
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

10-2008

Window Queries Over Data Streams
Jin Li
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Li, Jin, "Window Queries Over Data Streams" (2008). Dissertations and Theses. Paper 2675.

10.15760/etd.2668

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2675?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2668
mailto:pdxscholar@pdx.edu

ABSTRACT

An abstract of the dissertation of Jin Li for the Doctor of Philosophy in Computer

Science presented October 17, 2008.

Title: Window Queries over Data Streams

Evaluating queries over data streams has become an appealing way to support various

stream-processing applications. Window queries are commonly used in many stream

applications. In a window query, certain query operators, especially blocking operators

and stateful operators, appear in their windowed versions. Previous research work in

evaluating window queries typically requires ordered streams and this order

requirement limits the implementations of window operators and also carries

performance penalties. This thesis presents efficient and flexible algorithms for

evaluating window queries. We first present a new data model for streams,

progressing streams, that separates stream progress from physical-arrival order. Then,

we present our window semantic definitions for the most commonly used window

operators—window aggregation and window join. Unlike previous research that often

requires ordered streams when describing window semantics, our window semantic

definitions do not rely on physical-stream arrival properties. Based on the window

semantic definitions, we present new implementations of window aggregation and

2

window join, WID and OA-Join. Compared to the existing implementations of stream

query operators, our implementations do not require special stream-arrival properties,

particularly stream order. In addition, for window aggregation, we present two other

implementations extended from WID, Paned-WID and AdaptWID, to improve

excution time by sharing sub-aggregates and to improve memory usage for input with

data distribution skew, respectively. Leveraging our order-insenstive implementations

of window operators, we present a new architecture for stream systems, OOP (Out-of-

Order Processing). Instead of relying on ordered streams to indicate stream progress,

OOP explicitly communicates stream progress to query operators, and thus is more

flexible than the previous in-order processing (IOP) approach, which requires

maintaining stream order. We implemented our order-insensitive window query

operators and the OOP architecture in NiagaraST and Gigascope. Our performance

study in both systems confirms the benefits of our window operator implementations

and the OOP architecture compared to the commonly used approaches in terms of

memory usage, execution time and latency.

WINDOW QUERIES OVER DATA STREAMS

by

JIN LI

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

Portland State University
©2008

i

Acknowledgments

I am deeply grateful to David Maier, my thesis adviser, for his support and

guidance. I am very fortunate to have Dave as my adviser. His broad knowledge

amazes me and spoils his students (including me). Instead of doing related-work

research, we often “ask Dave”. Dave has the most brilliant research ideas. He also has

the amazing ability and patience to help me sort out initial, random research ideas. He

is a role model I can learn from in many aspects. I respect his dedication to education

and research and his generosity and patience in helping others.

I am in debt to Kristin Tufte for her continual help and encouragement along my

Ph.D. journey. She worked with me side-by-side to improve my writing skills and

presentation skills, and to help me refine research ideas. Kristin is also a true friend.

Her support and encouragement is crucial for me to finish my thesis.

I would like to thank the rest of my thesis committee members, Theodore Johnson,

Leonard Shapiro, Wu-chi Feng, and Robert L. Bertini, for various discussions and

suggestions. I also appreciate the whole database group at OGI and later at PSU for

the very active and supportive study environment.

I thank my family’s understanding and support. I especially thank my husband,

Sun Yi, for his patience, support, and encouragement.

ii

Table of Contents

Acknowledgments... i
List of Tables .. iv
List of Figures...v
Chapter 1 INTRODUCTION ... 1

1.1. An Example Comparing IOP vs. OOP .. 6
1.2. The Scope of This Thesis...10

Chapter 2 BACKGROUND ..12
2.1. Punctuation..16
2.2. NiagaraST ...19
2.3. Gigascope..20

Chapter 3 RELATED WORK ...23
3.1. Window Aggregation Implementations..24
3.2. Window-Join Implementations ..27
3.3. Handling Disorder in Streams ..30
3.4. Other Stream-Query Systems...31

Chapter 4 PROGRESSING STREAMS ..35
Chapter 5 WINDOW SEMANTICS..40

5.1. Window Aggregation: WID Window Semantics..43
5.1.1. WID Semantics Framework ...44
5.1.2. Sliding Windows ...47
5.1.3. Partitioned Windows..50
5.1.4. Landmark Windows...52
5.1.5. Slide-by-Tuple Windows ...53

5.2. Window-Join Semantics ..58
5.2.1. Tumbling-Window Join and Sliding-Window Join.............................60
5.2.2. An Alternative, Window-Semantic Definition for Window Join.........62

Chapter 6 ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW
AGGREGATION ...67

6.1. The WID Implementation ..68
6.1.1. An Example ...69
6.1.2. Categorization of Windows..72
6.1.3. The WID Implementation for FCF Windows73
6.1.4. The WID Implementation for FCA Windows.....................................82
6.1.5. Performance Study of WID..89

6.2. The Paned-WID Optimization ...99
6.2.1. Evaluating Queries with Panes ...102
6.2.2. Different Types of Aggregates ...105
6.2.3. Paned-WID for Queries Using Bounded Aggregate Functions107
6.2.4. Panes for Queries Using Holistic Aggregate Functions.....................110
6.2.5. Performance Study of Paned-WID ...112

6.3. The AdaptWID Implementation...113
6.3.1. Stream Properties and Memory-Cost Estimation116

iii

6.3.2. Memory-Cost Functions...118
6.3.3. The Runtime Switching Mechanism...120
6.3.4. Implementation Details ..122
6.3.5. Performance Study of AdaptWID...129

Chapter 7 ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW JOIN ...134
7.1. Order-Insensitive Implementation of Window Join134
7.2. Producing Finer-Granularity Punctuation...139
7.3. Performance Study of OA-Join ..142

Chapter 8 OUT-OF-ORDER STREAM QUERY EVALUATION148
8.1. Punctuation Generation..151
8.2. Order-Insensitive Implementation of Query Operators.............................155
8.3. Cases for OOP...159

8.3.1. OOP Benefits for Aggregation ...159
8.3.2. OOP Benefits for Join ..160
8.3.3. Workload Smoothing ...163
8.3.4. Discussion ...168

8.4. Experimental Evaluation..170
8.4.1. Performance Study of OOP with Gigascope.....................................170
8.4.2. OOP with NiagaraST ...177

Chapter 9 CONCLUSION AND FUTURE WORK...181
REFERENCES ...185

iv

List of Tables

Table 6-1 Experimental Parameters...93
Table 6-2: Five Data Sets (DS1 – DS5) with Skewed Data Distribution—Each
contains a different percentage of small, medium, and large groups. (The small groups
of DS1 – DS5 contain 1, 3, 5, 7, 9 percent of the data, respectively.)130
Table 8-1 CPU Usage Comparison: OOP vs. IOP..172

v

List of Figures

Figure 1-1 IOP qury evaluation for Q1-2.. 7
Figure 1-2 OOP query evaluation for Q1-2... 9
Figure 2-1 Punctuation p3 embedded in a network-packet stream..............................17
Figure 2-2 Query plan for Q2-1 in NiagaraST ...19
Figure 4-1 Low-watermark (lwm) of a disordered stream that progresses on the
timestamp attribute..37
Figure 5-1 Three window extents of a sliding-window aggregation, Q5-1.47
Figure 5-2 Three window extents of a slide-by-tuple window aggregation.................53
Figure 5-3 The widjoin relation for a sliding-window join—a window extent k of R
joins with the window extent k of S...65
Figure 6-1 A query plan for Q6-1 using WID..70
Figure 6-2 Order-insensitive implementation of window aggregation: the Bucket
operator...75
Figure 6-3 Query plan for Q6-1 with the WID implementation..................................76
Figure 6-4 Order-insensitive implementation of window aggregation: the Aggregate
operator...78
Figure 6-5 Example of insertion, initialization, and update of bins as new tuples arrive
for slide-by-tuple count ...84
Figure 6-6 Bin updates for arrival of tuple tn...85
Figure 6-7 The Aggregate operator implementation for slide-by-tuple windows........87
Figure 6-8 Band Disorder—the timestamp of the 8th packet in a NetFlow vs. the start
timestamp of the NetFlow ...90
Figure 6-9 Block-sorted Disorder—the arrival position of a NetFlow vs. it start time92
Figure 6-10 Execution time comparison using tuple-based sliding-window max,
RANGE 4000 rows, SLIDE between 1 and 4000 rows..95
Figure 6-11 Latency-Accuracy (mean error percentage) tradeoff for band disorder:
WID vs. Buffering with slack (0ms, 320ms, 640ms, 1280ms, 2560ms, 3200ms along
the x-axis) for a window aggregate query (RANGE 64 seconds, SLIDE 6.4 seconds;
maximum input disorder is 3.2 seconds...97
Figure 6-12 Latency-Accuracy (percentage of wrong answer) tradeoff for block-sorted
disorder: WID vs. Buffering with slack (0s, 54.4s, 109.1s, 218.2s, 327.3s, 434.2s,
490.9s, and 600s along the x-axis) for a window aggregate query (RANGE 600
seconds, SLIDE 60 seconds); maximum input disorder is 490 seconds......................99
Figure 6-13 Panes for Query 6-2 with RANGE 4 minutes and SLIDE 1 minute; each
pane is a 1 minute sub-stream..101
Figure 6-14 Paned-WID for Q6-2 (RANGE 4 minutes, SLIDE 1 minute); PLQ is the
pane-level sub-query, and WLQ is the window-level sub-query..............................103
Figure 6-15 Execution-time ratio of the Paned-WID vs. the WID for a sliding-window
maximum query (varying the number of tuples per pane and the number of panes per
window)..112
Figure 6-16 A window extent for unsynchronized data sources A, B, and C............119

vi

Figure 6-17 The AdaptWID Evaluation of Q6-6 with RANGE 10 seconds and SLIDE
1 second—dense groups are evaluated with eager aggregation and sparse groups are
evaluated wth lazy aggregation ...124
Figure 6-18 Outputting a result for a group in transition—a result is produced with
data from both hash table H and the temporary hash table built to compute aggregates
from tuples in buffer B..127
Figure 6-19 WID vs. AdaptWID for a tumbling-window query over a single data
source, Q6-7, and a sliding-window query over three data sources, Q6-8131
Figure 7-1 OA-Join for sliding-window join..137
Figure 7-2 OA-Join for tumbling-window Join..138
Figure 7-3 Joint punctuation production for sliding-window OA-Join.....................140
Figure 7-4 Joint punctuation production for tumbling-window OA-Join.140
Figure 7-5 Individual vs. joint punctuation – produced by Q7-1141
Figure 7-6 Memory, latency and execution time comparison of OA-Join and OPOB-
Join implementation for a sliding-window join query, Q7-2, for different band sizes
...145
Figure 7-7 Memory comparison of OA-Join and the OPIB-Join implementation for a
sliding-window join query, Q7-2, for different band sizes146
Figure 8-1 Query plan for query Q1-1 in Chapter 1 ...149
Figure 8-2 Order-insensitive implementation of Union—Meld.158
Figure 8-3 Merge enforces order on intermediate results even when the query has a
single, ordered input stream ..159
Figure 8-4 Evaluation of a band join (maximum allowed delay in S0 is 5 minutes) 161
Figure 8-5 Output buffering in IOP band join with output ordered on S0.ts162
Figure 8-6 Low-level aggregation with slow flush—the SlowFlush() function.........167
Figure 8-7 Throughput comparison of IOP and OOP for a count query, Q8-1, using
Gigascope ...171
Figure 8-8 Comparison of memory usage for OOP- and IOP-Gigascope on a window-
count query over the union of two streams (Q8-2), for varying skew.......................175
Figure 8-9 Memory comparison of IOP and OOP evaluation for a tumbling-window
join query, Q8-3, with arrival skew of different input streams176
Figure 8-10 Memory comparison of IOP and OOP evaluation in NiagaraST for a
tumbling-window join query, Q8-4, with late tuples on one input............................178
 Figure 8-11 Memory comparison of IOP and OOP in NiagaraST for a sliding-window
count, Q8-5, with arrival-time skew among multiple data..180

 1

Chapter 1

INTRODUCTION

The input data of many modern applications naturally takes the form of data

streams (instead of static stored data sets), such as network packets, web-click streams,

environmental-sensor data, phone-call records, online auctions and bids, cheat

detection in computer games, and stock quotes. Many stream-monitoring applications

need to process high-volume streams while providing low-latency responses, and thus

require on-the-fly processing. For example, both computer networks and financial

markets may generate hundreds of thousands of data items per minute, and the

monitoring systems must provide real-time information so that their clients (e.g.,

network-traffic diagnosis systems and traders) can make the correct decisions

regarding the current situation. Just as traditional database queries serve as an easy-to-

use, declarative, scalable way to process stored relational data, so to have stream

queries, which are similar queries over data streams, has been gradually adopted as a

beneficial approach for online stream processing. Several stream-query engines have

been built in the research domain [2, 4, 12, 46, 63] and a few have been put to use for

real-world applications. For example, Gigacope is a stream-query system that

specifically supports network-traffic monitoring [14]; StreamBase [65] and Truviso [70] are both more general stream-query engines that support various applications,

such as financial services, telecommunication monitoring, and military systems.

 2

Stream queries differ from relational-database queries in two main ways. First, users

of stream-query systems are often more interested in querying recent data in the

stream and having the query results updated periodically than in getting the

information over the entire history of the stream. (Note that standard relational query

evaluation techniques only support one-time evaluation, rather than periodic updates.)

Second, as data streams are potentially unbounded, a blocking operator (e.g.,

aggregation), which require the entire input data set before producing any results, may

have its output delayed indefinitely; and a stateful operator (e.g., join) may need to

maintain an unbounded amount of state. Therefore, stream systems often make

restrictions on the types of blocking and stateful operators allowed to ensure that

queries can be unblocked and the state that they need to maintain does not grow

without bound. For example, stream systems may allow only aggregations that can

potentially be unblocked. This condition translates to the requirement that each group

in an aggregation must eventually be complete, even though the input stream is

unbounded. The requirement indicates that aggregations in stream queries usually

need to have a grouping condition on a special ordering attribute (e.g., a timestamp

attribute), and thus these queries can output results as the timestamp value increases.

(In some special cases groups end naturally; for example, when each group is a

different auction in an online auction system.) Similarly, stream systems require a

joining condition that ensures that the join can purge state. For example, an equality-

join predicate on the timestamp of the input streams can support join-state purging.

 3

A window is a special condition specified for stream query operators. It is often

defined on an ordering attribute and is very commonly used in stream queries with

blocking and stateful operators. Window aggregation is an aggregation with a special

grouping condition on the ordering attribute that maps each tuple to one or more

groups. For join, a window is used to limit the range of tuples in one input with which

each tuple of the other input may join and thus it limits the amount of state that the

operator needs to maintain. In query Q1-1 shown below, a network-traffic-monitoring

system can use a windowed aggregate operator to count the number of packets from

each source IP in a link, M, for the past 10 minutes, advancing at 1-minute intervals.

We assume the (simplified) schema of the packets in M is <srcIP, srcPort, destIP,

destPort, len, ts>. Here, srcIP and srcPort are the source IP and port of the packet,

respectively; destIP and destPort are the destination IP and port of the packet,

respectively; len is the size of the packet and ts is the timestamp.

Q1-1: “Count the number of packets from each source IP for the past 10
minutes; update the results every minute.”

SELECT srcIP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WA ts]
FROM M
GROUP BY srcIP

Here, RANGE, SLIDE, and WA are called window parameters. These parameters

collectively specify a “window of interest” that separates the input stream into

potentially overlapping sub-streams, which we call window extents. RANGE is the

size of the window, SLIDE is the distance that the window moves each time it

advances, and WA is the windowing attribute on which RANGE and SLIDE are

 4

defined. For Q1-1, window extents are overlapping 10-minute sub-streams, for

example, [00:10:00, 00:20:00), [00:11:00, 00:21:00), [00:12:00, 00:22:00), defined on

the ts attribute. These window extents can be viewed as special groups whose member

tuples may also belong to other groups. One way to view window aggregation is as a

seperate aggregate being computed for each window extent.

We briefly review the current commonly used approach for evaluating Q1-1, and then

discuss the issues with each approach. (We will expand this analysis in Chapter 6.)

The existing approach, which we term the buffering technique, assumes that the input

stream M is ordered, and maintains input tuples in a buffer until they no longer belong

to the current window extent. It determines window boundaries based on the

requirement that tuples are ordered. That is, the arrival of the first tuple outside of a

window extent closes the extent. When a window extent ends, the buffering technique

computes the aggregate over the buffered tuples, and then purges expired tuples from

the buffer. We see some obvious issues with the buffering technique. First, it requires

a tuple buffer to materialize each window extent. Second, the content of each window

extent tends to be tied to window operator implementations and physical stream

properties such as stream-arrival order. It requires ordered input streams; as we will

discuss later, out-of-order arrival of tuples arises natually in stream-processing

systems due to causes such as variation in transmission delays. If data is not in order, a

sorting mechanism such as Aurora’s BSort [4] must be used to reorder the data.

Enforcing order incurs performance overhead such as memory and latency, and also

constrains the implementation of windowed-query evaluation. Third, the buffering

 5

technique relies on the physical arrival of tuples to determine window boundaries, and

thus stream abnormalities such as lulls (i.e., periods of non-arrival of tuples) cause

troubles: Lulls in physical tuple arrival may delay result generation, and thus special

mechanisms such as time-outs have to be introduced for handling lulls.

We believe that a root cause of these issues with this current approach is a lack of

logical1 definitions for stream query operators. Logical definitions of query operators,

independent of the physical properties of data and data storage, are one of the most

important benefits of relational database systems. Logical definitions of query

operators allow logical independence of queries: Users can focus on the meaning of

their queries, regardless of physical data properties; one query operator may have

alternative physical implementations that optimize for different physical properties,

from which the query system can choose. Logical independence is also important for

stream-query operators. Previously, the semantics of window operators were often

discussed “operationally” and assumed ordered and continuous input streams, and thus

these “operational” semantics led to order-sensitive and often inefficient

implementations of operators. More importantly, these order-sensitive

implementations of window operators lead to a commonly used stream-query

evaluation architecture, which we term IOP (In-Order Processing). The IOP

architecture assumes that streams in a stream system are ordered, and thus

implementations of query operators can rely on the order to output results or purge

1 Here, “logical” refers to semantics that is independent of “physical” implementation details. Logical
window semantics defines the content of each window extent; or, equivalently, it defines the window
membership of each input tuple.

 6

state. Stream systems using the IOP architecture enforce order for input streams and

require that all stream-query operators maintain stream order in their output. However,

we find this approach is often inflexible and inefficient, especially in terms of memory

and latency.

The focus of this thesis is efficient evaluation of window stream queries, which

includes a new stream model and semantic definitions of window stream-query

operators, order-agnostic implementations of the operators motivated by the new

semantic definitions, and also an alternative stream-system architecture, which we

term OOP (Out-of-Order Processing), in contrast to IOP. The OOP architecture is a

natural extension of the order-agnostic implementation of stream query operators. In

the OOP architecture, streams carry explicit progress information (e.g., punctuation,

which are special tuples indicating ends of subsets of regular tuples). Implementations

of query operators rely on that progress information, instead of stream order, to output

results or purge state. In stream systems using the new OOP architecture, query

operators can let tuples through on the fly, do not need to maintain stream order, and

thus can avoid the associated costs. A short example comparing IOP and OOP

follows.

1.1. An Example Comparing IOP vs. OOP

Consider the IOP evaluation on a query, Q1-2, from a network-monitoring scenario

similar to those discussed in Gigascope applications [33].

 7

Q1-2: “Count the number of packets from three links, Control, Main1 and
Main2, for every minute; update the result every minute.”

SELECT count (*) [RANGE 1 minute, SLIDE 1 minute, WA ts]
FROM Control union Main1 union Main2

Q1-2 monitors streams of network packets arriving on three separate links and

computes the number of packets received over a tumbling window of length 1 minute

defined on window attribute (WA) ts. A tumbling window is a commonly used type of

window for aggregation, with non-overlapping window extents. Packets from each

link arrive in order of the timestamp attribute ts. The Control link contains almost no

traffic; Main1 and Main2 are high-rate data links, and might not be synchronized with

respect to their timestamp attributes because of variations in transmission delays. We

note that streams with widely varying volumes and delays arise in various stream

applications, including network-traffic monitoring, financial data processing, and

intelligent transportation monitoring. In the rest of the thesis, we will use network-

monitoring applications as our working scenario.

Figure 1-1 IOP qury evaluation for Q1-2

Merge

Window Count (IOP)
RANGE: 1 min, SLIDE: 1 min

WA: ts

Merge

Main1 Control Main2

 8

Consider the cost of enforcing order (for the intermediate streams) in the IOP

architecture for Q1-2 with ordered inputs. Figure 1-1 shows an IOP query plan for Q1-

2. Here, the implementation of the Window Count operator requires ordered streams

in order to determine the boundaries of window extents. Consider the potential buffer-

space requirements and tuple-processing delay resulting from enforcing order on the

intermediate results feeding into the Window Count. The Merge operator is an order-

preserving implementation of logical (bag) Union that combines the input streams and

guarantees that the output stream is ordered. To do so, it may need to buffer a

significant amount of data. For example, during lulls on the Control link, the Merge

operators in Figure 1-1 have to buffer tuples from the Main links. Also, if there is

timestamp (ts) skew between the links, the Merge operators will have to buffer tuples

to synchronize the links. The exact amount of buffer space that the Merge operators

require is a function of the arrival pattern of the input streams, such as duration of

lulls, packet rates on the three links, and their timestamp skew, but there is no upper

bound. In addition to the memory requirements, buffering also increases tuple latency.

Notice that the overhead here for the IOP evaluation of Q1-2 is mostly for enforcing

order on the combined stream, to satisfy the requirement of the Window Count

operator.

 9

Figure 1-2 OOP query evaluation for Q1-2

In contrast, consider the OOP evaluation of Q1-2, which is shown in Figure 1-2. In its

OOP evaluation, the aggregate operator uses an order-agnostic implementation, called

WID [41], which we will present in detail in Chapter 6. WID views the window

construct as a group-by condition on a function of the windowing attribute and relies

on punctuation (i.e., a special type of tuple embedded in a stream to indicate the end of

sub-streams) for end-of-window notification. (Note that as each input stream is

ordered, it is easy to insert punctuation into the streams if it is not already there.) The

OOP evaluation of Q1-2 replaces the order-preserving Merge with a simple Union that

passes tuples through and buffers no tuples, which we call Meld. In addition, WID

directly reduces tuples into partial aggregates. It immediately consumes input tuples,

possibly maintaining partial aggregates for multiple “open” windows. These active

aggregations are the only state that the OOP approach needs to maintain for Q1-2.

Although the OOP approach may need to keep partial counts for multiple windows

Meld

Window Count (OOP)
RANGE: 1 min, SLIDE: 1 min,

WA: ts

Meld

Main1 Control Main2

 10

when an input stream is late, in general, the required space is much less than would be

required to buffer tuples.

1.2. The Scope of This Thesis

There are three main areas of contribution for this thesis.

First, we introduce a new data-stream model that does not assume ordered stream

arrival and present a formal framework for explicitly defining window semantics, and

then give definitions for existing types of window using this framework. In our

definitions, window semantics is determined only by the window parameters and the

windowing-attribute values of input tuples, regardless of physical data properties, such

as data-arrival order. We also discuss the window semantics for join, independent of

physical properties.

Second, based on this new window-semantics definition, we developed new, order-

agnostic evaluation techniques for window aggregation, including WID (Window-ID),

Paned-WID, and AdaptWID for windowed data-reducing operators. The first one is

the basic order-agnostic implementation and the latter two are optimization of WID. In

general, these new implementations can process input streams without relying on their

arrival ordering, and need neither to buffer nor materialize window extents. We also

propose order-agnostic implementations for two commonly used window joins,

sliding-window join and tumbling-window join. Our experimental study shows that

the new techniques significantly improve the overall performance of the evaluation of

window operators compared to existing approaches.

 11

Third, we propose a new architecture, OOP (Out-of-Order Processing), for stream-

query evaluation. Our new techniques for windowed-operator implementation, which

do not require ordered input streams, allow OOP evaluation of stream queries. Query

operators in the OOP approach are freed from the burden of maintaining order, and

thus the overall performance of query evaluation may be significantly improved. We

discuss the OOP query evaluation approach and experimentally compare OOP versus

IOP evaluation for stream queries, in particular, data-reducing stream queries. Our

experimental results in two stream-processing systems show the benefits of the OOP

strategy in memory usage and response latency, with at least comparable execution

time.

 12

Chapter 2

BACKGROUND

Stream-query evaluation is comparable to relational-database-query evaluation. A

stream has a schema and is comparable to a relation in relational database. A relation

is a set of tuples. (We use “relation” is in the broad sense that duplicates are allowed.)

Relational query operators map relations to relations. For example, a Select operator

takes a relation as input, applies a predicate to the relation, and produces a relation that

contains only tuples in the original relation that satisfy the predicate. An Aggregate

operator takes a relation and produces an aggregate value, which can be viewed as a

special relation with a single tuple. An Aggrgeate operator with group-by attributes

takes a relation and produces a relation with a tuple for each group defined by the

grouping attributes—each tuple in the result relation contains an aggregate value and

the grouping attribute values. The Join operator takes two relations, applies a join

predicate, and produces a relation that contains pairs of tuples that match via the join

prediate. In relational database systems, a query operator can have multiple physical

implementations, and thus a “logical” query operator may correspond to multiple

“phyiscal” query operators. (For example, the Join operator can have multiple

implementations such as Hash Join and Nested-Loops Join.) To evaluate a query,

relational database systems need to translate a logical query into a query execution

plan that consists of physical query operators. As each operator may have multiple

implementations, relational database systems use a query optimizer to pick an

 13

optimized query execution plan from a set of possible execution plans, based on the

logical query itself, the physical properties of the relations involved in the query, and

an expected-cost model for plan evaluation.

Stream-query evaluation conceptually resembles relational-query evaluation in

many ways, but it presents a different set of challenges. Unlike a relation that contains

relatively static data, in a stream, tuples arrives continuously and stream systems have

no control over the arrival rate, order and pattern. Examples include bid streams in

online-auction monitoring systems and network-packet streams in network monitoring

systems. A stream query is comparable to a relational-database query – it consists of

query operators similar to relational query operators, as we have seen in Chapter 1.

However, as streams are potentially unbounded, in stream queries, blocking query

operators (e.g., aggregation) and stateful query operators (e.g., join) often need a

window condiditon so that they can output results and purge state. Query operators

implemented in a pipelined way, such as Select and Project, can be adapted to stream

queries easily.

We believe that important issues for (windowed) stream-query evaluation include

a lack of logical semantic definitions for window stream-query operators that are

independent of physical stream-arrival properties such as arrival rate and order,

handling stream “abnormalities”, and the performance of stream-query evaluation.

First, as we will show, a logical semantic definition of window-query operators

will form the basis for a flexibile and scalable stream-system implementation, as well

as for the optimization of stream-query evaluation. Just as in relational databases, the

 14

logical definition of relational-query semantics that is independent of physical storage

properties of the stored relations, allows different implementations of the same logical

query. In the literature, the semantics of window operators are usually described

operationally and assume ordered and continuous streams. However, in real

applications, stream “abnormalities” such as out-of-order tuples and lulls arise

naturally. We present our definition for window semantics that are independent of

physicial stream-arrival properties in Chapter 5.

Second, stream systems have no control over their physical-arrival properties such

as arrival order, arrival rate and arrival pattern, and thus they have to deal with various

stream “abnormalities”. These situations can lead to great burdens in the

implementation of stream systems and overhead in stream-query evalution, but they

arise naturally in stream applications. For example, join may produce disordered

results even when its input streams are ordered and synchronized; combining two

ordered streams can lead to disorder, unless the streams are exactly synchronized.

Many stream systems need to ensure the order of inter-operator intermediate streams,

which increases the complexity of the implementation of the stream system and limits

possible optimizations. Such systems also need to sort disordered input streams, which

increases the performance overhead of stream-query evaluation. Highly selective

predicates in a Select or Join operator can filter out most tuples from a stream and lead

to stalls in the operators following the operator with the selective predicate. Delays in

transmission may produce lulls on an input stream, which may also stall query

execution. In this thesis, we present implementations of window operators that deal

 15

with stream abnormalities naturally and also perform better than existing

implementations. We also present a new architecture for stream-query evauation

systems that “glues” our new operator implementations together, and provides better

performance in stream query evaluation at the system level.

Third, the performance of stream query evaluation must satisfy the needs of

stream applications, and is normally evaluated from three perspectives: memory

requirements, CPU cost, and latency. As streams may contain large amounts of data

and are potentially unbounded, it is always important to keep the memory usage of

stream-query evaluation low and ensure that it does not grow without bound with data

arrival from input streams. The CPU cost of stream-query evaluation determines the

capacity of a stream system—the maximum stream rate that a system can sustain.

Also, many stream-monitoring applications have (near) real-time requirements, and

thus the latency of query results is an important performance measure for stream-

query evaluation.

In the following, we first review the punctuation mechanism. All the work

presented in this thesis leverages this mechanism. Then, we review the architecture of

two stream systems—NiagaraST, a stream query engine that we built by extending the

Niagara Internet query system developed at the University of Wisconsin–Madison [46], and Gigascope, a network-packet monitoring system developed at AT&T to

monitor their backbone network [14].

 16

2.1. Punctuation

Punctuation is a general mechanism proposed for indicating the ends of sub-

streams. A punctuation is a special tuple embedded in a stream, having the same

schema as normal tuples in the stream. Bounded sub-streams can allow blocking

operators to produce results at the ends of sub-streams and stateful operators to purge

the state for each sub-stream when it ends. For example, consider a network-packet

stream, S, with schema <srcIP, destIP, srcPort, destPort, len, ts>. The punctuation p1,

(202.3.12.4, *, *, *, *, *), embedded in S indicates that there are no more packets with

source IP 202.3.12.4 in the network-packet stream following p1. For an aggregate

query evaluated over S that computes the count of packets from each source IP, the

query can output the count for source IP 202.3.12.4 upon receiving p1. Punctuation can

have multiple punctuating attributes and provide predicates with various patterns. For

example, the punctuation p2, (202.3.12.4, *, *, *, *, (, 12:00:00AM)), has two

punctuating attributes, srcIP and ts, and indicates that there are no more packets with

source IP 202.3.12.4 and timestamp smaller than 12:00:00AM. Here, in punctuation

p2, the pattern (, 12:00:00AM) is a range predicate that matches all the packets with

timestamp values from the the semi-bounded interval up to 12:00:00AM. Previous

studies on stream-query evaluation consider leveraging punctuation to allow early

output of results from blocking operators and to reduce state maintained by stateful

operators [15, 39]. Gigascope uses punctuation to handle lulls, for example, to unblock

the order-enforcing implementation of Union during lulls on a low-volume network-

traffic link.

 17

In this work, we use punctuation to communicate the progress of data streams (both

input streams and inter-operator streams) to query operators. For example, punctuation

p3, (*, *, *, *, *, (, 12:00:00AM)), in a network-packet stream shown in Figure 3-1

indicates the current stream low-watermark is 12:00:00AM, which means all packets

with ts attribute value smaller than 12:00:00AM have arrived.

Figure 2-1 Punctuation p3 embedded in a network-packet stream.

