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ABSTRACT

Regulation of protein activity is essential for normal cell functionality. Many proteins

are regulated allosterically, that is, with spatial gaps between stimulation and active sites.

Biological stimuli that regulate proteins allosterically include, for example, ions and small

molecules, post-translational modifications, and intensive state-variables like temperature

and pH. These effectors can not only switch activities on-and-off, but also fine-tune activities.

Understanding the underpinnings of allostery, that is, how signals are propagated between

distant sites, and how transmitted signals manifest themselves into regulation of protein

activity, has been one of the central foci of biology for over 50 years. Today, the importance

of such studies goes beyond basic pedagogical interests as bioengineers seek design features

to control protein function for myriad purposes, including design of nano-biosensors, drug

delivery vehicles, synthetic cells and organic-synthetic interfaces. The current phenomeno-

logical view of allostery is that signaling and activity control occur via effector-induced

changes in protein conformational ensembles. If the structures of two states of a protein

differ from each other significantly, then thermal fluctuations can be neglected and an atom-

ically detailed model of regulation can be constructed in terms of how their minimum-energy

structures differ between states. However, when the minimum-energy structures of states

differ from each other only marginally and the difference is comparable to thermal fluctu-

ations, then a mechanistic model cannot be constructed solely on the basis of differences

in protein structure. Understanding the mechanism of dynamic allostery requires not only

assessment of high-dimensional conformational ensembles of the various individual states,

including inactive, transition and active states, but also relationships between them. This
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challenge faces many diverse protein families, including G-protein coupled receptors, im-

mune cell receptors, heat shock proteins, nuclear transcription factors and viral attachment

proteins, whose mechanisms, despite numerous studies, remain poorly understood. This

dissertation deals with the development of new methods that significantly boost the ap-

plicability of molecular simulation techniques to probe dynamic allostery in these proteins.

Specifically, it deals with two different methods, one to obtain quantitative estimates for

subtle differences between conformational ensembles, and the other to relate conformational

ensemble differences to allosteric signal communication. Both methods are enabled by a new

application of the mathematical framework of machine learning. These methods are applied

to (a) identify specific effects of employed force fields on conformational ensembles, (b) com-

pare multiple ensembles against each other for determination of common signaling pathways

induced by different effectors, (c) identify the effects of point mutations on conformational

ensemble shifts in proteins, and (d) understand the mechanism of dynamic allostery in a PDZ

domain. These diverse applications essentially demonstrate the generality of the developed

approaches, and specifically set the foundation for future studies on PDZ domains and viral

attachment proteins.
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CHAPTER 1

INTRODUCTION

Regulation of protein activity is essential for normal cell functionality. Many proteins

are regulated allosterically, that is, with spatial gaps between stimulation and active sites.

Biological stimuli that regulate proteins allosterically include, for example, ions and small

molecules, post translational modifications, and intensive state-variables like temperature

and pH. These effectors can not only switch activities on-and-off, but also fine-tune activities.

Understanding the underpinnings of allostery, that is, how signals are propagated between

distant sites, and how transmitted signals manifest themselves into regulation of protein ac-

tivity, has been one of the central foci of biology for over 50 years [1, 2, 3]. Today, the

importance of understanding allosteric mechanisms goes beyond basic pedagogical interests

as bioengineers seek design features to control protein function for myriad purposes, includ-

ing design of nano-biosensors, drug delivery vehicles, synthetic cells and organic-synthetic

interfaces [4]. Furthermore, the drug industry seeks solutions to design new therapeutics

that can control cellular function from outside the cell, and without need for drugs to pene-

trate cellular membranes [5]. Drugs are also being designed that can modify protein function

without directly interfering with their catalytic sites [6].

For many decades, allostery has been described using two different models: the Monod-

Wyman-Changuex(MWC) model [3] and the Koshland-Nemethy-Filmer(KNF) model [7].

The basic idea behind the MWC model is that regardless of the presence of the effector,

the protein samples conformations belonging to both active and inactive states, and the

effector simply biases the sampling probability toward one state. In contrast, the KNF model

1



proposes that the protein samples conformations that are uniquely defined by the effector,

that is, there is no overlap between conformations sampled in the absence and presence of

the effector. Nevertheless, both models are phenomenological in that they don’t provide any

direct mechanistic and structural insight into how allosteric communication occurs between

distant sites [8].

Although the two models above are phenomenologically different, they are both based

on the assumption that allosteric signal propagatation and control of the active site oc-

curs through changes in structure. However, there is now mounting evidence in literature,

especially in the last decade, that effector-induced changes in entropy or conformational

fluctuations also contribute to allosteric control in many protein families [9]. In fact, in 1972

Weber did propose a more general model in which allosteric signals propagated and con-

trolled activity through effector-induced changes in conformational densities [10]. In 1984,

Darden and Cooper took this work further and showed theoretically that effector-induced

changes in entropy would be more pronounced in cases where the effector induced only mi-

nor structural changes in proteins [11]. Indeed, many such proteins have been identified

since then, including G protein coupled receptors, nuclear transcription factors, heat shock

proteins, immune cell receptors and viral attachment proteins [9]. Effectors induced only

minor structural changes in these proteins that are comparable to thermal fluctuations (see

Figure 1.1). Despite numerous studies on these proteins, the mechanisms of how “dynamic

allostery” regulates their activities remains poorly understood.

The current phenomenological view of allostery is that signaling and activity control oc-

curs via effector-induced changes in protein conformational ensembles [12]. If the structures

of two states of a protein differ from each other significantly, then an atomically detailed

model of regulation can be constructed in terms of how their minimum-energy structures

differ between states. But in such cases, the minimum-energy structures of proteins must

differ significantly between states, so that thermal fluctuations are negligible compared to

2



Figure 1.1. Dynamic allostery in different protein families (G protein coupled receptors
(GPCR), Catabolite Activator Protein (CAP), Heat shoch protein (HSP), Major histocom-
patibility comple (MHC), Nipah attachment protein (NiV-G), PDZ).

structural differences. However, when the minimum-energy structures of states differ from

each other only marginally and the difference is comparable to thermal fluctuations, then a

mechanistic model cannot be constructed solely on the basis of difference in protein structure

(Figure 1.2) [11, 13, 8, 14, 15, 12, 16, 17]. Understanding the mechanism of dynamic allostery

requires not only assessment of the conformational ensembles of the various individual states,

including inactive, transition and active states, but also relationships between them.

Experimental techniques can be used understand dynamic allostery, however, they pro-

vide limited information at the molecular level. Some studies used mutagenesis to charac-

terize allostery pathways. Mutagenesis not only deos not provide the whole pathway but

also even if a mutation of residue disrupt the pathway there might be multiple other paths

in wild-type that would be activated to traduce the allostery signal [18]. On the other hand

even thought NMR provide insights to allostery mechanism but it has protein size limita-
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Figure 1.2. For many proteins, the minimum-energy structures of their thermodynamic states
differ significantly from each, and the differences in thermal fluctuations are negligible. Part
(a) depicts this scenario using a simplified 2-state schematic in which there is negligible
overlap between conformational ensembles of two states, that is f ∩ g ∼ 0. Consequently,
regulatory models can be constructed in terms of how their structures differ between states.
Part (b) depicts an alternative scenario where structural differences between protein states
are comparable to thermal fluctuations, and the overlap between conformational ensembles
is non-negligible.

tions. Moreover, for small protein it can identify changes in structure and dynamics of a

subset of residues, but it cannot link changes to signal propagation [19]

In contrast to experiments, molecular simulation techniques that sample conformational

ensembles as a function of energy, can provide direct insight into dynamic allostery. Numer-

ous techniques have been developed to generate conformational ensembles of proteins [20].

Methods have also been developed to relate inter-state differences in structure to allosteric

regulation [21, 22, 23]; however, none account for thermal fluctuations. These methods typ-

ically rely on average structural differences between states, which renders them unsuitable

for studying proteins in which inter-state differences in structure are comparable to thermal

fluctuations; but we note that these methods were not intentionally designed to account for

thermal fluctuations. Methods have also been developed to connect correlations in thermal

fluctuations to signaling [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. These inter-site fluctuation

4



correlations can be combined with each other and with the spatial organization of the protein

to yield insight into how different spatial regions communicate with each other (intra-state

signaling). However, since no information on divergence from a reference state is incor-

porated, these approaches are not theoretically capable to provide insight into regulatory

mechanisms. These methods are discussed in more detail in chapter 2.

This dissertation deals with the development and application of methods that signifi-

cantly boost the applicability of molecular simulation techniques to probe dynamic allostery.

Chapter 3 details a method developed by Leighty and Varma [34] that allows quantification

of subtle differences between conformational ensembles of two states in terms of physically

meaningful metric, and presents a new indexing scheme that significantly accelerates the

machine learning based algorithm. This method overcomes the challenge of finding appro-

priate feature spaces (or summary statistics) for distinguishing ensembles, and provides a

comprehensive difference between ensembles that naturally embodies differences in thermal

fluctuations. Chapter 4 presents three new applications that this method enables: (a) iden-

tification of specific effects of employed force fields on conformational ensembles [35], (b)

comparison of multiple ensembles against each other for determination of common signaling

pathways induced by different effectors [36], and (c) identification of the effects of point

mutations on conformational ensemble shifts in proteins [37].

Chapter 5 presents a new machine learning enabled method that yields relationships

between conformational ensemble differences and allosteric signaling pathways. As such,

differences between conformational ensembles do not inform us of how signals propagate.

An understanding of signal propagation requires a quantitative analysis of correlations in

induced ensemble shifts, which the new method allows us to compute and then link to

signaling probabilities. This method permits us to directly address fundamental issues in

dynamic allostery that remain unresolved. For example, is “dynamic allostery” aptly termed

in that regulation occurs due entirely to induced changes in dynamics or do small changes in
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energy-minimum structures also contribute? In either case, can we define cutoffs in structural

changes, such as in center-of-mass (CoM), below which their contributions to regulation

are insignificant? Are there relationships between a residue’s propensity to contribute to

regulation, and its spatial location or hydrophobicity? If a residue contributes significantly

to spatial communication within a state (intra-state signaling), then is it justified to assume

that it is also important to propagation of regulatory signals? Do stimulator-binding and

unbinding responses occur in the same manner? In general, how different are activating

signals from deactivating signals?

Chapter 6 provides an application of this method to understand dynamic allostery in a

PDZ domain. PDZ domains are part of many diverse families of proteins where one of their

main tasks is to transduce regulatory signals across domains. Our application to the PDZ2

domain of human phosphatase PHPT1E reconciles data from site-directed mutagenesis and

NMR experiments. Finally, chapter 7 summarizes the finding and outlines future directions.
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CHAPTER 2

BACKGROUND

2.1 Dynamic Allostery

2.2 Classical view

Historic investigations on cooperative oxygen binding of hemoglobin launched a major

scientific effort to characterize long-range intra-protein communications [38]. There were two

dominant main models to describe allosteric mechanism for decades, the Monod-Wyman-

Changuex (MWC) model [3] and the Koshland-Nemethy-Filmer (KNF) model [7]. The

MWC model assumes that in the absence of the effector protein samples both active and

inactive states with different probabilities (reverse correlation with their free-energy level).

The energy level of active state conformation is higher but presence of the effector lowers

the free-energy of the active state enough to trap the proteins in it [20]. On the other hand,

KNF model proposed that protein only visits inactive state in the absence of the effector

but protein undergoes conformational change to active state conformation by interacting

with the effector. In other words the MWC model describes the mechanism as the collective

motions of many atoms simultaneously comparing to the KNF model that describes it as

a sequential change from inactive to active state (Figure 2.1). Both proposed models were

based on conformational change between two states with two defined structures [7]. However,

since these two models are more phenomenological they dont provide structural details about

allosteric communication between sites [8].
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Figure 2.1. a) MWC model b) KNF model (Adapted with permission form [39]).

2.3 Ensemble view

This first study that provided structural insight analyzed the cooperativity of hemoglobin

by high-resolution X-ray structures [40, 41]. This study initiated many other similar stud-

ies based on the structural view of the allosteric mechanism. Some studies also proposed

the existence of conserved allosteric pathways [42]. Evidences such as finding alternating

conformations for an active state [43] suggest that understanding allosteric mechanism not

only requires structural changes between two states but also the factors that cause struc-

tural change. Cooper and Dryden demonstrated the contribution of the entropy in allosteric

mechanism their study initiated many other similar studies. They used a statistical ther-

modynamic formalism to show that just changes in the frequency and amplitude of thermal

fluctuations in protein could achieve cooperative binding energies on the order of a few kcal

per mol [11, 12]. This new view explains why some allostery mechanisms are not detectable

with end-state structure analysis. The term dynamic allostry is coined which describes the
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role of entropy in allosteric mechanism [8]. Weber proposed that ligand binding merely

shifts the population of conformational states [10]. After decades experimental and theoret-

ical studies revealed that conformational states in a pre-existing equilibrium can influence

the function of a protein [44, 45, 46]. Figure 2.2 schematically represent several different

ways of the energy landscape remodeling which enables protein to communicate the signal

by altering protein dynamics [47]. During folding, a protein moves down the energy funnel

from many non-native states to the boxed region that represents an ensemble of conforma-

tions that are energetically accessible to the protein. Figure 2.2.b shows one way in which

protein regulation occurs by narrowing the width of a single energy well. This reduces pro-

tein dynamics resulting in structural rigidification of the same average conformation. Figure

2.2.c demonstrates another way in which protein may be in equilibrium between two distinct

conformational states and the effector can alter the relative energies of the wells and, conse-

quently, their relative occupancies. Figure 2.2.d is a variation of c in which the sampling of a

higher-energy state in the absence of an effector provides a pathway toward a signal-induced

conformational change – the energy landscape is not only narrower but also shifted due to

the signal [47].

