
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-3-2015

Post-silicon Functional Validation with Virtual Prototypes
Kai Cong
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Other Computer Sciences Commons, and the Software Engineering Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Cong, Kai, "Post-silicon Functional Validation with Virtual Prototypes" (2015). Dissertations and Theses. Paper 2333.

10.15760/etd.2330

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2333?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2330
mailto:pdxscholar@pdx.edu

Post-silicon Functional Validation with Virtual Prototypes

by

Kai Cong

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Suresh Singh

Jingke Li

Fu Li

Portland State University

2015

i

ABSTRACT

Post-silicon validation has become a critical stage in the system-on-chip (SoC) de-

velopment cycle, driven by increasing design complexity, higher level of integration

and decreasing time-to-market. According to recent reports, post-silicon valida-

tion effort comprises more than 50% of the overall development effort of an 65nm

SoC. Though post-silicon validation covers many aspects ranging from electronic

properties of hardware to performance and power consumption of whole systems,

a central task remains validating functional correctness of both hardware and its

integration with software. There are several key challenges to achieving accelerated

and low-cost post-silicon functional validation. First, there is only limited silicon

observability and controllability; second, there is no good test coverage estimation

over a silicon device; third, it is difficult to generate good post-silicon tests before

a silicon device is available; fourth, there is no effective software robustness testing

approaches to ensure the quality of hardware/software integration.

We propose a systematic approach to accelerating post-silicon functional vali-

dation with virtual prototypes. Post-silicon test coverage is estimated in the pre-

silicon stage by evaluating the test cases on the virtual prototypes. Such analysis is

first conducted on the initial test suite assembled by the user and subsequently on

the expanded test suite which includes test cases that are automatically generated.

Based on the coverage statistics of the initial test suite on the virtual prototypes,

ii

test cases are automatically generated to improve the test coverage. In the post-

silicon stage, our approach supports coverage evaluation of test cases on silicon

devices to ensure fidelity of early coverage evaluation. The generated test cases

are issued to silicon devices to detect inconsistencies between virtual prototypes

and silicon devices using conformance checking. We further extend the test case

generation framework to generate and inject fault scenario with virtual prototypes

for driver robustness testing. Besides virtual prototype-based fault injection, an

automatic driver fault injection approach is developed to support runtime fault

generation and injection for driver robustness testing. Since virtual prototype en-

ables early driver development, our automatic driver fault injection approach can

be applied to driver testing in both pre-silicon and post-silicon stages.

For preliminary evaluation, we have applied our coverage evaluation and test

generation to several network adapters and their virtual prototypes. We have

conducted coverage analysis for a suite of common tests on both the virtual pro-

totypes and silicon devices. The results show that our approach can estimate the

test coverage with high fidelity. Based on the coverage estimation, we have em-

ployed our automatic test generation approach to generate additional tests. When

the generated test cases were issued to both virtual prototypes and silicon devices,

we observed significant coverage improvement. And we detected 20 inconsisten-

cies between virtual prototypes and silicon devices, each of which reveals a virtual

prototype or silicon device defect. After we applied virtual prototype-based fault

injection approach to virtual prototypes for three widely-used network adapters,

we generated and injected thousands of fault scenarios and found 2 driver bugs. For

automatic driver fault injection, we have applied our approach to 12 widely-used

drivers. After testing all these drivers, we found 28 distinct bugs.

iii

DEDICATION

To my parents, Yizi Cong and Xiuqin Bi

To my wife, Jin Zhang

iv

ACKNOWLEDGMENTS

This dissertation could not have been accomplished without the generous help and

support from many professors, colleagues, friends and my family. I would like to

express my sincere gratitude to all of them.

First and foremost, I would like to express my thanks to my advisor Prof. Fei

Xie for his insightful guidance, continuous support and endless encouragement.

He is a great advisor. He has given me not only tremendous freedom to explore

my industrial and research interests, but also opportunities to present at different

conferences and work with people from different industry companies. He is a

wonderful researcher. He has provided me consistently good advice and challenges

which are great driving force to my Ph.D. research. His professional expertise with

positive attitude has been always an inspiration to me.

I’m grateful to my committee members, Prof. Suresh Singh, Prof. Jingke

Li, and Prof. Fu Li. They have provided many inspirational feedbacks for my

research and valuable comments for my dissertation. I also want to express sincere

appreciation for their time and effort in service on my doctoral committee.

Thanks to my fellow graduate students, Juncao Li, Kecheng Hao, Li Lei,

Zhenkun Yang, Disha Puri, Dejun Qian, Christopher Havlicek, and Sharookh

Daruwalla. Discussions with them have accelerated my Ph.D. study and broadened

my understanding of related research domains.

Finally, I especially wish to acknowledge and thank my family for their love,

v

support and constant encouragement. I am grateful to my parents, Yizi Cong and

Xiuqin Bi, for all their love and guidance. Their diligent and optimistic characters

have been always the role model for me. Last, but absolutely not least, I must

thank my wife, Jin Zhang, for her unending love and encouragement. I can never

thank her enough for her patience and understanding through the ups and downs of

my Ph.D. study. I also would like to recognize the influence of my soon-to-be-born

son, who has already brought me so much joy and hope.

vi

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Chapter 1 Introduction 1

1.1 Motivation and Problem Statement 1

1.1.1 Motivation . 1

1.1.2 Problem statement. 2

1.2 Proposed Solution . 3

1.3 Dissertation Outline . 7

Chapter 2 Background 8

2.1 Virtual Prototypes and QEMU Virtual Devices 8

2.2 Symbolic Execution . 10

2.3 Post-silicon Conformance Checking 11

2.4 Driver Robustness Testing . 12

2.5 Runtime Driver Fault Injection . 13

Chapter 3 Symbolic Execution of Virtual Prototypes 15

3.1 Overview . 15

3.2 Harness Generation . 16

3.3 Symbolic Execution Engine Adaptation 19

3.3.1 Path Explosion Problem . 19

3.3.2 Environment Interaction Problem 19

3.3.3 Handling DMA . 20

vii

3.3.4 Sparse Function Pointer Array Problem 20

3.4 Runtime Shadow Execution . 22

3.4.1 Runtime Shadow Execution Framework 22

3.4.2 Runtime Monitor Mode . 24

3.4.3 Runtime Analysis Mode . 24

3.4.4 Further Potentials . 26

Chapter 4 Coverage Evaluation of Post-silicon Validation Tests 27

4.1 Motivation and Overview . 27

4.2 Preliminary Definitions for Virtual Devices 29

4.3 Online-capture Offline-replay Coverage Evaluation 32

4.3.1 Online-capture . 32

4.3.2 Offline-replay . 33

4.3.3 Coverage Computation and Conformance Checking in the

Post-silicon Stage . 35

4.4 Coverage Metrics . 37

4.4.1 Code Coverage . 37

4.4.2 Register Coverage . 38

4.4.3 Transaction Coverage . 38

4.5 Implementation . 39

4.5.1 Coverage on Different Levels 39

4.5.2 Implementation Details . 40

4.6 Experimental Results . 40

4.6.1 Online-capture and Offline-replay Overhead 41

4.6.2 Coverage Results . 42

4.6.3 Coverage and Conformance Results in Post-silicon Stage . . 44

4.7 Related Work . 45

4.8 Summary . 46

Chapter 5 Automatic Concolic Test Generation 47

5.1 Motivation and Overview . 47

5.2 Concolic Test Generation with Virtual Prototypes 49

5.2.1 A Näıve Approach . 49

5.2.2 Concolic Test Generation Algorithm 52

5.2.3 Concolic Approach to Handling DMA Data 54

5.2.4 Transaction-based Test Selection Strategy 60

viii

5.3 Implementation . 62

5.3.1 ACTG Framework . 62

5.3.2 Testing with Generated Test Cases 63

5.4 Experimental Results . 65

5.4.1 Evaluation of Transaction-based Test Selection Strategy . . 68

5.4.2 Composition of Generated Tests 70

5.4.3 Evaluation of Optimization on Sparse Function Pointer Array 71

5.4.4 Coverage Improvement . 71

5.4.5 Inconsistencies . 73

5.5 Fault Injection with Virtual Prototypes for Driver Testing 74

5.5.1 Fault Models . 75

5.5.2 Transaction-based Fault Generation 75

5.5.3 Fault Injection Using Runtime Shadow Execution 77

5.5.4 Preliminary Evaluation . 78

5.6 Related Work . 79

5.6.1 Symbolic execution . 79

5.6.2 Concolic testing . 80

5.6.3 Post-silicon validation . 80

5.7 Summary . 81

Chapter 6 Automatic Driver Fault Injection 82

6.1 Motivation and Overview . 82

6.2 Bounded Trace-based Iterative Fault Generation 85

6.2.1 Preliminary Definitions . 85

6.2.2 Challenges . 88

6.2.3 Trace-based Iterative Strategy 89

6.2.4 Bounded Generation Strategy 92

6.3 Permutation-based Injection Strategy 95

6.4 Implementation . 98

6.4.1 Overview . 98

6.4.2 Fault Injection on Kernel API Interface 99

6.4.3 Filter Mechanism . 100

6.5 Experimental Results . 101

6.5.1 Experimental Setup . 101

6.5.2 Bug Findings . 102

6.5.3 Human Efforts . 105

ix

6.5.4 Evaluation of Fault Generation and Injection Strategy . . . 107

6.5.5 Coverage Improvement . 110

6.5.6 Evaluation against Other Fault Injection Techniques 110

6.5.7 Further Potentials . 110

6.6 Related Work . 111

6.6.1 Static Analysis . 111

6.6.2 Reliability Testing . 112

6.6.3 Fault Injection Techniques 112

6.7 Summary . 113

Chapter 7 Conclusion and Future Research 115

7.1 Conclusion . 115

7.2 Future Research . 117

7.2.1 Conformance Checking between Virtual Prototype and Hard-

ware Design . 117

7.2.2 Automatic Test Generation for RTL Simulation/Emulation

with Virtual Prototypes . 119

7.2.3 Further Research on Device Fault Injection with Virtual Pro-

totypes for Driver Testing 120

References 121

x

LIST OF TABLES

4.1 Time and Memory Usages for Offline Replay 42

5.1 Virtual Prototypes for Three Network Adapters 66

5.2 Summary of Three Virtual Prototypes 66

5.3 Summary of Test Suite . 67

5.4 Comparison of Different Strategies 68

5.5 Time Usage of Transaction-based Selection Strategy 69

5.6 Number of Branches Forked . 71

5.7 Summary of Coverage Improvement 72

5.8 Preliminary Result of Fault Injection with Virtual Prototypes . . . 79

6.1 Summary of Target Drivers . 102

6.2 Summary of Workload . 103

6.3 Bug Results . 103

6.4 Results under Different MF (MSF = 1) 106

6.5 Summary of Coverage Improvement 109

xi

LIST OF FIGURES

1.1 Main Components of Our Approach 4

2.1 Excerpt of QEMU E1000 Virtual Device 9

2.2 An Example of Symbolic Execution 11

2.3 An Example with Kernel API Function Call 12

2.4 An Example with Error Handler . 13

2.5 A Driver Fault Injection Example 14

3.1 Excerpt of E1000 Virtual Device Harness 17

3.2 An Example of A Sparse Function Pointer Array 21

3.3 Framework for Runtime Analysis 23

3.4 Complete Harness for Runtime Monitor Mode 25

4.1 From Physical to Virtual . 28

4.2 A Transaction Example . 31

4.3 A Graph Representation of State Transitions 32

4.4 Workflow for Coverage Evaluation 39

4.5 Time Usage (Seconds) for Online Capture 41

4.6 Code Coverage Results for E1000 42

4.7 Top Ten Accessed Registers for E1000 43

4.8 Top Ten Transactions for E1000 . 44

5.1 Abstract Event-driven Model of QEMU E1000 Virtual Device . . . 50

5.2 Path Explosion Problem . 51

5.3 Concolic Test Generation using Virtual Devices 52

5.4 An Example of QEMU DMA Data Structure 55

5.5 The Abstraction of a DMA Record 56

5.6 A Concolic DMA Example . 56

5.7 Automatic Concolic Test Generation Framework 62

5.8 Number of Generated Tests . 70

xii

5.9 Number of Generated DMA-related and Request-related Tests . . . 70

5.10 Number of Inconsistencies Detected by Test Suite and Generated

Tests . 73

5.11 Fault Injection Framework Using Runtime Shadow Execution . . . 77

6.1 A Driver Function Call Example . 86

6.2 Target Stack Trace Examples . 86

6.3 The High-level Workflow . 88

6.4 Trace-based Iterative Generation Example 91

6.5 Runtime Fault Injection Framework 98

6.6 Outcomes of Experiments . 104

6.7 A Sample Configuration . 106

6.8 Time Usage . 108

7.1 Framework for Conformance Checking between Virtual Prototype

and Hardware Design . 118

7.2 Workflow of Automatic Test Generation for RTL Simulation 119

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION AND PROBLEM STATEMENT

1.1.1 Motivation

New computer systems: smart phones, wearable devices, tablets, laptops, servers,

etc. are entering the market place at an ever-accelerating pace. This brings enor-

mous pressures on the product development teams to shorten the time-to-market.

A recent study by International Business Strategies indicates that a 3-month de-

lay to market reduces revenue by about 30% for chip manufacturers in general,

and the penalty is even more severe for fast-evolving markets such as mobile de-

vices [34]. To exacerbate the pressures, the complexities of these systems, both

their hardware and software, are increasing significantly. Quoting a SoC archi-

tect for a mobile platform, “a state-of-the-art mobile platform is considered more

complex than a server due to the many types of technologies it integrates while

the product cycle is often as short as two years.” A crucial stage in the product

development cycle is post-silicon validation, i.e., validation conducted on actual

devices or silicon prototypes with corresponding drivers. Post-silicon validation is

a significant, fastest-growing component of validation cost. According to recent

industry reports [59], post-silicon validation effort often consumes more than 50%

of an 65nm SoC’s overall design effort. This demands innovative approaches to

2

speed-up post-silicon validation and reduce its cost.

Though post-silicon validation covers many aspects ranging from electronics

properties of hardware to performance and power consumption of whole systems,

a central task remains validating functional correctness of both hardware and its

integration with software. Recently virtual prototypes are increasingly used in

hardware/software development to enable driver development and validation at

an early stage even before silicon prototypes become available [70]. An example

is how Intel used virtual prototypes to enable driver development for their 40G

Ethernet adapter (E40G) before the silicon prototype became available [62]. An

E40G virtual prototype was created and used to test and validate the E40G driver

being developed. Bugs were found in the driver using the E40G virtual device, even

before the real E40G device became available. Since virtual prototypes are utilized

as a transaction-level replacement for silicon devices to support driver development

and validation, it is greatly desired to extend the effectiveness of virtual prototypes

into post-silicon functional validation so that the major efforts invested can be fully

utilized. We see major potentials of virtual prototypes in post-silicon functional

validation of both hardware and its integration with software.

1.1.2 Problem statement.

This dissertation research is concerned with how to speed-up post-silicon functional

validation with virtual prototypes for both hardware and software development.

We observe four major challenges to achieving our goal:

• Limited Silicon Observability and Traceability. The silicon device is typically

a black box. The amount of run-time information that can be retrieved from

the device internal with build-in test circuitries and advanced logic analyzers

3

is still quite limited. Such limited observability and traceability make post-

silicon validation difficult.

• Lack of Good Test Coverage Estimation. There lacks good test coverage met-

rics over a silicon device. Therefore, it is difficult to assess the effectiveness

of test cases and prioritize their application. In addition, coverage metrics

rooted in hardware design are not well suited for testing the integration with

software.

• Lack of Early Test Readiness. Test cases for post-silicon validation must

be ready before a silicon device is available. The time-to-market after the

device is first available can be as short as several weeks. Therefore, it is

highly desired to avoid spending this precious time on preparing, debugging,

and fixing test cases.

• Lack of Effective Fault Injection for Driver Testing. Device drivers are critical

system components that operate or control devices. To ensure the system

reliability, device drivers must tolerate all kinds of system situations, such as

low resource situations, PCI bus errors and DMA failures. Therefore, it is

necessary that different kinds of system scenarios and faults can be generated

and injected to test the driver robustness.

1.2 PROPOSED SOLUTION

We propose an approach to accelerating post-silicon functional validation and re-

ducing its cost with virtual prototypes. As shown in Figure 1.1, virtual prototypes

play a central role in our approach which mainly support three components:

• Coverage analysis: While a silicon device is often a black box, its correspond-

ing virtual prototype is a white box, i.e., its internal structures and workings

4

Initial Test
Suite

Coverage
Analysis

Coverage
Report

Test
Generation

Expanded Test
Suite

Conformance
Checking

Test Results /
Inconsistencies

Silicon Device

Virtual
Prototype

Fault
Generation

Fault
Scenarios

 Driver
Testing

Driver Bugs

Initial Test
Suite

Coverage
Analysis

Coverage
Report

Test
Generation

Expanded Test
Suite

Conformance
Checking

Test Results /
Inconsistencies

Fault
Generation

Fault
Scenarios

Driver
Testing

Driver Bugs

Device Testing

Driver Testing

Device Driver

Figure 1.1: Main Components of Our Approach

are visible. The virtual prototype often models transaction-level behaviors

of the silicon device. Therefore, the virtual prototype can be utilized to es-

timate the coverage of post-silicon validation tests on the functionalities of

the silicon device.

• Test generation: Based on the coverage estimation, test cases can be auto-

matically generated to specifically target silicon device functionalities that

are yet covered. Test cases are particularly needed to trigger error handling

conditions that are often hard to test with manually written tests. Expanded

test suite can be used for testing silicon devices and supporting conformance

checking.

• Effective fault generation for driver testing: Since virtual prototypes provide

all device functionalities, many driver testing tasks can be conducted with

virtual prototypes. We first develop a virtual prototype-based fault injection

for driver robustness testing. Furthermore, we develop an automatic driver

fault injection framework which can generate effective fault scenarios in a

5

modest amount of time. The automatic driver fault injection framework can

be applied to both virtual and silicon devices.

For coverage analysis and test generation, we employ symbolic execution of

virtual prototypes as the foundation. More details about these components are

elaborated below:

Symbolic Execution of Virtual Prototypes. The foundation of our approach

is symbolic execution of virtual prototypes [20], utilized in calculating test coverage

and generating new test cases. We have developed a symbolic execution environ-

ment (SEE) for QEMU virtual devices. Central to this environment is (1) how to

encapsulate a virtual device in an execution harness that is sufficiently faithful to

avoid crippling inaccuracy and sufficiently abstract to avoid prohibiting execution

overheads and (2) how to reign in several limitations of symbolic execution by

utilizing features of virtual devices.

Coverage Analysis of Post-silicon Tests. Test coverage is an important metric

for evaluating the quality and readiness of post-silicon tests. We propose an online-

capture offline-replay approach to coverage analysis of post-silicon validation tests

with virtual prototypes for estimating silicon device test coverage [18]. We first

capture necessary data from a concrete execution of the virtual prototype within

a virtual platform under a given test, and then compute the test coverage by

efficiently replaying this execution offline on the virtual prototype itself. Our

approach provides early feedback on quality of post-silicon validation tests before

silicon is ready. To ensure fidelity of early coverage evaluation, our approach have

been further extended to support coverage evaluation and conformance checking

in the post-silicon stage.

6

Automatic Concolic Test Generation. We present a concolic testing approach

to generation of post-silicon tests with virtual prototypes [19]. This work is in-

spired by recent advances in concolic testing [30, 31]. Concolic (a portmanteau of

concrete and symbolic) testing is a hybrid testing technique that integrates con-

crete execution with symbolic execution [39]. In our approach, we first identify

device states under test from concrete executions of a virtual prototype using a

transaction-based selection strategy, and then symbolically execute the virtual pro-

totype from these states. Concrete tests are generated based on the symbolic path

constraints obtained. We apply the generated test cases to both the silicon device

and the virtual prototype, and check for inconsistencies between the real and vir-

tual device states. Once an inconsistency is detected, we can replay the test case

on the virtual prototype through symbolic execution to see whether it is a silicon

device bug or a virtual prototype defect. The combination of virtual and silicon

device execution brings three major benefits: (1) helping developers more easily

and better understand a silicon device using its virtual prototype, (2) checking for

defects in the silicon device, and (3) detecting bugs in the virtual prototype.

Effective Fault Injection for Driver Robustness Testing. Device drivers

ought to be robust enough for handling different kinds of device faults instead

of crashing or hanging the system. We first develop a virtual prototype-based

fault injection approach by extending test case generation framework. The virtu-

al prototype-based fault injection approach employs two fault models to generate

device-related fault scenarios. After applying the approach to virtual prototype-

s of three widely-used network adapters, we have generated thousands of virtual

prototype-based fault scenarios and triggered two driver crashes. Furthermore, to

test the interfaces between device drivers and kernel API functions, we propose

an automatic driver fault injection approach to generation and injection of fault

7

scenarios with either virtual prototypes or silicon devices. Our approach runs a

driver test and collects the corresponding runtime trace. Then we identify target

functions which can fail from the captured trace, and generate effective fault s-

cenarios on these target functions. Each generated fault scenario includes a fault

configuration which is applied to guide further fault injection. Each fault scenario

is applied to guide one instance of runtime fault injection and generate further fault

scenarios. This process is repeated until all fault scenarios have been tested. To

achieve systematic and effective fault injection, we have developed two key strate-

gies. First, a bounded trace-based iterative generation strategy is developed for

generating effective fault scenarios. Second, a permutation-based injection strategy

is developed to assure the fidelity of runtime fault injection.