In this thesis, we generally assume linear punctuation—a special case of punctuation

that uses an ordering attribute (e.g., the windowing attribute for window operators) as

a punctuating attribute and for which the value of the ordering attribute in the

punctuations in the stream is monotonic. If punctuation also contains other data

attributes, such as the grouping attributes of an aggregate operator or joining attributes

of a join operator, the ordering attribute must be monotonic within each group—we

term this type of punctuation group-wise linear punctuation. For example, a stream

may contain punctuation on the ts attribute for data from each source IP, and if

punctuation for each source IP has monotonicly increasing ts values, it is group-wise

linear punctuation. Compared to linear punctuation, group-wise linear punctuation

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:23PM)
(102.3.2.7, 211.9.3.6, 10, 10, 200, 11:58:00PM)
(202.1.3.0, 202.2.1.2, 5, 10, 111, 11:59:53PM)
(202.6.9.2, 211.7.3.1, 11, 9, 300, 11:59:55PM)
(*, *, *, *, *, (, 12:00:00AM)) p3
(211.1.3.0, 202.2.1.2, 5, 10, 100, 12:00:23AM)
(202.3.1.1, 102.5.0.2, 9, 11, 210, 12:00:53AM)

…

 18

provides stream progress at a finer granularity, and thus potentially allows earlier

output and more efficient state management. Rules for query operators for processing

and propagating punctuation have been studied previously [71]. We will also discuss

the implementation of the punctuation rules when we present our implementations of

stream query operators. Hereafter, since we only consider linear or group-wise linear

punctuation, we use a single value, instead of a range value, for the ordering attribute

value in punctuation. For example, we will use the punctuation (102.2.45.10, *, *, *, *,

12:00:00AM) instead of (102.2.45.10, *, *, *, *, (, 12:00:00AM)) to indicate that all

packets from IP 102.2.45.10 with ts attribute value no greater than 12:00:00AM have

arrived.

 19

2.2. NiagaraST

NiagaraST is a stream query engine that we built by extending the Niagara Internet

Query System developed at the University of Wisconsin–Madison [46]. Niagara is a

pipelined, push-based query system written in Java that supports XML-format data. In

Niagara, query operators are implemented as OS-scheduled threads, and query

operators in a query plan are connected with data queues. Every query operator waits

on its input queue(s), and puts results to its output queue(s). The queues actually

contain pages of tuples rather individual tuples—an operator writes to its output queue

once it has produced a page of tuples. (The default size for a page is 30 tuples.)

Having data pages in queues, instead of individual tuples, reduces the cost of

Figure 2-2 Query plan for Q2-1 in NiagaraST

Count
Group-by: srcIP, ts

Input: Main1

Select

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:23PM)
(102.3.2.7, 211.9.3.6, 10, 10, 200, 11:58:00PM)
(*, *, *, *, *, 12:00:00AM)
(211.1.3.0, 202.2.1.2, 5, 10, 100, 12:00:23AM)

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:23PM)
(*, *, *, *, *, 12:00:00AM)
(211.1.3.0, 202.2.1.2, 5, 10, 100, 12:00:23AM)

(202.1.3.0, 120:00AM, 1)
(*, 12:00:00AM, *)

 20

synchronization of operator threads. NiagaraST inherits the system architecture and

query execution model of Niagara. Figure 3-2 shows the query plan for the following

query, Q2-1, in NiagaraST. Q2-1 computes the number of packets from each source IP

for every minute, as the ts attribute is given in minutes. In Figure 3-2, the Select

operator filters out packets whose srcIP does not match the given two source IPs. The

Count operator maintains a hash table to compute the number of the packets from the

two source IPs in each minute. Punctuation indicates the end of each minute and

allows the Count operator to output results and purge its hash table.

Q2-1: “Count the number of network packets in the Main1 link from source IP
202.101.0.0 and 202.101.0.1 in every minute.”

SELECT srcIP, ts, count (*)
FROM Main1
WHERE srcIP = “202.101.0.0” or srcIP = “202.101.0.1”
GROUP BY srcIP, ts

In NiagaraST, we enhanced the original query operators in Niagara with punctuations

and also added new query operators, such as window aggregation and windowed join,

to support queries over streams. Leveraging punctuation to express the progress of

streams, NiagaraST does not rely on ordered streams in its evaluation of windowed

queries.

2.3. Gigascope

Gigascope is a stream system developed at AT&T that monitors network traffic in

AT&T backbone networks [14]. It is written in C and C++. Gigascope supports a

 21

SQL-like language, GSQL. It is a generated-code system—users write queries in

GSQL and the queries are translated into C and C++ code, which is then compiled into

executables. Gigascope supports tumbling-window aggregation natively, and can

support sliding-window aggregation via user-defined functions. Gigascope also

supports join with an equality predicate on a monotonically increasing timestamp

attribute.

Network-traffic-monitoring applications often need to reduce network-traffic streams

into aggregated forms such as NetFlows (i.e., records summarizing network

connections) before further processing. Thus, aggregation is critical for the efficiency

of network-monitoring stream queries. In Gigascope, an aggregation query is split into

a light-weight, low-level aggregation that significantly reduces the data volume, and a

high-level aggregation that rolls up the results of low-level aggregation. The grouping

and windowing conditions of the corresponding low-level and high-level aggregation

are the same. The low-level aggregation directly processes input packets from a ring

buffer and maintains a hash table to incrementally compute aggregates. The size of the

hash table is fixed, so that the low-level aggregation can process packets fast enough

to keep up with the speed of network traffic. However, the low-level aggregation has

to output an existing partial aggregate on hash collision. Low-level aggregation and

high-level aggregation execute in different processes, as low-level aggregation can

potentially run on a different machine or be pushed down to the network-interface card

on a router. In Gigascope deployments, the data volume that the join operator needs to

handle under normal conditions is much lower than what aggregate operators need to

 22

handle, and the joining condition is very selective; thus the data volume of the results

produced by join is relatively low.

Gigascope preserves stream order in query evaluation. In order to handle lulls, it also

supports linear punctuation [33]. Gigascope may need to evaluate queries over the

combined stream of very high-volume main-network traffic links and relatively low-

volume control links, which naturally introduce lulls. Lulls on the control links block

the evaluation of stream queries and increase their memory usage. We have discussed

this situation in the example in Section 1.2. To deal with this issue, during the lulls on

the low-volume control lulls, Gigascope estimates the progress of those control links

on the timestamp attribute of the packet tuples, and inserts linear punctuation on the

timestamp attribute that carries the progress information into the packet streams.

During lulls, punctuation helps to unblock query operators that block on the low-

volume control links and may also help these operators to purge state on the fast main

links.

 23

Chapter 3

RELATED WORK

Windowing is not unique to stream queries. Windowing is used with aggregtion in

relational database systems. SQL-99 defines a window clause for use on stored data,

and many database vendors support the window clause. SQL-99 limits windows to

sliding by each tuple (i.e., each tuple defines a window extent), thus tying each output

tuple to an input tuple. In comparison, in stream queries, the spacing of the

consecutive window extents is normally specified by users in terms of domain values

such as time interval or tuple sequence numbers [61]. This type of window is more

suitable for applications with bursty or high-volume data. For example, in network-

monitoring applications, one possibly wants network statistics updated at regular

intervals, independent of surges or dips in traffic. Also, getting a result tuple per input

packet may overwhelm network-monitoring applications. SQL-99 allows a window to

extend to one or both sides of the target input tuple, while in stream queries, a window

normally only extends backward (descending timestamp or sequence number)—

extending forward would require knowledge of future data.

In this chapter, we review the evaluation of window aggregation and window join in

the literature, as well as disorder-handling mechanisms presented before. We also

briefly discuss other stream query systems.

 24

3.1. Window Aggregation Implementations

In the following, we review research work in three categories in the literature that

relates to the three types of window aggregation evaluation that we will present in

Chapter 6, including the basic evaluation technique for window aggregation, the

evaluation of window aggregation using shared sub-aggregation, and adaptivity in

query evaluation.

A common method for evaluating window aggregation is the buffering tech1nique. It

requires ordered input streams (or enforcing order on the input streams), materializes

each window extent, and continuously applies the appropriate relational query

operator over each materialized extent. Previous implementations of window

aggregation more or less resemble the buffered technique. Arasu et al. [3] model and

implement window operators as relational query operators over instantaneous relations

whose content changes with the arrival of new tuples and expiration of old tuples.

Aurora [4] enforces the ordering of input streams and can support windows by user-

defined functions. Gigascope [14] supports tumbling-window aggregates by grouping

on a function over the timestamp attribute, similar to the wids() function in our WID

implementation that will be presented in Section 5, but which requires ordered input

streams to unblock the aggregate operator. The negative-tuple approach, which sends

tuples with a special “negative” flag to query operators to indicate that they are

expired, has been introduced for windowed aggregate-operator evaluation [3, 10, 26].

With negative tuples, the aggregate for the next window extent can be initialized based

on the aggregate for the current window extent then adjusted using the negative tuples.

 25

Thus, the negative-tuple approach can reduce the computation of aggregation for the

overlapping parts of consecutive window extents. The negative-tuple approach is

complementary to the WID implementation. For example, the super-aggregation of the

paned-WID implementation as discussed in Section 6.2 can leverage negative tuples to

further reduce computation.

Computing and sharing sub-aggregation is a common technique for improving the

computational efficiency of query evaluation in general. In relational database

systems, the sub-aggregation and super-aggregation concept is used by the ROLLUP

operator in SQL-99 and the data cube operator [23] to express a set of aggregates at

different granularities. These operators provide an efficient and readable way to

express aggregation along a hierarchy—for example, city, state, and country—but are

used over stored data.

Sub-aggregation sharing is also adopted in the evaluation of stream aggregate queries.

The paned-WID implementation as discussed in Section 6.2 shares sub-aggregation

among consecutive window extents. In Gigascope, the evaluation of tumbling-window

holistic aggregates (e.g., quantile and heavy-hitter) uses fast, lightweight sub-

aggregation for early data reduction followed by super-aggregation in which

expensive processing is performed [13]. However, Gigascope does not share sub-

aggregation among multiple window extents, as it assumes non-overlapping extents

(tumbling windows). Zhang et al. [82] share fine-granularity sub-aggregation for

multiple coarse-granularity stream aggregate queries (i.e., they use aggregation with

finer groups to compute aggregation with coarser groups). Arasu and Widom [5]

 26

propose two algorithms, B-Int and L-Int, for shared execution of multiple sliding-

window aggregates with different window sizes. Their algorithms support a user-

polling output model. They maintain a data-structure that stores the sub-aggregates

over the active part of the stream at many different granularities. When a user polls a

query, the aggregate for the latest complete window is computed by looking up the

constituent sub-aggregates stored in the data-structure, and aggregating those values.

Both B-Int and L-Int reduce computation cost, but at the cost of increased memory

space. Krishnamurthy et al. propose to use aggregation of “paired windows”, which

are similar to panes, for shared execution of multiple window-aggregation queries [37]. Nagaraj et al. [47] propose a sub-aggregate-sharing technique that shares

intermediate sub-aggregates among multiple stream-aggregate queries; their work uses

a computation cost model to select the set of minimum-cost intermediate sub-

aggregates that cover the target aggregates [47].

AdaptWID is an adaptive implementation for window aggregation that deals with the

excessive memory usage induced by data-distribution skew. Adaptivity is a very broad

term in the context of query processing. Both relational database systems and stream

query systems leverage adaptivity to optimize resource usage. One class of adaptivity

used for processing both static and streaming data is query-plan re-optimization,

where operators in a query plan are reordered or changed based on updated

information or changing conditions [4, 34, 75]. Another class of adaptivity for

processing streaming data is exemplified by the Eddies project [6], in which the route

a tuple takes through operators is determined dynamically based on operator

 27

selectivities, input rates and operator costs to improve system throughput. A final class

of adaptive approaches used for both static and streaming data is operators that adapt

their state to data characteristics. For example, XJoin [73] may store data to disk if the

stream arrival rate exceeds its processing capacity and then adapts between processing

current streaming data and processing previously stored data based on the arrival rate

of the input streams. MJoin [76] processes multiple input streams and adapts the join

order based on the availability of the inputs. The rate-based optimization of Kang, et

al. allocates memory to operators in proportion to stream speed, assuming stream

speed is known at optimization time. Aggregation in Gigascope may adapt from

keeping exact aggregates to maintaining approximate sketches [13]. AdaptWID differs

from these adaptive techniques in that our algorithm adapts the behavior (state and

query processing) of the aggregate operator to data skew, but still gurantees exect

answer.

3.2. Window-Join Implementations

Sliding-window join and tumbling-window join are the most extensively discussed

stream-join operators in the literature. The window condition with a join is a join

predicate defined on the windowing attribute. Query Q3-1 is a sliding-window join

example, defined on the windowing attribute, ts, with a 3-minute window on the first

input and a 2-minute window on the second input. This join specifies that a tuple, l,

from the first input, joins with tuples with ts value greater than (l.ts – 2 min) from the

 28

second input, and that a tuple, r, from the second input joins with tuples with ts value

greater than (r.ts – 3 min) from the first input.

Q3-1: “Find network packets pairs from Main1 and Main2 links; the source IP
of the Main1 packet should match the destination IP of the Main2 packet; the
ts attribute of the Main1 packet should be no more than 2 minutes later than
the ts attribute of the Main2 packet and the ts attribute of the Main2 packet
should be no more than 3 minutes later than the ts attribute of the Main1
packet.”

SELECT *
FROM Main1 [WA ts, RANGE 3 min],
 Main2 [WA ts, RANGE 2 min]
WHERE Main1.srcIP = Main2.destIP;

In general, pipelined join implementations used in relational databases, such as

symmetric hash join and symmetric nested-loops join, can be adapted for use with

streams by adding a state-purging strategy. Most previous work on sliding-window

join assumes that windows are defined on arrival time [15, 21, 26, 35, 62], or that

input streams of the join arrive ordered and synchronized on a shared timestamp

attribute. This assumption implies that tuples from both streams share a “global order”

– the timestamp of a new tuple is guaranteed to be no smaller than that of any tuple

already arrived from either input stream. Based on this assumption, a window-join

implementation maintains a “window” of tuples for each input stream. For example,

for query Q3-1, the last 3-minutes of tuples are maintained for the Main1 input and the

last 2-minutes of tuples are maintained for the Main2 input. When a new tuple arrives,

join can purge state based on the timestamp of the new tuple. For example, when the

join operator of Q3-1 receives a new tuple, l, from Main1, it purges Main2 tuples with

ts value smaller than l.ts – 2 min. Then, l is matched with stored tuples of Main2, and

 29

composite tuples of l and the matching tuples are produced, and then l is stored.

However, if the global-order assumption is not satisfied, this window-join evaluation

might produce incorrect results. For example, suppose Main2 tuples arrive one minute

later than Main1 tuples. That is, a tuple, l, in Main1 arrives approximately together

with a tuple s in Main2 with s.ts = (l.ts – 1 min). When s arrives, tuples in Main1 with

ts value smaller than (s.ts – 2 min) have been purged by l, and thus s will not be

matched with the Main1 tuples with ts values between (s.ts – 3 min) and (s.ts – 2 min).

So, part of the results will be missing in this case. Also, when l arrives, tuples in

Main2 with ts value smaller than (l.ts – 2 min) are still maintained and will be matched

with l, and thus incorrect results may be produced.

Hammad et al. [27] propose sliding-window implementations that support ordered

input streams, but with potential arrival-time skew, and analyze the average response

time of those implementations. To optimize the output rate of a window join, Kang et

al. [35] propose asymmetric join implementations that can process each input stream

of the join individually with nested-loops join or hash join, based on the relative

arrival rates of inputs. Hammad et al. [27] propose scheduling schemes that optimize

for different metrics, such as maximum throughput or shortest-window first, for shared

execution of multiple sliding-window join queries. Ding and Rundensteiner [15]

exploit punctuation on data attributes—instead of on the windowing attribute—for

aggressively purging state by data attributes, to reduce memory usage of window join

queries. Srivastava and Widom [62] present algorithms for producing approximate

answers for sliding-window join with limited memory resources. Golab and Ozsu [21]

 30

propose lazy probing and purging to improve computational efficiency for the

evaluation of sliding-window multi-joins that execute multiple joins together as a

series of nested-loop joins.

3.3. Handling Disorder in Streams

Out-of-order data is one of the important challenges that stream-processing systems

need to handle [66]. A common way handling out-of-order data is to sort the data.

Slack [4] and heartbeats [61] are two mechanisms proposed dealing with disorder in

stream systems. Slack is a parameter specified by the user as a number of tuples or a

timestamp value that indicates the maximum amount of disorder allowed in a stream.

A query operator takes a slack parameter and deals with disorder by buffering as many

most-recently arrived tuples as specified by the slack parameter. These buffered tuples

are sorted and thus, as long as the input disorder is within the slack amount, the query

operator can still process tuples in order. Aurora introduces the BSort operator, which

is a slack-aware sort operator. Other query operators in Aurora may also take a slack

parameter and may handle disorder themselves.

Heartbeats are also used for dealing with disorder. A heartbeat is a type of control

signal used to indicate the arrival of input tuples in terms of their timestamp attribute

values. Heartbeats also represent the advancing of time in the absence of tuples (i.e.,

during lulls). Heartbeats are similar to punctuation on the timestamp attribute, but

punctuation is more expressive. In addition, rules have been formally defined for how

 31

query operators should propagate punctuation, while heartbeats are an ad hoc

mechanism.

A few stream systems allow out-of-order tuples. Borealis proposes revision

mechanisms that process delayed tuples as insertions; these revision mechanisms

support the processing of streams with limited disorder [2]. The Juggle operator [50]

from the Telegraph system intentionally reorders a data stream in order to advance

“interesting” tuples. Mazzucco et al. [45] consider a key-based merging algorithm

(actually, a join) for high-volume data streams that copes with large amounts of

disorder by dropping tuples or using approximate matches. Hwang et al. [30] propose

punctuation-aware, order-insensitive implementations for window aggregation and

window join. However, these order-insensitive operators are relatively heavyweight,

and are designed for latency reduction in a low-throughput system. In contrast to other

approaches for disorder handling that deal with disorder at the operator level, our OOP

approach deals with disorder at system level—it leverages punctuation to

communicate the progress of streams and thus allows query operators to be order

agnostic. By avoiding maintenance of stream order, OOP exhibits large advantages in

terms of limiting memory usage, reducing latency, smoothing workload and thus OOP

significantly improves query evaluation throughtput.

3.4. Other Stream-Query Systems

 In a broad sense, my thesis work relates to the field of stream-query evaluation in

general. Several on-going and completed research projects have been working on

 32

stream-query evaluation. The STREAM project focuses on the general semantics of

stream queries and the theoretical analysis of the memory efficiency of stream-query

evaluation [63]. TelegraphCQ is a stream query engine that adapts tuple processing

based on the system workload [12]. Law et al. propose to use user-defined aggregates

(UDA) in SQL to deal with the issue of blocking operators [38]. With UDAs, users

can explicitly specifiy when and under what conditions an Aggregate operator should

produce results. The Aurora stream-query engine can provide quality-of-service

support for stream query evaluation and sheds load with respect to users’ QoS

requirements [4]. Borealis is a distributed stream-processing engine [2], built on

Aurora and Medusa, a distributed system infrastructure [81]. Borealis focuses on

distributed, scalable, and fault-tolerant stream processing [29, 30, 68, 80]. Gigascope

supports network-monitoring applications and focuses on processing high-volume

network-packet streams at line speed [27]. CEDR focuses on providing flexible

latency-accuracy tradeoffs for stream-query evaluation—higher accuracy may incur

more latency [8]. CEDR query operators may produce “preliminary” results to reduce

latency; these query operators may also retract previously released preliminary results

later and may produce “revisions” to replace the retracted results. Query operators in

CEDR are able to naturally process regular tuples, as well as retractions. Other

prototype-stream query engines include Nile, which integrates certain online data-

mining functionality with stream-query processing [18, 28], AQSIOS, which focuses

on the secheduling of multiple stream queries [51, 52, 53], and CAPE, which

leverages punctuations in its stream-query evaluation [15, 16, 77]. System S is a

 33

distributed stream processing engine developed at IBM [20]. It supports a

programming language called SPADE, which supports generic data types and

building-block operations as well as stream-query operators, and a framework for

developing stream applications. System S supports various types of streams such as

financial records and sensor data through “input adapters”.

 Previous research on sequence databases, temporal databases, active databases, and

incremental maintenance of materialized views is related to stream queries, as that

research either involves query operators over special attributes from ordered domains,

or requires continuous query evaluation. Sequence databases support efficient

expression and evaluation of queries over data with attributes from ordered domains,

such as timestamps and positions [56, 57, 58]. Temporal databases maintain all

database states, instead of the current snapshot, and they support queries on data’s

valid times—the time that the data are “alive” [55]. Some active databases [54]monitor append-only tables and trigger active rule re-evaluation upon tuple

insertion [54]. Incremental maintenance of materialized views typically requires

incremental query evaluation with one-pass algorithms that need at most just one scan

of the data, so that view maintainance can be efficient. The Chronicle data model is

proposed to define a constraint language that can only allow views that are

incrementally maintainable [32]. All these research efforts deal with the situation

where data is well organized and controlled. Although the type of queries that stream

systems support may seem similar to what are supported by such previous research,

stream-query evaluation presents a different set of challenges, as streams arrive

 34

continuously and are potentially unbounded, and stream applications typically have

(near) real-time requirements. For example, stream systems require low memory and

low latency algorithms and may have to handle stream abnormalities such as disorder

and lulls.

 35

Chapter 4

PROGRESSING STREAMS

Part of the motivation of this thesis is to separate the notion of progress of a data

stream from its physical arrival order and thus allow more flexibility in the

implementation of query operators. In this chapter, we present a new data model for

streams, the progressing-stream model, which introduces the notion of stream progress

and relaxes the ordering requirement that many stream systems assume. Intuitively,

stream progress is defined on an ordering attribute and describes the arrival of a

stream in terms of the ordering-attribute value. Punctuation can express stream

progress naturally. For example, the punctuation p3, (*, *, *, *, *, 12:00:00AM), in

Section 2.1 indicates that the network-packet stream has progressed to 12:00:00AM

according to its ts attribute. In this chapter, we present only the conceptual stream

model, and leave the discussion of the implications of this model on stream-system

implementation to later chapters.

The progressing-stream model is in direct contrast with the commonly used model of a

data stream as an ordered sequence of tuples. In IOP systems, stream-query operators

rely on stream order to determine when to output results for blocking operators and

when to purge state for stateful operators. The key observation motivating the

progressing-stream model is that although IOP stream systems rely on ordered streams

to unblock and purge, total order on an attribute is not required. Instead, any operator

that can be unblocked and purged using an ordered attribute can also be handled with a

 36

progressing attribute, as long as we can detect and communicate stream progress. The

benefit of the progressing-stream model is that it separates stream progress from

physical arrival of stream tuples, and thereby allows more flexibility in

implementations of stream query operators. In the following, we present the stream-

progress model.

In the progessing-stream model, we model a stream as a sequence of tuples that

“progresses” on a data attribute, A. That is, the value of the A attribute in the stream

always eventually exceeds any fixed value v. We term attribute A the progressing

attribute of the stream, and assume that A’s domain is discrete. In practice, the

progressing attribute is often a timestamp of some form. Potentially, A can be any

tuple attribute with an ordered domain, and thus stream systems can use either

timestamps assigned by external data sources or internally by the system as the

progressing attribute.

To define the notion of progressing stream, we first define the low-watermark (lwm)

for attribute A of stream S at n. Let Sn be the prefix of S of length n. Then,

}|.min{),,(nSStAtASnlwm −∈= . (Eq. 4.1)

That is, lwm(n, S, A) is the smallest value for A that occurs after the prefix Sn of stream

S. Intuitively, the low-watermark indicates the progress of stream S—the low-

watermark at n indicates the smallest value that may occur after Sn in S. (Thus, the

largest value for A that will not occur after Sn in S can also be derived.) For example,

suppose S contains tuples t1, t2, t3, t4 and so on, and each tuple contains a timestamp

attribute value; if the low-watermark at t4 is 10:00:00AM, it means that there are no

 37

tuples arriving after t4 that have a timestamp smaller than 10:00:00AM. Figure 4-1

shows the low-watermark of a disordered stresam. In general, low-watermark cannot

be computed based on past tuples—low-watermark potentially requires global

information. However, in practice, we can insert punctuation into S to explicitly

communicate bounds on the low-watermark.

Definition : Stream S is progressing on attribute A if for every value v in the domain

of A, there exists an n such that lwm(n, S, A) > v. When this condition holds, we say A

is a progressing attribute for S, and that S is a progressing stream.

Figure 4-1 Low-watermark (lwm) of a disordered stream that progresses on the
timestamp attribute

Previous work on data streams commonly models a stream as a potentially unbounded

sequence of data items arriving in order. However, modeling a data stream as an

ordered sequence of tuples conflicts with the reality that stream disorder occurs

naturally in real-world stream systems. The following are a few causes of stream

disorder.

Arrival Time

T
tim

es
ta

m … …

 38

� Items arriving over a network from a remote origin may take different paths

with different delays. � In a parallel or distributed system, a data stream may be a combination of

several sub-streams from different nodes. The merged stream can be

disordered if there are different processing or transmission delays associated

with those nodes. � Some data streams have multiple timestamp attributes with different orders.

For example, NetFlow [48] records from a router might arrive in order of

“flow end” time, but are disordered on “flow start” time. Some queries may

window on “flow end” and others on “flow start.” � Even when data streams arrive in order, some query operators, such as sliding-

window join, can introduce disorder in intermediate results. � Data prioritization [74] may also cause disorder.

Note that although streams are disordered, a progressing attribute exists for each of the

cases above. For the first and the second example, the data items’ timestamp from

their data source is the progressing attribute; for the third example, either “flow start”

time or “flow end” time can be the progressing attribute; for the fourth example, the

timestamp from either input stream can be the progressing attribute; for the fifth

example, the progressing attribute stays the same after data prioritization. We believe

that our progressing-stream model better represents real-world data streams. The

benefit of having a progressing attribute and knowing the progress of a stream is that

 39

window operators defined on the progressing attribute can incrementally produce

result and be incrementally purged without requiring ordered streams.

With the progressing-stream model, we have a remaining issue: How do operators get

progress information on streams? Even if a stream is progressing, that does not

actually tell us the progress at every point in time. We will address this issue in

Chapter 6, which presents the implementation of stream-query operators. Before that,

we present the order-agonistic semantics of some stream-query operators in the next

chapter.

 40

Chapter 5

WINDOW SEMANTICS

As we discussed in Chapter 1, lack of an explicit definition of window semantics for

window operators leads to confusion and inefficiency in the implementations of those

operators. In this chapter, we present a formal definition of window semantics for

window aggregates, and also discuss the semantics of window join. Note that for

windowed query operators, we assume that the window is always specified on one of

the stream’s progressing attributes, and thus a progressing attribute is also called a

windowing attribute here.

 Window operators support new user requirements and address the limitations of

traditional query operators when used over streams. Users of stream-query systems are

often more interested in querying recent data in the stream and having the query

results updated periodically than getting information over the entire past stream.

Traditional query operators only support one-time evaluation and do not provide such

functionality. Further, traditional query operators are defined over a static relation and

may not be applicable to potentially unbounded streams. For example, a blocking

operator (e.g., aggregation) on relations normally requires the entire input data set

before producing any results; and a stateful operator (e.g., join) may need to maintain

an unbounded amount of state when the input stream is potentially unbounded. A

window operator breaks the input stream into bounded sub-streams and evaluates the

corresponding query operator over each sub-stream, and thus unblocks the operator

 41

and limits the amount of state that the operator needs to maintain. The window

condition of an aggregate operator is defined with a window specification consisting of

a set of parameters, such as RANGE, SLIDE and WA. The window specification

defines potentially overlapping finite sub-streams over an input stream. We call each

finite sub-stream a window extent, and one or more aggregates are computed for each

extent. For example, for the following query Q5-1, which is the same as query Q1-1 in

Chapter 1, the window extents are 10-minute sub-streams that overlap by nine

minutes. A network-traffic monitoring system can use such a windowed aggregate

query to count the number of packets from each source IP in a link, M, for the past 10

minutes, advancing at 1-minute intervals. As before, the schema of the packets in M is

<srcIP, srcPort, destIP, destPort, len, ts>.

Q5-1: “Count the number of packets from each source IP in the Main link for
the past 10 minutes; update the results every minute.”

Select srcIP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WATTR ts]
From Main
Group By srcIP

There are different types of windows for aggregation. Q5-1 uses a time-based sliding-

window, which is common in stream queries. We refer to the window as time-based

because the windowing attribute is a timestamp attribute. We will also discuss other

common window types later in this chapter, such as tuple-based windows that are

defined on the tuples’ arrival order, and partitioned windows that use a partitioning

attribute to “split” a stream into partial streams before dividing each into window

extents.

 42

A fundamental problem with previous stream-query evaluation approaches is the lack

of a logical definition for window operators. Logical definitions of query operators,

independent of the physical properties of data and data storage and the particular

algorithm used, are one of the most important advantages of relational database

systems. Logical definitions of query operators allow users to focus on the meaning of

their queries, regardless of physical data properties, and provide guidelines for the

correctness of alternative implementations that optimize for different physical

properties. Such logical independence of query operators is also important for stream-

query operators. As we will discuss later, the logical definition of the window

operators opens the way to more flexible and efficient implementations.

Previous approaches for implementing window operators generally require processing

input tuples in windowing-attribute order, partly because they rely on ordered input

streams to “operationally” determine window semantics. In general, we find these

previous approaches to be inflexible and inefficient. Recall the buffering technique

described in Section 3.1 that has been commonly-used previously. A typical buffered

technique maintains input tuples in a window buffer, and determines window-extent

boundaries based on the assumption that tuples are ordered. When the end of an extent

is detected, the buffering technique computes the aggregate over the buffered tuples,

which are exactly the content of the window extent, and then purges expired tuples

from the buffer. Notice that the input stream must be ordered so that the content of

window extents can be correctly determined with this technique. In addition, the

buffered technique potentially requires large amounts of memory, as it buffers window

 43

extents and may need additional space to enforce the order of the input stream.

Buffered techniques also require progress of the input stream to guarantee progress of

query execution. When there are too few tuples in the input stream, additional

mechanisms such as timeouts and punctuations are needed to ensure progress of query

execution. In summary, buffering techniques rely on the physical stream-arrival

properties, that is, strict order, and continuous arrival. Stream imperfections, such as

out-of-order tuples and lulls, must be handled as exceptions using additional

mechanisms.

In this chapter, we present explicit logical definitions for window aggregation and

join. In the next chapter, we will present implementations for window operators based

on our definitions.

5.1. Window Aggregation: WID Window Semantics

In general, the window semantics of window aggregation is the relationship between

tuples and window extents. In our definition, window semantics is determined by the

window specification of the window aggregate and the windowing-attribute value of

the tuples in the stream, and is independent of physical stream properties such as

stream order and continuousness. It is also independent of any specific implementation

of window aggregation.

Using Q5-1 as example, we show that window semantics can be defined independent

of stream-arrival order. Consider the window extent w for Q5-1 corresponding to

10:10:00 AM – 10:20:00 AM. The content of w includes all the input tuples with ts

 44

value within the range [10:10:00 AM, 10:20:00 AM). In general, the content of a

window extent is independent of the arrival order of the input tuples, unless the

windowing attribute is arrival time.

In the following, we first present a framework—the WID semantics framework—that

consists of three functions for defining window semantics for window aggregation.

Then, we present the window semantics definitions for various types of windows. Our

window semantics is defined solely using the window specification and the values of

the windowing attribute of the tuples in the input stream.

5.1.1. WID Semantics Framework

The WID semantics framework consists of three functions: windows(), which

specifies the window-ids (i.e., window identifiers) for identifying window extents, and

extent() and wids(), which define the mappings between window-ids and input tuples

in either direction. All the three functions are derived from an operator window

specification, S, and the set of tuples, T, in the input stream. Notice that T is only a

logical entity and is not required to be materialized in our implementation for any type

of window.

