
University of Iowa
Iowa Research Online

Theses and Dissertations

2008

Registration-based regional lung mechanical
analysis
Kai Ding
University of Iowa

Copyright 2008 Kai Ding

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/20

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Ding, Kai. "Registration-based regional lung mechanical analysis." MS (Master of Science) thesis, University of Iowa, 2008.
http://ir.uiowa.edu/etd/20.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages


REGISTRATION-BASED REGIONAL LUNG MECHANICAL ANALYSIS

by

Kai Ding

A thesis submitted in partial fulfillment of the
requirements for the Master of Science

degree in Biomedical Engineering
in the Graduate College of

The University of Iowa

August 2008

Thesis Supervisor: Associate Professor Joseph M. Reinhardt



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Kai Ding

has been approved by the Examining Committee for the
thesis requirement for the Master of Science degree in
Biomedical Engineering at the August 2008 graduation.

Thesis Committee:

Joseph M. Reinhardt, Thesis Supervisor

Gary E. Christensen

Madhavan L. Raghavan

Eric A. Hoffman

Edwin J.R. van Beek



To My Family

ii



ACKNOWLEDGEMENTS

First of all, I would like to thank my parents for their incessant support.

Without their help, I would never had the chance to get in touch with the state-

of-the-art research, meet the leading scientists in the world and study here at the

University of Iowa.

I wish to express my sincere gratitude to Prof. Joseph Reinhardt for his in-

valuable advice, guidance and support throughout my study. I am greatly indebted

to him for his confidence in me, his inspiring and encouraging words and his wealth

of brilliant ideas during the research. I appreciate Prof. Xiaoxiang Zheng, my under-

graduate thesis advisor, who inspired me to develop interest in the medical imaging

field, owing to her experience and expertise. I am grateful to Prof. Gary E. Chris-

tensen and his student Kunlin Cao and Joo Hyun Song for help on image registration.

Without discussing and consulting with Kunlin Cao, the work could not have pro-

ceeded so efficiently. I would like to thank Prof. Eric Hoffman and his student

Matthew Fuld for their support and advice in CT imaging and data analysis, and

assistance in animal experiments. My special thanks go to Prof. Bram van Ginneken

and Keelin Murphy for providing the software iX and assistance in landmark analy-

sis. Thanks to Shalmali Bodas and Matthew Moehlmann for their help for picking

landmarks. I would also like to thank Prof. Madhavan Raghavan and Prof. Edwin

van Beek for their enlightening talks on biomechanics and functional lung imaging.

Thanks to my labmates Sangyeol Lee, Lijun Shi and Sudarshan Bommu for their help

and friendship.

The contributions of all these people are greatly appreciated.

iii



This work is supported in part by grant HL079406 from the National Institute

of Health.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 New Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . 5

2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Volumetric CT Data Acquisition

by Retrospectively Reconstructed
Dynamic Imaging . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Volumetric CT Data Acquisition
by Static Breath-hold Imaging . . . . . . . . . . . . . . . 6

2.1.3 Xenon CT Data Acquisition . . . . . . . . . . . . . . . . 6
2.2 Image Registration

and Mechanical Analysis . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 The Basics and Problem Modeling . . . . . . . . . . . . . 7
2.2.2 Inverse Consistent Image Registration . . . . . . . . . . . 11
2.2.3 Image Preprocessing

and Registration Procedures . . . . . . . . . . . . . . . . 14
2.3 Xenon CT and Specific Ventilation . . . . . . . . . . . . . . . . . 15

2.3.1 Review of Xenon CT Imaging . . . . . . . . . . . . . . . . 15
2.3.2 Xenon CT Ventilation Analysis . . . . . . . . . . . . . . . 16

