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Abstract

One of the most unsettling problems in the history of philosophy examines
how mathematics can be used to adequately represent the world. An influen-
tial thesis, stated by Eugene Wigner in his paper entitled “The Unreasonable
Effectiveness of Mathematics in the Natural Sciences,” claims that “the mira-
cle of the appropriateness of the language of mathematics for the formulation
of the laws of physics is a wonderful gift which we neither understand nor de-
serve.” Contrary to this view, this thesis delineates and implements a strategy
to show that the applicability of mathematics is very reasonable indeed.

I distinguish three forms of the problem of the applicability of mathemat-
ics, and focus on one I call the problem of uncanny accuracy: Given that the
construction and manipulation of mathematical representations is pervaded by
uncertainty, error, approximation, and idealization, how can their apparently
uncanny accuracy be explained? I argue that this question has found no sat-
isfactory answer because our rational reconstruction of scientific practice has
not involved tools rich enough to capture the logic of mathematical modelling.

Thus, I characterize a general schema of mathematical analysis of real sys-
tems, focusing on the selection of modelling assumptions, on the construction
of model equations, and on the extraction of information, in order to address
contextually determinate questions on some behaviour of interest. A concept
of selective accuracy is developed to explain the way in which qualitative and
quantitative solutions should be utilized to understand systems. The qualita-
tive methods rely on asymptotic methods and on sensitivity analysis, whereas
the quantitative methods are best understood using backward error analysis.
The basic underpinning of this perspective is readily understandable across
scientific fields, and it thereby provides a view of mathematical tractability
readily interpretable in the broader context of mathematical modelling. In
addition, this perspective is used to discuss the nature of theories, the role
of scaling, and the epistemological and semantic aspects of experimentation.
In conclusion, we argue for a method of local and global conceptual analysis
that goes beyond the reach of the tools standardly used to capture the logic of
science; on their basis, the applicability of mathematics finds itself demystified.

Keywords: Applied Mathematics, Asymptotics, Backward Error
Analysis, Error, Exact & Numerical Solutions, Logic of Math-
ematical Modelling, Mathematical Tractability, Philosophy of
Mathematics, Philosophy of Science, Qualitative Behaviour, Ra-
tional Reconstruction, Scientific Theories, Selective Accuracy,
Uncertainty, Unreasonable Effectiveness of Mathematics.
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[T]here is no philosophy that is not founded upon
knowledge of the phenomena, but to get any profit
from this knowledge it is absolutely necessary to be
a mathematician.

Daniel Bernoulli (1700-1782)

The goal we must always keep in sight is to strive to
reach a secure judgment regarding the foundations of
a science [. . . ]. But to penetrate the sciences at all,
study of special problems is certainly indispensable.

Karl Weierstrass (1815-1897)

There’s no sense in being precise when you don’t
even know what you’re talking about.

John von Neumann (1903-1957)

Although this may seem a paradox, all exact science
is dominated by the idea of approximation.

Bertrand Russell (1872-1970)
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Chapter 1

Introduction: The Unreasonable

Effectiveness of Mathematics as

a Philosophical Problem

Inquiries into the nature of mathematics as a science of its own and into its role

in empirical science have a venerable tradition. Many of the ideas underlying

the philosophical systems of Plato, Aristotle, Descartes, Leibniz, Kant, Mill,

Frege, Husserl, Russell, Carnap, et al., have found their origin in disquisitions

on this topic. The problem that is perhaps the most unsettling examines

how mathematics can be used to adequately represent the world, given that

mathematics displays a kind of exactness and necessity that appears to be in

sharp contrast with the contingent character of worldly facts.

Some authors maintain that this problem—which I shall name the prob-

lem of the applicability of mathematics—is condemned to remain intrinsically

mysterious. For instance, Wigner (1960) famously claimed that the “mira-

cle of the appropriateness of the language of mathematics for the formulation

of the laws of physics is a wonderful gift which we neither understand nor

deserve.” Be that as it may, Hamming (1980) outlined a number of strate-

gies that could potentially demystify some aspects of the appropriateness of

mathematics stressed by Wigner. Many other philosophers and mathemati-

cians have weighed in on the debate, including Batterman (2007, 2010a),

Bell (1986), Colyvan (2001), French (2000), Grattan-Guinness (2008), Pin-
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cock (2009), Steiner (1989, 2002), and Wilson (2000). The philosophers and

mathematical scientists who have written on the problem of the applicability

of mathematics have emphasized many different aspects relevant to their own

fields of expertise. Since it would lead us in too many orthogonal directions,

it will be impossible to begin our investigation with a systematic review of the

literature. However, it is possible to begin with a conceptual articulation of

the problem. Accordingly, in this first chapter, I will articulate the problem of

the applicability of mathematics (1) by relating it to other philosophical ques-

tions about mathematics (in section 1.1), (2) by describing the one instance

of the problem I intend to address (in section 1.2), and (3) by explaining how

the quest for a solution to that problem relates to fundamental questions in

epistemology and philosophy of science (in section 1.3).

1.1 Three Central Philosophical Questions on

Mathematics

One of the preeminent problems in the philosophical tradition concerns the

nature of genuine knowledge, as opposed to mere opinion or belief: What con-

stitutes a proper characterization of knowledge and what, if anything, ought to

be considered genuine knowledge? Hence, epistemology endeavors to specify

which propositions among the ones we believe can commendably be deemed

knowledge. In the first known writing dedicated to this question, the Theaete-

tus (ca. 369 BC), Plato suggests that the problem be tackled by supplying

conditions that beliefs and opinions have to satisfy in order to count as genuine

claims to knowledge, such as being based on perception, being true, having a

justification, etc. The suggestion that beliefs need justification has been found

to be compelling since cases involving epistemic serendipity have to be ex-

cluded; yet, precisely characterizing what an adequate justification for a belief

is has proved to be elusive. Nevertheless, our inability to exactly pinpoint a

correct and general account of knowledge should not deter us; one can fruit-

fully adopt the fallback strategy of conceding that some disciplines provide

2



genuine knowledge, and attempt to progressively improve our understanding

of what a correct justification is by examining those disciplines. Thus, follow-

ing this strategy, the notion of justification that plays an essential role in our

concept of knowledge is to be abstracted from particular instances of genuine

knowledge.1

In this respect, mathematical disciplines have played a role quite distinct

from the others. In the Republic (ca. 380 BC : book VI), Plato suggested

that mathematics is the highest form of knowledge and—each for their own

reasons—most natural philosophers in the tradition have shared this assess-

ment. More than anything else, it has been claimed that if anything is to be

considered knowledge, mathematics is. In this way, mathematical knowledge is

typically regarded as an archetypal or paradigmatic case of genuine knowledge.

In order to understand the significance of mathematics as an archetypal

object of study for epistemology, something has to be said about what math-

ematics is. This, however, has proved to be an exacting challenge. As von

Neumann (1947) remarked, when addressing this very question, a “discussion

of the nature of any intellectual effort is difficult per se—at any rate, more dif-

ficult than the mere exercise of that particular effort.” As a result, the question

has proved to be very controversial; indeed, it is not much of an exaggeration

to say that it has received as many different answers as there are philosophers

of mathematics. This being said, I will briefly sketch the typical approach to

this question in order to better situate and differentiate the problem addressed

by this dissertation.

For mathematics as for other kinds of knowledge, the first natural questions

to ask are what this knowledge is about and how this knowledge is acquired.

If we consider mathematical statements such as

S1. 310
71 < π < 31

7 (Archemedean approximation of π)

S2.
�

b

a
f(x)dx = F (b)− F (a) (Fundamental Theorem of Calculus)

1There is a delicate issue to address regarding this strategy. It does appear to either fall
short of our original objective of providing a general normative concept of knowledge, or to
commit the so-called is-ought fallacy. This concern will be addressed in subsection 1.3.1.
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S3. eiπ + 1 = 0, (Euler’s Identity)

it is important to determine what makes these statements genuine claims to

knowledge and how we can ascertain the genuine character of these knowledge

claims. Accordingly, two questions have traditionally occupied the centre of

the stage:

Q1. What are mathematical objects?

Q2. How do we (or can we) obtain knowledge of those objects?

For instance, one might maintain along a classical empiricist line that mathe-

matics is about empirical objects and that mathematical knowledge is acquired

by experience only, just like any other kind of knowledge. This answer has been

predominantly rejected, for it seems that the two questions above demand an

answer which will differ from empirical knowledge claims such as

S4. All Cretans are liars.

S5. Hesperus is Phosphorus.

S6. Venus is the only planet in our solar system that rotates counter-

clockwise.

To begin with, mathematical statements such as S1–S3 seem to be true in-

dependently of the physical world. Moreover, it seems that mathematical

knowledge can be obtained a priori. As Strawson explains,

[t]hat means that you can see that it is true just lying on your couch. You
don’t have to get up off your couch and go outside and examine the way things
are in the physical world. (reported in Sommers, 2003)

Furthermore, mathematical objects transcend experience, since objects such

as 1010
10

and ∞ are not, it seems, accessible by direct experience. The scope

of experience is thus too limited. Finally, this proposal fails to capture the

necessity and certainty that characterizes mathematical truths. As Einstein

(1923) elegantly puts it,

4



[t]he laws of mathematics, as far as they refer to reality, are not certain, and
as far as they are certain, do not refer to reality.

Philosophers have often made claims in the same spirit:

[t]he exactness of mathematics is an abstract logical exactness which is lost
as soon as mathematical reasoning is applied to the actual world. (Russell,
1968 : 110)

[. . . ] the apparent contrast between the indefinite flux of sense-impressions and
the precise and timeless truths of mathematics has been among the earliest
perplexities and problems not of the philosophy of mathematics only, but of
philosophy in general. (Körner, 1986 : 9)

As a result, mathematical knowledge seems to have a different logical status,

to demand a different type of justification, and to have different semantic

grounds. In response to these exigencies, many intricate solutions to the first

two questions have been proposed; some influential proposals are listed in

table 1.1, together with the main difficulties they face. More recent studies

in philosophy of mathematics have developed at a more abstract level—by

focussing on the notions of sets, proof systems, structures, and categories—

in order to take account of the transformation of mathematics that began in

the middle of the nineteenth century. Nonetheless, it has not fundamentally

altered the questions on which philosophy of mathematics focuses.2

An important third question is often found entangled with these two. We

apply mathematics to many real-world problems, both in science and in ev-

eryday life. In everyday life, our use of mathematics assists us in counting,

accounting, planning, etc., by providing us with efficient conceptual tools on

the basis of which we can make sound decisions. Moreover, as we will amply

discuss in this dissertation, we also use mathematics in the sciences with the

purpose of knowing how the world works. This leads us to a third question

concerning the epistemological import of mathematics:

Q3. What grounds are there for the applicability of mathematics to the

physical world, whereby applications generate new empirical knowl-

edge?

2This is not to say, however, that it has not opened the way for new approaches to deal
with those questions.
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Position Answer to Q1 Answer to Q2 Main difficulty

Naive empiricism empirical ob-
jects

experience no necessary truths

Platonism otherworldly
universals

impossible
(recollection)

assumes transmigration
of souls

Ante rem realism otherworldly
universals

special intu-
ition

problem of epistemic ac-
cess

Nominalism (or post
rem realism)

abstracted
concepts

abstraction knowledge-dependent &
limited scope

In re realism (or “Aris-
totelian” realism)

in re univer-
sals

abstraction limited scope & not parsi-
monious

Fictionalism no object stipulation not all conventions are
mathematically equal

Table 1.1: Some influential philosophical answers to questions Q1 and Q2.

This question introduces the problem of the applicability of mathematics on

which this dissertation will focus. Insofar as it demands us to construct a

bridge between mathematical statements and statements about the physical

world, this question introduces a whole new set of difficulties that bring the

philosophy of mathematics to “a treacherous frontier, where theorizing about

the nature of thought, language, and the world must come together” (Avigad,

2007).

It is important to point out that, even if those three questions are essen-

tially different, they cannot be treated in a completely independent manner.

In some cases, certain types of answer to questions Q1 and Q2 make it rela-

tively straightforward to satisfactorily account for aspects of the applicability

of mathematics—e.g., empiricism, nominalism, and in re realism—whereas

other types of answers make it more difficult—e.g., Platonism and fictional-

ism. The converse relation also obtains: some satisfactory accounts of the

applicability of mathematics make it difficult to provide satisfactory answers

to the first two questions—e.g., naive empiricism. In fact, it is precisely this

tension that, in my opinion, has proved to be the most vexing problem in

traditional philosophy of mathematics.

In what order should these interrelated problems be treated? I think that

there is no single right answer to that question, but that the choice of order

6



has nonetheless some importance. Philosophers have most often started with

a certain conception of pure mathematics (answering Q1 and Q2) and then

attempted to extend it to applied mathematics. Now, if one suspects that the

conceptions of pure mathematics in question might be at least partly responsi-

ble for the conceptual difficulties inherent in the problem of applicability, then

one must reverse the order. Many works in the recent literature have favored

such a reversal. For instance, Wilson (2006) has argued that one must study

the efficient descriptive strategies developed by applied mathematicians to un-

derstand how concepts in general work, and Maddy (2008) has argued that

one should not think of the philosophy of pure mathematics independently of

the philosophy of applied mathematics. The general idea is finely epitomized

by Emch & Liu (2002 : 39):

A superficial commentator might be tempted to advance that some—or even
much—of pure mathematics is established in a “context-free” manner; we ar-
gue, in contrast to this caricatural view, that much of the appeal and integrity
of the sciences [. . . ] depends on the fact that their practitioners have to take
into account the necessity of traveling back and forth between different “con-
texts.”

For this reason, my dissertation will prioritize Q3, without assuming specific

answers to Q1 and Q2.

1.2 Three Problems about the Applicability

of Mathematics

Because of the resilience of the tension between considerations bearing on

pure and applied mathematics, the applicability of mathematics does bear an

aura of mystery. Part of the mystery, in my opinion, stems from gathering

many problems that require different types of solutions under the same um-

brella. Thus, in this section, I distinguish three aspects of the problem of

the applicability of mathematics, which I call the problem of mixed sentences

(in subsection 1.2.1), the problem of unexpected applicability (in subsection

1.2.2), and the problem of uncanny accuracy (in subsection 1.2.3).
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1.2.1 The Problem of Mixed Sentences

In fact, we do not only formulate purely mathematical statements similar to

S1–S3 and essentially empirical statements similar to S4–S6 above. Question

Q3 is forced upon us by the existence of a third kind of knowledge claim, such

as

S7. P (it will rain tomorrow) = 70%

S8. F =
dp

dt
= ma = −kx (Newton’s 2nd law and Hooke’s law)

S9. PV = nRT (Perfect gas law)

S10. ρ

�
∂v

∂t
+ v · ∇v

�
= −∇p+∇T+ f (Navier-Stokes equation)

Sentences of this kind involve both empirical concepts and mathematical con-

cepts; they are neither exclusively about mathematical nor about worldly ob-

jects. I will call such statements mixed sentences.3 Typically, statements of

applied mathematics and of the mathematical sciences—such as mathematical

physics, biology, economics, etc.—are of this type.

The problem of mixed sentences, as I call it here, focuses on providing

semantic conditions meant to account for the meaningfulness of mixed sen-

tences. One normally provides semantic rules of interpretation for sentences

(often via truth-conditions) by determining conditions for the evaluation of

the basic relations of predication, implication, identity, and other similar basic

relations. However, providing a semantics for mixed sentences introduces some

additional difficulties, as the basic relations range over different domains—of

physical and of mathematical objects. For instance, our normal understanding

of sentences such as “humans are mortal” is that if an arbitrary object is a

human, then it also is mortal. There is a relation of inclusion. However, if

we consider sentences such as “physical space is non-Euclidean,” we are not

3The term ‘mixed sentences’ is often used in contemporary philosophy of science in a
sense similar to ‘bridge laws’ or ‘coordinative definitions.’ However, I use the term ‘mixed
sentences’ in deference to the long Aristotelian tradition of reflection on the status of what
they called ‘mixed sciences.’ Balaguer (2009) also uses this phrase in this sense, and Pincock
(2004, 2011) and Psillos (2011) use ‘mixed statement.’
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in fact claiming that physical space is one of the mathematical objects called

non-Euclidean spaces. As opposed to what such a literal interpretation would

suggest, the assertion should not be interpreted as saying that some physical

objects are mathematical objects, but rather that they share certain features.

Accordingly, the problem of mixed sentences seeks a set of interpretation

rules that will correctly articulate how features can be shared by mathemat-

ical objects and worldly objects, despite their very different nature. Many

approaches have been developed to address this problem. A natural approach

is to base those rules on a theory of abstraction. On the one hand, by ex-

plaining how our cognitive faculties abstract mathematical concepts from our

experience, we can articulate how structures can be shared by physical and

mathematical objects in cognitive terms. On the other hand, many proposals

have been made to characterize the rules of interpretation on the basis of a log-

ical (rather than cognitive) notion of abstraction. In fact, modern philosophy

of mathematics is tightly connected with the efforts of Dedekind, Cantor, and

Frege to formulate how mathematical objects can in some way be considered

abstract correlates of empirical objects. Dummett (1991 : p. 293) explains the

role of this problem in Frege’s philosophy:

Frege’s objective was to destroy the illusion that any miracle occurs [in appli-
cations]. The possibility of the applications was built into the theory from the
outset; its foundations must be so constructed as to display the most general
form of those applications, and then particular applications will not appear a
miracle.

The approaches based on a logical notion of abstraction have been developed

in many ways. The idea behind them is to elaborate on the notion of shared

structure in terms of morphisms relating empirical and mathematical systems.

Typically, those are taken to be homomorphism or isomorphism (see, e.g.,

Appendix A for a Suppesian instance of this approach).

The problem of mixed sentences focuses on the semantical aspect of the

applicability to the extent that it seeks to explain how it makes sense to

use mathematics to describe the world. However, there are other aspects

of the problem of applicability which are not exhausted by issues related to

the interpretability of mixed sentences, as the next two subsections show. In
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particular, discussions of the interpretability of mixed sentences don’t say much

about situations in which the problems with applicability are not about the

conditions of meaningfulness of mixed sentences, but about cases in which we

have a multitude of meaningful mathematical representations that we would

like to assess and mutually compare with respect to their accuracy.

1.2.2 The Problem of Unexpected Applicability

A second aspect of the problem of applicability has been emphasized in many

publications, perhaps most famously in Wigner’s paper on “the unreasonable

effectiveness of mathematics in the natural sciences” (Wigner, 1960). He ar-

gues that the “miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful gift which we neither

understand nor deserve.” The claims made in this paper are very evocative,

but they are nevertheless hard to interpret, for Wigner addresses a collection

of entangled problems. I will in what follows isolate two of these problems; in

this section, I begin with the problem of unexpected applicability, as I call it.

Wigner adopts a view of mathematical concepts and objects that many

mathematicians share. According to this view, the concepts of mathematics

must be separated into two classes. On the one hand, we have the concepts

of elementary arithmetic (e.g., natural, rational, and irrational numbers) and

those of elementary geometry (e.g., the ratio of the circumference of a circle

to its diameter); these “describe entities which are directly suggested by the

actual world” (p. 2). On the other hand, we have the more advanced concepts

of mathematics (e.g., complex numbers, algebras, linear operators, Borel sets)

for which this is not the case. According to Wigner, these “were so devised

that they are apt subjects on which the mathematician can demonstrate his

ingenuity and sense of formal beauty” (p. 3). In slightly different terms, he

says that the more advanced concepts “are defined with a view of permitting

ingenious logical operations which appeal to our aesthetic sense [. . . ]” (p. 3).4

4This view is shared, e.g., by Hardy (1940 : §28): “There are then two mathematics.
There is the real mathematics of the real mathematicians, and there is what I have called
the ‘trivial’ mathematics, for want of a better word. The trivial mathematics may be
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He elaborates on the case of the complex numbers since they “provide a par-

ticularly striking example for the foregoing” (p. 3). He provides the following

explication:

Certainly, nothing in our experience suggests the introduction of these quan-
tities. Indeed, if a mathematician is asked to justify his interest in complex
numbers, he will point, with some indignation, to the many beautiful theorems
in the theory of equations, of power series and of analytic functions in gen-
eral, which owe their origin to the introduction of complex numbers. (Wigner,
1960 : p. 3)

Against the background of the assumption that the more advanced concepts of

mathematics are introduced for the sake of exhibiting formal beauty, he asks:

why are those more advanced concepts so effective for the formulation of the

laws of physics?

This question introduces new aspects of the problem of applicability, es-

pecially for mathematical objects constructed and studied with no intended

applications. How can it be that concepts of this sort find unexpected applica-

bility in physics, sometimes in fundamental places? The main instance of this

phenomenon that Wigner discusses is the unexpected applications of matrix

algebra in quantum mechanics. According to him, it is miraculous that there

are regularities at all “despite the baffling complexity of the world,” it is a

miracle that we can discover them, and it is also a miracle that mathemati-

cal concepts introduced for aesthetic reasons turn out to unexpectedly apply

(sometimes at a very fundamental level).

It is certainly not easy to provide an answer to this problem. One strat-

egy for dealing with it would consist in denying the very view of advanced

mathematics that it presupposes. Thus, we may ask: is it true that nothing

in our experience suggests introducing complex numbers? A widespread story,

according to which i =
√
−1 is introduced by mathematicians to algebraically

close the real numbers (in which the polynomial equation x2 + 1 = 0 has no

solution), lends credibility to the aesthetic account favored by Wigner. How-

ever, as Needham (1997) explains, it is the solution of intuitively meaningful

justified [. . . intuitively], but there is no such defence for the real mathematics, which must
be justified as arts if it can be justified at all.”
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intersection of y = x3

and y = −0.3x+ 1

Figure 1.1: Intuitively meaningful cubic problem at the origin of imaginary
numbers. The root is real, but its computation using Cardano’s method re-
quires imaginary numbers.

problems such as finding the roots of x3 = 3px+ 2q that historically required

introducing complex numbers (see figure 1.1).5 This was required for the use

of the computational method known at the time—the Cardano method. Thus,

it is practically important cubic problems, and not the fancy of mathemati-

cians craving to exert ingenuity, that historically justified introducing complex

numbers.

It is possible, however, that there may remain parts of mathematics for

whichWigner’s assumption will still hold. However, the problem of unexpected

applicability will be mostly solved if one could show that the main examples

appealed to in the literature can be handled in a way similar to that of the

complex numbers. However, I will not focus on this aspect of applicability

either, but rather on another one that is complementary to both this one and

to the problem of mixed sentences.

1.2.3 The Problem of Uncanny Accuracy

There is a third important aspect of the problem of applicability of mathemat-

ics that Wigner introduces in contradistinction to the problem of unexpected

applicability. Here is how he introduced it:

The observation which comes closest to an explanation for the mathematical
concepts’ cropping up in physics which I know is Einstein’s statement that the

5See also Bell (1999).
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only physical theories which we are willing to accept are the beautiful ones. It
stands to argue that the concepts of mathematics, which invite the exercise of
so much wit, have the quality of beauty. However, Einstein’s observation can
at best explain properties of theories which we are willing to believe and has
no reference to the intrinsic accuracy of the theory. (Wigner, 1960 : p. 7)

Thus, in addition to the considerations from the last section, there is a funda-

mental story to tell about the intrinsic accuracy of mathematical representa-

tions. As Wigner (1960 : p. 8) explains,

[i]t is important to point out that the mathematical formulation of the physi-
cist’s often crude experience leads in an uncanny number of cases to an amaz-
ingly accurate description of a large class of phenomena. This shows that
the mathematical language has more to commend it than being the only lan-
guage which we can speak; it shows that it is, in a very real sense, the correct
language.

The uncanny accuracy that Wigner describes extends to all aspects of math-

ematical modelling and theorizing. Mathematical representations are often

based on crude experience, but they are also based on intrinsic limitations

regarding what can be mathematically achieved. In this respect, computer

simulations and numerical approximations introduce an additional dimension

to the problem of uncanny accuracy. Hamming has a nice example of this:

My first real experience in the use of mathematics to predict things in the real
world was in connection with the design of atomic bombs during the Second
World War. How was it that the numbers we so patiently computed on the
primitive relay computers agreed so well with what happened on the first test
shot at Almagordo? There were, and could be, no small-scale experiments to
check the computations directly. [. . . ] this was not an isolated phenomenon—
constantly what we predict from the manipulation of mathematical symbols is
realized in the real world. (Hamming, 1980 : p. 82)

Thus, we see that mathematical representations of physical systems are con-

structed on the basis of uncertainty, measurement error, modelling error, an-

alytical approximations, computational approximations, and other forms of

guesses and ignorance that nonetheless often provide extremely accurate rep-

resentations of systems. On the basis of the commonsensical rule “garbage in,

garbage out,” this accuracy indeed appears to be uncanny. Thus, the problem

of uncanny accuracy, as I will address it in this dissertation, can be formulated

as follows:
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Problems of Applicability Examples of Solution Candidate

Mixed Sentences Theory of cognitive abstraction, theory of log-
ical abstraction, theory of shared structures in
terms of morphisms

Unexpected Applicability Einsteinian aesthetic discrimination, accounts
of pre-established harmony, “tinted glasses”
perspectivism, theory of embodied mind

Uncanny Accuracy A concept of differential mathematical fitness

Table 1.2: Three problems of applicability and corresponding solution candi-
dates.

Given that the effective construction and manipulation of mathematical

representation is pervaded by uncertainty, error, and approximation, how

can their apparently uncanny accuracy be explained?

Chapter 2, chapter 3, and chapter 4 will describe the circumstances in which

uncertainty, error, and approximation creep into our practice of mathematical

modelling, and how they are handled.

To end this subsection, I would like to emphasize that this problem differs

significantly from the other two problems of applicability (see table 1.2). The

first two problems focus on the conditions of possibility for meaningfully using

mathematics to gain knowledge about the real world.6 This third problem

is not asking how mathematical representations can meaningfully be built.

Rather, it starts from the fact that applied mathematicians do, as a matter

of fact, use mathematics to fruitfully gain knowledge of the world. However,

it stresses the fact that—seemingly against all odds—the ingredients used to

6A perspective on mathematics that enhances its flexibility, thereby making it more
resourceful, makes the expectation that we can satisfy those conditions of possibility more
natural. In reference to his suggestion to replace absolute (or global) mathematics by local
mathematics, Bell (1986 : 425) remarks that it “results, in my view, in a considerable gain
in flexibility of application of mathematical ideas, and so offers the possibility of providing
an explanation of their ‘unreasonable effectiveness’. For now, instead of being obliged to
force an intuitively given concept onto the Procrustean bed of absolute mathematics, with
the attendant distortion of meaning, we are at liberty to choose the local mathematics
naturally fitted to express and develop the concept. To the extent that the given concept
embodies aspects of (our experience of) the objective world, so also will the associated
local mathematics; the ‘effectiveness’ of the latter, i.e., its conformability with the objective
world, thus loses its ‘unreasonableness’ and instead is shown to be a product of design.”
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cook up accurate representations are themselves lacking in accuracy in essential

ways. Thus, the problem consists in explaining how to compare the virtues

of different mathematical representations, and how to explain the success of

those that have a comparative advantage. As I will explain later, I believe

that a satisfactory solution to this problem consists in the specification of a

concept of differential mathematical fitness that explains how the accuracy

of our mathematical representations is not so uncanny after all. In the next

section, I will explain in what respects this problem is not the exclusive turf

of applied mathematicians, but also touches on deep philosophical problems.

1.3 Rational Reconstruction and the Episte-

mology of Science

Accordingly, this dissertation will furnish an account of why mathematics ap-

plies so successfully to the real world, despite apparently compelling a priori

reasons that it should not. I now turn to a discussion of the philosophical

methodology that appears to be proper for the resolution of this problem. Ac-

cordingly, the objective of this section is to delineate a philosophically sound

methodology for this investigation, in a way that reveals how I intend my

theses and arguments to be interpreted.

1.3.1 Philosophical Stakes in Rational Reconstruction

It is a fact that the practice of real scientists is pervaded with falsehoods, er-

rors (intended and not intended), approximations, and uncertainty (including

both known and unknown unknowns). Cases of epistemic serendipity, fortu-

nate mistakes, aesthetic preferences, and personal idiosyncrasies of influential

figures are also integral parts of real science. However, it does not follow that

all those factors play an equally important role in epistemology. It is true that

epistemology is descriptive insofar as it has “the task of giving a description

of knowledge as it really is” (Reichenbach, 1938 : p. 1). However, the point of

epistemology is to clarify what knowledge in general is. In a scientific context,
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its point is to explain the reliability of scientific knowledge and to delimit its

scope. Epistemology aims to provide grounds for evaluating what knowledge

claims are in fact genuine knowledge; in particular, what claims, hypotheses,

models, theories, methods should be considered scientifically warranted. Epis-

temology does not, as a result, take as its objects the actual thought processes

of scientists, the actual words used by scientists, or even what scientists take

their own activity to be. Rather it envisages a better scenario in which the

claims, hypotheses, models, theories, and methods are accounted for not by

fortunate mistakes, serendipity, etc., but rather by a rationally compelling pre-

sentation they ought to have. Thus, to use the term introduced by Carnap

(1928), the object of the epistemology of science is a rational reconstruction

of science. The question, then, is:

What aspects, if any, of scientific practice should bear on our normative, ideal
image of science?

In particular, is the de facto omnipresence of idealization, approximation, and

error a mere contingency that has little place in a rational reconstruction, or

should it occupy a prominent place? Based on an examination of the practice

of applied mathematicians, I will argue for the latter.

Nonetheless, my approach seeks to formulate a normative rather than a

strictly descriptive discourse on science. That this is the objective of epis-

temology is, in my opinion, not controversial,7 but there have been multiple

debates regarding the relation between facts and norms in philosophy of sci-

ence.8 The essence of the controversy stems from the fear of committing the

is-ought fallacy decried by Hume (1739 : Book III). As it happens to be the

case, our paradigm for thinking about norms are the rules that prescribe action

by determining what is to be considered legal or not, e.g., ‘one ought not to

cross an intersection when the light is red.’ In such cases, there is a very clear

7Some philosophers would disagree, especially if ‘normative’ is assimilated with ‘prescrip-
tive,’ i.e., with the enunciation of dictates to scientists. However, the normative aspect of
epistemology also includes evaluative and comparative claims that are surely normative in
character.

8This has been particularly important for philosophers of science who have tried to play
up the role of history and sociology.
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direction of fit: if someone crosses the intersection on a red light, it does not

invalidate the law. Thus, particular actions are immaterial to whether the law

stands or not. Since epistemology is also normative, it would seem to make

it impossible to infer what should be considered science from what scientists

actually do, as I suggest, for that would involve the same is-ought fallacy.

