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My greatest concern was what to call it.  I thought of calling it ‘information,’ but the 
word was overly used, so I decided to call it ‘uncertainty.’ When I discussed it with John 
von Neumann, he had a better idea.  Von Neumann told me, ‘You should call it entropy, 
for two reasons. In the first place your uncertainty function has been used in statistical 

mechanics under that name, so it already has a name. In the second place, and more 
important, nobody knows what entropy really is, so in a debate you will always have the 

advantage.’ 
Claude Shannon 

 Scientific American 
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ABSTRACT 

In this thesis, I use a range of techniques in computational neuroscience, 

communication theory, and electrophysiology to characterize functional changes that 

occur in early stages of retinal degeneration in the mouse.  At post natal day 14, retinal 

ganglion cells in the rd1 mouse exhibit peculiar differences from age matched controls: 

an increased latency of responses to the onset of a light stimulus, decreased spike count in 

response to stimulus onset, increased spontaneous firing activity, and a decrease in 

information transmission.  I propose this is due to an up-regulation of OFF bipolar cell 

excitation, a critical factor in functional changes seen in rd1, and use innovative 

techniques to discover findings that support these claims. 
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CHAPTER I: PERSPECTIVE 

In 1851, Herman von Helmholtz explored the optics of the eye and revolutionized 

medicine with the invention of the ophthalmoscope (Helmholtz, 1867).  This simple tool 

allowed live observation of the retina, arguably spurring the development of 

ophthalmology as its own field worthy of study. Then in the early 1900s, Santiago 

Ramon y Cajal crafted a series of paintings detailing the intricate structures of the 

nervous system, including the cells of the retina (Berciano et al, 2001).  This landmark 

work paved the way for what would become modern neuroscience.   Advances in 

anatomical understanding of the brain followed, but it was not until 1952 that Alan 

Hodgkin and Andrew Huxley recorded electrical signals from the giant squid axon, 

showing that fundamental properties of neural communication could be explained by well 

established mathematical principles (Izhikevich, 2007).  Seven years later, David Hubel 

and Torsten Wiesel applied these methods to the visual cortex (Hubel et al, 1959).  

People had known for ages that the eye was connected to the brain, but Hubel and 

Wiesel's findings were the first to effectively describe how the brain interprets 

information from the eye.  These and other studies mark the advancement of a field 

known as "electrophysiology," the study of electrical phenomena in organisms. 

In parallel with this progress in medicine and biology, physics and engineering 

were also rapidly advancing.  Based on Nicolas Carnot's findings in the 1820s, the 1860s 

debate between the mathematicians Josiah Gibbs and Ludwig Boltzmann (among others) 

led to the principles of entropy and the second law of thermodynamics.  At Bell 

Laboratories in 1948, Claude Shannon published A Mathematical Theory of 

Communication, revolutionizing digital communication by using the basic equation that 
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Gibbs had developed and applying it to electrical engineering (Shannon, 1948).  This 

marked the beginning of what is known as "information theory."  Within the following 

decades, physicists, engineers, and biologists began collaborations giving major insights 

into neural network theories, artificial intelligence, neuroscience, electrophysiology, and 

a multitude of other disciplines (Haykin, 1999).  The work of the aforementioned figures 

and everyone in between provides an incredible foundation of knowledge upon which to 

build. 

The goal of this manuscript is to propose a mechanism underlying signaling 

properties characteristic of the retinal degeneration mouse, and convince the reader that 

information theoretic methods can be useful for better understanding vision loss.  The rd1 

mouse is a model of retinitis pigmentosa, an inherited blinding eye disease affecting 

approximately 1 in 4000 humans.  Electrophysiological methods are used here to 

characterize retinal function in the rd1 mouse, and information theory is applied to 

understand how changes in retinal function alter the utility of retinal responses to light in 

providing useful information. The broader implications of this approach are to better 

understand disease and ultimately find treatments in the fields of ophthalmology, 

neurology, and psychiatry. 

 Chapter II provides the reader with a background in basic biology and 

physiology of the adult, developing, and degenerate mouse retinas, followed by an 

introduction to concepts in information theory.  Chapter III covers relevant techniques 

used in electrophysiology.  In Chapter IV, I show how the dynamic responses of retinal 

ganglion cells are altered in degeneration.  Chapter V presents potential mechanisms 

within the parallel pathways of the retina that might account for observations in disease.  
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In Chapter VI, I introduce information theoretic methods as a useful set of tools to 

quantify and explain disease mechanisms.  Chapter VII concludes this thesis, followed 

by References and Appendix. 
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CHAPTER II: BACKGROUND 

This chapter covers basic anatomy and physiology of the normal mouse retina.  

Relevant topics in retinal development and degeneration are introduced.  It concludes 

with a brief introduction to quantitative techniques in analysis of retinal physiology. 

Structure and Function of the Eye 

The eye serves two major functions in mammals: spatial detection of light for 

image-forming vision, and irradiance detection to regulate acclimating responses in 

physiology and behavior (Foster, 2002). Despite the importance of both of these 

functions, much of the structure of the eye is specialized to the spatial detection of light 

for image-forming vision. In simple terms, the eye is a globe with optically refined 

anterior structures focusing light onto the retina covering the posterior inner surface of 

the eye (Figure 1). 

The light sensitive retina is a highly structured complex of photoreceptors, 

neurons and support cells, with well-defined layers lining the back of the eye (Figure 2). 

Detection of light begins when opsin-photopigment in the photoreceptors absorbs a 

photon of light and initiates a chemical phototransduction cascade.  In rods, photon 

absorption by 11-cis-retinal causes rhodopsin activation, in turn catalyzing the G protein 

transducin (Stryer 1996). The transducin activates a photodiesterase that hydrolyzes 

cGMP.  The reduction in cytoplasmic cGMP concentration causes closure of cGMP-

gated channels that in turn leads to a membrane hyperpolarization and reduction of 

glutamate release from the rods (Baylor et al, 1979).  These initial stages of 

phototransduction in rods have been extensively characterized (for reviews, see Fu et al, 

2007; Arshavksy et al, 2002). 
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Figure 1. Gross Structure of the Mouse Eye. Note the mouse lens is large relative to 
the globe as compared to the lens in humans. Image courtesy Dr. Stewart Thompson. 

 
 
 
 The photoreceptors can be classified into two main groups, the rods and the 

cones.  The ~6.4 million rods in the mouse are used for detecting dim or scotopic light 

levels and the ~0.2 million cones are used for detecting bright or photopic light levels 

(Jeon et al, 1998).  Two main cone opsin types exist in the mouse, the short wave length 

S-cones optimally detecting light at 360nm, and the longer wavelength M cone tuned to 

detect 508 nm (Nikonov et al, 2006).  However, many cones within the mouse retina 

express both the S and M opsin (Applebury et al, 2000).  
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Figure 2. Cellular Structure of the Retina. Image courtesy Dr. Stewart Thompson. 

 
 
Light-evoked reductions in glutamate release at the photoreceptor synapses 

generate a graded potential in bipolar cells (BCs) that express glutamate receptors (Marc, 

1999). Cones connect two major types of cone bipolar cell: metabotropic receptor-

expressing on depolarizing (to light) or ON-BCs, and ionotropic receptor-expressing on 

hyperpolarizing or OFF-BCs (Harveit, 1997).  Each cone functionally synapses with at 

least one bipolar cell.  Bipolar cells form a diverse mosaic arrangement, modify and pass 
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visual signals to other bipolar cells, amacrine cells and retinal ganglion cells (Han et al, 

2005; Witkovsky, 2004; Wassle et al, 2009). The primary afferent pathway of rods is by 

rod-BCs that pass signals through AII-amacrine cells that then connect to cone ON-BCs 

and OFF-BCs. Rods also exhibit electrical coupling to cones, and synapse with cone 

OFF-BCs (Wu et al, 1988). Photoreceptors also connect to horizontal cells that provide 

synaptic feedback to both rods and cones at the level of the OPL, and can project feed-

forward axons to the IPL (Thoreson et al, 2008). A high degree of cellular diversity 

further emphasizes the complexity in retinal signal propagation pathways, with upwards 

of ten functionally distinct bipolar cell types (Chan et al, 2001), over 30 amacrine cell 

types (MacNeil et al, 1998), and several types of horizontal cell. 

The ~45,000 RGCs then receive glutamatergic inputs from amacrine cells and 

bipolar cells at the inner plexiform layer (IPL), some of which are electrically 

interconnected by gap junctions (Pan et al, 2010; Jeon et al, 1998).  Ganglion cells can be 

generally grouped into three classes, those responding to the onset of light stimulus (ON-

RGCs), those responding to the offset of light stimulus (OFF-RGCs), and those 

responding to either onset or offset of light stimulus (ON/OFF RGCs).  Dendrites of 

OFF-RGCs typically stratify in the outer sublayer of the IPL, while ON-RGCs dendrites 

typically stratify in the inner layer of the IPL.   As one might expect, ON-BCs typically 

synapse with ON-RGCs, while OFF-BCs typically synapse with OFF-RGCs, a nice 

example of serial signaling within a parallel dominant architecture.  RGCs can be further 

categorized by other functional and morphological features into over ten groups - several 

subsets are extensively discussed below (Diao et al, 2004).  Axons of RGCs converge to 

form the optic nerve and project to the visual centers of the brain such as the dorsal 
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lateral geniculate nucleus, and superior colliculus (Stevens et al, 1976). Non-visual 

centers of the brain are also connected by a special class of intrinsically photosensitive 

melanopsin-containing retinal ganglion cells (ipRGCs). These act in regulation of 

physiology and behavioral states such as sleep, as previously mentioned (Hattar, 2006).  

The retinal pigmented epithelium (RPE) and Mueller cells play a critical support function 

for the retina. The RPE supports the activity of the photoreceptors, regenerating the 11-

cis-retinal necessary for opsin-photopigment, and reducing scatter of light within the eye. 

Muller cells also span the layers of retina, primarily acting as non-signaling glial cells in 

maintaining the health and form of other retinal cells.   

The action potentials of retinal ganglion cells, the final step in signal propagation 

from the retina, colloquially known as "spikes," are binary messages whose temporal 

arrangement are the basis of this study. 

Development of the Wild Type Mouse Retina 

At birth, the visual system is far from mature.  A large number of activity 

independent developmental processes occur in prenatal neural retina (for reviews, see 

Lambda et al, 2008; and Mu et al, 2008).  However, the activity dependent maturation of 

the retina is a major focus of this thesis.  In particular, the balance of spontaneous activity 

and light driven activity is investigated.  

After birth and before eye opening (P0-P12), "retinal waves" are observed (Wong, 

1999).  These waves are light-independent bursts of activity in RGCs triggered by 

acetylcholine release from starburst amacrine cells (Masland, 1977).  Such waves radially 

propagate via gap junctions in the GCL about a finite area determined by the RGC 

density (Firth et al, 2005).  Retinal ganglion cells activated during these waves transmit 
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temporally and spatially correlated clusters of spikes to the dLGN (Wong, 1999).  This is 

a necessary step in proper lamination of higher visual relay stations (Shatz, 1996).  For 

instance, synaptic blockade of sodium channels at the RGC/dLGN synapse disrupts 

ocular dominance column segregation in the cortex (Stryker et al, 1986).  A similar effect 

on cortical development is generated when animals are raised under strobe lights that 

synchronize binocular activity (Schmidt et al, 1985).  This balance in activity underscores 

the need for monocular correlated activity in development of the retinogeniculate 

pathway.   