The windows() function defines a set of window-ids W, given a window specification

S and a set of tuples T: windows(S, T) = W. We can use values from an ordered

domain, such as non-negative integers, as window-ids. Suppose that the start point of

Q5-1 is 00:00 AM and that we use non-negative integers for window-ids, then the first

fifteen window extents can be identified with window-ids 0 – 14 as follows:

 45

 Window Extent Window-Id
00:00:00 AM – 00:01:00 AM 0
00:00:00 AM – 00:02:00 AM 1
 … …
00:00:00 AM – 00:09:00 AM 8
00:00:00 AM – 00:10:00 AM 9
00:01:00 AM – 00:11:00 AM 10
00:02:00 AM – 00:12:00 AM 11
00:03:00 AM – 00:13:00 AM 12
00:04:00 AM – 00:14:00 AM 13
00:05:00 AM – 00:15:00 AM 14

Notice that the first nine window extents of Q5-1 are partial window extents, which do

not have a full 10 minutes of tuples and only occur at the start point of the query.

The extent() function defines the content of each window extent. Given a window

specification S and the set of tuples T in the input stream, extent() maps a window-id w

to the subset u of tuples in T that belong to the window extent w: extent(S, T, w) = U ⊆

T. The extent() function can be naturally defined based on the meaning of the window.

For example, in Q5-1, window 10 contains all the tuples with ts values where

00:01:00AM AM ≤ ts < 00:11:00 AM.

The wids() function indicates to which window extents a tuple belongs. The wids()

function maps a tuple t to a subset V of window-ids in W: wids(S, T, t) = V ⊆ W. For

example, a tuple t with ts value 00:00:05 AM belongs to windows 0 – 9, which can be

derived based on t.ts: The first window-id for t is calculated by

(t.ts – start time) / SLIDE

= (00:00:05 AM – 00:00:00 AM) / 60 seconds

= 0.

The last window-id for t is calculated by

 46

(t.ts + RANGE – start time) / SLIDE – 1

= (00:00:05 AM + 600 seconds – 00:00:00 AM) / 60 seconds – 1

= 9.

For a sliding-window query with a window specification RANGE 10 minutes and

SLIDE 1 minute such as Q5-1, each input tuple belongs to a set of consecutive

window extents. Tuple t above belongs to window extents 0 through 9—wids([10, 1,

ts], T, t) = {0, 1, 2, …, 9}. Note that the wids() function does not require that each

tuple belong to consecutive window extents, although that is true for most commonly

used types of window. Also, in this example, the windows to which t belongs do not

depend on T, though T is involved for some other kinds of window specifications. The

extent() function and wids() function are duals of each other—the extent() function

specifies the set of tuples in a window extent and the wids() function specifies the set

of window extents to which a tuple belongs. The extent() and wids() functions define

the logical window semantics from different perspectives. The extent() functions

defines window semantics from a window-centric view—which tuples each window

extent contains, while the wids() function defines it from a tuple-centric view—to

which window extents each tuple belongs. We have found that the extent() function is

typically more intuitive to define, and thus can be used as the reference to prove the

correctness of its corresponding wids() function; the wids() function proves more

useful in implementation, as we will discuss in Chapter 6.

 47

The semantics of each type of window can be defined by providing these three

functions. Next, we present the semantics of several common types of windows used

by aggregation, by defining three functions for each window tuple.

5.1.2. Sliding Windows

For sliding-window aggregation, the sliding window separates the input stream into

overlapping window extents, and an aggregate is computed over each window extent.

The window specification for sliding-window aggregation consists of three

parameters, RANGE, SLIDE and WA. RANGE specifies the length of the window;

SLIDE specifies the step by which the window moves and thus how frequently an

aggregate is computed; and WA is the windowing attribute—the attribute over which

the window is specified. Potentially, WA can be any tuple attribute with an ordered

domain, as long as it is a progressing attribute. We assume the arrival time and the

arrival position of tuples in a stream are explicit attributes of the input tuples, called

arrival-ts and row-num. Thus, either of these two attributes can serve as the WA

attribute, in addition to any progressing attribute originally present. Q5-1 uses a

sliding-window aggregation with window specification [RANGE 10 minutes, SLIDE

Figure 5-1 Three window extents of a sliding-window aggregation, Q5-1.

ts (min)

0 1 2 3 4 5 6 7 8 9 10 11 12 …

 48

1 minute, WA ts]. It computes the number of packets from each source IP over each

window extent (10-minute sub-stream). Figure 5-1 shows three consecutive window

extents of Q5-1. Tumbling-window aggregation is a special case of sliding-window

aggregation whose consecutive window extents do not overlap. For tumbling-window

aggregation, RANGE equals SLIDE.

Following the WID semantics framework, we define the window semantics of sliding-

window aggregation as follows. First, we use non-negative integers as window-ids.

The windows() function is defined as below.

windows (T, S[RANGE r, SLIDE s, WA a]) = {0, 1, 2, 3, …} (Eq. 5.1)

Next, using the defined window-ids to identify window extents, the extent() function

defines the content of a window extent. That is, extent() maps a window-id, w, to a set

of tuples in the window extent identified by w. The definition of extent() just follows

the natural meaning of sliding-window aggregation. For ease of presentation, we

assume that RANGE, SLIDE and WA attribute values are all in the same units.

[]()
() () () () }{ swTatrswTTt

aWAsSLIDErRANGESTwextent

aa *1min.*1min

,,,,

++<≤−++∈
=

 (Eq. 5.2)

In the definition of extent(), mina(T) represents the smallest value of the windowing

attribute over all the tuples in T.

The wids() function maps an input tuple to a set of window extents to which the tuple

belongs. It is the inverse of the extent() function. Let W = windows (T, S[RANGE r,

 49

SLIDE s, WA a]). The wids() function for sliding-window aggregation is defined as

follows:

[]() { ()() }1min.1))(min.(

,,,,

−−+≤<−−∈
=

sTratwsTatWw

aWAsSLIDErRANGESTtwids

aa

 (Eq. 5.3)

For example, the wids() function for Q5-1 is as follows:

[]()
() ()() }{ 160min600.160)(min.

,60,600,,

−−+≤<−−∈

=

TtststwTtststWw

tsWASLIDERANGESTtwids

Suppose that the min value of the ts attribute of the input stream is 10:00:00AM, the

window-ids of an input tuple t with ts value 10:00:05 AM can be calculated as

follows. The first window-id for t is calculated as

((t.ts – mints(T)) /60 – 1) + 1

= (10:00:05 AM – 10:00:00 AM)/60 – 1) + 1

= 0

The last window-id for t is calculated by (t.ts + 600 – mints(T))/ 60 – 1

= (10:00:05 AM + 600 – 10:00:00 AM)/60 / – 1

= 9

In sliding-window aggregation, as each tuple belongs to a consecutive set of window

extents, tuple t belongs to window 0 through 9.

 50

5.1.3. Partitioned Windows

A partitioned-window aggregate is similar to a sliding-window aggregate, but it

uses an additional partitioning attribute, PA2, to split the input stream into sub-streams

(or partitions) before applying the other parameters in the window specification to

each sub-stream. Q5-2, shown below, is a partitioned-window aggregate query; it is

identical to Q5-3 except that the srcIP attribute in Q5-2 is a partitioning attribute

instead of a group-by attribute.

Q5-2: “For each source IP, find the maximum packet length of the past 1000
packets from the source IP; update the results for every 10 packets from the
source IP.”

SELECT srcIP, max(length)

[RANGE 1000 rows, SLIDE 10 rows, WA row-num, PA srcIP]
FROM Main

Q5-3: “For the past 1000 packets, find the maximum packet length from each
source IP; update the result every 10 packets.”

SELECT srcIP, max(length)

[RANGE 1000 rows, SLIDE 10 rows, WA row-num]
FROM Main
GROUP-BY srcIP

However, the semantics of Q5-2 and Q5-3 are significantly different. Q5-3, a non-

partitioned query, takes a sequence of 1000 tuples from the input stream as a window

extent, then divides those 1000 tuples into groups by srcIP and counts the packets in

each group. In short, Q5-3 first computes a window extent and then sub-divides that

extent into groups. In contrast, Q5-2 first sub-divides a stream into “partitions” (sub-

2 It is also possible that PA is a set of attributes.

 51

streams) by the partitioning attribute, and then sub-divides each partition into window

extents independently, based on the other three parameters in the window

specification. The progress of each partition is independent of each other, and the

number of window extents in each partition may differ. Note that for time-based

window aggregates, the effect of a PA attribute is the same as using it as a group-by

attribute [7], and thus for time-based partitioned-window, the PA parameter does not

provide more expressive power.

The window semantics definition for row-based partitioned sliding-window

aggregation is very similar to that of sliding-window aggregation, but it uses

compound values, (id, pa), as window-ids—id is a non-negative integer representing

the index of a window extent in the partition and pa is a partitioning-attribute value.

 windows(T, S[RANGE r, SLIDE s, WA a, PA p]) =
{(id, pa) | id ∈(0, 1, 2, …), pa∈T.p } (Eq. 5.4)

Here T.p means the projection of T on the partitioning attribute p.

The extent() function and wids() function for partitioned sliding-window aggregation

are similar to Eq 5.2 and 5.3, respectively, but have an additional check on the

partitioning attribute value of the tuple and the pa component of the window-id of the

window extent to which the tuple belongs.

The extent() function in this case determines the content of the window extent based

both on its integer index and partitioning attribute value. In the extent() function

definition, we use the function rank(t, attr, p, T), which, given a tuple t, an attribute

attr, a partitioning-attribute value p, and a set of tuples T, returns t’s rank in the p

 52

partition of T, in the order of attr. For example, rank(t, row-num, PA, T) in the

following extent function returns tuple t’s arrival position in the partition to which it

belongs, i.e., t.PA.

extent ((id, pa), T, S[RANGE r, SLIDE s, WA row-num, PA p]) =
{ t∈T | t.p = pa, minrow-num(T) + (id + 1) * s – r ≤

rank(t.row-num, pa, T) < minrow-num(T) + (id + 1) * s}
 (Eq. 5.5)

The wids() function is given below, where rank = rank(t, row-num, pa, T), and W is

the set of window-ids defined by the windows() function in Eq. 5.4:

wids (t, T, S[RANGE r, SLIDE s, WA row-num, PA p]) =
{(id, pa)∈W | t.p = pa, (rank – minrow-num(T)) / s – 1 < id ≤ (rank + r – minrow-num(T)) / s –1}

 (Eq. 5.6)

5.1.4. Landmark Windows

A landmark window is similar to a sliding window except that a tuple belongs to

all window extents that begin after its arrival, and thus we use “ALL” as the RANGE

parameter value in landmark-window specifications. Q5-4 below is a time-based

landmark-window query, and it computes the number of packets coming from each

source IP, and the SLIDE parameter indicates that the result will be extended in 1-

minute increments—according to the ts attribute. It is similar to Q5-1, except that the

scopes of the window extents of Q5-4 keep increasing, and each window extent

subsumes all the previous ones.

Q5-4: “Count the number of packets from each source IP; update the results
every minute.”

SELECT srcIP, count(*) [RANGE ALL, SLIDE 1 minute, WA ts]

 53

FROM Main1
GROUP BY srcIP

The windows(), extent(), and wids() functions for landmark windows are defined as

follows.

windows (T, S[RANGE ALL, SLIDE s, WA a]) = {0, 1, 2, 3, …} (Eq. 5.7)

extent(w, T, S[RANGE ALL, SLIDE s, WA a]) =

{ t ∈T | t.a < mina(T) + (w + 1)*s}
 (Eq. 5.8)

[]() }{ 1))(min.(

,,,,

−−>∈
=

sTatwWw

aWAsSLIDEALLRANGESTtwids

a

 (Eq. 5.9)

In the wids() definition in Eq. 5.9, W is the set of window-ids defined by the

windows() function in Eq. 5.7.

5.1.5. Slide-by-Tuple Windows

Figure 5-2 Three window extents of a slide-by-tuple window aggregation

A slide-by-tuple window is a special type of sliding window in which the

RANGE and SLIDE parameter of a window are specified on different attributes. In

such a case, SATTR (slide attribute) and RATTR (range attribute) are used in place of

ts (min)

0 1 2 3 4 5 6 7 8 9 10 11 12 …
t0 t1 t2

 54

WA to express the attributes over which SLIDE and RANGE are specified,

respectively. A common example of this type of query is a query with RANGE over a

timestamp attribute (RATTR) and a SLIDE of 1 row over row-num (SATTR). In such

a case, each tuple arrival introduces a new window extent that has length RANGE and

ends at the newly-arrived tuple. Query Q5-5 below is a slide-by-tuple window, and

Figure 5-2 shows three window extents introduced by three tuples.

Q5-5: “Find the maximum packet length of packets for the past 5 minutes;
update the result every tuple.”

SELECT max(length)

[RANGE 5 minutes, RATTR ts, SLIDE 1 row, SATTR row-num]
FROM Main

For this type of window, the number of window extents is data-dependent—a window

extent is associated with each tuple. We do not use a simple integer sequence for

window-ids; instead, we use values of T.RATTR—the projection of input tuples on

RATTR—for window-ids. The windows() and extent() functions for slide-by-tuple

windows are given below.

windows(T, S[RANGE r, RATTR ra, SLIDE 1, SATTR row-num]) =
{ t.ra | t ∈ T }

(Eq. 5.10)
extent(w, T, S[RANGE r, RATTR ra, SLIDE 1, SATTR row-num]) =

{ u ∈ T | w – r < u.ra ≤ w}
 (Eq. 5.11)

Assuming unique RATTR values, each RATTR attribute value identifies a distinct

window extent that ends at that tuple. Let the set of window-ids defined by the

windows() function in Eq. 5.10 be W. The wids() function for slide-by-tuple windows

is given by:

 55

wids (t, T, S[RANGE, r, RATTR ra, SLIDE 1, SATTR row-num]) =
{ w∈W | t.ra ≤ w < t.ra + r} (Eq. 5.12)

Here, the window-ids of window extents to which tuple t belongs fall between t.ra and

(t.ra + r).

A more general form of the slide-by-tuple window has SLIDE as n tuples instead of

one tuple. For example, the SLIDE parameter value of Q5-5 can be changed to 5 and

then the window of Q5-5 advances every 5 tuples. Here, every nth tuple defines a

window extent. Thus, we use the RATTR-values of very nth tuples (i.e., n, 2n, 3n, …)

in T as window-ids. The windows(), extent() and wids() functions of this type of

window are given by:

windows(T, S[RANGE r, RATTR ra, SLIDE n, SATTR row-num]) =
 {w | t ∈ T, mod(t.row-num, n) = 0, w = t.ra} (Eq. 5.13)

extent(w, T, S[RANGE r, RATTR ra, SLIDE s, SATTR row-num]) =

 {u ∈ T | w – r < u.ra ≤ w} (Eq. 5.14)

wids (t, T, S[RANGE r, RATTR ra, SLIDE s, SATTR row-num]) =
 {w∈W | t.ra ≤ w < t.ra + r} (Eq. 5.15)

The extent() and wids() functions in Eq. 5.14 and 5.15 are textually the same as those

for the slide-by-tuple window in Eq. 5.11 and 5.12. But here in Eq. 5.15, W is the set

of window-ids defined by the windows() function in Eq. 5.13. We assume that SLIDE

of the slide-by-tuple windows is defined on tuples’ arrival order to the stream system,

which is what the row-num attribute indicates. To use tuples’ arrival order to a specific

window operator as SLIDE, we need the tuples’ arrival order to that operator, which

may not be the same as row-num. For example, if Select is used before the operator,

some tuples may be filtered out. Also, tuples may become disordered during

 56

processing before the window operator. However, knowing the tuples’ arrival order at

a window operator is not a big issue, as the order can be easily observed by the

operator itself.

Another variation of the slide-by-tuple window, which is an even more general form,

is where the SLIDE is n tuples over the logical order of the stream on the SATTR

attribute. For example, the following query Q5-6 is such a query

Q5-6: “Count the number of packets for the past 5 minutes; update the result
for every 5 tuples as defined by the ts attribute order.”

SELECT count(*)

[RANGE 5 minutes, RATTR ts, SLIDE 5 rows, SATTR rank(ts)]
FROM Main

The function rank(ts) maps each tuple t in the input stream to its rank in order of the ts

attribute values. So instead of advancing a window based on tuple-arrival order, we

advance it based on the logical order implied by ts. Thus, the window in Q5-6 is of

length 300 seconds over the ts attribute, and slides by 5 rows over the logical order

defined by ts. Conceptually, this window suggests sorting before windowing. Here, we

only consider rank(RATTR)—the attribute defining the slide order needs to agree with

the range attribute. The windows(), extent() and wids() functions of this type of

window are defined below. The windows() function definition uses a rank(t, attr, T)

function, which, given a tuple t and attribute attr, returns t’s rank in T in the order of

attr. Here, we assume RATTR values are unique in the following function definitions.

If the uniqueness of RATTR values is not guaranteed, we can use RATTR and the

tuple arrival order together to determine a tuple’s rank.

 57

windows(T, S[RANGE r, RATTR ra, SLIDE n, rank(ra)]) =
 {w | t ∈ T, mod(rank(t, ra, T)), n) = 0, w = t.ra}.

(Eq. 5.16)
extent(w, T, S[RANGE r, RATTR ra, SLIDE n, rank(ra)]) =

 {u ∈ T | w – r < u.ra ≤ w}. (Eq. 5.17)

wids (t, T, S[RANGE r, RATTR ra, SLIDE n, rank(ra)]) =
 {w∈W | t.ra ≤ w < t.ra + r}. (Eq. 5.18)

In Eq. 5.18, W is the set of window-ids defined by the windows() function in Eq. 5.16.

Discussion: The window semantics definitions we present in this section cover almost

all types of windows that we have seen in the literature. Plus, we believe the

framework we present here for window semantics definition can be used for new types

of windows, for example, windows with non-consecutive tuples or that overlap in a

spatial domain. Further, the definitions of window semantics directly influence our

implementation of window operators. As we will see in the next chapter, by

introducing wids() and window-id into our implementation, which is called WID, our

implementations do not need to assume ordered streams and are more efficient.

The complexities of The extent() and wids() functions are correlated and might affect

the efficiency of our window aggregation implementations. The computation costs of

the our window aggregation implementations are partly determined by how efficiently

the wids() function can be evaluated, which is often inversely related to the complexity

of the wids() function. As the wids() function is evaluated over each input tuple in our

window aggregation implementations, a complex wids() function can increase the

computation cost. The wids() functions we have given for existing types of windows

are defined with linear expressions, and thus thye can be evaluated efficiently. Further,

 58

the complexities of extent() and wids() functions determines whether it is possible to

automatically derive the wids() function from the extent() function. As the extent()

function is more intuitive to define, automatically deriving wids() function from the

extent() function is convenient for users when introducing new types of windows. In

general, without constraints on the operators that can be used in a function, inversing

the function can be arbitrarily hard. For example, inverse functions may not exist for

functions with floor(), ceiling(), log(), exp(), and high-order polynomial expressions.

Functions with only plus, minus, multiplication, divide and low-order polynomial

expressions can be inversed automatically.

5.2. Window-Join Semantics

Stream systems allow only joins whose state cannot grow indefinitely. The join

operator in stream queries must have a condition on a progressing attribute of each

input that ensures that every tuple can eventually be purged. This requirement

indicates that a tuple t of one stream, L, should only join with a bounded range of

tuples from the other stream, R. With the progress of the R stream, the tuple t can

eventually be purged after it has been matched with all the potential R tuples with

which it might be joined.

Tumbling-window join and sliding-window join are the most commonly used join

operators in stream queries—windows are used to constrain the amount of state that

join maintains so that the state does not grow without bound. Q5-7 and Q5-8 below

are examples of tumbling-window join and sliding-window join, respectively.

 59

Q5-7: “Find the network packet pairs from Main1 and Main2, in which the
source IP of the Main1 packet matches the destination IP of the Main2 packet
for each 5 minute interval.”

SELECT Main1.srcIP, Main1.destIP, Main2.srcIP, Main2.destIP, Main2.ts
FROM Main1, Main2

[RANGE TUMBLING 5 minutes, WA ts],
WHERE Main1.srcIP = Main2.destIP

Q5-8: “Find the network packet pairs from Main1 and Main2 in which the
source IP of the Main1 packet matches the destination IP of the Main2 packet;
the Main1 packet should follow the Main2 packet within 2 minutes, and the
Main2 packet should follow the Main1 within 3 minutes.”

SELECT Main1.srcIP, Main1.destIP, Main2.srcIP, Main2.destIP, Main2.ts
FROM Main1 [RANGE 3 minutes, WA ts],

 Main2 [RANGE 2 minutes, WA ts]
WHERE Main1.srcIP = Main2.destIP

It is intuitive to first think about “window join” assuming two input streams, M1 and

M2, that are ordered, continuous, and synchronized. In such a scenario, we can

consider window join as a join operator maintaining a tuple-buffer for each input

stream to materialize a “window” of tuples; a tuple joins with all the tuples in the

tuple-buffer of the other stream when it arrives. In other words, two tuples join if they

have ever been in the tuple-buffers of the join at the same time. Tumbling-window

join and sliding-window join differ in the way that they update the content of the

tuple-buffers. For a tumbling-window join, when the tuple-buffer has a full window of

tuples, the buffer is emptied and a new window starts. Note that for tumbling-window

join, the sizes of the windows of the two inputs must be the same. For a sliding-

window join, the tuple-buffer always maintains a full window of tuples (except at the

very beginning of the query evaluation), and new tuples purge old tuples from the

 60

buffer. For example, considering the tuple-buffer for the Main1 input of Q5-8, new

tuples purge tuples that are more than three minutes older from the buffer.

Next, we present the semantics of tumbling-window join and sliding-window join

without assuming physical arrival order of input streams. For ease of presentation, we

sometimes assume the window condition is the only join condition and there are no

other join predicates. In practice, there will be other join conditions, which can be

viewed conceptually as a post-filter on the results of the join using just the window

conditions.

5.2.1. Tumbling-Window Join and Sliding-Window Join

Just like window aggregation, window join is also defined on the progressing

attributes of the input streams, and the window condition can be seen as an additional

predicate of the join, regardless of the physical-arrival properties of input streams. The

window condition of a tumbling-window join can be seen an equality predicate on (a

function of) windowing attributes. Suppose that L and R are the left and right input,

respectively. The window condition of a tumbling-window join is equivalent to an

equality join predicate with integer division, WARWAL RL /./. = . Here, AL and AR

are the windowing attributes of L and R and W is the window size. For example, in

Q5-7, a 5-minute tumbling-window defined on an attribute ts of both input streams is

equivalent to a equality join predicate 5/.25/.1 tsMaintsMain = . The window

condition of a sliding-window join can be seen as a band join predicate

RLRLL WALARWAL +<≤− Here WL and WR are the window sizes defined on L

 61

and R, respectively. For example, Q5-8 is an example of a sliding-window join,

defined on an attribute, ts, with 3-minute window on input L and 2-minute window on

input R. A tuple, l, from L joins with a tuple, r, from R if r.ts ≥ (l.ts – 2 min) and l.ts >

(r.t s– 3 min) and if l.srcIP = r.destIP. Equivalently, this join specifies that a tuple, r,

from R, joins with tuples with ts value greater than (r.ts – 3 min) and smaller than (r.ts

+ 2 min) from L when the IP addresses agree, which is band predicate (r.ts – 3) < l.ts ≤ (r.ts + 2). Seen this way, the semantics of both tumbling-window join and sliding-

window join do not assume any physical stream properties, such as stream order or

synchronization of the two input streams.

Discussion: In previous studies, window-join semantics have been blurred by

confusion between stream progress and physical-stream-arrival properties. Algorithms

proposed for implementing sliding-window join typically assume not only that each

input stream of the join is ordered and continuous, but also assume that the arrival of

input streams are synchronized—the ts value of an input tuple should be no smaller

than the ts value of previously arrived tuples of either input. If the windowing attribute

is arrival time, input streams for join naturally satisfy this “global order” property.

Otherwise, using previously proposed algorithms requires maintaining global order, or

incorrect results may be produced. For example, suppose the input stream Main1 for

the sliding-window join query Q5-8 is delayed for 5 minutes and the join algorithm

assumes “global order”. When the tuple buffer for Main1 contains tuples with

timestamps from 10:03:00AM through 10:05:59AM, the tuple buffer for Main2 will

contain tuples with timestamp from 10:09:00AM through 10:10:59AM. Joining tuples

 62

in the tuple buffers for Main1 and Main2, produces totally wrong results for Q5-8—

for example, a Main1 tuple with timestamp 10:03:00AM and a Main2 tuple with

timestamp 10:10:59AM will be joined.

5.2.2. An Alternative, Window-Semantic Definition for Window Join

We believe the window semantics for join can be defined in an alternative, window-

oriented way. Just as in the WID semantics definition of window aggregation, each

input stream can be separated into potentially overlapping window extents, which are

represented by window-ids. Then, the join relationship can be defined on the window

extents of each input stream of join—we define join between window extents based on

window-ids.

In more detail, defining window semantics of windowed join in the window-oriented

way has two parts, defining window extents on each input stream, and defining a join

relationship between window extents. Then, two tuples join if they belong to window

extents that can be joined. As a tuple may belong to multiple window extents, two

tuples join as long as they have the sets of their window-ids overlap. Defining window

extents for window join is the same as for window aggregation. To define the join

relationship for the window extents requires a binary relation, widjoin, that contains

pairs of matching window extents. Then, based on widjoin and the window condition

of a join, we can derive a match() function that maps a tuple to a set of window extents

with the content of which it should join: A tuple t is mapped to a window extent w if t

belongs to some window extent v that matches w in the widjoin relation. Note that here

 63

the widjoin relation defines window semantics for join from a window-centric view—

which pairs of window extents should join. The match() function provides the same

window-semantic information from a tuple-centric view—tuples of which window

extents a tuple should join. We expect the match() function might be useful in the

implementation of window join, just as the wids() function in the window semantic

definition for aggregation. For a particular type of windowed join, we can define its

window semantics by providing these required functions. Then, with the window-

oriented semantics definition, the result of a windowed join is defined as the union of

the result of joining each pair of window extents in widjoin. Here, L and R are the

input streams of a windowed join; TL and TR are the set of tuples in L and R,

respectively; SpecL and SpecR are the window specifications defined on L and R,

respectively; p is the predicate of the join; and WL and WR are the window-ids for

window extents defined for L and R, respectively. U
),(w,

),,(

)),,(,,,,(

RL WWidjoinji
LL

RLRRLL

SpecTiextent

pWWwidjoinSpecTSpecTresult

∈

= ⋈p),,(RR SpecTjextent

(Eq. 5.19)

An example: In the following, we present the window-oriented semantics definition

for sliding-window join, as an example to show how window join semantics can be

defined in the window-oriented way.

We first define window extents on each input stream—we define them as advancing

on every unit of the WA attribute values. Figure 5-3 shows window extents on the

input streams, L and R, of a sliding-window join, with window specifications

 64

[RANGE 3 minutes, WA tsR] and [RANGE 3 minutes, WA tsS] on L and R,

respectively. Suppose the unit of the ts attributes is seconds, then the window extents

defined on L and R are the same as window extents for a sliding-window aggregation

with window specification [RANGE 180 seconds, SLIDE 1 second, WA tsR] and

[RANGE 180 seconds, SLIDE 1 second, WA tsS], respectively—each window extent

is a 180-second sub-stream and consecutive window extents overlap by 179 seconds.

Assuming R and S start at the same time (i.e., L and R has the same min(ts) value),

then a window extent w on L joins with the window extent on R with the same

window-id. Thus, let WL and WR be the set of window extents defined on L and R,

respectively, the widjoin relation is defined as follows.

widjoin(WL, WR) = {(i, i) | i ∈ WL, i ∈ WR } (Eq. 5.20)

If L and R do not start with the same ts value, we can use the smaller ts value as the

start ts value for both L and R. This way, the input stream with the larger start ts value

has empty window extents defined, but the widjoin relation remains the same.

A tuple from each input stream joins with tuples of a set of window extents on the

other input stream. Here UNIT is the unit for WA values (or the UNIT of the one with

finer granularity) and we assume the WA values start from 0. The match() functions

for L and R are defined as follows. Basically, each tuple joins with every window

extent on the other side with window-id in the range of the window-ids of the tuple

itself. Note that the match() functions uses a band condition on the window-ids of

window extents.

matchL (l, TL, SL [RANGEL, WAL], TR, SR [RANGER, WAR]) =

 65

 { () }11 −+≤<−∈ UNITRANGEl.WAwl.WAWw LLLR

(Eq. 5.21)

matchR (r, TR, SR [RANGER, WAR], TL, SL [RANGEL, WAL]) =

 { () }11 −+≤<−∈ UNITRANGER.WAwr.WAWw RRRL

 (Eq. 5.22)

Here, l and r are tuples from L and R, respectively; WL and WR be the set of window

extents defined on L and R, respectively; TL and TR are tuples in L and R, respectively;

SL and SR are window specifications defined on L and R, respectively. Also, we

assume that WAL, WAR and UNIT are the same granularity; or coarser units are

converted to finer.

Figure 5-3 The widjoin relation for a sliding-window join—a window extent k of R
joins with the window extent k of S.

In summary, we have discussed that the window condition for the most commonly

used two types of window join, tumbling-window and sliding-window join, can be

6

7

8

WAR (sec)

10

11

12

13

190

191

192

10

11

12

13

190

191

…

…

widjoin

6

7

8

WAS (sec)
…

…

192

 66

clearly expressed with equality or band predicates on the windowing attributes. We

believe that the window-oriented way of defining window join semantics is generic

and expressive and can potentially be used to define semantics for any type of window

join. With the window-oriented approach, window semantics of different types of

windows can be defined in the same framework, and thus the semantics of different

types of window join can be compared to each other.

 67

Chapter 6

ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW

AGGREGATION

In this chapter, we present order-insensitive implementations of window

aggregation. Order-insensitive implementations of query operators process tuples on

the fly without requiring or enforcing order on the input. Instead of relying on stream

order to determine the boundaries of window extents, these implementations leverage

punctuation to communicate the completion of extents. In this chapter, we assume the

granularity of punctuation is the same as the granularity of the window slide

parameter. We discuss punctuation generation in Chatper 8. Three implementation

algorithms for window aggregation are proposed, WID, Paned-WID and AdaptWID.

WID is an implementation based directly on the WID window semantics described in

Chapter 5. We categorize different types of windows used by aggregation based on the

information that each type of window requires in order to map tuples to window-ids.

This categorization distinguishes different requirements in the WID implementation

for different categories of windows. Paned-WID extends WID with shared sub-

aggregation to reduce computation cost. AdaptWID combines the WID

implementation and the buffering implementation to reduce the memory cost of

aggregation when the input data distribution is skewed. All three algorithms are order-

insensitive implementations and assume the presence of punctuation to notify query

operators about the ends of extents.

 68

6.1. The WID Implementation

The WID implementation is a direct application of our window semantics, and of the

wids() function in particular. The WID implementation uses window-ids to

encapsulate window semantics. Further, WID explicitly transforms the window

semantics of queries into data semantics via a wid attribute. In short, WID tags each

input tuple with window-ids using the appropriate wids() function, and then uses the

window-ids as an additional grouping attribute for the aggregate operator. In more

detail, WID introduces a new operator, Bucket, that implements the wids() function

and tags each tuple with its window-ids. The window-ids are appended to tuples as an

explicit data attribute wid. Aggregate operators include the wid attribute with the

grouping attributes defined in the query, and compute the aggregate value for all

groups defined by the combined set of grouping attributes. The ends of window

extents are signaled by punctuations. For example, suppose the timestamp values of

the input stream of the query Q6-1 shown below start at 12:00:00. When a punctuation

<*, *, *, *, *, 12:11:00> arrives, it indicates that all the packets with ts value smaller

than 12:11:00 have already arrived and thus window 10 is complete as are previous

window extents. Here, the ts attribute is called the punctuating attribute. Typically, the

punctuating attribute is the progressing attribute of a stream. In a window query, the

windowing attribute should be the progressing attribute of the input stream, and thus

the punctuating attribute is also the windowing attribute.