The concept of re-distribution of conformational states rationalized many allosteric regu-

lations [48, 49, 50, 51, 52, 53, 54, 55, 9]. Since all proteins obey the same physical principles

and all proteins exist as a population of conformational states, population shift is their un-

derlying allosteric mechanism. This hypothesis and several observations of allostery signals

on protein systems that were considered as non-allosteric proteins spanned the continuum

of structure/dynamics classification space [12]. This classification is schematically presented

in Figure 2.3. In this figure in one end of the spectrum we can see the human hemoglobin

with two different T and R states with multimeric reorientation mechanism [40, 41]. The

allostery mechanism of this protein supports the old idea that allostery mechanisms can be

explained by analysis of observable changes in the ensemble of average structures. The next
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Figure 2.2. Energy landscape remodeling, altering the protein dynamics for signal commu-
nication. a) by folding the protein moves down the energy funnel to its native states(higher
energy in red and lower energy in blue). b) narrowing the width of a single energy
well(structural rigidification). c) altering the relative energies of the wells therefore their
relative occupancies. d) is a variation of c in which narrowing and shifting of the well
happen simultaneously due to the signal.(adapted with permission from [47])

system is the PDZ domain which NMR experiment showed neither large global structural

change nor significant change in backbone dynamics but only detectable change was side-

chain dynamics [56, 57]. Catabolic gene activator (CAP) is a DNA binding protein, it is a

homodimeric transcription factor. Studies revealed the CAP allosteric response upon cAMP

binding is only due to conformational entropy of backbone and side-chain [58, 59, 60]. They

also proposed quenching of dynamics upon ligand binding as an entropy penalty of allostery

mechanism [8]. The analysis of allostery mechanism of the PDZ and the CAP systems are
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very important studies which not only revealed the importance of dynamics in allostery but

also demonstrated the limitations of the static view of allostery mechanism.

Figure 2.3. The dynamic continuum of allosteric phenomena. Schematic representation
of allosteric systems with increasing dynamics, disorder or fluctuations on the vertical
axis(adapted with permission form [12]).

The next allostery mechanism with higher contribution of conformational dynamics is

local unfolding. As an example for this mechanism a homodimeric enzyme of Enterococcus

faecium is called aminoglycoside N-(6)-acetyltransferase II (AAC) which is responsible for

antibiotics resistance against aminoglycoside [61]. This enzyme shows positive cooperativ-

ity in low temperatures and negative cooperativity in higher temperatures upon acetyl-CoA
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binding. This observation agrees with the change of conformational entropy with tempera-

ture change, this nonlinear dependency is a signature of local unfolding allostery mechanism

[62].

Perhaps the most interesting behavior is observation of allostrery signals in intrinsically

disordered proteins (IDPs) with highest conformational fluctuations due to the lack of ter-

tiary structures [63, 64, 65, 66, 67]. Phd/Doc toxin-antitoxin system it is an inhibitor of

ribosome A site. This system shows conditional cooperativity with this mechanism and

switches between inhibitor and activator of transcription [68]. This spectrum of different

contributions of entropy in allostery which leads to many different structural pictures but

population shift or re-distribution of conformational states rationalizes these mechanisms

[12, 9].

2.4 Experimental approaches

Development of experimental biophysical methods improved our understanding of protein

dynamics and helped appreciate its role in biological processes [69, 70, 71, 66]. X-ray crystal-

lography is the major method to resolve 3D structure of proteins. In X-ray crystallography

the structure of the protein obtained by finding the position and connectivity of atoms from

the map of the electron density. Electron density map itself, inferred from the dispersion of

a X-ray beam which is shined through a crystallized protein. This method is one the most

widely used methods to study allostery because of the high-resolution structures enables us

to find changes in inter-atomic interactions.

Since X-ray crystallography only provide static view it can be used in combination of

other methods or provides several structures under different conditions. For example a

crystallographic study solved both the unbound as well as leucine-bound structures of a-

isopropylmalate synthase (a-IPMS) enzyme of Mycobacterium tuberculosis which is inhibited

by binding of leucine. It clarified the location of leucine binding but because the structural
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difference was small it could not explain the allostery mechanism [72]. However, later another

study by using Hydrogen-deuterium exchange mass spectrometry revealed a large change in

dynamics of a network of residues going from the binding site on one domain to the allostery

site in another domain of the enzyme [20, 73]. More recently, a time-resolved x-ray diffraction

technique was applied to study structural changes of Scapharca dimeric hemoglobin due to

a ligand photo-dissociation. An intermediate structure has been seen, with changes at the

heme groups their neighboring residues and water molecules at the interface [74].

Nuclear magnetic resonance is also used to determine protein structure. Additionally,

NMR can provide information about different motions of a protein such as high-frequency

motions of atoms as well as low-frequency motions of entire protein domain, which makes

NMR a valuable tool to study dynamic allostery [75]. There are three major NMR experi-

ments for studying dynamic allostery of proteins: chemical shifts, spine-relaxation methods

and residual dipolar coupling (RDC).

The chemical shift is the relative change of the resonance frequency of each atomic nu-

cleus, due to its local magnetic environment, to a standard frequency. This method usually is

used by comparing the chemical shifts of two states to identify residues that undergo changes

in chemical shift [61]. Moreover, chemical shift is capable to differentiate between secondary

and tertiary structure transitions [76].

NMR spine relaxation uses this physical property that the rate at which a disturbed

molecular system returns to its equilibrium is related to the identity and motion frequency

of atoms [20]. This information especially for proteins with small structural changes can

be used to detect allostery signal propagation. For example, one can track the residues

that undergo changes in motion connecting the binding site to distal allostric site [77].

NMR can also detect the less populated states and their transition rates which is helpful

for understanding allosteric mechanisms in proteins [58, 78]. Magnetic dipole interactions

between atomic nuclei are averaged out due to the protein free rotation, if the protein is
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immersed in a solution. However, if the protein is immersed in a liquid crystal phase partial

molecular alignment will lead to incomplete averaging and these interactions (i.e residual

dipolar couplings) can be recovered [20]. This analysis provides information about bonds

orientations which are sensitive to small structural changes therefore, they can be used to

study allostery signals. RDC has been used to determine which allostery model (MWC vs.

KNF) is better describes behavior of a system [79].

Even thought NMR provide insights to allostery mechanism but it has protein size lim-

itations. Moreover, for small protein it can identify changes in structure and dynamics of

a subset of residues, but it cannot link changes to signal propagation [19]. There are other

experimental approaches such as: Fluorescence resonance energy transfer (FRET), Hydro-

gendeuterium exchange mass spectrometry (HDX) and Atomic force microscopy (AFM) to

acquire insights into dynamic allostery [20]. None of these method provide a completer view

of dynamics allostery mechanism.

2.5 Computational approaches

The study of allostery is perhaps the best example in structural biology where exper-

imental and computational methods complement and reinforce one another. In this case

computational methods are not just a set of tools to complements existing experimental

approaches. Particularly molecular simulation and the accompanying analysis can provide

answer to questions about the structure and dynamics of the protein that are beyond the

capability of modern experimental techniques. On the other hand computational methods

need to be validated by experimental approaches [20]. In general the mechanism of allostery

at atomic level is mostly based on mechanical operations, changes in dynamics and entropy

within a solvated protein. However, experimental methods can resolve a portion structure

and minimum information on dynamics, computational methods can provide more details.

Exceptionally MD simulation can acquire more details on changes in position, dynamics and
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underlying forces in a complex network of atoms compare to any other technique. Despite

development of numerous computational methods during last few decades to uncover the

allosteric mechanisms within proteins, they have varying degrees of success, but there is

no universal technique because of underlying approximations [20]. However, since most of

the computational methods are closely related, improvement of one method can potentially

cause advances in others.

Next we summarize the various computational methods for studying allostery and discuss

their pros-and-cons in providing insights into dynamic allostery. We divide the existing meth-

ods into three different major groups based on their underlying assumptions and information

they used to develop their methods.

2.5.1 Structure and Evolution based Models

Several methods have been developed that use primarily protein sequence data to detect

allostery pathways and binding site. There are two main category of these models, single

site and coupled site methods. Single site methods provide a list of individual conserved

amino acids in the sequence which are potentially functional but they dont suggest any

linkage between them. Coupled methods produce a list of groups of two or more amino

acids which appear to have liked effect on function based on their coevolution [5]. There

are different metrics for single site sequence-analysis such as Shannon entropy [80], relative

Shannon entropy or Kullback-Leibler divergence [81] and von Neumann entropy [82].

On the other hand coupled-site methods look for residue pairs which mutate together with

higher frequency than random genetic events. They also calculate amino acids correlation

strength. One of the most widely used methods for allostery prediction is the statistical

coupling analysis (SCA) developed by Lockless and Ranganthan [42]. This method calculates

the change in individual and joint conservation due to different perturbations to establish a

coupling energy that indicates evolutionary coupling of two positions in the sequence.
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There are challenges that all sequence-analysis methods face such as selection and ag-

gregation of relevant input sequences, interpretation and integration with other type of data

such as 3D structure. Moreover, determination of biological relevance of a strong signal

is very challenging without further information. For example it is difficult to determine if

the conserved residues plays role in allostery or structural integrity of a protein. In most

sequence-based analysis to reach statistically significant results we should analyze many

sequences and to use many sequences we have to lower sequence similarity criterion[5].

Therefore to acquire better insights for allostery mechanism methods incorporate struc-

tural information. The foundation of many allostery prediction tools that were developed

for the molecular simulation methods are based on predictive models of the integrated fields

of proteomics and bioinformatics [20]. These models were used to create databases that

connect the experimental studies to computational approaches for better understanding of

protein-protein interactions [83, 84, 85]. Since, structural and energetic characteristics of

protein-protein interactions in residue and atomic level overlap most with those of intra-

protein allostery mechanisms, development of protein-protein interaction predictive models

contributed most to allostery prediction tools [20]. Almost all of the information were used in

the development of these models were obtained from protein data bank (PDB) [86]. Where

there are tens of thousands protein structures which hundreds of them are known to be

allosteric.

An example of this influence is collection of 2300 alanine residue mutants from het-

erodimeric protein complexes following by an analysis on affinities and structural data. This

study attempt to provide a descriptive view on mechanistic details at the resolution of amino

acids and their energetic contributions. They also found structural arrangement of amino

acids near the interface so called binding hot spots [87]. Another study by incorporating

structural alignment to this study find cooperativity among hot spot in binding interactions
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in protein-protein interfaces [88]. Figure 2.4 schematically shows analysis for one instance

of this dataset.

Figure 2.4. a) Graphical representation of a hetrodimeric complex b) incorporation of align-
ment information(adopted with permission from [88]).

Ofran and Rost tuned an existing surface prediction tool to be able to predict hot spots

from sequence data alone without information on an interacting partner [89]. Later, Cho

et al suggested considering extra structural features such as atomic density, solvent acces-

sibility, hydrophobicity, noncanonical hydrogen bonds and -interactions for prediction [90].

The improvement in prediction accuracy shows high complexity nature of protein-protein

interaction and related function regulations [20].
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Another study assumes that by comparing the structure of proteins in different states one

can obtain information about the relationship between structure and function of a protein

and these structural insights can be hallmarks of allostery pathways. First such investigation

compared active and inactive structures of 51 protein by measuring differences in backbone

as well as side-chain positions, torsion angles and local contact patterns [22]. Based on this

analysis approximately 20 percent of residues of these proteins undergo significant confor-

mational changes. These changes are more pronounced in allosteric proteins rather than

non-allosteric proteins especially in more flexible regions such as surface residues and loops.

Wolynes et al. proposed minimal frustration principle states that protein structure is

a balance between stability and instability. Where stability leads to successful folding and

protein integrity, but instability offers opportunities to the network of structural interactions

that in some case take the form of allostery pathway [33, 91, 92]. To test this hypothesis

they analyzed the same database of 51 proteins and found the frustrated regions undergo sig-

nificant rearrangements between alternative states. Frustrated regions or instability regions

work as pivot points between surrounding rigid (stable regions). This work demonstrates for

allosteric proteins frustrated states by selecting a subset of structural interactions enables

competition between similar low energy conformations that can be selected under specific

conditions like ligand binding [20].

Many methods used network-based approach to predict allostery signal pathway. This

approach assumes that allostery pathway is a subset of residues in the protein that create a

sub-network of interaction as new communication pathways for signal transduction. In the

extension of their study on local structural rearrangements [22] Daily and Gray investigate

coupling among residues [22]. In this study contact network of 15 pairs of active/inactive

states of allosteric proteins were created. Results showed in only 5 pairs the changes in local

rearrangements were communicated from binding site to allosteric site. For the remaining 10

pairs this rearrangement must accompany large-scale conformational changes in the form of
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rigid body motion. These methods were successful in characterizing allostery mechanisms of

many protein systems, they also have also contributed to design of new customized proteins

[6, 93, 94, 4, 95]

2.5.2 Single state models

More recent methods to uncover the dynamic allostery mechanism and incorporate en-

tropic changes used molecular simulation methods for generating ensembles and following

analysis of ensembles. The following analysis consist of constructing a network based on

correlated motions [96, 97, 30, 98, 99] and then using graph theory analysis to find potential

allostery pathway/s [29] and community structures as subnetworks as well as hubs [97, 100].