Synaptic activity also drives dendritic stratification within the inner plexiform 

layer.  Just before eye opening, the majority of RGCs exhibit both ON and OFF response 

characteristics, but in the adult mouse retina, less RGCs are considered ON/OFF 

(Sernagor et al, 2001; Volgyi et al, 2004).  This high proportion of single RGCs with both 

ON and OFF responses is due to diffuse stratification of RGC dendrites in the IPL (Tian 

et al, 2003).  Just after eye opening, RGCs exhibit many more dendritic spines than in 

adult (Diao et al, 2003).  Pathway specific segregation of signals from the INL involves 

"pruning" of these dendrites in the IPL (Tian et al, 2003).  Raising animals in the dark or 

blocking glutamate transmission in the developing retina halts the maturation of dendritic 

specification (Bisti et al, 1998).  This indicates the need for light evoked synaptic activity 

for the proper lamination of the IPL.  Basic structure and function in the wt P14 retina is 

depicted in Figure 3. 
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Figure 3. Model of Developing wt Retina. (1) Light is absorbed in the photoreceptors.  
Phototransduction within the inner segments causes a hyperpolarization of the cell. (2) 
Upon hyperpolarization, glutamate release from the rod spherules and cone pedicles 
decreases.  (3) Decreased glutamate release from the photoreceptors results in decreased 
glutamate concentration in the outer plexiform layer. (4) Ionotropic receptors are 
deactivated when glutamate concentration falls.  Note that these receptors cause graded 
depolarizing potential signals in the OFF-BCs in the presence of glutamate.  (5) 
Decreased glutamate concentration decreases activation of the metabotropic glutamate 
receptors.  Activation of these receptors causes a graded potential change in ON-BC 
soma.  Thus, in the ON-BCs, a sign-inverting depolarization occurs at light onset. (6) Rod 
BCs synapse with ACs, which transmit signals to ON BCs.  (7) Activation of the OFF- 
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Figure 3—continued BC causes amacrine cells to high pass filter and suppress signals in 
the ON-BCs at light offset. (7) As OFF-BCs are deactivated with light onset, the 
amacrine cell mediated suppression decreases.  Likewise, ON-BC signals suppress the 
OFF pathway through a similar amacrine mediated mechanism. (8) OFF-BCs synapse 
with RGCs in IPLa, transmitting signals with glutamate.  (9) ON-BCs synapse with 
RGCs in IPLb, signaling via glutamatergic activation.  Retinal ganglion cells integrate 
signals from both (8) and (9) within the dendrites and soma (11).  Spikes are generated at 
the initial segment of the axon in the RGCs and transmitted via the axons to the brain 
(12).  Abbreviations: AC, amacrine cell; Glu, glutamate; i, ionotropic glutamate receptor; 
INL, inner nuclear layer; IPLa, inner plexiform layer sublamina a; IPLb, inner plexiform 
layer sublamina b; m, metabotropic glutamate receptor; OFF-BC, off cone bipolar cell; 
ON-BC, on cone bipolar cell; ONL, outer nuclear layer; PhR, photoreceptor; RGC, 
retinal ganglion cell; Rod BC, rod bipolar cell. Note: horizontal and Muller cells not 
included in figure. 

 
 
 

The Rd1 Retina 

The retinal degeneration mouse (rd1, historically known as rd) has been a great 

resource for studies of inherited retinal disease for over 80 years (Keeler, 1924).  The 

abnormality stems from a nonsense mutation in the 7th exon of PDE6B (Bowes et al, 

1990).  This gene encodes cGMP-phosphodiesterase in rods, an essential protein in the 

phototransduction cascade.  Mutations in PDE6B in humans commonly cause retinitis 

pigmentosa (RP), a class of blinding eye diseases (Phelan et al, 2000).  Like various 

subtypes of RP, loss of vision occurs early in rd1.  At P8, electroretinographic responses 

and histology both appear normal compared to age matched controls (Farber et al, 1994).  

Activity levels of the metabotropic glutamate receptors and bipolar cells appear normal. 

The loss of rods is believed to begin at P10, with peak degeneration at P14 (Sancho-

Pelluz et al, 2008). By P14, there is reduced photoreceptor layer thickness, and 

pronounced horizontal cell axon sprouting (Strettoi et al, 2002).  An increase in 

spontaneous hyperactivity of the RGCs occurs at this age.  Death of rod cells is 

essentially complete by P21, with no recordable electroretinogram by P28.  Secondary 
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loss of cones occurs in parallel but is more protracted and residual cone cell bodies can 

exist for several weeks thereafter (LaVail et al, 1997).  By P60, an increased level of 

activity is observed in the RGCs despite complete loss of response to light stimulation 

(Stasheff, 2008).  At P90, near complete loss of Rod-BC dendrites is observed, with no 

apparent morphological changes in amacrine cells (Strettoi et al, 2002).  Significant 

remodeling of inner neural circuitry occurs after this date (Marc et al, 2003).  

The precise mechanism and cause of photoreceptor cell death, by apoptotic, 

necrotic, or other means, is an actively studied area (Portera-Cailliau et al, 1994; Hackam 

et al, 2004; Sancho-Pelluz et al, 2008).  It has been suggested that overabundance of free 

glutamate in the retina contributes to degeneration (Lucas et al, 1957).  In early stages of 

rd1, administration of a glutamate receptor antagonist significantly reduces 

morphological changes associated with degeneration, supporting a glutamate-toxicity 

hypothesis (Delyfer et al, 2005; Olney, 1969).   

Information Theory in Neural Coding 

In 1948, Claude Shannon published a seminal paper, A Mathematical Theory of 

Communication, proposing the use of entropy as a measure of information capacity in 

communication systems.  At this point in time, entropy had already been established as a 

useful tool in thermodynamics (Carroll, 2010).  Classically, entropy was a measure of 

variance or disorder in a physical system.  The second law of thermodynamics states that 

the entropy of a macroscopic system can never decrease. Shannon capitalized on the 

statistical power of this measure and expanded it to communication theory.  "Shannon 

entropy" quantifies the amount of information in a message (Rieke et al, 1997).  Entropy 

has since been a powerful measure in statistical mechanics and neural coding (Jaynes, 
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1957; Rieke et al, 1997; Strong et al, 1998).  Other applications of entropic measures 

include climate prediction and cosmology (Ruddell et al, 2009; Carroll, 2010).  For the 

purposes of this thesis, "entropy" refers to Shannon entropy. 

Information theory is applied here in understanding how much "useful" vision 

exists in early stages of retinal degeneration.  Calculations of retinal ganglion cell 

information rate range between 20-70 bits per second (Passaglia et al, 2004).  Such 

estimates are dependent on linear decoding methods, which are discussed below.  As 

previously noted, an increased level of noise occurs in the rd1 mouse.  This noise 

introduces an additional level of uncertainty in the spike train analysis (Passaglia et al, 

2004; Sterling et al, 2007).  Thus, this thesis emphasizes the use of well established 

methods in spike train characterization.  Information theoretic techniques are used to 

further explain functional changes in the diseased retina.   
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CHAPTER III: ELECTROPHYSIOLOGICAL TECHNIQUES 

Tissue preparation 

Wild-type (C57BL/6J strain) and rd1 mice (B6.C3-Pde6brd1 Hps4le/J or a 

C3H/HeJ strain) were bred within a local colony established from purchased breeding 

pairs (Jackson Laboratories, Bar Harbor, ME). Animals were cared for in accordance 

with institutional guidelines of the University of Iowa Institutional Animal Care and Use 

Committee. Animals were dark-adapted for 30 min prior to being anesthetized with 

intraperitoneal or intramuscular injection of xylazine (10-40 mg/kg) and ketamine (50–

200 mg/kg) sufficient to extinguish tail pinch and corneal reflexes. Under infrared 

illumination to minimize exposure to visible light, using a dissecting microscope (Leica 

Microsystems, Bannockburn, IL) with infrared image intensifiers (BE Myers, Redman, 

WA), the retina was dissected from the retinal pigmentary epithelium, placed ganglion 

cell layer down onto a multielectrode recording array (10 !m contacts spaced 200 !m 

apart; Multichannel Systems, Reutlingen, Germany), and perfused with warm (36–37°C), 

oxygenated Ringer medium at a rate of 2.5–4 ml/min (Meister et al. 1994; Tian and 

Copenhagen 2001). Ringer medium included (in mM) 124 NaCl, 2.5 KCl, 2 CaCl2, 2 

MgCl2, 1.25 NaH2PO2, 26 NaHCO3, and 22 glucose.  

Presented data are from a total of 311 wt cells from 6 retinas, and 315 rd1 cells 

from 4 retinas. 

Multielectrode recording 

A 60-channel amplifier (Multichannel Systems, Reutlingen, Germany) mounted 

on a microscope stage (Zeiss Axioplan, Göttingen, Germany) interfaced with digital 

sampling hardware and software (Bionic Technologies, Salt Lake City, UT) for recording 
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and analyzing spike trains from each of the electrodes in the array. Digitized data initially 

were streamed onto the computer's hard drive and further analyzed off-line. After transfer 

of the retina to the recording chamber, recordings were allowed to stabilize for 1 h as 

evidenced by stable action potential amplitudes, number of cells recorded, frequency of 

spontaneous firing, and consistency of light-evoked responses (where obtainable). 

Twenty-minute epochs of continuous recording were obtained from typically 30–90 

ganglion cells per retina at various intervals over several hours. Data presented are from 

the first 1–3 h of recording, unless otherwise specified. 

Visual stimulation 

In experiments with light stimulation, a miniature computer monitor (Lucivid, 

MicroBrightField, Colchester, VT) projected visual stimuli through a 5x objective, and 

these were focused via standard microscope optics (Zeiss Axioplan) onto the 

photoreceptor layer of the retina. Luminance was calibrated via commercial software 

(VisionWorks, Vision Research Graphics, Durham, NH), using a radiometer (Photo 

Research, Chatsworth, CA) and photodiode (Hamamatsu S1133-11, Hamamatsu City, 

Japan) placed in the tissue plane. The refresh rate of the monitor (66 Hz) was selected to 

avoid entrainment of retinal ganglion cells that might contaminate light responses 

(Tremain et al, 1983; Wollman et al, 1995). The same software controlled and recorded 

stimulus parameters, passing synchronization pulses to the data acquisition computer via 

a parallel interface with roughly 10 microsecond precision.  Full field flash stimuli 

(retinal irradiance: 0–35 !W/cm2, 1000 ms, P43 phosphor with peak emission at 545 nm) 

extended beyond the dimensions of the recording array (stimuli: 2,100 x 2,800 !m; array: 

1,700 x 1,700 !m) and were displayed at five second intervals.   These parameters are 
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known to evoke a reliable ERG response and to allow separation of ON- and OFF-

pathway responses in individual ganglion cells (Balkema et al, 1982; Stone et al, 1993; 

Strettoi et al, 2002). Responses were averaged over 10 or 20 trials. 

Spike waveform analysis 

Action potential (spike) waveforms accepted for further analysis were 60 !V in 

amplitude, and > 1.85 times the RMS of the background signal. To distinguish responses 

from different cells that might appear on the same electrode, a component of the data-

acquisition software (Bionic Technologies) or a similar freeware (PowerNAP, 

Neuroshare, http://neuroshare.sourceforge.net/index.shtml) was used for supervised 

automated sorting of action potential profiles according to a principle components 

analysis (PCA) paradigm.  For each electrode, the software displays a random sample of 

spike waveforms along with all the two-dimensional projections of each waveform in the 

space defined by the first three principle components (PCs, or eigen vectors computed 

from the correlation matrix for this data subset) (Wheeler 1999).  

Individual waveforms were partitioned iteratively into one to five clusters 

according to an automated K-means or T-distribution paradigm (Wheeler 1999).  In cases 

where an optimal solution was not immediately distinguished on this basis, the data 

initially was segregated into a greater number of clusters than seemed the likely final 

solution, for subsequent analysis of the corresponding spike trains (described in the 

following text), to determine which of these signals were generated by the same or 

distinct sources. The mean waveform for each of the clusters was displayed; if these 

mean waveforms appeared nearly identical among two or more clusters, these were 

joined manually. The mean waveform for each of the clusters chosen at this stage served 



 

 

17 

17 

as a series of templates, and all remaining waveforms from that electrode were joined by 

the software to the cluster closest to it in PC space.  

Appropriate assignment of individual waveforms to distinct cells was confirmed 

further by analysis of the corresponding spike trains. Interspike interval (ISI) histograms 

were computed for each spike train by measuring the intervals between spikes in the train 

for all possible spike pairs, then distributing these values in bins of 0.2-ms width. ISI 

histograms from accepted data demonstrated a refractory period of >1 ms (typically 2–5 

ms) and did not reflect any of several patterns of recognizable noise: 60 Hz, very high-

frequency (>10 kHz) transients, or waveforms distinct from those of extracellular action 

potentials (e.g., sinusoidal oscillations). Cross-correlograms were computed in like 

fashion, measuring all intervals between each spike in one train and all spikes of the other 

train, binning at 5 ms. In cases where two or more templates from the same electrode 

appeared similar, the waveform clusters ultimately were assigned pair-wise to either one 

or two cells, based on their separate and combined ISI histograms and the cross-

correlogram between their spike trains. Thus if the ISI histograms from the two putative 

cells were of clearly distinct shape, and/or if the ISI histogram formed by combining the 

two spike trains eliminated the refractory period observed in either separate ISI 

histogram, these spike trains were considered to have originated from two separate cells 

(Segev et al, 2004). Likewise if a prominent peak was observed near the origin in the 

cross-correlogram of the two spike trains, these spikes must have originated from two 

separate cells because both were recorded nearly simultaneously on the same electrode. 