Q6-1: “Count the number of packets from each source IP from the past 10
minutes; update the results every minute.”

 69

Select srcIP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WA ts]
From Main
Group By srcIP

Readers may wonder how the result of window aggregation should be interpreted, as

the result of our window aggregation implementation is not ordered and does not have

a timestamp attribute associated with it. The result of window aggregation represents

aggregate values over time ranges. Thus, in general we cannot append a single

timestamp value to the window aggregation result. (Tumbling-window aggregation is

special because the time range can be represented as a simple function of timestamps.)

However, a progressing attribute is needed for the output of window aggregation so

that down-stream operators can progress. In our WID implementations, the output

stream of window aggregation has an implicit wid attribute as the progressing

attribute. Also, remind that the extent() function maps a window-id back to the set of

tuples in the window by a condition on the timsestamp value of tuples. We could

implement a similar function to map a wid attribute value back to the timestamp range

of the window extent when presenting results to users.

6.1.1. An Example

Figure 6-1 shows a query plan for evaluating the sliding-window query Q6-1 using

WID. The query plan consists of two query operators, the Bucket operator, which tags

input tuples with window-ids using the wid attribute, and the aggregate operator,

Count, which uses the wid attribute as a grouping attribute to compute window

aggregation. The wid attribute contains a range value that indicates the range of

 70

window-ids associated with each tuple. For example, t1 belongs to windows 10 to 19,

and thus the Bucket operator appends a wid attribute value, 10–20, to t1 and outputs a

Figure 6-1 A query plan for Q6-1 using WID

tuple, t1'. Here, 10–20 represents the interval [10, 20). The Count operator groups on

he srcIP and wid attributes, and incrementally maintains the count of packets for each

group in a hash table structure. It uses each tuple to update the groups within the

tuple’s wid range. For example, the tuple t1' is used to update 10 groups, for windows

10 to 19. Note that here the Bucket operator could replicate a tuple 10 times and tag

the tuple copies individually with a window-id for each. Then the Count operator

would be a normal punctuation-aware aggregate operator, and need not handle range

values. We use range values for the wid attribute to avoid increasing the data volume

of the inter-operator stream between the Bucket and Count operator, at the cost of

slightly more complexity in the implementation of Count. In Figure 6-1, the ends of

(srcIP, destIP, ts)
< 202.10.1.2, 201.33.4.7, 12:10:30 > t1

< 203.12.0.1, 202.2.10.3, 12:10:45 > t2

< *, *, 12:11:00 > p

(srcIP, destIP, ts, wid)
<202.10.1.2, 201.33.4.7, 12:10:30, 10-20 > t1'

<203.12.0.1, 202.2.10.3, 12:10:45, 10-20 > t2'

< *, *, *, 10 > p'

Input

Count
(GROUP-BY srcIP, wid)

Bucket
 (RANGE 10 minutes
 SLIDE 1 minute)

(srcIP, wid, count)
< 202.10.1.2, 10, 100 >

< 203.12.0.1, 10, 200 >

srcIP wid count

202.10.1.2 10 100

203.12.0.1 10 200
… … …

202.10.1.2 19 51

203.12.0.1 19 52

Hash Table

 71

window extents are marked by punctuations. For example, punctuation p indicates that

all the tuples with ts value smaller than 12:11:00 have arrived, and is translated by the

Bucket operator into a punctuation p' that indicates the end of window 10. The

punctuation p' unblocks the Count operator—it allows the Count operator to output the

aggregates that match p'.

The WID implementation provides one-pass query evaluation for sliding-window

aggregate queries, eliminating the need to materialize window extents (i.e., retain

input tuples in an intra-operator buffer), and thus can greatly reduce memory usage

during query evaluation. The WID implementation is very flexible and scalable. It

does not put constraints on physical properties of the input streams such as arrival

order and continuity. Some other window aggregate implementations, such as the

buffering implementation, require the data be sorted before being aggregated. In

contrast, WID does not have such constraints. In addition, the aggregation step is

window-agnostic since wid is treated as a data attribute, and the implementation of the

window semantics is easy to manage and verify, as it is isolated in the Bucket

operator.

The detailed WID implementation varies for different types of windows. Before going

into the details, we first introduce the concept of context and present a categorization

of windows based on the “context” that different types of window aggregation require

in order to map tuples to window-ids (i.e., to implement the wids() function in the

Bucket operator). Categorization helps to determine the appropriate implementation

techniques for given types of windows.

 72

6.1.2. Categorization of Windows

We define two types of “context” information that may be used in mapping tuples to

window-ids: backward-context and forward-context. For a tuple t, its backward-

context is information about tuples that have arrived before t. Forward-context is

information about tuples that will arrive after t. If a wids() function requires backward-

context, it implies that the implementation will need to maintain information about

previously arrived tuples. For example, the implementation of a partitioned tuple-

based window must maintain a count of tuples that have arrived for each partition. The

rank() function in the wids() definition for tuple-based partitioned windows reflects a

backward-context requirement, because rank() needs to return a tuple’s rank in the

partition it belongs to and thus requires knowledge of the number of tuples in the

partition ranked before the tuple. Typically, having to maintain backward-context is

not a significant restriction, because it does not prevent one from determining

window-ids for tuples on the fly. However, if a wids() function requires forward-

context, that means that information from tuples arriving after a tuple t is required to

calculate the window-ids for t. This requirement implies that the exact window-ids for

tuple t cannot all be determined until those tuples arrive. Thus a wids() function

requiring forward-context implies that tuples may need to be buffered and delayed.

Slide-by-tuple windows require forward-context. The use of the WA values of later

tuples (i.e., t.RATTR ≤ w < t.RATTR + RANGE) in the wids() definition for slide-by-

tuple windows reflects a forward-context requirement.

 73

Based on their forward-context requirements, we categorize windows into FCF

(forward-context free), and FCA (forward-context aware). We define a window as FCF

if the wids() function does not require forward-context and thus the set of window-ids

for each tuple can be determined on the fly. Time-based windows, tuple-based sliding

windows and partitioned windows are FCF. We define a window as FCA (forward-

context aware) if the wids() implementation requires forward-context and thus the set

of window-ids for each tuple cannot be determined on the fly. Slide-by-tuple windows

and its two variations (slide by n tuples over row-num and rank(RATTR)) are FCA.

Within the FCF category, we define a window as CF (context free) if the

implementation of its wids() mapping requires neither forward- nor backward-context.

Tuple-based and time-based sliding windows are CF. The wids() function of a CF

window maps each input tuple to a set of window-ids based only on the window

specification and the tuple itself, and correspondingly in the implementation, window-

ids for each tuple can be determined as the tuple arrives and no state needs to be

maintained. Next, we discuss the implementation details of the Bucket and Aggregate

operators for commonly used types of windows.

6.1.3. The WID Implementation for FCF Windows

For FCF windows, the Bucket operator tags each tuple with a window-id range, which

represents the set of window-ids in the range. The Aggregate operator is window-

agnostic—it uses the wid attribute as an additional grouping attribute. (Although the

wid attribute contains range values, an Aggregate operator might support such range

 74

values, as well as overlapping groups, for purposes other than windows. For example,

the Aggregate operator for querying spatial data may also need to support range values

and overlapping groups.) Next, we discuss the WID implementation for FCF

windows, which consists of two operators, the Bucket operator and the Aggregate

operator.

6.1.3.1. Bucket

The first step in the WID implementation is to tag each tuple explicitly with window-

ids. The Bucket operator takes a window specification as a parameter, and tags each

tuple with its associated window-ids by using the appropriate wids() function. The

basic structure of the Bucket implementation is straightforward as shown in Figure 6-

2. The Bucket() function is called for each input item. We use a range-value attribute

to represent the range of window-ids for each tuple. The processTuple() function calls

the wid_bounds() function to get a pair of values, wid_start and wid_end, which it

appends to the input tuple. The wid_bounds() function computes wid_start and

wid_end based on the wids() function defined for the type of window. The wid_start

value indicates the first window extent to which the tuple belongs; and the wid_end

value indicates the first window extent to which the tuple does not belong. Here we

 75

Figure 6-2 Order-insensitive implementation of window aggregation: the Bucket
operator

assume a tuple belongs to a consecutive set of window extents. In the rest of the

discussion, we use the phrase “the range of window-ids” to refer to this pair of values.

Punctuation on the windowing attribute is turned into punctuation on the wid attribute.

The processPunctuation() function applies the same wid_bounds() function to

punctuation and appends the wid_start value computed as the wid attribute value for

the punctuation. In addition, the windowing attribute value of the punctuation is turned

into a wild card (indicating this attribute can match any value). Here we assume linear

State Maintained:
range:dow size of the aggregation;
slide: window slide of the aggregation;
wa: windowing attribute used;

Bucket(x)
if x is a tuple
 ProcessTuple(x);
else if x is a punctuation
 ProcessPunctuation(x);

ProcessTuple(t)
(wid-start, wid-end) = wid_bounds(t);
create t' by appending the range value, (wid-start, wid-end), to t as the wid
attribute;
output t';
ProcessPunctuation(p)
(wid-start, wid-end) = wids_bounds(p);
create p' by appending wid-start to p;
change the wa value of p' to *;
output p';
wid_bounds(t)
wid-start = lower bound of wids([range, slide, wa], t.wa);
wid-end = upper bound of wids([range, slide, wa], t.wa);
return (wid-start, wid-end);

 76

punctuation on the windowing attribute. Note that all the complexity of tagging tuples

with window-ids is encapsulated in the Bucket operator. Figure 6-3 shows the query

plan using the WID implementation for Q6-1, which is a CF query.

A key difference in the Bucket operator for various types of windows is the amount of

tuple state that the Bucket operator must maintain. For CF windows, Bucket does not

need to maintain any tuple state and can append a range of window-ids to each input

tuple immediately when the tuple arrives, since the wids() function for a CF window

requires no context information. For windows that are FCF but not CF, Bucket may

need to maintain state for previously arrived tuples. For example, for tuple-based

partitioned windows, the Bucket operator needs to remember the count of tuples that

have arrived for each partition and then the window-ids tagged for each tuple are

computed by using the count when the tuple arrives as the windowing attribute value.

Figure 6-3 Query plan for Q6-1 with the WID implementation

Input

Bucket
(RANGE 10 minutes, SLIDE 1 minute, WA ts)

 Count
(GROUP-BY srcIP,

wid)

(srcIP, destIP, ts)
< 202.10.1.2, 201.33.4.7, 12:10:30 > t1

< 203.12.0.1, 202.2.10.3, 12:10:45 > t2

< *, *, 12:11:00 > p

(srcIP, destIP, ts, wid)
< 202.10.1.2, 201.33.4.7, 12:10:30, 10-20 > t1'

< 203.12.0.1, 202.2.10.3, 12:10:45, 10-20 > t2'

< *, *, *, 10 > p'

 77

6.1.3.2. Aggregation

Given a tuple t tagged with a range of window-ids, (wid_start, wid_end), an Aggregate

operator, such as Max, uses t to update the n aggregate values whose wid values fall

between wid_start and wid_end. We have extended the Aggregate operator to

understand range values. The implementation for the Aggregate operator is shown in

Figure 6-4. In this implementation, the Aggregate() function is called for each tuple.

Aggregates for window extents are incrementally updated with tuples in the extent

using the ProcessTuple() function and a hash table is used to maintain these

aggregates—how exactly the ProcessTuple() function updates the aggregates depends

on the aggregate function being computed. Note that with explicit window-ids, the

window specification and thus the window semantics is not exposed to the Aggregate

operator. When punctuation arrives, the hash-table maintained by the Aggregate

operator needs to be scanned in order to output the appropriate aggregate values. An

alternative that avoids a hash-table scan is to output aggregates on hash-table

collisions, similar to the slow flush mechanism to be discussed in Chapter 8. In

contrast to implementations that hardwire arrival-order assumptions into the

implementation, using punctuation to signal the ends of window extents is more

flexible.

 78

Figure 6-4 Order-insensitive implementation of window aggregation: the Aggregate
operator

For tuple-based window aggregation, WID assumes an explicit tuple sequence

number, seq-num. Thus, if a count-based window is defined on tuple-arrival order

(arrival at the stream system, not the Aggregate operator), the stream system needs to

tag each input tuple explicitly with a sequence number representing the tuple’s arrival

order, and insert punctuations on the seq-num attribute of the input tuples. Then, the

Aggregate operator can use seq-num as the windowing attribute. However, if the

window is defined on the tuples’ arrival order at the Aggregate operator, WID itself

needs to tag each tuple with its seq-num. For tuple-based sliding-window aggregation,

the Bucket operator needs to maintain the count of tuples that have arrived, tag each

tuple with its seq-num, and also insert punctuation when a window extent ends. When

State Maintained:
ht: hashtable maintaining partial window aggregates;
gpattr: the grouping attributes of the aggregation;

Aggregate(x)
if x is a tuple
 ProcessTuple(x);
else if x is a punctuation
 ProcessPunctuation(x);

ProcessTuple(t)
for each wid in [t.wid-start, t.wid-end)
 compute hash value, hval, for t with t.gpattr and wid;
 update the aggregate value maintained in ht[hval] using t;

ProcessPunctuation(p)
scan ht and output any group with wid value equaling p.wid-start;
output a punctuation with value p.wid-start;

 79

the Aggregate operator receives a punctuation, it first outputs results for the ending

extent and then produces a punctuation for it. For tuple-based partitioned-window

aggregation, the Bucket operator needs to maintain the count of tuples for each

partition, and tag each tuple with its rank in its partition; also the Bucket operator

needs to insert punctuation for each partition. Thus, the Aggregate operator for tuple-

based partitioned-windows receives punctuation on both window-id and the

partitioning attributes. Therefore, the Aggregate operator outputs results individually

for each partition in a window extent, and also produces punctuation for each partition

in the extent.

The correctness of punctuations affects the accuracy of results. We assume

punctuation is “grammatical” in this thesis. The regular arrival of punctuations can

reduce the delay in outputting results. Delays in punctuation arrival delay results, and

increase the state that the Aggregate operator must keep, but do not affect the

correctness of results.

6.1.3.3. Summary and Discussion

In addition to naturally accommodating out-of-order tuples, WID is also more flexible

in implementation. WID decomposes window-aggregate evaluation into several parts,

including implementation of window semantics, detection and notification of the ends

of window extents, and internal management of the state required for aggregation.

Compared to the buffering implementation, this decomposition allows each part to be

more independent of the others and thus allows a more flexible implementation

 80

overall. In WID, the window semantics is implemented explicitly by the Bucket

operator and is encapsulated in that operator. This encapsulation allows other parts of

the implementation (e.g., state management for aggregation) to be window-agnostic.

Therefore, WID can support different types of windows easily—the only part of the

implementation that may vary with different types of windows is the computation of

window-ids in the Bucket operator. The ends of window extents are signaled by

punctuations. The Aggregate operator implementation resembles that of the relational

aggregate operator, although it outputs results incrementally. In our current

implementation, the Aggregate operator maintains partial aggregates for each group

using a hash table. However, the internal state that the Aggregate operator maintains

and the data structure used for the internal state are decisions local to the Aggregate

operator and are independent of the other parts of the implementation. For example, in

the buffering implementation, the content of a window extent is associated with the

tuples buffered by the Aggregate operator, while in WID, the tuples are tagged by the

Bucket operator with the window extents to which they belong, independent of the

implementation of the Aggregate operator.

In terms of performance, we believe WID has several advantages over buffering,

including reducing memory usage, latency, and execution time. These improvements

are discussed further below.

 Reducing memory usage: WID reduces memory usage by avoiding buffering input

tuples. The memory requirement of the Bucket operator is minimal and the Aggregate

operator maintains only one aggregate value for each group in each open extent. The

 81

main space savings come from never explicitly materializing window extents, but

instead incrementally maintaining aggregates for multiple window extents

simultaneously—almost always a beneficial tradeoff. For example, if RANGE is 60

minutes, and SLIDE is 5 minutes, current window-query evaluation algorithms would

buffer one hour’s worth of tuples; in contrast, the WID approach needs to buffer only

12 (= 60/5) aggregate values—one for each active window extent. Secondary space

savings come from avoiding any buffer space devoted to sorting out-of-order tuples.

The tuples can be tagged and processed as they arrive. The only offsetting expense is

sometimes retaining a few more aggregate values for incomplete window extents.

 Reducing latency: WID incrementally maintains window aggregates, and thus

avoids the response delay that the basic buffering implementation requires due to

scanning and aggregating tuples at the end of a window extent. WID can output the

results for the window extent immediately upon the arrival of the punctuation covering

the extent. (A punctuation covers a window extent if the range of the extent is within

the range of the punctuation; for example, in Q6-1, the punctuation <*, *, 10:20 AM>

covers the window extent [10:10 AM, 10:20 AM).) When the input stream contains

delayed tuples, WID may have even more latency advantages, because punctuation

can express end-of-extent messages promptly, while the mechanisms that buffering

uses to deal with disorder, such as heartbeats or slack, must provide for the worst-case

disorder to guarantee the accuracy of the results. However, we also note that the

latency of the buffering implementation can be improved by both buffering tuples and

maintaining aggregates, at the cost of extra memory usage for maintained aggregates.

 82

Reducing execution time: WID potentially uses less CPU time than the buffering

technique. As the window semantics information is tagged onto each input tuple, WID

handles each tuple only once in order to update all the partial aggregates of window

extents to which that tuple belongs. Recall that in the buffering implementation, each

tuple is stored in the buffer and revisited multiple times—once for each window extent

to which the tuple belongs. We note that for certain aggregates, such as Count and

Sum, the execution time of the buffering implementation can be reduced by leveraging

the aggregate of the previous extent to compute the aggregate of a window extent. For

example, to compute window count, the count for a window extent can be initialized

by the count for the previous window extent minus the number of expired tuples and

thus the cost of re-scanning the unexpired tuples can be avoided.

6.1.4. The WID Implementation for FCA Windows

For FCA windows, we cannot calculate the set of window-ids for a tuple t on-the-fly,

since this would require information about tuples arriving in the future. In many cases,

the requirement of forward-context leads to buffering and delaying tuples. However,

careful examination of the wids() function for slide-by-tuple windows and two of its

generalized forms reveals that we can determine on the fly for each tuple the range

into which these window-ids will fall, but not the exact set of window-ids. For

example, given the range of a slide-by-tuple window, RANGE, and a tuple t with

t.RATTR = s, the set of windows-ids to which t is mapped fall into the range [t.RATTR,

t.RATTR + RANGE), and thus Bucket will tag t with this range. (Recall that for slide-

 83

by-tuple windows and variations, we use the values of the attribute on which the range

parameter is defined, RATTR, as window-ids; also, because of that, the range of the

window-ids of a tuple does not determine the set of window-ids for it.) This range has

a different meaning from that used for FCF windows, and the binding of window-ids

to input tuples has to be deferred to the Aggregate operator.

Below, we present a one-pass algorithm for the Aggregate operator for slide-by-tuple

windows with time-based ranges. This algorithm processes each tuple only once and

handles out-of-order tuples the same as in-order tuples. Basically, we avoid retaining

and re-processing tuples by maintaining partial aggregates for extents and by using

these partial aggregates to initialize partial aggregates for new extents.

6.1.4.1. Slide-by-tuple windows

We start with an example first. Remember that we use tuples’ windowing-attribute

values as window-ids for slide-by-tuple windows. Each tuple starts a new window

extent that ends with the tuple, and we use the tuple’s window attribute for the

window-id of the extent. Thus, for each input tuple t with t.RATTR = s, the first

window extent t belongs to has window-id s. Further, extent(s) = {u ∈ T | s – RANGE

< u.RATTR ≤ s}, which ends when all tuples with RATTR value no more than the

RATTR value of t have arrived. We also define an auxiliary extent for t that is the

earliest subsequent extent to which t does not contribute—aux_extent(s) = {u ∈ T | s <

u.RATTR ≤ (s + RANGE)}. Note that aux_extent(s) = extent(s + RANGE). Here,

extent(s + RANGE) does not necessarily correspond to a tuple in T—there might not

 84

be a tuple with windowing attribute equal to s + RANGE. For ease of presentation, we

denote the window extent and the auxiliary extent of tuple t with RATTR value s as Ss

and Es respectively, and refer to them as bins collectively. One can think of Ss and Es

as the “start bin” and “end bin” for t, respectively; and Ss has bin-id s and Es has bin-

id (s + RANGE).

Figure 6-5 Example of insertion, initialization, and update of bins as new tuples arrive
for slide-by-tuple count

Figure 6-5 shows the processing of a slide-by-tuple query where the aggregate is

count, the RATTR is A, and RANGE is i. We depict the bins as laid out in order of the

A attribute. Let sj = tj.A. We use Ssj and Esj to refer to the start bin and the end of

tuple tj, and, in Figure 6-5, a bin-id is associated with the end of each bin. We mark

(a) 0 1 0

init Ss1 Es1

t1.A t1.A+i

0 2 0

ini
t

 Ss1 Ss5 Ss2 Ss3 Es1 Es5 Ss4 Es2 Es3 Es4

t5.A t5.A+i

1 3 4 1 3 2 3 2 (e)

0 0

ini
t

 Ss1 Ss2 Ss3 1 Ss4 Es2 Es3 Es4

t4.A t4.A+i

1 2 3 1 2 3 2 (d)

t3.A+i

0 0

ini
t

 Ss1 Ss2 Ss3 Es1 Es2 Es3

t3.A

1 2 3 2 1 (c)

t2.A+i

0 0

ini
t

 Ss1 Ss2 Es1 Es2 Es3

t2.A

1 2 1 (b)

 85

the region from the end of a bin, b, to the end of the next bin with the partial aggregate

value for the bin b. For example, in Figure 6-5(d), the partial aggregate for Es1 is 2

and for Ss4 is 3. The reason that we label regions in this way is to indicate that any

later bin whose bin-id is in the region would have that contribution to its partial

aggregate from tuples seen so far. For example, as shown in Figure 6-5(e), the start bin

of t5, Ss5, initiated with the arrival of t5, has a contribution of 1 to its count from

tuples arrived so far. Futher, the partial aggregates of bins are updated incrementally—

the partial aggregates of bins between the start bin Ss5 and the end bin Es5 of t5 are

incremented by 1 with the arrival of t5.

Figure 6-6 Bin updates for arrival of tuple tn

Let us examine the stages in Figure 6-5 sequentially, and consider the arrival of tuples

t1 – t5. We start with an initial special bin, init, with count = 0. The arrival of t1 adds

bins Ss1 and Es1 (Figure 6-5(a)), with initial values 1 and 0, respectively. Tuple t2

with s2 > s1 starts bins Ss2 and Es2, with Ss2 set initially to the value of Ss1

incremented by 1 (because Ss2 has the contribution from both t1 and t2), and Es2

initialized to Es1 (Figure 6-5(b)). Es1 is incremented by 1, to reflect the contribution

of t2. Figure 6-5(c) shows the effect of t3, where s3 > s2: Ss3 and Es3 are created and

v1 vi vm

 v1 v1+1 vi+1 vm+1 vm

Before

After

B1 B Bm

B1 Ssn Bi Bm Esn

tn.A tn.A+1

 86

initialized, and Es1 and Es2 are incremented. Figure 6-5(d) shows the need for E-bins:

Ss4 is initialized from Es1, reflecting the contribution of t2 and t3, but with t1 out of the

extent for Ss4. Finally, Figure 6-5(e) shows the arrival of an out-of-order tuple t5, with

s1 < s5 < s2. Ss5 is initialized from Ss1 and Es5 from Es1, with bins Ss2, Ss3 and Es1

incremented. If at this point, punctuation arrives indicating future A values are greater

than s2, the operator can emit the aggregate values for Ss1, Ss5 and Ss2—the start bin

of t1, t5, and t2, and discard Ss1 and Ss5.

Figure 6-6 shows the general case for the arrival of tuple tn, when (Ssn, Esn) spans

bins B1, B2, …, Bm. Bins B1 and Bm are “split” and used to initialize Ssn and Esn;

every bin Bi, 1 < i ≤ m is also updated to reflect the contribution of tn.

Figure 6-7 contains the algorithm for the aggregate operator for slide-by-tuple

windows. The aggregate operator needs to store partial aggregates for bins that are not

expired. Initialize sets up the special “init” bin, labeled with -∞. The ProcessTuple()

function sets up new start and end bins for each arriving tuple, then updates the

appropriate intervening bins. The ProcessPunctuation() function outputs results and

purges the appropriate bins. This algorithm for slide-by-tuple windows avoids

reprocessing tuples at the cost of maintaining auxiliary extents (end bins); but, on the

other hand, it does not need space to retain input tuples. Also, it maintains partial

aggregates for active window extents incrementally. Therefore, we expect that this

algorithm will compare favorably to the buffering implementation in terms of

execution-time performance and latency performance, and will be comparable in terms

 87

Figure 6-7 The Aggregate operator implementation for slide-by-tuple windows

of memory usage. However, implementation and testing of this variant remains as

future work.

Sttwo collections, S and E, each storing pairs of the form [bid, pa] where
pa is the partial aggregate for bin with bin-id bid. S stores start bins and E
stores end bins.

Initialize()
 /* aggr-init depends on the aggregate function; for example, aggr-init = 0 for

count */
/* We use -∞ as the bin-id of the init bin*/
add [-∞, aggr-init] to E

Aggregate(x)
if x is a tuple
 ProcessTuple(x);
else if x is a punctuation
 ProcessPunctuation(x);

ProcessTuple(t)
/* Let the bin-ids of start-bin and end-bin of t be Ss and Es. */
t.wid=(Ss, Es)
add [Ss, pa] to S, where [w, pa] ∈ S ∪ E has the largest bin-id w < Ss
add [Es, pa] to S, where [w, pa] ∈ S ∪ E has the largest bin-id w < Es
/* the update operation depends on the aggregate-function; for example, if

aggregate-function = count, the update operation is +1 */
for each [w, pa] in S ∪ E where Ss ≤ w < Es

update pa using t

ProcessPunctuation(p)
 Output each [w, pa] in S with w < p.wid and remove it from S
 Remove each [w, pa] in E with w < p.wid and w ≠ -∞

 88

6.1.4.2. Variations

The algorithm for slide-by-tuple windows in Figure 6-7 can be extended to support the

two variations of slide-by-tuple windows discussed in Section 5.1.2, again with the

cost of maintaining partial aggregates for additional extents. No tuples need to be

retained and reprocessed. The Bucket operator for these two variations is the same as

for slide-by-tuple windows. For the variation that slides over the seq-num attribute, the

ProcessTuple() function in the aggregate operator still maintains partial aggregates for

two bins, Ss and Es for each tuple t; but it stores the t.seq-num with the two partial

aggregates for it, e.g., [Ss, t.seq-num, pa]. The ProcessPunctuation() function only

outputs the aggregates for the required window extents. For example, if the SATTR

parameter is seq-num and the SLIDE parameter is 3 tuples, only aggregates with seq-

num as a multiple of 3 are output. Similarly, for the variation that slides over the tuple

count of the logically-ordered input stream over RATTR, the ProcessTuple() function

stores the current rank (based on RATTR) of t with the partial aggregates, e.g., [Ss,

tup-rank, pa]. The stored tuple rank may be updated as a new tuple arrives—for

example, if a tuple s is delayed, its arrival will cause the increment of tup-rank of bins

for tuples with RATTR value greater than s.RATTR. The ProcessPunctuation()

function only outputs the aggregates for the required window extents. For example, if

the SATTR parameter is tup-rank and the SLIDE parameter is 3 tuples, only aggregates

with tup-rank value as a multiple of 3 will be output.

In summary, just as for slide-by-tuple windows, the WID implementation for these

two variations handles disordered input naturally, at the cost of maintaining partial

 89

aggregates for two bins for each tuple. In particular, for the second variation, although

its wids() function definition uses rank() over the RATTR attribute, which potentially

requires global information over the entire stream, using punctuations removes this

“sort” requirement in the implementation. Comparing the WID implementation to the

buffering implementation, the major benefit of WID is lower latency for out-of-order

input, because WID does not require an ordered stream. We expect that the CPU usage

of WID and the buffering implementation are comparable, as they require simlar

amount of processing for each tuple. For example, for the second variation, the

buffering implementation may need to order the input stream and the WID

implementation needs to get the rank for each tuple, both requiring similar processing

per tuple.

6.1.5. Performance Study of WID

We tested the effectiveness and efficiency of the WID implementation by conducting

three sets of experiments: 1) The first set of experiments compares the execution time

performance for sliding windows using the WID implementation and the buffering

implementation—the standard implementation for window aggregation, which

materializes each window extent and computes the aggregate over it; 2) the second set

of experiments compares the latency and accuracy of WID versus the buffering

implementation with slack for evaluating queries over streams with band disorder; 3)

the third set of experiments compares the latency and accuracy WID versus the

 90

buffering implementation with slack for evaluating queries over streams with block-

sorted disorder. We will introduce band disorder and block-sorted disorder next.

Our experiments were conducted on an Intel® Pentium® 4 2.40 MHz machine,

running Linux 7.3, with 512MB main memory. The data size for the experiments was

approximately 35 MB.

6.1.5.1. Experimental Data Generation

We implemented a data generator to generate tuples with increasing timestamps

loosely based on the XMark data generator [79], which generates online auction data

in XML. The first experiment uses the data in generated order. The second and third

sets of experiments use data sets with band disorder and block-sorted disorder,

respectively.

Figure 6-8 Band Disorder—the timestamp of the 8th packet in a NetFlow vs. the start
timestamp of the NetFlow

 91

Band disorder and block-sorted disorder are two types of disorder pattern that we

observed from network flow data from the the Abilene Observatory, a consortium that

uses a high-performance (Internet2) network to study advanced Internet applications [1]. In networking terminology, a network-flow, NetFlow, is a connection between a

source IP address and port, and a destination IP address and port. A flow comprises

one or more packets, which each have a timestamp and size (among other

information). Each NetFlow has a start and end time, which are the mininum and

maximum timestamps of packets in the NetFlow.

Band Disorder: Figure 6-8 shows the timestamp of the 8th packet in a NetFlow versus

the start timestamp of the NetFlow. The relationship between 8th-packet arrival time

and flow-start time is near linear, but network delays and packet retransmission result

in a “band” of disorder—the dotted lines in the figure shows the band. We call the

disorder pattern shown in Figure 6-8 band disorder. Many stream systems that handle

disorder assume band disorder and handle it with the slack mechanism.

Block-sorted Disorder: Figure 6-9 shows a scatter plot of the stream of all NetFlow

records emitted by a router in the Abilene Network [1], which exhibit another disorder

pattern that we call block-sorted disorder. A NetFlow record is associated with a

NetFlow and can be seen as tuple that summarizes the Netflow. The x-axis is the

position of the packet in the stream, and the y-axis is NetFlow start time. The graph

shows an ascending set of disjoint blocks, with data points scattered apparently at

random in each block. The reason for the surprising shape of this graph is that each

minute the router outputs all its NetFlow records. At this point, it purges its cache of

 92

NetFlow records and starts over. Thus a block represents the records emitted during a

cache purge; the order within a block may be related to the structure of the router hash

table. Note that a NetFlow that spans a block boundary is represented as two separate

NetFlow records, one in each block. A fixed bound on disorder is not a good match to

the disorder pattern shown in Figure 6-9, and thus the slack mechanism will not match

it well. Setting the bound to less than a minute will drop many tuples; setting the

bound to a minute will accommodate the disorder but unduly delay result output. For

example, if the window boundaries match the block boundaries, the disorder here can

be well absorbed within individual window extents and thus results need not be

delayed at all. What makes more sense is for the router to output a message—a

punctuation perhaps—to indicate it has completed a cache purge.

