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ABSTRACT

The main function of the respiratory system is gas exchange. Since many

disease or injury conditions can cause biomechanical or material property changes

that can alter lung function, there is a great interest in measuring regional lung

function and mechanics.

In this thesis, we present a technique that uses multiple respiratory-gated CT

images of the lung acquired at different levels of inflation with both breath-hold static

scans and retrospectively reconstructed 4D dynamic scans, along with non-rigid 3D

image registration, to make local estimates of lung tissue function and mechanics. We

validate our technique using anatomical landmarks and functional Xe-CT estimated

specific ventilation.

The major contributions of this thesis include: 1) developing the registration

derived regional expansion estimation approach in breath-hold static scans and dy-

namic 4DCT scans, 2) developing a method to quantify lobar sliding from image

registration derived displacement field, 3) developing a method for measurement of

radiation-induced pulmonary function change following a course of radiation therapy,

4) developing and validating different ventilation measures in 4DCT.

The ability of our technique to estimate regional lung mechanics and function

as a surrogate of the Xe-CT ventilation imaging for the entire lung from quickly and

easily obtained respiratory-gated images, is a significant contribution to functional

lung imaging because of the potential increase in resolution, and large reductions in
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imaging time, radiation, and contrast agent exposure. Our technique may be useful

to detect and follow the progression of lung disease such as COPD, may be useful as a

planning tool during RT planning, may be useful for tracking the progression of toxi-

city to nearby normal tissue during RT, and can be used to evaluate the effectiveness

of a treatment post-therapy.
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CHAPTER 1
INTRODUCTION

1.1 Respiratory Physiology and Mechanics

Air is alternately inspired and expired as lungs expand and contract during the

respiratory cycle. There are two lungs in human, the right and left, each divided into

lobes. The lungs, like the heart, are situated in the thorax, the closed compartment

bounded at the neck by muscles and connective tissue and completely separated from

the abdomen by a large, dome-shaped sheet of skeletal muscle, the diaphragm. Each

lung is surrounded by a completely closed sac, the pleural sac. The two lungs are

not symmetrical. The right lung has three lobes, and the slightly smaller left lung

has only two. In the right lung, the upper lobe and the middle lobe are separated by

the horizontal fissure. Inferiorly, an oblique fissure separates the middle lobe and the

lower lobe. In the left lung, the fissure that separates the upper lobe and lower lobe

is also called oblique fissure.

Figure 1.1 provides a overview of the respiratory system. As illustrated in

Figure 1.1, the trachea branches into two bronchi, one of which enters each lung.

Within the lungs, there are more than 20 generations of airway branching, each

resulting in narrower, shorter, and more numerous tubes. Each lung is surrounded

by a closed sac, the pleural sac, consisting of a thin sheet of cells called pleura. The

relationship between a lung and its pleural sac can be visualized by imagining what

happens when you push a fist into a fluid-filled balloon. The fist becomes coated by
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one surface of the balloon. The opposite surfaces lie close together but are separated

by a thin layer of fluid. Unlike the balloons and fist, however, the plural surface

coating the lung (visceral pleural) is firmly attached to the lung by connective tissue.

Similarly, the outer layer (the parietal pleura) is attached to and lines the interior

thoracic wall and diaphragm. The two layers are separated by an extremely thin layer

of intrapleural fluid. The pressure of of the intrapleural fluid is called intrapleural

pressure (Pip). The changes of the intrapleural pressure cause the lungs and thoracic

wall to move in and out together during normal breathing. The intrapleural pressure

is the pressure outside the lungs and the pressure inside the lungs is the alveolar

pressure (Palv). The difference in pressure between the inside and the outside of the

lungs is termed the transpulmonary pressure (Ptp), where Ptp = Palv − Pip. The

transpulmonary pressure is a determinant of lung size. The trans-respiratory system

pressure, difference between the alveolar pressure and the atmospheric pressure (Prs =

Palv−Patm), is a determinant of air flow. The intrapleural pressure at rest is a balance

between the tendency of the lung to collapse and the tendency of the chest wall to

expand. As the diaphragm and the intercostal muscles contract, the thorax expands.

The Pip becomes more subatmospheric/negative (consider atmospheric pressure Patm

be the zero reference point), the transitionary pressure becomes more positive causing

the lungs expand. The enlargement of the lungs causes an increase in the sizes of the

alveoli through out the lungs. Therefore, by Boyle’s law, the Palv decreases to less

than atmospheric. This produces the difference in pressure (Palv < Patm) that causes

the a bulk flow of air from the atmosphere through the airways into the alveoli. As the
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diaphragm and inspiratory intercostal muscles stop contracting. The chest wall recoils

inward causing the Pip moves back toward preinspiration value. The transpulmonary

pressure also moves back toward preinspiration value. Therefore, the transpulmonary

pressure acting to expand the lungs is now smaller and the lungs passively recoild to

their original size. As the lungs become smaller, air in the alveoli becomes temporarily

compressed so that, by Boyle’s law, alveolar pressure exceeds atmospheric pressure.

Therefore, air flows from the alveoli through the airways out into the atmosphere.

The lung tissue consists of bronchioles, bronchi, blood vessels, interstitium and

alveoli. The lung tissue expands as air rich in oxygen flow into the lungs through con-

ducting airways. The air then reaches the transitional zone consisting of respiratory

bronchioles and the respiratory zone composed of alveoli. The pulmonary capillaries

with venous blood form a fine mesh network around each alveolus. Oxygen in the air

is exchanged for the carbon dioxide in the venous blood pumped from the pulmonary

arteries. The blood rich in oxygen leaves the lungs via pulmonary veins. It is then

distributed throughout the body to fulfill the needs of continuous supply of oxygen

to trillions of cells in the body. On the other hand, the exchanged gas, rich in carbon

dioxide, is then expelled as the contraction of the lung tissue during the expiration.

Figure 1.2 provides resin casts of the airways and blood vessels. The Figure 1.2(a)

shows the airway of the lungs on the left-hand side and the airways with the pul-

monary arteries and veins on the right-hand side. Figure 1.2(b) shows a close-up

version of the casts. The arteries follow the airway to the periphery and the veins are

lying between the alveoli.
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The thoracic cavity can be thought as an container. Enlarging the size of the

container by the diaphragm and intercostal muscles increases its volume and thus

decreases the pressure within it. This decrease in internal gas pressure in turn causes

air to enter the container from the atmosphere through the nose and/or mouth. As

the inspiratory muscles relax, the rib cage drops under the force of gravity and the

relaxing diaphragm moves superiorly. The result is that the volumes of the thorax

and lungs decrease simultaneously, which increases the pressure within the lungs and

pushes the air out. Figure 1.3 provides a simplified physical model of the respiratory

system, where the airtight glass dome sealed with a flexible membrane simulates the

thorax and the two balloons simulates the lungs. The pressure between the balloons

and the glass dome in Figure 1.3 causes the balloon inflate and deflate. Figure 1.3(a)

shows as the membrane pulled down, the balloons inflate because of the increased

thorax volume. Figure 1.3(b) shows as the membrane relaxes, the balloons deflate

because of the decreased thorax volume.

Lung tissue function depends upon the material and mechanical properties

of the lung parenchyma and the relationships between the lungs, diaphragm, and

other parts of the respiratory system. Pulmonary diseases can change the tissue

material and mechanical properties of lung parenchyma. Pulmonary emphysema, a

chronic obstructive pulmonary disease (COPD), is characterized by loss of elasticity

(increased compliance) of the lung tissue, from destruction of structures supporting

the alveoli and destruction of capillaries feeding the alveoli [12], as shown in Fig-

ure 1.4. Idiopathic pulmonary fibrosis (IPF), a classic interstitial lung disease, causes
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inflammation and fibrosis of tissue in the lungs. Over time, the disease makes the tis-

sue thicker and stiffer (reduced compliance). As the change of the material properties

and the disease process itself are associated with the mechanical changes, it would

be desirable to have objective methods to determine the regional mechanics which

reflect regional pulmonary function.

Figure 1.1: Organization of the respiratory system from [1].

1.2 Current Approaches for Measuring Lung Function

Various efforts have been made to assess lung function. Invasive methods, such

as percutaneously or surgically implanted parenchymal markers or inhaled fluorescent
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(a) (b)

Figure 1.2: Resin casts of the airways and blood vessels from [2]: (a) shows the
airway of the lungs on the left-hand side and the airways with the pulmonary arteries
and veins on the right-hand side. (b) shows a close-up version of the casts where the
arteries follow the airway to the periphery and the veins are lying between the alveoli.

(a) (b) (c)

Figure 1.3: A simplified physical model of the respiratory system from [3]. (a) It is
consisted of two balloons within an airtight glass dome sealed with a flexible mem-
brane to simulate the thorax and the diaphragm. (b) The balloons inflate as the
simulated diaphragm goes down. (c) The balloon deflate as the simulated diaphragm
goes up.
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Figure 1.4: COPD involves damage to the air sacs (alveoli) and destruction of lung
tissue around smaller airways (bronchioles), which changes the material properties of
the lung tissue [4].

microspheres, are not possible for translation to humans [13, 14, 15]. Nuclear medicine

imaging such as positron emission tomography (PET) and single photon emission

CT (SPECT) can provide an assessment of lung function [16], but its application is

constrained by low spatial resolution in pulmonary imaging when images are acquired

across several respiratory cycles. Venegas et al. have used PET to study patchiness

in asthma [17]. However the experiments were limited to 6.5 mm slice thickness and

10 cm axial coverage. Standard CT, on the other hand, has been the main diagnostic

modality for evaluation of lung diseases and can provide high-resolution images but it

is largely static and does not provide ventilation assessment. Hyperpolarized noble gas

MR imaging has been developed for functional imaging of pulmonary ventilation [18,

19, 20]. The most common marker gases for lung studies are helium (He3), xenon

(Xe129) and fluorene (F19). Another method for the assessment of regional ventilation
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by MRI is the use of oxygen for signal enhancement. The signal from paramagnetic

O2 is inferior to that from spin-polarized He3, but the method is less complex and

provides clinically useful information. Although MR imaging avoids the concern

about ionizing radiation, there is insufficient signal from airway walls to visualize

anything but the largest airways.

Finally, the other imaging modality to directly assess lung function is the

xenon-enhanced CT (Xe-CT) which measures regional ventilation by observing the

gas wash-in and wash-out rate on serial CT images. Marcucci et al. [21] used the

Xe-CT ventilation method to investigate the distribution of regional lung ventilation

and air content in healthy, anesthetized, mechanically ventilated dogs in the prone

and supine postures. Vertical gradients in regional ventilation and air content were

measured in in both prone and supine postures at different axial lung locations.

Tajik et al. [22] implemented single-breath and/or dynamic multibreath wash-in and

washout protocols with respiratory- and cardiac-gated image acquisition. In their

study, the effects of varying tidal volume and inspiratory flow rate were evaluated

independently. Chon et al. [23] compared the WI and WO rates by measuring WO-

WI in different anatomic lung regions of anesthetized, supine sheep scanned using

multi-detector-row computed tomography (MDCT). They also investigated the effect

of tidal volume, image gating (end-expiratory EE versus end-inspiratory EI), local

perfusion, and inspired Xe concentration on this phenomenon. Fuld et al. [24] studied

the correlation between the CT-measured regional specific volume change and regional

ventilation by Xe-CT in supine sheep. An overall correlation coefficient of r2 =
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0.66 was found between the two measurements. However, Xe-CT also has some

shortcomings. Compared with standard CT, it involves inhalation of stable Xenon

by the patient, with possible side effects, and necessitates expensive and complex

equipment, available only in few medical centers. Xe-CT imaging protocols require

high temporal resolution imaging, so axial coverage is usually limited. Z-axis coverage

with modern multi-detector scanners currently ranges from about 2.5 to 12 cm, but

the typical z-axis extent of the human lung is on the order of 25 cm.

While developing pulmonary imaging techniques to assess lung function is at-

tracting great interests of research, recently, investigators from other groups have

studied the lung function in the perspective of lung mechanics. Guerrero et al. have

used optical-flow registration to compute lung ventilation from 4D CT [25, 26]. In

their studies, they applied optical-flow deformable registration algorithm to map each

corresponding tissue element across the 4DCT data set. The local change in fraction

of air per voxel (local ventilation) was calculated from local average CT values. The

4D ventilation image set was then calculated using pairs formed with the maximum

expiration image volume, the exhalation phases and then the inhalation phases rep-

resenting a complete breath cycle. They compared the calculated total ventilation to

the change in contoured lung volumes between the CT pairs to validate their result.

Gee et al. have used non-rigid registration to study pulmonary kinematics [27,

28] using magnetic resonance imaging. They obtained estimates of pulmonary motion

by summing the normalized cross-correlation over serially acquired lung images to

identify corresponding locations between the images. In their studies, the estimated
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motions were modeled as deformations of an elastic body and thus reflect to a first

order approximation the true physical behavior of lung parenchyma. The Lagrangian

strain, derived from the calculated motion fields, were used to quantify the tissue

deformation induced in the lung over the serial acquisition.

Christensen et al. used image registration to match images across cine-CT se-

quences and estimate rates of local tissue expansion and contraction [29] and their

measurements matched well with spirometry data. In their studies, a relationship be-

tween tracking lung motion using spirometry data and image registration of consecu-

tive CT image volumes collected from a multislice CT scanner over multiple breathing

periods is described. In four out of five individuals, the average log-Jacobian value

and the air flow rate correlated well (r2 = 0.858 on average for the entire lung).

The correlation for the fifth individual was not as good (r2 = 0.377 on average for

the entire lung) and can be explained by the small variation in tidal volume for this

individual. The correlation of the average log-Jacobian value and the air flow rate

for images near the diaphragm correlated well in all five individuals (r2 = 0.943 on

average).

Kabus et al. [30] compared the intensity based and the Jacobian based ven-

tilation measure by applying two different image registration algorithms, the volume

based and the surface based registrations. They showed that the Jacobian based venti-

lation has less error than the intensity based ventilation analysis using the segmented

total lung volume as a global comparison. Later, they used the same validation

methods as described in Chapter 2 and compared different image registration algo-
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rithms [31]. They showed that even with the same registration accuracy evaluated

by landmark error, there are large regional difference of the Jacobian maps.

Ehrhardt et al. [32] proposed a method to compute a 4D statistical model of

respiratory lung motion which consists of a 3D shape atlas, a 4D mean motion model

and a 4D motion variability model. They also adapted the generated statistical 4D

motion model to a patient-specific lung geometry and the individual organ motion.

While they were able to show that their accumulated measurement matched

well with the global measurement, they were not able to compare the registration-

based measurements to local measures of regional tissue ventilation. In other words,

they were not able to validate their methods at regional level to show the linkage

between lung mechanics and lung function.

1.3 Pulmonary CT Imaging

Over the past decade, computed tomography (CT) theory, techniques and

applications have undergone a rapid development. The advances in X-ray CT such

as transitioning from fan-beam to cone-beam geometry, from single-row detector to

multiple-row detector arrays and from conventional to spiral CT allow larger scanning

range in shorter time with higher image resolution, and have more medical and other

applications [33]. The principles of data acquisition and processing for CT can be

appreciated by considering the development from the first-generation scanners to the

fourth-generation scanners. A schematic of the basic operation of a first-generation

scanner is shown in Figure 1.5. The source and the detector move in a series of linear

steps, and then both are rotated and the process repeated. As shown in Figure 1.6,
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in second-generation scanners, instead of the single beam, a thin fan beam of X-rays

was produced. Third-generation scanners, use a much wider X-ray fan beam and a

sharply increased number of detectors. In the fourth-generation scanner a complete

ring of detectors surrounds the patient. There is no intrinsic decrease in scan time

for fourth-generation with respect to third-generation scanners.

Figure 1.5: The mode of operation of a first-generation CT scanner. The source and
the detector move in a series of linear steps, and then both are rotated and the process
repeated. Figure from [5].

Image reconstruction takes place in parallel with data acquisition. It is pre-

ceded by a series of corrections to the acquired projections. The corrections are made

for the effects of beam hardening, in which the effective energy of the X-ray beam

increase as it passes through the patient due to greater attenuation of lower X-ray en-

ergies. The corrections are also made for imbalances in the sensitivities of individual
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Figure 1.6: A schematic showing the development of second-, third-, and fourth-
generation CT scanners. Figure from [5].

detectors and detector channels.

Radon transform is the mathematical basis for reconstruction of an image

from a series of projections. For an arbitrary function f(x, y), its Radon transform is

defined as a integral of f(x, y) a long a line L as shown in Figure 1.7,

R{f(x, y)} =

∫

L

f(x, y)dl. (1.1)

Each projection p(r, φ) can be expressed by

p(r, φ) = R{f(x, y)}, (1.2)

where p(r, φ) represents the projection data acquired as a function of r, the distance

along the projection and φ, the rotation angle of the X-ray source and detector.

Reconstruction of the image requires computation of the inverse Radon transform of
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the acquired projection data. The most common methods to compute the inverse

Radon transform include backprojection and filter backprojection algorithms.

Figure 1.7: Line integrals defining the Radon transform of an object. Figure from [5].

Helical CT was developed to cover a larger volume of the body in a short time.

The data are acquired as the table position is moved continuously in the scanner, as

shown in Figure 1.8. Simultaneous motion of the patient bed and rotation of the

X-ray source and detectors results in a spiral trajectory of the X-rays transmitted

through patient. The spiral can either be loose (a high value of the spiral pitch) or

tight (a low value of the spiral pitch). A number of data acquisition parameters are

under control. The most important parameter is the spiral pitch p. The spiral pitch

is defined as the ratio of the table feed d per rotation of the X-ray source to the
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collimated slice thickness S:

p =
d

S
. (1.3)

For p values less than 1, the X-ray beams of adjacent spiral overlap, resulting

in a high tissue radiation dose. For large values of p, the image blurring is greater

and the effective slice thickness increases.

Figure 1.8: The principle of spiral CT acquisition. Simultaneous motion of the patient
bed and rotation of the X-ray source and detectors (left) results in a spiral trajectory
(right) of the X-rays transmitted through patient. The spiral can either be loose
(a high value of the spiral pitch) or tight (a low value of the spiral pitch). Figure
from [5].

Standard CT imaging has been used to study lung since 1980s via scanner

developed at Mayo Clinic (Rochester, MN), known as the dynamic spatial recon-

structor [34, 35]. Because early scanners required up to 2 to 5 s for acquiring and

reconstruction of a single slice of the lung, CT imaging was mainly static and only for

structures. With the emergence of the multidetector-row CT (MDCT), it is now pos-

sible to image both structure and function via use of a single imaging modality [36].
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Current MDCT provides the ability of acquiring up to 64 thin sections with scanner

rotation speeds on the order of 0.33 s/revolution. Operated in a spiral mode, these

scanners can acquire images of the lung in a breath hold as short as 5 to 10 seconds.

Different pulmonary CT imaging protocols image lungs at different volume and

capacities. Figure 1.9 shows an example of the lung volumes and capacities recorded

on a spirometer, an apparatus for measuring inspired and expired volumes. Their

definitions are as:

Tidal Volume (TV): Volume inspired or expired with each normal breath.

Inspiratory Reserve Volume (IRV): Maximum volume that can be inspired

over the inspiration of a tidal volume/normal breath. Used during exercise/exertion.

Expiratory Reserve Volume (ERV): Maximal volume that can be expired after

the expiration of a tidal volume/normal breath.

Residual Volume (RV): Volume that remains in the lungs after a maximal expi-

ration. It cannot be measured by spirometry.

Inspiratory Capacity (IC): Volume of maximal inspiration: IRV + TV.

Functional Residual Capacity (FRC): Volume of gas remaining in lung after

normal expiration, cannot be measured by spirometry because it includes residual

volume: ERV + RV.
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Vital Capacity (VC): Volume of maximal inspiration and expiration: IRV + TV

+ ERV = IC + ERV.

Total Lung Capacity (TLC): The volume of the lung after maximal inspiration.

The sum of all four lung volumes, cannot be measured by spirometry because it

includes residual volume: IRV+ TV + ERV + RV = IC + FRC.

