
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2012

Extending Relativistic Programming to Multiple Writers
Philip William Howard
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Howard, Philip William, "Extending Relativistic Programming to Multiple Writers" (2012). Dissertations and Theses. Paper 114.

10.15760/etd.114

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/114?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.114
mailto:pdxscholar@pdx.edu

Extending Relativistic Programming to Multiple Writers

by

Philip William Howard

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Jonathan Walpole, Chair

Robert Daasch
James Hook
Mark Jones

Paul E. McKenney
Bryant York

Portland State University
2012

Abstract

For software to take advantage of modern multicore processors, it must be safely

concurrent and it must scale. Many techniques that allow safe concurrency do so

at the expense of scalability. Coarse grain locking allows multiple threads to access

common data safely, but not at the same time. Non-Blocking Synchronization and

Transactional Memory techniques optimistically allow concurrency, but only for dis-

joint accesses and only at a high performance cost. Relativistic programming is a

technique that allows low overhead readers and joint access parallelism between read-

ers and writers. Most of the work on relativistic programming has assumed a single

writer at a time (or, in partitionable data structures, a single writer per partition),

and single writer solutions cannot scale on the write side.

This dissertation extends prior work on relativistic programming in the following

ways:

1. It analyses the ordering requirements of lock-based and relativistic programs in

order to clarify the differences in their correctness and performance characteris-

tics, and to define precisely the behavior required of the relativistic programming

primitives.

2. It shows how relativistic programming can be used to construct efficient, scal-

able algorithms for complex data structures whose update operations involve

multiple writes to multiple nodes.

3. It shows how disjoint access parallelism can be supported for relativistic writ-

ers, using Software Transactional Memory, while still allowing low-overhead,

linearly-scalable, relativistic reads.

i

Acknowledgments

This material is based upon work supported in part by the National Science Founda-

tion under Grant No. CNS-0719851.

ii

Contents

Abstract . i
Acknowledgments . ii
List of Tables . vi
List of Figures . vii

1 Introduction 1

2 Background 6
2.1 Synchronization Mechanisms . 6

2.1.1 Locking . 6
2.1.2 Non-Blocking Synchronization 9
2.1.3 Transactional Memory . 11
2.1.4 Relativistic Programming . 15
2.1.5 Comparing the Approaches 22

2.2 Impact of Reordering on Concurrent Programming 24
2.3 Correctness Criteria . 27

3 The Ordering Requirements of Relativistic Programs 32
3.1 Introduction to Ordering Control . 33

3.1.1 Terminology . 33
3.1.2 RWL Ordering Primitives . 37
3.1.3 RP Ordering Primitives . 38

3.2 Case Studies . 39
3.2.1 Insert . 40
3.2.2 Delete . 43
3.2.3 Move Forward . 46
3.2.4 Move Back . 52
3.2.5 General Guidelines on Using RP Primitives 54

3.3 Considering Multiple Writes . 56
3.4 Quantitative Evaluation of RP vs. RWL 61

3.4.1 Analysis . 61
3.4.2 Scalability as a function of critical section size 64
3.4.3 Comparing RP, TORP and RWL 67

3.5 Summary . 68

iii

4 Supporting Complex Multi-write Updates 70
4.1 Introduction . 70
4.2 A Relativistic Red-Black Tree Algorithm 73

4.2.1 Swap algorithms . 79
4.2.2 Restructure . 82

4.3 Linearizability . 87
4.3.1 Lookup . 87
4.3.2 Insert . 88
4.3.3 Delete . 89
4.3.4 Swap . 89
4.3.5 Restructure . 91
4.3.6 Summary of linearizability arguments 94

4.4 Performance . 94
4.4.1 Read Performance . 96
4.4.2 Update Performance . 98

4.5 Summary . 100

5 Supporting Complex Read Patterns 101
5.1 The Problem with Traversals . 101

5.1.1 Invalid Traversals . 102
5.1.2 Duration . 104
5.1.3 Linearizability . 106

5.2 Three Traversal Algorithms . 107
5.2.1 The Combo approach . 108
5.2.2 A Simple Relativistic Approach 108
5.2.3 A Complex Relativistic Approach 110

5.3 Performance Trade-offs . 111
5.4 Summary . 115

6 Disjoint Access Relativistic Writes Using Software Transactional
Memory 116
6.1 How to Make STM Compatible with RP 117
6.2 SwissTM . 119
6.3 Modifications to SwissTM . 122

6.3.1 Correctness . 125
6.4 Performance . 127

6.4.1 Preliminaries . 129
6.4.2 Concurrent Reads . 130
6.4.3 Concurrent Updates . 130
6.4.4 Variable Update Rate . 131

6.5 Discussion: Extending the Use of Relativistic Lookups 132
6.6 Summary . 138

iv

7 Summary of Contributions 139
7.1 Future Work . 141
7.2 Conclusion . 143

Bibliography 144

Appendix A Benchmarking Methodology 151
A.1 Hardware . 151
A.2 Software . 152
A.3 Statistics . 155

Appendix B Update Algorithm Compatible with O (N) Traversals 156

v

List of Tables

2.1 Equivalence of relativistic programming and RCU primitives 21
2.2 Synchronization mechanisms and their properties. 23
2.3 Visibility of the effects of concurrency 27
2.4 Potential invariants for various data structures. 28

5.1 Attributes of various approaches to traversals. 107

6.1 Meta-data maintained by SwissTM 121

vi

List of Figures

2.1 Use of RCU and RWL primitives in Linux Kernal 15

3.1 Orderings that have to be enforced by synchronization 35
3.2 Ordering relationships for a reader-writer lock insert operation 41
3.3 Ordering relationships for a relativistic insert. 42
3.4 Ordering relationships for a relativistic delete 44
3.5 Moving a node to a location later the list. 47
3.6 Possible intermediate states when moving node B 48
3.7 Ordering relationships for a reader and a writer performing a move. . 49
3.8 Moving a node without visible intermediate states 51
3.9 Node B is moved to an earlier location within the list. 52
3.10 Ordering relationships for a move back 53
3.11 Timeline showing two readers and a writer 57
3.12 Reader concurrent with two writes 58
3.13 Timelines showing different delays . 59
3.14 Timing of a writer and two readers 60
3.15 Orderings required for reader-writer lock semantics. 62
3.16 Orderings required for relativistic programming semantics. 63
3.17 Read performance with a list size of 1 66
3.18 Read performance with a list size of 1000 67
3.19 Performance of an update thread concurrent with 15 readers 68

4.1 Restructure operations used to rebalance a red-black tree 75
4.2 Tree before and after deletion of node 80
4.3 Tree before and after deletion of node 82
4.4 Arrangement of nodes before and after a diag restructure 83
4.5 Arrangement of nodes before and after a zig restructure 85
4.6 All reader visible states in swap operation 90
4.7 All of the reader visible states in a diag restructure 92
4.8 Reader visible states for a zig restructure 93
4.9 Read performance of 64K node red-black tree 97
4.10 Contended and uncontended read performance of 64 node red-black tree 98
4.11 Update performance of 64K node red-black tree 99

5.1 Update causing a traversal to visit a node twice 103

vii

5.2 Intermediate state in diag restructure 105
5.3 Traversal performance without a concurrent updater 112
5.4 Update performance with concurrent traversals 112
5.5 Update and traversal performance . 113
5.6 Traversal scalability . 114

6.1 Performance of an RBTree compared with an AVL Tree 129
6.2 Performance of the original modified STM 130
6.3 Read performance . 131
6.4 Update performance . 132
6.5 Combined performance across a range of update rates. 133
6.6 Subtree before and after the simultaneous insertion and restructure . 134
6.7 Tree depicting the read and write sets of two operations 135
6.8 Tree showing leaf nodes that can avoid conflicts 136

viii

Chapter 1

Introduction

CPU manufacturers have transitioned from supplying faster processors to supply-

ing processors that can execute more threads simultaneously [32]. This change has

meant a change in software: software must be concurrent in order to take advantage

of modern multicore hardware. In order to be correctly concurrent, software must

preserve data-safety in the presence of concurrent access, and it must scale so as more

processors are available, more work will get done. Both of these properties should

be considered part of the correctness criteria for a concurrent program. If a program

produces incorrect results because of data races, then clearly it is incorrect. But if

a program does not scale, a non-concurrent solution is both simpler and at least as

efficient.

When multiple threads are accessing common data, there is the potential for an

interleaved execution that leads to incorrect results. Consider a counter that is to be

incremented by two threads. If both threads read the counter, then both increment

the value, then both write the result back to the counter, the end result is that one of

the updates was lost. Some form of synchronization is required to avoid this incorrect

behavior. Unfortunately, adding synchronization to a program not only adds to its

complexity, it also tends to negatively impact both performance and scalability.

Most synchronization mechanisms can be divided into two broad categories: pes-

1

simistic and optimistic. Pessimistic synchronization makes the assumption that con-

current access to shared data is dangerous and should be prevented. Locks are used

in such a way that only one thread at a time is allowed access to shared data1. This

mechanism is called Mutual Exclusion because each critical section excludes other

critical sections from executing concurrently.

Optimistic synchronization makes the assumption that, in most cases, concur-

rent threads accessing shared data will not conflict. Threads are allowed to proceed

concurrently—both reads and writes are allowed to start at any time. If a conflict is

detected one or more threads is delayed or rolled back and retried so the conflict can

be avoided. The effect of the delays or rollbacks is the same as mutual exclusion: only

one thread (or multiple read-only threads) is allowed to access the data at a time.

The effect of both pessimistic and optimistic synchronization is that accesses to

shared data are serialized. Not only do the synchronization mechanisms add overhead

and thus decrease performance, the serialization forms a sequential bottleneck that

limits scalability.

Relativistic programming is a synchronization mechanism that does not fit neatly

into either pessimistic or optimistic categories. Relativistic programming is optimistic

in the sense that reads can start at any time without waiting for writes, and reads

can run concurrently with writes to the same data. But unlike optimistic techniques

there are no rollbacks nor retries—read operations always complete and hence are de-

terministic. Like pessimistic approaches, relativistic writers preserve data invariants

so readers can assume the invariants hold. Unlike pessimistic techniques, relativistic

readers are allowed to proceed concurrently with writers—even writers to the same

data.

1As discussed in Chapter 2, some locking mechanisms partition data and one thread is allowed
per partition. Other mechanisms allow multiple threads provided they are all reading but not
modifying the data

2

Most synchronization methods create a total order on operations on a given data

object. Locking methods create this order based on the order of lock acquisition. The

locking primitives that bracket each operation have to guarantee the existence of this

total order. For transactional memory, the commit process guarantees this order by

serializing conflicting transactions.

Relativistic programming does not require a total order on operations on a given

data object. Instead, readers are allowed to see writes as happening in different

orders. Where necessary, writers specify which operations require a total order. Those

operations for which the writer did not specify a total order are allowed to be seen in

a different order by each reader. Because reads run concurrently with writes, readers

can observe a different order of whole operations, they can also potentially observe

a different order of steps within an operation (e.g. the individual stores to memory

involved in adding a node to a tree). Because writers cannot exclude or delay readers,

writers must guarantee that readers can only see correct ordering. Chapter 3 defines

the criteria by which an order is considered correct. As a simple example, if a writer

initializes a node and then publishes a pointer to that node, the writer must delay

publishing the pointer until it is guaranteed that any properly formed reader that

sees the pointer will also see the initialization.

Much work has already been done on the relativistic programming methodology.

There are production quality implementations of relativistic programming primitives

in both user mode [17, 16] and within the Linux kernel [46, 45]. Relativistic tech-

niques are widely used within the Linux kernel for updating linked lists and other

data structures. But there is much work yet to be done. In particular, relativistic

techniques have primarily been applied to linked lists or other simple data structures

that only require simple, single-node updates. Also, much of the work on relativistic

programming has focused on read-side performance and scalability. Little attention

3

has been paid to scalability on the write-side other than partitioning techniques.

My thesis is that relativistic programming can be applied to complex data struc-

tures that require multi-node updates, and that relativistic reads can be combined

with transactional writes to get the performance and scalability of relativistic reads

and the automatic disjoint access parallelism of transactional writes. After presenting

background information in Chapter 2, this thesis is developed as follows:

Chapter 3 explores the ordering requirements of relativistic programs by com-

paring them to the ordering requirements of reader-writer locking programs. This

exploration leads to correctness criteria applicable to relativistic programs, provides

a clear definition of what is required of the various relativistic primitives, and also

provides foundational understanding allowing the further development of relativistic

programming in the following chapters.

Chapters 4 and 5 apply the ordering principles defined in Chapter 3 to a Red-

Black Tree (RBTree). RBTrees present a much more complex problem than previously

developed relativistic data structures because RBTrees require multi-node transfor-

mations. These chapters show how the RP primitive originally intended to be used for

safe memory reclamation can be used to order the visibility of updates such that the

relativistic correctness criteria can be preserved throughout these multi-node updates.

Chapter 6 shows how the ordering requirements of relativistic programming can be

maintained within a Software Transactional Memory (STM) system. Such an STM

allows reads to proceed relativistically outside the STM system while updates are

performed within the STM. This combination allows for high performance, scalable

relativistic reads while still allowing for the automatic disjoint access parallelism of

the STM on the write side. This chapter also provides a preliminary analysis of

the viability of performing the lookup phase of a write transaction relativistically

(outside the transactional system). The purpose of the relativistic lookup phase is

4

to both speed the lookup phase and reduce conflicts during the write phase of a

transaction.

To summarize, this research contributes the following to the field of relativistic

programming:

1. A new analysis of the ordering requirements of relativistic programs and the

primitives that support them (Chapter 3)

2. Correctness criteria that can be applied to relativistic programs (Chapter 3)

3. A demonstration that relativistic programming can be applied to complex data

structures including those requiring multi-node updates (Chapters 4-5)

4. A demonstration that the RP primitive originally intended for safe memory

reclamation can also be used to order the visibility of updates (Chapter 4)

5. A mechanism by which high performance, scalable, relativistic reads can be

combined with disjoint-access parallel writes using a modified software transac-

tional memory system to perform the writes (Chapter 6)

5

Chapter 2

Background

This chapter begins with an explanation of four synchronization mechanisms: locking,

Non Blocking Synchronization (NBS), Transactional Memory (TM), and Relativistic

Programming (RP). The intent is not to give a complete exposition of these mecha-

nisms, but rather to give an adequate presentation of the background so the particular

features of RP described later can be put in the context of the other mechanisms.

Section 2.2 describes some of the complexities of concurrent programming on mod-

ern hardware and Section 2.3 describes correctness criteria that are used with the

different synchronization mechanisms. Section 2.3 also includes a proposal for new

correctness criteria to be applied to relativistic programs.

2.1 Synchronization Mechanisms

2.1.1 Locking

Locking preserves data-safety by restricting concurrency. Regions of code that access

shared data, called critical sections, are protected by locks in such a way that only one

thread at a time can enter a critical section. Locking eliminates data races but at the

expense of concurrency and therefore scalability. Some degree of scalability can be

obtained through reader-writer locking [14, 50, 43] or fine-grained locking [8, 38, 60,

12]. Reader-writer locking allows multiple threads to proceed concurrently provided

6

they do not update the data. Fine grained locking partitions a data structure and

assigns a separate lock to each partition. Multiple threads are allowed to access the

data structure as long as no two are in the same partition.

As stated, locking preserves data-safety but at the expense of concurrency. With-

out concurrency, there can be no scalability because the amount of work done is

limited to the amount of work that can be done by a single processor. Any time con-

currency is limited, scalability is limited as well. Locking affects scalability because

access to the data is serialized. It also affects performance because of the expense of

acquiring a lock [4, 60].

Reader-writer locks were developed in an attempt to allow read-mostly workloads

to scale by allowing read-side concurrency. However, most reader-writer lock im-

plementations use atomic read-modify-write instructions to update a common lock

variable. Contention for the lock variable and the serialization caused by atomic

read-modify-write instructions limit both performance and scalability. Lev et. al. [43]

show that the production Solaris reader-writer lock does not scale at all for certain

read-only workloads. Triplett et. al. [62, 63] show that the production Linux reader-

writer lock does not scale at all for certain read-only workloads. Chapter 3 presents

benchmarks that document this effect for other reader-writer lock implementations.

There have been many attempts to improve performance and scalability of reader-

writer locks. Hsieh and Weihl [37] proposed a reader-writer lock that used per-

processor locks for readers. This approach avoids contention between readers allowing

good scalability for read-only work loads. However, a writer must acquire all the read-

locks. As the number of readers increases, the cost to a writer for acquiring all the

read-locks becomes exorbitant. Read performance suffers significantly in the presence

of writers because readers are excluded for the duration of the write, and writes are

slow because writers have to acquire a potentially large number of read-locks.

7

Lev et. al. [43] present a reader-writer lock based on a Scalable Non-Zero Indicator

(SNZI). Their observation is that writers do not need to know the number of readers,

only if there are zero or not zero. They construct a tree of SNZI objects where the

root of each subtree knows whether the subtree contains zero or non-zero readers.

A node only needs to communicate with its parent when it moves in or out of its

zero state. Readers can be distributed throughout the tree so the number of other

readers they contend with is minimal. Writers can check the root of the tree for the

existence of readers. Their implementation scales for read-only workloads but suffers

significantly with even 1% writers.

Fine grained locking is another attempt to increase concurrency. If a data struc-

ture can be partitioned, a separate lock can be applied to each partition. Multiple

threads can access the data concurrently provided each thread is accessing a disjoint

set of partitions. Some data structures partition easily. For example, hash tables are

often implemented with per bucket locking. Other data structures partition easily,

but doing so has negative performance implications. The atomic read-modify-write

instructions that are used in lock acquisition not only serialize access to the lock

variable, they also are slow—as much as several orders of magnitude slower than

non-atomic instructions [9]. If a linked list is partitioned such that each node has a

separate lock, then the cost of acquiring a lock for each node can outweigh any gains

through additional concurrency.

Locking has other, more subtle problems such as priority inversion [5, 39]. If a

low priority task obtains a lock that is then required by a higher priority task, the

higher priority task waits for the low priority task to complete and release the lock.

A series of medium priority tasks that do not require the lock can prevent the low

priority task from completing so the high priority task can have an unbounded delay.

Solutions to this problem include boosting the priority of the task that holds the lock

8

whenever a higher priority task requests the lock. These solutions involve changes to

the scheduler. Specifically, the scheduler needs to be aware of locks, and acquiring a

lock may require checking scheduling information that adds to the overhead of lock

acquisition. These changes to the scheduler and lock primitives increase the cost of

lock acquisition causing a reduction in performance and scalability.

Finally, when using fine grained locking (or any scheme involving multiple locks),

care must be taken to avoid deadlock [23, 22, 66] where multiple threads are waiting

for each other to release locks. A common mechanism to avoid deadlock is to assign

a total order on locks (for example, by using the address of the lock variable) and

requiring all threads to acquire locks in the same order. Given the total required

set of locks may not be known until after some of the locks are acquired, it may be

difficult to define a total order on locks that all threads follow.

To summarize, locking has the advantage of being well understood. Its quirks are

well documented in the literature, and there are many production systems that use

locking successfully. Locking has the disadvantage of limiting both performance and

scalability.

2.1.2 Non-Blocking Synchronization

With locking, a single thread that holds a lock can prevent progress in all other

threads. A variety of techniques, collectively called Non-Blocking Synchronization1

(NBS), were developed to address this shortcoming [31]. While liveness, the property

where threads continue to make progress, was the original goal of these techniques,

over time a greater emphasis has been placed on concurrent, scalable performance.

To this end, a number of algorithms were developed for concurrent, non-blocking data

1There are a variety of techniques labeled in the literature Non-Blocking, Lock Free, and Wait
Free. I am lumping all of these together under the name Non-Blocking. The specific differences
between Non-Blocking, Lock Free, and Wait Free are not relevant to my discussion so it is convenient
to refer to all these techniques by a single name.

9

structures [21, 10, 51, 24].

NBS algorithms tend to be extraordinarily complex for two reasons: They must

accommodate any arbitrary interleaving of the memory operations from different

threads; and they must preserve the liveness property in the presence of arbitrary de-

lays in any other thread. The problem of interleavings can be thought of as follows:

with locking, a programmer only needs to reason about correctness at the critical

section boundaries. Without locking, the programmer needs to consider correctness

at the boundary of every CPU or memory operation. The problem is made more com-

plex by the out-of-order execution units of modern processors and the weak memory

ordering properties they have [52, 53, 26, 27]. One cannot assume the program will

execute in program order (Section 2.2 and Chapter 3 discuss this in greater detail).

These considerations make it difficult to construct correct NBS algorithms.

The liveness property requires that no thread be able to put a data structure in

a state where other threads will be blocked. If a particular update requires multiple

steps (as opposed to a single atomic step), then the updating thread must leave a

mark indicating the update is in progress. The mark must include enough information

for another thread encountering the mark to either complete or abort and retry the

operation. The marks typically have to be placed using atomic read-modify-write

instructions, which means placing a mark has the same performance and scalability

cost as acquiring a lock. The updating thread has to do the extra work to leave the

marks. All threads, whether readers or writers, must check for marks and perform

extra work when one is found. Finally, there is the potential for multiple threads to

be working on the same operation—when multiple threads encounter the same mark,

they all simultaneously attempt to complete or abort the operation. This “helping”

slows the operation because multiple threads contend for the same memory addresses.

The abort and retry mechanism in NBS algorithms means NBS algorithms rarely

10

perform better than fine grained locking2. With fine grained locking, conflicting

operations are prevented. With NBS, potentially conflicting operations are allowed

to proceed optimistically, but only non-conflicting sets are allowed to complete. The

others are rolled back and retried. So NBS offers deadlock avoidance and can provide

disjoint access parallelism, but it rarely offers better performance or scalability than

fine grained locking.

To summarize, NBS represents an attempt to increase concurrency over locking.

At best it can offer the performance of fine grained locking. In reality, it suffers from

complexity (it is difficult to develop correct algorithms) and performance problems.

2.1.3 Transactional Memory

Transactional Memory (TM) was developed to address some of the complexity issues

of NBS [24, 25, 34]. NBS approaches tend to follow a pattern: before an operation (a

read or write), the state of the data structure is saved; at the conclusion of the opera-

tion, the state is checked to validate that no conflicting updates were made during the

course of the operation; the changes are either committed or rolled back depending

on whether conflicts were detected. Transactional memory encapsulates this pattern

rather than requiring an implementation unique to each data structure. The pro-

grammer simply starts a transaction, then performs a series of memory operations

for which the TM system will save state, then requests that the TM system commit

the changes. At this point, the TM system will check for conflicts and either commit

or roll back the transaction. The commit is such that the entire transaction appears

to happen atomically to other transactions—they will either see all the changes in

the transaction or none of them.

2The exception to this rule is when the data object fits in a single word. Fine grained locking
would contend for the lock variable and then update the data item. NBS could combine both of
these operations for potentially better performance.

11

Conflict resolution compares the read and write sets of all current transactions.

Different conflict detection mechanisms are possible, but in general, a conflict exists

any time one transaction is reading a value that is being written by another, and one

(or both) conflicting transactions will be delayed or rolled back and retried. Because

conflict detection is based on the actual read and write sets of the transactions, TMs

provide automatic disjoint access parallelism. That is, two transactions that access

disjoint portions of a data structure are allowed to proceed in parallel because they

do not conflict with each other3.

TM solves the complexity problem inherent in most NBS solutions. Because trans-

actions appear to execute atomically, the number of states a programmer needs to

reason about is similar to a locking solution. However, TM suffers the same perfor-

mance issues as NBS [13]. In addition, TM has difficulty handling non-idempotent

operations (such as I/O) because they cannot simply be rolled back and redone when

a transaction fails to commit [56, 47, 28].

At one time, it was hoped that transactional memory would be implemented in

hardware [34, 32] to solve the performance problems. There have been some experi-

mental hardware transactional memory systems, however none of these systems have

made it to mainstream commercial availability. There are a wide variety of Software

Transactional Memory (STM) solutions available [18, 19, 15, 20, 42]. There are so

many systems because there are a variety of ways to attempt to solve the performance

problems. Four parameters that are addressed in different ways by various systems

are atomicity, time of update, meta-data, and visibility of reads.

Weakly atomic systems allow some accesses to be made non-transactionally. There

is no isolation between the transactional and non-transactional accesses. The non-

transactional accesses could cause a transaction to observe an inconsistent state. The

3Many transactional memory systems use hashing when computing conflicts. Hashing can result
in false conflicts that would reduce the amount of disjoint access parallelism.

12

non-transactional accesses provide for higher performance but at the risk of violating

the isolation guarantees of the transactional system. Strongly atomic systems guar-

antee that all accesses are within the transactional system. Typically, if an access is

not explicitly wrapped in a transaction, an implicit transaction is created for each

access. This increases overhead but provides stronger isolation guarantees.