At the same time, most philosophers of science would grant that our ra-

tionally reconstructed ideal of science should stand in some relation of corre-

spondence to actual science.9 According to Brown (1980), this sort of situation

leads many philosophers of science to a “schizophrenic attitude” toward the

relation between facts and norms in philosophy of science. As he explains:

On the one hand, they want their philosophical accounts of how science ought
to be done to do justice to typical scientific practice; but on the other hand,
they want to avoid any confusion of historical facts with philosophical norms.
(Brown, 1980 : p. 236)

The objection leads us to a schizophrenic attitude to the extent that it assumes

that there is no acceptable way to philosophically rationalize inferences from

facts about typical scientific practice to aspects of our normative ideal of sci-

ence, i.e., that it always involves the is-ought fallacy. If this fear of committing

the is-ought fallacy were sound, then it would represent a serious objection to

the methodology I propose.10

As I have argued, the fact that there is omnipresence of approximation,

error, and uncertainty in science motivates the study of the problem of the un-

canny accuracy of mathematics without first answering the first two problems

of applicability nor even the first two problems of philosophy of mathemat-

9This idea is clearly expressed by Reichenbach (1938 : p. 6): “In spite of its being per-
formed on a fictive construction, we must retain the notion of the descriptive task of epis-
temology. The construction to be given is not arbitrary; it is bound to actual thinking by
the postulate of correspondence.”

10I take time to address this point because almost every time I have discussed the views I
will articulate in the forthcoming chapters, I have met the argument that I was not clear on
the descriptive and normative dimensions of my work, or that I was downright committing
the is-ought fallacy by inferring standards of scientific knowledge from facts about what
scientists do. Moreover, in discussions with philosophers of science, this argument had been
presented against many of the authors who influenced my work. I thus judge it important
to take some time to address the question.

17



ics. I consider it to soundly motivate an epistemological investigation, since

the observations and analyses made would positively alter (at the very least

complement) our ideal epistemological image of science. If, however, no such

inference can be made, this motivation would be in jeopardy. To disperse such

qualms, I will begin with a discussion of what I intend the normative aspect

of my dissertation to be, in relation to the idea of rational reconstruction.

The dimension of the rational reconstruction process that generates an ob-

ject of study suitable for a properly epistemological analysis of knowledge is

often presented as an invective to distinguish the context of discovery from

the context of justification. Here, discovery and justification should not be

thought of as two temporally distinct processes—first, you discover something

and then later you justify it—since the typical development of science involves

alternating phases of discovery and justification that inform one another. As

emphasized by Salmon (1970), there might be overlap between the two con-

texts. The distinction between the contexts is one between processes of dis-

covery versus methods of justifications. The phrase “methods of justification”

denotes what satisfactorily establishes knowledge claims, independently of the

beliefs of the historical actors. Clearly, what is to be included in the context

of justification is determined by what methods and tools are considered ratio-

nal; different choices might result in different organizations of what belongs to

what context.

The role of philosophy of science, from this point of view, is to determine by

philosophical analysis what should count as satisfactorily establishing knowl-

edge claims, that is, what counts as a rational method of justification. It is

important to emphasize that which methods of justification are rationally ad-

missible is not god-given; there is room for disagreement about justification,

which may be rationally discussed by philosophers. It is in this respect that

facts about actual science may have normative import:

While the philosopher of science may be basically concerned with abstract
logical relations, he can hardly afford to ignore the actual methods that scien-
tists have found acceptable. If a philosopher expounds a theory of the logical
structure of science according to which almost all of modern physical science is
methodologically unsound, it would be far more reasonable to conclude that the
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philosophical reasoning had gone astray than to suppose that modern science
is logically misconceived. (Salmon, 1970 : emphasis added)

This explains the normative relevance of actual scientific practice. Historical

episodes confirm or disconfirm views on how rational reconstruction ought to

be done because, if we use reconstructive tools that are misguided or insuffi-

ciently far-reaching, our assessment of historically important scientific events

can turn out to be wrong:

It would be a travesty to maintain, in any simple-minded way, that the histo-
rian of science is concerned only with matters of discovery, and not with mat-
ters of justification. In dealing with any significant case, say the replacement
of an old theory by a new hypothesis, the historian will be deeply interested in
such questions as whether, to what extent, and in what manner the old theory
has been disconfirmed [. . . ]. Such historical judgments—whether a particular
historical development was or was not rationally justified on the basis of the
evidence available at the time—depend crucially upon the historian’s under-
standing of the logic of confirmation and disconfirmation. (Salmon, 1970 : 391)

To make his point, Salmon argues that the hypothetico-deductive model of

confirmation cannot account for the rationality of important historical events.

Under this view, confirmation is a process of deduction of observational con-

sequences from hypotheses (together with initial conditions and auxiliary hy-

potheses) and of verification of whether the predictions (or retrodictions) in

fact obtain. However, this approach does not provide the conceptual machin-

ery necessary “for claiming that either of these laws is any better confirmed by

the available evidence than any one of the infinitude of alternatives” (p. 393).

Consequently, “it stands in dire need of supplementation” (p. 393). On that

basis, we can make normative assessments of reconstructive toolboxes based

on the discrepancy between the normative work that it is supposed to do and

some facts about scientific practice.

The revision or supplementation of reconstructive tools is made on the ba-

sis of a diagnosis of facts about scientific practice to the effect that some tasks

have to be performed, and yet cannot. In the case discussed by Salmon, he

emphasizes the Bayesian observation that, in order to determine the degree

to which a hypothesis is confirmed or disconfirmed, it is necessary to consider

not only the observational consequences of this hypothesis, but also the conse-
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quences of alternative hypotheses (i.e., the likelihood of the evidence given the

alternative hypotheses) and initial plausibility judgements of each of the al-

ternatives (which the Bayesian approach captures with its priors). Moreover,

he maintains that such factors are essentially absent from the hypothetico-

deductive reconstruction schema.

The case I present here parallels Salmon’s case.11 Indeed, to make correct

judgements on the use of mathematics in science, it is necessary to have a cor-

rect understanding of the “logic” of model construction and model assessment.

However, as I will argue in the next subsection, the standard logical reconstruc-

tions fall short of this task. Thus, a revision or supplementation of the logical

reconstructive tools is in order. If we were not carefully considering expand-

ing the field of admissible reconstructive methods, almost all of mathematical

sciences would be wrongly considered methodologically unsound. Thus, this

dissertation is intended as a reflective study on the methods of mathematical

reasoning actually used in applied mathematics, supplemented by normative

conclusions regarding our ideal image of science.

1.3.2 Reconstruction Tools and the Problem of Uncanny

Accuracy

The uncanny accuracy of mathematics has been claimed to be miraculous in

the sense that it does not seem to admit of any rational explanation. How-

ever, as I have explained in the previous subsection, the line between what is

rationally justifiable (or explicable) and what is not depends on the admissible

resources that we grant for the reconstruction of scientific practice. One way to

articulate the problem, then, is that the a priori reasons that make it hard to

understand how mathematics applies so well (despite the fact that errors of all

sorts are an intrinsic part of the way in which scientists represent the world and

of the way in which they reason about concepts) result from an insufficiently

11There are other similar cases in the literature. For example, Batterman (2002b) argues
that some physical phenomena involving universal behaviour necessitate a richer notion of
explanation based on asymptotic reasoning. Similarly, Harper (1998) points out that a
richer notion of empirical success underlies Newton’s method.
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rich way of rationally reconstructing scientific and mathematical knowledge.

Accordingly, in order to demystify the allegedly miraculous character of the

applicability of mathematics, insofar as the problem of uncanny accuracy is

concerned, we need to suitably modify the catalogue of methods admissible

for the rational reconstruction of the concepts of science and mathematics.

The first thing to emphasize is that the methodology advocated here is

called rational reconstruction, and not logical reconstruction, for a reason.

Logical methods are undoubtedly rational when properly utilized, but logical

analysis does not exhaust the field of rational justifications. However, per-

haps because of its origins in the works of Carnap, the term ‘rational recon-

struction’ is often assumed to refer to a strict endeavor of logical analysis.12

As a matter of fact, many if not most of the influential reconstructions of

aspects of scientific practice rely on the idea that scientific representations

(whether they are theories or models) are sets of first-order sentences and

that the relation between sentences is essentially determined by the standard

proof-systems. It is key to influential works on the structure of theories (e.g.,

Carnap, 1936, 1966), the problem of confirmation (e.g., Hempel, 1945; Popper,

1959), models of explanation (e.g., Hempel & Oppenheim, 1948; van Fraassen,

1980; Kitcher, 1989; Strevens, 2004), inter-theory relations (e.g., Oppenheim

& Putnam, 1958; Nagel, 1961), and the notion of law (e.g., Hempel, 1945;

Mackie, 1973). But these simple logical schemata are unlikely to offer the ap-

propriate resources to deal with the pervasiveness of error in the construction

and assessment of mathematical representations.13

The first respect in which those resources are not suitable is that the con-

ditions of applications of those schemata require the premises to be true, or

approximately true.14 However, there are important aspects of the scientific

methodology that are swept under the rug when one assumes that premises

are true or approximately true, for a very large part of the applied mathemat-

12For instance, Hoyningen-Huene (2006 : p. 126) explains that for the logical empiricists,
“justification ultimately uses as exclusive means formal logics and basic/protocol sentences.”

13I do not mean to suggest, by this comment, that they are unsuitable for the reconstruc-
tion of any aspect of scientific practice.

14It is required since ex falso sequitur quodlibet.
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ical work is concerned precisely with finding criteria to determine when such

an assumption can be made. If one tries to understand normatively the prac-

tice of mathematical modeling, then the assumption of (approximate) truth

amounts to begging the question, since it is exactly what one tries to show. As

a result, those reconstruction schemata cannot assist us in determining which

errors are approximations. Those errors might have been required either for

the construction of the model or for the solution of the model; but in either

cases, we need to determine which errors are approximations. The distinction

between error and approximation is usually overlooked in the philosophical

literature and yet, it is one of the most important in applied mathematics.

A second objectionable aspect of logical schemata, given the problem with

which we concern ourselves, is that these formal methods are too definite, in

the sense that they do not tolerate well—at least in their basic form—radical

changes in well-definedness or in the conditions of applications of concepts

depending on the type or the domain of application. In fact, if one wants

to understand the application of mathematics in a quite general way, it is

important to consider contexts of assessment so varied in their nature and

circumstances that a purely schematic account is unlikely to do the work. As

Wilson (2006 : 26-27) explains:

This observation—that we must continually devise unexpected stratagems to
further our slow linguistic advance upon the world—represents a vital les-
son from applied mathematics from which we can all benefit. Many working
philosophers, however, greatly underestimate the inferential difficulties that
frequently prevent us from reasoning readily from premises to practical conclu-
sions. Through one swift swipe of unjustified optimism, the practical obstacles
that force conceptual evaluation to turn complex in real circumstance become
removed from view. If, as is the wont of many professional philosophers,
one deals exclusively in schemata (“theory T ,” “premises P ,” “conclusion C,”
etc.), one can pass an entire career without ever experiencing the retarding
obstinacies of real practicality.

Following Wilson along this line, I will explore a more containing model of

terms of conceptual evaluation such as ‘attribute,’ ‘property,’ ‘predicate,’ ‘the-

ory,’ ‘possibility,’ ‘predication,’ ‘validity,’ ‘truth,’ and ‘soundness,’ that largely

accommodates the canons of proof and model theory, while at the same time

says something substantial about the intermediate regions of concept applica-
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tion where these seem unsuited.

Finally, if the schematic logical methods were taken to be the exclusive

tools for our study, we would lack the required flexibility. As I will argue,

it is not any mathematics that applies equally well, but rather some specific

type of mathematics. As Truesdell (1966 : 86) says, “[t]he first aim of modern

philosophy is to describe and study natural phenomena by the most fit mathe-

matical concepts.” Accordingly, we should try to identify not what is common

to how all concepts work, but rather try to articulate the idea of differential

mathematical fitness of concepts.15

I will argue that the sort of considerations involved are not based on the

notion of satisfaction by means of which the standard logical semantics are

defined. An important feature of the discussion will be that the strictly logical

analysis of conceptual and theoretical content camouflages important difficul-

ties, including drastic differences between the behaviour of different types of

mathematical concepts. Accordingly, it is important to take a step back, and

not start our analysis from the schemata in question. Rather, one should look

at the recipes of model construction: what steps and what ingredients are

required to construct a model, and how the various operations in such recipes

are justified. They involve forms of perturbation analysis that go far beyond

the basic model theory and the basic statistical/probabilistic methods of more

standard reconstructions. It is precisely in this sense that, just as did Salmon,

this dissertation will revise and complement our reconstructive toolbox, and

thereby affect our normative image of science.

This being said, it is still possible that, in the end, the two reconstructionist

approaches will end up sharing the same global conceptions of science. To

what extent this will be the case is, in my opinion, a conceptual question of

a mathematical type that has not yet been addressed. Most of philosophy of

science has shown little interest in this sort of question. This question should

be addressed. But until it is, we should see the value in both reconstructionist

approaches.

15The word “differential” must be understood as in “differential effect of treatments,” not
in reference to differential geometry.
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1.3.3 Local and Global Analysis of of Concepts

In addition to having philosophical implications for our normative ideal of

science, the study of the problem of uncanny accuracy has consequences for

the way in which philosophers envisage conceptual analysis. I have already

criticized some mainstream methods that underlie some approaches to the re-

construction of scientific practice. In this subsection, I sketch the alternative

mode of conceptual analysis that the next chapters will support. This per-

spective on concepts was developed by Wilson (2006). Wilson’s methodology

is to draw lessons from applied mathematics for the way we do philosophy.

The view of reconstruction discussed above relies on the classical picture

of concepts, as Wilson (2006) calls it. It is a view of conceptual content that

has been developed at the turn of the twentieth century by philosophers (most

notably Frege and Russell) and scientists pressed to solve important method-

ological problems in their fields of inquiry. It was designed to accomplish some

practical work by guiding our use of terms of conceptual evaluation.16 Here

are the three defining elements that characterize the classical theory:17

1. we can determinatively compare different agents with respect to the de-

gree to which they share “conceptual contents”;

2. that initially unclear “concepts” can be successively refined by “clear

thinking” until their “contents” emerge as impeccably clear and well-

defined;

3. that the truth-values of claims involving such clarified notions can be

regarded as fixed irrespective of our limited abilities to check them.

These appear irreprochable if we associate meaning and conceptual content

with truth conditions. The most problematic point with the classical picture

is the way in which it depicts what grasping a concept is. Wilson’s

[. . . ] unhappiness with the classical point of view lies in the fact that it paints

16A recurrent theme in Wilson (2006) is that, with hindsight, our task as philosophers
is to assess the classical picture based on how well it accomplishes the work it promised to
accomplish, and to suggest alternatives where it fails. This results in a very application-
focused approach to problems of philosophical logic that permeate philosophy of science and
philosophy of mathematics.

17See Wilson (2006 : 4).
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an implausible portrait of human intellectual capacity and practicality, not
that its somewhat hazy descriptive vocabulary can’t be adapted to any situa-
tion that comes down the pike. (Wilson, 2006 : xvii)

What is it to grasp a concept? Classically, a concept has been grasped when

it does not suffer any indetermination, in the sense of the third thesis above.

Moreover, by the second thesis, one can always reach such a state of well-

definedness if one thinks sufficiently clearly:

These classical proposals for making corrections in our intellectual course were
quite optimistic in character, maintaining that any diligent thinker can, if
she only sets her mind to the task, permanently avoid the strange conceptual
snares into which scientific topics otherwise fall. (Wilson, 2006 : 7)

As a result, when one grasps the content of a concept, one is supposed to

have a complete mastery of its truth conditions as well as of its tractability

conditions.18 However, as we will see, this is exaggerated: analyzing a concept

requires more than meditating on the definition of a concept and its logical

consequences. As it turns out, tracing the truth conditions and the implica-

tions of concepts is a computationally challenging task.

So, what direction should we take? Many twentieth century philosophers

have sensed something wrong with the classical picture and proposed various

diagnoses. Most of their proposals have consisted in revisionary pictures of

what it is to “grasp a concept” or to “understand a trait.”19 The idea is

that what is objective in the meaning of a concept (i.e., its content) is not

determined by its alignment to the world. We should rather seek the locus of

objectivity elsewhere. In this respect, standard proposals are that the objective

character of conceptual content should be sought in the linguistic practices of

a community of competent speakers, in the causal connections between speech

acts and events in the world, in a web of beliefs that runs across scientific

disciplines, etc. I share with Wilson the view that, in an important way, these

18This convergence reminds us of Laplace’s demon (Laplace, 1819), whose epistemic state
is so perfect that it transparently reflects its ontological underpinnings.

19Wilson calls this strategy “amphibolism.” Specifically, “amphibolism” denotes “the
wide spectrum of philosophical opinion that rejects as misguided any attempt to disentangle
the “objective” contents of predicates from their more subjectively informed directivities
[. . . ]” (Wilson, 2006 : 78).
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Figure 1.2: Manifold structure.

proposals throw the baby out with the bathwater. To find out whether we have

committed this blunder, Wilson (2006 : 3) proposes this intuitive criterion:

We will have told the story of concepts wrongly if it doesn’t turn out to be
one where our usual forms of conceptual evaluation emerge as appropriate and
well founded most of the time.

Concepts arise from practice and allow us to solve problems efficiently, in much

the way that the classical picture describes. However, they sometimes fail to

be as well-behaved as the classical picture would lead us to believe.

As a result, I will seek a different strategy. Employing two analogies from

differential geometry, I will adopt the position that concepts are locally clas-

sical, but not necessarily globally.20 The idea is that if we make conceptual

analysis a primarily local endeavour, we do not have to change the locus of

attributes; we rather need to understand how its various ranges of applica-

tions relate to the inner workings of the terms of conceptual evaluation. The

classical picture only breaks down (and does so only some of the time) when

we are trying to extend the use of these concepts to regions not planned for

in the first place.

With this as a motivation, I will discuss terms of conceptual evaluation in

analogy to the treatment of geometrical properties in a mathematical structure

20My first encounter with this strategy is a paper by Bell (1986), in a different context.
Wilson also developed a version of this thesis, which is the one I am closer to in this section.
More recently, this idea has played an important role in a work of Curiel (2011).
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(a) Nice and smooth. (b) Not so nice and multivalued.

Figure 1.3: Analytic continuation.

called “manifold.” See figure 1.2. If we start with a vast region of application

M , we focus on the local behaviour of the concept over a part U . In a manifold,

even if the global structure can take many forms, the local one is always

Euclidean. In analogy, even if the global behaviour of a concept can take

many refractory forms, the local behaviour, i.e., the behaviour that has to

do with well-understood applications, is classical. In a manifold structure, we

try to connect these locally Euclidean neighbourhoods to do more heavy duty

differential geometry by means of atlases. Similarly, as Wilson (2006) explains

in his chapters 6 and 7, we connect our various local patches by constructing

theory facades.

If we encounter no pitfalls, we will even be able to extend our under-

standing of particular concepts much beyond the patches corresponding to

well-understood practical applications. Our reasoning about concepts in ex-

tended domains is developed in analogy to another important mathematical

idea, namely, analytic continuation. The basic idea, when everything is nice

and smooth, is that starting at a certain point z(0) (see figure 1.3(a)), we are

justified in assuming that a function (more specifically, its series expansion)

works similarly in all neighbourhoods. As a result, we can reason that, if we go

from a region of application to another, our understanding of the function will
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remain just as good. In such cases, we can extend our understanding of the

function to determine what we would find out at z(1). However, the story is

not always as even-textured (see figure 1.3(b)). To begin with, there might be

competing continuations of our local understanding of a concept. The locality

of our original domain of application can also hide a nonlinearity that makes

extrapolation unreliable. For that matter, there might not be any coherent

continuation to a given region. Such troubling situations relate to what Wil-

son (2006) describes under the colourful labels “multi-sheetedness,” “cracked

reasoning,” “physics avoidance,” etc.

From this point of view, there is a conceptual underdetermination with

respect to “analytic” continuation. I will argue that, if this is problematic

from the point of view of a convinced adherent to the classical picture, it

is beneficial to our understanding of which mathematics applies well. These

considerations emphasize that not all concepts are alike in their inner work-

ings, i.e., individual features of some particular kinds of concepts determine

a non-universal way in which they are glued to the world. As a result, it is

reasonable to expect that not all mathematical concepts will apply equally

well. By characterizing and classifying such strange conceptual behaviours,

we will then understand better in which way the world refuses to cooperate

with our conceptual expectations. We will likewise have a notion of differential

mathematical fitness providing reasons for which some mathematical concepts

apply so well (while others do not). Importantly, this view respects the fact

that successful concept application is something that requires caution and is

not something that can be expected to be epistemologically transparent.

1.4 Summary of this Chapter and Outline of

the Dissertation

In summary, this chapter has made the following points:

C1.1 There are three main interrelated philosophical questions about math-

ematics. Whereas the mainstream philosophy of mathematics literature
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typically relegates questions on the applicability of mathematics to a sec-

ondary role, this dissertation explores the consequences of giving them

priority.

C1.2 The problem of the applicability of mathematics comprises at least three

different problems demanding essentially different answers. Whereas the

mainstream philosophical literature has mostly ignored what I call the

problem of uncanny accuracy, this dissertation focuses on it.

C1.3 The problem of uncanny accuracy demands as an answer a concept

of differential mathematical fitness that explains the circumstances in

which mathematics can be expected to apply well (or not). It is unlikely

that this concept will be captured by the syntactic and semantic tools

of logic standardly employed in philosophy of science.

C1.4 To demystify the applicability of mathematics, one needs to have the

means to capture its rationality. Accordingly, it is imperative to supple-

ment the philosophical toolbox used to rationally reconstruct scientific

practice with methods and concepts apt to discuss accuracy (which are

based on error theory, sensitivity analysis, and perturbation theory).

C1.5 Mainstream philosophical views on the reconstruction of scientific prac-

tice rely on the classical view of concepts, which relies on a naively

optimistic view of what it is to grasp a concept. A view of concepts that

distinguishes local and global conceptual analysis will better capture the

challenges involved in the application of concepts.

In the next three chapters, this dissertation will provide a philosophical dis-

cussion of the ways in which mathematics applies to the world. The discussion

will examine actual strategies and methods used by applied mathematicians

and extract from them general patterns of reasoning. Chapter 2 examines

the dominant features of ‘the logic of mathematical modelling,’ as I call it; it

includes the recipes used to construct mathematical representations and the

factors entering into their evaluation. Thus, chapter 2 delineates how error

and uncertainty are handled in mathematical modelling. The first section of
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chapter 3 pursues the same theme by focussing on the theories underlying

physical modelling. The second section of chapter 3 discusses the experimen-

tal side of the concepts of error and uncertainty. Finally, chapter 4 clarifies the

contribution of quantitative methods for the analysis and assessment of math-

ematical models. On the basis of these discussions, the dissertation concludes

that to properly understand the logic of mathematical modelling we need the

view of concepts essentially pioneered by Wilson (2006). By adapting this

view, it thus become possible to philosophically systematize the patterns of

successful applied mathematical reasoning examined in order to demystify the

unreasonable effectiveness of mathematics.
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Chapter 2

The Logic of Mathematical

Modelling

This chapter examines the logic of model construction and model evaluation—

or just logic of (mathematical) modelling for short.1 In chapter 1, I have argued

that understanding the operations involved in the construction of models and

in the evaluation of their accuracy is the most important aspect of scientific

methodology to properly reconstruct in order to demystify the unreasonable

effectiveness of mathematics.

In section 2.1, I will make explicit what operations are involved in the con-

struction of a mathematical model of a real system. In the remaining sections,

I delineate patterns of analysis used to address the main difficulties related

to the assessment of mathematical representations of real systems. Section

2.2 explains the way in which model equations are derived from modelling

assumptions by means of model construction recipes. Section 2.3 explains

the interdependence between the selection of modelling assumptions and the

tractability of model equations. Those two sections make clear that the logic

of modelling has an essential pragmatic component. Section 2.4 draws on this

1I do not use the word “logic” as it is used in modern works on mathematical logic, in
which the proof and model theory of a logic is studied in formal languages. I use the word
“logic” in its old-fashioned sense of “science or art of reasoning.” This seems appropriate,
since I will describe courses of thought encountered in the context of modelling, and I will
discuss the conditions under which such courses of thought are valid, or sound, or reliable.
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fact and identifies good modelling practices with effective strategies for in-

formation management. Finally, section 2.5 clarifies the senses and conditions

under which a model can be considered to successfully represent a real system.

2.1 The Mathematical Study of Real Systems

The construction of a mathematical representation of a real system always

involves some degree of idealization. Many definitions of ‘idealization’ exist

in the literature, but here I simply use this term whenever a literally false

statement (that is no tautologically so) is involved. Under such a definition,

the omnipresence of idealization is incontrovertible, as Truesdell (1960 : 31)

elegantly explains:

Any mathematical theory of physics must idealize nature. That much of nature
is left unrepresented in any one theory, is obvious; less so, that theory may err
in adding extra features not dictated by experience. For example, the infinity
of space is itself a purely mathematical concept, and all theories within this
space must share in the geometrical idealization already implied.

This sort of idealization is characteristic of all types of representation, and is

by no means limited to mathematical representation. According to the Oxford

Dictionary, a representation (in the sense relevant here) is “the description

or portrayal of someone or something in a particular way.” A given thing

could be represented in multiple ways depending on the choice of medium;

such media could be, e.g., a picture, a wooden scale model, a set of English

sentences, or a set of mathematical equations. Any representation using a

medium that differs in kind from the thing represented introduces a degree

of idealization. This fact only reminds us that a good representation cannot

merely duplicate the thing represented, but that it must rather encapsulate

the relevant information.2 Different types of representation complement each

2The idea that a representation that introduces no distortion whatsoever is better is
sometimes part of philosophical arguments, at least implicitly. Borges (1975) illustrates
convincingly in a short story that this view is untenable: “In that Empire, the Art of Car-
tography attained such Perfection that the map of a single Province occupied the entirety of
a City, and the map of the Empire, the entirety of a Province. In time, those Unconscionable
Maps no longer satisfied, and the Cartographers Guilds struck a Map of the Empire whose
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other when different information is needed.

Given that our objective is to delineate the circumstances that make the

use of mathematics so successful, in what follows we restrict our attention to

mathematical representations and their effective use in the natural sciences. A

natural starting point is to examine the way in which bodies are represented in

mechanics to make them amenable to a mathematical study. Malvern (1976 : 1)

depicts the situation as follows:

The theory of mechanics, like all physical theories, deals, however, not with
actual physical materials but with various idealized physical models of real
materials, models capable of being represented by mathematical equations
that can be solved to make predictions of the motions and deformations of the
physical model material.

In classical mechanics, three different kinds of “idealized bodies” (or ideal-

ized “building blocks”) are employed to represent physical systems (see, e.g.,

Malvern, 1976; Wilson, 1998):

1. particles or mass-points;

2. rigid bodies;

3. deformable continuous bodies, or deformable bodies for short.3

Each of those types of idealized bodies gives rise to a specific approach to

classical mechanics. In each case, there corresponds a branch of mathematical

physics that studies the mathematical properties of systems of bodies of this

type (respectively, mass-point mechanics, rigid body mechanics,4 and contin-

uum mechanics). However, as a matter of fact, there are no such things in

reality as a mass-point particle or a perfectly rigid body; all real physical bod-

ies occupy some space and are to some extent deformable. Moreover, based on

size was that of the Empire, and which coincided point for point with it. The following
Generations, who were not so fond of the Study of Cartography as their Forebears had
been, saw that that vast Map was Useless, and not without some Pitilessness was it, that
they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the West,
still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in all
the Land there is no other Relic of the Disciplines of Geography.”

3They are also called ‘continuous media’ or ‘continua’.
4It is sometimes called rational or analytical mechanics.
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knowledge acquired not from classical but rather from quantum mechanics, it

would seem that bodies are not continuous, but rather composed of discrete

entities. Nonetheless, those idealized bodies are the media used to construct

mathematical representations of real physical systems in an astonishingly suc-

cessful way.

The construction of mathematical representations involves many inter-

twined layers. Our first task will be to identify them and their mutual relations.

To begin with, one may consider a hypothetical abstract system and attempt

to understand what will happen to the bodies in this system. By ‘abstract

system,’5 I mean a system specified in abstract terms such as idealized bodies,

coordinates, initial or boundary instantaneous states, etc. A description of an

abstract system is provided in a way that unambiguously determines a list of

modelling assumptions ; typically, this information is (or can be) summarized

in a free-body diagram. Basically, the sort of mathematical analysis involved

with such abstract problems is of the kind we find in introductory physics

textbooks. For instance, we could consider an isolated system of two mass-

point particles of mass m1 and m2 in states s1 = [x1, ẋ1] and s2 = [x2, ẋ2] at

t0 and acted upon only by the gravitational force. This being given, the math-

ematical task to perform would consist in deriving a differential equation (or

a difference equation, or an equilibrium equation, etc.) expressing the states

of m1 and m2 as a function of time (for any t or for some interval ta ≤ t ≤ tb)

from the modelling assumptions. In other words, we construct a mathematical

representation—which consists in a set of model equations6—from the mod-

elling assumptions. From this mathematical representation, the task is then to

extract information that characterizes the behaviour of the system. This step

often involves significant computational difficulties that philosophers rarely

acknowledge; I will return to this later.7 In summary, in the case of abstract

5Perhaps a better word would be ‘pretend’ system, since we pretend that such a thing
exists, without reference to what actually is.

6I will use the term ‘model equation’ to refer indiscriminately to differential equations of
motion, difference equations, equilibrium equations, and the like.

7For now, I will just point out the fact that whether we need to extract the exact solution
(if there is a unique solution), or just a solution (or a class of them) that are not necessarily
exact is not pre-settled. All we need is information on the behaviour of the system.
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mathematical representation

modelling assumptions solution

construct extract

Figure 2.1: Schema of mathematical analysis of abstract systems.

systems, the schema of mathematical analysis is as in figure 2.1.

The construction of a mathematical representation of an abstract system

is much less problematic than for real systems, since we are given everything

that is mathematically relevant to the problem, i.e., everything that should

be taken into account in the mathematical representation. Such problems can

be solved without ever asking if there are systems of this kind that actually

exist. In the previous example, the fact that no system of two completely

isolated point masses acted upon only by gravitation exist, is immaterial to

the analysis. Even more importantly, it is also independent of whether an

actual system that we wish to study mathematically is faithfully represented

by this abstract model. In other words, it is an exercise in pure mathematics.

On the other hand, one may consider real systems, i.e., systems as we

actually encounter them in the universe we live in. In contrast with abstract

models, a real model is not populated with mass-points, rigid bodies, or con-

tinuous media, but rather with things like tennis balls, blocks of concrete,

2�� � 4�� wood studs, steel I-beams, planets, galaxies, impure water, etc. Part

of the mathematical analysis of such real systems involves the derivation of

an equation of motion that dictates the temporal behaviour, exactly as for

abstract systems. However, in this type of situation, as opposed to the first

one discussed, we are not given everything that is mathematically relevant to

the problem. In other words, we do not start from a given list of modelling as-

sumptions, but from a raw, non-mathematically described real system. Prior

to the derivation of model equations, one has to select modelling assumptions.

The selection of modelling assumptions is a crucial step which is often plagued
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with error and uncertainty.8 As a result, the construction phase of the analysis

is significantly more difficult for real systems.

It is also important to emphasize that the process of mathematical mod-

elling of real systems typically begins with specific questions that determine

what aspects of the system is the behavior of interest. Those questions are of-

ten very practical questions that impose a pragmatic (i.e., context-dependent)

dimension to the logic of modelling.9 Here are examples of such questions:

• what is the efficiency of this machine?