To simulate a band-disorder distribution, we first took ten data sequences (each of

Figure 6-9 Block-sorted Disorder—the arrival position of a NetFlow vs. it start time

 93

them with band disorder) resulting from applying a network-analysis tool [48] over

TCP header traces. Each data item in the sequences has a timestamp attribute, which is

used for the windowing attribute. To get a long data sequence, we concatenated

randomly chosen copies of the ten data sequences. To simulate punctuations from the

data source, we pre-processed the disordered data and inserted punctuations into the

data. To simulate the block-sorted-disorder distribution, we divided the tuples into

segments of equal length on the timestamp attribute, and then randomized the

positions of tuples in each segment. We also add punctuation after each “block”.

6.1.5.2. Experimental Results

We present the results of the three different experiments in the NiagaraST system. The

experiments used variations of Q6-1, and varied the parameters according to Table

6.1. In Table 6.1, Slack Approach includes two flavors of the slack mechanism that we

will introduce in the second and the third set of experiments.

Table 6-1 Experimental Parameters

Exp.
Aggegate
Function

Disorder Slack Size Slack Approach
RANGE SLIDE

1 Max none 0 4000 rows varies

2 Average band varies
consistent
generous

64 s 6.4 s

3 Count
block-
sorted

varies consistent 600 s 60 s

Execution Time Comparison of WID versus Buffering: For Experiment 1, we used

the ordered data set and measured the execution time cost of using the WID

implementation and the buffering implementation. The measured time is in

 94

milliseconds. For the window specification we used WATTR = row-num, RANGE =

4000 rows, and SLIDE between 1 and 4000 rows. Thus, the number of window

extents to which a tuple belongs varies between 4000 and 1. In the experiment, each

query is executed for 8 runs and the median of the excution time of the 8 runs is

reported here. For each experiment, the system scanned prepared data-files to simulate

streams and thus queries in the experiments were executed at the full CPU speed.

Therefore, the execution time comparison also directly correlates to CPU-usage and

latency performance comparisons.

Experiment 1 (Figure 6-10(a) and (b)) shows that the WID approach in general has

lower execution times than the buffering approach; the comparison favors the WID

approach as the ratio of RANGE to SLIDE increases. Figure 6-10(b) is a zoomed-in

version of Figure 6-10(a), and includes a horizontal line that shows the execution cost

of scanning the input stream, which is the measured time of scanning the whole data

set.

 95

Figure 6-10 Execution time comparison using tuple-based sliding-window max,
RANGE 4000 rows, SLIDE between 1 and 4000 rows

 (a): Execution me: WID versus Buffering – overview

 (b): Execution time: WID versus Buffering – zoom-in

0
10

20
30

40
50

60
70

80

40 50 80 10
0

20
0

40
0

50
0

10
00

20
00

40
00

SLIDE (rows)

E
xe

cu
tio

n
 T

im
e

(m
s)

buffering

WID

0

500

1000

1500

2000

2500

1 40 50 80 10
0

20
0

40
0

50
0

10
00

20
00

40
00

SLIDE (rows)

E
xe

cu
tio

n
 T

im
e

(m
s)

buffering
WID

Scan cost
7.739 (ms)

 96

Latency-Accuracy Tradeoffs for Band Disorder: Recall that the buffering

implementation uses slack to handle disorder. For Experiment 2, we used the band-

disorder data set and measured the latency-accuracy tradeoff between using

punctuation and two types of slack: consistent and generous. Consistent slack and

generous slack are our names for two versions of slack found in the literature [4, 5].

Consistent slack requires that if a late tuple must be dropped from one window extent,

it must be dropped from all extents in which it participates, regardless of whether it is

late for those other extents or not. Generous slack makes no such restriction. We use

mean error percentage as the accuracy metric for this experiment. The aggregate

function used in this experiment is average, and mean error percentage is computed as

the absolute difference of the true average and the average returned by the query, as a

percentage of the true average, over each window extent; then the average of these

percentages over all extents is computed. Latency is measured by the wall-clock time

between the arrival of a punctuation and the output of the result that the punctuation

covers, and we report the average latency over all results of the query. Here, wall-

clock time and logical query time are not comparable, because queries are evaluated

over streams that are emulated by scanning data files and NiagaraST executes them at

maximum speed. The maximum disorder in the data set is 3.2 seconds. For consistent

and generous slack, we vary the amount of slack from 0.32 seconds through 3.2

seconds and we use RANGE = 64 seconds, and SLIDE = 6.4 seconds.

 97

Figure 6-11 Latency-Accuracy (mean error percentage) tradeoff for band disorder:
WID vs. Buffering with slack (0ms, 320ms, 640ms, 1280ms, 2560ms, 3200ms along
the x-axis) for a window aggregate query (RANGE 64 seconds, SLIDE 6.4 seconds;
maximum input disorder is 3.2 seconds

Experiment 2 (Figure 6-11) shows that as slack increases, error decreases and latency

increases, as expected. It also shows that external punctuation has better latency and

accuracy than either slack mechanism. In addition, generous slack has significantly

better accuracy at comparable latency when compared to consistent slack.

Latency-Accuracy Tradeoffs for Block-Sorted-Disorder: Experiment 3 is similar to

Experiment 2, except that we used block-sorted disorder with block duration 490

seconds, which means the maximum disorder is up to 490 seconds. We varied the

amount of slack from 0 to 600 seconds and used RANGE = 600 seconds and SLIDE =

60 seconds. The aggregate function used in this experiment is Count and we use the

42 44 46 48 50 52 54
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Latency(ms)

A
ve

ra
ge

 E
rr

or
 P

er
ce

nt
ag

e

Consistent Slack
Generous Slack
External Punctuation

%

0 (ms)

320 (ms)

640 (ms)

1280 (ms)

2560 (ms)
3200 (ms)

 98

percentage of wrong answers as the accuracy metric for this experiment. The

percentage of wrong answers is computed as the number of wrong results over the

total number of results that the query produces. In contrast to Experiment 2, where

error decreases and accuracy increases as slack increases, for block-sorted disorder

there is no linear relationship between slack and latency. For the block-sorted-disorder

data set there is one slack value that has the best latency, at the optimal accuracy, as

shown in Figure 6-12, which is determined by the relationship between block size and

window size. In our experiment, the optimal slack is 491 seconds. When slack is less

than optimal, latency is essentially independent of slack. As slack increases above the

optimal, latency jumps dramatically. In this case, it would be difficult to use slack to

trade off the latency and accuracy of the query as one might hope to do. This

experiment also shows that punctuation has better latency and accuracy for block-

sorted disorder than any of the slack values used.

 99

Figure 6-12 Latency-Accuracy (percentage of wrong answer) tradeoff for block-sorted
disorder: WID vs. Buffering with slack (0s, 54.4s, 109.1s, 218.2s, 327.3s, 434.2s,
490.9s, and 600s along the x-axis) for a window aggregate query (RANGE 600
seconds, SLIDE 60 seconds); maximum input disorder is 490 seconds

Obviously, the memory usage of the WID implementation usually compares favorably

to the buffering implementation. We show a comparision of the memory usage of

order-insensitive implementations of window aggregation versus the buffering

implementation in section 6.3, when we present our adaptive implementation of

window aggregation.

6.2. The Paned-WID Optimization

The computational cost of query evaluation affects CPU usage and thus the throughput

of a stream system. In the following, we present an optimization technique for

20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Latency(ms)

P
er

ce
nt

ag
e

of
 W

ro
ng

 A
ns

w
er

s

Consistent Slack
External Punctuation

%

0, 54.4, 109.1, 218.2, 327.3s

490.9s 600s E
xt

er
na

l
pu

nc
tu

at
io

n

 100

evaluating sliding-window aggregate queries. This optimization reduces the

computation cost by sub-aggregating the input stream and by sharing sub-aggregates

among multiple window aggregate computations. The stream is sub-aggregated by

non-overlapping sub-sub-streams, which we call panes; aggregation over the pane-

aggregates is used to compute window-aggregates. The paned optimization can be

applied to the buffering implementation, as well.

In the WID implementation of sliding-window aggregation, each tuple belongs to

multiple window extents and thus multiple window aggregates are updated with the

tuple. For example, without using panes, to evaluate the following query Q6-2, four

window aggregates are updated with each tuple, as each tuple contributes to four

window extents. As the ratio of RANGE over SLIDE increases, the number of

window aggregates updated with each tuple increases. Updating window aggregates

can be expensive, especially when the the hash table is large.

Q6-2: “Find the maximum packet size for the past 4 minutes and update the
result every 1 minute.”

SELECT max(length) [RANGE 4 minutes, SLIDE 1 minute, WA ts]
FROM Main

 101

Figure 6-13 Panes for Query 6-2 with RANGE 4 minutes and SLIDE 1 minute; each
pane is a 1 minute sub-stream

Figure 6-13 illustrates how panes are used to evaluate Q6-2. The stream is divided into

1-minute non-overlapping panes based on the windowing attribute, ts; and each 4-

minute window is composed of four consecutive panes. In Figure 6-13, w1 – w5 are

window extents and w3 is composed of panes p3 – p6. Each pane contributes to four

windows; for example, p5 contributes to w2 through w5. To evaluate Q6-2, we

calculate the maximum for each pane; the maximum for each window is computed by

finding the maximum of the maxima of the four panes that contribute to the window.

For example, the maximum for window w4 is computed by finding the maximum of

the maxima of panes p4 through p7.

p7p6p5p4p3p2 p8

1w

w2

w3

w4

w
5

p1

Panes

...

...

W
in

do
w

s

 102

We note that panes are not always beneficial. For example, for slide-by-tuple

windows, panes do not save work because sub-aggregation does not help when each

pane contains only one tuple. In general, for a sliding-window aggregate query, the

benefit of using panes increases as the number of tuples in each pane increases (i.e., as

the average data arrival rate increases).

In the following, we first present the basic structure of the paned-WID evaluation of

sliding-window aggregation. Then, we discuss in detail how panes are used for

window aggregate queries with different types of aggregate functions.

6.2.1. Evaluating Queries with Panes

To evaluate a sliding-window aggregate query using panes, the query is decomposed

into two sub-queries: a pane-level sub-query, PLQ, and a window-level sub-query,

WLQ. The PLQ is a tumbling-window aggregate query; it separates the input stream

into non-overlapping panes, and produces an aggregate for each pane. The WLQ is a

sliding-window query over the result of the PLQ that returns window aggregates.

Figure 6-14 shows the query plan for Q6-2 using panes. Q6-2 is decomposed into a

tumbling-window max for the PLQ, consisting of Bucket1 and Max1 for its execution

plan, and a sliding-window max for the WLQ, consisting of Bucket2 and Max2 for its

execution plan. The PLQ produces a pane-maximum for each pane. The aggregates

that PLQ outputs have a pid attribute, which is the window-id of the aggregate. The

WLQ runs over the stream produced by the PLQ, using the pid attribute as the

windowing attribute, and every minute computes the maximum over the last four

 103

minutes. Typically, PLQ can greatly reduce the data volume of the input stream; for

example, for Q6-2, each window (i.e., a 4-minute sub-stream) of the WLQ contains

only four tuples, corresponding to four panes.

Figure 6-14 Paned-WID for Q6-2 (RANGE 4 minutes, SLIDE 1 minute); PLQ is the
pane-level sub-query, and WLQ is the window-level sub-query

In order to use panes, we need to split the original sliding-window aggregate query

into PLQ and WLQ, and thus we need to determine the window specifications and the

aggregate functions for them. The PLQ and WLQ aggregate functions depend on the

aggregate function of the original query. For example, for a sliding-window

Bucket1
RANGE = 1 min, SLIDE = 1 min

WA = ts

Max1(length)
group-by pid

 input

Bucket2
RANGE = 4 SLIDE = 1

WA =pid

Max2(length)
GROUP-BY wid

(srcIP, length, ts)
< 202.10.1.2, 52, 12:10:30> t

(srcIP, length, ts , pid)
< 202.10.1.2, 52, 12:10:30, 11> t'

(pid, max)
< 11, 52 > pa1

(wid, max)
<11, 52 > wa1

(pid, max, wid
< 11, 52, 11 > pa1

WLQ

PLQ

 104

maximum, both the PLQ and WLQ use the max aggregate; but for a sliding-window

count, the PLQ is a count, and the WLQ is a sum. The window specifications of both

sub-queries are also determined by the window specification of the original query. The

size of the panes for the PLQ is the largest possible size for sub-aggregation such that

the sub-aggregates can be used by the WLQ to compute window aggregates.

Therefore, the RANGE, as well as the SLIDE, of the PLQ is the greatest common

divisor of the RANGE and SLIDE of the original query: pane-range = pane-slide =

GCD(RANGE, SLIDE). For example, for a window aggregate with RANGE 9

minutes and SLIDE 6 minutes, its pane size (i.e., the RANGE and SLIDE for its PLQ)

is 3 minutes. Each window extent of the original query constains 3 panes and

consecutive window extents overlap by 1 pane. Thus, for the WLQ of the query,

RANGE is 3 and SLIDE is 2, defined on the pid attribute of the PLQ results. The

WLQ has the same RANGE and SLIDE as the original query, but uses pane-

timestamp as the windowing attribute. The number of panes per window is

RANGE/pane-range. Note that both the PLQ and WLQ are evaluated with WID, and

thus using panes does not require any new query operators.

Using panes generally reduces computation cost. Only a single window aggregate is

updated for each input tuple in the PLQ. Although multiple window aggregates are

updated with each pane-aggregate in the WLQ, the overall computation cost for the

query is normally reduced, because the number of panes in a window is usually much

fewer than the number of tuples in a window. For example in Query 6-2, each input

tuple is processed once to produce a pane-max. Then, each pane-max is used in the

 105

computation of four windows, because each pane-max contributes to four windows.

Normally, the number of tuple accesses here is much less than that of accessing each

input tuple four times.

6.2.2. Different Types of Aggregates

In the following discussion we introduce two properties of aggregate functions that

affect the paned evaluation of sliding-window aggregates.

6.2.2.1. Holistic

Suppose an aggregate function F over a dataset X can be computed from a “sub-

aggregate” function L over disjoint datasets X1, X2, …, Xn,, where XX i
ni

=
≤<0
U and a

“super-aggregate” function S to compute F(X) from the sub-aggregates, L(Xi), 0 < i ≤

n.

)}0|)(({)(niXLSXF ≤<=

As defined by Gray et al. [23], an aggregate function F is holistic if for all possible

sub-aggregate functions, L(), there is no constant bound on the size of storage needed

to store the result of L(). For example, median, quantile, and mode are holistic.

We call aggregates that are not holistic bounded aggregates. The term bounded

encompasses the distributive and algebraic terms defined by Gray et al. [23]; but the

distinction between distributive and algebraic is unnecessary for us. For example,

average is bounded: The function L() records count and sum; the function S() adds the

 106

respective components and then divides to produce the global average. Other common

examples of bounded aggregates include count, max, min, sum, variance, and center-

of-mass.

6.2.2.2. Differential Aggregate Functions

We define the differential3 property for aggregate functions. Assume there exist two

datasets X and Y such that Y ⊇ X. Aggregate F is differential if there exist functions L,

H and J that satisfy the two conditions: 1) F(Y − X) can be computed from L(Y) and

L(X) and 2) F(Y) can be computed from L(Y − X) and L(X) as below:

))(),(()(

))(),(()(

XLXYLJYF

XLYLHXYF

−=
=−

We also require that |L(X)| < |X|.

For example, count is differential as shown below.

)()'()'(

)()'()'(

XcountXXcountXcount

XcountXcountXXcount

+−=
−=−

Based on the sub-aggregate function L, we further categorize differential aggregate

functions. If the result of L can be stored with constant storage, we say that F is full-

differential. For example, count, average and variance are full-differential. A full-

differential aggregate function must be bounded. If the result of L cannot be stored

with constant bound, we say that F is pseudo-differential, for example, a heavy-hitter

aggregate that finds frequently occurring items is pseudo-differential, because

3 Differential is similar to what Arasu and Widom term subtractable [5].

 107

although an L function exists for heavy-hitter, the result of the L function cannot be

stored with constant storage.

Next, we discuss using panes to evaluate bounded and holistic aggregates,

respectively. We also discuss the effects that the differential property and the number

of groups have on evaluating sliding-window aggregate queries.

6.2.3. Paned-WID for Queries Using Bounded Aggregate Functions

For a differential aggregate function, we can exploit the differential property to further

reduce its evaluation cost by computing the aggregate for the current window based on

the aggregate of the previous window. For example in Q6-2, to compute the count

over w3 as shown in Figure 6-13, we can use count(w3) = count(w2) – count(p2) +

count(p6). To leverage the differential property, the aggregate operator (in the WLQ)

needs to handle tuple deletion, as well as tuple insertion.

The GROUP-BY construct introduces another factor, the number of groups, into the

space requirement and computation cost. Intuitively, the more groups, the more space

and the more computation are needed to evaluate the query. The following query Q6-3

is a sliding-window aggregate query with GROUP-BY.

Q6-3: “Count the number of packets from each source IP for the past 4
minutes and update the result every minute.”

SELECT count(*) [RANGE 4 minutes, SLIDE 1 minute, WA ts]
FROM packets
GROUP BY srcIP

 108

Using panes to evaluate Q6-3, every group in each pane is aggregated into a <srcIP,

pane-count, pid> tuple by the PLQ. Assuming G groups per pane, for the WLQ, a

window contains 4*G tuples, as there are four panes per window. The number of

groups per pane, G, is important because for each group the PLQ constructs an output

tuple and the WLQ processes an input tuple. In the extreme case where every group

contains a single tuple, the PLQ cannot reduce the number of input tuples for the

WLQ and panes provide no benefit. In fact, for a bounded aggregate query with a

GROUP-BY, the size of the required space is bounded only if the number of groups is

bounded.

Taking both the number of groups and the differential property of the aggregate

function into account, we express the computational cost per window-aggregate of

using panes for sliding-window queries with non-differential and differential

aggregate functions, TimeP-ND, and TimeP-D. In the following discussion, we use count

and maximum as the representative for differential and non-differential aggregate

functions, respectively.

TimeP-ND = a*T/P + b*G + c*P*G (Eq. 6.1)
TimeP-D = a*T/P + b*G + 2*c*G*SLIDE/GCD(RANGE, SLIDE) (Eq. 6.2)

In the two formulas above, a is the PLQ’s cost to process an input tuple, b is the

PLQ’s cost to generate an output tuple, and c is the WLQ’s cost to process a tuple (to

add a tuple to a window (e.g., to update the maintained aggregate with the tuple) or to

remove a tuple from a window (e.g., to subtract the tuple from the maintained

aggregate for queries using differential aggregate functions such as count), T is the

 109

number of tuples per window, P is the number of panes per window, and G is the

number of groups per pane. In Eq. 6.2, SLIDE/GCD(RANGE, SLIDE) is the number of

panes per slide. For example, when range is 9 minutes and slide is 6 minutes then the

pane size is 3 minutes, so the number of panes per slide is 2. Thus,

2*c*G*SLIDE/GCD(RANGE, SLIDE) is the cost to compute the aggregates for all

groups in the current window based on the aggregates in the previous window, that is,

the cost to expire old panes and the cost to add new panes.

The cost per window of evaluating sliding-window queries with non-differential and

differential aggregation functions without using panes, TimeW-ND and TimeW-D, are as

follows, where a′ is the cost to process each tuple (to insert a tuple to or to remove a

tuple from a window).

TimeW-ND = a′*T (Eq. 6.3)
TimeW-D = 2*a′*SLIDE*(T/RANGE) (Eq. 6.4)

Without using panes, the WID implementation for a sliding-window query with a non-

differential aggregate function such as maximum needs to use every tuple in the

window extent to compute its aggregate, just as Eq. 6.3 indicates. The WID

implementation cannot directly leverage the differential property, because leveraging

the differential property requires processing window extents sequentially. As we

assume linear punctuation, pane results are produced in order, and thus WLQ receives

an ordered stream. Eq. 6.4 shows the computational cost of using the buffering

implementation to evaluate a sliding-window query with a differential aggregate

function, such as count. The buffering implementation can compute the count for the

 110

current window extent based on the count of the previous window extent by adding

one to the previous window-count for each new tuple for the current window and

subtracting one for each expired tuple.

Comparing Eqs. 6.1 to 6.3, and 6.2 to 6.4, we see that there are some situations in

which using panes might not provide performance gains: 1) When the number of

groups per pane increases above a certain threshold; and 2) when the number of panes

per window is too small, for example, one pane per window.

6.2.4. Panes for Queries Using Holistic Aggregate Functions

Similarly, for holistic aggregates, the pre-processing of panes can also be shared by

multiple windows to reduce computation cost. We use heavy hitters as a holistic-

aggregate example, and use a algorithm that is similar to that used by Gigascope to

evaluate heavy hitters.

In Giagasope, to evaluate heavy hitter queries such as “find the IP sources that most

frequently generate packets”, multiple alternatives are available for sub-aggregate and

super-aggregate pairs [13]. One option is that the sub-aggregate uses a hash table to

record the packet-count for each IP source, and then the super-aggregate uses the hash

table entries to update its data structure, called a sketch, for estimating heavy hitters.

Although Gigascope only evaluates tumbling windows, we can use a similar method

to evaluate sliding-window heavy hitter queries, such as Q6-4.

 111

Q6-4: “Over the past 10 minutes, find the srcIPs from which the number of
packets received is greater than or equal to 5% of the total number of packets
received; update the result every minute.”

To evaluate Q6-4, the PLQ maintains a hash table with (srcIP, count) hash entries. At

the end of each pane, the non-empty hash table entries are output. The WLQ buffers

and uses each hash table entry to update the sketches for multiple windows. Using

panes, the PLQ compresses all the packets from a source IP to a single hash entry and

reduces required buffer spaces, similar to the sub-aggregation in Gigascope. In

addition, each hash table entry is used by multiple windows, and thus reduces the

overall computation cost. Similar strategies can be applied to evaluate other sliding-

window holistic aggregates using panes.

We note that in order to use panes, differential holistic aggregate functions need

necessarily be pseudo-differential. Consider heavy hitters: The counts recorded by

hash table entries can be summed or subtracted. Thus, the sketch of the current

window can be constructed based the sketch of the previous window; but there is no

bound on the number of hash entries for each pane, as the number depends on how

many groups are represented in the pane.

 112

6.2.5. Performance Study of Paned-WID

We experimentally compared the execution of sliding-window aggregate queries with

and without panes. Our experiments were conducted on an Intel® Pentium® 4 2.40

MHz machine, running Linux 7.3, with 512MB main memory. Our data generator is

loosely based on the XMark data generator [79], and the data size for the experiments

was approximately 15.2 MB. We calculated execution time by measuring the query

execution time and then subtracting the cost of scanning the input stream, to focus on

just the aggregation cost.

Figure 6-15 Execution-time ratio of the Paned-WID vs. the WID for a sliding-window
maximum query (varying the number of tuples per pane and the number of panes per
window)

In our experiments, we varied the RANGE and the SLIDE parameters of a sliding-

window max query, Q6-2, effectively varying the number of tuples per pane, and the

number of panes per window (i.e., Pane/Win, as shown by the different columns of

each group in Figure 6-15). Figure 6-15 shows the ratio of the execution time using

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 3 5 10 20 30 40 60 80

Number of Tuples Per Pane

2 Pane/Win

5 Pane/Win

10 Pane/Win

20 Pane/Win

50 Pane/Win

100 Pane/Win

P
er

fo
rm

an
ce

 R
at

io

(P
an

ed
-W

ID
/W

ID
)

 113

panes over the execution time of the WID implementation without panes. For

example, we see that at 20 tuples per pane and 5 panes per window, the paned option

takes about 30% of the time of the non-paned option. We conclude from Figure 6-15

that using panes has better execution-time performance than the original approach in

many cases.

We expect that the memory usage of Paned-WID will be similar to that of WID, as

both of them maintain partial aggregates. The PLQ in Paned-WID only maintains one

aggregate for each group. The number of aggregates that WLQ maintains for each

group is the same as that of WID if SLIDE evenly divides RANGE; if not, WLQ

needs to maintain more partial aggregates than WID for each group.

6.3. The AdaptWID Implementation

Memory performance is important for processing high-volume data streams.

Compared to the buffering implementation, the WID implementation is often more

memory efficient because maintaining partial aggregates normally requires

significantly less memory than buffering tuples. However, this memory-usage

difference is directly dependent on physical stream properties. For example, consider a

network-packet stream with the simplified schema of <srcIP, destIP, ts> and the

following window aggregate query, Q6-5, with the timestamp attribute of the packet

stream, ts, as the windowing attribute (WA).

Q6-5: “Count the number of packets from each source IP for the past 5
minutes; update the result every 1 minute”

 114

SELECT srcIP, count(*)
[RANGE 5 minutes, SLIDE 1 minute, WA ts]

FROM M1
GROUP BY srcIP

The buffering implementation maintains a buffer of 5 minutes of tuples (i.e., a window

extent) at all times. At the end of each minute, it computes and outputs the number of

packets from each srcIP over the buffered tuples, and purges the one minute of expired

tuples from the buffer. The WID implementation maintains the number of packets

from each source IP for each active window extent. For Q6-5, if the input stream is

ordered, there are five active windows at a time; the WID implementation

incrementally computes the number of packets from each source IP for the five active

window extents. At the end of a window extent, the WID implementation outputs the

aggregates for that window extent and then purges those aggregates. Although the

WID implementation is normally very memory efficient, the buffering implementation

may use less memory for a given srcIP when the input stream is very sparse. For

example, if some group of Q6-5 contains only one tuple every five minutes, the WID

implementation needs to maintain 5 partial aggregates, whereas the buffering

implementation would only buffer one input tuple for the group. Thus, the WID

implementation is memory efficient when groups are dense; that is, each group has

many tuples per window. If there are too many sparse groups, the WID method may

have excessive memory overhead compared to the buffering implementation. For ease

of presentation, we term the buffering technique and the WID implementation as lazy

and eager aggregation, respectively.

 115

Window-aggregate evaluation may benefit from a hybrid of eager and lazy

aggregation. Massive data streams can often exhibit data skew, with a tail of many

sparse groups in addition to a small number of dense groups. Data-distribution skew

(e.g., a power-law distribution in group density), which often occurs with high data

volumes, may lead to a large proportion of sparse groups. For example, distribution of

network packets at a router is highly skewed, with a large number of packets coming

from a small set of IP addresses, but a few packets coming from each of many other IP

addresses. For some critical scenarios, such as denial-of-service attacks, the

percentage of small groups increases dramatically. Processing sparse groups with lazy

aggregation and dense groups with eager aggregation may lead to better memory

performance than either lazy or eager aggregation alone. Further, stream systems

generally cannot statically differentiate sparse groups from dense groups, and the

character of a group can change over time. For example, the number of bids for an

online auction item may change dramatically over time: An auction might not receive

many bids until its expiration time is approaching. Thus, the system needs to

determine dynamically at execution time which aggregation method to use and

provide an adaptive mechanism to switch between the aggregation methods.

We examine stream properties that affect memory efficiency of window aggregation

and propose an adaptive implementation, AdaptWID, that combines the best aspects of

the buffering implementation and the WID implementation to improve memory

efficiency for input streams with skewed data distributions, even if the distributions

 116

vary over time. AdaptWID adapts the aggregation method on a group-by-group basis

to cope with time-varying data skew.

In the following, we first discuss input stream properties that affect memory efficiency

of the lazy and eager implementations and use them to model their memory usage.

AdaptWID uses this memory-usage model to select among evaluation algorithms at

run time. Then, we present the AdaptWID implementation. Our experimental study

verifies that the adaptive algorithm improves memory usage, while maintaining

execution cost and latency comparable to existing non-adaptive implementations.

6.3.1. Stream Properties and Memory-Cost Estimation

To allow the aggregate operator to choose between eager and lazy aggregation, we

need to estimate the memory costs of both implementations for each group. In the

following, we discuss stream properties that may affect memory usage and then

present memory-cost estimates for lazy and eager aggregation based on these

properties. We assume input streams may contain data from multiple sources, may

contain out-of-order tuples and are punctuated. The metrics that we propose for

measuring stream properties are defined relative to the window parameters (RANGE,

SLIDE, WA). Note that an ordered stream is a special case of our stream model and

the discussion here applies.

Stream Volume: Stream volume describes the amount of data in the stream. We

define stream volume, vol, as the amount of data per unit of the windowing attribute.

For example, if the unit of the windowing attribute is seconds, then vol is the number

 117

of tuples with windowing attribute values within a given second. Notice that stream

volume is determined only by data in the stream; it is independent of the stream-

arrival pattern, and is different from the real-time stream-arrival rate. Stream-arrival

patterns and rates are affected by data transmission, and may fluctuate even when

stream volume is stable.

Arrival Order: Out-of-order tuples delay the completion of window extents in which

they participate and thus increase the number of window extents open at a time. We

measure a stream’s arrival order by window-extent duration, wed, which is defined on

the windowing attribute and is the length of the period that a window extent is active.

Let the high-watermark of a data source be the largest value of the windowing

attribute seen so far in the stream; and let the low-watermark be the smallest value of

the windowing attribute that might still appear in the stream. (Note that low-

watermark indicates the progress of the stream.) We define the wed of a window

extent as the difference between the low-watermark at the start of the extent and high-

watermark at the completion of the extent. An extent starts on the arrival of the first

tuple belonging to the extent and completes on the arrival of the punctuation covering

(closing) the extent. Intuitively, a longer wed indicates more window extents open

simultaneously.

Arrival-Time Skew: When the input stream consists of data from multiple data

sources, skew in the arrival times of different sources can cause disorder in the

combined stream. Arrival-time skew describes the time skew among data sources. We

measure the synchronization of two data sources at each instant by offset, which is the

 118

difference between the high-watermarks of the sources. As we will see later, knowing

the offset helps to better estimate the state requirements of window operators.

6.3.2. Memory-Cost Functions

In general, for aggregation, the total amount of state that must be maintained is

determined by the number of open window extents and the amount of state maintained

for each open extent. An open window extent is one that has started (with its first tuple

arrival) but not completed (with covering punctuation arrival). AdaptWID needs to

process each group individually, and thus requires memory-cost estimates for window

aggregation for each group.

The memory cost of eager aggregation is determined by the number of open window

extents and the size of the partial aggregate. Given the duration of a window extent,

wed, the number of open window extents is wed/SLIDE. The memory cost of eager

aggregation is given by Eq. 6.5 below, where aggr is the size of a partial aggregate.

)/(* SLIDEwedaggrMCeager = (Eq. 6.5)

The memory cost of lazy aggregation is determined by the number of buffered tuples.

Consider the sub-stream for one group and assume that the stream volume, vol, is

relatively constant over the duration of a window extent. Eq. 6.6 below estimates the

memory cost for lazy aggregation, where tup is the size of an input tuple.

wedvoltupMClazy **= (Eq. 6.6)

However, if the input to the aggregate is the union of multiple sources, arrival-time

skew of these sub-streams affects the estimation of MClazy. Figure 6-16 shows the

 119

synchronization of three data sources, A, B, and C. Assume the sub-streams from each

data source arrive in order. The points openi and endi mark the active periods of a

window extent for i = A, B, C. The close point marks the arrival of the punctuation

covering this window extent. Thus, the interval between openi and the close point

corresponds to the wed for each source. In this example, tuples in source A arrive

earlier than B and C, and offsetB→A and offsetC→A respectively, indicate the skew of B

and C relative to A, respectively. The duration of the whole window extent is marked

by duration, which is the same as the wed for the earliest source, A.