These procedures generally resulted in one to three (occasionally four or five) cells being 

isolated from a single electrode.  
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The experimental methods described here were performed in the laboratory of Dr. 

Steven Stasheff, as published (Stasheff, 2008). 
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CHAPTER IV: DYNAMIC RESPONSES IN DEGENERATION 

In this chapter I present the physiologic spike timing characteristics seen in retinal 

degeneration.  Features of rd1 mouse retinal ganglion cells include increased spontaneous 

activity, decreased spike output in response to bright stimuli, and shift in dynamic 

response profiles.  I argue that these observations are in part due to an increase in 

glutamate concentration up-regulating the OFF pathway, and a decrease in photoreceptor 

cell count. 

Computational Methods 

The baseline spontaneous spike firing rate is the sum of all spikes occurring 

during periods not within 3000 milliseconds of a light stimulus (Equation A),  

 

 (Equation A) 

 

 

where st is the number of spikes occurring in timebin t, LOFF is the time of light offset, 

LON is the time of light onset, and IL is the relative intensity of the stimulus. 

To deduce further cellular response characteristics, each cell’s response to 

increasing intensities of light stimulus was constructed.  These curves were fit with three 

functions.  A general sigmoid function, Hill function, and cumulative Weibull function 

were tested for goodness of fit in each cell using the mean square error of the nlinfit 

function in MATLAB (See Appendix; Wallisch et al, 2009; Dayan and Abbott, 2001; 

Alon, 2007).  The general sigmoid function gave the least error for the greatest number of  
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cells in any model fit.  This subsequently was used to model each cell’s responses to 

increasing stimulus intensity (Equation B).  

 

 

 (Equation B) 

 

 

Rmax is the cell's total spike count, I50 is stimulus intensity at which the cell 

exhibits 50% firing of its maximum response, a is the slope of the curve at I50, and IL is 

the intensity of any given stimulus.  This yields a response R, which is linearly 

normalized to a maximum value of 1.     

Results 

Consistent with previous findings, rd1 P14 retinal ganglion cells exhibit a 

significantly increased level of spontaneous activity compared to wt cells of the same age 

(Figure 4).  At the highest stimulus intensity, the wt P14 cells show a significant increase 

in spike count compared to both rd1 and adult (Figure 5).   At P14 in the rd1 mouse, the 

rate of photoreceptor degeneration is at its peak. These data indicate a decreased ON 

response, and less signal throughput in the INL in rd1 than in wt.  

Wild Type retinal ganglion cells exhibited a spectrum of responses to light 

stimulation for increasing intensities (Figure 6).  The I50 value indicates the luminance at 

which a retinal ganglion cell fires 50% of its maximal spikes.  A low I50 value indicates 

that a cell fires half of its maximal response at low luminance.  These would be 

considered highly sensitive cells, since they respond to small amounts of light.  These 
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cells are also said to “saturate” at low light levels.  Responses of lower sensitivity cells do 

not saturate at the lower intensities, instead showing higher I50 values. 

 

 

Figure 4. Baseline Spontaneous Firing Rates†.  Under no light stimulus, the rd1 P14 
cells exhibit a significantly increased level of spontaneous activity (using Equation F) 
compared to wt cells of the same age (p < 10-12, Kruskal-Wallis; Daniel, 2005).  The 
increased level of free glutamate within the OPL is likely a factor in this distribution 
shift, as discussed below.  
_____________________________________________________________________ 

†NB: in bar graphs, bars between different cell types have been paired with each other 
for visualization purposes only.  A white bar appearing adjacent to a black bar 
represents data from the same bin value. 

 
 

Some rd1 cells exhibit saturation at a dim light level, as indicated by the peak of 

cells at low I50 (Figure 7).  These data indicate that this group of cells is incapable of 

responding over a wider dynamic range.  To further evaluate the dynamic response 
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characteristics of these cells, the slopes of the cells at I50 were calculated. Comparing the 

slopes of these cells at I50, rd1 shows that more cells  

 

Figure 5. Spike Count at Highest Stimulus.  The rd1  P14 shows a significant decrease 
in spike count at the highest stimulus intensity wt (p < 10-8, Kruskal-Wallis; Daniel, 
2005).  The rd1 P14 and wt adult cells (not shown) exhibit no significant difference in 
spike count at brightest stimulus (p= 0.19).  

 
 
 

exhibit higher slopes at I50 (Figure 8).  This increased slope is indicative of greater 

sensitivity, and a narrower dynamic response range.  The need for a dynamic response is 

discussed below, and possible mechanisms for this loss of range in response are discussed 

in subsequent chapters. 
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Figure 6. Distribution of the Intensity-Response Profiles and Distribution of I50 
Values in the wt P14 Retina.  Shown on top are the responses of all wt cells to 
increasing intensity full field stimuli. Below are the intensities at which 50% of each 
cell’s maximum firing response is observed.  Retinal ganglion cells exhibit a functional 
spectrum of response to stimulation across luminance intensities.   

 

 

Figure 7. Distribution of the Intensity-Response Profiles and I50 Values in the rd1 
P14 Retina.  A shift in I50 distribution is seen compared to the wt profiles.   
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Figure 8. Distribution of Slopes at I50. An increased number of cells with higher slopes 
are observed in the rd1 cells (p < 10-9, Kruskal-Wallis; Daniel, 2005).   

 
Discussion 

Noise can be a problem.  Webster’s Third New International Unabridged 

Dictionary first definition of noise is "loud, confused, or senseless shouting or outcry."  

The importance of this first definition becomes clear in the discussion on information 

theory below.  Perhaps Webster’s second definition is better suited though, “an unwanted 

signal that enters an electronic communication system (as telephone, radio, television) or 

that is created in it and that tends to interfere with the desired signals.”  Noise in the 

retina can be defined as any spiking activity that corrupts useful information transfer. As 

with telecommunications, if the noise is small compared to the signal, then a useful 

message can be identified.  One can still watch a television show with small amounts 

of "snow" on the screen.  However, if noise begins to outweigh the signal, useful message 

transmission declines.   

Identifying noise in neural systems is no trivial task (Wilson et al, 1988; Passaglia 

et al, 2004).  It is difficult to know which spikes from a hyperactive cell constitute noise 
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and which represent an accurate response.  Thresholded systems often utilize noise to aid 

in transduction of weakly coded periodic signals.  This is a phenomenon commonly 

known as stochastic resonance (Rousseau et al, 2003).  It is tempting to speculate that the 

increased spike count in young wild type retinal ganglion cells as compared to adult cells 

(Figure 5) is a form of stochastic resonance, but this claim lacks supporting evidence. In 

this thesis, spontaneous spiking activity is considered to be noise.   

What causes these functional changes observed in retinal degeneration?  As 

mentioned previously, the rd1 retina by age P14 has lost a large number of rod 

photoreceptors (Sancho-Pelluz et al, 2008), and spontaneous firing has increased (Figure 

4).  The remaining rods show much less function than their wt counterparts, leaving cones 

as the primary sensors of light in the retina.  Recall that cones comprise less than three 

percent of photoreceptors in the mouse.  This indicates reduced cellular signaling from 

the photoreceptor layer, perhaps contributing to the reduced spike count seen in Figure 

5.  Increased levels of glutamate are also present in the outer plexiform layer in rd1.  

Since photoreceptors transduce light onset by reducing glutamate output, the already low 

number of cones must compete with an increased glutamate concentration to cue the ON-

BCs.  Note that the ionotropic glutamate receptors of the OFF-BCs depolarize as a 

consequence of glutamate binding.  This indicates the possibility of hyper-activation of 

iGluRs through increased glutamate levels. Figure 7 indicates a peak in cells with an I50 

value at low intensity stimulus.  Figure 8 depicts a change in the slopes of cells at each 

I50.  This can be described as an alteration in the dynamic response profile of rd1 cells.  

Implications of these alterations and a possible mechanism to describe these are presented 
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below.  The basic physiologic differences in rd1 cells shown in this chapter are illustrated 

in Figure 9. 

 

 

Figure 9. Model Depiction of Principle Functional Changes in the Dynamic 
Response Profile of the rd1 Retina. In this drawing, the sigmoid curves represent the 
amount of spiking observed in retinal ganglion cells in response to increasing luminance 
levels of light stimulus.  The baseline firing rate, or spontaneous activity, is increased in 
rd1 (1). Spiking at the brightest stimulus level is reduced in rd1 (2).  The I50 exhibits a 
shift, as well as an increased slope (3).   

  
 
 
Why does the retina need a wide dynamic range in neurons and have highly 

sensitive retinal ganglion cells?  Metabolic efficiency and survival cost may be two 

reasons.  Computationally, a neuron with a wide dynamic response requires much energy 

to faithfully respond to a widely dynamic input.  At some level, the retina must sacrifice 

how much it can respond to with how much response is needed (Balasubramanian et al, 
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2002).  High sensitivity neurons may be of key importance for survival, for instance, 

motion detection is useful for identifying potential predators.  Downstream neurons may 

care less about message content than they care about message presence.  For example, a 

subset of retinal ganglion cells have been shown to optimally respond to approaching 

objects (Munch et al, 2009).  Preservation of highly sensitive pathways in disease might 

indicate an attempt to preserve basic survival tools.  If there were one pathway that could 

be preserved in the course of disease, a preference for high sensitivity pathways may 

provide a brief window of vision for survival of young animals.   

In the next chapter, I propose a mechanism to further explain the altered dynamic 

properties in retinal degeneration. 

Future Studies 

One could use pharmacological inhibition of the OFF-BC iGluRs to elucidate the 

role of glutamate in spontaneous activity in degeneration, though iGluRs are observed in 

many cell types of the retina, so specific targeting of the OFF pathway may be difficult.  

Inhibition of glutamate reuptake in the wild type retina could show how excess glutamate 

influences intraretinal signaling.  To test for the preservation of basic survival tools in 

disease, one could test young rd1 mouse behavior in response to images such as predators 

or food to elucidate the utility of the little vision that exists early in disease. 
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CHAPTER V: PARALLEL PATHWAYS IN THE RETINA 

In this chapter, I present evidence for the role of the amacrine cell network in 

regulating spiking in retinal degeneration.  I build on the findings in the previous chapter, 

using the observations of increased noise and decreased spike output to further hypothesis 

a mechanism that explains changes in latency and gain of the retinal ganglion cells.  It is 

my goal to convince the reader that increased OFF bipolar cell activation causes 

increased amacrine cell filtering of the ON bipolar cells. 

Computational Methods 

Several values were calculated for each cell based on spike times. The 

proportionality of a cell's response is defined as the response to the onset of light 

compared to the response to both onset and offset of light (Equation C), 

 

 

 

 (Equation C) 

 

 

 

where st is the number of spikes occurring in timebin t, LOFF is the time of light 

offset, LON is the time of light onset, and IL is the relative intensity of the stimulus.  The 

complement of this value is easily calculated (Equation D).  

 

   (Equation D) 
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The Response Dominance Index is defined as the greater value between 

proportionON and proportionOFF (Equation E). 

 

 (Equation E)  

 
 
 
The transientness of the cell is determined by the fraction of a cell's response 

occurring in the first 200 milliseconds after the stimulus onset or offset, giving 

transientnessON,, and  transientnessOFF (Equations F, G),  

 

 

(Equation F) 

 

 

 

(Equation G) 

 

 

 

where st is the number of spikes occurring in timebin t, 220 indicates the period of a 

transient response (in milliseconds), LOFF is the time of light offset, and LON is the time of 

light onset. 

The latency of the ON response is defined as the time between the stimulus onset 

and the peak response between stimulus onset and offset (Equation H).  This value was 
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selected given the difficulty in approximated interpolated values.  The latency of the OFF 

response is determined by the time between the stimulus offset and the peak response 

between stimulus offset and twice the stimulus duration thereafter (Equation I). 

 

 (Equation H) 

 

 

(Equation I) 

 

 

Results 

Consistent with previous findings, the wt adult shows significantly more 

dominance of responses as seen in Figure 10.  This supports previous findings that wt 

adult retinal ganglion cells having segregated into more ON or OFF roles (Tian et al, 

2003).  The wt P14 and rd1 P14 exhibit more responses to both onset and offset of stimuli 

indicating a lower RDI and a larger number of ON/OFF cells.  No significant difference 

was observed in the Response Dominance Index between wt P14 and rd1 P14 (Kruskal-

Wallis, p = 0.43; Daniel, 2005). 