• would this apparatus break under a typical variable load L?

• is this component better built with material A or B?

• would a certain solution containing likely impurities remain stable under

a certain increase of temperature?

Because of that, in contexts of modelling, the solution to model equations is

often only an intermediary step toward answering specific questions about the

behaviour of interest. In this case, the schema of mathematical analysis is as

in figure 2.2. Notice the differences with figure 2.1.

The task of mathematically modelling real systems is to derive a mathe-

matical representation of the system that will allow us to correctly capture

certain physical properties of the system. From this point of view, a good

model does not have to correctly capture all aspects of the system, but only

those relevant to the questions that we are interested with when we considered

the system in the first place.

Accordingly, in order to properly characterize the logic of modelling, it will

be convenient to adopt the mindset of an engineer trying to solve a problem,

or to design a mechanism, or to build a machine or gadget of sort, without

8It would be premature at this point to outline the intricacies involved in this selection
stage; this will be revisited throughout the chapter.

9This fact is often overlooked in philosophical discussions on the role of mathematics.
As I will explain later, it is for the most part the case that solutions of model equations can
only be assessed with respect to levels of tolerance dictated by the practical concerns that
motivated the investigation.
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Figure 2.2: Schema of mathematical analysis of real systems. Compare with
figure 2.1.

really having the privilege of hindsight that philosophers often presume in their

rational reconstructions of scientific practice. For an engineer in that situation,

the main objective is to use mathematics to answer contextually determinate

questions in a situation that involves uncertainty and error at many different

levels. To do so, the main challenge consists in using mathematical courses

of thought that make it possible to properly manage uncertainty and error.

In particular, if their origins are mis-diagnosed, mis-quantified, and if their

consequences are mis-judged, dramatic consequences can ensue.

2.2 Deriving Model Equations from Modelling

Assumptions

In order to make the procedure of derivation of model equations from modelling

assumptions more definite, let us turn to a description of such procedures, and

illustrate their use by examining two examples that are part of any basic

physics curriculum. Both examples are mathematically simple; the first one is

Kepler’s two-body problem, and the second one is the analysis of the perfect

lever. The case of the lever will be particularly interesting, since it allows us to

discuss modelling of simple machines, a theme very much in the spirit of the

engineering mindset mentioned above. The simple machines are elementary

mechanical configurations of bodies in a system organized so that it changes
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Figure 2.3: The six simple machines. IMA denotes the ideal mechanical ad-
vantage.

the direction or magnitude of a force to produce a mechanical advantage. The

phrase “simple machine” most often refers to the following: lever, wheel and

axle, pulley, inclined plane, wedge, and screw (see figure 2.3). Simple machines

are very important, since they are often treated as the building blocks for more

complicated machines. As a result, the process of mathematically modelling

complex machines can be reduced to a series of modelling problems concerning

simple machines.10

2.2.1 Model Construction Recipes

To begin, let us put the derivation procedures in context. The overarching

question concerning machines is this:11

10Historically, many of the discussions in philosophy of science were devoted to under-
standing the methodological gambits involved in the analysis of mechanical systems. From
this point of view, philosophy of science, as a study of scientific methodology, is not about
how to interpret “fundamental” theories, and to this extent there is a significant difference
with some dominant trends in contemporary philosophy of physics. Despite the fact that it
is unreasonable to restrict philosophy of physics to this task, it is at its very core.

11In a similar way, Hall et al. (1961) describes the design process for machines as beginning
with the identification of a need that defines the problem. On this basis, one can then ask
whether some design will satisfy the need.
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Q. Given a certain task, how should the machine be designed?

This question is quite general. As such, it incorporates many sub-questions.

Consider these two examples:

1. Are the materials used for this machine design sufficiently strong to

execute the task without breaking or being damaged?

2. Does the machine so designed have a mechanical advantage that figures

better than other feasible designs?

The two questions differ in kind. The first question demands a yes/no answer

concerning a single system corresponding to a given design. However, the

second question involves comparing different systems corresponding to differ-

ent designs. This involves a comparison of a collection of systems by means

of a multiplicity of mathematical representations. This type of question is

more complex and, for the time being, I will focus on questions that do not

essentially involve the comparison of multiple systems. So, let us focus on

the course of thought that brings us from a certain system to a mathemati-

cal representation of it. In figure 2.1 and 2.2, this corresponds to the arrow

“construct.”

I will refer jointly to the operations that are involved in this construction as

“recipes of model construction,” or just “recipes” for short. The term “recipe”

is appropriate since the list of operations is procedural in nature, and yet it

is not as strictly regimented as an algorithm is (texts on algorithmics often

introduce algorithms using the analogy with cooking recipes). A good example

of such a model construction recipe is Euler’s recipe,which is characterized by

the following five steps:12

(a) Delineate the class of bodies whose behaviour one wishes to study.

(b) Determine what specific forces act between these bodies, i.e., what special

force laws hold between them.
12What I present here as Euler’s recipe is based on Wilson (1998) and Smith (2002).

However, I changed the recipe of Wilson and Smith slightly in order for it not to be limited
to systems of mass-points.
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(c) Choose Cartesian coordinates and decompose each of the specific forces

along the axes of this coordinate system.

(d) For each body under study, and for each axis, sum the component forces

acting upon this body in the direction of the axis.

(e) Set this sum of forces equal to m
d2x
dt2 (Newton’s Second Law).

In this case, the construction recipe encapsulates the logic of derivation of

differential equations. Step (a) and (b) are the ones in which the modelling

assumptions are selected. The modelling assumptions are statements having

one of two forms:

1. There is a body B occupying a certain region at a certain time.13

2. There is a force acting on body B with magnitude r and direction r̂.14

In other words, the set of modelling assumptions is a list of existential state-

ments that specifies the bodies, their types, and the forces acting on them.

The modelling assumptions are manipulated within a theory to obtain a

set of model equations. In the recipe above, the theoretical background is used

mainly in the last step by invoking Newton’s second law.15 Instead of using

the word ‘theory,’ which is overloaded with different meaning in philosophical

discussions, we could say that the construction of a model relies on kinematic

assumptions.16 The underlying kinematics comprises geometrical assumptions

determining the structure of space and time, and some general principles of

motion (such as Newton’s second law). It is important to emphasize that

kinematics does not address the existence of actual bodies, with the particular

13This could be made clearer by reference to the axiomatic theory of bodies developed by
Noll and Truesdell (see, e.g., Truesdell, 1974) and often used to describe the foundations of
continuum mechanics, but I do not think it is necessary to go into the details here.

14Those quantities normally depend on the state of the system and on time (or some other
variable parametrizing the states).

15I will assume that the lessons to be drawn from this analysis depend very little on
what the fundamental nature of physical systems is, and as a result I will focus on the
construction and evaluation of models in classical mechanics, mostly at the macroscopic
level. I will defend this assumption in section 3.1.

16See Curiel (2011) for a similar characterization.
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constraints associated with the nature of those bodies. However, we only

begin to do mechanics per se once we add such constraints.17 The branch that

addresses the behaviour of bodies in this way is known as dynamics.

Thus, given a certain set of modelling assumptions and a kinematics, the

construction recipes determine procedures to derive dynamical equations char-

acterizing the temporal behaviour of the system, i.e., equations describing the

evolution of points or regions in a state space through time. Applied mathe-

maticians often use the phrase dynamical system to discuss a system of equa-

tions describing states through time at a general level.18 The evolution rule

can be a differential equation (continuous time) or a difference equation (dis-

crete time). Finding the trajectory in the state space prescribed by the rule

from a given point is what we call solving the system. If the evolution rule is a

differential equation, this amounts to integrating the system. However, many

systems cannot be solved ‘analytically,’ which is why approximation methods

are the main tool to extract information from dynamical systems (more on

this point in section 4.1). This task corresponds to the stage labeled ‘extract’

in figures 2.1 and 2.2.

Concerning modelling assumptions, two important aspects of the construc-

tion recipe have to be emphasized, which are often overlooked in philosophical

discussions. The first aspect is best presented by a simple example. Consider

the situation in figure 2.4(a). In this case, we have a system with one body

(the black ball) and one force acting on it (gravity). By itself, those two as-

17This is why many philosophers naively assume that a theory has observational conse-
quences. But only mechanical, or equivalently, dynamical, models do so.

18Technically, a dynamical system is a triple

�M,T, {Φt}� .

The state space is an n-dimensional manifold M . The manifold comes with a family of
smooth functions Φt : M × T → M that describes the evolution. If T = R, Φ is a flow.
If T = N, Φ is a map. A flow is usually characterized by a differential equation of motion
x� = φ(x). To get a trajectory, we need to specify some initial condition x(t0) = x0 or
boundary conditions. φ is called the velocity vector field, and it is smooth on M . The
vector field is not in M , but in the tangent space TxM at x.
At this level of generality, dynamical system theory finds application in all mathematical

sciences, and not only in physics.
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(a) One body with one force, result-
ing in free fall.

(b) The same body subject to the
same force; however, due to a second
force, it results in rest.

Figure 2.4: Non-monotonicity of the logic of derivation of differential equa-
tions.

sumptions do not imply that the body’s trajectory will be captured by the

equation ÿ = −g, that is, y(t) = −1
2gt

2. For suppose the two assumptions

are satisfied, but we add another body and another force, as in figure 2.4(b).

Then the ball is at rest, that is, y(t) = 0 �= −1
2gt

2. Thus, in some sense, the

logic of derivation of equations of motion is non-monotonic; if we add more

modelling assumptions, the consequences are not necessarily preserved, i.e.,

the inference schema19

�

k

Mk → E

�

k

Mk ∧Mk+1 → E

(2.1)

is not valid without restriction. An alternative way of looking at it is to

assume that the construction contains an essential clause “and no other bodies

nor forces are in the system” that is left implicit. Either way, to the extent

that we are concerned with the dynamical consequences of a set of modelling

assumptions, there is not much use in making a distinction between “omission”

and “idealization” of aspects of systems.20

19The big wedge is a conjunction of all the existential statements in the set of mod-
elling assumption and E is the statement expressing the model equation. Mk+1 represents
additional modelling assumptions.

20Nonetheless, some authors ascribe an important role to this distinction (e.g., Jones,
2005).
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The second aspect that should be emphasized is that there are two dis-

tinct senses of facticity and empirical adequacy in the logic of modelling. The

first sense of facticity concerns the truth or accuracy of the modelling as-

sumptions. The second sense of facticity concerns the truth or accuracy of

the model equations. To discuss the virtues of mathematical representations,

it is important to keep this distinction in mind. On the one hand, a set of

literally true modelling assumptions can be far from factual with respect to

the model equations.21 This happens if the set does not contain the right

modelling assumptions. On the other hand, a set of modelling assumptions

containing modelling assumptions flagrantly lacking facticity can lead to factu-

ally accurate model equations. In other words, even if we lie about modelling

assumptions, it does not imply that we lie about model equations.22

Even if there are two senses of facticity and empirical adequacy that dif-

fer and that are to some extent independent, there is a lack of systematic

distinction in the literature. When philosophers discuss representational im-

perfections (see, e.g. Jones, 2005; Norton, 2011), it is hard to know if they are

talking about the modelling assumptions or about the equation of state evolu-

tion x(t) (or the model equation of which it is a solution). But it is clear that,

in order to understand how models represent systems, we need to be clear on

whether the facticity is asserted with respect to the modelling assumptions or

the model equations.

This being said, a last remark concerning the first sense of facticity must

be made. For a modelling assumption, it is often possible to say whether they

are factual or not. However, it is hard to directly assess such claims in a

comparative way, i.e., it is hard to determine whether an assumption is as far

from the truth as another. That is even more difficult for sets of modelling

assumptions. It is hard to determine whether a set of mostly accurate sentences

will itself be accurate; in fact, it is hard to even see how such a notion of

21For instance, this would be the case if the set of modelling assumptions used in figure
2.4(a) were used to describe the behaviour of the body in figure 2.4(b).

22Pace Cartwright (1983), this of course does not mean that the laws of physics lie, since
the modelling assumptions in question are not always laws. See Smith (2001). I will return
on this point in section 3.1.
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accuracy for sets could be directly defined. This is why we need the dynamical

sense of facticity. As a matter of fact, since the modelling assumptions are only

means (they are the ingredients of a recipe) to get to a representation, which

is itself a means for answering questions about the behaviour of interest, the

latter, dynamical sense of facticity is often by far the most important one.

2.2.2 Two Examples: Kepler’s Two-body Problem and

the Ideal Lever

To illustrate how Euler’s recipe works, let us revisit the isolated system of

two mass-point particles acted upon only by gravity described on p. 34. The

analysis of this system is a special case of the problem known as Kepler’s two-

body problem. Step (a) of Euler’s recipe is resolved by stipulation: there are

two bodies, namely, two mass-point particles of mass m1 and m2 whose initial

states at t0 are s1 = [x1, ẋ1] and s2 = [x2, ẋ2]. Similarly, step (b) of Euler’s

recipe is also resolved by stipulation: there is only one force acting on each of

the two bodies, namely, gravitation. Since we work within classical mechanics,

we assume that the force in question is specified by Newton’s law of universal

gravitation:

FG = Gm1m2
r

�r�3 = Gm1m2
1

�r�2 r̂, (2.2)

where r = x1−x2 is the vector between the two bodies, and r̂ is the directional

vector r/�r�. We will write Fij for the gravitational attraction of i on j; by

Newton’s third law, Fij = −Fji. Now, we turn to step (c) of Euler’s recipe.

Whether the initial states s1 and s2 are given in Cartesian coordinates or not,

it is easy to obtain a representation in Cartesian coordinates by applying a

transformation. This gives us a representation of r in Cartesian coordinates.

Since r is the only vector quantity involved, we thus have a decomposition of
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the specific force along the axes for each body:

F21,x = Gm1m2
rx
�r�3 F21,y = Gm1m2

ry
�r�3 F21,z = Gm1m2

rz
�r�3

F12,x = −Gm1m2
rx
�r�3 F12,y = −Gm1m2

ry
�r�3 F12,z = −Gm1m2

rz
�r�3

(2.3)

Step (d) of Euler’s method involves no work at all, since there is only one

summand. Finally, we use Newton’s Second Law F = ma and set the sums of

decomposed forces equal to ma (which equals mẍ). We obtain two equations

ẍ1,x = Gm2
rx

�r�3 ẍ2,x = Gm1
rx

�r�3 (2.4)

for the x component and four other equations for the y and z components.

But since r,x1 and x2 are functionally dependent by definition, the system

can be re-written

r̈ = ẍ1 − ẍ2 =
F21

m1
− F12

m2
= G(m1 +m2)

r

�r�3 , (2.5)

which constitutes a system of three independent second-order differential equa-

tions, or, alternatively, six first-order differential equations (three of the posi-

tion, three of the velocity). This set of differential equations is the mathemat-

ical representation resulting from Euler’s recipe. Naturally, one could follow

different recipes, such as the one developed by Lagrange, in which case an

equivalent mathematical representation would obtain. In each case, we would

have 6n equations (where n is the number of bodies) restricting the evolution

of the states of each bodies.

Note, however, that the mathematical representation obtained here is not

a function that directly describes the evolution of the states of the system.

Formally, it has the form ẍ(t) = f(t,x, ẋ) and not the form x(t) = f(t,x, ẋ).

To obtain an equation of the latter form, it is necessary to solve the differential

equation, i.e., integrate the set of differential equations with respect to time.

This is why, in figure 2.1 and 2.2, there is an arrow labeled “extract” between

the mathematical representation and the solution. Chapter 4 will examine
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Figure 2.5: Time series x(t) for Kepler’s two body problem.

this step in more details. Figure 2.5 displays the results of extracting the time

evolution (or, in the dynamical system jargon, the time series) of the position

states by means of a numerical scheme known as the Runge-Kutta-Fehlberg

method.23

This recipe exemplifies how model construction recipes are part of the logic

of modelling. However, this case only exemplifies the case of abstract models,

as we find them in textbooks. In such cases, steps (a) and (b) of Euler’s recipe

are always trivial to execute, as the statement of the problem dictates which

bodies are to be considered and what the forces to consider are, i.e., what the

proper modelling assumptions are. This is never the case for the construction

of models of real systems. For the modelling of real systems, we have to decide

how many bodies will be included in the model, what kind of idealized model

will be used to represent those bodies, and what forces act on the bodies.

As opposed to the construction of abstract models, the construction of real

models thus presupposes a number of decisions. These require a justification;

we will revisit this theme shortly.

For now, let us return to simple machines. We will construct a model

to determine what the mechanical advantage of a lever is. The mechanical

23I used Matlab’s command ode45 with relative tolerance 10−6.
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Fin

Fout �

r

Figure 2.6: An ideal lever with the fulcrum situated between the points of
application of the forces.

advantage MA is a dimensionless quantity defined as

MA =
Fout

Fin

, (2.6)

where Fin is the magnitude of the force applied and Fout is the magnitude of

the force resulting for the use of the machine. Typically, in a textbook, the

problem stipulates what bodies and what forces are to be considered. Consider

the configuration in figure 2.6. A force Fin is applied at one end of a beam of

length r + � supported by a fulcrum situated at length r from the extremity

of the beam on which the force is applied. We assume that the only bodies

in the system are the beam and the fulcrum; both of them are perfectly rigid

bodies (there is no bending or breaking) and they are massless. Moreover, it

is assumed that the fulcrum cannot be moved, and that there is no friction

between the beam and the fulcrum. This ideal situation, in which there is

no possible dissipation of energy and in which the lever system is completely

isolated, is known as an ideal lever, or perfect lever.24

To analyze the mechanical advantage of a perfect lever, we need to make

a few modifications to Euler’s method. The class of bodies and the forces

acting on the bodies are trivially established, since they are the problems’

suppositions. However, step (c) of Euler’s recipe has to be slightly modified to

account for the fact that the fixity of the fulcrum and the rigidity of the beam

force the motion to be rotational. Thus, instead of dealing with the forces

24If the machine does not dissipate or absorb energy, MA can be calculated by geometry
alone. This is why it poses very limited computational difficulties; this is also why dissipative
systems are studied by means of idealizations. Simple machines without friction or elasticity
or wear (which all result in dissipation as heat) are called ideal machines.
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τ = �τ� = �r� · �F� sin θ = rF sin θ

Figure 2.7: Relation of the torque about an axis to the applied force.

directly, we need to find the moments of force, or torques, as intermediaries.

The moment of force is calculated with reference to an axis of rotation and an

arm-vector that goes from the axis of rotation to the point of application of

the force. In this case, we naturally choose the axis of rotation to be at the

fulcrum, and the arm is the right-hand side of the beam r. The moment of

force is a vector perpendicular to both r and F, in the direction of the axis

of rotation, as in figure 2.7. The torque is orthogonal to both r and F. How

do we obtain Fout from this? Because the system is isolated, we can use the

conservation laws characterizing classical mechanics; since the torque is related

to the angular momentum L, we will use the law of conservation of angular

momentum. The angular momentum is L = r×p, where p = mv is the linear

momentum. So, we get

dL

dt
= r× dp

dt
+

dr

dt
× p = r×m

dv

dt
= r× F = τ . (2.7)

The law of conservation of angular momentum (which says that for a closed

system, L is constant if and only if
�

τ ext = 0) thus gives us a constraint on

torque. Since τ in = r× Fin, τ out = �× Fout, and
�

τ i = 0, we obtain

�Fout� =
�r��Fin� sin θ

��� sinφ =
�r�
����Fin�. (2.8)

Since �r�/��� is the ratio that determines how far from the point of application

of the force the fulcrum is, we see that Fout increases as � decreases. Moreover,

48



the mechanical advantage is then simply

MA =
Fout

Fin

=
�r�
��� .

So, as we see, Euler’s method is somewhat modified because we do not directly

use the equation F = ma to derive an equation of motion. But this is implicitly

happening in relation to our use of conservation laws (namely, in equation 2.7).

Thus, as we see, even for very simple problems, the model construction recipe

has to be adjusted to accommodate the different kinds of physical concepts

involved. This is why, despite the procedural nature, it is better understood

as a recipe than as an algorithm.

2.3 Idealization and Tractability of Models

The examples from the previous section illustrate how model equations are

derived from modelling assumptions. However, the cases that we examined

do not really reflect the complexity involved in the mathematical modelling

of real systems, since the set of modelling assumptions from which we derived

model equations are extremely simplified compared to what would faithfully

capture real physical systems. Needless to say, when we build a model for

a system of real bodies, the inaccuracy and incompleteness of the modelling

assumptions could very well lead us to answer questions about the behaviour

of interest incorrectly. A traditional and widespread view to remedy this sort

of situation has been discussed by Batterman (2002a : p. 21):

A traditional view about modeling in the physical and applied mathematical
sciences holds that one should try to find the most accurate and detailed math-
ematical representation of the problem at hand. [. . . ] The aim here is to effect
a kind of convergence between model and reality. One tries, that is, to arrive
at a completely accurate (or ‘true’) description of the phenomenon of interest.
On this view, a model is better the more details of the real phenomenon it is
actually able to represent mathematically.

Using the terms employed here, the traditional view enjoins the modeller to use

an accurate and complete set of modelling assumptions in order to guarantee
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that the model equation derived from them correctly answers our questions

about the system.

However, as Batterman (2002a : p. 22) argues, “the more details that are

built into the model, the more intractable the mathematical equations repre-

senting the behaviour of interest are likely to be.”That means that, even if we

can somehow derive model equations from our accurate and complete set of

modelling assumptions, it is likely that we will not be able to use them to make

predictions and to obtain answers to our questions concerning the behaviour

of interest. For that reason, one could say that those models are too true to

be good.

In the case of Kepler’s two-body problem, the discrepancy between the

modelling assumptions and real systems lies in the fact that real bodies are

not mass-points and that there are no gravitationally isolated systems of two

bodies. Moreover, there normally are other forces that act on real bodies.

If we add these elements to the list of modelling assumptions, we can derive

another set of differential equation that will in principle better describe the

evolution of the system through time. This will lead us to model equations for

a many-body problem—potentially with additional non-gravitational forces—

that will present serious problems for the extraction of solutions from the

model equations.25 Thus, the improvement of the accuracy of the modelling

assumptions brings about a decline of the tractability of the model.

In the case of the machines, the modelling assumptions we used are mis-

guiding to the extent that real machines are not ideal. If we consider what

happens when a person uses a real lever, as opposed to an ideal lever, the

situation is as in figure 2.8. The lever used has a mass, a volume, a variable

density, it is deformable, there is internal shear and bending in the beam, there

is friction with the fulcrum, the fulcrum might wiggle, there is dissipation of

energy, and there are other forces acting upon the system. If we consider in-

stead a system of masses and pulleys, we find that the pulleys are not perfectly

circular, that they are not perfectly uniform (so that their moments of inertia

25More specifically, there will be no closed-form solution. We will discuss in section 4.1
what are the consequences of the lack of a closed-form solution.
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Figure 2.8: Real levers do not satisfy the idealizations used to study perfect
levers (source unknown).

change), that there is friction and shear, that the cables stretch, that there

might be wind moving the cables, that the temperature changes (so that the

sizes of the pulleys and cables might change), etc. Thus, to obtain a reliable

model of such systems, many factors that the analysis of ideal machines ne-

glects would have to be considered. However, once again, the improvement

of the accuracy of the modelling assumptions brings about a decline of the

tractability of the model. In fact, we could no longer use simple geometri-

cal methods applied to free-body diagrams to determine the consequences of

our modelling assumptions, as we did in the previous section. As a result,

the task of constructing the mathematical representation and of tracing its

consequences would be significantly harder to execute.

Thus, there is a crucial dilemma between accuracy and completeness of

modelling assumptions and tractability of model equations at the very core

of the logic of mathematical modelling. What makes mathematical modelling

difficult is that above all we must find a balance between accuracy, complete-

ness, and tractability, as in figure 2.9. This being said, the fact that there are

no gravitationally isolated systems of two mass-points or no real systems of

perfect levers does not mean that there are no real systems that can be treated

as if there were one. If it turns out to be the case that a real system can be

understood by means of such a comparatively simple representation, then we

have found a way to overcome the dilemma.
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Figure 2.9: Balancing factors in mathematical modelling.

Such models, which have been successfully simplified and idealized in order

to gain on the side of tractability, are called minimal models. What constitutes

a successful simplification? How can we compare the consequences of minimal

and complete models, given the intractability of the latter? The idea is to use

perturbation methods, asymptotic analysis, and other forms of analysis of sen-

sitivity to perturbation. From the exact solutions of the simplified model, one

can use such methods to add correcting factors that correspond to rectification

of the assumptions. We will return in more details to this later. For now, one

should understand that the question of the accuracy of models cannot in gen-

eral be simply addressed by saying “add more details to have a more accurate

and complete set of modelling assumptions.” There is always a cost-benefit

analysis to perform, and the most important contribution of mathematics to

modelling is that it provides the tools to do just that. Thus, counter-balancing

the view of the role of applied mathematics as the language for formulating

true representations of systems, there is the view that mathematics is “the art

of finding problems we can solve,” to quote the great mathematician Hopf.26

26Cited from Borel (1983).
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2.4 Effective Management of Representations

As explained in the last section, one of the main challenges faced by mathemat-

ical modelling is to find a proper balance between the accuracy and complete-

ness of the modelling assumptions used to generate a representation, and the

tractability of equations constituting the representation. The former element

is sought because we wish to correctly capture the properties and behaviours

of bodies in a system. The latter is sought because we seek to use the represen-

tation in order to answer specific questions about some behaviour of interest.

This introduces a pragmatic dimension, in that a representation that is not

manageable, however true, accurate, or complete it is is entirely useless. To

repeat the slogan used above, it is too true to be good.

One might wonder if the same holds of representations in general, or if it is

limited to mathematical representations in the particular context of modelling

real systems. In this section, I will suggest that it extends to other run-of-

the-mill contexts as well, by discussing the representation of real systems by

means of digital images. As we will see, they mirror mathematical modelling

in important respects:

1. complete and accurate information is not needed to properly represent;

2. one can use procedures to determine how much information is needed,

and which pieces of information are needed;

3. it is often imperative to discard superfluous information in order to have

manageable representations.

Let us examine an example in detail.

A bitmap image is a picture which is formatted as an array of m × n

pixels. As we have all experienced, if the number of pixels is insufficient, then

the image is “pixelized” and has a bad quality. On such example is in figure

2.10. On the other hand, if the number of pixels is very large, then for many

purposes it will occupy too much space and be very difficult to view or edit

on certain computers. Bitmap images can be represented by an m× n matrix
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Figure 2.10: A low resolution bitmap image with 12× 12 pixels.

X where each entry xij will be some integer. Moreover, bitmap images can be

stored in many formats. The most basic format is 1-bit colour, which is also

known as monochrome, in which case each pixel is either black or white (or

any other two colours). In this case, each entry xij will take the value 0 or 1,

and a colormap will associate those values with colours. For instance:

xij = 0 ↔ pixel
ij
= black xij = 1 ↔ pixel

ij
= white

Another common format is the 8-bit gray shades format. With 8 binary digits

(also known as a byte), we can distinguish 256 values. We can then associate

each entry xij with an integer 0 ≤ n < 256; the colormap will associate 0 with

white, 255 with black, and the intermediary numbers are associated with 254

shades of gray.27 The image in figure 2.10 is an 8-bit image with a gray shade

27Note that we could have a better image quality by adding to the bitrage of the matrix
entries, thereby having a richer colormap. But this would have a cost for processing and
storing the image, so it is not increased uselessly. Already, a certain constraint on the
“resolution” of the information is set for the sake of manageability.
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colormap associated with this matrix:

X =





160 60 53 97 151 99 67 36 77 84 100 160

128 111 43 74 99 59 72 49 102 66 67 94

84 125 51 51 107 65 65 52 119 116 53 64

77 149 105 53 90 131 58 51 77 98 60 58

95 134 145 54 83 96 82 55 60 129 134 52

89 83 175 66 79 105 47 51 79 107 104 75

47 56 147 143 77 135 58 67 70 120 100 74

36 56 123 169 95 131 53 64 108 179 118 75

63 53 60 128 161 140 65 37 72 145 192 77

41 34 53 70 160 87 104 65 53 169 200 170

36 47 62 39 90 69 94 110 69 175 209 189

36 51 85 39 55 94 49 138 117 96 150 198





With the image, we can find the matrix, and with the matrix, we can generate

the image. In other words, they have the same informational content. Given

the association between bitmap images and matrices, it would seem that we

need n2 numbers to store an n × n pixel bitmap image, or some other close

number of order O(n2). Now, the questions are:

• Are all those numbers equally important?

• Could it be that many of the details stored in those O(n2) numbers are

inessential?

• And if some of details are superfluous, how much is superfluous and can

we throw them away successfully?

Those questions are very important for computer scientists and graphic design-

ers. In fact, the very possibility of compressing an image file depends on the

possibility of throwing away information while capturing the essential features

of the image. Thus, it provides us with a suggestive example of disposing of

extraneous information to obtain a representation that we can manipulate as

we wish or need. We will examine a method to throw away details in order

to compress images. Note that I did not choose this method because it is

efficient (there are better compression methods), but rather because it shows

that the mathematics involved is exactly the same as the mathematics used

in many physical modelling contexts. The method used, known as principal
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rank=506, stored with 524800 numbers, use 200% of space

(a) Original image, with 100% of the infor-
mation displayed.

rank=250, stored with 256512 numbers, use 98% of space

(b) Image with 50% of the information elim-
inated.

Figure 2.11: 512 × 512 pixel bitmap image of a mandrill face with an 8-bit
gray shades colormap.

component analysis, is based on the singular-value decomposition of matrices

(see, e.g., Moler, 2004). This method strikingly resembles what Batterman

(2002a) describes as intermediate asymptotics and dimensional analysis, and

what many works on numerical methods describe as conditioning analysis (see,

e.g., Corless & Fillion, 201x; Higham, 2002), and it touches on the method of

Lyapunov exponents for the study of chaotic methods (I will return to this

below). The latter two also rely on the singular-value decomposition.

To illustrate the principal component analysis method, let us consider the

image displayed in figure 2.11(a). In figure 2.11(b), we see the same image,

except that half of the information has been thrown away using the method

of principal component analysis.28 It is hard to notice any big change between

the two images. In fact, it takes a very good eyesight to notice any difference.

This means that a lot of information contained in the matrix of the original

image is not necessary to represent the mandrill face correctly.

28I will explain how I establish this percentage below.
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rank=1, stored with 1536 numbers, use 1% of space

(a) Image with 0.2% of the
information.

rank=5, stored with 5632 numbers, use 2% of space

(b) Image with 1% of the in-
formation.

rank=10, stored with 10752 numbers, use 4% of space

(c) Image with 2% of the in-
formation.

Figure 2.12: Compressed versions of the image of the mandrill face.

Now, what would happen if we continued to discard information? It turns

out that very little information is required to capture the most important

traits of the image. The precise amount of information might vary from image

to image. In the case of the mandrill face, we see that the minimal amount

of information that still allows us to reconstruct the image would be clearly

insufficient (that happens when 99.8% of the information is discarded), as

shown in figure 2.12(a). Perhaps surprisingly, when 99% of the information is

discarded, we can already discern a face (see figure 2.12(b)), and the mandrill

face is already taking form when 98% of the information is discarded (see figure

2.12(c)). Yet, it is obvious that much is missing from those images. Given this,

the interesting questions to ask are thus:

• how much information should be included? and

• is there a principled mathematical explanation for this amount?

