experiments, and we verified 

the kernel device times are non zero; however, the external time utility was used to 

measure wall clock time, and it only has a resolution of a hundredth of a second.  

  

! 

GLB =
device time

wall clock time
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Therefore, we only have two decimal places of precision and these very small values 

are rounding to zero. 

 

First we examine the naive kernel.  The mean GPU Load Balance for all three memory 

optimizations was zero.  This suggests that very little of the device’s available 

computation time was used. 

 

Next we examine the tiled kernel.  The mean GPU Load Balance for the 16x16 to 

1024x1024 problem sizes was near zero as well.  Only for the 4096x4096 and larger 

problem sizes was the GPU Load Balance above 0.5.  This suggests that the matrix 

multiplication benchmark was only device centric for these larger problem sizes. 

 

For the tiled plus shared memory kernel, the GPU Load Balance was less than 0.5 for 

most of the 16x16 to 4096x4096 problem sizes.  Comparing the GPU Load Balance of 

the tiled kernel and the tiled plus shared memory kernel, the GPU Load Balance was 

lower for the tiled plus shared memory kernel in most cases. 

 

Comparing the GPU Load Balance for the matrix multiplication benchmark using 

paged memory, pinned memory, and pinned memory with asynchronous memory 

transfers we did not see a noticeable difference. 
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Table 13: GPU Load Balance, paged memory single device 
matrix size naive tiled tiled+shared 

16x16 0.00 0.00 0.00 
512x512 - 0.02 0.00 

1024x1024 - 0.10 0.02 
2048x2048 - 0.41 0.13 
4096x4096 - 0.82 0.51 
8192x8192 - 0.96 0.85 

16384x16384 - 0.99 0.95 

 
Table 14: GPU Load Balance, pinned memory single device 

matrix size naive tiled tiled+shared 
16x16 0.00 0.00 0.00 

512x512 - 0.01 0.00 
1024x1024 - 0.06 0.01 
2048x2048 - 0.31 0.09 
4096x4096 - 0.74 0.38 
8192x8192 - 0.94 0.78 

16384x16384 - 0.99 0.93 

 
Table 15: GPU Load Balance, pinned memory, 
asynchronous memory transfers, single device 

matrix size naive tiled tiled+shared 
16x16 0.00 0.00 0.00 

512x512 - 0.01 0.00 
1024x1024 - 0.06 0.01 
2048x2048 - 0.31 0.09 
4096x4096 - 0.74 0.37 
8192x8192 - 0.94 0.78 

16384x16384 - 0.99 0.93 
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8.2. Multiple Device Results 
Table 16 to Table 18 show the mean GPU Load Balance for the matrix multiplication 

benchmark using two devices.  For the data in Table 16 no memory optimization was 

used, in Table 17 pinned memory was used, and in Table 18 pinned memory with 

asynchronous memory transfers was used.  The naive column shows the metric value 

for naive kernel, the tiled column shows the metric values for the tiled kernel, and the 

tiled+shared column shows the metric values for the tiled with shared memory kernel. 

 

In some cases the mean GPU Load Balance in Table 16 to Table 18 is being reported 

as 0.00. A kernel was executed on the device for all the experiments, and we verified 

the kernel device times are non zero; however, the external time utility was used to 

measure wall clock time, and it only has a resolution of a hundredth of a second.  

Therefore, we only have two decimal places of precision and these very small values 

are rounding to zero. 

 

For the naive kernel the mean GPU Load Balance for all three memory optimizations 

were zero.  The result for the tiled kernel run on two devices was similar to the results 

for the tiled kernel run on a single device.  Comparing the results for the tiled plus 

shared memory kernel run on a single device and on two devices it was noticed that 

with two devices the kernel became device centric at problem sizes 8192x8192 instead 

of the 4096x4096 problem size.  Comparing the GPU Load Balance of the tiled kernel 

and the tiled plus shared memory kernel, the GPU Load Balance was lower for the 

tiled plus shared memory kernel in all cases. 
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Table 16: GPU Load Balance, paged memory two devices 

matrix size naive tiled tiled+shared 
 dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 

32x32 0.00 0.00 0.00 0.00 0.00 0.00 
512x512 - 0.01 0.01 0.00 0.00 

1024x1024 - 0.05 0.05 0.01 0.01 
2048x2048 - 0.25 0.25 0.08 0.08 
4096x4096 - 0.69 0.69 0.32 0.32 
8192x8192 - 0.93 0.93 0.69 0.69 