2.4 Quantitative Evaluation
of Registration Accuracy . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Semi-Automatic Reference Standard . . . . . . . . . . . . 19
2.4.2 Manual Reference Standard . . . . . . . . . . . . . . . . . 22
2.4.3 Comparison between Semi-Automatical

and Full-Manual Reference Standards . . . . . . . . . . . 22
2.5 Comparison between Estimates

from Registration and sV . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Comparison between Estimates

of Lung Expansion
from Dynamic Scans and sV . . . . . . . . . . . . . . . . 23

2.5.2 Comparison between Estimates
of Lung Expansion
from Static Scans and sV . . . . . . . . . . . . . . . . . . 23

v



3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Registration Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Landmark Errors

from Semi-Automatic Reference Standard . . . . . . . . . 25
3.1.2 Landmark Errors

from Manual Reference Standard . . . . . . . . . . . . . . 28
3.1.3 Comparison of Semi-Automatic

and Manual Reference Standards . . . . . . . . . . . . . . 29
3.2 Regional Lung Expansion

and Xe-CT Estimates of sV . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Estimate of Regional Lung Expansion

in Dynamic Scans . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Estimate of Regional Lung Expansion

in Static Scans . . . . . . . . . . . . . . . . . . . . . . . . 35

4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Lung Mechanical Changes

During Tidal Breathing . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Limitations and Future Improvements . . . . . . . . . . . . . . . 40

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



LIST OF TABLES

3.1 An example of the distance between the automatically matched landmark
and the manually matched landmark in differen pressure for animal AS70078. 31

vii



LIST OF FIGURES

2.1 The basic components of the registration framework are two input images,
a transform, a cost function, an interpolator and an optimizer. . . . . . . 8

2.2 The gap in the template image, when a forward transform and a reverse
transform is applied to a pair of corresponding points. . . . . . . . . . . . 10

2.3 Color-coded maps showing (a) the Jacobian of the image registration
transformation (unitless) for approximately the same anatomic slice com-
puted from the T0 − T1 inspiration image pair and (b) the T4 − T5 ex-
piration image pair. Note that the color scales are different for (a) and
(b). Red regions on the inspiration image (a) are regions that have high
expansion while dark blue regions on the expiration image (b) have high
contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The intensity transformation maps the CT values to 8-bit unsigned charac-
ter data before registration. (a) Original CT data. (b) Data after intesity
mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Wash-in and wash-out behaviors predicted by compartment model for t0 =
5 seconds, τ = 10 seconds, D0 = −620 HU, and Df = −540 HU. (Figure
from [30]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Time series data from Xe-CT study. (a) shows the Xe-CT image of the
lungs, with the lung boundaries marked in blue and a rectangular region
of interest in yellow. (b) shows the raw time series data for this region of
interest (wash-in phase) and the associated exponential model fit. . . . . 18

2.7 An example of image intensity difference before registration which depicts
larger difference near the diaphragm than other regions. . . . . . . . . . 20

2.8 An example projection view of all landmarks generated by the algorithm
for a scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 A screen shot of the software system to semi-automatically match hun-
dreds of landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Example of the result of affine registration between Xe-CT data and dy-
namic respiratory-gated CT data. (a) T0 whole-volume dynamic respiratory-
gated CT data. (b) Fused image. (c) Deformed first breath of the Xe-CT
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Automatically-generated landmark locations projected onto (a) a coronal
slice and (b) a sagittal slice for one animal at T0 breathing phase. . . . . 25

viii



3.2 Registration accuracy from semi-automatic reference standard by mean ±
standard deviation of landmark errors for each phase change pair and for
each animal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Registration accuracy from semi-automatic reference standard by mean ±
standard deviation of landmark errors for each pressure change pair and
for each animal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Sagittal view of the landmark position that shows largest registration error
in (a) P10 and (b) P15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Manually-generated landmark locations projected onto (a) a coronal slice
and (b) a sagittal slice for one animal at T0 breathing phase. . . . . . . . 28

3.6 Registration accuracy by mean ± standard deviation of landmark errors
for each phase change pair and for each animal. . . . . . . . . . . . . . . 29