In wt almost all responses showed a latency of less than 160 milliseconds. By 

contrast, in rd1, a significantly delayed response occurs (Figure 11).  Additionally, the 

rd1 P14 group shows responses to low luminance stimuli are less transient than those to 

bright stimuli (Figure 12).  The wt P14 cells show an increase in transientness with low 

to mid light intensity and a decrease in transientness with bright stimuli.   These data are 
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consistent with the increased latency of the rd1 cells in Figure 11. However, and 

increased latency does not necessarily imply suppression of responses, thus complicating 

the interpretation of the data.  

 

 

Figure 10. Response Dominance Indices.  The wt adult shows significantly more 
dominance of responses as indicated by the large peak at Index = 1 using Equation E (p 
< 10-7, Kruskal-Wallis; Daniel, 2005).   
 
 
 

No significant changes in latency to offset of light were observed (Figure 13).  

Three apparent groups were observed in both wt and rd1.  The peak at the lowest timebin 

represents cells whose peak response occurred quickly after light offset, possibly 

indicative of ON sustained cells whose response carries into the OFF period.  The middle 

group represents cells responding briskly.  The third, smaller group at greater time values 

indicate a subset of delayed OFF responses. 
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Figure 11. Latency of ON Responses at Brightest Stimulus.  Using Equation G, the 
rd1 P14 group shows a significantly longer latency compared to the wt P14 (p < 10-12, 
Kruskal-Wallis; Daniel, 2005).   
 

 

 

Figure 12. Transientness of Cellular Responses at Each Stimulus Intensity.  Using 
Equation F, the rd1 P14 group shows increasing transientness with brighter stimuli.  The 
wt P14 cells have transient responses with low to mid light intensity stimuli and 
responses become more sustained as stimulus intensity increase. 
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Figure 13. Off Latencies at Brightest Stimulus.  Using Equation C, no significant 
change in latency from offset of light was observed (p=0.26, Kruskal-Wallis; Daniel, 
2005).  
 
 
 

Discussion 

Maturation of visual pathways depends on both light evoked activity and on 

molecular mechanisms that are not activity-dependent.  The separation of light and dark 

signals along visual processing pathways aids in contrast detection, underscoring the 

important for developmental segregation into ON and OFF pathways.  Early in retinal 

development, diffuse stratification occurs in the inner plexiform layer, giving rise to a 

majority of retinal ganglion cells that respond to both the onset and offset of a light 

stimulus.  Adult wt retinas exhibit fewer retinal ganglion cells responding to both light 

onset and offset, instead showing more ON or OFF cells than ON/OFF cells, as seen in 

Figure 10.   In the immature wt retina, a subset of ON/OFF cells exist that will 

subsequently mature into ON cells, and another subset of ON/OFF cells mature into OFF 

cells: the rest will retain their response properties.  

The divergence of a retinal ganglion cell's response characteristics is primarily 

due to "pruning" of ganglion cell dendrites in the inner plexiform layer, where bipolar 
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cells synapse with retinal ganglion cells.  This pruning is largely activity dependent, and 

profoundly influences the signaling properties of the retina (Xia et al, 2007).  Dark-

rearing or blocking glutamate transmission in the developing retina disrupts dendritic 

stratification (Tian et al, 2003).  Proper signaling of visual information from the 

photoreceptors to the ganglion cells and beyond is essential for optimally decoding 

images. Whether or not this pruning is driven by optimization of information transfer 

within the inner plexiform layer remains to be elucidated; nevertheless, some type of 

controlled activity is required for proper stratification. 

A subset of OFF-BCs have been shown to use the amacrine cell network to 

effectively high pass filter responses in the ON pathway (Molnar et al, 2007).  Such 

filtering might normally act to modulate contrast adaptation (Puopolo et al, 2001; 

Witkovsky, 2004; Siminoff, 1985).  In the healthy retina, suppression of weak responses 

in the ON pathway occurs through this mechanism if the OFF pathway is more strongly 

stimulated than the ON pathway.  Given my proposal that the OFF pathway is up-

regulated in rd1 mice, one might expect that weak ON signals would be still further 

suppressed in rd1 than in wt mice, not only during acute and transient OFF responses, but 

continuously during baseline activities.  Such suppression of weak ON signals is evident 

in the increased latency period in response to stimulus (Figure 11), and the decreased 

transientness of the rd1 at low light stimulation (Figure 12).  The increased latency could 

be the result of amacrine cells high pass filtering the ON bipolar cells.  I propose that as a 

result of the increased glutamate concentration in the OPL and consequent up-regulation 

of the OFF pathway, the ON pathway is further suppressed in rd1.   
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The aforementioned mechanisms may also explain the decreased spike count 

observed at high luminance levels (Figure 5) in degeneration.  The most obvious change 

is the reduced number of photoreceptors in rd1 at postnatal day 14.  As a majority of the 

outer segments have been lost by this age, the inner segments would be much less 

efficient at generating visual signals (Farber et al, 1994).  Gain mechanisms in the inner 

nuclear layer could in theory compensate for this reduced response to light.  Consistent 

with this, the b-wave amplitude of the electroretinogram peaks at this age in rd1 

(Sernagor et al, 2001).  This indicates that the cones are able to relay ON signals using 

the intact inner circuitry of the retina.  However, the responses are still reduced when 

compared to the wild type.  The inhibition from the OFF pathway likely manifests itself 

even at the brightest stimulus.  I propose that a decrease in photoreceptor number and the 

filtering effects of the up-regulated OFF pathway contribute to reduced spike output of 

the rd1 cells in response to bright stimuli and an increase in spontaneous activity.  

Revisiting Figure 9, the shift marked as (3) would be a result of this filtering effect.  

These differences in the retina are illustrated in Figure 14. 

Preservation of the OFF response beyond postnatal day 14 in rd1 mice indicates light 

detection occurs well after the loss of rods (Stasheff, 2008).  Such responses also indicate 

that components within the OFF pathway are still intact.  The results in Figure 13 

support this claim, showing no temporal changes in OFF responses.  High levels of 

glutamate could sustain the iGluRs, causing proportionately smaller fluctuations in 

glutamate concentration to have little effect on the number of bound receptors.  The 

presence of OFF responses at this age supports the proposed up-regulation of the OFF 

pathway.   



 

 

36 

36 

 

 

Fi
gu

re
 1

4.
 P

ro
po

se
d 

M
od

el
 o

f w
t R

et
in

a 
(le

ft
) C

om
pa

re
d 

to
 rd

1 
R

et
in

a 
(r

ig
ht

). 
 B

y 
P1

4,
 ro

ds
 in

 rd
1 

ar
e 

ra
pi

dl
y 

 



 

 

37 

37 

Figure 14—continued  degenerating, though cones are still intact.  (13) Light is 
absorbed in the residual photoreceptors, causing hyperpolarization of the cell.   (14) Upon 
hyperpolarization, glutamate release from the cone pedicles decreases.  (15) Because 
baseline glutamate concentration within the OPL is increased as compared to wt (3), cone 
activation causes proportionately less decrease in glutamate concentration in the OPL 
than in wt. (16) Ionotropic receptor activation is up-regulated compared to wt (4) by the 
increased glutamate concentration in the OPL. These receptors deactivate when 
glutamate concentration falls. (17) The decrease in glutamate concentration decreases the 
ongoing activation of the metabotropic glutamate receptors, which decreases the 
hyperpolarization by G-protein signaling.  Due to the increased baseline concentration of 
glutamate in the OPL, proportionately less mGluR inactivation may occur, reducing 
strength of ON signaling (18,22).  (19) Up-regulation of the OFF-BC increases the 
amacrine cell high pass filter strength, more strongly suppressing signals in the ON-BCs 
(20).  As OFF-BCs are deactivated with light onset, the amacrine cell mediated 
suppression decreases.  (21) Up-regulation of the OFF-BCs causes increased glutamate 
release in IPLa, leading to an increase in RGC spontaneous activity.  (22) ON-BCs 
synapse with RGCs in IPLb, but due to the decrease in photoreceptor density and up-
regulation of ON-inhibition compared to wt (10), the ON-BCs transmit significantly 
weaker signals to the RGCs.  Retinal ganglion cells integrate signals from both OFF and 
ON pathways within the dendrites (21, 22) and soma (23), as is also the case in wt 
(9,10,11).  Spikes are generated at the initial segments in the RGCs and transmitted via 
the axons to the brain (24).  Abbreviations: Am, amacrine cell; Glu, glutamate; i, 
ionotropic glutamate receptor; INL, inner nuclear layer; IPLa, inner plexiform layer 
sublamina a; IPLb, inner plexiform layer sublamina b; m, metabotropic glutamate 
receptor; OFF-BC, off bipolar cell; ON-BC, on bipolar cell; ONL, outer nuclear layer; 
PhR, photoreceptor; RGC, retinal ganglion cell.  Note: horizontal and Muller cells have 
been omitted for clarity. 
 
 
 

If noise is suppressed in ON pathway signaling, full useful vision can not be 

generated in disease by simply adding light to visual scenes.  Note that useful vision 

involves contrasting images.  Contrast is a difference in luminance between adjacent 

objects, which invariably must involve the OFF pathway.  Any useful vision-forming 

stimulus would thus contain OFF pathway carried by the noise.  This illustrates a 

potential advantage for using full field stimuli: noise from the OFF pathway may be 

optimally reduced.  Since images with contrast inherently contain regions darker than 

others, OFF pathway noise may permeate any transmitted message from the retinal 
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ganglion cells.  Moreover, stimuli such as white noise or m-sequence would also cue OFF 

signaling. 

In the following chapter, I present a set of computational methods to further 

explain the response characteristics of retinal ganglion cells in degeneration.   

Future Studies 

The mechanisms proposed in this chapter could be tested by single cell recordings 

of amacrine cell function in retinal degeneration.  One could study the paired relations 

between amacrine cells and OFF bipolar cells, and the effect of noise on inhibition of ON 

signaling.  More complex stimuli, such as white noise, gratings, real world images, or m-

sequences, could be used to elucidate how parallel pathways are disrupted in 

degeneration. 
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CHAPTER VI: INFORMATION CAPACITY IN DEGENERATION 

In this chapter, I present a useful set of tools that help explain and corroborate the 

findings in the previous chapters.  I use information theoretic methods to quantify the 

ability of retinal ganglion cells to transmit useful messages to the brain.  It is my goal to 

show that information theoretic methods are useful in understanding disease, and that the 

results of utilizing these methods support the observations and hypotheses in the previous 

chapters. 

Computational Methods 

Estimates of naive entropy were calculated by allocating all spikes into 20 

millisecond timebins, creating "words" for each cluster of spikes.  In order to find the 

group's naive entropy, or the entropy of the spike train regardless of stimuli, all 

probabilities of observing each word multiplied by the logarithm of each probability are 

summed (Equation J) (Shannon, 1948), 

 

 

  (Equation J) 

 

 

where pi is the probability of observing a spike in a given time bin, and tmax is the 

maximum timebin.  The sum of all probabilities is conventionally multiplied by a 

negative one in order to display a positive entropy value (Rieke et al, 1998). 

The noise entropy was calculated by performing the same analysis in Equation J 

over non-refractory, non-stimulated periods.  Each group’s estimate of mutual 
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information between stimuli and responses was calculated by subtracting the noise 

entropy from the naive estimate, using the Kullback-Leibler divergence (Equation K) 

(Haykin, 1999; Rieke et al, 1997; Szallasi et al, 2006; Linsker, 1988), 

 

 (Equation K) 

 

 

where P(s) is the spike probability, P(l) is the probability of the occurrence of a stimulus, 

and P(l|s) is the probability of a stimulus occurring with a spike.  These entropic values 

were calculated for both individual cells and whole populations, giving M(S;L), the 

mutual information between stimulus and response, H(L), the noise entropy, and H(L|S) 

the naive entropy (Rieke et al, 1997; Strong et al, 1998). 

Results 

The naïve entropy estimate illustrates the overall channel capacity for message 

transmission.  These estimates for wt and rd1 retinal ganglion cells did not differ (Figure 

15). These findings suggest that populations of retinal ganglion cells in rd1 are still 

capable of signaling the same amount of information as in wt.   