1.3 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 introduces

a brief overview of background including virtual prototypes, symbolic execution

and driver robustness testing. Chapter 3 presents symbolic execution of virtual

prototypes which provides foundational support for our post-silicon functional val-

idation. Chapter 4 elaborates coverage evaluation of post-silicon tests. Chapter 5

presents our approach to automatic concolic test generation. Chapter 6 illustrates

automatic driver fault injection. Chapter 7 concludes and discusses future work.

8

Chapter 2

BACKGROUND

2.1 VIRTUAL PROTOTYPES AND QEMU VIRTUAL DEVICES

Virtual prototypes are fast, fully functional software models of hardware systems,

which enable unmodified execution of software code. QEMU is a generic, open

source machine emulator and virtualizer [10, 27]. We adopt QEMU virtual devices

as the virtual prototypes for our study due to the open-source nature of QEMU

and its wide varieties of virtual devices. Technology developed on QEMU virtual

devices can be readily generalized to other open-source or commercial virtual pro-

totyping environments due to their similarity in virtualization concepts, despite

their different levels of modeling details.

To better understand the concept of virtual prototype, we illustrate it with

a QEMU virtual device for the Intel E1000 Gigabit network adapter. The E1000

adapter is a PCI (Peripheral Component Interconnect) device which communicates

with its control software through interface registers and interrupts. The E1000

virtual device has corresponding functions to support such communication, for

instance, interface register functions and interrupt functions. In order to realize

the functionalities of silicon devices, the E1000 virtual device also needs to maintain

the device state and implement functions that virtualize device transactions and

environment inputs. As shown in Figure 2.1, the E1000 virtual device has the

following components:

9

// 1. Device state

typedef struct E1000State_st {

PCIDevice dev; //PCI configuration

uint32 t mac_reg[0x8000]; //Interface registers

......

uint32 t rxbuf_size; //Internal variables

......

} E1000State;

// 2. Interface register function: write register

static void write_reg(void *opaque, uint64 t index, uint32 t value) {

E1000State *s = (E1000State *)opaque;

......

if(index == TRANSMIT) {

s->mac_reg[index] = value;

start_xmit(s); //Invoking transaction function

}

......

}

// 3. Device transaction function: transmit packets

static void start_xmit(E1000State *s) {

......

pci_dma_read(&s->dev, base, &desc, sizeof(desc)); //Invoking DMA functions

......

set_irq(s->dev.irq[0],1); //Invoking interrupt function

}

// 4. Environment function: receive packets

static ssize t receive(NetClientState *nc, const uint8 t *buf, size t size) {

......

pci_dma_write(&s->dev, base, &desc, sizeof(desc)); //Invoking DMA functions

.....

set_irq(s->dev.irq[0],1); //Invoking interrupt function

}

Figure 2.1: Excerpt of QEMU E1000 Virtual Device

10

• The device state, E1000State, which keeps track of the state of the E1000

device and the device configuration;

• The interface register functions such as write reg which are invoked by QE-

MU to access interface registers and trigger transaction functions;

• The device transaction functions such as start xmit which are invoked by

the interface register functions to realize the functionality;

• The environment functions such as receive which are invoked by QEMU to

pass environment inputs such as a packet received to the virtual device.

Both the device transaction functions and environment functions may access

DMA data by calling DMA functions pci dma write and pci dma read, as well as

fire interrupts by calling interrupt function set irq. Both PCI interface functions

and environment input functions are device entry functions which are invoked by

QEMU to trigger device functionalities.

2.2 SYMBOLIC EXECUTION

Symbolic execution executes a program with symbolic values as inputs instead of

concrete ones and represents the values of program variables as symbolic expres-

sions. Consequently, the outputs computed by the program are expressed as a

function of input symbolic values. The symbolic state of a program includes the

symbolic values of program variables, a path condition, and a program counter.

The path condition is a boolean formula over the symbolic inputs; it accumulates

constraints which the inputs must satisfy for the symbolic execution to follow the

particular path. The program counter points to the next statement to execute. A

symbolic execution tree captures the paths explored by the symbolic execution of a

11

program: the nodes represent the symbolic program states and the arcs represent

the state transitions.

int f(int x)

{
if (x < 0) return −x;
if (x == 1) return 2;

return x;

}

x < 0

x = *

x == 1

return 2 return x

return -x FALSE

FALSE

TRUE

TRUE

x < 0 x ≥ 0

x == 1 x ≠ 1

Figure 2.2: An Example of Symbolic Execution

We use the program in Figure 2.2 to illustrate how symbolic execution is con-

ducted. At the entry, x has a symbolic value, i.e., any value allowed by its type

(in this case, integer). At each branching point, the path condition is updated

with conditions on the inputs to select between the two alternative paths. For this

example, we can get three paths based on symbolic execution. Each path will have

its own path condition, for example, x < 0 for the leftmost path.

2.3 POST-SILICON CONFORMANCE CHECKING

In previous work [43, 44, 45], we have developed an approach to post-silicon con-

formance checking of a silicon device with its virtual device. The conformance

between the silicon and virtual devices is defined over their interface states. The

request sequence issued to the device is first captured on the silicon device, and

then replayed on the virtual device to check if the interface states of the silicon

and virtual devices are consistent.

In Chapter 4 and 5, we utilize conformance checking for ensuring fidelity of

coverage evaluation and evaluating efficiency of test generation results.

12

2.4 DRIVER ROBUSTNESS TESTING

According to the IEEE standard [1], robustness is defined as the degree to which

a system operates correctly in the presence of exceptional inputs or stressful en-

vironmental conditions in software testing. The goal of robustness testing is to

develop test cases and test environments where the robustness of a system can be

assessed.

Kernel modules, especially device drivers, play a critical role in operating sys-

tems. It is important to assure that device drivers behave safely and reliably to

avoid system crashes. Typically device drivers can work correctly under normal

situations. However, it is easy for driver developers to mishandles certain corner

cases, such as low resource situations, PCI bus errors and DMA failures.

int * p = (int *)kmalloc(size, GFP_ATOMIC);

p[10] = 3;

Figure 2.3: An Example with Kernel API Function Call

As shown in Figure 2.3, the kmalloc function is invoked to allocate a block of

memory. After the function returns, the returned pointer is directly used without

null pointer checking. Under normal system conditions, the kmalloc function re-

turns successfully with a correct pointer to the allocated memory. However, when

the kmalloc function returns a null pointer under a low resource situation, it is

possible for the driver to crash the system. To handle such errors, the common

approach is to add an error handling mechanism.

As shown in Figure 2.4, after the kmalloc function returns, the code checks

whether the return value is a null pointer . If the kmalloc function returns a null

pointer, the corresponding error handler is invoked to handle the error. However,

13

int * p = (int *)kmalloc(size, GFP_ATOMIC);

if(!p) goto error;

p[10] = 3;

......

error: error_handler();

Figure 2.4: An Example with Error Handler

a further concern is whether the error is handled correctly and does not trigger

other driver or system errors.

To improve driver robustness, a device driver should be tested to see whether

there exist two kinds of bugs: (1) driver error handling code does not exist; (2)

driver error handling mechanisms do not handle the error correctly or trigger other

driver/system issues. The first kind seems to be easy to avoid as long as driver

developers write and check the code carefully. However, it still happens in the real

world. The second kind is usually difficult and expensive to test.

2.5 RUNTIME DRIVER FAULT INJECTION

In driver robustness testing, all possible error conditions of a driver ought to be

exercised. However, certain error conditions might be difficult and expensive to

trigger, but efforts should be made to force or to simulate such errors to test the

driver. Fault injection is a technique for software robustness testing by introducing

faults to test code paths, in particular error handling code paths that, otherwise,

might rarely be followed. Recently, fault injection techniques have been widely

explored and studied for software testing and system robustness testing.

Runtime driver fault injection can be employed to simulate kernel interface

failures to trigger and test error handling code. The common approach to driver

14

void * kmalloc(size t size, int flags) {

// Memory allocation operations

}

void * kmalloc_fault(size t size, int flags) {

return NULL;

}

Figure 2.5: A Driver Fault Injection Example

fault injection is to hijack the kernel function calls, such as kmalloc and vmalloc.

By hijacking these functions, we can call the corresponding fault function to return

a false result instead of invoking these functions. As shown in Figure 2.5, when

kmalloc is invoked, the corresponding fault function kmalloc fault is invoked to

return a null pointer instead of a correct pointer to simulate an allocation error.

In this way, we can test if device drivers can survive on different error handling

code paths to improve driver robustness.

There are two main limitations with current driver fault injection. First, there

is no automatic framework to support fault injection for different system function

calls. Second, there is no a systematic test generation approach to generate effec-

tive fault scenarios. Currently most fault injections tools are using random fault

injection which is facing major challenges in achieving desired effectiveness and

avoiding duplicate fault scenarios.

In Chapter 6, we provide a framework which can automatically generate and

inject fault scenarios at runtime. We have proposed a trace-based iterative gen-

eration strategy to produce unique and effective fault scenarios and developed a

permutation-based replay mechanism to inject fault scenarios with high fidelity.

15

Chapter 3

SYMBOLIC EXECUTION OF VIRTUAL PROTOTYPES

3.1 OVERVIEW

Symbolic execution of virtual prototypes is the foundation for our approach to

coverage evaluation and test generation. In order to symbolically execute virtual

prototypes, we must address the following technical challenges:

• Environment modeling. A virtual device is not a stand-alone program. There

are two issues with this incompleteness. First, the virtual device needs to be

properly initialized and its entry functions properly exercised. Second, the

virtual device may invoke libraries in its environment. Therefore, we need a

solution to enclose the virtual device so that the symbolic execution engine

can consume it and perform accurate and efficient analysis.

• Symbolic execution engine adaptation. We symbolically execute virtual de-

vices using the KLEE symbolic execution engine. KLEE is not specially de-

signed for executing virtual devices while virtual devices have specific charac-

teristics. Hence, we need to adapt KLEE to execute virtual devices efficiently

and provide more hardware-specific information.

Section 3.2 and 3.3 show the solutions for solving the above two challenges.

Furthermore, we demonstrate that our approach employs symbolic execution en-

gine to support both symbolic execution and analysis of virtual prototypes in

Section 3.4.

16

3.2 HARNESS GENERATION

For symbolic execution of QEMU virtual devices, we adapt KLEE to handle the

non-deterministic entry function calls and symbolic inputs to device models. Since

the virtual device by itself is not a stand-alone program, in order for the symbolic

engine to execute a virtual device, a harness must be provided for the virtual

device. A key challenge here is how to create such a harness. This harness has to

be faithful so that the symbolic execution of the virtual device will not generate

too many paths infeasible in the real device. On the other hand, it has to be simple

enough so that symbolic engine can handle the symbolic execution efficiently. To

an extreme, the complete QEMU with the guest OS can serve as the harness which,

however, is impractical for the symbolic engine to handle.

Currently we generate harnesses manually for major device categories. Since

devices fall into device categories depending on interface types such as PCI and

USB and on functionalities such as network adapters and massive storage devices,

we started with creating harnesses for major device categories, e.g., PCI network

adapters, and improved such a harness as we experiment on devices in this category.

Manual harness generation involves examining how QEMU invokes the virtual de-

vice, what QEMU APIs that a virtual device invokes, and what these APIs invoke

recursively, and deciding what to include. At times, it may be necessary to make

an API produce non-deterministic outputs by throwing away its implementation.

The harness includes the following parts as shown in Figure 3.1:

• Declarations of state variables and parameters of entry functions. A virtual

device is not a stand-alone program. If a virtual device is running in a

virtual machine, it will register its entry functions with the virtual machine.

Moreover, the virtual machine will help the virtual device manage its state

17

//Declarations of necessary variables

E1000State state; //Device state

target phys addr t address; //Address

......

int main() {

//Load the concrete state

load_state(&state, sizeof(state), "state");

//Make parameters symbolic

make_symbolic(&address, sizeof(address), "address");

......

//Non−deterministic calls to entry functions

switch(svd_deviceEntry) {

case MMIO_WRITE:

write_reg((void *)&state, address, value);

break;

case MMIO_READ:

read_reg((void *)&state, address);

break;

......

}

}

//Stub functions

uint16 t net_checksum_finish(uint32 t sum) {

......

}

Figure 3.1: Excerpt of E1000 Virtual Device Harness

18

variables. Every time an entry function is invoked, the state variables and

necessary parameters of the function will be made available to the function

by the virtual machine. In order to exercise a virtual device symbolically, we

need to handle the state variables and function parameters. Hence, we add

declarations of state variables and inputs of entry functions to the harness.

• Code for loading the concrete state and making parameters of entry functions

symbolic. In order to cover as many paths as possible in an entry function,

we need to make certain inputs of the entry function symbolic. The in-

puts of an entry function contain state variables and necessary parameters.

We implement two utility functions that are specially handled by the en-

gine. Function “load state” is used for loading the concrete state. Function

“make symbolic” is used for initializing the inputs symbolically.

• Non-deterministic calls to virtual device entry functions. For a real device,

there are many ways for the OS and the environment to communicate with it.

Similarly, virtual devices provide many types of entry functions for communi-

cating with the OS and the environment. To analyze a virtual device, we go

through all entry functions with symbolic inputs. We define a symbolic vari-

able in the harness. With this symbolic variable, we make non-deterministic

calls to all entry functions.

• Stub functions for virtual machine API functions invoked by virtual devices.

Virtual devices often invoke API functions of virtual machines to achieve

certain functionalities. Stubs for these functions need to be provided to

complete the harness and are created manually as discussed above.

19

3.3 SYMBOLIC EXECUTION ENGINE ADAPTATION

To improve efficiency of symbolic execution, we modify KLEE to address four key

technical challenges for symbolic execution of virtual devices.

3.3.1 Path Explosion Problem

Path explosion is a major limitation for symbolic execution to thoroughly test

software programs. The number of paths through a program is roughly exponential

in program size. The problem also exists in executing virtual devices symbolically.

We apply two constraints when executing the virtual device to combat the path

explosion problem. First, we add a loop bound to each loop whose loop condition

is a symbolic expression. With the loop bound, the user controls the depth of each

loop explored. Currently, we add the loop bounds manually in virtual devices.

This is practical since there are only a few loops in our analysis of three virtual

devices. Second, we can add a time bound to ensure that symbolic execution will

terminate in a given amount of time. If the symbolic execution does not complete

within the given time bound, there may be unfinished paths. For such paths, we

still generate test cases with path constraints obtained so far.

3.3.2 Environment Interaction Problem

A virtual device is a software component and may invoke outside API functions

to interact with its environment. We divide such interactions into two categories

based on whether a function call affects the values of variables in virtual devices.

We detect whether the function has any pointer argument, accesses global vari-

ables, or returns a value. If so, this function potentially affects the values of vari-

ables in virtual devices. We then use two different mechanisms to handle functions

in these two categories.

20

• If the function call does not affect the values of variables in virtual devices,

we instruct KLEE to ignore it and issue a warning.

• If the function call may affect values of variables in virtual devices, we imple-

ment this function in our stubs. As there are not many such function calls

for a category of virtual devices, such manual effort is acceptable.

3.3.3 Handling DMA

When a virtual device is processing a request, DMA data may be needed. QEMU

provides two functions “pci dma read” and “pci dma write” for reading and writ-

ing DMA data separately. We ignore “pci dma write” function because it does

not affect the device state. We instruct the symbolic execution engine to specially

handle “pci dma read” function.

We hook “pci dma read” function to capture all run-time DMA read data in

the concrete execution of the virtual device within the virtual machine. Then we

utilize the captured data in both replay process and test generation process. In the

replay process, every time “pci dma read” function is invoked, the corresponding

data is loaded into the virtual device by the symbolic execution engine. In the

test generation process, we compose a symbolic DMA sequence using the captured

DMA data to guide test case generation.

3.3.4 Sparse Function Pointer Array Problem

A virtual device provides many different functions for realizing different device

behaviors. For example, if a write register operation is issued to the virtual device,

different functions can be triggered depending on different register offsets. There-

fore, it is common for virtual devices to utilize a sparse function pointer array

21

//Declarations of a sparse function pointer array

static uint32 t (*macreg_readops[])(E1000State *, int) = {

[RCTL] = mac_readreg, [TCTL] = mac_readreg, [ICS] = mac_readreg,

[GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,

[ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,

......

}

enum { NREADOPS = ARRAY_SIZE(macreg_readops) };

//Invoke the function using the function pointer

static uint64 t e1000_mmio_read(void *opaque, target phys addr t addr,

unsigned size)

{

E1000State *s = opaque;

unsigned int index = (addr & 0x1ffff) >> 2;

if (index < NREADOPS && macreg_readops[index])

{

return macreg_readops[index](s, index);

}

......

}

Figure 3.2: An Example of A Sparse Function Pointer Array

22

for accessing different functions, which makes the code concise. A sparse function

pointer array is shown in Figure 3.2 which is used by QEMU E1000 virtual device.

If a symbolic execution engine invokes a function defined in the sparse function

pointer array with a symbolic offset, the engine tries to explore all possible array

offsets in order to cover all functions in the array. In this example, the symbolic

engine needs to fork 5845 branches when the “macreg readops” array is accessed.

It takes much time to explore all 5845 branches. Actually only 7 functions are

included in this function array. We summarize this information by static analysis

of the virtual device. We modify the symbolic execution engine to specially handle

sparse function pointer arrays. Every time a sparse function pointer array is ac-

cessed, we only fork branches according to the number of valid functions. In this

example, we only fork 7 branches.

3.4 RUNTIME SHADOW EXECUTION

We first apply symbolic execution of virtual prototypes to runtime shadow exe-

cution to better understand runtime device state transitions. Runtime shadow

execution allows the developer to monitor or diagnose a virtual device’s behavior

at runtime, ideal for the driver development and testing environment. Runtime

shadow execution enables us to analyze run-time state transitions. We can follow

the device sequence to trace all state transitions from the initial state. The detailed

information of each state transition can be observed.

3.4.1 Runtime Shadow Execution Framework

To better understand device state transitions, we integrate symbolic execution of

virtual devices into the virtual machine at runtime. The framework for runtime

shadow execution is shown in Figure 3.3. The SEE interface has been implemented

23

as the bridge between virtual machine and SEE. Our framework can support two

mode: monitor and analysis modes.

Symbolic Execution Environment
(SEE)

Harness

Virtual Device

...
SEE interface

...

Virtual Machine (VM)
Application

Virtual Device

Operating System
Device Driver

Figure 3.3: Framework for Runtime Analysis

Our runtime framework does not change the normal working process of the

virtual machine. The framework only intercepts the communications between the

virtual machine and the virtual device. Furthermore, our framework implements

the SEE interface to act as the bridge transferring data from the virtual machine

to SEE. The SEE interface intercepts three types of data:

1) Device states: It captures concrete device states when runtime shadow

execution is enabled.

2) I/O requests and packets: It captures I/O requests and packets when there

is a device request from either the driver or the environment.

3) DMA data: It captures DMA data when DMA data is accessed for pro-

cessing a device request.

With the captured data, the virtual device can be executed concretely in mon-

itor mode or symbolically in analysis mode.

24

3.4.2 Runtime Monitor Mode

In the monitor mode, the virtual device is executed concretely in both the virtual

machine and SEE simultaneously. With the captured data through SEE interface,

concrete execution can be conducted to enable runtime step-by-step analysis, which

helps developers thoroughly understand the concrete state transition for processing

a device request.

The harness for runtime monitor is slightly different from the harness for static

analysis. An example of such harness is shown in Figure 3.4. Two special functions

“load state” and “load request” are employed to load captured concrete device

states and request information within the SEE. Then the corresponding entry

function is invoked according to the request type.

Usually developers would like to analyze some desired state transitions. We

provide two mechanisms to help developers select desired state transitions.

First, we provide a special user-level program to issue special I/O requests to

label the start and finish points of a test case. The SEE interface parses all I/O

requests. Once the special I/O requests are found, the SEE checks what kind

of flag the request stands for. If it is a start flag, the SEE starts analyzing the

upcoming requests. If it is a finish flag, the SEE stops analyzing the requests that

follow.

3.4.3 Runtime Analysis Mode

The virtual device is executed concretely in the virtual machine and symbolically

in the SEE simultaneously. The SEE executes the virtual device with the concrete

device state and symbolic requests. It computes all the feasible execution paths

under the current device state and generates runtime analysis test cases for the

covered paths.

25

//Declarations of necessary variables

E1000State state; //Device state

target phys addr t address; //Address

......

int main() {

//Load the concrete device state

load_state(&state, sizeof(E1000State), "state");

//Load the concrete device request and request type

load_request(&address, sizeof(address), "address");

......

//Calls to interface functions

switch(svd_deviceEntry) {

case MMIO_WRITE:

e1000_mmio_write((void *)&state, address, value);

break;

case MMIO_READ:

e1000_mmio_read((void *)&state, address);

break;

......

}

}

Figure 3.4: Complete Harness for Runtime Monitor Mode

26

The harness for runtime analysis is the same as the one shown in Figure 3.1. Our

approach assists developers in analyzing a virtual device symbolically at runtime.