Commonly, a static breath-hold scan is at lung volume near FRC or TLC

and a 4DCT dynamic scan is at lung volumes between FRC and FRC + TV. While

regional lung-density patterns can be evaluated by static breath-hold imaging at well-

controlled volumes [37, 38], regional ventilation can be assessed with respiratory-gated

dynamic imaging and using contrast gas such as xenon. It is also possible to recon-

struct the organ of interest at any various points with a representative physiological

cycle using retrospective gating methods though more radiation dose is administered

to the subject [39]. As the increasing momentum in CT imaging research, it is be-

lieved that the trends of improvements in acquisition time, spatial resolution and

radiation dose will continue and therefore, the CT imaging will bring us new insights

for lung anatomy, etiology, pathology and physiology.

1.4 Basic Concepts in Image Registration

In order to study lung mechanics, we wish to find the motion of all tissue

inside the lung due to the interactions with each other caused by the change of the

transpulmonary pressure. The motion of the lung tissue, can be expressed in the form

of spatial function of each region of the lung if the mapping of the region between
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Figure 1.9: Lung volumes and capacities recorded on a spirometer, an apparatus for
measuring inspired and expired volumes. Figure from [6].

different conditions can be found. Therefore, the problem can be stated as: Given

images of the lungs in two or more different conditions, find the region mapping

between the different conditions.

Figure 1.10: Image registration is the task of finding a spatial transormation matpping
one image to another. Figure adapted from [7].

The problem statement brings us into the realm of image registration. Image

registration is the task of finding a spatial transform mapping one image into another
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as shown in Figure 1.10. Many image registration algorithms have been proposed

and various features such as landmarks, contours, surfaces and volumes have been

utilized to manually, semi-automatically or automatically define correspondences be-

tween two images [40, 41]. The basic components of the registration framework and

their interconnections are shown in Figure 1.11 [7, 42].

Figure 1.11: The basic components of the registration framework are two input im-
ages, a transform, a cost function, an interpolator and an optimizer. Adapted from [7].

Images: The input data to the registration process are two images. One is defined

as the moving or template image I1 and the other as the fixed or target image I2. The

registration is treated as an optimization problem with the goal of finding the spatial

mapping that brings the features of the moving template image into alignment with

the fixed target image. The input images can be resampled into different resolutions.

The lower resolution images require less memory and computational time. The higher

resolution images preserve the local details of the anatomical information. Usually,
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a multi-resolution strategy is employed to speed-up registration and to make it more

robust. The multi-resolution image registration starts from using a low resolution

images of the original input images. Then the computed transform at that resolution

is used to initialize the transform at the next level of registration with a higher

resolution images of the original input images. This process repeats until the last level

of resolution is done. The transform at each level of image resolution are composed

to compute the final transform.

Transform: The transformation component h(x) defines how one image can be

deformed to match another. The vector x = (x1, x2, x3)
T defines the voxel coordinate

within an image. The transformation h(x) can be a rigid transformation which can

be described very compactly by a 3 × 3 matrix (9 parameters) h(x) = Ax. It can be

a affine transformation with 12 parameters for a whole image: h(x) = Ax + b. Or

non-rigid registration such as the spline-based registrations [43], elastic models [44],

fluid models [45], and finite element (FE) models [46] etc. The interpolator is used

to evaluate the template image intensities at non-rigid positions.

For the category of non-rigid transformations, B-splines [47] are often used as

a parameterized transform. Let φi = [φx(xi), φy(xi), φz(xi)]
T be the coefficients of the

i-th control point xi on the spline grid G along each direction. The transformation

is represented as

h(x) = x +
∑
i∈G

φiβ
(3)(x− xi), (1.4)

where φi describes the displacements of the control nodes and β(3)(x) is a three-



21

dimensional tensor product of basis functions of cubic B-Spline as

β(3)(x) = β(3)(x)β(3)(y)β(3)(z). (1.5)

The control point grid is defined by the amount of space between control

points, which can be different for each direction. B-splines have the advantage of

local support which means that the transformation of a point can be computed from

only a couple of surrounding control points. With a hierarchy of B-spline grids within

same image resolution, a global transform can be found with large grid space and more

local transform can be found from small grid space.

Cost function: The cost function component can consist of a single metric such

as a similarity measure based on geometric and intensity approaches or a compound

function with other regulations and constraints depending on potential models. It

measures how well the fixed target image is matched by the transformed moving

template image. This function forms the quantitative criterion to be optimized by the

optimizer over the search space defined by the parameters of the transform. Several

similarity measures are described below.

A simple and common metric is the sum of squared difference (SSD), which

measures the intensity difference at corresponding points between two images. Math-

ematically, it is defined by

CSSD =

∫

Ω

{
[I2(x)− I1(h(x))]2

}
dx. (1.6)
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Mutual information (MI) expresses the amount of information that one image

contains about the other one. Unlike SSD, it accounts for the lung intensity changes

between scans. The negative mutual information cost of two images is defined as [48,

49]

CMI = −
∑

i

∑
j

p(i, j) log
p(i, j)

pI1◦h(i)pI2(j)
, (1.7)

where p(i, j) is the joint intensity distribution of transformed template image I1 ◦ h

and target image I2; pI1◦h and pI2(j) are their marginal distributions, respectively.

The histogram bins of I1 ◦ h and I2 are indexed by i and j. A misregistration will

result in a decrease in the mutual information and increase of the cost.

A recently developed similarity metric, the sum of squared tissue volume dif-

ference (SSTVD) [50, 51, 52, 53], also accounts for the intensity change in the lung CT

images. This similarity criterion aims to minimize the local difference of tissue vol-

ume inside the lungs scanned at different pressure levels. Assume the Hounsfield units

(HU) of CT lung images are primarily contributed by tissue and air. Then the tissue

volume in a voxel at position x can be estimated as V (x) = v(x) HU(x)−HUair

HUtissue−HUair
where

v(x) is the volume of voxel x. It is assumed that HUair = −1000 and HUtissue = 55.

The intensity similarity metric SSTVD is defined as

CSSTVD =

∫

Ω

[V2(x)− V1(h(x))]2 dx

=

∫

Ω

[
v2(x)

I2(x) + 1000

1055
− v1(h(x))

I1(h(x)) + 1000

1055

]2

dx (1.8)

The Jacobian of a transformation J(h(x)) estimates the local volume changes resulted
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from mapping an image through the deformation. Thus, the tissue volume in image

I1 and I2 are related by v1(h(x)) = v2(x) · J(h(x)).

In addition to the above similarity measures, shape based similarity measure

such as vesselness measurement (VM), recently developed and combined to other sim-

ilarity measures by Cao et al. [54], is also used to improve the accuracy in pulmonary

CT registrations by incorporating shape information of the vascular trees inside the

lungs. For more details about the cost function incorporating VM, please see Chapter

5.

Optimization: Most registration algorithms can employ standard optimization

ways to solve the problems to find the good transformation and there are several ex-

isting methods in numerical analysis such as the partial differential equation (PDE)

solvers to solve the elastic and fluid transformation, steepest gradient descent, the

conjugate gradient method etc. Among them, a limited-memory, quasi-Newton min-

imization method with bounds (L-BFGS-B) [55] algorithm is commonly used in B-

Splines based registration. During the optimization process, it is also possible to

preserve certain properties by constrain the search space of the parameters. Based on

the sufficient conditions to guarantee the local injectivity of functions parameterized

by uniform cubic B-Splines proposed by Choi and Lee [56], the B-Splines coefficients

can be constrained so that the transformation maintain the topology of two images.

Interpolator: The commonly used interpolators are nearest neighbor, linear and

N -th order B-spline interpolators. The nearest neighbour interpolator is the most
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simple technique requiring least computation, but it comes with low quality. The

linear interpolator’s returned value is a weighted average of the surrounding voxels.

For B-spline interpolater, the higher the order the better the quality, but also requiring

more computation. When the N = 0, it is the same as nearest neighbor interpolator

and when N = 1, it is the same as linear interpolator.

After introducing the basic components in the registration framework, there

are several other important issues. One of the most important analysis coming with

development and implementation of image registration algorithms is the validation of

the registration algorithm. It is used to prove that the algorithm can be applied to a

specific task with acceptable errors depending on the task itself. It is usually done by

the methods of analyzing the distance of the corresponding landmarks before and after

registration. Though this method can estimate well the errors of rigid-registration,

it cannot represent all the regions in the non-rigid registration. The validation of

registration will be described in the following chapters in more detail.

Based on the registration tasks, the lung CT image registrations can also be

categorized into inter-subject registration and intra-subject registration. The inter-

subject registration utilizes registration to find common anatomical structures or

characteristics of the lungs. Li et al. [57] used landmark and intensity-based consis-

tent image registration algorithm to compute a averaged human lung atlas from a

population of normal subjects. The intra-subject lung registration focuses on mea-

suring the shape changes or the function changes between two states of the lung. The

results from our work in this thesis belong to this category. Since the inter-subject
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and intra-subject lung registrations are application oriented, it is very important to

choose the ideal cost function and registration models for the application. For exam-

ple, the SSTVD cost is based on the assumption that the tissue volume is preserved

between scans. The assumption will not hold for the intra-subject registration tasks

registering scans with long time apart and it will not hold for inter-subject registration

as well, considering the large anatomical difference of the lungs between subjects.

Our problem now remains in to find an ideal registration algorithm that best

describes the transform of the regions of the lung between different conditions. Based

on the assumptions that lung is an elastic body and that the requirements of our

study that a specific region should be able to be trackable across different conditions,

we introduce several registration algorithms in the following chapters which are armed

with these features.

1.5 Regional Mechanics Measures from

Image Registration

With the image registration displacement field, functional and mechanical pa-

rameters such as the regional volume change and compliance, stretch and strain,

anisotropy, and specific ventilation can be evaluated.

We now introduce our calculation for regional mechanical parameters. The

set of all particles which constitute the solid body will occupy the domain Ω ∈ R3.

The domain Ω is assumed to be the reference configuration of a moving body and

points x ∈ Ω are called material points. A transformation ϕ is a class C2 function

which maps any point X in the deformed configuration Ωϕ ( = “ϕ(Ω)”) at time t
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Figure 1.12: Deformation of a continuum body from the reference configuration (left)
to the current configuration (right). Adapted from [8].

into its corresponding point x in the reference configuration at time t0. Figure 1.12

depicts a cubic body of tissue occupying a reference configuration (left dash line)

that is deformed to the current configuration (right dash line) at time t. The spatial

position occupied by the material point y at time t is given by the transformation.

The transformation or deformation y = ϕ (x); ∀x ∈ Ω. For any transformation which

is placed in the Euclidean space, we can define the displacement field according to:

u(x) = y− x = ϕ(x)− x. (1.9)

The deformation gradient is given by:

F =




∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3

∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3

∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3




. (1.10)
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Regional volume change and compliance: The following derivation can be

found in solid mechanics textbook [8]. Consider the infinitesimal volume element

in the reference configuration (cube inside left dash line) in Fig. 1.12 with edges

parallel to the Cartesian axes. The elemental material volume dv defined by

dv = dx1dx2dx3, (1.11)

In order to obtain the corresponding deformed volume, dV , in the deformed config-

uration (cube inside right dash line), note first that the vectors obtained by pushing

forward the previous material vectors are,

dy1 = Fdx1 =
∂ϕ1

∂x1

dx1

dy2 = Fdx2 =
∂ϕ2

∂x2

dx2

dy3 = Fdx3 =
∂ϕ3

∂x3

dx3,

(1.12)

The triple product of these elemental vectors gives the deformed volume as,

dV = dy1 · (dy2 × dy3) =
∂ϕ1

∂x1

· (∂ϕ2

∂x2

× ∂ϕ3

∂x3

)dx1dx2dx3, (1.13)

Noting that the above triple product is the determinant of the F gives the

volume change in terms of the Jacobian J as,

dV = Jdv; J = det(F), (1.14)
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or,

J(ϕ(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3

∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3

∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣

. (1.15)

Pulmonary compliance was defined as the change in volume per change in

pressure PC = ∆V/∆P if pressure P is available.

Regional stretch and strain: The deformation gradient tensor F can be decom-

posed into stretch and rotation components:

F = RU, (1.16)

where the U is the right stretch tensor and R is an orthogonal rotation tensor.

The Cauchy-Green deformation tensor is defined as

C = FTF = U2. (1.17)

In order to obtain U from this equation, it is first necessary to evaluate the

principal directions of C, denoted here by the eigenvector N1, N2 and N3 and their

corresponding eigenvalues λ2
1, λ2

2 and λ2
3. Therefore, after eigendecomposition and

taking the square root of the eigenvalues of C, we can get the eigenvalues λ1, λ2 and

λ3, and λ1 > λ2 > λ3 of U.

The concept of strain is used to evaluate how much a given displacement differs
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locally from a rigid body displacement [8]. One of such strains for large deformations

is the Lagrangian finite strain tensor, also called the Green-Lagrangian strain tensor

or Green-St. Venant strain tensor, defined as:

E =
1

2
(C− I) =

1

2
(FTF− I), (1.18)

or,

E =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33




. (1.19)

Regional anisotropy: However, since the stretch and strain tensors are matrices

and cannot be easily displayed, we extract the direction information such as fractional

anisotropy, anisotropic deformation index and anisotropy ratio index, in additional

to the magnitude information such as Jacobian from it:

The fractional anisotropy (FA) [58] is defined by

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

√
λ1

2 + λ2
2 + λ3

2
. (1.20)

The anisotropy ratio index (ARI) is defined by

ARI =
λ1

(λ2 + λ3)/2
. (1.21)
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The volume ratio (VR) is defined by

V R =
λ1λ2λ3

(λ1+λ2+λ3

3
)3

. (1.22)

Amelon et al. has proposed the slab-rod index (SRI) and anisotropic defor-

mation index (ADI) as measures of tissue deformation (unpublished work), and they

are defined by

SRI =
tan−1(λ3(λ1−λ2)

λ2(λ2−λ3)
)

π/2
, (1.23)

and

ADI =

√
(
λ1 − λ2

λ2

)
2

+ (
λ2 − λ3

λ3

)
2

. (1.24)

Specific ventilation: Now we define the CT based measurement of specific venti-

lation. Let I1 and I2 represent two 3D image volumes to be registered. The vector

x = (x1, x2, x3)
T defines the voxel coordinate within an image. The image registration

algorithms find the optimal transformation h that maps the template image I1 to the

target image I2.

The regional ventilation is equal to the difference in local air volume change

per unit time. Therefore, the specific ventilation is equal to specific air volume change

per unit time. Since the Jacobian tells us the local volume expansion or contraction,

and if we assume that local volume change is only due to air flow, then the specific
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air volume change by specific volume change (SAJ) is defined as

SAJ = J(x)− 1. (1.25)

The Hounsfield units (HU) in the lung CT images is a function of tissue and

air content. Therefore, two other specific air volume changes can be defined using

the air content information from CT. The specific air volume change by corrected

Jacobian (SACJ) is defined as

SACJ = J(x)
I1(h(x))

I2(x)
− 1. (1.26)

The specific air volume change by intensity (SAI) is defined as

SAI = 1000
I1(h(x))− I2(x)

I2(x)(I1(h(x)) + 1000)
(1.27)

More details of the derivation of these measures can be found in Chapter 5.

1.6 Applications and Significance of Our Work

Many disease or injury conditions will change lung material properties, lung

mechanics, and lung function. For example, emphysema has historically been iden-

tified and classified according to the macroscopic architecture of the excised, fixed

whole lung [59]. Microscopically, it shows large air space with destructed alveoli

(Figure 1.13(b)) in contrast to a fine alveoli network as in normal subjects (Fig-

ure 1.13(a)). On the other hand, pneumoconiosis (or progressive massive fibrosis)
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shows aggregation of macrophages as granular, black areas (Figure 1.13(c)). Such

patterns will result in region changes in the mechanical behavior of the tissue, which

will be detectable in vivo using high-resolution CT imaging to follow the dynamic

behavior of the tissue. Using X-ray CT images, Mishima et al. [60] have examined

the fractal geometry of the lung parenchyma, and interpret their results on the basis

of a large, elastic spring network. It is of great interest to identify CT-based methods

to directly measure lung mechanical properties (e.g., the 3D strain fields) to be used

in conjunction with the anatomical detail offered by X-ray CT. Pulmonary embolism

is an enormous public health problem, with an annual incidence exceeding 500,000

and mortality up to 10% [61]. Although this effect is known to be a local regulatory

phenomenon, the anatomic location of the local lung compliance change (bronchioles,

ducts, etc.) or the extent or local propagation of the lung stiffening in the vicinity of

the embolus have never been determined.

(a) (b) (c)

Figure 1.13: Microscopic sections from human lungs. (a) Section from a normal
subject with fine network of tissue. (b) Section from a emphysema patient with large
empty areas. (c) Section from a pneumoconiosis (progressive massive fibrosis) patient
with black particles. Figure from [3].
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In addition, the measurement of pulmonary function and mechanics may be

useful as a planning tool during Radiation therapy planning. Radiation therapy

(RT) for lung cancer is commonly limited to sub-therapeutic doses due to unintended

toxicity to normal lung tissue. The radiation dose needed to control the tumor is well

above that which causes toxicity to the normal lung tissue. Increase of tumor control

could be achieved by delivering substantially higher radiation doses to the tumor [62],

which is optimally achieved with RT delivery schemes that reduce toxicity. Reducing

the frequency of occurrence and magnitude of normal lung function loss may benefit

from treatment plans that incorporate relationships between regional and functional

based lung information and the radiation dose. The measurement of pulmonary

function and mechanics may may also be useful for tracking the progression of toxicity

to nearby normal tissue during RT, and can be used to evaluate the effectiveness of

a treatment post-therapy [63, 64].

In this thesis, we present a technique that uses multiple respiratory-gated CT

images of the lung acquired at different levels of inflation with both breath-hold static

scans and retrospectively reconstructed 4D dynamic scans, along with non-rigid 3D

image registration, to make local estimates of lung tissue function and mechanics. We

validate our technique using anatomical landmarks and functional Xe-CT estimated

specific ventilation.

The major contributions of this thesis include: 1) developing the registration

derived regional expansion estimation approach in breath-hold static scans and dy-

namic 4DCT scans, 2) developing a method to quantify lobar sliding from image
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registration derived displacement field, 3) developing a method for measurement of

radiation-induced pulmonary function change following a course of radiation therapy,

4) developing and validating different ventilation measures in 4DCT.

The ability of our technique to estimate regional lung mechanics and function

as a surrogate of the Xe-CT ventilation imaging for the entire lung from quickly and

easily obtained respiratory-gated images, is a significant contribution to functional

lung imaging because of the potential increase in resolution, and large reductions in

imaging time, radiation, and contrast agent exposure. Our technique may be useful

to detect and follow the progression of lung disease such as COPD, may be useful as a

planning tool during RT planning, may be useful for tracking the progression of toxi-

city to nearby normal tissue during RT, and can be used to evaluate the effectiveness

of a treatment post-therapy.

