
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 1-1-2012

A Survey and Analysis of Solutions to the Oblivious Memory
Access Problem
Erin Elizabeth Chapman
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Information Security Commons

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Chapman, Erin Elizabeth, "A Survey and Analysis of Solutions to the Oblivious Memory Access Problem" (2012). Dissertations and
Theses. Paper 891.

10.15760/etd.891

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/891?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.891
mailto:pdxscholar@pdx.edu

A Survey and Analysis of Solutions to the

Oblivious Memory Access Problem

by

Erin Elizabeth Chapman

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Computer Science

Thesis Committee:
Thomas Shrimpton, Chair

Melanie Mitchell
Bryant York

Portland State University
2012

c© 2012 Erin Elizabeth Chapman

i

ABSTRACT

Despite the use of strong encryption schemes, one can still learn information about

encrypted data using side channel attacks [2]. Watching what physical memory

is being accessed can be such a side channel. One can hide this information by

using oblivious simulation – hiding the true access pattern of a program. In this

paper we will review the model behind oblivious simulation, attempt to formalize

the problem and define a security game. We will review the major solutions pro-

posed so far, the square root and hierarchical solutions, as well as propose a new

variation on the square root solution. Additionally, we will show a new formaliza-

tion for providing software protection by using an encryption scheme and oblivious

simulation.

ii

TABLE OF CONTENTS

Abstract . i

List of Figures . iv

1 Introduction . 1
1.1 Our Contributions . 3

2 Preliminaries . 5
2.1 Encryption Scheme . 5
2.2 Adversaries . 6
2.3 Oracles . 6

2.3.1 Random Oracles . 6
2.4 Indistinguishability Under Chosen-Plaintext Attacks 7
2.5 The Batcher Sort . 9

3 The Oblivious RAM Problem . 11
3.1 The RAM Model . 11
3.2 Oblivious RAMs . 15

3.2.1 Oblivious RAM Security Games 16
3.3 A Related Problem: The Outsourced Data Model 19

4 The Square Root Solution . 21
4.1 Overview . 24
4.2 Proving the Square Root Solution is Oblivious 31

4.2.1 π(·) is a Uniformly Random Permutation 31
4.2.2 The Binary Search Does Not Leak Information 33
4.2.3 Constructing the Access Pattern 34
4.2.4 One Pass Through the Simulation Does Not Leak Information 35
4.2.5 Multiple Passes Do Not Add Information 38

4.3 Why the Shelter and Dummy Elements are Needed 38
4.4 Improvements . 41

iii

5 The Hierarchical Solution . 44
5.1 Overview . 45

5.1.1 Memory Layout . 45
5.1.2 Accessing Program Memory 46
5.1.3 Rehashing a Level . 47

5.2 Proof . 48
5.2.1 A Level’s Access Pattern Does Not Leak Information Be-

tween Rehashings . 49
5.2.2 Rehashing is Oblivious . 51
5.2.3 Hashes are Independent . 67

5.3 Analysis . 68

6 Variations on the Hierarchical Solution 69
6.1 Using Bloom Filters to Improve Efficiency 69
6.2 Improvements Using MapReduce and Cuckoo Hashing 71
6.3 Switching Completely to Cuckoo Hashing 72

7 Conclusion . 75

References . 77

Appendix A Software Protection . 79
A.1 Software Protection Security Game 80
A.2 Encryption and Oblivious Simulation Give Software Protection . . . 82

A.2.1 The Original Reduction . 82
A.2.2 Reformulation of the Software Protection Game 83
A.2.3 The New Reduction . 85

Appendix B Example Square Root Solution Simulation 88
B.1 The Original RAM . 88
B.2 Oblivious Simulation of the Original RAM 90

iv

LIST OF FIGURES

2.1 The IND-CPA Left-Right Encryption Oracle 7
2.2 The IND-CPA Security Game . 8
2.3 The IND-CPA Experiment in World 0 8
2.4 The IND-CPA Experiment in World 1 8

3.1 The ITM Model . 12
3.2 The RAM Model . 13
3.3 The Oracle-RAM Model . 14
3.4 The Access Pattern Oracle . 17
3.5 The Naive Oblivious RAM Security Game 17
3.6 The Naive ORAM Experiment in World 0 18
3.7 The Naive ORAM Experiment in World 1 18

4.1 Memory Setup for RAMk . 22
4.2 Initial State of the Work Tape for RAMk 25
4.3 A Sample Round . 29

5.1 Memory Layout . 46
5.2 Example: Initial State of Hash Tables A, B and C 52
5.3 Example: Tagging the Entries in C with h′(·) 52
5.4 Example: Sorting the Entries in C by Tag 53
5.5 Example: The Entries Moved From C to C ′ 54
5.6 Example: Sorting the Entries in Adjacent Buckets in C ′ 54
5.7 Example: Sorting the Buckets in C ′ 55
5.8 Example: Moving the Last 4n Buckets of C ′ into B 56
5.9 Example: Eliminate the Dummy Entries in B 56

1

Chapter 1

INTRODUCTION

For centuries, there has been a need to hide the content of messages. Early uses

include the Caesar cipher, a simple substitution cipher where each letter is replaced

by another, to hide military orders. As knowledge of cryptography increased, the

methods used to hide messages have become increasingly complex. Today, we use

many mathematical concepts to hide the content of messages. Sometimes hiding

the content of messages is not sufficient however. If an attacker is able to gather

enough information outside of the message content, this may lead them to learn

information hidden in the message itself. For example, if the attacker notices

that every time the target accesses a specific file on the Internet, they send a

shipment of parts the next day, the attacker is able to learn information about

the target that should potentially be kept secret. In this case, simply hiding the

message content does not provide enough security and such side channel attacks

are possible. To provide complete security, the target also needs to hide what files

they are accessing.

Chen et. al. showed that such side channel attacks have become a viable threat

with today’s infrastructure [2]. Most people have become used to using Internet

services to get health information or file their taxes. Such server transactions

are typically encrypted using HTTPS. Despite using encryption, these researchers

were able to show that detail information about the user could still be learned,

such as the illness of a person and the medications they are taking or their family

2

income. They were able to learn this information simply by watching the amount

of data being sent back and forth between the client and the server. For example,

in an online health application, when the user selected a health condition from a

list, the browser would send the user’s selection back to the server. The server in

turn would send back an updated web page with information on that illness. By

learning the size of the page for each health condition, they could determine which

conditions a user had without seeing any unencrypted data. Such vulnerabilities

were found on several major websites, telling us that simply watching what we

access, encrypted or not, can leak key information that we do not want public.

Hiding what file the target wants to access is referred to as oblivious simulation,

a mechanism for hiding the real accesses of the target. Imagine a program that does

not try to hide what locations are being accessed. The list of locations the program

goes to is referred to as an access pattern. To provide oblivious simulation, the

program changes the access pattern to hide which locations it really cares about.

This is typically done by accessing many locations in addition to the one location

the program really wants.

There are many applications where oblivious simulation is advantageous. In

recent years, cloud computing has become increasingly popular. More frequently,

companies are using cloud data services to store large amounts of data. The trust

relationship with the outside world becomes a key consideration when storing and

accessing data on the cloud. Simply encrypting the data might not provide enough

security; if an outside party watches which sections of data are accessed and which

actions follow, they may be able to discern information. Oblivious simulation can

provide an added layer of security here, allowing companies to take advantage of

the many services offered by the cloud.

Cloud computing is not the only application for oblivious simulation; it also

can be used in designing hardware components. Increasingly secure hardware com-

ponents are being used in various computing applications. For example, physically

3

secure CPUs may be used to perform sensitive actions that cannot be done on a

regular desktop computer. Typically more than a CPU is required for most ap-

plications though. All of the needed components would need to be included in

the secure hardware unit without oblivious simulation. With oblivious simulation

and an encryption scheme, the CPU could use untrusted memory on a desktop

computer to store information while it works.

Currently, there are two main solutions to the oblivious simulation problem: the

square root solution and the hierarchical solution [3, 8]. Both solutions have some

basic parts in common, but diverge from each other in key ways. The square root

solution is based on the use of permutations. As the program runs, the memory is

permuted at regular intervals to keep the attacker from knowing what really exists

at each location. The hierarchical solution and its variations are based on a series

of hash tables. As the program runs, the information is moved between the various

tables, again preventing the attacker from knowing what really exists in each hash

table.

Both solutions to the problem of oblivious simulation are in the relatively early

years of their development. In this paper, we will build the background necessary

for understanding both solutions, then analyze each solution in depth. We will

provide formal proofs that both methods provide oblivious simulation, as well as a

new variation on the square root solution. Additionally, we will discuss variations

on the hierarchical solution already proposed.

1.1 Our Contributions

We will expand upon the existing proofs for both the square root solution and

the hierarchical solution, adding more formality and depth. For the square root

solution, we will also propose a new variation that significantly decreases the time

overhead of simulation. Finally, we will give a formal security reduction show-

ing that software protection can be given using a semantically secure encryption

4

scheme and oblivious simulation.

5

Chapter 2

PRELIMINARIES

We will be using several constructs from cryptography in this paper, ranging from

types of security to random oracles. Before discussing the oblivious simulation

problem, one must have an understanding of these topics. Additionally, we will

review the Batcher sorting network as it is used heavily in this paper.

2.1 Encryption Scheme

An encryption scheme is a three-tuple of algorithms Π = (K, E ,D). K is the

key generation algorithm, which as its name suggests, is used to create keys for

using with the system. The key generation algorithm is randomized and we denote

K
$←K for running the key generation algorithm which returns a key K. The set

of all keys is denoted by Keys(Π). E is the encryption algorithm, which takes

a specific key K ∈ Keys(Π), along with a plaintext message M ∈ {0, 1}∗ and

produces a ciphertext C ∈ {0, 1}∗ ∪ {⊥}. To denote running E with key K and

message M , we write C $←EK(M). The ciphertext hides the original message so

it is safe to send on an unsecured line. The final piece is the decryption algorithm

D, which like the encryption algorithm, takes a key K ∈ Keys(Π) and a ciphertext

C ∈ {0, 1}∗. When the ciphertext is received, the decryption algorithm is applied

to the key and the ciphertext. If decryption is successful, the original plaintext

message M ∈ {0, 1}∗ is returned, otherwise if decryption fails ⊥ is returned. We

denote running this algorithm as M ← DK(C). In this paper we will be using

symmetric encryption schemes, where both the sender and the receiver have the

6

same key which is used for both encryption and decryption.

2.2 Adversaries

An adversary is a theoretical entity that represents all of the various threats against

an encryption scheme. Typically, this means learning any information about the

messages being sent between the sender and receiver. The adversary can be re-

stricted in certain ways or given certain abilities, depending on the type of security

being tested. For example, the adversary may be computationally bounded and

only allowed to run for so long. Or the adversary may be allowed to tamper with

the messages being sent between the sender and receiver, instead of just watching

the messages. The adversary may be allowed to adapt its behavior as the attack

continues instead of sticking to a set plan of attack.

2.3 Oracles

In security proofs, adversaries and encryption schemes are commonly given access

to an oracle. An oracle provides black-box access to some algorithm or function.

The users of the oracle do not know what is done inside the oracle, but can query

it and receive results from its computations. Oracle accesses are considered to take

a single unit of time in most models of computation.

2.3.1 Random Oracles

The random oracle is an important theoretical construct in cryptography, used to

generate random data. When the random oracle is queried with an input that it

has not seen before, the output is selected uniformly at random from all possible

outputs the oracle may return. If it sees that same input a second time, it will

return the same output as before instead of choosing a new output. The random

oracle can be used whenever one needs to generate truly random bits as part of a

7

security proof.

2.4 Indistinguishability Under Chosen-Plaintext Attacks

In the indistinguishability under chosen-plaintext attack security game (IND-CPA),

the adversary is given access to a left-right encryption oracle (see Figure 2.2). The

adversary is allowed to query the encryption oracle as many times as it wants, send-

ing two messages, M0 and M1. If both messages are the same length, the oracle

will encrypt one of the messages and return the ciphertext to the adversary. If

the adversary is in World 0, M0 will be encrypted; otherwise if the adversary is in

World 1 then M1 will be encrypted each time. This game is testing whether or not

the adversary can learn any information about the plaintext given a ciphertext. If

the adversary cannot do much better than guessing which world it is in, the en-

cryption scheme informally is said to be indistinguishable under a chosen-plaintext

attack.

Oracle EK(LR(M0,M1, b)):
if |M0| 6= |M1| then return ⊥
C

$←EK(Mb)

return C

Figure 2.1: The IND-CPA Left-Right Encryption Oracle

More formally, the indistinguishability game for an encryption scheme Π =

(K, E ,D) works as shown in Figure 2.2. The left-right function, denoted by

LR(M0,M1, b), returns ⊥ if M0 and M1 are not the same length. Otherwise if

the bit b is 0, it returns EK(M0) and EK(M1) if b is 1. A bit b is chosen uni-

formly at random, as is a key K according to K. Both are given to the oracle

EK(LR(M0,M1, b)) (see Figure 2.1). The oracle operates as follows when queries

with (M0,M1): if both messages are not of the same length, the oracle returns

⊥, otherwise the oracle returns EK(Mb). If the adversary is in World 0, it is

8

given access to the oracle EK(LR(M0,M1, 0)); if it is in World 1, it gets access to

EK(LR(M0,M1, 1)). The adversary may query the oracle as many times as it likes

before guessing which world it is in. If it correctly guesses the world, it wins the

game.

b

A

World 0

Ek(LR(M0,M1, 0))

Ek(M0) or ⊥

(M0,M1)

World 1

Ek(LR(M0,M1, 1))

Ek(M1) or ⊥

(M0,M1)

Figure 2.2: The IND-CPA Security Game

If we are in World 0, the instance of the IND-CPA game with adversary A

and encryption scheme Π is called the World 0 experiment or Expind-cpa-0
Π (A) (see

Figure 2.3). In World 1, it is referred to as Expind-cpa-1
Π (A) (see Figure 2.4).

Experiment Expind-cpa-0
Π (A):

K
$←K

b
$←AEK(LR(·,·,0))

return b

Figure 2.3: The IND-CPA Experiment in World 0

Experiment Expind-cpa-1
Π (A):

K
$←K

b
$←AEK(LR(·,·,1))

return b

Figure 2.4: The IND-CPA Experiment in World 1

The advantage of the adversary (a measure of how well it does) is defined as

the probability that it actually guesses it is in World 1 when it is in World 1 minus

9

the probability that it guesses it is in World 1 when it is really in World 0:

Advind-cpa
Π (A) = Pr

(
Expind-cpa-1

Π (A) = 1
)
− Pr

(
Expind-cpa-0

Π (A) = 1
)

(2.1)

If the advantage is close to zero, that means the adversary is wrong about half the

time about which world it is in, which is not much better than randomly guessing

the world. However, if the advantage is close to one, that means it is almost always

right about which world it is in and is a good adversary. For an encryption scheme

to be considered IND-CPA secure, it should have a small advantage.

2.5 The Batcher Sort

A Batcher sorting network [1, 6] is a type of merge sort. Unlike a sorting algorithm,

the steps taken by a sorting network are only determined by the length of the

input. The Batcher sorting network begins by splitting the input into two parts

recursively until only two values need to be compared, sorting those elements and

then performing even-odd merges until the entire list is sorted. A program would

perform the sort using the following procedures:
Procedure Sort(low, high, list):

If high− low ≥ 1

mid = low + high−low
2

Sort(low , mid, list)
Sort(mid + 1, high, list)
Merge(low, high, 1, list)

Procedure Merge(low, high, step, list):
newStep = 2 ∗ step
If newStep < high− low

Merge(low, high, newStep, list)
Merge(low + step, high, newStep, list)
For i = {low + step, low + step + newStep, low + step + 2 ∗ newStep, . . . ,
high− step}:

Order(i, i + step, list)
Else

Order(i, i + step, list)

10

Procedure Order(x, y, list):
If list[x] > list[y]

tmp = list[y]

list[y] = list[x]

list[x] = tmp

Else
list[x] = list[x]

list[y] = list[y]

As you can see from the pseudocode, the only time the value is considered is

when Order is called, but the same addresses are accessed regardless of the values.

Since the comparisons do not depend on the values, the same steps are done each

time the algorithm is called on lists of the same length.1

Now that we have constructed the basic cryptographic principles, we can begin

to develop the necessary notions for the oblivious RAM problem and its associated

concepts.

1For the correctness of the algorithm, refer to [1].

11

Chapter 3

THE OBLIVIOUS RAM PROBLEM

Before analyzing the various solutions for the oblivious RAM problem, it is im-

portant to have a firm grasp of exactly what the problem entails. We will begin

this chapter by defining the RAM model and how it operates. Ostrovsky takes the

standard RAM model and redefines it to be two interconnected Turing machines

[8]. Once that is understood, oblivious simulation (also called the oblivious RAM

problem) will be defined as well as its associated security games.

3.1 The RAM Model

A random access machine (RAM) is the combination of two Turing machines.

Specifically, we will be using interactive Turing machines (ITM). An ITM is a

five-tape Turing machine, as depicted in Figure 3.1: a read-only input tape, a

write-only output tape, a read/write work tape, a read-only communication tape

and a write-only communication tape. ITMs are parametrized by the length of

the work tape and the block size of the communication tape. We denote this

as ITM(c,w) where c is the block size of the communication tape and w is the

length of the work tape. To start the ITM on some input x, which we denote

by ITM(c,w)(x), the input is written to the read-only input tape of the ITM. The

ITM copies the input to the first |x| positions on its work tape (or halts if the

input is longer than the work tape) and then works in rounds. The round begins

by reading the next block from the read-only communication tape. The ITM does

any computations needed on the work tape, then writes a block to the write-only

12

communication tape. When the ITM has finished execution, it copies the final

results to the output tape. Execution can be halted by one of two ways; either

a special symbol telling the ITM to halt was read off of the work tape or the

computations performed by the ITM signaled that it should halt.

ITM

RO Input Tape

RW Work Tape

RO Communication Tape

WO Communication Tape

WO Output Tape

Figure 3.1: The ITM Model

The RAM combines two ITMs, one referred to as the CPU and the other as

MEM. The CPU has a limited amount of storage, similar to the registers on a real

CPU. The MEM on the other hand is like the memory in a computer; compared

to the amount storage on the CPU there is quite a bit. In the RAM, the read-only

communication tape of the CPU is connected to the write-only communication

tape of the RAM and vice versa (Figure 3.2).

Let us begin by defining how the MEM ITM works. We denote MEMk for

ITM(k,2kk), k ∈ N, with the work tape divided into 2k words of length k. The first

word on the work tape is associated with an address of one, the second word is

addressed with two and so on for all 2k words. When MEMk is started on some

input x, denoted by MEMk(x), the input is copied to its work tape like an ITM

normally does. From then on the MEM is message driven. Messages are of the

form (a, i, v), where a ∈ {0, 1}k is an address on the work tape, i is an instruction

and v ∈ {0, 1}k is a value. Three different instructions can be sent to the MEM:

13

CPU MEM
RO Input Tape RO Input Tape

RW Work Tape RW Work Tape

RO Communication Tape WO Communication Tape

WO Communication Tape RO Communication Tape

WO Output Tape WO Output Tape

Figure 3.2: The RAM Model

read, write and halt. If the read instruction is sent, the value sent is ignored and

the MEM writes the value currently stored at address a on its work tape to the

communication tape. Otherwise, if the write instruction is sent, the value v sent by

the CPU is written to word a on the MEM’s work tape and to the communication

tape. The final instruction is halt. When the MEM receives this instruction it

copies its work tape to its output tape until a special symbol is hit.