Figure 6-16 A window extent for unsynchronized data sources A, B, and C

The input tuples that lazy aggregation needs to buffer include all the tuples within the

wed period of each data source. Assume that voli is the volume of stream i. The

number of tuples that lazy aggregation buffers is

(volA * wedA + volB * wedB + volC * wedC)

Here, wedA equals the duration of the full window extent wed, wedB is (wed –

offsetB→A), and wedC is (wed – offsetC→A). Letting vol equal (volA + volB + volC), the

number of tuples buffered by lazy aggregation is

)()(* ACCABB offsetvoloffsetvolwedvol →→ ∗−∗−

open
offsetC→A

A B C
close

openB

openC

duration

offsetB→A

endA

endB endC

close close

 120

The general formula for n data sources, S1, S2, …, Sn is as follows, assuming that S1 is

the earliest-arriving data source. −= ∑
=

→
nSSK

SKK offsetvolwedvolnumTuples
...1

1
** (Eq. 6.7)

The memory cost of lazy aggregation is then given by Eq. 6.8. −= ∑
=

→
nSSK

SKKlazy offsetvolwedvoltupMC
...1

1
** (Eq. 6.8)

Given the memory costs in Eq. 6.5 and Eq. 6.8 for eager aggregation and lazy

aggregation, respectively, we derive a threshold condition to indicate when eager is

preferred over lazy aggregation as shown in Eq. 6.9; winVol equals vol * wed, which

we call window volume. ∑
=

→+>
nSSK

SKK offsetvol
SLIDEtup

wedaggr
winVol

...1

1
*

*

*
 (Cond. 6.9)

The aggregate operator in the AdaptWID implementation actively monitors the stream

properties used in Cond. 6.9 for each group, and triggers the switching between eager

and lazy aggregation for the group based on the threshold condition. The memory-cost

models for eager and lazy aggregation make it possible to estimate which will use less

memory for given input-stream properties.

6.3.3. The Runtime Switching Mechanism

Efficient runtime switching between lazy and eager aggregation is essential for

AdaptWID. The AdaptWID implementation actively monitors the stream properties of

 121

each group to estimate memory costs using the memory-usage model, and based on

the estimates, it will switch between eager and lazy aggregation for a group. We first

discuss runtime switching in AdaptWID in this section, then present the detailed

implementation in the next section.

Efficient runtime switching requires a low switching cost and a short transition period.

In the following we discuss switching between eager and lazy aggregation in either

direction for a single group.

Lazy to eager: Switching from lazy to eager aggregation is straightforward. The

aggregate operator uses the buffered tuples to construct partial aggregates, and then

discards those tuples. Tuples arriving during the transition are processed immediately

without buffering.

Eager to lazy: Switching from eager to lazy aggregation is more challenging, because

we cannot reconstruct tuples from partial aggregates, nor discard those aggregates

immediately. Therefore, during the transition in this direction, we must maintain both

the partial aggregates computed so far and the tuple buffer for new input, until all

existing partial window aggregates are output. The number of partial aggregates for

each group is at least the number of window extents in which each tuple participates,

which is determined by the window specification. For example, in Q6-5, at least five

partial aggregates are maintained for each group. Out-of-order tuples may increase the

number of partial aggregates that the query needs to maintain. However, for a

tumbling-window query, there will often be only one partial aggregate for each group,

and thus that transition cost is lower than that for sliding-window queries.

 122

Leveraging panes: The overhead for switching from eager to lazy can be improved in

both the length of the transition period and the amount of memory usage by using

panes. For example, to evaluate Q6-5 using panes, a sliding-window count query with

RANGE 10 minutes and SLIDE as 1 minute, the query is split into a sub-aggregation

with a 1-minute tumbling-window and a sub-aggregation computes the count for a

window extent of the query by summing up the results of the sub-aggregations on

panes. The tumbling-window sub-aggregate will often have a much lower switching

cost than the original query. Although the super-aggregation is a sliding-window

aggregate, the number of tuples in a window extent of super-aggregation is bounded

(≤ 10 in this case), and thus lazy aggregation is a good choice for it, and adaptive

switching is not needed.

6.3.4. Implementation Details

Like the WID implementation, the AdaptWID implementation also has two parts, a

Bucket operator and an Aggregate operator. The bucket operator is the same as in the

WID implementation. The aggregate operator processes each group independently

using either eager or lazy aggregation, and may switch between them during

execution. Switching is governed by the threshold condition defined in Cond. 6.9,

which requires monitoring relevant properties of each group, as we expect both data

and streaming properties to change over time in many applications.

 123

In the following, we present the AdaptWID implementation. Consider a sliding-

window query, Q6-6, as a running example in the presentation. The aggregate operator

receives linear punctuation on the wid attribute.

Q6-6: “Computes the total size of the packets in the past 10 seconds for each
source IP and update the results every second.”

SELECT srcIP, sum(len)

[RANGE 10 seconds, SLIDE 1 second, WA ts]
FROM packets
GROUPBY srcIP

6.3.4.1. Monitoring Stream Properties for Switching

AdaptWID needs to determine the stream properties involved in the threshold

condition for each group. Window volume, winVol, is determined by keeping a count

of the number of active tuples in a window extent for each group. Window extent

duration, wed, is initiated to RANGE, and is updated at each punctuation with the wed

of the most recently closed window extent—the difference between the high-

watermark of the completion and the low-watermark of the start of the extent. High-

watermark is estimated by the largest ts value among the input tuples, and low-

watermark is estimated by the largest ts value of punctuations. If tuples are produced

from multiple data sources, the threshold is also affected by the offset among the data

sources, and the stream volume of each data source. In many applications, the offset

values among data sources are relatively static and can be pre-determined; otherwise,

the offset between any two sources can be estimated by the difference between the

data sources’ high-watermarks. The stream volume of each data source can be

 124

deduced by the number of tuples in a window extent from each data source divided by

the RANGE parameter of the window.

Figure 6-17 The AdaptWID Evaluation of Q6-6 with RANGE 10 seconds and SLIDE
1 second—dense groups are evaluated with eager aggregation and sparse groups are
evaluated wth lazy aggregation

6.3.4.2. Implementing the Aggregate Operator

As the Bucket operator of AdaptWID is the same as that of WID, we focus on the

Aggregate operator. The state that the Aggregate operator maintains for AdaptWID is

more complex than for WID. Figure 6-17 shows the data structure and state that

AdaptWID maintains during evaluating Q6-6. To support both eager and lazy

aggregation, the aggregate operator maintains a hash table, H, and a tuple buffer, B.

Each group has an entry, g, in H. For an eager group, g contains a list of partial

window aggregates, one for each active window extent in the group. Notice that the

. . .

hwTime: 12.5
punctuatedWid: 11
wed: 11

. . .

hashkey:
 202.5.4.1
alt: lazy
winVol: 1

 win-id: 12
 tupleCnt: 120
 sum: 330

 win-id: 13
 tupleCnt: 320
 sum: 630

…
 win-id: 22
 tupleCnt: 20
 sum: 150

hashkey:
 201.1.1.5
alt: eager
winVol: 500

. . .
hashkey:
 202.10.2.5
alt: lazy
winVol: 3

Tuple Buffer B

Hash Table

. . .

 125

counter tupleCnt keeps track of the number of tuples that will expire when the

aggregate is released, instead of the total number of tuples in the window extent. For a

lazy group, g indicates this status by the value of the flag alt and all the input tuples

for g go in to the shared buffer B.

The Aggregate operator also maintains the following state for each data source (Figure

6-17 assumes a single data stream): punctuatedWid, the last punctuated wid value;

hwTime, the high-watermark time of the input stream, which is initialized to 0 and

updated to max(t.ts, hwTime) as each tuple t arrives; and wed, the duration of the last

completed window extent, which is initialized to RANGE, and is updated when the

window extent completes, with the difference of the current hwTime and the stream

high-watermark when the window extent starts.

The aggregate operator in AdaptWID processes two kinds of input, tuples and

punctuations. In addition, tuple arrival may cause a lazy group to switch to eager, and

punctuation arrival may cause an eager group to switch to lazy. We discuss tuple

processing, switching, and punctuation processing separately below.

Processing Tuples: When a tuple t arrives, the aggregate operator hashes t on its

grouping values to locate its hash entry g. There are three possibilities.

1. Entry g is null (i.e., no existing group for t in H): Create an entry for a new lazy

group in H, with winVol = 1 and the lazy alternative selected. Buffer t in B. Note that

initially, every group is lazy.

2. Entry g contains a lazy group: Add t to B and increment winVol.

3. Entry g contains in an eager group:

 126

3.1. Update all partial aggregates in t’s group that match t’s wid range. If the

window-id of a partial aggregate equals the upper bound of t’s wid range,

increment its tupleCnt. Increment g.winVol.

3.2. Create new partial aggregates in g for any later extents to which t belongs

in g. Notice that the counter tupleCnt keeps track of the number of tuples that

will expire when the aggregate is released. Thus, initialize tupleCnt of a partial

aggregate to 1 if t does not belong to any later window extent; otherwise,

initialize tupleCnt to 0, because if t belongs to later window extents, it should

not be expired when the current aggregate is released.

Switching: Tuple arrival may switch a lazy group to eager, if winVol rises above the

threshold. To switch, the Aggregate operator scans B, using tuples in the group to

build partial window aggregates, and sets the status indicator, alt, of the group to

“eager”. For tuple t with wid range i to (i + n), we update extents from

max{punctuatedWid + 1, i} to (i + n). Here, punctuatedWid records the window-id of

the last completed window extent, and thus window punctuatedWid + 1 is the first

active window extent.

Punctuation arrival may switch a group from eager to lazy, if input tuples expire and

winVol decreases below the threshold. When that happens, the Aggregate operator

marks the group as lazy and puts subsequent input tuples into B, but still maintains

existing partial aggregates for the group until those aggregates are all output. Such a

group is called a transitional group. If winVol for a group fluctuates around the

threshold, the group could oscillate between eager and lazy. To avoid such thrashing,

 127

we set two threshold values, one for switching from lazy to eager aggregation, and a

slightly lower one for switching back.

Figure 6-18 Outputting a result for a group in transition—a result is produced with
data from both hash table H and the temporary hash table built to compute aggregates
from tuples in buffer B

Processing Punctuation: Punctuation arrival will trigger output of window

aggregates for completed window extents, and the aggregate operator processes each

group according to its status—eager, lazy, or transition—as follows.

1. Eager: Scan H to find all eager groups. For each such group, remove and output

partial aggregates covered by the punctuation, then decrease winVol of the group by

the tupleCnt of each such partial aggregate.

2. Transition: Figure 6-18 shows punctuation processing for a group in transition. Scan

B, using tuples that match the punctuation to build a temporary hash table T on the

grouping attributes. Remove tuple t if the punctuation covers the upper range of its

wid: 21
tupleCnt: 3
sum: 50

wid: 22
tupleCnt: 5
sum: 60

. . .
 hashkey:
 202.10.25.7
 alt: eager
 winVol: 8

. . .

Tuple Buffer B

hashkey:
 202.10.25.7
tupleCnt: 1
sum: 15

. . .

. . .

(srcIP, sum, wid)
(202.10.25.7, 65, 21) Temporary

Hash Table T

output

Step 1

Step 2 Step 3

hwTime: 21.8
punctuatedWid: 20
wed: 11

Hash Table H

 128

wid, and decrement winVol for its group. Scan T and output the aggregate for each

group, merging it with the partial aggregate for the same group and wid in H, if such

exists. (In practice, we reuse H for the temporary hash table T, to avoid the overhead

of building another hash table.)

3. Lazy: Process as in Case 2, except there are no existing partial aggregates to merge.

At any time, if winVol of a group drops to 0, remove it from H.

Discussion: A potential problem here is that the memory cost in the transition period

might be higher than with either eager or lazy alone, and the transition period lasts for

almost the duration of a window extent. However, we expect only a fraction of groups

to be in transition at the same time. Another possible problem is that all the lazy

groups share buffer B. As the the number of tuples in B increases, the latency for lazy

to eager transition increases, because it requires scanning B to find tuples belonging to

the group switching to eager. To reduce that latency, we could partition the shared

buffer B into bins, and partition the hash table H into corresponding sections, and let

groups in each section share one bin. Note that because only tuples from sparse groups

go to buffer B, the size of buffer B is linear in the number of groups. The AdaptWID

implementation can be enhanced with panes, as we have discussed. The tumbling-

window sub-aggregation can designate individual panes in a group as eager or lazy. If

the collective size of the tuples in the pane is greater than a pane aggregate, the item

contains a partial aggregate (eager); otherwise, it contains a list of input tuples (lazy).

 129

6.3.5. Performance Study of AdaptWID

We implemented AdaptWID and compared it to eager and lazy aggregation in

NiagaraST. All of our experiments were conducted on an Intel® Pentium® 4 3.40

GHz machine, running Linux (Centos 7.3), Sun® Java VM 1.5, with 1GB main

memory. We used two queries in this part of the performance study, Q6-7 and Q6-8.

Q6-7 is a tumbling-window sum query with window size one second, and thus

represents tumbling-window aggregation over single data source; Q6-8 is a sliding-

window count query over the union of three network links and thus represents sliding-

window aggregation over multiple data sources. We assume linear punctuation on ts.

Thus, window extents of all groups are terminated at the same time.

Q6-7: “Compute the total size of the packets from a network traffic link, Main,
in the past 10 seconds for each source IP; update the results every second.”

SELECT srcIP, sum(len)

[RANGE 1 second, SLIDE 1 second, WA ts]
FROM Main
GROUP-BY srcIP

Q6-8: “Count the number of the packets from three network traffic links, Main1,
Main2 and Control, in the past 10 seconds for each source IP, and update the
results every second.”

SELECT count(*)

[RANGE 10 sec, SLIDE 1 sec, WA ts]
FROM (Main2 ∪ (Main1 ∪ Control))
GROUP-BY srcIP

 130

Table 6-2: Five Data Sets (DS1 – DS5) with Skewed Data Distribution—Each
contains a different percentage of small, medium, and large groups. (The small groups
of DS1 – DS5 contain 1, 3, 5, 7, 9 percent of the data, respectively.)

 Dataset
 Percentage

DS1 DS2 DS3 DS4 DS5

Small Groups 39% 66% 77% 82% 87%

Medium Groups 51% 28% 19% 15% 11%

Large Groups 10% 6% 4% 3% 2%

Data Generation: Using network-packet headers from the Passive Measurement and

Analysis project [48], we generated input streams for Q6-7 and Q6-8. For Q6-7, we

generated an ordered input stream with data-distribution skew. To simulate data

distribution skew, we assign data to three types of groups: small, medium, and large.

A small group is defined to contain one record; a medium group contains an average

of 15 records, and a large group an average of 300 records. To vary the data skew, we

distribute 1, 3, 5, 7, or 9 percent of the data to small groups, a fixed 20 percent of the

data to medium groups, and the remainder to large groups. Every group is assigned a

group-id, and we replaced the srcIP attribute value of the original data with the group-

id. The result is five data sets, each with the same number of records, but different

record distributions, as shown in Table 6-1. The data set size is approximately 135

MB. For Q6-8, we generated three data streams to emulate three approximately

synchronized data sources with each individual stream is skewed in data distribution:

two streams simulating the main links with high data volume (approximately 4000

tuples/second) and one stream simulating the control link that contains a small amount

of data (almost empty). The total data set size is approximately 135 MB. We varied

 131

 (a) Memory performance over data-skewed sources.

 (c) Execution itme performance over data-skewed sources.

 (b) Latency performance over data-skewed sources.

Percentage of Small Groups

M
em

o
ry

 (
M

B
)

Percentage of Small Groups

Percentage of Small Groups

L
at

en
cy

 (
m

ill
is

ec
)

E
xe

cu
ti

o
n

 T
im

e

 132

Figure 6-19 WID vs. AdaptWID for a tumbling-window query over a single data
source, Q6-7, and a sliding-window query over three data sources, Q6-8

the amount of time skew between the Control stream and the main streams; there is no

time skew between the two main streams.

Experiments and Results: Figure 6-19 compares eager aggregation and AdaptWID

on Q6-7, and lazy aggregation, eager aggregation, and AdaptWID on Q6-8. Graphs

(a), (b), and (c) in Figures 6-19 show memory usage, latency, and execution time,

respectively. Memory usage is the maximum memory used during query execution.

Latency is the difference between the arrival time of a punctuation and the output time

of the aggregates covered by that punctuation. Execution time reflects the CPU cost,

and is the running time of a query over the input data set. The numbers reported in our

performance study for latency and execution time are the average of eight runs. As

Figures 6-19 shows, AdaptWID outperforms eager aggregation in all three categories

for both queries: The memory benefit of AdaptWID is significant, confirming our

expectations. The execution time and latency benefit of AdaptWID is due to the hash

table in the AdaptWID aggregate operator containing many fewer entries than the hash

table used for eager aggregation, greatly reducing the access time. In general,

compared to WID, the benefits of AdaptWID increases as the percentage of small

groups increase, because with more small groups, WID needs to maintain more partial

aggregates while AdaptWID leverages lazy aggregation for the small groups.

Although WID (the eager-aggregation approach) is generally a better implementation

for stream query evaluation than the buffering implementation (the lazy-aggregation

 133

approach), it might not be space efficient in dealing with data distribution skew.

AdaptWID adapts between the two implementations based on stream properties,

including stream volume, arrival order, and synchronization of different data sources,

and achieves better performance than both WID and the buffering implementation.

In summary, we presented three order-insensitive implementations of window

aggregation: WID, which is directly based on our semantic definition for window

aggregation, and two extensions of WID, Paned-WID and AdaptWID, which optimize

for execution time and memory usage, respectively. In the rest of the thesis, we will be

looking further at disorder-tolerant operator implementations and stream-system

architectures.

 134

Chapter 7

ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW JOIN

Current window join implementations often require ordered input streams and also

need to maintain output order, as current stream query operators normally assume that

streams should be ordered. In this chapter, we present order-insensitive

implementations of window join. Such implementations do not need to rely on ordered

streams for purging state and can output results on the fly without enforcing output

order. Thus, these implementations normally have better latency performance than the

order-sensitive ones, because input tuples can be processed on the fly without the

delay of waiting for late tuples and result tuples can be released on the fly without

being sorted. Also, order-insensitive implementations of window join often have a a

smaller footprint than the order-sensitive ones because sorting the results of join may

require a large amout of memory.

7.1. Order-Insensitive Implementation of Window Join

In the following, we present order-insensitive implementations of sliding-window join

and tumbling-window join. These implementations make no restrictions on the arrival

order or synchronization of their input. We begin with sliding-window join.

Figure 7-1 shows the OA-Join (Order-Agnostic Join) algorithm for sliding-window

join. The input streams are S0 and S1, the progressing attribute is ts, and the window

condition is equivalent to the band predicate, (S0.ts – RANGE0) ≤ S1.ts ≤ (S0.ts +

 135

RANGE1). For ease of presentation, we ignore join predicates on other data attributes

in the WHERE clause. OA-Join maintains a tuple until it can confirm that no tuples

from the other input stream will join with that tuple. OA-Join also maintains the low-

watermark timestamp of each input stream. It is important to note that new tuples do

not always need to be stored. As the ProcessTuple() function shows, if the ts value of

a new tuple is smaller than the high-watermark bound minus the RANGE value for the

other input, that tuple can be processed on the fly and discarded, because all the tuples

with which it needs to join have already arrived on the other stream. The amount of

state that OA-Join needs to maintain depends on the progress of the input streams. In

general, the progress of the left input indicates which tuples from the right input can

be purged, and vice versa.

In our algorithm, a join result contains both S0.ts, and S1.ts, the windowing attribute

values of the two input streams. This result construction thus allows a subsequent

operator to use S0.ts, S1.ts, the pair (S0.ts, S1.ts) or a function of S0.ts and S1.ts (e.g.,

max(S0.ts, S1.ts) or min(S0.ts, S1.ts)) as its progressing attribute. Some existing

window join implementations produce only one timestamp attribute in the join result.

This attribute is often equal to one of the two input timestamps; other implementations

use the maximum of the two input timestamps as the timestamp of the result. As

shown in the ProducePunctuation() function, OA-join produces punctuation for S0.ts

and S1.ts separately, which we term individual punctuation. Individual punctuation

indicates the progress of the join result on either S0.ts or S1.ts, and allows subsequent

operators to deduce stream progress even when their progressing attribute involves

 136

both S0.ts and S1.ts or a function of S0.ts and S1.ts. For example, if the operator’s

progressing attribute is max(S0.ts, S1.ts), it can progress to s when it receives

punctuation for s from both S0 and S1; if its progressing attribute is min (S0.ts, S1.ts), it

can progress to s when it receives the first punctuation for s from either S0 or S1.

However, as we will explain in the next section, providing the progress of the join

result on the combination of S0.ts and S1.ts may allow subsequent operators to produce

results sooner.

Our order-insensitive implementation of tumbling-window join—equivalent to stream

join with an equality predicate on progressing attributes—is similar to that of sliding-

window join, but simpler because windows on both input streams have the same size.

Figure 7-2 shows the OA-Join implementation for tumbling-window join with

predicate, S0.ts/RANGE = S1.ts/RANGE, using integer division. The main difference

between OA-Join for sliding-window join and OA-Join for tumbling-window join is in

the predicates in the the ProcessTuple(), ProcessPunctuation() and

ProducePunctuation() functions, including the predicate that ProcessTuple() uses to

determine if a tuple should be stored, the predicate that ProcessPunctuation() uses to

determine if a tuple can be purged, and the predicate that ProducePunctuation() uses

to determine the output punctuation value.

Discussion: Both order-sensitive implementations of join and our order-insensitive

implementation, OA-Join, can produce join results immediately, although different

state management may cause differences in output delay. The order-sensitive

 137

implementations of join require ordered input and rely on the ordering to purge state.

Figure 7-1 OA-Join for sliding-window join.

OA-Join purges state based on punctuations. The amount of state that the order-

sensitive implementations of join and OA-Join maintain internally is similar. The OA-

Join implementation may require maintaining even more internal state than the order-

insensitive implementations, because input-stream disorder delays the expiration of

State Maintain
b0, b1: bounds on the low-watermark of left and right input,
respectively; initialized to –∞;
M0, M1: sets of tuples maintained on left and right input,

respectively; initialized to ∅;

Join(x)
let Si be the input stream to which x belongs;
if x is a tuple

ProcessTuple(x, Si);
else if x is a punctuation

ProcessPunctuation(x, Si);

ProcessTuple(t, Si)
join t with matching tuples in M1-i;
if t.ts ≥ b1-i – RANGEi
 add t to Mi;

ProcessPunctuation(p, Si)
bi = p.ts;
for each k in M1-i
 if k.ts < p.ts – RANGE1-i

purge k;
ProducePunctuation (p, Si);

ProducePunctuation(p, Si)
output a punctuation for S1-i.ts with value min(bi –RANGE1-i, b1-i);
output a punctuation for Si.ts with value min(b1-i – RANGEi, bi);

 138

tuples. However, the order-sensitive implementations may need to buffer output tuples

to maintain order for sliding-window join, while OA-Join can release output tuples in

any order, and requires no output buffer.

Figure 7-2 OA-Join for tumbling-window Join.

State Maintained:
b0, b1: bounds on the low-watermark of left and right input, respectively;
initialized to –∞;
M0, M1: sets of tuples maintained on left and right input, respectively;

initialized to∅;

Join(x)
let Si be the input stream to which x belongs;
if x is a tuple

ProcessTuple(x, Si);
else if x is a punctuation

ProcessPunctuation(x, Si);

ProcessTuple(t, Si)
join t with matching tuples in M1-i;
if t.ts ≥ b1-i /RANGE
 add t to Mi;

ProcessPunctuation(p, Si)
bi = p.ts;
for each k in M1-i
 if k.ts < p.ts / RANGE1-i

purge k;
ProducePunctuation (p, Si);

ProducePunctuation(p, Si)
output a punctuation for S1-i.ts with value min(bi/RANGE*RANGE, b1-i);
output a punctuation for Si.ts with value min(bi, b1-i/RANGE*RANGE);

 139

7.2. Producing Finer-Granularity Punctuation

Although subsequent operators can deduce the progress of the join result based on

individual punctuation of the two timestamps in result tuples, the OA-Join

implementations can also produce another form of punctuation on the timestamp

attributes of both S0 and S1, which we term joint punctuation. As we discuss below,

joint punctuation may improve the latency of subsequent operators. Consider the

following query, Q7-1, which counts established TCP connections per time period in

the network traffic between two links, S0 and S1. It defines a band predicate (S0.ts – 2)

≤ S1.ts ≤ (S0.ts + 2)—the band is symmetric and thus it is equivalent to (S1.ts – 2) ≤

S0.ts ≤ (S1.ts + 2). We will refer to the predicate as “the band” for this discussion. The

band is used to set a practical constraint on the range of packets that each packet may

need to be matched with. Thus, Q7-1 joins SYN and SYN_ACK packets from S0 and

S1 for a network connection between S0 and S1 over the past 2 mintues of each other,

and computes the number of SYN and SYN_ACK pairs for each corresponding pair of

timestamps (S0.ts, S1.ts).

Q7-1: “Count the number of SYN, SYN_ACK pairs (SYN_ACK arrives after
SYN for no more than 2 minutes) for network connections between S0 and S1
for each time period, i.e., each pair of timestamps, (S0.ts, S1.ts).”

SELECT S0.ts, S1.ts, count(*)
FROM S0 [WA ts, RANGE 2 min],
 S1 [WA ts, RANGE 2 min]
WHERE S0.srcIP = S1.destIP and S0.destIP = S1.srcIP and
 S0.srcPort = S1.destPort and S0.destPort = S1.srcPort and

((S0.ts < S1.ts and S0.flag = SYN and S1.flag = SYN_ACK) or
(S0.ts > S1.ts and S0.flag = SYN_ACK and S1.flag = SYN))

GROUP BY S0.ts, S1.ts;

 140

Here, joint punctuation is punctuation on S0.ts and S1.ts together, and can allow the

count to output results with less delay than with individual punctuation. Figure 7-3 and

Figure 7-4 provide the pseudo-code for producing joint punctuation for sliding-

window join and tumbling-window join, respectively. These algorithms only produce

joint punctuation with S0.ts and S1.ts values within the join window of each other, as

those are the only result ts pairs that the join may produce. Unlike individual

punctuation, joint punctuation production is independent of window size, and

therefore can be produced earlier than individual punctuation. This difference may be

significant for joins with a large window size.

Figure 7-3 Joint punctuation production for sliding-window OA-Join.

Figure 7-4 Joint punctuation production for tumbling-window OA-Join.

Figures 7-5 (a) and (b) illustrate the progress information that individual punctuation

and joint punctuation, respectively, can provide for the count operator in Q7-1. In

Figure 7-5, the x- and y-axes indicate the ts values of S0 and S1, respectively; the solid

ProducePunctua(p, Si)
bi = p.ts;
if bi – b1-i ≤ RANGE1-i or b1-i – bi ≤ RANGEi
 output a punctuation with values bi and b1-i for Si and S1-i, respectively;

ProducePunctuation (p, Si)
bi = p.ts;
if bi/RANGE = b1-i/RANGE1-i
 output a punctuation with values bi and b1-i for Si and S1-i, respectively;

 141

lines indicate the region of timestamps that satisfy the band predicate. Dark dots on the

axes represent punctuation in the input streams. The indices of input punctuation

represent global arrival order. Number pairs represent joint output punctuation on S0.ts

and S1.ts, and dotted lines outline the coverage of each output punctuation.

Figure 7-5 Individual vs. joint punctuation – produced by Q7-1

Observe that joint punctuation allows the Count operator in Q7-1 to output results

with less delay. Consider the aggregate group in the Count operator with S1.ts value

equaling 1 and S0.ts equaling 0. With individual punctuation, the Count operator can

output this group when it receives punctuation (*, 1); with joint punctuation, it can

output the group when it receives punctuation (2, 1). Punctuation (*, 1), which

indicates that join has produced all results with S1.ts value smaller than 1, is produced

by join when it receives punctuation p5—a punctuation p on Si allows the output of

punctuation on S1-i with timestamp value p.ts less the window size. Punctuation (2, 1),

which indicates that join has produced all results with S0.ts value smaller than 2 and

S1.ts value smaller than 1, is produced when join receives punctuation p3. In our

(a) Individual (b) Joint

p5

p3

p1

S1.ts

S0.ts

(3,3) (3,2)

(2,1)

(1,1)

 4 3 2 1

0 1 2 3 4

(2,2)

 p2 p4 p6

 p2 p4 p6
 S1.ts

(1, *)

(*
, 1

)

p5

p3

p1

0 1 2 3 4

 4 3 2 1

S0.ts

 142

example, p3 is received one minute before p5. Thus, with joint punctuation, the Count

operator outputs the group one minute earlier than with individual punctuation.

In general, an individual punctuation is defined on a single timestamp attribute and

covers a “slab” region as shown in Figure 7-5(a), while a joint punctuation is defined

on both timestamp attributes and covers a “box” region as shown in Figure 7-5(b). A

“slab” finishes when all the tuples in the covered region have been produced and thus

it finishes later than most of individual boxes covering the same region.

7.3. Performance Study of OA-Join

We compared the OA-Join algorithm and order-preserving implementations for

sliding-window join that guarantee the order of the results of join using NiagaraST.

The experiments were conducted on a Dual-Core AMD OpteronTM Processor 2214

with 4GB main memory, running Ubuntu Linux 2.6.17-10-server, and Sun® Java VM

1.5.

Data Generation: For our experiments, we generated data streams using network-

packet headers from the Passive Measurement and Analysis project [48]. We

generated two data streams, with data volume approximately 4000 tuples/second,

called M1 and M2. The total data set size is approximately 135 MB. In our

experiments, M1 and M2 are ordered and synchronized.

Experiment 1: The first set of experiments compare the memory, execution time and

latency performance of OA-Join and an order-preserving, output-buffered

implementation, which we call OPOB-Join (Order-Preserving Output-Buffered Join),

 143

of a sliding-window join query for Q7-2 below in NiagaraST. Q7-2 joins packets that

satisfy the window condition and are also in the same NetFlow, but for different

directions, and requires the output of join to be ordered on the timstamp of the first

input stream. The OPOB-Join implementation of sliding-window join does not output

the join results on the fly; instead, it uses an output tuple buffer to sort the results and

output them in order. We varied the window size n of the join operator from 1 second

to 9 seconds, and measured the maximum memory usage, latency and execution time

of the query.

Q7-2: “Count the number of network packet pairs in each minute from M1 and
M2, in the same Netflow but in the opposite direction.”

SELECT count(*) [RANGE 1 minute, SLIDE 1 minute, WA M1.ts]
FROM M1 [RANGE n, WA ts],
 M2 [RANGE n, WA ts]
WHERE M1.srcIP = M2.destIP and M1.destIP and M2.srcIP and
 M1.srcPort = M2.destPort and M1.destPort = M2.srcPort

 144

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

Band Size (Seconds)

M
em

o
ry

 (M
B

)

OPOB

OA-Join

0

20

40

60

80

100

120

0 2 4 6 8 10

Band Size (Seconds)

L
at

en
cy

 (s
ec

o
n

d
s)

OPOB-Join

OA-Join

(a)

 (b)

 145

Figure 7-6 Memory, latency and execution time comparison of OA-Join and OPOB-
Join implementation for a sliding-window join query, Q7-2, for different band sizes

Figures 7-7 shows (a) maximum memory usage, (b) latency, and (c) execution time

comparisons of the OA-Join and the OPOB-Join implementation of Q7-2. The y-axes

of (a), (b), and (c) show maximum memory usage, median latency, and execution

time, respectively. Latency is the difference between the output time of an aggregate

and the arrival time of punctuation from the input streams that triggers the output of

the aggregate. Execution time reflects the CPU cost, and is the elapsed time of a query

running at full speed over the input data set. The latency and execution-time numbers

are the average of 8 runs. The memory overhead is deterministic for a given input

order and is the same across runs. OA-Join significantly outperforms the OPOB-Join

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

Band Size (Seconds)

E
xe

cu
tio

n
 T

im
e

(S
ec

o
n

d
s)

OPOB-Join

OA-Join

(c)

 146

implementation on Q7-2, especially on memory and latency, as OA-Join can avoid

sorting the output of the join before aggregating.