Even though molecular simulation provide invaluable information about the dynamics

of protein systems at atomic resolution also offers a variety of possible analysis techniques,

there are two important limitations that one should consider for using it. First limitation

is computational cost which is highly dependent on the system size as well as the level of

approximation. For example for atomic simulation of a small protein in a solution the calcu-

lation consists of: atomic position, momentum and interactions with all of the neighboring

atoms for thousands of atoms. The expense of these calculation exponentially grows with

the increase of the system size and number of replicas. The second limitation is related to

the level of approximation in potential function (force fields) that define how atoms interact

with one another. For example the mathematical complexity of the most accurate potential

function (quantum mechanics) makes it intractable for smallest protein [20]. Additionally,

the time-scales that this complex calculation is imaginable is far shorter than the time-scales

of protein structural changes that associated with protein dynamics.

Therefore, there are two major approximations in most MD force fields treating atoms as

point particles and using only Newtonian equations of motion. The force fields’ parameters

are tuned to reproduce some experimental results. Therefore, force fields can reproduce some
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properties successfully (equilibrium properties) while they are not accurately reproduce other

properties (dynamic properties) [101, 80].

Molecular simulation of particles can be divided into two main categories, stochastic and

deterministic. Monte Carlo is a type of stochastic simulation in which energy landscape

get explored by randomly sampling various conformations. At each step the following con-

formation is selected then associated energy of that conformation is calculated based on a

comparison of the transition probability is accepted or rejected. Since, a MC simulation

is not deterministic it cannot represent a time evolution in the system. Instead it offers

reaching low energy conformation without exploration of deterministic path towards that

conformation [20]. Therefore, it is advantageous to use this method to explore long-timescale

structural change without a long deterministic simulation. A significant disadvantage of this

approach is that highly correlated motions are hard to simulate which are important in some

allosteric pathways especially those with large structural changes. As an example of MC

molecular simulation implementation to study protein dynamic allostery Dubey et la. were

used MC to investigate long-range intra-protein communication in CAP. This long-range sig-

nal transduction can happen by correlate side-chain fluctuations alone [102]. On the other

hand MD is a deterministic method that simulate time evolution of a system, resulting in a

stepwise snapshots of all the particles in the system(with steps in the range of femtoseconds).

Due to all of the calculation of position, momentum and many different type of interactions

MD is very computationally expensive therefore usually supplemented with different kind of

enhanced sampling and other techniques to overcome this limitation.

Another method that designed to interpret the results of experimental techniques that

probe residue-residue interaction such as NMR spectroscopy is called pump-probe MD which

first was applied on the PDZ domain of the allostery protein calmodulin [103]. In this

technique they excite an amino acid by using an oscillating force with specified magnitude,

direction and frequency the applied forces are transmitted to other parts of the protein. The
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strength of coupling between them indicates the strength of interaction between them. This

can be used to detect long-range interactions in allostery mechanism.

Most of the methods that have been developed to provide insight into allostery mech-

anism and were described above are based on comparing structures of active and inactive

states. Many of these methods were successful to relate inter-state differences to allosteric

regulations. However, since these methods typically rely on differences on average struc-

tures for each state and dont incorporate any thermal fluctuations, they are not suitable for

dynamic allostery mechanism.

Normal mode analysis also is used in order to incorporate thermal fluctuation effects in

allostery mechanism. In this method structural fluctuations of a protein are decomposed

into harmonic orthogonal modes around its minimum energy conformation. Vibrational

frequencies of a structure are inversely proportional to the amplitude of the vibration (struc-

tural flexibility) therefore, structural transition with higher probability has lower frequency

modes. Low frequency modes usually present concerted motion of many atom which offers

a dissipation mechanism for external perturbations. Accessible low conformations as well

as cooperativity and concerted motions make these modes ideal candidates for allostery sig-

nal propagation. However the allostery signal also uses local rearrangements too for this

reason is it important to incorporate some of the high-frequency motions and inter-mode

coupling. Silvestre-Ryan et al. used a coupled technique of coarse-grain simulation with

elastic-network model of NMA to study harmonic and anharmonic structural dynamics con-

tributions of the protease subtilisin. The elastic network model was derived on a sequential

sets of conformations were obtained from an all-atom MD simulation in order to capture the

temporal variation in the mechanical coupling network of protein dynamics. Results showed

that this analysis is able to detect interacting residue pairs based on their strength and

variation of mechanical coupling [104]. This approach bridges all-atom and coarse-grained
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modeling methods in studying allostery because the force constants used in elastic network

were obtain from of MD conformations.

2.5.3 Multi state models

As it is described in previous section most of the methods that incorporate structural

dynamics in allostery pathway prediction have used conformational ensemble of only the

active state. The advantage of this approach is that parametrization of edges in the inter-

action is easy to interpret. However, since no information on divergence from a reference

state is incorporated, these approaches cannot theoretically provide insight into regulatory

mechanisms. In other words understanding allosteric regulation of proteins requires not only

assessment of the various individual states, including inactive, transition and active states,

but also relationships between states.

There are very few methods that have tried to incorporate information of inactive state

in allostery pathway prediction which seems to be more consistent with new view of allostery

which is shift in ensemble densities. Kong and Karplus used MD simulation and an inter-

action correlation analysis to determine residues involve in alloatery signal transduction of

hPDZ domain. They defined cumulative energy difference, which is a difference of total

energy of each residue with all of its neighbors between two active and inactive states. By

using a clustering method they found two different possible allostery pathways [105].

In another study that investigates allostery in PRFAR binding to imidazole glycerol

phosphate (IGP) heterodimer [106]. Rivalta et al. simulate the system in bound and apo

states and then they construct dynamical networks for both states by mutual information

approach. Finally the applied graph theory approaches such as community search and path-

way prediction on the average network of two states and applying a frame percentage cutoff

for calculating interactions. Since the first approach is based on differences in local energy

of the residue between two states it does not provide any mechanistic insight to the dynamic
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allostery. Additionally, neither of two methods are based on direct comparison of confor-

mational ensembles, and therefore they are not capable to characterize regulatory nature of

dynamic allostery.

2.6 Need for new methods

Characterizing dynamics allostery essentially requires two sets of methods. Firstly, meth-

ods are required to compare conformational ensembles of different states in terms of phys-

ically meaningful metrics, and secondly methods are required to relate conformational en-

semble differences to allostery regulation. At the start of the thesis, Leighty and Varma had

developed the very first method to quantify differences in ensembles [34], which unlike exist-

ing methods [107] did not require any ad hoc fitting of underlying distributions, and yielded

differences in terms of a normalized metric that made cross comparisons of ensembles possi-

ble. Chapter 3 describes the development of this method, and the algorithms we developed

for fast parallel implementation. At the start of the thesis, there were, as discussed above,

no methods that incorporated multi-state information and dynamics simultaneously to con-

struct models of dynamic allostery. We provide the very first method, which is described in

chapter 5, and its application to PDZ domains, which is described in chapter 6.
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CHAPTER 3

QUANTIFYING DIFFERENCES IN ENSEMBLES

Knowledge about protein structure is very important for understanding of many biological

processes especially in molecular level. Structure function relation studies are the bases for

many protein engineering as well as drug design studies. However, in addition to average

structure intrinsic motion of the proteins around that structure plays role in function of the

protein and is affected by many biological stimuli. The extent of the changes are tightly

depend to extent of the biological stimuli and can greatly impact the function of proteins.

A quantitative characterization of these intrinsic motions is important because it provides

a basis for relating the biological stimuli to function of proteins and as a result biological

processes. While comparing two protein structures are is tractable with reasonable methods

such as RMSD calculation or similar metrics, quantification of conformational ensemble

differences of proteins is challenging. The quantification should estimate the differences of

two high-dimensional datasets with many degrees of freedom. The number of frames and

coordinates of atoms are usually both in the order of thousands.

3.1 Existing methods

Bruschweiler extended the RMSD measure to compare two ensembles of conformations

[108]. He defined the inter-ensemble RMSD (eRMSD), as the root of average mean square

deviation between all conformations of two ensembles.

(eRMSD)2 =
1

MN

M,N∑
l,k=1

(RMSD(R(l),R′(k)
))2 (3.1)
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where R(l) is the lth conformation of R ensemble and R′(k) is the kth conformation of R′

ensemble. One of the biggest drawbacks of the eRMSD is that in general it is non-zero even

when two ensembles are identical which makes the eRMSD difficult to use quantitatively [107]

also it is computationally expensive for ensembles with large number of conformations. There

are two major approaches to tackle this problem one focus on global phenomena and the other

on local phenomena. The first approach usually uses two dimensionality reduction schemes.

One scheme takes into account a subset of degrees of freedom for example using center of

mass for amino acids to capture rapidly converting microstates. Another scheme uses some

variant of principal component analysis (PCA) which discretized conformational space to

the most significant collective variables in order to capture slowly converting macrostates

[109]. Second approach which focuses on localized differences typically uses mean position

displacements, change in fluctuations, contact maps [110] and correlates motions [111, 112].

3.1.1 Summary statistics based approaches

PCA (and its variations) is the most widely used method to infer protein dynamics from

ensemble of conformations. It is a multivariate statistical analysis and a projection method

to visualize complex data by reducing the dimensionality of a dataset. In PCA a covari-

ance matrix of positional fluctuations is decomposed into a number of principle components

(PCs) in order to maximize the variance of the data on each successive PC with orthogo-

nality constraint of each PC on previous PCs [113]. This is accomplished by diagonalizing

covariance matrix to obtain orthogonal eigenvectors and corresponding eigenvalues. The first

few PCs or eigenvectors usually correspond to collective modes that approximate the func-

tional motions in the protein also known as quasi-harmonic analysis [113, 114]. There are

some limitations for using PCA for analysis of ensembles were sampled by MD. Garcia and

colleagues showed the distribution of conformations is multimodal for large systems leading

to quasi-harmonic assumption breakdown [115]. Clarage and colleagues demonstrated that
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low-frequency correlations are under sampled by nanosecond MD simulations [116]. Not

only limited sampling of long-range correlations, but also forced orthogonalization of the

modes make the global contribution of individual PCA modes problematic [114]. Balsera et

al. showed that even though relaxation time of the fast modes are within the MD sampling

window, some of them are not recovered by PCA due to their dependency on the slower,

under-sampled modes [117]. The forced orthogonalization also may cause problem for break-

ing symmetry of large-scale macromolecular assemblies [114]. To address these limitations

Zhang and colleagues introduce a modified PCA analysis inspired by local feature analysis

(LFA) for analysis of protein dynamics [114].

There are approaches that only focus on the local differences of conformational ensembles.

To do this, they first calculate some summary statistics in residue level such as mean position

of center of mass of amino acid and root mean square fluctuation of (RMSF) of amino acid

and then they compare them against each other.

Figure 3.1 illustrates two conformational ensembles of Ser. The differences between two

of their summary statistics, CoMs and RMSFs, are negligible. While such a traditional

comparison would suggest they are similar, a visual inspection, however, indicates that they

are not, R contains one rotameric form of the side chain, and R′
contains two rotameric forms,

The problem with summary statistics is that enumeration is done prior to identification of

the key feature that distinguishes the ensembles. Certainly, this difference would have been

evident if the right set of summary statistics were compared. But how does one identify such

appropriate feature sets beforehand? This hurdle can be overcome by comparing ensembles

directly against each other, and prior to any dimensional reduction.

3.1.2 Direct comparison of ensembles

Even though the methods with different schemes of dimensionality reductions have shown

applicability in many studies, they are prone to biases. The main reason is because of
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Figure 3.1. Comparison of two conformational ensemble of Ser amino acid by comparing
their CoMs and RMSFs

comparing the ensembles after dimensionality reduction, therefore some information is left

out or filtered out before comparison. There are other issues with these methods such

as need for prior knowledge for each problem in order to use appropriate dimensionality

reduction scheme based on defining features of protein intrinsic motion. For example in

cases such as protein folding in which protein undergo large structural change, it can be

assumed that changes in fluctuations has minor effect and one safely disregard these changes

[34]. Even the more recent method based on asymmetric Kullback-Leibler divergence of

information theory on internal coordinates or dihedral angles suffer from similar issues [109].

Using dihedral angles which not only reduces the dimensionality of the conformational space

but also prefers some degrees of freedom and modes of motions over the others. Lindorff-

Larson and Ferkinghoff-Borg used symmetrized version of Kullback-Leibler divergence which

is Jenson-Shannon divergence [107]. In both of these approaches each ensemble first is

estimated by a probability density function (PDF) then the differences between these PDFs

were estimated by an information theory measure. As we explained before using Gaussian

distributions for PDF estimation is not always an accurate estimation.

The direct comparison of two ensemble is possible by combining two ensembles into one

ensemble and using the appropriate form of PCA. This method can quantify the variations
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between two ensembles, but extending this approach to cross-comparison of multiple ensem-

bles is not straightforward.

3.2 Development of a new method

A proper quantification of changes in molecular motions requires simultaneous consider-

ation of all modes of motions. To achieve this goal a method has been developed by using a

well-known classifier of the machine learning field called support vector machine (SVM) [34].

This method defines a true metric upon a capability of SVM to separate two overlapping

ensembles, instead of using SVM as a classifier. This metric quantifies the physical overlap

of two distributions.