The rd1 P14 cells show an increase in the entropy of noise (Figure 16), calculated 

as the minimum entropy among all responses at any stimulus intensity (including IL = 0).  

This increase in noise entropy is likely due to the increase in spontaneous firing activity 

of retinal ganglion cells in degeneration. 
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Rd1 retinal ganglion cells exhibited a significant decrease in the mutual 

information between stimuli and responses compared to wt P14, an indicator of reduced 

information transmission capacity (Figure 17). 

 

Figure 15. Naive Entropy Estimates.  Using Equation J, wt and rd1 retinal ganglion 
cells show similar aggregate estimates of naive entropy (p = 0.93; Daniel, 2005).   

 

 

Figure 16. Entropy of Noise.  Using Equation I, the rd1 P14 cells show an increase in 
the entropy of noise.   
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Figure 17. Mutual Information Between Stimuli and Responses.  Using Equation K,  
the distribution of rd1 P14 cells shows a significant decrease in the mutual information 
between stimulus and response compared to wt P14 (Kruskal-Wallis, p < 10-10; Daniel, 
2005). 

 

 
Discussion 

Information theory has shown itself to be a useful means of quantifying 

information capacity in communication systems (Shannon, 1948).  Within the framework 

of information theory, Shannon entropy describes the uncertainty in messages.  Used as a 

performance measurement for information transfer, entropic measures can show how 

well neurons transmit useful information (Rieke et al, 1998).  Shannon entropy is the 

probability of a message’s occurrence given equal probability of all possible messages.   

The identification of useful information involves subtracting the “bad 

information” from the total information (Deco et al, 1998).  Bad information is 

commonly referred to as the noise entropy.  As in Webster’s second definition, noise 
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entropy causes a corruption of the desired message.  Optimal neural systems are able to 

relay useful output given useful input, and likewise relay no output if the input is of no 

utility1.  One of the retina's functions is to optimize contrast in visual scenes before 

relaying a message (Prokopowicz et al, 1995).  If the contrast optimization is disrupted, 

many of the retina's unique capabilities are hindered (Passaglia et al, 2004).  Downstream 

neurons cannot fulfill their duties if they are given bad information.  Performance of 

information transfer is thus crucial in neural systems.   

One practical method of group entropy estimation used in speech and pattern 

recognition is the Kullback-Leibler (KL) divergence (Filippone et al, 2010).  The KL 

divergence is a statistical tool for estimating the probability of difference in information 

between two systems (Hershey et al, 2007).  In Bayesian statistics, it is used for 

estimating the maximum distance between a prior distribution and a posterior distribution 

(Goutis et al, 1998).  Applied here, the KL divergence is used to estimate the distribution 

of information in one state and compare this with the distribution of information in 

another state.  Since a primary goal here is to separate good information from bad 

                                                
1 E.g., take a given spike train, one spike every one second, without perturbation. Fixing the start 

time, the message can be described in only one possible manner over any period of time: one spike occurs, 
like clockwork, every second.  One could be very certain of the spike arrival times here.  The rate of 
information transmission for any time period is fixed and can be easily calculated: one bit per second.  A 
high fidelity downstream neuron could relay each spike by transmitting one spike in each instance. In this 
case information would be conserved.  This downstream neuron could expend much more energy and 
transmit, say, 1000 spikes over the span of one second in response to the single spike input.  If Equation J 
is used, and each spike is binned individually, the apparent information rate in this secondary neuron jumps 
to 6.91 bits/s.  Such a high bit count occurs because there are a large number of ways 1000 spikes can be 
arranged within the allocated time period.  It remains uncertain when these 1000 spikes will occur without 
any a priori knowledge. Thus, the uncertainty in the system is high, and the entropy is correspondingly 
high.  But clearly the upstream neuron has not packaged any additional information into its single spike per 
second.  This does not necessarily imply the downstream neuron is giving false information, only that it 
transmits the information it receives in a less certain and less efficient manner.  The downstream neuron 
places an upper bound on the information transfer characteristics of the system.  Finding this upper bound 
is of no use if the entropy of the noise and the input bias are not taken into account. 
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information, the maximum distance between distributions of information in all states of 

response is calculated (Equation K).  In finding this maximum distance, no assumptions 

need to be made with regards to what are optimal stimuli for a given cell.  Since cells 

exhibit a wide range of response characteristics to different stimuli, the maximal 

difference in entropy between any two stimulus states is the maximum amount of unique 

information a given cell can transmit within the range of stimulus parameters chosen 

(Linsker, 1988).   

Differences in the information carrying capacity among different cell populations 

in the visual system may be used to quantify how vision is altered in disease.  Once 

having estimated a maximum information rate of 400,000 bits/s in the normal mouse 

retina (Koch et al, 2004), reductions in individual and population entropies may be used 

to show how much less information is transmitted in disease states.  Such an upper bound 

on population estimates in the normal retina has one major limitation.  Without any 

attempt to identify correlation or redundancy of information among the cells of the 

population, the realized information input to the cortex will be less than estimated 

(Brody, 1999; Schneidman et al, 2003).  Correlation in neural networks is thought to be a 

property that conveys emphasis (Averbeck et al, 2006).  Energy consumption often pays 

the price in correlation coding, suggesting a bias toward metabolically efficient spike 

codes (Balasubramanian et al, 2002).  Given these constraints, it is assumed that in the 

presence of correlation, useful information drops below the upper bound set by estimated 

Shannon entropy.  Adaptive compensation mechanisms by downstream neurons in the 

dLGN or cortex in disease are also not considered.  Image perception in disease might be 
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enhanced by compensatory cortical function, though such a possibility is beyond the 

scope of this discussion. 

Despite functional changes, increased spontaneous activity and a decreased 

maximal response do not preclude retinal ganglion cells in rd1 from transmitting useful 

information.  Figure 15 shows that rd1 retinal ganglion cells have the capacity to 

transmit information.  Even though the mutual information between stimulus and 

response is reduced, as seen in Figure 17, one could speculate that a broad dynamic 

range in the responses of RGCs might be able to compensate for the presence of noise 

and reduced mutual information.  However, the distribution of slopes at each cell's I50 

shows that rd1 cells include a larger subset of cells with restricted dynamic range.  These 

cells have nearly an all or none effect in information transfer.  The restricted dynamic 

range is evident in the increased slope observed in the response profiles of the rd1 cells.  

The increased spontaneous activity and nonlinear effects of such “noise” may contribute 

to the reduced dynamic range and information capacity of rd1 retinal ganglion cells 

compared to wt.  

If spontaneous firing is a result of OFF pathway up-regulation, then under 

continuous stimulation with bright light, noise should be suppressed in the OFF pathway.  

One cannot be entirely certain that this is the case in rd1.   

How the brain perceives spiking noise is another concern. No a priori knowledge 

is provided to the downstream neurons regarding stimulus conditions.  A burst of 

spontaneous activity could appear identical to a burst in response to light stimulation.  

Without any other information, a perceptual network cannot discriminate between such 



 

 

46 

46 

messages.   It is thus crucial to understand the difference between the two conditions that 

yields the maximum mutual information between an optimal stimulus and its response.  

Future Studies 

The methods discussed in this chapter could be applied to the studies proposed at 

the end of Chapter V.  One could deduce what the brain “sees” in degeneration using 

“natural” stimuli and implementation of a computational model that accounts for the 

observed functional changes.  Many current strategies to rescue vision, including 

electronic stimulation and gene therapy, heavily rely on a functional inner retina (Kelly et 

al, 2009).  The data presented here suggest that capacity for information transfer is 

reduced but still substantial early in disease.  Retinal prosthesis research groups can 

benefit by understanding the communication limits of target cells.  Much can be learned 

by understanding mechanisms of inner retina malfunction in disease.  For example, 

pharmacological intervention could target the described pathways in order to reduce the 

harmful effects of cell death or glutamate toxicity in early degeneration. 
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CHAPTER VII: CONCLUSION 

In this thesis, I demonstrate the utility of a range of quantitative techniques, 

including communication theory, and apply these to electrophysiologic recordings to 

characterize functional changes that occur in early stages of retinal degeneration in the 

mouse.  I use these techniques to show novel findings.  Early in disease, retinal ganglion 

cells in the rd1 mouse exhibit interesting differences from their wild type counterparts.  

An increased latency of responses to the onset of a light stimulus, decreased spike count 

in response to stimulus onset, increased spontaneous firing activity, and a decrease in 

information transmission are observed in this animal model of inherited retinal 

degeneration.  Some potential future studies are proposed that might offer a means of 

further elucidating the impact of this blinding eye disease.  The use of innovative 

techniques provides a framework for proposing that up-regulation of OFF bipolar cell 

excitation may be a principle mechanism responsible for the observed functional changes 

in the rd1 mouse.     
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 APPENDIX: MATLAB DOCUMENTATION 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                   % 
%   avgRandFF_E.m                                                   % 
%                                                                   % 
%   Programmer: Erik Nylen, Stasheff Lab, University of Iowa        % 
%       Based on software originally written by Steven Stasheff.    %  
%       Software editted to reasonable size to fit within thesis.   % 
%                                                                   % 
%   Inputs:                                                         % 
%       N1: an 88x12 cell, each cell contains an array of           % 
%       values indicating number of spikes contained within 20      % 
%       millisecond timebins over entire experiment.                % 
%                                                                   % 
%       logdata:  a structure containing stimulus trigger values    % 
%                                                                   % 
%       numstims: number of stimuli in trial                        % 
%                                                                   % 
%       trials: number of trials in experiment                      % 
%                                                                   % 
%   Outputs:                                                        % 
%       main: structure containing all relevant data                % 
%                                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load N1; 
load logdata; 
load numstims; 
load trials; 
% Cycle through all available channels and units 
for ch = 12:87 
for u = 1:5 
    if ~(isempty(N1{ch,u})) 
    for s = 1:numstims 
        for rep = 1:trials 
            if (rep == 1) 
            % Extract binned spike data for all stimulation periods 
            main.record.cellular{ch,u}.this_sumPSTH(s,:) = ... 
                N1{ch,u}( 
(round(logdata.splicesync(logdata.stimonuse... 
                (s,rep)))-5):(round(logdata.splicesync... 
                (logdata.stimonuse(s,rep)))+(stimbins+50) ),1); 
            % Extract spike time values for all stimulation periods 
            main.record.cellular{ch,u}.rasterval{s}(rep,:) = ... 
                N1{ch,u}((round(logdata.splicesync(logdata.stimonuse... 
                (s,rep)))-50):(round(logdata.splicesync... 
                (logdata.stimonuse(s,rep)))+150),1); 
            % Extract baseline firing rates 
            main.record.cellular{ch,u}.this_baselinePSTH(s,:) =... 
                N1{ch,u}((round(logdata.splicesync(logdata.stimonuse... 
                (s,rep)))-25):round(logdata.splicesync... 
                (logdata.stimonuse(s,rep))),1);  
            % Extract spikes for ON response periods 
            main.record.cellular{ch,u}.this_ONresp(s,:)... 
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                = main.record.cellular{ch,u}.this_sumPSTH... 
                (s,6:(stimbins+5)); 
            % Extract spikes for OFF response periods 
            main.record.cellular{ch,u}.this_OFFresp(s,:) = ... 
                main.record.cellular{ch,u}.this_sumPSTH... 
                (s,(stimbins+5):(stimbins*2+5)); 
            else % if rep ~= 1 
                % hold previous spike bins 
            newarray = N1{ch,u}((round(logdata.splicesync... 
                (logdata.stimonuse(s,rep)))-5):(round... 
                (logdata.splicesync(logdata.stimonuse... 
                (s,rep)))+stimbins+50),1); 
            % Perform calculations from previous loop 
            main.record.cellular{ch,u}.rasterval{s}(rep,:)... 
                = N1{ch,u}((round(logdata.splicesync... 
                (logdata.stimonuse(s,rep)))-50):(round... 
                (logdata.splicesync(logdata.stimonuse... 
                (s,rep)))+150),1); 
            main.record.cellular{ch,u}.this_sumPSTH(s,:) =... 
                main.record.cellular{ch,u}.this_sumPSTH(s,:)+newarray'; 
            newbase = N1{ch,u}((round(logdata.splicesync... 
                (logdata.stimonuse(s,rep)))-25):round... 
                (logdata.splicesync(logdata.stimonuse(s,rep))),1); 
            main.record.cellular{ch,u}.this_baselinePSTH(s,:) = ... 
                main.record.cellular{ch,u}.this_baselinePSTH(s,:)+... 
                newbase';  
            main.record.cellular{ch,u}.this_ONresp(s,:) =  ... 
                main.record.cellular{ch,u}.this_sumPSTH... 
                (s,6:(stimbins+5)); 
            main.record.cellular{ch,u}.this_OFFresp(s,:) = ... 
                main.record.cellular{ch,u}.this_sumPSTH... 
                (s,(stimbins+5):(stimbins*2+5)); 
            end % end if rep == 1 
        end % end for rep = 1:trials          
        % Calculate total baselinerate 
           main.record.cellular{ch,u}.this_baselinerate(s) = ... 
               