The CPU ITM is where all of the work is done in the RAM model. Here we

denote CPUk for ITM(k,k), k ∈ N. When the CPUk is started on some input x,

again denoted by CPUk(x), the input is copied from the input tape to the work

tape. The CPU performs some calculations based on this input and then sends a

message of the same form that the MEM receives: (a, i, v), where a ∈ {0, 1}k is an

address, i ∈ {read, write, halt} is an instruction and v ∈ {0, 1}k is a value. Like

the MEM, the CPU is driven only by messages from this point on. After sending

a message, with the exception of sending the halt instruction, the CPU waits to

receive a message back which will be a value v ∈ {0, 1}k. The message is copied to

the work tape and the CPU performs another set of calculations and sends another

14

message. When the CPU sends the halt message, it halts itself with no output.

Formally, we define a family of types RAMk = (CPUk,MEMk), for k ∈ N,

where CPUk = ITM(k,k) and MEMk = ITM(k,2kk). When operating an instance

of RAMk, it is started on some input (s, y) where s is the input for CPUk and

y is the input to the MEMk. The CPUk and MEMk alternate rounds with the

CPUk running first until the CPUk halts. The output from RAMk is the output

of MEMk(y) when interacting with CPUk(s).

CPU MEM
RO Input Tape RO Input Tape

RW Work Tape RW Work Tape

RO Communication Tape WO Communication Tape

WO Communication Tape RO Communication Tape

WO Output Tape

WO Output TapeWO Oracle Tape

RO Oracle Tape

Figure 3.3: The Oracle-RAM Model

A simple variation of the RAMmodel is the oracle-RAM (Figure 3.3). Here, the

CPU is given access to two extra tapes which are used to access a random oracle: a

read-only oracle tape and a write-only oracle tape. When the CPU writes a query

to the write-only oracle tape, the CPU is moved into a special oracle invocation

state. In a single step the oracle writes the output corresponding to the input

15

queried to the read-only oracle tape. This model is commonly used to simulate a

RAM that is given access to an encryption scheme.

3.2 Oblivious RAMs

Some RAMs may have the property of being oblivious ; if an adversary is watching

the messages between the CPU and the MEM, it cannot tell what memory the CPU

is really trying to access. This is formalized using the concept of access patterns.

An access pattern for a deterministic RAMk, k ∈ N, on input (s, y) is the list of

memory locations accessed by the CPU, denoted by Ak(s, y) = (a1, a2, . . . , ai, . . .)

where the ith message from the CPUk to the MEMk is (·, ai, ·). For an oracle-

RAMk on input (s, y) we use the random variable Ãk(s, y) to represent the access

pattern. Ãk(s, y) assumes a specific value for RAMk given a uniformly selected

random oracle on input (s, y). We will use the function RO to refer to this instance

of the oracle. An oracle-RAMk is said to be oblivious if for all inputs (s1, y1) and

(s2, y2), if |Ãk(s1, y1)| and |Ãk(s2, y2)| are equally distributed then so are Ãk(s1, y1)

and Ãk(s2, y2). In other words, if the length of the access patterns are equally

distributed, the access patterns are indistinguishable (this is similar to the concept

of indistinguishability against chosen plaintext attacks for encryption schemes).

The oblivious RAM problem only worries about hiding the access pattern. Us-

ing an encryption scheme that is IND-CPA secure to encrypt the values being

stored before sending them to the MEM prevents the values being stored from

leaking information (see Section A). Since we know the values cannot leak infor-

mation, we only need to concern ourselves with checking if the access pattern leaks

information when evaluating solutions to the oblivious RAM problem.

An oracle-RAM is said to obliviously simulate a program if no information

about the access pattern of the program running on a deterministic RAM can be

learned from the access pattern when it runs on the oracle-RAM. More formally,

given an oracle-RAMk and a deterministic RAM ′
k′ , RAMk obliviously simulates

16

RAM ′
k′ if these three conditions hold:

• RAMk is oblivious

• ∀(s, y), ∀RO, the output of RAMk(s, y) when given access to RO in the form

of a random oracle is the same as RAM ′
k′(s, y)

• The running time of RAMk(s, y) is determined by RAM ′
k′(s, y)

3.2.1 Oblivious RAM Security Games

Constructing a formal security game for the oblivious RAM problem is made dif-

ficult by one key requirement in the problem: the two access patterns in question,

Ãk(s0, y0) and Ãk(s1, y1), must have lengths that are equally distributed. However,

the length of the access patterns is a random variable and there may not be a way

to know if the access patterns generated by two different inputs are equally dis-

tributed. In the security game, the adversary must at minimum be given access to

an access pattern oracle in a similar manner to the encryption oracle in the IND-

CPA security game (Section 2.4). The access pattern oracle would be presented

with two inputs to the RAMk, (s0, y0) and (s1, y1), and using the left-right function

LR(·, ·, ·), choose one of the inputs and return the access pattern for that input if

the lengths are equally distributed. Otherwise, if the lengths of the access patterns

are not equally distributed, ⊥ is returned. The question is how does the adversary

and the access pattern oracle determine that the lengths are equally distributed.

The naive way is to have the access pattern oracle run the RAM on both inputs.

If the access patterns generated are not of the same length, the oracle would return

⊥. However, the adversary would have no way of knowing in advance if the access

patterns are of the same length and this would unfairly penalize it (unlike the

IND-CPA game where the adversary decides whether or not the messages are of

the same length).

17

The Naive Oblivious RAM Security Game

The naive oblivious RAM security game tests whether or not an adversary can

distinguish between access patterns (Figure 3.5). To set up the ORAM game, a

function RO is chosen uniformly at random and is given to RAMk as a random

oracle. Additionally, a bit b is chosen uniformly at random. The adversary A sends

pairs of inputs ((s0, y0), (s1, y1)) to the access pattern oracle AP (see Figure 3.4).

If |Ãk(s0, y0)| 6= |Ãk(s1, y1)|, ⊥ is returned. Otherwise Ãk(sb, yb) is returned. A is

allowed to query AP as many times as it wants but is only allowed to run for 2O(k)

time. When A halts, it outputs a bit b′. If b′ = b, then A wins.

Oracle AP (RAMk, LR((s0, y0), (s1, y1), b)):
if |Ãk(s0, y0)| 6= |Ãk(s1, y1)|

return ⊥
run RAMk(sb, yb)

return Ãk(sb, yb)

Figure 3.4: The Access Pattern Oracle

b

A

World 0

AP (RAMk,LR((s0, y0),
(s1, y1), 0))

Ãk(s0, y0) or ⊥

((s0, y0), (s1, y1))

World 1

AP (RAMk,LR((s0, y0),
(s1, y1), 1))

Ãk(s1, y1) or ⊥

((s0, y0), (s1, y1))

Figure 3.5: The Naive Oblivious RAM Security Game

If we are in World 0, the instance of the ORAM game with adversary A and

encryption schemeRAMk is called the World 0 experiment orExporam-0
RAMk

(A) (Figure

3.6) and Exporam-1
RAMk

(A) in World 1 (Figure 3.7). Like the IND-CPA security game

(Section 2.4), the advantage of the adversary is defined as the probability that it

18

actually guesses it is in World 1 when it is in World 1 minus the probability that

it guesses it is in World 1 when it is really in World 0:

Advoram
RAMk

(A) = Pr
(
Exporam-1

RAMk
(A) = 1

)
− Pr

(
Exporam-0

RAMk
(A) = 1

)
(3.1)

Again, for a RAMk to be considered oblivious, the advantage should be close to 0,

indicating that the best adversary cannot do better than randomly guessing which

world it is in.

Experiment Exporam-0
RAMk

(A):
b

$←AAP (RAMk,LR((·,·),(·,·),0))

return b

Figure 3.6: The Naive ORAM Experiment in World 0

Experiment Exporam-1
RAMk

(A):
b

$←AAP (RAMk,LR((·,·),(·,·),1))

return b

Figure 3.7: The Naive ORAM Experiment in World 1

Oblivious RAMs with a Deterministic Increase in Access Pattern Length

There is a special exception to the problem of knowing the distribution of the

access pattern; specifically, if the access pattern generated by the oblivious RAM

is a constant factor larger than the original access pattern. In fact, all of the

solutions we will discuss in this paper increase the access pattern length by a

constant multiple. In this case, the adversary can determine how long the access

pattern of the oblivious RAM should be so we have no need to avoid penalizing

the adversary for bad queries to the left-right oracle. For these solutions, the naive

ORAM experiment is sufficient (Section 3.2.1).

19

3.3 A Related Problem: The Outsourced Data Model

A similar problem to that of oblivious RAM simulation is the outsourced data

model [4]. In this model, the client has a large amount of data they want to store,

say of size n, and they have purchased this amount of space from a server provider

(such as a cloud computing service). Like the RAM model, the data on the server

is indexed and the client will make indexed queries to the memory. On their local,

trusted computers the client only has a fraction of this memory, on the order of

O(n
1
r) for some constant r > 1. The server provider is potentially malicious so the

client does not fully trust them. Perhaps the server provider has some financial

interest in learning about the client’s data or perhaps an employee is stealing

information to sell to the client’s competitors. In this case, simply encrypting

information may not hide enough information. As we have seen, information can

still be leaked despite using encryption [2]. The client would want their accesses

to be data oblivious to prevent these side channel attacks.

A computation is said to be data oblivious, if for two unique memory config-

urations of the same size, an access pattern is equally likely to be seen with each

configuration. A memory configuration is the physical layout of the memory as

well as the values currently stored at each location. More formally, for memory

configurationsM andM ′, whereM 6= M ′ and |M | = |M ′|, and an access sequence

S, the probability that we see S given M is the same that we see S given M ′:

Pr(S|M) = Pr(S|M ′)

The property of data obliviousness is as general as the oblivious RAM problem;

solutions meeting either definition will only leak information about the running

time and amount of memory used. Either of these pieces could also be obscured

by padding either the memory or the execution with fake data and additional

computations. Unlike the oblivious RAM problem, this solution does not include

20

the requirement that the access patterns be equally distributed, removing one of

the more significant complications in proving that a solution provides oblivious

simulation. Going forward, one suspects that this will the more useful definition.

21

Chapter 4

THE SQUARE ROOT SOLUTION

Intuitively, it is trivial to hide the actual memory locations a program wants to

access by having the RAM read and then write every item in memory for each

access in the original program. Because we access all of the locations each time,

an adversary could not determine which location we were truly interested in. Un-

fortunately, this is not the best solution because it has a large overhead: if m

words of memory are required by the original RAM, the oblivious RAM requires

2m accesses per original access. Instead of scanning everything, in the square root

solution, a relatively small number of locations are scanned, along with regular

reshuffling of the words in memory. This solution was originally proposed via two

papers by Ostrovsky and Goldreich [3, 8]. We we detail and analyze the square

root solution in this section, as well as propose our own modifications.

We know that this solution must be based on the use of an oracle-RAM. Recall

from our discussion of the oblivious RAM problem (Section 3.2) that an adversary

would query the access pattern oracle with two different inputs ((s0, y0), (s1, y1)).

The oracle would choose one of these inputs, execute the RAM on it and return

the resulting access pattern. Suppose that we used a deterministic RAM instead

of an oracle-RAM for the solution. If the adversary sent the same (s0, y0) each

time and a different (s1, y1) it could determine with high probability which world

it was in. If the adversary was in World 0, the oracle would always execute the

RAM on (s0, y0). Since the RAM is deterministic, this would generate the same

access pattern each time. If the adversary was in World 1, then it would expect

to see a different access pattern each time. This tells us that we need to use an

22

oracle-RAM to implement our solution.

The oblivious oracle-RAMk is given access to some extra memory besides the

m words used by the original RAM ′
k′ (see Figure 4.1). Our oblivious oracle-RAMk

should provide the same functionality as the original RAM ′
k′ (in other words, for

a given input, both RAMs should return the same output). The extra memory is

divided into two parts; half are referred to as dummy locations and the other half

as the shelter. Specifically,
√
m dummy locations and

√
m shelter locations are

added. The dummy and shelter words are used to hide whether or not RAMk has

accessed the same word more than once in a pass (more on this shortly). The first

m words in RAMk’s memory are initialized to contain the same values as the m

words in RAM ′
k′ ’s memory. Specifically, the words in RAMk are of the form (i, vi),

where vi is the value originally stored at word i in RAM ′
k′ . The dummy locations

are words in memory that are initialized to a dummy value and are not used by

the program being simulated. The shelter locations are used to temporarily hold

the words that were accessed in one pass of the oblivious simulation. The shelter

locations are also initialized to a dummy value.

m words of memory in original RAM ′

k′

m words of program memory

√
m dummy
words

√
m shelter
words

m+ 2
√
m words of memory in oblivious RAMk

Figure 4.1: Memory Setup for RAMk

The square root solution works in cycles, simulating
√
m memory accesses of

the original RAM ′
k′ at a time (we will call this a pass). We will refer to the oracle

that RAMk is given access to as RO. RAMk at a high level works as follows for

23

pass g:

1. count← 0

2. Construct a random permutation π : [m+
√
m] → [m+

√
m] using the

function RO

3. Permute the first m+
√
m words in RAMk’s memory according to π (e.g. if

π(3) = 6, we would move (3, v3) to the sixth word in RAMk)

4. For j = h + 1, h + 2, . . . , h +
√
m, where h = (g − 1)

√
m, simulate memory

access j of the original RAM ′
k′ (the access will be of the form (ij, aj, vj) where

ij is the instruction, aj is an address and vj is a value):

(a) Scan shelter for the word that contains address aj

(b) If aj is not found in the shelter, look for it at location π(aj) in one of

the non-shelter locations

(c) If aj was found in the shelter, access a dummy location π(m+ count)

(d) Scan the shelter again, reading then writing back a reencrypted value

for each word. If aj was previously found in the shelter, update its

value (if needed). Otherwise write (aj, vaj) into the first empty shelter

location

(e) count← count+ 1

5. Put each of the program words back in their original location

Each of these steps is key to obtaining oblivious simulation of the original program.

Recall from Section 3.2 that an IND-CPA secure scheme is used to encrypt the

value being stored each time it is written, so the square root solution only needs

to hide the access pattern and obscure whether a read or write is being done.

If the accesses made when the values stored in the non-shelter locations are

permuted are independent of the data stored in the RAMk and the values are

24

reencrypted at each step, then the adversary will not be able to tell which values

end up in each location (steps 2 and 3). By scanning the shelter and then accessing

only one non-shelter location (steps 4a, 4b and 4c), the algorithm obscures whether

or not the same value has been accessed twice since the adversary, again due to

encryption, cannot tell whether or not a dummy location or a program memory

location has been accessed. Then the entire shelter is read and written back,

obscuring which shelter location was written to (step 4d). Once the
√
m accesses

have been simulated, the program memory is returned to its original location (step

5), then repermutes for the next pass (back to steps 2 and 3).

In the remainder of this chapter we will go into more depth on how each of

these steps is implemented and show that no information about the access pattern

is leaked by this solution.

4.1 Overview

As described in the previous section, the m+ 2
√
m memory locations are divided

into three parts. The first m words are program memory and are initialized to

reflect the original state of the original RAM ′
k′ . Specifically, a tuple is written to

each word: the work tape address i and the value vi stored at that location (e.g.

if the value 36 was originally stored in the seventh word of RAM ′
k′ then (7, 36)

would be written to the seventh word of RAMk). The next
√
m words are dummy

locations initialized to some arbitrary value, which we will denote d, and are used

to obfuscate what is being accessed. The final
√
m locations are called the shelter,

again initialized to a dummy value. The shelter is used to store the values that

have been accessed by the RAMk in this pass of the algorithm. Before the first

pass through the simulation, each word will need to be updated, so it is tagged

with the address it is at. The exception to this is the shelter locations, which will

be tagged with an address of ∞. The program words will look like (i, vi), where

i is the address and vi is the value originally stored there. Dummy words will

25

be of the form (i, d) and shelter words will be (∞, d) (we will see why they need

an address of ∞ shortly). An example of the initial work tape memory setup for

RAMk, based on an original RAM ′
k′ with a work tape of length four, can be see

in Figure 4.2.

4 words of memory in original RAM ′

k′

v1 v2 v3 v4

4 words of program memory

2 dummy words 2 shelter words

8 words of memory in oblivious RAMk

(1, v1) (2, v2) (3, v3) (4, v4) (5, d) (6, d) (∞, d) (∞, d)

Figure 4.2: Initial State of the Work Tape for RAMk

The simulation works in cycles, each cycle simulating
√
m accesses of the orig-

inal RAM. For the sake of simplicity, we will ignore the encryption as described

in Section 3.2. It suffices to remember that each time a value is written, it is

re-encrypted and the ciphertext is written so the value stored changes whether or

not the value was actually updated.1 Initially, the memory needs to be shuffled to

hide which locations are truly being accessed. This must be done on every pass,

including the first, or else the adversary could trivially distinguish between access

patterns; without the initial shuffle, the first
√
m accesses simulated would access

the same locations as the original program. In the oblivious RAM security game

(see Section 3.2.1), if the adversary simply queried the RAM oracle with the same

(s0, y0) each time but a different (s1, y1), it could guess that it is in the correct

world with high probability, simply by seeing if the first
√
m simulated accesses

1An IND-CPA secure encryption scheme is probabilistic, stateful or both. This allows the
encryption scheme to generate different ciphertexts each time the same plaintext is encrypted.
See Section 2.4 for further details.

26

are the same for each returned access pattern. Additionally, choosing a new shuf-

fle each time will put the program words in a different location each pass. This

prevents the adversary from learning information by comparing the accesses made

in each pass and prevents multiple passes from leaking information.

Both the program memory and dummy locations will need to be shuffled. If

the dummy locations are not included in the shuffle, when the algorithm accesses

dummy locations it will always access them in the same portion of memory (in step

4c above). This would leak whether or not the program accessed the same location

multiple times in one pass, again leading to an adversary who could distinguish

between access patterns with high probability. Leaking this information may not

be bad in practice (though it has the potential) but does violate the oblivious RAM

security game (Section 3.2.1).

In order to shuffle the memory, the RAM constructs a uniformly random per-

mutation using the random oracle. Let n be the number of items that need to be

permuted (in this case n = m+
√
m). The random oracle can be used to construct

a function f : [n]→ Znlogn such that, with high probability, f(i) is distinct for all

i ∈ [n]. The choice of Znlogn for the range reduces the probability of a collision, as

we will show later, while minimizing the number of bits needed to store the value

computed by f on a particular input. The permutation π(·) can be constructed as

follows: π(i) = j if and only if f(i) is the jth smallest element in {f(k) | 1 ≤ k ≤ n}

(we will explain in Section 4.2.1 why this works). After each pass through the sim-

ulation a new function f will need to be constructed. After f has been constructed,

each non-shelter memory location 1 ≤ i ≤ m+
√
m is accessed and tagged with the

value f(i). Each non-shelter location now stores a tuple of the tag, virtual address

and value (f(i), i, vi), where vi is the value currently stored at virtual address i.

When scanning for an address aj, RAMk will be looking at the second value in the

tuple (the virtual address). The algorithm will need to know later which f(i) and

i corresponds to the value being read; the only way for it to know this information

27

is for each location to store the tuple.

Once all of the memory locations have been tagged, they will need to be sorted

according to the value of f(·) in order to permute them according to π(·). The

sorting is done via a Batcher Sorting Network (see Section 2.5) [1]. The Batcher

sort is a type of merge sort which makes n · dlog2 ne2 comparisons when sorting n

elements. Crucially, the same comparisons are done each time, regardless of the

items being sorted.