Once a request is selected or a breakpoint is hit in monitor mode, the virtual

device can be executed symbolically with a symbolic request under the concrete

state. All possible paths are explored. For each possible path, a runtime analysis

test case is generated which contains the concrete device state and inputs that

can be used to replay the corresponding path symbolically explored. Replaying

the test case enables developers better observe and trace any variable change in

the virtual device along this path. Furthermore, all paths explored at runtime are

reachable. The developers can confirm what paths covered by static analysis can

be covered at runtime. The developers can also alter the virtual device execution

by injecting a device request identified by the SEE.

3.4.4 Further Potentials

This section illustrates how to employ symbolic execution of virtual prototypes

to support runtime monitoring and analysis. There are two major functionalities

provided by our symbolic execution approach.

First, it can thoroughly analyze each state transition and collect related infor-

mation. It can support not only runtime monitoring but also coverage evaluation

which is demonstrated in Chapter 4.

Second, it can execute a virtual prototype with a concrete state and symbolic

requests. It can support not only runtime analysis but also test generation and

fault generation which are demonstrated in Chapter 5.

27

Chapter 4

COVERAGE EVALUATION OF POST-SILICON VALIDATION TESTS

4.1 MOTIVATION AND OVERVIEW

Post-silicon validation has become a bottleneck in system development cycle and is

a significant, growing part of overall validation cost [38]. To speed-up post-silicon

validation, some tasks should be conducted early in the pre-silicon stage, e.g.,

development and evaluation of post-silicon validation tests. Test coverage is an

important metric for evaluating the quality and readiness of post-silicon validation

tests. Precise coverage results are necessary for engineers to judge whether existing

test suites can achieve sufficient coverage and cover desired functionalities on the

device.

Before the first silicon prototype is ready, it is very challenging to quantify

coverage of post-silicon validation tests since we do not have a silicon device to

run these tests on. Even if a silicon prototype is ready, the black box nature of the

silicon prototype only supports limited observability and traceability that makes

post-silicon validation difficult.

As shown in Figure 4.1, virtual prototypes and silicon devices are running re-

spectively in virtual platforms and physical machines. Virtual prototypes can pro-

vide the same transaction-level functionalities as silicon devices to support driver

development and validation. Virtual prototypes have major potential to play a cru-

cial role in estimating silicon device functional coverage of post-silicon validation

tests. The white box nature of virtual prototypes brings complete observability

28

Physical
Machine

Validation Tests

Operating System

Device Driver

Silicon Prototype

Virtual
Platform

Validation Tests

Virtual Prototype

Operating System

Device Driver

Figure 4.1: From Physical to Virtual

and traceability that evades silicon devices. It is possible to have thorough test

coverage evaluation over virtual prototypes.

This chapter presents an online-capture offline-replay approach to coverage e-

valuation of post-silicon validation tests with virtual prototypes. We first capture

necessary run-time data, including the initial device state and device requests from

a concrete execution of the virtual prototype within a virtual platform under a giv-

en test. We then compute the test coverage by efficiently replaying captured data

offline on the virtual prototype itself. To evaluate the coverage, we have adopted

four typical software coverage metrics and developed two hardware-specific cov-

erage metrics: register and transaction coverage. To ensure fidelity of coverage

estimation on the silicon device, we further extend our approach to compute cov-

erage after the silicon device becomes ready and check conformance with coverage

estimate on the virtual prototype.

We have implemented this approach in Device Coverage Analyzer (DCA), a

coverage analysis tool using virtual prototypes. We have applied our approach to

evaluate a suite of common tests with virtual prototypes of five network adapters.

Our approach was able to reliably estimate that this suite achieves high functional

coverage on all five silicon devices.

29

4.2 PRELIMINARY DEFINITIONS FOR VIRTUAL DEVICES

In order to help better understand chapter 4 and 5, we introduce several definitions

and define a formal model for a virtual device.

Definition 4.1. A device state is denoted as s= 〈sI , sN〉 where sI is the interface
state including all interface registers and sN is the internal state including all

internal registers. The interface state sI can be accessed by a high-level software

(e.g., driver) while sN is only accessed by the device itself.

As shown in Figure 2.1, the structure E1000State represents the E1000 device

state and includes interface registers mac reg and an internal register rxbuf size.

Definition 4.2. An interface register request is denoted as rir which is issued

by drivers to access interface registers.

Definition 4.3. An environment input is denoted as rei which is received by

the device from the environment.

Definition 4.4. A device request is denoted as r which is issued by high-level

software to control and operate the device.

As shown in Figure 2.1, the parameters index and value of interface register

function write reg can be treated as a request r, which is issued by the driver to

modify the interface register and trigger the transaction function.

Direct memory access (DMA) is a feature of modern computers that allows

certain devices to access system memory independent of CPU. In order to process

a device request r, a device might read/write data using DMA.

30

Definition 4.5. A DMA sequence is denoted as d = d1, d2, ..., dn where di is

the ith DMA data accessed for processing one request.

Definition 4.6. A device event is denoted as e = 〈r,d〉 where r is a device

request and d is a sequence of DMA data. For some event e, d might be null since

no DMA data is needed for processing r.

Definition 4.7. A sequence of device events is denoted as seq = e1, e2, ...,

en. A subsequence seqk of seq contains the first k events of seq where seqk =

e1, e2, ..., ek. After processing a sequence of device events, the device can be

transitioned to a new state from the initial state.

Definition 4.8. A test case is denoted as tc = 〈seq, e〉, where seq is a sequence

of device events and e is an additional device event. The device is transitioned to

a desired state from the initial state after processing seq. Then the device event e

is issued to the device to trigger the desired device functionality.

Definition 4.9. A state under test is denoted as sut where sut is the device

state on which test cases are generated.

Devices are transactional in nature: device requests are processed by device

transactions. For a virtual device (which is a program), given a state s and a

device request r, a program path of the virtual device is executed and the device

is transitioned into a new state. Each distinct program path of the virtual device

represents a distinct device transaction.

31

Definition 4.10. A device transaction, denoted as t = l1, l2, ..., ln., is a

program path of a virtual device. Each step l in the path is a tuple (λ, γ, ξ),

where λ is the code statement executed, γ is the registers accessed and ξ is the

interrupt status.

start_xmit(s);

s->mac_reg[STATUS] =
~E1000_STATUS_LU;

Register write
Offset: STATUS
Value: ~E1000_STATUS_LU

qemu_set_irq(s->dev.irq[0],
(s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);

Interrupt status
Value: (s->mac_reg[IMS]

& s->mac_reg[ICR]) != 0

Harness

Line 832

Line 34

Line 116

…...

Figure 4.2: A Transaction Example

Figure 4.2 gives an example of a transaction. Besides the basic code statement

sequence, the transaction t also contains hardware-related information, such as

the registers accessed and the interrupt status.

A virtual device is a transaction-level model of hardware design which can be

represented as an event-driven state transition graph. As shown in Figure 4.3,

given a device state sk−1 and a device event ek, the device will transit to a new

device state sk. We use s
e→ s′ to denote a transaction.

32

sk-1 snsn-1s0
e1 --- ek-1

sk
enek ek+1 --- en-1

Figure 4.3: A Graph Representation of State Transitions

4.3 ONLINE-CAPTURE OFFLINE-REPLAY COVERAGE EVALU-

ATION

Before a silicon device is ready, post-silicon validation tests can be evaluated us-

ing RTL emulation. However, emulating hardware design has certain limitations.

First, RTL emulators can be very expensive. Second, RTL emulation is often s-

low. Third, it requires a complete working RTL design [62] to evaluate post-silicon

validation tests. Recently virtual devices and virtual platforms have been used for

driver development and validation before a silicon device is ready. Virtual devices

are software components. Compared to their hardware counterparts, it is easier

to achieve observability and traceability on virtual devices. This makes virtual

devices amenable to coverage evaluation of post-silicon validation tests.

4.3.1 Online-capture

In order to compute test coverage on virtual devices, we need to collect necessary

run-time data from the virtual platform. A näıve idea is to capture all necessary

run-time data including execution information of virtual devices directly from the

virtual platform. However, such approach has three disadvantages. First, we need

to instrument virtual devices to capture execution information of virtual devices.

Second, capturing detailed execution information introduces heavy overhead into

the virtual platform. Third, we need to decide what kinds of information should be

captured before run-time execution of the virtual platform. It is hard to guarantee

that captured information is sufficient. Once a new metric is added, it is possible

33

that we have to modify the capture mechanism and then rerun the virtual platform

to capture more data.

Therefore, we developed an online-capture offline-replay approach to capture

minimum necessary data at run-time, and then replay the run-time data on the

virtual device itself offline to collect necessary execution information.

A device can be treated as a state transition system. As shown in Figure 4.3,

given a device state sk−1 and a device event ek, the device will transit to a new

device state sk. Therefore, with the initial state s0 and the whole event sequence

seq, we can infer all states and reproduce all state transitions. In other words,

capturing s0 and seq from the concrete execution of a virtual device within the

virtual platform should introduce the lowest overhead and deliver the most effective

data.

4.3.2 Offline-replay

Our offline-replay mechanism reproduces run-time execution on virtual devices

with s0 and seq, which provides flexible analysis mechanism and powerful debug

capability.

Flexible analysis mechanism

The replay process is independent of the virtual platform/physical machine. Once

run-time data is captured, users can replay the event sequence and reproduce the

execution at any time. Based on different user requirements, users can generate

different coverage reports from the replay process with different metrics.

34

Powerful debug capability

The replay mechanism provides capability for debugging interesting execution

traces on virtual devices statement by statement, backward and forward.

Algorithm 1 Replay Events (s0, seq)

1: i← 0; //loop iteration

2: s← s0; //Set initial device state

3: while i < seq.size() do

4: e← seq[i];

5: 〈t, snext〉 ←Execute Virtual Device (s, e);

6: T.save(t);

7: s← snext; //Set next device state

8: i← i + 1;

9: end while

10: Generate Report (T);

Algorithm 1 illustrates how to replay all events with s0 and seq to collect

necessary execution information. In Algorithm 1, T is a temporary vector for

saving execution information for all events. The algorithm takes the initial device

state s0 and the event sequence seq as inputs. Before replaying the event sequence,

we set s0 as the device state s. We run the virtual device with each event e in

the event sequence seq and the corresponding state s to compute the execution

information t and the next state snext. Then t is saved in T and snext is assigned

to s. After replaying all events, we generate coverage reports based on T and user

configuration.

35

4.3.3 Coverage Computation and Conformance Checking in the Post-

silicon Stage

In our approach, we use coverage evaluation of virtual prototypes to estimate

functional coverage on silicon devices. In order to make our approach practical

and reliable, we need to address the following two key challenges:

1) Accuracy: In our approach, we capture run-time data from the concrete

execution of virtual devices within a virtual platform. Events (Ev) issued to virtual

devices within a virtual platform can be different from events (Es) issued to silicon

devices within a physical machine for the same tests. The concern is whether the

coverage (Cv) computed on (Ev) is a good approximation of the coverage (Cs)

computed on (Es).

2) Conformance: Another challenge is whether coverage estimation on virtual

devices can really reflect functional silicon device coverage. Although both virtu-

al devices and silicon devices are developed according to the same specification,

whether they conform to each other is still a major concern.

To address the above two challenges, we have extended our approach to sup-

port coverage computation and conformance checking after the silicon device is

ready. We first reset the silicon device, and then capture run-time data, includ-

ing all silicon device states SS = {ss0, ss1, ..., ssn} and the device event sequence

seq = e1, e2, ..., en, from the concrete execution of a silicon device within a physical

machine. For a silicon device, interface registers are observable while the internal

registers are not observable in general. Therefore it is only possible to record all

silicon device interface states SSI = {ssI0, ssI1, ..., ssIn} due to the limited observ-

ability. Algorithm 2 shows the extended algorithm for replaying SSI and seq on

the virtual device.

In Algorithm 2, we first reset the virtual device to get the initial device state s.

36

Algorithm 2 Extended Replay Events (SSI , seq)

1: k← 0; //loop iteration

2: s← Reset Virtual Device (); //s = 〈sI , sN〉
3: while k < seq.size() do

4: sI ← ssIk; //Load captured silicon device interface state

5: e← seq[k + 1];

6: 〈t, s′〉 ←Execute Virtual Device (s, e); //s′ = 〈s′I , s′N〉
7: T.save(t);

8: Check Conformance (s′I , ssI(k+1));

9: sN ← s′N ;

10: k← k + 1;

11: end while

12: Generate Report (T);

We assume that the internal states between the silicon device and its virtual device

are the same after resetting devices. Even if both internal states are not exactly the

same, a few differences should not cause a large number of functional differences

according to device specifications. We take the captured device state ssIk and ek+1

as inputs to replay one event. The virtual device is executed with s and ek+1 to

compute the execution information and the state s′ after processing ek+1. Then

conformance checking is conducted between the computed interface state s′I on

the virtual device and the captured interface state ssI(k+1) on the silicon device to

detect inconsistencies. After replaying one event, we keep the internal state and

load next interface state captured to compose the device state. After replaying all

events, we can get coverage reports and inconsistency report.

We utilize the coverage evaluation and conformance checking results in three

aspects to assure the coverage estimation accuracy. First, we compare Cs and Cv

37

to detect differences. If we can verify that there is no difference or few differences

between Cv and Cs, we can better trust that Cv can be a good approximation of

Cs. Second, the number of inconsistencies provides basic measurement how many

differences there are between the silicon device and the virtual prototype. After

analyzing the inconsistencies, we further evaluate whether these inconsistencies

cause different device behaviors. If there are few inconsistencies found and there

is no significant effect on the device, it can increase our confidence on coverage

estimation. Third, it is easy to fix the detected inconsistencies on the virtual

device so that the fixed virtual device conforms with the silicon device. Then

we compute coverage again on the fixed virtual device using the same test cases.

By comparing the coverage report on the fixed virtual device with that on the

silicon device, we further verify that the differences in coverage caused by the

inconsistencies are removed.

4.4 COVERAGE METRICS

Computing test coverage requires appropriate coverage metrics. In our approach,

we use virtual prototype coverage to estimate silicon device functional coverage. A

virtual prototype is not only a software program, but also models the characteristics

of the silicon device. Therefore we have employed two kinds of coverage metrics: we

have adopted the typical software coverage metrics and developed two hardware-

specific coverage metrics: register coverage and transaction coverage.

4.4.1 Code Coverage

Code coverage is a typical measure used in software testing. Virtual devices are

software models. We can apply all code coverage metrics to virtual devices. We

select four common coverage metrics: function coverage, statement coverage, block

38

coverage and branch coverage.

4.4.2 Register Coverage

A hardware register stores bits of information in such a way that systems can

write to or read out from it all the bits simultaneously. High-level software can

determine the state of the device by reading registers, and control and operate the

device by writing registers. It is critical for engineers to know what registers have

been accessed so they can check whether the device is accessed correctly according

to the specification. Virtual devices provide complete observability, therefore we

can capture accesses on both interface and internal registers. Actually in our

approach, we capture all register accesses and deliver different kinds of register

coverage reports according to user configuration.

4.4.3 Transaction Coverage

Devices and, therefore, virtual devices are transactional in nature: they receive

interface register requests and environment inputs, and process them concurrently

without interference. Thus, an interesting and useful metric is transaction cov-

erage. For a virtual device (which is a C program), given a state s and a device

request r, a program path of the virtual device is executed and the device is transi-

tioned into a new state. Each distinct program path of the virtual device represents

a distinct device transaction. When computing coverage, the impact of a test case

on the virtual device in term of what transactions it hits and how often they are

hit are recorded. The impact of a test suite can be recorded the same way. The

coverage statistics can be visualized using pie or bar charts in term of what and

how many requests were made, what and how many transactions were hit, and

what percentages they account for among all requests. Moreover, the details of a

39

transaction is recorded, such as registers accessed and interrupt status.

4.5 IMPLEMENTATION

As shown in Figure 4.4, we first capture necessary data from a concrete execution

of the virtual prototype within a virtual platform under a given test, and then

compute the test coverage by efficiently replaying this execution offline on the

virtual prototype itself. Our approach provides early feedback on quality of post-

silicon validation tests before silicon is ready.

Operating System

Virtual Machine

Test Suite

Recorder

Virtual
Prototype

Execution Harness

Symbolic Engine

Virtual
Prototype

Coverage
Reports

Request
Sequence

Figure 4.4: Workflow for Coverage Evaluation

4.5.1 Coverage on Different Levels

To generate coverage reports, we first analyze virtual devices statically to get

program information, such as the position of branches and the number of functions,

and then generate all kinds of coverage reports based on the execution traces

computed by the replay engine. Our approach provides flexibility to generate

reports on two different levels:

1) Event Level: Given an event, a user can check what transaction is explored,

what registers are accessed and whether any interrupt is fired. Moreover, the user

can debug the execution trace step by step using the replay engine.

2) Test Case/Suite Level: A test case/suite issues a sequence of requests to a

40

device. Simultaneously, the device may receive environment inputs and read DMA

data. Given a test case/suite, all device events are captured. The replay engine

replays all captured events and generates the code coverage, the register coverage

and the transaction coverage for the test case/suite.

4.5.2 Implementation Details

We implement our approach on the QEMU virtual platform. The event capture

mechanism is implemented as a QEMU module which can be used for hooking QE-

MU virtual devices. Device interface functions are invoked by the QEMU frame-

work. For instance, a driver issues a read register request, the QEMU invokes the

corresponding read register function defined in the virtual device. Our module

hooks all the interface functions when the virtual device registers these functions

to QEMU. In this way, the module captures the device events when there is an

interface register request, an environment input or a DMA access. This module

provides capability to hook different virtual devices without modifying virtual de-

vices. For capturing events on silicon devices in physical machines, we modified

device drivers to achieve it.

We construct our replay engine using the symbolic execution engine KLEE [17].

We modify KLEE in three aspects. First, we implement some special function

handler for loading events and DMA data. Second, we capture execution trace

during execution of virtual devices. Third, we realize our own module for coverage

generation.

4.6 EXPERIMENTAL RESULTS

We have applied DCA to QEMU-based virtual devices for five popular network

adapters: Intel E1000, Broadcom Tigon3, Intel EEPro100, AMD RTL8139 and

41

Realtek PCNet. While our tool currently focuses on QEMU-based virtual devices,

the principles also apply to other virtual prototypes. The experiments were per-

formed on a desktop with an 8-core Intel(R) Xeon(R) X3470 CPU, 8 GB of RAM,

250GB and 7200RPM IDE disk drive and running the Ubuntu Linux OS with

64-bit kernel version 3.0.61.

4.6.1 Online-capture and Offline-replay Overhead

In order to evaluate our approach, we capture a request sequence triggered by a

test suite. The test suite includes most common network testing programs, such as

ifconfig and ethtool [19]. DCA needs to capture the initial device state and device

events at run-time, which brings overhead to run-time QEMU environment. With

the capture mechanism, both QEMU and virtual devices work normally.

550

419

510

177

365

570

434

538

191

382

0

100

200

300

400

500

600

E1000 EEPro100 Tigon3 RTL8139 PCNet

No capture

Capture

Figure 4.5: Time Usage (Seconds) for Online Capture

To evaluate the overhead of online capture mechanism, we illustrate the time

usage for the whole test suite under the capture configuration and no-capture

configuration in Figure 4.5. Between the capture and no-capture configurations,

there is low running time overhead introduced. For example, the overhead for

E1000 is about (570 - 550) / 550 = 3.6%.

We further evaluated time and memory usages for the offline replay process.

42

As shown in Table 4.1, time and memory usages of the offline replay are modest.

It only takes a few minutes to process tens of thousands events.

Table 4.1: Time and Memory Usages for Offline Replay

Events(#) Time(Minutes) Memory(Mb)

E1000 65530 10.5 268.24

Tigon3 89032 12.0 336.35

EEPro100 30112 6.0 213.18

RTL8139 43228 7.0 225.26

PCNet 54016 8.5 254.60

4.6.2 Coverage Results

We demonstrate our coverage results in three aspects: code coverage (statemen-

t/block/branch/function coverage), register coverage and transaction coverage.

Due to space limitation, we only illustrate coverage results for E1000 below al-

though we have finished coverage evaluation on all five devices.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Statement Block Branch Function

Remove Driver

Extra Programs

Basic Programs

Load Driver

Figure 4.6: Code Coverage Results for E1000

Figure 4.6 uses a stack to show incremental coverage of different test programs

43

on E1000 under different code coverage metrics. We evaluate the coverage for both

a test case, such as sending a ping packet, and a test suite including most common

testing programs. These coverage results can give engineers basic measurement of

the quality of test cases.

0x8, 21927, 33%
0xC0, 2616, 4%

0xC8, 2616, 4%

0xD0, 2616, 4%

0x5400, 2024, 3%

0x20, 1872, 3%

0x100, 1379, 2%

0x0, 1351, 2%

0x38, 1227, 2%

0x2818, 1036, 1% others, 28602, 42%

Figure 4.7: Top Ten Accessed Registers for E1000

Figure 4.7 shows partial register coverage results for E1000. Each register is

identified using the register offset, such as 0x0 and 0x8. The figure shows that how

many times and how much percentage top ten registers are accessed. For instance,

the most accessed register is register 0x8 (status register), which is accessed 21927

times. The system software reads this register very frequently to query the device

state.

Figure 4.8 shows partial transaction coverage results for E1000. Each transac-

tion is identified using a hash value, such as 0xd4e4d3ed. It shows that how many

times and how much percentage top ten transactions are accessed. By analyzing

transaction coverage, engineers can know what functionalities have been tested. By

analyzing execution information of each transaction, engineers can further observe

register accesses.