Figure 7-7 Memory comparison of OA-Join and the OPIB-Join implementation for a
sliding-window join query, Q7-2, for different band sizes

Experiment 2: In this experiment, we compared the memory uage of OA-Join and

another order-preserving implementation of sliding-window join, which we call OPIB-

Join (Order-Preserving, Input-Buffered Join). This OPIB-Join implementation

performs join in such an order that the results are produced in the desired output order,

and thus it may have better memory performance than the OPOB-Join implementation

for join queries when join predicate is not very selective—that is, when the output data

volume of the join is higher than its input data volume. However, the input-buffered

implementation incurs more delay in producing join results and thus may have higher

latency than the output-buffered implementation. In this experiment, we use the same

150

170

190

210

230

250

270

0 2 4 6 8 10

Window Size (Seconds)

M
em

o
ry

 (M
B

)

OPIB-Join

OA-Join

 147

query, Q7-2, and the same two data streams, M1 and M2, as in Experiment 1. Figure

7-8 shows the memory comparision of the OA-Join and the OPIB-Join of Q7-2. OA-

Join uses slightly less memory than the OPIB-Join implementation for all window

sizes in the experiment. Thus, although OPIB-Join uses much less memory than

OPOB-Join, OA-Join is still better than OPIB-Join in memory usage for Q7-2.

In summary, we presented order-insensitive implementations for slidng-window join

and tumbling-window join in this chapter. These order-insensitive implementations

benefit from avoiding the overhead of maintaining output order, but need query

operators following them to be order-insensitive. For example, if a sliding-window

join is followed by a window aggregation, order-insensitive implementations of

window aggregation are required for the join to use an order-insensitive

implementation. Note that the ability of window aggregation to handle disordered

input leads to performance benefits of window join. The next chapter extends this

notion of “disorder-handling benefits” systematically to whole queries.

 148

Chapter 8

OUT-OF-ORDER STREAM QUERY EVALUATION

In this chapter, we present a new, order-insensitive stream query processing

architecture, OOP (Out-of-Order Processing), which is motivated by the order-

insensitive query operator implementations presented in previous chapters. The OOP

architecture takes our idea of separating stream progress and physical stream arrival

one step further and enables out-of-order processing at the system level. In an OOP

architecture system, punctuation is inserted into input streams and query operators are

required to propagate punctuation so that each stream query operator receives stream-

progress information from its input(s). Thus, with the OOP architecture, query

operators in a stream-query execution plan can be order-insensitive.

Compared to the previous IOP (In-Order Processing) approach that requires

maintaining stream order, the benefits of the OOP architecture include reduced

memory usage and response time. In addition, for massive data streams such as

network traffic from the backbone network of AT&T, OOP also leads to better

workload shaping and thus increases the maximum data rate that a query can support

without dropping tuples. The benefits of the OOP architecture come from avoiding the

need to enforce order on streams, especially inter-operator streams. As we will discuss

later in this chapter, even when input streams are ordered, inter-operator streams can

be disordered. More importantly, in real-world applications, stream-processing

 149

systems are often deployed in distributed computing environments, where the cost of

enforcing order on inter-operator streams may be prohibitive.

In contrast to existing techniques for handling disorder, such as slack, we argue that

OOP provides system-level support in propagating stream progress and is thus more

effective and efficient in dealing with disorder. Recall that slack is a parameter of a

query operator specifying an amount of delay for waiting for delayed tuples, for

example, 10 tuples or 1 minute, and handles disorder at the query-operator level. A

query operator with slack will retain each tuple in a buffer for the specified delay

period, attemping to put delayed tuples into order. The user or stream system needs to

provide the slack parameter for each query operator, but setting the slack parameter is

a non-trivial problem, as we explore in the next example.

Figure 8-1 Query plan for query Q1-1 in Chapter 1

Let us consider the query Q1-1 from Chapter 1 again and compare the OOP and IOP

(with slack) evaluation of this query. The logical plan of Q1-1 is shown in Figure 8-1

again. Q1-1 computes the count of packets over the combination of three streams.

Union

Window Count
RANGE 1 min, SLIDE 1 min

WA: ts

Union

Main1 Control Main2

 150

When there are time skews among the three streams, the combined stream is disorded.

If the Window Count operator handles disorder using slack, the Union operators can

pass tuples through immediately. Then, however, the system must determine the slack

parameter for the Window Count operator. Unless the time skew of the input streams

is known and fixed, it is very difficult to set slack for the Window Count operator so it

precisely captures the disorder of the combined streams. Input tuples will be dropped

if the slack is set too small, while a latency penalty will be incurred if the slack is set

too large. Further, even when the time skew of the input streams is known and fixed,

setting slack for query operators processing intermediate streams is non-trivial. For

example, if we replace the Union below the aggregate with a sliding-window join, the

disorder in the output of the join (in terms of both tuple count and the amount of

maximum delay on the progressing attribute) will be greater than that of the input

streams; hence the window aggregation will need to use a larger slack than that for the

union of input streams. To our knowledge, no one has presented a comprehensive

method for calculating the appropriate slack on an operator’s output stream from the

slack of its input streams. Further, the operator producing the intermediate stream,

such as a sliding-window join operator, may have the exact progress information that

its downstream operator requires, and thus it is wasteful to have the downstream

operator re-discover or estimate it.

OOP deals with disorder by requiring query operators to propagate punctuation that

communicates stream progress. In an OOP system, each query operator receives

punctuation and thus does not need to deduce stream progress from observations of its

 151

input(s). It is important to note that the main difference of OOP and IOP is the means

they use to communicate stream progress. Even with slack, stream-query operators in

IOP systems still need to deduce stream progress from stream arrival order, while in

OOP systems, stream progress is explicitly provided to query operators.

In this chapter, we will start with the generation of punctuation. Then, we briefly

discuss the order-insensitive implementations of stream query operators—to go along

with our previous order-insensitive implementations for window aggregation and

window join. We will discuss other operators including Input, Select, Apply, Project,

Duplicate Elimination, and Union. We also discuss the benefits of OOP, including

benefits for aggregation queries, join queries, and workload smoothing. Finally, we

present experiments comparing OOP versus IOP in Gigascope and NiagaraST.

8.1. Punctuation Generation

In this work, we use punctuation to carry stream progress information. Note that

although we choose punctuation—a data-driven mechanism—to propagate stream

progress in this thesis, OOP can also work with other non-data-driven stream progress

mechanisms, such as operators periodically polling their input operators for progress

bounds, or having a global scheduler track operator progress.

In general, any information that IOP systems use to ensure order on input streams can

be used to detect or bound the progress of those streams, for example, knowledge that

an input stream is ordered, or limitations on the amount of delay expected or allowed.

Recall that we assume that streams must have a progressing attribute and the low-

 152

watermark of the progressing attribute value indicates the progress of the stream. Also,

punctuation typically is defined on the progressing attribute of a stream (i.e., the

punctuating attribute is the progressing attribute). Here are a few examples of how

stream low-watermark can be detected and thus how punctuation can be created and

inserted into a stream. � If an input stream is known a priori to be ordered, the low-watermark after a

prefix of the stream is the progressing attribute value of the most-recently-

arrived tuple. � If an input stream contains out-of-order tuples but it is known that a tuple will

not be delayed by more than n tuples, IOP can enforce stream order by

buffering and re-ordering the input stream, as in the BSort operator of Aurora [2]. In this case, the low-watermark of the input stream can be estimated by the

maximum progressing-attribute value of arrived tuples excluding the last n

tuples. � Widom et al. [61] propose a heartbeat mechanism to enforce order on out-of-

order input caused by time skew and transmission delay, and propose

algorithms that estimate parameters that characterize the possible sources of

disorder and generate heartbeats based on these parameters. Such algorithms

can be used to estimate stream progress and then generate punctuation in

similar situations.

In order to adapt an IOP system to OOP, we must either add punctuation to the

system, or, if the system already supports punctuation, we must extend it to fully

 153

support out-of-order processing. (Some existing IOP systems, such as Gigascope,

support punctuation for handling lulls.)

In Gigascope, punctuation is initiated by timer callbacks. Assuming an input stream is

ordered, the callback function can insert a punctuation carrying the largest

progressing-attribute value observed so far in the stream every time the timer fires.

However, during lulls, the observed data time—the current value of the progressing

attribute—drifts away from the system time. When the difference between the data

time and system time is above a predefined threshold, s, the callback function inserts

punctuation to advance the data time to (current system time – s).

One must be careful when adding punctuation to IOP systems, especially for stream

systems that support batch processing (i.e., query operators are invoked for a “batch”

of input tuples instead of for each individual tuple). Punctuation may trigger ouput

(e.g., for aggregate queries) or may be used to purge state (e.g., for join queries). Thus,

for stream systems that support batch processing, punctuation should be treated as a

high-priority tuple: Once a punctuation arrives, the in-progress batch should be

considered complete and should be shipped to down-stream operators. Note that this

completion of a batch affects only the timing of tuple transmission and does not affect

result values. Punctuation delayed by batch processing may delay result production

and thus increase latency, particularly for sparse streams.

IOP systems that already support punctuation may require non-trivial effort to extend

punctuation to fully support OOP. First, OOP systems rely on punctuation to make

progress, thus the system should produce punctuation at a granularity finer than both

 154

the smallest window size and the smallest window slide allowed in the stream system.

The granularity of punctuation used for handling lulls in IOP systems can be much

coarser, as such punctuation only needs to guarantee that stream queries make

progress during lulls. Second, timer callbacks for generating punctuation may initiate

duplicate punctuation, if the timer is set at a granularity fine enough to satisfy the

smallest window slide. For efficiency, it is desirable to avoid such duplicates; further,

it is also desirable to produce only punctuation that matches the boundaries of the

smallest window slide currently used in the system. For example, if the smallest

window slide used by queries currently running in the system is 5 seconds, it is

desirable to produce punctuation with a 5-second granularity and no finer. Third, to

provide stream-progress information efficiently, a query operator should choose what

punctuation to produce based on the requirements of the operator that consumes its

result. Tucker [71] has proposed a Describe operator that provides punctuation

appropriate for downstream operators. The describe operator filters out punctuation

that will not help downstream operators and rolls incoming punctuation up to the

appropriate level.

We have experimented with punctuation in two systems, Gigascope and NiagaraST.

Gigascope supports timer-driven punctuation [33]—in a low-level sub-query, a timer

callback function fires every second (in wall-clock time), and a punctuation carrying

the stream low-watermark is inserted into the input stream. As the input stream to the

low-level sub-query is ordered, determining the punctuation value is straightforward.

NiagaraST supports data-driven punctuations. In the absence of external punctuation

 155

provided by a data source, NiagaraST can insert punctuation into the data stream. In a

simple scheme, if a data stream is known to be ordered, NiagaraST inserts punctuation

into the stream when it observes that the value of the progressing attribute has changed

by a predefined amount.

8.2. Order-Insensitive Implementation of Query Operators

In this section, we briefly discuss the order-insensitive implementation of stream

query operators (beyond window aggregation and window join) and compare them to

their order-sensitive counterparts. Order-sensitive imiplementations typically require

ordered streams and need to preserve stream order; order-insensitive implemenations

do not. Compared to order-sensitive implementations, order-insensitive

implementations free query operators from the burden of preserving stream order and

thus often improve in the operators’ memory and latency performance.

Input: The Input operator is the interface between external data streams and other

query operators in a stream system. The implementation of the Input operator can be

very application-dependent. Order-sensitive implementations of the Input operator

need to guarantee stream order; order-insensitive implementations of the Input

operator need to put punctuation into the input stream. Both implementations need the

the same type of information about data arrival, either to ensure stream order or to

insert punctuation. For example, both can benefit from knowing whether the stream is

ordered or the maximum amount of disorder in streams.

 156

Select, Apply, Project: As most unary query operators are neither blocking nor stateful,

they do not require ordered streams to process tuples; also, the pipelined

implementations used in regular relational DBMSs of these operators work for stream

systems. If the input stream is ordered, the pipelined implementations naturally

preserve order. For unary operators, the progress of the input stream directly

determines the progress of the output stream, and thus punctuation processing for such

operators is simple. Select passes through punctuations. Apply and Project need to

first transform input punctuation into the output schema before putting it to the output.

For the Project operator, we assume its output includes the progressing attribute(s).

DupElim: Duplicate elimination (DupElim) also naturally preserves order; the issue is

when state can be purged. The order-sensitive implementations of DupElim can

remove state whenever the progressing attribute advances, and the order-insensitive

implementation relies on punctuation to purge its state.

Union: The order-preserving Merge operator, as in Gigascope [33], is an order-

sensitive implementation of Union. The Merge operator must buffer tuples from one

input during a lull or delay on the other input in order to assure ordered output.

Punctuation can be used to reduce the buffering required due to lulls on one input, but

if there is time skew between the inputs, the Merge operator must still buffer the

earlier input. The memory and latency costs of Merge are determined by the lulls (or

punctuation granularity when punctuations are available) and offsets between the input

streams. (Recall that we define offsets between different streams in Section 6.3.)

 157

The order-insensitive implementation of Union, which we call Meld, can pass input

tuples through immediately. The Meld operator needs to buffer input punctuations in

order to correctly produce output punctuations, but punctuations typically constitute

only a small fraction of stream volume. Further, for linear punctuation, when

punctuations are guaranteed to arrive in the desired order, the order-insensitive

implementation needs only remember the most recent punctuation on each input. For

Meld, we require that the progressing attributes of both input streams are the same.

Suppose that the input streams are R and S, and the value of the last punctuation

arrived on them are R.punctVal and S.punctVal, respectively. When a new punctuation

p with value ts arrives in R, the Meld operator can output a punctuation with value

min(ts, S.punctVal), and vice versa for a punctuation from S. An issue here is that the

Union operator may produce duplicated punctuations. For example, suppose that

R.punctVal and S.punctVal are 20 and 19 respectively. If punctuation from S for times

20, 21 and 22 arrives before any further punctuation from R, the union will output

punctuation for 20 at least three times. To avoid producing duplicate punctuation, the

Meld operator can maintain the value of the last punctuation output, and only output a

punctuation if its value is greater than the value of the last punctuation.

 158

Figure 8-2 Order-insensitive implementation of Union—Meld.

The implementation of Meld for linear punctuation is shown in Figure 8-2—the

Union() function is called for each tuple or punctuation. As compared to the order-

enforcing Merge operator implementation, the Meld implementation is lightweight in

terms of both memory and latency. The only state that the Meld operator

implementation maintains is the most recent punctuation value from each input stream

and for the output stream. Group-wise punctuation may require maintaining such state

for each group. Meld passes tuples through immediately, and it emits punctuation with

the minimum progressing-attribute value observed from both streams (minus

duplicates). Since the Union operator is necessary for stream queries monitoring data

State Maintained:
b0, b1: bounds on the low-watermark of left and right input,
respectively; initialized to –∞;
o: low-watermark of the output stream; initialized to –∞;

Union(x)
let Si be the input stream to which x belongs;
if x is a tuple
 ProcessTuple(x, Si);
else if x is a punctuation
 ProcessPunctuation(x, Si);

ProcessTuple(t, Si)
output t;

ProcessPunctuation(p, Si)
bi = p.ts;
if o < min(bi, b1-i)
 output a punctuation with value min(bi, b1-i);
 o = min(bi, b1-i);

 159

from multiple sources, such as multiple network-traffic links, the lightweight

implementation can be a great advantage. When an order-preserving Union is used,

both memory and delay incurred by Union can be prohibitive during lulls or in the

presence of time skew.

8.3. Cases for OOP

In this section, we discuss the benefits of OOP for aggregation and join queries, as

well as for workload smoothing when processing massive data streams, which can

promote higher throughput. As the following examples will illustrate, the benefits of

OOP often come from processing (disordered) intermediate streams more efficiently.

8.3.1. OOP Benefits for Aggregation

Figure 8-3 Merge enforces order on intermediate results even when the query has a
single, ordered input stream

In OOP stream systems, as out-of-order tuples are handled without delay, aggregation

queries may have a smaller footprint and better latency compared to IOP systems.

Window Count

Merge

$

σB

A ¬

$$$

 160

Even for queries with a single, ordered input stream, disorder may occur in

intermediate streams. For example, the input stream may be split and processed

through different sub-queries (such as might be needed for network-protocol

simulation), and the combination of the sub-query results may be disordered. Figure 8-

3 shows an example with an ordered input stream: The input is split according to an

inexpensive predicate A; tuples not satisfying A are put through an expensive

predicate B before being merged with the stream of tuples satisfying A. The output of

the merge contains tuples that satisfy either A or B; this result is fed to a Window

Count operator.

With the non-OOP alternatives, either the Union operator needs to enforce order on

data—with a cost of memory and latency—or the Window Count operator has to use

slack to account for the disorder caused by the delay from the expensive predicate B.

With OOP, the Union operator passes tuples through immediately, and every query

operator propagates punctuation; thus, Window Count receives accurate stream

progress information. Also, using WID, tuples can be immediately reduced into partial

aggregates by the Window Count operator. Overall, maintaining partial aggregates is

much less space intensive than buffering tuples and keeps tuple-processing delay

minimal; propagating stream progress precisely captures intermediate-stream disorder.

8.3.2. OOP Benefits for Join

In OOP systems, the Join operator may often have a smaller footprint and is able to

produce results with less delay, as OOP processes each tuple at the earliest possible

 161

time without waiting for late tuples so as to process tuples in order. In particular, the

Join operator may process and also purge on-time tuples at the earliest possible

moment, thus reducing latency and memory usage.

Consider the join query with input streams S0 and S1, and a sliding window, [RANGE

2 minutes, WA ts], on each input stream. Assume S0 may potentially contain a small

fraction of tuples that are delayed by at most 5 minutes, and input stream S1 arrives

ordered. S0 and S1 are approximately synchronized, which means that—ignoring

delayed tuples—tuples from S0 and S1 with the same ts value arrive at about the same

time. Figures 8-3(a) and 8-3(b) show the IOP and OOP evaluations of the sliding-

window join query.

Figure 8-4 Evaluation of a band join (maximum allowed delay in S0 is 5 minutes)

With IOP, due to potentially delayed tuples in S0, a buffered Sort operator is required

to enforce tuple order for S0. It holds 5 minutes of S0 tuples, and thus S0 tuples are

generally delayed for 5 minutes. The Join operator maintains 7 minutes of S1 tuples (2

7 min. of data
for S1

 2 min. of data
for S0

7 min. of data
for S1

S0 S1

(b). OOP

Join

5 min. of data
for S0 Sort

(RANGE 2 min, WA S0.ts
 RANGE 2 min, WA S1.ts)

S0 S1

(a). IOP

Join
 (RANGE 2 min, WA S0.ts

 RANGE 2 min, WA S1.ts)

 162

minutes due to the window condition and 5 minutes due to the delayed S0 tuples). Join

will not need to maintain any state for S0, as S0 tuples arrive 5 minutes behind S1

tuples and hence all matching S1 tuples are available when each S0 tuple arrives.

With OOP, both S0 and S1 tuples are presented to the Join operator without delay. As

Figure 8-4(b) shows, the join maintains 5 minutes of S1 tuples and 2 minutes of S0

tuples, because S0 tuples are purged by S1 punctuation on time while S1 tuples are

purged late due to delayed S0 tuples and punctuation. Overall, the OOP evaluation of

the join query maintains 3 minutes less of S0 tuples, and can produce most join results

earlier than the IOP evaluation.

Figure 8-5 Output buffering in IOP band join with output ordered on S0.ts

Further, in OOP systems, the Join operator need not enforce order on its result. In

contrast, the IOP approach may a require large amount of buffer space to order the

output of a sliding-window join and thus it often is inferior to the OOP approach.

Figure 8-5 illustrates this buffer requirement for a join with a sliding window

[RANGE 3 minutes, WA ts] on S0, and a sliding window [RANGE 2 minutes, WA ts]

on S1. It also assumes that input streams S0 and S1 are approximately synchronized,

S1.ts
0 1 2 3 4 5 6 7 8

6 5 4 3 2 1 0
IOP buffering

S0.ts

 163

and assumes that the join results need to be ordered on S0.ts. The single-hatched area

illustrates the amount of results produced by the sliding-window join; and the cross-

hatched area illustrates the amount of buffering required to order the output. As the

figure shows, when both S0 and S1 progress to time 6, the join needs to buffer results

produced by S0 tuples with ts values between 4 and 6. In general, the required

buffering for ordering join output in IOP systems increases with the window size of

the Join operator. (The exact amount of buffering is determined by the desired output

order, the window conditions, the data rate of the input streams, and the arrival time

skew of the input streams.) In OOP systems, results of Join can be released on the fly,

without any delay or buffering, and immediately processed by a subsequent operator.

8.3.3. Workload Smoothing

Workload smoothing is critical for systems dealing with massive streams in (near) real

time. For such systems, a workload surge at a given operator may overload the system,

delay further data processing, and lead to loss of input data or obsolete query results.

In this section, we discuss our experiments on workload smoothing with OOP in the

Gigascope system. Workload surge can occur either in input or intermediate streams.

Workload surges in input streams are often caused by input data bursts, and workload

surges in intermediate streams are often caused by blocking operators that are

periodically unblocked. For example, when a window ends, window aggregation

needs to scan the hash table of partial aggregates to produce results and purge

completed items, and outer-join needs to locate and output tuples that were not

 164

matched. Both can lead to a surge in output rate at a window boundary. Here we focus

on smoothing intermediate workload surges created by the unblocking of blocking

operators.

In the following, we first review the implementation of window-aggregation in

Gigascope and how it relates to workload surges. Then, we present a workload-

smoothing mechanism, slow-flush, originally implemented in the IOP version of

Gigascope for window aggregation and outer-join [33]. Similar workload-smoothing

mechanisms are also used in other network-traffic-monitoring systems [36]. Finally,

we discuss workload smoothing in the OOP version of Gigscope, using two

approaches, slow-flush and lazy-flush. We present both slow-flush and lazy-flush only

in the context of window aggregation, but similar techniques also work for outer join.

Aggregation in Gigascope: Gigascope has a two-level architecture typical for high-

performance, potentially distributed data-monitoring systems [14], where the low level

is used for data reduction and must be lightweight, and the high level is intended for

more complex processing. A low-level sub-query processes network packets from a

fixed-size ring buffer. Low-level and high-level queries run in different processes

(possibly on different machines). Gigascope supports only tumbling-window

aggregation natively. An aggregation query is split into a low-level sub-aggregation

and a high-level aggregation that rolls up the results of the sub-aggregation. For

example, a count query is split into a low-level count query and a high-level sum

query. To ensure the low-level sub-aggregation is fast, it uses a fixed-size hash table to

maintain aggregates of different groups, so there is no dynamic space allocation. On

 165

hash-table collision, the existing aggregate in the hash table is output to accommodate

the new aggregate. At the end of a window, the low-level query flushes the hash table

and outputs all aggregates in it. However, if the number of groups is large, flushing the

hash table causes a workload surge, during which time the ring buffer can overwrite

itself and packets are lost.

Slow-flush mechanism: Gigascope uses a slow-flush mechanism to smooth workload

surges at window boundaries in low-level aggregation. With slow-flush, when a

window completes, the low-level sub-query gradually outputs aggregates from the

previous window while processing new packets, instead of flushing all aggregates

from the hash table at once. Figure 8-6 shows the outline of low-level aggregation

with slow-flush in the IOP case—Figure 8-6(a) shows how a tuple is processed in a

low-level aggregation and Figure 8-6(b) shows the SlowFlush() function that is called

by the low-level aggregation.

 166

State Maintained:

hashtable: the fixed-size hashtable that low-level aggregation maintains;
each hashtable entry represents a group and consists of the grouping
attribute values of the group and the partial aggregate for it;

status: a table that records the type of the content for each hashtable
entry, including new, old, or empty

Init():

flush_finished = true;

flush_pos = 0;

ProcessTuple(t):

if t indicates the start of a new window extent

 if (!flush_finished)

flush all the remaining hashtable entries marked as old, and mark
them as empty;

 flush_finished = false;

 flush_pos = 0;

if (!flush_finished)

 Slow_Flush();

key = hash key of t;

if status[key] == empty

 create a new aggregate with t in hashtable[key];

if status[key] == new

 if t belongs to the group of the exising aggregate

 update the existing aggregate with t

 else

 flush all the hash entries in hashtable marked as old;

 output the existing aggregate in hashtable[key];

 create a new aggregate with t in hashtable[key];

if status[key] == old

 flush hashtable[key];

 create a new aggregate for t in hashtable[key];

(a): the outline

 167

Figure 8-6 Low-level aggregation with slow flush—the SlowFlush() function

The status table indicates the content of each hash entry—whether a hash entry is

empty, contains a partial aggregate for the new window, or a potential aggregate for

the previous, old window. As the ProcessTuple function shows, on hash-table

collision, if the existing aggregate belongs to the old window, it is output and the slot

is used for the new aggregate. However, a problem occurs if the existing aggregate

belongs to the new window. Because low-level aggregation must preserve output

order, it must first flush all the aggregates of the old window before it can output the

existing colliding aggregate.4 Therefore, because it must satisfy the order requirement,

slow-flush may not effectively smooth out the output of the low-level aggregate,

especially when the number of groups is large. Flushing the hash table can create a

workload surge during which incoming tuples cannot be processed, limiting the

maximum stream rate supported by IOP. In general, slow-flush intentionally increases

4 The deployed version of Gigascope actually uses a better replacement policy—if the existing
aggregate belongs to the new window, ProcessTuple also checks the next hash entry to see whether it
can accommodate the new aggregate without flushing all old aggregates.

SlowFlush()

if (!flush_finished and status[flush_pos] == old)

 output hashtable[flush_pos];

 status[flush_pos] = empty;

 flush_pos++;

 if (flush_pos > hashtable.size)

 flush_finished = true;

(b) the SlowFlush() function

 168

result latency to smooth out the workload, but the amount of latency that IOP can

introduce for that purpose is very limited, due to its order-maintenance requirement.

In contrast to IOP with slow-flush, OOP may permit much higher throughput. The

most important benefit of OOP in terms of workload smoothing is that, as it has no

order requirement, the low-level aggregation does not need to flush all partial

aggregates from the previous window when two aggregates from the new window

collide. In more detail, suppose the desired maximum low-level latency is m windows.

OOP can address workload smoothing in two ways. First, it may use lazy-flush, which

simply relies on hash table collisions to naturally flush old aggregates, but with a

check that aggregates are flushed with a maximum delay of m windows. Alternatively,

OOP can also explicitly use slow-flush. OOP with slow-flush outputs one old

aggregate every i new packets, and guarantees a maximum result delay of m windows.

Both i and m are tunable parameters of the low-level sub-aggregation. As we show in

our performance study, both OOP with lazy-flush and OOP with slow-flush achieve

better throughput than IOP with slow-flush when there is a large number of groups.

8.3.4. Discussion

OOP is a more scalable architecture, especially in distributed computing

environments, where the input data for a query operator may come from different

processors, or even different machines far from one another. An issue with IOP in

such an environment is that operators can be blocked due to network congestion and

routing problems of a single processor. For example, a TCP connection might break

 169

and need to be re-instantiated. These network problems can cause a significant delay

and even hang an IOP system. In addition, even when the network is reliable,

enforcing order on data coming from multiple processors may incur prohibitive

memory and latency costs due to variations in data transmission delays and processor

workloads.

OOP is also a more permissive architecture that can accommodate operator

implementations that require out-of-order processing. For example, to improve

throughput, stream systems may want to process tuples out of order. Avnur and

Hellerstein propose an adaptive query processing mechanism, called Eddies, that

dynamically routes tuples to query operators based on operator load [6]. To improve

interactive query performance, Franklin et al. [50] propose algorithms that re-order

tuples based on their importance. Further, the OOP architecture potentially opens new

options for query optimization. In traditional database systems, one logical operator

may have multiple physical implementations and the system may choose among them

based on the properties of input relations. Similarly, OOP systems can potentially

choose among different physical implementations of logical query operators based on

properties of input streams. For example, the WID implementation generally has quite

low memory requirements. However, in situations where the number of tuples per

window is small, the size of partial aggregates is large, and some tuples are late

enough to keep several windows open, then the memory cost of WID may exceed that

of the buffered implementation. In such situations, a buffered implementation that

 170

processes windows sequentially may be preferable, although it incurs more delay for

enforcing tuple order and computing aggregates.

8.4. Experimental Evaluation

In this section, we present an experimental study of our OOP implementations in two

stream systems, Gigascope and NiagaraST. We converted a version of Gigascope to

OOP and term the converted systems OOP-Gigascope. We also implemented IOP

query operators in NiagaraST for the purpose of these experiments and term it IOP-

NiagaraST.

8.4.1. Performance Study of OOP with Gigascope

The experiments with Gigascope were conducted using network feeds generated by

the RouterTester® traffic generator. RouterTester is a product of Agilent Technologies

Inc. The traffic generator can generate multiple streams of IP traffic, and the content

of each stream can be configured, including the number of packets per second. Our

focus was to evaluate the memory and throughput benefits of OOP over high-speed

streams. Each experiment is running until the measurements stabilize. All experiments

were conducted on a dual-processor dual-core Intel® XeonTM CPU 2.80GHz

processor with 4 GB of RAM running Linux 2.4.21.

Experiment 1: This experiment shows how OOP can improve throughput during

workload surges, and uses the following query, Q8-1, which computes the number of

packets from a network interface for each (srcIP, destIP)-pair for every minute.

 171

Q8-1: “Count the number of packets from each source and destination IP pair
in the Main link for the past minute; update the results every minunte.”

SELECT srcIP, destIP, count(*)

[RANGE 1 minute, SLIDE 1 minute, WA ts]
FROM Main
GROUP BY scIP,
destIP

Figure 8-7 Throughput comparison of IOP and OOP for a count query, Q8-1, using
Gigascope

We executed Q8-1 with Gigascope and OOP-Gigascope, varying the number of

groups in the stream and the size of the hash table used by the low-level sub-

aggregation. In addition, we experimented with two OOP implementations of the low-

level sub-aggregation—with slow-flush and lazy-flush. We measured the maximum

stream rate that Gigascope and OOP-Gigascope could support without dropping

tuples, by incrementally increasing the stream rate by 5K packets per second until the

query starts dropping tuples. The number of groups was varied from 66K to 520K—

more groups mean fewer tuples per group but more work when outputting results at

window boundaries; the low-level hash-table size was dependent on the number of

groups. For each case, we used three hash table sizes: half, equal to, and twice the

Figure 6. Throughput comparison of IOP and OOP for a count query, Q4

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

IO P -½ IO P -1 IO P -2 O O P -½ O O P -1 O O P -2 O O P
(s f)-½

O O P
(s f)-1

O O P
(s f)-2

D
at

a
R

at
e

(K
 p

kt
s/

se
c.

) 6 6 K

1 3 0 K

2 6 0 K

5 2 0 K

N u m b e r o f G ro u p s

6 6 2

 172

number of groups. A smaller hash table means more collisions. A larger hash table

means fewer collision and thus fewer groups evicted before a window completes, but

more groups evicted at flush time. OOP may use either lazy-flush or slow-flush to

improve workload smoothing and thereby throughput, although it may introduce a

small amount of latency. In this experiment, both OOP-Gigascope with lazy-flush and

slow-flush allow an extra delay of two windows to spread the workload across

window boundaries. Further, OOP-Gigascope with slow-flush explicitly flushes an

aggregate for an old window every 160 incoming packets. In contrast, Gigascope uses

an aggressive slow-flush, explicitly flushing an aggregate once per incoming tuple.