Some systems update memory in place and keep an undo log which gets used to roll

back transactions that fail. Updating in place makes commits inexpensive (the work

of committing is already done), but it complicates precommitted threads because

they observe some data that may eventually get rolled back. Other STM systems

keep updates in a re-do log which gets used to update publicly visible memory when

the transaction commits. The re-do log makes committing more expensive, but it

means other threads will only see committed data.

Transactional memory systems keep meta-data on each object to facilitate isola-

tion and atomicity. Some systems track individual memory locations (typically word

sized memory locations, not byte sized), others track higher level objects. To reduce

the amount of meta-data, many systems track a hash rather than the object itself.

For example, a word based system could maintain meta-data on a block of words

rather than separate data on each word. Hashing can improve performance because

of the reduced cost of maintaining the meta-data. However, hashing can result in

collisions—multiple objects hash to the same meta-data. These collisions are a form

of false sharing that results in the transactional system reporting conflicts where none

actually exist. These false conflicts reduce performance because of a higher incidence

of failed transactions.

Some systems allow read-only transactions to proceed without creating any meta-

data visible to other transactions. Invisible reads reduce the work involved with

reading and should therefore result in better read performance. Invisible reads mean

13

a read-only transaction can never invalidate a writing transaction. Because read-only

transactions do not create writer visible meta-data, they do not reserve or own the

data they have accessed so writers can update the data during a read transaction.

Because the data is not reserved, the read sets must be validated at commit time to

ensure the read set represents a consistent snapshot of the data.

There are several mechanisms used to improve transaction performance. Some

researchers have proposed mechanisms (called privatization) for temporarily pulling

some data out of the transactional system so a single thread can more efficiently

access the data without paying the transactional overhead [59, 44]. Others have

proposed performing the actual data updates non-transactionally [33]. Each update

has to provide an inverse function so the update can be undone if the transaction

gets rolled back. The transactional system tracks operations rather than objects.

Bronson et. al. [11] propose a mechanism for sets and maps where a mapping from a

key to a single location can be computed non-transactionally. Given that mapping,

set and map operations consist of a single read or write to that location. If that single

read or write is performed transactionally, the individual transactions are small so

the transactional overhead is small, but the operations still maintain the isolation,

atomicity, and composability properties of the STM.

To summarize, TM encapsulates the complexity problem inherent in most NBS

techniques. TM provides an easier mechanism to generate correct concurrent solutions

including automatic fine grained conflict analysis. However, TM still suffers from poor

performance and provides no more concurrency than is theoretically available with

fine grained locking. Research is on-going on how to improve the performance of STM

systems.

14

2.1.4 Relativistic Programming

The techniques now becoming known as relativistic programming were originally de-

veloped by Paul McKenney [46] and Jack Slingwine under the name Read-Copy-

Update (RCU). The goals of RCU were to allow reads to proceed with low overhead

and a minimum of synchronization. In particular, reads do not have to wait for writes

even if the write is to the same data being read. Because of its performance charac-

teristics, RCU is gaining widespread use in the Linux kernel. Figure 2.1 shows that

the use of RCU within the Linux kernel is continuing to grow and has exceeded that

of reader-writer locks. RCU is not limited to the Linux kernel: there is also a user

mode library [17, 16] that is portable and is gaining use in non-kernel applications.

2002 2004 2006 2008 2010 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

Date

u
se

s

RCU
RWL

Figure 2.1: Count of the number of uses of RCU primitives and Reader Writer Locking
primitives in the Linux Kernel.

McKenney described RCU as “a way of waiting for things to finish” [49]. This

definition can be illustrated through the canonical use of RCU: When a writer removes

a node from a linked list, a concurrent reader may still have a reference to the deleted

15

node. Before the writer reclaims the memory for the node, it waits for all current

readers to finish. New readers cannot obtain a reference to the node (there is no link

to it), so once all existing readers have finished, it is safe to reclaim the memory. By

deferring reclamation, the writer ensures that concurrent readers will only see valid

data.

Another mechanism RCU writers use to keep the data always-valid is copy-on-

update. When a node needs to be changed, the writer makes a copy of the node

in its private memory. The changes are made to the copy and once the changes are

complete, the new version is swapped with the old by publishing a pointer to the new

version. Copy-on-update prevents readers from seeing partially complete changes.

RCU shifts the cost of synchronization away from readers by approximating the

delay required for safe reclamation (called a grace period in RCU literature). In

order for memory reclamation to be safe, all readers that obtained a reference to

the deleted node must drop that reference before the node is reclaimed. But RCU

does not directly track references. Instead, RCU grace periods are defined such that

any read-section that existed at the beginning of a grace period must finish before

the grace period expires. With this definition, a grace period may be longer than

necessary (some read-sections may not have a reference to the deleted node), but

it is clearly long enough to make memory reclamation safe. See Chapter 3 for an

expansion of this claim.

Some versions of RCU further approximate a grace period by not tracking read-

sections, but by tracking alternate events. For example, Classic RCU does not allow

read-sections to be preempted and prohibits read-sections from executing blocking

calls. Because read-sections cannot be preempted or blocked, context switches cannot

occur during a read-section, so context switches can be used to define grace periods.

If every processor performs a context switch during a grace period, then every read-

16

section that existed at the beginning of the grace period must have finished. This

approximation may wait for longer than necessary—multiple read-sections may occur

between context switches—but it is guaranteed to wait at least long enough. For

non-preemptible kernels, the primitives which bound read-sections add no overhead

to readers. They can be completely optimized away because read-sections are not

explicitly tracked.

Relativistic programming is a generalization of the techniques developed for RCU.

If RCU can be described as “a way of waiting for things to finish”, then relativistic

programming can be described as “a way of ordering things.” The relativistic pro-

gramming primitives allow readers and writers to constrain the order in which the

individual memory operations that compose the read and write are visible to each

other. Unlike other synchronization mechanisms that try to impose a total order

on operations to the same data, relativistic programming allows each reader to view

writes in a different order. Each reader is allowed their own relative reference frame

in which to view updates, and it is this property that gives relativistic programming

its name.

Relativistic programming constrains ordering in a pairwise manner between a

writer and each reader. Each reader forms a different pair with the writer so the

ordering constraints can be applied differently to each reader-writer pair. By not

requiring a total order agreed on by all threads, relativistic programming minimizes

the ordering constraints and thus the overhead necessary to impose those ordering

constraints. By minimizing the overhead, relativistic programming holds the promise

for better performance and scalability.

Two examples of relativistic ordering will be given here. A complete treatment of

relativistic ordering is given in Chapter 3. The first example involves deleting a node

from a data structure. Any readers that observed the node must be prevented from

17

seeing the memory after it has been reclaimed. The relativistic approach does not con-

strain readers. Instead, the writer that deleted the node uses the wait-for-readers

primitive between unlinking the node from the data structure and reclaiming the

memory. The wait-for-readers guarantees that any thread that may have observed

the node has finished before wait-for-readers returns. This use of wait-for-readers

can be considered pair-wise because any reader that may have observed the node will

affect the wait, but any thread that could not have observed the node because it

started after the wait started will not affect the wait. Section 3.4.1 discusses a po-

tential implementation of wait-for-readers.

The second example involves adding a node to a data structure. The writing

thread creates and initializes the node and then links it into the data structure.

Readers that observe the node must observe the initialization as happening before

the node was made visible. Section 2.2 explains why program order cannot be relied

on to preserve this ordering. However, if rp-read is used to read the pointer to the

node and rp-publish is used to publish the pointer to the node, then any reader that

sees the new node will also see the initialization. Notice that this is also a pair-wise

ordering. The ordering of the initialization and publish is constrained for threads

that observed the new node, but not for threads that did not observe the new node.

Section 3.1.1 discusses how this is possible.

As relativistic programming has been generalized beyond RCU, it became ad-

vantageous to use different names for the primitives to make it clear that it is the

general operation that is being referred to, not the specific RCU implementation. For

example, the synchronize_rcu primitive in most RCU implementations waits for all

preexisting readers system wide to complete their read-sections4. Sometimes this is

done by waiting for a system event, such as a context switch on all processors, that

4The Linux SRCU implementation allows splitting SRCU into independent domains. Within
Linux, the other implementations are system wide.

18

is guaranteed not to occur until after all readers have completed their read-sections.

The RP primitive wait-for-readers must wait until any threads that hold references

to particular data have released their references. The RCU implementations meet

this requirement by meeting a broader requirement. Thus the RCU implementation

is sufficient, but in general leads to longer delays than are strictly required for RP. The

new primitive names are intended to make it clear that it is the concept of waiting

for all readers who hold references to particular data that is meant, not a particular

RCU implementation. A complete list of relativistic programming primitives is given

below. Table 2.1 lists the RP primitives and their Linux kernel RCU equivalents.

read-begin This primitive marks the beginning of a read-section. In all

known implementations, this operation is non-blocking and

wait-free.

read-end This primitive marks the end of a read-section. In most im-

plementations this operation is non-blocking and wait-free5.

rp-write-lock This primitive marks the beginning of a write-section. Note

that RP typically does not explicitly define how writers syn-

chronize between themselves. It is often done with locking

but this is not required. Within Linux, the rcuupdate.h

header file contains a comment mentioning these primitives

that explains that RCU readers do not synchronize with writ-

ers and that Linux leaves it up to developers to decide how

to coordinate writers.

rp-write-unlock This primitive marks the end of a write-section.

5In the case of preemptible RCU in the Linux kernel, if the RCU read-section was preempted,
then read-end will need to acquire locks to remove the task from the blocked-tasks list. But note
that this is an implementation detail. read-end is not an inherently blocking action.

19

rp-read This primitive is used by readers when dereferencing a pointer.

It guarantees that the pointer is fetched prior to being deref-

erenced (thus preventing value speculation) and it enforces

dependent read consistency.

rp-publish This primitive is used by writers when updating a pointer.

It guarantees that previous writes (in particular, those used

to initialize the node being made public) are made visible to

readers prior to the pointer being updated.

wait-for-readers This primitive is used by a writer when it needs to wait for

all preexisting readers to finish. This is required between the

time a node is removed from a data structure and the time

when the memory for the node is reclaimed. The delay is

required to ensure that no readers have a reference to the

node.

rp-free This primitive asynchronously frees memory after all current

read-sections have completed. By performing this operation

asynchronously, the writer can complete the rest of its work

before the grace period has expired.

Relativistic programming is distinct from the other synchronization mechanisms

presented in this chapter in two ways:

1. Joint access parallelism is allowed between readers and writers.

2. By default, writes are not totally ordered with respect to all readers. Different

readers can observe writes as happening in different orders.

20

RP name RCU name Reason for difference
read-begin rcu_read_lock This primitive does not ac-

quire a lock and never blocks,
so ‘lock’ should not be part of
the name.

read-end rcu_read_unlock Same as above.

rp-write-lock rcu_write_lock Replaced the RCU prefix.

rp-write-unlock rcu_write_lock Same as above.

rp-read rcu_dereference Generalized the name from
dereferencing a pointer to
accessing any RP protected
data.

rp-publish rcu_assign_pointer Generalized the name from as-
signing a pointer to publish-
ing any form of RP protected
data.

wait-for-readers synchronize_rcu Wanted to distinguish be-
tween the narrower “wait for
readers who hold references
to particular data” from the
broader meaning implied by
most current RCU implemen-
tations.

defer-for-readers call_rcu Used a name more descriptive
of what the primitive does

rp-free kfree_rcu Short cut for
defer-for-readers(free)

Table 2.1: Equivalence of relativistic programming and RCU primitives

21

The second item is what gives relativistic programming its name: each reader has a

relative view of the order of events.

Much of the work on relativistic programming has focused on preserving read

performance for the benefit of read-mostly data structures. Read performance is

preserved by shifting the cost of synchronization primarily to the writers so read-

ers can proceed almost as if they were sequential (single threaded) implementations.

Individual write algorithms have been proposed for different data structures includ-

ing linked lists and hash tables [62, 63]. More recently, a generalized construction

technique has been proposed [61] that explains where to insert the rp-publish and

wait-for-readers barriers into an RP algorithm in order to preserve the ordering

requirements of relativistic programs. Much of this work has presumed the ordering

properties of wait-for-readers and rp-publish. Chapter 3 presents an analysis of

the ordering requirements of relativistic programs. This analysis lays the foundation

for the research presented in later chapters.

2.1.5 Comparing the Approaches

Table 2.2 lists various synchronization mechanisms and the properties they supply.

The read-read column indicates that multiple threads, all reading the same data,

can proceed in parallel. The read-write column indicates that threads reading and

writing the same data can proceed in parallel. The applicability column indicates

how broadly the mechanism has been applied to data structures. The disjoint access

parallelism column indicates whether the mechanism allows threads accessing disjoint

portions of the data structure to proceed in parallel.

Fine grained locking allows disjoint access parallelism, but it is up to the pro-

grammer to determine how to partition the data. Some data structures are difficult

to partition. NBS typically does not explicitly partition data, but can provide some

22

Synchronization Method read-
read

read-
write

applicability disjoint access
parallelism

Relativistic Programming yes yes limited not specifiedb

Global Lock no no broad no
Reader-writer lock yes no broad noa

Fine grained locking noa no limited manual
Non-Blocking Sync yes no limited manualc

Transactional Memory yes no broadd automatice

a Fine grained locking can be combined with reader-writer locking to provide both
read-read concurrency and disjoint access parallelism.

b Synchronization between writers is not explicitly specified by RP, but various locking
schemes are typically used including fine grained locking that allow manual disjoint
access parallelism.

c NBS programmers need to manually detect and manage access conflicts. Most NBS
algorithms do this in a way that accomplishes disjoint access parallelism.

d TM systems have trouble handling non-idempotent operations, but are in most other
ways broadly applicable.

e Most high performance TM systems perform conflict detection on hashed values.
Hashing collisions lead to false sharing which limits the amount of disjoint access
parallelism obtainable by the TM system.

Table 2.2: Synchronization mechanisms and their properties.

level of disjoint access parallelism. However, the NBS programmer needs to explicitly

manage all the complexity of concurrent accesses. TM automatically provides disjoint

access parallelism. With relativistic programming, synchronization between writers

is not explicitly specified. Various mechanisms are used including fine grained locking

that provides manual disjoint access parallelism.

Fine grained locking has limited applicability because of the difficulty of partition-

ing some data structures. NBS has limited applicability because each data structure

requires a separate and complex implementation. Relativistic programming has had

limited applicability because it has mostly been applied to linked lists (or structures

such as hash tables that are built on top of linked lists) and because each new data

structure requires a new algorithm.

This dissertation addresses the two limitations of relativistic programming listed

in Table 2.2. It shows that relativistic programming can be applied to a broad range of

23

data structures including those that require complex multi-node updates (see Chap-

ter 4). It also shows how relativistic programming can be used in conjunction with

software transactional memory to provide automatic disjoint access parallelism on

the write side while supporting concurrent relativistic reading of the same data (see

Chapter 6).

2.2 Impact of Reordering on Concurrent Programming

Programmers tend to assume that their programs execute in program order, but both

optimizing compilers and modern hardware invalidate this assumption. Optimizing

compilers transform source code into efficient machine code whose execution is equiva-

lent to a sequential execution of the source code. But the key here is that the compiler

assumes a sequential execution. Both the compiler and the underlying hardware can

reorder code in a way that is safe for a sequential execution but may not be safe for

a concurrent execution [9].

Modern hardware does not present a sequentially consistent interface to bare metal

programmers. Multiple levels of cache, instruction pipelines, and out of order execu-

tion units allow modern CPUs to be fast, but these features mean concurrent pro-

grammers cannot assume sequentially consistent behavior of their code [2, 52, 53, 3].

Listing 2.1 shows code for two threads that run concurrently. Thread 1 initializes

a node and Thread 2 spins waiting for the node to be initialized before examining

its contents. For a sequential execution, it does not matter what order the fields

are initialized. But for a concurrent execution, it is important that init_complete

be initialized after the other fields. If the compiler assumes a sequential execution,

it may reorder these lines, for example, to make better use of registers. The CPU

may reorder the lines, for example, due to cache line availability. Finally, even if the

compiler and CPU leave the order intact, the memory systems on some hardware

24

architectures can also reorder when the stores are written to memory.

thread1

1 void init(node_type *data) {

2 data->field1 = FIELD1_INIT;

3 data->field2 = FIELD2_INIT;

4 data->init_complete = TRUE;

5 }

thread2

1 while (!data->init_complete)

2 {}

3 examine(data);

Listing 2.1: The effects of Line 4 of Thread 1 must become visible after the effects of
lines 2 and 3 to prevent Thread 2 from seeing uninitialized data.

The impact of reordering can be localized in lock based code. Use of locking dif-

ferentiates between three categories of code: that accessing only thread-private data,

that appearing in critical sections, and that comprising the locking primitives them-

selves. Local code can be treated as sequential because there is no shared data. The

critical section can also be treated as sequential because mutual exclusion prevents

conflicts involving writes. So only the locking primitives are truly concurrent.

A programmer writing new locking primitives must be concerned about all the

complexities of concurrent programming. They must ensure that the primitives en-

force the semantics of the lock on the target hardware. They must account for what-

ever reorderings the CPU and memory system allow because the lock primitive code is

truly concurrent. They must also ensure that the locking primitives contain whatever

barriers are necessary to prevent the compiler, CPU, or memory system from moving

code across a critical section boundary; otherwise, code that should have been within

a critical section can take effect outside that critical section.

If locking primitives work correctly and are used correctly, a programmer using

those primitives in a multithreaded program can view both their local code and critical

25

section code as if it was sequential.6 They still have many other issues to worry about,

but not compiler, execution unit, nor memory system reorderings.

In contrast with locking programs, NBS, TM, and relativistic programs allow

reads to run concurrent with writes. They are truly concurrent in the sense that

they contain data races7. Because NBS, TM, and RP programs are truly concurrent,

programmers need to be aware of and manage the reorderings discussed earlier. Each

of these mechanisms handles this concurrency differently.

With NBS, there is no standard way to handle the effects of concurrency. The

programmer has to deal directly with all the complexity of potential reorderings. It

is for this reason that NBS algorithms tend to be very complex.

With TM, the complexity of concurrency is largely hidden, much as it is with

locking. The TM system guarantees that all of the operations within a transaction will

appear to occur atomically to any other transaction. As a result, TM programmers

only need to reason about correctness at transaction boundaries much as locking

programmers only need to reason about correctness at critical section boundaries.

Relativistic programming requires programmers to be directly aware of concur-

rency similar to NBS. However, relativistic programming identifies specific operations

that need to be ordered and provides a small number of ordering primitives with sim-

ple rules for their placement. If these primitives work correctly and are used correctly,

they will only allow correct orderings of execution. The orderings and primitive place-

ment are the subject of Chapter 3.

Table 2.3 lists the four synchronization approaches and how visible the effects of

6Boehm [9] points out that in the absence of a memory model, a compiler may transform code
so that data races are created that did not exist in the source. When this happens, code that
the programmer thought was data race free (and therefore viewable as sequential) will in fact be
concurrent. The keepers of the Java and C++ languages have addressed these issues by developing
formal memory models for these languages.

7The broadest definition of a data race is two threads that access the same data concurrently
where one of the accesses is a write. Some authors [6] restrict the definition to only accesses that
are not protected by memory ordering primitives. The term is used here in the broader sense.

26

concurrency are. For locking, programmers define critical sections and wrap those

sections in locking primitives. All the effects of concurrency are hidden by these

primitives. TM is similar, but transactions are defined rather than critical sections.

With NBS, all the effects of concurrency are visible to the programmer and the

programmer must explicitly manage them. With RP, the effects are visible but the

primitives and the methodology abstract away the details making it much easier to

manage concurrency.

Synchronization Method Effects of Concurrency
Locking Hidden
NBS Visible
TM Hidden
RP Visible but abstracted

Table 2.3: Visibility of the effects of concurrency

2.3 Correctness Criteria

Just as programming in a concurrent environment is more complex than in a se-

quential environment, so too is defining correctness. Concurrent correctness criteria

must not only define the correct sequential behavior, they must also define correct

interaction between threads.

Correctness of implementations that use locking is often defined in terms of data

structure invariants. The invariants define a correct state of the data structure and

can define properties of both the ADT and the underlying data structure used to

represent the ADT. Some example invariants are given in Table 2.4. Threads are

allowed to violate the invariants while they hold the lock, but the invariants must be

restored prior to releasing the lock. Proving correctness consists of proving that all

invariants are restored prior to releasing the lock. Mutual exclusion means that while

one thread holds the lock, no other thread will interfere with its access of the data

27

and thus with its ability to restore the invariants. Mutual exclusion also means that

while one thread has temporarily violated the invariants during an update, no other

thread will access the data and see an invalid state.

Data Structure Invariants
Linked List Every node is reachable and connected to the root

Doubly Linked List for each node: node->prev->next == node

for each node: node->next->prev == node

Hash Table Each element is reachable from the correct bucket

Each element is reachable only from the correct bucket

Sorted Tree All nodes on the left branch of a subtree have a key less
than the the key of the root of the subtree

All nodes on the right branch of a subtree have a key
greater than or equal to the key of the root of the subtree

Map Each key value occurs only once

Table 2.4: Potential invariants for various data structures.

NBS does not use critical sections nor mutual exclusion, so invariants cannot be

used in the same way they are for locking. Data can be changed by one thread during

another thread’s operation so threads cannot even assume the constancy of data. The

most common correctness criteria for NBS solutions is linearizability. Linearizability

requires an equivalence between the linearizable computation and a legal sequential

computation [36]. Linearizability is most often proven by showing that each operation

has an atomic step at which the operation takes effect. Prior to that atomic step, the

ADT is in the state prior to the operation; after that atomic step, the ADT is in the

state following the operation. Because the step is atomic, threads either see the state

before or after the operation.

28

Linearizability also allows reasoning about NBS solutions in terms of pre and

post conditions much as locking allows reasoning about invariants [65]. Reasoning

about pre and post conditions is easier than reasoning about every intermediate state

in an NBS solution, and this is the value of linearizability. However, the easier

reasoning comes at a cost. Herlihy et. al. [35] proved there is a performance cost to

linearizability8. Their proof was not for a particular implementation, but covered any

implementation.

Similar to lock based systems, transactional memory allows correctness conditions

based on invariants. The programmer must prove that a transaction restores all the

invariants prior to committing. The programmer then depends on the TM system

to provide isolation and atomicity. Isolation guarantees that other transactions will

not interfere with the current one. Atomicity guarantees that other transactions

will observe either all of the effects of the current one or none of the effects of the

current one. If the TM system provides sufficiently strong isolation and atomicity

guarantees, then reasoning about a TM system is the same as reasoning about a lock

based system.

Relativistic programming has not had adequate correctness criteria. The use of

invariants enforced at the end of a write-side critical section is inadequate because

there is no isolation between reads and writes. Readers can see the intermediate

states including any that might temporarily violate the invariants. Linearizability

is also inadequate because relativistic programming explicitly allows non-linearizable

solutions. The name “relativistic programming” comes from the fact that each reader

is allowed to have their own view of the order of updates. This relative view of updates

is specifically disallowed by linearizability.

The following correctness criteria can be applied to relativistic implementations

8Their work dealt specifically with counting networks, but the underlying cause of the perfor-
mance cost applies to other data structures

29

of Abstract Data Types (ADTs):

1. Updates leave the ADT in an always-valid state meaning a read can access the

data structure at any time without the need for synchronization.

2. Read operations on the ADT see the effects of all previous non-concurrent

updates.

3. Read operations do not see any of the effects of later non-concurrent updates.

4. For a read that is concurrent with an update, the read sees either the state of

the ADT prior to the update or after the update, but the read is not allowed

to see any other state.

Item 1 differs from reader-writer locking in that reader-writer locking writers can

violate the data structure invariants while holding the write-lock. RP writers have

the data always-valid because readers can access the data at any time. Note that it

is the ADT that must be always-valid. Invariants of the underlying data structure

may be temporarily violated provided the violation does not result in an invalid ADT

state. For example, the balance properties of a tree may be temporarily violated

provided that doing so does not lead to incorrect read operations.

Items 2–3 are the same as for reader-writer locking. They state that non-concurrent

operations form a total order that matches the serial order.

Item 4 deals with read-write concurrency, and states that a write cannot affect an

unrelated read. For example: if a set includes the values 1..5 then a write inserting

the value 6 should not cause a concurrent read looking for one of the values 1..5 to

return not-found. Item 4 is intended to allow non-linearizable behavior in that not

all concurrent readers have to observe the same states. This aspect of relativistic

programming is covered in Section 3.3. Also note that Item 4 refers to states of the

30

ADT, not states of the data structure implementing that ADT. For example, if a

red-black tree is used to implement a Map, then readers may see intermediates states

of the red-black tree, but each reader visible state of the red-black tree must map to

the state of the Map either before or after the update.