44

0xd4e4d3ed, 23762,
37%

0xf6cb33f0, 10952,
17%

0xfe65f8c3, 5746, 9%

0x2ed522b1, 4351, 7%

0x707cb781, 3616, 5%

0xf64476c8, 3212, 5%

0x1f621846, 2431, 4%

0x9ee8b197, 1873, 3%

0xc66fc8cf, 1768, 3%

0x4f0eba6a, 953, 1%

others, 6172, 9%

Figure 4.8: Top Ten Transactions for E1000

4.6.3 Coverage and Conformance Results in Post-silicon Stage

With the same test suite, we instrumented drivers to capture run-time data on

two silicon devices: E1000 and Tigon3, and computed the coverage on the cor-

responding virtual devices. We compare the results with these results shown in

Section 4.6.2. The coverage results are very similar for both E1000 and Tigon3 in

terms of code and register coverage. One major difference is reflected on transac-

tion coverage. Due to different speeds of physical machine and virtual platform,

several transactions are affected. For example, while transmitting network pack-

ets, silicon devices can transmit more packets than virtual devices in the transmit

transaction since the speed of silicon devices is much higher than virtual devices.

We conclude such differences in coverage are acceptable.

We applied conformance checking to detect inconsistencies between E1000 and

Tigon3 and their corresponding virtual devices. There are 13 inconsistencies dis-

covered between the two network adapters and their virtual devices under the given

tests: 7 in Intel E1000 and 6 in Broadcom BCM5751. We modified 21 lines of code

in virtual devices to fix all 13 inconsistencies. Then we rerun coverage tools on

fixed virtual devices to generate new coverage reports. After comparing the new

45

reports with the post-silicon coverage reports, we found no differences except the

known transaction differences.

Remarks: Coverage evaluation in the post-silicon stage often requires instrument-

ing the device driver and comes too late. Coverage evaluation on virtual prototypes

can be available much earlier; therefore, it can guide improvement of post-silicon

tests. From conformance checking results and coverage report comparison, it is

clear the more conforming the virtual and silicon devices are, the more accurate

the coverage evaluation on the virtual device. Even if there exist inconsistencies,

conforming checking facilitates quick correction of coverage estimate in the post-

silicon stage by conveniently detecting these inconsistencies.

4.7 RELATED WORK

One common approach to post-silicon coverage evaluation is to use in-silicon cov-

erage monitors [8, 12, 50]. However, adding coverage monitors to the silicon is

costly in terms of timing, power, and area [3]. In order not to introduce too much

overhead, developers can only add a small number of coverage monitors in the de-

sign. Consequently, the effectiveness of coverage evaluation highly relies on what

kinds of device signals are captured by in-line coverage monitors. Moreover, such

approach of using coverage monitors can take effect only after silicon devices are

ready. Another approach to coverage evaluation of test cases before silicon devices

are available is RTL emulation. However, emulating hardware design has some

limitations as we discussed in 5.2.1. Our approach takes the obvious advantages of

virtual devices: complete observability and traceability, and is applicable without

silicon devices. We utilize test coverage over virtual devices to estimate silicon

device functional coverage.

46

4.8 SUMMARY

Quantifying coverage of post-silicon validation tests is very challenging due to lim-

ited hardware observability [57]. In this chapter, We have presented an approach

to early coverage evaluation of post-silicon validation tests with virtual prototypes,

which fully leverages the observability and traceability of virtual prototypes. We

have applied our approach to evaluate a suite of common tests on virtual proto-

types of five network adapters. We have also established high confidence in fidelity

of coverage evaluation by further conducting coverage evaluation and conformance

checking on silicon devices.

47

Chapter 5

AUTOMATIC CONCOLIC TEST GENERATION

5.1 MOTIVATION AND OVERVIEW

To accelerate post-silicon validation, high-quality tests should be ready before a

silicon device is available [57]. The time-to-market after the device is first available

can be as short as several weeks. Therefore, it is highly desired to avoid spending

this precious time on preparing, debugging, and fixing tests. There should be

high-quality tests available before the first silicon prototype is ready.

Currently, tests for post-silicon functional validation mainly include random

tests, manually written tests, and end-user applications [33][79]. Random testing

can quickly generate many tests and is easy to use while facing major challenges in

achieving high coverage of device functionalities and avoiding high redundancy in

tests. Manually written tests are efficient in testing specific device functionalities.

However, developing manual tests is labor-intensive and time-consuming. Further-

more, humans make mistakes when they write tests manually and it is difficult

to check correctness of these tests until they are applied to a silicon device. End-

user applications are convenient and easy to deploy; however, it is often difficult to

quantify what device functionalities are covered. In addition, end-user applications

are generally not device-specific, therefore often leading to insufficient coverage of

device functionalities.

Recently virtual prototypes are increasingly used in hardware/software co-

development to enable early driver development and validation before hardware

48

devices become available [62, 70]. Virtual prototypes also have major potential to

play a crucial role in test generation for post-silicon validation.

This chapter presents a concolic testing approach to automatic post-silicon test

generation with virtual prototypes. This work is inspired by recent advances in

concolic testing [30, 31]. Concolic (a portmanteau of concrete and symbolic) testing

is a hybrid software testing technique that integrates concrete execution with sym-

bolic execution [39]. In our approach, we borrow “concolic” literally and conduct

concolic test generation with virtual prototypes by integrating concrete runtime

execution and symbolic execution. We first identify device states under test from

concrete executions of a virtual prototype using a transaction-based selection s-

trategy, and then symbolically execute the virtual prototype from these states.

Concrete tests are generated based on the symbolic path constraints obtained. We

apply the generated test cases to both the silicon device and the virtual prototype,

and check for inconsistencies between the real and virtual device states. Once

an inconsistency is detected, we can replay the test case on the virtual prototype

through symbolic execution to see whether it is a silicon device bug or a virtual

prototype defect. The combination of virtual and silicon device execution brings

three major benefits: (1) help developers more easily and better understand a sil-

icon device using its virtual prototype, (2) check for defects in the silicon device,

and (3) detect bugs in the virtual prototype.

We have implemented our approach in a prototype post-silicon test genera-

tion tool, namely, ACTG (Automatic Concolic Test Generation). We have applied

ACTG to virtual prototypes for three widely-used network adapters. ACTG gen-

erates hundreds of unique tests for each device. These tests lead to significant

improvement in coverage. When applying the generated test cases to the silicon

devices, ACTG detects 20 inconsistencies between the virtual and silicon devices.

49

Our approach makes the following key contributions:

• Concolic testing for post-silicon validation. Our approach to post-silicon

device test generation not only integrates concrete and symbolic execution,

but also combines virtual and silicon device executions. The observability

and controllability of virtual prototypes are fully leveraged while generated

tests are compatible with silicon devices.

• Transaction-based test selection. A transaction-based test selection strategy

is developed to select device states under test and eliminate redundancy in

generated tests. This strategy not only helps generate test cases with high

functionality coverage in modest amount of time, but also produce efficient

test cases with low redundancy.

5.2 CONCOLIC TEST GENERATION WITH VIRTUAL PROTO-

TYPES

5.2.1 A Näıve Approach

Virtual devices are software components. Compared to their hardware counter-

parts, it is easier to achieve observability and traceability on virtual devices. This

makes virtual devices amenable to post-silicon test generation.

A näıve approach to test generation with a virtual device is to apply symbolic

execution directly to it. A virtual device can be treated as an event-driven program

as shown in Figure 4.3. A virtual device processes a possibly unbounded sequence

of events from the initial state. In other words, a virtual device can be abstracted

as a program that has an infinite loop as shown in Figure 5.1.

Within the main function, the device state is first set to the initial state by

resetting the device. Then, there is an infinite loop which is used for handling

50

E1000State state; //Device state

int main() {

// Reset the device

device_reset(&state);

while(1) {

/∗ Read the next incoming event. Usually this is treated as a blocking

function. ∗/
EVENT event = read_next_device_event();

/∗ Handle the event based on the current state. ∗/
/∗ The corresponding entry function is invoked, e.g. write reg(...) −>

start xmit(...) ∗/
switch(event.type) {

case MMIO_WRITE:

write_reg((void *)&state, event.address, event.value);

break;

case MMIO_READ:

read_reg((void *)&state, event.address);

break;

......

}

}

}

Figure 5.1: Abstract Event-driven Model of QEMU E1000 Virtual Device

51

device events. The loop body can be clearly divided into two stages. First, it

reads the next device event if there is one. Second, it invokes the correct entry

function to process the event under the current state. After the event is processed,

the device state is still saved in s and continue to process the next device event.

To execute such a virtual device symbolically, we first set the device reset state

as the initial state s0 of the virtual device, which is a concrete state. Then we

symbolically execute the virtual device from s0 with a sequence of symbolic device

events.

s0 Path explosion

Figure 5.2: Path Explosion Problem

Such execution can easily lead to a path explosion [13, 41] as shown in Figure 5.2

due to the following two reasons. First, the abstract model of a virtual device

shown in Figure 5.1 includes an infinite loop. Second, for each loop iteration, it

introduces a new symbolic event, which means each iteration produces many new

paths. After processing a sequence of symbolic events, the number of paths increase

exponentially. Indeed as we tried this approach, it caused a path explosion only

52

after processing a few symbolic device requests. Moreover, most functionalities of

the virtual device are only triggered by long, well-formed sequences of requests

from the reset state. Therefore, the above näıve approach cannot generate deep

test sequences that sufficiently cover device functionalities.

5.2.2 Concolic Test Generation Algorithm

In order to address the challenge in Section 5.2.1, we develop a concolic testing

scheme that integrates both concrete and symbolic execution. Concrete execution

is first carried out on the virtual device and a sequence seq of concrete events

issued to the device by the driver is captured. With seq, a set of device states

can be computed on the virtual device, as shown in Figure 5.3 where solid arrows

denote concrete device execution while dashed arrows denote generated test cases.

s'1
sk-1

s'k,1

sn

s'n+1,2

sn-1

s'n+1,1

s'k,2

s'k,3

e'1
e'k,1

e'k,2

e'k,3

e'n+1,1

e'n+1,2

s0

e1 --- ek-1

sk

en

ek

ek+1 --- en-1 s'ne'n

s'k+1,1

s'k+1,2

s'k+1,3

e'k+1,1

e'k+1,2

e'k+1,3

Figure 5.3: Concolic Test Generation using Virtual Devices

53

The virtual device starts from the initial state s0 which is the state after re-

setting the device. With different subsequences of seq, the device is triggered to

different states, for example, with the event sequence seqk = e1, e2, ..., ek, the

device is brought to the device state sk from s0. With the set {s0, . . . , sn} of

reproducible device states, we can apply symbolic execution to each of these states

with a symbolic event. For each symbolic path explored, symbolic path constraints

are recorded and a concrete event satisfying these constraints are generated. As

shown in Figure 5.3, on state sk−1, we can generate three test cases as follows:

〈seqk−1, e
′
k,1〉, 〈seqk−1, e

′
k,2〉, 〈seqk−1, e

′
k,3〉

Algorithm 3 Generate Test Case (sut, seq, k)

1: P ← ∅, TC ← ∅;
2: s

V
← sut;

3: r
V
← Compose Symbolic Request ();

4: d
V
← null;

5: e
V
← 〈rV , dV

〉;
6: P ← Symbolic Execution (s

V
, e

V
);

7: for each path p ∈ P do

8: e← Generate Concrete Event (p);

9: tc← 〈seqk, e〉;
10: TC ← TC ∪ {tc};
11: end for

12: return TC;

Algorithm 3 illustrates how to generate test cases. Here, P is a temporary set

for saving all constraints for each path computed by symbolic execution, and TC

saves all generated test cases tc. We set the given state sut as the state of virtual

54

device s
V
, and then execute the virtual device with a symbolic request r

V
. In this

section, we do not consider DMA data and set it to null to illustrate our algorithm.

We illustrate how to handle DMA data in Section 5.2.3. For each explored path p,

we can get its symbolic path constraints. Then a concrete event e is generated for

triggering p. A test case tc consists of a request sequence seqk leading the device

to sut and the newly generated event e. For each sut, our approach generates a set

of test cases TC.

There can be a large number of subsequences {seqk} in seq. To generate test

cases from all {seqk} may entail prohibiting overheads. We allow the user to

select {seqk} via assertions on device states and events. Then a selected seqk is

replayed on virtual prototypes to get the state under test sut. After replaying a

set of selected sequences, we can obtain a set of states Sut where Sut = {sut1, sut2,
..., sutn}. To help users select states more efficiently, we provide an automatic

mechanism in Section 5.2.4.

5.2.3 Concolic Approach to Handling DMA Data

In order to process a device request r, a device might read/write data using DMA.

Therefore, we need to handle DMA data in the test generation process. We first

tried a näıve approach to represent DMA data with symbolic values. We replace

line 4 “d
V
← null;” with “d

V
←Make Symbolic DMA ();” in Algorithm 3 and

run the modified algorithm to generate test cases. From our experiments, we

observed that it easily causes path explosion since symbolic DMA data introduces

too many paths.

In order to make a virtual device work correctly, the DMA sequence for a

request has to follow the device specification strictly. It is difficult to generate a

whole DMA sequence using pure symbolic execution. A more promising approach

55

is to modify DMA data in a captured DMA sequence, which means that most

logic of the DMA sequence is kept. Therefore, we also utilize concolic approach to

generate DMA-related test cases.

To process a concrete request rut at a concrete state sut, a concrete DMA

sequence dut is accessed. We record dut in the concrete execution of a virtual

device. According to Definition 4.5, dut = dut1, dut2, ..., dutn where duti is the ith

DMA data. The length of duti is represented as luti. Usually the type of duti is a

structure. An example is shown in Figure 5.4.

//Sample DMA data structure

struct e1000_tx_desc {

uint64 t buffer_addr; /∗ Address of the descriptor’s data buffer ∗/
union {

uint32 t data;

struct {

uint16 t length; /∗ Data buffer length ∗/
uint8 t cso; /∗ Checksum offset ∗/
uint8 t cmd; /∗ Descriptor control ∗/

} flags;

} lower;

......

};

Figure 5.4: An Example of QEMU DMA Data Structure

We further abstract the organization of duti as Figure 5.5. The data duti includes

several separate sections of data, such as x, y, and z. These different sections are

accessed individually to control the execution flow of the virtual device.

To collect the information of these separate sections, we first run the virtual

device with rut and dut from sut concretely using the execution engine. Every time

56

y

Offset

Length

x z

Figure 5.5: The Abstraction of a DMA Record

the DMA data is accessed, we save the offset and the length of accessed DMA data

as a DMA access record a. After we finish the execution, we collect the concrete

execution trace tr and get the set A of all saved DMA access records.

For each access record a in A, we define a concolic DMA data dcuti according

to a as shown in Figure 5.6. The concolic DMA data dcuti includes two parts,

Offset

Length

Symbolic Concrete

Figure 5.6: A Concolic DMA Example

a symbolic part and a concrete part. According to the offset and the length of

accessed DMA data saved in a, we make symbolic that segment of dcuti, whose

length is luti. We further compose the DMA sequence dcut by combining dcuti and

the rest DMA records in dut. Then we run the virtual device symbolically with

dcut and rut from sut and collect all paths explored. If only one path is explored, it

means that the symbolic part does not lead to any branch forked in the symbolic

execution. Therefore we do not generate a test case since the explored path follows

the same trace as tr . If more than one paths are explored, for each trace different

from tr, we generate a new test case based on its path constraints and dcut.

A new algorithm as shown in Algorithm 4 is developed to generate DMA-related

test cases. In Algorithm 4, P is a temporary set for saving all constraints for each

57

Algorithm 4 Generate DMA Related Test Case (sut, rut, dut, seq, k)

1: P ← ∅, A← ∅, TCD ← ∅;
2:

3: /* Compute the concrete trace and collect DMA access records */

4: s
V
← sut;

5: e
V
← 〈rut, dut〉;

6: 〈A, tr〉 ← Concrete Execution (s
V
, e

V
);

7:

8: /* Generate DMA-related test cases */

9: for each access record a ∈ A do

10: d
V
←Make Concolic DMA (dut, a);

11: e
V
← 〈rut, dV

〉;
12: P ← Symbolic Execution (s

V
, e

V
);

13: if P.size() > 1 then

14: for each path p ∈ P do

15: if Compare Traces(p, tr) == false then

16: d← Generate Concrete DMA (p);

17: e← 〈rut, d〉;
18: tc← 〈seqk, e〉;
19: TCD ← TCD ∪ {tc};
20: end if

21: end for

22: end if

23: end for

24: return TCD;

58

path computed by symbolic execution, A is a temporary set for saving all the DMA

access records, and TCD saves all generated DMA-related test cases tc. We run a

virtual device in two rounds to generate DMA-related test cases.

1. Compute the concrete trace and collect all DMA access records.

We set the given state sut as the state of virtual device sV
and construct the

device event e
V
using the given request rut and the DMA sequence dut. Then

we run the virtual device under s
V
with e

V
to collect the trace tr and all

DMA access records A.

2. Generate DMA-related test cases. With each DMA access record a

in A, we construct a concolic DMA data sequence d
V
. With d

V
and the

concrete request rut, the virtual device is executed from s
V
symbolically. All

explored paths P are collected. We first determine whether P has more than

one path. If it has, we compare the trace of each explored path p with tr.

Then a concrete DMA sequence d is generated for triggering p if the trace

of p is different from tr. A test case tc consists of a request sequence seqk

leading the device to sut and the event 〈rut, d〉.

To generate practical DMA data in the symbolic execution process, we also

follow two rules. In the DMA-related test generation process, a DMA sequence

is necessary for a newly explored path p. We denote such a sequence as d =

d1, d2, ..., dm where di is the ith DMA data. We further denote the length of di as

li. Two rules as follows are defined to guide test generation to generate well-formed

DMA data.

Rule 1: If li is not equal to luti, p is discarded.

Rule 2: If m is larger than n, p is discarded.

59

In the test generation process, the length of a DMA record and the number of

DMA records in a DMA sequence should be the same as the corresponding length

and number of the concrete DMA data captured at runtime strictly. If there is

any difference, which means there is a rule violation, the behavior of the virtual

device can be very different from the concrete execution. Such kind of generated

test cases are too random to trust. Our proposed rules can well eliminate these

random tests.

In order to generate request-related test cases with DMA data, we extend

our test case generation algorithm shown in Algorithm 3 to Algorithm 5. The

extension is to use a captured or generated DMA sequence dut that is not null and

well-formed.

Algorithm 5 Generate Request Related Test Case (sut, dut, seq, k)

1: P ← ∅, TCR ← ∅;
2: s

V
← sut;

3: r
V
← Compose Symbolic Request ();

4: e
V
← 〈rV , dut〉;

5: P ← Symbolic Execution (s
V
, e

V
);

6: for each path p ∈ P do

7: r ← Generate Concrete Request (p);

8: e← 〈r, dut〉;
9: tc← 〈seqk, e〉;

10: TCR ← TCR ∪ {tc};
11: end for

12: return TCR;

In Algorithm 5, we execute the virtual device with a symbolic request r
V
and

concrete DMA data dut from sut. If dut is null in the concrete execution of the

60

virtual device, Algorithm 5 is the same as Algorithm 3. If dut is not null, we run a

virtual device symbolically with a symbolic request r
V
and dut from sut. The above

two rules has been used in generating well-formed DMA data. They are further

extended to eliminate generated requests that have DMA data ill-formed for such

types of requests.

To generate request-related test cases, we not only can utilize the captured

DMA sequence, but also can utilize the DMA sequences that are generated using

Algorithm 4. More implementation details about utilizing DMA data are discussed

in Section 3.3.3.

5.2.4 Transaction-based Test Selection Strategy

In order to make our concolic testing approach practical and efficient, we need to

address the following two key challenges:

• State selection problem. For a virtual device, we can get a vast number of

states under test by replaying a long sequence of device events. Applying

test generation to all these states is impractical. How to select states under

test is a critical challenge. Even if we allow users to select states with filters,

it can still be a laborious process.

• Test case redundancy problem. Even if we only generate test cases on states

selected, we can still get a large number of test cases. Applying all such test

cases on a silicon device takes much time. However, certain test cases trigger

the same behavior on a silicon device, i.e., they cover the same transaction.

Therefore, to improve efficiency, such redundant test cases should be clearly

identified.

61

We develop a transaction-based test selection strategy to address the above two

challenges. First, states under test are selected based on device transactions. To

select states, we replay a sequence seq of device events on the virtual device. For

each state transition si
ri+1
=⇒ si+1, we compute the corresponding transaction. If a

new transaction t is found, we select si as a state under test. Based on analyzing

virtual device executions in virtual machines, we observed that such states have

good chances of triggering new transactions with different requests.

Algorithm 6 Select States Under Test (seq)

1: StateIndices← ∅, T ← ∅;
2: i← 0; //loop iteration

3: s0 ← Reset Device ();

4: while i < seq.size do

5: ei+1 ← Get Event (seq, i+ 1);

6: si+1 ← Compute Next State (si, ei+1);

7: t← Compute Transaction (si, ei+1);

8: if t /∈ T then

9: T ← T ∪ {t};
10: StateIndices← StateIndices ∪ {i+ 1};
11: end if

12: i← i+ 1;

13: end while

14: return StateIndices;

Algorithm 6 illustrates how to select states under test in detail. StateIndices

is a temporary set for saving indices of all selected states, and T saves all unique

transactions invoked. We set the state after resetting the device as the initial state

s0. Then we run the virtual device with each event in the event sequence seq. After

62

that, we compute the next state and the transaction by processing the event under

the current state. For each event, if there is a new transaction t found, we save it

in T and save the corresponding state index in StateIndices. After all events are

executed, we get a set of state indices. The corresponding states are the selected

states under test.