Now that the memory locations have been permuted, RAMk will begin simu-

lating the
√
m accesses of the original RAM ′

k′ for this pass through the algorithm.

RAMk keeps a counter, which we will call count, which is initialized to 0. The ith

access will be for some program address ai. To simulate accessing ai, RAMk will

first scan the shelter to see if ai has already been accessed. If program address ai

was not found in the shelter, we will need to find it in a non-shelter location. We

do not know which physical word in RAMk stores ai but we do know f(ai). To

find ai, we perform a binary search over the first m +
√
m words, looking for the

word tagged with f(ai). Once we find ai at some physical word j, we rewrite the

value stored so that the program address is updated to infinity. In other words, the

tuple (f(ai),∞, vai) is written back to the same physical word j where we found

ai (we will see why later). If we found program address ai in the shelter, then we

need to search for one of the dummy words so the access pattern looks the same

regardless of where we find ai. Each time we access a dummy location we need it to

be a unique dummy location that we have not accessed before in this pass. This is

where the counter count comes into play. We perform the binary search, this time

looking for the countth dummy word, which is tagged with f(m + count). When

we find the dummy word at some address j, we re-encrypt it and rewrite the same

value back to the same location. Finally, we scan the shelter again, reading and

then writing each word in place. If ai was previously found in the shelter, when

we get to that word it is rewritten with the potentially updated value for vai . If

28

ai was not in the shelter already, it is written to the first empty word found in the

shelter (the first word tagged with an address of∞). Once this scan of the shelter

is complete, count is incremented by 1 and the next memory access is simulated.

Once all of the
√
m access in this pass have been simulated, we need to get

all of the words back to their original position. This is for one of two reasons. In

the first case, if this is not the last pass through the algorithm, we will need to

repermute the words to obscure the next
√
m simulated accesses, as well as clear

the shelter. By returning all of the words to their original location, the shelter will

no longer contain program words, making the shelter ready for the next pass. The

program words and dummy words are back in the first m +
√
m locations, ready

to be shuffled according to a new permutation. In the second case, if this is our

last pass, when the CPU portion of RAMk sends the halt message to the MEM,

the MEM prints out its work tape until it hits a special symbol (see Section 3.1).

If we have not returned the words to their original location, RAMk will output

something different than what the original RAM ′
k′ returned, and thus would violate

the operational requirements of oblivious simulation.

Before we describe how the words are returned to their original location, we

should assure ourselves that each program word and each dummy word only exist

in one location. If a program word was not accessed in this pass, then it could

trivially only be in one location since it was never written. Specifically, it will be

somewhere in the firstm+
√
m words, as determined by our permutation π(·). If we

did access some program word ai in this pass, the first time we accessed it we found

it in some non-shelter location at physical address j. After we read the word, we

rewrote the tuple at address j and updated the program address to ∞ (originally

(f(ai), ai, vai) would be stored at address j, after the update (f(ai),∞, vai) would

be stored there), and then wrote the tuple for ai into the shelter. If ai was accessed

subsequently, the value was updated in the shelter location, so the word tagged

with program address ai only exists in one location. The dummy words only exist

29

in one location, too, since we never moved them into the shelter. Finally, the

unused shelter locations will be tagged with an address of ∞ so we can safely

ignore them.

To return the words to their original location, we need to do a Batcher sort

across all m + 2
√
m words based on the address they are tagged with (a Batcher

sort is used because is it deterministic; see Section 2.5). The program words will

end up in the first m words since they are tagged with addresses 1 to m. The

dummy words, tagged with addresses m + 1 to m +
√
m will end up in the next

√
m words. Finally the shelter words, all tagged with an address of ∞ because

they were either words accessed during this pass or are unused shelter locations,

will be in the last
√
m words. Now that everything has been returned to its original

position, RAMk can halt if there are no more steps to simulate, or the next
√
m

steps can be simulated.

Initial State

(1, 18) (2, 13) (3, 42) (4, 6) (5, d) (6, d) (∞, d) (∞, d)

Each Non-Shelter Value is Tagged with f(·) where f : [6] → [24]

(16, 1, 18) (21, 2, 13) (9, 3, 42) (11, 4, 6) (7, 5, d) (13, 6, d) (∞, d) (∞, d)

A Batcher Sort is Performed Across Non-Shelter Words Based on the f(·) Tag

(7, 5, d) (9, 3, 42) (11, 4, 6) (13, 6, d) (16, 1, 18) (21, 2, 13) (∞, d) (∞, d)

Program Location 3 is Accessed and Moved into the Shelter

(7, 5, d) (9,∞, 42) (11, 4, 6) (13, 6, d) (16, 1, 18) (21, 2, 13) (9, 3, 26) (∞, d)

Program Location 1 is Accessed and Moved into the Shelter

(7, 5, d) (9,∞, 42) (11, 4, 6) (13, 6, d) (16,∞, 18) (21, 2, 13) (9, 3, 26) (16, 1, 5)

A Batcher Sort is Performed Across All Words Based on Physical Address

(16, 1, 5) (21, 2, 13) (9, 3, 26) (11, 4, 6) (7, 5, d) (13, 6, d) (9,∞, 42) (16,∞, 18)

Figure 4.3: A Sample Round

30

In summary, the simulation works as follows for pass j (a sample round2 can

be seen in Figure 4.3):

1. Construct f : [n]→
[
nlogn

]
where n = m+

√
m.

2. For 1 ≤ i ≤ m +
√
m, tag each word with f(i). Each non-shelter word will

now be of the form (f(i), i, vi).

3. Perform a Batcher sort across all non-shelter locations based on the value of

f(·).

4. Initialize count to 0.

5. For i = (j − 1)
√
m+ 1, . . . , (j − 1)

√
m+

√
m, simulate access i for program

address ai:

(a) Scan shelter for address ai

(b) If ai is not found in the shelter, do a binary search over the non-shelter

locations looking for the word tagged with f(ai). When ai is found,

rewrite the value so the virtual address is now ∞.

(c) If ai was found in the shelter, do a binary search over the non-shelter

locations looking for dummy wordm+count which is tagged with f(m+

count). Re-encrypt and rewrite the word when found.

(d) Scan the shelter, rewriting each value after it is read. If ai is already in

the shelter, update the value if needed. Otherwise put the tuple for ai

in the first empty shelter location.

(e) Increment count by 1.

6. Perform a Batcher sort based on the address each word is tagged with across

all words in memory to return everything back to its original location

2See appendix B for more detailed information

31

4.2 Proving the Square Root Solution is Oblivious

We will build our proof that the square root solution provides oblivious simulation

in pieces. First we will show that π(·) is a uniformly random permutation. Next we

will show that the binary searches do not add any information about the memory

being accessed. Finally, we will construct the access pattern and show that one

pass through the simulation does not leak any information besides the running

time and amount of memory used, nor do multiple passes through the simulation.

4.2.1 π(·) is a Uniformly Random Permutation

Before we show that π(·) is a random permutation, let us review how it is con-

structed. Given n = m +
√
m, some constant c1 on the order of 2k and another

constant c2 > 0, our random oracle will be chosen from the set of functions that

map from [c1n] to Zc2nlogn :

RO ∈ {g(·) | g : [c1n]→ Zc2nlogn}

The specific random oracle that we get will be chosen uniformly at random from

this set when the security game is set up. We do not have any control over the

exact oracle that is selected. The domain for the random oracle is sufficiently

large so that we do not query the random oracle with the same input twice. Since

the adversary in the ORAM game cannot run for longer than O(2k) time (Section

3.2.1), then c1 on the order of 2k is sufficiently large. Recall that the function f

that we use to construct π(·) maps [n] to Znlogn (Section 4.1). For some input to

f , we want it equally likely to map to any point in Znlogn . For any given input, the

random oracle will output a uniformly random point in its range. If the range of

f evenly divides the range of the random oracle, as we have chosen, then we can

construct such an f .

The function f : [n] → Znlogn (in this case n = m +
√
m) is constructed using

32

the random oracle, and we will need to construct a unique f for each pass through

the simulation. To do so, the RAM needs to keep an internal counter, which we

will call passes and initialize to 0. After each pass through the simulation passes

will be incremented by 1. For each pass, f(·) is created as follows for i = 1, . . . , n:

f(i) = RO(passes · n+ i) (mod nlogn)

Now that we have constructed f(·), we can create our permutation π : [n]→ [n]

as follows: π(i) = j if and only if f(i) is the jth smallest value in {f(1), f(2), . . . ,

f(n)}, assuming there are no collisions. We need to show that π(·) is a uniformly

random permutation. Assume that π(·) is not a uniformly random permutation.

This means there exists some value i ∈ [n] such that Pr (π(i) = j) > 1
n
for some j.

Since π(·) is created using f(·), this equivalently means that the probability that

f(i) is the jth smallest number in {f(1), f(2), . . . , f(n)} is greater than 1
n
. This

means that f(i) is weighted toward some subset of Znlogn , which contains at least

one element l. In other words Pr(f(i) = l) > 1
nlogn . However we have already

shown that Pr(f(i) = l) = 1
nlogn , which is a contradiction, therefore π must be a

uniformly random permutation.

Finally, we just need to show that the chance of collisions in f(·) is small. First,

let us consider the probability that f(·) has no collisions. Let P (n, k) = n!
(n−k)!

be

the number of ways to choose an ordered subset of k items from a set of n items.

If there are no collisions, each of the n items in the domain must map to a unique

element in Znlogn . This is the same as choosing n items from a set of nlogn items,

giving us P
(
nlogn, n

)
possible mappings with no collisions. If we allow collisions,

we have
(
nlogn

)n possible mappings for f(·), giving us a probability of
P(nlogn,n)
(nlogn)

n

that there are no collisions. Therefore the chance that we do have a collision is:

Pr (collision) = 1−
P
(
nlogn, n

)
(nlogn)n

33

We know that for n � k, P (n, k) ≈ nk. For some large n, nlogn � n, which tells

us that P
(
nlogn, n

)
≈

(
nlogn

)n. With this, our probability of a collision can be

changed as follows:

Pr (collision) = 1−
P
(
nlogn, n

)
(nlogn)n

≈ 1−
(
nlogn

)n
(nlogn)n

≈ 1− 1

≈ 0

Therefore, for large n, the probability that we have a collision in f(·) is close to

zero.

4.2.2 The Binary Search Does Not Leak Information

Next we will show that the binary searches performed do not leak any information

besides the physical word they lead to and do not give any indication about the

virtual address stored in that location. This allows us to reduce the binary search

access pattern to simply the word it leads to. The binary searches are done over the

first m+
√
m words. A uniformly random permutation π(·) was constructed using

f(·). We can view the binary search as paths through the binary tree constructed

by π(·), where π(i) = m+
√
m

2
is the root, π(j) = m+

√
m

4
and π(k) = 3(m+

√
m)

4
are

the children of the root and so on. The words accessed by the binary search for

some word π(l) is the same as the path through the binary tree from the root to

the node containing π(l) [6].

Suppose we construct an adversary that given a value π(i) tries to guess the

value i. Since π(·) is a uniformly random permutation, the adversary cannot do

better than guessing the value of i and each possible value has the same chance of

being right, in this case 1
m+
√
m
. Now suppose that instead of permuting using π(·),

34

we split the binary tree into the individual search paths that lead to each node

and randomly assign each path to an address i. If we give the adversary the search

path, it cannot do better than randomly guessing which value i it corresponds to

since the paths are selected with equal probability. This tells us that the binary

search path does not give any more information that simply the node it ends at,

so we can eliminate the binary search from the access pattern and simply replace

it with the physical word where the search halts.

4.2.3 Constructing the Access Pattern

Now that we know we can skip the binary search, let us construct the access

pattern for one pass through the simulation before getting into the whole proof.

First, each non-shelter location needs to be tagged. To do this the RAM will first

need to read, then write back the value stored in each word. The access pattern

for this part will be:

(
1, 1, 2, 2, 3, 3, . . . ,m+

√
m,m+

√
m
)

Next, the Batcher sort is performed. It will take (m +
√
m) · dlog(m +

√
m)e2

comparisons, and will need to perform two reads and two writes per comparison.

This means there will be 4(m+
√
m) · dlog(m+

√
m)e2 accesses for the sort, which

we will denote by: (
b1, b2, . . . , b4(m+

√
m)·dlog(m+

√
m)e2

)
Then we will need to simulate the

√
m accesses from the original RAM. For one

original access, we will read the entire shelter (
√
m accesses), then read and write

one non-shelter location since we can skip the binary search (2 accesses), and

finishing by reading and writing the entire shelter (2
√
m accesses). This will be

done a total of
√
m times, leading to (2 + 3

√
m)
√
m = 2

√
m+ 3m accesses, which

35

we will denote by: (
a1, a2, . . . , a2

√
m+3m

)
Finally, we will need to return everything to its original location using another

Batcher sort. This one is over m+ 2
√
m locations, giving us an access pattern of:

(
b′1, b

′
2, . . . , b

′
4(m+2

√
m)·dlog(m+2

√
m)e2

)
For one pass through the simulation, the complete access pattern will be:

(
1, 1, 2, 2, . . . ,m+

√
m,m+

√
m, b1, b2, . . . , b4(m+

√
m)·dlog(m+

√
m)e2 ,

a1, a2, . . . , a2
√
m+3m, b

′
1, b
′
2, . . . , b

′
4(m+2

√
m)·dlog(m+2

√
m)e2

)
4.2.4 One Pass Through the Simulation Does Not Leak Information

We need to show that one pass through the simulation does not leak any informa-

tion about the memory accesses being simulated besides the number of accesses.

We can start by eliminating the accesses that are the same every pass from our

access pattern. To begin with, our access pattern for one pass looks like:

(
1, 1, 2, 2, . . . ,m+

√
m,m+

√
m, b1, b2, . . . , b4(m+

√
m)·dlog(m+

√
m)e2 ,

a1, a2, . . . , a2
√
m+3m, b

′
1, b
′
2, . . . , b

′
4(m+2

√
m)·dlog(m+2

√
m)e2

)
The accesses to update the tags are the same every pass, so we can remove them:

(1, 1, 2, 2, . . . ,m+
√
m,m+

√
m)

leaving: (
b1, b2, . . . , b4(m+

√
m)·dlog(m+

√
m)e2 , a1, a2, . . . , a2

√
m+3m,

b′1, b
′
2, . . . , b

′
4(m+2

√
m)·dlog(m+2

√
m)e2

)

36

as the portion that can leak information. We can also remove both Batcher sorts:

(
b1, b2, . . . , b4(m+

√
m)·dlog(m+

√
m)e2

)
and: (

b′1, b
′
2, . . . , b

′
4(m+2

√
m)·dlog(m+2

√
m)e2

)
since the steps performed by the sort only depend on the number of items being

sorted and not the values being sorted, leaving us:

(
a1, a2, . . . , a2

√
m+3m

)
When we simulate one access, we scan the shelter twice. The shelter scans are

the same for each simulated access so those can be removed as well. For one

simulated access, 3
√
m + 2 accesses are made; for the ith simulated access where

k = (i − 1)(3
√
m + 2) is the number of accesses already made in this pass, the

accesses would be:

(
ak+1, ak+2, . . . , ak+

√
m, ak+

√
m+1, ak+

√
m+2, ak+

√
m+3, ak+

√
m+4, . . . , ak+3

√
m+2

)
The first

√
m accesses: (

ak+1, ak+2, . . . , ak+
√
m

)
are the first scan of the shelter and can be removed. The next two accesses:

(
ak+

√
m+1, ak+

√
m+2

)
are the read and the write to the non-shelter location and need to remain in the

access pattern for now. The final 2
√
m accesses:

(
ak+

√
m+3, ak+

√
m+4, . . . , ak+3

√
m+2

)

37

are the second scan of the shelter, where each shelter word is read and then rewrit-

ten, which we can remove. This reduces the portion of our access pattern that can

leak information to:

(
a√m+1, a√m+2, a4

√
m+3, a4

√
m+4, . . . , a(i−1)(3

√
m+2)+

√
m+1,

a(i−1)(3
√
m+2)+

√
m+2, . . . , a3m−1, a3m

)
which are the accesses to the non-shelter locations. Each non-shelter location is

accessed twice, once to read and once to write, one immediately after another.

This tells us accesses:

a(i−1)(3
√
m+2)+

√
m+1

and

a(i−1)(3
√
m+2)+

√
m+2

are the same for i = 1, . . . ,
√
m. The double access to the same location does not

add any additional information, so we can remove the second access to the same

location, a(i−1)(3
√
m+2)+

√
m+2, leaving us with:

(
a√m+1, a4

√
m+3, a7

√
m+5, . . . , a(i−1)(3

√
m+2)+

√
m+1, . . . , a3m−1

)
as the portion of the access pattern that can leak information. We know by defini-

tion of the square root solution that none of these accesses are to the same word.

We are either accessing program word ai for the first time (physical address is

π(ai)) or if this is not the first time we are accessing ai we found it in the shelter

and we are accessing a dummy location. If we are accessing a dummy location, we

know we never access the same dummy location twice because the counter count

is incremented after each simulated memory access. Because we never access the

same memory location twice, the physical accesses themselves are the only thing

38

that could leak information. However, since π(·) is a uniformly random permuta-

tion, the adversary cannot do better than guessing which word is currently stored

in that location. Therefore, the only thing that is leaked by these accesses is the

number of accesses being simulated which does not allow the adversary to learn

any additional information about the underlying access pattern of the program

being simulated.

4.2.5 Multiple Passes Do Not Add Information

Now that we know one pass does not leak information besides the number of

accesses, we need to show that multiple passes through the simulation do not add

information. For each pass a new permutation is chosen uniformly at random.

Because the new permutation is independent of the previous permutation, the

locations accessed during one pass are independent of the locations accessed in the

second pass even if the same memory locations are accessed. This means that one

pass through the simulation does not give the adversary any information about

the next pass. Therefore, the square root solution does not leak any information

besides the output, running time and amount of memory used and is thus oblivious.

4.3 Why the Shelter and Dummy Elements are Needed

The shelter and dummy elements are a key pieces of the square root solution for

providing oblivious simulation. Before getting into the details of why, we will

quickly review the security game in question (see Section 3.2.1 for the details). In

the oblivious RAM security game, the adversary is allowed to query the access

pattern oracle with two RAM inputs. The oracle runs one of the programs and

returns the access pattern. The adversary, after sending some number of queries,

then guesses which inputs were being run on the RAM. If the adversary can guess

with high probability which inputs are being used, then the adversary must be

39

learning some information from the access patterns returned by the oracle (in

this case we say that the RAM is leaking some sort of information via the access

pattern). Both the shelter and the dummy elements are required pieces of the

square root solution to prevent the access pattern from leaking any information.

The shelter is used to hide multiple accesses to the same word during one

pass. If there was not a space to put the words already accessed, the RAM would

need to re-access those words in their original location. If we accessed the same

word in the same location twice between reshuffles, it would leak information and

potentially allow the adversary to distinguish between the two RAM inputs sent

to the access pattern oracle in the ORAM game (one may access a unique location

every time, while another accesses the same location twice, giving the adversary

enough information to correctly guess which input goes with the access pattern).

The other alternative would be to start a new pass if we try to access the same

location twice during a pass. However, this would leak information too. The

adversary would see that a reshuffle of the memory was done too soon and could

distinguish between this and another RAM input that did not access the same

location twice during a pass. For these two reasons the shelter must be available

for the RAM to use.

Now, suppose we do not have the dummy elements and simply have the shelter.