3.2.1 Support vector machine

SVMs are traditionally used for predicting binary classification of data [118, 119, 120,

121]. A SVM is first trained on a set of instances (x1, x2, ...) with known group identities

(y1, y2, ... = {−1,+1}) and then the trained SVM is used for predicting the group identity

of an unclassified instance. A SVM can also be constructed when the instances are 3N -

dimensional molecular conformations (r) and belong to two ensembles, f = {r1, r2, ..., rm}

and g = {rm+1, rm+2, ..., r2m} [122]. This method utilize the properties of the classification

function generated during SVM training to obtain physically meaningful estimate for differ-

ences between the conformational ensembles f and g. Our next method which is explained

in chapter 5 uses this mathematical framework for repartitioning the ensembles f and g to

obtain the subsets f ∗ and g∗.

The training of the SVM is setup as a Lagrange optimization problem, where the goal is

to maximize the linear separation between the two groups in some Hilbert space (see Figure

3.2).
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Figure 3.2. The svm algorithm results a hyperplane which maximizes the margin

Essentially, two hyperplanes

yi(w · r− b) = 1, (3.2)

with yi = ±1 are sought that are constructed from a subset of the instances such that

the distance 2/‖w‖ between the hyperplanes is maximized. This distance is maximized by

minimizing

L =
1

2
‖w‖2 −

2m∑
k=1

αk[yk(w · rk − b)− 1] (3.3)

with respect to ‖w‖ and b, and maximizing it with respect to the Lagrange multipliers

αk. Note that the square on ‖w‖ permits quadratic optimization and the 1/2 coefficient is

introduced for mathematical convenience. Substituting the conditions

∂L

∂w
= 0 ⇒ w =

2m∑
αkykrk (3.4)

and

∂L

∂b
= 0 ⇒

2m∑
αkyk = 0. (3.5)
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into 3.3 rearranges the auxiliary function to

L =
2m∑

αk −
1

2

2m∑
k,l

αkαlykylK(rk, rl), (3.6)

where K(rk, rl) = rk · rl, which is then maximized under the constraint
∑
αkyk = 0 ∀ k. An

additional box constraint is introduced, 0 ≤ αk ≤ C, in which C serves an upper limit on

the magnitudes of the Lagrange multipliers.

Note that in the optimization of 3.6, the feature used for classifying r is its linear projec-

tion on other r. The vectors r, however, are generally not linearly separable in the Euclidean

space when they represent molecular conformations. Such issues are dealt with by choosing

alternative kernels that are, by themselves, inner products in the transformed Hilbert space,

[119, 120, 121] that is, K(rk, rl) = 〈φ(rk), φ(rl)〉. The primary advantage of such “kernel-

tricks” are that they bypass the need to determine the explicit form of the function φ(r) that

transforms the data from the original space to the desired Hilbert space to make the data

linearly separable [34].

Figure 3.3. Kernel trick or mapping the data into a Hilbert space where the data are linearly
separable.

The optimization of 3.6 produces Lagrange multipliers that are ultimately plugged into

the binary classifier, F (r) =
∑2m

i=1 αkykK(rk, r), to predict the group identities of previously

unseen data r. More importantly, we note that the optimization of 3.6 produces two different
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sets of Lagrange multipliers, {αk} = 0 and {αk} > 0. The rk whose corresponding αk > 0

essentially define the maximum margin hyperplanes that are sought in 3.2, and these rk are

referred to as support vectors. By choosing appropriate kernel function and tuning hyper-

parameters on variety of distributions which is explained in the following, total number of

generated support vectors s, where 2 ≤ s < m, can be used as a quantitative estimate of the

normalized overlap between the two distributions, that is,

Overlap = ‖f ∩ g‖ = s/2m. (3.7)

The difference between the two ensembles can then be quantified in terms of a normalized

metric η ∈ [0, 1),

ηf↔g = 1− ‖f ∩ g‖, (3.8)

which takes up a value closer to unity as the difference between ensembles increases.

3.2.2 Tunning hyper-parameters

We choose a Gaussian radial distribution function as the kernel due to its stationary and

performance in classification comparing to linear, polynomial, or sigmoidal kernel [34, 119],

that is,

K(rk, rl) = exp(−γ‖rk − rl‖2), (3.9)

then the parameter γ controls the width of the kernel and thereby the smoothness of the

underling nonlinear classifier. The interpretation of its effect on molecular conformation

is the influence a given conformation has on its neighboring conformation. Smaller γ cor-

responds to larger Gaussian widths or larger contribution of molecular rearrangements on

classification [34]. The box constraint C controls the complexity of the whole model. These

two parameters together define the Hilbert space and, can be optimized to yield overlaps

with high accuracy.
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For tuning these hyper parameters we need to have an estimate on the typical atomic

fluctuations on MD simulations. To acquire this estimate we consider several MD simulations

of the test case model system which is explained in next chapter. Based on the results a

single-particle Gaussian ensemble is generated with µ = 0 and σ = 0.5 then, two other

sets of distributions were generated by changing the mean and standard deviation of the

Gaussian function. In one set the mean of the Gaussian varied in unit increment of ∆µ/σ0

= {1, 2, ..., 20} and in the second set standard deviation varied in unit increment of ratio

σ/σ0 = {2, 3, ..., 15}. In the context of protein motion these two sets correspond to changes

in mean position displacements and fluctuations, we tried to go beyond typical distributions

in molecular simulations. To find the best combination of C and γ which minimizes the

mean absolute error (MAE) between overlaps (analytical and SVM estimated) we used a

grid search scheme for C ∈ [1, 108] and γ ∈ [10−3, 108] We found C = 100 and γ = 0.4

minimized the MAE ≤ 2.5 and results of this comparison for two sets of distribution is

depicted in Figure 3.4.

3.2.3 Testing the method and comparison with similar approaches

To test the generalization power and robustness of the method we generated another 300

Gaussian distributions with changing the mean and standard deviation simultaneously were

not used in parameter tuning step. The comparison of the estimated overlap and analytical

overlaps for two different widely used SVM implementations, svmLight [123] and LIBSVM

[124] is shown in Figure 3.5. LIBSVM not only show better more accurate results comparing

to svmLight with MAE of 3.2 for all 300 distributions.

In order to compare the performance of the method with other similar approaches for

quantifying the differences between two distributions we used 5 different widely-used class

separability measures. These measure are:

Absolute value two-sample t-test with pooled variance estimate (ttest) [125].
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Figure 3.4. The results of optimized svm to estate the discriminability (overlap complement)
of two distributions solid line is the analytical estimates and data points are svm outputs.
Tow distributions have different fluctuation width in left side of the image and inset illustrates
two ensembles with ratio of σ

σ0
= 3. Where distributions on the right hand side are different

in mean position. The inset on right shows two distribution with difference of ∆µ
σ0

= 4

.

Relative entropy, also known as Kullback-Leibler distance or divergence (entropy) [81].

Minimum attainable classification error or Chernoff bound (bhattacharyya) [126].

Area between the empirical receiver operating characteristic (roc) [127].

Absolute value of the standardized u-statistic of a two-sample unpaired Wilcoxon test,

also known as Mann-Whitney (Wilcoxon) [128].

In this approach we used combinations of these class separabilities in two steps total of

25 combinations. In the first step we calculate the separability measure for distributions

of each coordinate and weight the distributions based on that and in the second step we

calculate separability measure for normalized weighted distributions. Figure 3.6 illustrates

the performance of five of these combinations. Only by visual inspection one can realize
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Figure 3.5. The results of testing svm versus analytically estimated discriminability on dis-
tributions that were not part of training svm. 300 distributions with simultaneous change in
mean position and fluctuation width. The figure also shows relative accuracy of two widely
used svm codes. Continuous lines are analytical results svmLight results in red and LIBSVM
in blue.

that the most accurate estimate of separability comparing to analytical results amont all 25

combinations belong to using Wilcoxon in the first step and bhattacharyya in the second

step. By comparing its accuracy with the accuracy of the new method in figure 3.5 it is

evident that even this combination is much less accurate in estimating separability of two

distributions. Therefore, even though using SVM for quantifying differences between two

distributions is computationally much more expensive but it is necessary for the desired

accuracy.

3.2.4 Multi-modal distributions

Assumption of Gaussianity for distributions of particles as a result of central limit the-

orem is not always valid especially for systems such as proteins with numerous many-body
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Figure 3.6. Testing results of using conventional class separability measure versus analytically
estimated discriminability (top left corner). Among all 25 combinations of ttest, entropy,
bhattacharyya, Wilcoxon, Wilcoxon:bhattacharyya showed closest agreement to analytical
separabilities.

interactions [37]. However, from theoretical standpoint the overlap of two multi-Gaussian

distributions R =
∑
cifi and R′ =

∑
c′if
′
i , where fi are Gaussian and ci are weights, is

essentially a of overlaps between Gaussian distributions, that is,

η = 1− ||
n∑
i=1

cifi
⋂ n∑

j=1

c′jf
′
j|| = 1− ||

n∑
i,j=1

cifi
⋂

c′jf
′
j|| (3.10)

Therefore, the method should work for multi-Gaussian distributions. Figure 3.7 shows the

performance of the method for computing the overlap between 400 for each bimodal, trimodal

and quadrimodal distributions with arbitrary selection of parameters. In each case, MAE is

less than 6% and Pearson correlation coefficient is larger than 0.97.

3.2.5 Testing on different coordinates

For using this method to quantify the differences between conformational ensembles of

proteins one can use different methods for generating conformational ensembles. Some of
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Figure 3.7. The correlation between analytically calculated disciminabilities and svm esti-
mates of 400 arbitrary multi-modal distributions. a)bimodal b) trimodal c) quadrimodal
(Reprinted with permission form [37])

these methods are Molecular dynamics simulation (MD), Monte Carlo (MC) methods, Sim-

ulated annealing (SA), Essential dynamics PCA-ED methods and Hybrid quantum mechan-

ical/molecular mechanical (QM/MM) methods [129]. Cartesian coordinates of each atom

were used as the inputs of the SVM classifier. Figure 3.8 shows the efficient indexing scheme

(3DArray: Coordinates, Atoms, Frames) that we used for the algorithm.
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Figure 3.8. Indexing scheme that is used for the method. Cartesian coordinates of each atom
in different frames

Since method showed the robustness on quantifying differences between multi-modal and

more complex distributions it can be used for using other features as inputs also. These fea-

tures are collective variables or internal coordinates. Dihedral angles are one type of internal

coordinates and using them as features for comparisons have some benefits. Dihedral angles

can provide information about certain degrees of freedom explicitly. They are responsible

for most low-frequency motions. These low-frequency motions are related to bond rotations

and correlated changes in side-chain rotamers. These motions are highly anharmonic type

of correlation which are tightly correlated to function of proteins and specially play a key

role in allosteric transitions [112]. Figure. 3.9 depicts these changes.

One the other hand since dihedral angles are internal coordinates, which are independent

of actual position of atoms therefore are not sensitive to protein displacement and rotations.

Using internal coordinates can remove potentially spurious correlations that can rise due

to standard structural alignments. In standard structural alignments minimization of the

RMSD error in structural alignments in Cartesian space can yield correlated displacements in
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Figure 3.9. Using dihedral angles or internal coordinates as the input which are independent
of actual positions of atoms. They are responsible for many low-frequency motions such as
bond rotations.

many atoms’ positions as some atoms are fit better that others [22, 112, 130]. However these

errors are not large for systems with dynamic allostery which undergoes small conformational

changes. For example we used dihedral angles in similar manner that we used Cartesian

coordinates as input features for a case study that is explained in next chapter. The title of

the study is determination of intersecting pathways the results showed very close agreement

with the one with Cartesian coordinates. We expect that this is because of small structural

changes of the system by ligand binding.

3.2.6 Source code and dissemination

After testing the method on different sets of distributions and real test cases which

are explained in the following chapters. To improve the accuracy and performance of the

method we used LIBSVM package which showed more accurate estimation with less com-

putation time. We integrated multiple code for this analysis into a single standalone code

with a new hashing algorithm. The new code is about 100 times faster and uses Gro-

macs APIs [131]. Moreover, it has the parallel processing capability and is available at

https : //simtk.org/home/conf ensembles figure 3.10 shows it web page.
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Figure 3.10. The dissemination of code for quantification of ensemble differences at SimTK
website.
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CHAPTER 4

APPLICATIONS OF NEW METHOD FOR ENSEMBLE COMPARISON

Intrinsic motion of the proteins around its native structure plays role in function of the

protein and is affected by many biological stimuli. A quantitative characterization of these

intrinsic motions is important because it provides a basis for relating the effects of biological

stimuli to function of proteins and as a result biological processes. A new method has been

developed [34] by using a machine method that is explained in chapter 3 and it showed

robustness in quantifying differences for different distributions. To test the performance

of the new method on protein conformational ensembles especially when the effects of the

stimuli lead to negligible structural changes we employed the new method for four different

applications. First two applications compare two ensembles where the latter two are cross-

comparison of multiple conformational ensembles.

4.1 Two-ensemble comparison I: Ranking residues based on their extent of

changes

Nipah virus belogs to paramyxoviruses family that are zoonotic pathogens and can cause

illness and fatality in domestic animals and human [132, 133, 134, 135, 136]. The binding of

G protein of this virus (NiV-G) to the host cell triggers changes in it that ultimately activate

the viral fusion protein. Crystal structures of the NiV-G protein shows minor changes in

backbone due to the binding to Ephrin B2 receptor (NiV-G preferred host cell protein) [137].