Second, we apply transaction-based test selection strategy to identify redundant

test cases. In the process of selecting states as discussed above, we can get a set of

unique transactions T . The set T can be further utilized to identify redundant test

cases. When we conduct test generation, every time a transaction t is explored by

symbolic execution, we determine whether it is a new transaction that is not in T .

If it is new, the corresponding test case is saved and t is added into T . Otherwise,

we save the test case as a redundant test case so that the user can utilize this test

case if time permits.

5.3 IMPLEMENTATION

5.3.1 ACTG Framework

As illustrated in Figure 6.3, our automatic conconlic test generation (ACTG)

framework includes three key components:

Test
Manager

Operating System

Virtual Machine

Test Suite

Recorder

Virtual
Prototype

Execution Harness

Symbolic Engine

Virtual
Prototype

Operating System

Physical Machine

Silicon
Device

Generated
Test Cases

Request
Sequence

Figure 5.7: Automatic Concolic Test Generation Framework

63

• Device Request Recorder. The recorder captures device requests and DMA

data from a concrete execution of the virtual device in the virtual machine.

Any user or kernel level test case may be issued in the guest OS. The request

recorder fully hooks the virtual device entries and DMA functions so that

all device requests and DMA data are intercepted and recorded in the event

sequence seq.

• Symbolic Execution Engine. The symbolic execution engine replays a subse-

quence seqk of seq to trigger the desired state under test sut. Then the engine

is used in two ways. First, the engine symbolically execute the virtual device

from sut with the corresponding concrete request rc and symbolic DMA data

along the corresponding concrete trace. For each branch condition collected,

a concrete DMA sequence d is generated. A new test case tc is composed of

seqk and 〈rc, d〉. Second, the engine symbolically executes the virtual device

from sut with a symbolic request. Among the transactions explored, a trans-

action of interest is selected, its symbolic path constraints are recorded and

a concrete device request r satisfying the constraints is generated. A new

test case tc is composed of the request sequence seqk and the pair of newly

generated request and the DMA sequence 〈r, d〉.

• Test Manager. The test manager is a kernel-level software module residing

on the test machine with the silicon device. It applies a test case to the

silicon device by issuing the sequence of events included in the test case.

5.3.2 Testing with Generated Test Cases

After generating test cases, our approach can then apply a generated test case to

both real and virtual devices.

64

Application of test cases

A real (or virtual, respectively) device interacts with the high-level software in a

real (or virtual) machine, on which a test case tc can be applied using Algorithm 7.

In order to apply tc, we first reset both real and virtual devices so that we can keep

Algorithm 7 Apply Test Cases (TC)

1: for each tc ∈ TC do

2: i← 0; //loop iteration

3: num← number of requests in tc;

4: s
R,0
← Reset Real Device ();

5: s
V,0
← Reset V irtual Device ();

6: while i < num do

7: ei+1 ← Get Event (tc, i+ 1);

8: s
R,i+1

← Compute Next State (s
R,i
, ei+1);

9: s
V,i+1

← Compute Next State (s
V,i
, ei+1);

10: Check State (s
R,i+1

, s
V,i+1

);

11: i← i+ 1;

12: end while

13: end for

their initial states consistent. Our approach employs a test manager (a kernel-level

module) to issue a tc in both real and virtual machines. Then we capture concrete

states of both real and virtual devices after applying a tc. For a real device, it

is difficult to capture the internal state. Hence, we only capture the interface

state for the real device. Finally, we conduct consistency checks on the captured

states between silicon devices and virtual prototypes. Our approach compares

interface states of the real and virtual devices to detect any inconsistency. Such

65

an inconsistency often indicates divergence between real and virtual device states,

reflecting an error in either the real or virtual device.

Test case replay on virtual devices

Upon detecting an inconsistency or a hardware error, the triggering test case can be

replayed on the virtual device so that the user can better understand the exercised

transaction. The symbolic engine is employed for replaying a test case tc = 〈seq, e〉.
The engine first brings the device to the state under test sut and then replay the

event e from sut. The engine follows the same code path that it followed while

generating e, since e is generated by instantiating symbolic variables to concrete

values that satisfy the constraints of that path.

The power of the symbolic engine enables full controllability and observability

while replaying a test case. The symbolic engine is also sufficiently responsive to

support interactive replay. It enables the user to navigate backward and forward,

step by step through the execution path induced by a concrete test case. Our

approach can help the user better observe what variables are changed where along

the path, what inputs and initial state trigger the path, and inspect values of

variables at any step.

5.4 EXPERIMENTAL RESULTS

QEMU includes many virtual devices, which provides a broad range of test cases

for our approach. We apply ACTG to virtual devices for three popular network

adapters as shown in Table 5.1. While our tool currently focuses on QEMU-based

virtual devices, the principles also apply to other virtual prototypes.

To execute virtual devices symbolically, we manually created a simple harness

for each virtual device. We also created a common library of stub functions for all

66

Table 5.1: Virtual Prototypes for Three Network Adapters

Vendor Descriptions

E1000 Intel Pro/1000 Gigabit Ethernet Adapter

Tigon3 Broadcom BCM57xx-based Gigabit Ethernet Adapter

EEPro100 Intel Pro/100 Ethernet Adapter

three virtual devices. The stub library has 481 lines of C code. More details about

device models and their harnesses are given in Table 5.2. All device models are

non-trivial in size ranging from 2099 lines to 4648 lines. All harnesses are relatively

easy to create, having about 100 lines only. Only several hours are needed to create

and fine-tune each harness and the stub library.

Table 5.2: Summary of Three Virtual Prototypes

Virtual Prototype Harness

Lines Functions Lines Entry Functions

E1000 2099 53 74 4

Tigon3 4648 34 80 4

EEPro100 2178 70 85 7

In order to evaluate our approach, we capture a request sequence triggered by

a test suite from concrete executions of virtual devices in QEMU. The test suite

includes common network testing programs. As shown in Table 5.3, we give a

partial list of programs in the test suite due to space limitation. For each virtual

prototype, we have applied this test suite.

The experiments were performed on a desktop with an 8-core Intel(R) Xeon(R)

67

Table 5.3: Summary of Test Suite

Category Commands Descriptions

Driver Load/Unload
insmod Load driver module

rmmod Remove driver module

Basic Programs

ifup Bring a network interface up

ifdown Take a network interface down

ifconfig Configure a network interface

ping Send ICMP ECHO REQUEST

scp Copy files between network hosts

Extra Programs
ethtool

Query or control network driver

and hardware settings

scapy Manipulate network packets

68

X3470 CPU, 8 GB of RAM, 250GB and 7200RPM IDE disk drive and running the

Ubuntu Linux OS with 64-bit kernel version 3.0.61.

5.4.1 Evaluation of Transaction-based Test Selection Strategy

We have applied transaction-based test selection strategy to select states and e-

liminate test case redundancy.

State selection

As shown in Table 5.4, we captured a large number of requests in the request

sequence triggered by our test suite, for example, 64,836 requests for the E1000

virtual device. With our transaction-based test selection strategy, only a small

number of states are selected, for instance, 60 states for the E1000 virtual device.

In order to evaluate the efficiency of our test selection strategy, we compare it

with the random strategy. With the random strategy, we select states under test

randomly. Here, we select two sets of states with the random strategy. It can be

observed from Table 5.4 that with the same number of states under test selected,

our strategy can generate many more useful tests, i.e., tests triggering distinctive

device transactions.

Table 5.4: Comparison of Different Strategies

Requests Transaction Strategy Random Strategy

in Trace States Tests States Tests States Tests

E1000 64836 60 774 60 48 180 60

Tigon3 19157 52 175 52 46 156 54

EEPro100 41849 54 357 54 116 162 116

69

To further evaluate the efficiency of our approach, we evaluate the time usages

of the transaction-based selection strategy as shown in Table 5.5. This strategy

requires spending time on both selecting states and generating test cases. The

overall time for E1000 is 30 minutes which includes 3.5 minutes for state selection

and 26.5 minutes for test generation.

Table 5.5: Time Usage of Transaction-based Selection Strategy

States
Time (Minutes)

Selection Generation Overall Average

E1000 60 3.5 26.5 30 0.5

Tigon3 52 2 17 19 0.4

EEPro100 54 2 91 93 1.7

Moreover, we applied test generation to 6000 states of the E1000 virtual device

selected using the random strategy. It takes 1 day, however only two new test cases

are generated. If we were to apply test generation on all 64836 states, it would

have taken 10 days. Through the experiment, we made two observations. First, it

is not cost-effective to apply test generation to all captured virtual device states.

Second, our transaction-based strategy is efficient. It brings order-of-magnitude

reduction on time usage and effective and only misses a few tests found with much

higher time usage.

Test case redundancy identification

As shown in Figure 5.8, our transaction-based strategy is very effective in identify-

ing redundant tests. For each virtual device, we have achieved order-of-magnitude

reduction in the number of tests that need to be applied to the virtual device in

70

order to cover the same set of transactions. The extra tests are not thrown away

and are also applied in device testing when time permits.

774

175

357

6982

2601

2828

0 2000 4000 6000 8000

E1000

Tigon3

EEPro100
Before elimination
After elimination

Figure 5.8: Number of Generated Tests

5.4.2 Composition of Generated Tests

We generate both DMA-related and request-related test cases. Figure 5.9 shows

the number of generated DMA-related and request-related test cases on Tigon3.

For Tigon3, we generate 175 test cases, 99 test cases of which are request-related

test cases and 76 test cases are DMA-related test cases.

76, 43%

99, 57%

DMA-related
Request-related

Figure 5.9: Number of Generated DMA-related and Request-related Tests

71

5.4.3 Evaluation of Optimization on Sparse Function Pointer Array

We present optimization results for common sparse arrays existing in a virtual

device. These sparse arrays can be divided into two categories. One kind of array,

denoted as Aw, includes all interface register functions for handling register-write

operation; the other kind of array, denoted as Ar, includes all interface register

functions for handling register-read operation.

To evaluate the sparse function pointer array optimization, we compare the

number of branches forked as shown in Table 5.6. We did not conduct the evalu-

ation on EEPro100 because EEPro100 is an old virtual device which uses several

“switch-case” structures rather than the sparse function pointer array. As shown

in Table 5.6, we get significant improvements using the optimization.

Table 5.6: Number of Branches Forked

Aw Ar

Without Opt. With Opt. Without Opt. With Opt.

E1000 5845 13 5845 7

Tigon3 28705 13 2233 2

*Opt.: Optimization

5.4.4 Coverage Improvement

To measure the quality of generated tests, we evaluate the coverage results. We

utilize test coverage over the virtual device to estimate the functional coverage over

the silicon device. Because the virtual device is software, we utilize four different

code coverage metrics to measure the coverage improvement.

72

Table 5.7: Summary of Coverage Improvement

Statement Block

#
Test Suite Generated Tests

#
Test Suite Generated Tests

% # % # % # %

E1000 3256 2602 79.91% 2835 87.07% 298 214 71.81% 252 84.56%

Tigon3 1791 1496 83.53% 1689 94.3% 138 104 75.36% 128 92.75%

EEPro100 2369 1767 74.59% 2089 88.18% 266 170 63.91% 222 83.46%

Function Branch

#
Test Suite Generated Tests

#
Test Suite Generated Tests

% # % # % # %

E1000 42 39 92.86% 42 100% 264 165 62.5% 210 79.55%

Tigon3 25 23 92% 25 100% 120 70 46.67% 97 80.83%

EEPro100 44 39 88.64% 42 95.45% 150 77 51.33% 115 76.67%

73

As shown in Table 6.5, the generated test cases improve test coverage signif-

icantly. Although the test suite we use has already been able to get reasonable

coverage on three virtual devices, the coverage can still be significantly improved

using our generated test cases. Particularly, for E1000 and Tigon3, the function

coverage can be improved to 100%. For Tigon3 and EEPro100, the branch coverage

can be improved by more than 25%.

5.4.5 Inconsistencies

As we apply the test cases on virtual and silicon devices, we collect both virtual and

silicon device states. We then conduct consistency checking between the virtual

and silicon device states. Our test cases have uncovered several inconsistencies

between the real devices and their virtual devices. In our study, even though all

the devices are popular devices which have gone through years of thorough testing

and their virtual devices are created after fact, we still detected inconsistencies.

The inconsistencies detected by our test suite and generated test cases are shown

in Figure 5.10.

4

6

2

8

8

4

0 1 2 3 4 5 6 7 8 9 10

E1000

Tigon3

EEPro100
Generated Tests
Test Suite

Figure 5.10: Number of Inconsistencies Detected by Test Suite and Generated

Tests

One common inconsistency caused by virtual devices is that after certain special

74

requests, one or several device registers are modified in silicon devices while in

virtual devices, they are unchanged. This inconsistency was introduced assuming

the drivers would well behave and not issue such special requests. Two types of

inconsistencies detected are caused by silicon devices: (1) devices are not initialized

properly according to device specifications and (2) devices update registers that are

specified as reserved in the device specifications. We believe that if such tests are

conducted on a newly designed silicon device prototype, our approach can discover

more silicon device bugs.

5.5 FAULT INJECTION WITH VIRTUAL PROTOTYPES FOR DRIV-

ER TESTING

Virtual devices are software components. Compared to their hardware counter-

parts, it is easier to achieve controllability on virtual prototypes. This makes

virtual prototypes amenable to device fault injection for driver testing.

Based on ACTG framework and runtime shadow execution in Section 3.4, we

further develop an approach to generation and injection of virtual prototype-based

faults for driver testing. We first collect unique transactions to identify different

device behaviors, such as register writes and interrupt firing, from concrete execu-

tions of a virtual prototype, and then modify these device behaviors to generate

fault scenarios. We then employ runtime shadow execution to apply the gener-

ated fault scenarios to virtual prototypes at runtime to guide fault simulation to

test whether device drivers can handle these faulty behaviors correctly. We have

applied this approach to virtual prototypes of three network adaptors to generate

fault scenarios. The generated faults have been applied at runtime to test driver

reliability.

75

5.5.1 Fault Models

Before discussing the details of transaction-based fault injection, we first introduce

two fault models:

• I/O error model. Device drivers issue requests to control and operate devices.

However, these I/O requests can be lost, corrupted and bit-flipped [37, 77]

due to electrical interference, bus errors and firmware failures. In our ap-

proach, we modeled two kinds of I/O faults: I/O request loss and bit-flipping.

• Interrupt loss model. Devices fire interrupts to notify drivers when some

special events happen in the hardware. However, interrupt loss happens

because of hardware failures and bus errors [37]. In our approach, we generate

faults to model interrupt loss as one kind of incorrect device behaviors.

Furthermore, we generate fault scenarios for each fault model in two categories:

• Transient Fault. A transient fault occurs once and then disappears. In our

approach, we model transient fault by simulating a fault once in one iteration

of fault injection.

• Permanent Fault. A permanent fault is a fault that always present. In our

approach, we model permanent fault by simulating a fault persistently in one

iteration of fault injection.

5.5.2 Transaction-based Fault Generation

To simulate incorrect device behavior, one näıve idea is to inject faults randomly.

However, there are two disadvantages with the random approach. First, incorrect

device behaviors usually do not happen randomly. Second, random testing is

inefficient. How to generate hardware-related and effective fault scenarios is very

76

challenging. We further extend ACTG to generate practical and efficient fault

scenarios.

Algorithm 8 Transaction-based Fault Generation (seq)

1: FaultScenarios← ∅, TA ← ∅;
2: i← 0; //loop iteration

3: s0 ← Reset Device ();

4: while i < seq.size do

5: ei+1 ← Get Event (seq, i+ 1);

6: si+1 ← Compute Next State (si, ei+1);

7: t← Compute Transaction (si, ei+1);

8: addr ← Get Request Address (ei+1);

9: ta ← 〈t, addr〉;
10: if ta /∈ TA then

11: TA ← TA ∪ ta;

12: FaultScenarios← Generate Faults (ta);

13: end if

14: i← i+ 1;

15: end while

16: return FaultScenarios;

We first capture device requests and DMA data as a request sequence seq from

a concrete execution of the virtual device in the virtual machine. We then employ

a symbolic execution engine to replay all captured requests and generate fault

scenarios using a transaction-based strategy. In the generation process, we first

identify the transaction for each state transition and then use the transaction and

I/O request address together as identifiers to decide whether we generate fault

scenarios.

77

Algorithm 8 illustrates how to generate fault scenarios. FaultScenarios is a

temporary set for saving all generated fault scenarios, and TA saves all unique pairs

of transaction and I/O request address invoked. We set the state after resetting

the device as the initial state s0. Then we run the virtual device with each event in

the event sequence seq. After that, we compute the next state and the transaction

by processing the event under the current state. For each event, if there is a new

pair ta found, we save it in TA. Based on ta, fault scenarios are generated using

fault models and saved in FaultScenarios. After all events are executed, we get

a set of fault scenarios.

5.5.3 Fault Injection Using Runtime Shadow Execution

To apply fault scenarios, we need to detect device transaction at runtime. We

employ runtime shadow execution introduced in Section 3.4 to achieve this.

Fault Injector Shadow
Execution Engine

Device Driver

Virtual Prototype

Fault
Scenario

Test Suite

I/O request

I/O request

Interrupt

Interrupt

I/O request

Transaction

Injection Interface for Interrupt loss
Injection Interface for I/O error
Injection Interface for Bit-flipping

Figure 5.11: Fault Injection Framework Using Runtime Shadow Execution

Figure 5.11 shows the fault injection framework using runtime shadow execu-

tion. To apply one fault scenario, we load the fault scenario into the fault injector

and then run a test suite to test device drivers. The fault injector captures each

I/O request issued by the device driver, and then send I/O request information to

shadow execution engine to compute the corresponding transaction. If the pair of

78

transaction and request address matches ta in the fault scenario, the corresponding

fault model will be applied.

• I/O request loss fault (I/Om). To inject an I/O request loss fault, the fault

injector does not send the I/O request to the virtual prototype and return

directly. This fault is injected into the I/O request interface between the

driver and the fault injector.

• I/O request bit-flipping fault (I/Obf). To inject an I/O request bit-flipping

fault, the fault injector flips one bit of the I/O request following the fault

scenario and sends the I/O request to the virtual prototype. This fault is

injected into the I/O request interface between the fault injector and the

virtual prototype.

• Interrupt loss fault (Intrm). To inject an interrupt loss fault, the fault injec-

tor sends I/O requests to the virtual prototype and breaks the interrupt fired

by the virtual prototype. This fault is injected into the interrupt interface

between the driver and the fault injector.

5.5.4 Preliminary Evaluation

Using the same experimental setup in Section 5.4, we have applied our approach

to virtual devices for three popular network adapters: E1000, E100 and TG3.

As shown in Table 5.8, we have generated about 1500 fault scenarios for E1000,

about 200 for E100 and 2460 for TG3. All generation processes only take about

or less than one minute. The fault injection process for each driver takes several

hours. After applying all fault scenarios for three drivers, several unique warnings

are triggered and 2 bugs are found on TG3 driver. Since both E1000 and E100

drivers have existed for more than 15 years, it is highly possible that E1000 and

79

Table 5.8: Preliminary Result of Fault Injection with Virtual Prototypes

Driver
of faults Time(Minutes)

of Unique Warnings # of Crashes

I/Om I/Obf Intrm All Generation Injection All

E1000 832 674 16 1522 0.5 228.5 229 6 0

E100 100 86 6 192 1 124 125 2 0

TG3 2246 212 2 2460 0.5 620 620.5 4 2

E100 drivers can handle all kinds of device errors and not crashed. For TG3

driver, two crashes are triggered by two different fault scenarios. One is to inject

an I/O write request loss fault, the other is to inject an I/O read request loss fault.

Both faults can lead to system crashes because there is no desired device behavior

happening or no correct return value.

5.6 RELATED WORK

5.6.1 Symbolic execution

There has been much recent work on using symbolic execution to automatically

generate test inputs, leading to software testing tools such as Java PathFinder [78],

CUTE and jCUTE [73], CREST [9], BitBlaze [11], DART [30], and SAGE [32].

These tools basically follow the same approach as KLEE in solving a path’s con-

straints to generate a test case and differ in the specifics of symbolic execution

and test case generation. However, symbolic execution has a major limitation,

a.k.a., path explosion. To execute a complex program symbolically, the number of

feasible paths can be exponential. Furthermore, it can even be infinite in the case

of programs with unbounded loop iterations [6, 52, 76].

In our approach, we applied symbolic execution to a special type of programs,

80

virtual devices, utilized characteristics of virtual devices to improve symbolic ex-

ecution effectiveness, generated test cases characterizing paths (i.e., transactions)

through virtual devices, and provided facilities for applying the tests to real devices

and replaying the tests on virtual devices to assist debugging.

5.6.2 Concolic testing

Concolic testing [30, 32, 73, 81], combining concrete and symbolic execution, is a

hybrid software testing technique that performs symbolic execution along a con-

crete execution path. Concolic testing collects all path constraints along the con-

crete path. The path constraints are then used to incrementally generate test

inputs by conjoining path constraints for a prefix of the path with the negation

of a conditional taken by the execution [53]. Since the algorithm does concrete

executions, all bugs inferred by the technique are real [65].