(sum(main.record.cellular{ch,u}.this_baselinePSTH(s,:)));   
        % Calculate total ON response for each stimulus 
           main.record.cellular{ch,u}.sumONresp(s)= ... 
               (sum(main.record.cellular{ch,u}.this_ONresp(s,:)));      
        % Calculate total OFF response for each stimulus 
           main.record.cellular{ch,u}.sumOFFresp(s) = ... 
               (sum(main.record.cellular{ch,u}.this_OFFresp(s,:)));                                        
        % Calculate net ON response 
           main.record.cellular{ch,u}.netONresp(s)= ... 
               (sum(main.record.cellular{ch,u}.this_ONresp(s,:))) -... 
               main.record.cellular{ch,u}.this_baselinerate(s);      
        % Calculate net OFF response 
           main.record.cellular{ch,u}.netOFFresp(s) = ... 
               (sum(main.record.cellular{ch,u}.this_OFFresp(s,:))) - 
... 
               main.record.cellular{ch,u}.this_baselinerate(s); 
        % Calculate ON transientness 
           main.record.cellular{ch,u}.ONtransientness(s) = ... 
               sum(main.record.cellular{ch,u}.this_ONresp... 
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(s,6:(6+marker)))/main.record.cellular{ch,u}.sumONresp(s); 
        % Calculate OFF transientness 
           main.record.cellular{ch,u}.OFFtransientness(s) = ... 
               sum(main.record.cellular{ch,u}.this_OFFresp... 
               
(s,1:marker))/(main.record.cellular{ch,u}.sumOFFresp(s)); 
        % Calculate ON proportionality 
           main.record.cellular{ch,u}.ONpropn(s) =.... 
               main.record.cellular{ch,u}.sumONresp(s)/... 
               (main.record.cellular{ch,u}.sumONresp(s)+... 
               main.record.cellular{ch,u}.sumOFFresp(s)); 
         % Calculate ON latency 
           [main.record.cellular{ch,u}.peakONval(s), ... 
               main.record.cellular{ch,u}.peakONlatency(s)] = ... 
               max(main.record.cellular{ch,u}.this_sumPSTH... 
               (s, 1:(stimulustime/main.record.global.binsize)));    
         % Calculate OFF latency 
           [main.record.cellular{ch,u}.peakOFFval(s), ... 
               main.record.cellular{ch,u}.peakOFFlatency(s)] = ... 
               max(main.record.cellular{ch,u}.this_sumPSTH... 
               (s, (stimulustime/main.record.global.binsize):... 
               length(main.record.cellular{ch,u}.this_sumPSTH)));                                                                     
    end % end for s = 1:numstims 
    end % end if N1 is not empty                     
end % end for u 
end % end for ch 
  
% END FUNCTION avgRandFF_E.m 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                   % 
%   CellSummary.m                                                   % 
%                                                                   % 
%   Programmer: Erik Nylen, Stasheff Lab, University of Iowa        % 
%                                                                   % 
%   Inputs:                                                         % 
%       main: all 'main' files of interest are loaded here          % 
%           into a 'summary_cell'                                   % 
%                                                                   % 
%   Outputs:                                                        % 
%       summary_cell: structure containing all data for specific    % 
%           cell types, e.g., wt, rd1, adult                        % 
%                                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load num_main % # of 'main' files to load, i.e., number of experiments 
% using for calculations 
for i = 1:num_main 
    uiopen('LOAD');     
    store_main{1,i} = main; 
    clear main;     
    pause(.05)     
end % end for i = 1:num_main 
save store_main store_main; 
  
% pre-allocate structure 
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summary_cell(1:1000) = struct('ch', zeros(1,1), 'u', zeros(1,1),... 
    'netONresp', zeros(1,17), 'netOFFresp', zeros(1,17),... 
    'netBOTHresp', zeros(2,17), 'ONpropn', zeros(1,17),... 
    'rate', [], 'baselinerate', zeros(1,17), 'yfitON', ... 
    zeros(1,17), 'p_on', zeros(1,4), 'yfitOFF', zeros(1,17),... 
    'p_off', zeros(1,4),'stimtype', [], 'logtitle', [], ... 
    'ONtransientness', zeros(1,17), 'OFFtransientness',... 
    zeros(1,17), 'spiketimes', zeros(1,50000), 'sumPSTH',... 
    zeros(17,106), 'peakONlatency', zeros(1,17), ... 
    'peakOFFlatency', zeros(1,17), 'N1', zeros(1,104951)); 
z = 1; 
for i = 1:num_main % cycle through all mains 
for ch = 12:87 % cycle through all channels 
for u = 1:5 % cycle through all units 
    % all relevant values saved into summary_cell 
   if (isfield(store_main{1,i}.record.cellular{ch,u}, 'netONresp')... 
           && 
~isempty(store_main{1,i}.record.cellular{ch,u}.netONresp)) 
        summary_cell(z).ch = ch; 
        summary_cell(z).u = u; 
        summary_cell(z).netONresp = ... 
            store_main{1,i}.record.cellular{ch,u}.netONresp; 
        summary_cell(z).netOFFresp = ... 
            store_main{1,i}.record.cellular{ch,u}.netOFFresp; 
        summary_cell(z).netBOTHresp = ... 
            [store_main{1,i}.record.cellular{ch,u}.netONresp; ... 
            store_main{1,i}.record.cellular{ch,u}.netOFFresp]; 
        summary_cell(z).ONpropn = ... 
            store_main{1,i}.record.cellular{ch,u}.ONpropn; 
        summary_cell(z).rate = ... 
            [store_main{1,i}.record.cellular{ch,u}.sumONresp/... 
            store_main{1,i}.record.global.numtrials; ... 
            store_main{1,i}.record.cellular{ch,u}.sumOFFresp/... 
            store_main{1,i}.record.global.numtrials]; 
        summary_cell(z).baselinerate = ... 
            
(max(store_main{1,i}.record.cellular{ch,u}.this_baselinerate))/... 
            store_main{1,i}.record.global.numtrials; 
        if isfield(store_main{1,i}.record.cellular{ch,u}, 'yfitON') 
            summary_cell(z).yfitON = ... 
                store_main{1,i}.record.cellular{ch,u}.yfitON; 
            summary_cell(z).p_on = ... 
                store_main{1,i}.record.cellular{ch,u}.p_on; 
        end 
        if isfield(store_main{1,i}.record.cellular{ch,u}, 'yfitOFF') 
            summary_cell(z).yfitOFF = ... 
                store_main{1,i}.record.cellular{ch,u}.yfitOFF; 
            summary_cell(z).p_off = ... 
                store_main{1,i}.record.cellular{ch,u}.p_off; 
        end   
        summary_cell(z).stimtype = ... 
            store_main{1,i}.record.global.stimtype; 
        summary_cell(z).logtitle = ... 
            store_main{1,i}.record.global.logtitle; 
        summary_cell(z).ONtransientness = ... 
            store_main{1,i}.record.cellular{ch,u}.ONtransientness; 
        summary_cell(z).OFFtransientness = ... 
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            store_main{1,i}.record.cellular{ch,u}.OFFtransientness; 
        summary_cell(z).spiketimes = ... 
            store_main{1,i}.record.cellular{ch,u}.spiketimes; 
        summary_cell(z).sumPSTH =... 
            store_main{1,i}.record.cellular{ch,u}.this_sumPSTH; 
        summary_cell(z).peakONlatency = ... 
            store_main{1,i}.record.cellular{ch,u}.peakONlatency; 
        summary_cell(z).peakOFFlatency = ... 
            store_main{1,i}.record.cellular{ch,u}.peakOFFlatency; 
        summary_cell(z).N1 = ... 
            (store_main{1,i}.record.cellular{ch,u}.N1)';         
        summary_cell(z).stimONtimes = ... 
            store_main{1,i}.record.global.stimON; 
        summary_cell(z).splicesync = ... 
            store_main{1,i}.record.global.logdata.splicesync; 
        z = z+1; 
   end % end if isfield 
end % end for u 
end % end for ch 
end 
  
save summary_cell summary_cell; 
  
% END FUNCTION CellSummary.m 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                   % 
%   Plot_Stats.m                                                    % 
%                                                                   % 
%   Programmer: Erik Nylen, Stasheff Lab, University of Iowa        % 
%                                                                   % 
%   Inputs:                                                         % 
%       'adult': cell_summary data of adult RGCs                    % 
%       'rd1': cell_summary data of rd1 RGCs                        % 
%       'wtP14': cell_summary data of wtP14 RGCs 5                  % 
%                                                                   % 
%   Outputs:                                                        % 
%       figures plotting all data for thesis, as plotted shown      % 
%           above in text                                           % 
%                                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% load in data 
load adult; load rd1; load wtP14; 
  
% Create strings of character labels equal to data length 
for i = 1:length(wtP14) 
   wtP14label{i} = 'wtP14';  
end 
for i = 1:length(adult) 
   adultlabel{i} = 'adult';  
end 
for i = 1:length(rd1) 
   rd1label{i} = 'rd1';  
end 
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g=1; % reset counter 
for i = 1:length(wtP14) 
    % if stimulus type was on an arithmetic scale 
if strcmp(wtP14(i).stimtype, 'arith') 
    % if positive slop and I50 is less than 17 
    if (wtP14(i).p_on(3) > 0 && wtP14(i).p_on(3) < 17) 
        % scale I50 values 
        wtP14ONthresh(g) = 17*0.0625*wtP14(i).p_on(3); 
        % extract sigmoid model fit 
        wtP14ONfit(g,:) = wtP14(i).yfitON; 
        % create stimulus value reference array 
        wtP14xval(g,:) = [0:1/16:1]; 
        % extract slope of curve at I50 
        wtP14slope(g) = wtP14(i).p_on(4); 
        g=g+1; 
    end 
    % if stimulus type was on a log scale 
elseif strcmp(wtP14(i).stimtype, 'log') 
    if (wtP14(i).p_on(3) > 0 && wtP14(i).p_on(3) < 17)         
        % scale I50 values         
        wtP14ONthresh(g) = 17*10^(2.1251*wtP14(i).p_on(3)/... 
            17-2.1251); % I50 
        % extract sigmoid model fit         
        wtP14ONfit(g,:) = wtP14(i).yfitON;       
        % create stimulus value reference array         
        wtP14xval(g,:) = logspace(-2,0,17);        
        % extract slope of curve at I50         
        wtP14slope(g) = wtP14(i).p_on(4);             
        g=g+1; 
    end 
end 
end 
  
g=1; % reset counter 
for i = 1:length(rd1) 
        % if stimulus type was on an arithmetic scale 
    if strcmp(rd1(i).stimtype, 'arith') 
            % if positive slop and I50 is less than 17 
        if ((rd1(i).p_on(3) > 0) && (rd1(i).p_on(3) < 17)) 
        % scale I50 values             
            rd1ONthresh(g) = 17*0.0625*rd1(i).p_on(3);  
            % extract sigmoid model fit 
            rd1ONfit(g,:) = rd1(i).yfitON; 
            % create stimulus value reference array 
            rd1xval(g,:) = [0:1/16:1]; 
            % extract slope of curve at I50 
            rd1slope(g) = rd1(i).p_on(4); 
            g=g+1; 
        end 
        % if stimulus type was on a log scale         
    elseif strcmp(rd1(i).stimtype, 'log') 
        % if positive slop and I50 is less than 17 
        if ((rd1(i).p_on(3) > 1) && (rd1(i).p_on(3) < 17))    
             % scale I50 values 
            rd1ONthresh(g) =  17*10^(2.1251*rd1(i).p_on(3)/... 
                17-2.1251);  
            % extract sigmoid model fit 
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            rd1ONfit(g,:) = rd1(i).yfitON;    
            % create stimulus value reference array 
            rd1xval(g,:) = logspace(-2,0,17); 
            % extract slope of curve at I50 
            rd1slope(g) = rd1(i).p_on(4);             
            g=g+1; 
        end; 
    end 
end 
  