31

Chapter 3

The Ordering Requirements of Relativistic Programs

As discussed in Section 2.2, both compilers and hardware are capable of reordering

the execution of a program so it is not safe to assume the program executes in program

order. Reordering is not a problem for sequential programs because compilers and

hardware work together to preserve the effect of a sequential execution of the source

code. Concurrent programs may observe reorderings in such a way that erroneous

results are produced. For example, if a thread is adding a node to a structure,

the source code might initialize the fields of the node and then set a pointer so

the node is part of the structure. But the pointer assignment might get reordered

with some portion of the initialization in such a way that another thread might

encounter uninitialized data. Concurrent programs must be written in such a way

that reorderings that lead to erroneous results are prevented.

This chapter examines the mechanisms used by reader-writer locking (RWL) and

relativistic programming (RP) to control ordering. This chapter is outlined as follows:

Section 3.1 introduces the terminology used to describe ordering relationships and

also discusses the primitives used by RWL and by RP. Section 3.2 looks at four

progressively more complex examples to illustrate how the RWL and RP primitives

are used and to demonstrate how they control ordering. Section 3.3 looks at additional

considerations that exist when considering multiple writers rather than a single writer.

32

Section 3.4 shows both analytically and empirically that the performance of RP is

better than that of RWL. Section 3.5 summarizes the contributions presented in this

chapter.

3.1 Introduction to Ordering Control

This section introduces the terminology used in this chapter to describe ordering

relationships in concurrent programs. This section also describes the primitives used

in RWL and RP programs to control ordering.

3.1.1 Terminology

Three types of ordering relationships are discussed in this chapter: program order,

occurred-before, and required-before. Program order is the order defined by the source

code of the program. As noted earlier, both compilers and hardware can reorder the

execution of the code. Where reordering can cause erroneous executions, primitives

must be inserted to preserve program order.

In a race condition where one thread writes a value that another thread reads,

the read and write can occur in one of two orders1. If the read observes the value

written, then we say the write occurred-before the read. If the read observes the value

that existed prior to the write, then we say the read occurred-before the write. Note

that there is no correctness implication with either observation. The occurred-before

relationship simply documents the outcome of a race for two particular instances of

threads. Other threads are allowed to make different observations. In the text, an

arrow will be used to mean occurred-before so A→ B reads A occurred-before B .

Occurred-before relationships often impose correctness constraints on other opera-

1This discussion assumes the values are read and written atomically. This is the case, for
example, with word sized, word aligned values.

33

tions. Consider the case where a writing thread creates and initializes a node and then

links that node into a data structure. A reading thread is traversing the data struc-

ture and reads the pointer written by the writing thread. If the write occurred-before

the read, then the reader will observe the new node, and so it is important that the

initialization off the node occur before the reader examines the node. We call this a

required-before relationship and say that the initialization is required-before the deref-

erence of the node. In general, program order cannot be depended upon to enforce

required-before relationships; the existence of the required-before relationship implies

that the progrmmer must do extra work to enforce the relationship. Note that the

required-before relationship in this example only applies to threads for which the write

occurred-before the read. Threads that do not have this occurred-before relationship

also do not have the required-before relationship. In the text, a double arrow will be

used to mean required-before so A⇒ B reads A is required-before B .

Correctness conditions often have the form: If A occurred-before B then C is

required-before D . Both occurred-before and required-before relationships involve ob-

servations, so they are in this respect the same. The difference, as implied by the

form of the correctness conditions, is that the required-before relationship implies the

programmer must do extra work to guarantee this relationship is observed every time

the occurred-before relationship is observed.

Note about notation: When discussing ordering relationships, multiple threads

may be discussed in the same context. If the context does not make it clear which

thread is meant, a subscript will be used on an operation name to specify the thread

so operThread 2 means the oper of Thread 2. Because long subscripts make the text

awkward, the subscript may be abbreviated so oper of Thread 2 may be written

operT2.

Ordering relationships can be depicted graphically as shown in Figure 3.1. Dashed

34

arrows indicate program order relationships. As in the text, single and double ar-

rows indicate occurred-before and required-before relationships respectively. Figure 3.1

shows the relationships for readers accessing a list with adjacent nodes A and C and

a writer inserting a node B between A and C . The write takes place in two steps: init

initializes B and link links B into the list by changing the pointer out of A. There

are two steps of a read that are important when considering the correctness of an

implementation: in obtain ref, the reader obtains a reference to the node following

A. This could be either a reference to B or C depending on whether or not link →

obtain ref. The second step of the read is deref where the node whose reference was

obtained in obtain ref is read. If obtain ref → link then the reader will not see B and

there is no constraint on the init and deref. However, if link → obtain-ref, then the

reader sees B and the relationship init ⇒ deref must be enforced or the reader may

see uninitialized data.

Reader 1

obtain ref

deref

Writer

init

link

Reader 2

obtain ref

deref

Figure 3.1: Orderings that have to be enforced by synchronization. Reader 2 obtains
a reference to the new node, so the initialization of that node must be visible to
Reader 2 before Reader 2 accesses that node.

Listing 3.1 shows two mechanisms for enforcing required-before relationships. In

the first mechanism, Thread2 is waiting for an action in Thread1. The wait in com-

bination with barrier2() enforces A ⇒ B . The barrier is required to prevent the

compiler or the hardware from executing B prior to the while. The mechanism used

by Thread2 will be referred to as the wait mechanism of enforcing required-before

35

relationships. In the second mechanism, Thread3 observes the second write from

Thread1. The barrier() in Thread1 requires that the first write becomes visible be-

fore the second. The barrier() in Thread3 prevents the compiler or hardware from

speculatively executing D prior to the if. The combination of these barriers enforces

A ⇒ D [57, 54]. This mechanism will be referred to as the dependency ordering

mechanism of enforcing required-before relationships.

Thread1()

A: a=1;

barrier1();

C: c=1;

Thread2()

while (!a)

{}

barrier2();

B:

Thread3()

if (c)

{

barrier3();

D:

}

Listing 3.1: Thread2 uses a wait to guarantee A⇒ B . Thread3 relies on the memory
barrier in Thread1 to guarantee that A⇒ D .

Listing 3.2 shows a special case of dependency ordering. The operation at D is a

dependent read because it dereferences a pointer read earlier in the code. All mod-

ern hardware enforces dependent read consistency without the need for a hardware

barrier. As a result, in this case, barrier2() requires a compiler barrier, but not a

hardware barrier.

The dependency ordering mechanism waits on the memory system. The barrier()

in Thread1 of Listing 3.1 can be thought of as waiting for the memory system to

complete the work required by the first write in Thread1. The wait mechanism first

waits for program logic. The while loop in Thread2 of Listing 3.1 is waiting for

the program logic in Thread1 to write a value. After Thread1 writes the value,

Thread2 must also wait for the memory system because it is the memory system that

communicates the value to Thread2. Because the dependency ordering mechanism

36

Thread1()

A: a=1;

barrier1();

C: c=&node;

Thread2()

p = c;

if (p != NULL)

{

barrier2();

D: d = p->value;

}

Listing 3.2: Thread2 implements to dependency ordering mechanism for enforc-
ing required before relationships. Because the operation in D is a dependent read,
barrier2() does not require a hardware barrier on any modern hardware.

waits only for the memory system but the wait mechanism must wait for both program

logic and the memory system, the wait mechanism is a heavier weight mechanism.

Its use will likely have a larger negative effect on both performance and scalability.

Reader-writer locking only gives access to the wait mechanism for enforcing order-

ing. Relativistic programming gives access to both mechanisms. Access to the lighter

weight dependency ordering mechanism is part of what gives relativistic programming

its performance advantage over reader-writer locking.

3.1.2 RWL Ordering Primitives

Reader-writer locking uses the primitives read-lock, read-unlock, write-lock, and

write-unlock to control ordering. The semantics of reader-writer locks allow read-

sections to proceed concurrently with other read-sections, but do not allow write-

sections to proceed concurrently with any other sections (read or write). Stated

using the ordering relationships:

1. if read-lock → write-lock then read-unlock ⇒ write-lock

2. if write-lock → read-lock then write-unlock ⇒ read-lock

3. if write-locki → write-lockj then write-unlocki ⇒ write-lockj

37

The first constraint prevents a writer from starting if any readers hold the lock.

The second constraint prevents a reader from starting if a writer holds the lock.

The third constraint prevents a second writer from starting if another writer holds

the lock. Note that there is no constraint to prevent a second reader from starting if

another reader holds the lock. The absence of this constraint is what allows read-read

concurrency.

If a thread holds the write-lock, another thread that calls either read-lock or

write-lock must wait for the write-lock to be released. For this reason, both the

read-lock and write-lock must use the wait mechanism of enforcing required-before

relationships.

3.1.3 RP Ordering Primitives

RP has five ordering primitives: rp-publish, rp-read, start-read, end-read, and

wait-for-readers. The rp-publish and rp-read primitives work together to imple-

ment the dependency ordering mechanism. The writing thread uses rp-publish for

the second of the two writes, and the reading thread uses rp-read to read the pub-

lished value. The rp-publish contains compiler and hardware barriers to prevent

reordering across the rp-publish. RP assumes that the read following rp-read will

depend on the value acquired through the rp-read. Because all modern systems en-

force dependent read consistency without requiring a memory barrier, the rp-read

forces the compiler to emit a load instruction, but it has no other effect on ordering.

With RP, most of the work required to guarantee ordering is placed on writers. For

this reason, rp-read will not be mentioned in most of the discussion on ordering,

however, Section 3.2.5 mentions the rule for when to apply rp-read and this rule

applies to all platforms, whether they include a memory barrier in rp-read or not.

The wait-for-readers primitive guarantees that any reads that started prior to

38

the wait will finish before the end of the wait. The start-read and end-read are used

to bound read-sections to facilitate wait-for-readers2. Stated using the ordering

relationships (see also [17]):

∀ readers and any wait-for-readers if start-read → (the start of

wait-for-readers) then end-read ⇒ (the end of wait-for-readers)

This definition makes a distinction between the start of wait-for-readers and the

end of wait-for-readers because wait-for-readers has a duration. Some portion of

a read-section may be concurrent with the wait-for-readers, but any read-section

concurrent with the beginning of the wait-for-readers must be complete before

wait-for-readers terminates. Note that the definition of wait-for-readers does not

comment on reads that begin after the start of the wait. This is intentional because

wait-for-readers does not need to wait for these reads.

Because wait-for-readers implements the wait mechanism, it must include what-

ever compiler and hardware barriers are required to prevent reordering across it.

3.2 Case Studies

Four operations will be used to illustrate ordering relationships. A singly linked list

will be used to illustrate these operations here, but the operations are representative

of operations on a wide variety of data structures. Chapter 4, for example, shows

that all the operations required to maintain a red-black tree can be described in terms

of these four basic operations. The operations are insert, delete, move forward, and

move back. The insert and delete operations are self explanatory. The move forward

and move back operations consist of moving a node from one location within a data

2Some RP implementations do not use start-read and end-read to compute the
wait-for-readers’s delay [17]. However, such implementations still support start-read and
end-read for software-engineering reasons.

39

structure to another. The direction is relative to the traversal order of readers.

3.2.1 Insert

There are two steps in adding a node to a linked list. The node must be initialized and

the node must be linked into the list. Consider a linked list with two nodes labeled A

and C . A write thread adds node B between nodes A and C . The following names

are used for specific steps in the insert whose order is critical:

obtain ref a reader obtains a reference to the node following A. This could be a

reference to B or C .

deref the reader accesses the contents of the node whose reference was ob-

tained by obtain ref. This includes dereferencing the pointer to the

next node.

init the writer initializes node B .

link the writer links B into the list by changing the pointer out of A.

The ordering relationship required for correctness is given by:

if link → obtain ref then init ⇒ deref

Figure 3.2 shows how reader-writer locking primitives maintain the correct or-

dering relationships for an Insert operation. The inter-thread relationships are de-

fined by reader-writer locking semantics. For Reader 1, read-lock → write-lock. This

imposes the relationship read-unlock ⇒ write-lock. For Reader 2, the relationship

write-lock → read-lock requires write-unlock ⇒ read-lock.

The correctness of a reader-writer lock implementation depends on program order

dependencies being preserved. In particular, because init and link do not have any

40

Reader 1

read-lock

obtain ref

deref

read-unlock

Writer

write-lock

init

link

write-unlock

Reader 2

read-lock

obtain ref

drop ref

read-unlock

Figure 3.2: Ordering relationships for a reader-writer lock insert operation. The
locking semantics prevent the write from being concurrent with a read. The lack of
concurrency is what enforces the ordering relationships.

required-before relationships specified, the compiler or hardware can re-order them.

If, in addition, init was delayed until after write-unlock, then Reader 2 could see

uninitialized data. Other examples could be given to show the need to prevent re-

ordering around the other primitives, so the locking primitives must not only enforce

the locking semantics, they must also contain whatever compiler and memory barriers

are required to guarantee the contents of the critical section do not leak outside. If

the locking primitives preserve these properties, then only correct orderings will be

allowed.

41

Figure 3.3 shows the ordering relationships for a relativistic insert. Because both

init and link are memory writes and Reader2 observes the second of the two, the

relationship init⇒ derefR2 can be satisfied using the dependency ordering mechanism.

The rp-publish in Line 5 of Listing 3.3 guarantees that the memory writes that are

part of the initialization are visible to readers prior to the new node being reachable

by readers. In other words, using rp-publish to perform the link and using rp-read

to obtain ref will guarantee init ⇒ derefR2.

Reader 1

obtain ref

deref

Writer

init

link

Reader 2

obtain ref

deref

Figure 3.3: Ordering relationships for a relativistic insert.

1 void insert_at(prev, key, value)

2 {

3 node = create_and_init(key, value);

4 node->next = prev->next;

5 rp_publish(prev->next, node);

6 }

Listing 3.3: Pseudo-code for a relativistic insert.

Figure 3.3 is the same as Figure 3.1, which shows the ordering relationships in-

dependent of synchronization mechanism. The similarity of these two figures shows

that, at least for the insert operation, RP imposes only the minimum of ordering

constraints.

Note the following in comparing the RWL and RP insert operations: First of all,

the net effect of both implementations is the same: a given reader sees the list either

42

before or after the insert. In neither case are any intermediate states visible. Secondly,

the graphical representation of the operations in Figures 3.2 and 3.3 gives a hint as

to their comparative performance. The RWL implementation takes up more space

indicating it will likely be slower. Also, the RP implementation allows concurrency.

The readers overlap with the writer. Finally, for Insert, the start-read and end-read

primitives are not part of the ordering requirements. Their use will be demonstrated

in the next section on the Delete operation.

3.2.2 Delete

This section examines a linked list delete operation. The linked list begins with three

nodes labeled A, B , and C . A write thread removes node B leaving nodes A and C

and then reclaims the memory used by B . The following names are used for specific

events whose order is critical:

obtain ref Obtain a reference to the node following A. This could either be a

reference to B or C depending on whether the reference is obtained

before or after B is removed from the list.

drop ref The thread no longer has a reference to the node following A. In most

cases, code does not explicitly drop references, so drop ref is implied

after the last use of the reference in question.

unlink The writer removes B by changing A so it points to C instead of B .

reclaim The writer reclaims the memory used by B , allowing this memory to

be used for another purpose.

The ordering relationship required for correctness is given by:

if obtain ref → unlink then drop ref ⇒ reclaim

43

The analysis of the reader-writer implementation of Delete is the same as for

Insert. There is no concurrency between readers and writers so if obtain ref→ unlink,

then the entire reader occurs before the writer thus guaranteeing drop ref ⇒ reclaim.

The only requirement is that the lock and unlock primitives include compiler and

memory barriers to prevent the contents of the critical section from leaking outside.

Figure 3.4 shows the ordering for a relativistic Delete. The wait-for-readers is

depicted in two parts—the beginning of the wait and the end of the wait. Splitting the

wait makes it easier to identify the occurred-before and required-before relationships

in relativistic algorithms.

Reader 1

start read

obtain ref

drop ref

end read

Writer

unlink

start wait

end wait

reclaim

Reader 2

start read

obtain ref

drop ref

end read

Figure 3.4: Ordering relationships for a relativistic delete. The wait-for-readers

was split into start wait and end wait to make the relationships more clear.

There is no explicit ordering relationship between obtain refR1 and unlink. They

can occur in either order. This can be visualized in Figure 3.4 because the unlink can

be raised above obtain refR1 without affecting any other ordering relationships. How-

44

ever, any reader that has obtain ref → unlink must also have start read → start wait.

The converse is not true: Having start read → start wait does not imply any relation

between obtain ref and unlink. As a result, using start read → start wait to limit or-

dering is more conservative than using obtain ref→ unlink because wait-for-readers

may wait longer than necessary, but it is guaranteed to wait long enough. That is, it

is guaranteed to wait for all threads that have obtain ref → unlink, but it might also

wait for some threads that have unlink → obtain ref. But because it is guaranteed to

wait for all threads that have obtain ref → unlink, it enforces the correctness criteria

drop ref ⇒ reclaim on all threads to which this is required.

In order for the above argument to hold, the start read and end read primi-

tives require compiler and memory barriers to prevent obtain ref from occurring be-

fore start read and to prevent drop ref from occurring after end read. These are

the same barrier requirements for reader-writer locking primitives. Similarly, the

wait-for-readers primitive must have compiler and memory barriers to prevent

reclaim from occurring before end wait. With these barriers in place, the correct-

ness condition is met.

Note the following in comparing the RWL and RP implementations. First, much

like with Insert, in both cases the reader observes either the state before or after the

Delete, but no intermediate states. Second, the RP implementation used the wait

mechanism to enforce the ordering relationships much as the RWL implementation.

However, the RP implementation still allowed concurrency. Whether the RP reader

observes the state before or after the Delete, much of the reader can execute in

parallel with the writer. This is not the case in the RWL implementation. The

increased concurrency of the RP implementation allows it to scale better than the

RWL implementation.

45

Listing 3.4 gives pseudo-code for a relativistic delete. The primary difference be-

tween the relativistic implementation and a standard implementation is the inclusion

of wait-for-readers between where the node gets unlinked and where it gets freed.

Although rp-publish is not required for ordering purposes for the delete, it is typi-

cally included for software engineering purposes. Rather than reasoning about which

pointer updates require rp-publish for ordering and which do not, all reader-visible

pointer updates are made through rp-publish. Another note about this pseudo-code,

rp-free could be used to asynchronously free the memory for the deleted node. Do-

ing so would allow the write to complete sooner because it would not include the

wait-for-readers. The ordering requirements would still be met because rp-free

includes an implied wait-for-readers prior to freeing the memory.

1 void delete_after(prev)

2 {

4 node = prev->next;

5 rp_publish(prev->next, node->next);

6 wait-for-readers();

7 free(node);

8 }

Listing 3.4: Pseudo-code for a relativistic delete.

3.2.3 Move Forward

The previous two sections showed how rp-publish and wait-for-readers can be

used to control ordering. Their use was illustrated via linked list insert and delete

operations. Both of these operations are fairly simple. They both involve two updates,

but both of these updates are to the same node. The insert initialized and published

a node. The delete unlinked and reclaimed a node. This section examines a slightly

more complex example: a Move Forward operation in which a node is moved from one

46

location to a location later in the list. The primary difference between this example

and the previous is that relativistic readers have the potential to see intermediate

states.

Figure 3.5 shows a linked list where node B is moved from the second to the

third position within the list. Three pointers need to be changed to effect this move:

The pointers out of A, B , and C . Reader-writer locking uses mutual exclusion so

readers never see intermediate states. As a result, it does not matter what order

these pointers are updated. Readers can see the state before none of the pointers are

updated or the state after all three are updated.

A B C D

Before the move

A C

B

D

After the move

Figure 3.5: Moving a node to a location later the list.

With relativistic programming, readers can see intermediate states. The possi-

ble reader-visible states are: the node is in its old position, the node is in its new

position, the node is in both positions, and the node is in neither position. The

“both” and “neither” options represent intermediate states. To decide which (if any)

of these intermediate states are valid, we need correctness criteria. The relativistic

programming correctness criteria depend on the ADT the list is representing.

Consider a Map where each node contains a 〈key,value〉 pair. With a list repre-

senting a Map, the location of a node within the list does not matter. As a result, the

move does not change the state of the ADT so readers that observe the list at any

intermediate point in the update should observe the same ADT state. (See Triplett

et. al. [62] for an example of why an item may need to be moved in a list without

affecting the state of the represented ADT.) Maps support lookups which either re-

47

turn a value or not-found. If the lookup encountered the state where the node was

not in either position, it could erroneously return not-found. However, if the lookup

encountered the state where the node was in both positions, it would simply return

the value from the first matching node it found. Because both positions contain the

same value, it does not matter which node the value is taken from.

The following discussion is for a Map implemented with a relativistic linked list.

Later in this section will be a discussion of a MultiMap which allows keys to be

repeated with different values.

Hardware architectures do not have an operation that can update three pointers

atomically. If the pointers are updated one at a time, an invalid intermediate step

will be visible as shown in Figures 3.6a- 3.6c. Even a three-way atomic update would

not be sufficient to prevent invalid states. A reader looking for C that was at B

when the atomic update took place would fail to find C because after the update, C

precedes B . The relativistic solution is to place a copy of B in the new location prior

to removing B from its original location as shown in Figure 3.6d.

A B C D A B C D

a) Change link out of A first:
B is unreachable.

b) Change link out of B first:
C is unreachable.

A B C D

A B C

B ′

D

c) Change link out of C first:
D is unreachable.

d) Insert a copy of B in the
new location.

Figure 3.6: Possible intermediate states when moving node B .

48

Figure 3.7 shows the ordering relationships for this move. The event deref(X)

means reading the contents of node X including following the pointer to the next

node. The figure shows three readers: Reader 1 observes the list with B in its

original position; Reader 2 observes the list with B in both positions; Reader 3

observes the list in its new position. The fourth option—observing B in neither

position—is specifically prevented, so the three readers shown in the figure represent

an exhaustive enumeration of the possibilities.

Readers 1 and 2 have deref(A) → unlink(B) so these readers observe B . Any

reader that observes B has deref(B) ⇒ reclaim(B). The required-before relationship

can be satisfied by placing a wait-for-readers between unlink(B) and reclaim(B).

This case is identical to removing a node from a linked list as discussed in Section 3.2.2.

Reader 1

deref(A)

deref(B)

deref(C)

deref(D)

Writer

init(B ′)

link(B ′)

unlink(B)

reclaim(B)

Reader 2

deref(A)

deref(B)

deref(C)

deref(B ′)

deref(D)
Reader 3

deref(A)

deref(C)

deref(B ′)

deref(D)

Figure 3.7: Ordering relationships for a reader and a writer performing a move.

Reader 2 has link(B ′) → deref(C) and Reader 3 has link(B ′) ⇒ deref(C) so

49

these readers observe B ′. Observing B ′ means there is a required-before relationship

between init(B ′) and deref(B ′). This relationship is satisfied using rp-publish to

perform the link(B ′) operation. This situation is the same as adding a node to a

linked list as discussed in Section 3.2.1.

Reader 3 has unlink(B) → deref(A) meaning the reader did not observe B . If this

reader is looking for the key in B , it must observe B ′ otherwise it will erroneously

report that B is not in the list. The relationship link(B ′) ⇒ deref(C) captures this

dependency. Because link(B ′) and unlink(B) are both writes, and because Thread 3

observed the second of these two writes, the dependency ordering mechanism can be

used to enforce link(B ′) ⇒ deref(C). The rp-publish primitive guarantees that all

writes in program order prior to the publish will be visible to readers before the

published value. If rp-publish is used to unlink(B), then any reader that observed

the unlink must also observe any previous writes, namely, link(B ′). This is precisely

the condition needed.

Listing 3.5 shows pseudo-code for a relativistic move forward. The parameters

new_pos and old_pos represent the nodes immediately before the new and old loca-

tions of the node to be moved. All of the required-before relationships can be satisfied

by using wait-for-readers prior to freeing the memory for node in line 10 and by

using rp-publish to update the pointers in lines 7 and 8. As with the Delete op-

eration, rp-free could be used to asynchronously free the memory for node so the

update could complete earlier.

The preceding analysis was for a linked list that implemented a Map where du-

plicate nodes are assumed to represent the same item. If a linked list was used to

represent a MultiMap, then duplicate nodes would be assumed to be two different

items that happened to have the same key. In this case, a move that allowed a reader

to see the node in both locations might be considered erroneous. A relativistic move

50

1 void move_forward(new_pos, old_pos)

2 {

4 node = old_pos->next;

5 copy = copy_node(node);

6 copy->next = new_pos->next;

7 rp_publish(new_pos->next, copy);

8 rp_publish(old_pos->next, node->next);

9 wait-for-readers();

10 free(node);

11 }

Listing 3.5: Pseudo-code for a relativistic move forward. The new_pos and old_pos

parameters are the nodes prior to the new and old positions of the node to be moved.

that required readers to only see the state of the list before the move or after the

move with no intermediate states would require copying all the nodes between the

new and old location as shown in Figure 3.8. Readers in which deref(A) → link(C ′)

are guaranteed to see B but not B ′. Readers for which link(C ′) → deref(A) are

guaranteed to see B ′ but not B .