Let us examine how the method works to answer them.

The original bitmap image of the mandrill face is mathematically repre-

sented by a 512 × 512 matrix and stored with 5122 numbers, as explained

before. The key to re-organizing the information contained in this matrix for

the sake of deciding what can be thrown away lies in the central idea of linear

algebra, namely, the idea that matrices can be factored. If, for a certain matrix
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A, we can find two other matrices B and C such that A = BC, then B and

C are factors of A. However, in linear algebra, we are usually not interested

with arbitrary factors, but rather only with factors satisfying certain specific

conditions, e.g., being diagonal, triangular, unitary, etc. One such factoring is

known as the singular-value decomposition,29 or SVD for short.30 The SVD

gives

A = UΣV
H

where Σ is a diagonal matrix with non-negative entries σk, arranged in order

of magnitude, U and V are unitary matrices, and H denotes the complex

conjugate transpose. The entries σk are known as singular values. To use this

decomposition to analyze images, define a matrix that depends on the kth

component by the outer product

Ek = σkukv
H

k

where uk is the kth column of U, etc. Each column is a multiple of uk and

each row is a multiple of vk. Hence, all the matrices Ek so defined are rank-1

and orthogonal, i.e., EiE
H

j
= 0 if j �= k, and also �Ek� = σk. Hence, using

those matrices, we can write A as

A = E1 + E2 + . . .+ Ep

with p = min(m,n) (or just p = n if the matrix is square). The contribution

of each Ek to the quality of the image is determined by the size of σk. If σk is

smaller, it has a smaller contribution, and vice versa. Finally, if we truncate

at r < p, we have

Ar = E1 + E2 + . . .+ Er

which is a rank r approximation to A. In fact, it can be shown to be the best

rank r approximation to A.31 In this approximation, all the contributions of

29I will use the terms ‘factoring,’ ‘factorization,’ and ‘decomposition’ interchangeably.
30I will explain the geometrical meaning of this factoring in more details later in this

section.
31This is the Schmidt-Eckart-Young theorem.
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rank=50, stored with 51712 numbers, use 20% of space

(a) Image with 10% of the information.

rank=100, stored with 102912 numbers, use 39% of space

(b) Image with 20% of the information.

Figure 2.13: Three intermediary compressed versions of the mandrill face.

the terms with smaller singular values (from σr+1 to σp) are discarded. Thus,

if our matrix Σ contains 512 singular values and we use only 102 of them, we

have discarded 80% of the information. This is the method I implemented in

Matlab to generate the compressed images above.

How does this constitute the basis for a compression algorithm? Notice

that to compute the matrix Ar, we only need r columns of U and V, and r

diagonal entries of Σ. We throw away the rest! Thus, instead of storing O(n2)

numbers, we store 2rn+r = O(n) numbers only. The amount of storage space

saved is mentioned in figure 2.11, 2.12, and 2.13.

As we see, this matrix decomposition gives us the basis to decompose the

image in components and to determine which ones are the most important. But

how does it help us to understand how many components provide an important

contribution? From figure 2.11 and 2.12, we know that it is somewhere between

10 and 250. Let us examine two intermediate values in figure 2.13. There

is a very important change between figure 2.12(c) and figure 2.13(a) (where

the approximation goes from 5% information to 10%, but a smaller change

between the latter and figure 2.13(b). How can this be explained using the
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Figure 2.14: Semilog-y plot of the size of the singular values of the matrix
associated with the mandrill face.

SVD decomposition? We have explained that the Eks summed up to obtain the

approximation Ar of A depend on the corresponding σk. Thus, we can acquire

the insight we need concerning how much information matters by inspecting

the size of the singular values. See figure 2.14. As we see, the size of the

singular values rapidly drop from almost 105 to about 1.5 · 103. This first

section contains 35 (≈ 7%) points. Then, there is a segment along which the

singular values decrease slowly, until it reaches about 102. The last section of

singular value below 102 contains 123 points (≈ 25%).

The examination of this curve explains well why we find the quality that

we observe in the various figures presented here, given their respective amount

of information. As we see in the progression of figure 2.12(a), 2.12(b), 2.12(c),

and 2.13(a), there is a very steep gain in quality compared to the increase in

information. As the other figures show, there is then a very slow increase of

quality. The fact that the last half of the singular values are low compared

to the values of the first 100 or so explains why there is only a very small

difference between figure 2.11(b) and 2.11(a), despite doubling the amount of

60



information contained.

As in the case of intermediate asymptotics discussed by Batterman (2002a),

we observe that some dimensions of the system contribute almost nothing to

the essential information that we need to accurately represent the system. As

a result we can accurately use a representation of lower dimension. Moreover,

given the fact that we want and need to perform manipulations with our

representation, it is beneficial to use the lower dimensional representation.

Finally, it is important to understand that the mathematical method used

in principal component analysis, which is based on the singular-value decompo-

sition, is not limited to image processing. It is a method of sensitivity analysis

that has many applications all across applied mathematics. Moreover, like

other methods of sensitivity analysis, it is grounded in the geometry of the

problem. Fortunately, in the case of the singular-value decomposition, the ge-

ometry is simple enough to describe intuitively. A matrix A can be thought

of as an operator that takes a vector as input and returns another vector; in

other words, A acts on or transforms vectors or sets of vectors. Let us consider

the collection of unit vectors that form a circle in the Cartesian plane, some of

which are displayed in figure 2.15(a). The sensitivity to perturbation can thus

be understood geometrically by examining the effects of the transformation

matrix on the unit circle. Consider a first example, displayed in figure 2.15(b):

an orthogonal or a unitary matrix transforms the unit circle into the unit cir-

cle, but does rotate it about the origin. In this case, the transformed vectors

have the same length (in 2-norm) as the input vectors. Thus, if there is a small

perturbation on the input vector, the exact same perturbation (in magnitude)

will be found in the output. Because of their insensitivity to perturbations,

those matrices are said to be perfectly well-conditioned. This is why, in error

analysis and perturbation theory, unitary matrices are so cherished.

But things are not always so nice. Figure 2.16 displays the effect of ma-

trices that are not perfectly well-conditioned. In figure 2.16(a), we see that

a well-conditioned matrix transforms the unit circle by stretching in into an

ellipse, and rotating it. As we have seen, the rotation has no impact on the

sensitivity of the problem; the stretching, however, is the determining factor.
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(a) Unit Circle (for vectors measured
with the 2-norm)
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(b) Orthogonal or Unitary Transforma-
tion of the Unit Circle

Figure 2.15: Matrices as transformations of the unit circle. Two points are
marked with ⊙ and + to make the action of the transformation clear.
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(a) Effects of a Well-
Conditioned Matrix on the
Unit Circle
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(b) Effects of an Ill-
Conditioned Matrix on the
Unit Circle
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(c) Effects of a Singular Ma-
trix on the Unit Circle

Figure 2.16: Sensitivity analysis and aspect ratio of ellipses.
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(a) The semi-axes of the unit circle are
the columns of V.
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(b) The semi-axes of the ellipse are the
columns ofU scaled by the corresponding
singular values.

Figure 2.17: Sensitivity analysis and the singular-value decomposition.

By visual inspection of the figure, we see that the aspect ratio of the ellipse,

i.e., the ratio of the lengths of the semi-major and the semi-minor axes of

the ellipse, is about 3 : 1. Thus, we can conclude that the transformation

will be somewhat sensitive to perturbations, but not much. This is why the

matrix is deemed well-conditioned. Figure 2.16(b) displays the effects of an

ill-conditioned matrix. In this case, the aspect ratio is really bad, so we know

that the transformation will be very sensitive to perturbations. Finally, in fig-

ure 2.16(c), we see the effect of a singular matrix. A singular matrix projects

the circle onto a line, which can be regarded as an ellipse with an infinite

aspect ratio. As a result, the matrix is infinitely ill-conditioned and the effects

of perturbation can have devastating effects.

All this geometrical analysis of the effects of perturbation in linear systems

is captured by the singular-value decomposition, as illustrated by figure 2.17.

Again, we start with the unit circle, and decompose the transformation ma-

trix A into its factors UΣV
H . The columns of the matrix V determine a set

of unitary (or orthogonal) vectors forming a basis for the input vectors. The

columns ofU determine a set of unitary (or orthogonal) vectors forming a basis

for the output vectors; the semi-axes of the resulting ellipse are scaled by the
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corresponding singular values.32 As a result, the smallest singular value repre-

sents the maximal contraction factor, and the largest singular value represents

the maximal stretching factor. Numerical analysts call the ratio of the largest

singular value to the smallest one the condition number (I will explain this

concept in detail in section 4.4). For the geometrical reasons described above,

this number entirely captures the sensitivity of the matrix to perturbations.

However, it also allows us to infer that the largest singular values will have a

larger impact on the increase in magnitude of the transformed vectors, and so

we can use this fact to identify the principal components of a representation,

as we have done with the mandrill face.

In fact, the sensitivity analysis based on the singular-value decomposition

closely relates to how Lyapuonv exponents are used to understand dynami-

cal systems, in particular to identify chaotic systems. Chaotic systems can

be studied from many perspectives and, accordingly, chaotic motion can be

defined in many ways.33 In all cases, some intuitions drawn from physics

motivate the various approaches: “the concept of ‘chaos’ recalls the erratic,

unpredictable behavior of elements of a turbulent fluid or the ‘randomness’

of Brownian motion as observed through a microscope. For such chaotic mo-

tions, knowing the state of the system at a given time does not permit one to

predict it for all later times.” (Campbell & Rose, 1983 : vii) The idea is that

a chaotic motion x(t) satisfying a deterministic nonlinear differential equation

ẋ(t) = f(t,x)—or a difference equation—is bounded (i.e., x(t) does not go to∞
as t → ∞), aperiodic (i.e., for no T does x(t) = x(t+T )) and extremely sensi-

tive to initial conditions. Now, if two trajectories x(t) and z(t) were uniformly

diverging (i.e., if the distance between the two trajectories were continuously

increasing with t), at least one of them would be unbounded. But because of

the non-linearity of the equation, the distance between the two curves varies in

very erratic ways, and so does the rate of divergence. To establish sensitivity

32With n-vectors, instead of circles and ellipses, we would have n-spheres and n-dimension
ellipsoids.

33Martelli et al. (1998 : p. 112) claim amusingly, “with a bit of exaggeration, that there are
as many definitions of chaos as experts in this new area of knowledge.” Concerning some of
the conceptual issues involved with different definitional attempts, see Batterman (1993).
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to initial condition, the important thing is that, on average, for finite time, the

trajectories diverge from each other. This is exactly what positive Lyapunov

exponents indicate. The Lyapunov exponents λi are defined as the logarithms

of the eigenvalues of Λ, where

Λ = lim sup
t→∞

�
X

T
X
� 1

2t , (2.9)

where X is the fundamental solution matrix of a system of ordinary differential

equations. In other words, the Lyapunov exponents are closely related to the

eigenvalues of XT
X. But the eigenvalues of XT

X are just the squares of the

singular values of X (since X
T
X = (UΣV

H)HUΣV
H = VΣ

2
V

H , we have

Λ = Σ
2). If we take a small perturbation (or any other small displacement) in

x, that we label �x, the singular-value decomposition gives us a nice geomet-

rical interpretation of equation (2.9) using the ellipsoids mentioned above.34

As a result, we see that the singular values show how much the fundamental

solution matrix X stretches the perturbation vector �x (here, since the original

equation is nonlinear, the singular values will be functions of t). Thus, if the

Lyapunov exponents of X are positive, the average exponential growth will

be positive, and so our initial-value problem will be sensitive to initial condi-

tions. In this case, as opposed to the cases discussed above, the singular-value

decomposition shows that it would not be justified to ignore details and per-

turbations of the system in order to correctly extract information about the

states x.

2.5 Comparing Mathematical Representations

Given the intricacies involved in the logic of modelling, it is important to ask:

34The explicit relation is this. If we take the logarithmic average of the singular values
when t → ∞ (because we are interested with average exponential growth), we get

lim
t→∞

1

t
lnσi(t) = lim

t→∞
ln
�
σ2
i (t)

� 1
2t = lim

t→∞
ln eigi(X

TX)
1
2t = ln eigi(Λ) = λi.

65



What exactly do we mean when we say that a model (i.e., a represen-
tation) is good, or that a model is just as good as another model?

This question can be answered in multiple ways, and implicit disagreement

on this question is often a source of misunderstanding. In what follows, I

examine some ramifications of this question and establish connections with the

justification of the courses of thought and methodological gambits involved in

mathematical modelling.

2.5.1 Six Senses in which Models Represent

In the context of our discussion, there are two main axes along which the

question mentioned above can be developed. Firstly, this question can receive

different answers depending on what is meant by ‘good.’ A natural and widely

accepted view among philosophers is that a model is good if it is true. Another

view, which is more in line with the actual practice of applied mathematicians

and engineers, is that a model is good to the extent that it is close enough

to truth (i.e., sufficiently accurate). Many philosophers object to the concept

of approximate truth; for example, Laudan (1981) claims that it is “just so

much mumbo-jumbo.” However, to the extent that approximate truth is to

be understood in terms of accuracy, it should not be considered objectionable.

Finally, an even weaker criterion—that could be called ‘selective accuracy’—

would further restrict the requirement of accuracy to only a few properties of

the system that we find ourselves interested with; I consider this to be weaker

because it allows for a model to be considered good given a set of questions,

and not good given another set of questions.

Secondly, this question can receive two answers that map onto the distinc-

tion that we made above between two senses of facticity of models. The first

sense of facticity concerns the accuracy of the set of modelling assumptions,

and the second sense concerns the accuracy of the model equations. Thus,

one can say that a model is good if it is derived from factual (or sufficiently

accurate) modelling assumptions, or one can say that a model is good if its

model equations are accurate. As a result, we obtain at least six different ways
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Criteria
Target

Modelling assumptions Model equations

Truth T-MA T-ME

Accuracy A-MA A-ME

Selective Accuracy SA-MA SA-ME

Table 2.1: Six senses of ‘goodness’ of a model (i.e., a representation).

of answering whether a model is good (see table 2.1). To my knowledge, they

do not have names that academics agree on, and so I will merely use acronyms

to support the discussion below.

Which sense of ‘good’ will allow us to properly understand the logic of

modelling? To begin with, it is important to realize that each of them has

a role to play in our understanding of the role and success of mathematics

in science. However, to the extent that we are trying to understand when

models are good, the discussions that focus on modelling assumptions are not

hitting the right target. The reason for which we construct a model is that our

interest is not in the modelling assumptions per se, but rather in deriving model

equations that represent the system well. In other words, our interest is not

primarily set on what the system is, but rather on what happens in it. In turn,

the model equations will be analyzed so that we can extract information to

answer questions concerning the behaviour of interest. However, as we noticed

above, the two sense of facticity are relatively independent, so unless one

already has reasons to believe that the set of modelling assumptions contains

the right assumptions, their accuracy will not guarantee the accuracy of the

model equations. Consequently, given that we are attempting to understand

when models are good, we should focus on the views in the right-hand column

of table 2.1.

So, let our subsequent discussion of what a good model is target the model

equations. Is truth an appropriate way to understand what a good model is?

Firstly, we should emphasize that it is certainly not a bad one, in the following
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sense: if a model equation exactly describes what happens in a system, i.e., if

it is literally true, then the model provides a good representation of the system.

Thus, truth seems to be a sufficient condition for a model to be good; however,

it is by no means necessary. One the one hand, if truth were required of a

good model, then there would not be a widely usable criterion to determine

when a model is good. On the other hand, a model is meant to help us answer

questions about the behaviour of interest; if it is close enough to the truth to

fulfill this function, then it must be considered good. Moreover, as argued,

seeking exact truth might impede our ability to know what the model says.

Thus, by elimination, the relevant senses in which a model is good is A-ME

and SA-ME in table 2.1.

This provides support for the claim made in chapter 1, namely, that an ele-

mentary model-theoretic machinery is not sufficient to capture the semantical

aspects of model construction and model evaluation. Accordingly, the relevant

notion of adequacy of mathematical representations should not be defined only

in terms of satisfaction. In the following subsections, I argue that it should

rather be understood in terms of perturbation. More precisely, I argue that

the semantic evaluation of our models should be characterized in reference to

the effects of perturbations on the quantitative and qualitative behaviour of

the system. Along this line, I will provide a perturbation-theoretic account of

comparative accuracy of mathematical representations that will be seen to be

the cornerstone of the justification of the methodological gambits employed in

applied mathematics and, as a result, as explaining successes of mathematics

in the natural sciences.

2.5.2 Qualitative Behaviour and Selective Accuracy

Now that we have narrowed down what a good model is, we should try to find

out when a model is ‘good enough.’ Implicitly, this problem requires that we

determine when a model is better than another, or just as good as another,

i.e., it involves the comparison of the accuracy of different model equations.

As a part of the theory of dynamical systems, applied mathematicians have
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developed many concepts that capture when two models are essentially similar.

Some of them are rather simple, others are more complex and refined.

Models can be built with different objectives in mind. In some cases, it is

important to obtain precise numerical information concerning the solution—

i.e., the states of the system on a given time interval—but in others we are

only concerned with properties of the solution that only indirectly depend on

the actual values of the states at times.35 In other words, we are sometimes

not interested in knowing exactly what happens in a system, but rather only in

what kinds of thing happen in a system. In this case, we will consider a model

to be selectively accurate (and therefore a good representation) if it implies

the right kinds of things. This is why qualitative analyses based on the general

theory of dynamical systems plays an important role in determining what a

‘good’ model is.

Let us begin our discussion of the qualitative aspect with a simple case.

Suppose a model is characterized by the following model equation:

ẋ = x
2 − t, x0 = x(0) = −1

2
. (2.10)

This is a differential equation of the state x with respect to time, and it also

contains an initial condition. Together, they determine what will happen in

the system. What would happen if the initial condition were instead 0, or

−1, or −3? What if the same initial conditions were not given at t = 0 but

rather at t = 3, t = 5 or t = 7? As it turns out, it would essentially change

nothing, except for a very short initial time interval. The solution of equation

(2.10) is displayed in figure 2.18 in bold, together with many other solutions

using different initial values. We see that the trajectories all converge to the

same one extremely rapidly. As a result, we can claim that the solution is

insensitive to perturbations of the parameter x0. When this is the case, we

can say that two model equations with different values of x0 are equally good,

unless the behaviour of interest concerns the early time interval. Accordingly,

35Examples of such properties of solution include being periodic, approaching a limit cycle,
having vanishing terms, being bounded, etc. In general, it includes all properties related to
the structure of attractors.
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Figure 2.18: Equation (2.10) is an extremely robust differential equation.

we say that both the reference model and perturbed versions of the model are

selectively accurate, both quantitatively and qualitatively.

In the above example, the sense in which the two model equations are

equally good can be made more precise. Suppose we have a differential equa-

tion ẋ = f(t, x) and two initial conditions x0 = α and x0 = β, and further

suppose that y(t) and z(t) are their respective solutions. If we have

lim
t→∞

y(t) = x(t) and lim
t→∞

z(t) = x(t),

then we say that the two model equations have solutions that converge in the

limit t → ∞. Often, the solution of differential equations can be written as a

sum of two solutions as follows:

x = xtransient + xsteady state

The transient solution is the one that makes the trajectories differ early on, but

then it vanishes as time increases and the steady state solution becomes the

dominant one. Differential equations with the same steady state solution will

thus be considered to be equally good, provided that the transient behaviour is

not crucial. Ignoring transient behaviour is a typical case of selective accuracy.
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Figure 2.19: Qualitative change in the solution of ẋ = x2 − t at x(0) = 3
�

1/2
(which is the dotted line).

In the example above, we would thus consider all systems for which x(0) <

3
�

1/2 equivalent in this sense. However, for x(0) ≥ 3
�
1/2, the systems could

not be considered equivalent, since they would diverge away from each other,

as shown in figure 2.19. At x(0) = 3
�

1/2, there is a qualitative change taking

place in the behaviour of the system, i.e., there is a bifurcation. Moreover,

note that, if we set a value x(0) less than, but close to the critical value, a

perturbation of the system could easily push the system on the other side of

the bifurcation line; thus great care would need to be taken in this region.

As a result, we would not say that both the reference model ẋ = x2 − t,

x(0) = 3
�

1/2− �, and slightly perturbed models are selectively accurate.

Above, we examined the sensitivity to changes in the initial conditions.

What would happen if we made modifications in the function f in a differential

equation ẋ = f(t, x) instead? Consider the family of coupled two-dimensional

linear systems of ordinary differential equations given by

ẋ = ax+ by

ẏ = cx+ dy
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plus some initial conditions x0 and y0. It can be rewritten in matrix-vector

notation as ẋ = Ax, where

x =

�
x

y

�
and A =

�
a b

c d

�
.

When we change the values of the entries of the matrix A, what will happen to

the behaviour of the system? One way to address this question is by looking

at the type of attractor that obtains in the limit when t → ∞. As it turns

out, it entirely depends on the eigenvalues of the matrix A, which are given

by

λ =
1

2

�
Tr A−

�
Tr2A− 4 detA

�
,

where Tr A is the trace of the matrix A and detA is its determinant.36 Thus,

the structure of the attractor to which the system tends as t → ∞ is fully

determined by the invariant quantities Tr A and detA. The whole situation

can be summarized in a bifurcation diagram, as in figure 2.20. There, we

see that there are six distinct possibilities for the structure of the attractor

(sink, source, saddle, cycle, spiral sink, and spiral source). For instance, if

Tr A > 0, detA > 0, but Tr2A > 4 detA, we have the rightmost case,

namely, a source. Since the computation of those two invariant quantities is

straightforward, it is not problematic to find out whether changes in a, b, c

and d changes the qualitative behaviour of the system. To the extent that

the limit behaviour of the system is of interest, it is thus justified to consider

two systems in the same region of the bifurcation diagram to be equally good

representations of a system. In fact, when this is the case, mathematicians call

the system topologically equivalent, or topologically conjugate. Specifically,

this notion of equivalence is based on continuously varying aspects of the

models; two models are topologically conjugate if there is a homeomorphism

36The reason for which the eigenvalues of A are key is this. Using the eigenvalue de-
composition A = QΛQ−1, where Q is an orthogonal matrix of eigenvectors and Λ is a
diagonal matrix of eigenvalues, we can write ẋ = Ax as ẋ = QΛQ−1x. Making the substi-
tution y = Q−1x results in the decoupled system of equations ẏ = Λy, whose solutions are
y(t) = y0eλt. Moreover, note that since those are straight-line solutions, either the largest
λ will dominate the behaviour asymptotically, or there will be periodic solutions.
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Tr

det

Figure 2.20: An example of bifurcation analysis that completely characterizes
the qualitative behaviour of all possible two-dimensional linear systems of or-
dinary differential equations in terms of two invariant quantities (the trace and
the determinant) only.

relating their solutions. There is a long tradition initiated by Poincaré (1892)

and Birkhoff (1966) that uses the general theory of dynamical systems to

qualitatively characterize the equivalence of systems in this way. It amounts

to defining equivalence of systems in a parameter space, rather than by direct

reference to the states of the system over a given time interval. Here again,

the relevant notion of comparative ‘goodness’ of models should be understood

as selective accuracy.

Many systems turn out to have some features that are insensitive to per-

turbations, while other are. Thus, even if the model is such that if there is any

distortion, the information extracted about the states will be inaccurate, those

distortion can be introduced to increase the manageability and tractability of

the model concerning other properties. For instance, in the case of a chaotic

system such as the Lorenz system (see figure 2.21), perturbation methods can-

not accurately tell us what the states are, but they can very reliably tell us

what is the dimension of the chaotic attractor, what its shape is, and the like.
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Figure 2.21: Phase portrait of the Lorenz system.

Those are properties insensitive to perturbations. As a result, it is crucial to

bear in mind the questions we wish to answer and the behaviour of interest

that must be understood in order to assess representations.

2.5.3 Universal Behaviour

The aspects of qualitative behaviour examined above fall under the theme that

we examine in this subsection, namely, universal behaviour. At the same time,

the study of universal behaviour is richer, since it is not purely qualitative. In

a first sense, “universality” implies independence from initial conditions, i.e.,

that the system will behave similarly under a broad range of initial conditions

and perturbations, as above. This basic idea forms the basic theme of universal

behaviour. In a second, deeper sense located at a higher level of abstraction,

universality implies that many different systems of possibly quite different

nature will reproduce identical quantitative behaviour in some region of a

parameter space. The same basic theme is at work; however, we here consider

a more abstract dynamical interaction between models of systems. Thus, in

this second sense, universality is not only characteristic of a space of states,

but of a space of systems.

74



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

f(
x)

 

 

mu=3.5
mu=3
mu=2
mu=1
mu=0.5

Figure 2.22: The logistic map for different values of the parameter µ.

To illustrate, let us use Feigenbaum’s analysis of the “period-doubling route

to chaos” as an example. We need to first discuss discrete dynamical systems

to understand the setup of the argument. Consider the very typical logistic

map:

xk+1 = f(xk) = µxk(1− xk)

where µ is some positive parameter (see figure 2.22). An equilibrium solution

to a discrete time dynamical system is a point x∗ such that f(x∗) = x∗. This

solution, which is usually called “fixed point,” is in general a function of the

parameter µ. Here, the fixed points are x∗
1 = 0 and x∗

2 = (µ − 1)/µ. What

happens away from equilibrium? In fact, if |f �(x∗)| < 1, the nearby points will

converge to x∗, and they will otherwise diverge away from it.37 So, if µ < 1,

|f �(0)| < 1 and all trajectories converge to x∗ = 0. Moreover, we find that for

37This criterion works because if |(xn+1 − x∗)/(xn − x∗)| < 1, points are getting closer to
x∗ as n increases. But, using a first-order approximation for f , we have

����
xn+1 − x∗

xn − x∗

���� =
����
f(xn)− f(x∗)

xn − x∗

���� =
����
f �(x∗)(xn − x∗)

xn − a

���� = |f �(x∗)| .

Thus, the fixed points are at the intersection of the curves y = f(x) and y = x.
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1 < µ < 3, x∗ = 0 becomes unstable and x∗ = (µ − 1)/µ is stable, and so

attracts all trajectories. As µ becomes larger than the critical value µ = 3,

an interesting qualitative change takes place: the formerly stable fixed point

becomes unstable, but is not replaced by another stable fixed point.

Following this transition, the logistic map will then exhibit periodicity. In

this case, the motion will converge to a cycle that will oscillate between two

points x∗
0 and x∗

1). Since the period is two, applying f twice returns to the

same point. This dependence can be expressed by

x
∗
0 = f(f(x∗

0)) and x
∗
1 = f(f(x∗

1)).

We say that f has a cycle of period 2, “2-cycle” for short. Consequently, we

call the transition that takes place at the critical point µ = 3 a period-doubling

bifurcation.

When a period-doubling bifurcation takes place, the previously stable 2n-

point cycle becomes unstable, whereas a new 2n+1-point cycle becomes a stable

equilibrium. The first cycle is a fixed point of f 2n , i.e., of the function f

composed with itself 2n times. Similarly, the second cycle is the fixed point of

f 2n+1
, i.e., of the function f composed with itself 2n+1 times. It is easy to verify

that fn(x) is a degree 2n polynomial in x, and the key lies in the geometry of

those polynomials. After µ = 3, a period 2 orbit replaces the period 1 orbit.

Since the points composing the 2-orbit are fixed points of f 2, and since the

stability of fixed points is determined by the slope of a function at its fixed

points, we must focus on the relation between the slope of f and the slope of

f 2. The important aspect of this relation is as follows. Figure 2.23 depicts f

and f 2 for different values of µ. Firstly, we observe that all the fixed points

of f are also fixed points of f 2, since they intersect y = x at exactly the same

points. That this is the case is obvious, since f 2(x∗) = f(f(x∗)) = f(x∗) = x∗.

We can see geometrically why a bifurcation occurs. As we can observe in figure

2.23, something crucial happens when µ = 3. From µ = 2 to µ = 3, the slope

of f as it crosses y = x progressively increases from 0 to −1. At µ = 3, the

slope reaches one. Also, when µ > 3, the slope is now smaller than −1, thus
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Figure 2.23: Geometrical features of the maps f and f 2.

Figure 2.24: Relation between the slopes of f and f 2 (Vul et al., 1984).

making the fixed point unstable. The period doubling is a consequence of the

fact that as the slope of f 2 at the fixed point of f becomes larger than 1, two

new intersection points of f 2 with y = x are being created. Accordingly, f 2

now has four intersection points. The two intersection points it shares with f

are unstable, but the remaining two are stable. The situation is summarized

in figure 2.24. We thus have a clear geometrical explanation of why µ2 = 3 is

a period-doubling bifurcation point.

Now, will the same relation hold for further period-doubling bifurcations?

It turns out that the answer is ‘yes.’ In fact, it can be shown that this infinite
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sequence converges to a finite value of µ, which is called µ∞, that approxi-

mately equals mu∞ = 3.569934669 · · · . Past this value, the system no longer

exhibits periodicity; it rather exhibits chaos. Thus, there are values of µ for

which no stable solution exists. Accordingly, the qualitative behavior of the

dynamical system determined by the logistic map is described as a finite road

to chaos through an infinity of period-doubling bifurcations. This qualitative

behavior is captured by the structure of the bifurcation diagram of the logistic

map (see figure 2.25(b)).

Universality comes to the forefront when we consider some other maps. In

fact, consider the following maps:

• xk+1 = µ+ x2
n
;

• xk+1 = −µxk(xk − 1)(xk + 2);

• xk+1 = µ sin πxk.

The expressions of those maps look quite different from the expression of the

logistic map. However, they share an important feature: their graph on [0, 1]

has a single “bump” upward. Moreover, consider their bifurcation diagrams

(see figure 2.25). Remarkably, we observe that they also undergo a finite road

to chaos through an infinity of period-boudling bifurcations. It is an identical

qualitative behavior shared by the four maps considered.

When we define a large class of functions which all share some behavior,

we say that the behavior is universal for that class. For the behavior under

consideration, i.e., transition to chaos through an infinity of period-doubling

bifurcations, it can be shown that any function with a “bump” will belong

to the universality class. More precisely, the class of functions exhibiting this

universal behavior is defined by the following conditions (Feigenbaum, 1978):

1. f : [0, 1] → R is continuous, with a unique differentiable maximum x̄;

2. f(0) = f(1) = 0, f(x) > 0 for (0, 1) and f is strictly increasing on (0, x̄)

and strictly decreasing on (x̄, 1);
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(a) Bifurcation diagram of the quadratic
map: xk+1 = µ+ x2

n

(b) Bifurcation diagram of the logistic
map: xk+1 = µxk(1− xk)

(c) Bifurcation diagram of a sinusoidal
map: xk+1 = µ sinπxk

(d) Bifurcation diagram of a 3rd degree
map: xk+1 = −µxk(xk − 1)(xk + 2)

Figure 2.25: Bifurcation diagram of maps exhibiting period-doubling.
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3. For some parameter value, f has two fixed points which are both unsta-

ble;

4. In the interval N about x̄ such that |f �(x)| < 1, f is concave downward.

This example shows in a striking way that many details specific to the logistic

map are really immaterial to its qualitative behavior. In fact, there are so

many qualitative properties shared by all the functions of this class that one is

brought to ask if there could not also be some quantitative features universally

shared. Thanks to Feigenbaum’s results, it is now known that the question

can be answered in the affirmative.