1.7 Organization of the Thesis

This thesis is divided into 6 chapters. The rest of the thesis is organized as

follows:

Chapter 2 presents our results on estimation of regional lung function from

both dynamic and static image sequences. We report a technique that uses mul-

tiple respiratory-gated CT images and non-rigid 3D image registration to make lo-

cal estimates of lung tissue expansion. We compare the ventral-dorsal patterns of

lung expansion estimated in both retrospectively reconstructed dynamic scans and

static breath-hold scans to a xenon CT based measure of specific ventilation and a

semi-automatic reference standard in four anesthetized sheep studied in the supine
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orientation. This chapter is based on:

1. Ding, K., Cao, K., Christensen, G.E., Raghavan, M.L., Hoffman, E.A., Rein-

hardt, J.M.: Registration-based lung tissue mechanics assessment during tidal

breathing. In Brown, M., de Bruijne, M., van Ginneken, B., Kiraly, A., Kuh-

nigk, J.M., Lorenz, C., Mori, K., Reinhardt, J.M., eds.: First International

Workshop on Pulmonary Image Analysis, New York (2008) 63

2. Ding, K., Cao, K., Christensen, G.E., Hoffman, E.A., Reinhardt, J.M.: new-

block Registration-based regional lung mechanical analysis: Retrospectively re-

constructed dynamic imaging versus static breath-hold image acquisition. Vol-

ume 7262., SPIE (2009) 72620D

Chapter 3 presents our results on evaluation of lobar sliding. We propose a

method to evaluate the sliding motion of the lobar surfaces during respiration using

lobe-by-lobe mass-preserving non-rigid image registration. We measure lobar sliding

by evaluating the relative displacement on both sides of the fissure. This chapter is

based on:

1. Ding, K., Yin, Y., Cao, K., Christensen, G.E., Lin, C.L., Hoffman, E.A., Rein-

hardt, J.M.: Evaluation of lobar biomechanics during respiration using image

registration. In: MICCAI ’09: Proceedings of the 12th International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention, Berlin,

Heidelberg, Springer-Verlag (2009) 739–746

Chapter 4 presents our results on comparison of pulmonary function change
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following radiation therapy. We propose a method that quantitatively measures the

regional changes in lung tissue function following a course of radiation therapy by

using 4DCT and image registration techniques. This chapter is based on:

1. Ding, K., Bayouth, J.E., Buatti, J.M., Christensen, G.E., Reinhardt, J.M.:

4DCT-based measurement of changes in pulmonary function following a course

of radiation therapy. Medical Physics 37(3) (2010) 1261–1272

Chapter 5 presents our results on comparison of the regional measures of re-

gional specific ventilation. We compare three different 4DCT based registration de-

rived measures of regional ventilation to xenon-CT (Xe-CT). 4DCT and Xe-CT data

sets from four adult sheep are used in this study. This chapter has not yet been

published.

Chapter 6 concludes the thesis and proposes some interesting problems for

future research.
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CHAPTER 2
ESTIMATION OF PULMONARY FUNCTION IN DYNAMIC AND

STATIC IMAGE SEQUENCES

2.1 Introduction

The lungs undergo expansion and contraction during the respiratory cycle.

Pulmonary diseases can change the tissue material properties of lung parenchyma and

the mechanics of the respiratory system. Pulmonary emphysema, a chronic obstruc-

tive pulmonary disease (COPD), is associated with decreased elasticity (increased

compliance) of the lung tissue and idiopathic pulmonary fibrosis (IPF), a classic

interstitial lung disease makes the tissue thicker and stiffer (reduced compliance).

While the mechanical changes associated with the change of the material properties

(and the disease processes themselves) originate at a regional level, they are largely

asymptomatic and invisible to currently available global measures of lung function

such as pulmonary function tests (PFTs) until they have significantly advanced and

aggregated. Therefore it would be desirable to have objective methods with which to

evaluate and follow the progression of disease from regional measurements. Recent

advances in multidetector-row CT (MDCT) allow the entire lung to be imaged with

isotropic 0.4 mm voxels in under 10 seconds. Additionally, new retrospective gating

methods, initially used to reconstruct the beating heart, are being applied to produce

high-resolution images of the entire breathing lung throughout the respiratory cycle.

These dynamic imaging capabilities now permit the measurement of regional lung
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mechanical properties which, in addition to recently established functional CT tools

for measurement of regional lung ventilation [21, 22] and perfusion [65], will greatly

enhance the quantitative characterization of lung structure and function.

Nuclear medicine imaging such as positron emission tomography (PET) and

single photon emission CT (SPECT) can provide an assessment of lung function [16],

but its application is limited by low spatial resolution in pulmonary imaging when

images are acquired across several respiratory cycles. Xenon-enhanced CT (Xe-CT)

measures regional ventilation by observing the gas wash-in and wash-out rate on se-

rial CT images [21, 22, 23] but with limited axial coverage (modern MDCT currently

only ranges from about 2.5 to 12 cm). Recently, investigators from other groups have

studied the lung function using image registration techniques [25, 26, 27, 28, 29].

However, restricted by the experiment methods, they were not able to compare the

local tissue expansion between dynamic and static imaging acquisitions. In addition,

they either used very limited landmarks or global measurement such as spirometry

to validate their regional estimates. In this chapter, we estimate regional lung tissue

expansion using 3D image registration in both retrospectively reconstructed dynamic

imaging and static breath-hold image acquisitions. We compare these two indepen-

dent estimates of expansion to each other and to Xe-CT derived estimates of regional

ventilation.
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2.2 Materials and Methods

2.2.1 Data Acquisition

Appropriate animal ethics approval was obtained for these protocols from the

University of Iowa Animal Care and Use Committee and the study adhered to NIH

guidelines for animal experimentation. Four adult sheep were used for experiments.

The sheep were anesthetized using intravenous pentobarbital and mechanically ven-

tilated during experiments. All images were acquired with the animals in the supine

orientation on a Siemens Sensation 64 multi-detector CT scanner (MDCT) (Siemens

Medical Solutions; Erlangen, Germany).

Volumetric CT Data Acquisition by Retrospectively Reconstructed Dy-

namic Imaging The dynamic scans are acquired using the dynamic imaging pro-

tocol during tidal breathing with a pitch of 0.1, slice collimation 0.6 mm, rotation

time 0.5 sec, slice thickness 0.75 mm, increment 0.5 mm, 120 kV, 400 mAs, and ker-

nel B30f. Images are reconstructed retrospectively at 0, 25, 50, 75, and 100% phase

points of the inspiratory portion and 75, 50 and 25% of the expiration portion of the

respiratory cycle (herein denoted as the T0, T1, T2, T3, T4, T5, T6, and T7 images).

Volumetric CT Data Acquisition by Static Breath-hold Imaging The static

scans are acquired in static imaging protocol at 10, 15, 20, and 25 cm H2O (herein

denoted as the P10, P15, P20, and P25 images) airway pressure with the animal

held apneic. The protocol used a tube current of 100 mAs, a tube voltage 120 kV,

slice collimation of 0.6 mm, an effective slice thickness of 0.75 mm, a slice separation
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of 0.5 mm, a pitch of 1, and a field of view selected to fit the lung field of interest.

Both of the two types of scans are acquired with a reconstruction matrix of 512 by

512 and without moving the animal between scans, so after acquisition the data sets

are in rigid alignment.

Xenon CT Data Acquisition The axial locations for the Xe-CT studies are se-

lected from the whole lung volumetric scan performed near end-expiration. Images

are acquired with the scanner set in ventilation triggering mode, typically using 80

keV energy for higher Xe signal enhancement (as shown in a pilot study [66]), 160

mAs tube current, a 360◦ rotation, a 0.33 sec scan time, a 512 by 512 reconstruction

matrix, and a field of view adjusted to fit the lung field of interest. The Xe-CT slice

thickness is approximately 2.4 mm thick, or about 3.4 times thicker than the volumet-

ric CT slices. Twelve contiguous xenon slices are acquired and provide approximately

3 cm of coverage along the axial direction. Respiratory gating during image acqui-

sition is achieved by replacing the standard ECG gating signal with a trigger signal

from a LabView program. Images were acquired at the end expiratory point during

the respiratory cycle. A respiratory tidal volume of 8 cc/kg was used for the Xe-CT

acquisition.

The image acquisition sequence is as follows. Acquisition starts and images

are gathered as the animal breathes six to eight breaths of room air. Next, the xenon

delivery system is turned on and approximately 40 breaths of pure xenon are delivered

while imaging, and then the air source is switched back to room air for another 40

breaths. Thus, axial images are acquired for approximately 90 breaths as the xenon
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gas washes in and out of the lungs.

2.2.2 Image Registration and Mechanical Analysis

Inverse consistent linear elastic image registration was applied to register im-

age pairs [67]. The registration estimates the inverse consistency error between the

forward and reverse transformation (see Figure 2.1), and hence provides more ac-

curate correspondences between two images compared to independent forward and

reverse transformations. Let the two input images of the registration be denoted

as I0 and I1, and let the transforms between two images be h and g. The forward

transformation h is used to deform the image I0 into the shape of the image I1,

and the reverse transformation g is used to deform the shape of I1 into that of I0.

The deformed template and target images are denoted by (I0 ◦ h) and (I1 ◦ g), re-

spectively. The forward and reverse transformations are defined by the equations:

h(X) = X + u(X), g(X) = X + w(X), h−1(X) = X + ũ(X), g−1(X) = X + w̃(X).

The vector-valued functions u, w, ũ, and w̃ are called displacement fields since they

define the transformation in terms of a displacement from a location X.

The registration minimizes the cost function defined as:

C = σ[CSIM(I0 ◦ h, I1) + CSIM(I1 ◦ g, I0)] + (2.1)

χ[CICC(u, w̃) + CICC(w, ũ)] +

ρ[CREG(u) + CREG(w)],
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Figure 2.1: Inverse consistent linear elastic registration jointly estimating h&g helps
reduce the inverse consistency error.

The CSIM term of the cost function defines the symmetric intensity similarity.

The CICC term is the inverse consistency constraint or inverse consistency error cost

and is minimized when the forward and reverse transformations are inverses of each

other. The CREG term is used to regularize the forward and reverse displacement

fields. A 3D Fourier series representation [68] is used to parameterize the forward and

reverse transformations. Christensen and Johnson [67, 69] describe the Fourier series

parameterization used in the consistent registration algorithm in detail. The constants

σ, χ and ρ are used to enforce/balance the constraints. In our registrations, the mean

squared intensity difference is used as similarity measure to drive the registration, and

we set the weighting constants σ = 1, χ = 600, and ρ = 0.00125. The parameters were

decided on the basis of pilot experiments, previous work and experience. The forward
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and reverse transformations are parameterized using Fourier series representation and

the gradient descent is used in the optimization step. More details of the inverse

consistent registration can be found in [67, 70].

After finding out the transforms and the correspondence for each voxel of two

images, we are ready for mechanical analysis on a regional level. In three-dimensional

space, the vector displacement function ~u(x, y, z) that maps image I0 to image I1 is

used to calculate the local lung expansion using the Jacobian determinant J(x, y, z)

defined as:

J(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + ∂ux(x,y,z)
∂x

∂ux(x,y,z)
∂y
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∂z
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∂x
1 + ∂uy(x,y,z)

∂y
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∂z
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∂x
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∂y

1 + ∂uz(x,y,z)
∂z

∣∣∣∣∣∣∣∣∣∣∣∣

,

where ux(x, y, z) is the x component of ~u(x, y, z), uy(x, y, z) is the y component of

~u(x, y, z), and uz(x, y, z) is the z component of ~u(x, y, z).

The Jacobian measures the differential expansion at position (x, y, z) in the

image I1. If the Jacobian is greater than one, there is local tissue expansion; if the

Jacobian is less than one, there is local tissue contraction (Figure 2.2).

2.2.3 Image Preprocessing and Registration Procedures

All volumetric CT data were converted from DICOM format and stored in

16-bit AnalyzeTM (Mayo Clinic, Rochester, MN) format. To reduce memory require-

ments during the image registration and increase the image contrast, the original

16-bit CT data were then converted to 8-bit values [0, 255] using a threshold window
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(a) (b)

Figure 2.2: Color-coded maps showing (a) the Jacobian of the image registration
transformation (unitless) for approximately the same anatomic slice computed from
the T0− T1 inspiration image pair and (b) the T4− T5 expiration image pair. Note
that the color scales are different for (a) and (b). Red regions on the inspiration image
(a) are regions that have high expansion while dark blue regions on the expiration
image (b) have high contraction.

of [-1024HU, 0HU]. The intensity discontinuity at the boundary along the chest wall

and the large intensity difference between the regions inside and outside the lung

increase the mean squared intensity difference of our similarity measure and thus

the total cost function, if the regions are misaligned at boundaries. In this way, the

boundaries of each region are forced to match. Yet the matching does not constrain

the sliding motion between the lungs and the ribs along the boundary at different

pressure or phases (Figure 2.3)

As described Section 2.2.2, the inverse consistent registration algorithm uses

Fourier series representation to parameterize the transformations, so it requires the
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sizes of the input images to be a power of two. Therefore the images are padded with

zeros to size 512×512×2round(log2 Nz), where Nz is the size of the image in Z-direction.

Then to reduce the memory requirements, the images are downsampled by a factor

of two in all three directions using trilinear interpolation.

Since both of the dynamic and static scans are acquired without moving the

animal between scans, and after acquisition the data sets are in rigid alignment, so the

common rigid registration step to initially align two images as seen in other papers

is not performed.

In our study, inverse consistent image registration followed by regional me-

chanical analysis as described in Section 2.2.2 is performed for T0 to T1, T1 to T2,

. . . , and T6 to T7 in the dynamic scans and for P10 to P15, P15 to P20 and P20 to

P25 in the static scans.

2.2.4 Xenon CT and Specific Ventilation

Review of Xenon CT Imaging Xe-enhanced computed tomography (CT; Xe-

CT) is a method for the noninvasive measurement of regional pulmonary ventilation

in intact subjects [71, 21, 22]. Xenon is a nonradioactive, monatomic noble gas

that is denser than air. When imaged in a conventional CT scanner, the density

of Xe measured in Hounsfield units (HU) increases linearly with its concentration.

When Xe concentrations of 30-60% in air are delivered to the lung, CT enhancements

of parenchymal density of 50-150 HU are obtained. If the Xe is introduced and

eliminated from the lung during a controlled washin-washout (wi/wo) ventilation

protocol, repeat CT scans taken at constant lung volume (i.e., at the same point in the
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(a) (b)

Figure 2.3: The intensity transformation maps the CT values to 8-bit unsigned char-
acter data before registration. (a) Original CT data. (b) Data after intesity mapping.

respiratory cycle) will yield a local exponential density curve for any specified region

of interest (ROI)within the lung field. The regional ventilation can be quantified by

fitting a single-compartment exponential model to the rise and decay portions of the

curve using a least-squares fit. For each ROI to be analyzed, the mean region density,

D(t), is calculated versus time (or equivalently, image number). For the wash-in

phase, the compartment model gives [71]:

D(t) =





D0 0 ≤ t < t0

D0 + (Df −D0)(1− e−
t−t0

τ ) t ≥ t0,

(2.2)

where D0 is the baseline density in the ROI prior to switching to xenon gas, Df is the

density that would be observed if xenon was inspired until equilibrium, t0 is the start
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time of the switchover from room air to xenon, and τ is the model time constant.

Thus, using this model, the Df − D0 term represents the enhancement due to the

inspired xenon. The model gives a similar expression for the wash-out phase:

D(t) =





Df 0 ≤ t < t0

D0 + (Df −D0)e
− t−t0

τ t ≥ t0,

(2.3)

where for the wash-out phase t0 denotes the time of switchover from xenon back to

room air. Figure 2.4 shows the density–time variation predicted by the model.
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Figure 2.4: Wash-in and wash-out behaviors predicted by compartment model for
t0 = 5 seconds, τ = 10 seconds, D0 = −620 HU, and Df = −540 HU. Figure from [9]

.

Xenon CT Ventilation Analysis Prior to Xe-CT data analysis, the lung region

was defined using the method from [72], followed, when necessary, by manual editing.

Figure 2.5a shows an example Xe-CT slice with the lung segmentation overlaid. After
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lung segmentation, non-overlapping 8×8 pixel regions of interest (ROIs) were defined

in the lung region on each 2D slice.

As discussed by [23], the time constants of the rising and falling phases of the

curves may be fitted separately or may be forced to be equal. In our analysis, only

the wash-in phase of the Xe protocol was analyzed. To reduce aberrations in the

time series data due to the ROIs overlapping with large blood vessels or regions of

atelectasis (see, for example, the bottom left side of the lungs shown in Figure 2.5a),

we eliminated from consideration any ROI that had more than 40% of its pixels

above -300 HU. Time series data was measured and analyzed for the remaining

ROIs. Specific ventilation (sV, ventilation per unit lung air volume in min−1) for

each ROI was calculated as the inverse of the time constant τ .

Figures 2.5a–b shows screen shots from the software tool “time-series image

analysis” (TSIA) used to analyze the Xe-CT data [23]. This tool facilitates lung

segmentation, region of interest specification, and allows control over the curve fitting

parameters during the exponential fits.

2.2.5 Quantitative Evaluation of Registration Accuracy

Although registration result can be assessed by visual comparison, it is highly

desired to have quantitative evaluation of registration accuracy. An attempt has been

made to establish the registration reference by synthetically warping data such that

the original image and the transformed image are known in advance as well as the

ideal transform between them [73]. However, this approach provides only a generic

evaluation and algorithm performance on real clinical data cannot be measured in
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(a)

(b)

Figure 2.5: Time series data from Xe-CT study. (a) shows the Xe-CT image of the
lungs, with the lung boundaries marked in blue and a rectangular region of interest in
yellow. (b) shows the raw time series data for this region of interest (wash-in phase)
and the associated exponential model fit.
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this way. In [9], we measured the registration accuracy based on a small number

of manually annotated landmarks which provide information about the registration

quality at only a few manually selected locations at airway branches. While the airway

branchpoints can be easily recognized by trained observer, the mean movement of the

airway branchpoints may not represent the movement of parenchyma in other regions

which have larger movement during respiration. It is our interest to know how the

algorithm performs in the regions where large deformation appears, such as the regions

near diaphragm (Figure 2.6).

Figure 2.6: An example of image intensity difference before registration which depicts
larger difference near the diaphragm than other regions.



51

Semi-Automatic Reference Standard An automatic landmark detection algo-

rithm [10] was applied to find and match the landmarks across the static scans and

the dynamic scans. The algorithm automatically detects “distinctive” points in the

fixed image as the landmarks based on a distinctiveness value D(p). Around each

point p, 45 points, q1...q45 are uniformly distributed on a spherical surface with a

radius of 8 voxels. A region of interest ROI(qi) is compared with the corresponding

region of interest ROI(p) around the original point p. D(p) is calculated as:

D(p) =
G(p)

maxj(G(pj))

45∑
i=1

Diff(ROI(p), ROI(qi))

45
(2.4)

where G(p) is the gradient value of point p(x, y, z), j is the total number of

the landmarks we intend to have and Diff(ROI(p), ROI(qi)) is the average difference

of the voxel intensities in the two ROIs.

Figure 2.7 shows an example projection view of all landmarks generated by

the algorithm for a scan.

A semi-automatic system [10] is then applied to guide the observer to find the

landmarks in the fixed image with their corresponding voxels in the moving image.

Each landmark-pair manually annotated by the observer is added to a thin-plate-

spline to warp the moving image. The system utilize the warped image to estimate

where the anatomic match will be located for a new landmark point presented to

the observer, therefore the observer can start the matching from a system estimated

location. Thus, as the warped image becomes more accurate by the new added

landmarks, the task of the observer and becomes easy. The system will calculate
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Figure 2.7: An example projection view of all landmarks generated by the algorithm
for a scan. Figure from Murphy et al. [10].

the automatic point correspondence for the rest of the landmarks if the user has

successfully marked 30 landmarks fully manually and the computer has predicted at

least 10 correspondences in a row correctly. Screen shots from the system are shown

in Figure 2.8.

For each animal, after 200 anatomic landmarks are identified in the static

scan P10 and dynamic scan T0, the observer marked the locations of the voxels

corresponding to the anatomic locations of the landmarks in the rest static or dy-

namic scans. For each landmark, the actual landmark position was compared to the

registration-derived estimate of landmark position and the error was calculated.

2.2.6 Comparison between Estimates

from Registration and sV

Comparison between Estimates of Lung Expansion from Dynamic Scans

and sV To compare the Jacobian values with the sV, we must identify correspond-
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Figure 2.8: A screen shot of the software system used to semi-automatically match
hundreds of landmarks. Figure from Murphy et al. [10].

ing regions in the two images. The Xe-CT has only twelve slices of axial coverage

and the data sets are acquired in rigid alignment as described in Section 2.2.1, so we

register the twelve-slice Xe-CT data to the T0 whole-volume retrospectively recon-

structed dynamic CT data using rigid affine registration as shown in Figure 2.9. We

subdivide the Xe-CT data into around 30 slabs along the y (ventral–dorsal) axis. We

track the deformation of each slab across the sequence of volume images (i.e., from

T0 to T1, T1 to T2 and etc.) and compare the average Jacobian within each slab to

the corresponding average sV measurement in the Xe-CT images in the manner of

correlation coefficient by linear regression.
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(a) (b) (c)

Figure 2.9: Example of the result of affine registration between Xe-CT data and
dynamic respiratory-gated CT data. (a) T0 whole-volume dynamic respiratory-gated
CT data. (b) Fused image. (c) Deformed first breath of the Xe-CT data.