The root-mean-square deviation (RMSD) between apo G and bound G is 1.9 A and most of

the backbone rearrangements occur on certain loops near the binding site [137]. Microsec-
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ond MD simulation model also suggest similar minor rearrangement of between backbone

NiV-G by binding to Ephrin B2. These suggest that other modes of motion including

changes in backbone and side-chain orientation, as well as amino acid fluctuation contribute

in signal transduction. The understanding of signal transduction mechanism depend on a

proper quantitative assessment of all modes of motion simultaneously. This requires direct

comparison, without dimensionality reduction of ensembles representing NiV-G motions in

both bound and unbound states [34]. Figure 7.1 shows the schematic representation of

implementation of new developed method which is capable to do the desired assessment.

The results are normalized quantitative estimates of differences between two ensembles at

residue level. Figure also shows the mapping of rank-ordered of these estimate to 3D struc-

ture of protein. The amino acids that undergo high changes in motion, top 25% not only

include amino acids that are directly involved in NiV-G, Ephrin interface but also include

contiguously region from interface to residues over 2 nm away from interface. These residues

could be part of allosteric pathway of NiV-G binding signal to the viral fusion protein NiV-F

[132, 134, 135, 136, 138, 139]

Recent mutagenesis study investigate the effect of two adjacent stretches of amino acids

I203-G211 and N195-L202 that belong to the same loop and are showed in Figure 4.2. While

the first one showed crucial effect the second showed minor role in fusion [140]. The estimates

of the method showed similar results high changes in motion for the former stretch and small

changes of the latter stretch. The figure also shows intrinsic changes not just comprise of

backbone displacement but also change in side-chain orientation and fluctuations [34].

4.2 Corss-comparison of multiple ensembles I: Force field comparison

The crystal structure of the ephrin-bound of NiV-G shows one of the highest number of

water molecules among protein-protein interfaces [35]. MD simulation also indicate that this

extensive interstitial region accommodate large number of water molecules. Moreover, while
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Figure 4.1. On top twenty representative structures of NiV-G superimposed on X-ray struc-
ture in yellow. On bottom quantification of ensemble changes on residue level due to binding
of a ligand (Adapted with permission form [34]).

water molecules in MD simulation tend to occupy crystallographic sites, most of them have

residence time of hundred picosecond(see Figure 4.3). But do they play a physiological role

in viral fusion? The Nipah fusion protein (NiV-F) plays the major role in viral fusion. NiV-G

binds to ephrin and sends the signal allosterically to NiV-F by changes in conformational

density [34].
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Figure 4.2. Effect of Ephrin-B2 binding on the intrinsic motion of a specific loop of NiV-G,
NQILKPKLISYTLPVVG, and its relationship with alanine-scanning mutagenesis experi-
ments.29 Twenty representative configurations of the segment, ten each from the MD sim-
ulation of NiV-G in its phrin-bound and unbound states, are shown superimposed on each
other. While the ten configurations from the simulation of NiV-G in its unbound states
are colored gray, the ten configurations of NiV-G in its Ephrin-bound state are color-coded
according to their discriminability index. We find an exact correspondence between the
portions of the loop that have a high discriminability index, that is, those that undergo a
high change in intrinsic motion, and those that were shown from experiments to contribute
significantly to viral fusion(reprinted with permission from [34]).

Figure 4.3. Illustration of correspondence of 65 highly occupied regions by water molecules
during MD simulation (yellow mesh) and interstitial waters resolved in X-ray struc-
ture.(adapted with permission from [35].
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If Rapo and Rbound represent conformational densities of G protein in apo and ephrin-

bound states respectively, then the changes in conformational densities is ∆R := Rapo →

Rbound. Consequently, if water molecules at interface of G-ephrin plays a role in allostery F-

activating signal they must contribute to ∆R. To answer this question we determined ∆R in

two different condition when we model water molecule effect in MD explicitly and when use

implicit water models [35]. Implicit solvent models do not consider discrete nature of water

molecules. This not only changes the protein-protein interface volume due to the absence

of water molecules. Also since 10% of the water molecules make a network of hydrogen-

bond interactions with two proteins and each other the absence of discrete water molecules

can alter ∆R. Figure 4.4.a shows the comparison of ∆R of implicit and explicit solvent

simulations. In this figure dots show the discriminability or η ∈ [0, 1) for each residue where

higher number indicates higher difference between ensembles. The estimated ∆R from using

implicit and explicit solvent models are statistically different with Pearson correlation of 0.28.

This divergence is even larger for amino acids that are part of allosteric pathway [36] dots

colored red. Even though this shows the effect of absence of interstitial water with treating

the solvent with implicit models, it does not delineate specific role of them. For further

investigation on specific contribution a subset of residue in the G protein is identified that

their conformational densities in the apo are unaffected by the treatment of the bulk solvent.

To do this we compute ηimp↔exp which is the ensemble difference for residues of apo state when

they have simulated in implicit versus explicit solvent. The residues with ηimp↔exp smaller

than a specific tolerance are considered unaffected by treatment of the bulk solvent. We

choose d2 = BT/8π2Txray as the tolerance, the mean square deviation of a residue obtained

from crystallographic B factor [141]. The T/Txray ration is for rescaling the B factor from

X-ray temperature to Txray=100 K to physiological temperature T=310 K [35]. Therefore,

for a given residue if ηimp↔exp < erf(d/
√

2) then the estimated difference between ensembles

generated in implicit and explicit solvent simulation is smaller than the spread of the residues
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electron density observed in X-ray diffraction. The error function is used to transform the

tolerance to the appropriate Hilbert space where eta is estimated. The subset of G residues

that meet this condition comprise 114 out of 416 residues. Figure 4.4.b shows even for these

residues estimated conformational density shift of binding is statistically different. Since the

dynamics of these residues were not affected by implicit solvent treatment, this difference

reflects the specific effect of this treatment on G-B2 interactions.

4.3 Corss-comparison of multiple ensembles II: Determination of intersecting

allosteric pathways

As mentioned earlier NiV-G by binding to ephrin of the host cell sends a signal to acti-

vate NiV-F. Moreover, structural difference between apo and ephein-bound states is minor.

Therefore, for further analysis of the allosteric signal we require to quantitatively compare

the conformational ensemble of these states since as a result of ensemble/thermodynamic

view ∆Rsignal ⊂ ∆R. In this study we quantify the ∆R induced by ephrins, B2, B3 and a

well characterize mutant of B2 [142]. The sequence similarity of B2 and b3 is about 50% and

B2 mutant differs in two residue identities, L281Y and W282M. This mutant which we refer

to as B2m binds to G protein weakly compared to B2 and B3 but still triggers viral fusion

[142]. In previous study we quantified the ensemble difference or ∆R induced by binding

of ephrin B2 [34]. However, since there is no formal relationship between allostery pathway

and extent of ∆R, quantitative analysis of ∆R does not provide basis to label a subset of

changes as allostery signal. To further investigate the allostety pathway we first generate 2

other ensembles when G bound to B3 and B2m, then analyzed the changes in ensemble due

to binding of G to three ephrins collectively. In other words if there is a common allostery

pathway for transducing the binding signal it should be a subset of ∆Rint which is defined

as follow

45



Figure 4.4. Correlation between B2-induced conformational density shifts simulated in ex-
plicit versus implicit solvent. a) The 416 dots represent the estimated value for G residues
and those are in red are those that are part of allosteric signaling pathway [36]. b) The
114 dots represent residues that their conformational density shits are negligible considering
their X-ray B factors.(Reprinted with permission from [35])

∆Rint := ∆RB2 ∩∆RB3 ∩∆RB2m (4.1)
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where ∆RB2, ∆RB3 and ∆RB2m are the changes in G conformational density induced by

binding to B2, B3 and B2m respectively. Figure x schematically shows all of the ensemble

comparisons we refer the apo state of G protein as G() and ephrinX-bound state as G(X)

consequently ηx1 refers to discriminability of G() and G(X1) and ηx1/x2 discriminability of

G(X1) and G(X2).

Figure 4.5. Schematic representation of different conformational density shift analysis. G()
represents free ensemble where G(X) represents X-bound G ensemble. Therefore, ηX1 is shift
between bound and X1 bound where ηX1/X2 is shift between G(X1) and G(X2) (Reprinted
with permission from [36])

To determine whether two ephrins X1 and X2 induce similar changes in conformational

density of a residue in G we apply the following two criteria,

min {ηX1, ηX2} > ηX1/X2 (4.2)

and

|ηX1 − ηX2| < 〈ηX1 − ηX2〉 (4.3)
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The first criterion ensures that the ∆R induce by two ephrins are both are greater than

the ∆R between to bound states. The second criterion assign a tolerance to difference

between the ∆R of two ephrins which in this case is mean absolute difference (MAD).

The second criteria applied after applying the first criterion. The advantage of using such

a dynamics cutoffs is the there is no need for preexisting relationship between allosteric

signal and the extent of ∆R. The results of this statistical analysis is showed in Figure 4.6.

One of the surprising results of this analysis is that mutation of just 2 residue in ephrin

B2 changes the conformational density of almost half of the residues of G protein. This

simply highlights that the primary sequence of ephrin is not correlated to the extent/nature

of conformational density changes it induces. As a results of the statistical analysis only

106 residues belong to intersecting pathway that their conformational densities are modified

statistically equivalently by the three ephrin binding.

To further analyze what type of changes ephrins induce to conformational ensemble of

these residues we calculate the correlations between eta and mean backbone deviations of

them. The mean backbone deviation is defined as,

d = 1/3
∑
X

|| 〈rCoM〉G() − 〈rCoM〉G(X) || (4.4)

Where 〈rCoM〉G(X) is the average position of center of mass of residue backbone over

ensemble G(X). We find that conformational density changes and backbone deviation of

residues belong to the intersecting pathway are not correlated perfectly (Pearson correlation

coefficient = 0.77). Several residues belong to this set have high changes of conformational

entropy and/or side-chain orientation changes. Three such representative case are illustrated

in Figure 4.7 which indicate that examining changes in summary statistics such as mean

position displacement and change in fluctuation will not provide a complete conformational

density changes.
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Figure 4.6. Comparison of conformational density shifts of G residues induced by different
ephrins. Each plot contains 416 circles which represent residues and filled circles are those
that satisfy the condition of equation that is mentioned above each image. These residues
where used for MAD calculation which itself is used to find the subset of residues that are
shifted statistically equivalently by ephrin X1 and X2(Reprinted with permission form [36]).

Finally the analysis detect 8 out of 14 residues the mutagenesis study showed their effect

on F regulation [140]. This suggest that intersecting subset consists of at least one signaling
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Figure 4.7. Correlation between the conformational density shifts (η) of residues belong to
intersecting pathway and their backbone deviation d. The backbone deviation calculated by
Eq. 4.4 and transformed to the same Hilbert space where η were calculated by erf(d/

√
2).

The figures surrounding the correlation plots showing conformational density of four residues.
The ensemble for each residue composed of 15 frames and color coded. The ∆RMSF is the
average of differences between root-mean-square fluctuations (RMSFs) of G and G(X)s. The
residues such as S239 which are close to the diagonal mostly undergo backbone deviation.
Residues such as Y231 and F504 that are below the diagonal undergo side-chain rotation
and/or changes in fluctuations. Finally for residues above the diagonal change in backbone
fluctuation is dominant mode of change.

pathway. In addition, it is likely that there exist other signaling pathways unique to one or

common to two ephrins.
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4.4 Corss-comparison of multiple ensembles III: Effect of mutations on regula-

tion

Experimental studies show that during viral activation-fusion process G interacts with

ephrin by its receptor binding domain (RBD) and with F by its t F activation domain (FAD).

There is not any model that explains the coupling. Due to structural organization of G the

allostric coupling must involve in at least one the two RBD-FAD and/or RBD-RBD interfaces

[37]. Our previous MD and ensemble comparison analysis of monomeric RBD suggested that

intersecting potentially allosteric pathway of three fusion-inducing ephrins involves RBD-

RBD interface [36]. Another experimental study based on cellular assays and monoclonal

antibody binding also suggest this pathway [143]. Additionally, rearrangement of RBD-

RBD interface in a manner that facilitate solvent-exposure of FAD and following interaction

of FAD with F was proposed by experimental approaches [144, 145]. This mechanism is

particularly intriguing because it assumes that despite of small structural changes in RBD

domain binding of ephrin can induce extensive rearrangement of nonoverlapping RBD-RBD

interface. A mutagenesis study showed triple mutation of V209V210G211 -> AAA can

disrupt F-activating signal of G without effect on expression as well as binding of G to

ephrin [140]. The VVG residues are part of RBD and are distant from both RBD-RBD

and RBD-FAD interfaces. For further investigation of the allosteric signaling mechanism

we carry out MD simulations of RBD-RBD dimer in free and ephrin-bound state as well as

VVG mutant in both states. To find the mutation induced shifts in the allosterc signal we

calculate ∆R := ∆Rapo → ∆Rbnd as well as ∆Rm := ∆Rm
apo → ∆Rm

bnd therefore the subset

of residues where ∆R 6= ∆Rm are affected by mutation. These residues should meet at least

of the following conditions:
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|η − ηm| > 2×MAE,

ηapo > erf(1/
√

2), and

ηbnd > erf(1/
√

2)

(4.5)

Where MAE is the mean absolute error of the system, therefore the first condition ensures

that the difference is greater than error of the method. The other two inequalities place a

tolerance on the mutation induced ensemble shift in both free and bound states. This

tolerance corresponds to 1Åshift of the center of mass of residue. Figure 4.8.a shows the

residues that satisfy these conditions which are about 50% of all residues of the RBD.