16384x16384 - 0.98 0.98 0.91 0.91 
 
 

Table 17: GPU Load Balance, pinned memory two devices 
naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 

32x32 0.00 0.00 0.00 0.00 0.00 0.00 
512x512 - 0.01 0.01 0.00 0.00 

1024x1024 - 0.03 0.03 0.01 0.01 
2048x2048 - 0.17 0.17 0.04 0.04 
4096x4096 - 0.56 0.56 0.23 0.23 
8192x8192 - 0.88 0.88 0.61 0.61 

16384x16384 - 0.97 0.97 0.85 0.85 
 

Table 18: GPU Load Balance, pinned memory, 
asynchronous memory transfers, two devices 

naive tiled tiled+shared matrix size dev 0 dev 1 dev 0 dev 1 dev 0 dev 1 
32x32 0.00 0.00 0.00 0.00 0.00 0.00 

512x512 - 0.01 0.01 0.00 0.00 
1024x1024 - 0.03 0.03 0.01 0.01 
2048x2048 - 0.17 0.17 0.04 0.04 
4096x4096 - 0.56 0.56 0.23 0.23 
8192x8192 - 0.88 0.88 0.61 0.61 

16384x16384 - 0.97 0.97 0.85 0.85 
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8.3. Hybrid Environment Results 
Table 19 to Table 21 show the mean GPU Load Balance for the matrix multiplication 

benchmark overlapping CPU and GPU computation.  For the data in Table 19 no 

memory optimization was used, in Table 20 pinned memory was used, and in Table 21 

pinned memory with asynchronous memory transfers was used.  The naive column 

shows the metric value for naive kernel, the tiled column shows the metric values for 

the tiled kernel, and the tiled+shared column shows the metric values for the tiled with 

shared memory kernel. 

 

In some cases the mean GPU Load Balance in Table 19 to Table 21 is being reported 

as 0.00. A kernel was executed on the device for all the experiments, and we verified 

the kernel device times are non zero; however, the external time utility was used to 

measure wall clock time, and it only has a resolution of a hundredth of a second.  

Therefore, we only have two decimal places of precision and these very small values 

are rounding to zero. 

The mean GPU Load Balance for all problem sizes was near zero for all three kernels 

across all the memory optimizations.  This is because the host execution dominated 

the execution time. 
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Table 19: GPU Load Balance, paged memory, hybrid 
matrix size naive tiled tiled+shared 

32x32 0.00 0.00 0.00 
512x512 -  0.01 0.00 

1024x1024 - 0.01 0.00 
2048x2048 - 0.01 0.00 
4096x4096 - 0.01 0.00 

 
Table 20: GPU Load Balance, pinned memory, hybrid 

matrix size naive tiled tiled+shared 
32x32 0.00 0.00 0.00 

512x512 - 0.01 0.00 
1024x1024 - 0.01 0.00 
2048x2048 - 0.01 0.00 
4096x4096 - 0.01 0.00 

 
Table 21: GPU Load Balance, pinned memory, 

asynchronous memory transfers, hybrid 
matrix size naive tiled tiled+shared 

32x32 0.00 0.00 0.00 
512x512 - 0.01 0.00 

1024x1024 - 0.01 0.00 
2048x2048 - 0.01 0.00 
4096x4096 - 0.01 0.00 

 

8.4. Discussion 
Looking at the data in Table 13 to Table 18 it can be seen that the GPU Load Balance 

increases as the matrix size is increased.  This is because more work is being 

performed on the device and device execution time is dominating the total execution 

time.  For the small matrices the overhead to allocate memory and launch the kernel 

dominates the execution time.  However, for the larger matrices, kernel execution 

dominates the execution time. 
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Looking at the data in Table 13 to Table 18 it can be seen that the tiled optimization 

has a higher GPU Load Balance than the tiled plus shared memory optimization.  This 

is because the matrix multiplication application strictly uses the devices for 

calculations, and the tiled plus shared memory optimization decreases the amount of 

time spent executing on the device.  

 

Comparing the single device versions with the two device versions it can be seen that 

the two device version has a lower GPU Load Balance.  This is because the matrix 

multiplication is being divided among the devices, thus each device is being used less.  