Comparison between Estimates of Lung Expansion from Static Scans and

sV Similarly, we first register the twelve-slice Xe-CT data to the P10 whole-volume

breath-hold static CT data using same rigid affine registration. The lung region corre-

sponding to the Xe-CT image in the static scan is divided into slabs and the motion

of each slab can be tracked using resulting displacement fields. Then the average

Jacobian in each slab is compared with the average sV. The correlation coefficients

between the two estimates are calculated by linear regression.

It is worth noticing that because of the different data acquisition methods

of the dynamic scans, static scans and Xe-CT data, the correlation coefficient may

be affected by different breathing patterns. For example, the Xe-CT data and the

dynamic scans are all acquired when the animals are during tidal breathing while the

static data is acquired at discrete breath-hold pressures.
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2.3 Results

2.3.1 Registration Accuracy

In our study, 200 landmarks were automatically generated by the algorithm

described in Section 2.2.5. Figure 2.10(a) and 2.10(b) show the projection of the

automatically-generated landmark locations onto coronal and sagittal slices for one

animal. This figure shows that landmarks are distributed widely inside the lung.

Figure 2.11 shows the landmark error across eight phase change pairs and

three pressure change pairs. Overall the registration accuracy is on the order of 2

mm, except for the abnormally large landmark errors in pressure change pair P10

to P15 for animal AS70078. After further inspection, we attribute this to the poor

image contrast near dorsal region in this image pair due to atelectasis and edema.

2.3.2 Lung Expansion and Xe-CT Estimates of sV

Figure 2.12 shows the correlation coefficients r2 from the linear regression of

average Jacobian and sV for each phase change pair and pressure change pair for

each animal. The phase change pair T2 to T3 shows the highest average correlation

r2 = 0.85, and the pressure change pair P20 to P25 shows the highest average

correlation r2 = 0.84. Figure 2.13 shows the different phases change pair for different

regions of the lung when largest expansion and contraction occur. Most of the lung

regions will have the largest expansion at the middle phase (T1 to T2 or 25% to 50%

of the inspiration duration) and the largest contraction at the beginning phase (T4

to T5 or 100% to 75% of the expiration duration). Compared with static acquisition,

dynamic acquisition can provide temporal mechanical changes in the respiratory cycle
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(a) (b)

Figure 2.10: Automatically-generated landmark locations projected onto (a) a coronal
slice and (b) a sagittal slice for one animal at T0 breathing phase. Note that all the
landmarks are inside of lung in 3D view.

between different phases.

2.4 Discussion

From Section 2.3.2, we see that the registration-based estimates of regional

lung expansion from the two imaging protocols show equally high correlation to the

Xe-CT sV. Since the Xe-CT data is collected over several breaths during tidal breath-

ing, it is reasonable to expect that the Jacobian calculated from the dynamic scans

would more closely reflect the ventilation patterns measured by the Xe-CT. However,
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Figure 2.11: Registration accuracy from semi-automatic reference standard (200 land-
marks) by mean ± standard deviation of landmark errors for each animal for each
(a) phase change pair and (b) pressure change pair.
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Figure 2.12: Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each animal for each for each (a) phase change pair and (b) pressure change
pair.
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(a)

(b)

Figure 2.13: Color coded image showing (a) coronal view and (b) sagittal view of
the the phase change pair when the largest expansion occurs during inspiration (first
row) and the largest contraction occurs during expiration (second row). From left to
right: Sheep AS70077, AS70078, AS70079 and AS70080.
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the results do not support these expectations. One explanation for the close match

between the Jacobian calculated from the static scans and the sV is that some of

the pressure steps used in the static acquisition are close to the mouth pressure ob-

served during tidal breathing. Further investigation of the pressure measurement for

the dynamic scans during the tidal breathing is needed. Even though the compari-

Figure 2.14: An example of the motion hysteresis of a point near diaphragm of sheep
AS70078 during tidal breathing.

son of the Jacobian to the sV shows equally good correlations for both the dynamic

scans and the static scans, the true dynamics of the respiratory system are probably

better revealed using dynamic scans acquired across free breathing since the moving
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lungs may exhibit viscoelastic behavior. The color-coded regions in Figure 2.13 show

that the lung does not expand or contract uniformly along the phases. For example,

some regions along the diaphragm in Figure 2.13(a) have larger expansion in the later

phases than the earlier phase. It would be interesting to determine if the regions of

maximal expansion vary with body position and level of inspiration. The motion

hysteresis, which is patient specific, can be revealed by tracking individual points

using the deformation field across dynamic scans as shown in Figure 2.14. On the

other hand, the static scans have better image contrast, improved spatial resolution,

and deliver relatively lower radiation dose compared to the dynamic scans. Dynamic

imaging requires regular and repeatable breathing patterns, so the subject must be

trained to breath properly before images are acquired. In addition, the subject will

receive more radiation dose using the dynamic acquisition than from the single pair

of static breath-hold images.

In Section 2.2.2, we mentioned that the registration algorithm is based on a

linear elastic model. Because of the assumption of linear elasticity, the registration

based on the elastic model is only applicable to small deformations and may fail when

recovering large image differences. Though in Section 2.2.2 we have shown small

average landmark errors (less than 2 mm), it is our interest to know the relationship

between the landmark errors and the volume difference in the input images or in other

words, the pressure change in our experiments. Since our objective is to translate

our methods for use with humans, it is necessary to understand the limitations of

the registration algorithm through more experiments. In many clinical exams, the
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patient is scanned at two different lung volumes - near functional residual capacity

(FRC) and near total lung capacity (TLC). Because of the large anatomic differences

between these two lung configurations, it is unclear whether the basic assumptions of

the linear elastic model are appropriate, or if more sophisticated modeling is needed.

We have compared registration-based regional lung expansion estimates to

Xe-CT derived measures of regional ventilation to validate our measurements. The

correlation to the Xe-CT sV is equally high in the Jacobian calculated from the dy-

namic retrospectively reconstructed scans (r2 = 0.85) and from the static breath-hold

scans (r2 = 0.84). Our semi-automatic reference standard to quantitatively evaluate

the accuracy of 3D image registration shows that the average registration error is on

the order of 2 mm. Though Xe-CT based regional lung function assessment has the

advantage of directly measuring specific ventilation, it requires the use of expensive

xenon gas which has a strong anesthetic effect that must be carefully monitored.

Xe-CT image acquisition also requires imaging across several respiratory cycles to

observe the gas wash-in or wash-out in order to measure regional ventilation. In

contrast, registration-based estimates of lung expansion may provide valuable lung

function information from a single pair of respiratory-gated CT images, or from a

dynamic image sequence retrospectively reconstructed across changing respiratory

phase. As these new methods are extended to use in humans, they may provide

valuable new tools for studying the normal and diseased lung.
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CHAPTER 3
EVALUATION OF LOBAR BIOMECHANICS DURING

RESPIRATION

3.1 Introduction

As introduced in Chapter 1, the human lungs are divided into five independent

compartments called lobes as shown in Figure 3.1. Here we briefly review the anatomy

for lungs. Each lung is surrounded by a closed sac, the pleural sac, consisting of a

thin sheet of cells called pleura. The relationship between a lung and its pleural sac

can be visualized by imagining what happens when you push a fist into a fluid-filled

balloon. The fist becomes coated by one surface of the balloon. The opposite surfaces

lie close together but are separated by a thin layer of fluid. Unlike the balloons and

fist, however, the plural surface coating the lung (visceral pleural) is firmly attached

to the lung by connective tissue. Similarly, the outer layer (the parietal pleura) is

attached to and lines the interior thoracic wall and diaphragm. The visceral pleural

also lines the surface of lobes. Figure 3.2 shows the spatial locations of the fissures and

lobes. A lobar fissure is a thin space (approximately 0.5 mm depending on volume of

pleural fluid) separating the lung lobes. The left lung is divided into the left upper

(LUL) and left lower (LLL) lobes, separated by the oblique fissure. The right lung

is partitioned into the right upper lobe, middle lobe, and the lower lobe, separated

by the oblique and horizontal fissures. The branching patterns of the bronchial and

vascular trees also follow the lobar structure of the lung.
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Figure 3.1: Drawing of human lungs cut open. Figure from [11].

(a) (b)

Figure 3.2: Drawing of the mediastinal surface of (a) right lung and (b) left lung.
Figure from [11].
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Regional function and biomechanics depend on the material properties of the

lung parenchyma and the complex interaction between the lobes, diaphragm, and

chest wall. Hubmayr et al. [74] have used embedded metal markers and X-ray projec-

tion images to study regional lung mechanics. Recently, image registration has been

used to assess regional lung function and tissue biomechanics using multiple 3D im-

ages at different lung volumes by CT [29, 25, 9] and MRI [27]. Although those results

show regional changes in lung function and mechanics, they do not explicitly account

for the interaction between the lung lobes. It is believed that during respiration the

lobes move relative to each other (sliding and rotation), and this motion may provide

a means to reduce the lung parenchymal distortion and avoid regions of high local

stress [74]. In addition, understanding of how lobes slip relative to one another is

of importance to the understanding of how the lung accommodates chest wall shape

changes while minimizing effects on regional distribution of ventilation.

In this chapter, we investigate lung biomechanics using a lobe-by-lobe reg-

istration technique. Our approach explicitly accounts for the registration displace-

ment field discontinuity at the fissure (due to lobar sliding), and should provide more

accurate image registration near the fissure and, as a result, better biomechanical

measurements. We measure lobar sliding by evaluating the relative displacement

on both sides of the fissure. We compare whole-lung-based registration accuracy to

lobe-by-lobe registration accuracy using vessel landmarks.
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3.2 Materials and Methods

3.2.1 Method Overview

Our goal is to measure lobar sliding by looking at the discontinuity of displace-

ment filed in the line profile perpendicular to the fissure surface. Figure 3.3 shows

a block diagram of the entire process. Two image data sets are used in the process-

ing. A functional residual capacity (FRC) scan and a total lung capacity (TLC) scan

were acquired for each subject. A automatic lobe segmentation algorithm is applied

to get masked lobe images FRCLobe and TLCLobe. To compare the difference of the

registration from traditional lung-by-lung based approach, automatic lung segmenta-

tion algorithm is also applied to FRCCT and TLCCT to get the masked lung images

FRCLung and TLCLung.

Nonlinear image registration is used to define transformations on these data

sets. Transformation T1 consists transformations defined between each lobe, and are

recombined to the lungs. Transformations T2 is defined between each lung. These

two transformations are used to assess local lobar sliding (SDFissure) on the fissure

surface via the sliding calculation of the transformations.

3.2.2 Data Acquisition

All data were gathered under a protocol approved by our institutional review

board. Three pairs of volumetric CT data sets from three normal human subjects were

used in this study. Each image pair was acquired with a Siemens Sensation 64 multi-

detector row CT scanner (Forchheim, Germany) during breath-holds near functional

residual capacity (FRC) and total lung capacity (TLC) in the same scanning session.
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Figure 3.3: Figure shows the two images (FRCCT and TLCCT) that are analyzed dur-
ing the processing. A automatic lobe segmentation algorithm is applied to get masked
lobe images FRCLobe and TLCLobe. To compare the difference of the registration from
traditional lung-by-lung based approach, automatic lung segmentation algorithm is
also applied to FRCCT and TLCCT to get the masked lung images FRCLung and
TLCLung. Lobe-by-lobe transformation T1 and lung-by-lung T2 register total lung
capacity (TLC) data to functional residual capacity (FRC) data and can be used to
assess local lobar sliding (SDFissure) on the fissure surface via the sliding calculation of
the transformations. (Shaded boxes indicate CT image data; white boxes indicated
derived or calculated data; thick arrows indicate image registration transformations
being calculated; thin solid lines and thin dashed lines indicate other operations.)
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Each volumetric data set was acquired at a section spacing of 0.5 ∼ 0.6 mm and a

reconstruction matrix of 512 × 512. In-plane pixel spacing is approximately 0.6 mm

× 0.6 mm.

3.2.3 Automatic Lobe Segmentation

An automatic method is applied for lobe segmentation [75]. The initial estima-

tion of the lobe begins with the segmentation of the lungs, airways, and vessels using

the automatic methods reported in [72, 76, 77]. The branch point of the airway tree is

labeled using the method reported in [76]. The original vessel segmentation algorithm

has two steps: line filtering and vessel tracking, but only the first step is used for lobe

segmentation since the vessel tracking step is time consuming and not necessary. The

vessel distance map is then generated and combined with the original CT image to

form a modified distance map so that the airways and vessels are forced to be the

minima (basins) of the gray-level topography. In this modified distance map, the

fissures are near the watersheds separating the basins. A watershed transform is then

applied to the modified distance map and the resulting basins are merged according to

the automatically selected markers from the anatomically labeled airway tree in the

previous step. The second stage for fissure refinement is achieved by optimal surface

detection. For the oblique fissure, firstly the region of interest (ROI) is extracted as

a region of voxels with certain distance to the initial fissure segmentation. The ROI

is then rotated and resampled to form the bounding-box for proper calculation of the

optimal surface. Secondly, the ridgeness map is calculated and combined with the

original image to define the cost function. The graph search algorithm is applied to



69

find the optimal surface for the oblique fissure. For refining the horizontal fissure, it

is similar to the steps for refining the oblique fissure.

3.2.4 Image Registration

The CT scans at FRC and TLC are registered for each subject. The FRC–

TLC image pairs show large lung volume change, large tissue deformation, and large

voxel intensity changes. To account for these differences between the images during

registration, we used a lung mass preserving registration method [50]. The method

uses a similarity metric that estimates the local tissue and air fraction within the

lung and minimizes the local tissue mass difference. This method has been shown

to be effective at registering across large lung volume changes (such as FRC–TLC

pairs) [50].

From the CT value of a given voxel, the tissue volume can be estimated as

V (x) = ν(x)
I(x)−HUair

HUtissue −HUair

= ν(x)γ(I(x)), (3.1)

where ν(x) denotes the volume and I(x) is the intensity of a voxel at position x.

HUair and HUtissue refer to the intensity of air and tissue, respectively [78]. In this

work, we assume that air is -1000 HU and tissue is 55 HU. γ(I(x)) is introduced for

notational simplicity.

Given (5.2), we can then define the similarity measure as the sum of squared
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local tissue volume difference:

C =
∑
x∈Ω

[Vr(x)− Vf (T (x))]2 =
∑
x∈Ω

[νr(x)γ(Ir(x))− νf (T (x)) γ(If (x))]2 , (3.2)

where Ω denotes the overlapping lung regions in the two images, and T (x) is the

warping function. In this work, T (x) is a cubic B-splines transform:

T (x) = x +
∑

k⊂K

φk β(x), (3.3)

where φ describes the displacements of the control nodes and β(x) is a three-dimensional

tensor product of basis functions of cubic B-Spline.

Given a warping function T (x), If (T (x)) can be interpolated from the moving

image. νf (T (x)) can be calculated from the Jacobian J(x) of the deformation as

νf (T (x) = J(x)νr(x). Note that the Jacobian value must be positive here, which can

be achieved by using displacement constraints on the control nodes.

3.2.5 Computational Setup

In this study, the lobe-by-lobe registration is used to investigate lobar sliding.

Our current analysis is limited to the upper and lower lobes of the left lung, since the

three lobes in the right lung will likely have more complicated interaction.

We start with the lobar segmentations of the TLC and FRC images as de-

scribed in 3.2.3. After segmentation we match the TLC left upper lobe to the FRC

left upper lobe, and the TLC left lower lobe to the FRC left lower lobe. After regis-

tration, the displacement fields are recombined into one left lung displacement field.
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Figure 3.4: Comparison of displacement field between the lobe-by-lobe registration
(left column) and the lung-by-lung registration (middle column) for the LUL (yellow)
and LLL (green). The right column is the difference of the two displacement fields
with the magnitude indicated by the color bar.

We also perform conventional lung-by-lung registration to match the TLC left lung

to the FRC left lung, using the same registration algorithm.

Discontinuities of the displacement field along the fissure surface are indica-

tions of lobar sliding. Figure 3.4 shows the displacement fields generated by lobe-

by-lobe and lung-by-lung registration methods for one subject. The figure shows a

considerable difference between these methods along the fissure surface.

3.2.6 Assessment of Image Registration Accuracy

Vascular bifurcation points are used as landmarks to evaluate registration

accuracy. An observer uses a landmark annotating system [10] to find corresponding

landmarks in the FRC and TLC images. For each landmark, the actual landmark
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position is compared to the registration-derived estimate of landmark position from

the two registration methods and the landmark error is calculated.

3.2.7 Evaluation of Local Lobar Sliding

Once the lobe segmentations are obtained, the oblique fissure surface between

LUL and LLL is extracted as a triangular mesh. The normal direction is then cal-

culated at each vertex of the mesh. The sliding motion is quantified for each point

along the fissure surface by looking at the discontinuity in the line profile perpendic-

ular to the fissure surface as shown in Figure 3.6. On each side, the profile of tangent

component of the displacement is fitted as a 3rd order polynomial function d of the

distance to the fissure surface. The sliding distance s(x) at fissure surface position x

is then defined as

s(x) =‖ d+
0 − d−0 ‖, x ∈ S. (3.4)

where d+
0 is the predicted value on the fissure surface from the polynomial function

along the positive normal direction (we define the normal direction pointing the LUL

as positive.) while d−0 is the predicted value from the other side.

Figure 3.5 shows examples of the results from the process. The fissure surface

is based on the lobe segmentation result (Figure 3.5(a)). It is extracted as a triangular

mesh (Figure 3.5(b)) from the left upper lobe. The displacement profiles of tangent

components along a line perpendicular to the fissure surface at different locations (red

dots in Figure 3.5(c)) are compared for both the whole-lung-based and the lobe-based
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(a) (b) (c)

Figure 3.5: Examples of the results from the process. (a) Surface rendering of the
segmentation of the left upper lobe. (b) The surface between the left upper lobe
and left lower lobe is extracted as a triangular mesh. (c) The displacement profiles
of tangent components along a line perpendicular to the fissure surface at different
locations (red dots) are compared for both the whole-lung-based and the lobe-based
registration methods.

registration methods.

3.3 Results

3.3.1 Registration Accuracy

For each lobe, 20 to 40 landmarks are identified. Table 3.1 shows the results

of the landmark distance before and after registration for the lobe-based and whole-

lung based registrations. The average landmark errors are 0.83 mm and 0.73 mm for

whole-lung-based registration and lobe-based registration.

3.3.2 Local Lobar Sliding

The sliding distance at each fissure surface point was calculated to evaluate

the local lobar sliding. A step length of 1 mm and 10 sample points were used along
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Table 3.1: Comparison of registration accuracy between
lobe-based and whole-lung-based registrations with distances in mm.

Before Whole-lung-based Lobe-based
Subject Lobe Registration Registration registration

A LUL 19.08 ± 8.25 0.99 ± 0.99 0.95 ± 0.81
LLL 35.79 ± 12.69 0.94 ± 1.12 0.71 ± 0.41

B LUL 15.09 ± 4.03 0.72 ± 0.81 0.57 ± 0.30
LLL 38.33 ± 6.55 0.87 ± 0.48 0.75 ± 0.43

C LUL 13.45 ± 6.59 0.78 ± 0.72 0.78 ± 0.83
LLL 35.45 ± 10.76 0.68 ± 0.24 0.67 ± 0.30

the normal direction on each side of the surface. A surface point was not taken into

consideration if any of its 20 sample points were outside the lobes. Figure 3.6 shows

the displacement profile of the tangent component along a line perpendicular to the

fissure surface at three different locations (near the apex, near the lingula and near

the base) for the whole-lung-based (square) and the lobe-based (solid circle) methods.

The results show increased sliding (larger discontinuity) in the more basal positions

using the lobe-by-lobe analysis. However, these discontinuities are not apparent using

the lung-by-lung analysis.