A B C D

Before the move

A B C D

C ′ B ′

After the move

Figure 3.8: Nodes B and C were copied so B can be moved without readers seeing
intermediate states.

The Move Forward operation represents a departure from Insert and Delete be-

cause the RP implementation has the potential to allow readers to see intermediate

states. Which states (if any) are visible to readers can be controlled by the pro-

grammer through copying nodes. While this is more complex than a reader-writer

locking solution, the RP solution should be faster and more scalable both because

it allows more concurrency and because the RP solution uses the lighter weight

51

dependency ordering mechanism to control ordering instead of the heavier weight

wait mechanism.

3.2.4 Move Back

A Move Back consists of moving a node from later in the list to a location earlier in

the list. While there are many similarities to a Move Forward, if the list represents

a Map this move requires a wait-for-readers to preserve the correctness properties

where Move Forward could be handled using the dependency ordering mechanism.

Figure 3.9 shows node B being moved from the third to the second position in a

linked list. A copy of B (labeled B ′) is placed in the new location prior to removing

the original. If the list represents a Map, then the correctness conditions for this

move are as follows:

1. if deref(C) → unlink(B) then deref(B) ⇒ reclaim(B)

2. if deref(A) → link(B’) then deref(C) ⇒ unlink(B)

3. if link(B ′) → deref(A) then init(B ′) ⇒ deref(B ′)

The first condition is the same as for a Delete. The second condition guarantees that

if B ′ is missed, B will be seen. The third condition is the same as for an Insert.

A C B D A B ′ C B D

Before the move After the move

Figure 3.9: Node B is moved to an earlier location within the list.

Figure 3.10 shows the ordering relationships for a move back of node B and two

readers. Both readers are looking for the key in B . In Reader 1, link(B ′) → deref(A),

52

so the reader finds the key at B ′ and stops its search. Because this reader accessed

B ′, the node must be initialized before being accessed. The relationship init(B ′) ⇒

deref(B ′) captures this dependency, and this dependency is the same as for inserting

a node in a linked list as discussed in Section 3.2.1. This required-before relationship

is guaranteed by using rp-publish to perform the link(B ′).

Reader 1

deref(A)

deref(B ′)

Writer

init(B ′)

link(B ′)

unlink(B)

reclaim(B)

Reader 2
deref(A)

deref(C)

deref(B)

Figure 3.10: Ordering relationships for a reader and a writer performing a move back
of B .

In Reader 2, deref(A) → link(B ′) so this reader does not observe B ′ and therefore

must observe B . The relationship deref(C) ⇒ unlink(B) captures this dependency.

A memory barrier is not sufficient to enforce this relationship. If a reader has read

past A prior to link(B ′), then a memory barrier cannot cause the reader to “back up”

and observe B ′. Similarly, a memory barrier attached to unlink(B) will not stall until

the reader performs deref(C). The solution is to place a wait-for-readers between

link(B ′) and unlink(B) as shown in Line 8 of Listing 3.6. The wait-for-readers will

allow all readers for which deref(A) → link(B ′) to complete prior to unlink(B) thus

enforcing deref(C) ⇒ unlink(B).

The final required-before relationship in Reader 2, which exists between deref(B)

and reclaim(B), can be satisfied by placing a wait-for-readers between unlink(B)

and reclaim(B) as shown in Line 10 of Listing 3.6. This use of wait-for-readers

53

is the same as in removing a node from a linked list as discussed in Section 3.2.2.

This second wait-for-readers can be taken out of the write path by using rp-free

to asynchronously free the memory.

1 void move_back(new_pos, old_pos)

2 {

4 node = old_pos->next;

5 copy = copy_node(node);

6 copy->next = new_pos->next;

7 rp_publish(new_pos->next, copy);

8 wait-for-readers();

9 rp_publish(old_pos->next, node->next);

10 wait-for-readers();

11 free(node);

12 }

Listing 3.6: Pseudo-code for a relativistic move back. The new_pos and old_pos

parameters are the nodes prior to the new and old positions of the node to be moved.

Much like with Move Forward, the RP approach to Move Back differs from an

RWL implementation because intermediate states are visible. If the list represents a

Map, both the RWL and RP approaches use the wait mechanism to control order-

ing. However, the RP approach still allows greater concurrency because portions of

the read can overlap with the write. The greater concurrency should allow the RP

approach to scale better than the RWL approach.

3.2.5 General Guidelines on Using RP Primitives

The previous sections gave examples of the use of rp-publish and wait-for-readers.

This section gives general guidelines in their use. A technical report [61] gives a more

complete treatment of these guidelines.

Nodes in relativistic data structures contain two types of data: immutable and

mutable. Generally, the immutable data is the payload of the nodes and the mutable

54

data is the pointers used to connect the nodes. Writers must guarantee that, once

a reader obtains a reference to a node, the immutable portion of the node will not

change. If a writer needs to change an immutable portion of a node, it must make a

copy of that node, change the node in its private memory, and then replace the old

node with the new one by changing a mutable pointer. If multiple changes to the

mutable data need to be made to appear atomic, the same copy-on-update procedure

can be used.

There are two rules for the placement of the rp-publish and wait-for-readers

barriers. The first one is simple and deals with rp-publish. Any time reader-visible

mutable data is changed, it must be changed using rp-publish. (Mutable data is

reader-visible if there is a reader-visible link to the node containing the mutable

data.) Doing so guarantees that all changes to mutable data from a single writer will

be seen in order by all readers.

The second rule deals with wait-for-readers. If readers have a traversal order

(e.g. from the root of a tree to a leaf), then if two causally related changes to mutable

data are made in the same direction as the traversal, they must be separated by a

wait-for-readers. An example of this is the Move Back described in Section 3.2.4.

The Move Back required two changes to mutable data: The copy of the moved node

was placed early in the list then the moved node was removed from later in the

list. These changes are causally related and they occurred in traversal order so a

wait-for-readers was required between them.

In the Move Forward example described in Section 3.2.3 there were two changes.

The first one involved placing a copy of the moved node later in the list and then

removing the original from earlier in the list. Because these operations happen in the

reverse of traversal order, wait-for-readers was not needed between them.

The use of wait-for-readers for safe memory reclamation fits the traversal order

55

rule. There are two changes in a reclamation. The first one is to remove the node from

the data structure, the second is the reclamation of the node’s memory. Removing

the node from the data structure involves changing the pointer that points at the

node. This pointer must be earlier in the traversal order than the contents of the

node that get reclaimed, so these two changes happen in traversal order and thus

need a wait-for-readers between them.

There are two rules for readers: rp-read must be used when reading mutable

data and each mutable data item must only be read once. The rp-read serves two

purposes: it forces the compiler to issue a load instruction (instead of re-using a

previously loaded value) and it enforces dependent read consistency. These actions

are the same as for the C++0x memory_order_consume load.

If a mutable data item is read multiple times, the value of that item might change

between each read. Listing 3.7 illustrates what might happen if a mutable item is

read more than once. The code snippet shows a condition for terminating a linked

list traversal. The pointer node->next may change between the condition in Line 1

and the return statement in Line 2. If this happens, the data returned will not come

from the same node that was examined.

if (node->next->key == key) {

return node->next->value;

}

Listing 3.7: Invalid coding pattern because node->next may change between lines 1
and 2

3.3 Considering Multiple Writes

The previous sections examined the ordering constraints between readers and a single

writer. There are other considerations when considering a reader and multiple writers.

56

These considerations are examined in this section.

The timeline in Figure 3.11 shows a writer performing a delete and two readers.

Using the terminology from Section 3.2.2 the diamond on the write line marks the

unlink. The diamonds on the read lines mark the deref. Both readers begin before

the writer and in both cases deref → unlink. Reader R1 finishes its read-section

prior to the unlink. This case is indistinguishable from a reader-writer locking reader

that executed just prior to the write. But Reader R2 continues well after the writer

completed its operation. This leaves open the possibility that Reader R2 will be

concurrent with another write operation and it may see the results of the subsequent

write without observing the results of the first one.

Writer
R2

R1

Figure 3.11: Timeline showing reader R1 that completes before the write takes effect
and R2 that observes the state of the data structure prior to the write, but extends
well after the write.

Figure 3.12 shows a reader concurrent with two writers. The relativistic cor-

rectness criteria requires that a reader concurrent with a writer can see the state

immediately prior to the write or immediately after the write, but no other state.

The case presented in Figure 3.12 requires a clarification of this rule. A reader con-

current with multiple writes can see the state prior to any of the writes, or the state

generated by any combination of the concurrent writes being applied to the initial

state. If I is the initial state, then the reader in Figure 3.12 can see one of the states

I , I + W 1, I + W 2, I + W 1 + W 2.

If the second write is dependent on the first, then observing W 2 without observing

W 1 could potentially lead to an invalid observation. To prevent this from happening,

57

W 1 W 2
R

Figure 3.12: Operation R can see operations W1 and W2 in any order.

a wait-for-readers could be inserted between the two writes (for example by call-

ing wait-for-readers prior to releasing the lock used for mutual exclusion between

writers). The presence of the wait-for-readers would guarantee that no reader was

concurrent with both W 1 and W 2. Any reader concurrent with W 2 would be guar-

anteed to see the state after W 1. Note that this is the same as the traversal order

rule mentioned in Section 3.2.5. In order for a reader to see W 2 but not W 1, W 1

must have been early in the traversal order and the reader read past that location

before W 1 took effect. W 2 must have been later in the traversal order and the read

took effect between W 1 and W 2.

The state observed by the reader is specific to that reader. If Figure 3.12 had

shown two readers both concurrent with W 1 and W 2, then each reader could have

observed different states. One could have observed I + W 1 and the other I + W 2.

If this were so, the two readers would disagree on the order of the updates. The first

reader would claim W 1 happened first (because it saw W 1 but not W 2). The second

reader would claim W 2 happened first. The order of observations is local to (or

relative to) a particular reader. There is no “global observer” that defines the correct

order. Each reader is allowed to observe writes in their own reference frame. Stated

another way, in timelines, such that in Figure 3.11, there are ordering relationships

between the readers and the writer, but there are no ordering relationships between

the readers. The readers are drawn on the same time scale for graphical convenience,

but because neither reader observes the behavior of the other, nothing can be said

about the relative orders of the two readers.

58

The potential reordering is limited in scope to the length of any concurrent reader.

If there are two writes A and B such that there is no reader concurrent with both A

and B , then all readers will agree on the order of A and B—that is to say, A and B

will be totally ordered with respect to all readers.

Reader-writer locking provides a total order of writes by delaying certain oper-

ations through mutual exclusion. If a relativistic solution requires a total order on

writes, then wait-for-readers can be used to delay writes to preserve this total or-

dering. The delays to totally ordered relativistic writes are no worse than the delays

imposed by mutual exclusion in reader-writer locking. This is shown in Figure 3.13

(see also [48]). For both relativistic programming and reader-writer locking, the de-

lay can be up to the length of a reader. If the reader-writer implementation favors

readers, then the delay can be any arbitrary length—the writer could starve. With

relativistic programming writer starvation cannot happen.

W 1 delay W 2
R

a) Relativistic approach

delay W 1W 2
R

b) Reader-Writer approach where R goes first

W 1 delay W 2
R

c) Reader-Writer approach where W 1 goes first

Figure 3.13: Timelines showing different delays. In a) W 2 is delayed because W 1
holds the write-lock until R completes. In b) W 1 is delayed because R acquires the
reader-writer lock first. In c) W 1 acquires the lock first but W 2 is still delayed for
the full duration of R. The relativistic version suffers the minimum delay.

59

Read-sections and write-sections do not just happen spontaneously. They happen

in response to external or internal events. When considering timing and ordering, it

is useful to not only look at the timing and ordering of the read-sections and write-

sections, but also the timing in relation to the events that triggered the read-sections

and write-sections. Figure 3.14 shows the timing of two readers and a writer. The

circles show the external events that trigger the reading and writing. The diamonds

show the time when the writer updated a pointer and when the readers observed that

pointer.

In the relativistic programming approach, reads are allowed to run concurrently

with the write. Reader R1 observes the data structure prior to the update. Reader

R2 observes the data structure after the update. This is evident by the order of the

diamonds.

Writer
R1

R2

Relativistic Programming

Writer
R1

R2

Reader-writer lock with read preference

Writer
R1

R2

Reader-writer lock with write preference or fair

Figure 3.14: Timing of a writer and two readers using the relativistic approach and
reader-writer locks with read preference and write preference or fair. The relativistic
approach allows both the earliest possible writes and earliest possible reads.

The reader-writer lock read preference case shows how the write is delayed until

60

all readers have finished. The delay is shown by the dashed line. In this case, both

readers observe the data structure prior to the update. Note that this violates the

order of the events that triggered the read and write operations. The reader-writer

lock write preference or fair case shows a delay in both the writer and reader R2. In

this case, the readers make the same observations as in the relativistic case, but the

writer and one of the readers are delayed. This type of delay has the potential to

significantly reduce scalability.

The reader-writer locking approach obtains consistency by delaying operations.

However, this delay has the potential to cause operations to be ordered differently

than the events that triggered these operations. Relativistic programming on the

other hand allows the earliest possible completion of operations.

3.4 Quantitative Evaluation of RP vs. RWL

This section examines three aspects of performance: 1) the reasons why relativistic

primitives can yield better performance, 2) the problem with small critical sections for

reader-writer locks, and 3) the write delay for totally ordered relativistic programs

compared with the write delay for reader-writer locking programs. This section is

not intended to show the overall performance benefits of relativistic programming.

Chapter 4 will show the superior performance of a relativistic red-black tree. Other

publications [62, 63] have made the case that other relativistic algorithms are both

high performance and highly scalable.

3.4.1 Analysis

Reader-writer locking primitives are necessarily slow because they require two-way

communication between the primitives in different threads. Figure 3.15 shows the or-

dering relationships that implement the reader-writer locking semantics. The required-

61

before relationship must be implemented using the wait mechanism because a memory

barrier is not sufficient to cause the locking thread to wait until the lock is released.

The wait mechanism requires that the unlock write a value that the lock waits for.

But in order for the lock to know that it needs to wait for the unlock, the previous

lock must have also written a value.

Reader 1
read-lock

read-unlock

Writer

write-lock

write-unlock

Reader 2

read-lock

read-unlock

Figure 3.15: Orderings required for reader-writer lock semantics.

The pseudo-code in Listing 3.8 shows a potential reader-writer lock implemen-

tation. This is not intended to be a complete implementation because it does not

handle multiple readers. However, it shows the necessary writes and waiting reads.

The waiting read and the following write must happen as an atomic unit; otherwise

another thread may acquire the lock between the read and the write. Atomic read-

modify-write instructions are typically used to combine read and write as an atomic

unit. Atomic read-modify-write instructions are as much as several orders of mag-

nitude slower than regular instructions [9], and they also serialize the writes. The

combination of these two properties mean the locking primitives can form a significant

serial bottleneck that can limit scalability even for read-only workloads.

In contrast to RWL, the communication between relativistic primitives is asy-

metric: Writers performing a wait-for-readers need to know about the existence of

62

Read Primitives

read_lock() {

while (!writing)

{}

reading = TRUE;

}

read_unlock() {

reading = FALSE;

}

Write Primitives

write_lock() {

while (!reading)

{}

writing = TRUE;

}

write_unlock() {

writing = FALSE;

}

Listing 3.8: Possible implementation of reader-writer lock primitives.

readers, but readers never need to know about the existence of writers. In Figure 3.16

the writer can observe the existence of Reader 1 because start-readR1 → start-wait.

This occurred-before relationship requires end-readR1 ⇒ end-wait. But Reader 2,

which can observe the existence of the writer, has no further dependencies—in other

words, Reader 2 does not care about the existence of the writer. This asymmetry

allows the read-side primitives to be implemented without atomic read-modify-write

instructions.

Reader 1
start-read

end-read

Writer

begin wait

end wait

Reader 2

start-read

end-read

Figure 3.16: Orderings required for relativistic programming semantics.

The pseudo-code in Listing 3.9 shows a potential implementation of relativistic

primitives. There is a global Epoch counter which gets incremented on each call to

wait-for-readers. There is an array of epochs, one per reader. When a reader starts,

63

it stores the global epoch into its per-reader epoch. When the reader finishes, it clears

its per-reader epoch. Because only one reader writes to each location in the per-reader

epoch list, no synchronization is required for these writes. The wait-for-readers

waits for each reader to either not be reading or to be reading in an epoch newer

than the one being waited on. No atomic read-modify-write instructions are required

in the read-path so relativistic programs should scale for read-only (or read-mostly)

workloads even for small critical sections.

Read Primitives

start-read() {

Reading[reader] = Epoch;

}

end-read() {

Reading[reader] = 0;

}

Write Primitives

wait-for-readers() {

int my_epoch;

atomic_inc(Epoch);

my_epoch = Epoch;

for (readers) {

while (Reading[reader] != 0 &&

Reading[reader] < my_epoch)

{}

}

}

Listing 3.9: Possible implementation of relativistic programming primitives.

3.4.2 Scalability as a function of critical section size

The previous section made the claim that RWL readers will not scale for sufficiently

small critical sections because of the cost and serial nature of the atomic read-modify-

write instructions used to update a common lock variable. Because relativistic pro-

graming readers do not need atomic read-modify-write operations, nor do they need

a common lock variable, they should scale for any size critical section. This claim

was tested using a linked list micro benchmark. The list contained sorted data, and

64

operations included lookups, inserts, and deletes. The average length of the critical

section can be varied by changing the average length of the linked list. The tests

were run on a four processor quad-core Intel Xeon system (16 hardware threads)

running Linux 2.6.32. The relativistic programming implementation was supplied

by Usermode RCU developed by Desnoyers et. al. [17, 16]. Appendix A gives addi-

tional information on the data collection methodology. The following synchronization

mechanisms were benchmarked:

nolock No synchronization was used. This is valid for read-only work loads but

could lead to data corruption in the presence of updates. nolock is included

as a potential upper bound on performance.

rp Relativistic programming using the Usermode RCU implementation. The

write-lock is a pthread mutex.

torp Totally Ordered Relativistic programming using the Usermode RCU imple-

mentation. torp is the same as rp except that wait-for-readers is called

before releasing the write-lock.

rwlr Reader-writer locks that favor readers. The implementation is based on

Mellor-Crummey and Scott [50].

rwlw Reader-writer lock that favors writers. The implementation is based on

Mellor-Crummey and Scott [50].

Figure 3.17 shows read performance for a linked list of size one—the shortest

meaningful critical section. Both nolock and rp scale linearly. There is overhead

associated with the rp read-side primitives, so the performance of rp is less than that

of nolock; however, the overhead is both small and fixed—additional threads do not

increase the overhead. Neither of the reader-writer locks scale because additional

65

threads mean more contention for the lock variable. The additional contention for

the lock variable exceeded any benefit of parallelism so the best performance was with

a single thread.

0 2 4 6 8 10 12 14 16

0

50

100

150

200

Threads

re
ad

s/
se

co
n
d

(m
il
li
on

s)
NOLOCK
RP
RWLR
RWLW

Figure 3.17: Read performance with a list size of 1. Reader-writer locks do not scale
because of the short critical sections. Note that the RWLR and RWLW are on top of
each other.

Figure 3.18 shows read performance with a list of size 1,000. All synchronization

mechanisms show good scalability because the critical section is large with respect

to the cost of synchronization. However, even for lists of size 1,000, the performance

of rwlw (and to a lesser extent rwlr) is noticeably less than linear for higher thread

counts. The effects of lock contention can be seen even for critical sections that

involve thousands of instructions.

66

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

Threads

re
ad

s/
se

co
n
d

(m
il
li
on

s)

NOLOCK
RP
RWLR
RWLW

Figure 3.18: Read performance with a list size of 1000. All synchronization mecha-
nisms scale because the size of the critical section is large with respect to the cost of
synchronization.

3.4.3 Comparing RP, TORP and RWL

Totally Ordered Relativistic Programming (torp) delays writes so no reader is con-

current with two writes. The expected delay is the length of the average read-section.

Section 3.3 claimed that the delay in releasing the lock for torp was no worse than

the delay for acquiring the lock in rwl. To test this, an experiment was run with a

single update thread and 15 read threads. This configuration generated the maximum

amount of read-contention for the writer, and should cause the largest read-generated

delays. The experiment was repeated over a large range of list sizes. Figure 3.19

presents the results of this experiment and they confirm that torp and rwl have simi-

lar delays. In particular, the update performance of torp is better than rwlw for small

67

list sizes. For larger list sizes, rwlr is slightly better than torp. The reason is that the

torp implementation used for this benchmark required extra fields in the structure to

allow memory to be reclaimed asynchronously. The additional data causes additional

pressure on the caches and memory bus. A torp implementation that did not require

this additional data should continue to out perform rwlw for all list sizes.

Notice that torp has significantly better read performance than rwlw. The addi-

tional reads should increase contention on the writes, but despite this, torp still out

performs rwlw on the write side.

100 101 102 103 104 105

100

101

102

103

104

105

106

107

108

List size

u
p

d
at

es
/s

ec
on

d

torp reads
rwlw reads
rwlr reads
torp writes
rwlw writes
rwlr writes

Figure 3.19: Performance of an update thread concurrent with 15 readers. The
performance of torp and rwlw are similar because torp has to wait for all current
readers before releasing the write lock and rwlw has to wait for all current readers
before acquiring the write lock.

3.5 Summary

This chapter introduced the ordering constraints imposed by relativistic program-

ming. The two relativistic programming primitives, rp-publish and wait-for-readers

68

can be used by relativistic writers to limit the orderings that are visible to concur-

rent readers. The rules for using these primitives are simple and easy to understand.

When these primitives are used correctly, only orderings that yield correct reads are

allowed. The burden for correctness is placed on writers so readers can proceed with-

out the need for heavy weight synchronization. The different ordering requirements

of relativistic programs allows them to have higher performance and better scalability

than their reader-writer locking counterparts.

69

Chapter 4

Supporting Complex Multi-write Updates

To date, RP algorithms have dealt with fairly simple data structures and updates

have mostly involved single nodes. This chapter presents the implementation of a

relativistic red-black tree. Implementing a relativistic red-black tree presents a signif-

icant challenge because some updates involve as many as three nodes. Hardware does

not support an atomic operation that can be used to perform the entire update at

once—and, as shown in Section 3.2.3, even if hardware did support such an operation,

that would not be sufficient to prevent readers from seeing invalid states. As a result,

an algorithm must be developed that keeps the tree in an always-valid state even in

the midst of these multi-node updates1.

4.1 Introduction

Red-black trees (RBTrees) are used to store sorted 〈key,value〉 pairs. They guarantee

O (log(N)) performance for lookup, insert, and delete operations. They also have

relatively low cost for mainaining the balance properties of the tree. RBTrees are

used extensively in operating systems. For example, in the Linux kernel they are

used for I/O schedulers, the process scheduler, the ext3 file system, and in many

1Herlihy [31] suggested a method for creating concurrent data objects where the entire object
needs to be copied. This method would allow complex updates, but it is ruled out due to poor
performance.

70

other places [41]. RBTrees are also used by many applications and are provided by

class libraries such as Java.util.TreeMap [1].

Unfortunately, RBTrees are difficult to parallelize. Most implementations use a

single global lock to protect concurrent accesses. Coarse grained locking prevents

these implementations from scaling because accesses are serialized by the lock. Be-

cause accesses can be easily divided into reads (single lookups and complete traversals)

and writes (inserts and deletes), a reader-writer lock can be used. This approach scales

for some number of read threads, but eventually the contention for the lock domi-

nates and the approach no longer scales (see the performance data in Section 4.4.1

for evidence of this behavior).

Fine grained locking of red-black trees is problematic. Because updates may affect

all the nodes from where the update occurred back to the root, the simplest approach

of acquiring a write lock on all nodes that might change degrades to coarse grain

locking because all updaters must acquire a write lock on the root. If one attempts to

acquire write locks only on the nodes that will actually be changed, it is difficult to

avoid deadlock. Because updates always involve a leaf (see Section 4.3), one approach

to acquiring locks would be to start with the leaf to be changed and acquire locks

from the bottom up. However such a scheme may collide with a reader acquiring read-

locks on the way down the tree. If instead, the highest node to be modified as part

of rebalancing was identified, then the locks were acquired top down, an overlapping

update may win the race and modify the tree in such a way that the analysis that

determined which nodes need to be modified is no longer valid.

Transactional Memory (TM) approaches provide a more automatic approach to

disjoint access concurrency. Many researchers use an RBTree as one of the bench-

marks for their Software Transactional Memory (STM) systems. Some of these show

good scalability [20, 19], however, they tend to compare their STM implementation

71

against other STM implementations. This masks the fact that overall performance

suffers because of the high overhead of all STM systems. Dragojevic et al. [18] com-

pared STM’s against a sequential implementation and found that for RBTrees it often

took four to eight cores to equal the performance of a single core non-TM solution.