figure % FIGURE 6 IN TEXT 
    subplot(211) 
    for g = 1:length(wtP14xval) % for all values 
        % plot all IR curves 
        plot(wtP14xval(g,:), wtP14ONfit(g,:), 'k'); 
        hold on 
    end 
        proptitle = 'WT P14 Stimulus-Response Sigmoid Fit Curves'; 
        title(proptitle); % set title 
        ylabel('Normalized Response'); % set labels 
        xlabel('Relative Intensity'); 
        hold off 
  
    subplot(212), % plot histogram of I50 values, 25 bins 
        wtthreshbar = hist(wtP14ONthresh, 25)/length(wtP14ONthresh); 
        % plot bar of histogram 
        bar([min(wtP14ONthresh):(max(wtP14ONthresh)-... 
            min(wtP14ONthresh))/24:max(wtP14ONthresh)]... 
            , wtthreshbar,'FaceColor','k');  
        title('I_5_0'); % set title 
        ylabel('% of Cells'); % set labels 
        xlabel('Relative Intensity'); 
        xlim([0 17]); % set x scale limits 
        saveas(gca, proptitle, 'tif'); % save figure 
  
figure % FIGURE 7 IN TEXT 
    subplot(211) 
        for g = 1:length(rd1xval)% for all values 
            % plot all IR curves 
            plot(rd1xval(g,:), rd1ONfit(g,:),'k'); 
            hold on 
        end 
        hold off 
        proptitle = 'RD1 P14 Stimulus-Response Sigmoid Fit Curves'; 
        title(proptitle); % set title 
        xlabel('Relative Intensity'); % set labels 
        ylabel('Normalized Response'); 
  
    subplot(212), % plot histogram of I50 values, 25 bins 
        rd1threshbar = hist(rd1ONthresh, 25)/length(rd1ONthresh); 
        bar([min(rd1ONthresh):(max(rd1ONthresh)-min(rd1ONthresh))/... 
            24:max(rd1ONthresh)], rd1threshbar,'FaceColor','w',... 
            'EdgeColor','k','LineWidth',1);  
        xlim([0 17]); % set x scale limits 
        ylabel('% of Cells');  % set labels 
        xlabel('Relative Intensity');  
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        title('I_5_0'); % set title 
        saveas(gca, proptitle, 'tif'); % save figure 
  
g=1; % reset counter 
wtP14ONslopes = []; 
wtP14slopetitle = []; 
for i = 1:length(wtP14) 
    % extract all positive slopes 
    if (wtP14(i).p_on(4)>0 && wtP14(i).p_on(4)<100 && ... 
            wtP14(i).p_on(3)>0 && wtP14(i).p_on(3) < 20) 
    wtP14ONslopes(g) = ([wtP14(i).p_on(4)]); 
    wtP14slopetitle{g} = 'wtP14'; % create title string 
        g=g+1; % increment 
    end 
end 
g = 1; % reset counter 
rd1ONslopes = []; 
rd1slopetitle = []; 
for i = length(rd1) 
        % extract all positive slopes 
    if (rd1(i).p_on(4) > 0 && rd1(i).p_on(4) < ... 
            100 && rd1(i).p_on(3) > 0 && rd1(i).p_on(3) < 20) 
    rd1ONslopes(g) = (rd1(i).p_on(4)); 
    rd1slopetitle{g} = 'rd1'; % create title string    
    g=g+1; % increment 
    end     
end 
  
% create histograms of slopes 
wth = hist(wtP14ONslopes, 25)/length(wtP14ONslopes); 
rdh = hist(rd1ONslopes, 25)/length(rd1ONslopes); 
% FIGURE 8 IN TEXT 
figure, bar([1:25],[wth]', 'BarWidth',.4,'FaceColor','k'),  
    hold on % plot wt bar graphs with rd1 data 
    bar([1.4:1:25.4],[rdh]', 'BarWidth',.4,'FaceColor','w'),  
    hold off 
    legend({'Wild Type','RD1'}); % display lengend 
    disttitle = 'Distribution of Slopes in WT and RD1 at P14'; 
    xlabel('Slope at I_5_0'); % set labels 
    ylabel('% of Cells'); 
    title(disttitle); 
    saveas(gca, disttitle, 'tif'); % save figure 
  
% Perform Kruskal-Wallis test for similarity between groups 
[p,tbl,stats] = kruskalwallis([wtP14ONslopes rd1ONslopes],... 
    [wtP14slopetitle rd1slopetitle]) 
[c,m] = multcompare(stats) % p value listed in text 
  
% extract data from structures 
wtP14ONpropn = ([wtP14.ONpropn]); 
adultONpropn = ([adult.ONpropn]); 
rd1ONpropn = ([rd1.ONpropn]); 
wtP14RDI = abs((0.5-wtP14ONpropn)/0.5); 
rd1RDI = abs((0.5-rd1ONpropn)/0.5); 
adultRDI = abs((0.5-adultONpropn)/0.5); 
% Perform Kruskal-Wallis test for similarity between groups 
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[p,tbl,stats] = kruskalwallis([wtP14RDI([17:17:length(wtP14RDI)])... 
    rd1RDI([17:17:length(rd1RDI)])],[wtP14label rd1label])  
f = figure % only p value reported in text 
    [c,m] = multcompare(stats) 
  
  
[p,tbl,stats] = kruskalwallis([wtP14RDI([17:17:length(wtP14RDI)]) ... 
    adultRDI([17:17:length(adultRDI)]) ... 
    rd1RDI([17:17:length(rd1RDI)])],... 
    [wtP14label adultlabel rd1label])  
f = figure % plot statstics (only p value shown in text) 
    [c,m] = multcompare(stats) 
    h1 = hist(wtP14RDI([17:17:length(wtP14RDI)]), 40)/... 
        length(([17:17:length(wtP14RDI)])); 
    h2 = hist(adultRDI([17:17:length(adultRDI)]),40)/... 
        length([17:17:length(adultRDI)]); 
    h3 = hist(rd1RDI([17:17:length(rd1RDI)]),40)/... 
        length([17:17:length(rd1RDI)]); 
  
% FIGURE 10 IN TEXT 
figure, subplot(311), bar([0:1/39:1], h1,'FaceColor','k', ... 
            'EdgeColor','k','LineWidth',1),  
        % plot response dominance for wt 
            set(gca, 'YLim', [0 max(h2)], 'XLim',[-0.025 1.025]); 
            title('WT P14 Response Dominance Index'); 
            ylabel('% of Cells'); % set label 
        subplot(312), bar([0:1/39:1], h3,'FaceColor','w', ... 
            'EdgeColor','k','LineWidth',1),  
        set(gca, 'YLim', [0 max(h2)], 'XLim',[-0.025 1.025]); 
            title('RD1 P14 Response Dominance Index'); 
            ylabel('% of Cells'); % set label 
        % plot response dominance for rd1 
        subplot(313), bar([0:1/39:1], h2,'FaceColor',[.5 .5 .5],... 
            'EdgeColor','k','LineWidth',1),  
        set(gca, 'YLim', [0 max(h2)], 'XLim',[-0.025 1.025]); 
            title('WT Adult Response Dominance Index'); 
            ylabel('% of Cells'); % set label 
         % plot response dominance for wt adult 
        proptitle = 'Response Dominance Index'; 
        saveas(gca, proptitle, 'jpg'); % save figure 
  
  
wtP14peakONlatency = ([wtP14.peakONlatency]); 
rd1peakONlatency = ([rd1.peakONlatency]); 
% Kruskal-Wallis test to test for differences in ON latency 
[p,tbl,stats] = kruskalwallis([wtP14peakONlatency([17:17:... 
    length(wtP14peakONlatency)]) rd1peakONlatency([17:17:... 
    length(rd1peakONlatency)])],[wtP14label rd1label])  
f = figure % plot statistics (only p value shown in text) 
    [c,m] = multcompare(stats) 
  
hbins = 15; % number of bins for plotting 
% create histogram for ON latency in wt 
hwt = hist(wtP14peakONlatency([17:17:length(wtP14peakONlatency)]), ... 
    hbins)/length(wtP14peakONlatency([17:17:... 
    length(wtP14peakONlatency)]));  
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% create histogram x values 
hwtbar = [0:max(wtP14peakONlatency([17:17:... 
    length(wtP14peakONlatency)]))/(length(hwt)-1):... 
    max(wtP14peakONlatency([17:17:length(wtP14peakONlatency)]))]; 
% create histogram x values 
hrdbar = [0:max(wtP14peakONlatency([17:17:... 
    length(wtP14peakONlatency)]))/(length(hwt)-1):... 
    max(rd1peakONlatency([17:17:length(rd1peakONlatency)]))]; 
% create histogram for ON latency in rd1 
hrd = hist(rd1peakONlatency([17:17:length(rd1peakONlatency)]),... 
    length(hrdbar))    /length(rd1peakONlatency([17:17:... 
    length(rd1peakONlatency)]));  
  
% FIGURE 11 IN TEXT 
figure, % plot bar graph of wt and rd1 ON latency 
    bar((hwtbar+.3), hwt, 'k', 'BarWidth', .4);  
    hold on, bar((hrdbar+1), hrd, 'w', 'BarWidth', .4),  
    set(gca, 'XLim', [5 52], 'XTick', [5 15 25 35 45], ... 
        'XTickLabel', {'0', '10', '20', '30', '40'}); 
    legend({'Wild Type','RD1'}); 
    bartitle = ... 
        'Distribution of ON Response Latency for Bright Stimulus in 
Retinal Ganglion Cells'; 
    title(bartitle); 
    ylabel('Number of Cells'); % set label 
    xlabel('Time (20 ms bins)'); 
    saveas(gca, bartitle, 'bmp'); % save figure 
  
% Now plot statistics for OFF latencies 
wtP14peakOFFlatency = ([wtP14.peakOFFlatency]); 
rd1peakOFFlatency = ([rd1.peakOFFlatency]); 
  
[p,tbl,stats] = kruskalwallis([wtP14peakOFFlatency([17:17:... 
    length(wtP14peakOFFlatency)]) rd1peakOFFlatency([17:17:... 
    length(rd1peakOFFlatency)])],[wtP14label rd1label])  
f = figure % plot statstics (only p value shown in text) 
    [c,m] = multcompare(stats) 
     
    hbins = 15; % set # of bins for histogram 
    % create histogram for OFF latency in wt 
    hwt = hist(wtP14peakOFFlatency([17:17:... 
        length(wtP14peakOFFlatency)]), hbins)/... 
        length(wtP14peakOFFlatency([17:17:... 
        length(wtP14peakOFFlatency)]));  
    hwtbar = [0:max(wtP14peakOFFlatency([17:17:... 
        length(wtP14peakOFFlatency)]))/... 
        (length(hwt)-1):max(wtP14peakOFFlatency([17:17:... 
        length(wtP14peakOFFlatency)]))]; 
    hrdbar = [0:max(wtP14peakOFFlatency([17:17:... 
        length(wtP14peakOFFlatency)]))/... 
        (length(hwt)-1):max(rd1peakOFFlatency([17:17:... 
        length(rd1peakOFFlatency)]))]; 
    % create histogram for OFF latency in rd1 
    hrd = hist(rd1peakOFFlatency([17:17:... 
        length(rd1peakOFFlatency)]), length(hrdbar))/... 
        length(rd1peakOFFlatency([17:17:... 
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        length(rd1peakOFFlatency)]));                                                  
  
figure, % FIGURE 13 IN TEXT 
    bar((hwtbar+.35), hwt, 'k', 'BarWidth', .4);  
    hold on, bar((hrdbar+1.8), hrd, 'w', 'BarWidth', .4),  
    set(gca, 'XLim', [0 52], 'XTick', [0 10 20 30 40], ... 
        'XTickLabel', {'0', '10', '20', '30', '40'}); 
        legend({'Wild Type','RD1'}); % show legend 
    bartitle = ... 
    'Distribution of OFF Response Latency for Bright Stimulus in 
Retinal Ganglion Cells'; 
        title(bartitle); 
        ylabel('Number of Cells'); % set labels 
        xlabel('Time (20 ms bins)'); 
    saveas(gca, bartitle, 'bmp'); % save figure 
  
% extract ON transientness values 
wtP14ONtransientness = ([wtP14.ONtransientness]); 
rd1ONtransientness = ([rd1.ONtransientness]); 
  