Figure 3.7 compares the estimated lobar sliding distances between two dif-

ferent registration methods. The whole-lung-based registration shows small sliding

distance (6 1 mm) because the transformation model enforces displacement field

smoothness across the fissure, while the lobe-by-lobe registration method recovers

the displacement field discontinuity along the fissure.
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(a) Subject A with volume change = 3.2 Liters

(b) Subject B with volume change = 2.3 Liters

(c) Subject C with volume change = 2.4 Liters

Figure 3.6: Displacement profile of tangent components along a line perpendicular to
the fissure surface at three different locations (left: near apex; middle: near lingula;
and right: near base) for both the whole-lung-based (square) and the lobe-based (solid
circle) methods.
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(a) Subject A with volume change = 3.2 Liters

(b) Subject B with volume change = 2.3 Liters

(c) Subject C with volume change = 2.4 Liters

Figure 3.7: The color-coded sliding distance map overlays on the fissure surface. Left
most column is the surface rendering of LUL (gray) and the LLL (gold); second
column shows the sliding distance from the lobe-based registration; and right most
column shows the sliding distance from the whole-lung registration.
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3.4 Discussion

We proposed a method to estimate local lobe sliding using lobe-by-lobe lung-

mass-preserving registration. In addition, we compared the displacement field, the

landmark error, and the sliding distance between the lobe-by-lobe registration and

the lung-by-lung registration for the left lungs of three normal human subjects. We

used major vascular bifurcation as landmarks. Thus, there are not large numbers of

landmarks near fissures. As seen in Figure 3.4, both methods yield similar matching

results in the center regions of the lobes while a considerable difference is observed

in the vicinity of fissure. Thus, as seen in Table 3.1 there is not a very significant

decrease in the overall landmark error while there are significant regional differences.

Visual inspection of the displacement field shows considerable differences along the

fissure. The manually annotated landmarks located in the major vessel bifurcations

show that the lobe-by-lobe registration yields smaller average landmark error than

the whole-lung-based registration. Moreover, the lung-by-lung registration is not able

to capture the sliding between the lobes while the lobe-by-lobe registration shows the

same superior-inferior gradient of sliding distance in all three cases. One possible

explanation for this pattern is that the lungs contract and expand more at the di-

aphragm than at the apex and the LUL is more firmly anchored to the chest wall

than LLL.

It would be ideal to validate our methods using physical phantoms or by re-

sults from other methods such as hyperpolarized helium (He3) MRI [79]. However, a

visualization inspection can help to validate by comparing the patterns of calculated



78

sliding distance with the known anatomy features of the lungs. Comparing the Fig-

ure 3.7 left most column with Figure 3.2(b), one can recognize the fissure surface goes

across the main left lung branches of the bronchus, pulmonary arteries and pulmonary

veins (the center location with three openings in Figure 3.2(b) and the hollow region

in Figure 3.7). This region is located near the carina which serves the anchor point

of the lungs. Therefore, the result of lower value of the sliding distance in this region

from second column of Figure 3.7 is also confirmed by the local anatomy constraints.

In addition to evaluating lobar sliding, the lobe-by-lobe registration may yield

more physiologically meaningful assessments of regional lung function and mechanics.

Registration transformation functions that do not explicitly model the lobar fissure

are not able to capture lobar sliding and thus experience more registration errors near

the fissure. These findings may have implications in using registration to estimate

lung function (specific volume change and lung expansion) and for tracking lung

tissue and lung nodules, across the respiratory cycle. These methods can be directly

extended to respiratory-gated CT of the lung, where CT data is reconstructed at

multiple points across the respiratory cycle.

In conclusion, we have described a method to evaluate the local lobar sliding

using a lobe-by-lobe lung-mass-preserving registration. Application of these meth-

ods may be useful for increasing our understanding of function and biomechanical

behavior of the respiratory system.
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CHAPTER 4
MEASUREMENT OF PULMONARY FUNCTION CHANGES

FOLLOWING RADIATION THERAPY

4.1 Introduction

Radiation therapy (RT) for lung cancer is commonly limited to sub-therapeutic

doses due to unintended toxicity to normal lung tissue. The radiation dose needed to

control the tumor is well above that which causes toxicity to the normal lung tissue.

Increase of tumor control could be achieved by delivering substantially higher radia-

tion doses to the tumor [62], which is optimally achieved with RT delivery schemes

that reduce toxicity. Reducing the frequency of occurrence and magnitude of normal

lung function loss may benefit from treatment plans that incorporate relationships

between regional and functional based lung information and the radiation dose.

The complex inter-relationship between RT treatment and the resultant changes

in pulmonary function, or radiation induced lung toxicity, are poorly defined. Com-

mon toxicities include radiation pneumonitis, radiation fibrosis and ultimately altered

respiratory capacity. Recent dose escalation studies of radiosurgery show a clear

dose response relationship for primary lung tumors and that toxicity increased with

dose [80, 81, 82, 83]. The relationship between radiation dose and normal lung tissue

toxicity has been investigated since CT based planning became commonplace over a

decade ago [84], yet the clear indicators for toxicity remain elusive [85, 86, 87, 88, 89].

It has been broadly accepted that radiation dose has a direct effect on treated lung tis-
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sue and the lung in the treatment field shows radiographic fibrotic changes consistent

with fibrosis [90]. It is largely assumed that this is the predominant and in some cases

only significant effector of altered lung function despite known changes in inflamma-

tory cells outside the treated area. Most current avoidance methods for lung tissue

are solely based on direct dose-volume relationships with treated lung [84, 87, 91, 92],

assuming lung tissue is homogeneous in its response to toxicity, irrespective of tis-

sue location or underlying function [63]. Recently Yaremko et al. [63] proposed a

method incorporating image registration derived estimate of ventilation to reduce

normal lung irradiation. However, the radiation induced pulmonary function change

may depend on the location, underlying function of that lung prior to radiations,

radiation dose and other factors, especially in diseased lungs [93, 94]. No human

studies have investigated the relationships between local lung function, spatial radi-

ation dose distribution, and radiation induced lung function changes. However, rat

studies have investigated changes in pulmonary function based on irradiation of dif-

ferent regions of rat lung. Luijk et al. showed structural changes in the lung were

only correlated with changes in breathing rate when irradiating lateral lung regions

(shielding the mediastinum) [95], and that greater lung damage was observed when

irradiating the heart [96] while holding mean lung dose and volume of lung irradi-

ated constant. They showed irradiation of larger volumes with smaller doses causes

greater toxicity than treating smaller volumes with larger doses [97]. This is a re-

sult confirmed by others [98]. A common yet unspecified thread in the rat studies is

that radiation treatments including the mediastinum caused a greater change in pul-
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monary function. Establishing a quantitative measurement of the pulmonary function

change before and after RT may greatly accelerate similar studies of the relationship

between RT treatment and resultant changes in pulmonary function. Furthermore,

this could translate into clinically relevant data for future treatment planning schemes

that avoid increased functional injury to the lungs.

The pulmonary function test is a common clinical measurement tool to as-

sess lung function, but only provides global information on the entire respiratory

system. Regional pulmonary function can be measured using various imaging modal-

ities. Nuclear medicine imaging, such as positron emission tomography (PET) and

single photon emission CT (SPECT), can provide an assessment of local lung func-

tion [17, 16, 99]. Hyperpolarized noble gas MR imaging has been developed for func-

tional imaging of pulmonary ventilation [18, 19, 20]. Xenon-enhanced CT (Xe-CT)

can measure regional ventilation by observing the gas wash-in and wash-out rate on

serial CT images [21, 23]. Image registration derived regional expansion can be used

to indicate pulmonary function since there is a high correlation between regional lung

expansion and regional ventilation. We previously demonstrated a correlation be-

tween the image registration based estimate of regional expansion (average Jacobian)

and the Xe-CT derived specific ventilation [9] (linear regression, average r2 = 0.73)

in both static and dynamic image acquisition [100].

This chapter describes a technique using 4DCT, image registration, and lung

biomechanical analysis to measure regional lung function before and after radiation

therapy. The validity of the non-rigid image registration is evaluated by indepen-
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dently assessing 120 vascular bifurcation points within the lung. Changes in regional

lung function before and after RT are compared with the radiation dose distribution

by transforming the pulmonary function maps into the same coordinate system as

that of the computed dose distribution. This provides a framework to examine the

relationship between lung function change, delivered dose, and treatment location

within the lung.

4.2 Material and methods

4.2.1 Method Overview

Our goal is to measure changes in lung function by comparing regional lung

volumes at end-inspiration and end-expiration before and after treatment. Figure 4.1

shows a block diagram of the entire process. Five image data sets are used in the

processing. A “free breathing” pretreatment (FBPRE) fan beam CT scan for treatment

planning is acquired prior to RT using an ungated protocol with the subject breathing

quietly during the scan. The FBPRE image is used during the treatment planning

process as the target data set; all radiation dose calculations and daily localization

procedures are registered to the FBPRE CT coordinate system. A 4DCT scan is also

acquired prior to RT, and CT data sets are reconstructed at ten distinct phases of

respiration. For this study we focus on the data sets from two of the phases, a volume

at end expiration (EEPRE) and a volume at end inspiration (EIPRE). A second 4DCT

study was acquired after RT and used in this study as “post” RT scans for analysis

of post-RT changes (EEPOST and EIPOST).

Nonlinear image registration is used to define four transformations on these
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EEPRE

EIPRE

EEPOST

EIPOST

Non-rigid 
registration T2

JACPRE T-JACPRE

JACPOST T-JACPOST

DIFF

RTDD

Jacobian
calculation

Transformed
by T3

Transformed
by T4

Non-rigid 
registration T4

Subtraction

Non-rigid 
registration T1

Jacobian
calculation

FBPRE

Non-rigid 
registration T3

Compare

Same coordinate

Figure 4.1: Figure shows the five images (EEPRE, EIPRE, EEPOST, EIPOST, and FBPRE)
that are analyzed during the processing. Transformations T1 and T2 register end in-
spiration (EI) to end expiration (EE) data and can be used to assess local lung func-
tion via the Jacobian (JAC) of the transformations. PRE and POST indicate before
and after RT. The difference (DIFF) between the pre- and post-treatment Jacobian
data can be be used to look for changes in pulmonary function. Transformations T3
and T4 map the Jacobian data into the coordinate system of the FBPRE (planning
CT) image, which allows direct comparison with the radiation treatment dose dis-
tribution (RTDD). FBPRE and RTDD are in the same coordinate system since the
FBPRE scan is used to create the dose plan. (Shaded boxes indicate CT image data;
white boxes indicated derived or calculated data; thick arrows indicate image regis-
tration transformations being calculated; thin solid lines indicate other operations.)
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data sets. Table 4.1 summarizes these four transformations. Transformations T1

and T2 are defined between respiratory phase points on the 4DCT, and are used to

estimate local lung expansion. Transformations T3 and T4 are used to convert the

lung expansion data into same coordinate system as the RT dose map, and are used

to compare changes in lung expansion with delivered RT dose.

Local lung function is assessed via the Jacobian (JAC) of the transformations

T1 and T2 which register end inspiration (EI) to end expiration (EE) data. The Ja-

cobian of the transformation T1 (JACPRE) describes the volume changes from EIPRE

to EEPRE and the Jacobian of transformation T2 (JACPOST) describes the volume

changes from EIPOST to EEPOST. To compare these changes, the Jacobian of T1 and

the Jacobian of T2 were mapped to the FBPRE coordinate system with transforma-

tions T3 and T4, respectively. Additional details on the registration algorithms and

other processing steps are given below.

4.2.2 Image Data Sets

All data sets were gathered under a protocol approved by the University of

Iowa IRB. Data sets from two subjects with lung tumors treated in the Department

of Radiation Oncology at the University of Iowa Hospitals and Clinics were analyzed

retrospectively for this study: all scans were acquired as clinically indicated. Both

subjects had two 4DCT studies - the first study was prior to the first course of RT and

the second study followed delivery of RT. Both 4DCT studies included a contrast-

enhanced free breathing CT scan used for RT treatment planning dose calculations.

Prior to each 4DCT scan, the subject received respiratory training using a biofeedback
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Table 4.1: Summary of image registrations performed to detect RT-induced changes
in lung function. Names of images and transformations refer to those given in

Figure 4.1.

Transformation Image Used Algorithm
Name Transformed To Used

T1 EIPRE→ EEPRE Calculate pre-RT lung expansion
map (Jacobian of T1)

SICLE [67]

T2 EIPOST→ EEPOST Calculate post-RT lung expan-
sion map (Jacobian of T2)

SICLE [67]

T3 EEPRE→ FBPRE Transform pre-RT Jacobian into
RT dose planning system coordi-
nate system for comparison

SICLE [67]

T4 EEPOST→ FBPRE Transform post-RT Jacobian
into RT dose planning sys-
tem coordinate system for
comparison

Elastix-NRP
[101]

system (RESP@RATE, Intercure Ltd., Lod, Israel) to identify their nominal breathing

rate. Musical cues were used to pace respiration during imaging employing a technique

developed at our institution and shown to have high success and compliance [102].

For subject A, the EEPOST and EIPOST data were acquired after a complete

course of RT treatments (approximately one year after the FBPRE scan and 48 Gy in

16 Gy/fx for 3 fractions). For subject B, the EEPOST and EIPOST data were acquired

after 13 of 37 fractions (23.4 Gy in 1.8 Gy/fx out of 66.6 Gy total), approximately

one month later after the FBPRE scan. These patient scans were selected for analysis

because they contained 4DCT data sets both pre-RT and post-RT, with a known

planned dose distribution. For subject A, the tumor was a solitary mass (∼ 4 cm3)

located in the left lung and the right lung was disease-free. For subject B, the tumor
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was located in the right lung as well as the mediastinum and extending all the way

up into the right supra-clavicular region while the left lung was disease-free. Each

volumetric data set was acquired with a section spacing of 2 to 3 mm and a recon-

struction matrix of 512 × 512. In-plane pixel spacing is approximately 0.97 mm ×

0.97 mm.

4.2.3 Image Registration

Review of small deformation inverse consistent linear elastic (SICLE) im-

age registration: SICLE [67] was used to estimate transformations T1, T2 and

T3 shown in Table 4.1 and Figure 4.1. The SICLE algorithm minimizes the inverse

consistency error between the forward transformation h from template image T to

target image S and the reverse transformation g from S to T , providing more accurate

correspondences between two images compared to algorithms that independently es-

timate forward and reverse transformations. The transformations h and g are jointly

estimated by minimizing the cost function

C = σ(

∫

Ω

|T (h(x))− S(x)|2dx +

∫

Ω

|S(g(y))− T (y)|2dy)

+ χ(

∫

Ω

||h(x)− g−1(x)||2dx +

∫

Ω

||g(y)− h−1(y)||2dy)

+ ρ(

∫

Ω

||Lu(x)||2dx +

∫

Ω

||Lw(y)||2dy),

(4.1)

where Ω is the domain of the images T and S. Assume that h(x) = x + u(x),

h−1(y) = y + ũ(y), g(y) = y + w(y) and g−1(x) = x + w̃(x) where h−1(h(x)) = x

and g−1(g(y)) = y. Here u, w, ũ and w̃ are called displacement fields since they
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define the transformation in terms of a displacement from a location x. The first

two integrals of the cost function define the cumulative intensity squared error (shape

differences) between the deformed image T ◦ h and image S and the differences be-

tween the deformed image S ◦ g and image T . The second two integrals define the

inverse consistency error which is minimized when h = g−1. This constraint couples

the estimation of h and g together and penalizes transformations that are not inverses

of each other. The third two integrals are linear elastic constraint which applies the

linear elasticity operator [67] L to ensure that the transformations maintain the topol-

ogy of the images T and S. This term is used to regularize the forward and reverse

voxel displacement fields u(x) and w(y), so that they are smooth and continuous by

penalizing large derivatives of the displacement fields. For this study, the weighting

constants were set as σ = 1, χ = 600, and ρ = 0.00125. These parameters are similar

to those used in our previous work [9].

B-splines image registration with local rigidity penalty (Elastix-NRP): A

high probability exists for the tumor to have changed fundamentally in size and

shape between the FBPRE study and the EEPOST and EIPOST scans, since substan-

tial radiation dose has been delivered and significant time has passed. In order to

avoid introducing an apparent local function change due to tumor size change due

to RT, the T4 transformation that registers EEPOST to FBPRE is computed by a

non-rigid registration with a local rigidity penalty (NRP) term [101] using Elastix

(http://elastix.isi.uu.nl). The EEPOST image is registered to the FBPRE image us-

ing mutual information and a B-splines parameterized transformation. To define the
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local rigidity constraint, the lung is segmented using the method from [72] and the

tumor region is manually segmented. The non-rigid registration with local rigidity

penalty term method has been previously described in [101]. The impact of the lo-

cal rigidity penalty was analyzed by visual inspection, difference imaging, and overall

quantitative effect on computed vector displacement of voxels within and immediately

surrounding the tumor.

4.2.4 Computational Setup

Processing starts by resampling all five CT data sets to a voxel size of 1 mm

× 1 mm × 1 mm. After resampling, the main airways are identified on all images

using the Pulmonary Workstation 2.0 (VIDA Diagnostics, Inc., Iowa City, IA). The

airway segmentation algorithm uses a seeded region growing method with an adaptive

threshold. The segmentation is initialized with seed voxels from the trachea. After

airway segmentation, the images are translated into a common coordinate system by

aligning the carinas. Image FBPRE is defined as the reference image.

After this preprocessing, EEPRE is registered to FBPRE using SICLE to find

T3. Next T1 (EIPRE to EEPRE) and T2 (EIPOST to EEPOST) are estimated using

SICLE.

To find T4 (EEPOST to FBPRE), the non-rigid registration with local rigidity

penalty term method is applied. This registration is performed in two stages. For

the first stage of initial alignment, five image resolutions are used and no lung mask

and rigid penalty term are applied. B-spline grid spacing is set to 10 voxels and the

number of optimization iterations is 500 for each resolution. For the second stage
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of fine alignment, the lung mask in the target image (FBPRE) is applied and rigid

penalty term is specified. The rigidity is set to 1.0 in the tumor region and 0.0 in

other lung regions. In this stage, the full resolution images are registered with B-

spline grid spacing of 10 voxels followed by registration using B-spline grid spacing

of 5 voxels. In this way, the cost function is first optimized for the whole lung region

and then specifically for the rigid tumor region. For more details about the parameter

settings for our study, please see http://elastix.isi.uu.nl/wiki.php.

4.2.5 Assessment of Image Registration Accuracy

Approximately 120 vascular bifurcation points are used as landmarks to eval-

uate registration accuracy. A landmark annotating system [10] is used to guide the

observer to find the corresponding landmarks in the FBPRE, EEPRE, EIPRE, EEPOST,

and EIPOST images. Each landmark pair manually annotated by the observer was

added to a thin-plate-spline to warp the FBPRE image and predict the position for

the next unmatched landmark for the observer. The matching task for the observer

becomes easier as the warped image is deformed by previously selected landmarks. For

each landmark, the actual landmark position is compared to the registration-derived

estimate of landmark position and the landmark error is calculated.

4.2.6 Computing Changes in Pulmonary Function

Lung volume change across respiratory cycle is predominantly due to inspired

or expired air [52, 24]. Lung ventilation is defined as the volume of air inspired into

or expired out of the lungs in a unit time (usually in 1 minute), so air volume change
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is proportional to ventilation. Therefore, lung volume change should be correlated

to ventilation and specific volume change should be correlated to specific ventilation.

We previously shown that the Jacobian is directly related to local specific volume

change (sVol, expansion) as sVol = J − 1, where J is the Jacobian of the image

registration transformation between two images acquired at different lung volumes [9].

Thus, the Jacobian should also be correlated to specific ventilation. Using a sheep

model, we compared the regional lung expansion estimated by registering images

acquired at different pressures (breath-hold) and respiratory phases (tidal breathing)

with the xenon CT specific ventilation in four adult sheep. Regional lung expansion,

as estimated from the Jacobian of the image registration transformations, was well

correlated with xenon CT specific ventilation [9, 100] (linear regression, average r2 =

0.73). Therefore, the Jacobian can be used as a local measure of pulmonary function.