With some implementations, they found that performance was worse than a sequen-

tial implementation over the full range of processors available on a given system.

Bronson et al. [10] developed a concurrent AVL tree2. Their approach allows

readers to proceed without locks, but the readers have to check each step of the way

to see if the tree has changed or is in the process of changing. If so, the reader has

to wait and retry. Because readers do not acquire locks, fine grained locking of the

writers is less problematic. Their approach is quite complicated and this degrades

performance as more code must execute at each node of the tree. The RP approach

allows over twice the read performance and up to three times the single threaded

update performance (see Section 4.4 for details). Their approach allows concurrent

scalable updates but performance is no better than for a more straight forward STM

implementation (see Chapter 6 for evidence of this).

In order to accelerate update operations, a number of researchers have attempted

to decouple rebalancing from insert and delete [29, 30]. This allows updates to proceed

more quickly because individual inserts and deletes do not have to rebalance the tree.

The rebalancing work can potentially be done in parallel and some redundant work

can be skipped. None of this improves read access time, and readers and writers still

need some form of performance limiting synchronization between them.

This chapter presents a relativistic RBTree implementation that has low-overhead,

wait-free, linearly-scalable read performance out to at least 64 hardware threads even

in the presence of a concurrent update. Although relativistic programming is not yet

2AVL trees are similar to red-black trees, but they have a different balance property.

72

a fully general technique, the development of a relativistic data structure as complex

as a concurrent RBTree is a significant milestone because it shows that relativistic

programming can be applied to complex data structures that require simultaneous

multi-node updates.

4.2 A Relativistic Red-Black Tree Algorithm

Because red-black trees are well known and well documented [7, 29, 55, 58], a complete

explanation is not repeated here. Rather, a brief overview is presented simply to

facilitate a discussion of the relativistic implementation. In particular, the individual

steps that make up red-black tree algorithms are discussed without discussing the glue

that combines these steps. This approach is taken because the glue is not impacted

by the relativistic implementation.

Red-black trees are partially balanced, sorted, binary trees. The trees store

〈key,value〉 pairs. They support the following operations:

insert(key, value) inserts a new 〈key,value〉 pair into the tree.

lookup(key) returns the value associated with a key.

delete(key) removes a 〈key,value〉 pair from the tree.

first()/last() returns the first (lowest keyed) / last (highest keyed) value in

the tree.

next()/prev() returns the next/previous value in key-sorted order from the

tree. Some implementations of these primitives pass arguments

specifying the last accessed node.

Red-black trees are sorted by preserving the following properties:

73

1. All nodes on the left branch of a subtree have a key less than the key of the

root of the subtree.

2. All nodes on the right branch of a subtree have a key greater than or equal to

the key of the root of the subtree.

The tree is balanced by assigning a color to each node (red or black) and preserving

the following properties:

1. Both children of a red node are black.

2. The black depth of every leaf is the same. The black depth is the number of

black nodes encountered on the path from the root to the leaf.

These invariants are sufficient to guarantee O (log(N)) lookups because the longest

possible path (alternating black and red nodes) is at most twice the shortest possible

path (all black nodes). The operations required to rebalance a tree following an insert

or delete are limited to the path from the inserted/deleted node back to the root. The

rebalancing is most often O(1) but in the worst case is O(log(N)). This means that

inserts and deletes, including rebalancing, can also be done in O(log(N)).

An insert or delete may violate the balance properties. If so, the tree is rebalanced

by recoloring nodes or performing restructure operations, sometimes called rotations.

Restructures always involve three adjacent nodes: child, parent, and grandparent. See

Figure 4.1 for an illustration of the two types of restructure operations. Following an

insert, at most one restructure is required to restore balance. Following a delete, at

most two restructures are required [29].

The correctness criteria proposed in Section 2.3 requires that the data structure be

a representation of an ADT. The relativistic RBTree presented here is appropriate for

a Map where each key is unique. This implimentation is not suitable for a Multimap

74

C

B

A

1 2

3

4

⇒ B

A

1 2

C

3 4

C

A

1 B

2 3

4

⇒ B

A

1 2

C

3 4

Diag Restructure

Zig Restructure

Figure 4.1: Restructure operations used to rebalance a red-black tree. There are left
and right versions of these, but they are symmetric so only the left version is shown
here.

where a key can be repeated with different values. Applying the correctness definition

to a Map yields the following properties:

1. Lookups will always find a key that exists in the Map.

2. Traversals will always return values in the correct order without skipping any

values that exist in the Map.

Because reads have a duration, and because updates can proceed concurrent with

reads, it is possible that the Map will change during a read. As a result, the phrase

“nodes that exist in the Map” does not have a static definition. The dynamic defini-

tion is given below using the following definitions:

75

→ occurred-before in the sense that Lamport [40] uses precedes so that if A → B

then every event in A preceeds every event in B . Note that in Chapter 3, →

was applied to operations that were atomic (reads and writes of memory). In

this chapter, → is applied to non-atomic operations; otherwise its meaning is

similar.

RK a read looking for key K or a complete traversal of the Map.

IK the insert of key K .

DK the delete of key K .

Ex the effect of operation x . The effect of IK is that node K exists in the Map. The

effect of DK is that K no longer exists in the Map. Effects are assumed to take

effect instantaneously so that even if two operations are concurrent, there can

be an occurred-before relation on their effects (though relativistic programming

does not require all threads to agree on the order of the effects).

For simplicity, assume that the Map starts empty and ends empty and a given key

value is only inserted once. Then “nodes that exist in the Map” is defined as follows:

1. If IK → RK and RK → DK then K exists in the Map and must be observed by

RK in the correct traversal order.

2. If RK → IK or if DK → RK then K does not exist in the Map and must not be

observed by RK .

3. If IK is concurrent with RK then K may or may not be observed by RK de-

pending on whether the relative view of RK is EI → ER or ER → EI .

4. If DK is concurrent with RK then K may or may not be observed by RK

depending on whether the relative view of RK is ER → ED or ED → ER.

76

Another way to state these properties is as follows: Properties one and two state

that any update that strictly precedes a read must be observable by the read, and any

update that strictly follows a read must not be observable by the read. Properties

three and four state that any update that is concurrent with the read may or may

not be observable by the read.

The following observations can be made about readers performing a lookup (for

traversals, see Chapter 5):

1. Readers ignore the color of nodes.

2. Readers do not access the parent pointers in nodes.

3. Temporarily having the same item in the tree multiple times will not affect

lookups provided all copies are in correct sort order within the tree. A positive

result will return the first copy encountered (and because they are duplicates,

it does not matter which copy is returned). A negative result (item not in tree)

will return “not found” even if other keys are duplicated in the tree.

The implications of these observations are that updaters can change the color and par-

ent pointers without affecting readers; updaters can also temporarily allow duplicates

provided both duplicates are in valid sort order locations.

The following definitions will be used in the explanation of the tree operations:

internal node A node with two non-empty children.

leaf A node with at least one empty child.

Both internal nodes and leaf nodes contain 〈key-value〉 pairs.

Observe that if next() is called on any internal node, the result is always a leaf.

This is true because next() on an internal node is the left-most node of the right

subtree.

77

Given the above observations, the following can be said about the steps in an

update:

Insert New nodes are always inserted at the bottom of the tree. This is

possible because if prev(new-node) is any node with a non-null right

branch, then from the observation above, the new node must be a

leaf. If prev(new-node) had a null right branch, then the new node

will be a leaf placed on that null right branch. A concurrent reader

will either see the new node or not depending on whether rp-publish

of the insert happens-before the rp-read of the pointer changed by

rp-publish. But concurrent readers will never see an invalid state.

The insert may leave the tree unbalanced. If so, restructures or recolors

(see below) are required to restore the balance properties of the tree.

Delete Nodes are only deleted from the bottom of the tree (possibly as part of

a swap—see below). Similar to insert, a concurrent reader will either

see the deleted node or not depending on the order of operations, but

a reader will never see an invalid state. The memory for the deleted

node must not be reclaimed while concurrent readers have a reference

to it. Using the rp-free primitive will ensure that the proper delay

occurs before the memory is reclaimed.

The delete may leave the tree unbalanced. If so, restructures or recolors

(see below) are required to restore the balance properties of the tree.

Swap If an interior node needs to be deleted, it is first swapped with the next

node in sort order (= next(deleted-node)) prior to removal. This

makes the node to be deleted a leaf. Because a concurrent reader

searching for the swapped node might be at a point in the tree between

78

the swapped node’s new and old positions, special handling is required

to ensure that such a reader sees the swapped node. The swapped

node exists in the tree and therefore it must be observable in correct

traversal order.

Restruc-

tures

Restructure operations are used to rebalance the tree. Much like swap,

restructures involve moving nodes. This requires special handling to

keep the tree in an always-valid state.

Recolor Nodes get recolored as part of the rebalancing process. Recoloring

does not involve changing the structure of the tree, only the colors

applied to particular nodes. Because readers ignore the color of nodes,

recoloring does not affect the read-validity of the tree.

The two operations that require special handling in a relativistic implementation are

Swap and Restructure. These are described in greater detail below.

4.2.1 Swap algorithms

Two swap algorithms are presented below. The first one is the general algorithm that

works in the general case. There is an optimized special case that applies when the

swap node is the right child of the node to be deleted.

General Swap

Consider the delete of node B shown in Figure 4.2. Because B is an internal node,

B will be swapped with C (= next(B)) prior to deletion. The new location of C is

higher in the tree, so the swap qualifies as a Move Back operation as described in

Section 3.2.4. Move Back operations require a wait-for-readers to maintain read-

validity.

79

F

B

A E

C

null D

⇒

F

B

A

C ′

E

C

null D

⇒

F

C ′

A E

D

Figure 4.2: Tree before and after deletion of node B including one intermediate step

Rather than performing separate swap and delete steps, the two are combined as

a single step as shown in Listing 4.1. C ′ is a copy of C . C ′ is changed so that it has

the same color as B and the same children as B , but the key and data values of C .

The new node C ′ is linked into the tree in place of B . At this point, the value

C is in the tree twice: once at C and once at C ′. Any readers looking for C can be

divided into two groups: those above C ′ will find the value at C ′, those at or below

B will find the value at C . In either case, the correct value will be found. However, if

the old node C is removed, any readers looking for the value C that were at or below

B would miss the value. To avoid this problem, the updater calls wait-for-readers

before removing C from the tree. This ensures that any readers at or below B will

complete their read prior to C being removed. Any new readers will see C ′ and thus

will not need to find C .

This algorithm differs from a non-RP algorithm in the following ways:

1. A copy of node C is placed in B ’s position rather than node C itself.

2. rp-publish is used to make reader visible pointer assignments to guarantee that

changes to a node are visible before the node itself is reachable.

3. rp-free is used to release memory to ensure that no readers have references to

80

1 C = next(B);

C_prime = C.copy();

C_prime.color = B.color;

5
C_prime.left = B.left;

C_prime.left.parent = C_prime;

C_prime.right = B.right;

10 C_prime.right.parent = C_prime;

F = B.parent;

C_prime.parent = F;

15 if (F.left == B)

rp-publish(F.left, C_prime);

else

rp-publish(F.right, C_prime);

20 rp-free(B);

wait-for-readers();

E = C.parent;

25 rp-publish(E.left, C.right);

C.right.parent = E;

rp-free(C);

Listing 4.1: Code for swap

81

the memory when it is released.

4. A wait-for-readers is included so that no readers will miss seeing node C .

Special case: swap node is child of B

In the tree shown in Figure 4.3, C is next(B). It also happens to be the right child

of B . This represents a special case because no new nodes need to be created. The

changes are made as shown in Listing 4.2. C takes the color of B . The left child

of B becomes the left child of C . The node A now appears in the tree twice (once

below B and once below C). Any reader encountering the tree in this state will find

A regardless of where they were in their traversal when the changes were made. B

is removed from the tree by linking C into the tree in its place. B is then freed

asynchronously by calling rp-free.

E

B

A C

null D

⇒
E

B

C

A D

⇒
E

C

A D

Figure 4.3: Tree before and after deletion of node B including one intermediate step

This algorithm differs from a non-RP algorithm only in the use of rp-publish to

make pointer assignments, and rp-free to release memory.

4.2.2 Restructure

There are two cases for restructures depending on whether the three nodes involved

form a diagonal or a “zig”. Each of these can be further classified depending on

82

1 C = next(B);

C.color = B.color;

C.left = B.left;

5 C.left.parent = C;

E = B.parent;

if (E.left == B)

rp-publish(E.left, C);

10 else

rp-publish(E.right, C);

rp-free(B);

Listing 4.2: Code for special case Swap

whether it is left or right, but the left and right cases are symmetric, so only the left

case will be described here.

Diag Left

Figure 4.4 shows a subtree with three nodes labeled A, B , C that need to be rotated

so that B becomes the root of the subtree. The change places C lower in the tree, so

this is a Move Forward and it can be made without a wait-for-readers. The changes

are made as shown in Listing 4.3.

D

C

B

A

1 2

3

4

⇒
D

C

B

A

1 2

C ′

3 4

⇒
D

B

A

1 2

C ′

3 4

Figure 4.4: Arrangement of nodes before and after a diag restructure including one
intermediate step.

83

C ′ is a copy of node C . The right child of B becomes the left child of C ′. C ′ is

then linked into the tree as the right child of B . At this point, the value C is in the

tree twice. This is similar to swap in Section 4.2.1. However, in this case, the copy is

placed lower in the tree rather than higher in the tree. As a result, the original node

C can be removed without waiting for readers. Any readers between C and C ′ will

still see C ′ even after C is removed from the tree.

1 C_prime = C.copy();

C_prime.left = B.right;

C_prime.left.parent = C_prime;

5 rp-publish(B.right, C_prime);

C_prime.parent = B;

D = C.parent;

10 if (D.left == C)

rp-publish(D.left, B);

else

rp-publish(D.right, B);

15 B.parent = D;

rp-free(C);

Listing 4.3: Code for diag left restructure

This algorithm differs from a non-RP algorithm as follows: a copy of a node was

made rather than changing a node in place, and RP primitives were used for pointer

assignment and memory reclaimation.

Zig Left

Figure 4.5 shows a subtree with three nodes labeled A, B , C that needs to be rotated

so that B is the root of the subtree (this is known as a double rotation [29]). There

are two ways to accomplish this: either a copy of B can be placed above A and C , or

84

copies of A and C can be placed below B . Because the first method involves moving

the copy up in the tree, it requires a wait-for-readers. Even though the second

method requires two copies, performance data showed that the second method is

faster, so that method is described here (see Listing 4.4). In essence, the cost of

a wait-for-readers was more than the cost of the second node copy which is not

surprising because wait-for-readers is a fairly heavyweight primitive.

D

C

A

1 B

2 3

4

⇒
D

C

A

B

A′

1 2

C’

3 4

⇒
D

B

A′

1 2

C ′

3 4

Figure 4.5: Arrangement of nodes before and after a zig restructure including one
intermediate step.

A′ is a copy of A. The left child of B becomes the right child of A′. A′ is linked

into the tree as B ’s left child. At this point, the value A appears in the tree twice.

Because the new copy is placed below the original, this is a Move Forward operation

so there is no need for a wait-for-readers before removing the original from the tree.

C ′ is a copy of C . The right child of B becomes the left child of C ′. C ′ is linked

into the tree as B ’s right child. The original nodes A and C are removed from the

tree by making B a child of D .

This algorithm differs from a non-RP algorithm as follows: copies of nodes were

made rather than changing nodes in place, and RP primitives were used for pointer

assignment and memory reclamation.

85

1 A_prime = A.copy();

A_prime.right = B.left;

A_prime.right.parent = A_prime;

5 rp-publish(B.left, A_prime);

A_prime.parent = B;

C_prime = C.copy();

C_prime.left = B.right;

10 C_prime.left.parent = C_prime;

rp-publish(B.right, C_prime);

C_prime.parent = B;

15 D = C.parent;

if (D.left == C)

rp-publish(D.left, B);

else

rp-publish(D.right, B);

20
rp-free(A);

rp-free(C);

Listing 4.4: Code for zig left restructure

86

4.3 Linearizability

Linearizability [36, 65, 31] is a widely used correctness criteria for concurrent pro-

grams. An algorithm is linearizable if each operation takes effect through a single

atomic operation. This section argues that the lookup, insert, and delete operations

meet this criteria so that these operations are linearizable.

The arguments for the linearizability of these operations will be based on the

following properties of the relativistic implementation:

Immutable nodes The key and value within a node never change once the node is

created.

Sort The update methods preserve the sort property of trees such

that all nodes on the left branch are less than the current node

and all nodes on the right branch are greater than or equal to

the current node.

Structural

integrity

The update methods never move a node in such a way that a

lookup will fail to find that node.

The following subsections examine each of the steps of the relativistic tree algo-

rithm and explain why they are linearizable. In particular, the lookup, insert, and

delete operations have a single atomic operation where the operation takes effect, and

the rebalancing operations do not violate this property.

4.3.1 Lookup

A lookup proceeds by examining the key in a node of the tree (initially the root of

the tree), and taking one of three courses of action based on the key in the node:

1. The correct node has been found and will be returned

87

2. the lookup will proceed down the left branch

3. the lookup will proceed down the right branch

The rp-read that is used to transition to the last node examined on a lookup is the

linearization point. Because rp-read involves reading a pointer, and because this

operation is atomic on all modern hardware, this is a valid linearization point. The

following reasons justify the choice of this rp-read as the linearization point:

The immutable nodes property means that even if the key is examined several

times (e.g. once to determine if the lookup has found the node in question and

again to decide which branch to look down) the answer will be the same each time.

The sort property means that the correct branch will always be searched. The

structural integrity property means that a node below a reader will never be moved

above the reader in such a way that the reader will not see that node. As a result,

the last rp-read in a lookup determines the result of the lookup provided the updates

preserve the sort and structural integrity properties. The next sections show that

these properties are preserved.

4.3.2 Insert

Nodes are always inserted at the bottom of the tree. The rp-publish that makes

the new node visible to readers serves as the linearization point for an insert. The

rp-publish involves writing a pointer, which is atomic on all modern hardware. Prior

to the rp-publish the node does not exist in the tree and following the rp-publish

it does. Provided the restructure operation (described below) preserves the sort and

structural integrity properties, the restructure will not invalidate the rp-publish as

the linearization point.

88

4.3.3 Delete

Leaf nodes are deleted with a single rp-publish. The rp-publish has the parent point

to the non-null branch of the leaf node (if it exists) instead of the leaf node. If there

is no non-null branch, the rp-publish has the parent point to null. The rp-publish

serves as the linearization point of the delete. Prior to the rp-publish the node

exists in the tree and following the rp-publish it does not. Provided the restructure

operation (described below) preserves the sort and structural integrity properties, the

restructure will not invalidate the rp-publish as the linearization point.

4.3.4 Swap

When an interior node is deleted, it is first swapped with the next node in sort order

(the left most node on the right branch). Figure 4.6 enumerates the reader visible

states in this process. The first reader visible change is when node C ′ gets linked into

the tree in place of node B using rp-publish. This rp-publish is the linearization

point for the removal of B as can be seen by considering lookups for node B . The

linearization point for the lookup is the rp-read of F.left. If the rp-read happens

before the rp-publish the lookup will find B otherwise it will report that B does

not exist in the tree. The rp-publish preserves both the sort and structural integrity

properties.

The second reader visible change is when C is removed from the tree by linking D

in its place using rp-publish to update E.left. The combination of the two changes

has the effect of moving C to a new location within the tree in possible violation of

the structural integrity property. However, a wait-for-readers occurs between the

changes so that any reader at B or E looking for C will find C before it is removed.

Any reader looking for C that began after the wait-for-readers will find C ′ so it

will terminate its search before encountering node E .

89

F

B

A E

C

null D

F

B C ′

A E

C

null D

a) Initial subtree b) After insertion of C ′

F

C ′

A E

C

D

F

C ′

A E

D

c) After removal of C d) Final subtree

Figure 4.6: All reader visible states in the deletion of node B through a swap

90

After C is removed from the tree, the node still exists in memory because con-

current readers may still have a reference to it. The final change takes place when C

is reclaimed. C is reclaimed after all current readers have finished so that no readers

have a reference to C when it is reclaimed.

4.3.5 Restructure

Restructures come in both the diag and zig forms. Restructures happen only after

inserts, deletes, or swap. The linearization point for the update occurred in the insert,

delete, or swap, so it only needs to be shown that the restructure operations do not

violate the sort or structural integrity properties. Let’s consider the diag restructure

first.

Figure 4.7 shows the reader visible states of a diag restructure operation. The

first change places C ′ below B . This temporarily violates the sort property because

node 4 appears on both the left and right branches of C . However, lookups for all

nodes on the subtree rooted at C will terminate correctly. In particular, a reader at

B will find node 4 through C ′. Any readers at or above C will find 4 as the right

branch of C . Any readers looking for C will stop at C so the fact that there is a

duplicate on the left branch of C will not cause any problems. So even though the

sort property is violated, the violation will not cause any lookups to fail. The second

change corrects the temporary violation of the sort property.

The second change removes C from the tree leaving C ′. The effect of the first two

changes is that C is moved to a new location within the tree. However, after each

step, any lookups will complete correctly regardless of where in the tree the reader

was when the change happened. Thus the structural integrity property is preserved.

After C is removed from the tree, the node still exists in memory because concur-

rent readers may still have a reference to it. The final change takes place when C is

91

D

C

B

A

1 2

3

4

D

C

B

A

1 2

C ′

3 4

a) Initial subtree b) After insertion of C ′

D

C

B

A

1 2

C ′

3 4

D

B

A

1 2

C ′

3 4

c) After removal of C d) Final subtree

Figure 4.7: All of the reader visible states in a diag restructure

reclaimed, whichs happens after all current readers have finished so that no readers

have a reference to C when it is reclaimed.

Figure 4.8 shows the reader visible states of a zig restructure. The first change is in-

serting A′ below B . This change does not violate either the sort or structural integrity

properties. The second change inserts C ′ below B . This change temporarily violates

the sort property because node 4 is on both the left and right branch of C . As with

the diag restructure, all lookups within the subtree will complete correctly. The third

change corrects the temporary violation of the sort property by removing both A and

C . The structural integrity property is not violated by this change because A and C

92

continue to be visible to all readers that could potentially be looking for these nodes.

D

C

A

1 B

2 3

4

D

C

A

B

A′

1 2

3

4

D

C

A

B

A′

1 2

C’

3 4

a) Initial subtree b) After insertion of A′ c) After insertion of C ′

D

C

A

B

A′

1 2

C’

3 4

D

B

A′

1 2

C ′

3 4

d) After removal
of A and C

e) Final subtree

Figure 4.8: Reader visible states for a zig restructure

After A and C are removed from the tree, the nodes still exist in memory and

concurrent readers may still have a reference to them. The final change takes place

when A and C are reclaimed, which happens after all current readers have finished

so that no readers have a reference to these nodes when they are reclaimed.

93

4.3.6 Summary of linearizability arguments

Relativistic programming does not guarantee a total order on all events. This relaxed

ordering is part of what allows the higher performance of relativistic algorithms.

However, this does not mean that ordering is totally chaotic. Readers are allowed to

proceed almost unsynchronized because the writers guarantee the necessary ordering

properties through the use of wait-for-readers. In the case of the swap algorithm,

the wait-for-readers was used to preserve the structural integrity property while

moving node C higher in the tree. Not only are RP algorithms not chaotic, it was

shown that the lookup, insert, and delete operations are fully linearizable with each

other. Note that the linearizability of these operations is a comment on these specific

operations, not a comment on the linearizability of relativistic implementations in

general. Chapter 5 will examine the linearizability of complete traversals, and will

show that there are correct, but non-linearizable relativistic traversal algorithms.

4.4 Performance

Performance data was collected using the following synchronization techniques:

nolock No synchronization was used. This is not a valid concurrent implemen-

tation because it leads to data corruption. It was tested as a theoretical

upper bound (highest performance, but not a data safe implementation) to

compare the other algorithms against.

lock A pthread mutex was used and shared between readers and writers. There

was no parallelism while accessing the tree.

rwlr A reader-writer lock that favors readers. The implementation was derived

from Mellor-Crummey and Scott [50].

94

rwlw A reader-writer lock that favors writers. The implementation was derived

from Mellor-Crummey and Scott [50].

rp This is the relativistic implementation described in this chapter.

ccavl The concurrent AVL implementation by Bronson et al. [10]

Note 1: all the RBTree algorithms except rp used a “standard” red-black tree

implementation that did not perform copy-on-update. The standard algorithm was

used to avoid biasing the results against the non-RP implementations because copy-

on-update is slower than the standard implementation.