The first time we access a program address during a pass, we would scan the shelter,

read/write one non-shelter address and then scan and update the shelter. If we did

not have the dummy elements, the second time we accessed a program address, we

would scan the shelter, find the location, then scan and update the shelter again

without accessing a non-shelter location. Again, this could potentially allow the

adversary to distinguish between access patterns in the ORAM security game. A

potential alternative to using dummy elements would be to read a real element

that has not been read already but this has an unacceptable overhead. This is

40

because the CPU portion of the RAM, which has a limited work tape,3 would

need to keep track of the program addresses that have been accessed so far, up to
√
m addresses at a time. Because of the limited internal state, the CPU cannot

afford to keep track of this information. The final alternative would have the RAM

randomly selected a program word, check if that word has already been accessed,

and if it has not, go ahead and access it. However, the only way for the RAM to

know if it had been accessed would be to scan the shelter. These additional scans

of the shelter would leak information to the adversary. Accesses patterns could be

distinguished based on whether or not there are extra scans of the shelter. This

leaves the
√
m dummy elements as the only acceptable option to hide multiple

accesses to the same program word in one pass.

From here, the next obvious question is why
√
m shelter and dummy locations

are used. First, it should be explained that we need to have at least as many

dummy locations as shelter locations or else the square root solution breaks down

(if we have
√
m shelter locations, less than

√
m dummy locations and we read the

same program address
√
m times in one pass we would run out of dummy elements

to access). We also do not need more dummy locations than shelter locations

because we would never access the extra locations in a single pass. The choice

of
√
m locations is a cost trade off on space. If we choose a smaller value, fewer

original accesses could be simulated in one pass and the memory would need to be

reshuffled more frequently (ifm is the number of original memory locations and n is

the number of dummy locations as well as the number of shelter locations, the total

cost of both Batcher sorts would be (m+n)·dlog2(m+n)e2+(m+2n)·dlog2(m+2n)e2

). However, if we choose a larger value, the cost of simulating a single access

increases significantly. Again, if n is the number of shelter locations it would take

3n + 2 accesses to simulate a single access and (3n + 2)n accesses to simulate an

3Recall from Section 3.1 that the CPU has a small amount of memory on its work tape while
the MEM has a much larger work tape.

41

entire pass. The choice of
√
m balances both costs to a reasonable amount.

4.4 Improvements

A simple improvement can be made that removes roughly two thirds of the accesses

per pass through the simulation. First, recall how a single access is simulated now,

with a cost of 3
√
m+ 2, ignoring the accesses for the binary searches:

• Read the shelter, looking for the program address ai (
√
m accesses)

• If i is found, read one dummy location at π(m + count), else read π(ai).

Write an updated value to that location where the program address is∞. (2

accesses)

• Scan the entire shelter, reading than writing back each word. If ai is already

in the shelter, update the existing value if needed when read. Otherwise

write to first empty location. (2
√
m accesses)

This is done
√
m times for a total of 3m+2

√
m accesses per pass. Suppose instead

we take advantage of the internal counter count (that is used to access dummy

locations). count is incremented each pass, whether or not a dummy location was

accessed. We can use count to track how far into the shelter we need to scan and

which shelter location we should write to next. We will also move the rewrite of

shelter values to the first scan of the shelter. A single access will now be simulated

as follows:

• Scan shelter locations 1 to count − 1, reading then rewriting every value,

looking for program address ai. If ai is found in the shelter, update the

program address to ∞ when rewriting the word. (2(count− 1) accesses)

• If ai was found in the shelter, read one dummy location at π(m + count)

and rewrite the same value back to that location. Otherwise, read π(ai) and

42

write an updated value to that location with a program address of ∞. (2

accesses)

• Write ai into the shelter at location m +
√
m + count (this will be the next

empty shelter location). (1 access).

With this method, one simulated access will take 2(count − 1) + 3 accesses for a

total of m+2
√
m accesses per pass through the simulation which is roughly a third

of the original cost. We simply need to show that this method does not leak any

additional information over the original square root solution.

The construction of π(·), both Batcher sorts and the binary searches are the

same in both versions, so we can eliminate those from being potential leaks in our

new version. The non-shelter accesses will also be the same in both versions so

that cannot leak any additional information as well. This leaves the scan of the

shelter and the write to the shelter as the only source of additional information

left. If we construct the access pattern for this portion, we will see a write to the

first shelter location, then a read/write to the first location and a write to the

second, and so on until we read/write the entire shelter except the last position

then write to the last position. This gives us an access pattern of:

(
m+

√
m+ 1,m+

√
m+ 1,m+

√
m+ 1,m+

√
m+ 2,m+

√
m+ 1,

m+
√
m+ 1,m+

√
m+ 2,m+

√
m+ 2,m+

√
m+ 3,m+

√
m+ 1,

m+
√
m+ 1,m+

√
m+ 2,m+

√
m+ 2,m+

√
m+ 3,m+

√
m+ 3,

m+
√
m+ 4, . . . ,m+

√
m+

√
m− 1,m+

√
m+

√
m− 1,m+

√
m+

√
m
)

This portion of the access pattern will be the same each pass through the simulation

so it cannot leak any information about the program words that are being accessed.

The only information that can be learned is how many accesses have been done so

far by looking at how far into the shelter we read and write. However, in the original

square root solution, this information can also be learned by counting the number

43

of accesses to the non-shelter locations. Therefore, no additional information is

leaked in this version of the square root solution.

44

Chapter 5

THE HIERARCHICAL SOLUTION

While the square root solution provides oblivious simulation, more efficient solu-

tions are possible. The first of these is the basic hierarchical solution [8]. In this

solution a series of increasingly larger hash tables are used. Each hash table oper-

ates much like the single buffer of the square root solution. Instead of permuting

the program memory according to a random permutation, as is done in the square

root solution, the values are stored according to a randomly selected hash function

associated with each level. When a sufficient number of accesses have been made,

a new hash function is chosen for that level and the entries stored in that level are

rehashed. For the smaller hash tables, this will occur more frequently, while for

the larger hash tables it will occur infrequently.

Accessing values in this solution is similar in some respects to the square root

solution as well. The highest level hash table (and thus the smallest), is scanned

completely each time like the shelter is scanned in the square root solution. For

each subsequent hash table, one bucket is accessed. If the program address in

question has not been found yet, the RAM will use the hash function for the

level to determine which bucket to scan, otherwise the RAM will choose a random

bucket. Once a bucket has been scanned in each hash table, the entry for the

program address is written into the highest level hash table.

45

5.1 Overview

The hierarchical solution is divided into three pieces: how the RAM’s memory is

structured, how program memory is accessed and rehashing of individual levels.

We will cover each of these in turn, building up the solution as we go.

5.1.1 Memory Layout

In the square root solution (Chapter 4), a simple table structure is used for the

memory. The table is large enough to contain the original program data plus

dummy and shelter words used to hide accesses to the same location between

shuffles of the memory. The hierarchical model generalizes this structure (see

Figure 5.1). Instead of a single table, a series of hash tables are used. Say a

program has been running on the RAM for t steps (initially t is the length of the

input to the RAM) so far, then each hash table consists of buckets of depth in the

order of O(log t). The hash tables increase rapidly in size as you move from higher

to lower levels; specifically, the hash table at level i contains 4i buckets. As we

will see, the choice of 4i for the number of buckets, combined with how often each

level is rehashed, minimizes the chance of bucket overflows during the simulation.

Each hash table is associated with a specific hash function chosen from the set:

hsi(a) = RO(si · a) (mod 4i) (5.1)

where RO(·) is the random oracle given to the RAM for this simulation and si ∈ N.

si is referred to as the hash function index and specifies which function should be

used. Each hash table is associated with a hash function index which is chosen

uniformly at random for each table.

46

Level N

Hash Index sN

4N Buckets

Level i

Hash Index si

4i Buckets

Level 2

Hash Index s2

16 Buckets

Level 1

Hash Index s1

4 Buckets

Figure 5.1: Memory Layout

5.1.2 Accessing Program Memory

The access algorithm for the hierarchical model is a generalization of the access

algorithm of the square root solution (Section 4.1). When the RAM needs to access

program memory location a, it starts by looking at the highest hash table (level

one). At level one, the entire hash table is scanned entry by entry. If a exists at

this level, the RAM remembers the value and continues scanning the rest of the

memory. For the remaining hash tables, the RAM scans the hash table at level

i as follows. First, the RAM computes the hash value of a at that level, hsi(a).

Then it chooses a random bucket in the hash table, which we will denote as j

(j $← [4i]). If a has already been found at a higher level, the RAM scans bucket

j of the hash table. Otherwise, if a has not been found, the RAM scans bucket

hsi(a) and remembers the value if it is found. Once all of the levels have been

47

scanned, the (potentially updated) value of (a, v), where v is value associated with

program address a, is written to the first empty bucket in level one.

Most of these steps are directly comparable to the square root solution. Suppose

that during a simulated access in the hierarchical solution, we found the program

address we were looking for in level n. Let us compare the accesses made in this

solution to the square root solution. We begin by scanning the entire hash table in

level one much like we scan the entire shelter. Then, for 2 ≤ i ≤ n, we scan bucket

hsi(a) for level i. These accesses are equivalent to the single access to π(a) in the

square root solution when we did not find the program address in the shelter. In

the hierarchical model, for the accesses to the remaining levels below n, we choose

a bucket at random to scan since we have already found the address in question,

which is a similar idea to reading one of the dummy elements when we find the

address in the shelter in the square root solution.

5.1.3 Rehashing a Level

Rehashing each level at regular intervals is key to providing oblivious simulation.

If we find program memory location a in level i twice, we want the buckets we

scan to be independent of each other, otherwise accessing the same bucket could

leak information about the access pattern. The need for rehashing in this solution

is the same reason we choose a new permutation in each pass of the square root

solution. One could think of the time between the rehashing of a level as a single

pass through the square root solution and choosing a new hash function for the

level would be equivalent to choosing a new permutation for the next pass. Each

time a specific program word is in a level, we want the location to be independent

or else the adversary in the oblivious RAM game may be able to detect a difference

between different inputs to the RAM.

Recall that when accessing program word a, when we find location a in level

i, we move the value to the hash table at the top of the structure. When it comes

48

time to move it and the other contents of the highest level hash table into the

second level, we begin the rehash by choosing a new hash function for the second

level. For each rehashing of the contents of level j into level j + 1, we continue to

choose a new hash function uniformly at random for level j + 1. Before we can

move program word a back into level i, we choose a new hash function for level i

like we did all the other levels. Since the hash functions are chosen uniformly at

random, the new bucket location for a is independent of the previous bucket we

found it in (see Section 5.2.1 for further details).

As originally proposed by Ostrovsky, for some level i, every 4i−1 accesses we

move all of the contents of level i into level i + 1 and choose a new hash function

for level i + 1 [8]. Because the smaller levels have a lower cost associated with

rehashing all of the values with the new hash function, these tables are rehashed

more frequently. The larger levels are rehashed infrequently because the cost is

much higher. By rehashing every 4i−1 accesses, we reduce the possibility of a

bucket overflow in level i. However, this hashing needs to be done in an oblivious

manner that prevents the RAM from leaking information. We will describe the

oblivious hash algorithm in Section 5.2.2.

5.2 Proof

Proving that the hierarchical model provides oblivious simulation is best done in

pieces. First we will show that the access pattern for one of the hash table levels

does not leak any information between rehashings. We can consider the accesses to

a single level between rehashings to be equivalent to the accesses to the non-shelter

locations in a single pass of the square root solution. If the accesses to the level

appear to be accessing a randomly selected bucket to an outside observer, then no

information is leaked by these accesses by themselves.

Once we know that the accesses to a single level are oblivious between re-

hashings, we will show that the accesses made by the RAM during rehashing are

49

oblivious. If the rehashing steps are not oblivious, they could leak information

about the contents of the two levels in question, which does not meet the standard

of oblivious simulation. The rehashing steps need to be independent of the contents

currently stored in the two levels to prevent the adversary in the oblivious RAM

game (see Section 3.2.1) from learning any information. This step is somewhat

similar to the steps for choosing a new permutation in the square root solution.

Now that we know the accesses made to a level between rehashings and the

rehashing steps, we need to show that looking at a level across multiple rehashings

does not leak any information. Even though the accesses between rehashings do

not leak information, it is possible that looking at the accesses across multiple

rehashings could shed some additional information. In order to provide oblivi-

ous simulation, the hierarchical solution has to prevent this from happening. In

the square root solution, to show that multiple passes do no leak information,

we showed that the permutation selected for each pass was chosen uniformly at

random. For this solution, we will do something very similar; we will show that

the hash function chosen for a level is independent of all the other hash functions

selected.

Put together, these three pieces provide oblivious simulation. We know that

the accesses made between rehashings do not leak information, nor do the steps

during rehashing. Additionally, the accesses made to a level before a rehashing do

not leak any information about the accesses made afterward. Given these facts,

the adversary will not be able to gain enough information to distinguish which

world it is in with high probability.

5.2.1 A Level’s Access Pattern Does Not Leak Information Between

Rehashings

When we look at the hash table at level i in the hierarchical model, we will see 4i−2

accesses to that level between rehashings (recall that level i−1 is rehashed into level

50

i every 4i−2 accesses in the original program and we choose a new hash function

for level i at this time). Recall from Section 5.1.2 that the locations accessed are

determined either by the hashed value of the program memory location, or a bucket

chosen at random if the word has already been found. We need to show that all

of the accesses appear to be uniformly random.

If we have already found the program word, we choose a bucket to scan uni-

formly at random. Since these accesses are chosen at random, they will look like

random accesses to the outside observer, so we can eliminate these accesses as a

potential source for leaking information. This leaves the accesses that are deter-

mined by the hash function for the level and we will want them to look uniformly

random too. We know that the RAM will look for program memory word a at most

once at level i between rehashings (Section 5.1.3) so hsi(a) is used to determine

which bucket to look at once at the most. This means we do not have to worry

about querying the hash function on the same input twice. What remains to be

shown, is that the outputs look uniformly random.

Recall from Section 5.1.1 that the hash function is constructed as follows:

hsi(a) = RO(si · a) (mod 4i)

where RO(·) is the random oracle given to the RAM for this simulation and si ∈ N.

The random oracle RO(·) is equally likely to map to any value in its range on some

input. This means that for some input x, RO(x) (mod 4i) is equally likely to map

to any value in Z4i . Since each output is equally likely, the output we actually

see looks like it was chosen uniformly at random. Therefore, the output of hsi(a)

looks uniformly random as well.

Between rehashings, each access looks like a bucket was chosen at random,

regardless of whether we chose a bucket at random or used the hash function to

select on. Since the accesses look random, they cannot leak any information in the

51

oblivious RAM security game (see Section 3.2.1).

5.2.2 Rehashing is Oblivious

When one level is rehashed into the next larger level, the hashing needs to be

done in a way that does not leak any information about the words being hashed,

including how many real entries there are at this level. This is referred to as an

oblivious hash and is a key piece of the hierarchical model.

Oblivious Hash Algorithm

When we rehash in the hierarchical model, we have the smaller hash table, which

we will refer to as hash table A, which has n buckets of size m (if table A is at level

i, n = 4i and m is of the order O(log t) where t is the running time so far), and the

larger hash table, hash table B, which has 4n buckets of size m. When we rehash

level A into level B, a new hash function is chosen and associated with hash table

B. We will refer to this new hash function as h′(·). To begin the oblivious hash,

we start by allocating a new hash table, which we will call C, with 5n buckets.

The n buckets of hash table A are copied into the first n buckets of table C while

the 4n buckets of hash table B are copied into the last 4n buckets (see Figure 5.2).

Once the buckets are copied, we scan every word in C. The non-empty words,

(a, v), are tagged with the new hash value determined by h′(·), (h′(a), a, v). In

order to make sure that every bucket of B contains at least one value when we

rehash (we will see why later), we will use the first 4n empty entries we find and

tag an empty entry with one of the bucket numbers (1 to 4n). We know that there

will be at least 4n empty entries since we rehash every 4i−2 accesses and A has 4im

slots available (4i buckets, each of size m). Hash table A will be at most a quarter

full, ensuring that we have at least 4n empty entries. The remaining empty words

found in the hash table are tagged with a value of zero (see Figure 5.3).

Once all of the hash table entries have been tagged, we sort the hash table on

52

Hash Table C
(6,
1)

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(2,
7)

∅

(3,
4)

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Hash Table B
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(2,
7)

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(6,
1)

∅

∅

∅

Hash Table A

(3,
4)

∅

∅

∅

∅

∅

∅

∅

Figure 5.2: Example: Initial State of Hash Tables A, B and C

Hash Table C

(14,
3, 4)

(1,
d, d)

(2,
d, d)

(3,
d, d)

(4,
d, d)

(5,
d, d)

(6,
d, d)

(7,
d, d)

(8,
d, d)

(9,
d, d)

(10,
d, d)

(11,
d, d)

(12,
d, d)

(13,
d, d)

(14,
d, d)

(15,
d, d)

(16,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(7,
6, 1)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(1,
2, 7)

(0,
d, d)

Figure 5.3: Example: Tagging the Entries in C with h′(·)

a entry-by-entry basis (see Figure 5.4), treating the hash table as one large array

instead of a hash table (instead of putting each entry into a bucket as determined

by the hash function, we view the hash table as one large traditional array and

apply the sorting algorithm to each individual entry in that array). The empty

53

words, tagged with a value of zero, will be in the front of the “array” (the entries in

the buckets at the start of the hash table), while the empty elements tagged with

bucket numbers and the non-empty words will be in the end of the “array” (the

last buckets of the hash table). Any sorting algorithm will do, as long as it makes

deterministic steps that are chosen by the number of items being sorted, such as

the Batcher sort used in the square root solution (Section 2.5).

Hash Table C

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(0,
d, d)

(1,
2, 7)

(1,
d, d)

(2,
d, d)

(3,
d, d)

(4,
d, d)

(5,
d, d)

(6,
d, d)

(7,
d, d)

(7,
6, 1)

(8,
d, d)

(9,
d, d)

(10,
d, d)

(11,
d, d)

(12,
d, d)

(13,
d, d)

(14,
d, d)

(14,
3, 4)

(15,
d, d)

(16,
d, d)

Figure 5.4: Example: Sorting the Entries in C by Tag

Next, a new hash table, which we will refer to as C ′, is created and contains

5mn buckets. Each word in C is copied in order to the top-most word in the first

empty bucket of C ′ (see Figure 5.5). The words that are copied from C will be

tagged with the values we specified before, while the rest of the entries in C ′ will

be empty entries with no tags.

C ′ is scanned, left to right, as we obliviously sort the words of every two adjacent

buckets. To obliviously sort the buckets, first we scan the non-empty elements of

each bucket. If the tags of the elements are different, we perform the steps of the

oblivious sort without moving any elements. We will not need to actually move the

entries because each bucket consists of entries with a unique tag and the entries

are already in sorted order because of how we copied them from C to C ′.