The quantitative universality of some behavior for functions of very differ-

ent forms is particularly striking. It is worth emphasizing that before Feigen-

baum’s discovery the possibility of quantitative universality was unsuspected.38

For this discovery, Feigenbaum received the prestigious Wolf Prize in physics.39

The quantitative universal property he identified is as follows. To begin with,

let us denote the critical values at which the nth period-doubling bifurcation

occurs by µn. The first period-doubling bifurcation occurs at µ1 = 3, the sec-

ond occurs at µ2 = 1+
√
5, and so on. On this basis, we can define a quantity

δn as follows:

δn ≡ µn+1 − µn

µn+2 − µn+1
.

The Feigenbaum constant δ is the limit as n → ∞, and it takes the value

δ = 4.66920160910299067185320382 · · · .
38An anecdote recounted by Feigenbaum himself (Peitgen et al., 1992 : Foreword) illus-

trates how unlikely such results were taken to be at the time: “[. . . ] I had been directed to
expound these results to one of the great mathematicians who is renowned for his results on
dynamical systems. I spoke with him at the very end of 1976. I kept trying to tell him that
there was a complete quantitative universality to these phenomena, and he equally often
understood me to have duplicated some known qualitative results. Finally he said ‘You
mean to tell me these are metrical results?’ And I said ‘Yes.’ ‘Well, then you’re wrong!’ he
asserted, and turned his back on me to terminate the conversation.”

39On this occasion, the Wolf foundation declared that Feigenbaum’s work “has opened up
a whole new field of human endeavor [. . . ] that quite transcends the traditional disciplinary
boundaries. [. . . ] It is hard to think of any other development in recent theoretical science
that has had so broad an impact over so wide a range of fields, spanning both the very pure
and the very applied.” (Wolf Foundation, 1986)

80



The quantities δn characterize the rate of convergence of the many period-

doubling paremeter values toward the accumulation value µ∞. Yu (2009 : 316)

emphasizes the importance of this constant, explaining that it is “a new math-

ematical constant, as basic to period-doubling as π is to circles.” Moreover,

there is a universal scale reduction parameter α such that

α ≡ lim
n→∞

dn

dn+1
= 2.5029078750958928 · · · ,

where dn is the distance between the critical point x = 1/2 and the nearest

point in a the superstable cycle (that is, the cycle of points for which f �(x) = 0

at the intersection of f(x) and y = x). The quantitatively universal behavior

lies in the fact that all functions of the class defined above approach chaos

at the same rate. The account of universality can also be given in deeper

geometrical terms. In Feigenbaum’s terms:

Now, what is it that turns out to be universal? The answer, mostly, is a precise
quantitative determination of the intrinsic geometry of the space upon which
this marginal chaotic motion lives together with the full knowledge of how in
the course of time this space is explored. Indeed, it was from the analysis
of universality at the transition to chaos that we have come to recognize the
precise mathematical object that fully furnishes the intrinsic geometry of these
sort of spaces. (Peitgen et al., 1992 : Foreword)

To really penetrate the significance of this result, we must understand its

theoretical basis. This basis is a universal scaling theory that is connected

to other important work by Kadanoff and Wilson on scaling in the context

of renormalization, and which has been discussed primarily by Batterman

(e.g., 2002b, 2005, 2010b, 2011) in the philosophical literature. A sketch of its

meaning will be drawn in what follows.

Renormalization is a technique that has been primarily developed in the

context of statistical mechanics and quantum field theory. The main objec-

tive of this technique is to provide mathematically rigorous means to deal

with theories that operate at very different scales. At different scales, the

behavior of a system can be very different, thus leaving space for sometimes

surprising disparities. In particular, renormalization has led to powerful re-
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Figure 2.26: A depiction of the flow action of a renormalization operator in
Hamiltonian mechanics (Fisher, 1998).

sults establishing classes of universality for physical systems near criticality. It

is thus no surprise that renormalization is a central aspect of the mathematical

story about universal behavior near transition to chaos in systems undergoing

period-doubling bifurcations.

A renormalization is the action of an operator that universally characterizes

the scale modification as a system undergoes a process.40 A depiction of the

flow action of a renormalization operator in Hamiltonian mechanics is in figure

2.26. In general, an analysis of a process via renormalization involves finding

40The concrete meaning of this general description will be unpacked below using the
example under study in this section.

82



the given operator and examining its properties. In particular, finding the

value µ∞ will consist in solving the fixed point problem for this operator.

Similarly, the problem of finding the limit of δn as n → ∞ will amount to

solving the fixed point problem for the operator acting on functions that double

their periods. At the limit, we reach a fixed point since the transformation

does not affect scale, i.e., it is scale invariant.

How do we find the operator corresponding to period-doubling bifurca-

tions? We have seen that the mechanism by which the function f 2n−1
doubles

its period at µn is the same as the mechanism by which the function f 2n dou-

bles its period at µn+1. As a result, there is a definite operator acting on

functions that corresponds to period-doubling. Moreover, as we have seen,

we only need to focus on the region around the maximum of f , i.e., 1/2 in

the case of the logistic map. As n increases, the size of the relevant region

decreases, i.e., there is a scale reduction. The period-doubling operator results

in a reduction of the distance between the maximum, x = 1/2, and the closest

fixed point. This distance is the dn used to defined α, the second Feigenbaum

constant. So, when a function is acted upon by the period-doubling operator,

it reproduces itself, but with a scale reduced by an αn factor.

We can find a derivation of the renormalization operator for the period-

doubling bifurcation sequence in Feigenbaum (1978), but I will rather present

the simpler and shorter argument of Coppersmith (1999). As we have observed,

the following scaling relation holds:

−α

�
x2k −

1

2

�
= xk −

1

2

This relation simply captures the fact that the iterated values of x obtained

with successive values of µs look the same under proper rescaling. Now, let

zk = xk − 1
2 . This change of variable represents a translation of the system

that centers it at the origin. Then, we can rewrite the above expression as

−αz2k = zk, which is equivalent to −αz2(k+1) = zk+1. Note that it also implies

z2k = −zk/α. Now, since we are looking for an operator under the form of an

iterated map, we let zk+1 = g(zk) and z2(k+1) = g2(z2k). Hence, we obtain the
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expression −αg(g(z2k)) = g(zk), which can be rewritten as

−αg(g(−zk

α
)) = g(zk).

This expression is the condition that the renormalization operator must satisfy.

Coppersmith (1999) calls this equation the renormalization group equation.

How do we solve this equation to find g, α and δ? The standard method

for finding g and α consists in expanding g in a Taylor series about z = 0

(which is the translated maximum), while the method for finding δ is based

on functional eigenvalues. However, I will not go in those details here.

Rather, note that with a knowledge of α and δ, we can make reliable

predictions concerning the location of bifurcation points as the scale changes.

For instance, if we have the end value of the cycle for µn, we can project with

elementary arithmetic only that the end value for µn+1 will be given by

f
2n

µ
s
n+1

�
1

2

�
=

1

2
−

f 2n−1

µs
n

�
1
2

�
− 1

2

α
.

Similarly, if we have the first two superstable values of µ, or the first two

bifurcation values of µ, we can find all the others by using the recurrence

µn+2 = µn+1 +
µn+1 − µn

δ
.

As I have argued, knowing where bifurcations occur is key to assessing how

good a representation is, in the sense of selective accuracy. Thus, the quan-

titative universality revealed by renormalization group methods tells us much

about whether our models are good, or rather, where in a space of parameter

they can be confidently believed to be good.

2.6 Summary

In summary, this chapter has made the following points:

C2.1 Mathematical modelling involves the use of procedural model construc-
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tion recipes to derive model equations from modelling assumptions within

a theory. Importantly, the inferences from modelling assumptions to

model equations are non-monotonic. It also involves the computationally

challenging task of solving the model equations to obtain an expression

of the temporal evolution of the states of a system.

C2.2 In addition, mathematical modelling of real systems involves the deli-

cate task of selecting modelling assumptions. It cannot be simply argued

that the more complete and accurate the set of modelling assumptions

is, the better the model is; rather, one should seek a balance between

the completeness and accuracy of the modelling assumptions and the

tractability of the model equations. This introduces a pragmatic dimen-

sion governed by information management strategies.

C2.3 One can identify at least six senses in which a mathematical represen-

tation can be said to be good. I argued that the assessment of the

representational virtues of mathematical models is made with respect to

the model equations, not the modelling assumptions. Moreover, because

models are sought to understand some aspects of a system, i.e., the be-

haviour of interest, the notion of selective accuracy best captures the

condition under which a model represents well.

C2.4 In many cases, precise quantitative information about the states of a

system on a time interval is not required to assess a model. In this case,

criteria to determine the comparative accuracy of models are based on

perturbation methods that provide qualitative and quantitative infor-

mation on what happens in systems. The notion of bifurcation provides

a mathematical indicator of when information obtained by idealizing,

simplifying, or perturbing the system can be utilized as reliably as if it

was exact.

As we see, the perspective provided here on the logic of modelling is very

different from the standard reconstruction of the role of mathematics in the

natural sciences, e.g., the hypothetico-deductive model of scientific methodol-
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ogy. It emphasizes the importance of pragmatic considerations and explains

that rigour nonetheless remains thanks to the use of semantical tools charac-

terized in terms of perturbation, not satisfaction.

There remains important aspects of the logic of modelling to discuss. Chap-

ter 3 and chapter 4 will discuss three of them. We have seen that models are

built within theories; section 3.1 will discuss more systematically the contribu-

tions of those underlying theories to mathematical modelling. Section 3.2 will

articulate the concepts of error in the context of scientific experimentation. As

we will see, mathematical strategies based on perturbations devised to epis-

temologically track our grasp of systems is also at the heart of the theory of

measurement. Finally, chapter 4 will examine the situation in which selective

accuracy cannot be evaluated only on the basis on qualitative information.

There, I will articulate the way in which the same perturbation methods are

essential to extract numerical figures to characterize systems.

86



Chapter 3

Model, Theories, and

Experimentation

In this chapter, we examine two themes that are related to the discussion

of the logic of mathematical modelling from chapter 2. The first theme—

examined in section 3.1—concerns the interplay between theory and models.

We have seen that the construction of a model takes place within a theory.

More precisely, on the basis of a set of modelling assumptions, we use some

theoretical principles to derive model equations. The general existential form

of modelling assumptions has been mentioned, and examples of theoretical

principles have been given. Here, I will give more details and explain the

different types of mathematical principles that enter in the model construction

recipes. Moreover, I will discuss the advantages and disadvantages of some

theoretical approaches in relation to modelling practices, by addressing issues

related to the different scales at which theories operate. These issues of scale

are meant to complement the discussion of minimal models from the previous

chapter. Finally, I will compare this approach to the problem of the structure

of theories with other influential philosophical approaches, and explain why it

contributes to understanding the (hopefully, at this point less unreasonable)

effectiveness of mathematics in the natural sciences.

The second theme—examined in section 3.2—concerns the empirical con-

tent of theories and models. I will use technical scientific literature to outline
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the epistemological aspects of the theory of measurements, and explain that a

sound understanding of the problems encountered in experimentation impose

a certain type of mathematical analysis of models that will become important

in the next chapter drawing lessons from numerical mathematics. In particu-

lar, I will explain the motivation for mathematical rules based on significant

figures, as well as some of their limitations. On this basis, we will be ready

for a more systematic discussion of the various types of errors and how they

relate to each other.

3.1 Model and Theories

In this section, we further examine the relation between theories and models,

with the objective of better characterizing the logic of mathematical modelling.

As we have seen, a model is constructed within a theory. Thus, it is important

to understand the way in which the structure of a theory and the kind of

theory employed has an impact on the construction and evaluation of models.

3.1.1 Scale, Tractability, and Levels of Theories

There are multiple respects in which scale deeply matters in order to get a

proper understanding of mathematical modelling in science. The first and

most common set of circumstances with respect to which scale is discussed

concerns the possibility of a certain type of system to exist at a given scale.

In his classical essay On Being the Right Size, Haldane (1928) discusses many

such cases. For example, could small animals like mice have a daily food

consumption dfc comparable (in terms of ratio of their weight) to that of

humans? No, because this ratio is proportional to mass, whereas the required

daily caloric intake dci for small animal is mostly based on the amount of

heat they dissipate, which is proportional to their surface. Assuming a certain

density for such animals, we would say that dfc ∝ L3 whereas dci ∝ L2. Thus,

by dimensional analysis, we see that we cannot make arbitrary length changes

and preserve the same dfc. Perhaps the most famous example of this sort in
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Figure 3.1: Scaling of a beam. One cannot just increase size of the beam while
preserving the geometrical aspect ratio and expect things not to break. Image
from lightandmatter.com.

physics is Galileo’s square-cube law. If we consider a beam such as the one

in figure 3.1, it is not always possible to double its size. This is because the

mass of the beam is proportional to its volume (dimension L3) whereas the

breaking strength of the material is proportional to the the cross-sectional area

(dimension L2).1 As a result, if we preserve the density of the beam and its

geometrical aspect, but double its length, we are changing the ratio L2 : L3 of

area to volume. Past a certain critical ratio, the beam will simply break under

its own weight. Mutatis mutandis, we could argue that the stories about giants

are impossible, since they could not walk without crumbling apart. Given that

their constitution and aspect ratio is supposed to be as a normal human, the

strength of their bones would increase in proportion to their cross-sectional

areas, but the forces applied on the bones would increases in proportion to his

volume (i.e., mass by density). This sort of considerations reveals that scaling

is not a symmetry of nature.

Scaling in this sense enters in our deliberation regarding the quality of a

model. If our model predicts that the beam does not break, but it does, then

it is an assessment failure. If we consider the analysis of simple machines, the

fact that they do not depend on actual lengths and scales but only on the

geometric configuration shows that scaling considerations have been idealized

1It also depends on the shape of the cross-sectional area, but that does not matter here.
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away, which is problematic given the kind of questions considered in section

2.2.

However, there is another completely different set of circumstances that

makes scaling extremely important for a proper understanding of the logic of

mathematical modelling, namely, the relation between scale and mathematical

tractability of model equations. This comes in two flavours. Firstly, the scale

or size of parameters appearing in equations has consequences for the reliability

of the solutions obtained by numerical methods. When parameters having

values of widely different orders of magnitudes appear in some set of equations,

there are important risks that the numerical answers will be wrong. We will

return to this problem in chapter 4. Secondly, it is important to construct a

model within a theory at the right scale in order to obtain tractable equations.

We will further examine this aspect of the situation here.

To begin with, there are many types of theories in science. A common dis-

tinction between fundamental and phenomenological theories is often made.

This terminology, however, seems to support the idea that fundamental the-

ories are the “real thing,” and that phenomenological theories are only used

due to a temporary state of ignorance of the principles that would enable us

to reduce it to a fundamental theory. For instance, Einstein (1919) claimed

that when “we say that we have succeeded in understanding a group of natu-

ral processes, we invariably mean that a constructive [i.e., fundamental] the-

ory has been found which covers the processes in question.” This attitude

is widespread, and by no means restricted to Einstein. In what follows, I

will argue that this claim relies on a caricatural view of science. Instead,

phenomenological theories, too, are fundamental in physics, despite the fact

that they do not explain processes by referring to elementary particles. The

reasons for which there are phenomenological theories are of two kinds: prac-

tical and theoretical. Either way, their role is to allow engineers and applied

mathematicians to actually solve problems and construct models. For these

scientists, the only justification required to use phenomenological theories is

that their concerns are completely legitimate, and that they can only satisfy

them by means of phenomenological theories. Thus, to maintain neutrality, I
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will use the phrase “structural theory” for what is usually called “fundamental

theory.”2

The main characteristic of the phenomenological perspective, as opposed

to the structural one, is that its theories do not rely on our mathematical

understanding of the physics of elementary particles. Accordingly, it does

not require that we derive equations describing the behaviour of interest from

laws governing particles. The paradigm of this approach in physics is the

formulation of theories in terms of fields only:

[. . . ] we may construct a direct theory of the continuous field, infinitely divis-
ible without losing any of its defining properties. The field may be the seat of
motion, matter, force, energy, and electromagnetism. Statements in terms of
the field concept are called phenomenological, because they represent the im-
mediate phenomena of experience, not attempting to explain them in terms of
corpuscles or other inferred [or hypothesized] quantities. (Truesdell, 1960 : 22)

The first step to appreciating the phenomenological perspective is to consider

what a theory is supposed to do. A theory in physics is meant to give us

the means to construct mathematical models of some aspects of nature that

will allow us to understand the processes and/or phenomena under study. As

such, they must isolate the essential physics and leave away what is merely

incidental. Truesdell (1980 : 72) makes the same point forcefully:

One good theory extracts and exaggerates some facets of the truth. Another
good theory may idealize other facets. A theory cannot duplicate nature, for
if it did so in all respects, it would be isomorphic to nature itself and hence
useless, a mere repetition of all complexity which nature presents to us, that
very complexity we frame theories to penetrate and set aside.

As I argued in chapter 2, incidental information only impedes tractability and

manageability of mathematical representations.

For a given level of complexity, the amount of information that a theory

contains about a given material is inversely proportional to the amount of

information it contains about a class of material. Structural theories include

more information about singular materials and, as a consequence, less informa-

tion about a class of materials. For example, the dependence of a macroscopic

2It is Truesdell’s phrase. See Truesdell (1984).
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variable such as viscosity on temperature could be predicted by a kinetic the-

ory. But in this case, for each specific instances of the laws of intermolecular

force, the explanation offered by the structural theory would differ. Due to

complexity, there are many cases where the solution to the force equations

would be mathematically intractable. Under a phenomenological theory, on

the other hand, such a dependence would be ignored, i.e., the theory would

be less definite regarding the relation between a macroscopic variable and its

molecular support. This is why it would apply more broadly, to many different

physical systems.

Phenomenological theories abstract certain aspects of physical systems,

and structural theories abstract other aspects. As a result, there prima facie

is a tension between the two theoretical approaches. But for mathematical

modellers, the tension is rather benign. It only indicates the fact that the

proper level of theory should be chosen depending on what the behaviour of

interest is. It is a matter of information management. Again, if a theory were

not simpler than the system that it is designed to model, it would serve no

purpose whatsoever. It is meant to picture the system in a way such that the

aspects of interest are emphasized while others are omitted.

But the tension becomes sharper when a philosophical analysis is performed

in order to establish what the “ontology” of a theory is. The metaphysical

concerns that a philosopher might have about theories is that it is allegedly

ontologically committed to what kinds of things really exist, and to what

the ultimate true principles governing nature are. However, we happen to

know that it is false to claim that macroscopic bodies are continuous blobs of

matter; they are composed of particles. Thus, it would seem that the truly

fundamental theories are the structural ones.

Which of these two perspectives is right? A minimally committing response

would be to emphasize that this question amounts to asking “which set of con-

cerns is right?” and to emphasize that different academics are free to concern

themselves with whatever they want. Along this line, we would conclude that

different theoretical perspectives are to count as fundamental depending on

which concerns one has. I think it is the right answer, but given the current
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state of the literature in philosophy of science, one must add a proviso that

has repercussions for what philosophy of science is supposed to be. It is one

thing to be concerned with metaphysical questions, but it is another to claim

that the very successful actual practice of scientists is driven or constrained by

those questions. However, it is not uncommon in the literature to encounter

the latter claim, especially by adherents of ‘scientific realism.’ Often, this way

of thinking about science originates in the apparently harmless belief that sci-

ence is primarily in the business of discovering ultimate truths. To make the

claim tenable, a distinction between science proper and technology is typically

invoked. Science, properly understood, is after truth, and as a result is driven

or constrained by metaphysical questions; thus the scientifically fundamental

theories really are, after all, the fundamental ones. This leads to a view of sci-

ence which is entirely detached from the pragmatic concerns that I emphasized

in chapter 2.

This is an oversimplification of the practice of scientific modelling and

theorizing. A good succinct, yet suggestive reply has been given by Truesdell

(1980 : 72-3):

[. . . ] if we would analyze the stagnation of traffic in the streets, to take into
account the behaviour of the elementary particles that make up the engine,
the body, the tires, and the driver of each automobile, however “fundamental”
the physicists like to call those particles, would be useless even if it were not
insuperably difficult. The quantum theory of individual particles is not wrong
in studies of deformation of large samples of air; it is simply a model for
something else, something irrelevant to matter in gross.

With this sober and critical understanding of what a theory is, we need not see
any philosophical conflict between two theories, one of which represents a gas
as a plenum, the other as a numerous assembly of punctual masses. (Truesdell,
1980 : 72-3)

This is key to the inter-theoretic relationships between structural and phe-

nomenological theories. To understand the behavior of bodies as they are met

in real life, a corpuscular model would be of no use to a scientist. Thus, con-

tra the naive view described above, we should agree with Truesdell & Noll

(1965 : 2-3):

Pedantry and sectarianism aside, the aim of theoretical physics is to construct
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mathematical models such as to enable us, from use of knowledge gathered
in a few observations, to predict by logical processes the outcomes in many
other circumstances. Any logically sound theory satisfying this condition is a
good theory, whether or not it be derived from “ultimate” or “fundamental”
truth. It is as ridiculous to deride continuum physics because it is not obtained
from nuclear physics as it would be to reproach it with lack of foundation in
the Bible. The conceptual success of the classical linear or infinitesimal field
theories is perhaps the broadest we know in science: In terms of them we face,
“explain”, and in varying amount control, our daily environment: wind and
tides, earthquakes and sounds, structures and mechanisms, sailing and flying,
heat and light.

To the extent that our objective is to rationally reconstruct scientific method-

ology, this is the proper attitude. A proper understanding of pure science can

only result from an understanding of its applications, and this implies inte-

grating the pragmatic concerns and methods more readily associated with en-

gineering. This, however, undermines the distinction between science proper

and technology, and also mitigates the claim that science is after ultimate

truths because it is driven by metaphysical questions.

Therefore, even if models of systems are constructed within a theory, many

essential features of the logic of modelling are quite independent of the choice

of theories, or even of our understanding of what a theory is. That is, many

essential features of the logic of modelling are independent of our philosoph-

ical understanding of the structure of theories. Rather, our discussion of the

selection of modelling assumptions as seeking a balance between accuracy,

completeness, and tractability is reproduced in a discussion of the choice of a

theory in which to construct models:

1. focussing on irrelevant details reduces tractability;

2. identifying dominant factors is key to understanding the essential physics;

3. determining the behaviour of interest is a prerequisite for assessing a

mathematical representation.

Consequently, phenomenological approaches will often be favourable because

they are the ones that will give us a tractable and sufficiently accurate repre-

sentation of a real system.
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3.1.2 The Structure of Theories: Characterizing Laws

and Other Mathematical Principles

One of the most important and difficult problem in the philosophy of science is

to characterize what a scientific theory is. The difficulty of this problem is that

philosophical discussions require the characterization to be very fine-grained,

because certain views of what scientific theories are may have significant reper-

cussions for other philosophical problems, such as the problem of demarcation,

the problem of confirmation, the problem of theory choice, etc. In the same

vein, it might contribute to an explanation that the unreasonable effectiveness

of mathematics is reasonable after all. Clearly, an inaccurate or over-simplistic

perspective on scientific theories will result in misunderstanding key aspects of

scientific methodology. It can even lead to claims that some aspect of our suc-

cessful use of theories cannot be understood—which is, I argue, what happens

with the problem of uncanny accuracy.

Two influential views on this problem are the syntactic view and the se-

mantic view. The former view is that a scientific theory is an axiomatized

formal system together with some correspondence rules for their interpreta-

tion. Here, a theory is a deductively closed set of interpreted sentences. The

latter view is that a scientific theory is not a linguistic entity, but rather a se-

mantic one, thus eschewing the meta-theoretical complications related to the

syntactic view. In other words, a scientific theory is a collection of models

satisfying certain defining properties. As this brief summary shows, the two

classical views of theories focus very much on what theories are; but given

that we are interested with the logic of mathematical modelling and how it

helps to explain the unreasonable effectiveness of mathematics, we must in

addition focus on what theories do and how they do it. In particular, it will

be essential to distinguish types of mathematical principles and determine

their respective roles in mathematical modelling. That is, characterizing the

structure of theories serve us in distinguishing the types of ingredients used

in model construction recipes. To meet this objective, I look at the structure

of a theory that is thoroughly grounded in applications, namely, classical con-
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tinuum mechanics. As it turns out, examining continuum mechanics has the

advantage that the physicists and applied mathematicians who have worked

on its axiomatization have already made the important distinctions between

the types of mathematical principles involved.

There are two main elements constituting the structure of continuum me-

chanics:3

(I) general principles, often referred to as field equations;

(II) constitutive equations, sometimes referred to as specializing relations.

Let us briefly describe them respectively. The most important property of

the general principles is that they are common to all media. Thus, they are

treated as genuinely universal claims. They determine the general mathemat-

ical structure that is used to describe motion, deformation, flow, etc. They

are sometimes called “field equations of balance,” but they are best known as

conservation laws. The axioms of continuum mechanics usually state six con-

servation principles: conservation of mass, linear momentum, moment of mo-

mentum, energy, electric charge, and magnetic flux. Truesdell & Noll (1965 : 2)

mention that there must be a seventh one, namely a principle of irreversibility,

expressed in terms of the entropy, but that this law is not known in its general

form.

As an example, take the law of conservation of linear momentum. This

general principle tells us that if no external force acts on a system, then the

rate of change of linear momentum over time is null, i.e., linear momentum

is constant. Such principles, formulated in terms of differential equations in

the time variable t, are fundamental to the description of the behaviour of

physical systems. Taken together, with a model of space-time, they form the

mathematical structure that applies universally to all bodies in any circum-

stance,4 and they are the proper subject of the branch of mathematics known

3The distinction between the two, despite its being ill-known among philosophers of
science, is said to go as far in the history of mechanics as Bernoulli (James), Euler, and
Cauchy (Truesdell & Noll, 1965; Wilson, 1998).

4A remark is in order. The mathematical structure is universal in the sense that it is
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as kinematics. To make them operationally effective, however, we need other

ingredients.

The second element is constitutive equations. The general principles, in

themselves, are not sufficient to determine the motion, deformation, etc., of

bodies in a system. In order to formulate a determinate problem, it is required

to specify body forces (e.g., universal gravitation) and the kind of material on

which the general principles and the body forces apply. The specification of

a material (or of many different materials) is made by means of constitutive

equations. An example of such a constitutive equation is Hooke’s law, F =

−kx. Hooke’s law is an elasticity condition which characterizes classes of

materials. Notice here that the law is not a differential equation, and that it

does not contain a time variable. The constitutive equation would be different

in problems involving inviscid fluids, viscous fluids, rigid bodies, elastic bodies,

etc. Despite the fact that these equations are often labeled “laws,” it must

be mentioned that the name is somewhat inappropriate, especially given the

difference between their status and the status of the general principles:

The term “law” for specializing relations is mightily unfortunate, especially
since most such “laws” are regarded now as being “approximate”, honored by
nature only in the breach by greater or lesser amounts; modern studies of the
foundations of classical physics use constitutive relation to denote specializing
hypotheses intended to model ideally the response of natural substances [. . . ].
(Truesdell, 1981 : 562)

There is another characteristic of constitutive equations that make one doubt

whether they are proper laws: these statements cannot be universal laws of

nature, since they contradict one another. Because they define ideal mate-

rials, they must not be expected to all give us the same results. Moreover,

it is important to understand that they are not a consequence of the general

principles:

There is no reason a priori why either should ever be physically valid, but
it is an empirical fact, established by more than a century of test and com-
parison, that each does indeed represent much of the mechanical behaviour

treated as if it were. No particular constraints on its application is suggested by the theory.
However, this is strictly true only insofar as we are dealing with classical (non-quantum)
systems, in non-general relativistic spacetime.
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of many natural substances of the most various origin, distribution, touch,
colour, sound, taste, smell, and molecular constitution. Neither represents all
the attributes, or suffices even to predict all the mathematical behaviour, of
any one natural material. (Truesdell & Noll, 1965 : 2)

Given the infinite number of constitutive equations available in continuum

mechanics, virtually any aspect of natural bodies can be represented by a

constitutive equation. It can thus be doubted that they are nomic statements.

Moreover, their application is more similar to definitions than to laws:

But, what is interesting is that, surprisingly, the very engineers who apply
these laws take them to be definitions of materials. [. . . ] Thus, satisfaction of
Hooke’s linear relation between stress and strain counts as the lone criterion
for being a Hookean elastic solid. Hooke’s law should be read, then, as “if
the material is a Hookean elastic solid, then it will have a linear relationship
between its stress and its strain.” How do we know if something is a Hookean
elastic solid? We check to see if it has a linear relation between its stress and
its strain. What does one say, then, about materials that do not obey the
relation implied by Hooke’s law? One merely say that they are not Hookean
elastic solids and tries to figure out what the heck they are for the sake of
modelling them. Thus, constitutive equations are generally taken by the very
people who apply them to be empty tautologies. (Smith, 2002 : 255)

There seems to be an ad hocness to this way of relating the equations to

data. But it is how problems are fixed in continuum mechanics: no problem is

completely determined analytically, a priori. The general principles form an

underdetermined system, insufficient to yield specific answers unless further

equations are supplied. We must add specializing relations, and this role is

fulfilled by the constitutive equations.

In terms of the model construction recipes described in chapter 2, we can

characterize the role of conservation laws and constitutive equations. Remem-

ber that a model construction recipe is a procedure to derive model equations

from modelling assumptions. Modelling assumptions in continuum mechanics

are of the form “there exists a body B occupying a certain region R” and

“there is a force F acting on body B.” The former type of modelling assump-

tions specify initial conditions and boundary conditions. The latter type of

modelling assumptions specify the constitutive equations, i.e., what type of

body a certain body B is. If we take a statement such as “there is a Hookean
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elastic solid attaching masses A and B, which are 1m apart,” we see that it is

a combination of the two forms of modelling assumptions.

The model equations that result from the construction of a model are of

the form ẋ(t) = f(t, x), x(tk+1) = f(xk), etc., i.e., they are equations of the

states of the system with respect to time which, provided a solution exist,

dictate the temporal evolution of a system. In this context, the role of the

universal laws is to allow us to connect the constitutive equations together to

obtain a model equation. For instance, we could connect together an initial

condition x(0) = x0 and a constitutive equation F = −kx with the universal

law F = ma to obtain the dynamical model equation mẍ = −kx. Together,

they lead to a definite problem, with a definite and unique solution. This

characterization is thus seen to be in harmony with the model construction

recipes discussed.