Note 2: Bronson’s ccavl algorithm was originally developed in Java and it relied

on Java’s garbage collection mechanism. The algorithm was ported to C to match the

implementation of the other algorithms. However, no garbage collection was provided

for their algorithm. As a result, the performance numbers reported here for ccavl

are better than what a complete implementation would provide because the numbers

presented here do not include the cost of garbage collection.

The test created a tree and preloaded it to a given size with a random set of

values. Threads were created to perform operations on the tree (lookups, inserts, and

deletes). The threads were allowed to run for a fixed period of time and the total

number of operations performed was reported.

Threads were of two types: readers and updaters. Readers performed lookups

for values in the tree. Updaters removed a value from the tree and then inserted a

different value. By pairing deletes and inserts, the size of the tree remained fixed.

Tests were performed on trees of size 64 and 64K nodes. The choice of sizes was

somewhat arbitrary, but represented a small tree where the probability that multiple

threads were accessing the same node concurrently was high, and a large tree where

the probability of multiple threads accessing the same node concurrently was low.

95

The behavior at these two sizes was sufficiently similar that exploring other tree sizes

was not deemed profitable3. The graphs for trees of size 64K are presented here, and

comments indicate where there were differences in the size 64 graphs.

Two sets of benchmarks were run. In the first set, all threads were readers. In the

second, one thread was an updater and the rest were readers. The second set shows

how concurrent reads affect update performance. Multiple writers are considered in

Chapter 6.

Performance data was collected on a Sun UltraSPARC T2 running SunOS 5.10.

The UltraSPARC T2 has eight cores each supporting eight hardware threads for a

total of 64 hardware threads. Appendix A gives additional information on the data

collection hardware and methodology.

4.4.1 Read Performance

Figure 4.9 shows the read performance of the red-black tree. The performance of rwlw

and lock were strictly worse than rwlr, so they were left off the figure for clarity. The

reads here are individual lookups, not complete traversals. For complete traversals,

see Section 5.3. The following observations can be made from the figure:

1. rp read performance scales linearly to at least 64 threads.

2. rp read performance approaches unsynchronized performance. rp values were

approximately 93% of the nolock values.

The ccavl algorithm scales linearly to at least 64 threads. However, its per-

formance was only about 20% that of rp. When reporting the performance of an

3The RP algorithm is intended to scale with the number of processors. No comment is made
on its ability to scale with tree size. Scaling with tree size is more a function of the memory and
cache architecture of the machine than it is of the synchronization mechanism. As a result, it was
not necessary to benchmark very large tree sizes.

96

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

12

14

16

18

20

22

Concurrent Readers

R
ea

d
s/

se
co

n
d

(m
il
li
on

s)

nolock
rp

rwlr
ccavl

Figure 4.9: Read performance of 64K node red-black tree using a variety of synchro-
nization techniques.

algorithm, it is important to report both scalability and absolute performance. Rel-

ativistic programming does well on both counts.

When rp read performance is plotted with and without a concurrent updater,

the two lines are indistinguishable as shown in Figure 4.10. The average difference

in rp read performance with and without a concurrent updater was less than 1%.

This shows that a concurrent updater does not impact read performance. For ccavl,

with large tree sizes the contended and uncontended read performance is very similar

because the ccavl algorithm takes advantage of disjoint access parallelism and with

sufficiently large trees, most accesses are disjoint. Figure 4.10 shows performance

for a tree of 64 nodes. With this size tree, enough of the writes are accessing the

97

same portion of the tree as the reads that read performance suffers. For rwlw, at low

thread counts, Figure 4.10 clearly shows that the writes interfere with read perfor-

mance. At higher thread counts, contention for the lock variable is sufficient that

read performance suffers with or without a concurrent writer.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

Concurrent Readers

R
ea

d
s/

se
co

n
d

(m
il
li
on

s)

uncontended rp
contended rp

uncontended ccavl
contended ccavl
uncontended rwlw
contended rwlw

Figure 4.10: Contended and uncontended read performance of 64 node red-black tree
using a variety of synchronization techniques.

4.4.2 Update Performance

Figure 4.11 shows the performance of a single update thread running concurrently

with a varying number of read threads. The X axis shows the number of read threads.

The leftmost data point on each line (zero read threads) shows the uncontended up-

date performance. The remainder of the data points show how the update perfor-

98

mance is affected by a varying number of readers.

0 10 20 30 40 50 60

0

20

40

60

80

100

120

140

160

180

200

Concurrent Readers

U
p

d
at

es
p

er
se

co
n
d

(t
h
ou

sa
n
d
s)

nolock
rp
rwlw
ccavl
lock
rwlr

Figure 4.11: Update performance of 64K node red-black tree with a single updater
and multiple readers. The left-most data point shows uncontended write performance.
The remainder of the data points show the update performance with a variable num-
ber of concurrent readers.

Of all the synchronization methods, ccavl had the worst uncontended update

performance. The second worst was rp although it still measured 93% of rwlw perfor-

mance (rwlw was the best of the other valid methods). With three or more concurrent

readers, rp update performance is better than any of the other synchronization meth-

ods (with the exception of nolock which leads to data corruption). As the number

of concurrent readers increases, the advantage of rp is more pronounced. With a

smaller tree, it takes more concurrent readers to give a clear advantage to rp be-

cause the higher read-rate of the rp implementation caused greater contention on the

99

updater with smaller trees. With a tree size of 64 nodes, rp had better write-side

performance if there were 6 or more concurrent readers.

4.5 Summary

This work has made the following contributions to relativistic programming:

1. Demonstrated that relativistic programming can be applied to a complex data

structure—a balanced binary tree—that requires multi-node updates.

2. Showed how wait-for-readers can be used to order the read-visibility of writes.

Prior to this work, the primary use of wait-for-readers was to delay the recla-

mation of memory.

3. Provided a red-black tree algorithm that allows for high performance, linearly-

scalable reads, even in the presence of concurrent updates.

100

Chapter 5

Supporting Complex Read Patterns

The previous chapter showed that relativistic programming can be applied to complex

data structures that require multi-node updates. However, the reads considered in

Chapter 4 were simple lookups; another read pattern for RBTrees is complete traver-

sals where every node is accessed in sort order. Complete traversals present problems

to a relativistic implementation for a variety of reasons: Traversals violate some of

the assumptions on which the relativistic implementation was based; traversals take a

long time which can cause excessive delays in wait-for-readers; and the relativistic

linearization point does not apply to traversals.

This chapter explores some of the issues raised by relativistic readers that have

long durations (such as tree traversals). The chapter is outlined as follows: Section 5.1

outlines how traversals present different problems compared with single lookups. Sec-

tion 5.2 presents three different approaches to solving these problems, and Section 5.3

shows the performance trade-offs for the three approaches.

5.1 The Problem with Traversals

This section describes three potential problems with traversals with a relativistic

RBTree: the potential for invalid traversals, long duration wait-for-readers’s that

delays writes, and non-linearizable traversals.

101

5.1.1 Invalid Traversals

An in-order-traversal is used to access all the nodes in an RBTree in their sorted

order. An in-order-traversal is often defined recursively as shown in Listing 5.1. This

algorithm depends upon the program stack to maintain state about which nodes have

been visited and which are yet to come. A non-recursive version of this algorithm

could be developed that used a stack data structure instead of the program stack to

maintain this same state.

1 in_order(node)

{

if (node == NULL) return;

5 in_order(node.left);

process(node);

in_order(node.right);

}

Listing 5.1: Recursive in-order-traversal implementation

If an update occurred during a traversal that used the recursive algorithm, the

update could leave the tree in a state inconsistent with the data on the stack. Consider

the restructure shown in Figure 5.1. A traversal at node B prior to the restructure

would have C on the stack. If the restructure happened at this point, the traversal

would visit node C when following the right branch of B and then again when it

pulls C off the stack after processing B thus C would be processed multiple times.

To avoid this type of problem, concurrent updates must not alter the portion of the

tree structure that is represented by the contents of the stack.

Another traversal algorithm makes use of parent pointers instead of using a stack

to store state. The basic principle is that if a node is the right child of its parent,

then the parent has already been processed. Listing 5.2 gives a traversal algorithm

based on this principle. The leftmost(node) primitive returns the leftmost leaf of the

102

C

B

A

1 2

3

4

⇒ B

A

1 2

C

3 4

Figure 5.1: A traversal at node B when this restructure happened would visit node
C twice.

subtree rooted at node. The traversal starts in Line 3 by finding the leftmost leaf of

the tree. The outer while loop (Line 5) processes each node. If a node has a non-null

right branch, the right branch is followed in Line 9. If a node has a null right branch,

the traversal moves up in the tree. The while loop in Line 12 continues moving up as

long as the current node is the right child of its parent.

Figure 5.2 shows an intermediate state in the diag restructure. This is the state

just prior to Line 15 in Listing 4.3. The arrows pointing down are child pointers, the

arrows pointing up are parent pointers. A traversal at C will follow the right pointer

to 4. Node 4 has no right child, so the traversal will proceed up the tree until it

encounters C again. The traversal will re-process C and proceed to 4 again.

The diag restructure presents problems for traversals whether the traversal algo-

rithm uses a stack or the parent pointers. Similar problems could be demonstrated

with the zig restructure and swap. The root problem is that the relativistic algo-

rithm presented in Chapter 4 assumed that readers would not use the parent point-

ers. Clearly the algorithm that uses parent pointers violates this assumption, but the

stack algorithm also violates this assumption because popping the stack implicitly

follows a parent pointer. For the traversals to be valid, either a new traversal algo-

rithm must be found or the update algorithm must be modified to allow readers to

103

1 traverse(tree)

{

node = leftmost(tree);

5 while (node != NULL)

{

process(node);

if (node.right != NULL) {

node = leftmost(node.right);

10 } else {

parent = node.parent;

while (parent != NULL &&

parent.right != NULL &&

node == parent.right)

15 {

node = parent;

parent = node.parent;

}

20 node = parent;

}

}

}

Listing 5.2: Traversal algorithm that uses parent pointers instead of a stack.

traverse parent pointers. Section 5.2 presents both possibilities.

5.1.2 Duration

For the RBTree algorithm described in Chapter 4, the swap operation required a

wait-for-readers. The length of wait-for-readers can be at least as long as the

longest read-section. The length of a read-section is affected by the following three

factors:

1. Time required to execute the read-section code

2. Time spent in blocking calls (I/O, lock acquisitions, etc.)

3. Scheduling decisions that cause the read-section to wait for other threads

104

D

C

B

A

1 2

C ′

3 4

Figure 5.2: One of the intermediate states in a diag restructure. Down arrows are
child pointers, up arrows are parent pointers. Traversals can get stuck in a loop
including C and 4.

Scheduling decisions are outside the scope of this work, so we will assume a processor

is always available. For simple lookups, the read-sections are of short duration for

two reasons: Lookups are O (log(N)) and the read-section can be contained within

the lookup that does not block.

For complete traversals, there is an interplay between the traversal code and user

code. The traversal code finds the next node and then the user code performs an

operation using that node. The user code has the potential to be blocking either for

I/O or because it acquires a lock to perform some other operation based on the node

value.

Traversals maintain references to nodes in the tree across calls to next(). The

stack algorithm maintains these references on the stack, the parent algorithm requires

a reference to a node be passed into next so the algorithm knows where to continue the

traversal. Because the traversal maintains references to the tree across calls to next(),

a read-section must encompass the entire traversal. Traversals, and therefore read-

sections, can be quite long because a user mode action, which may include blocking

calls, is invoked for each node in the tree.

105

The long duration of traversal read-sections can affect both update performance

and memory usage. The swap algorithm required a wait-for-readers which can

block for at least the duration of a read-section. This will significantly delay any

updates that include swaps. Even if a series of updates could be constructed that

never required swaps, there is another potential problem. Because traversals are of

long duration, there is the potential for a large number of updates during the time of

the traversal. Each of these updates could cause a node to be freed asynchronously.

All of these asynchronous frees will be delayed until the traversal completes. For

restricted memory machines, this could lead to memory exhaustion.

5.1.3 Linearizability

The previous chapter argued that the last rp-read in a lookup was the linearization

point for that lookup. No such linearization point exists for complete traversals

because the traversal does not depend on a single node—it depends on all the nodes

in the tree. For locking solutions, the linearization point is the point when the lock

is acquired. For the relativistic solution, the start-read is not a valid linearization

point because the start-read does not determine the state of the tree that will be

visible to the traversal. Updates can continue to occur following the start-read.

While it is true that it is difficult to assign a linearization point to a relativistic

traversal, it is also true that having a linearizable traversal is less important than

a linearizable lookup. If updates are independent, then a non-linearizable traversal

may be acceptable. Consider the directory information a phone company maintains.

Printing a phone book would constitute a traversal. Updates would consist of people

signing up for service (inserts) or dropping service (deletes). If we consider the simple

case of two updates, one person adds service another drops service, then these two

updates are independent (provided they do not both involve the same phone number).

106

A phone book that included either, neither, or both updates could be considered

correct regardless of the order of the two individuals in the customer service line.

The duplicate phone number problem could be solved by deferring adding a dropped

phone number into the available phone number pool until after all currently printing

phone books have finished printing (e.g. use defer-for-readers to place dropped

phone numbers into the pool).

Two of the solutions proposed in the next section are non-linearizable.

5.2 Three Traversal Algorithms

This section describes three approaches to solving the problems presented in the

previous section. Table 5.1 gives a summary of the algorithms presented in this

section.

Approach Linearizable Performance Description
Combo yes O (N) Use a reader-writer lock to

protect traversals from up-
dates. Lookups proceed rel-
ativistically independent of
traversals or updates.

Simple RP no O (Nlog(N)) Have next() perform a
lookup from the root at
each step of the traversal.

Complex
RP

no O (N) Use a more complex up-
date algorithm that allows
nonlinearizable relativistic
O (N) traversals.

Table 5.1: Attributes of various approaches to traversals.

107

5.2.1 The Combo approach

This approach combines relativistic lookups with a more standard approach to traver-

sals. The standard approach to a tree traversal is to treat the entire traversal as a

single operation. A lock is acquired at the beginning of the traversal and held un-

til the end of the traversal. The lock prevents any updates from happening during

the traversal thus the structure of the tree remains unchanged for the duration of

the traversal. To allow this type of traversal using the relativistic read and update

algorithms described earlier, the mutex used for the write lock is replaced with a

reader-writer lock. This approach yields three sets of critical section bounding prim-

itives:

1. start-read/end-read bounds a relativistic read. These primitives are used for

lookups. Relativistic reads do not exclude updates nor traversals.

2. write-lock/write-unlock bounds an update critical section. Updates do not

exclude relativistic readers, but do exclude traversals.

3. rw-lock/rw-unlock bounds a traversal. Multiple rw-locks can be acquired at

the same time. A traversal does not exclude other traversals nor relativistic

readers, but does exclude updates.

Using these primitives, lookups can proceed at any time. Traversals and updates

are mutually exclusive, so traversals will cause significant delays to updates. However,

because traversals are mutually exclusive to updates, traversals are linearizable.

5.2.2 A Simple Relativistic Approach

Consider the following observations about tree traversals and the relativistic algo-

rithms given in Chapter 4:

108

1. Traversals are O(N); Updates are O(log(N)) therefore traversals are expected

to take much longer than updates.

2. Some updates require a wait-for-readers in the middle of the update. If the

wait-for-readers must wait for traversals, the wait will be O(N). This will

significantly delay updates.

3. The algorithms given in Chapter 4 assume readers do not access the parent

pointers so parent pointers should not be used by relativistic traversals.

Given the above considerations, a relativistic traversal can be constructed using

relativistic lookups. The next() primitive is passed the key of the previous node and

returns the key and value of the node with the first key greater than the previous

key. This allows the same relativistic read and update algorithms described in Chap-

ter 4 to be used. The consequences are that a traversal will take O(N log(N)) time

because each call to next() does a lookup starting at the root of the tree. However,

wait-for-readers only delays for single calls to next rather than for the full traver-

sal. This approach is possible because next does not need a reference to the current

node, just the key of the current node. References into the tree do not need to be

maintained across calls to next.

The tree traversed using this approach may not represent a tree that existed in

a globally ordered time. In particular, it is possible that a great number of updates

occurred during the time of the traversal. No guarantees can be made as to which of

these updates were seen and which were not. The only guarantee is that next() will

return the next node that was in the tree during the relativistic snapshot of time in

which next() was called.

Using this approach, traversals will take longer; however, updates will not be

significantly impeded by traversals.

109

5.2.3 A Complex Relativistic Approach

The previous section described an O(N log(N)) approach to traversals that is compat-

ible with concurrent updates. The O(N log(N)) approach was used for two reasons:

the update algorithms did not preserve the read-consistency of the parent pointers

in the nodes, and it allowed wait-for-readers to only delay for single calls to next()

rather than for the full traversal.

Section 4.2.2 mentioned two approaches to the zig restructure: one required copy-

ing a single node and a wait-for-readers the other required copying two nodes. Copy-

ing additional nodes can address both of the reasons for the O(N log(N)) traversals.

Copying additional nodes can preserve the read consistency of the parent pointers and

can eliminate the need for wait-for-readers during an update. Preserving the read

consistency of parent pointers means a relativistic traversal does not have to perform

a lookup starting at the root for each call to next. Eliminating all wait-for-readers

calls from updates means the read-section can span the entire traversal without de-

laying updates. The long read-sections will still delay memory reclamation and could

thus lead to memory exhaustion on limited memory systems.

The user mode RCU library (available at http://lttng.org/urcu) has recently

released code for an RBTree which copies additional nodes thereby preserving the

read-consistency of the parent pointers and removing all wait-for-readers calls from

the update path. The approach benchmarked here is similar to the approach imple-

mented in the user mode RCU library. The algorithm is described in Appendix B.

Using the more complex approach, updates take longer than with the approach

described in Chapter 4; however, traversals only take O(N). As with the simple

relativistic approach, traversals will not necessarily reflect the state of the tree as it

existed in any globally ordered time.

110

5.3 Performance Trade-offs

Benchmarks were run to demonstrate the performance trade-offs of the three ap-

proaches. The following attributes were demonstrated:

1. The high traversal cost of the Simple RP approach (Figure 5.3)

2. The contended traversal penalty of the COMBO approach (Figures 5.4 and 5.5)

3. The tree size penalty of the Simple RP approach (Figure 5.6)

The data was collected on trees ranging in size from 100–1, 000, 000 nodes. Figure 5.6

shows how the algorithms scale across this range of tree sizes. Figures 5.3–5.5 are

concerned with scaling across number of threads. These figures show data for a tree

of size 10, 000 nodes as representative of the other sizes.

The benchmarks were run on a four processor, quad-core Xeon machine (16 hard-

ware threads) running Linux 2.6.32. The RP implementation was supplied by the

Usermode RCU library mentioned above. Because traversals are so much slower

than other operations, data was collected for ten seconds per sample rather than just

one. The data reported are operations per ten seconds. Appendix A gives additional

information on the data collection methodology.

Figure 5.3 shows traversal performance without a concurrent updater. All ap-

proaches scale, even COMBO which uses a reader-writer lock. For smaller tree sizes,

COMBO does not scale because of contention for the lock variable. This figure makes

clear the performance penalty of the O (Nlog(N)) traversals in Simple RP.

Figure 5.4 shows update performance in the presence of concurrent traversals. The

leftmost data point represents the uncontended update performance. The remainder

of the points represent update performance in the presence of a varying number of

readers performing traversals. The Combo approach has good uncontended perfor-

111

0 2 4 6 8 10 12 14 16

0

50

100

150

200

250

Concurrent traversers

T
ra

ve
rs

al
s

p
er

10
se

co
n
d
s

(t
h
ou

sa
n
d
s)

Simple RP
Complex RP

COMBO

Figure 5.3: Traversal performance without a concurrent updater. Tree size was 10,000
nodes.

0 2 4 6 8 10 12 14 16

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Concurrent traversers

U
p

d
at

es
p

er
10

se
co

n
d
s

(t
h
ou

sa
n
d
s)

Simple RP
Complex RP

COMBO

Figure 5.4: Update performance in the presence of concurrent readers performing
traversals. Tree size was 10,000 nodes.

112

mance, but it degrades rapidly in the presence of traversals because each time a

traverser wins the lock the update must wait for the traversal to complete. The

Simple RP approach has best overall update performance, but this is at the expense

of traversal performance as shown in Figure 5.5. Finally, the difference between

Complex RP and Simple RP shows the cost incurred by Complex RP to allow O (N)

traversals.

0 2 4 6 8 10 12 14 16

103

104

105

106

Concurrent traversers

T
ra

ve
rs

al
s

p
er

10
se

co
n
d
s

(t
h
ou

sa
n
d
s)

Simple RP writes
Complex RP writes

COMBO writes
Simple RP reads
Complex RP reads

COMBO reads

Figure 5.5: Update and traversal performance.

The reader-writer lock used by COMBO favors writers; however, because there

is only a single update thread, overlapping writers cannot lead to read starvation.

If a reader is waiting to acquire the lock, it can succeed before the write thread re-

acquires the lock for the next update. In fact, if multiple readers are waiting, several

can acquire the lock before the writer reacquires it. Figure 5.5 shows this behavior.

In the presence of traversals, the update performance rapidly drops to roughly the

traversal performance because following each update (or a small number of updates)

a traverser wins the lock forcing the next update to wait for a complete traversal.

113

When there are enough traversals competing for the lock, several win the lock before

the updater reacquires the lock, so the traversals scale even though the lock favors

updates. The Complex RP and Simple RP mechanisms do not show this interplay

between updates and traversals.

Figure 5.6 shows how the traversal performance scales with tree size. The data

was collected with a single traverser and no updaters. The O (N) approaches show a

drop in scalability between trees of size 10,000 and 100,000 nodes. The L2 cache is

102 103 104 105 106

101

102

103

104

105

106

Tree size

T
ra

ve
rs

al
s

p
er

10
se

co
n
d
s

Simple RP
Complex RP

COMBO

Figure 5.6: Traversal scalability. Note that the COMBO and Complex RP lines are
on top of each other.

exhausted by trees between these two sizes. The access pattern in the O (Nlog(N))

approaches is more cache friendly so when the tree overflows the cache the Simple RP

algorithm does not take as big of a hit.

114

5.4 Summary

This chapter has shown that read access patterns can have an impact on relativistic

algorithms. Complete tree traversals present a different set of problems compared

with individual lookups. With a complex read patterns such as in a complete traver-

sal, there are several parameters that can be traded-off against each other. These are

summarized below:

Lineariz-

ability

Both of the RP solutions gave up linearizable traversals in exchange for

concurrent updates. The Combo approach had linearizable traversals,

but this meant the traversals and updates could not run concurrent

with each other. The mutual exclusion between traversals and updates

had a significant impact on update performance.

read

peformance

The Simple RP approach gave up traversal performance by using an

O (Nlog(N)) traversal algorithm. This allowed concurrent reads (both

lookups and traversals) and allowed better uncontended update per-

formance than the Complex RP approach.

update

complexity

The approach used a much more complex update algorithm. The

additional complexity means it is harder to prove this algorithm is

correct. However, using the more complex algorithm allowed O (N)

traversals in the presence of concurrent updates.

115

Chapter 6

Disjoint Access Relativistic Writes Using Software Transactional Memory

Much of the work on relativistic programming has focused on a single writer at a

time (enforced through mutual exclusion) and multiple readers. A truly scalable

implementation should have both scalable reads and scalable writes. Some data

structures can achieve a level of scalablity on the write side through partitioning,

but as mentioned in Section 4.1, some data structures are difficult to partition. To

solve this problem, relativistic readers can be combined with transactional writers.

Using relativistic reads will allow the same high-performance scalable reads as with a

standard RP implementation. Using transactional memory for the updates will allow

automatic disjoint access parallelism on the write side.

This chapter is outlined as follows: Section 6.1 discusses the requirements for an

RP compatible STM (RP-STM). Section 6.2 discusses SwissTM, an already available

STM which supplies many of these requirements. Section 6.3 discusses the modifi-

cations made to SwissTM to make it RP compatible. This section also argues for

the correctness of these modifications. Section 6.4 shows that the performance of

RP-STM maintains the low overhead linearly scalable reads and also allows for scal-

able writes. Section 6.5 discusses a mechanism to extend the benefits of RP-STM by

performing the lookup phase of an update relativistically. Section 6.6 summarizes the

contributions of this chapter.

116

6.1 How to Make STM Compatible with RP

Chapter 3 discussed the ordering requirements for relativistic programming implemen-

tations. These were compared with the ordering requirements for reader-writer locks.

The ordering requirements for STM systems are in some ways similar to those for fine

grained reader-writer locks. Read-read concurrency is allowed, but not read-write nor

write-write to the same data. Because readers are not allowed to see intermediate

states, programmers only need to reason about correctness at transaction boundaries.

If an STM is to allow concurrent relativistic reads, then intermediate states will be

visible and the STM must be capable of maintaining the ordering requirements for a

relativistic update.