Note that the image pairs used to estimate regional pulmonary expansion via the

Jacobian must be acquired within a relatively short time interval, or the assumption

that all lung volume change is due to air volume change may not hold.

In our process, local lung expansion can be calculated from the Jacobian of

the transformations T1 and T2. The vector transformation function h(x) that maps

image T to image S as described in Section 5.2.3 is used to calculate the local lung
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expansion and contraction using the Jacobian determinant J(h(x)) defined as:

J(h(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂h1(x)
∂x1

∂h2(x)
∂x1

∂h3(x)
∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

∂h3(x)
∂x2

∂h1(x)
∂x3

∂h2(x)
∂x3

∂h3(x)
∂x3

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.2)

where h1(x) is the x component of h(x), h2(x) is the y component of h(x), and h3(x)

is the z component of h(x). In a Lagrangian reference frame, there is local tissue

expansion if the Jacobian is greater than one; and there is local tissue contraction

if the Jacobian is less than one. If we consider a small volume Vs at point x in S

and the corresponding volume Vt at h(x) in T , then J(h(x)) = Vt/Vs. Therefore, if

a lung tissue point has J(h(x)) = 1.5, it means the Vt = 1.5Vs. Based on our earlier

findings [9, 100], a higher Jacobian value reflects a higher specific ventilation.

Transformations T3 and T4 transform the Jacobian data into the coordinate

system of FBPRE where they can be compared to look for changes in lung function.

As shown in Figure 4.1, the subtraction of the transformed Jacobian data T-JACPRE

from Jacobian data T-JACPOST results the Jacobian difference image which is the

image of the pulmonary function change.

4.2.7 Comparing Regional Pulmonary Function Change

to Planned Radiation Dose Distribution

We are interested in looking at the resultant change in the local Jacobian and

comparing those changes with the computed RT planning system dose distribution

map. The radiation dose distribution image has voxel size of 4 mm × 4 mm × 4 mm
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(Pinnacle treatment planning system, version 8.0). Linear interpolation was used to

resample the radiation dose distribution image to the same voxel size as the FBPRE

image (1 mm × 1 mm × 1 mm). After interpolation, the Jacobian difference and

the dose distribution image were aligned to the FBPRE image. Registration of both

images and the dose distribution to a common coordinate system allows the radiation

dose and the change in pulmonary function to be compared.

4.3 Results

4.3.1 Registration Accuracy

Approximately 120 manually identified landmarks within the lungs were used

to compute registration accuracy. The landmarks were nominally uniformly dis-

tributed between two lungs for each subject. Figure 4.2 shows an example of the

distribution of the landmarks in subject B for the FBPRE image, where the red re-

gion is the manually-segmented tumor within the right lung and blue spheres are

the landmarks. The (x,y,z) coordinate of each landmark location was recorded for

each CT data set (EIPRE, EEPRE, EIPOST, EEPOST and FBPRE) before and after reg-

istration for both subjects. Figure 4.3(a) shows the magnitude of respiratory motion

for subject A prior to RT, with anatomical landmarks having pre-RT excursions of

2 to 12 mm in the contralateral lung and half that distance in the ipsilateral lung.

Following the non-rigid registration of the EIPRE and EEPRE data sets, the average

landmark distances are of the order of 1 mm. Figure 4.3(b) shows similar motion

of landmarks post-RT before registration, with ∼ 1 mm distances between landmark

points following registration. The registration pair EEPRE and FBPRE (Fig. 4.3(c))
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shows the smallest landmark distance both before and after registration in two cases.

The amplitude of breathing during the free breathing scan FBPRE was assumed to

have been acquired with a mean position predominantly weighted by the end of ex-

piration of 4DCT. Thus, there is little anatomic difference in the registration pair

EEPRE and FBPRE compared to other registration pairs. Conversely, Fig. 4.3(d)

shows the EEPOST is different from the FBPRE image, as these are acquired on dif-

ferent days. For this subject the non-rigid registration produced superior agreement

between landmarks in the ipsilateral lung than observed in the contralateral lung.

The respiratory motion from Subject B (Fig. 4.4) produced larger pre-RT excursions

(range 2 to 18 mm) which were reduced overall following ∼ 23 Gy of RT. Overall

the post-RT excursions (Fig. 4.4(b)) were of the same magnitude in the both lungs.

The trends for subject B in Fig. 4.4(c) and Fig. 4.4(d) were consistent with those

observed for subject A, in both pre-RT and post-RT. These results demonstrate that

the average landmark registration error is on the order of 1 mm for both subjects.

4.3.2 Regional Pulmonary Function Change

and Planned Radiation Dose Distribution

Figure 4.5 illustrates the difference between SICLE method and Elastix-NRP

method. The first row of the figure shows transverse slices from the target image

FBPRE and the template image EEPOST at approximately the same anatomic location.

The figure shows that, as expected, the tumor volume has decreased after the RT.

The second row shows the difference between the registration result (the transformed

template image) and the target image for both registration algorithms. While most
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Figure 4.2: 3D view of landmarks as vessel bifurcation points in the FBPRE for subject
B. The red region is the manually-segmented tumor and the blue spheres are the
manually-defined landmarks.

regions show similar patterns in the difference images, there are some differences in

the tissue regions immediately adjacent to the the tumor location. Because the SICLE

algorithm has no information about the tumor region, it forces the tumor boundary

to match before and after RT. However, the rigidity map in the Elastix-NRP method

keeps the tumor as a rigid structure, and is able to capture the differences in the

tumor region before and after RT. The third row of the figure shows the resulting
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Figure 4.3: Landmark distances for subject A before and after registration. Distances
between registration pairs (a) T1: EIPRE and EEPRE; (b) T2: EIPOST and EEPOST;
(c) T3: EEPRE and FBPRE; and (d) T4: EEPOST and FBPRE. Boxplot lower extreme
is first quartile, boxplot upper extreme is third quartile. Median is shown with solid
horizontal line. Whiskers show either the minimum (maximum) value or extend 1.5
times the first to third quartile range beyond the lower (upper) extreme of the box,
whichever is smaller (larger). Outliers are marked with circles.
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Figure 4.4: Landmark distances for subject B before and after registration. Distances
between registration pairs (a) T1: EIPRE and EEPRE; (b) T2: EIPOST and EEPOST;
(c) T3: EEPRE and FBPRE; and (d) T4: EEPOST and FBPRE. Boxplot lower extreme
is first quartile, boxplot upper extreme is third quartile. Median is shown with solid
horizontal line. Whiskers show either the minimum (maximum) value or extend 1.5
times the first to third quartile range beyond the lower (upper) extreme of the box,
whichever is smaller (larger). Outliers are marked with circles.
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deformation fields near the tumor for SICLE and Elastix-NRP methods. It can been

seen that in the regions at the left upper and left lower corners of the image around the

tumor, the deformation field from SICLE shows expansion and the deformation field

from Elastix-NRP is kept rigid. The final figure in the third row shows the difference

in pulmonary function change (DIFF) calculated using SICLE and Elastix-NRP to

find the T4 transformation. Again, this result shows that there is a difference in the

pulmonary function change estimates derived from these two methods in the regions

at the left upper and lower left corner of the image around the tumor.

Figure 4.6 shows the color-coded pulmonary function images and function

change image DIFF for both subjects. The first column shows the pulmonary function

map before RT. The second column shows the pulmonary function map after RT. Note

that the color scales for these images are different for the different subjects because

of differences in tidal volume. For example, in subject A, green and blue indicate

normally functioning (expanding) lung tissue with a Jacobian value greater than 1.1,

while orange and red regions show decreased lung function with a Jacobian value less

than 0.95. As described in Section 4.2.7, both function images are mapped to FBPRE

using transformations T3 and T4. The pulmonary function change images are shown

in column three. In the difference images, blue regions represent increased pulmonary

function and the red regions represent decreased pulmonary function. The rightmost

column in the figure is the planned radiation dose distribution, in units of Grays (Gy).

The spatial map of functional changes in column three can be visually compared to

the regions receiving the highest radiation doses (column four).
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 4.5: Comparison between the SICLE and Elastix-NRP registrations. (a) and
(b): Target image FBPRE and template image EEPOST with red arrows showing the
tumor region. (c) and (d): difference of the registration result with the target im-
age for the purely non-rigid registration SICLE and non-rigid registration with local
rigidity penalty term Elastix-NRP. (e) and (f): the resulting deformation field near
the tumor for SICLE and Elastix-NRP. (g): the difference of the pulmonary function
change from SICLE and Elastix-NRP.



99

For subject A, the most dramatic change in pulmonary function is seen in

the treated left lung (right side of figure), demonstrating changes from significant

expansion (green and blue) before RT to little or no expansion (orange to red) after

RT in high dose regions. Notice that more regions in the left lung have increased

lung function (blue) following RT than the right lung. However, the right lung (left

side of the figure) also shows modest changes in lung function while receiving modest

radiation (< 8 Gy). The Jacobian change ranges from −0.15 to 0.1 with a mean

value of −0.02 in the right lung and from −0.22 to 0.23 with a mean value of −0.02

in the left lung. It is consistent with our expectation that the left lung (ipsilateral

lung, where the radiation dose is targeted) has larger change of pulmonary function

than the right lung (contralateral lung, where the radiation dose is much lower). The

similar mean value of Jacobian change in both lung may be caused by the small

volume of the tumor in subject A. For subject B, the first and second columns show

modest changes in pulmonary function before and after RT for the untreated left

lung, while there is large increase in pulmonary function in the treated right lung

following 13 of 37 fractions of RT. The third column in subject B also indicates that

the rim of the tumor shows an increase in lung function induced by the decrease in

tumor volume. The Jacobian change ranges from −0.40 to 0.39 with a mean value

of −0.03 in the contralateral lung and from −0.25 to 0.50 with a mean value of 0.11

in the ipsilateral lung. This change in function might have been concealed if purely

nonrigid image registration algorithms were used to estimate T4. The correlation

coefficients (linear regression) for pulmonary function change and the radiation dose
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were calculated for each patient and each lung. For the subject A, the r value is

−0.19 in the ipsilateral lung and −0.14 in the contralateral lung. For subject B, the

r value is −0.37 in the ipsilateral lung and 0.25 in the contralateral lung. Therefore,

the correlation between the pulmonary function change and radiation dose for the

whole lung is very weak and other factors such as treatment location may play a role

in this relationship.

Figure 4.7 presents data showing how the relationship between radiation dose

and pulmonary function change may have a location-dependent factor. Figures 4.7(a)

and 4.7(b) show scatter plots of voxel-by-voxel pulmonary function change (Jacobian

change) vs. radiation dose for the entire contralateral and ipsilateral lung in subject

A. Figure 4.7(a) shows modest increases in pulmonary function in the contralateral

lung post-RT, even though there is much less radiation dose in these regions compared

to the treated lung. Figure 4.7(b) shows the same relationship for the ipsilateral lung,

where changes in function and radiation doses are much more pronounced. In both

lungs, for regions receiving radiation dose smaller than 24 Gy, either an increase or

a decrease in pulmonary function is observed. For regions receiving a radiation dose

larger than 24 Gy, all regions show a decrease in pulmonary function.

Figures 4.7(c)–(f) show scatter plots between pulmonary function change and

radiation dose in the ipsilateral lung within disk-shaped regions at fixed distances

from the tumor center. A weak correlation between the dose and pulmonary func-

tion change is found at distances from 20 to 25 mm to the tumor (linear regression,

r = −0.73), suggesting that detected locally-compromised pulmonary function may
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(a) Subject A

(b) Subject B

Figure 4.6: The pulmonary function change compare to the planned radiation dose
distribution. The dose map, pulmonary function and pulmonary function change
are overlaid on the FBPRE. The first column is the pulmonary function before RT.
The second column is the pulmonary function after RT. The third column is the
pulmonary function change from the subtraction of the previous two images. The
fourth column is the planned radiation dose distribution. In the third column, the
red arrows show regions with decreased pulmonary function and the blue arrows show
regions with increased pulmonary function.



102

have resulted from radiation injury. The figures shown for other distances from the

tumor center do not portray such a simple linear relationship. It is likely that dose

and distance from the tumor are not the only factors affecting pulmonary function

change, and factors such as the initial pulmonary function within the region, anatomic

location, and proximity to other pulmonary anatomy will have an effect. More work

is needed to investigate these effects and their complex interrelationships.

4.4 Discussion

We have described a method to measure radiation induced spatial pulmonary

function change using 4DCT and image registration. Major vascular bifurcations are

used as landmarks to evaluate the image registration. Average registration landmark

error is on the order of 1 mm.

The SICLE algorithm is used to assess local lung expansion via the Jacobian

of the image registration transformation. The SICLE and Elastix-NRP registration

methods are used to transform the Jacobian images into the same coordinate system

for comparison, and for comparison with the radiation dose map.

The Elastix-NRP algorithm was used with a local rigidity map, to account for

the change in lung tumor size before and after RT. Using this approach, the increased

pulmonary function of the regions outside tumor after RT can be mapped correctly

to the regions inside tumor before RT. For simplicity, we set the rigidity coefficient

for the tumor region in the EEPOST as one (zero as completely nonrigid tissue and

one for rigid tissue). However, in the EEPRE to FBPRE registration using the inverse

consistent registration, the average Jacobian value in the tumor region is about 0.94
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Pulmonary function change in subject A compared to the radiation dose
in scatter plot with linear regression in (a) contralateral lung, (b) ipsilateral lung and
in the ipsilateral lung regions which are at the distance of (c) 10 to 15 mm, (d) 20 to
25 mm, (e) 30 to 35 mm, and (f) 40 to 45 mm to the center of tumor region.
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which indicates there is small amount of compression in the tumor region (a value

of unity indicates no expansion or contraction). Therefore, more experimentation is

needed to find the best rigidity coefficient in tumor to yield physiologically meaningful

results.

The pulmonary function change measured by change in the Jacobian of the

image registration transformations was compared with the planned radiation dose

distribution in two subjects. One subject had fully completed the entire course of

RT and the other subject had completed about one-third of the treatment (13 of 37

fractions).

In this study, the difference in pulmonary function change between the treated

lung and non-treated lung was examined within each subject. Since in both patients

the tumor was confined to one lung (left lung for subject A and right lung for sub-

ject B), the pulmonary function change observed in the contralateral lung may be

able to serve as a control for the changes observed in the ipsilateral lung. Caution

should be used with this approach since spatial functional changes appear to be a

function of more than planned radiation dose. Figure 4.6 shows noticeable differences

in pulmonary function change between the untreated regions and the treated regions.

These differences correlate well with the radiation dose distribution in the high dose

regions. Therefore, a more sophisticated analysis that divides the region based on the

isocontours of the radiation dose may be more effective in describing this relationship.

In subject A, the treated regions show large decrease of pulmonary function

(red) around tumor region and large increase of pulmonary function (blue) in the
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ipsilateral lung. For subject B, there is a significant increase of the pulmonary func-

tion at the basal regions of the treated (right) lung after the treatment indicating

the effectiveness of the radiation therapy. Since the EEPOST and EIPOST images for

subject B are acquired after one-third of the RT treatments, it would be interesting

to acquire additional EEPOST and EIPOST images at other points during therapy so

that pulmonary function change can be examined throughout the treatment.

The results in Figure 4.7 show that function change is not only a function of

dose, but that there is likely a spatial dependence between the dose distribution and

pulmonary function change as well. Other factors, such as initial level of pulmonary

function, anatomic location and proximity to the surrounding anatomy, and the effects

of a particular RT treatment plan, may also impact lung tissue function change post-

RT. Additional work, perhaps using animal models, is required to investigate these

effects and their complex interrelationships.

One uncertainty of this comparison is introduced by the difference between

the planned and actual dose. The delivered dose at each voxel could be estimated

by convolving the planned dose with the known respiratory motion. The motion

used would need to be unique for each fraction delivered. Our approach assumes

insignificant lung tissue motion to occur during radiation delivery, as the treatment

delivery was gated to allow respiratory motion less than the resolution of the dose

grid.

The analysis has been limited to comparing response in the ipsilateral vs.

contralateral lung. However, it would be natural to consider changes in pulmonary
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function at the lobar level as well. It is our expectation that regional pulmonary

function may also be affected mechanically by the neighboring lobe. Lobar segmen-

tations, such as those provided by [75], could be overlaid on top of both the dose

distribution maps and the pulmonary function change images to observe these effects

on a lobe-by-lobe basis.

In conclusion, we have described a method to measure regional pulmonary

function change following a course of radiation therapy using image registration. This

method may be useful to study the relationships between radiation dose distribution

and pulmonary function change, to increase our understanding of the lung toxicity,

and to improve radiation therapy for lung tumor control.
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CHAPTER 5
COMPARISON OF REGIONAL VENTILATION MEASURES

5.1 Introduction

Lung ventilation is the term used to characterize the volume of air per unit

time that enters or exits the lung. Regional ventilation is the measurement of ven-

tilation on a local, or regional, level. Since the primary function of the lung is gas

exchange, ventilation can be interpreted as an index of lung function. Injury and

disease processes can alter lung function on a global and/or a local level. Recent

advances in multi-detector-row CT (MDCT), 4DCT respiratory gating methods, and

image processing techniques enable us to study pulmonary function at the regional

level with high resolution anatomical information compared to other methods. MDCT

can be used to acquire multiple static breath-hold CT images of the lung taken at

different lung volumes, or with proper respiratory control, 4DCT images of the lung

reconstructed at different respiratory phases [103, 104, 105]. Image registration can

be applied to this data to estimate a deformation field that transforms the lung from

one volume configuration to the other. This deformation field can be analyzed to esti-

mate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make

biomechanical measurements. When combined with image segmentation algorithms,

functional and biomechanical measurements can be reported on a lung, lobe, and

sublobar basis, or interpreted relative to the anatomy of other important respiratory

structure, such as the airway tree [9, 106, 100, 107].
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An important emerging application of these methods is the detection of pul-

monary function change in subjects undergoing radiation therapy (RT) for lung can-

cer. During RT, treatment is commonly limited to sub-therapeutic doses due to

unintended toxicity to normal lung tissue. Reducing the frequency of occurrence and

magnitude of normal lung function loss may benefit from treatment plans that in-

corporate relationships between regional and functional based lung information and

the radiation dose. Yaremko et al. [63] proposed a method incorporating image reg-

istration derived estimate of ventilation to reduce normal lung irradiation. We have

described how the measurement of pulmonary function may be useful as a planning

tool during RT planning, may be useful for tracking the progression of toxicity to

nearby normal tissue during RT, and can be used to evaluate the effectiveness of a

treatment post-therapy [64].

The physiologic significance of the registration-based measures of respiratory

function can be established by comparing to more conventional measurements, such

as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. Xenon-

enhanced CT (Xe-CT) measures regional ventilation by observing the gas wash-in and

wash-out rate on serial CT images [21, 22, 23]. Xe-CT imaging has the advantage of

high temporal resolution and anatomical information. Although it comes along with

limited axial coverage, it can be used to compare with registration-based measures of

regional lung function in animal studies for validation purpose.

This chapter describes three measures to estimate regional ventilation from

image registration of CT images. These different measures are evaluated by compar-
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ison with Xe-CT estimated ventilation. Individual regional ventilation measures are

compared to Xe-CT estimated ventilation by transforming them to the same coor-

dinate system. This provides a clue of which measure to use in order to estimate

regional ventilation from image registration of CT images.

5.2 Material and methods

5.2.1 Method Overview

Our goal is to validate and compare the measures used to estimate regional

lung ventilation from image registration by comparing them to Xe-CT estimated

ventilation. Figure 5.1 shows a block diagram of the entire process. Two types of

data were acquired for each animal: a 4DCT scan and a Xe-CT scan. In order

to make our comparisons under the same physiological conditions, each animal was

scanned and mechanically ventilated with the same tidal volume (TV) and positive

end-expiratory pressure (PEEP) during the two types of scans. The data sets from

the 4DCT scan were reconstructed at eight phases of respiration. For this study we

focus on the data sets from two of the phases, a volume near end expiration (EE)

and a volume near end inspiration (EI). For the Xe-CT scan, 45 distinctive partial

lung volumetric scans were performed at volume near end expiration, or the initial

end expiration scan (EE0) to the last expiration scan (EE44).