3.7 Registration accuracy by mean ± standard deviation of landmark errors
for each pressure change pair and for each animal. . . . . . . . . . . . . . 30

3.8 Landmark error versus lung height for pressure change pair P10 to P15 in
animal AS70080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Color-coded maps showing (a) Jacobian of the registration transformation
and (b) specific ventilation (1/min) for approximately the same anatomic
slice computed from the P10 − P15 image pair of the same sheep. Note
that the physical units and color scales are different for (a) and (b). . . . 32

3.10 Example of Jacobian and sV measurements vs. lung height for one animal
AS70078. (a) Average Jacobian values for all phase change pairs. (b)
Average sV vs. lung height. Lung height equal to 0 cm is the most dorsal
position and positive heights move toward the ventral direction. . . . . . 33

3.11 Examples of scatter plot of average sV and average Jacobian for one animal
AS70078 with linear regression with 95% confidence interval for (a) T0 to
T1 phase change pair and (b) T4 to T5 phase change pair. . . . . . . . . 34

3.12 Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each phase change pair and for each animal. . . . . . . . . . . 35

3.13 Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each pressure change pair and for each animal. . . . . . . . . 36

4.1 Intensity difference of the lung after inspiration of air. (a) a slice of P0
image. (b) a slice of P10 image. . . . . . . . . . . . . . . . . . . . . . . 39

ix



4.2 Color coded image showing coronal view of the the phase change pair
when the largest expansion occurs during inspiration(first row) and the
largest contraction occurs during expiration(second row). From left to
right: Sheep AS70077, AS70078, AS70079 and AS70080. . . . . . . . . . 41

4.3 Color coded image showing sagittal view of the phase change pair when the
largest expansion occurs during inspiration(first row) and the largest con-
traction occurs during expiration(second row). From left to right: Sheep
AS70077, AS70078, AS70079 and AS70080. . . . . . . . . . . . . . . . . 41

4.4 An example of the motion hysteresis of a point near diaphragm of sheep
AS70078 during tidal breathing. . . . . . . . . . . . . . . . . . . . . . . . 42

x



1

CHAPTER 1
INTRODUCTION

1.1 Motivation

The lungs undergo expansion and contraction during the respiratory cycle.

Lung tissue mechanics depends upon the material properties of the lung parenchyma

and the relationships between the lungs, diaphragm, and other parts of the respira-

tory system. Pulmonary diseases can change the tissue material properties of lung

parenchyma and the mechanics of the respiratory system. In pulmonary emphysema,

a chronic obstructive pulmonary disease (COPD), is characterized by loss of elastic-

ity(increased compliance) of the lung tissue, from destruction of structures supporting

the alveoli and destruction of capillaries feeding the alveoli [29]. Idiopathic pulmonary

fibrosis (IPF), a classic interstitial lung disease, causes inflammation and fibrosis of

tissue in the lungs. Over time, the disease makes the tissue thicker and stiffer (re-

duced compliance). While these mechanical changes associated with the change of

the material properties (and the disease process itself) originate at a regional level,

they are largely asymptomatic and invisible to currently available global measures of

lung function such as pulmonary function tests (PFTs) until they have significantly

advanced and aggregated. Therefore it would be desirable to have objective methods

with which to determine the stage and follow the progression of the disease from re-

gional measurements. Recent advances in multidetector-row CT (MDCT) allow the

entire lung to be imaged with isotropic 0.4 mm voxels in under 10 seconds. Addi-

tionally, new retrospective gating methods, initially used to reconstruct the beating

heart, are being applied to produce high-resolution images of the entire breathing
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lung throughout the respiratory cycle. These dynamic imaging capabilities now per-

mit the measurement of regional lung mechanical properties which, in addition with

recently established functional CT tools for measurement of regional lung ventila-

tion [25, 36] and perfusion [41], will greatly enhance the quantitative characterization

of lung structure and function.