The goal of the combined RP-STM system is that reads proceed completely out-

side the transactional system so they maintain the same performance as conventional

RP reads. Writes proceed inside the transactional system so the STM can provide

automatic disjoint access parallelism on the write side. The write algorithms need

to be RP algorithms in order to support concurrent non-transactional reads. The

RP update algorithm will keep the data always-valid. The STM system will provide

isolation and the appearance of atomicity between updates. But because reads pro-

ceed outside the STM, the STM must maintain the ordering requirements of the RP

algorithm.

Rather than developing an RP-STM from scratch, an existing STM implementa-

tion was modified to support the RP ordering requirements. A software transactional

memory system that is compatible with relativistic readers must have the following

properties (see Section 2.1.3 for a definition of the STM terms):

Weakly atomic A strongly atomic transactional memory system would include the

relativistic reads as part of its atomicity guarantee thus requiring

117

significantly more overhead than relativistic reads. The RP-STM

reads are supposed to execute completely outside the transactional

system so they maintain the same performance of standard RP

reads.

Invisible

Uncommitted

data

Updates that eventually get rolled back must not be visible to

readers. Read-only operations happen outside the transactional

memory system so they will never get rolled back. Therefore,

read-only operations must not see any writes that will not be com-

mitted. This requirement can be met by software transactional

memory systems that use a re-do log rather than update-in-place.

Program Order The transactional memory system must honor the program order

of writes to memory. Normal compiler optimizations and out-of-

order execution units on modern processors are allowed, but a

wholesale reordering as is done by many STMs is not allowed. In

particular, all writes in program order prior to an rp-publish must

be visible to readers prior to the rp-publish, and all rp-publish

operations must be executed in program order. To implement this

property, the STM must have a record of all STORE operations,

the record must be kept in program order, and the STORE’s

performed with rp-publish must be tagged in the re-do log so

that the required memory barrier can be inserted at commit time.

wait-for-readers The transactional memory system must honor wait-for-readers

delays between specific memory writes. The wait-for-readers

is required between the time that one write is visible to readers

and the time a subsequent write is visible to readers. In an STM

118

system, the writes are made visible to readers at commit time, so

the wait-for-readers must be performed at commit time. RP-

STM records the request for a wait-for-readers in the re-do log.

Commits will be delayed when this entry in the re-do log is en-

countered.

Any STM that preserves these properties will allow a relativistic update algo-

rithm to be transactionalized so that readers can proceed relativistically, outside the

transactional system.

6.2 SwissTM

RP-STM was derived from SwissTM [19, 18]. SwissTM was chosen as a starting point

because it is a recent implementation that claims high performance and because it

uses invisible reads and a re-do log rather than update-in-place. This section gives

a brief explanation of how SwissTM works. Many of the details are left out. The

intent here is to provide just enough detail to facilitate a description of the changes

necessary to make SwissTM compatible with relativistic reads and to argue for the

correctness of changes.

Table 6.1 lists the meta-data maintained by SwissTM. The tx-count is a global

counter of committed transactions. It is used as a timestamp for values. The times-

tamp is used to validate read-values. The read-log is used for validating the read-set

of a transaction. The write-log is used to store all the values written. At commit

time, these values are written back to memory.

The w-lock and r-lock are used to control access to memory locations. When

held, the w-lock prevents other transactions from writing the protected value. Reads

are still allowed. The r-lock prevents other threads from reading the protected

value. Rather than a pair of locks per word, a pair of locks is assigned to a block of

119

words. Multiple addresses hash to the same lock, but the reduced meta-data improves

performance. The w-lock is acquired the first time a transaction performs a STORE

to a location, which allows for early detection of write-write conflicts. The r-lock is

not acquired until commit time. Read-only transactions do not acquire the r-lock,

but they do delay reading any values for which the r-lock is held. Write transactions

acquire the r-lock on their write-sets prior to updating any values. Doing so prevents

readers from seeing partial updates because if they encounter a value for which the

r-lock is held, they will delay reading it until after the transaction completes. At this

point, the value will be marked with a newer timestamp, so the reader will re-validate

all their values.

The major operations of SwissTM are listed below.

Tx-Start saves the current value of tx-count. Any values that were written after

this time have the potential to cause an inconsistent set of values. When

this is detected, all values in the read-set are re-validated.

LOAD Pseudo-code for LOAD is given in Listing 6.1. LOAD checks the value of

w-lock. If the current transaction is the owner of the lock, then the value is

returned from the write-log (i.e. the last value written by this transaction

is returned). Otherwise, LOAD waits for the r-lock to be unlocked. If the

r-lock value is greater than the saved tx-count value, then the read-set is

validated, otherwise the value is added to the read-log.

STORE Pseudo-code for STORE is given in Listing 6.2. If the current transaction is

the owner of the w-lock, STORE simply stores the new value in the write-log.

Otherwise, STORE attempts to acquire the w-lock. If it succeeds, STORE

checks the r-lock value to determine if the value has been written after

the start of the transaction. If so, the read-set is validated. If STORE is

120

Data Scope Updated Purpose
tx-count Global commit time Used as a timestamp to

speed validation

read-log per transac-
tion

on each LOAD Record of memory locations
read and the timestamp for
which they were read

write-log per transac-
tion

on each STORE Record of memory locations
written and the values they
contain

w-lock per block of
addresses

on each STORE Early detection of write-
write conflicts

r-lock per block of
addresses

commit time Prevent reading inconsistent
values. When an r-lock

is unlocked, it contains the
tx-count of the transaction
that last updated the value
thus the age of the value can
be determined.

my-tx-count per transac-
tion

transaction start Record of transaction start
time.

Table 6.1: Meta-data maintained by SwissTM

unable to acquire the w-lock, it calls the contention manager to decide

which of the competing transactions should be aborted.

validate The validate operation compares all of the values in the read-set with the

current values. If any values do not match, the transaction is aborted.

commit The pseudo-code for commit is given in Listing 6.3. If the transaction was

read-only (if the write-set is empty), commit returns immediately. The

read-set has already been validated so there is no work to do. If the trans-

action was a write transaction, then commit begins by acquiring the r-lock

121

on all addresses in the write-set. This operation is guaranteed to suc-

ceed because the transaction already holds the w-lock on these addresses.

commit then increments the global tx-count to indicate the epoch in which

the new values will be written. commit performs a final validation of the

read-set. Finally, commit goes through the write-log and for each entry, it

updates the value at the address, releases the w-lock and sets r-lock to

the current tx-count value marking the time when the value was written.

1 LOAD(addr)

{

if (w-lock(addr) owner == me) {

return value from write-log

5 } else {

while (r-lock(addr) is locked)

{

// wait

}

10
if (r-lock(addr) > my-tx-count) {

if (!validate()) abort;

}

15 save (addr, value) in read-log

return value

}

}

Listing 6.1: Pseudo-code for LOAD operation

6.3 Modifications to SwissTM

SwissTM was chosen as a starting point because its features were closely compatible

with the desired RP-STM. The primary goal in making changes to SwissTM was

ease of implementation. This implementation was not optimized for performance,

122

1 STORE(addr,value)

{

if (w-lock(addr) owner == me) {

update write-log with value

5 } else {

while (w-lock(addr) is locked)

{

call contention manager

}

10
acquire w-lock(addr)

if (r-lock(addr) > my-tx-count) {

if (!validate()) abort;

15 }

save (addr, value) in write-log

}

}

Listing 6.2: Pseudo-code for STORE operation

1 commit()

{

if read-only return

forall write-set

5 acquire r-lock

increment global tx-count

if (!validate()) rollback and retry

10
forall write-set {

update memory

release w-lock

update r-lock with tx-count

15 }

}

Listing 6.3: Pseudo-code for commit operation

123

but there was very little difference in performance between RP-STM and the original

SwissTM (see Section 6.4.1 for details). The following changes were made to SwissTM:

1. Added a new log (called the rp-log) to store all updates in program order. The

original log recorded only the most recent store to any particular address. The

rp-log records each store—if there are multiple stores to the same address, they

will all be in the rp-log. The original log is used for loading values from within

a transaction and for validating a transaction prior to commit. The rp-log is

used at commit time to perform the memory writes.

2. Changed the STORE primitive so that it wrote values to both the original write-

log and to the rp-log (added a line following line 17 in Listing 6.2).

3. Added a primitive to add a wait-for-readers to transactions. This primitive

adds an entry to the rp-log.

4. Added a primitive to force a memory barrier before particular writes as indicated

by rp-publish. This primitive performs all the processing of a normal STORE,

but adds a tag to the entry in the rp-log indicating that the store must be

preceded by a memory barrier.

5. Added a primitive to add an rp-free to the transaction. This information is

added to the rp-log.

6. Changed the commit code to make changes to memory based on the rp-log

rather than the original log. The forall in Line 11 of Listing 6.3 was split

into two loops. The first one goes through the rp-log and performs all the mem-

ory operations (including memory barriers, wait-for-readers’s, and rp-free’s).

The second loop goes through the original log and frees the w-lock’s and updates

the r-lock’s.

124

These changes required adding a new data structure and methods for updating

that structure. The new structure was based on existing SwissTM structures (the

read-log and write-log), so adding the new data structure was straightforward.

Two existing routines were modified: one for performing STORE operations and one

for performing the commit. In both cases the modifications were trivial. Finally, a new

routine was added for performing the commit from the rp-log instead of the original

write-log. This routine was just a loop which processed each element of the rp-log.

6.3.1 Correctness

This section presents a brief argument for the correctness of RP-STM. The focus is

on two aspects: the impact of transactional updates on the relativistic reads, and the

impact of the modifications on the integrity of SwissTM.

Transactional Impacts on Relativistic Reads

RP-STM makes changes to memory using the rp-log. This log includes all of the

stores to memory as well as memory barriers and calls to wait-for-readers. When

this log is replayed, the memory operations will occur in the same order, and with the

same ordering primitives as if the non-transactional update algorithm had been run.

The only difference is the amount of time between successive operations. In the RP-

STM version, this gap is determined by how long it takes the commit procedure to

process the next entry in the rp-log. In the non-STM version, this gap is determined

by how long it takes the update algorithm to determine the next memory operation.

But readers are oblivious to this gap. As pointed out in Chapter 3, provided the

ordering primitives (rp-publish and wait-for-readers) are in the correct places, the

timing or ordering of the other operations does not matter. RP-STM preserves the

important ordering constraints, so relativistic readers can proceed with RP-STM the

125

same as they can with a standard RP implementation.

Another way to consider this argument is that with standard RP algorithms, the

RP primitives are executed in line with the code. With RP-STM, the primitives

are queued in the rp-log. At commit time, the rp-log is replayed such that all the

primitives are executed in the same order as in the standard RP algorithm. The

net effect of RP-STM is that the primitives are delayed in time. To a reader, this

would appear the same as a scheduling decision whereby the standard RP updater

was delayed in time. The delay does not affect the correctness of the update nor of

the concurrent reads.

Integrity of the Transactional Memory System

The integrity of the transactional memory system is preserved for the following rea-

sons:

1. The original SwissTM system used invisible reads. As a result, read-only trans-

actions cannot invalidate a transaction that performs updates. Removing these

read-only transactions from the transactional memory system has no impact on

the validity of the transactions that perform updates.

2. Additional meta-data was added (the rp-log), but none of the original meta-

data was modified. Isolation and the atomicity of updates are determined and

guaranteed based on the original meta-data. None of the code that performs

the validity checks was modified, neither was any of the code that enforces the

atomicity guarantees. As a result, RP-STM will have the same conflict detection

properties and atomicity guarantees as the original SwissTM.

3. The order and timing of updates to memory was changed. However, from a

transactional point of view, a transaction will see either all or none of the

126

updates, so their order does not matter. Because the updates in RP-STM

still take place between acquiring all the r-lock’s and releasing the locks, the

isolation and atomicity guarantees are preserved.

4. The insertion of wait-for-readers within a commit will extend the duration of

the commits. However, the transactional memory system must tolerate arbi-

trary delays during a commit because a committing transaction may get inter-

rupted or rescheduled by the operating system.

5. The wait-for-readers does not block for any other transaction. It only blocks

for relativistic readers that are outside the transactional system. As a result,

these delays cannot lead to deadlock within the transactional system.

For these reasons, if the original transactional memory system is correct, the relativis-

tic implementation is correct as well. No effort was made to prove the correctness of

SwissTM, that was argued by its original authors.

6.4 Performance

The goals for RP-STM were to have reads with the same performance of standard

RP reads while at the same time allowing writes to scale through disjoint access

parallelism. To test whether this goal was met, a transactional version of the RBTree

algorithm discussed in Chapter 4 was written. The same update algorithm was used,

but memory accesses were changed to use the STORE and LOAD primitives so RP-STM

could manage the operations. In addition, the transactional versions of rp-publish,

wait-for-readers, and rp-free were used. The lookups were not transactionalized,

so they occurred outside the RP-STM system.

For the benchmarks, a tree was created and initialized to a given size, then threads

were started to perform operations on the tree. The number of operations performed

127

over the duration of one second was recorded. For each operation, the thread picked

a random number, and then based on the number, the thread either performed a

lookup, insert, or delete. The probability of insert was the same as the probability

of delete so on average the tree remained the same size. The size of the tree for the

benchmarks presented here was 64K nodes. Tests were also run on trees of 64 nodes.

Comments in the text indicate where the smaller tree made a noticeable difference

in the performance. The benchmarks were performed on a four processor, quad-core

Xeon machine running Linux 2.6.32. Appendix A gives additional information on the

data collection hardware and methodology.

The following algorithms were benchmarked:

rp This is the relativistic implementation described in Chapter 4.

ccavl The concurrent AVL implementation by Bronson et al. [10]. This is the

best known concurrent tree algorithm, and it was compared against the

STM versions to see if an algorithm customized to a particular data

structure would out perform an STM implementation.

rpavl A relativistic AVL tree. The algorithm matches that described in Chap-

ter 4 except that AVL balance properties were maintained instead of

RBTree balance properties. This algorithm was compared against rp to

see if there was a difference between an RBTree and an AVL Tree for the

usage pattern in these benchmarks.

RP-STM The relativistic read, STM update combination described in this chapter.

SwissTM The SwissTM system described by Dragojevic et al. [19]. This was the

original STM that RP-STM was based on.

128

SwissRP This is the modified SwissTM STM running a standard RBTree algo-

rithm (not the RP algorithm). SwissRP was compared to SwissTM to

determine the performance impacts of the changes made to SwissTM.

6.4.1 Preliminaries

Figure 6.1 compares the performance of rp and rpavl. While rp performed slightly

better, they were close enough that comparing an RBTree algorithm against an AVL

algorithm is fair.

100 101 102 103 104 105 106
101

102

103

104

105

106

107

Updates per 1,000,000 operations

O
p

er
at

io
n
s/

se
c

RBTree reads
AVL Tree reads
RBTree writes

AVL Tree writes

Figure 6.1: Performance of an RBTree compared with an AVL Tree across a wide
range of update rates with 16 threads. The two performed sufficiently the same so
that comparisons of RBTrees and AVL Trees are valid.

Figure 6.2 compares the performance of SwissTM and SwissRP (the modified

STM but with non-RP algorithms). The performance of both STM’s was virtually

identical across a wide range of update rates. The changes made to the STM to make

it compatible with relativistic reads did not have a significant impact on performance

even though performance was not a consideration in making these changes. Because

SwissTM and SwissRP have similar performance, any differences between SwissTM

129

and RP-STM must be due to the RP algorithms not due to the differences in the

STM implementation.

100 101 102 103 104 105 106

101

102

103

104

105

106

107

Updates per 1,000,000 operations

O
p

er
at

io
n
s/

se
c

SwissRP reads
SwissTM reads
swissRP writes
swissTM writes

Figure 6.2: Performance of the original SwissTM algorithm and the modified ver-
sion (labeled SwissRP) across a wide range of update rates with 16 threads. The
modifications to make SwissTM compatible with RP reads did not significantly affect
performance of the STM system.

6.4.2 Concurrent Reads

Figure 6.3 shows the performance of a read-only work load. As expected, the per-

formance of rp and RP-STM was identical. The performance of ccavl was slightly

better than SwissTM, but the additional performance does not justify the enormous

complexity of ccavl.

6.4.3 Concurrent Updates

Figure 6.4 shows the performance of a write-only work load. As expected, the uncon-

tended performance of rp was better than any other method because rp does not have

to pay the STM overhead. However, rp degrades quickly in the presence of multiple

130

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

Threads

re
ad

s/
se

c
(m

il
li
on

s)
rp

RP-STM
ccavl

SwissTM

Figure 6.3: Read performance of various algorithms. The RP algorithms clearly out
perform the others.

update threads because mutual exclusion is used between updaters.

Of the other algorithms, SwissTM out performed RP-STM because RP-STM used

a more complicated update algorithm to allow reads to proceed relativistically. For

low thread counts, ccavl was equivalent to SwissTM, but the performance of ccavl

drops off significantly at higher thread counts.

For smaller trees, ccavl out performs the STM versions at low thread counts, but

it again drops off at higher thread counts. For smaller trees, the performance of the

STM versions levels off, but it does not drop at higher thread counts as ccavl does.

The leveling off suggests that there is only so many ways a tree of a given size can be

partitioned.

6.4.4 Variable Update Rate

Figure 6.5 shows the performance of a range of work loads from read-only to write-

only. In each case, there were 16 threads performing work. The performance of

both the rp reads and writes fell off significantly above about 5% updates because

131

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

Threads

u
p

d
at

es
/s

ec
(m

il
li
on

s)

SwissTM
RP-STM

ccavl
rp

Figure 6.4: Update performance of various algorithms. The uncontended rp perfor-
mance is better than that of the other algorithms, but rp drops off quickly due to
mutual exclusion. The STM algorithms scale positively (though not linearly) out to
16 threads.

the mutual exclusion between writers caused the writes to serialize. Once a thread

completed a write, it might perform several reads, but once it chose to do another

write, it would have to wait until it acquired the lock thus preventing that thread

from performing any work (reads or writes) for some period of time.

RP-STM showed the best performance across all but the highest update rates.

At the highest update rates, SwissTM outperformed RP-STM because of the simpler

update algorithm.

6.5 Discussion: Extending the Use of Relativistic Lookups

Updates for many data structures occur in two phases: a lookup phase and an update

phase. Consider an RBTree insert. First, there is a lookup phase to determine the

location for the new node, and then the node must be inserted and the tree rebalanced.

It should be possible to perform a relativistic lookup followed by a transactional

132

100 101 102 103 104 105 106

0

2

4

6

8

10

12

14

Updates per 1,000,000 operations

O
p

er
at

io
n
s/

se
c

(m
il
li
on

s)
RP-STM

rp
ccavl

SwissTM

Figure 6.5: Combined performance across a range of update rates.

update. Performing the lookup relativistically has two benefits: It is faster and it

reduces the read-set of the transaction, which should reduce conflicts thereby reducing

rollbacks. Performing the lookup relativistically has one drawback: Following the

lookup, there must be some validation within the transaction to confirm that the

proper node is updated within the scope of the transaction.

Consider the tree shown in Figure 6.6. There are two simultaneous transactions.

One transaction performs a zig restructure of nodes B , C , and E to rebalance the

tree following some other operation, and the other transaction inserts H . The second

transaction includes node E in its read-set. Node E is also in the write-set of the

first transaction. Most STM’s would report this as a conflict and one (or both) of the

transactions would be rolled back. However, the insert of H does not really depend

on E , only on G , the parent of H and the fact that G is the right child of its parent

(if G is not the right child of its parent, then H may belong on the right branch of

G ’s parent). These dependencies were not altered by the first transaction.

There are four considerations that determine if a relativistic lookup will be of

133

E

C

B

A

D

G

F

⇒
C

B

A

E

D G

F H

Figure 6.6: Subtree before and after the simultaneous insertion of node H and a zig
restructure of nodes B , C , and E . The gray nodes are the nodes affected by the
updates.

benefit.

1. Relative cost of a relativistic vs. transactional lookup

2. Probability that a relativistic lookup will avoid unnecessary rollbacks

3. Cost of a rollback

4. Cost of validation following a relativistic lookup

A preliminary analysis of the probability of a relativistic lookup avoiding an unneces-

sary rollback for an RBTree follows. The analysis shows that for RBTrees, relativistic

lookups are not likely to avoid rollbacks. The analysis of the other three considera-

tions for RBTrees and the analysis of other data structures is left as future work.

Using the following definitions:

LUi the read set of the LookUp portion of the i th operation

RSi the Read Set of the non-lookup portion of the i th operation (i.e. the read set

of the operation after the node to be operated on is found)

WSi : the Write Set of the i th operation

134

Note that if the lookup phase proceeds relativistically, then LUi is not included in

the transaction.

For a relativistic lookup in operation i to prevent a rollback of operation k , the

following must be true:

1. LUi ∩WSk 6= ∅

2. (RSi ∩WSk = ∅) ∧ (WSi ∩WSk = ∅) ∧ (WSi ∩ RSk = ∅)

or, in English,

1. k wrote a location that i used to find the node to operate on

2. There are no conflicts in the transactional portions of i and k

To put this another way, the only way to have a conflict that matters is if RSi∪WSi

(the nodes in the transactional portion of i) is below one of the nodes in WSk . If this

is true, then LUi must include the node in WSk that is a parent of RSi ∪WSi . If

(WSk ∩ (RSi ∪WSi)) 6= ∅ then there is a conflict in the transactional portion of the

operations, so an RP lookup will not prevent a conflict. See Figure 6.7 for a graphical

representation of these relations.

x

k

k

k k

i

i i

x

x

x x

x

x x

Figure 6.7: Tree depicting the read and write sets of two operations. The nodes in
WSk are marked k . The nodes in RSi∪WSi are marked i . All other nodes are marked
x .

Consider the following: all inserts happen at leaves. Half of deletes happen at

leaves (half the nodes in the tree are leaves - this is an attribute of all balanced

135

binary trees). The other half of deletes involve a swap with a leaf. Therefore, all

updates involve a leaf.

Figure 6.7 illustrates a conflict that could be prevented with an RP lookup. The

nodes marked k are in WSk , the nodes marked i are in RSi ∪WSi , the nodes marked

x are any other nodes in the tree. We assume that WSk is the on left most branch of

a tree (this is an arbitrary choice, but any other choice has an equivalent analysis).

RSi ∪WSi must be on a branch of some node in WSk . Note that the size of RSi ∪WSi

is bounded by the size of WSk as given in equation 6.1. This is because WSk must

extend down to a leaf and at most, RSi ∪WSi can be a full subtree under the upper

most node of WSk .

|RSi ∪WSi | ≤ 2|WSk |−1 (6.1)

I performed an empirical study and found that updates performed, on average, 3.5

store operations. This number remained constant independent of the size of the tree.

Updating a single node may require multiple store operations—the parent pointer,

color, and left and right pointers all may need to be updated. As a result, we can

clearly conclude that, WSk includes, on average, fewer than 4 nodes. Figure 6.8 shows

a subtree with the four nodes in WSk marked k . In order for there to be a conflict

that was avoided by an RP lookup, WSi must include one of the leaves marked i .

k

k

k

k i

x

i i

x

x

i i

x

i i

Figure 6.8: The nodes in WSk are labeled k . If there is a conflict that was prevented
by RP lookups, then WSi must include one of the nodes labeled i .

136

If we assume that the leaf node involved in an update is randomly distributed

among the leaves of the tree, then an upper bound on the probability of two concurrent

transactions avoiding a conflict due to RP lookups is given by equation 6.2.

P(conflict avoided) ≤ 2|WSk |−1 − 1

(tree size)/2
(6.2)

This represents an upper bound because it assumes one store operation per node, it

assumes WSk does not include any siblings, it assumes a perfectly balanced tree, and

because some of the leaves labeled i in Figure 6.8 would lead to transactions that

would conflict even if RP lookups were used.

If WSk includes 4 nodes (a liberal estimate based on the empirical study), then

for trees of 64 nodes, P(conflict avoided) is less than 7/32. As the size of the tree

increases, the probability decreases.

The analysis presented above is preliminary. It needs to be tightened by determin-

ing the average number of nodes in WSk instead of the number of store operations.

It also needs to be extended to include the cost savings involved in doing RP lookups,

the cost of validation following the RP lookup, and the cost of a rollback. The anal-

ysis should also include varying the number of concurrent transactions instead of

considering just two.

While the analysis above is preliminary, it is sufficient to show that a relativistic

lookup phase for RP-STM updates of RBTrees is not likely to reduce transactional

conflicts for any but the smallest of trees. It is unknown what the performance impact

of the relativistic lookup phase would be because no effort was made to measure the

cost of the relativistic vs. a transactional lookup phase. Also, no effort was made to

determine the cost of a validation phase. The analysis presented here was unique to

binary trees. Other data structures, such as linked lists, might yield a different result.

137

These other considerations are left as future work.