The nonlinear image registration is used to define the transformation T1 be-

tween the EE and EI in order to measure the regional lung ventilation from the 4DCT

scan. The Xe-CT-based estimated regional lung ventilation is computed on the EE0

by using Pulmonary Analysis Software Suite 11.0 (PASS) software [108]. The same
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nonlinear image registration is also applied to define the transformation T2 which

maps the EE0 to the EE so that the Xe-CT based estimate of ventilation can be

mapped into the same coordinate system as that of the registration-based estimate

of ventilation. Additional details on the registration algorithm and other processing

steps are given below.

5.2.2 Image Data Sets

Appropriate animal ethics approval was obtained for these protocols from the

University of Iowa Animal Care and Use Committee and the study adhered to NIH

guidelines for animal experimentation. Four adult male sheep A, B, C, and D (with

weights 44.0, 37.8, 40.4, and 46.7 kg) were used for this study. The sheep were

anesthetized using intravenous pentobarbital and mechanically ventilated during ex-

periments. The 4DCT images were acquired with the animals in the supine position

using the dynamic imaging protocol with a pitch of 0.1, slice collimation of 0.6 mm,

rotation time of 0.5 sec, slice thickness of 0.75 mm, slice increment of 0.5 mm, 120

kV, 400 mAs, and kernel B30f. Images were reconstructed retrospectively at 0, 25,

50, 75, and 100% of the inspiration duration and 75, 50 and 25% of the expiration du-

ration. The 0% (EE) and 100% (EI) inspiration phases were used for later ventilation

measurements. A twelve contiguous axial locations and approximately 45 breaths

for Xe-CT studies were selected from the whole lung volumetric scan performed near

end-expiration. Images were acquired with the scanner set in ventilation triggering

mode with 80 keV energy (for higher Xe signal enhancement), 160 mAs tube current,

a 360◦ rotation, a 0.33 sec scan time, and 2.4 mm slice thickness. Respiratory gating
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Figure 5.1: Figure shows the two types of images (a image pair from 4DCT scan, the
full lung volumetric phases EE and EI, and 45 distinctive partial lung volumetric Xe-
CT scans EE0 to EE44 that are analyzed during the processing. Transformations T1
registers end inspiration (EI) to end expiration (EE) data and can be used to assess
local lung function via calculations of three ventilation measures: specific air volume
change by specific volume change (SAJ), specific air volume change by corrected
Jacobian (SACJ), and specific air volume change by intensity (SAI). The 45 distinctive
partial lung volumetric Xe-CT scans EE0 to EE44 are used to calculate Xe-CT-based
measure of specific ventilation (SV). Transformations T2 maps the SV data into
the coordinate system of the EE image (end expiration phase of the 4DCT scan),
which allows direct comparison with the 4DCT and registration based measures of
ventilation. Both EE and EE0 are at volumes near end inspiration. (Shaded boxes
indicate CT image data; white boxes indicated derived or calculated data; thick
arrows indicate image registration transformations being calculated; thin solid lines
indicate other operations.)
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is achieved by replacing the standard ECG gating signal with a trigger signal from a

LabView program. The respiratory rate (RR) for four animals ranges from 15 to 18

breaths per minute. Both of the two types of images were acquired with a matrix of

512 by 512 and without moving the animal between scans.

5.2.3 Image Registration

The tissue volume and vesselness measure preserving nonrigid registration

(TVP) algorithm is used to estimate transforms EI to EE and EE0 to EE. The algo-

rithm minimizes the sum of squared tissue volume difference (SSTVD) [50, 52, 53, 109]

and vesselness measure difference (SSVMD), utilizing the rich image intensity infor-

mation and natural anatomic landmarks provided by the vessels. This method has

been shown to be effective at registering across lung CT images with high accu-

racy [110, 54].

Let I1 and I2 represent two 3D image volumes to be registered. The vector

x = (x1, x2, x3)
T defines the voxel coordinate within an image. The algorithm find

the optimal transformation h that maps the template image I1 to the target image

I2 by minimizing the cost function

CTOTAL = ρ

∫

Ω

[V2(x)− V1(h(x))]2 dx + χ

∫

Ω

[F2(x)− F1(h(x))]2 . (5.1)

where Ω is the union domain of the images I1 and I2. The transformation h is a (3×1)

vector-valued function defined on the voxel lattice that h(x) gives its corresponding
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location in the template image at location x in the target image. The first integral of

the cost function defines the SSTVD cost and the second integral of the cost function

defines the SSVMD cost.

The SSTVD cost assumes that the measured Hounsfield units (HU) in the lung

CT images is a function of tissue and air content. Following the findings by Hoffman

et. al [78], from the CT value of a given voxel, the tissue volume can be estimated as

V (x) = ν(x)
I(x)−HUair

HUtissue −HUair

= ν(x)β(I(x)), (5.2)

and the air volume can be estimated as

V ′(x) = ν(x)
HUtissue − I(x)

HUtissue −HUair

= ν(x)α(I(x)), (5.3)

where ν(x) denotes the volume of voxel x and I(x) is the intensity of a voxel at

position x. HUair and HUtissue refer to the intensity of air and tissue, respectively.

In this work, we assume that air is -1000 HU and tissue is 0 HU. α(I(x)) and β(I(x))

are introduced for notational simplicity, and α(I(x)) + β(I(x)) = 1.

Given (5.2), we can then define the SSTVD cost:

CSSTVD =

∫

Ω

[V2(x)− V1(h(x))]2 dx (5.4)

=

∫

Ω

[ν2(x)β(I2(x))− ν1(h(x))β(I1(x))]2 dx (5.5)
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Figure 5.2: Example of a given voxel under deformation h(x) from template image
to target image. V1 and V2 are tissue volumes. V ′

1 and V ′
2 are air volumes.

With the warping function h(x), I1(h(x)) can be interpolated from the tem-

plate image. ν1(h(x)) can be calculated from the Jacobian J(x) of the deformation

as ν1(h(x)) = J(x)ν2(x).

Figure 5.2 shows an example of a given cube under deformation h from tem-

plate image to target image. The total cube volumes are ν1 and ν2. The intensities

in of the cube in the template image and the target image are I1 and I2. The small

white volume inside the cube represents the tissue volume V1 and V2. The air volume

is represented by V ′
1 and V ′

2 . Notice that as the air flows out of cube and the air

volume decreases, the intensity increase from a lower value I1 to a higher value I2.

In Figure 5.2, the dark blue in the template cube represents lower intensity and the

light blue in the target cube represents higher intensity. Both tissue volume and the

air volume change in this example.
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As the blood vessels branch to small diameters, the raw grayscale informa-

tion from vessel voxels provide almost no contribution to guide the intensity-based

registration. To better utilize the information of blood vessel locations, we use the

vesselness measure (VM) based on the eigenvalues of the Hessian matrix of image

intensity. Frangi’s vesselness function [111] is defined as

F (λ) =





(1− e−
R2

A
2α2 ) · e

−R2
B

2β2 · (1− e
− S2

2γ2 ) if λ2 < 0 and λ3 < 0

0 otherwise

(5.6)

with

RA =
|λ2|
|λ3| , RB =

|λ1|√
|λ2λ3|

, S =
√

λ2
1 + λ2

2 + λ2
3, (5.7)

where RA distinguishes between plate-like and tubular structures, RB accounts for

the deviation from a blob-like structure, and S differentiates between tubular struc-

ture and noise. The vesselness function has been previously widely used in vessel

segmentations in lungs [77, 112] and in retinas [113]. α, β, γ control the sensitivity of

the vesselness measure. The vesselness measure is rescaled to [0, 1] and can be con-

sidered as a probability-like estimate of vesselness features. For this study, α = 0.5,

β = 0.5, and γ = 5 and the weighting constants in the total cost were set as ρ = 1 and

χ = 0.2. These parameters are similar to those used in our previous work [110, 54].

The transformation h(x) is a cubic B-splines transform:

h(x) = x +
∑
i∈G

φiβ
(3)(x− xi), (5.8)
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where φi describes the displacements of the control nodes and β(3)(x) is a three-

dimensional tensor product of basis functions of cubic B-Spline. A spatial multires-

olution procedure from coarse to fine is used in the registration in order to improve

speed, accuracy and robustness. The total cost in Equation 5.1 is optimized using a

limited-memory, quasi-Newton minimization method with bounds (L-BFGS-B) [55]

algorithm. Based on the sufficient conditions to guarantee the local injectivity of

functions parameterized by uniform cubic B-Splines proposed by Choi and Lee [56],

the B-Splines coefficients are constrained so that the transformation maintains the

topology of two images.

5.2.4 Regional Ventilation Measures

from Image Registration

After we obtain the optimal warping function, we can calculate the regional

ventilation, which is equal to the difference in local air volume change per unit time.

Therefore, the specific ventilation is equal to specific air volume change per unit time.

These three ventilation measures are described below.

Specific air volume change by specific volume change (SAJ): The assump-

tion for regional ventilation measure is that local volume change is only due to air

and the regional volume change is only caused by the local air volume change. Or in

other words, there is no tissue volume in a given local volume. Figure 5.3 illustrates

such assumption. Compared with a general condition in Figure 5.3, the local volume

now is purely air volume, or equivalently, ν1 = V ′
1 and ν2 = V ′

2 . Then the specific
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Figure 5.3: Example of a given voxel under deformation h(x) from template image
to target image, with the assumption of no tissue volume. V ′

1 and V ′
2 are air volumes.

air volume change is equal to specific volume change. Since the Jacobian tells us the

local volume expansion (or contraction), the regional ventilation can be measured by:

SAJ =
ν1(h(x))− ν2(x)

ν2(x)
= J(x)− 1. (5.9)

We used this measure as index of the regional function and compared it with

the Xe-CT estimate of regional lung function along the lung height direction. Regional

lung expansion, as estimated from the Jacobian of the image registration transforma-

tions, was well correlated with xenon CT specific ventilation [9, 100] (linear regression,

average r2 = 0.73).
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Specific air volume change by corrected Jacobian (SACJ): Applying the

same assumptions (5.2) and (5.3) used in the SSTVD cost function, we have

SACJ =
V ′

1(h(x))− V ′
2(x)

V ′
2(x)

(5.10)

=
V ′

1(h(x))

V ′
1(x)

− 1 (5.11)

=
ν1(h(x))α(I1(h(x)))

ν2(x)α(I2(x))
− 1 (5.12)

Given a warping function h(x), I1(h(x)) can be interpolated from the template

image. ν1(h(x)) can be calculated from the Jacobian J(x) of the deformation as

ν1(h(x)) = J(x)ν2(x). Therefore, the specific air volume change is then

SACJ = J(x)
α(I1(h(x)))

α(I2(x))
− 1 (5.13)

= J(x)
HUtissue − I1(h(x))

HUtissue − I2(x)
− 1 (5.14)

If we assume that air is -1000 HU and tissue is 0 HU, then specific air volume change

is

SACJ = J(x)
I1(h(x))

I2(x)
− 1. (5.15)

Compared to Equation 5.9, the correction factor I1(h(x))
I2(x)

above depends on the voxel

intensity. Notice that Figure 5.2 is corresponding SACJ which represents the most

general case of volume changes.
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Specific air volume change by intensity (SAI): The intensity based measure

of regional air volume change SAI can be derived from the SACJ. Now we introduce

another assumption that the tissue volume is preserved, or equivalently, that the tissue

volume difference ∆V (x) = V1(h(x))−V2(x) = 0. Under this assumption,V1(h(x)) =

V2(x) and we have

ν1(h(x))β(I1(h(x))) = ν2(x)β(I2(x)), (5.16)

and

ν1(h(x)) = ν2(x)
β(I2(x))

β(I1(h(x)))
, (5.17)

Since ν1(h(x)) = J(x)ν2(x), with above equation, we have

J(x) =
β(I2(x))

β(I1(h(x)))
(5.18)

=
I2(x)−HUair

I1(h(x))−HUair

. (5.19)

Substituting the above equation into equation 5.14, yields

SAI =
I2(x)−HUair

I1(h(x))−HUair

HUtissue − I1(h(x))

HUtissue − I2(x)
− 1 (5.20)

=
I2(x)HUtissue + HUairI1(h(x))− I1(h(x))HUtissue −HUairI2(x)

(I1(h(x))−HUair)(HUtissue − I2(x))
(5.21)
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Figure 5.4: Example of a given voxel under deformation h(x) from template image
to target image, with the assumption of no tissue volume change. Notice the tissue
volume V1 = V2 under this assumption. V ′

1 and V ′
2 are air volumes.

If we assume that air is -1000 HU and tissue is 0 HU, then

SAI = 1000
I1(h(x))− I2(x)

I2(x)(I1(h(x)) + 1000)
(5.22)

which is exactly the equation as described in Simon [114], Guerrero et al. [25] and

Fuld et al. [24].

Figure 5.4 illustrates the assumption with no tissue volume change in SAI. In

Figure 5.4, while the whole volume change s from ν1 to ν2, the tissue volume inside

the cube remains the same (V1 = V2).

Difference of specific air volume change (DSA) and difference of tissue

volume (DT): To investigate the relationship between the measurements of specific
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air volume changes and the tissue volume change, we also measure the difference

between equation (5.15) and equation (5.22) by comparing the difference of specific

air volume change (DSA) between SACJ and SAI, and the difference of tissue volume

(DT) as:

DSA = SACJ − SAI (5.23)

DT = V1(h(x))− V2(x) (5.24)

= ν1(h(x))β(I1(h(x)))− ν2(x)β(I2(x)) (5.25)

= J(x)ν2(x)β(I1(h(x)))− ν2(x)β(I2(x)) (5.26)

= ν2(x)
J(x)(I1(h(x))−HUair)− (I2(x)−HUair)

HUtissue −HUair

(5.27)

Again, if we assume that air is -1000 HU and tissue is 0 HU, then the tissue volume

difference is:

DT = ν2(x)
J(x)(I1(h(x)) + 1000)− (I2(x) + 1000)

1000
(5.28)

In this study, the absolute values of DT and DSA are used in analysis.

5.2.5 Computational Setup

Processing starts by identifying the lung regions in all images using the Pul-

monary Workstation 2.0 (VIDA Diagnostics, Inc., Iowa City, IA). The Xe-CT estimate
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of SV is computed in the coordinates of the EE0 using Pulmonary Analysis Software

Suite 11.0 (PASS) [108] at the original image size of 0.5 mm × 0.5 mm × 2.4 mm

voxels. Overlapping 1 × 8 regions of interest (ROI) are defined in the lung region on

each 2D slice. All the images including the EE, EI, EE0 and their corresponding lung

region masks or SV map are then resampled to a voxel size of 1 mm × 1 mm × 1 mm.

After preprocessing, EI is registered to EE using the TVP for measuring the regional

ventilation from these two phases in a 4DCT scan. The resulting transformation is

used to estimate the SAJ, SACJ and SAI. Then EE0 is registered to EE using TVP

as well to map the SV to the same coordinate system as that of the SAJ, SACJ and

SAI. For the TVP, the multiresolution strategy is used in the processing and it pro-

ceeds from low to high image resolution starting at one-eighth the spatial resolution

and increases by a factor of two until the full resolution is reached. Meanwhile, a

hierarchy of B-spline grid spaces from large to small is used. The finest B-spline grid

space used in the experiments is 4 mm. The images and image grid space are refined

alternatively.

5.2.6 Assessment of image registration accuracy

A semi-automatic landmark system is used for landmark detection and de-

tection [10]. First, an automatic landmark detection algorithm from the system is

applied to find the landmarks in the EE. The algorithm automatically detects “dis-

tinctive” points in the target image as the landmarks based on a distinctiveness value

D(p). Around each point p, 45 points, q1, ..., q45 are uniformly distributed on a spher-

ical surface. A region of interest ROI(qi) is compared with the corresponding region
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of interest ROI(p) around the original point, and then combined with its gradient

value to calculate the the distinctiveness value D(p).

The same system is then applied to guide the observer to find the landmarks

in the target image with their corresponding voxels in the template image. Each

landmark-pair manually annotated by the observer is added to a thin-plate-spline to

warp the template image. The system utilizes the warped image to estimate where the

anatomic match will be located for a new landmark point presented to the observer,

therefore the observer can start the matching from a system estimated location. Thus,

as the warped image becomes more accurate by the new added landmarks, the task

of the observer becomes easier.

For each animal, after 200 anatomic landmarks are identified in the EE, the

observer marks the locations of the voxels corresponding to the anatomic locations

of the landmarks in the EI. For each landmark, the actual landmark position is

compared to the registration-derived estimate of landmark position and the error

is calculated. With the evaluated accuracy of transformation from the lung image

registration algorithm, the resulting regional ventilation measures estimated using the

transformation can be then compared to Xe-CT estimated ventilation.

5.2.7 Compare Registration Regional Ventilation

Measures to Xe-CT Estimated Ventilation

In our previous work [9, 100], regional lung expansion, as estimated from

the Jacobian of the image registration transformations, was compared with Xe-CT

based SV. The analysis was conducted by evaluating Jacobian value between a pair
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of adjacent lung volumes in PEEP or phase (e.g. PEEP 15 to 20 in static scans or

inspiration phase 0% to 25% in dynamic scans), and comparing it in the y (ventral-

dorsal) axis. While the correlation between the Jacobian value and SV reflect the fact

that regional expansion estimated from image registration can be used as an index as

regional lung function, the spatial resolution of the analysis method employed might

not be sufficient to distinguish the differences between regional ventilation measures

as we have described in Section 5.2.4. Therefore, to better compare the regional

ventilation measures, the corresponding region of Xe-CT image EE0 in the EE is

divided into about 100 cubes with size of 20 mm × 20 mm × 20 mm. We compare

the average regional ventilation measures (SAJ, SACJ and SAI) to the corresponding

average SV measurement from Xe-CT images within each cube. The correlation

coefficients between any two estimates (SAJ-SV, SACJ-SV or SAI-SV) are calculated

by linear regression. To compare two correlation coefficients, the Fisher Z-transform of

the r values is used and the level of significance is determined [115]. The relationship

between the specific air volume change and difference of tissue volume is also studied

in four animals by linear regression analysis.

5.3 Results

5.3.1 Registration Accuracy

Approximately 200 automatic identified landmarks within the lungs are used

to compute the registration accuracy. The landmarks are uniformly distributed in

the lung regions. Figure 5.5 shows an example of the distribution of the landmarks

in animal D for both the EE and EI images. The coordinate of each landmark



125

location is recorded for each image data set before and after registration for all four

animals. Figure 5.6 shows the landmark distance before and after registration for four

animals. The grey boxplots show the magnitude of respiratory motion during the tidal

breathing. For all four animals, before registration, the average landmark distance

is 6.6 mm with minimun 1.0 mm, maximum 14.6 mm and stand deviation 2.42 mm.

After registration, the average landmark distance is 0.4 mm with minimum 0.1 mm,

maximum 1.6 mm and stand deviation 0.29 mm. The trends for all animals are

consistent and the result demonstrate that the registration produced good agreement

in landmark locations with the observer.

Figure 5.5(a) shows the location of the EE0 in EE. Figure 5.7 shows an ex-

ample of the image registration result from EE0 to EE. The first row shows the

misalignment between the images before image registration. Though the images were

acquired without moving the animal between the scans, there is still non-rigid defor-

mation between scans as shown in Fig 5.7(d), as the black and white regions represent

the large intensity difference between Fig. 5.7(a) and (b). After image registration,

the EE0image is aligned to the EE allowing us to map the SV to the coordinate

system of EE as most of the regions are in grey value indicating near zero intensity

difference [Fig. 5.7(e)]. Since the regions outside the lung are not included during the

registration, the mediastinum and other body tissues are not aligned. Notice that the

dorsal region shows a intensity difference after registration. This is mainly due to the

progression of the atelectasis and edema during the experiment.