If the buckets have the same tag, the oblivious sort is performed as follows to

accumulate the empty entries in the first bucket and the non-empty entries (which

all have the same tag) in the second bucket. If a word is empty (i.e. it was not one

54

Hash Table C ′

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(1,
2, 7)

∅

(1,
d, d)

∅

(2,
d, d)

∅

(3,
d, d)

∅

(4,
d, d)

∅

(5,
d, d)

∅

(6,
d, d)

∅

(7,
d, d)

∅

(7,
6, 1)

∅

(8,
d, d)

∅

(9,
d, d)

∅

(10,
d, d)

∅

(11,
d, d)

∅

(12,
d, d)

∅

(13,
d, d)

∅

(14,
d, d)

∅

(14,
3, 4)

∅

(15,
d, d)

∅

(16,
d, d)

∅

Figure 5.5: Example: The Entries Moved From C to C ′

Hash Table C ′

∅

∅

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

(0,
d, d)

(0,
d, d)

∅

∅

(1,
2, 7)

(1,
d, d)

(2,
d, d)

∅

(3,
d, d)

∅

(4,
d, d)

∅

(5,
d, d)

∅

(6,
d, d)

∅

∅

∅

(7,
d, d)

(7,
6, 1)

(8,
d, d)

∅

(9,
d, d)

∅

(10,
d, d)

∅

(11,
d, d)

∅

(12,
d, d)

∅

(13,
d, d)

∅

∅

∅

(14,
d, d)

(14,
3, 4)

(15,
d, d)

∅

(16,
d, d)

∅

Figure 5.6: Example: Sorting the Entries in Adjacent Buckets in C ′

of the words we copied in from C), we treat it as if it was tagged with a value of

zero. If the word is non-empty (i.e. we copied it from C), we treat it as if it was

55

tagged with a value of one. We are using these fake tags for this step since the

empty entries do not have a tag. The oblivious sort using these fake tags is done

using a deterministic sorting algorithm such as the Batcher sort (Section 2.5).

Once we have sorted all of the adjacent buckets, all of the entries with the

same tag will be in one bucket together (see Figure 5.6). All of the buckets with

non-empty entries will be in sorted order by tag, potentially with empty buckets

between them.

Next, we obliviously sort C ′ by buckets (see Figure 5.7). Empty buckets are

treated as being tagged with -1, moving them to the front of the hash table. The

non-empty buckets will be in the last 4n positions (we know there will be 4n since

we tagged empty elements with each of the bucket numbers).

Hash Table C ′

∅

∅

∅

∅

∅

∅

∅

∅

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

∅

(0,
d, d)

(0,
d, d)

(0,
d, d)

(1,
2, 7)

(1,
d, d)

(2,
d, d)

∅

(3,
d, d)

∅

(4,
d, d)

∅

(5,
d, d)

∅

(6,
d, d)

∅

(7,
d, d)

(7,
6, 1)

(8,
d, d)

∅

(9,
d, d)

∅

(10,
d, d)

∅

(11,
d, d)

∅

(12,
d, d)

∅

(13,
d, d)

∅

(14,
d, d)

(14,
3, 4)

(15,
d, d)

∅

(16,
d, d)

∅

Figure 5.7: Example: Sorting the Buckets in C ′

The last 4n buckets of C ′ are copied back into B (see Figure 5.8). Finally, we

scan B and eliminate the dummy entries (see Figure 5.9).

56

Hash Table B

(1,
2, 7)

(1,
d, d)

(2,
d, d)

∅

(3,
d, d)

∅

(4,
d, d)

∅

(5,
d, d)

∅

(6,
d, d)

∅

(7,
d, d)

(7,
6, 1)

(8,
d, d)

∅

(9,
d, d)

∅

(10,
d, d)

∅

(11,
d, d)

∅

(12,
d, d)

∅

(13,
d, d)

∅

(14,
d, d)

(14,
3, 4)

(15,
d, d)

∅

(16,
d, d)

∅

Figure 5.8: Example: Moving the Last 4n Buckets of C ′ into B

Hash Table B

(1,
2, 7)

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(7,
6, 1)

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(14,
3, 4)

∅

∅

∅

∅

Figure 5.9: Example: Eliminate the Dummy Entries in B

57

Constructing the Access Pattern for Oblivious Hashing

Given the more complex memory structure used in the hierarchical solution, we

will need a new message form for passing instructions from the CPU to the MEM

in the RAM. In the basic RAM model, our messages are of the form (a, i, v)

where a is the physical address the CPU wishes to access in the MEM, i is the

instruction and v is the value (see Section 3.1 for further details). Now we will

need to specify the hash table and bucket that we are interested in accessing (and

in some cases the specific physical word in the bucket): ((t, b, w) , i, v) where t is

the hash table, b is the bucket, w is the word, i is the instruction and v is the

value. It is important to remember that these messages are specifying physical

locations to access in the MEM and not the program addresses from the original

RAM during oblivious simulation. For example, if the CPU wanted to read the first

value in the fifth bucket of the hash table for the second level, the message would

be ((2, 5, 1) , read,⊥). When we construct the access pattern, the only portion of

the message that we care about is the physical address being accessed, in this case

the tuple (t, b, w) specified above.

Now that we have a message format that works for the hierarchical solution,

we can begin to construct the access pattern created by the oblivious hash. Recall

from Section 5.2.2 that we have the smaller hash table at level i, which we will

call table A, which has n = 4i buckets of size m, where m is of the order O(log t).

Additionally, we have the larger hash table B at level i + 1 which has 4n buckets

of size m. Two additional hash tables are created just for the rehash, table C

which has 5n buckets of size m and table C ′ which has 5mn buckets of size m.

The construction of the access pattern will follow the steps described in Section

5.2.2. To begin with, we need to move everything from hash tables A and B into

58

C, which generates accesses to the following physical memory locations:

((A, 1, 1) , (C, 1, 1) , (A, 1, 2) , (C, 1, 2,) , . . . , (A, n,m) , (C, n,m) , (B, 1, 1) ,

(C, n+ 1, 1) , (B, 1, 2) , (C, n+ 1, 2) , . . . , (B, 4n,m) , (C, 5n,m))

Next, we scan C and update each value with its new tag, causing these locations

to be accessed:

((C, 1, 1) , (C, 1, 1) , (C, 1, 2) , (C, 1, 2) , . . . , (C, 4n,m) , (C, 4n,m))

After updating the tags, C is sorted at the word level using a Batcher sort.

The steps taken by the Batcher sort are predictable and determined solely by the

number of words being sorted. Recall from Section 2.5 that when sorting x items,

the Batcher sort will make xdlog xe2 comparisons which will mean four times that

many accesses (reading the two words being compared and then writing them

back). For the ith comparison, we will denote the two addresses in question as

(C, bi,1, wi,1) and (C, bi,2, wi,2) where bi,1 is the bucket the first entry is in, wi,1 is

the specific word in the bucket that contains it and the same for bi,2 and wi,2 for the

second entry. In this step we are sorting 5mn words, giving us an access pattern

of:

((C, b1,1, w1,1) , (C, b1,2, w1,2) , (C, b1,1, w1,1) , (C, b1,2, w1,2) ,

(C, b2,1, w2,1) , (C, b2,2, w2,2) , (C, b2,1, w2,1) , (C, b2,2, w2,2) , . . . ,(
C, b5mndlog 5mne2,1, w5mndlog 5mne2,1

)
,
(
C, b5mndlog 5mne2,2, w5mndlog 5mne2,2

)
,(

C, b5mndlog 5mne2,1, w5mndlog 5mne2,1
)
,
(
C, b5mndlog 5mne2,2, w5mndlog 5mne2,2

))

59

Next we create the new hash table C ′ and move each word in C into the top-

most word in the first empty bucket of C ′:

((C, 1, 1) , (C ′, 1, 1) , (C, 1, 2) , (C ′, 2, 1) , (C, 1, 3) , (C ′, 3, 1) , . . . ,

(C, 5n,m) , (C ′, 5mn, 1))

The next step is more complex when it comes to constructing the access pattern.

We iterate across the buckets of C ′, obliviously sorting every two adjacent buckets.

First we will compare buckets one and two, then two and three, and so on until

we compare buckets 5mn − 1 and 5mn. Let us begin by constructing the access

pattern when we compare buckets i and i + 1. First, we will need to determine if

the entries in the buckets have different tags or the same tag (recall from Section

5.2.2 that at this point all of the entries in each bucket have the same tag or are

empty). To find the tag for bucket i, we will need to read both the first and last

word in the bucket. The non-empty tagged value will be in the first word if we did

not sort bucket i in the previous step because the tags in buckets i− 1 and i were

different (or if i is the first bucket). If we did sort the words in the previous step

because the tags were the same, the non-empty words, of which there will be at

least two, will be accumulated in the end of bucket i, in which case we will want to

read the last word in the bucket to get the tag. We will want to read both the first

and last word in bucket i each time so we do not leak any information about what

was done in the previous step. For the second bucket, we know the non-empty

word is in the first word of the bucket so we only need to read one word. This

gives us an access pattern of:

((C ′, i, 1) , (C ′, i,m) , (C ′, i+ 1, 1))

to find the tags contained in each bucket.

If the tags are the same in both buckets, we perform a Batcher sort across

60

both buckets treating the empty words as zero and the non-empty words as one to

accumulate the non-empty words in the second bucket. If the tags are different,

then we perform the same reads and writes as the Batcher sort without moving

any of the words (since the Batcher sort steps are determined only by the number

of items being sorted we know the steps in advance). We are sorting 2m words,

which gives us an access pattern of:

((
C ′, b′1,1, w

′
1,1

)
,
(
C ′, b′1,2, w

′
1,2

)
,
(
C ′, b′1,1, w

′
1,1

)
,
(
C ′, b′1,2, w

′
1,2

)
,(

C ′, b′2,1, w
′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
,
(
C ′, b′2,1, w

′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
, . . . ,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

))
Since we have 5mn buckets, and we compare every pair of adjacent buckets

working left to right, we will have to do this 5mn−1 times. Since the Batcher sort

takes predictable steps, we will be making the same relative accesses each time if

you just consider the two buckets in question. If we look at the access pattern

formed by this, we will simply be adding one to the bucket number on each pass.

61

Thus, the complete access pattern for this step will be:

(
(C ′, 1, 1) , (C ′, 1,m) , (C ′, 2, 1) ,

(
C ′, b′1,1, w

′
1,1

)
,
(
C ′, b′1,2, w

′
1,2

)
,
(
C ′, b′1,1, w

′
1,1

)
,(

C ′, b′1,2, w
′
1,2

)
,
(
C ′, b′2,1, w

′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
,
(
C ′, b′2,1, w

′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
, . . . ,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

)
, (C ′, 2, 1) ,

(C ′, 2,m) , (C ′, 3, 1) ,
(
C ′, b′1,1 + 1, w′1,1

)
,
(
C ′, b′1,2 + 1, w′1,2

)
,
(
C ′, b′1,1 + 1, w′1,1

)
,(

C ′, b′1,2 + 1, w′1,2
)
,
(
C ′, b′2,1 + 1, w′2,1

)
,
(
C ′, b′2,2 + 1, w′2,2

)
,
(
C ′, b′2,1 + 1, w′2,1

)
,(

C ′, b′2,2 + 1, w′2,2
)
, . . . ,

(
C ′, b′2mdlog 2me2,1 + 1, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 1, w′2mdlog 2me2,2

)
,
(
C ′, b′2mdlog 2me2,1 + 1, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 1, w′2mdlog 2me2,2

)
, . . . , (C ′, 5mn− 1, 1) , (C ′, 5mn− 1,m) ,

(C ′, 5mn, 1) ,
(
C ′, b′1,1 + 5mn− 2, w′1,1

)
,
(
C ′, b′1,2 + 5mn− 2, w′1,2

)
,(

C ′, b′1,1 + 5mn− 2, w′1,1
)
,
(
C ′, b′1,2 + 5mn− 2, w′1,2

)
,(

C ′, b′2,1 + 5mn− 2, w′2,1
)
,
(
C ′, b′2,2 + 5mn− 2, w′2,2

)
,
(
C ′, b′2,1 + 5mn− 2, w′2,1

)
,(

C ′, b′2,2 + 5mn− 2, w′2,2
)
, . . . ,

(
C ′, b′2mdlog 2me2,1 + 5mn− 2, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 5mn− 2, w′2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1 + 5mn− 2, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 5mn− 2, w′2mdlog 2me2,2

))
Now C ′ is obliviously sorted by bucket, treating empty buckets as if they were

tagged with −1 and non-empty buckets as the tag value that is on the words in

the bucket. Once again, this will be done with a Batcher sort which in this case

will take 5mndlog 5mne2 comparisons. For each comparison, we will need to read

every word in both buckets and then write back all of the words in each bucket

according to the Batcher sort. For the ith comparison, this will give us an access

62

pattern of:

((
C ′, b′′i,1, 1

)
,
(
C ′, b′′i,1, 2

)
, . . . ,

(
C ′, b′′i,1,m

)
,
(
C ′, b′′i,2, 1

)
,
(
C ′, b′′i,2, 2

)
, . . . ,(

C ′, b′′i,2,m
)
,
(
C ′, b′′i,1, 1

)
,
(
C ′, b′′i,1, 2

)
, . . . ,

(
C ′, b′′i,1,m

)
,
(
C ′, b′′i,2, 1

)
,(

C ′, b′′i,2, 2
)
, . . . ,

(
C ′, b′′i,2,m

))
For the entire bucket-wise Batcher sort we will have an access pattern of:

((
C ′, b′′1,1, 1

)
,
(
C ′, b′′1,1, 2

)
, . . . ,

(
C ′, b′′1,1,m

)
,
(
C ′, b′′1,2, 1

)
,
(
C ′, b′′1,2, 2

)
, . . . ,(

C ′, b′′1,2,m
)
,
(
C ′, b′′1,1, 1

)
,
(
C ′, b′′1,1, 2

)
, . . . ,

(
C ′, b′′1,1,m

)
,
(
C ′, b′′1,2, 1

)
,
(
C ′, b′′1,2, 2

)
,

. . . ,
(
C ′, b′′1,2,m

)
,
(
C ′, b′′2,1, 1

)
,
(
C ′, b′′2,1, 2

)
, . . . ,

(
C ′, b′′2,1,m

)
,
(
C ′, b′′2,2, 1

)
,(

C ′, b′′2,2, 2
)
, . . . ,

(
C ′, b′′2,2,m

)
,
(
C ′, b′′2,1, 1

)
,
(
C ′, b′′2,1, 2

)
, . . . ,

(
C ′, b′′2,1,m

)
,(

C ′, b′′2,2, 1
)
,
(
C ′, b′′2,2, 2

)
, . . . ,

(
C ′, b′′2,2,m

)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1, 1

)
,(

C ′, b′′5mndlog 5mne2,1, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1,m

)
,
(
C ′, b′′5mndlog 5mne2,2, 1

)
,(

C ′, b′′5mndlog 5mne2,2, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,2,m

)
,
(
C ′, b′′5mndlog 5mne2,1, 1

)
,(

C ′, b′′5mndlog 5mne2,1, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1,m

)
,
(
C ′, b′′5mndlog 5mne2,2, 1

)
,(

C ′, b′′5mndlog 5mne2,2, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,2,m

))
Finally, we will need to copy the last 4n buckets of C ′ (where the non-empty

buckets accumulated) into B:

((C ′, 5mn− 4n+ 1, 1) , (B, 1, 1) , (C ′, 5mn− 4n+ 1, 2) , (B, 1, 2) , . . . ,

(C ′, 5mn− 4n+ 1,m) , (B, 1,m) , (C ′, 5mn− 4n+ 2, 1) , (B, 2, 1) ,

(C ′, 5mn− 4n+ 2, 2) , (B, 2, 2) , . . . , (C ′, 5mn− 4n+ 2,m) , (B, 2,m) , . . . ,

(C ′, 5mn, 1) , (B, 4n, 1) , (C ′, 5mn, 2) , (B, 4n, 2) , . . . , (C ′, 5mn,m) , (B, 4n,m))

63

and eliminate any dummy entries:

((B, 1, 1) , (B, 1, 1) , (B, 1, 2) , (B, 1, 2) , . . . , (B, 1,m) , (B, 1,m) ,

(B, 2, 1) , (B, 2, 1) , (B, 2, 2) , (B, 2, 2) , . . . , (B, 2,m) , (B, 2,m) , . . .

(B, 4n, 1) , (B, 4n, 1) , (B, 4n, 2) , (B, 4n, 2) , . . . , (B, 4n,m) , (B, 4n,m))

This gives us a complete access pattern of:

((A, 1, 1) , (C, 1, 1) , (A, 1, 2) , (C, 1, 2,) , . . . , (A, n,m) , (C, n,m) , (B, 1, 1) ,

(C, n+ 1, 1) , (B, 1, 2) , (C, n+ 1, 2) , . . . , (B, 4n,m) , (C, 5n,m) , (C, 1, 1) ,

(C, 1, 1) , (C, 1, 2) , (C, 1, 2) , . . . , (C, 4n,m) , (C, 4n,m) , (C, b1,1, w1,1) ,

(C, b1,2, w1,2) , (C, b1,1, w1,1) , (C, b1,2, w1,2) , (C, b2,1, w2,1) , (C, b2,2, w2,2) ,

(C, b2,1, w2,1) , (C, b2,2, w2,2) , . . . ,
(
C, b5mndlog 5mne2,1, w5mndlog 5mne2,1

)
,(

C, b5mndlog 5mne2,2, w5mndlog 5mne2,2
)
,
(
C, b5mndlog 5mne2,1, w5mndlog 5mne2,1

)
,(

C, b5mndlog 5mne2,2, w5mndlog 5mne2,2
)
, (C, 1, 1) , (C ′, 1, 1) , (C, 1, 2) , (C ′, 2, 1) ,

(C, 1, 3) , (C ′, 3, 1) , . . . , (C, 5n,m) , (C ′, 5mn, 1) , (C ′, 1, 1) , (C ′, 1,m) ,

(C ′, 2, 1) ,
(
C ′, b′1,1, w

′
1,1

)
,
(
C ′, b′1,2, w

′
1,2

)
,
(
C ′, b′1,1, w

′
1,1

)
,
(
C ′, b′1,2, w

′
1,2

)
,(

C ′, b′2,1, w
′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
,
(
C ′, b′2,1, w

′
2,1

)
,
(
C ′, b′2,2, w

′
2,2

)
, . . . ,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1, w
′
2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2, w

′
2mdlog 2me2,2

)
,

(C ′, 2, 1) , (C ′, 2,m) , (C ′, 3, 1) ,
(
C ′, b′1,1 + 1, w′1,1

)
,
(
C ′, b′1,2 + 1, w′1,2

)
,(

C ′, b′1,1 + 1, w′1,1
)
,
(
C ′, b′1,2 + 1, w′1,2

)
,
(
C ′, b′2,1 + 1, w′2,1

)
,(

C ′, b′2,2 + 1, w′2,2
)
,
(
C ′, b′2,1 + 1, w′2,1

)
,
(
C ′, b′2,2 + 1, w′2,2

)
, . . . ,(

C ′, b′2mdlog 2me2,1 + 1, w′2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2 + 1, w′2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1 + 1, w′2mdlog 2me2,1

)
,
(
C ′, b′2mdlog 2me2,2 + 1, w′2mdlog 2me2,2

)
,

. . . , (C ′, 5mn− 1, 1) , (C ′, 5mn− 1,m) , (C ′, 5mn, 1) ,

64

(
C ′, b′1,1 + 5mn− 2, w′1,1

)
,
(
C ′, b′1,2 + 5mn− 2, w′1,2

)
,(

C ′, b′1,1 + 5mn− 2, w′1,1
)
,
(
C ′, b′1,2 + 5mn− 2, w′1,2

)
,(

C ′, b′2,1 + 5mn− 2, w′2,1
)
,
(
C ′, b′2,2 + 5mn− 2, w′2,2

)
,(

C ′, b′2,1 + 5mn− 2, w′2,1
)
,
(
C ′, b′2,2 + 5mn− 2, w′2,2

)
, . . . ,(

C ′, b′2mdlog 2me2,1 + 5mn− 2, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 5mn− 2, w′2mdlog 2me2,2