However, some common characterizations of aspects of the methodology of

science do not harmoniously fit this picture. An example is the old but still

influential model of explanation proposed by Hempel & Oppenheim (1948):

C1, C2, . . . , Cm

L1, L2, . . . , Ln

E

where C1, C2, . . . , Cm are initial conditions and L1, L2, . . . , Ln are laws. If we

take the schema as is, it leaves many important things unspecified. Typically,

the laws L1, L2, . . . , Ln are taken to be empirical regularities (some authors in

addition require that the laws in question have some modal properties, e.g.,

counterfactual robustness). An empirical regularity is the temporal succession

of some occurrent property. However, in our discussion above, we have seen

that the only type of mathematical principles susceptible of stating a temporal

succession of events are the solutions of model equations, not assumptions

or laws fed into model construction recipes. To the extent that the laws

are ingredients used as hypotheses to derive phenomena, they must be either

constitutive equations or general principles. However, neither of them has the

required mathematical form to be called an empirical regularity. On the other
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hand, if we disregard for a moment the generally accepted view that the laws

L1, L2, . . . , Ln are regularities, we see that the hypothetico-deductive schema

would have to be enriched in order to correctly capture how laws are used in

science. In fact, it would be necessary to mention that the list of laws would

need to contain at least one general principle, and at least one constitutive

equation. Doing this, however, would bring us back to the discussion of chapter

2, which is in essence very different from where the discussions based on this

model typically go; since we have shown that unless there is already a reason

to believe that we have selected the right modelling assumptions, we are not

in a position to assess the quality of the model.

Moreover, this model assumes that we have effective means to logically

decide whether E follows from the premises, which is generally not the case in

modelling contexts. In contradistinction, our reconstruction emphasized the

importance of seeking a balance between the accuracy and completeness of the

modelling assumptions and the tractability of model equations, without which

there is no guarantee that we can determine exactly what the consequences

of the model equations are. However, if a philosophical view on mathematical

modelling and theorizing does not have the resources necessary to capture un-

derstand the effective extraction of information from model equations, then it

does not account for the success of science. By focussing on the crisp formal

schema that could be used to reconstruct aspects of scientific methodology

and by focussing on the truth of the modelling assumptions, much of contem-

porary philosophy of science thus fails to properly capture what makes science

successful.

3.2 Experimental error and the mathematics

of uncertainty

In this section, we turn to a different theme. We will examine the fundamen-

tal concepts of the theory of measurements, paying specific attention to its

semantic and epistemological dimensions. As we will see, the articulation of
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the semantic and epistemological dimensions is essentially the same as when

we are dealing with errors that do not stem from experimentation. In both

cases, it is essential to think about the validity of mathematical models of real

systems in relation to the analysis of perturbations. Moreover, preparing the

grounds for the next chapter, we will see that the theory of measurement al-

ready suggests that we use a kind of mathematics that operates on quantities

containing uncertainty. This will be articulated in terms of relations between

exact mathematical operations and modified operations. These themes will be

carried to the analysis of numerical solutions in chapter 4.

3.2.1 Accuracy, Error, and Uncertainty of Measurement

Errors using inadequate data are much less than

those using no data at all.

Charles Babbage

As we have seen in section 2.2, the construction of a model susceptible

of generating prediction (or retrodiction) and explanation of the behaviour of

a system requires the specification of the value for some parameters. Those

parameters may be the primitive quantities in which the states of the system

are expressed,5 or some other derived quantity.6 In either case, the value of

this parameter will be supplied on the basis of measurements. Accordingly,

a topic which is central to any serious discussion of the epistemological and

semantical dimensions of scientific modelling is the theory of measurement.

Interestingly, what philosophers call ‘theory of measurement’ fails to prop-

erly characterize the central epistemological and semantic problems of experi-

mentation in the same way that the more standard accounts of scientific mod-

elling and theorizing fail to properly characterize them with respect to the

more theoretical part of science.7 In contrast, I will introduce some elemen-

5Examples include position, momentum, temperature, pressure, spin, etc, as the context
may be.

6Very often, it will be a parameter describing the “bulk behaviour” of some material.
7Appendix A briefly discusses the state of the philosophical literature concerned with

the theory of measurement.
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tary aspects of the theory of measurement as scientists reconstructed it for

themselves, and follow with a discussion of the mathematical aspects of mod-

elling that have roots in measurement.

No scientist would argue with the fact that all experimental data has some

degree of imperfection, in that experimental results always contain errors.8

As a result, numerical values gathered in experiments are always likely to be

wrong (i.e., inexact). This, however, does not imply that the values reported

are bad, for they may convey entirely satisfactory information. To ensure that

inexact values reported are informative, scientists have to diagnose the possible

sources of measurement error and must try to design an experimental setup

that will ensure that the error is minimized (or satisfactorily small, given what

is already known).

Thus, the role of measurements of parameters is to determine (1) a value

of the parameter and (2) an estimate of the uncertainty associated with the

measurement. The central concepts involved in a theory of measurement are

thus the concepts of error, uncertainty, and, as we will see later, propagation

of error and uncertainty. From this point of view, the philosophical dimension

of this task revolves around two problemns. The central semantic problem of

a theory of measurement is

How close to the “true” value of the parameter is the measured value?

and the central epistemological problem is

Given that there is always uncertainty about the error, when should

(most likely wrong) measured values be considered good estimates of

the value of the measurand?

The epistemological and semantic problems related to errors in measurements

are, as we see, essentially the same as those discussed in chapter 2 in relation

to the logic of modelling. The difference is not in the problems and concepts

8Sometimes, in combination with theoretical consideration, the exact value of some pa-
rameter might be inferred from some measurements; for instance the value of the exponent
in the inverse-square law (Harper, 1998, 2012). However, that this is the case is shown
within the context to be described below, and does not contradict it.
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per se, but rather in the stage of model construction at which they come

forth. Moreover, as we will see in chapter 4, the same thing can be said about

numerical errors (perhaps surprisingly, for some readers).

Let us begin our discussion of the concepts related to measurement. Many

aspects of the discussion will sound familiar to whomever has taken high school

science (physics, chemistry, and biology). Perhaps because of its simplicity,

this material is rarely included in works on philosophy of science. However,

because the topic contains subtle points, I will not eschew its discussion. The

points emphasized will make clear that the approach to characterizing scientific

methodology that I have articulated concerning the logic of modelling also

applies to the study of the empirical basis of mathematical expressions.

The discussion to follow is based on the so-called “GUM approach” to the

theory of measurement.9 Pressed by a necessity to have rigorous standards for

the discussion of measurement, various organizations dedicated to providing

practical guidance to working scientists have collaborated to establish a cohe-

sive approach. This work is surprisingly recent; it has only started in the early

1980s (Taylor & Kuyatt, 1994 : p. 11). The relevant technical documentation

includes the guidelines of the National Institute for Standards and Technology

(Taylor & Kuyatt, 1994) and the technical reports from the Bureau Interna-

tional des Poids et Mesures (Joint Committee for Guides in Metrology, 2008,

2009). In their reports and in what follows, the terminology is used according

to the International Organization for Standardization (2004).

A measurement is a process involving a system and an apparatus. The

quantity that is subject to measurement is called the measurand. The value

resulting from the measurement using a certain apparatus is known as the

indication value. The difference between the value of the measurand (what is

often called the “true value”) and the indication value is the error. As we see,

error is a semantic notion, relating to a matter of fact relating two numerical

values. It is not about what we know, ignore, wish to know, or even can know.

It must be distinguished from the epistemological notion of uncertainty:

9‘GUM’ stands for ‘Guide to the expression of Uncertainty in Measurement.’
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For example, the result of a measurement after correction can unknowably
be very close to the unknown value of the measurand, and thus have negligi-
ble error, even though it might have a large uncertainty. (Taylor & Kuyatt,
1994 : p. 2)

It is important to stress the distinction since, in many textbooks and academic

papers, error and uncertainty are used interchangeably.10 The methodological

rules then become inextricably unclear. Even if error and uncertainty are con-

fused everywhere in the literature, they appear clear to readers since both are

merely understood as interval within which the “true value” lies. Nonetheless,

error intervals and uncertainty intervals express very different things. More-

over, it is to be noted that the semantic notion of error is the notion that

does for scientists the work that approximate truth does in many philosophical

discussion. When the error is small, the measurement is said to be accurate.11

Philosophers often wrongly use the terms ‘error’ an ‘approximation’ inter-

changeably. However, scientists have practical problems that prevent them

from ever forgetting that error and approximation are very different concepts.

As a matter of fact, some errors are approximations, but others are not. The

term ‘error’ applies whenever something that is not exactly true is asserted.

Sometimes, the error will be small and we will claim that the assertion is

nonetheless accurate, i.e., that it is an approximation. From this point of

view, the task of both the experimenter and of the applied mathematician is

to a large extent to determine which errors are approximations. By not mak-

ing the distinction, philosophers fail to acknowledge what is the bread and

10In fact, the distinction is so often diregarded that the official documents repeat multiple
times that “[t]he difference between error and uncertainty should always be borne in mind.”
(Taylor & Kuyatt, 1994 : p. 2)

11Taylor & Kuyatt (1994 : p. 14) say that accuracy is a qualitative concept, by which
they mean that “one should not use it quantitatively, that is, associate numbers with it.”
This is right that no number should be associated with it, perhaps, but then it does not
make it a qualitative concept as philosophers and logicians more generally use the term,
i.e., as something that does not admit of degrees, that either applies or not. We use Carnap
(1966) to distinguish between qualitative, comparative, and quantitative concepts, and deem
accuracy a comparative concept.
Note also that the term ‘precision’ should not be used for ‘accuracy.’ VIM does not

define precision because of the many definitions that exist for this word (Taylor & Kuyatt,
1994 : p. 14). However, precision is often measured by the number of correct digits.
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butter of entire scientific disciplines among the most important to understand

scientific methodology.

How do we determine if an error is small enough to be considered an

approximation? This is a question that is epistemological, because it demands

that we determine whether the error is small enough, but also a specification of

the criteria by which that judgment is made. To begin with, we are making a

measurement because we do not know the value of the measurand; as a result,

we cannot have a direct criterion to determine the error. All the scientist can

do is to provide an estimate of the error based on what is known about the

system and the measurement apparatus.12

This is why, in modern expositions of the theory of measurement, the

role of uncertainty is given priority over that of error for the formulation of

methodological rules. See, e.g., what the report of the National Institute of

Standards and Technology says:

In general, the result of a measurement is only an approximation or estimate of
the value of the specific quantity subject to measurement, that is, the measur-
and, and thus the result is complete only when accompanied by a quantitative
statement of its uncertainty. (Taylor & Kuyatt, 1994 : p. 1)

With the notions of error and uncertainty disentangled, we must now rectify

things that are part of many classroom presentations.13 Understandably, the

first step toward a correct estimation of the uncertainty of the results of a

measurement is a diagnosis of the possible sources of measurement error. With

this purpose, textbooks typically introduce the distinction between two kinds

of measurement error:

1. random error, and

2. systematic error.

They are also often referred to as Type A and Type B error, respectively. On

the one hand, random errors are unpredictable. They are variations in the

12“In general, the error of measurement is unknown because the value of the measurand
is unknown. However, the uncertainty of the result of a measurement may be evaluated.”
(Taylor & Kuyatt, 1994 : p. 15).

13The importance of those rectification is stressed by BIPM and NIST.
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Random Error Systematic Error
vibration in the floor → fluctuation
in balance

during the time required to mea-
sure the mass of a fluid, some evap-
orates

air currents → fluctuation in bal-
ance

during the time required to mea-
sure length, the temperature is not
controlled and changes

electrical noise in a multimeter mis-calibrated balance will cause
all the measured masses to be
wrong

Table 3.1: Examples of random and systematic error.

measurements that the experimenter cannot control (or can control only very

limitedly). In terms of probability, it is an error that is just as likely to be

above or below the real value; so, for random error, averaging a large number

of measured values should, in principle, largely reduce the magnitude of the

error. On the other hand, systematic error cannot be controlled as random

error, i.e., averaging will be of no help. Systematic error is caused by the

design of the experiment. Its impact can only be alleviated by modifying the

design; however, it is often very hard to find a setup that has no systematic

error. See table 3.1 for examples. Systematic error is particularly problematic,

from an epistemological point of view, because there is no way to determine

whether there is a systematic error.14

In addition, there is a third thing that is often called human error. Given

that it can be eliminated and that both random and systematic error can-

not, we call it “mistake” instead of “error” to prevent equivocation. Typical

examples of mistakes are: spilling substances, reading a measuring device in-

correctly,15 bad calculations in the design phase, wrong formulas used in the

14“Like the value of the measurand, systematic error and its causes cannot be completely
known.” (Taylor & Kuyatt, 1994 : p. 15) As a consequence of this fact, it is often claimed by
metrologists that confirmation or disconfirmation is not what characterized experimental
success, but that finding a design that isolates a parameter so that it can be measured
without systematic error is.

15However, the kind of error that is caused by the experimenter’s eyes’ inability to read
the exact level of liquid in a graduated cylinder, for example, is a random error, not a human
error.
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design phase, inadequately cleaning the equipment, using the wrong substance,

not following the protocol, etc. These reflect no uncertainty in the data; rather,

it completely invalidates the data.

Now, there are problems with this way of presenting things. Consider the

equation

µ− ι = δ ,

where µ is the measurand, ι is the indication value, and δ is the error. What

should we say when presented with the question: is δ a random error or a sys-

tematic error? The first thing to emphasize is that δ is just a number, so it is

neither random nor systematic. Thus, in agreement with the Joint Committee

for Guides in Metrology (2008, 2009) and Taylor & Kuyatt (1994), we should

talk of random effect and systematic effect on the measurement (instead of

random and systematic error), and try to estimate how much of δ arises from

random effect, and how much from systematic effect. Moreover, when results

from a measurement are reported, it is with an estimate of the error, i.e.,

the uncertainty, and not with the error itself. Thus, scientists following the

standards will report the measured value together with a quantitative state-

ment of the uncertainty; the uncertainty will have components arising from

random effects, and others from systematic effects. One can only determine if

an uncertainty component arises from systematic or random error in reference

to the particular measurement process being executed; in a different process,

the same component could be of a different nature.16

Each of the uncertainty components that contribute to the uncertainty of

the measurement are represented by an estimated standard deviation, termed

standard uncertainty. This standard deviation may be or may not be evaluated

statistically, as case A or B may be. We talk of Type A and Type B evaluation

of uncertainty. Type A uses any appropriate statistical method. However, the

procedure is not as straightforward for the assessment of type B uncertainty

16‘In the words of Taylor & Kuyatt (1994 : p. 16), ‘the adjectives “random” and “sys-
tematic”, while appropriate modifiers for the word “error”, are not appropriate modifiers
for the word “uncertainty” (one can hardly imagine an uncertainty component that varies
randomly or that is systematic).”
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components:

A type B evaluation of standard uncertainty is usually based on scientific
judgement using all the relevant information available, which may include

– previous measurement data,
– experience with, or general knowledge of, the behavior and property of rel-

evant materials and instruments,
– manufacturer’s specifications,
– data provided in calibration and other reports, and
– uncertainties assigned to reference data taken from handbooks.

(Taylor & Kuyatt, 1994 : p. 2)

We have seen how repeating the experiment can be used to successfully control

error arising from random effects. By carefully considering the factors men-

tioned, replicating the experiment can be used to successfully control error

arising from systematic effects.17

The list of contributing factors mentioned appears to be quite complete and

yet, the method of evaluation of type B uncertainty does not give us grounds

to precisely state standard deviations (as in the type A case). As a result,

the method might seem unsatisfactory; however, it would be unreasonable to

expect more, given the epistemological nature of the problem:

The word “uncertainty,” by its very nature, implies that the uncertainty of the
result of a measurement is an estimate and generally does not have well-defined
limits. (Taylor & Kuyatt, 1994 : p. 17)

The situation is similar to what we had in chapter 2, where we could not

provide exact bounds on the accuracy of model equations.

At this point, we have methods to estimate standard uncertainty compo-

nents of type A and type B. The task that remains is to find the combined

standard uncertainty of a measurement result. The combined standard uncer-

tainty, as its name suggests, combines together all the uncertainty components

of type A and B to generate a total estimate of uncertainty. The usual method

used to combine uncertainty is the common statistical method used to com-

bine standard deviations known as law of propagation of uncertainty (also

17It is important to distinguish repeatability and replicability. Repeatability consists
in doing the measurement multiple times with the same apparatus; replicability involves
changing the apparatus, each having their own systematic biases.
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Bazooka Joe is showing a friend a fossilized bone. The friend
asks how old it is and Bazooka Joe responds that it is one
hundred million and three years old. “How do you know
that?” asks the friend. Bazooka Joe responds “The museum
expert told me it was a hundred million years old and that
was three years ago.”

Figure 3.2: An incorrect use of mathematics to an uncertain value.

often called root-sum-of-squared or even just RSS).

3.2.2 The Mathematics of Uncertainty

We have seen that the concepts of error and uncertainty are intrinsic aspects

of the values of the parameters fed into the model-construction recipe. What

does the presence of error and uncertainty imply for the mathematics used

to analyze models? The key challenge here is to develop mathematical tech-

niques that permit us to deal adequately with operations on quantities not

known exactly. Accordingly, it is central to an understanding of the role of

mathematics in science to articulate the strategies used to manage this sort of

uncertainty.

The most basic approach to do this is that based on significant figures

(or, alternatively, significant digits). The idea is easily understood from the

Bazooka Joe comic displayed in figure 3.2 (reported by Ruekberg (1994) in the

Journal of Chemical Education). The author then explains the pedagogical

relevance of the joke as follows:

The author readily admits that the joke is not very funny. That it is funny at
all is because even children, just old enough to chew gum without swallowing
it, realize that something is wrong about Bazooka Joe’s computation: the
accurate three years cannot be added to the ball park figure of a hundred
million years. (Ruekberg, 1994)

The author claims that the computation is wrong even if, arithmetically speak-

ing, it is irreproachable. Thus, when there is uncertainty, there is a method-

ologically important sense of ‘correctly using mathematics’ that differs from

the standard one. To delineate this second sense, we examine the two roles

played by significant figures.

109



Understood as a tool occupying a central place in a strategy for the man-

agement of uncertainty, the first role of significant figures is to faithfully report

the uncertainty in experimental measurements, in a simple way that does not

involve the statistics that are central to the GUM approach.18 More precisely,

significant figures are a tool to faithfully report the accuracy and the precision

of the results of a measurement, given the resolution of the measuring device.

It is important to keep in mind the distinction between accuracy and preci-

sion. Accuracy is about having the answer right, i.e., about having a small

error. Precision is about having many digits. For instance, 3.166666666666667

is a very precise (16 digits) but (for many purposes) very inaccurate (2 digits)

approximation to π. On the other hand, 4.54 · 10−5 is a not very precise (3

digits) but quite accurate (precise to the order 10−6) approximation to e−10.

Similarly, a measuring instrument can be very precise, and yet inaccurate.

As Kahan & Darcy (1998) explain, “[p]recision is to accuracy as intent is to

accomplishment.” A basic objective of the use of significant figures is to not

be fooled by measurements that are more precise than accurate; thus, a ba-

sic rule is to not report results of measurements with more digits than are

accurate, for those extra digits would not be significant. Precision is a prop-

erty of a linguistic object (namely, of the numeral representing a number in

a given number system) whereas accuracy is a semantic notion.19 Limiting

the number of figures reported to the significant figures is a way to make the

semantics transparent by showing it in the form of the linguistic expressions

used to report results.

A simple example that does not require considering the details of how a

measurement device works is this. Consider the population of my home town;

I would guess it is about 5000. It would probably be wrong to think that it is

the exact number of people residing there, though it might be. Now, just how

18There is a commonly held view among scientists that approaches in terms of intervals
and deviations are not meeting all mathematical expectations: “Besides, nobody wants error
bounds; we desire final results known to be reliable because their errors have been proved
inconsequential.” (Kahan & Darcy, 1998)

19An analogy might help: ‘being precise’ is to ‘being a well-formed formula’ what ‘being
accurate’ is to ‘being true.’
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many significant digits are there in that number? We need to know something

about the real answer to determine how many significant digits there are! Or

at least, the person who makes the measurement must be able to report the

number of significant figures appropriately (in my case, only the 5 is, and there

is an uncertainty about it).

The resolution of an instrument is the maximum error that the instrument

produces under pre-specified circumstances (e.g., value range, ambient temper-

ature, humidity, pressure, etc.).20 However, the resolution cannot be smaller

than the precision of the instrument. To illustrate this point with a simple

example, if a ruler’s smallest division is 1mm, then we cannot specify what a

length is by measuring with this ruler is to less than half of a millimeter. What

we obtain from an instrument with this precision is a number having the for-

mat x.yyzcm, were x is the integer part, yy are the certain digits, and z is the

uncertain digit (there is only one of those, the last one). The last digit is only

an estimation. Moreover, under the pre-specified conditions mentioned above,

if the instrument is properly calibrated, then each digit within the precision of

the instrument is taken to be significant. Accordingly, the significant figures

of a number are those digits that carry meaning contributing to its precision,

and indirectly contributing to its accuracy, provided that some assumptions

about calibration are satisfied.21 Thus, the signifiant figures of a number are

the digits necessary to specify our knowledge of that number’s precision; and

in nice contexts, this also reveals the accuracy.

Whereas this first role of significant figures is to represent uncertainty

numerically by imposing conditions on precision, the second role of significant

figures is to permit the formulation of computation rules to determine how

uncertainty propagates. In introductory texts, those rules are formulated in

terms of limits on the numbers of significant digits (or significant decimal

places) that may be retained in order to faithfully track uncertainty. We

use the scientific notation to prevent ambiguities in the count of significant

20The manufacturers of equipment often indicate how accurately and precisely it can
measure.

21Of course, if the pre-specified conditions of calibration are not met, then the reasoning
does not hold.
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figures.22

If we return to the Bazooka Joe joke above, such rules are meant to prevent

one from saying that 1 · 108 + 3 = 1.00000003 · 108 years. Rather, since the

100, 000, 000 years number is only a ballpark estimate known to 1 significant

figure, the addition of 3 years should not be considered significant, so that

1 ·108+3 = 1 ·108. The number 3 added here is within the level of uncertainty,

so it cannot affect the significant figure. Similarly, if you are told that the

population of a city is 50000 with only two significant digits (i.e., 5.0 · 104),
and that 78 persons immigrate, 289 are born, and 198 have died, you get

5.0 · 104 + 78 + 289− 198 = 5.0 · 104.

It does not make the population 50, 169. We know that the population in-

creased by 169 for sure, but we do not know what it was to begin with. So,

the correctly reported sum, from the point of view of managing uncertainty,

is 5.0 · 104.
Now, strictly speaking, the sum 1·108+3 = 1.00000003·108 is arithmetically

false. To avoid difficulties of this kind, one could introduce a new mathemat-

ical operation ⊕ that validates uncertainty-preseving manipulations such as

1 · 108 ⊕ 3 = 1.00000003 · 108. Notice that, with such uncertainty-preserving

operations, we are not dealing with approximate equalities (denoted by ‘≈’)

holding between exact quantities, but rather we are dealing with exact equal-

ities (denoted ‘=’) holding between quantities known uncertainly.23 Here are

examples of rules governing such modified operations:

1. Exact numbers do not affect the number of significant figures. For ex-

ample, 2.02⊗ π = 6.35 (and not 6.34601716 . . .).

2. For addition and subtraction, the answer contains the same number of

decimal places as the least precise operand used in the calculation. For

22If we do not, then it is hard to say how many significant figures there are. Clearly, in
0.000314 there are 3. But there is ambiguity in the trailing zeros. 1200 can have 2, 3, or 4
sig figs. But if we write 1.2 · 103 or 1.200 · 103, the ambiguity disappears.

23Importantly, this is a standard way to discuss another kind of mathematical operations
dealing with error, namely, floating-point arithmetical operations. See also Corless & Fillion
(201x) or Fillion (2011).
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example 456.367963� 452.1 = 4.3 (and not 4.267963). The idea is that

you cannot add to or subtract from something not known.

3. For multiplication and addition, the answer contains the same number

of significant figures as the least precise operand used in the calculation.

For example, 72.5674⊗ 3.34 = 2.42 · 102 (and not 2.42375116).

4. For logarithms, only those numbers to the right of the decimal place of

the operand count as significant. For example, log∗10(1.25 · 10−6) = 5.903

(and not 5.9031).

Such a set of rules constitute what is called a significance arithmetic.

Now, these rules should not be thought of as being perfectly reliable.

Rather, they work as rules of thumb. One might be surprised that there are,

well into the twentieth century, many publications debating how significant

digits should be analyzed and understood.24 For example, suppose we need

to average measurement results. Consider five measurements of, say, mass,

known to 2 decimal places, and compute the significant average as follows:

5.73⊕ 5.68⊕ 5.66⊕ 5.71⊕ 5.68

5
=

28.46

5
= 5.962

This result follows from the rules mentioned above, and yet the average has

more precision than the individual measurements! Intuitively, we would expect

5.69, seeing to it that the average does not contain more than 2 decimal places.

To ensure that there is only uncertainty on the last digit, we would have to

round to the first decimal place, resulting in 5.7, since the accumulation of error

can affect the first decimal place of the average too. And this would be required

in cases where the first digit changes from measurement to measurement.

Now, perhaps this could be fixed by refining the rules of our significance

arithmetic along those lines; it would pose no technical difficulty to articulate a

refined rule parsing the numerals fed into the calculations. However, for any set

of such rules based on significant digits, it would be relatively straightforward

to generate problematic cases. The lesson to draw is this:

Ideally, arithmetic precision should be determined not bottom-up (solely from

24The example below is discussed by Schwartz (1985).
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the operand’s precisions) but rather top-down from the provenance of the
operands and the purposes to which the operation’s result, an operand for
subsequent operations, will be put. (Kahan & Darcy, 1998)

Thus, we see that as an attempt to provide context-independent syntactic rules

meant to support management of uncertainty and its propagation, significance

arithmetic has limitations.

Context-free regimentation of the courses of thought by means of syntactic

rules, it seems, must give way to rules of thumb based on semantic consider-

ations essentially based on the analysis of the effects of uncertainty. To the

extent that the analysis of the propagation of uncertainty parallels the analy-

sis of the effect of perturbations, we have a case identical to that discussed in

chapter 2. To see that there are parallel to each other, consider that the basic

methods for examining the propagation of small errors are taught in calculus,

and that more advanced methods are the trade in perturbation theory and

in numerical analysis. But these methods can be used in a straightforward

way to see how uncertainty propagates through calculations. Suppose that

one knows the values of three parameters x, y and z, with an uncertainty of

plus or minus ∆x,∆y, and ∆z. From these, one wants to find the value of a

quantity f(x, y, z) with its uncertainty. Then, to a first-order approximation,

the resulting uncertainty is

δf =

����
∂f

∂x

����∆x+

����
∂f

∂y

����∆y +

����
∂f

∂z

����∆z .

Suppose that we want to find the density of a sphere, given that we know that

the mass is m = (83.1± 0.1)g and the diameter is d = (2.55± 0.02)cm. Then

ρ =
m

V
=

m

4
3π

�
d

3

�3 =
6m

πd3
=

6 · 83.1
π(2.55)2

gcm
3 = 9.57

g

cm3

Then the maximum possible error consistent with our uncertainty of the

operands is

∆ρ =
6

πd3
∆m+

18m

πd4
∆d = 0.2

g

cm3

Thus, we have an expression specifying how our uncertainty on m and d prop-
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agates to ρ. Note that, to find the maximum possible error consistent with the

uncertainty, it is important to used absolute values. However, in many cases,

the error will be smaller than the maximum possible error, since the errors will

cancel one another. So, the real error is typically smaller than the maximum

possible error.

3.3 Summary

In summary, this chapter has made the following points:

C3.1 Issues concerning the scale at which theories operate matter for the logic

of modelling in many respects. In particular, using a theory at the wrong

scale will often impede the tractability of the resulting model equations.

Thus, the claim that low-scale theories are fundamental and that phe-

nomenological theories are introduced for pragmatic reasons only is based

on a naive view of science.

C3.2 Characterizing the structure of theories grounded in applications con-

tributes to explaining the effectiveness of mathematics, to the extent

that it characterizes different types of mathematical principles and their

roles in the construction and evaluation of models. We have identified

the role of conservation laws and of constitutive equations; moreover,

we have distinguished them from so-called ‘empirical regularities.’ This

shows that standard reconstructions of scientific practice fall short of

explaining the success of science.

C3.3 The semantic notion of accuracy and the epistemological notion of un-

certainty are intrinsic to the theory of measurement. Once their proper

use is understood, it is seen to match precisely their use in the logic of

mathematical modelling. In particular, the management of uncertainty

in the former case, and the management of error in the latter case, use

the same mathematical tools drawn from perturbation theory.
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C3.4 To understand how one should evaluate the proper use of mathemat-

ics in contexts involving uncertainty, it is important to understand that

different operations depending on the significance level of the operands

must be used. Moreover, rules governing such operations cannot be reli-

ably articulated in definite syntactic terms, but rather should be adapted

depending on the semantic and pragmatic contexts.

At this point, we have a general characterization of the logic of mathematical

modelling, as well as a characterization of the underlying role that theories and

experimentation play. We have examined most types of errors and uncertain-

ties encountered in the context of modelling and we have seen how mathematics

can be used to manage them. As we see, the effectiveness of mathematics is

not only that it provides a language to express relations found in nature and

that it provides a rigorous context in which to carry inferences, but that in

addition it contains self-checking methods to ensure that the semantic and

epistemological deficiencies accumulated during the modelling process will not

undermine the resulting representations. However, there is one more type of

error to discuss, in relation to the solution of model equations. In the next

chapter, we examine this case, and we present a general schema of analysis

that captures the self-checking virtue of mathematics mentioned above.
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Chapter 4

The Solution of Model

Equations and the

Interpretability of the Results

[. . . ] the assumption that as soon as a fact is

presented to a mind all consequences of that fact

spring into the mind simultaneously with it [. . . ] is a

very useful assumption under many circumstances,

but one too easily forgets that it is false.

Turing (1950)

In our depiction of the logic of modelling in chapter 2, we have seen that the

process of modelling involves the essential step of extracting information from

model equations (themselves derived from modelling assumptions) in order to

answer questions that we have concerning the behaviour of interest of some

system. Philosophers and scientists alike often assume that the extraction of

information in question requires solving the model equations. For instance,

if the model equations are differential equations ẋ = f(t,x), then extracting

information to answer questions regarding what will happen in the system

would amount to finding a function x(t) (possibly unique, if it exists at all)

that can be used to calculate the states of the system at a given time t. But as
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we will see, exact solutions are often neither required nor desired, since a careful

examination shows that they do not always do the work that is expected from

them. Epistemologically speaking, a proper analysis of scientific methodology

cannot ignore this very important computational step.