This suggest that mutation has a global effect on the conformational ensemble of RBD.

Visualization on the 3D structure depict this spread better (see Figure 4.8.b). This figure

also shows conformational ensembles of few other residues, including those near to the RBD-

FAD interface. Experiment show that mutation of D468 negatively impact stimulation of G

[146]. However, since the ensemble shift because of mutation is negligible, this residue could

be only important for protein structural integrity and not necessarily part of the pathway.

The conformational ensemble of other five residues but perturbed by mutation which are

proximal to RBD-FAD interface. These results suggest VVG mutation disrupt the binding

signal via RBD-FAD interface.

We also analyzed the relationship between the extent of the shift and distance from

mutation Figure 4.9 shows that there is no relationship between these two.
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Figure 4.8. a) Comparison of ligand binding induced shifts on wild-type RBD (η) versus
similar shift in mutant RBD (ηm). Residues that meet the condition of Eq. 4.5 are high-
lighted in orange. b) These residues are highlighted on the X-ray structure and ensemble
of some of them also were provided including those proximal to the RBD-FAD. (Reprinted
with permission from [37])
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Figure 4.9. The correlation between mutations-induced conformational density shifts and
distance from mutation site (Reprinted with permission from [37])
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CHAPTER 5

DEVELOPMENT OF NEW METHOD FOR CONNECTING ENSEMBLE
SHIFTS TO REGULATION

5.1 Theoretical background and existing method

Methods have been developed to relate inter-state differences to allosteric regulation

[21, 22, 23], which have also contributed to design of new customized proteins [6, 93, 94, 4, 95];

however, none account for thermal fluctuations. These methods typically rely on average

structural differences between states, which renders them unsuitable for studying proteins

in which inter-state differences in structure are comparable to thermal fluctuations; but we

note that these methods were not intentionally designed to account for thermal fluctuations.

Methods have also been developed to connect correlations in thermal fluctuations to

signaling [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Given time-dependent conformations of two

sites in a given protein state, fi and fj, their fluctuation correlations are determined as

Cij =
1

σiσj

∫
(fi − fi)(fj − fj)dt, (5.1)

where the bar denotes average, and the σ denote fluctuations in individual sites. These

inter-site fluctuation correlations can be combined with each other and with the spatial

organization of the protein to yield insight into how different spatial regions communicate

with each other (intra-state signaling). However, since no information on divergence from

a reference state is incorporated, these approaches cannot theoretically provide insight into

regulatory mechanisms.
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New methods are required for understanding mechanisms in proteins regulated by dy-

namic allostery. Toward this end, we and others have recently developed methods [147, 107,

148, 109, 34, 36, 35, 37] to compare conformational ensembles of different states against

each other, and obtain inter-state differences in terms of physically meaningful metrics.

These methods, in general, overcome the challenge of finding appropriate feature spaces (or

summary statistics) that distinguishes ensembles, and provide a comprehensive difference

between ensembles that naturally embodies differences in thermal fluctuations. In partic-

ular, we have shown that these methods can be used to tease out protein regions affected

by regulators and statistically analyze similarities and differences between different states

[34, 36, 35, 37]. However these methods, by themselves, do not provide direct insight into reg-

ulatory signaling networks as they do not relate induced conformational ensembles changes

in one site to another site.

It is, therefore, not surprising that several fundamental biophysical questions in dynamic

allostery still remain unanswered. For example, is “dynamic allostery” aptly termed in that

regulation occurs due entirely to induced changes in dynamics or do small changes in energy-

minimum structures also contribute? In either case, can we define cutoffs in structural

changes, such as in center-of-mass (CoM), below which their contributions to regulation

are insignificant? Are there relationships between a residue’s propensity to contribute to

regulation, and its spatial location or hydrophobicity? If a residue contributes significantly

to spatial communication within a state (intra-state signaling), then is it justified to assume

that it is also important to propagation of regulatory signals? Do stimulator-binding and

unbinding responses occur in the same manner? In general, how different are activating

signals from deactivating signals?

Addressing such questions requires an understanding of how stimulation at one site of a

protein produces conformational ensemble shifts at another site. Theoretically, this requires

determination of inter-site correlations in ensemble shifts, that is, for two ensembles, fi and gi
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of a given site i, it requires us to determine how ensemble shifts in this site, g∗i = gi \ (fi∩gi),

are correlated with ensemble shifts in another site (g∗j ). Mathematically, it requires us to

determine

Cf→g
ij =

1

σ∗i σ
∗
j

∫
(g∗i − fi)(g∗j − fj)dt. (5.2)

In the equation above, the bar denotes average and σ∗ are fluctuations in shifts. Similarly,

we can also define inter-site correlations in f ’s shift with respect to g as

Cg→f
ij =

1

σ∗i σ
∗
j

∫
(f ∗i − gi)(f ∗j − gj)dt, (5.3)

where f ∗ = f \ (f ∩ g) represents ensemble shift in f with respect to g. Note that Cf→g
ij and

Cg→f
ij are expected to be identical only if the distributions in f ∗ and g∗ for both residues i and

j are symmetric about their interface (5.1). Computation of Cf→g
ij and Cg→f

ij require that f

and g are repartitioned such that conformations corresponding to the overlap region f ∩ g

are identified and then removed from f and g to get the residuals f ∗ and g∗, respectively.

To our knowledge this is an unresolved problem, and here we develop a machine learning

based method to accomplish this high-dimensional repartitioning task, which then enables

calculation of Cf→g
ij and Cg→f

ij . These pairwise correlations can be combined with each

other and with the spatial organization of sites, just as Cij are combined [30, 26, 28, 29,

149], to discern regulatory signaling networks. Moreover, in this work we implement a new

parameter-free version of the graph theory approach to combine pairwise correlations with

each other according to the spatial organization of proteins.

5.2 Ensemble repartitioning and inter-site correlations

As the theory of our SVM-based method is explained in chapter 3, the support vectors can

be used to estimate the overlap of two distributions. The visualization as an example Figure

5.2a shows the distribution of support vectors in a test case of two partially overlapping
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Figure 5.1. Venn diagram of symmetric and asymmetric overlapping distributions. The
overlap region f ∩ g is shaded blue, the g∗ = g \ (f ∩ g) region is shaded red and the
f ∗ = f \ (f ∩ g) region is shaded grey.

2D Gaussian distributions. Indeed, we find that the majority of the support vectors are

part of the overlap region. Then they can be simply removed from f and g, respectively, to

obtain f ∗ and g∗. However, a fraction of the support vectors do not belong to the overlap

region, and instead belong to f ∗ and g∗. This would imply that the ratio s/2m overestimates

the overlap, and consequently the computed η is smaller that the analytical value. This is,

in fact, what we noted previously [34, 36, 37] – for almost all of our test cases involving

various distribution types (unimodal, bimodal, trimodal and quadrimodal), we found that

the computed η are systematically underestimated (< 6%) with respect to exact values.

Now if f ∗ and g∗ were constructed by simply removing the support vectors from f and g,

then f ∗ and g∗ would, at worst, suffer from partial omissions of instances. More importantly,

f ∗ and g∗ will not be contaminated by instances belonging to f ∩ g. 5.2b shows the average

omission error in 50 random pairs of Gaussian distributions, one of which is shown in 5.2a. We

find that as the ensemble size (m) increases, the omission error reduces and for m ≥ 10000,

the average omission error is below 4%, and the worst case error is also below 7%, which are

similar to errors we reported earlier [37] in the estimation of η.

If fi and fj represent the distributions of two sites in a protein, then their fluctuation

correlations Cij are determined as 5.1. When the distribution is discrete and the data are
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Figure 5.2. (a) Distribution of support vectors (SV) in a representative case of two partially
overlapping 2D Gaussian distributions. Each of the two distributions, f and g comprise of
m = 10000 data points. The remaining instances in the two distributions, f ∗ and g∗ are
colored grey and red, respectively. (b) Percent omission error in 50 random pairs of Gaussian
distributions. It is computed as a ratio of the number of incorrectly assigned support vectors
in the f ∗ (and g∗) region and the total instances that belong to the f ∗ (and g∗) region. In
other words, Omission error = FP/(TP +FP ), where FP and TP are abbreviations for false
positives and true positives.

vectors, that is, fi = {fi1, fi2, ..., fim}, such as that obtained from molecular simulations, then

5.1 takes the following form:

Cij =
1

σiσj

m∑
k

‖fik − fi‖‖fjk − fj‖, (5.4)

where ‖...‖ denote the magnitudes of vectors. When applied to proteins in the context of

constructing signaling networks [28], the vectors fik and fjk are generally the centers of mass

of two different amino acids.

If fi and gi represent two different distributions of the same site i, but under the influence

of different external potentials, and if fj and gj represent the corresponding distribution of

site j, then inter-site correlations in ensemble shifts Cf→g
ij and Cg→f

ij are given by 5.2 and
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5.3, respectively. Calculation of Cf→g
ij and Cg→f

ij require that the ensemble data, f and

g, are repartitioned such that conformations corresponding to the overlap region f ∩ g are

identified separately for each site i and then removed from f and g to get the residuals f ∗

and g∗, respectively. Below we show that such a high-dimensional repartitioning task can be

accomplished using the mathematical framework of support vector machines (SVMs). The

development below follows from our SVM-based method to compute quantitative estimates

for overlaps between conformational ensembles [34], which we also describe briefly for clarity.

The support vectors can, therefore, be used to construct f ∗ and g∗, and without need for

fitting the underlying distributions to assumed mathematical forms. f ∗ and g∗ can be used

to determine inter-site correlations in ensemble shifts. For discrete distributions and when

the data are vectors, 5.2 takes the following form

Cf→g
ij =

pf→gij

σ∗i σ
∗
j

∑
‖g∗ik − fi‖‖g∗jk − fj‖. (5.5)

Note that the summation does not run over all conformations k in g∗i and g∗j . Instead it runs

only over a subset of protein conformations that are common to both g∗i and g∗j . Conse-

quently, we introduce pf→gij , which denotes the probability of finding protein conformations

that are part of both g∗i and g∗j . Similarly, 5.3 takes the form

Cf→g
ij =

pg→fij

σ∗i σ
∗
j

∑
‖f∗ik − gi‖‖f∗jk − gj‖. (5.6)

Note also that fik and fjk represent 3ni and 3nj dimension vectors, where ni and nj are the

numbers of atoms in the two amino acids i and j. Consequently, the support vectors that

are generated are representative of entire conformations of amino acids. After repartitioning

conformational ensembles of amino acids, we then represent fik and fjk by their respective

CoMs and compute Cf→g
ij and Cg→f

ij .
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5.3 Parameter free network definition

The inter-site correlations described in the previous section are combined with each other

and also connected with the spatial organization of sites using undirected weighted graphs

G(V,E) [30, 26, 28, 29, 149] comprising of V nodes and E edges that connect the nodes.

Nodes on graphs represent points on the proteins that serve as receivers and/or transmit-

ters of information in signaling pathways. Since signal transduction generally needs to be

understood at the level of amino acids, nodes on graphs typically represent amino acids

[30, 26, 28, 29, 149], and we define them as CoMs of amino acids. From a physical stand-

point, direct signal communication is expected to occur between only those nodes whose

conformational spaces are directly influenced by each other [30, 26, 28, 29]. To implement

this, one typically measures the distance between the CoMs of two nodes, and if that dis-

tance is less than a predefined cutoff, which is generally in the range 4-6 Å, [30, 26, 28, 29]

then the two nodes are connected by a edge. Otherwise, the two nodes remain unconnected.

Instead of using cutoffs, we implement a parameter-free approach that uses the same physical

logic, but determines connectivity on the basis of overlap between node volumes – if Γi is

the volume of the conformational ensemble of node i , then it will be connected to node j

only if Γi ∩ Γj > 0.

Edges weights represent a quantity that tells us how nodes communicate with each other.

We define edge weights as the inverse of the inter-site correlations.

5.4 Shortest paths analysis

Allosteric signal propagation is an example of information transmission from the binding

site into another functional site. On the other hand network communication is dynamic,

with altered preferred routes. This alteration of communication routes in different regu-

latory states is probably leads to a higher efficiency and better control of the transmitted
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Figure 5.3. The parameter-free definition of neighbors. It considers two nodes connected if
the conformational ensemble volume of two residues overlap.

information [29]. Considering this concept Van Wart et al., made a weighted network base

on correlated motion on MD model of imidazole glycerol phosphate synthase (IGPS). Then

they proposed the single shortest path connecting binding site to the functional site as the

potential allosteric pathway [98]. This pathway included two residues that experimental

studies had shown are involve in allostery. Later they expanded their work by developing

Weighted Implementation of Suboptimal Paths (WISP) algorithm which in addition to sin-

gle optimum shortest path finds other near-optimal paths [150]. This algorithm is based on

the idea that while allostrey may occur through a single path for many proteins it could

be summation of synergy of several paths. In this work we use Dijkstra’s algorithm [151]

implemented in Igraph [152] to solve for shortest paths between all V (V − 1)/2 node pairs.
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CHAPTER 6

APPLICATION OF NEW METHOD FOR CONNECTING ENSEMBLE
SHIFTS TO REGULATION

In order to test the new method we need a test-case model with relatively known dy-

namical allostery behavior. As mentioned above this behavior is reported for large list of

proteins from different families.