)
,(

C ′, b′2mdlog 2me2,1 + 5mn− 2, w′2mdlog 2me2,1

)
,(

C ′, b′2mdlog 2me2,2 + 5mn− 2, w′2mdlog 2me2,2

)
,(

C ′, b′′1,1, 1
)
,
(
C ′, b′′1,1, 2

)
, . . . ,

(
C ′, b′′1,1,m

)
,
(
C ′, b′′1,2, 1

)
,
(
C ′, b′′1,2, 2

)
, . . . ,(

C ′, b′′1,2,m
)
,
(
C ′, b′′1,1, 1

)
,
(
C ′, b′′1,1, 2

)
, . . . ,

(
C ′, b′′1,1,m

)
,
(
C ′, b′′1,2, 1

)
,
(
C ′, b′′1,2, 2

)
,

. . . ,
(
C ′, b′′1,2,m

)
,
(
C ′, b′′2,1, 1

)
,
(
C ′, b′′2,1, 2

)
, . . . ,

(
C ′, b′′2,1,m

)
,
(
C ′, b′′2,2, 1

)
,(

C ′, b′′2,2, 2
)
, . . . ,

(
C ′, b′′2,2,m

)
,
(
C ′, b′′2,1, 1

)
,
(
C ′, b′′2,1, 2

)
, . . . ,

(
C ′, b′′2,1,m

)
,(

C ′, b′′2,2, 1
)
,
(
C ′, b′′2,2, 2

)
, . . . ,

(
C ′, b′′2,2,m

)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1, 1

)
,(

C ′, b′′5mndlog 5mne2,1, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1,m

)
,
(
C ′, b′′5mndlog 5mne2,2, 1

)
,(

C ′, b′′5mndlog 5mne2,2, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,2,m

)
,
(
C ′, b′′5mndlog 5mne2,1, 1

)
,(

C ′, b′′5mndlog 5mne2,1, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,1,m

)
,
(
C ′, b′′5mndlog 5mne2,2, 1

)
,(

C ′, b′′5mndlog 5mne2,2, 2
)
, . . . ,

(
C ′, b′′5mndlog 5mne2,2,m

)
, (C ′, 5mn− 4n+ 1, 1) ,

(B, 1, 1) , (C ′, 5mn− 4n+ 1, 2) , (B, 1, 2) , . . . , (C ′, 5mn− 4n+ 1,m) , (B, 1,m) ,

(C ′, 5mn− 4n+ 2, 1) , (B, 2, 1) , (C ′, 5mn− 4n+ 2, 2) , (B, 2, 2) , . . . ,

(C ′, 5mn− 4n+ 2,m) , (B, 2,m) , . . . , (C ′, 5mn, 1) , (B, 4n, 1) , (C ′, 5mn, 2) ,

(B, 4n, 2) , . . . , (C ′, 5mn,m) , (B, 4n,m) , (B, 1, 1) , (B, 1, 1) , (B, 1, 2) , (B, 1, 2) ,

. . . , (B, 1,m) , (B, 1,m) , (B, 2, 1) , (B, 2, 1) , (B, 2, 2) , (B, 2, 2) , . . . , (B, 2,m) ,

(B, 2,m) , . . . , (B, 4n, 1) , (B, 4n, 1) , (B, 4n, 2) , (B, 4n, 2) , . . . ,

(B, 4n,m) , (B, 4n,m))

65

The Access Pattern Does Not Leak Information

Now that we have constructed the access pattern, let us reduce it to the portion

that can leak information. To begin with, we know we can remove all of the

Batcher sorts since the steps made during the Batcher sort are determined only by

the number of items being sorted (Section 2.5). We can remove the sort of C at

the word level, the 5mn− 1 Batcher sorts of adjacent buckets in C ′ and the final

sort of C ′ by buckets, leaving us with an access pattern of:

((A, 1, 1) , (C, 1, 1) , (A, 1, 2) , (C, 1, 2,) , . . . , (A, n,m) , (C, n,m) , (B, 1, 1) ,

(C, n+ 1, 1) , (B, 1, 2) , (C, n+ 1, 2) , . . . , (B, 4n,m) , (C, 5n,m) , (C, 1, 1) ,

(C, 1, 1) , (C, 1, 2) , (C, 1, 2) , . . . , (C, 4n,m) , (C, 4n,m) , (C, 1, 1) , (C ′, 1, 1) ,

(C, 1, 2) , (C ′, 2, 1) , (C, 1, 3) , (C ′, 3, 1) , . . . , (C, 5n,m) , (C ′, 5mn, 1) , (C ′, 1, 1) ,

(C ′, 1,m) , (C ′, 2, 1) , (C ′, 2, 1) , (C ′, 2,m) , (C ′, 3, 1) , . . . , (C ′, 5mn− 1, 1) ,

(C ′, 5mn− 1,m) , (C ′, 5mn, 1) , (C ′, 5mn− 4n+ 1, 1) , (B, 1, 1) ,

(C ′, 5mn− 4n+ 1, 2) , (B, 1, 2) , . . . , (C ′, 5mn− 4n+ 1,m) , (B, 1,m) ,

(C ′, 5mn− 4n+ 2, 1) , (B, 2, 1) , (C ′, 5mn− 4n+ 2, 2) , (B, 2, 2) , . . . ,

(C ′, 5mn− 4n+ 2,m) , (B, 2,m) , . . . , (C ′, 5mn, 1) , (B, 4n, 1) , (C ′, 5mn, 2) ,

(B, 4n, 2) , . . . , (C ′, 5mn,m) , (B, 4n,m) , (B, 1, 1) , (B, 1, 1) , (B, 1, 2) ,

(B, 1, 2) , . . . , (B, 1,m) , (B, 1,m) , (B, 2, 1) , (B, 2, 1) , (B, 2, 2) ,

(B, 2, 2) , . . . , (B, 2,m) , (B, 2,m) , . . . , (B, 4n, 1) , (B, 4n, 1) ,

(B, 4n, 2) , (B, 4n, 2) , . . . , (B, 4n,m) , (B, 4n,m))

We also know that the steps for copying between tables will be the same each time.

This means we can remove the accesses for copying tables A and B to C, copying

66

C to C ′ and copying the last 4n buckets from C ′ to B, leaving us with:

((C, 1, 1) , (C, 1, 1) , (C, 1, 2) , (C, 1, 2) , . . . , (C, 4n,m) , (C, 4n,m) , (C ′, 1, 1) ,

(C ′, 1,m) , (C ′, 2, 1) , (C ′, 2, 1) , (C ′, 2,m) , (C ′, 3, 1) , . . . , (C ′, 5mn− 1, 1) ,

(C ′, 5mn− 1,m) , (C ′, 5mn, 1) , (B, 1, 1) , (B, 1, 1) , (B, 1, 2) , (B, 1, 2) , . . . ,

(B, 1,m) , (B, 1,m) , (B, 2, 1) , (B, 2, 1) , (B, 2, 2) , (B, 2, 2) , . . . , (B, 2,m) ,

(B, 2,m) , . . . , (B, 4n, 1) , (B, 4n, 1) , (B, 4n, 2) , (B, 4n, 2) , . . . ,

(B, 4n,m) , (B, 4n,m))

The accesses when we update each word in C with its tag created by h′ will be

the same each time as well, reading and then writing back every word in the table.

Since the accesses are the same each time, it is not possible for them to leak

information, leaving us with:

((C ′, 1, 1) , (C ′, 1,m) , (C ′, 2, 1) , (C ′, 2, 1) , (C ′, 2,m) , (C ′, 3, 1) , . . . ,

(C ′, 5mn− 1, 1) , (C ′, 5mn− 1,m) , (C ′, 5mn, 1) , (B, 1, 1) , (B, 1, 1) , (B, 1, 2) ,

(B, 1, 2) , . . . , (B, 1,m) , (B, 1,m) , (B, 2, 1) , (B, 2, 1) , (B, 2, 2) , (B, 2, 2) , . . . ,

(B, 2,m) , (B, 2,m) , . . . , (B, 4n, 1) , (B, 4n, 1) , (B, 4n, 2) ,

(B, 4n, 2) , . . . , (B, 4n,m) , (B, 4n,m))

We already removed the accesses from the Batcher sorts of C ′ when we compared

adjacent buckets, but we still have the accesses remaining from when we looked

at the buckets to determine their tags, which for the ith pair of buckets would be:

((C ′, i, 1) , (C ′, i,m) , (C ′, i+ 1, 1)). These accesses will also be the same each time,

preventing them from leaking any information. This leaves the following as the

67

portion of the access pattern that can leak information:

((B, 1, 1) , (B, 1, 1) , (B, 1, 2) , (B, 1, 2) , . . . , (B, 1,m) , (B, 1,m) , (B, 2, 1) ,

(B, 2, 1) , (B, 2, 2) , (B, 2, 2) , . . . , (B, 2,m) , (B, 2,m) , . . . , (B, 4n, 1) ,

(B, 4n, 1) , (B, 4n, 2) , (B, 4n, 2) , . . . , (B, 4n,m) , (B, 4n,m))

This remaining portion of the access pattern is from the scan of B to remove the

dummy entries at the end of the oblivious sort. Again, these steps are exactly the

same each time: reading and then writing back each word in the table. Because

these steps are the same each time, they cannot leak any information as well,

leaving us with no accesses that can leak information. Therefore, this algorithm

provides oblivious rehashing of the tables.

5.2.3 Hashes are Independent

It remains to be shown that when we rehash a level, the new hash function we

select is independent of the previous hash functions. In the hierarchical model,

level i has a hash function index si associated with the level. The hash function

created by this index is defined as:

hsi(a) = RO(si · a) (mod 4i) (5.2)

where RO(·) is the oracle given to the RAM. Each time level i is rehashed, a

new value for si is chosen uniformly at random. Since si is chosen uniformly at

random each time, the hash function hsi is independent of all of the previous

hash functions selected for this level, giving us oblivious simulation by using the

hierarchical model.

68

5.3 Analysis

There is one key assumption in the hierarchical solution: at no point is there a

bucket overflow in any of the hash tables. With the exception of the hash table

at level one, the only time one of the lower hash tables has data written to it is

during the rehashing of the tables. If a bucket overflows during this step, it will

happen during the pass over C ′ when the adjacent buckets are sorted. In this case,

words tagged with the same value will end up in both buckets. The algorithm, as

written, does not detect this case, however it could be easily modified to do so. At

the end of the rehashing, we scan B to remove the dummy entries. During this

scan we could check for overflows. If an overflow has occurred, we would need to

choose a new hash function and perform the rehash again or abort the simulation.

As pointed out by Kushilevitz et. al., this has the potential to leak information

[7]. Since then, a number of solutions have been proposed that reduce the risk of

a bucket overflow and improve efficiency, which we will discuss in Chapter 6.

69

Chapter 6

VARIATIONS ON THE HIERARCHICAL SOLUTION

After the initial solutions to the oblivious RAM problem were published by Gol-

dreich and Ostrovsky [3, 8], many variations on the hierarchical solution were

proposed. The vast majority of these variations focused on making the solution

more feasible in practice. Improvements were focused along two key tracks: de-

creasing the amount of memory required compared to the original program and

making simulated accesses faster. Both of these areas could be improved by re-

moving the buckets from the hash tables, which is the main focus of the solutions

we will discuss here. The buckets were removed by adding in new features such as

Bloom filters [11] or swapping out cuckoo hash tables for the bucket hash tables

[5, 10].

6.1 Using Bloom Filters to Improve Efficiency

One of the earlier improvements to the hierarchical model was done by incorpo-

rating Bloom filters into each level [11]. Williams, Sion and Carbunar point out

that the existing oblivious RAM solutions at the time have a relatively high com-

putational overhead and can significantly slow down the execution of the program

being simulated. In response, they took the basic hierarchical solution model and

associated a Bloom filter with the hash table for each level. This allows the CPU

to securely determine, in advance, whether or not the item they are looking for is

stored at some particular level. Using the Bloom filter reduces the amortized cost

per query to O(log n log log n). Additionally, the amount of memory needed by the

70

MEM portion of the RAM is reduced as well to O(n).

The primary cost reduction comes from the elimination of buckets in the hash

table and just having a flat table of 4i elements for level i. In the original hier-

archical solution, if buckets were not used in the hash table, the adversary could

potentially learn whether or not an item was found in a particular level. Here, the

CPU uses the Bloom filter to determine whether or not the item being searched

for is at the level in question, and if it is not, looks up a dummy element at that

level instead. Like the original solution, the accesses to each level will appear ran-

dom and unique between reshuffles, but by the elimination of buckets, reduces the

number of look ups at each level from O(log n) to O(1). The rest of the simulation

of an access remains the same. The CPU starts by scanning the entire cache (level

1 in the original hierarchical solution), then scanning a unique element at each of

the subsequent levels (either dummy elements or the real element once we find the

level that it is in). Once all of the levels have been accessed, the item is inserted

at the top level, with its value updated if a write access was being simulated.

Like the original solution, the adversary will see the same pattern of accesses

each time and will not be able to distinguish them from random accesses to each

level since each item is only accessed once between reshuffles of the level. The

reshuffle for this solution is similar in nature to the original hierarchical solution,

but differs in some key ways because of the removal of buckets and the addition

of the Bloom filter. The Bloom filter, as it is stored on the server, needs to be

constructed in an oblivious manner to prevent information leakage.1

Additionally, the two levels need to be combined in a way that does not leak

information as well. Since we have removed the buckets from this solution, it is

actually easier to combine the two levels. When level i − 1 is being reshuffled

into level i, the items for both levels are moved into a temporary buffer on the

server. Once there, the items are randomly permuted using the Oblivious Scramble

1For the details of how to obliviously construct a Bloom filter, see [11].

71

Algorithm [11] and moved back into level i. The scramble is more efficient that the

oblivious sort of the original solution, requiring O(m log logm) time and O(
√
m)

private storage on the CPU, where m is the size of the level being reshuffled.

Going a step further than earlier papers, Williams, Sion and Carbunar imple-

mented their solution using Java on a computer running Redhat Fedora [11]. Their

performance analysis showed that this particular solution shows promise as a real

world application. Outside of reshuffles, most queries completed within a few hun-

dred milliseconds. For small, fast computations this overhead may be impractical,

but for larger data retrievals or data being sent across a network instead of a local

physical device, this slow down would not be catastrophic.

6.2 Improvements Using MapReduce and Cuckoo Hashing

Goodrich and Mitzenmacher proposed a variation on the hierarchical solution that

uses cuckoo hashing and the MapReduce paradigm [4]. A cuckoo hash table [9] is

actually two hash tables T1 and T2, each associated with their own hash function

h1 and h2. When an item x is inserted into the hash table, it is put into T1 at

location h1(x). If there is an item y already in that location, x is put in and y

is moved into T2 at location h2(y). If an item is already there, y is inserted in

that location and the item there is moved back into T1. This continues until the

final item is placed in an empty location and nothing needs to be bumped or the

insertion has run for too long and a failure is reported. The expected time to insert

a new item is constant and should succeed with high probability.

The MapReduce paradigm has become a popular method of parallel comput-

ing [5]. MapReduce provides a way to divide up data for parallel computations.

Goodrich and Mitzenmacher created a MapReduce algorithm for inserting items

into a cuckoo hash table [4]. This along with a new algorithm for sorting external

memory (a k-way modular mergesort) provided significant improvements to the

base hierarchical solution.

72

In this solution, the high level hash tables retain their buckets and are used the

same as the base solution but the larger hash tables become cuckoo hash tables.

Dummy elements are used as well, like the square root solution. More formally,

the highest level hash table, Hk is used as a flat array. Hash tables Hk+1 to Hl,

for some constant l are bucket hash tables and Hl+1 to HL are cuckoo hash tables.

Each begins as an empty table with 2i dummy elements at level i, indexed by the

values −1 to −2i, and a counter di initialized to zero and incremented each access.

When an access for address a is being simulated, levelHk is scanned completely.

For levels Hk+1 to Hl, if the item has not been found bucket hi(a) is scanned;

otherwise hi(−di) is scanned. For the cuckoo hash levels Hl+1 to HL, if the item

has not been found, both tables inside the cuckoo hash table are accessed (hi1(a)

in the first and hi2(a) in the second). If the item has been found, then we access

a dummy element at hi1(di) in the first table and hi2(di) in the second. Once all

of the tables have been accessed, the (potentially updated) value is inserted in the

top level table.

Like the hierarchical solution, all of the levels are rehashed at regular intervals.

Here, each level is rehashed every 2i accesses, which is slightly more frequent that

the original solution. However, since the larger levels contain less data since they

are cuckoo hash tables instead of bucket hash tables, less data is being rehashed so

the overhead is reduced. In this solution, the amortized cost per access is O(log n)

and the storage overhead is O(n).

6.3 Switching Completely to Cuckoo Hashing

As had been pointed out in previous papers, Pinkas and Reinman begin by pointing

out that the merely theoretical solutions proposed by Goldreich and Ostrovsky have

such high overheads that they are more theoretical than practical constructs [10].

Instead, they set out to design a variation that was practical enough for real world

use. Like the other variations, they based theirs on the basic hierarchical solution.

73

Instead of using hash tables with buckets, this solution uses cuckoo hash tables for

all of the levels. Unlike the previous solution (Section 6.2) which uses two hash

tables, each with their own hash function, for each level, this solution uses one flat

hash table indexed by both hash functions. In this construction, when item x is

inserted into the cuckoo hash table, it is inserted at location h1(x). If item y is

already at that location, it is moved to location h2(y). If an item is already at that

location, it is bounced out and put in the spot specified by h1 and so on, until the

chain has ended or it has run for too long.

In this solution, level i is a flat array of 4 · 2i entries which may contain up to

2i program addresses. Additionally, there may be up to 2i dummy elements in the

level. Every 2i−1 simulated accesses, the level is rehashed. Initially, each level is

empty and a counter that is incremented each simulated access is started at zero.

To simulate an access for program address a, the CPU begins incrementing the

counter and then scanning every item in the first level. For the remaining levels,

if the address has not been found yet, the CPU looks at entries hi1(a) and hi2(a)

for level i. If the address has already been found, then the CPU looks at two

dummy locations, hi1(dummy · count) and hi2(dummy · count), where count is our

counter. Once all of the levels have been accessed, the top level is rescanned and

the (potentially updated) value for a is written into this level.

While this solution may seem like an obvious improvement to the hierarchical

model by using smaller hash tables, Kushilevitz, Lu and Ostrovsky point out a

key flaw that allows an adversary to distinguish access patterns [7]. Because the

hash tables start empty in this solution and are not encrypted so the adversary can

see the empty elements, the adversary can distinguish access patterns with high

probability. Suppose that the CPU is searching for address a but has not found

it yet. When it gets to level i, it will look at locations hi1(a) and hi2(a). If a is

not stored at this level currently, there is a significant chance that both locations

it hashes to are empty. If the adversary sees an access to two empty locations,

74

it knows the program word being searched for has not been found yet (if it was

already found, we would be looking for a dummy element that exists in at least

one of those two locations). By seeing accesses to two empty locations within a

single level, the adversary could use this information to distinguish between two

different access patterns. In practice, this may not leak enough information for the

adversary to learn something useful, but it does allow the adversary to win at the

oblivious RAM security game (Section 3.2.1).

75

Chapter 7

CONCLUSION

There is a real need for oblivious simulation as we have seen; whether that be cloud

computing, physically secure hardware units or web based applications [2, 4, 8].

Since the original solutions were proposed by Ostrovsky and Goldreich [3, 8], later

work has primarily focused on variations of the hierarchical solution. Most of this

work has focused on decreasing the cost of oblivious simulation. In this paper, we

proposed a variation of the square root solution with a significantly lower overhead

for each simulated pass.