5.3.2 Registration Estimated Ventilation Compared
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(a) (b)

Figure 5.5: 3D view of the landmarks in: (a) EE with EE0 and (b) EI. The dark
region below the carina in (a) is the EE0 and the spheres are the automatically defined
landmarks.

to Xe-CT Estimated Ventilation

Figure 5.8(a) shows an example of the color-coded cubes of the regions where

we average the registration estimated ventilation measures and the Xe-CT estimated

SV and compare them. For each animal, the corresponding Xe-CT regions in the

EE are divided into about 100 cubes. Figure 5.8(b) is the Xe-CT estimate of SV.

Figure 5.8(c), (d), (e) are the corresponding registration ventilation measures SAJ,

SACJ amd SAI. The regions with edema are excluded from the comparison. Fig-

ure 5.8(b) to (d) all show noticeable similar gradient in the ventral-dorsal direction.

Notice that the color scales are different in each map and are set according to their

ranges in Fig. 5.9.

Figure 5.9 shows the scatter plots between the registration ventilation mea-
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Figure 5.6: Landmarks distances of the registration pair EI to EE for all four ani-
mals. Boxplot lower extreme is first quartile, boxplot upper extreme is third quartile.
Median is shown with solid horizontal line. Whiskers show either the minimum (max-
imum) value or extend 1.5 times the first to third quartile range beyond the lower
(upper) extreme of the box, whichever is smaller (larger). Outliers are marked with
circles.
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(a)

(b) (c)

(d) (e)

Figure 5.7: Visualization of the result of the transformation that maps the Xe-CT
estimated ventilation SV to the EE coordinate system: (a) EE, (b) EE0, (c) de-
formed EE0 after registration, (d) intensity difference between EE and EE0 before
registration, (e) intensity difference between EE and EE0 after registration.
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sures and the Xe-CT ventilation SV with linear regression in all four animals. The

SACJ column shows the strongest correlation with the SV (average r2 = 0.82). The

SAJ, which is directly related to Jacobian as SAJ = J−1, also shows good correlation

with the SV (average r2 = 0.75). The intensity based measure SAI shows the lowest

correlation with the SV (average r2 = 0.58).

Table 5.1 shows the results of comparing the r values from SACJ vs. SV and

SAI vs. SV. All four animals show that the correlation coefficient from SACJ vs.

SV is significantly stronger than it from SAI vs. SV. Similarly, table 5.2 shows the

results of comparing the r values from SAJ vs. SV and SAI vs. SV. The registration

ventilation measure SAJ also shows a significantly stronger correlation with SV than

SAI.

To analyze the effect of the size of the averaging region, the corresponding

region of Xe-CT image EE0 in the EE is divided into about 30 slabs along the ventral-

dorsal direction with size of 150 mm × 8 mm × 40 mm as similarly in our previous

work [9, 100]. Figure 5.10 shows the scatter plots between the registration ventilation

measures and the Xe-CT ventilation SV similar as Fig. 5.10 but in larger ROIs.

The SACJ column shows the strongest correlation with the SV (average r2 = 0.92).

Both the SAJ and SAI show good correlation with SV as well (average r2 = 0.88

and r2 = 0.87). However, though the average r2 value still show the SACJ has the

highest correlation with Xe-CT based SV, table 5.3 and table 5.4 show that with

larger averaging region as defined slabs, there is no significant difference between the

correlation coefficients from SACJ vs. SV and SAI vs. SV, or between SAJ vs. SV
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Table 5.1: Comparison of ventilation measures between SACJ and
SAI in small cube ROIs with size 20 mm × 20 mm × 20 mm.

Animal Correlation pair Correlation with SV Number of p value
(with SV) (r value) samples

A SACJ 0.88 83 p<= 0.0001
SAI 0.65

B SACJ 0.93 119 p<= 1.18e−6

SAI 0.77
C SACJ 0.89 86 p<= 0.015

SAI 0.78
D SACJ 0.92 110 p<= 0.006

SAI 0.83

and SAI vs. SV.

Figure 5.11 shows shows the scatter plots between DSA (the absolute difference

of the value between the SACJ and SAI) and the DT (the absolute difference of the

tissue volume) with linear regression in all four animals (average r2 = 0.86). From

the equation (5.14) and (5.21), we know that the SAI takes the assumption about no

tissue volume change for a given voxel between the two volumes which may not be

valid. Figure 5.11 shows that as the tissue volume change increases, the difference

between the measures of regional ventilation from SACJ and SAI increases linearly in

all four animals. It indicates that the lower correlation of SAI with SV compared with

SACJ with SV may be caused by the tissue volume change between two volumes.

5.4 Discussion

We have described three measures to estimate regional ventilation from tissue

volume and vesselness preserving image registration of CT images. The validity and
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(a)

(b) (c)

(d) (e)

Figure 5.8: Comparison of the regional ventilation measures. (a): EE with color
coded cubes showing the sample region. (b), (c), (d) and (e): color map of the SV,
SAJ, SACJ and SAI.
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Figure 5.9: Small cube ROIs with size 20 mm × 20 mm × 20 mm results for regis-
tration estimated ventilation measures compared to the Xe-CT estimated ventilation
SV in scatter plot with linear regression in four animals. The first column is the SAJ
vs. SV. The second column is the SACJ vs. SV. The third column is the SAI vs. SV.
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Figure 5.10: Large slab ROIs with size 150 mm × 8 mm × 40 mm results for regis-
tration estimated ventilation measures compared to the Xe-CT estimated ventilation
SV in scatter plot with linear regression in four animals. The first column is the SAJ
vs. SV. The second column is the SACJ vs. SV. The third column is the SAI vs. SV.
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Figure 5.11: Linear regression analysis between DSA and DT. (a) to (d): DSA (the
absolute difference of the value between the SACJ and SAI) compared to DT (the
absolute difference of the tissue volume) in animals A, B, C and D.
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Table 5.2: Comparison of ventilation measures between SAJ and
SAI in small cube ROIs with size 20 mm × 20 mm × 20 mm.

Animal Correlation pair Correlation with SV Number of p value
(with SV) (r value) samples

A SAJ 0.86 83 p<= 0.001
SAI 0.65

B SAJ 0.89 119 p<= 0.002
SAI 0.77

C SAJ 0.78 86 p<= 1
SAI 0.78

D SAJ 0.92 110 p<= 0.006
SAI 0.83

Table 5.3: Comparison of ventilation measures between SACJ and
SAI in large slab ROIs with size 150 mm × 8 mm × 40 mm.

Animal Correlation pair Correlation with SV Number of p value
(with SV) (r value) samples

A SACJ 0.95 17 p<= 1
SAI 0.95

B SACJ 0.99 23 p<= 0.01
SAI 0.95

C SACJ 0.94 23 p<= 0.45
SAI 0.89

D SACJ 0.95 25 p<= 0.56
SAI 0.93

comparison of different measures for estimates of regional ventilation are evaluated

by Xe-CT estimated ventilation. Individual regional ventilation measure is compared

to Xe-CT estimated ventilation by transforming them to the same coordinate system.

The difference between two registration measures and its relationship with the tissue

volume difference is analyzed using linear regression.

The tissue volume and vesselness preserving algorithm is used to register the

EI to the EE for estimating ventilation measures. It is also used to register the EE0
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Table 5.4: Comparison of ventilation measures between SAJ and
SAI in large slab ROIs with size 150 mm × 8 mm × 40 mm.

Animal Correlation pair Correlation with SV Number of p value
(with SV) (r value) samples

A SAJ 0.95 17 p<= 0.49
SAI 0.95

B SAJ 0.99 23 p<= 0.41
SAI 0.95

C SAJ 0.94 23 p<= 0.52
SAI 0.89

D SAJ 0.95 25 p<= 0.15
SAI 0.93

to the EE for comparing three ventilation measures to the Xe-CT based SV. About

200 anatomical landmarks are identified and annotated to evaluate the registration

accuracy. The average landmark error is on the order of 1 mm after registration.

The ventilation measures SAJ, SACJ and SAI are derived and the relationship

between them is described. The SAJ which is linear to Jaocobian measures the

regional ventilation based on the assumption that the composition of a volume in

a voxel is totally air. The SACJ is the most general form in the three measures

which is based on the voxel air-tissue fraction theory of HU. Finally, with further

assumption about no change in the tissue volume between the corresponding voxels

in the template and target images, SAI can be calculated. Compared to SACJ which

explicitly combines information both from the Jacobian and the intensity, the SAJ

only relies on the Jacobian of the the deformation and SAI only uses the intensity

information. SACJ has the most basic form for regional ventilation measure directly

from the HU based voxel air-tissue fraction.
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The three registration-based ventilation measures as well as the SV from Xe-

CT are averaged and compared in predefined cubes. Averaging and comparing by

20 mm × 20 mm × 20 mm ROIs, the SACJ shows significantly higher correlation

with Xe-CT based SV than the SAI in all four animals. By studying the relationship

between the DSA and DT, it is found that the difference between SACJ and SAI

may be caused by the no tissue volume change assumption (5.18) used in SAI. As the

derivation in equations (5.14) and (5.21), to use SAI, the tissue volume change should

be approximately zero. From Fig. 5.11, it is shown that while the tissue volume differ-

ence is usually small (less than 5%), regional ventilation measure SAI with the zero

tissue volume change may introduce difference of more than 10% unit volume per

inspiration comparing with the SACJ measure. For the ventilation measured over a

minute, the DSA is about more than 1.7 unit volume per voxel (average RR = 17.59

breaths/min). Table 5.1 and Table 5.2 show that the both the SACJ and SAJ have

significantly better correlation with SV than the SAI. This is consistent with the find-

ings by Kabus et al. [30] who show that the Jacobian based ventilation has less error

than the intensity based ventilation analysis using the segmented total lung volume as

a global comparison. Though all the regional ventilation measures and Xe-CT based

SV from the linear regression analysis in Fig. 5.10 show high correlations, table 5.3

and table 5.4 show that there is no significant difference in the correlation with SV

between the Jacobian based measures and intensity based measure. This result indi-

cates that the validation methods using global comparison such as segmented total

volume may not be able to distinguish the Jacobian based measure and the intensity
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based measure.

The comparison of the ventilation measures has been limited to the resolution

of 20 mm × 20 mm × ROIs. As the size of the ROIs decreases, the correlation

between the ventilation measures with Xe-CT based SV decreases. This may be due

to the underlying noise of the Xe-CT measurement of ventilation. Additional Xe-

CT image analysis work including using multi-compartment models and inter-phase

registration to improve SV measurement are required to reduce the noise in Xe-CT

based SV measurement.

The image registration algorithm used to find the transformation from EI to

EE for measurement of regional ventilation produces accurate registrations by min-

imizing the tissue volume and vesselness measure difference between the template

image and the target image. It would be interesting to compare different image reg-

istration algorithms and their effects on the registration-based ventilation measures.

For example, if two registration algorithms achieve the similar landmark accuracy,

the one does not preserve tissue volume change may show even larger difference in

the SACJ and SAI measures than the results using TVP as described above.

In conclusion, with the same deformation field by the same image registration

algorithm, a significant difference between the Jacobian based ventilation measures

and the intensity based ventilation measure is found in a regional level using Xe-

CT based ventilation measure SV. The ventilation measure by corrected Jacobian

SACJ gives best correlation with Xe-CT based SV and the correlation is significantly

higher than from the ventilation by intensity SAI indicating the ventilation measure
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by corrected Jacobian SACJ may be a better measure of regional lung ventilation

from image registration of 4DCT images.
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CHAPTER 6
CONCLUSION

In this chapter, we conclude the thesis and discuss some possible future im-

provements.

6.1 Summary of Results

In this thesis, we study regional lung mechanics and function using image reg-

istration in: estimation of pulmonary function in dynamic and static image sequences,

evaluation of lobar biomechanics during respiration, measurement of pulmonary func-

tion changes following radiation therapy, and comparison of regional ventilation mea-

sures.

6.1.1 Estimation of Pulmonary Function in

Dynamic and Static Image Sequences

A technique that uses multiple respiratory-gated CT images and non-rigid

3D image registration to make local estimates of lung tissue expansion is reported.

The degree of regional lung expansion is measured using the Jacobian (a function

of local partial derivatives) of the registration displacement field. We compare the

ventral-dorsal patterns of lung expansion estimated in both retrospectively recon-

structed dynamic scans and static breath-hold scans to a xenon CT based measure

of specific ventilation and a semi-automatic reference standard in four anesthetized

sheep studied in the supine orientation. The regional lung expansion estimated by 3D
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image registration of images acquired at 50% and 75% phase points of the inspiratory

portion of the respiratory cycle and 20 cm H2O and 25 cm H2O airway pressures gave

the best match between the average Jacobian and the xenon CT specific ventilation

respectively (linear regression, average r2 = 0.85 and r2 = 0.84).

6.1.2 Evaluation of Lobar Biomechanics

During Respiration

It is hypothesized that the lobar surfaces slide against each other during res-

piration. We propose a method to evaluate the sliding motion of the lobar surfaces

during respiration using lobe-by-lobe mass-preserving non-rigid image registration.

We measure lobar sliding by evaluating the relative displacement on both sides of the

fissure. The results show a superior-inferior gradient in the magnitude of lobar slid-

ing. We compare whole-lung-based registration accuracy to lobe-by-lobe registration

accuracy using vessel bifurcation landmarks. Both methods yield similar matching

results in the center regions of the lobes while a considerable difference is observed in

the vicinity of fissure.

6.1.3 Measurement of Pulmonary Function Changes

Following Radiation Therapy

We propose a method that quantitatively measures the regional changes in

lung tissue function following a course of radiation therapy by using 4DCT and im-

age registration techniques. 4DCT data sets before and after RT from two subjects

are used in this study. Nonlinear, 3D image registration is applied to register an image
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acquired near end inspiration to an image acquired near end expiration to estimate

the pulmonary function. The Jacobian of the image registration transformation, in-

dicating local lung expansion or contraction, serves as an index of regional pulmonary

function. Approximately 120 annotated vascular bifurcation points are used as land-

marks to evaluate registration accuracy. We compare regional pulmonary function

before and after RT with the planned radiation dose at different locations of the lung.

In all registration pairs, the average landmark distances after registration are on the

order of 1 mm. The pulmonary function change as indicated by the Jacobian change

ranges from -0.15 to 0.1 in the contralateral lung and -0.22 to 0.23 in the ipsilateral

lung for subject A, and ranges from -0.4 to 0.39 in the contralateral lung and -0.25 to

0.5 in the ipsilateral lung for subject B. Both of the subjects show larger range of the

increase of the pulmonary function in the ipsilateral lung than the contralateral lung.

For lung tissue regions receiving a radiation dose larger than 24 Gy, a decrease in

pulmonary function was observed. For regions receiving radiation dose smaller than

24 Gy, either an increase or a decrease in pulmonary function was observed. The

relationship between the pulmonary function change and the radiation dose varies

at different locations. With the use of 4DCT and image registration techniques, the

pulmonary function prior to and following a course of radiation therapy can be mea-

sured. In our preliminary application of this approach for two subjects, changes in

pulmonary function were observed with a weak correlation between the dose and pul-

monary function change. In certain sections of the lung, detected locally-compromised

pulmonary function may have resulted from radiation injury.
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6.1.4 Comparison of Regional Ventilation

Measures

We compare three different 4DCT based registration derived measures of re-

gional ventilation to xenon-CT (Xe-CT). 4DCT and Xe-CT data sets from four adult

sheep are used in this study. Nonlinear, 3D image registration is applied to register an

image acquired near end inspiration to an image acquired near end expiration. Three

different registration-based measures of regional ventilation are derived and imple-

mented. Individual regional ventilation measure is compared to Xe-CT estimated

ventilation by transforming them to the same coordinate system using the resultant

transformation from the same image registration applied to align the Xe-CT to the

4DCT. Approximately 200 annotated anatomical points are used as landmarks to

evaluate registration accuracy. We compare the registration based measures of re-

gional ventilation with Xe-CT based estimate of regional ventilation in predefined

region of interests (ROIs) and study the relationship between their difference and

tissue volume. After registration, the landmark error is on the order of 1 mm. For

cubical ROIs in cubes with size 20 mm × 20 mm × 20 mm, the Jacobian based

ventilation measures specific air volume change by specific volume change (SAJ) and

specific air volume change by corrected Jacobian (SACJ) show significantly higher

correlation (linear regression, average r2 = 0.75 and r2 = 0.82) with the Xe-CT-

based measure of specific ventilation (SV) than the specific air volume change by

intensity (SAI) (linear regression, average r2 = 0.58). For ROIs in slabs along the

ventral-dorsal direction with size of 150 mm × 8 mm × 40 mm, the SAJ, SACJ,
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and SAI all show high correlation (linear regression, average r2 = 0.88, r2 = 0.92

and r2 = 0.87) with the Xe-CT based SV without significant different between each

other. Linear relationship between the difference of specific air volume change (DSA)

and difference of tissue volume (DT) is found in all four animals (linear regression,

average r2 = 0.86). With the same deformation field by the same image registration

algorithm, a significant difference between the Jacobian based ventilation measures

and the intensity based ventilation measure is found in a regional level using Xe-CT

based ventilation measure SV. The ventilation measure by corrected Jacobian SACJ

gives best correlation with Xe-CT based SV and the correlation is significantly higher

than from the ventilation by intensity SAI indicating the ventilation measure by cor-

rected Jacobian SACJ is better than SAI as a measure of regional lung ventilation

from image registration of 4DCT images.

6.2 Future Work

Here we point out some directions of our future research in studying regional

lung function and mechanics.

6.2.1 Classification of the COPD Patients

Using Mechanical Parameters

In our study of regional lung function and mechanics, we focused on develop-

ment of image registration and biomechanics analysis methods. In the future works,

we may put more efforts on applying our techniques to data sets from diseased sub-

jects for clinical application.
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Establishing the mechanical characteristics of lungs in both smokers and non-

smokers from the COPDGene study which is the largest study ever to investigate the

underlying genetic factors of COPD, will bring the field one step closer to clinical

application. The COPD can be classified with 4 classes of severity using pulmonary

function tests. Recently, Murphy et al. [116] applied the image registration of ex-

piration scan to the inspiration scan with features calculation such as percentage of

voxels below certain threshold and ventilation and successfully classified COPD sub-

jects (COPD/non-COPD). The result from accurate registration of a pair of scans is a

complex displacement field including all the spatial information of the tissue changes.

Therefore, with voxel based displacement operator, regional characteristics of tissue

changes can be extracted from the displacement filed. As described in Chapter 1,

COPD is characterized by loss of elasticity (increased compliance) of the lung tissue,

from destruction of structures supporting the alveoli and destruction of capillaries

feeding the alveoli [12], so the mechanical changes should be characterized from the

COPD patient with different severity. By using features of all the mechanical param-

eters introduced in previous chapters, the subjects may be classified with different

severity regionally.

6.2.2 Sensitivity Analysis

Image registration is an ill-posed problem. Since the functional information is

derived directly from the displacement fields, it seems imperative that the displace-

ment field be correct and physiologically meaningful, in addition to assessing spatial

registration accuracy. Kabus et al. [31] have recently shown that methods that seem



146

to have roughly the same mean landmark accuracy may produce very different Jaco-

bian maps. It is our interest to assess the sensitivity of our technique for measuring

regional lung mechanics to the registration error, image noise and the image artifacts.,

thus establishing method reproducibility and measurement confidence interval.

We consider introducing the perturbation to the displacement field and the

intensity image with random noise. Of course this may result in inaccurate biome-

chanical measurement, but it may show the robustness and the detectable resolution

of a intrinsic lung tissue function change from our technique.

6.2.3 Anisotropy

In previous chapters, the parameters we applied to measure regional lung

mechanics and function are mainly volume changes (Jacobian, SV, SAJ, SACJ, and

SAI). It would be interesting to detect the directional changes in the deformation,

such as anisotropy. In Chapter 1, we introduce several anisotropy parameters, such as

FA, ADI, SRI, ARI and VA. Those parameters can be used to measure the pulmonary

function changes introduced by COPD or radiation therapy as discussed in Chapter

4. In this way, we will combine the magnitudinous mechanical parameters with the

directional mechanical parameters to represent the regional strain characteristics.
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