6.6 Summary

This chapter showed that it is possible to combine relativistic programming with

Software Transactional Memory in such a way that preserves the high performance,

scalable reads of relativistic programming and also allows for automatic disjoint access

parallel updates provided by the STM. While there was a slight update performance

penalty for RP-STM, this is more than made up for by the high read performance.

RP-STM provides a mechanism for scalable relativistic updates of data structures

that do not easily partition, and the use of RP-STM is a good choice over a wide

range of update rates.

138

Chapter 7

Summary of Contributions

This dissertation has contributed the following to the field of relativistic programming:

1. A new analysis of the ordering requirements of relativistic programming

2. Correctness criteria that can be applied to relativistic programs

3. Demonstrated that relativistic techniques can be applied to a complex data

structure that requires multi-node updates

4. Demonstrated that wait-for-readers is useful for ordering the visibility of up-

dates

5. Provided a mechanism whereby relativistic programming can be combined with

software transactional memory to provide high performance, scalable reads, and

automatic disjoint access parallel writes

Each of these are discussed below.

Chapter 3 presented a new analysis of the ordering requirements of relativistic

programs. This analysis led to the following insights:

1. Reader-writer locks require symmetric two-way communication between readers

and writers. Relativistic programs only require one-way communication. This

139

lower communication requirement is part of what allows relativistic programs

to perform and scale better.

2. Relativistic programs, by default, do not require all readers to agree on the order

of updates. wait-for-readers can be used to force all readers to agree on an

order by forcing all readers that observed one state to finish before transitioning

the data to a new state. If a single update requires multiple stores to memory,

then wait-for-readers can be used to limit the number of intermediate states

that are visible to a reader. If a wait-for-readers is placed between separate

updates (as opposed to between the stores within a single update), then all

readers will agree on the order of all updates. This behavior is called Totally

Ordered Relativistic Programming (TORP).

3. The delays in TORP, where writes are delayed such that all readers will agree

on the order of all writes, are no worse than the delays caused by reader-writer

locking. The comparative delays were shown both analytically and experimen-

tally.

4. If the “staleness” of data is measured based on the delay between the event that

triggered a data change and when the data change became observable, then

reader-writer locking increases the staleness of data over relativistic programs

because reader-writer locking delays writes. Relativistic programming allows

both earlier completion of writes and earlier access to data, meaning data is

less stale.

Chapter 3 also proposed correctness criteria for relativistic programs. These correct-

ness criteria were used throughout the dissertation when discussing the correctness

of the various algorithms.

140

Relativistic programming techniques have long been applied to linked lists. Linked

list updates tend to involve a single node at a time. Chapter 4 showed that relativistic

programming can also be applied to data structures that require complex multi-node

updates such as a red-black tree. The relativistic red-black tree algorithm made use of

wait-for-readers to order the visibility of writes in order to abide by the relativistic

correctness criteria. Chapter 5 extended this work further by looking at complete tree

traversals. Several traversal solutions were presented that explored various points in

the space defined by performance, degree of concurrency, algorithmic complexity, and

linearizability.

Chapter 6 presented a Relativistic Software Transactional Memory. RP-STM can

preserve the ordering requirements discussed in Chapter 3, so reads can proceed rela-

tivistically outside the transactional system. Doing so allows reads to have the same

high performance and scalability of a regular relativistic implementation while the

STM system can provide scalable writes through automatic disjoint access paral-

lelism. An existing STM was used as the basis of the RP-STM implementation. Only

minimal changes were required to the STM suggesting that compatibility with rela-

tivistic reads is a feature that could be added to other STMs. Also, the performance

penalty for these changes was negligible, so adding this capability will not harm the

performance of STMs, but it will allow a significant increase in read performance.

7.1 Future Work

There are a number of areas where the work presented in this dissertation can be

extended. The work on ordering was useful for developing new relativistic algorithms

(such as the relativistic RBTree) and for developing new mechanisms (such as RP-

STM), but it is not sufficiently to formally prove properties of either the RP primitives

or the algorithms that use these primitives. Such a formalism would be beneficial.

141

Relativistic programming supports read-read concurrency and read-write concur-

rency to the same data. RP-STM extends relativistic programming to support auto-

matic disjoint access parallelism on the write side (write-write concurrency to disjoint

sets of data). A complete relativistic solution should address a relativistic solution

for both disjoint access parallelism on the write side as well as write-write parallelism

to the same data.

One example of write-write parallelism to the same logical data would be to imple-

ment a First In First Out queue as an Earlier In Earlier Out queue. Each core could

maintain a local queue so both enqueues and dequeues could be performed locally.

The trick would be to bound the relaxation of order so there are limits on how much

the dequeue order would vary from the dequeue order that would result in a totally

ordered system. In other words, there must be bounds on the “Earlier” part of the

definition of the queue.

A second example of relaxed consistency writes is the work by Unger et.al. [64] on

inconsistency robustness. They proposed an OnLine Analytical Processing (OLAP)

system that allowed conflicting writes. Rather than preventing the conflicts through

locking, or detecting them and rolling back as in STM, they allow conflicting writes

to publish potentially conflicting data. They use background threads to scan the data

and find and fix inconsistencies. Their approach could probably benefit from rela-

tivistic techniques to place tighter bounds on the amount of allowable inconsistency.

Another area that could benefit from additional research is the area posed in Chap-

ter 6 that used a relativistic lookup phase as part of an RP-STM update. The analysis

presented in Chapter 6 showed that, for RBTrees, a relativistic lookup phase would

not likely reduce the number transactional conflicts. However, even in the absence of

fewer conflicts, the relativistic lookup would be faster. Additional research is needed

to determine the method and cost for validating the selected node. Other data struc-

142

tures should also be analyzed because a different access pattern could significantly

increase the probability of reduced conflicts.

7.2 Conclusion

Einstein is supposed to have said, “Any intelligent fool can make things bigger, more

complex, and more violent. It takes a touch of genius – and a lot of courage – to move

in the opposite direction.” I believe relativistic programming is a step “in the opposite

direction”. Relativistic programming is not big and complex like STM systems, nor

does it attempt to violently force a total order in a relaxed ordered world. Rather it

is an elegant method by which ordering can be managed in such a way that efficient

and scalable solutions are available to concurrent problems.

143

Bibliography

[1] Java platform standard ed. 6. [Online]. http://download.oracle.com/javase/
6/docs/api/java/util/TreeMap.html.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29:66–76, 1996.

[3] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar,
Peter Sewell, and Francesco Zappa Nardelli. The semantics of power and arm
multiprocessor machine code. In Proceedings of the 4th workshop on Declarative
aspects of multicore programming, DAMP ’09, pages 13–24, New York, NY, USA,
2008. ACM.

[4] T. E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1:6–16, January 1990.

[5] O. Babaoglu, K. Marzullo, and F. Schneider. A formalization of priority inver-
sion. Technical report, 1993.

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Math-
ematizing c++ concurrency. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’11, pages
55–66, New York, NY, USA, 2011. ACM.

[7] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algo-
rithms. Acta Informatica, 1:290–306, 1972. 10.1007/BF00289509.

[8] Bob Beck and Bob Kasten. VLSI assist in building a multiprocessor UNIX
system. In USENIX Conference Proceedings, pages 255–275, Portland, OR, June
1985. USENIX Association.

[9] Hans-J. Boehm. Threads cannot be implemented as a library. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 261–268, New York, NY, USA, 2005. ACM.

[10] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A prac-
tical concurrent binary search tree. In PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
257–268, New York, NY, USA, 2010. ACM.

144

[11] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. Trans-
actional predication: high-performance concurrent sets and maps for stm. In
Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of dis-
tributed computing, PODC ’10, pages 6–15, New York, NY, USA, 2010. ACM.

[12] Mark D. Campbell and Russ L. Holt. Lock-granularity analysis tools in
SVR4/MP. IEEE Software, 10(2):66–70, 1993.

[13] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Software transactional memory:
Why is it only a research toy? Queue, 6:46–58, September 2008.

[14] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Communications of the ACM, 14(10):667–668, October 1971.

[15] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining
STM by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’10, pages
67–78, New York, NY, USA, 2010. ACM.

[16] Mathieu Desnoyers. Low-Impact Operating System Tracing. PhD thesis, École
Polytechnique de Montréal, December 2009. [Online]. Available: http://www.

lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf.

[17] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais,
and Jonathan Walpole. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems, 99(PrePrints), 2011.

[18] Aleksandar Dragojevic, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui.
Why STM can be more than a Research Toy. Communications of the ACM,
2010.

[19] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching
transactional memory. In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’09, pages 155–165,
New York, NY, USA, 2009. ACM.

[20] Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multi-version
software transactional memory. In Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming, PPoPP ’11, pages 179–188, New
York, NY, USA, 2011. ACM.

[21] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Pro-
ceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, PODC ’04, pages 50–59, New York, NY, USA, 2004. ACM.

145

[22] Rafael O. Fontao. A concurrent algorithm for avoiding deadlocks in multiprocess
multiple resource systems. In SOSP ’71: Proceedings of the third ACM sympo-
sium on Operating systems principles, pages 72–79, New York, NY, USA, 1971.
ACM.

[23] Dennis J. Frailey. A practical approach to managing resources and avoiding
deadlocks. Communications of the ACM, 16(5):323–329, 1973.

[24] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, Uni-
versity of Cambridge, Computer Laboratory, February 2004.

[25] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM
Trans. Comput. Syst., 25, May 2007.

[26] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance eval-
uation of memory consistency models for shared-memory multiprocessors. In
Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems, ASPLOS-IV, pages 245–257, New
York, NY, USA, 1991. ACM.

[27] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the 17th annual international
symposium on Computer Architecture, ISCA ’90, pages 15–26, New York, NY,
USA, 1990. ACM.

[28] Justin E. Gottschlich, Jeremy G. Siek, Manish Vachharajani, Dwight Y. Win-
kler, and Daniel A. Connors. An efficient lock-aware transactional memory im-
plementation. In Proceedings of the 4th workshop on the Implementation, Com-
pilation, Optimization of Object-Oriented Languages and Programming Systems,
ICOOOLPS ’09, pages 10–17, New York, NY, USA, 2009. ACM.

[29] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced
trees. In SFCS ’78: Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, pages 8–21, Washington, DC, USA, 1978. IEEE Computer
Society.

[30] Sabine Hanke. The performance of concurrent red-black tree algorithms. Tech-
nical report, Albert-Ludwigs University at Freiburg, 1998.

[31] Maurice Herlihy. A methodology for implementing highly concurrent data ob-
jects. ACM Trans. Program. Lang. Syst., 15:745–770, November 1993.

[32] Maurice Herlihy. The transactional manifesto: software engineering and non-
blocking synchronization. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’05, pages 280–280,
New York, NY, USA, 2005. ACM.

146

[33] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for
highly-concurrent transactional objects. In Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel programming, PPoPP
’08, pages 207–216, New York, NY, USA, 2008. ACM.

[34] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural
support for lock-free data structures. SIGARCH Comput. Archit. News, 21:289–
300, May 1993.

[35] Maurice Herlihy, Nir Shavit, and Orli Waarts. Linearizable counting networks.
Distrib. Comput., 9:193–203, February 1996.

[36] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Transactions on Programming Language
Systems, 12(3):463–492, 1990.

[37] Wilson C. Hsieh and William E. Weihl. Scalable reader-writer locks for parallel
systems. In Proceedings of the 6th International Parallel Processing Symposium,
pages 216–230, Beverly Hills, CA, USA, March 1992.

[38] Jack Inman. Implementing loosely coupled functions on tightly coupled engines.
In USENIX Conference Proceedings, pages 277–298, Portland, OR, June 1985.
USENIX Association.

[39] K. H. (Kane) Kim. Basic program structures for avoiding priority inversions. In
Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, ISORC ’03, pages 26–, Washington, DC, USA,
2003. IEEE Computer Society.

[40] Leslie Lamport. How to make a correct multiprocess program execute correctly
on a multiprocessor. IEEE Trans. Comput., 46:779–782, July 1997.

[41] Rob Landley. Red-black trees (rbtree) in Linux. kernel.org documentation, Jan-
uary 2007. [Online]. Available: http://www.kernel.org/doc/Documentation/
rbtree.txt.

[42] Mohsen Lesani and Jens Palsberg. Communicating memory transactions. In
Proceedings of the 16th ACM symposium on Principles and practice of parallel
programming, PPoPP ’11, pages 157–168, New York, NY, USA, 2011. ACM.

[43] Yossi Lev, Victor Luchangco, and Marek Olszewski. Scalable reader-writer locks.
In Proceedings of the twenty-first annual symposium on Parallelism in algorithms
and architectures, SPAA ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[44] Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. Scalable techniques
for transparent privatization in software transactional memory. In Proceedings

147

of the 2008 37th International Conference on Parallel Processing, pages 67–74,
Washington, DC, USA, 2008. IEEE Computer Society.

[45] Paul E. McKenney. Kernel korner: using RCU in the Linux 2.5 kernel. Linux
J., 2003(114):11, 2003.

[46] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System Kernels. PhD thesis, OGI School of
Science and Engineering at Oregon Health and Sciences University, 2004. Avail-
able: http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.

07.14e1.pdf.

[47] Paul E. McKenney, Maged M. Michael, Josh Triplett, and Jonathan Walpole.
Why the grass may not be greener on the other side: a comparison of locking vs.
transactional memory. SIGOPS Oper. Syst. Rev., 44:93–101, August 2010.

[48] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, pages 509–518, Las Vegas, NV, October 1998. Available: http://
www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf [Viewed Decem-
ber 3, 2007].

[49] Paul E. McKenney and Jonathan Walpole. What is rcu, really? LWN.net, 2007.
[Online]. Available: http://lwn.net/Articles/262464/.

[50] John M. Mellor-Crummey and Michael L. Scott. Scalable reader-writer syn-
chronization for shared-memory multiprocessors. In PPoPP ’91: Proceedings
of the third ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 106–113, New York, NY, USA, 1991. ACM.

[51] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. Technical report, University
of Rochester, Rochester, NY, USA, 1995.

[52] David Mosberger. Memory consistency models. SIGOPS Oper. Syst. Rev., 27:18–
26, January 1993.

[53] Scott Owens. Reasoning about the implementation of concurrency abstractions
on x86-TSO. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 478–503, Berlin, Heidelberg, 2010. Springer-
Verlag.

[54] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-
TSO. In Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics, TPHOLs ’09, pages 391–407, Berlin, Heidelberg, 2009.
Springer-Verlag.

148

[55] P. J. Plauger. A better red-black tree. C/C++ Users J., 17:10–19, July 1999.

[56] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ra-
madan, Bhandari Aditya, and Emmett Witchel. Txlinux: using and managing
hardware transactional memory in an operating system. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages
87–102, New York, NY, USA, 2007. ACM.

[57] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
Understanding power multiprocessors. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation, PLDI
’11, pages 175–186, New York, NY, USA, 2011. ACM.

[58] Bruce Schneier. Red-black trees. Dr. Dobb’s J., 17(4):42–46, 1992.

[59] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.
Privatization techniques for software transactional memory. In Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed computing,
PODC ’07, pages 338–339, New York, NY, USA, 2007. ACM.

[60] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyz-
ing lock contention in multithreaded applications. In Proceedings of the 15th
ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’10, pages 269–280, New York, NY, USA, 2010. ACM.

[61] Josh Triplett, Philip W. Howard, Paul E. McKenney, and Jonathan Walpole.
Generalized construction of scalable concurrent data structures via relativistic
programming. Technical Report 14, Portland State University, March 2011.
http://www.cs.pdx.edu/pdfs/tr1104.pdf.

[62] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Scalable concurrent
hash tables via relativistic programming. SIGOPS Oper. Syst. Rev., 44:102–109,
August 2010.

[63] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scal-
able, concurrent hash tables. In Proceedings of the 2011 USENIX conference
on USENIX annual technical conference, USENIXATC’11, Berkeley, CA, USA,
2011. USENIX Association.

[64] David Ungar, Doug Kimelman, and Sam Adams. Inconsistency robustness for
scalability in interactive concurrent-update in-memory molap cubes.

[65] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving cor-
rectness of highly-concurrent linearisable objects. In Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’06, pages 129–136, New York, NY, USA, 2006. ACM.

149

[66] Dieter Zöbel. The deadlock problem: a classifying bibliography. SIGOPS Oper.
Syst. Rev., 17:6–15, October 1983.

150

Appendix A

Benchmarking Methodology

This appendix discusses the data collection methodology used for the benchmarks

presented throughout this dissertation. The data collection is discussed from a hard-

ware, software, and statistical perspective.

A.1 Hardware

Two hardware platforms were used for data collection. Some specifics about each

platform are given below.

The first platform was a Sun UltraSPARC T2 running SunOS 5.10. The Ultra-

SPARC T2 has eight cores each supporting eight hardware threads for a total of 64

hardware threads. Each core shares an 8KB L1 data cache, and there is a single 4MB

L2 cache shared by all eight cores.

One of the unique features of the UltraSPARC T2 is that atomic read-modify-

write instructions bypass the L1 cache and execute directly out of the L2 cache. All

atomic read-modify-write instructions pay the same communication cost independent

of the amount of contention. If these instructions executed out of the L1 cache, there

would be a different cost depending on whether the data was already in the L1 cache

or elsewhere in the memory system. This aspect of the UltraSPARC T2’s architecture

affects the behavior of locking primitives that are based on atomic read-modify-write

151

instructions. On most architectures, there is a very noticeable drop in lock cost going

from one to two threads because of the increased communication. This drop was not

visible on the UltraSPARC T2.

The second platform was a four processor Intel Xeon (E7310) machine running

Linux 2.6.32. Each processor has four cores so the machine supports 16 hardware

threads. Each thread has its own core—there is no hyperthreading. Each core has a

2KB L1 data cache and each processor shares a 4MB L2 cache.

The Sun processor allows benchmarks to be run with more threads, however nei-

ther the User Mode RCU library nor SwissTM would build in the SunOS environment.

Any benchmarks involving either the User Mode RCU library or SwissTM (and thus

RP-STM) had to be run on the Intel platform even though it did not support as

many threads.

A.2 Software

The general approach to collecting data was as follows:

1. Initialize a data structure to a given size

2. Start N worker threads which initialize and then wait to be told when to start

performing operations

3. Set a global flag to start data collection

4. Delay for a fixed period (usually one second)

5. Reset the global flag to stop data collection

6. Each worker thread reports statistics on the operations performed

The worker threads could be arranged in one of three ways:

152

1. All threads are readers

2. One thread performs updates, the rest are readers

3. Each thread randomly chooses between a read and an update on each operation

There was a slight variation on the mechanism used to choose values to operate on

based on which arrangement of threads was being used. For the first two, an array

of size N (where N is the initial size of the data structure) was initialized along with

the data structure. The array contained the keys that were also stored in the data

structure. Reads selected a random number between 0..N − 1 and used that number

as an index into the array. The value in that slot of the array was used as a key to

perform a lookup in the data structure. This guaranteed that lookups would succeed

in the read-only case.

The array was also used for the single writer case. The writer would select a

random number between 0..N − 1 and use that number as an index into the array.

The value in that slot of the array was used as a key to perform a delete from the

data structure. A second random number was chosen and the writer would attempt to

insert that value into the data structure. If the key was already in the data structure,

the insert would fail. The writer would loop choosing new values until the insert

succeeded. The just inserted value would be stored into the array in the same slot as

the deleted value so the array continued to represent the values in the data structure.

The range of key values was always 100N (where N was the size of the data structure)

so the probability of collisions was kept low.

Because only a single thread was updating the array, no synchronization was

needed for these updates.

The single writer case presented a window of opportunity for lookups to fail. If a

reader chose the slot in array that was currently being processed by the updater, the

153

lookup may attempt to find the item that was just deleted by the writer. For a tree,

the cost of looking for an item not in the tree is the same as the cost of looking for

an item stored in a leaf, so these failed lookups were reported in the total number of

read operations.

Most of the synchronization mechanisms discussed in this dissertation only allowed

a single writer at a time due to mutual exclusion. As a result, only allowing a

single thread to perform updates generated the maximum number of updates per

second (because there was no contention for the write-lock). For these synchronization

mechanisms, the important write-side data was the uncontended write performance

and the effect of updates on read performance. The single writer case could generate

both of these values. The uncontended write performance was generated when there

was a single thread (the writer) and the impact on read performance was generated

with a single writer thread generating the maximum write contention.

The random read/write arrangement was used when the synchronization method

allowed writes to run in parallel. Under these conditions, the array could not be

used to store the key values because there would be contention for the array and this

contention could mask the data the benchmark was intended to collect. So instead of

the array, the range of keys was set to 2N where N was the size of the data structure.

For lookups, deletes, and inserts, a value in the range 0..2N −1 would be selected and

used as the key to perform the operation. The operations would succeed 50% of the

time (there is a 50% probability the value would be in the data structure meaning the

lookup or delete would succeed and there is a 50% probability the value was not in the

data structure meaning the insert would succeed. Because the probability of deletes

and inserts succeeding was the same, the data structure should stay approximately

the same size. Also, this mechanism is self balancing. If more deletes succeeded

than inserts, then the probability of future deletes succeeding would decrease and the

154

probability of future inserts succeeding would increase. The reverse is true of more

inserts succeed than deletes.

A.3 Statistics

Each test setup was run sixteen times. The values reported in the figures throughout

the dissertation is the average of the sixteen values. The standard deviation of the

sixteen values was also computed. The figures do not contain error bars because there

was very little variation from run to run. The error bars would not have been visible

at the scale the figures were drawn in. There were a few exceptions to this rule. For

example, in Figure 5.3 on Page 112 the standard deviation at high thread counts for

the Complex RP and COMBO methods was such that the difference between the two

at high thread counts could have been due to noise. However, repeated runs of 16

samples, and even runs of 32 samples, produced similar results, so the results were

presented as-is without comment on sampling error.

155

Appendix B

Update Algorithm Compatible with O (N) Traversals

Chapter 4 described a relativistic algorithm for performing RBTree updates. The al-

gorithm assumed that readers did not use the parent pointers in the nodes. The inabil-

ity to use the parent pointers meant that complete tree traversals took O (N log(N))

instead of O (N). Chapter 5 mentioned, without giving details, a more complex RB-

Tree update algorithm that allowed for O (N) relativistic traversals. This appendix

sketches the main details of that algorithm.

Part of the correctness condition for the O (N) traversals is that the following

relations must always hold. By “always hold” it is meant that there is never a reader

visible state in which the relation does not hold.

1. node->key == node->left->parent->key if node->left is not NULL

2. node->key == node->right->parent->key if node->right is not NULL

3. node->key == node->parent->left->key if node is a left child

4. node->key == node->parent->right->key if node is a right child

Consider the delete of C shown in Figure B.1. To effect the delete, B->right must

be changed to point to D and D->parent must be changed to point to B . Regardless

which of these is changed first, the correctness condition will be violated until the

second pointer is changed. The solution is to make copies of B and D as shown in

156

Figure B.2. The pointers between B ′ and D ′ can be changed before either of these

nodes is made visible. When E->left is changed to point to B ′, the relations still hold

even though in relation 3, if node is B , node->parent->left is B ′, not B . Similarly,

prior to updating A->parent, if node is B ′, from relation 1, node->left->parent is B

not B ′, but the relation still holds.

B

A C

D

⇒
B

A D

Figure B.1: If C is deleted, then B->right and D->parent must appear to both be
updated atomically or else the correctness condition will be violated.

E

B

A C

D

⇒
E

B

A D

B ′

D ′

Figure B.2: Creating a copies preserves the correctness property because, for example,
the correctness relation holds after E->left is updated to point to B ′.

Figure B.3 shows a zig left rotation. In the original algorithm, only nodes A and

C were copied. For the new algorithm, three additional nodes need to be copied.

Comparing the before and after diagrams, any node that obtains a new parent or a

new child must be copied. A similar analysis of the diag restructure means that three

nodes need to be copied instead of just one.

Figure B.4 shows the delete of node B . This delete requires a swap with C . All

of the nodes on the path from the deleted node to the swapped node are copied. In

157

D

C

A

1 B

2 3

4

⇒
D

B

A

1 2

C

3 4

Figure B.3: Zig left restructure of nodes A, B , and C . The gray nodes are copies of
the originals.

addition, the left child of the deleted node (A), the parent of the deleted node (H),

and the right child of the swapped node (D) if it exists are also copied. For sufficiently

large trees, and for a delete sufficiently high in the tree, the swap could be performed

with two disjoint sets of nodes: one in the area near the deleted node and another in

the area near the swapped node. This optimization was not taken.

H

B

A G

E

C

D

F

⇒
H

C

A G

E

D F

Figure B.4: Delete of B that requires a swap with C . The gray nodes are copies of
the originals.

158

	Portland State University
	PDXScholar
	1-1-2012

	Extending Relativistic Programming to Multiple Writers
	Philip William Howard
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1373056213.pdf.VKz2w