Our approach shares the general spirit of concolic testing; however, concol-

ic execution of virtual prototypes differ significantly from previous approaches to

concolic execution of software programs. In our approach, we first compute con-

crete device states by executing virtual prototypes with captured concrete runtime

data. Then, we generate tests with concrete device states and symbolic device

inputs using symbolic execution. Our approach not only integrates concrete and

symbolic execution, but also combines virtual and silicon device executions.

5.6.3 Post-silicon validation

Post-silicon validation has become a bottleneck in system development cycle and

is a significant, growing part of overall validation cost [38]. There has been much

research on post-silicon validation to reduce costs and improve observability [22,

33, 40, 51, 63, 79]. However, many challenges remain in post-silicon validation,

81

such as coverage metrics, failure reproduction, and test generation [57].

One approach to post-silicon test generation is Automatic Test Pattern Gener-

ation (ATPG) [24, 48], which targets exposing electrical and manufacturing defects

rather than functional errors. Another approach is built-in self-test (BIST) [47, 80].

BIST is a mechanism that permits a device to test itself, which also mainly targets

manufacturing defects. There has also been efforts on reusing pre-silicon valida-

tion tests in post-silicon validation [2, 60]. Our approach shares the same goal of

bridging the gap between pre-silicon and post-silicon validation, while fully lever-

aging the white box nature of virtual prototypes to efficiently generate high-quality

functional tests.

5.7 SUMMARY

This chapter presented an automatic concolic approach to generation of post-silicon

tests with virtual prototypes. The generated test cases have been further issued to

both virtual prototypes and silicon devices to evaluate coverage and check incon-

sistencies. We have obtained significant improvement in test coverage and detected

20 inconsistencies between virtual prototypes and silicon devices.

82

Chapter 6

AUTOMATIC DRIVER FAULT INJECTION

6.1 MOTIVATION AND OVERVIEW

Robustness testing is a crucial stage in the device driver development cycle. Device

drivers may behave correctly in normal system environments, but fail to handle

corner cases when experiencing system errors, such as low resource situations, PCI

bus errors and DMA failures [74]. Therefore, it is critical to conduct such robust-

ness testing to improve driver reliability. However, such corner cases are usually

difficult to trigger when testing drivers. The time-to-market pressure further exac-

erbates the problem by limiting the time allocated for driver testing [72]. Thus, it

is highly desirable to speed-up driver robustness testing and reduce human effort.

Fault injection is a technique for software robustness testing by introducing

faults to test code paths, in particular error handling code paths, that might oth-

erwise rarely be traversed. Recently, fault injection techniques have been widely

used for software testing [56, 61]. These techniques have major potential to play

a crucial role in driver robustness testing.

In Section 5.5, we have illustrated how to conduct device fault injection for

driver robustness testing. We have developed two hardware fault models to guide

fault injection with virtual prototypes for driver testing. Device drivers not only

interact with hardware devices, but also need kernel API support to access system

resource. We have proposed a systematic fault injection approach targeting at

kernel API interfaces for driver robustness testing in this chapter.

83

Our approach is inspired by Linux Fault Injection Infrastructure (LFII) [49]

which has been integrated into the Linux kernel since Version 2.6.19. LFII can

cause system faults, such as memory allocation functions returning errors, for

system robustness testing. Our concept of faults is consistent with that of LFII.

There are also other similar studies focusing on fault injection techniques for driver

robustness testing [67, 83]. However, these approaches and tools have obvious

limitations. First, they only provide basic frameworks which mainly support low

memory situations. Second, they only support random fault injection which is

hard to control and inefficient. Third, they require much human effort and time to

get good results and are not easy-to-use. This demands an innovative approach to

systematic and effective fault generation and injection for driver robustness testing.

This chapter presents an approach to automatic runtime fault generation and

injection for driver robustness testing. Our approach runs a driver test and collects

the corresponding runtime trace. Then we identify target functions which can fail

from the captured trace, and generate effective fault scenarios on these target

functions. Each generated fault scenario includes a fault configuration which is

applied to guide further fault injection. Each fault scenario is applied to guide

one instance of runtime fault injection and generate further fault scenarios. This

process is repeated until all fault scenarios have been tested. To achieve systematic

and effective fault injection, we have developed two key strategies. First, a bounded

trace-based iterative generation strategy is developed for generating effective fault

scenarios. Second, a permutation-based injection strategy is developed to assure

the fidelity of runtime fault injection.

We have implemented our approach in a prototype driver robustness testing

tool, namely, ADFI (Automatic Driver Fault Injection). ADFI has been applied

to 12 widely-used device drivers. ADFI generated thousands of fault scenarios and

84

injected them at runtime automatically. After applying all these generated fault

scenarios to driver testing, ADFI detected 28 severe driver bugs. Among these

bugs, 8 bugs are caused by low resource situations, 8 bugs are caused by PCI bus

errors, 8 bugs are caused by DMA failures and the other 4 bugs are caused by

mixed situations.

Our research makes the following three key contributions:

1)Automatic Fault Injection. Our approach to driver robustness testing

not only enables runtime fault injection to simulate system errors, but also gener-

ates fault scenarios automatically based on the runtime trace to exercise possible

error conditions of a driver efficiently. Our approach is easy to use and requires

minimum manual efforts, which greatly reduces driver testing costs and accelerates

testing process.

2)Bounded Trace-based Iterative Generation Strategy. A bounded

trace-based iterative generation strategy is developed to generate unique and ef-

fective fault scenarios based on runtime traces. This strategy not only generates

effective fault scenarios covering different kinds of error situations in modest time,

but also produces efficient fault scenarios with no redundancy.

3)Permutation-based Replay Mechanism. To assure the fidelity of run-

time fault injection with generated fault scenarios, a permutation-based replay

mechanism is developed to handle software concurrency and runtime uncertainty.

The mechanism guarantees that the same driver behaviors can be triggered using

the same fault scenario repeatedly at runtime.

The remainder of this chapter is structured as follows. Sections 2 and 3 present

the design of our approach. Section 4 discusses its implementation. Section 5

elaborates on the case studies we have conducted and discusses the experimental

85

results. Section 6 reviews related work. Section 7 concludes our work.

6.2 BOUNDED TRACE-BASED ITERATIVE FAULT GENERATION

6.2.1 Preliminary Definitions

To help better understand our approach, we first introduce several definitions and

illustrate them with examples.

Definition 1 (target function): A target function f̃ is a kernel API function

which can fail and return an error when f̃ is invoked by a device driver.

As shown in Figure 2.3, the function kmalloc is a target function since it can

fail and return a null pointer.

A stack trace records a sequence of function call frames at a certain point during

the execution of a program which allows tracking the sequence of nested functions

called [82].

Definition 2 (target stack trace): A target stack trace τ � f1 → f2 → ...→
fn → f̃ of a driver consists of a sequence of driver functions and a target function

f̃ . The sequence of driver functions are called prior to f̃ along a driver path. The

first function f1 is a driver entry function.

A target stack trace τ records what happened before a target function was

invoked. Once a driver/system crash happens, the target stack trace can help

the developer better understand the driver behavior. The same target functions

can appear in different target stack traces since the same target functions can be

invoked along different driver paths.

As shown in Figure 6.1, when driver entry functions Entry A and Entry B

are invoked during driver execution, there are three possible target stack traces τ1,

τ2 and τ3 shown in Figure 6.2.

86

void Entry_A() { //Driver entry function

......

ret = Target_Function_1();

if(!ret) goto error;

Function_X();

......

}

void Function_X() {

......

ret = Target_Function_2();

......

}

void Entry_B() { //Driver entry function

......

ret = Target_Function_3();

......

}

Figure 6.1: A Driver Function Call Example

τ1:τ1:

τ2:τ2:

τ3:τ3:

Function_XFunction_XEntryrr _yy AEntry_A

Target_Function_1Target_Function_1

ntryrr _yy BEntry_B

Entryrr _yy AEntry_A

Target_Function_2Target_Function_2

arget_Function_3Target_Function_3

Figure 6.2: Target Stack Trace Examples

87

Definition 3 (runtime trace): A runtime trace ε � τ1 → τ2 → ...→ τn is a

sequence of target stack traces. A subsequence εk of ε contains the first k target

stack traces of ε where εk � τ1 → τ2 → ...→ τk. A runtime trace records all target

stack traces during a driver life cycle.

A runtime trace example is shown in Figure 6.2 which is ε � τ1 → τ2 → τ3.

Definition 4 (fault configuration): A fault configuration φ � ϕ1, ϕ2, ..., ϕn

is a sequence of boolean variables. Each boolean variable ϕi (T or F) is used for

deciding whether the corresponding target function f̃ of τi invokes the kernel API

or returns error. A subsequence of φk of φ contains the first k boolean variables of

φ where φk � ϕ1, ϕ2, ϕ3, ..., ϕk.

Definition 5 (fault scenario): A fault scenario σ � 〈ε, φ〉 is a pair of ε and φ.

A fault scenario is used to guide an instance of runtime fault injection.

Suppose we capture a runtime trace ε � τ1 → τ2 and execution statuses T, T of

both target fault functions in τ1 and τ2, then one generated fault scenario example

is σ � 〈ε, φ〉 where ε � τ1 → τ2 and φ � T, F .

Definition 7 (fault scenario database): A fault scenario

database Σ � {〈σ, ς〉 — σ is a fault scenario, ς is the fault simulation result of σ}
is a set which saves all unique fault scenarios and their runtime execution results.

We have defined three different kinds of test results: pass, fail and null. Before

σ is applied, ς is null. When the driver handles the fault scenario correctly, ς is

pass. If the system or the driver crashes during the fault simulation, ς is fail and

the corresponding crash report is saved for developers to conduct further analysis.

88

Configure
faults Run tests Capture

traces
Generate

tests

Test SuiteFault0 Traces

Fault1
Fault2
…...
FaultN

Figure 6.3: The High-level Workflow

6.2.2 Challenges

The high-level workflow of our approach is illustrated in Figure 6.3. ADFI first

runs a test suite on a device driver under an empty scenario Fault0 to capture

the runtime trace where Fault0 includes an empty configuration which does not

introduce any runtime fault, and fault scenarios are generated based on the cap-

tured trace. Then given one fault scenario FaultX, ADFI runs the test to see if

FaultX triggers a crash. The process of applying one fault scenario is one instance

of runtime fault injection. In one instance, ADFI hooks all target function calls.

Each time a target function call is captured, ADFI decides to execute the corre-

sponding target function or inject a fault (return a false result) according to the

fault scenario. Simultaneously, ADFI collects the trace executed during this run.

Next, ADFI generates more fault scenarios based on the trace. The above process

is repeated until all fault scenarios are applied.

The approach described above has two major challenges.

Fault scenario explosion: Generating all feasible fault scenarios does not

scale if a large number of target functions exist in a driver. A näıve approach

to generating fault scenarios is to explore all target function combinations along

89

a driver runtime trace ε. If there are N target functions along ε, the number of

generated fault scenarios can be 2N − 1. If we apply all these fault scenarios to

driver robustness testing, it can take much time or even forever. Indeed as we

tried this approach, it caused a fault scenario explosion after applying a few fault

scenarios.

Handling concurrency and runtime uncertainty: ADFI repeatedly runs

the same test suite and applies different fault scenarios to guide runtime fault

injection. A fault scenario σ is a pair of a reference runtime trace ε and a fault

configuration φ. To apply σ, ADFI captures a new runtime trace εnew and run

each target function εnew.τi.f̃ according to φ. Due to system concurrency and

runtime uncertainty, ε and εnew can be different which brings difficulty to find the

right φ.ϕi to guide fault injection. This demands a systematic replay mechanism

to guarantee that εnew conforms to ε upon a given fault configuration φ.

6.2.3 Trace-based Iterative Strategy

In order to address the fault scenario explosion challenge, we have developed a

bounded trace-based iterative generation strategy. For each fault scenario σ, ADFI

runs the test suite on the driver and captures the runtime trace ε � τ1 → τ2 →
...→ τn. In the following, we set n to 3 to illustrate our approach. Although we

use a small number as the example, the idea can be applied to any large number.

As shown in Figure 6.4(a), we capture a runtime trace which includes three stack

traces and the corresponding execution statuses of target functions in three stack

traces: (T, T, T).

By applying the näıve approach, we can generate seven (23−1) fault scenarios.

However, some generated fault scenarios are invalid fault scenarios which are not

feasible at runtime. For example, if a generated fault configuration φ � (T, F)

90

is applied, the actual trace is τ1 → τ2 → τ4 shown in Figure 6.4(c) which is

different from τ1 → τ2 → τ3. In this case, (T, F, F) would be an invalid fault

configuration for the trace τ1 → τ2 → τ3. In order to avoid generating invalid

fault scenarios, our trace-based iterative generation strategy only generates one-

step fault configurations (F), (T, F) and (T, T, F) in this iteration as shown in

Figure 6.4(b).

Remark: Our approach does not miss any valid fault scenarios. If the driver

works as shown in Figure 6.4(a), our trace-based iterative generation strategy

first generates three fault scenarios. Then after the fault scenario including the

configuration (F) is applied, the captured fault trace should be (F, T, T) and we

can generate new fault configurations (F, F) and (F, T, F). After we apply all fault

scenarios, we can cover all eight possibilities eventually.

Moreover, our trace-based iterative generation strategy only generates new fault

scenarios on a newly captured stack trace. Suppose we apply fault configuration

(T, F) generated in Figure 6.4(b), we can capture the runtime trace τ1 → τ2 → τ4.

As shown in Figure 6.4(c), we only generate one new fault configuration (T, F, F)

from the captured target function execution trace (T, F, T). Here, we do not

generate a fault configuration (T, T) because it has been covered. In this way, no

duplicate fault scenarios (configurations) are generated.

Algorithm 9 illustrates how to generate new fault scenarios using the trace-

based iterative generation strategy. The algorithm takes a runtime trace ε, a ref-

erence fault scenario σ and the fault scenario database Σ as inputs. If the length

of the configuration is less than the length of ε, the algorithm first supplements

the configuration by adding (j − i) true decisions into φ to build a complete con-

figuration (line 2). The algorithm goes through subsequences of the runtime trace

ε between εj and εi. For each subsequence εi, the algorithm constructs a new fault

91

τ1(f1̃)

τ2(f2̃)

τ3(f3̃)

T

T

T F

F

F
τ2(f2̃)

τ3(f3̃)
T F

τ3(f3̃)
T

T F

F
τ3(f3̃)
T F

(a)

(b)

(c)

τ1(f1̃)

τ2(f2̃)

τ3(f3̃)

T

T

T F

F

F

τ1(f1̃)

τ2(f2̃)
T

F
τ4(f4̃)
T F

Figure 6.4: Trace-based Iterative Generation Example

Algorithm 9 Iterative Generation (ε, σ, Σ)

1: i← ε.size(); j ← σ.size(); φ← ∅;
2: φ← buildCompleteConfiguration(σ.φ, i, j);

3: while i > j do

4: φnew ← φj, 0; //Build a new configuration

5: Σ.insert(〈εj+1, φnew〉); //Save the fault scenario

6: j← j + 1;

7: end while

92

decision φnew by combining the subsequence φi−1 of the previous fault decision φ

and a false decision. A new fault scenario is created which includes εi and φnew

and saved into the database Σ. Suppose we apply a fault configuration φ � (T, F)

and capture the corresponding runtime trace ε � τ1 → τ2 → τ4, the corresponding

length i is 3 and j is 2. We first supplement the configuration as φ � (T, F, T),

then we build a new configuration φ � (T, F, F).

6.2.4 Bounded Generation Strategy

We have applied the trace-based iterative generation strategy to device drivers and

it can greatly reduce the number of generated tests. However, there are still a large

number of fault scenarios generated. After analyzing the captured runtime trace,

we found that there are two main reasons.

1)Duplicate stack traces. For some drivers, many duplicate stack traces

exist in a runtime trace. There are mainly two reasons for duplicate stack traces.

First, the same target function is repeatedly invoked within a loop. For example,

a set of ring buffers is usually allocated using a loop when a network driver is

initialized. Second, the same target function is invoked along a driver path and

the driver path is frequently executed for processing special requests. For example,

system resources are allocated and freed in the transmit function for a network

driver and the transmit function is called many times during an instance of driver

testing.

2)Fault scenario explosion. Although we have applied the trace-based

iterative generation strategy to eliminate invalid fault scenarios, fault scenario

explosion still exists. As shown in Figure 6.4(a), eight fault scenarios can be all

valid for some drivers. If there are N target functions along a runtime trace, a

subset of all N target functions (the number is M , M < N) can still bring a large

93

amount of fault scenarios (the number can be 2M − 1) in the final result.

To solve these two problems, we have developed a bounded generation strategy

to avoid injecting an exponential number of fault scenarios. ADFI supports two

kinds of bounds: maximum number of injected faults on the same stack traces in

a fault scenario (MSF) and maximum number of injected faults in a fault scenario

(MF).

First we explain how MSF works. Suppose MSF is 1, we use an example

to illustrate the idea. We captured a runtime trace ε � τ1 → τ2 → τ3 and the

corresponding target function execution trace (F, T, T). Within ε, τ1 and τ3 are the

same stack traces. If we generate fault scenarios following the trace-based iterative

strategy, we should generate two fault configurations (F, F) and (F, T, F). The

bounded generation strategy does not allow us to inject more than one fault on

the same stack trace, which means we only generate one fault configuration (F, F).

For another bound MF, the idea is straightforward. The number of injected faults

in a fault scenario cannot exceed MF.

As shown in Algorithm 10, we have extended Algorithm 9 to support bounded

generation. There are mainly three differences. First, we go through the reference

fault scenario σ to record all fault-related stack traces and the number of faults as

a map T before generating tests. Second, before fault scenarios are generated, we

check whether the number of faults in the reference fault scenario exceeds MF. If

yes, we terminate test generation and return directly. Third, during the generation,

we check whether the number of faults injected on the same stack traces exceeds

MSF. If not, we generate the corresponding fault scenario. Otherwise, no fault

scenario is generated.

As shown in Algorithm 11, we process the fault scenario σ to record all fault-

related stack traces. T � {〈τ, count〉 — τ is a stack trace, count is the number of

94

Algorithm 10 Bounded Generation (ε, σ, Σ, bound)

1: i← ε.size(); j ← σ.size(); φ← ∅; T ← ∅
2: φ← buildCompleteConfiguration(σ.φ, i, j);

3: T ← recordAllFaults(σ);

4: if checkMFBound(T, MF) then

5: return

6: end if

7: while i > j do

8: if checkMSFBound(T, ε.τj+1, MSF) then

9: φnew ← φj, 0; //Build a new configuration

10: Σ.insert(〈εj+1, φnew〉); //Save the fault scenario

11: end if

12: j← j + 1;

13: end while

95

Algorithm 11 recordAllFaults (σ)

1: ε← σ.ε; φ← σ.φ; T ← ∅; i← σ.size(); j ← 1;

2: while i ≥ j do

3: if φ.ϕj == F then

4: if T.find(ε.τj) == T.end() then

5: T.insert(ε.τj, 1);

6: else

7: T.find(ε.τj)← T.find(ε.τj) + 1;

8: end if

9: end if

10: j← j + 1;

11: end while

12: return T ;

faults injected on τ} is a map. We process each boolean variable φ.ϕj in the fault

configuration. Once φ.ϕj is false, we insert 〈ε.τj, 1〉 into T or increase the count

by 1 if ε.τj exists in T .

6.3 PERMUTATION-BASED INJECTION STRATEGY

Even if we issue the same test suite to device drivers, two runtime traces ε1 and

ε2 can be different due to driver concurrency, runtime uncertainty, such as timing

issues, memory allocation status and network overload.

There are three kinds of possible differences between ε1 and ε2 triggered by the

same test suite.

1)Different sequences of stack traces. Device drivers are system software

96

which can handle more than one requests at the same time, which means concur-

rency widely exists in device drivers. Due to the concurrency, even if two captured

runtime traces include the same stack traces, the sequence of stack traces can be

different between ε1 and ε2.

2)Different length of runtime traces. Due to different system situations

or environments, the number of the same stack trace τ can be different between

ε1 and ε2. For example, if we send the same data over a network driver, there can

be different number of calls to the transmit function of the driver. This difference

brings different number of the same τ existing in ε1 and ε2.

3)Different number of unique stack traces. Due to different faults inject-

ed, stack traces captured can be different between ε1 and ε2. Since fault scenarios

trigger different driver paths, ε1 and ε2 along different paths can include different

stack traces.

Since a fault scenario σ is generated based on a runtime trace, there are the

same differences between σ.ε and the corresponding triggered runtime trace εnew.

This makes it difficult to guide runtime fault scenario injection.

We first illustrate how to resolve the first difference. A fault scenario σ includes

a runtime trace ε � τ1 → τ2 → ...→ τn and a fault configuration φ � ϕ1, ϕ2, ..., ϕn.

To guide fault injection at runtime, it might trigger a new runtime trace εnew �

τnew1 → τnew2 → ...→ τnewn . Here we assume that ε and εnew have the same stack

traces, later we will illustrate how to handle different stack traces. ε should be

a permutation of εnew, which means εnew is constructed by all stack traces in ε

with a different sequence. As an example, τ1 → τ2 → τ4 → τ3 is a permutation of

τ1 → τ2 → τ3 → τ4. In the runtime fault injection, we detect such permutations

automatically and guide the fault injection.