6.1 PDZ domains

We used the PDZ2 domain of human phosphatase PTP1E for this purpose (see Figure

6.1). This system has several characteristics which makes it ideal model for studies on

dynamic allostery and it has been used in many allostery pathway prediction models as a

benchmark [153, 56, 154, 155, 156, 157, 158, 57, 105, 159, 160, 161, 162, 163, 164, 165].

These characteristics are: it is a signaling module of many proteins, it has high resolution

3D structures with small change due to activation, it has been subject of many experimental

and computational studies, and finally it is a small domain with less than 100 amino acids

which makes the ensemble generation and interpretation of the results in the molecular level

easy.

6.2 Generating ensembles using molecular dynamics

6.2.1 Molecular dynamics

The starting coordinates for molecular dynamics of the apo and the GEF2-bound states

are taken from crystallographic structures [159] deposited in the Protein Databank (PDB
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GEF2-bound state
Apo state

Figure 6.1. Superimposed conformational ensembles of the PDZ2 domain in the apo and
GEF2-bound states. Each of the two conformational ensembles is represented using 11
snapshots taken at regular intervals from their respective molecular dynamics trajectories
(see methods). For the sake of clarity, the GEF2 peptide is not shown.

IDs: 3LNX and 3LNY). Hydrogens are added and their positions optimized using PDB2PQR

[166]. The N- and C-termini of the GEF2 peptide and the protein are capped by adding

ACE and NME, respectively. The apo and the GEF2-bound structures are placed in cubic

boxes containing ∼11K water molecules, including those resolved crystallographically. KCl

concentration is set at 75 mM, and there are extra K+ ions compared to Cl− ions to com-

pensate for the charge on the GEF2 peptide. MD simulations are carried out in duplicates

(different random seeds for velocities) for both the apo and the GEF2 bound states of PDZ2,

and each MD simulation is 0.5 µs long.

All four MD simulations are carried out under isothermal-isobaric boundary conditions,

and using Gromacs version 5 [167]. Temperature is maintained at 298 K using an extended
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ensemble approach [168, 169] and with a coupling constant of 0.2 ps. An extended ensem-

ble approach is also used for maintaining pressure [170]. Pressure is maintained at 1 bar

using a coupling constant of 1 ps and a compressibility of 4.5 × 10−5 bar−1. Electrostatic

interactions are computed using the particle mesh Ewald scheme [171] with a Fourier grid

spacing of 0.1 nm, a fourth-order interpolation, and a direct space cutoff of 10 Å. van der

Waals interactions are computed explicitly for interatomic distances ≤ 10 Å. The bonds in

proteins and the geometries of water molecules are constrained [172, 173], and consequently

an integration time step of 2 fs is employed. The protein and ions are described using

Amber99sb-ILDN parameters [174], and water molecules are described using SPCE param-

eters [175]. Convergence is administered by tracking time evolutions of backbone RMSDs,

pressure and potential energies, and consequently only the second half of each trajectory

(0.25 µs) is used for analysis.

6.2.2 NMR data reproduction

NMR spin relaxation parameters uniquely suited for proper benchmarking MD simu-

lations against quantitative experimental measurement specially internal protein dynam-

ics[from NMR order parameter Dter.]. The employed MD protocol reproduces well the

methyl deuterium order parameters obtained from NMR [56, 155] (6.3). The deuterium

order parameters (S2
axis) are computed by modeling the autocorrelation function based on

the model-free approach [176].

C(t) =
1

2
(3〈µ̂(0) · µ̂(t)〉2 − 1) (6.1)

as an exponential decay

C(t) = S2
axis + (1− S2

axis)e
−t/τ ; (6.2)
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an assumption also used in estimating order parameters from NMR spectral densities. In the

expressions above µ̂ are the unit vectors of C–C bonds in which the latter carbon is part of

the methyl group, and τ is the relaxation time. We assume here that the order parameters of

the C–C(H3) bonds represent those of the hydrogens in the CH3 groups. Figure 1.2 depicts

the single exponential curve-fitting on computed autocorrelations of the second half of MD

trajectories (250ns) for residue Valine 84. The estimated (S2
axis)s were compared against

experimental counterparts in Figure 2.2 a) which showed good agreement. Figure 2.2 b)

shows the convergence of computed (S2
axis)s.

Figure 6.2. autocorrelations and single exponential curve-fitting of Valine 84.

6.3 Ensemble difference quantification and repartitioning

We generate duplicate MD trajectories of the PDZ2 domain in its apo and GEF2-bound

states. Each trajectory is 0.5 µs long, and we use the second halves of these trajectories

to construct conformational ensembles for analysis. To determine whether the latter halves

of these trajectories provide adequate representations of conformational ensembles, we com-

pute residue-wise differences between conformational ensembles constructed from duplicate
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Figure 6.3. (a) Methyl deuterium order parameter (S2
axis) computed from the final 250 ns of

MD compare well with those estimated from NMR [155]. ρ denotes the Pearson correlation
coefficient between the computed and experimental S2

axis values. (b) Distribution of statisti-
cal error in estimating (S2

axis) from MD, determined from block averaging over the final 100
ns of MD [177]. Note that for almost all cases the error < 0.05, indicating that the S2

axis

values are statistically converged.

trajectories, that is, for each residue i in the PDZ2 domain we determine,

η1↔2
i = 1− ‖f 1

i ∩ f 2
i ‖, (6.3)

where f 1
i and f 2

i are the ensembles of the same residue i extracted from duplicate trajec-

tories, and ‖f 1
i ∩ f 2

i ‖ is the physical overlap between the ensembles. We determine η using

a SVM based method we developed previously [34], which is also described briefly in the
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methods section. η is bounded, that is, η ∈ [0, 1), and takes up a value closer to unity as the

difference between ensembles increases. Each ensemble contains 5000 snapshots extracted

at regular time intervals from their respective trajectories. Note that prior to extracting the

coordinates of a residue from a conformation of the PDZ2 domain, the entire conformation

of the PDZ2 domain is least-square fitted on to the starting structure, which removes the

bias against whole molecule rotation and translation [178]. 6.4 shows the cumulative dis-

tribution of residue-wise η computed separately for both the apo and GEF2-bound state

ensembles. We find that the 90% of the residues have η values smaller than 0.35, which is

equivalent to a mean position difference of less than erf(0.35/
√

2) = 0.27 Å, [36], showing

that the differences between the duplicate trajectories are small. We also note that the η of

a few residues, especially in the apo state, are large, but an inspection of residue identities

reveals that they belong to the N- and C- termini of the PDZ2 domain. We exclude these

residues from further analysis. Instead of discarding the data from the duplicate trajecto-

ries, we combine the ensembles from the duplicate trajectories, and create one representative

10000-conformation ensemble for each of the apo (f) and GEF2-bound states (g). We then

estimate the difference between these ensembles ηf↔gi and compare them to the η1↔2
i esti-

mated for duplicate trajectories. We find, in general, that ηf↔gi >> η1↔2
i , which shows that

the statistical differences between duplicate trajectories is smaller than the GEF2-induced

shifts in conformational ensembles. Together, this analysis shows that the latter half of the

trajectories provide adequate representations of conformational ensembles of the two states.

68



0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 

 

Apo state
Bnd stateApo state

GEF2-bound state

η1↔2

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Figure 6.4. Cumulative probability distribution of residue η1↔2 between duplicate trajecto-
ries.

6.4 Results

6.5 compares the GEF2-induced shifts in residue centers-of-mass (CoMs) and root mean

square fluctuations (RMSFs). In general, we note that GEF2 affects the structure and

dynamics of residue side chains more than their respective backbones, a result consistent with

previous studies [56, 159]. Such a form of induced changes have contributed to the hypothesis

[56] that allosteric regulation in PDZ2 occurs primarily due to changes in side chain structure

and dynamics. However, such a mechanistic model downplays the contributions of residues

that undergo relatively smaller changes in backbone structure and dynamics. As such,

there is no formal theory that relates signaling propensity to the extent of induced shifts,

and so understanding regulatory mechanisms requires estimation of shifts and many-body

correlations in conformational ensemble.

Toward this end, we first determine all pairs of residues that physically interact with each

other. Typically, this is achieved by measuring distances between the average CoMs of two

residues, and if that distance were less than a predefined cutoff, which is generally around

5 Å, [30, 26, 28, 29] then the two residues are assumed to physically interact with each
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Figure 6.5. GEF2-induced shifts (Å) in residue centers-of-mass (∆CoMs) and root mean
square fluctuations (∆RMSFs). GEF2 affects the structure and dynamics of residue side
chains more than their respective backbones. The inset in (a) compares the conformational
ensembles (11 equally spaced representative snapshots) of R79, the residue whose side chain
undergoes the highest change in CoM. The inset in (b) compares the conformational ensem-
bles of S29, the residue that undergoes the highest change in RMSF.

other. Instead of using pre-defined cutoffs, we compute the overlap between the volumes of

residue conformational ensembles, and two residues are considered to physically interact if

their volume overlap is non-zero. We assemble together these pairwise connectivities using
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undirected graphs. We construct three such connectivity graphs, one using residue ensembles

from the receptor-free state (Gf ), another using residue ensembles from the GEF2-bound

state (Gg), and the third (Gfg) using the union of Gf and Gg. All graphs have the same

number of V = 89 nodes (residues), but they have different numbers of connected edges

(interacting residue pairs) – Gf has 810 edges, Gg has 714 edges and Gfg has 846 edges. On

average, each node in Gf has 9.1 edges, each node in Gg has 8.0 edges and each node in Gfg

has 9.5 edges.

For all residue pairs in Gf and Gg, we then compute inter-site correlations Cf
ij and Cg

ij,

respectively, using 5.4. For all pairs in Gfg, we compute inter-site correlations in ensem-

ble shifts, which we do in two ways, one using 5.5 and the other using 5.6, which yield,

respectively, Cf→g
ij and Cg→f

ij . We then use the inverse of these correlations as numerical

weights on the edges of the graph. Note that we get two separate Gfg graphs, Gf→g and

Gg→f , depending on whether we use 1/Cf→g
ij or 1/Cg→f

ij as edge weights. We then solve for

shortest weighted paths between all V (V − 1)/2 pairs of nodes. After solving for shortest

paths, we count how many times each node appears in the V (V − 1)/2 shortest paths. We

indicate node-occurrences by the symbol Ωi. Note that (V − 1) ≤ Ωi ≤ V (V − 1)/2. We do

this separately for each of the 4 graphs, and so for each graph, we obtain a separate set of

node-occurrences {Ωi}.

We assume that a residue that has a higher Ω contributes more to allosteric signaling

[30, 26, 28, 29], and so we rank all residues in decreasing order of their Ω. This yields, for

each of the four graphs or signaling models, an ordered set of node-occurrences {Ωrank
i }.

6.1 shows the Pearson correlation coefficients between residue ranks in the four signaling

network models. We note first that the correlations are small. The correlations are even

smaller if only the top ranked (25%) residues are considered in each model. Now if we ignore

the relative ordering in the top ranked residues, we find that the pairwise identity overlaps

between the four models are around 50%. Taken together, these observations imply that
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if a residue contributes significantly to signaling in the apo state, it does not necessarily

imply that it will also contribute significantly in the bound state. Furthermore, inter-state

regulatory signals, which we compute from residue ordering in the Gf→g and Gg→f models,

are not necessarily propagated by residues that contribute to intra-state signaling in Gf ,

Gg. This finding cautions against the reliance on single state models for garnering molecular

insight into regulatory mechanisms. Finally, since the correlation between residue ranks

in the Gf→g and Gg→f models is small, we conclude that the GEF2-binding and GEF2-

unbinding response signals propagate through different networks.

Table 6.1. Pearson correlation coefficient between residue ranks in the four signaling models
Gf , Gg, Gf→g and Gg→f .

Gf Gg Gf→g Gg→f
Gf 1 0.18 0.23 0.31
Gg 1 0.18 0.28
Gf→g 1 0.20
Gg→f 1

The relative contribution of each residue to the overall signaling network can be given by

the fraction

Ω̄i =
Ωi − (V − 1)∑V
i=1(Ωi − (V − 1))

. (6.4)

Note that Ωi are rescaled and this rescaling is phenomenologically equivalent to discarding

occurrences of residue i in paths where they serve as end points, and so this rescaling yields a

residue’s contribution to signaling that is not initiated by that residue. These contributions

can be rank ordered (highest to lowest contribution) and then summed to determine the

subset of residues that carry out the bulk of the signaling. We, therefore, define cumulative

signaling as

Θk =
k∑

rank=1

Ω̄rank
i (6.5)
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which approaches unity as k approaches the total number of residues (nodes) V in the

network. 6.6 compares the cumulative signaling of the four signaling models. We note

that regulatory signaling, that is, signaling due to GEF2 binding/unbinding, requires a

considerably smaller set of residues than signaling within an individual state – while 75% of

the intra-state signaling (in Gf and Gg) is carried out by 30 residues, 75% of the signaling

in Gf→g and Gg→f require only 19 residues. This is opposite to what we would expect given

that there are more edges in Gf→g and Gg→f compared to Gf or Gg. This surprising result

can be explained by comparing inter-residue correlations in the four signaling models (6.7

and 6.8), which show that inter-site correlations in thermal fluctuations are, in general, more

widespread and stronger than inter-site correlations in ensemble shifts.
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Figure 6.6. Comparison of cumulative signaling (6.5) in graphs weighted using intra-state
correlations in thermal fluctuations and graphs weighted using inter-state correlations in
ensemble shifts.
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Figure 6.7. Heat maps of inter-site correlations in thermal fluctuations (Cf
ij and Cg

ij). The
correlations are normalized by dividing each set by their respective highest values.