% Calculate statistics for transientness at each luminance level 
for i = 1:17 
    lumofinterest = i; % increment luminance level used 
    % transientness values for all wt cells 
    wttrans = (wtP14ONtransientness([lumofinterest:17:... 
        length(wtP14ONtransientness)])); 
    % calculate mean transientness in wt 
    wttransmean(i) = mean(wttrans(~isnan(wttrans))); 
    % calculate st dev for transientness in wt  
    wtransstd(i) = std(wttrans(~isnan(wttrans))); 
    % transientness values for all rd1 cells 
    rd1trans = (rd1ONtransientness([lumofinterest:17:... 
        length(rd1ONtransientness)])) 
    % calculate mean transientness in rd1 
    rd1transmean(i) = mean(rd1trans(~isnan(rd1trans))); 
    % calculate mean transientness in rd1 
    rd1transstd(i) = std(rd1trans(~isnan(rd1trans))); 
    % Kruskal-Wallis test comparing transientness values 
    [p,tbl,stats] = kruskalwallis([wtP14ONtransientness... 
        ([lumofinterest:17:length(wtP14ONtransientness)])... 
        rd1ONtransientness([lumofinterest:17:... 
        length(rd1ONtransientness)])],[wtP14label rd1label]) ; 
end 
  
figure, % FIGURE 12 IN TEXT 
    plot(wttransmean, 'k', 'LineWidth', 2), hold on, 
        plot(rd1transmean, 'k', 'LineStyle',':', 'LineWidth', 2) 
    set(gca, 'XTick', [1:2:17], 'XTickLabel',[0:2:16]) 
        ptitle = ... 
            'ON Transientness at Increasing Luminance Stimulation'; 
    title(ptitle); 
    xlabel('Relative Luminance'); 
    ylabel('Transientness'); 
    legend({'Mean WT P14','Mean RD1 P14'}); 
    saveas(gca, ptitle, 'bmp'); 
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figure, subplot(311), hist(wtP14ONtransientness([17:17:... 
    length(wtP14ONtransientness)])) 
subplot(312), hist(adultONtransientness([17:17:... 
    length(adultONtransientness)])) 
subplot(313), hist(rd1ONtransientness([17:17:... 
    length(rd1ONtransientness)])) 
  
  
wtP14baselinerate = ([wtP14.baselinerate]); 
rd1baselinerate = ([rd1.baselinerate]); 
  
[p,tbl,stats] = kruskalwallis([wtP14baselinerate ... 
    rd1baselinerate],[wtP14label rd1label])  
f = figure, % statistics for baseline rate, only p value shown in text 
    [c,m] = multcompare(stats) 
xc = [0:1:50]; 
hwt = hist(wtP14baselinerate, xc)/length(wtP14baselinerate);  
hrd = hist(rd1baselinerate, xc)/length(rd1baselinerate);  
  
figure, % FIGURE 4 IN TEXT 
    bar(xc+.15, hwt, 'k', 'BarWidth', .4); hold on,  
    bar(xc+.4, hrd, 'w', 'BarWidth', .4),  
        set(gca, 'XLim', [0 20]); 
    legend({'Wild Type','RD1'}); 
    bartitle = ... 
     'Distribution of Spontaneous Spike Activity in Retinal Ganglion 
Cells'; 
    title(bartitle); 
    ylabel('Number of Cells'); 
    xlabel('Spontaneous Firing Rate (spikes/s)'); 
    saveas(gca, bartitle, 'bmp'); 
  
  
wtP14rate = ([wtP14.rate]); 
rd1rate = ([rd1.rate]); 
lumofinterest = 17; % HIGHEST STIMULUS INTENSITY 
[p,tbl,stats] = kruskalwallis([wtP14rate(1,[lumofinterest:17:... 
    length(wtP14rate)])... 
    rd1rate(1,[lumofinterest:17:length(rd1rate)])],... 
    [wtP14label rd1label])  
f = figure,  
    [c,m] = multcompare(stats) 
proptitle = 'Firing rate with stimulus at highest intensity'; 
title(gca, proptitle); 
saveas(gca, proptitle, 'jpg'); 
  
% compare adult to rd1 
lumofinterest = 17; 
[p,tbl,stats] = kruskalwallis([adultrate(1,[lumofinterest:17:... 
    length(adultrate)])... 
    rd1rate(1,[lumofinterest:17:length(rd1rate)])],... 
    [adultlabel rd1label])  
f = figure, % calculate statistics, only p value shown in text 
[c,m] = multcompare(stats) 
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hwtrate = hist(wtP14rate(1,[lumofinterest:17:... 
    length(wtP14rate)]), 25)/length(wtP14rate(1,... 
    [lumofinterest:17:length(wtP14rate)]));  
hwtratebar = [0:max(wtP14rate(1,[lumofinterest:17:... 
    length(wtP14rate)]))/(length(hwtrate)-1):max(wtP14rate(1,... 
    [lumofinterest:17:length(wtP14rate)]))]; 
hrdratebar = [0:max(wtP14rate(1,[lumofinterest:17:... 
    length(wtP14rate)]))/(length(hwtrate)-1):max(rd1rate(1,... 
    [lumofinterest:17:length(rd1rate)]))]; 
hrdrate = hist(rd1rate(1,[lumofinterest:17:... 
    length(rd1rate)]), length(hrdratebar))/... 
    length(rd1rate(1,[lumofinterest:17:length(rd1rate)]));  
  
figure, % FIGURE 5 IN TEXT 
    bar((hwtratebar+2), hwtrate, 'k', 'BarWidth', .4);  
    hold on, bar((hrdratebar+4.5), hrdrate, 'w', 'BarWidth', .4),  
    set(gca, 'XLim', [0 150]); 
    legend({'Wild Type','RD1'}); 
    bartitle = ... 
    'Distribution of Responses to Bright Stimulus in Retinal Ganglion 
Cells'; 
    title(bartitle); 
    ylabel('Number of Cells'); 
    xlabel('Response Rate (spikes/s)'); 
    saveas(gca, bartitle, 'bmp');                         
  
  
for i = 1:length(wtP14) 
   wtP14(i).cumN = nonzeros([wtP14(1:i).N1]); 
end 
for i = 1:length(wtP14) 
   wtP14(i).logN = -1*sum((nonzeros(wtP14(i).cumN)./... 
       sum((wtP14(i).cumN))).*log(nonzeros(wtP14(i).cumN)./... 
       sum((wtP14(i).cumN)))); 
   wtP14(i).indN = -1*sum((nonzeros(wtP14(i).N1)./... 
       sum((wtP14(i).N1))).*log(nonzeros(wtP14(i).N1)./... 
       sum((wtP14(i).N1)))); 
end 
[hwtN, hwtNx] = hist([wtP14.indN]); 
  
for i = 1:length(rd1) 
   rd1(i).cumN = nonzeros([rd1(1:i).N1]); 
end 
for i = 1:length(rd1) 
   rd1(i).logN = -1*sum((nonzeros(rd1(i).cumN)./... 
       sum((rd1(i).cumN))).*log(nonzeros(rd1(i).cumN)./... 
       sum((rd1(i).cumN)))); 
   rd1(i).indN = -1*sum((nonzeros(rd1(i).N1)./... 
       sum((rd1(i).N1))).*log(nonzeros(rd1(i).N1)./... 
       sum((rd1(i).N1)))); 
end 
[hrd1N, hrd1Nx] =  hist([rd1.indN]); 
  
figure, % FIGURE 15 IN TEXT 
    bar(hwtNx, hwtN/sum(hwtN), 'BarWidth',.5,'FaceColor','k',... 
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        'LineWidth',.5), hold on,  
    bar(hrd1Nx+.55, hrd1N/sum(hrd1N), 'BarWidth',.5,... 
        'FaceColor','w','LineWidth',.5); 
    legend({'WT P14','RD1 P14'}); 
    xlabel('Naive Entropy'); 
    ylabel('% of Cells'); 
        ptitle = 'Distribution of Naive Entropy Estimates'; 
    title(ptitle); 
    saveas(gca, ptitle, 'jpg'); 
  
[p,tbl,stats] = kruskalwallis([([wtP14.indN]) ... 
    ([rd1.indN])],[wtP14label rd1label])  
f = figure % calculate statistics, only p value shown in text 
    [c,m] = multcompare(stats)   
  
% Now, find noise entropy and mutual information entropies here. 
vect50 = 0:1:49; 
% splicesync data lists ON stimulus times, in bin # 
for i = 1:length(wtP14) 
    stimuse = length(nonzeros(min(wtP14(i).stimONtimes)));  
    % useable number of stims 
    square50 = repmat(vect50,stimuse,1); 
    for s = 1:17 
       holdmat = repmat(wtP14(i).splicesync(wtP14(i).stimONtimes(s,... 
           1:stimuse)),1,50)+square50;         
       wtNs(i,s).Nvals = wtP14(i).N1(holdmat);        
       wtNs(i,s).ent = -1*sum((nonzeros(wtNs(i,s).Nvals)./... 
           sum(sum((wtNs(i,s).Nvals)))).*log(nonzeros(wtNs(i,... 
           s).Nvals)./sum(sum((wtNs(i,s).Nvals)))));        
       wtentscantemp(i,s) = wtNs(i,s).ent;        
    end % end for s 
    wtentband(i) = max(wtentscantemp(i,:))-min(wtentscantemp(i,:)); 
    wtminent(i) = min(wtentscantemp(i,:)); 
end 
  
for i = 1:length(rd1) 
    stimuse = length(nonzeros(min(rd1(i).stimONtimes)));  
    % useable number of stims 
    square50 = repmat(vect50,stimuse,1); 
    for s = 1:17 
       holdmat = repmat(rd1(i).splicesync(rd1(i).stimONtimes(s,... 
           1:stimuse)),1,50)+square50;         
       rd1Ns(i,s).Nvals = rd1(i).N1(holdmat);        
       rd1Ns(i,s).ent = -1*sum((nonzeros(rd1Ns(i,s).Nvals)./... 
           sum(sum((rd1Ns(i,s).Nvals)))).*... 
           log(nonzeros(rd1Ns(i,s).Nvals)./sum(sum((rd1Ns(i,... 
           s).Nvals)))));        
       rd1entscantemp(i,s) = rd1Ns(i,s).ent;        
    end % end for s 
    rd1entband(i) = max(rd1entscantemp(i,:))-min(rd1entscantemp(i,:)); 
    rd1minent(i) = min(rd1entscantemp(i,:)); 
end 
xc = [0:.5:10]; 
hwtent = hist(wtentband,xc); 
hrd1ent = hist(rd1entband,xc); 
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figure, % FIGURE 17 IN TEXT 
    bar(xc+.5, hwtent/sum(hwtent), 'FaceColor','k','BarWidth',.5),  
        hold on,  
    bar(xc+.75, hrd1ent/sum(hrd1ent), 'FaceColor','w','BarWidth',.5) 
    set(gca, 'XLim',[0 7]); 
    xlabel('Maximum Mutual Information'); 
    ylabel('% of Cells'); 
        ptitle = 'Distribution of Optimal Entropies'; 
    legend({'WT P14','RD1 P14'}); 
    title(ptitle); 
    saveas(gca, ptitle, 'jpg'); 
  
hwtminent = hist(wtminent, xc); 
hrd1minent = hist(rd1minent, xc); 
  
figure, % FIGURE 16 IN TEXT 
    bar(xc+.5, hwtminent/sum(hwtminent), 'FaceColor','k',... 
        'BarWidth',.5), hold on,  
    bar(xc+.75, hrd1minent/sum(hrd1minent),... 
        'FaceColor','w','BarWidth',.5) 
    set(gca, 'XLim',[0 7]); 
    xlabel('Minimum Noise Entropy'); 
    ylabel('% of Cells'); 
        ptitle = 'Distribution of Noise Entropies'; 
    legend({'WT P14','RD1 P14'}); 
    title(ptitle); 
    saveas(gca, ptitle, 'jpg'); 
  
[p,tbl,stats] = kruskalwallis([wtentband rd1entband],... 
    [wtP14label rd1label])  
f = figure % calculate statistics, only p value shown in text 
    [c,m] = multcompare(stats) 
  
[p,tbl,stats] = kruskalwallis([wtminent rd1minent],... 
    [wtP14label rd1label])  
f = figure % calculate statistics, only p value shown in text 
    [c,m] = multcompare(stats) 
% END FUNCTION Plot_Stats.m 
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