The second difference is caused by runtime uncertainty. Here we assume that

97

ε and εnew include the same set of unique stack traces and the lengths of ε and

εnew can be different, later we will discuss how to handle different set of unique

stack traces. Based on the analysis of driver code and our observation, repeatedly

injecting faults on the same stack traces caused by runtime uncertainty does not

trigger new bugs. Therefore we just ignore such kinds of differences.

Algorithm 12 Get Fault Configuration (τ , σ, Flags)

1: i← 0; n← Flags.size();

2: i← findNextStackTrace(τ, σ, i);

3: while i �= n do

4: if Flags[i] �= true then

5: Flags[i]← true;

6: return σ.φ.ϕi;

7: end if

8: i← findNextStackTrace(τ, σ, i);

9: end while

10: return true;

As shown in Algorithm 12, a permutation-based injection mechanism is devel-

oped to guide the fault configuration. The algorithm takes a stack trace τ , the

fault scenario σ and a flag array Flags as inputs. The array Flags has the length

of σ.ε and each element is initialized as false at the beginning of an instance of

fault injection. Each time a target function is invoked, we determine whether the

function should be executed normally or return an error with the corresponding

stack trace τ . We first find τ from the beginning of σ and return the index i. Then

we check Flags[i] to see whether the fault decision σ.φ.ϕi has been conducted or

not. If it is not conducted, we return σ.φ.ϕi. Otherwise, we continue to get the

index of the next stack trace from the position i. If we can not get the index from a

98

position, findNextStackTrace function returns n which means all fault decisions

for τ have been covered. Therefore we return true to let the target function execute

normally.

The third difference is caused by different faults injected. A set of unique stack

traces in ε and εnew is represented as Sε and Sεnew . There can be three kinds of

cases: Sε � Sεnew , Sεnew � Sε and (Sε � Sεnew and Sεnew � Sε). According to our

experiments, only the first case Sε � Sεnew occurs. There are two reasons. First,

the same test suite is used for different rounds of fault injections. Second, a fault

injected can trigger some new stack traces. Currently we also detect two other

kinds of cases in our tool. Once any case is found, a warning is given.

6.4 IMPLEMENTATION

6.4.1 Overview

As illustrated in Figure 6.5, our automatic fault injection framework includes three

key components:

Driver
Under Test

Trace
Recorder

Kernel
APIs

Test Suite Trace File Fault
Scenarios

Fault Scenario
Generator

OS Kernel
Runtime

Controller

Figure 6.5: Runtime Fault Injection Framework

1)Trace Recorder. The trace recorder captures runtime traces and kernel

function return values while the driver is tested under a test suite. The trace

recorder fully hooks the kernel API function calls so that all function calls and

return values are intercepted and recorded in the trace files.

99

2)Fault Scenario Generator. The fault scenario generator takes a trace

file as the input to generate fault scenarios. A trace-based iterative generation

algorithm is implemented and employed by the generator to deliver high-quality

fault scenarios. Generated fault scenarios are saved in the fault scenario database

for guiding further fault injection.

3)Runtime Controller. The runtime controller applies a fault scenario in

the driver testing process by emulating a fault return according to the fault con-

figuration. The runtime controller is a kernel-level module working with the trace

recorder together. It intercepts all target function calls invoked by device drivers.

Once a kernel API function call is captured, it determines if a fault should be

injected. If it is, the runtime controller returns a false result instead of invoking

the real kernel API function.

6.4.2 Fault Injection on Kernel API Interface

In this dissertation, we mainly focus on the kernel API functions provided by the

kernel since we want to test whether device drivers can survive under different

system situations. Since operating systems provide lots of kernel API functions to

support drivers, so far we have conducted our research on three main categories of

kernel API functions:

1)Memory Allocation Functions. The Linux kernel offers a rich set of

memory allocation primitives which can be used by device drivers to allocate and

optimize system memory resources. Different kinds of memory allocation func-

tions can be used for allocating different kinds of memory. For example, the

“kmalloc” function is used to grab small pieces of memory in kernel space and

“get free page(s)” function is used to allocate larger contiguous blocks of memory.

2)Memory Map and DMA Functions. A modern operating system is

100

usually a virtual memory system, which means that the addresses seen by user

programs do not directly correspond to the physical address used by the hardware

devices. Memory map functions are needed for the conversion between virtual

address and physical address. For example, the “mmap” function establishes a

mapping between a process address space and a device. DMA is the hardware

mechanism used for data transfer between device drivers and hardware devices

without the need of involving the system processor. For example, the the “d-

ma set mask” function is used for checking if the mask is possible and updates the

device parameters if it is.

3)PCI Interface Functions. PCI bus is a widely-used system bus for at-

taching hardware devices. To support PCI device control and management, a set

of functions are provided by the kernel and used by device drivers. For example,

the “pci enable device” function is used for initializing device before it is used by

a driver.

6.4.3 Filter Mechanism

When we first applied ADFI, we observed that the same crashes happened repeat-

edly. After analyzing these crashes, we found two key reasons.

1)Caused by a target function. If a fault is injected into a target function

f̃ , the corresponding error handling code for f̃ is tested. If the error handling

mechanism is not correct, there is always a crash if a fault is injected on f̃ in a

fault scenario.

2)Caused by a sequence of stack traces. Suppose a fault scenario σ1

includes a runtime trace ε � τ1 → τ2 → τ3 → τ4 and a fault configuration

φ � T, F, T, F , it triggers a crash. If another fault scenario σ2 includes the same

runtime trace and a different fault configuration φ � F, F, T, F , σ2 possibly causes

101

the same crash. In σ1, two faults are injected in τ2 and τ4 which cause a crash.

Since the same two faults are injected in τ2 and τ4 within σ2, the same crash usually

happens according to our experiments.

The target function f̃ is included in different stack traces. The stack trace τ

is included in different fault scenarios. If we detect a bug triggered by a specific

target function or a stack trace or a sequence of stack traces, we do not want to

trigger the same crash repeatedly by other fault scenarios. Currently we provide

two kinds of filter mechanisms to avoid such kinds of repeated crashes.

1)Function-Call-based Filter. A function call can be labeled as a filter

pattern. As long as a fault needs to be injected into this function call according

to the fault configuration, the fault scenario is ignored and not applied.

2)Stack-Trace-based Filter. A stack trace (or a sequence of stack traces)

can be defined as a filter pattern. As long as a fault (or a sequence of faults)

needs to be injected into a stack trace (or a sequence of stack traces, respectively)

according to the fault configuration, the fault scenario is ignored and not applied.

The filter mechanism provides flexibility for driver developers to define filters

to avoid repeated crashes. It has been applied to both fault scenario generation

and injection.

6.5 EXPERIMENTAL RESULTS

6.5.1 Experimental Setup

As shown in Table 6.1, we applied ADFI to 12 drivers in 3 categories: Wireless,

USB controller and Ethernet. These three categories represent the most important

three types of PCI devices.

As the workloads of the experiments, we created different test suites for different

102

Table 6.1: Summary of Target Drivers

Category Driver Size Description

Wireless
ath9k 4.3M Qualcomm AR9485 Wireless Driver

iwlwifi 12M Intel Wireless AGN Driver

USB
ehci hcd 10M USB 2.0 Host Controller Driver

xhci hcd 13M USB 3.0 Host Controller Driver

Ethernet

e100 655K Intel(R) PRO/100 Network Driver

e1000 2.3M Intel(R) PRO/1000 Network Driver

ixgbe 5.9M Intel(R) 10 Gigabit Network Driver

i40e 8M Intel(R) 40 Gigabit Network Driver

tg3 2.1M Broadcom Tigon3 Ethernet Driver

bnx2 1.3M Broadcom NetXtreme II Driver

8139cp 537K RealTek Fast Ethernet driver

r8169 1.1M RealTek Gigabit Ethernet Driver

categories. There is one requirement that each test suite must start with a “load

driver” command and end with a “remove driver” command. Between them, any

test cases are allowed. A partial list of test cases for each category is shown in

Table 6.2. Of these drivers, Intel ethernet network drivers are downloaded1. The

other drivers are from Linux kernel source code.

6.5.2 Bug Findings

After testing all 12 drivers, we found the 28 distinct bugs described in Table 6.3.

Of these bugs, 8 bugs are triggered by PCI interface faults, 8 bugs are triggered

by memory allocation faults, 8 bugs are triggered by DMA function faults, and

the other 4 bugs are triggered by mixed PCI/Memory/DMA faults. All these bugs

can result in serious driver/system issues which include driver freeze, driver crash,

1The latest version of Intel ethernet network drivers can be download in the following link:
http://sourceforge.net/projects/e1000/files/

103

Table 6.2: Summary of Workload

Category Test Applications

Wireless

Basic network commands (e.g. ifup, ifconfig, ifdown)

Data transfer commands (e.g. scp, ping)

Wireless config tools (e.g. iw, iwconfig)

USB

Basic USB control commands (e.g. lsusb)

Enable/disable a USB device on the USB hub

Transfer data to a USB disk

Ethernet

Basic network commands (e.g. ifup, ifconfig, ifdown)

Data transfer commands (e.g. scp, ping)

Ethernet config tools (e.g. ethtool, scapy)

Table 6.3: Bug Results

Category
Wireless Driver USB Driver Ethernet Driver

Total

ath9k iwlwifi ehci hcd xhci hcd e100 e1000 ixgbe i40e tg3 bnx2 8139cp r8169

PCI 0 0 0 0 0 0 2 2 0 2 2 0 8

Memory 0 1 0 0 1 4 0 2 0 0 0 0 8

DMA 1 0 0 4 1 0 0 0 0 1 1 0 8

Mixed 0 0 0 0 0 4 0 0 0 0 0 0 4

Total 1 1 0 4 2 8 2 4 0 3 3 0 28

104

system freeze and system crash. Moreover, all these bugs are difficult to find under

normal situations.

These results show the effectiveness of our fault injection approach. We sum-

marize the failure outcomes as follows:

1)System crash. The fault results in a kernel panic or fatal system error

which crashes the entire system.

2)System hang. The fault results in a kernel freeze where the whole system

ceases to respond to inputs.

3)Driver crash. The fault only results in a driver crash while the system can

still work correctly.

4)Driver freeze. The fault only results in a driver freeze where the driver

can not be loaded/removed.

21.43%

10.71%

53.57%

14.29%

0

2

4

6

8

10

12

14

16

System crash System hang Driver crash Driver freeze

Figure 6.6: Outcomes of Experiments

Figure 6.6 provides the distributions of failure types. Of the 28 bugs, 9 bugs

result in system failures including 6 system crashes and 3 system hangs. The other

19 bugs result in driver failures including 15 driver crashes and 4 driver freezes.

105

Bug Validation. To verify if all these bugs are valid, we manually injected bug-

correlated faults into device drivers. For example, if there is a “kmalloc” fault, we

manually injected the fault. We modified the original statement

“void * p = kmalloc(size, GFP KERNEL);”

to

“void * p = NULL;”

Then we recompiled the driver and ran the driver under the test suite. The above

example is just a simple fault scenario. Some fault scenarios are quite involved and

require more modifications to the driver code to reproduce. All 28 bugs can be

triggered the same way as they are triggered by ADFI. By this manual validation,

we are better assured that all 28 bugs are valid and they can happen in a real

system environment.

6.5.3 Human Efforts

One goal of ADFI is to minimize the human effort in testing the robustness of

a driver. The necessary effort of our approach comes from three sources: (1)

a configuration file to prepare ADFI for testing a driver; (2) crash analysis; (3)

compilation flag modification to support coverage. The first two efforts are required

for our approach while the third one is optional.

Configuration file. Only a few parameters need to be defined in a configuration

file. They include driver name, runtime data folder path, test suite path and several

runtime parameters. One example is shown in Figure 6.7. Such configuration is

easy to create. In our experiments, only a few minutes are needed to set up one

configuration file.

106

Table 6.4: Results under Different MF (MSF = 1)

Category MF
Wireless Driver USB Driver Ethernet Driver

ath9k iwlwifi ehci hcd xhci hcd e100 e1000 ixgbe i40e tg3 bnx2 8139cp r8169

PCI

1 1 3 0 0 2 5 5 5 7 3 2 2

2 1 3 0 0 2 9 8 8 10 3 2 3

3 1 3 0 0 2 9 9 8 10 3 2 3

Memory

1 5 24 4 1 3 13 11 32 11 9 1 3

2 5 164 10 1 3 49 53 136 25 34 1 3

3 5 840 12 1 3 117 156 414 29 51 1 3

DMA

1 3 4 1 6 5 11 9 17 4 13 3 8

2 3 9 1 6 6 40 51 69 6 77 7 24

3 3 10 1 6 6 95 171 177 6 221 8 37

ALL

1 9 31 5 7 10 28 25 54 22 25 6 13

2 9 235 15 7 12 180 209 268 84 234 10 56

3 9 1375 18 7 12 858 924 1365 175 980 11 130

Figure 6.7: A Sample Configuration

107

Crash analysis. Once a crash happens, the developer needs to figure out the

cause of the crash. Our approach can inject the same fault and trigger the same

behavior repeatedly. When there is a crash, our approach can tell what faults have

been injected into the driver. Furthermore, the whole driver stack is provided

by ADFI to support crash analysis. This information can help driver developers

understand and figure out the root cause of the crash. In our experiments, the

average time for understanding each of the 28 bugs is less than 10 minutes using

the ADFI debug facilities.

Compilation flag. In order to evaluate the driver code coverage, we need to

compile the driver with additional compilation flags. We can achieve this in two

ways. First, we can add the flags into the Linux kernel compilation process. Sec-

ond, we can add the flags into the driver compilation Makefile. Both ways are easy

to implement. In our experiments, we manually added the compilation flags into

each driver Makefile.

6.5.4 Evaluation of Fault Generation and Injection Strategy

ADFI allows two kinds of bounds, the maximum faults (MF) and the maximum

same faults (MSF) in a test case. We first set MSF as 1 and then generated faults

under different MFs. Table 6.4 shows the number of generated fault scenarios

where MF is 1, 2 and 3.

We have generated fault scenarios on all functions in the three categories (c.f.

Section 5.2). As shown in Table 6.4, different number of fault scenarios were

generated for different device drivers. For drivers such as ath9k and 8139cp, only

about 10 fault scenarios were generated. For drivers such as iwlwifi and i40e, more

than 1000 fault scenarios were generated. The number of generated faults depends

on how many target functions are used in a device driver.

108

4.5

450

6 2.5 4

290
320

476

60

230

4
45

0

100

200

300

400

500

Time Usage (Minutes)

Figure 6.8: Time Usage

Another observation from the results is that there are no generated fault sce-

narios for ehci hcd and xhci hcd under PCI category. After analyzing the source

code of ehci hcd and xhci hcd code, we did not find PCI-related functions invoked

by these drivers directly. The fact is that both these drivers only invoke some

PCI wrapper functions directly and these PCI wrapper functions are defined in

the kernel.

We further tried to generate fault scenarios while setting MSF as 2 on e1000

and iwlwifi drivers. We generated more test cases on both drivers, however no new

bugs were detected and almost no coverage improvement was achieved.

In order to evaluate the efficiency of ADFI, we summarized total time usage for

fault generation and injection in Figure 6.8. All these time usages were summarized

while generating fault scenarios on all functions in three categories. ADFI can

deliver high quality fault scenarios and find bugs effectively with a modest amount

of time.

109

Table 6.5: Summary of Coverage Improvement

Driver

Statement Branch

#
Test Suite Generated Tests

#
Test Suite Generated Tests

% # % # % # %

ath9k 6146 3147 51.20% 3208 52.20% 3171 1059 33.40% 1268 39.99%

iwlwifi 11966 6761 56.50% 7000 58.50% 6458 2454 38.00% 2648 41.00%

ehci hcd 2763 1307 47.30% 1323 47.88% 1586 568 35.81% 588 37.07%

xhci hcd 4772 2114 44.30% 2119 44.40% 2485 721 29.01% 723 29.09%

e100 1258 721 57.31% 743 59.06% 617 206 33.39% 231 37.44%

e1000 5496 2215 40.30% 2259 41.10% 3530 787 22.29% 833 23.60%

ixgbe 13234 4222 31.90% 4301 32.50% 7288 1414 19.40% 1479 20.29%

i40e 9666 3557 36.80% 3886 40.20% 4882 1089 22.31% 1255 25.71%

tg3 7865 2580 32.80% 2658 33.80% 4990 983 19.70% 1043 20.90%

bnx2 3856 1828 47.41% 1859 48.21% 2217 643 29.00% 687 30.99%

8139cp 856 498 58.18% 506 59.11% 314 117 37.26% 126 40.13%

r8169 2596 1241 47.80% 1264 48.69% 848 294 34.67% 319 37.62%

110

6.5.5 Coverage Improvement

As shown in Table 6.5, the generated fault scenarios led to decent test coverage

improvement. Our approach focuses on the error handling mechanism and capa-

bility of device drivers. The error handling code only takes up a small portion of

driver code. Even if we can trigger all error handling mechanisms in a driver, it

does not mean that the improved coverage is very high.

As shown in Table 6.5, the improved coverage is from 0.1% to 6.5%. However,

our approach can cover a lot of error handling branches. Particularly, for iwlwifi

and i40e, the statement coverage can be improved by more than 200 new state-

ments and the branch coverage can be improved by more than 150 new branches.

After going through all 150 new branches, we found that most of them are error

handling branches.

6.5.6 Evaluation against Other Fault Injection Techniques

We have evaluated other fault injection techniques. Their comparison with our

approach can be founded in Section 6.6.3.

6.5.7 Further Potentials

Although our approach is only evaluated on Linux device drivers in our experi-

ments, the idea can be applied in other domains. We list three potential applica-

tions in the following:

1)Linux kernel module testing. While ADFI mainly focuses on device

drivers, the principles can easily apply to other kernel modules. The only effort is

to identify necessary categories of target functions for different kernel modules.

2)Windows driver testing. The Windows drivers have similar structures

111

to Linux drivers. Once we can figure out how to migrate ADFI into the Windows

environment, it can be used for Windows driver robustness testing.

3)User-level program/library testing. The user-level program/library

needs to invoke certain functions which can fail at runtime, for example “mal-

loc” function. Our idea can be further applied to test the robustness of user-level

program/library to improve reliability.

6.6 RELATED WORK

There has been much research on device driver testing since drivers account for

a major portion of operating systems and are a major cause of operating system

crashes [28]. Our work is related to past work in several areas, including static

analysis, reliability testing and fault injection.

6.6.1 Static Analysis

Model checking, theorem proving, and program analysis have been used to analyze

device drivers to find thousands of bugs [7, 26, 42, 64]. Nevertheless, these tools

take time to run and the results require time and expertise to interpret. Thus, these

tools are not well suited to the frequent modifications and tests that are typical of

initial code development. Numerous approaches have proposed to statically infer

so-called protocols, describing expected sequences of function calls [26, 42, 66].

These approaches have focused on sequences of function calls that are expected

to appear within a single function, rather than the specific interaction between a

driver and the rest of the kernel.

Some safety holes in drivers can be eliminated by the use of advanced type

systems. For example, Bugrara and Aiken propose an analysis to differentiate be-

tween safe and unsafe userspace pointers in kernel code [15]. They focus, however,

112

on the entire kernel, and thus may report to the driver developer about faults in

code other than his own.

6.6.2 Reliability Testing

There has been much research for operating systems reliability testing [4, 14, 21, 25,

37, 68, 69, 71]. Reliability testing of operating systems has been focused on device

drivers since drivers are usually developed by a third party. Previous research

on device driver reliability has mainly targeted detecting, isolating, and avoiding

generic programming errors and errors in the interface between the driver and the

OS.

6.6.3 Fault Injection Techniques

In software testing, fault injection is a technique for improving the coverage of a test

by introducing faults to test code paths, in particular error handling code paths,

that might otherwise rarely be followed. Fault injection techniques are widely

used for software and system testing [29, 54, 55, 56, 61], ranging from testing the

reliability of device drivers to testing operating systems, embedded systems and

real-time systems [5, 16, 35, 36, 46, 58, 67].

There are several fault injection frameworks provided on both Windows and

Linux platforms.

Windows Driver Verifier: Driver Verifier provides options to fail instances

of the driver’s memory allocations, as might occur if the driver was running on

a computer with insufficient memory. This tests the driver’s ability to respond

properly to low memory and other low-resource conditions.

Linux Fault Injection Framework: This framework [23] can cause memory

allocation failures at two levels: in the slab allocator (where it affects kmalloc

113

and most other small-object allocations) and at the page allocator level (where it

affects everything, eventually). There are also hooks to cause occasional disk I/O

operations to fail, which should be useful for filesystem developers. In both cases,

there is a flexible runtime configuration infrastructure, based on debugfs, which

will let developers focus fault injections into a specific part of the kernel.

KEDR Framework: KEDR [67] is a framework for dynamic (runtime and post

mortem) analysis of Linux kernel modules, including device drivers, file system

modules, etc. The components of KEDR operate on a kernel module chosen by

the user. They can intercept the function calls made by the module and, based

on that, detect memory leaks, simulate resource shortage in the system as well

as other uncommon situations, save the information about the function calls to a

kind of “trace” for future analysis by the user-space tools.