However, in their reflections on science, philosophers and scientists alike

often ignore the computational aspects that impose limits on what information

can be extracted from sets of equations. An example of this inadvertence arises

in Carnap’s discussion of Laplace’s demon:

In my opinion, determinism is a special thesis about the causal structure of the
world. It is a thesis that maintains that this causal structure is so strong that,
given a complete description of the entire state of the world at one instant in
time, then with the help of the laws, any event in the past or future can be
calculated. This was the mechanistic view held by Newton and analyzed in
detail by Laplace. (Carnap, 1966 : p. 217)

To be sure, Carnap does not believe that a person with the cognitive capabil-

ities of Laplace’s demon exists. Rather, the claim that he is making is that

determinism is equivalent to the following conditional sentence: if we were

given the state-vector xk(0) for all bodies k in the world, and the laws gov-

erning this world, then we would know the unique function xk(t) specifying

the states of all bodies k at any time t (whether it is past, present, or fu-

ture). This is a fairly standard characterization of determinism.1 However, it

is not what Carnap said; he did not say that if the antecedent clauses were

satisfied, there would be unique functions xk(t), but rather that for any t, we

could calculate the states xk(t). The two claims are extremely different: just

because a function exists does not mean it can be calculated! In fact, much

of computer science and applied mathematics seeks to develop symbolic and

numerical recipes to bridge the gap between the two claims. For them, it is

crucially important to be not only effective, but also efficient. It is important

to emphasize this point in order to properly understand the role of mathe-

matics in the sciences. In this respect, this chapter will draw lessons from

numerical analysis for the epistemology of science.

1There is a problem with this characterization given the discussion on the structure of
theories in the previous chapter. But I will not pursue this objection here.
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The chapter will examine a number of aspects of the process of extraction of

information from models. Ultimately, those aspects contribute to constructing

the concept of mathematical tractability promised in chapter 1, which is a

hybrid of the notions of verifiability and effective calculability. The concept

of tractability presented here explains how to bridge the gap mentioned above

in the context of mathematical modelling. To begin this chapter, we will

examine the types of exact solutions of mathematical problems. Following

that, a discussion of inexact solutions—often called numerical solutions—will

explain the motivation for their use in mathematical sciences.

4.1 Types of Exact Solutions and Their Virtues

As I emphasized in the last sections of chapter 2 in relation to the qualitative

analysis of dynamical systems, it is often sufficient to only know the bifurcation

points and the asymptotic behaviour. In such cases, only qualitative features

of the solution are required; explicit expressions solving the model equations or

numerical figures specifying the states of the system would not add anything

relevant for the questions on which we fixed our attention.

However, in many cases, precise numerical figures are important to answer

the questions we have concerning a system. In such cases, a qualitative analysis

of the behaviour of the system will not suffice. This situation is so common

that Feynman even claimed this:

The whole purpose of physics is to find a number, with decimal points, etc.!
Otherwise you haven’t done anything.2

This is a slightly exaggerated claim, but it is still important to emphasize

that, often, the precise numbers matter for our understanding of a system.

This raises the question: how, exactly, do we get to a number? If the number

sought is one that describes the state of a system at a given time, then the

number will typically be obtained by finding a solution to a model equation,

2Cited from Yu I. Manin, Mathematics and Physics, Boston: Birkhauser, 1981, p. 35 in
Wilson (2006).
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Problem Expression Number(s)
solve evaluate

Figure 4.1: A way of getting to a number.

and then the solution will be evaluated at the required time. This process

is an instance of the schema of figure 4.1. As we see, this process crucially

depends on evaluating a mathematical expression of the solution of the given

problem. This, in turns, crucially depends on finding an explicit expression

for a solution to the model equation (and, in addition, one that is computable

in some sense). Again, this crucially depends on whether a solution exists at

all.

Philosophers of science who have not examined the computational aspects

of the use of mathematics in science are often surprised to find out that many

processes that go from a problem to a number do not match that of figure

4.1. Later in the chapter, we will discuss the case in which we use numerical

recipes to get to a number which is close enough to the number that would be

obtained by following this schema. This case differs in that we do not need

an expression for the solution; we only need to do numerical manipulations

to obtain an approximate number. However, before moving to this case, it

is important to understand some nuances related to exact solutions. There

are many types of exact solutions to a mathematical problem; moreover, some

types of exact solutions do not give us means to get to a number in the way

sketched in figure 4.1. This fact is often overlooked, even among philosophers

of science concerned with computation. Let us outline the main points.

To begin with, it is not uncommon to see the phrases ‘exact solution,’

‘algebraic solution,’ ‘analytic solution,’ and ‘closed-form solution’ used inter-

changeably in the philosophical (and even sometimes in the mathematical)

literature. Typically, those phrases are used to characterize an epistemological

context in which exactness prevails, i.e., in which approximations are of no

concern. However, there are important differences between them. Among the

phrases above, ‘exact’ is the most general term that refers to any mathemat-

ical objects that satisfies the conditions constitutive of the problem, and the
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Exact Solutions

Closed-Form Solutions

Elementary Solutions

Algebraic Solutions

Figure 4.2: Venn diagram of the types of exact solutions

others are particular cases of exact solutions arranged as in figure 4.2.

Consider an arbitrary problem that happens to have a unique function

as exact solution. To begin with, we say that the problem has an algebraic

solution if the solution can be written as a finite combination of algebraic

operations. So, the question of whether there is an algebraic solution depends

on what is in the class of algebraic functions. Note that the property ‘having

an algebraic solution’ depends on the existence of an expression of a given

type that captures the function that solves the problem (and not only on the

existence of a solution). The same can be said for elementary and closed-form

solutions. The classes of operations that are admissible for expressions of the

solution are as follows:

• Algebraic expressions admit the following operations: addition, subtrac-

tion, multiplication, division, and exponentiation with integral and frac-

tional exponents;

• Elementary expressions admit all elementary algebraic operations, plus

exponents and logarithms in general (and so they include trigonometric

and inverse trigonometric functions as well);

• Closed-form expressions include all closed-form expressions, plus many

other “well-understood functions,” in particular the so-called special
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functions (but not any limit or integral).3

From their mutual relations, we see that it might be the case that some prob-

lems have an closed-form solution without having an elementary solution, and

that some problems have an elementary solution without having an algebraic

expression. For example, as is well known, the Ruffini-Abel impossibility the-

orem shows that degree five polynomials

p(x) = c5x
5 + c4x4 + c3x

3 + c2x
2 + c1x+ c0 = 0, c5 �= 0

generally have no algebraic solutions (that is, they have no solutions expressible

with algebraic expressions, which include radicals). That is of course not the

same as saying that there is no solution, because the existence of a solution

is guaranteed by the fundamental theorem of algebra. Rather, the theorem

says that the solution cannot be expressed using a form that is particularly

convenient for the sake of calculations.4 Moreover, it does not only say that no

such expression has been found so far; rather, it says that no such expression

will ever be found.

The same situation applies for closed-form solutions. For example, the

common Gaussian integral

I =

�
x

0

e
−x

2
dx

has no elementary solution, i.e., there is no elementary expression to capture

the solution of this integral. The model equations of very simple physical

systems do not have closed-form solutions. Consider the simple pendulum

displayed in figure 4.3. The only forces acting on the ball are the tensile force

toward the hinge exerted by the massless rigid rod and downward gravity.

3Borwein & Crandall (2010) review seven different approaches to defining what the class
of closed-form solutions contains; importantly, those disagree on the extension of the class.
Moreover, as they report (from Weisstein), “an infinite sum would generally not be consid-
ered closed-form. However, the choice of what to call closed-form and what not to is rather
arbitrary since a new ‘closed-form’ function could simply be defined in terms of the infinite
sum.” The idea is that, at a given stage of development of mathematics, any function that
is well-understood is to be considered closed-form.

4However, they do have a solution in terms of elliptic functions, whose computation is
nowadays understood well. This is a closed-form solution that is not elementary.
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l

θ

Figure 4.3: Simple pendulum with m = 1kg.

Thus, we can derive the model equation

d2θ

dt2
= −g

l
sin θ .

This simple equation turns out not to have an elementary solution.5 However,

it does have an exact solution, in terms of Jacobi elliptic functions, which

is closed-form. Be that as it may, instead of being satisfied with this exact

non-elementary solution, physicists often approximate the problem by taking

the limit θ → 0, i.e., by examining what happens for small angles. Then, the

model equation reduces to the simple harmonic oscillator

d2θ

dt2
= −g

l
,

which has the simple elementary solution θ(t) = c1 sinωt + c2 cosωt, where

ω = θ̇. Interestingly, if we take a simple harmonic oscillator, and then add a

linear factor to the model equation, we can again have a situation that has no

elementary solution. This is also easy to imagine in a physical setup. If you

consider a mass attached to a Hookean spring, the model equation would be

ẍ = −x (suppose the stiffness k is 1), a simple harmonic oscillator. However,

in real systems, stiffness is not constant. We can try to understand what would

5Another famous example of this situation is the global solution of the n-body problem
provided by Wang (1990). It is analytic, but does not have a closed-form representation.
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Figure 4.4: Oscillator with stiffness linearly increasing with t.

happen if the stiffness increased linearly with time, so that

x
�� + tx = 0.

See figure 4.4. It turns out that the solution of this model equation is the Airy

function, which cannot be expressed as an elementary function. Thus, small

changes in the physical circumstances can drastically alter the kind of solution

afforded by the model equations.

When there is an exact solution, but no elementary solution, it is necessary

to rely on series representation of the solution to evaluate it at some time.

With respect to calculations, the difficulty with infinite series representations

is that we cannot sum an infinite number of terms. It then seems that we

can evaluate the solution to arbitrary accuracy by using increasingly long

(but finite) truncated series. An interesting situation arises when we have a

perfectly good analytic solution in the form a uniformly convergent Taylor

series, which converges so slowly, that it ends up being of no practical use for

computation. The Airy function mentioned above is a good example of this.

The Airy function can be represented by the following uniformly convergent
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series:

Ai(x) =
1

π

� ∞

0

cos

�
1

3
t
3 + xt

�
dt

= 3−
2
3

∞�

n=0

x3n

9nn!Γ(n+ 2
3)

− 3−
4
3

∞�

n=0

x3n+1

9nn!Γ(n+ 4
3)

,

where Γ is the Gamma function (see Bender & Orszag, 1978). Note that, even

if, theoretically, the series converges for all x, it is of no practical use. If we use

a standard Taylor series computation in standard floating-point arithmetic to

compute f(−12.82), near the tenth zero, the absolute error grows very fast as x

increases negatively. Even if the series converges uniformly, the floating-point

computation does not.6 The same loss of convergence would arise for other

finite precision arithmetics, or for computations involving data containing some

inaccuracies. This limitation mirrors that of systems of significance arithmetic,

which have been discussed in section 3.2.2.

Thus, to the extent that we need to get numbers, calculability is very im-

portant. And as we have seen, calculability is most straightforward when we

have an expression that we can evaluate. This obtains when we have finite

expressions capturing solutions, i.e., when we have algebraic or elementary

solutions. The requirement of exactness is insufficient to the extent that it

allows for solutions that cannot be expressed finitarily. However, as we will

discuss below, even finitarily representable solutions do not guarantee that no

problems will arise in calculation. Thus, the lesson of this discussion is this:

when only qualitative behaviour is of interest, exact solutions are not very

important. On the other hand, when quantitative information is required, ex-

act solutions will in general not give us a straightforward recipe as in figure

4.2. This recipe would be within reach, however, if the exact solution were

capturable by an algebraic or elementary expression. This is why, even when

a problem is susceptible of receiving an exact solution, applied mathemati-

6Notice that increasing the floating-point precision will not stop that from happening. Is
this really a catastrophe? From the modeling point of view, no. The difficulty stems from
radical scale changes, and in this context, it makes sense to consider scale as a fundamental
factor in our search for solutions.
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cians often approximate the description of the system in order to derive model

equations that have a closed-form solution or even elementary or algebraic so-

lutions. However, this implies that, for small changes in our description of the

system, the character of the solutions can change significantly. But given that

mathematical modelling is an activity practiced in a context where uncertainty

is always present, this means that our emphasis on exact solution will not, in

general, guarantee that from the solutions we will be able to compute accu-

rate numerical results. These considerations lead us to a more inclusive way

of dealing with the extraction of quantitative information from mathematical

representations inspired by the works of numerical analysts.

4.2 Numerical Solutions of Problems andMath-

ematical Tractability

The construction of a mathematical model is a process that seeks to capture

the essential synchronic or diachronic features of a system by deriving equa-

tions from modelling assumptions. Moreover, in order to make predictions or

to explain phenomena by means of the model equations, it is crucial to find the

solutions when the quantitative aspects dominate. The process of solving the

model equations typically involves mathematical operations such as evaluat-

ing functions, finding zeros of functions, solving systems of equations, solving

difference or differential or integral equations, etc. However, as we have seen,

exact solutions often fall short of the work we would like them to do, and we

need the stratagems devised by applied mathematicians.

Different branches of mathematics develop different methods to find solu-

tions of such problems; here, I will focus on numerical analysis. Numerical

analysis is often succinctly described as “the theory of constructive methods

in mathematical analysis” (Henrici, 1964). This definition, however elegant, is

nonetheless incomplete, for it does not specifically address the main purpose

of numerical analysis. Elsewhere, I defined it as follows:

A slightly more long-winded definition would also specify that this discipline
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develops, studies, and compares efficient numerical methods designed to find
numerical approximations to the solution of mathematical problems arising
in applications, while quantifying the magnitude of the computational error
and qualifying the possible resulting misrepresentation of the system. (Fillion,
2011)

The first question to address to understand the role of numerical analysis in

science is: why would a discipline devote so much effort to approximate solu-

tions, instead of developing new methods to find exact solutions? I already

explained that exact solutions do not always provide us with the best mathe-

matical answers to our problems. Let us summarize the reasons, since knowing

why we have to talk about approximations will suggest how we should talk

about them.

I suggest that there are four reasons. The first reason is a pragmatic one,

namely, the exigencies of scientific practice:

The applications of mathematics are everywhere, not just in the traditional
sciences of physics and chemistry, but in biology, medicine, agriculture and
many more areas. Traditionally, mathematicians tried to give an exact solution
to scientific problems or, where this was impossible, to give exact solutions to
modified or simplified problems. With the birth of the computer age, the
emphasis started to shift towards trying to build exact models but resorting
to numerical approximations. (Butcher, 2008)

Thus, there are pressing demands from scientists to reliably simulate complex

systems with many parameters, which are typically remarkably hard to solve

analytically. The second reason is also pragmatic: even if the equations we

obtain from our models are exactly formulated, there is always an appeal to

experimental data; in this respect, there is a practical necessity to resort to

modification, uniformization, compression, and simplification of the data. In

addition, since there is always a certain degree of uncertainty in measurements,

an understanding of the effects of perturbations on the solutions of our models

is already required.

The third reason is brought about by theoretical necessity, as I explained in

the previous section. More specifically, mathematicians have produced many

impossibility theorems, i.e., they have shown that some types of problems

are not solvable in some ways, so that there is no computational route that
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leads to numerical figures. For instance, Abel and Galois showed that it is

not possible to solve general polynomial equations of degree five or more in

radicals (although there is a less-well-known algorithm using elliptic functions

for the quintic itself). Liouville showed that many important integrals could

not be expressed in terms of elementary functions (and provided a basic theory

to decide just when this could in fact be done). Turing has shown that some

number-theoretic problems cannot be finitarily decided. Finally, the fourth

reason is that it is important to look for approximate solutions because exact

solutions might be of little value, as we have seen.

In such cases, we have to resort to approximation in order to use our

mathematical models to predict and explain phenomena. Accordingly, the

central problem of numerical analysis is an epistemological one:

When one cannot know the true solution of a mathematical problem,
how should one determine how close to the true solution the approxi-
mate solution is?

The similarity with other traditional questions about the adequacy of our

knowledge with reality is striking.

Now, given that both the nature of mathematics in itself and the role

of mathematics in science require a perspective and a theory of numerical

approximation to answers, how should we talk about computational error?

The guiding principle is that numerical methods should be discussed as part

of a more general practice of mathematical modelling as found in applied

mathematics and engineering. Once mostly absent from texts on numerical

methods, this desideratum has become an integral part of much of the active

research in various fields of numerical analysis. This might seem obvious, but it

is somewhat in disagreement with a perspective on numerical analysis that has

been developed by mathematicians having primarily in mind the construction

of general-purpose software suites.

The computation required by each type of problem is normally determined

by an algorithm, i.e., by a procedure performing a sequence of primitive oper-

ations leading to a solution in a finite number of steps. Numerical analysis is a

mathematical reflection on complexity and numerical properties of algorithms
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in contexts that involve data error and computational error. In the study

of numerical methods as in many other branches of mathematical sciences,

the reflection involves a subtle conception of computation. With a precise

understanding of computation at hand, we can refine our views on what is

computationally achievable, and if it turns out to be achievable, how much

resources are required.

The classical model of computation used in most textbooks on logic, com-

putability, and algorithmic analysis stems from metamathematical problems

addressed in the 1930s; specifically, while trying to solve Hilbert’s Entschei-

dungsproblem, Turing developed a model of primitive mathematical operations

that could be performed by some type of machine affording finite but unlim-

ited time and memory. This model, that turned out to be equivalent to other

models developed independently by Gödel, Church, and others, resulted in a

notion of computation based on effective computability. From there, we can

form an idea of what is “truly feasible” by further adding constraints on time

and memory.

Nonetheless, scientific computation requires an alternative, complementary

notion of computation, because the methods and the objectives are quite dif-

ferent from those of metamathematics. A first important difference is the

following:

The point of view of this book is that [. . . ] the Turing model (we call it
“classical”) with its dependence on 0s and 1s is fundamentally inadequate for
giving such a foundation to the modern scientific computation, where most of
the algorithms—which origins in Newton, Euler, Gauss, et al.—are real number
algorithms. (Blum et al., 1998 : 3)

Blum et al. (1998) generalize the ideas found in the classical model to include

operations on elements of arbitrary rings and fields. But the difference goes

even deeper:

Rounding errors and instability are important, and numerical analysts will
always be experts in the subjects and at pains to ensure that the unwary are
not tripped up by them. But our central mission is to compute quantities that
are typically uncomputable, from an analytic point of view, and to do it with
lightning speed. (Trefethen, 1992)
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Even with an improved picture of effective computability, it remains that the

concept of computability that matters for a large part of applied mathemat-

ics (including engineering) is the different idea of mathematical tractability,

understood in a context where there is error in the data, error in computa-

tion, and where approximate answers can be entirely satisfactory. Trefethen’s

seemingly contradictory phrase “compute quantities that are typically uncom-

putable” underlines the complementarity of the two notions of computation.

In order to articulate more precisely what is meant by the claim that ‘we

should evaluate numerical methods in their modelling context,’ we need to

explain the way in which measures of computational error can be directly

interpreted in terms of modelling error. To do so, I discuss the concept of

modelling error in more detail in the next section. On this basis, I will then

present a formal framework to characterize the relation between computational

and modelling error, and the accuracy of mathematical representations.

4.3 Types of Error in Mathematical Modelling

Now that we have explained why we should care about approximate compu-

tation, we ask: what kinds of error do we encounter in modelling contexts?

We have seen many kinds already, but we want a general classification. This

section builds on a paper by Von Neumann & Goldstine (1947) that is often

considered to be the first instance of a modern error analysis (see, e.g., Wilkin-

son, 1971; Grcar, 2011). It describes and classifies the types of errors that are

encountered in the construction and the solution of a mathematical model.

The types of error arising in model construction are as follow:

systemic error

experimental error

�
modeling error

truncation & discretization error

roundoff error

�
computational error
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On the one hand, modelling error includes what philosophers of science have

called omission, simplification, distortion, idealization, and abstraction (I jointly

call them ‘systemic’ error). They thus include things such as neglecting air

resistance on a projectile, neglecting the gravitational influence of distant stars

and not-so-distant celestial bodies, assuming the constancy of parameters that

are not constant (e.g., the stiffness of a spring), and treating elastic bodies as

being rigid (e.g., a billiard ball collision). But it also includes experimental er-

rors of various kinds (see section 3.2). On the other hand, computational errors

are essentially of three types. Truncation error amounts to replacing functions

f(x) (often characterizing vector fields) and integrals
�
f(x)dx (often charac-

terizing the motion of a body in phase space) by truncated asymptotic series

in a perturbation parameter ε, i.e.,

f(x, ε) =
N�

k=0

fk(x)φk(ε),

for some collection of gauge functions {φi}0≤i≤N . Expressions of this sort

have to be truncated, since we often have no closed form solutions, and it is

impossible to add an infinite number of terms in series. Secondly, discretization

error is the error incurred by replacing a continuous parametrized flow ẋ =

f(t,x(t);µ) in phase space by a discrete map of the form

xk+1 = Φ(tk, xk, . . . , x0, h, f ,µ).

This substitution is the basis for most methods of numerical differentiation

and integration.7 Finally, we typically do not compute the value of functions

using field arithmetic (e.g., the familiar arithmetic of real numbers), since com-

puters cannot handle such entities. Thus, it is replaced with a finite computer

arithmetic known as floating-point arithmetic (see figure 4.5). In essence, it

involves replacing the real line by a “floating-point number line.” As we see

in figure 4.5(b), it is not really a line; this is why it is important to consider

the role of roundoff error in mathematical representation. Those are mathe-

7They are thus key for dynamical simulations.
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(a) Structure of single-precision floating-point numbers. There is a bit for
the sign, 8 bits for the exponent, and the remaining 23 bits are for the
fractional part.
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(b) Discreteness of the floating-point “number line”, with variable density.

Figure 4.5: Floating-point numbers.

matically simple examples of the sort of dialectic between the continuous and

the discrete that puzzles many authors (e.g. Bell, 2005). All of these compu-

tational approximations are made because we can only execute finite, discrete

operations. Computational error typically arises in steps (c), (d), and (f) of

Euler’s recipe (see section 2.2).

Now, let me return to Euler’s recipe in order to identify the potential

sources of modelling error and their nature. The first step includes the spec-

ification of the number and types of bodies (i.e., mass-point particles, rigid

bodies, continuously deformable bodies) that are part of the system. Two

kinds of modelling error can be introduced here: we can neglect the presence

of some bodies altogether, and we can assume that some bodies are simpler

than they in fact are (e.g., assuming that a body is rigid, that it is a point

particle, or that a fluid is inviscid). It also includes the specification of a num-

ber of parameters, such as the kinematical constants (e.g., mass, charge, shear

stress, etc.) and the initial values of state variables. The former introduce

systemic error and the latter introduce experimental error.

The second step involves a decision about which body-force laws will apply

between bodies. For example, one can often suppose that gravitational effects

or electromagnetic effects can be neglected. Moreover, this step involves the

choice of constitutive equations, as well as the values of the phenomenological

parameters they contain. A simple example would be the choice of Hooke’s law

F = −kx for a spring; there is a source of error in the choice of the parameter
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k, but also in the fact that springs are not exactly Hookean, since their stiffness

is non-constant. At this stage again, we find both systemic and experimental

error. Accordingly, it is steps (a) and (b) of the model construction procedure

that we should focus on to understand modelling error.

Note that, to decide whether a model so constructed accounts for some set

of phenomena, the solution has to be effectively computed, whether exactly or

not. In other words, without effective computation, one cannot decide whether

the model accounts for the phenomena, i.e., one cannot determine what the

observational consequences are. Moreover, it should be emphasized that, as

a result of this requirement of effective computability, most situations involve

a choice between further idealizing the assumptions contributing to the con-

struction of the model and being able to solve the equations exactly, or having

less idealized modelling assumptions and being forced to use computational

methods that contain an error component.8 This is why the computational

aspects of science cannot be altogether ignored, if one wishes to adequately

reconstruct the confirmational and explanatory aspects of science.

These considerations should provide a sufficient clarification of our guiding

principle: the role of mathematics in science prescribes that computational

errors should be analyzable in the same terms as modelling and experimental

errors. By that we mean that if truncation, discretization, and roundoff errors

are small compared to the modelling and experimental error, then for all we

know, our approximate numerical answer might be the right one. In the case

of Euler’s recipe, that means that the error that occurs when solving the

modelling equations should be reflected back into errors occurring in steps (a)

and (b).

4.4 Backward Error Analysis

In this section, I describe a formal model that will allow us to identify the

key problems and methods of error analysis. On this basis, I will explain how

computational error can be physically interpreted. I will present things in

8This point is articulated more thoroughly by Batterman (2002a).
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an abstract way, so that it has a generality sufficient for our purpose. It is

important to recognize the generality of the method. The analysis extends to

many problems in science and engineering, e.g., function evaluation, polyno-

mial equations, series algebra, root finding, numerical linear algebra, numerical

quadrature, numerical differentiation, numerical solutions of ordinary differen-

tial equations, partial differential equations, partial differential equations and

many others.9

To begin with, we represent a mathematical problem by an operator ϕ, that

has an input (data) space I as its domain and an output (result, solution)

space O as its codomain:

ϕ : I → O,

and we write y = ϕ(x). If ϕ is a function, we use the symbols f, g, . . . as usual.

But ϕ need not be a function; for instance, we can study problems involving

differential and integral operators. That is, in other cases, both x and y will

themselves be functions. Thus, for a given problem ϕ, the image y can have

many forms. For example, if the reference problem ϕ consists in finding the

roots of the equation ξ2 + xξ + 2 = 0, then for each value of x the object y

will be a set containing two numbers satisfying ξ2 + xξ + 2 = 0, i.e.,

y =
�
ξ | ξ2 + xξ + 2 = 0

�
. (4.1)

In general, we can then define a problem to be a map

x
ϕ−−−−→

�
ξ | φ(x, ξ) = 0

�
, (4.2)

where φ(x, ξ) is some function of the input x and the output ξ (in the example

above, φ(x, ξ) = ξ2 + xξ + 2). The function φ(x, ξ) is called the defining

function and the equation φ(x, ξ) = 0 is called the defining equation of the

problem. As another simple example, suppose one has two vectors u and

9I cannot go into the details of the analysis for such problems here. The interested reader
can consult a survey in Corless & Fillion (201x).
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v, and that the problem is to find the Euclidean distance between them.

The problem is represented by a map that sends the pair (u,v) to the value�
(v1 − u1)2 + (v2 − u2)2. Another type of problem is the differentiation and

integration of functions, where the problem is actually a linear operator L

sending a function u(t) to another function, e.g., L (u) = u�(t). Yet another

case would be the solution of differential equations, where the problem ϕ is a

map sending an initial-value problem to its solutions (if it has one, of course);

e.g.,

f :

�
du

dt
= u, u(0) = u0

�
�→

�
u = u0e

t
�
.

Since ϕ is the problem we are interested with in the first place, we call

it the reference problem. In many cases, however, we do not have a way to

determine the exact solution y to the problem ϕ at our disposal; this happens

in the cases described earlier. In this very typical case, one can construct a

modified problem (using discretization, truncation, and roundoff) for which we

can find an exact solution in a very efficient way. Accordingly, we introduce

the notion of an engineered problem ϕ̂ (which is by design computable). For

some ∆y, we obtain this commutative diagram:

x y

ŷ

ϕ

∆y
ϕ̂

(4.3)

The ∆y is called the forward error, and is defined by ∆y = ŷ−y = ϕ̂(x)−ϕ(x).

Dividing by y gives the relative forward error, denoted δy. It represents the

difference between the exact and the approximate solution. Accordingly, we

can write both ŷ ≈ ϕ(x) or ŷ = ϕ̂(x). In this way, instead of saying that

ŷ is the approximate solution to ϕ, we can say that it is the exact solution

to ϕ̂. This allows us to emphasize that, instead of focusing on approximate

truth, we focus on modified problems; then the investigation is turned into one

of characterizing nearness of problems. Moreover, modified problems can be
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thought of as resulting from model equations derived from slightly modified

modeling assumptions.

Replacing the reference problem by an engineered problem can lead to

surprisingly large forward error. To take a simple example, if we compute

these sums on a pocket calculator, chances are that it will return different

values:

s1 = 1020 + 17− 10 + 130− 1020

s2 = 1020 − 10 + 130− 1020 + 17

s3 = 1020 + 17− 1020 − 10 + 130

s4 = 1020 − 10− 1020 + 130 + 17

s5 = 1020 − 1020 + 17− 10 + 130

s6 = 1020 + 17 + 130− 1020 − 10

The (wrong) answers will probably be 0, 17, 120, 147, 137 and −10. This

example, however, is not conceptually of much interest, since we know the

exact answer; it is 137. Let us examine more interesting cases.

In fact, it is surprising to many that this happens in very simple physical

setups. A simple example arise from setups described by a simple homoge-

neous second-order linear differential equation, say ẍ+20000ẋ+ x = 0, which

could represent an oscillating mass attached to a Hookean spring immersed in

a thick fluid occasioning large damping (here, 20000 would be the damping

coefficient). Then a solution to this equation will have the form x(t) = ceλt,

where λ is a root of the quadratic x2− 20000x+1 = 0 and c is some constant.

If we use the quadratic formula to find the roots on a calculator with standard

precision, we find that one of the root returned is 0. However, it is not hard

to figure out that true value is approximately 5 · 10−5. The difference is small,

and yet if we consider the difference between ce0t and ce5·10
−5

t for large values

of t, it can have major repercussions, as we see in figure 4.6. From this we can

infer that the problem in question is sensitive to perturbations, since a small

variation in the value of the eigenvalue λ can provoke a bifurcation.
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Figure 4.6: Important qualitative difference resulting from small change in an
eigenvalue.

This example, however, is again of limited conceptual interest, since it

is relatively easy to find the exact answer and use it as benchmark. But it

is not so for many common problems arising in practice. Again, consider

the example of the Airy function mentioned above. If we use a standard

Taylor series computation in standard floating-point arithmetic to compute

f(−12.82), near the tenth zero, the absolute error is

∆y = |Ai(x)− AiTaylor(x)| = 0.002593213070374,

and the relative error is δy ≈ 0.277, only accurate to two digits! Moreover, as

we see in figure 4.4, the error grows very fast as −|x| increases. Even if the

series converges uniformly, the floating-point computation diverges.

Knowing that the forward error has a certain size, however, is not infor-

mative enough. Having a forward error as small as possible is a desideratum,

but there remains the question of determining acceptance criteria: when is the

forward error small enough to satisfy our modelling needs? This is why, in

applications, it is also important to consider errors in x, the input data of the

reference problem ϕ. This error can have many different sources, e.g., error in
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Figure 4.7: Error in the evaluation of the Airy function with respect to x.

preparation of the system, measurement of the data, and perturbations of the

system. We thus define a quantity ∆x = x̂− x that corresponds to the size of

a modification of x. The smallest such ∆x that makes this diagram commute,

x

x̂ ŷ

∆

ϕ

ϕ̂

,

is called the backward error. As we can see in figure 4.8(a), we factor the

map ϕ̂ through x̂ instead of through y (as was done equation 4.3). This is

advantageous since in general we can exactly find or closely estimate ∆x, even

though we may have no direct information concerning the value of ∆y.

Switching our focus from forward error to backward error gives rise to

a very general and powerful method called backward error analysis.10 The

objective here is to explain the error in the computed solution ŷ in terms of

errors in the input x. In other words, we ask: how much error in the input

10The name “backward” comes from the fact that a crucial way of analyzing modelling in
modern error theory consists in, so to speak, reflecting back the error ∆y in ∆x (Wilkinson,
1971).
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x

x̂ = x+∆x

|∆x|

ŷ = f(x̂)f

f̂

(a) Backward error

x

x+∆x

y = ϕ(x)

ŷ = ϕ(x+∆x)

input space output space

backward —

— forward

(b) The general picture

Figure 4.8: Backward error analysis: The general picture.

would be required to explain all output error? Formally, this happens when

the diagram in figure 4.8(b) commutes. Thanks to this change of perspective,

the central question is now:

When we modified the reference problem ϕ to get the engineered prob-
lem ϕ̂, for what set of data have we actually solved the problem ϕ?