While it is important to lower the cost of oblivious simulation, the formalization

of the problem still leaves a lot to be desired. We have proposed several formal

security games using the definition of oblivious simulation proposed by Ostrovsky

and Goldreich [3, 8] but the definitions are not truly complete. Using their defi-

nition, we do not have a realistic way to determine if two inputs create an access

pattern with the same distribution. In the future, it will be extremely important

to flesh out the definition and the security games so that solutions can be formally

measured in terms of how well they provide oblivious simulation.

Despite the lack of a fully formalized problem, we predict that the notion of

oblivious simulation will become important over the years to come as malicious

entities try to find ways to learn information about encrypted data. Many com-

panies are beginning to use the Internet as a key piece of their software, opening

them up to any number of adversaries looking to get information about their pro-

gram. By using an IND-CPA secure encryption scheme and oblivious simulation,

we have shown that one can obtain a high level of protection for software. While

76

the overhead may be prohibitively high for many applications, this will be a useful

technique for sensitive applications.

77

REFERENCES

[1] Kenneth Batcher. Sorting networks and their applications. In Proceedings of

the April 30–May 2, 1968, spring joint computer conference, pages 307–314,

1968.

[2] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel

leaks in web applications: A reality today, a challenge tomorrow. In Proceed-

ings of the 31st IEEE Symposium on Security and Privacy, pages 191–206,

2010.

[3] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

oblivious rams. J. ACM, 43:431–473, May 1996.

[4] Michael Goodrich and Michael Mitzenmacher. Privacy-preserving access of

outsourced data via oblivious ram simulation. In ICALP, pages 576–587,

2011.

[5] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of compu-

tation for mapreduce. In Proceedings of the Twenty-First Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 938–948, 2010.

[6] Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-

Wesley, Upper Saddle River, NJ, 2nd edition, 1998.

[7] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-

based oblivious ram and a new balancing scheme. Cryptology ePrint Archive,

Report 2011/327, 2011.

78

[8] Rafial Ostrovsky. Software Protection and Simulation on Oblivious RAMs.

PhD thesis, MIT, 1992.

[9] Rasmus Pagh and Flemming Rodler. Cuckoo hashing. In ESA, pages 121–133,

2001.

[10] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In CRYPTO,

pages 502–519, 2010.

[11] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of

mud: practical access pattern privacy and correctness on untrusted storage.

In Proceedings of the 15th ACM conference on Computer and communications

security, pages 139–148, 2008.

79

Appendix A

SOFTWARE PROTECTION

As the software market becomes more competitive, companies are becoming more

concerned with protecting their intellectual property rights. Preventing competi-

tors from learning information about your algorithms is a key piece in protecting

your software. Ostrovsky dubbed this software protection, and it was a major

component of his dissertation [8]. If an adversary is given a compiled program

and allowed to run it, the compiler is said to provide software protection if the

adversary is only able to learn the bounds for running time and memory usage as

well as which outputs correspond to which inputs. The adversary is allowed to run

the program as many times as it wants, within a reasonable time bound, and may

potentially be able to tamper with the messages sent from the CPU to the MEM.

We are going to expand our notion of the RAM definition a bit for the concept

of software protection. Recall from Section 3.1, that RAMk = (CPUk,MEMk),

for k ∈ N, is a family of types where CPUk = ITM(k,k) and MEMk = ITM(k,2kk).

An instance of RAMk is started on some input (s, y), where s is the input for CPUk

and y is the input for MEMk. For the purposes of defining software protection,

the input to MEMk is going to be the tuple (Π, x), where Π is the program the

RAMk is going to run and x is the input to the program. Our input to RAMk is

now (s, (Π, x)).

80

A.1 Software Protection Security Game

Suppose we have some compiler C which takes as input an integer k and some

program Π and produces a pair (f,Πf) where f is a randomly selected Boolean

function (f : {0, 1}∗ → {0, 1}) and Πf is the encrypted program. Additionally,

|Πf | is of the order |Π| (|Πf | = O(|Π|)) and for some k′ = k+O(log k) there exists

an oracle RAMk′ such that for all possible programs Π, all possible functions f ,

all strings x ∈ {0, 1}∗ and all strings s ∈ {0, 1}∗, RAMk′(s, (Πf , x)) = Π(x).

We also have a specification oracle for the program Π that on an input x =

{0, 1}∗, the oracle returns (Π(x), tΠ(x), sΠ(x)), where Π(x) is the output for pro-

gram Π running on input x, tΠ(x) is the running time of the program on input x

and sΠ(x) is the amount of memory used by the program while running on input

x.

Suppose we have two adversaries, A and B. Both adversaries run in about the

same time, within some constant factor. A is given as input the compiled program

Πf and is given access to an oracle that contains RAM f
k′ . A is allowed to call

the oracle as many times as it wants with different inputs (inputs would be of the

form (s, (Πf , x))). B is given as input k′ and the order of the size of Πf , namely

O(|Π|) and has access to the specification oracle for Π, specΠ. B is allowed to

query its oracle as many times as it wants as well. After both adversaries have

finished executing, they return all of the information they were able to learn about

the program as a string (outA for A and outB for B). Suppose we have a third

adversary D, which is our adversary in the software protection security game (see

Figure A.1). In World 0, D runs adversary B (see Figure A.2), and in World 1,

D runs adversary A (see Figure A.3). D must look at the information returned

by the adversary it ran and determine which world it is in. If D is able to guess

with high probability which world that it is in, then adversary A must have been

able to learn information about the program it was running in addition to running

81

time/space bounds and input/output relationships. Either A must have been able

to learn information from the encrypted program Πf or from the access patterns

generated by watching the RAMk′ execute Πf .

b

D

World 0

BspecΠ(·)(k′, O(|Π|))

outB

World 1

ARAM
f

k′ (·,(·,·))(Πf)

outA

Figure A.1: The Software Protection Security Game

Experiment Expsp-0
C (D):

outB ← BspecΠ(·)(k′, O(|Π|))
b

$←D(outB)

return b

Figure A.2: The Software Protection Experiment in World 0

Experiment Expsp-1
C (D):

outA ← ARAMf

k′ (·,(·,·))(Πf)

b
$←D(outA)

return b

Figure A.3: The Software Protection Experiment in World 1

The advantage of the adversary D (a measure of how well it does) is defined

as the probability that it actually guesses it is in World 1 when it is in World 1

minus the probability that it guesses it is in World 1 when it is really in World 0:

Advsp
C (D) = Pr

(
Expsp-1

C (D) = 1
)
− Pr

(
Expsp-0

C (D) = 1
)

(A.1)

82

A.2 Encryption and Oblivious Simulation Give Software Protection

We will begin by reviewing the original reduction of Ostrovsky’s from software

protection to oblivious RAM simulation. This reduction uses the Boolean function

f given to the RAM by the compiler to provide encryption of the items being

stored on the MEM component. After explaining the reduction, we will redo the

formulation of the software protection game to use an IND-CPA secure encryption

scheme in place of f and redo the reduction using this new definition.

A.2.1 The Original Reduction

We will start by reviewing the reduction for an adversary who does not tamper with

the messages sent between the CPU and the MEM. Suppose we have some RAMk

which provides oblivious simulation for some universal RAMk′ . If the original

RAMk′ took time t′ to complete, RAMk runs in time t that is some polynomial

factor of t′ (t = t′ · g(t)). If such a RAMk exists, then there is a compiler C that

protects against non-tampering adversaries with an overhead bounded by O(g(t)).

Recall from our RAM model (Section 3.1) that there are three fields in the

messages sent between the CPU and the MEM: (a, i, v) where a ∈ {0, 1}k is an

address on the MEM work tape, i ∈ {read, write, halt} is an instruction and

v ∈ {0, 1}k is a value. For the compiler to provide software protection, none of

these pieces can leak information. Since we are running the compiled program

on a RAMk that provides oblivious simulation, we know by definition that the

address field cannot leak any information (otherwise the RAM would not provide

oblivious simulation). This leaves the instruction and value field. To prevent these

fields from leaking information, we modify the CPU component of our RAMk. For

the value field, we use the function f to encrypt the values being stored on the

MEM. Encryption is provided by constructing a new function f ′(·, ·) from f(·).

On inputs encount and length, f ′ returns a bit string that is length bits long and

83

uses encount as its beginning input to f (Figure A.4). The CPU keeps a counter

encount which is initialized to 0 and is incremented by the length of v after each

access. When a value is being sent to the MEM, instead of sending the original

value v, it is replaced by the tuple (v⊕ f(encount), encount). Finally, to prevent

the instruction from leaking information, for each read or write instruction execute

by the CPU, the CPU will first send a read instruction and then a write instruction.

Because the value is reencrypted each write, the adversary will not be able to tell

whether or not the CPU was interested in the read or write instruction.

f ′(encount, length):
s← f(encount)

For i = 1, . . . , length− 1

s← s||f(encount + i)

Return s

Figure A.4: Definition of f ′

By preventing all of the fields from leaking information, the only information

the adversary will be able to learn is the running time of the program on each

input, the amount of memory it uses and the output corresponding to that input.

A.2.2 Reformulation of the Software Protection Game

Let us begin by redefining how our compiler C works. In this new version, the

compiler takes as input an integer k′, a program Π and an IND-CPA secure en-

cryption scheme ES = (K, E ,D) and returns the tuple (K, EK(Π)), where K is a

key generated by K and EK(Π) is the encrypted program. For k′ in the order of

k + O(log k), there exists an oblivious RAMk′ given access to K, E , D such that

for all possible programs Π, all possible keys K, and all inputs s ∈ {0, 1}∗ and

x ∈ {0, 1}∗, RAMEK(·),DK(·)
k′ (s, (EK(Π), x)) = Π(x).

We will modify our original adversaries as follows. Adversary A is given access

to the encrypted program EK(Π) and an oracle that contains RAMEK(·),DK(·)
k′ (a

84

RAM given access to the encryption and decryption algorithms for our encryption

scheme). Adversary A can call the oracle with as many inputs as it likes (this time

the inputs would be of the form (s, (EK(Π), x))). Adversary B is given inputs k′

and |EK(Π)| and has access to the specification oracle for Π. The rest of the setup

remains the same. Both adversaries are allowed to query the oracle with inputs of

their choice and at the end of their execution must output everything they have

learned about the program. The final adversary, D, gets one of these strings and

must guess which world it is in (Figure A.5).

b

D

World 0

BspecΠ(·)(k′, |EK(Π)|)

outB

World 1

ARAM
EK (·),DK (·)

k′ (·,(·,·))(EK(Π))

outA

Figure A.5: The Modified Software Protection Security Game

Our experiments in this world are slightly redefined to account for the use of

the encryption scheme (Figures A.6, A.7).

Experiment Expsp-ind-cpa-0
C (D):

outB ← BspecΠ(·)(k′, |EK(Π)|)
b

$←D(outB)

return b

Figure A.6: The Software Protection Experiment with an IND-CPA Encryption
Scheme in World 0

85

Experiment Expsp-ind-cpa-1
C (D):

outA ← ARAM
EK (·),DK (·)
k′ (·,(·,·))(EK(Π))

b
$←D(outA)

return b

Figure A.7: The Software Protection Experiment with an IND-CPA Encryption
Scheme in World 1

The advantage of the adversary D is the same as our original definition:

Advsp−ind−cpa
C (D) = Pr

(
Expsp-ind-cpa-1

C (D) = 1
)
− Pr

(
Expsp-ind-cpa-0

C (D) = 1
)

(A.2)

A.2.3 The New Reduction

Given some compiler C and an adversary D, as described in the previous section,

where the advantage of the adversary against the compiler is bound by ε:

Advsp−ind−cpa
C (D) < ε (A.3)

Pr
(
Expsp-ind-cpa-1

C (D) = 1
)
− Pr

(
Expsp-ind-cpa-0

C (D) = 1
)

< ε (A.4)

Pr (D(outA) = 1)− Pr (D(outB) = 1) < ε (A.5)

Suppose we create a new security game (see Figure A.8) based on the original

where the adversary D is also given access to the left-right encryption oracle from

the IND-CPA security game (see Section 2.4) and the access pattern oracle from the

ORAM security game (see Section 3.2.1). Like the original games, the adversary

can query both oracles repeatedly with the inputs of its own choosing.

We can modify Equation A.3 as follows:

86

b

DEK(LR(·,·,1)),AP (RAM
EK (·),DK (·)

k′ ,LR((·,·),(·,·),1))

World 0

BspecΠ(·)(k′, |EK(Π)|)

outB

World 1

ARAM
EK (·),DK (·)

k′ (·,(·,·))(EK(Π))

outA

Figure A.8: The Modified Software Protection Security Game

Pr (D(outA) = 1)−

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outA) = 1

)
+

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outB) = 1

)
−

Pr (D(outB) = 1) < ε

(A.6)

Let us start by considering the difference between the following probabilities:

Pr (D(outA) = 1)

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outA) = 1

)
In World 1, A is given full access to the RAMEK(·),DK(·)

k′ that is running the pro-

grams. Any information that A learns by watching execution will be included in

outA. Because A already sees the access patterns, giving D the access pattern

oracle for RAMEK(·),DK(·)
k′ does not allow it to learn any additional information.

Thus, if D is able to learn any additional information, it must be from queries

to the left-right encryption oracle (for example, it could learn information about

the compiled program given to adversary A). Therefore, the difference between

these two probabilities is bounded by the advantage for some IND-CPA adversary

87

E against our encryption scheme ES:

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outA) = 1

)
−

Pr (D(outA) = 1) < Advind-cpa
SE (E)

(A.7)

Next, consider the difference between the probabilities:

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outB) = 1

)
Pr (D(outB) = 1)

In this case, giving D access to the left-right encryption oracle does not allow

it to learn any additional information because neither adversary D or B see any

encrypted information in this game. Therefore, any additional information that D

learns must come from its access to the access pattern oracle. Thus, the difference

between these two probabilities is bounded by the advantage for some ORAM

adversary F :

Pr
(
DEK(LR(·,·,1)),AP (RAM

EK (·),DK (·)
k′ ,LR((·,·),(·,·),1))(outB) = 1

)
−

Pr (D(outB) = 1) < Advoram

RAM
EK (·),DK (·)
k′

(F)
(A.8)

Thus, the software protection advantage is bounded by the combination of the

advantages of the ORAM and IND-CPA schemes used:

Advsp−ind−cpa
C (D) < Advind-cpa

SE (E) + Advoram

RAM
EK (·),DK (·)
k′

(F) (A.9)

88

Appendix B

EXAMPLE SQUARE ROOT SOLUTION SIMULATION

It may be useful for the reader to see an example of a RAM being simulated by

an oblivious RAM. In this section we will describe a RAM and show a portion of

its execution. We will then describe the oblivious RAM and show how it simulates

the execution of the original RAM.

B.1 The Original RAM

Suppose we have some RAM4 in the middle of execution with the work tape of

the MEM4 component (of length 24) having the state shown in Figure B.1.

2 12 5 6 1 5 4 6 29 17 11 1 19 23 11 9

Figure B.1: Starting State of RAM4

We are going to show eight execution steps on this RAM:

((read, 7,⊥), (write, 8, 28), (write, 2, 15), (write, 7, 14),

(read, 9,⊥), (read, 11,⊥), (write, 8, 22), (read, 4,⊥))

To begin with, the CPU4 is going to send the message (read, 7,⊥) to MEM4.

MEM4 will read the value at the seventh word on its work tape and send a message

of 4 back to CPU4. Because this is a read operation, the work tape is not updated

(see Figure B.2).

89

2 12 5 6 1 5 4 6 29 17 11 1 19 23 11 9

Figure B.2: (read, 7,⊥)

Next, the message (write, 8, 28) is sent toMEM4. The eighth word onMEM4’s

work tape is updated to 28 and the same value is returned to CPU4 (see Figure

B.3).

2 12 5 6 1 5 4 28 29 17 11 1 19 23 11 9

Figure B.3: (write, 8, 28)

The remaining reads and writes behave the same as the previous ones (see

Figures B.4 to B.9).

2 15 5 6 1 5 4 28 29 17 11 1 19 23 11 9

Figure B.4: (write, 2, 15)

2 15 5 6 1 5 14 28 29 17 11 1 19 23 11 9

Figure B.5: (write, 7, 14)

2 15 5 6 1 5 14 28 29 17 11 1 19 23 11 9

Figure B.6: (read, 9,⊥)

90

2 15 5 6 1 5 14 28 29 17 11 1 19 23 11 9

Figure B.7: (read, 11,⊥)

2 15 5 6 1 5 14 22 29 17 11 1 19 23 11 9

Figure B.8: (write, 8, 22)

2 15 5 6 1 5 14 22 29 17 11 1 19 23 11 9

Figure B.9: (read, 4,⊥)

B.2 Oblivious Simulation of the Original RAM

Our oblivious RAM simulating the original RAM4 will be a RAM5 that contains

a MEM5 which has a work tape of length 25. However, our oblivious RAM5 will

only need to use the first 24 words on the tape since the original RAM has a work

tape of length 16 (16 + 2
√

16 = 24). We will only depict the words we are using

during simulation. Suppose that the eight steps we showed in Section B.1 begin

at the start of a new pass in the simulation and the work tape for the MEM5

has the state shown in Figure B.10 at the end of the previous pass. For the sake

of simplicity, we are again omitting that every value written to the work tape is

encrypted by the CPU before being sent to the MEM.

Before beginning our first pass, we will need to construct our function f for this

pass. In this simulation, f will map [20] to Z49. For this particular pass, suppose

that the f we construct using the random oracle gives the values as shown in Table

B.1.

Once we have generated f , we will need to update the non-shelter locations

with their new tags (Figure B.11).

91

(9, 1, 2) (17, 2, 12) (14, 3, 5) (15, 4, 6) (34, 5, 1) (11, 6, 5) (27, 7, 4) (26, 8, 6)

(41, 9, 29) (18, 10, 17) (7, 11, 11) (33, 12, 1) (23, 13, 19) (39, 14, 23) (4, 15, 11) (47, 16, 9)

(46, 17, d) (30, 18, d) (25, 19, d) (48, 20, d) (11,∞, 21) (41,∞, 29) (14,∞, 3) (23,∞, 19)

Figure B.10: Initial State of the Oblivious RAM5

i f(i)
1 19
2 43
3 14
4 27
5 42
6 32
7 46
8 12
9 45
10 29
11 34
12 6
13 28
14 35
15 5
16 21
17 36
18 30
19 44
20 25

Table B.1: f : [20]→ Z49 for the First Pass

Once we have updated the tags, we will need to perform a Batcher sort across

the non-shelter locations based on the value each word is tagged with. A Batcher

sort for 20 elements will generate the following comparisons: Order(1, 2),

Order(1, 2), Order(4, 5), Order(1, 3), Order(2, 4), Order(2, 3), Order(4, 5),

Order(6, 7), Order(6, 7), Order(9, 10), Order(6, 8), Order(7, 9), Order(7, 8),

Order(9, 10), Order(1, 9), Order(5, 13), Order(5, 9), Order(3, 7), Order(3, 5),

Order(7, 9), Order(2, 6), Order(4, 8), Order(4, 6), Order(8, 10), Order(2, 3),

Order(4, 5), Order(6, 7), Order(8, 9), Order(11, 12), Order(11, 12),

92

(19, 1, 2) (43, 2, 12) (14, 3, 5) (27, 4, 6) (42, 5, 1) (32, 6, 5) (46, 7, 4) (12, 8, 6)

(45, 9, 29) (29, 10, 17) (34, 11, 11) (6, 12, 1) (28, 13, 19) (35, 14, 23) (5, 15, 11) (21, 16, 9)

(36, 17, d) (30, 18, d) (44, 19, d) (25, 20, d) (11,∞, 21) (41,∞, 29) (14,∞, 3) (23,∞, 19)

Figure B.11: Updated Tags

Order(14, 15), Order(11, 13), Order(12, 14), Order(12, 13), Order(14, 15),

Order(16, 17), Order(16, 17), Order(19, 20), Order(16, 18), Order(17, 19),

Order(17, 18), Order(19, 20), Order(11, 19), Order(15, 23), Order(15, 19),

Order(13, 17), Order(13, 15), Order(17, 19), Order(12, 16), Order(14, 18),

Order(14, 16), Order(18, 20), Order(12, 13), Order(14, 15), Order(16, 17),

Order(18, 19), Order(1, 17), Order(9, 25), Order(9, 17), Order(5, 13),

Order(5, 9), Order(13, 17), Order(3, 19), Order(11, 27), Order(11, 19),

Order(7, 15), Order(7, 11), Order(15, 19), Order(3, 5), Order(7, 9),

Order(11, 13), Order(15, 17), Order(2, 18), Order(10, 26), Order(10, 18),

Order(6, 14), Order(6, 10), Order(14, 18), Order(4, 12), Order(8, 16),

Order(8, 12), Order(16, 20), Order(4, 6), Order(8, 10), Order(12, 14),

Order(16, 18), Order(2, 3), Order(4, 5), Order(6, 7), Order(8, 9),

Order(10, 11), Order(12, 13), Order(14, 15), Order(16, 17), Order(18, 19). For

each comparison, the two values will both be read and then written back. After

all of the order operations have been performed, the work tape will be as shown

in Figure B.12.