There are three major limitations in the frameworks above. First, these frameworks

mainly support memory-related fault injection to simulate low resource situation-

s. Second, these frameworks mainly provide random fault simulation. Third,

these frameworks require high manual efforts. Our approach extends the above

framework to support more fault situations, such as DMA-related operations and

PCI-related operations. Our approach provides an easy-to-use approach with little

human effort which can systematically enumerate different kinds of fault scenarios

to guide fault simulation.

6.7 SUMMARY

In this chapter, we presented an approach to runtime fault injection for driver

robustness testing. We have evaluated our approach on 12 widely-used device

drivers. Our approach was able to generate and inject effective fault scenarios in

a modest amount of time using the trace-based iterative fault generation strategy.

114

We have detected 28 bugs which have been further validated by manually injecting

these bugs into device drivers. We have also measured test coverage and found that

ADFI led to decent improvement in statement and branch coverage in drivers.

115

Chapter 7

CONCLUSION AND FUTURE RESEARCH

7.1 CONCLUSION

Post-silicon validation has become a critical problem in the product development

cycle, driven by increasing design complexity, higher level of integration and de-

creasing time-to-market. According to recent industry reports, validation accounts

for a large portion of overall product cost. Post-silicon validation consumes an

increasing share of the overall product development time [75]. This demands in-

novative approaches to speeding up post-silicon validation and reducing its cost.

To accelerate post-silicon validation, this dissertation research has successfully

developed several approaches and tools to shift-left post-silicon validation with

virtual prototypes.

Coverage Analysis of Post-silicon Tests. Post-silicon validation tests should

be well evaluated before they are issued to a silicon device. We have developed

an approach to early coverage evaluation of post-silicon validation tests with vir-

tual prototypes, which fully leverages the observability and traceability of virtual

prototypes.

The approach utilizes virtual prototype coverage to estimate silicon device func-

tional coverage. Two kinds of coverage metrics have been employed to the evalu-

ation process. Typical software coverage metrics have been adopted to give basic

coverage indication. Two hardware-specific coverage metrics, register coverage

116

and transaction coverage, have been developed to deliver more accurate hardware-

oriented coverage results.

The approach has been used for evaluating a suite of common tests on virtu-

al prototypes of five network adapters. High confidence has been established in

fidelity of coverage evaluation by further conducting coverage evaluation and con-

formance checking on silicon devices. With this early coverage estimation, it can

guide further test generation.

Automatic Concolic Test Generation. High-quality tests should be ready be-

fore a silicon device becomes available [57] in order to save time spent on preparing,

debugging and fixing tests in the post-silicon stage after the device is available.

We have presented an automatic concolic approach to generation of post-silicon

tests with virtual prototypes.

The approach takes advantage of white box nature of virtual prototypes and

applies “concolic” idea from software testing to hardware domain. We have eval-

uated our approach on virtual devices for three popular network adapters. Our

ACTG approach was able to generate effective test cases in a modest amount of

time using the transaction-based test selection strategy. We have evaluated this

strategy from two aspects: state selection efficiency and redundancy identification.

The results show that our strategy performs significantly better than random se-

lection of states under test and has significant reduction on the number of tests

that have to be applied within limited amount of time.

We have measured test coverage and found that ACTG led to major improve-

ment in coverage of device functionalities. Moreover, we applied generated test

cases to both virtual and silicon devices and conducted consistency checking be-

tween their states. We have detect 20 inconsistencies between virtual and silicon

devices, each of which reveals a defect in either the virtual or silicon device.

117

Effective Fault Injection for Driver Robustness Testing. Besides the cov-

erage evaluation and test generation for hardware validation, we have further ex-

plored how to support software validation with virtual prototypes. Since virtual

prototypes enable early driver testing, we have developed an automatic fault in-

jection approach for driver robustness testing.

The approach can be used on both virtual platform and physical platform.

We have evaluated our approach on 12 widely-used device drivers. Our approach

was able to generate and inject effective fault scenarios in a modest amount of

time using the iterative trace-based fault generation strategy. We have detected

28 bugs which have been further validated by manually injecting these bugs into

device drivers. We have also measured test coverage and found that ADFI led to

decent improvement in statement and branch coverage over error handling code in

drivers.

7.2 FUTURE RESEARCH

The dissertation has presented several approaches to accelerate post-silicon func-

tional validation with virtual prototypes. Moreover, virtual prototypes can enable

more interesting research which should be explored.

7.2.1 Conformance Checking between Virtual Prototype and Hard-

ware Design

Virtual prototype and the corresponding hardware design are developed according

to the same specification. At the transaction level, they should behave the same

and provide the same functionalities. However, there are some differences because

they are developed separately by different software developers and hardware engi-

neers.

118

Virtut al PrototypeVirtual Prototype

Path ConstraintsPath Constraints

Hardware DesignHardware Design

Symbolic Execution
of Virtual Prototype

Symbolic Execution
of Hardware Design

Outpt ut1Output1

Outpt ut2Output2

Conform? Yes/N// o/UnsureYes/No/Unsure

Figure 7.1: Framework for Conformance Checking between Virtual Prototype and

Hardware Design

We employ symbolic execution to conduct conformance checking between a vir-

tual prototype and the corresponding hardware design. As shown in Figure 7.1,

the framework mainly includes two symbolic execution engines for virtual proto-

types and hardware designs. In this dissertation, we have proposed a symbolic

execution engine for virtual prototypes. Moreover, we have already developed a

symbolic execution engine for hardware designs which mainly target at RTL design

symbolic execution.

Using this framework, we first execute the virtual prototype with symbolic in-

puts using symbolic execution. For each path covered in the symbolic execution of

the virtual prototype, we collect path constraints and output1. With the collected

path constraints, we execute the hardware design and collect output2. Then the

conformance is checked between output1 and output2.

But there are still several challenges. First, we need to figure out how to map a

transaction in the virtual prototype to a sequential state transitions in the hardware

design. Second, we need to solve state exploration problem in symbolic execution

of virtual prototypes. Third, we need to implement a sufficient mechanism to check

the conformance between output1 and output2.

119

7.2.2 Automatic Test Generation for RTL Simulation/Emulation with

Virtual Prototypes

The automatic test generator will be extended to generate tests that can be fed

into simulators and emulators. Since the designs are often simulated/emulated

stand-alone, test harnesses have to be provided to feed the tests into the designs.

Therefore, our test generator may have to generate such test harnesses or at least

generate tests in formats that can be consumed by these harnesses.

Test Manger
Operating System

Virtual Machine

Test Suite

Recorder

Virtual
Prototype

Execution Harness

Symbolic Engine

Virtual
Prototype

Simulator/ Emulator
Hardware

Design

Generated
Test Cases

Request
Sequence

Figure 7.2: Workflow of Automatic Test Generation for RTL Simulation

As shown in Figure 7.2, our test generation algorithm will still be based on

the execution of the virtual device in a virtual machine and its interaction with

its software driver. Using this approach, the tests generated reflect how the soft-

ware utilizes the driver. In addition, the algorithm will be guided by the coverage

analysis so that both the coverage information on the virtual device and that on

the hardware design will be utilized. After generating test cases, our approach

can then apply a generated test case to hardware design simulation/emulation.

Our automatic test generation framework includes three key components: (1) The

recorder captures device requests from a concrete execution of the virtual device

in the virtual machine and records them in the request sequence; (2) The symbol-

ic engine replays the captured request sequence and generate efficient test cases

based on generation strategy; (3) The test manager is an individual module which

communicates with simulator/emulator to apply a test case to a hardware design.

120

7.2.3 Further Research on Device Fault Injection with Virtual Proto-

types for Driver Testing

To ensure the system reliability, device drivers must tolerate hardware-related

faults, such as DMA failures, interrupt loss, device I/O errors. Therefore, it is

necessary that different kinds of hardware faults can be generated and injected to

test the driver robustness.

As illustrated in Section 5.5, we have developed a framework for device fault

injection with virtual prototypes. The framework first generates numerous fault

scenarios automatically based on the runtime trace from concrete execution of

device drivers and virtual prototypes. Generated fault scenarios can be used to

simulate runtime hardware faults to test whether device drivers can handle unex-

pected hardware faults correctly.

Currently there are only two fault models: I/O error model and Interrupt loss

model. However, there are more possible fault models like DMA error model and

Interrupt hang model. In the future, we need to add these fault models into our

fault injection framework.

We have conducted preliminary evaluation on three virtual prototypes and the

corresponding Linux drivers using our VPFI framework. We found 2 serious bugs

with generated fault scenarios. In the future work, we will continue implementing

VPFI framework and applying it to more virtual prototypes and the corresponding

drivers. We will work on fully developing this approach and conducting further

evaluation.

121

REFERENCES

[1] IEEE standard glossary of software engineering terminology. IEEE Std 610.12-

1990, 1990.

[2] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and

J. Schumann. A unified methodology for pre-silicon verification and post-

silicon validation. In DATE, 2011.

[3] Allon Adir, Amir Nahir, Avi Ziv, Charles Meissner, and John Schumann.

Reaching coverage closure in post-silicon validation. In HVC, 2010.

[4] A. Albinet, J. Arlat, and J-C Fabre. Characterization of the impact of faulty

drivers on the robustness of the linux kernel. In International Conference on

Dependable Systems and Networks, 2004.

[5] Arnaud Albinet, Jean Arlat, and Jean-Charles Fabre. Characterization of the

impact of faulty drivers on the robustness of the linux kernel. In International

Conference on Dependable Systems and Networks, 2004.

[6] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven

compositional symbolic execution. In Proceedings of the Theory and Practice

of Software, 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2008.

[7] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichten-

berg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah

122

Ustuner. Thorough static analysis of device drivers. In ACM SIGOPS/Eu-

roSys European Conference on Computer Systems, 2006.

[8] K. Balston, M. Karimibiuki, A.J. Hu, A. Ivanov, and S. J E Wilton. Post-

silicon code coverage for multiprocessor system-on-chip designs. IEEE Trans-

actions on Computers, 2011.

[9] Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Struc-

tural coverage of feasible code. In AST, 2010.

[10] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX

ATEC, 2005.

[11] Darrell Bethea, Robert A. Cochran, and Michael K. Reiter. Server-side ver-

ification of client behavior in online games. ACM Trans. Inf. Syst. Secur.,

14(4), 2008.

[12] T. Bojan, M.A. Arreola, E. Shlomo, and T. Shachar. Functional coverage

measurements and results in post-silicon validation of CoreTM2 duo family.

In HLVDT, 2007.

[13] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. RWset: attacking

path explosion in constraint-based test generation. In TACAS, 2008.

[14] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious device

drivers in linux. In Conference on USENIX Annual Technical Conference,

2010.

[15] Suhabe Bugrara and Alex Aiken. Verifying the safety of user pointer derefer-

ences. In IEEE Symposium on Security and Privacy, 2008.

123

[16] Gianpiero Cabodi, Marco Murciano, and Massimo Violante. Boosting software

fault injection for dependability analysis of real-time embedded applications.

ACM Trans. Embed. Comput. Syst., 2011.

[17] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: unassisted and

automatic generation of high-coverage tests for complex systems programs. In

OSDI, 2008.

[18] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. Coverage evaluation of post-

silicon validation tests with virtual prototypes. In DATE, 2014.

[19] Kai Cong, Fei Xie, and Li Lei. Automatic concolic test generation with virtual

prototypes for post-silicon validation. In ICCAD, 2013.

[20] Kai Cong, Fei Xie, and Li Lei. Symbolic execution of virtual devices. In QSIC,

2013.

[21] D. Cotroneo, D. Di Leo, F. Fucci, and R. Natella. Sabrine: State-based robust-

ness testing of operating systems. In International Conference on Automated

Software Engineering, 2013.

[22] Lin David, Hong Ted, Fallah Farzan, Hakim Nagib, and Mitra Subhasish.

Quick detection of difficult bugs for effective post-silicon validation. In DAC,

2012.

[23] Roberto Jung Drebes and Takashi Nanya. Limitations of the linux fault injec-

tion framework to test direct memory access address errors. In IEEE Pacific

Rim International Symposium on Dependable Computing, 2008.

[24] R. Drechsler, S. Eggersgluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and

D. Tille. On acceleration of SAT-Based ATPG for industrial designs. IEEE

124

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2008.

[25] Joao Duraes and H. Madeira. Multidimensional characterization of the impact

of faulty drivers on the operating systems behavior. Transactions of IEICE,

2003.

[26] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin

Chelf. Bugs as deviant behavior: A general approach to inferring errors in

systems code. In ACM Symposium on Operating Systems Principles, 2001.

[27] Bellard Fabrice. QEMU. http://wiki.qemu.org/Main_Page, 2013.

[28] Archana Ganapathi, Viji Ganapathi, and David Patterson. Windows xp kernel

crash analysis. In Conference on Large Installation System Administration,

2006.

[29] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. EDFI: A

dependable fault injection tool for dependability benchmarking experiments.

In Proc. of the Pacific Rim Int’l Symp. on Dependable Computing, 2013.

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-

mated random testing. In PLDI, 2005.

[31] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: Whitebox

fuzzing for security testing. ACM Queue - Networks, 2012.

[32] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated white-

box fuzz testing. In NDSS, 2008.

[33] T. Hong, Y Li, Sung-Boem Park, D. Mui, D. Lin, Z.A. Kaleq, N. Hakim,

125

H. Naeimi, D.S. Gardner, and S Mitra. QED: quick error detection tests for

effective post-silicon validation. In Test Conference (ITC), 2010.

[34] International Business Strategies, Inc. Global systemIC industry service

monthly reports. http://www.ibs-inc.net, 2014.

[35] Tahar Jarboui, Jean Arlat, Yves Crouzet, and Karama Kanoun. Experimental

analysis of the errors induced into linux by three fault injection techniques.

In International Conference on Dependable Systems and Networks, 2002.

[36] Andras Johansson and Neeraj Suri. On the impact of injection triggers for

os robustness evaluation. In International Symposium on Software Reliability

Engineering, 2007.

[37] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating hard-

ware device failures in software. In ACM SIGOPS Symposium on Operating

Systems Principles, 2009.

[38] J. Keshava, N. Hakim, and C. Prudvi. Post-silicon validation challenges: How

EDA and academia can help. In DAC, 2010.

[39] James C. King. Symbolic execution and program testing. Commun. ACM,

1976.

[40] H.F. Ko and N. Nicolici. Automated trace signals identification and state

restoration for improving observability in post-silicon validation. In DATE,

2008.

[41] Saparya Krishnamoorthy, Michael S. Hsiao, and Loganathan Lingappan.

Tackling the path explosion problem in symbolic execution-driven test gener-

ation for programs. In IEEE Asian Test Symposium, 2010.

126

[42] J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart, and G. Muller.

Wysiwib: A declarative approach to finding api protocols and bugs in linux

code. In International Conference on Dependable Systems Networks, 2009.

[43] Li Lei, Kai Cong, and Fei Xie. Optimizing post-silicon conformance checking.

In ICCD, 2013.

[44] Li Lei, Kai Cong, Zhenkun Yang, and Fei Xie. Validating direct memory access

interfaces with conformance checking. In Proceedings of the 2014 IEEE/ACM

International Conference on Computer-Aided Design, 2014.

[45] Li Lei, Fei Xie, and Kai Cong. Post-silicon conformance checking with virtual

prototypes. In DAC, 2013.

[46] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault injec-

tion: Quantified error and confidence. In Conference on Design, Automation

and Test in Europe, 2009.

[47] Jin-Fu Li, Yung-Fa Chou, Chih-Yen Lo, Che-Wei Chou, Ding-Ming Kwai,

Yun-Chao Yu, and Cheng-Wen Wu. A built-in self-test scheme for 3d rams.

In International Test Conference (ITC), 2012.

[48] Xijiang Lin, Kun-Han Tsai, Chen Wang, M. Kassab, J. Rajski, T. Kobayashi,

R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo. Timing-aware ATPG for

high quality at-speed testing of small delay defects. In Asian Test Symposium,

2006.

[49] Linux. Fault Injection Capabilities Infrastructure. http://lxr.linux.no/

linux+v3.14/Documentation/fault-injection/.

127

[50] Xiao Liu and Qiang Xu. Trace signal selection for visibility enhancement in

post-silicon validation. In DATE, 2009.

[51] Xiao Liu and Qiang Xu. On signal selection for visibility enhancement in

trace-based post-silicon validation. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2012.

[52] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Direct-

ed symbolic execution. In Proceedings of the 18th International Conference

on Static Analysis, 2011.

[53] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In Proceedings

of the 29th International Conference on Software Engineering, 2007.

[54] Paul D. Marinescu, Radu Banabic, and George Candea. An extensible tech-

nique for high-precision testing of recovery code. In USENIX Conference on

USENIX Annual Technical Conference, 2010.

[55] Paul D. Marinescu and George Candea. Efficient testing of recovery code

using fault injection. ACM Trans. Comput. Syst., 2011.

[56] Paul Dan Marinescu and George Candea. LFI: A practical and general library-

level fault injector. In Dependable Systems and Networks, 2009.

[57] S Mitra, S.A. Seshia, and N. Nicolici. Post-silicon validation opportunities,

challenges and recent advances. In DAC, 2010.

[58] Abbas Mohammadi, Mojtaba Ebrahimi, Alireza Ejlali, and Seyed Ghassem

Miremadi. Scfit: A FPGA-based fault injection technique for SEU fault model.

In Conference on Design, Automation and Test in Europe, 2012.

128

[59] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B. Bentley,

H. Foster, A. Hu, V. Bertacco, and S. Kapoor. Bridging pre-silicon verification

and post-silicon validation. In DAC, 2010.

[60] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B. Bentley,

H. Foster, A. Hu, V. Bertacco, and S. Kapoor. Bridging pre-silicon verification

and post-silicon validation. In DAC, 2010.

[61] Thomas Naughton, Wesley Bland, Geoffroy Vallee, Christian Engelmann, and

Stephen L. Scott. Fault injection framework for system resilience evaluation:

Fake faults for finding future failures. In Workshop on Resiliency in High

Performance, 2009.

[62] Shannon Nelson and Peter Waskiewicz. Virtualization: Writing (and testing)

device drivers without hardware. In Linux Plumbers Conference, 2011.

[63] Sung-Boem Park, T. Hong, and S Mitra. Post-silicon bug localization in

processors using instruction footprint recording and analysis (IFRA). IEEE

Transactions on CADICS, 2009.

[64] Hendrik Post and Wolfgang Küchlin. Integrated static analysis for linux device

driver verification. In International Conference on Integrated Formal Methods,

2007.

[65] Xiao Qu and Brian Robinson. A case study of concolic testing tools and their

limitations. In International Symposium on Empirical Software Engineering

and Measurement, 2011.

[66] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-

sensitive inference of function precedence protocols. In International Confer-

ence on Software Engineering, 2007.

129

[67] Vladimir V. Rubanov and Eugene A. Shatokhin. Runtime verification of

linux kernel modules based on call interception. In International Conference

on Software Testing, Verification, and Validation, 2011.

[68] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming

device drivers. In ACM European Conference on Computer Systems, 2009.

[69] Leonid Ryzhyk, John Keys, Balachandra Mirla, Arun Raghunath, Mona Vi-

j, and Gernot Heiser. Improved device driver reliability through hardware

verification reuse. In International Conference on Architectural Support for

Programming Languages and Operating Systems, 2011.

[70] Pradyumna Sampath and Bangalore Rachana Rao. Efficient embedded soft-

ware development using QEMU. In 13th Real Time Linux Workshop, 2011.

[71] C. Sarbu, A. Johansson, N. Suri, and N. Nagappan. Profiling the opera-

tional behavior of os device drivers. In International Symposium on Software

Reliability Engineering, 2008.

[72] Constantin Sârbu, Andréas Johansson, Falk Fraikin, and Neeraj Suri. Im-

proving robustness testing of cots os extensions. In Proceedings of the Third

International Conference on Service Availability, 2006.

[73] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing

engine for c. In ESEC/FSE, 2005.

[74] Varshapriya Shakti D Shekar, B B Meshram. Device driver fault simulation

using kedr. International Journal of Advanced Research in Computer Engi-

neering and Technology, 2012.

130

[75] E. Singerman, Y. Abarbanel, and S. Baartmans. Transaction based pre-to-

post silicon validation. In DAC, 2011.

[76] Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for struc-

tural test generation. In International Symposium on Software Testing and

Analysis, 2010.

[77] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Hen-

ry M. Levy. Recovering device drivers. ACM Trans. Comput. Syst., 2006.

[78] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input gener-

ation with java pathfinder. SIGSOFT Softw. Eng. Notes, 2004.

[79] I. Wagner and V. Bertacco. Reversi: Post-silicon validation system for modern

microprocessors. In ICCD, 2008.

[80] Seongmoon Wang. A bist tpg for low power dissipation and high fault cover-

age. IEEE Trans. Very Large Scale Integr. Syst., 2007.

[81] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi In-

amura, and Zhendong Su. Dynamic test input generation for web applications.

In International Symposium on Software Testing and Analysis, 2008.

[82] Wikipedia. Stack trace. http://en.wikipedia.org/wiki/Stack_trace.

[83] Windows. Low Resources Simulation. http://msdn.microsoft.com/en-us/

library/windows/hardware/ff548288(v=vs.85).aspx.

	Portland State University
	PDXScholar
	Spring 6-3-2015

	Post-silicon Functional Validation with Virtual Prototypes
	Kai Cong
	Let us know how access to this document benefits you.
	Recommended Citation

	Post-silicon Functional Validation with Virtual Prototypes