If solving the problem ϕ̂(x) amounts to having solved the problem ϕ(x+∆x)

for a ∆x smaller than the modeling error, then our solution ŷ can be considered

completely satisfactory.

On the basis of the presentation of section 2, the situation can be put in an

even more suggestive way: if the computational error committed in the steps

(c), (d), and (f) of Euler’s recipe corresponds to a backward error smaller than

the modelling error committed in the steps (a) and (b) of Euler’s recipe, then

our computed solution is as satisfactory as the modelling context can demand

(no matter how large the forward error is). In such a case, we have successfully

extracted the observational consequences from our model and we can use those

numerical values to compare with observable phenomena.

The success of this formal model to analyze computational error in terms

of modelling error is best illustrated with the case of initial-value problems.

The standard form of an initial value problem is

ẋ(t) = f(t,x(t)), x(t0) = x0, (4.4)

where x(t) : R → Cn is the vector-solution as a function of time, x0 ∈ Cn is
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Figure 4.9: A vector field with a nearly tangent computed solution.

the initial condition, and f : R × Cn → Cn is the function equal to ẋ. For

dynamical systems, f is a velocity vector field (or slope field) and x is a curve

in phase space that is tangent to the vector field at every point (see figure 4.9).

Typically, the solution of this problem will not be directly computable. In this

situation, we then resort to some numerical procedure to solve the differential

equation. In accord with the formal model proposed, let x̂(t) be the solution

of an engineered problem (say, the map computed by RK45—a fourth-order

Runge-Kutta method known as the Dormand-Prince method—that we would

denote ϕ̂ here). The backward error turns out to be given by the expression

∆(t) = ˙̂x− f(t, x̂(t)). As a result, we can express the original problem in terms

of a modified, or perturbed problem, so that our computed solution is an exact

solution to this modified problem11:

z = f(t, z) + ∆(t).

From the point of view of dynamical systems, the backward error measures

how far from satisfying the differential equation our computed trajectory x̂(t)

is, i.e., how close it is to being tangent to the vector field. In figure 4.9, we

see a trajectory that is nearly tangent to the vector field. In an even more

suggestive way, we can say that the backward error allows us to find to which

11In Corless & Fillion (201x), we call such an equation in z a reverse-engineered problem.
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perturbed vector field our computed solution is tangent. Thus, as ∆(t) is a

small homogenous quantity, we can think of it as a modelling error, say a

wind blowing on the system, or a small gravitational attraction from a distant

body, or a measurement error on some parameters. This is the key point that

underlies the claim that the formal model provides measures of computational

errors that are directly interpretable in terms of modelling error.

Now, the next question is: what is the relationship between the forward

and the backward error? The relationship we seek lies in a problem-specific12

coefficient of magnification, i.e., the sensitivity of the solution to perturbations

in the data, that we call the condition of the problem. The normwise relative

condition number κ is the supremum of the ratio of the relative change in the

solution to the relative change in input, which is expressed by

κrel = sup
x

�δy�
�δx� = sup

x

����
∆y

y

����
����
∆x

x

����
= sup

x

����
ϕ(x̂)− ϕ(x)

ϕ(x)

����
����
(x̂− x)

x

����

for some norm � · �. As a consequence, we can show that the relation

�δy� ≤ κrel�δx� (4.5)

holds between the forward and the backward error. We clearly see from this

inequality that the condition number acts as a magnifying factor of the error

in the data. Knowing the backward error and the condition number thus gives

us an upper bound on the forward error. If κ has a moderate size, we say

that the problem is well-conditioned. Otherwise, we say that the problem is

ill-conditioned.13 Thus, if the problem is well-conditioned, i.e., κ ≈ 1, then

the error in the solution cannot possibly be much larger than the error in the

data. In such a case, we can conclude that our strategy provides a solution

12Well-conditioning must be distinguished from the concepts of stability and sensitivity
of a problem-solving method. The intuitive idea of numerical stability is similar to that of
conditioning, but it is a property of methods rather than problems.

13Infinitely ill-conditioned problems are known as ill-posed problems in analysis, following
Hadamard. See Earman (1986) for a discussion in the philosophical literature.

141



that is just as good as the exact solution to the reference problem, even if this

solution is unknown. This gives us a tremendous epistemological insight of the

semantical value of our solution.

The condition number, depending on the context, will be given by math-

ematical quantities such as vector and matrix norms, Lipschitz constants,

Gröbner functions, Lyapunov exponents, and other coefficients of sensitivi-

ty/stability commonly used in perturbation theory. As a result, not only is

the measure of computational error directly interpretable in terms of modelling

error, but the analysis of the quality of solutions mirrors the standard meth-

ods of perturbation theory for dynamical systems, including systems studied

in physics, chemistry, biology, economics, etc.

Finally, a last technical point. To automate error analysis, we use the

concept of residual. In general, the forward error and the backward error

cannot be assessed directly by computational means. The important point is

that the residual is always computable. Consider two canonical examples of

‘residuals’:

1. r = Ax̂− b in numerical linear algebra;

2. ∆(t) = x̂�(t) − f(t, x̂(t)) in numerical solution of ordinary differential

equations.

Based on those two paradigmatic cases, and on the definitions given in equation

4.1 and 4.2, I formulated a general definition of residual in Fillion (2011).

Given the reference problem ϕ—whose value at x is a y such that the defining

equation φ(x, y) = 0 is satisfied—and an engineered problem ϕ̂, the residual r

is defined by

r = φ(x, ŷ). (4.6)

As we see, we obtain the residual by substituting the computed value ŷ (i.e.,

the exact solution of the engineered problem) for y as the second argument

of the defining function. Since ŷ is computable by design, it follows that the

residual is always computable. Note that strategies of error analysis based
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on the residual differs from the strategies based on the backward error and

the forward error. On the one hand, an error analysis attempting to validate

results by providing bounds on the backward or forward error does so a priori.

On the other hand, one can just use some numerical solution to a problem, and

then use this computed answer to determine if it is good. This sort of analysis

is called a posteriori, and it is in general easier to use and to implement in

computer software.

From these considerations, we thus obtain a complete procedure to assess

the quality of numerical solutions:

1. For the problem ϕ, use an engineered version of the problem to compute

the value ŷ = ϕ̂(x).

2. Compute the residual r = φ(x, ŷ).

3. Use the computed value of the residual to obtain an estimate of the

backward error (i.e., reflect the residual back as a perturbation of the

input data).

4. Determine how satisfactory the computed solution is. Answer in one of

two ways:

(a) If you do not require an assessment of the forward error, but only

need to know that your have solved the problem for small enough

perturbation ∆x, conclude that your solution is satisfactory if the

backward error (reflected back from the residual) is small enough.

(b) If you require an assessment of the forward error, examine the

condition of the problem. If the problem is well-conditioned and

backward error is small in comparison to the modelling error, then

conclude that the computed solution is satisfactory.

In Corless & Fillion (201x), we have called this procedure residual-based a

posteriori error analysis. It explains how one can implement measures of er-

rors and interpret them as perturbations of the vector field supposed by the

formulation of the problem. As a result, we obtain a precise notion of nearness
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of problems for the physical cases posed in terms of dynamical systems. The

key point is that the resulting analysis makes explicit the relation between the

qualitative aspect of mathematical representation perturbation-theoretically

characterized in terms of bifurcations and its quantitative aspect. This estab-

lishes in a rigorous way that evaluation of mathematical representation is not

limited to the search for an exact model. Rather, it is about characterizing

classes of models by perturbation methods.

4.5 Summary

In summary, this chapter has made the following points:

C4.1 The epistemological obstacles between solutions and computed values

cannot be overlooked in order to understand the role of mathematics

in the natural sciences. Moreover, the existence of exact solutions to

problems does not imply that approximations can be ignored, since per-

turbations and approximations can affect the type of an exact solution,

and thereby affect its possible use.

C4.2 To understand the role of computation in science requires a notion of

mathematical tractability that complements the notion of effective com-

putability. By allowing us to “compute typically uncomputable quan-

tities,” the stratagems devised by applied mathematicians allow us to

grasp the consequences of selecting given sets of modelling assumptions.

C4.3 There are four types of error in the construction and evaluation of a

model. A computed solution can be considered as good as an exact

(but typically unknown) solution if the computational error is small in

comparison to the modelling error.

C4.4 Backward error analysis is a general perspective that explains how to

relate computational and modelling error. Instead of focussing on ap-

proximate solutions to a reference problem, it focussed on exact solutions

of modified problems. Their quality can be assessed by estimating an
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equivalent perturbation of the reference problem and by analyzing the

sensitivity to perturbations.

As we see, thanks to this way of interpreting computational error, there is a

perfect parallel between the way in which error is managed in modelling and

in computational contexts. This completes our discussion of the strategies

implemented to manage error in the logic of mathematical modelling.
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Chapter 5

Conclusion: Demystifying the

Applicability of Mathematics

This dissertation aimed to demystify the so-called ‘unreasonable effectiveness

of mathematics in the natural sciences’ by showing that it is very reasonable

after all. That is, it is reasonable provided that we give ourselves the means to

properly rationally reconstruct the successful practices in applied mathematics

and the natural sciences. In particular, to discuss whether mathematics is

effective in a way that is reasonable or unreasonable, it is essential to properly

capture what is the effectiveness that we are meaning to characterize. In

chapter 1, I have distinguished three different senses in which one could claim

mathematics to be effective, and I have argued that each of them demand a

different type of answer; in fact, the three of them are intermingled in Wigner’s

paper. As I have argued, the problem of uncanny accuracy is particularly

important, since it is one thing for mathematics to be a language sufficiently

expressive to describe nature, but it is another one to explain that it gives us

means to discriminate among many possible uses of the mathematical language

to describe nature.

In fact, understanding the effectiveness of mathematics demands an ac-

count of the way in which mathematics is used in practice to actually and

successfully describe the world (otherwise, we only have only an account of

the use of mathematics, not of its effective use).
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A characterization of the way in which mathematics is used to describe

the world must contain two parts, which I jointly refer to as the ‘logic of

mathematical modelling’: (1) a characterization of the patterns of reasoning

used to generate mathematical expressions meant to represent systems and (2)

a characterization of the methods used to justify the validity of the claim that

a set of mathematical expressions represent systems. To the extent that this

succeeds, we have an argument that addresses Wigner’s challenge to explain

that “mathematical language has more to commend it than being the only

language which we can speak” and that “it is, in a very real sense, the correct

language” (Wigner, 1960 : p. 8). As I explained in chapter 1, the problem

of uncanny accuracy is addressed by providing a concept of mathematical

fitness that explains the circumstances in which and the process by which

mathematical models effectively represent systems.

As I argued, the use of mathematical representations, including their gener-

ation and the examination of their consequences, involves the following steps:

identifying a behaviour of interest in a real system, selecting modelling assump-

tions (including the selection of a scale), deriving model equations from mod-

elling assumptions within a theory, extracting the relevant qualitative and/or

quantitative information from model equations and, finally, using this infor-

mation to answer our questions about the behaviour of interest. However,

as I have stressed, effective modelling strategies necessarily rely on various

gambits that further idealize systems in many ways in order to make model

equations tractable. If the model equations are not tractable, the strategies

will not be effective, since they will not give us grounds to answer our ques-

tions about the behaviour of interest. But then, there would be no effective

use of mathematics to discuss at all! Thus, it is essential to describe how good

modelling practices seek a balance between the completeness and accuracy of

modelling assumptions and the tractability of model equations. Accordingly,

mathematical modelling is essentially about strategies for the management of

information based on the premise that only essential information should be

included in the model, and that superfluous information should be discarded.

The key challenge to understanding the modelling gambits that crucially
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contribute to the success of applied mathematics is to characterize the sense

in which mathematical representations should be considered good. There is

an essential pragmatic dimension to it, since one cannot say whether a repre-

sentation is good or not without knowing what it is supposed to do; thus, the

evaluation of mathematical representations depends on what questions on the

behaviour of interest are addressed, and not only on their fit with the system.

Moreover, the fit in question should not be understood in terms of truth, but

rather in terms of accuracy. As a result, a mathematical model is a good

representation of a system if it is selectively accurate.

To determine effectively whether a mathematical model is selectively ac-

curate, i.e., to have effective means for assessing a model, it is essential to

effectively extract the relevant information from the model equations. This

can be done is many ways, depending on the sort of information sought. As

I have explained, it is sometimes done using qualitative methods and some-

times it is done using quantitative methods. Our examination of the virtues

of exact and numerical solutions has given us ground to conclude that, in both

the qualitative and the quantitative case, asymptotic reasoning and perturba-

tion analysis is playing the essential role for the justification of the methods

of extraction of information. As a result, it is only possible to understand

the rationality of the semantics of mathematical modelling by appealing to

the notion of perturbation, i.e., by addressing the reasons for which different

systems—sometimes extremely different—can be represented by the very same

model equations.

Now, what does this imply for the version of the problem of the appli-

cability studied in this dissertation, the problem of uncanny accuracy? The

problem was formulated in chapter 1 as follows: Given that the construction

and manipulation of mathematical representation is pervaded by uncertainty,

error, and approximation, how can their apparently uncanny accuracy be ex-

plained? The answer we have reached, then, is that even when constructed

representations are based on assumptions that happen to be incorrect (whether

we know it or not), they can be perfectly satisfactory, i.e., selectively accurate.

From this point of view, the success of mathematics in the natural sciences is
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not so much to be attributed to the richness of its expressive means and to

the breadth of possible structures that it can study, but rather to its capacity

to indicate when error and uncertainty might lead us astray, and when it does

not. Qualitatively, this means that mathematics can tell us when a represen-

tation is robust under perturbations. In particular, bifurcation analysis tells

us in what regions of application perturbations will not change the qualitative

behaviour of the system, and near what values of parameters small error and

uncertainty will possibly have dramatic effects. Quantitatively, this means

that mathematics gives us the means to perform sensitivity analysis that will

reveal just how much numerical figures can be trusted.

In one sentence, the explanation is thus: the success of mathematics in

the natural sciences is due not only to the fact that it has virtually unlimited

expressive resources, but also to the fact that it has the effective resources to

determine when we can reach sound conclusions from mistaken assumptions.

As we see, there is nothing unreasonable about it. Thus, we have successfully

demystified the effectiveness of mathematics in the natural sciences, insofar as

it is understood as a problem about the uncanny accuracy of mathematics.
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Appendix A

The “theory of measurement”

The theory of measurement is the theory that is meant to provide a systematic

treatment of the subject of measurement. However, it appears that this theory

deals with a notion of measurement that differs significantly from that provide

by official documents establishing standards for the scientific method (Interna-

tional Organization for Standardization, 2004; Joint Committee for Guides in

Metrology, 2008, 2009; Taylor & Kuyatt, 1994). In fact, what is predominantly

referred to as ‘the theory of measurement’ in the philosophical literature only

incidentally consider the notions of error and uncertainty; rather it provides a

general framework to discuss the way in which measurement can be justified, in

an abstract way that is based on mathematical representation theorems. This

theory’s usefulness is claimed to come primarily from the criteria of mean-

ingfulness1 it provides. For instance, it provides criteria to determine when

arithmetic quantities can be added, multiplied, etc., in a meaningful way. It

can also provide logical grounds for deciding when sentences of the type “A

temperature of 40◦C is twice as hot as a temperature of 20◦C” are meaning-

ful and, if so, true. Suppes & Zinnes (1962) identify the two fundamental

problems for the analysis of arbitrary procedures of measurement. The first is

the representation problem; it seeks justification of the assignment of numbers

to objects or phenomena. The second is the uniqueness problem; it seeks a

1In the terms introduced in chapter 1, it answers the problem of mixed sentences by
providing criteria for their interpretability.
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specification of the degree to which this assignment is unique.

The name for these problems comes from the technical apparatus used

to discuss arbitrary procedures of measurement. Concerning the first prob-

lem, the justification of the assignment of numbers to objects or phenomena

is taken to require showing that some mathematical structure has the same

structure as an empirical structure. For instance, for natural-number-valued

measurements, one would show that the arithmetic of natural numbers and an

empirical structure have the same structure. “Having the same structure” is

capture using the notions of isomorphism or homomorphism. From this point

of view, the significance of an isomorphism result is that “we may then use our

familiar computation methods, applied to arithmetical structure, to infer facts

about the isomorphic empirical structure” (Suppes & Zinnes, 1962 : p. 4). The

formal apparatus of the theory of measurement thus understood is based on

the Tarskian notion of relational system. A relational system M is an order

finite (n + 1)-tuple �A,R1, . . . Rn�, where A is the domain of the relational

system and R1, . . . , Rn are relations on A. If Ri is an mi-ary relation, we

can then define the type of the relational system by the n-tuple �m1, . . . ,mn�.
The key notion of isomorphism can then be defined as follows: Two relational

structure M1 = �A,R� and M = �A�, R�� of type �2� are isomorphic if and

only if there is a one-one function f : A → B such that, for all a, b ∈ A, R(a, b)

iff f(a)R�f(b). If we wish to assign the same number to two different objects,

the one-one requirement is dropped and the systems will then be said to be

homomorphic.

A measurement does not relate any two relational system, but rather it

relates one empirical structure and one numerical structure. A numerical

structure is a relational system whose domain A is a subset of R. An em-

pirical structure is such that its domain is a set of identifiable entities, such

as weights, persons, statements, sounds, etc (Suppes & Zinnes, 1962 : p. 9).

A similar distinction holds for relations. However, not any numerical system

should be chosen in order to satisfyingly solve the representation problem. An

“appropriately chosen numerical relational system” is one such that it is both

simple and familiar. This desideratum cannot be formulated precisely; it is
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scale type admissible transformation

absolute identity
ratio similarity (multiplication by c ∈ R+)

difference translation
interval positive linear
order monotone

classificatory arbitrary one-one
nominal arbitrary one-one

Table A.1: Example of scales and admissible transformations.

said to be “elusive” (Suppes & Zinnes, 1962 : p. 11).

The problem of uniqueness studies the degree to which measurements are

unique. More specifically, the problem consists in determining what scale

type results from some procedure. The scale type will then determine up to

what kind of transformation the measurement is unique. Scales are defined

as follows. Let M be an empirical relational system and let N be a full (i.e.,

A = R) numerical relational system. Let f : M → N� be a homomorphism,

where N� is a subsystem of N. Then, the triple �M,N, f� is called a scale.

The problem is then to characterize what transformations of the scales can

be applied in a way that preserves representation; examples of scales and

their corresponding admissible transformations are in table A.1. There is a

nondenumerably infinite number of types of scales, but these are the most

familiar. Note that the analysis of scales does not depends on the existence of

some actual empirical relations or processes.

Different types of measurement are defined in this theoretical framework:

fundamental, derived, pointer, etc. In order to grasp the conception of mea-

surement at the center of this theory, let us consider the definition of funda-

mental measurement provided by Suppes & Zinnes (1962 : p. 30): A fundamen-

tal measurement of a set A with respect to the empirical system M involves

the establishment of a fundamental numerical assignment for M, or in other

words, involves the establishment of a representation theorem for M. Note

that it is not a parameter which is measured, but a set. There also is a theory

of derived measurement, which I won’t review.
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The notion of measurement that comes closest to the common idea of mea-

surement involving a measuring device in a laboratory is that of pointer mea-

surement. A pointer measurement is a numerical assignment which is based on

the direct readings of some validated instrument. For such a measurement, it

is necessary to be able to constructed a validated instrument; in order to do so,

one must utilize some established empirical laws and theories. For instance,

Hooke’s law and the theory of gravitation for the measurement of mass or

weight; then a spring that satisfies Hooke’s law within the desired accuracy—

under “standard” conditions of temperature, humidity, etc.—is used to build

the instrument. Finally, the instrument is calibrated by determining which

amount of mass would correspond to which elongation of the spring (you do

it for two weights and then make equal separations in between). This task,

as well as the calibration of the pointer device, is deemed unimportant for the

theory of measurement, as there is no need to go in the details. It is deemed

a “practical problem” (Suppes & Zinnes, 1962 : p. 37).

In terms used by Tal (2011), these so-called theories of measurement do

not treat the concepts of error and uncertainty as intrinsic. As such, they

are different from the methodological analyses that belong to the theory of

measurement as it is envisaged by physicists, chemists, biologists, etc, and

other experimental sciences, which I review in section 3.2. It just cannot be

seen in any plausible way as reconstructing the task that scientists actually do

have to do if they want to get any decent models at all. However, very little

has been said in the philosophical literature on the theory of measurement

thus understood.
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Platon (ca. 369 BC). Théétète. Paris: Flammarion. Traduction de M. Narcy,

1995.
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Université Laval, Quebec City, Canada

Diploma of Collegial Studies, Natural Sciences 1998-2000
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1. “Backward-Error Analysis Revisited,” 30th Southern Ontario Numerical Analysis Day:
SONAD 2012, Department of Computer and Mathematical Sciences, University of
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metic,” Canadian Society for History and Philosophy of Mathematics (CSHPM), Uni-
versity of British Columbia (UBC), Vancouver, 1-3 June 2008.
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Philosophy of Science (CSHPS), University of British Columbia (UBC), Vancouver,
3-5 June 2008.
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Series, Department of Philosophy, the University of Western Ontario, 30 February
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May 2007.
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sity, 4-5 May 2007.
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9 Awards and Distinctions

Competitive Research Awards (from national or provincial competitions)
Schmeelk Canada Foundation

Richard J. Schmeelk Canada Fellowship ($40,000), 2009-2011

Social Sciences and Humanities Research Council of Canada
Doctoral Fellowship ($20,000), Declined, 2009-2010

Ontario Graduate Scholarship
Doctoral Fellowship ($15,000), Declined, 2009-2010

Fonds Québécois de la Recherche sur la Société et la Culture
Doctoral Fellowship ($60,000), 2006-2009

Ladislaw-Goncarow Foundation
Ladislaw-Goncarow Scholarship to study in Russia (app. $6,500), 2003

Departmental Research Awards
The University of Western Ontario

Applied Mathematics ($7,131), 2010-2011
Philosophy ($28,524), Partly declined, 2006-2010

Université Laval
Admission Scholarship for the M.A. Degree in Philosophy ($500), 2004

Academic Award
Collège Mérici

Bourse d’Excellence du Collège Mérici. Two-year scholarship met for achieving 4th

place at the provincial competition of chemistry/biology (app. 3,200$), 1998

Teaching Award
The Society of Graduate Students, the Graduate Teaching Assistants’ Union, and the School
of Graduate and Postdoctoral Studies at UWO

Graduate Student Teaching Award Nominee, 2008-2009

10 Teaching Experience

Courses taught: 5
Courses TAed: 13

Lecturer & Instructor

The University of Western Ontario 2008-2012

• Philosophy of Science, 2012
• Basic Logic (6-week intensive equivalent to a full-year course), 2010
• Introduction to Philosophy (Full-year Course), 2008–2009

168

http://www.schmeelk.ca/
http://www.sshrc.ca/
http://osap.gov.on.ca/eng/Not_Secure/Plan_Grants_full_sepapp_OGS_12345.htm
http://www.fqrsc.gouv.qc.ca/
http://www.ulaval.ca/
http://www.uwo.ca/
http://www.fp.ulaval.ca/
http://www.college-merici.qc.ca/
http://www.uwo.ca/sogs/Programs/gsta.html
http://www.uwo.ca/sogs/Programs/gsta.html


Teaching Assistant

The University of Western Ontario 2006-2010

• Numerical Methods (graduate course in applied mathematics), 2010
• Introduction to Logic (First half of the full-year Course), 2009
• Critical Thinking (Full-year Course), 2007–2008
• Biomedical Ethics (Full-year Course), 2006–2007

Russian State University for Humanities 2004-2005

• French for Philosophers, 2004, 2005
• French Culture in North America, 2005

Université Laval 2003-2006

• Introduction to Philosophy of Science, 2004, 2006
• Analytic Philosophy of Language, 2006
• Philosophy of Knowledge, 2005

Guest Lectures
1. “Computation in Scientific Explanation,” in the course Contemporary Philosophy of

Science (AndrewWayne), Department of Philosophy, University of Guelph, 17 Novem-
ber 2010.

2. “Basic Concepts of Game Theory,” in the course Decision Theory (Brian Woodcock),
Department of Philosophy, University of Western Ontario, 28 March 2006.

3. “Le réalisme épistémologique de Karl Popper,” in the course Introduction à l’Épisté-
mologie des Sciences (Daniel Descroches), Faculty of Philosophy, Université Laval, 19
March 2003.

4. “Induction, Vérification et Falsification,” in the course Histoire des Sciences (Luc
Tremblay), Département d’Histoire et Civilisations, Collège Mérici, 2 November 2002.

11 Research Experience

Research Fellow

University of Western Ontario 2013

• Postdoctoral researcher jointly appointed in applied mathematics (work for David J.
Jeffrey and Robert M. Corless) and in statistics and actual sciences (work for David
Bellhouse)

University of Pittsburgh 2011

• Visiting Scholar (hosted by Robert W. Batterman)

Research Assistant

The University of Western Ontario 2007-2010

• Department of Applied Mathematics, 2010
• Rotman Canada Research Chair in Philosophy of Science, 2009-2012
• The Joseph L. Rotman Institute of Philosophy, 2009
• Science, Epistemology and Ethics Research Lab, 2007–2008
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Université Laval 2002

• Center for Optics, Photonics, and Laser (COPL)

12 Professional Activities

Referee
• Society for Exact Philosophy, 2011
• Canadian Philosophical Association Annual Meeting, 2010, 2011
• Logic, Mathematics, and Physics Graduate Philosophy Conference, 2008, 2009, 2010,
2011, 2012

Conference Organization
• Logic, Mathematics, and Physics Graduate Philosophy Conference
Department of Philosophy, University of Western Ontario
2010: Co-organizer with E. Doyle. Keynote Speaker: Kevin Kelly (Carnegie Mellon)
2009: Organizer. Keynote Speaker: David Malament (UC Irvine)
2008: Organizer. Keynote Speaker: Mark Wilson (Pittsburgh)

• Philosophy Graduate Students Association Colloquium Series
2008-2009: Co-organizer with K. Biniek.
2007-2008: Organizer.

Academic Committees
• Steering Committee, Graduate Representative, 2009-2010
Joseph L. Rotman of Science and Values, University of Western Ontario

• Graduate Program Committee, Graduate Representative, 2005-2006
Faculty of Philosophy, Université Laval

• Association des Chercheurs en Philosophie, Vice-president, 2005-2006
Faculty of Philosophy, Université Laval

• Faculty Administration Board, Graduate Representative, 2003-2004
Faculty of Philosophy, Université Laval

• Association des Étudiants(es) Prégradués(ées) en Philosophie, President, 2001-2002
Faculty of Philosophy, Université Laval

• Faculty Administration Board, Undergraduate Representative, 2001-2002
Faculty of Philosophy, Université Laval

13 Graduate Coursework

(c): for credit; (a): Audit; (s): Sitting in (unofficially)
Courses for credit: 20
Courses audited and sat in: 15

University of Western Ontario, Department of Philosophy
(s) Symmetry in Philosophy and Physics, C. Smeenk F2012
(s) Advanced Topics in Logic, J. L. Bell W2012
(a) Philosophy of Applied Mathematics, R. Batterman W2010
(c) Prospectus Course (Explanation in Modern Error Theory), R. Batterman S2009
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(c) Category Theory, J. L. Bell W2009
(c) Topics in Bioethics, C. Weijer W2009
(a) Aristotle’s Philosophy of Science, D. Henry W2009
(a) Explanation & Evidence, C. Smeenk F2008
(c) Mathematical Idealizations in Physics, R. Batterman W2008
(c) The Continuous, the Discrete, and the Infinitesimal, J. L. Bell W2008
(a) Foundations of Relativity Theory, C. Smeenk W2008
(a) Topics in Analytic Philosophy (Math), W. Demopoulos W2008
(c) Conditionals, W. L. Harper F2007
(a) Philosophical Foundations of Modern Physics, R. DiSalle F2007
(c) Constructivity in Mathematics and its Underlying Philosophy, J. L. Bell W2007
(c) Game Theory, W. L. Harper W2007
(c) Aristotelian Logic, J. Thorp W2007
(a) Contemporary Analytic Philosophy II, W. Demopoulos W2007
(a) Contemporary Analytic Philosophy I, W. Demopoulos F2006
(c) Philosophy of Mathematics, J. L. Bell F2006
(c) Philosophy of Probability, I. Pitowsky F2006
(c) Survey of Philosophy of Science, W. Myrvold F2006

University of Western Ontario, Department of Applied Mathematics
(c) Applied and Computational Complex Analysis, R. Corless F2010
(c) Asymptotics and Special Functions, R. Corless W2010
(c) Mathematical Methods for Engineers, P. Yu W2010
(c) Advanced Numerical Analysis, R. Corless F2009

University of Western Ontario, Department of Mathematics
(c) Foundations of Mathematics, M. A. Dawes F2007

University of Pittsburgh, Deparment of Philosophy
(s) Topics in Philosophy of Physics, G. Valente F2011
(s) Indeterminism, Branching Time and Branching Spacetime, N. Belnap W2011

Carnegie Mellon University, Department of Philosophy
(s) Philosophy of Mathematics, W. Sieg F2011
(s) Seminar on Formal Epistemology, K. Kelly W2011

Université Laval, Department of Philosophy
(c) Épistémologie de l’économie classique (Reading Course), O. Clain S2004
(c) Philosophie analytique, R. Bilodeau W2004
(c) Grammaire générative et transformationnelle du rêve freudien, F. Tournier W2004
(c) Épistémologie des sciences humaines, F. Tournier F2003

14 Technical Skills

Mathematical Programming in Matlab and Maple. I am comfortable with writing pro-
grams to run discrete-time and continuous-time mathematical simulations of situations aris-
ing in many disciplines. My background in numerical analysis also gives me the means to
guarantee the validity of simulation results.
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http://www.apmaths.uwo.ca/people/rcorless.shtml
http://www.apmaths.uwo.ca/people/pyu.shtml
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http://www.philosophy.pitt.edu/people/faculty/valente.php
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http://www.hss.cmu.edu/philosophy/
http://www.hss.cmu.edu/philosophy/faculty-sieg.php
http://www.andrew.cmu.edu/user/kk3n/homepage/kelly.html
http://www.fp.ulaval.ca/
http://www.soc.ulaval.ca/site/personnel/Professeurs/Clain.asp
http://www.fp.ulaval.ca/personnel/personne_details.aspx?person_id=283
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Web Programming in HTML & PHP (with some MySQL)
I designed many fully integrated interative websites, which include the Rotman Science,
Epistemology and Ethics Research Institute’s website, the University of Western Ontario
Philosophy of Science Research Group’s website, the BIPED’s (Biology, Philosophy and
Evolution Discussion group) website, many conference websites, many course websites
for different professors, as well as my personal website.

Technical Workshops & Lectures
• (With A. Botterell) “Websites,” Workshops for Graduate Students in Philosophy 2008-
2009, Department of Philosophy, The University of Western Ontario, January 2009.

• “Typesetting in LATEX” Informal two-session workshop for faculty members and graduate
students, Department of Philosophy, The University of Western Ontario. September
2007, February 2010.
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