6.9 shows the identities and conformational summary statistics of the 19 residues that

provide 75% of the signaling in Gf→g and Gg→f . We see not only a weak correlation between
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Figure 6.8. Heat maps of inter-site correlations in ensemble shifts (Cf→g
ij and Cg→f

ij ). The
correlations are normalized by dividing each set by their respective highest values.

residue ranks in the two subnetworks, but also just a partial overlap in residue identities.

Notably, while residue D56 has the highest contribution in Gf→g, it is ranked 19th in Gg→f .

Conversely, while residue T70 is ranked 2nd in Gg→f , it is ranked 17th in Gf→g. There is
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also no direct relationship between the spatial location of residues and their contribution to

signaling.

Figure 6.9. Identities, ranks and conformational summary statistics of residues that con-
tribute to 75% of cumulative signaling. The residues are also color-coded according to
whether their NMR order parameters change upon GEF2 binding.
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We also find no correlations between a residue’s rank and its ∆CoM and ∆RMSF, rec-

ommending that cutoffs on summary statistics should be avoided when identifying residues

important to allosteric regulation. For example, D56 has the highest contribution in Gg→f ,

but undergoes relatively small changes in both CoM and RMSF. We attribute its high con-

tribution to the high number of moderately-correlated connections it makes in the signaling

network. 6.10 shows the local connectivity of D56 in Gf→g and Gg→f . We note that almost

all correlations in Gf→g are relatively stronger than the respective correlations in Gg→f , and

this is perhaps why D56 emerges as the highest contributor in Gf→g, but not in Gg→f . 6.10

shows the local connectivity of another residue, T70, which contributes more to Gg→f than

Gf→g. Relative to D56, T70 has fewer connections, but several of T70’s connections in Gg→f

are highly correlated (Cij > 0.2), which rationalize its high contribution to Gg→f .

The two examples above, however, appear to suggest that a residue’s contribution to

signaling depends more on the strengths of correlated connections rather than the number

of spatial connections. To examine this further, we compute for each edge in Gf→g the

total number of times it occurs in all shortest paths (Ωij). This differs from Ωi in that the

number passes are computed over edges, instead of over nodes. Just as in the case of node-

occurences Ωi, we assume that an edges having higher Ω contribute more to the signaling

network. Figure 7.2.a shows the 3D X-ray crystal structure of the PDZ2 bound to GEF2

where 7.2.b shows the edges color coded based on number of pass. 7.2.c shows 31 edges

that has more than 50% of all the passes. Finally, 6.12 shows that there is only a weak

relationship between Ωij and the strengths of the correlations Cf→g
ij (Pearson correlation

= −0.21). Therefore, we conclude that a residue’s contribution to signaling depends on both

the strengths of correlated connections and the number of spatial connections.

In 6.9, we also note that some residues undergo GEF2-induced changes primarily in

CoMs, some undergo changes primarily in RMSF and others undergo changes in both CoM

and RMSF. This leads us to conclude that regulation in PDZ2 emanates from a combination
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Figure 6.10. Local connectivities of residues D56 and T70 in Gf→g and Gg→f . The nodes are
represented as filled circles, and the edges are represented as lines. The two numbers on the
lines represent correlations (×10−3) in Gf→g (red) and Gg→f (gray).

of changes in structure and dynamics, and not just changes in dynamics, as is occasionally

argued [157, 179, 164]. In other words, dynamics does play a key role in allosteric regulation,

but it is not the sole mode of signal transduction. Additionally, we note that not all residues

that undergo changes in NMR Saxis2 contribute to regulation. Out of the 14 residues that

were found to undergo changes in S2
axis, only about half of them contribute significantly

to signaling. Conversely, residues that are not found to undergo changes in Saxis2 can still
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Figure 6.11. a) PDZ2 crystal structure in active state with the RA-GEF2 C-terminal peptide
in blue. b) all of the edges color coded with number of visits. c) 14 % of the edges with the
highest number of visits that have more than 50% of total number of passes.
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Figure 6.12. Correlation between edge weights (1/Cf→g
ij ) and edge occurrences (Ωij) in short-

est paths in Gf→g.

contribute to signaling through changes in structure and dynamics. Its important to note

here that changes in S2
axis are not equivalent to changes in RMSF – S2

axis and RMSF can be

related, but they are fundamentally two different summary statistics of dynamics.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

Modeling Dynamic Allostery in Proteins Enabled by Machine Learning Conclusion: This

work demonstrates the applicability of machine learning enabled approach to characterize the

dynamic allostery mechanism. Since dynamic allostery comes with small structural changes

the proper approach for modeling dynamic allostery requires to quantify the changes in en-

semble of conformations. At the start of the thesis, Leighty and Varma had developed the

very first method based on a machine learning technique (SVM) to quantify differences in

ensembles at residue level [34]. Figure 7.1 shows the schematic representation of the method.

This method unlike existing methods does not require any ad hoc fitting with specific as-

sumptions on underlying distributions, and yielded differences in terms of a normalized

metric that made the cross comparisons of ensembles possible.

The accuracy of the method was tested against 5 different conventional class separability

measures. A new indexing scheme was used, software pipeline was optimized and parallel

processing capability was added to the method implementation which made it more than

100x faster. We validate the efficiency and robustness of the method on a vast range of

distributions as well as the internal coordinate system. The method is now publicly available

at https : //simtk.org/home/conf ensembles to use.

We applied the method to computational molecular biology problems which showed dy-

namic allostery behavior such as: (a) identify the effects of employed different force fields on

conformational ensembles [35], (b) cross-comparison of multiple ensembles to determine the
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Figure 7.1. On top twenty representative structures of NiV-G superimposed on X-ray struc-
ture in yellow. On bottom quantification of ensemble changes on residue level due to binding
of a ligand (Adapted with permission form [34]).

common signaling pathways induced by different effectors [36], (c) characterization of effects

of point mutations on conformational ensemble shifts in proteins [37].

To gain more insight into dynamic allostery mechanism we need another method to

actually relate the induced conformational ensembles changes in one site to another site.

Although several method were proposed to model this phenomenon they are not capable

to model the mechanism accurately. The existing methods for regulatory signal prediction,

model this pathway/network with information of only one state of the protein.

We developed a new method to use information of both state for relating the ensemble

population shifts into inter-site signal communications. This method uses mathematical

framework of SVM for repartitioning the conformational ensemble shifts that enables us to
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calculate inter-site correlation of population shifts. Then we uses shortest path algorithm to

find optimum communication pathways between all amino acid pairs. This analysis followed

by an enumeration of number of visits of these optimum pathways from amino acids and the

edges between them.

We applied this method on hPTP1E’s PDZ2 domain which is the most used test-case

model for studying dynamic allostery. The results of the shortest path analysis and enu-

meration on the new two-state model were compared against the results of similar analysis

on the single-state models (PDZ in apo state as well as bound state). It showed that there

is a sub-network depicted in figure 7.2 with high density of optimum pathways that existed

only in the new two-state model. Which demonstrate the dramatic alteration of preferred

pathways due to binding an effector. In other words the regulatory networks are very dif-

ferent from the inter-site communication networks present in individual states, highlighting

that a residue’s role in regulation cannot be projected from its contribution to signaling in

a given state. Consistent with earlier predictions, we report that the regulatory network in

the PDZ2 domain indeed emerges from a combination of changes in structure and dynamics,

and even small changes in structure contribute significantly. Moreover, there is a very weak

correlation between the extent of inter-site correlations and the number of visits on that

specific edge which suggest caution in using thresholds for interactions specially for system

with small changes.

In future works method can be tested on PDZ domains with mutation of hubs we found

in this study to check the capability of method on potential forward prediction that can be

validated experimentally. It also can be test on similar PDZ domains such as PDZ3 with

very similar structure but slightly different proposed activation mechanism. There are other

protein systems such as viral attachment proteins which show dynamic allostery behavior

and we plan to apply this method on them to demonstrate the generality of the developed

approach.
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Figure 7.2. a) PDZ2 crystal structure in active state with the RA-GEF2 C-terminal peptide
in blue. b) all of the edges color coded with number of visits. c) 14 % of the edges with the
highest number of visits that have more than 50% of total number of passes.

83



REFERENCES

[1] Jacques Monod and François Jacob. General conclusions: teleonomic mechanisms in
cellular metabolism, growth, and differentiation. In Cold Spring Harbor symposia on
quantitative biology, volume 26, pages 389–401. Cold Spring Harbor Laboratory Press,
1961.

[2] Jean-Pierre Changeux. The feedback control mechanism of biosynthetic l-threonine
deaminase by l-isoleucine. In Cold Spring Harbor symposia on quantitative biology,
volume 26, pages 313–318. Cold Spring Harbor Laboratory Press, 1961.

[3] Jacque Monod, Jeffries Wyman, and Jean-Pierre Changeux. On the nature of allosteric
transitions: a plausible model. Journal of molecular biology, 12(1):88–118, 1965.

[4] Daniel J Mandell and Tanja Kortemme. Computer-aided design of functional protein
interactions. Nature Chemical Biology, 5(11):797–807, 2009.

[5] Jeffrey R Wagner, Christopher T Lee, Jacob D Durrant, Robert D Malmstrom, Victo-
ria A Feher, and Rommie E Amaro. Emerging computational methods for the rational
discovery of allosteric drugs. Chemical reviews, 116(11):6370–6390, 2016.

[6] Andrei V Karginov, Feng Ding, Pradeep Kota, Nikolay V Dokholyan, and Klaus M
Hahn. Engineered allosteric activation of kinases in living cells. Nature biotechnology,
28(7):743–747, 2010.

[7] DE Koshland Jr, G Nemethy, and D Filmer. Comparison of experimental binding data
and theoretical models in proteins containing subunits. Biochemistry, 5(1):365–385,
1966.

[8] Qiang Cui and Martin Karplus. Allostery and cooperativity revisited. Protein science,
17(8):1295–1307, 2008.

[9] K Gunasekaran, Buyong Ma, and Ruth Nussinov. Is allostery an intrinsic property of
all dynamic proteins? Proteins: Structure, Function, and Bioinformatics, 57(3):433–
443, 2004.

[10] Gregorio Weber. Ligand binding and internal equilibiums in proteins. Biochemistry,
11(5):864–878, 1972.

[11] A Cooper and DTF Dryden. Allostery without conformational change. European
Biophysics Journal, 11(2):103–109, 1984.

84



[12] Hesam N Motlagh, James O Wrabl, Jing Li, and Vincent J Hilser. The ensemble nature
of allostery. Nature, 508(7496):331–339, 2014.

[13] Katherine Henzler-Wildman and Dorothee Kern. Dynamic personalities of proteins.
Nature, 450(7172):964–972, 2007.

[14] Ivet Bahar, Timothy R Lezon, Lee-Wei Yang, and Eran Eyal. Global dynamics of
proteins: bridging between structure and function. Annual review of biophysics, 39:23–
42, 2010.

[15] Shiou-Ru Tzeng and Charalampos G Kalodimos. Protein dynamics and allostery: an
nmr view. Current opinion in structural biology, 21(1):62–67, 2011.

[16] Chung-Jung Tsai and Ruth Nussinov. A unified view of how allostery works. PLoS
Comput Biol, 10(2):e1003394, 2014.

[17] Kateri H DuBay, Gregory R Bowman, and Phillip L Geissler. Fluctuations within
folded proteins: implications for thermodynamic and allosteric regulation. Accounts of
chemical research, 48(4):1098–1105, 2015.

[18] Peter S Shenkin, Batu Erman, and Lucy D Mastrandrea. Information-theoretical en-
tropy as a measure of sequence variability. Proteins: Structure, Function, and Bioin-
formatics, 11(4):297–313, 1991.

[19] Gregory Manley and J Patrick Loria. Nmr insights into protein allostery. Archives of
biochemistry and biophysics, 519(2):223–231, 2012.

[20] Galen Collier and Vanessa Ortiz. Emerging computational approaches for the study
of protein allostery. Archives of biochemistry and biophysics, 538(1):6–15, 2013.

[21] Lei Yang, Guang Song, and Robert L Jernigan. Protein elastic network models
and the ranges of cooperativity. Proceedings of the National Academy of Sciences,
106(30):12347–12352, 2009.

[22] Michael D Daily and Jeffrey J Gray. Local motions in a benchmark of allosteric
proteins. Proteins: Structure, function, and bioinformatics, 67(2):385–399, 2007.

[23] Michael D Daily and Jeffrey J Gray. Allosteric communication occurs via networks of
tertiary and quaternary motions in proteins. PLoS Comput Biol, 5(2):e1000293, 2009.

[24] Yifei Kong and Martin Karplus. The signaling pathway of rhodopsin. Structure,
15(5):611–623, 2007.

[25] Chih-Peng Lin, Shao-Wei Huang, Yan-Long Lai, Shih-Chung Yen, Chien-Hua Shih,
Chih-Hao Lu, Cuen-Chao Huang, and Jenn-Kang Hwang. Deriving protein dynamical
properties from weighted protein contact number. Proteins: Structure, Function, and
Bioinformatics, 72(3):929–935, 2008.

85



[26] T Lin and Guang Song. Predicting allosteric communication pathways using motion
correlation network. In Proceedings of the 7th Asia Pacific Bioinformatics Conference
(APBC), pages 588–598. Tsinghua University, 2009.

[27] Wolfram Stacklies, Fei Xia, and Frauke Gräter. Dynamic allostery in the methionine
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