Table 8-1 CPU Usage Comparison: OOP vs. IOP

 66K 130K 260K 520K

IOP-1/2 99% 99% 99% 68%

OOP-1/2 99% 99% 99% 95.6%

OOP (sf)-1/2 99% 99% 99% 94.6%

IOP-1 95.5% 97% 70.5% 51%

OOP-1 98.8% 99% 99% 94%

OOP (sf)-1 99% 99% 97.8% 91%

IOP-2 96.3% 85% 55.6% 50%

OOP-2 97.2% 97.9% 95.2% 95.6%

OOP (sf)-2 96.2% 99% 97.3% 96.7%

Figure 8-7 shows the results of this experiment. Therein, OOP and OOP (sf) represent

the OOP implementations of low-level sub-aggregation without slow-flush (lazy-

flush) and with slow-flush, respectively. Values ½, 1, and 2 indicate the relative size

num of grps

exp. config

 173

of the hash table in the sub-aggregation. In addition to measuring the maximum

supported data rate, we also measured CPU utilization of the low-level query—the

data rate, the number of groups, and hash table size all affect CPU utilization. (The

data rate of the high-level query is much lower than that of the low-level query and

thus the CPU utilization of the high-level query is always much lower than that of the

low-level query.) Table 8-1 shows the peak CPU usage for each query run. As it

shows, when the number of groups is large and with a sufficient number of hash table

entries, the CPU utilization of the IOP approach for the maximum data rate that it can

support without dropping tuples is much less than its OOP counterparts, which

indicates that it can only support a much lower stream rate than those counterparts.

When the number of groups is small, for example 66K, the stream rates that IOP and

OOP can support are about the same, and the CPU utilizations are all close to

saturation. However, when the number of groups is large, with a reasonable hash-table

size, OOP can support a much higher stream rate than IOP. For example, at 260K

groups, with 540k hash table entries, OOP and OOP (sf) can support 760K pkts/sec

and 800k pkts/sec, respectively, while IOP can only support 400K pkts/sec. However,

an overly large hash table may adversely affect the throughput of the query because it

increases the workload for hash table flush, especially for the IOP cases. With 520K

groups, IOP-2 only supports a maximum data rate of 350K packets per second, with

CPU utilization of 50% and IOP-1 supports only 300K packets per second with CPU

utilization of 51%. As we have discussed, when there is a hash-table collision between

an incoming packet and an existing aggregate from the current window, IOP needs to

 174

flush all aggregates from the previous window before any new tuples can be

processed. During the hash table flush, new packets in the ring buffer are not

processed and packets will be dropped if the ring buffer fills. When the number of

groups is large and the data rate is high, an overly large hash table (over a million

entries in our example) causes an increase in the number of aggregates to be flushed (a

larger workload surge), and reduces the data rate that IOP can support without

dropping tuples. The low CPU utilization for IOP with an overly large hash table is

associated with the low data rates that IOP can support in these cases. An overly large

hash table means a large number of groups to output and thus much more work during

flush, and so the instantaneous peak CPU usage can get to 100%, while the average

CPU usage far from saturated. OOP is generally better than IOP, especially for

streams with large numbers of groups, and is less sensitive to the hash-table size.

Experiment 2: This experiment examines the potential memory-usage benefits of

OOP for aggregation queries monitoring multiple data sources, using the following

query, Q8-2, which computes the number of packets for each source and destination IP

address of M1 and M2 links.

Q8-2: “Count the number of packets from each source and destination IP pair
in M1 and M2 links for the past minute; update the results every minunte.”

SELECT srcIP, destIP, count(*)

[RANGE 1 minute, SLIDE 1 minute, WA ts]
FROM M1 UNION M2
GROUP BY srcIP, destIP

 175

Figure 8-8 Comparison of memory usage for OOP- and IOP-Gigascope on a window-
count query over the union of two streams (Q8-2), for varying skew

The rates of M1 and M2 are both 110k pkts/sec, and the total number of groups in

them is 65,536. We varied the arrival-time skew of M1 and M2 from 0 to 40 seconds,

and executed Q3 with both Gigascope and OOP-Gigascope, recording the maximum

memory usage. (We ran each query several hours until its memory usage stabilized.)

Figure 8-8 shows the results of this experiment. OOP generally uses less memory than

the original IOP version of Gigascope; as arrival-time skew increases, the memory

usage of OOP remains relatively flat, while that of IOP increases dramatically.

Experiment 3: This experiment provides a comparison of memory usage in

Gigascope for a tumbling-window join query, Q8-3, with a window size of 10 seconds

and input from multiple sources. Q8-3 joins packets within the same NetFlow (a

0

50

100

150

200

250

300

0 10 20 30 40 50

Arrival-time Skew (Seconds)

M
em

o
ry

 (M
B

)

IOP

OOP

 176

network connection between a pair of srcIP and srcPort, and destIP and destPort), but

in opposite directions.

Q8-3: “Find the network packet pairs from the union of A with B and the union
of C with D that are in correponding NetFlow for each 10-minute interval.”

SELECT M1.srcIP, M1.destIP, M1.ts
FROM A UNION B as M1, C UNION D as M2

 [RANGE TUMBLING 10 seconds, WA ts],
WHERE M1.srcIP = M2.destIP and M1.destIP and M2.srcIP and

M1.srcPort = M2.destPort and M1.destPort = M2.srcPort

Figure 8-9 Memory comparison of IOP and OOP evaluation for a tumbling-window
join query, Q8-3, with arrival skew of different input streams

Each input to the join operator is a union of two streams: Union(A, B), and Union(C,

D). Q8-4 specifies a 10-second tumbling-window join condition in Gigascope. The

0

50

100

150

200

250

0 20 40 60 80 100 120

Arrival-time Skew (Seconds)

M
em

o
ry

 (M
B

)

IOP

OOP

 177

rate of each stream is 10K pkts/sec. (In practical stream-join queries, the input rates

are often relatively low, because of prior data reduction by sampling or aggregation.)

We varied the arrival-time skew of A–B, and C–D from 0 to 100 seconds, and

recorded the maximum memory usage of each query run. Figure 8-9 shows the results

of this experiment. The number of tuples that the IOP and OOP approaches need to

maintain is the same. The difference is that in the IOP version, the tuples reside in

input buffers of merge operators; in the OOP version, they are held in join hash tables.

This experiment shows that while there is structural overhead for the Gigascope

implementation of OOP join, compared to its IOP implementation, the overhead is not

severe. When the arrival skew is below 20 seconds, the memory overhead is

inconsequential. In this experiment, the OOP join uses at most 20% more memory

than the IOP case. Our OOP join implementation used the hash-table structure of the

original IOP join, which was not optimized for memory overhead.

8.4.2. OOP with NiagaraST

Experiments in NiagaraST were conducted on a Dual-Core AMD OpteronTM

Processor 2214 with 4GB main memory, running Ubuntu Linux 2.6.17-10-server, and

Sun® Java VM 1.5.

Data Generation: For our experiments, we generated stream sources of different data

volumes and different time skews using network packet headers from the Passive

Measurement and Analysis project [48]. We generated three streams, two with high

volume (approximately 4000 tuples/second), called M1 and M2, and one with very

 178

100

120

140

160

180

200

220

240

260

280

300

0 2 4 6 8 10 12

Arrival-time Skew (Seconds)

M
em

o
ry

 (M
B

)

IOP

OOP

low volume (less than a tuple per second), called C. The total data set size is

approximately 135 MB. We simulated time skews among M1, M2, and C by

manipulating the placement of tuples in the data file used to generate the three

streams.

Figure 8-10 Memory comparison of IOP and OOP evaluation in NiagaraST for a
tumbling-window join query, Q8-4, with late tuples on one input

Experiment 1: This experiment compares memory usage of IOP and OOP for an

equality-join query on progressing attributes, Q8-4, in IOP-NiagaraST and NiagaraST.

Q8-4 is a tumbling-window join that joins packets within the same NetFlow but in

opposite directions. One input of the join contains late tuples, which is simulated by

combining M2 with a version of C that is skewed late. The delay of C varies from 0

 179

second to 10 seconds. Figure 8-10 shows that with the increase in the delay of the late

tuples from 0 to 10 seconds, the memory use for OOP increases more slowly than for

IOP. (Although Figure 8-10 looks similar to Figure 8-9, the range of the a-axis values

of the two figures are significantly different—the x-axis of Figure 8-9 ranges from 0 to

120 seconds, which is much broad than Figure 8-10.) The memory advantage of OOP

comes from the Join operator in OOP purging M2 tuples sooner than in IOP.

Q8-4: “Find the network packet pairs from the M1, and the union of M2 and C,
that are in corresponding NetFlows for each 1 minute interval.”

SELECT M1.srcIP, M1.destIP, M1.ts
FROM M1, M2 Union C as M3

[RANGE TUMBLING 1 minute, WA ts]
WHERE M1.srcIP = M3.destIP and M1.destIP = M3.srcIP and

M1.srcPort = M3.destPort and M1.destPort = M3.srcPort

Experiment 2: This experiment compares memory performance of IOP and OOP on a

sliding-window aggregate query over multiple sources, Q8-5, in IOP-NiagaraST and

NiagaraST. Q8-5 computes the sliding-window count of packets over a UNION of

M1, M2 and C.

Q8-5: “Count the number of packets in M1, M2 and C links for the past 5
minutes; update the results every minunte.”

SELECT count(*)

[RANGE 5 minutes, SLIDE 1 minute, WA ts]
FROM M1 UNION M2 UNION C

We varied the delay of the arrival of C from 0 to 10 seconds, and measured the

maximum memory usage. Figure 8-11 shows that the memory usage of IOP grows

significantly as the delay of C increases, while that of OOP is relatively stable. Here,

 180

the memory benefit of OOP is due to OOP aggregation directly reducing tuples into

aggregates without first buffering and sorting the input.

Figure 8-11 Memory comparison of IOP and OOP in NiagaraST for a sliding-window
count, Q8-5, with arrival-time skew among multiple data

Discussion: Our experience with OOP architectures is encouraging. We have seen

improvement over IOP in memory, latency and throughput under a variety of

conditions. The fact that improvements were seen in two substantially different stream

systems, NiagaraST and Gigascope, suggests that the benefits of OOP are widely

applicable. The implementation overhead for supporting OOP does not seem severe,

recognizing that any practical stream system will need a stream-progress mechanism

beyond just tuple arrival, so that lulls in one input stream do not completely stall the

stream system.

200

220

240

260

280

300

320

340

360

380

400

0 2 4 6 8 10 12

Arrival-time Skew (Seconds)

M
em

o
ry

 (M
B

)

IOP

OOP

 181

Chapter 9

CONCLUSION AND FUTURE WORK

This thesis focuses on more flexible and more efficient evaluation of window stream

queries. We observed that the evaluluation of window stream queries can utilize

information on stream progress, and does not require ordered streams. Based on this

observation, our work in this thesis removes the order requirement for stream systems

by introducing order-insensitive implementations of windowed query operators and a

new architecture for stream systems.

In this thesis, we start with a new data model for streams, the progressing-stream

model. Instead of requiring ordered streams, the progressing-stream model separates

stream progress from physical-arrival order and only requires that streams have a

progressing attribute. Then, assuming progressing streams, we present window-

semantics definitions for a window aggregation and window join. In our definition,

window semantics are defined on the window specification and the progressing

attribute value of tuples in the streams and need not rely on any physical stream arrival

properties. The window-semantics definitions lay the foundation for the order-

insensitive implementations of window aggregation and window join. We present

three implementation algorithms for window aggregation: the WID implemenetation,

which is directly based on our window semantics definition, the Paned-WID

implementation, which optimizes the execution time for sliding-window aggregation

by sharing sub-aggregates, and AdaptWID, which optimizes the memory usage for

 182

input with data distribution skew. We also present order-insensitive evaluation

algorithms for tumbling-window join and sliding-window join. These order-

insensitive implementations leverage punctuation to indicate ends of window extents.

They not only naturally accommodate out-of-order input, but also perform better than

their order-sensitive counterparts, especially in terms of memory usage and latency.

The order-insensitive implementations of stream query operators allow us to move to a

new architecture for stream systems, OOP (Out-of-Order Processing). OOP is in

contrast to IOP (In-Order Processing), which is the existing architecture that many

stream systems assume. The key idea of the OOP architecture is explicitly

communicating stream progress to query operators and thus freeing query operators

from the burden of order maintainence. We use punctuation as the mechanism to

explicitly communicate stream progress in our implementation of OOP—propagating

punctuation is part of query operator implementations. We experimented with the

OOP architecture in two stream systems, Gigascope and NiagaraST, and performance

results from both systems are encouraging.

Here we also briefly discuss the tradeoffs of the OOP architecture. Having explicit

information on stream progress indicates overheads in OOP systems, in both system

implementation and query execution. In the implementation of OOP systems, query

operator implementations need to support punctuation processing. For example, with

OOP, the implementation of window aggregation must support outputting results and

purging state based on punctuation, while with IOP, as window aggregation processes

a window extent at a time, outputting results and purging state can be easily

 183

implemented by flushing the hash table. However, making stream progress explicit

also simplifies some operator implementations, as maintaining stream order is not

needed in OOP systems. For example, without maintaining output order, the

implementation of the (bag) Union operator with the OOP is much simpler than IOP.

In query execution, punctuation may increase the volume of streams and thus increase

query processing time and consume transmission bandwidth in distributed stream

systems. However, Tucker observed very limited punctuation-processing overhead

even with punctuation-to-tuple ratios as high as 15%. These results assume that

punctuation is grammatical. Otherwise, query operators (or, at least the input

operators) also need to block any tuples violating punctuation, which induces

increased computational cost per tuple.

The OOP architecture allows a wider range of options for stream query evaluation,

and thus can lead to other interesting topics. First, our current implementations always

produces accurate results. However, if the amount of disorder is large, the latency that

it takes to produce accurate results may not be tolerable for real-time applications. It is

interesting to consider extending the current OOP architecture to support speculative

results that are approximate, but can be produced earlier than accurate results, and then

revisions that correct the speculative results. Second, stream-query optimization is also

interesting in the OOP architecture in that the effects of disorder must be considered in

cost models for comparing alternative query plans. Third, we have proposed an

adaptive algorithm for aggregation to deal with varying data distributions. Adaptive

algorithms for window join to deal with varying stream properties such as data

 184

distribution skew and arrival-time delays are also desirable. Overall, we believe that

our work allows stream query evaluation to be more flexible and potentially opens up

other research topics.

 185

REFERENCES

[1] The Abilene Observatory. http://abilene.internet2.edu/observatory. 2005.

[2] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, X., and
Zdonik, S. The design of the Borealis stream processing engine. In Proceedings of
2nd Biennial Conference on Innovative Data Systems Research (CIDR 2005),
Asilomar, CA, 2005.

[3] Arasu, A., Babu, S. and Widom, J. The CQL continuous query language:
Semantic foundations and query execution. The VLDB Journal, 14, 1, 2005.

[4] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., and Zdonik, S. Aurora: A new model and architecture
for data stream management. The VLDB Journal, 12, 2, 2003.

[5] Arasu, A., and Widom, J. Resource sharing in continuous sliding-window
aggregates. In Proceedings of the 2004 International Conference on Very Large
Databases (VLDB 2004), Toronto, Canada, 2004.

[6] Avnur, R., and Hellerstein, J. M. Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2000), Dallas, Texas, 2000.

[7] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. Models and
issues in data stream systems. In Proceeding of the 2002 ACM Symposium on
Principles of Database Systems (PODS 2002), Madison, Wisconsin, 2002.

[8] Barga, R., Goldstein, J., Ali, M., and Hong, M. Consistent streaming through
time – a vision for event stream processing. In Proceedings of 3nd Biennial
Conference on Innovative Data Systems Research (CIDR 2007), Asilomar, CA,
2007.

[9] Bolot, J. End-to-end packet delay and loss behavior in the internet. In
Proceeding of the 1993 ACM SIGCOMM International Conference, San
Francisco, CA, 1993.

[10] Carney, D., Cetintemel, U., Cheniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., and Zdonik, S. Monitoring streams – A new class of
data management applications. In Proceedings of the 2002 International
Conference on Very Large Databases (VLDB 2002), Hong Kong, China, 2002.

[11] Chandrasekaran, S., and Franklin, M. J. PSoup: A system for streaming queries
over streaming data. The VLDB Journal, 12, 2, 2003.

[12] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J.
M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M.
A. TelegraphCQ: Continuous dataflow processing for an uncertain world. In

 186

Proceedings of the 2003 Conference on Innovative Data Systems Research (CIDR
2003), Asilomar, CA, 2003.

[13] Cormode, G., Johnson, T., Korn, F., Muthukrishnan, S., Spatscheck, O., and
Srivastava, D. Holistic UDAFs at streaming speeds. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data (SIGMOD
2004), Paris, France, 2004.

[14] Cranor, C., Johnson, T., and Spatashek, O. Gigascope: A stream database for
network applications. In Proceedings of the 2003 ACM SIGMOD International
Conference on the Management of Data (SIGMOD 2003), San Diego, CA, 2003.

[15] Ding, L., and Rundensteiner, E. A. Evaluating window joins over punctuated
streams. In Proceeding of the 2004 International Conference on Information and
Knowledge Management (CIKM 2004), Washington, DC, 2004.

[16] Rundensteiner, E.A, Ding, L., Sutherland, T., Zhu, Y., Pielech, B. and Mehta, N.
CAPE: Continuous query engine with heterogeneous-grained adaptivity. In
Proceedings of the 2004 International Conference on Very Large Databases
(VLDB 2004), Toronto, Canada, 2004.

[17] Duda, R. O, Hart, P. E., and Stork, D. G. Pattern Classification. Second edition.
A Wiley-Interscience Publication. Pages 239-242, 2001.

[18] Elfeky, M. G., Aref, W.G., and Elmagarmid, A.F. Using convolution to mine
obscure periodic patterns in one pass. In Proceeding of the 2004 International
Conference on Extending Database Technology (EDBT 2004), Heraklion, Crete,
Greece, 2004.

[19] Gabaix, X., Gopikrishnan, P., Plerou, V., and Stanley, H.E. A theory of power
law distributions in financial market fluctuations. Nature, 423, 267–270, 2003.

[20] Gedik, B., Andrade, H., Wu, K., Yu, P., and Doo, M. SPADE: The system S
declarative stream processing engine. In Proceedings of the 2008 ACM SIGMOD
International Conference on the Management of Data (SIGMOD 2008),
Vancouver, Canada, 2008.

[21] Golab, L. and Ozsu, M. T. Processing sliding window multi-joins in continuous
queries over data streams. In Proceedings of the 2003 International Conference on
Very Large Databases (VLDB 2003), Berlin, Germany, 2003.

[22] Golab, L., and Özsu, T.M. Update-pattern-aware modeling and processing of
continuous queries. In Proceedings of the 2005 ACM SIGMOD International
Conference on the Management of Data (SIGMOD 2005), Baltimore, MD, 2005.

[23] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., and Pirahesh, H. Data Cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub totals. Data Mining and Knowledge
Discovery 1, 1, 29-53, 1997.

 187

[24] Greenwald, M., and Khanna, S. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD International Conference
on the Management of Data (SIGMOD 2001), Santa Barbara, CA, 2001.

[25] Hammad, M. A., Aref, W. G., and Elmagarmid, A, K. Optimizing in-order
execution of continuous queries over streamed sensor data. In Proceeding of the
17th International Conference on Scientific and Statistical Database Management
(SSDBM 2005), Santa Barbara, CA, 2005.

[26] Hammad, M., Aref, W., Franklin, M., Mokbel, M., and Elmagarmid, A.K.
Efficient execution of sliding window queries over data streams. Purdue
University Department of Computer Sciences Technical Report Number CSD TR
03-035, December 2003.

[27] Hammad, M., Franklin, M., Aref, W., and Elmagarmid, A. Scheduling for shared
window joins over data streams. In Proceedings of the 2003 International
Conference on Very Large Databases (VLDB 2003), Berlin, Germany, 2003.

[28] Hammad, M.A. Mokbel, M.F. Ali, M.H. Aref, W.G. Catlin,
A.C. Elmagarmid, A.K. Eltabakh, M. Elfeky, M.G. Ghanem, T.M. Gwadera,
R., Ilyas, I.F., Marzouk, M., and Xiong, X. Nile: A query processing engine for
data streams. In Proceeding of the 2004 International Conference on Data
Engineering (ICDE 2004), Boston, MA, 2004.

[29] Hwang, J-H, Balazinska, M., Rasin, A., Cetintemel, U., Stonebraker, M., and
Zdonik, S. High-Availability Algorithms for Distributed Stream Processing. In
Proceddings of 2005 International Conference on Data Engineering (ICDE'05),
Tokyo, Japan, 2005.

[30] Hwang, J-H., Cetintemel, U. and Zdonik, S. Fast and Highly-Available Stream
Processing over Wide Area Networks, In Proceedings of 2008 International
Conference on Data Engineering (ICDE 2008) Cancun, Mexico, 2008

[31] Ives, Z. G., Florescu, D., Friedman, M., Levy, A., and Weld, D. S. An adaptive
query execution system for data integration. In Proceedings of the 1999 ACM
SIGMOD International Conference on the Management of Data (SIGMOD 1999),
Philadelphia, PA, 1999.

[32] Jagadish, H. V., Mumick, I. S., and Silberschatz, A. View maintenance issues for
the Chronicle data model. In Proceeding of the 19995 ACM Symposium on
Principles of Database Systems (PODS 1995), San Jose, CA, 1995.

[33] Johnson, T., Muthukrishnan, S., Shkapenyuk, V., and Spatscheck, O. A heartbeat
mechanism and its application in Gigascope. In Proceedings of the 2005
International Conference on Very Large Databases (VLDB 2005), Trondheim,
Norway, 2005.

[34] Kabra, N. and DeWitt, D. J. Efficient mid-query re-optimization of sub-optimal
query execution plans. In Proceedings of the 1998 ACM SIGMOD International
Conference on the Management of Data (SIGMOD 1998), Seattle, Washington,
1998.

 188

[35] Kang, J., Naughton, J. F., and Viglas, S. Evaluating window joins over
unbounded streams. In Proceedings of the 2003 International Conference on Data
Engineering (ICDE 2003), Bangalore, India, 2003.

[36] Keys, K., Moore, D., and Estan, C. A robust system for accurate real-time
summaries of internet traffic. ACM SIGMETRICS Performance Evaluation Review
33, 1, June 2005.

[37] Krishnamurthy, S., Wu, C., and Franklin, M. On-the-fly sharing for streamed
aggregation. In Proceeding of the 2006 ACM International Conference on
Management of Data (SIGMOD 2006), Chicago, Illinois, 2006.

[38] Law, Y.-N., Wang, H., and Zaniolo, C. Query languages and data models for
database sequences and data streams. In Proceedings of the 2004 International
Conference on Very Large Databases (VLDB 2004), Toronto, Canada, 2004.

[39] Li, H.-G., Chen, S., Tatemura, J., Agrawal, D., Kandan, S., and Hsiung, W-P.
Safety guarantee of continuous join queries over punctuated data streams. In
Proceedings of the 2006 International Conference on Very Large Databases
(VLDB 2006), Seoul, Korea, 2006.

[40] Li, J., Maier, D., Tufte, K., and Papadimos, V. No pane, no gain: Efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Record, 34,
1, 2005.

[41] Li, J., Maier, D., Tufte, K., and Papadimos V. Semantics and evaluation
techniques for window aggregates in data streams. In Proceedings of the 2005
ACM SIGMOD International Conference on the Management of Data (SIGMOD
2005), Baltimore, MD, 2005.

[42] Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., and Maier, D.
Out-of-Order Processing: A New Architecture for High-Performance Stream
Systems. In Proceedings of the 2008 International Conference on Very Large
Databases (VLDB 2008), Auckland, New Zealand, 2008.

[43] Li, W. Random texts exhibit Zipf's-law-like word frequency distribution. IEEE
Transactions on Information Theory, 38, 6, 1992.

[44] Madden, S., Shah, M., Hellerstein, J. M., and Raman, V. Continuously adaptive
continuous queries over streams. In Proceedings of the 2002 ACM International
Conference on Management of Data (June 2002), Madison, Wisconsin, 2002.

[45] Mazzucco, M., Ananthanarayan, A., Grossman, R. L., Levera, J., and Rao, G. B.
Merging multiple data streams on common keys over high performance networks.
In Proceedings of the IEEE/ACM SC2002 Conference, Baltimore, MD, 2002.

[46] Naughton, J.F., DeWitt, D.J., Maier, D., Aboulnaga, A., Chen, J., Galanis, L.,
Kang, J., Krishnamurthy, R., Luo, Q., Prakash, N., Ramamurthy, R.,
Shanmugasundaram, J., Tian, F., Tufte, K., Viglas, S., Wang, Y., Zhang, C.,
Jackson, B., Gupta, A., and Chen, R. The Niagara Internet query system. IEEE
Data Engineering Bulletin, 24, 2, 2001.

 189

[47] Nagaraj, K., Naidu, K.V.M., and Rastogi, R. Effecient Aggregate computation
over data streams. In Proceedings of the 2008 International Conference on Data
Engineering (ICDE 2008), Cancun, Mexico, 2008.

[48] Passive Measurement and Analysis project. San Diego Supercomputer Center.
http://pma.nlanr.net/PMA. 2005.

[49] Radiation Detection Center, Lawrence Livermore National Lab.
http://rdc.llnl.gov. 2005.

[50] Raman, V., Raman, B., and Hellerstein, J. M. Online dynamic reordering for
interactive data processing. In Proceedings of the 1999 International Conference
on Very Large Databases (VLDB 1999), Edinburgh, Scotland, UK, 1999.

[51] Sharaf, M.A, Chrysanthis, P.K., Labrinidis, A., and Pruhs, K. Efficient
Scheduling of Heterogeneous Continuous Queries. In Proceeding of the 2006 Very
Large Databases Conference (VLDB 2006), Seoul, Korea, 2006.

[52] Sharaf, M.A., Chrysanthis, P.K., and Labrinidis, A. Preemptive Rate-based
Operator Scheduling in a Data Stream Management System, In the Proceedings of
the Third ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA'05), Cairo, Egypt, 2005.

[53] Sharaf, M.A., Labrinidis, A., Chrysanthis, P.K., and Pruhs, K. Freshness-Aware
Scheduling of Continuous Queries in the Dynamic Web In Proceeding of the 2005
International ACM Workshop on the Web and Databases (WebDB 2005),
Baltimore, Maryland, 2005.

[54] Schreier, U., Pirahesh, U., Agrawal, R., and Mohan, C. Alert: An architecture for
transforming a passive DBMS into an active DBMS. In Proceedings of the 1991
International Conference on Very Large Data Bases (VLDB 1991), Barcelona,
Catalonia, Spain, 1991.

[55] Segev, A., and Shoshani, A. Logical modeling of temporal data. In Proceedings
of the1987 ACM SIGMOD Annual Conference (SIGMOD 1987), San Francisco,
CA, 1987.

[56] Seshadri, P., Livny, M., and Ramakrishnan, R. Sequence query processing. In
Proceedings of the 1994 International Conference on Management of Data
(SIGMOD 1994), Minneapolis, MN, 1994.

[57] Seshadri, P., Livny, M., and Ramakrishnan, R. SEQ: A model for sequence
databases. In Proceedings of the 1995 International Conference on Data
Engineering (ICDE 1995), Taipei, Taiwan, 1995.

[58] Seshadri, P., Livny, M., and Ramakrishnan, R. The design and implementation
of a sequence database system. In Proceedings of the 1996 International
Conference on Very Large Databases (VLDB 1996), Mumbai, India, 1996.

[59] Shah, M., Madden, S., Franklin, M., and Hellerstein, J. Java support for data-
intensive systems: Experiences building the telegraph dataflow system. In
SIGMOD Record, 30, 4, 2001.

 190

[60] Shapiro, L. D. Join processing in database systems with large main memories.
ACM Transaction on Database Systems, 11, 3, 1986.

[61] Srivastava, U., and Widom, J. Flexible time management in data stream systems.
In Proceeding of the 2004 ACM Symposium on Principles of Database Systems
(PODS 2004), Paris, France., 2004

[62] Srivastava, U, and Widom, J. Memory-Limited Execution of Windowed Stream
Joins. In Proceedings of the 2004 International Conference on Very Large
Databases (VLDB 2004), Toronto, Canada, 2004.

[63] The STREAM Group. STREAM: The Stanford STREAM Data Manager. IEEE
Data Engineering Bulletin, 26, 1, 2003.

[64] Stanford Stream Query Repository. http://www-db.stanford.edu/stream/sqr. 2005

[65] StreamBase. http://www.streambase.com/. 2008.

[66] Stonebraker, M., Cetintemel, U., and Zdonik, S. The 8 requirements of real-time
stream processing. In Proceeds of 2005 International Conference on Data
Engineering (ICDE 2005), Tokyo, Japan, 2005.

[67] Sullivan, M., and Heybey, A. Tribeca: A system for managing large databases of
network traffic. In Proceedings of the USENIX Annul Technical Conference,
Boston, Massachusetts, 1998.

[68] Tatbul, N., Cetintemel, U., and Zdonik, S. Staying FIT: Efficient load shedding
techniques for distributed stream processing. In Proceedings of the 2007
International Conference on Very Large Databases (VLDB 2007), Vienna,
Austria, 2007.

[69] Terry, D., Goldberg, D., Nichols, D., and Oki, B. Continuous queries over
append-only databases. In Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data (SIGMOD 1992), San Diego, California,
1992.

[70] Truviso. http://www.truviso.com/. 2008.

[71] Tucker, P. Punctuated Data Streams. Doctoral Dissertation. Oregon Health &
Science University, Portland, Oregon. 2005.

[72] Tucker, P. A., Maier, D., Sheard, M., and Fegaras, L. Exploiting punctuation
semantics in continuous data streams. Transactions on Knowledge and Data
Engineering, 15, 3, 2003.

[73] Urhan, T., and Franklin, M. J. XJoin: A reactively-scheduled pipelined join
sperator. IEEE Data Engineering Bulletin, 23, 2, 2000.

[74] Urhan, T., and Franklin, M. J. Dynamic pipeline scheduling for improving
interactive query performance. In Proceedings of the 2001 International
Conference on Very Large Data Bases (VLDB 2001), Roma, Italy, 2001.

 191

[75] Urhan, T., Franklin, M. J., and Amsaleg, L. Cost based query scrambling for
initial delays. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data (SIGMOD 1998), Seattle, Washington, 1998.

[76] Viglas, S., Naughton, J. F., and Burger, J. Maximizing the output rate of multi-
way join queries over streaming information sources. In Proceedings of the 2003
International Conference on Very Large Data Bases (VLDB 2003), Berlin,
Germany 2003.

[77] Wang, S., Rundensteiner, E. A., Ganguly, S., and Bhatnagar, S. State-Slice: New
paradigm of multi-query optimization of window-based stream queries. In
Proceedings of the 2006 International Conference on Very Large Data Bases
(VLDB 2006), Seoul, Korea, 2006.

[78] Willinger, W., Alderson, D., and Li, L. A pragmatic approach to dealing with
high-variability in network measurements. In Proceedings of the 2004 Internet
Measurement Conference (IMC 2004), Taormina, Sicily, Italy, 2004.

[79] XMark Benchmark. http://www.xml-benchmark.org. 2005.

[80] Xing, Y., Zdonik, S., and Hwang, J-H. Dynamic load distribution in the Borealis
stream processor. In Proceeding of the 2005 International Conference on Data
Engineering (ICDE 2005), Tokyo, Japan, 2005.

[81] Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M, and
Balakrishnan, H. The Aurora and Medusa Projects. IEEE Data Engineering
Bulletin, 26, 1, 2003.

[82] Zhang, R., Koudas, N., Ooi, B.C., and Srivastava, D. Multiple aggregations over
data streams. In Proceedings of the 2005 ACM SIGMOD International Conference
on the Management of Data (SIGMOD 2005), Baltimore, Maryland, 2005.

	Portland State University
	PDXScholar
	10-2008

	Window Queries Over Data Streams
	Jin Li
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - thesis_jin_final.doc