The pinned memory versions also have lower GPU Load Balance than the paged 

memory version.  This is because the memory transfers between the host and device 

are occurring faster, which decreases the device time reported by CudaProf for these 

memory transfers.  

 

Comparing the pinned memory version with the pinned memory with asynchronous 

memory transfer version it can be seen they have nearly identical results.  

Investigating this it was realized that no additional streams were used.  If no streams 

are created all memory transfers to and from the device occur on the default stream 

which causes them to be serialized.  Thus, to see a performance improvement when 

using asynchronous memory transfers streams also need to utilized. 
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Our goal for the GPU Load Balance metric was to show the developer the load 

balance between the CPU and GPU or between multiple GPUs.  The GPU Load 

Balance metric shows that the GPU Load Balance is increasing as the problem size 

increases.  This is as expected because the matrix multiplication benchmark becomes 

more device centric as the problem size increases.  The two device version of the 

matrix multiplication benchmark shows that the work was balanced between the 

devices.  This is expected because we implemented it to evenly divide the work.  
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9. NAMD Case Study 
In the previous case studies we explored the GPU Computation Percentage metric and 

GPU Load Balance metric using a matrix multiplication benchmark.  In this case study 

we investigate these metrics using NAMD that utilizes GPUs to perform computations 

that are overlapped with computation on the host CPU. 

 

NAMD was configured to simulate STMV.  The simulation was run ten times using 

one GPU device and ten times using two GPU devices.  The mean GCP is shown in  

Table 22. 

Table 22: NAMD GPU Computation Percentage 
single device two devices 

dev 0 dev 0 dev 1 
0.99 0.98 0.98 

 
Since the GPU Computation Percentage was greater than 0.5 more time was spent 

doing computation on the device than moving data to the device.  We found similar 

results for the tiled matrix multiplication kernel with problem sizes 512x512 and 

larger.  We also found similar results for the tiled plus shared memory matrix 

multiplication kernel on most of the problem sizes 4096x4096 and larger.  The high 

GPU Computation Percentage results indicate that the data movement overhead was 

low for NAMD. 

 

The mean GPU Load Balance is shown in Table 23.  The GPU Load Balance with one 

device was 0.44.  When used with two devices the GPU Load Balance for NAMD 
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decreased to between 0.28 and 0.29.  We found similar results for the tiled matrix 

multiplication kernel with paged memory on a single device at problem size 

2048x2048, and for the tiled plus shared memory matrix multiplication kernel with 

paged memory on a single device at problem size 4096x4096. 

Table 23: NAMD GPU Load Balance 
single device two devices 

dev 0 dev 0 dev 1 
0.44 0.29 0.28 

 

The GPU Load Balance for NAMD when run with two devices indicates that the work 

was nearly balanced between the two devices.  However, the percentage of time the 

devices were used decreased from the single device simulation.
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10. Conclusions and Future Work 
We conducted this thesis work as a starting point to model the performance of hybrid 

CPU/GPU systems.  To accomplish this we defined two metrics: GPU Computation 

Percentage and GPU Load Balance.  Our goal for the GPU Computation Percentage 

metric is to indicate the amount of data movement overhead between the CPU and 

GPU.  Our results indicate that GPU Computation Percentage can be used to show the 

data movement overhead.  However, between optimizations of a kernel the GPU 

Computation Percentage decreases.  This is counter intuitive in the sense that "better" 

yields a lower value, as does "worse."   

 

Our goal for the GPU Load Balance metric is to indicate the load balance between the 

CPU and GPU or between multiple GPUs.  We found that it can be used to indicate 

load balance.  When used with a single device it indicated how device centric the 

matrix multiplication benchmark and NAMD were.  When used with multiple devices 

it indicated how balanced the work was between the devices. 

 

In the future we would like to investigate the metrics using a distributed memory 

system, with device to device memory transfers, and with different kernel 

configurations.  Future work would also include implementing an optimized matrix 

multiplication benchmark for the host. 
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In PerfTrack we would like to develop an easier method for correlating performance 

results between GPU devices.   

 

In order to get to get a complete view of CPU and GPU performance data we would 

like to instrument the CUDA runtime system directly.  This approach would not be as 

portable and requires access to a proprietary code base; but would allow us to get a 

more accurate estimate of data movement overheads. 
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