(5, 15, 11) (6, 12, 1) (12, 8, 6) (14, 3, 5) (19, 1, 2) (21, 16, 9) (25, 20, d) (27, 4, 6)

(28, 13, 19) (29, 10, 17) (30, 18, d) (32, 6, 5) (34, 11, 11) (35, 14, 23) (36, 17, d) (42, 5, 1)

(43, 2, 12) (44, 19, d) (45, 9, 29) (46, 7, 4) (11,∞, 21) (41,∞, 29) (14,∞, 3) (23,∞, 19)

Figure B.12: Batcher Sort of Non-Shelter Locations

93

count is initialized to zero and we begin the simulation of the next four accesses:

((read, 7,⊥) , (write, 8, 28) , (write, 2, 15) , (write, 7, 14))

When simulating access (read, 7,⊥), we begin by scanning the entire shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Since program address 7 was not found in the shelter, we will perform a binary

search to find it in one of the non-shelter locations using the knowledge that f(7) =

46:

((read, 10,⊥), (read, 15,⊥), (read, 17,⊥), (read, 19,⊥), (read, 20,⊥))

Once we find program address 7 at physical address 20, we update the word at

address 20 to be (46,∞, 4). Then we scan the shelter, reading and writing each

value. Since program address 7 does not already exist in the shelter, we write it

to the first empty word, physical word 21 (see Figure B.13):

((read, 21,⊥), (write, 21, (46, 7, 4)) , (read, 22,⊥), (write, 22, (41,∞, 29)) ,

(read, 23,⊥), (write, 23, (14,∞, 3)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

(5, 15, 11) (6, 12, 1) (12, 8, 6) (14, 3, 5) (19, 1, 2) (21, 16, 9) (25, 20, d) (27, 4, 6)

(28, 13, 19) (29, 10, 17) (30, 18, d) (32, 6, 5) (34, 11, 11) (35, 14, 23) (36, 17, d) (42, 5, 1)

(43, 2, 12) (44, 19, d) (45, 9, 29) (46,∞, 4) (46, 7, 4) (41,∞, 29) (14,∞, 3) (23,∞, 19)

Figure B.13: Simulate (read, 7,⊥)

count is incremented to 1 and we simulate the next access: (write, 8, 28). Again,

94

we begin by reading the entire shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Since we did not find the word in the shelter, we perform a binary search across

the non-shelter locations using the tag f(8) = 12:

((read, 10,⊥), (read, 5,⊥), (read, 3,⊥))

After locating it in physical word 3, we rewrite the value at that location:

(write, 3, (12,∞, 6))

Next, we scan the shelter again. Since the word was not found in the shelter, we

write it into the first empty location we find (see Figure B.14):

((read, 21,⊥), (write, 21, (46, 7, 4)) , (read, 22,⊥), (write, 22, (12, 8, 28)) ,

(read, 23,⊥), (write, 23, (14,∞, 3)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

(5, 15, 11) (6, 12, 1) (12,∞, 6) (14, 3, 5) (19, 1, 2) (21, 16, 9) (25, 20, d) (27, 4, 6)

(28, 13, 19) (29, 10, 17) (30, 18, d) (32, 6, 5) (34, 11, 11) (35, 14, 23) (36, 17, d) (42, 5, 1)

(43, 2, 12) (44, 19, d) (45, 9, 29) (46,∞, 4) (46, 7, 4) (12, 8, 28) (14,∞, 3) (23,∞, 19)

Figure B.14: Simulate (write, 8, 28)

count is incremented to 3 and we simulate (write, 2, 15) beginning with the

scan of the shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

95

Since we did not find program address 2 in the shelter, we perform a binary search

across the non-shelter locations looking for the tag f(2) = 43:

((read, 10,⊥), (read, 15,⊥), (read, 17,⊥))

Now that we have found program address 2 at physical word 17, we update the

value at that physical location:

(write, 17, (43,∞, 12))

Next we scan the shelter. Since program address 2 was in a non-shelter location,

we will put it into the first empty shelter location we find (Figure B.15):

((read, 21,⊥), (write, 21, (46, 7, 4)) , (read, 22,⊥), (write, 22, (12, 8, 28)) ,

(read, 23,⊥), (write, 23, (43, 2, 15)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

(5, 15, 11) (6, 12, 1) (12,∞, 6) (14, 3, 5) (19, 1, 2) (21, 16, 9) (25, 20, d) (27, 4, 6)

(28, 13, 19) (29, 10, 17) (30, 18, d) (32, 6, 5) (34, 11, 11) (35, 14, 23) (36, 17, d) (42, 5, 1)

(43,∞, 12) (44, 19, d) (45, 9, 29) (46,∞, 4) (46, 7, 4) (12, 8, 28) (43, 2, 15) (23,∞, 19)

Figure B.15: Simulate (write, 2, 15)

We increment count to four and begin the last access we will simulate in this

pass: (write, 7, 14). Once again we start by scanning the shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

This time we find program address 7 in the shelter at physical word 21. Since we

found it in the shelter, a dummy value will be accessed. Because count is four, we

96

will be looking for dummy address 20 (we have 16 program words which tells us

we should look for address 16 + 4 = 20). We will perform a binary search across

the non-shelter locations looking for the word tagged with f(20) = 25:

((read, 10,⊥), (read, 5,⊥), (read, 7,⊥))

We find the dummy word at physical word 7 on the tape and write the same value

back to the tape:

(write, 7, (25, d, d))

Next we scan the shelter and update the value for program word 7 when we find

it in the shelter (Figure B.16):

((read, 21,⊥), (write, 21, (46, 7, 14)) , (read, 22,⊥), (write, 22, (12, 8, 28)) ,

(read, 23,⊥), (write, 23, (43, 2, 15)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

(5, 15, 11) (6, 12, 1) (12,∞, 6) (14, 3, 5) (19, 1, 2) (21, 16, 9) (25, 20, d) (27, 4, 6)

(28, 13, 19) (29, 10, 17) (30, 18, d) (32, 6, 5) (34, 11, 11) (35, 14, 23) (36, 17, d) (42, 5, 1)

(43,∞, 12) (44, 19, d) (45, 9, 29) (46,∞, 4) (46, 7, 14) (12, 8, 28) (43, 2, 15) (23,∞, 19)

Figure B.16: Simulate (write, 7, 14)

Now that we have completed simulation of the four accesses for this pass, we

need to return all of the words to their original location on the tape. This is done by

a Batcher sort across all of the words on the work tape using the program address

of each word, which generates the following sequence of comparisons: Order(1, 2),

Order(1, 2), Order(4, 5), Order(4, 5), Order(1, 5), Order(3, 7), Order(3, 5),

Order(2, 4), Order(2, 3), Order(4, 5), Order(7, 8), Order(7, 8), Order(10, 11),

Order(10, 11), Order(7, 11), Order(9, 13), Order(9, 11), Order(8, 10),

97

Order(8, 9), Order(10, 11), Order(1, 9), Order(5, 13), Order(5, 9),

Order(3, 11), Order(7, 15), Order(7, 11), Order(3, 5), Order(7, 9),

Order(2, 10), Order(6, 14), Order(6, 10), Order(4, 8), Order(4, 6),

Order(8, 10), Order(2, 3), Order(4, 5), Order(6, 7), Order(8, 9), Order(10, 11),

Order(13, 14), Order(13, 14), Order(16, 17), Order(16, 17), Order(13, 17),

Order(15, 19), Order(15, 17), Order(14, 16), Order(14, 15), Order(16, 17),

Order(19, 20), Order(19, 20), Order(22, 23), Order(22, 23), Order(19, 23),

Order(21, 25), Order(21, 23), Order(20, 22), Order(20, 21), Order(22, 23),

Order(13, 21), Order(17, 25), Order(17, 21), Order(15, 23), Order(19, 27),

Order(19, 23), Order(15, 17), Order(19, 21), Order(14, 22), Order(18, 26),

Order(18, 22), Order(16, 20), Order(16, 18), Order(20, 22), Order(14, 15),

Order(16, 17), Order(18, 19), Order(20, 21), Order(22, 23), Order(1, 17),

Order(9, 25), Order(9, 17), Order(5, 21), Order(13, 29), Order(13, 21),

Order(5, 9), Order(13, 17), Order(3, 19), Order(11, 27), Order(11, 19),

Order(7, 23), Order(15, 31), Order(15, 23), Order(7, 11), Order(15, 19),

Order(3, 5), Order(7, 9), Order(11, 13), Order(15, 17), Order(19, 21),

Order(2, 18), Order(10, 26), Order(10, 18), Order(6, 22), Order(14, 30),

Order(14, 22), Order(6, 10), Order(14, 18), Order(4, 20), Order(12, 28),

Order(12, 20), Order(8, 16), Order(8, 12), Order(16, 20), Order(4, 6),

Order(8, 10), Order(12, 14), Order(16, 18), Order(20, 22), Order(2, 3),

Order(4, 5), Order(6, 7), Order(8, 9), Order(10, 11), Order(12, 13),

Order(14, 15), Order(16, 17), Order(18, 19), Order(20, 21), Order(22, 23).

Each comparison generates a read of each of the two locations and then a write to

both locations. After the Batcher sort, the work tape will be as depicted in Figure

B.17.

Now we are ready to begin the second pass and simulate the next four accesses:

((read, 9,⊥), (read, 11,⊥), (write, 8, 22), (read, 4,⊥))

98

(19, 1, 2) (43, 2, 15) (14, 3, 5) (27, 4, 6) (42, 5, 1) (32, 6, 5) (46, 7, 14) (12, 8, 28)

(45, 9, 29) (29, 10, 17) (34, 11, 11) (6, 12, 1) (28, 13, 19) (35, 14, 23) (5, 15, 11) (21, 16, 9)

(36, 17, d) (30, 18, d) (44, 19, d) (25, 20, d) (12,∞, 6) (43,∞, 12) (46,∞, 4) (23,∞, 19)

Figure B.17: Batcher Sort Across All Words

To begin with, we need to construct a new f : [20]→ Z49 using the random oracle.

Suppose the f we construct for this pass maps the values as shown in Table B.2.

i f(i)
1 39
2 26
3 36
4 30
5 16
6 6
7 48
8 10
9 34
10 7
11 9
12 43
13 33
14 28
15 25
16 45
17 35
18 1
19 19
20 15

Table B.2: f : [20]→ Z49 for the Second Pass

Once again we begin by updating the tags on all of the non-shelter locations,

as seen in Figure B.18.

Next we perform a Batcher sort across the non-shelter locations, sorting by

tags. As we already know, the Batcher sort is deterministic (Section 2.5) so the

comparisons will be the same as in the first pass. After the Batcher sort, the work

99

(39, 1, 2) (26, 2, 15) (36, 3, 5) (30, 4, 6) (16, 5, 1) (6, 6, 5) (48, 7, 14) (10, 8, 28)

(34, 9, 29) (7, 10, 17) (9, 11, 11) (43, 12, 1) (33, 13, 19) (28, 14, 23) (25, 15, 11) (45, 16, 9)

(35, 17, d) (1, 18, d) (19, 19, d) (15, 20, d) (12,∞, 6) (43,∞, 12) (46,∞, 4) (23,∞, 19)

Figure B.18: Update the Tags on all Non-Shelter Locations

tape will be as shown in Figure B.19.

(1, 18, d) (6, 6, 5) (7, 10, 17) (9, 11, 11) (10, 8, 28) (15, 20, d) (16, 5, 1) (19, 19, d)

(25, 15, 11) (26, 2, 15) (28, 14, 23) (30, 4, 6) (33, 13, 19) (34, 9, 29) (35, 17, d) (36, 3, 5)

(39, 1, 2) (43, 12, 1) (45, 16, 9) (48, 7, 14) (12,∞, 6) (43,∞, 12) (46,∞, 4) (23,∞, 19)

Figure B.19: Batcher Sort by Tag Across Non-Shelter Locations

We initialize count to 1 and begin to simulate (read, 9,⊥) by scanning the

entire shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Since nothing has been put in the shelter yet for this pass, we do not find program

word 9 in the shelter, so we begin a binary search for it outside of the shelter

looking for tag f(9) = 34:

((read, 10,⊥), (read, 15,⊥), (read, 12,⊥), (read, 13,⊥), (read, 14,⊥))

Finding the word at physical address 14, we update the value at that location to

be (34,∞, 29) and rescan the shelter, putting program word 9 into the first empty

100

shelter location (Figure B.20):

((read, 21,⊥), (write, 21, (34, 9, 29)) , (read, 22,⊥), (write, 22, (43,∞, 12)) ,

(read, 23,⊥), (write, 23, (46,∞, 4)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

(1, 18, d) (6, 6, 5) (7, 10, 17) (9, 11, 11) (10, 8, 28) (15, 20, d) (16, 5, 1) (19, 19, d)

(25, 15, 11) (26, 2, 15) (28, 14, 23) (30, 4, 6) (33, 13, 19) (34,∞, 29) (35, 17, d) (36, 3, 5)

(39, 1, 2) (43, 12, 1) (45, 16, 9) (48, 7, 14) (34, 9, 29) (43,∞, 12) (46,∞, 4) (23,∞, 19)

Figure B.20: Simulate (read, 9,⊥)

We increment count to two and simulate our next access, (read, 11,⊥), by

scanning the shelter again:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Not finding the word in the shelter, we perform a binary search across the non-

shelter locations using the tag f(11) = 9:

((read, 10,⊥), (read, 5,⊥), (read, 3,⊥), (read, 4,⊥))

We update the value at physical word 4 (where we found program word 11) to

be (9,∞, 11). Next we rescan the shelter and insert the word into the first empty

location (Figure B.21):

((read, 21,⊥), (write, 21, (34, 9, 29)) , (read, 22,⊥), (write, 22, (9, 11, 11)) ,

(read, 23,⊥), (write, 23, (46,∞, 4)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

count is increased to three. The third access we are simulating on this pass is

101

(1, 18, d) (6, 6, 5) (7, 10, 17) (9,∞, 11) (10, 8, 28) (15, 20, d) (16, 5, 1) (19, 19, d)

(25, 15, 11) (26, 2, 15) (28, 14, 23) (30, 4, 6) (33, 13, 19) (34,∞, 29) (35, 17, d) (36, 3, 5)

(39, 1, 2) (43, 12, 1) (45, 16, 9) (48, 7, 14) (34, 9, 29) (9, 11, 11) (46,∞, 4) (23,∞, 19)

Figure B.21: Simulate (read, 11,⊥)

(write, 8, 22). As usual, we start by scanning the shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Again, we do not find the word in the shelter so we perform a binary search across

the rest of the work tape, looking for the tag f(8) = 10:

((read, 10,⊥), (read, 5,⊥))

When we find the word at physical address 5, we update the value there to be

(10,∞, 28). Next, we rescan and update the shelter, putting program address 8

into the first empty shelter location we find (Figure B.22):

((read, 21,⊥), (write, 21, (34, 9, 29)) , (read, 22,⊥), (write, 22, (9, 11, 11)) ,

(read, 23,⊥), (write, 23, (10, 8, 22)) , (read, 24,⊥), (write, 24, (23,∞, 19)))

count is incremented to four and we simulate the last access for this pass:

(read, 4,⊥). We begin by scanning the entire shelter:

((read, 21,⊥), (read, 22,⊥), (read, 23,⊥), (read, 24,⊥))

Program word 4 is not found in the shelter so we perform a binary search across

102

(1, 18, d) (6, 6, 5) (7, 10, 17) (9,∞, 11) (10,∞, 28) (15, 20, d) (16, 5, 1) (19, 19, d)

(25, 15, 11) (26, 2, 15) (28, 14, 23) (30, 4, 6) (33, 13, 19) (34,∞, 29) (35, 17, d) (36, 3, 5)

(39, 1, 2) (43, 12, 1) (45, 16, 9) (48, 7, 14) (34, 9, 29) (9, 11, 11) (10, 8, 22) (23,∞, 19)

Figure B.22: Simulate (write, 8, 22)

the non-shelter locations looking for tag f(4) = 30:

((read, 10,⊥), (read, 15,⊥), (read, 12,⊥))

The word at physical address 12 is updated to be (30,∞, 6) and we scan the shelter,

putting the program word into the last empty shelter location (Figure B.23):

((read, 21,⊥), (write, 21, (34, 9, 29)) , (read, 22,⊥), (write, 22, (9, 11, 11)) ,

(read, 23,⊥), (write, 23, (10, 8, 22)) , (read, 24,⊥), (write, 24, (30, 4, 6)))

(1, 18, d) (6, 6, 5) (7, 10, 17) (9,∞, 11) (10,∞, 28) (15, 20, d) (16, 5, 1) (19, 19, d)

(25, 15, 11) (26, 2, 15) (28, 14, 23) (30,∞, 6) (33, 13, 19) (34,∞, 29) (35, 17, d) (36, 3, 5)

(39, 1, 2) (43, 12, 1) (45, 16, 9) (48, 7, 14) (34, 9, 29) (9, 11, 11) (10, 8, 22) (30, 4, 6)

Figure B.23: Simulate (read, 4,⊥)

Now that we have finished simulating the next four accesses, we need to perform

a Batcher sort across the entire work tape by program address to return all of the

values to their original location. The comparisons that are made in this pass are

the same as in the previous pass for this particular step. After the sort is complete,

the work tape will be as in Figure B.24.

This completes the second pass of our simulation and all of the accesses we are

103

(39, 1, 2) (26, 2, 15) (36, 3, 5) (30, 4, 6) (16, 5, 1) (6, 6, 5) (48, 7, 14) (10, 8, 22)

(34, 9, 29) (7, 10, 17) (9, 11, 11) (43, 12, 1) (33, 13, 19) (28, 14, 23) (25, 15, 11) (45, 16, 9)

(35, 17, d) (1, 18, d) (19, 19, d) (15, 20, d) (9,∞, 11) (10,∞, 28) (30,∞, 6) (34,∞, 29)

Figure B.24: Batcher Sort by Address Across All Words

simulating in this demonstration. If the original RAM continued execution, the

remaining passes would continue from this point.

	Portland State University
	PDXScholar
	Fall 1-1-2012

	A Survey and Analysis of Solutions to the Oblivious Memory Access Problem
	Erin Elizabeth Chapman
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1373317500.pdf.yd5F_