1.2 The State of the Art

Various efforts have been made to assess lung function. Invasive methods,

such as percutaneously or surgically implanted parenchymal markers or inhaled fluo-

rescent microspheres, are not possible for translation to humans [15, 18, 31]. Nuclear

medicine imaging such as positron emission tomography (PET) and single photon

emission CT (SPECT) can provide an assessment of lung function [23], but its appli-

cation is constrained by low spatial resolution in pulmonary imaging when images

are acquired across several respiratory cycles. Venegas et al. have used PET to

study patchiness in asthma [39]. However the experiments were limited to 6.5mm

slice thickness and 10cm axial coverage. Standard CT, on the other hand, has been

the main diagnostic modality for evaluation of lung diseases and can provide high-

resolution images but it is largely static and does not provide ventilation assessment.

Hyperpolarized noble gas MR imaging has been developed for functional imaging of

pulmonary ventilation [27, 38, 16]. Most common marker gases for lung studies are

helium (He3), xenon (Xe129) and fluorene (F19). Another method for the assessment

of regional ventilation by MRI is the use of oxygen for signal enhancement. The sig-

nal from paramagnetic O2 is inferior to that from spin-polarized He3, but the method

is method is less complex and provides clinically useful information. Although MR
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imaging avoids the concern about ionizing radiation, there is insufficient signal from

airway walls to visualize anything but the largest airways. Finally, the other imaging

modality to directly assess lung function is the xenon-enhanced CT (Xe-CT) which

measures regional ventilation by observing the gas wash-in and wash-out rate on se-

rial CT images [25, 36, 4]. However, Xe-CT also has some shortcomings. Compared

with standard CT, it involves inhalation of stable Xenon by the patient, with possible

side effects, and necessitates expensive and complex equipment, available only in few

medical centers. Xe-CT imaging protocols require high temporal resolution imag-

ing, so axial coverage is usually limited. Z-axis coverage with modern multi-detector

scanners currently ranges from about 2.5 to 12 cm, but the typical z-axis extent

of the human lung is on the order of 25 cm. While developing pulmonary imaging

techniques to assess lung function is attracting great interests of research, recently,

investigators from other groups have studied the lung function in the perspective of

lung mechanics. Guerrero et al. have used optical-flow registration to compute lung

ventilation from 4D CT [14, 13]. Gee et al. have used non-rigid registration to study

pulmonary kinematics [11, 35] using magnetic resonance imaging. Christensen et al.

used image registration to match images across cine-CT sequences and estimate rates

of local tissue expansion and contraction [5] and their measurements matched well

with spirometry data. While they were able to show that their accumulated measure-

ment matched well with the global measurement, they were not able to compare the

registration-based measurements to local measures of regional tissue ventilation. In

other words, they were not able to validate their methods at regional level to show

the linkage between lung mechanics and lung function.



4

1.3 New Approaches

We describe a technique that uses multiple respiratory-gated CT images of

the lung acquired at different levels of inflation with both breath-hold static imaging

and retrospectively reconstructed dynamic imaging, along with non-rigid 3D image

registration, to make local estimates of lung tissue expansion. We not only compare

these lung expansion estimates to Xe-CT derived measures of regional ventilation to

validate our measurements and establish their physiological significance, but also ap-

ply the semi-automatic reference standard to quantitatively evaluate the accuracy of

3D image registration. The ability to estimate regional expansion maps as a surrogate

of the Xe-CT ventilation imaging for the entire lung from quickly and easily obtained

respiratory-gated images, is a significant contribution to functional lung imaging be-

cause of the potential increase in resolution, and large reductions in imaging time,

radiation, and contrast agent exposure.

The next of the thesis will describe our methods of applying the Xe-CT imag-

ing, non-rigid 3D image registration, and semi-automatic reference standard in great

details at chapter 2. And the review of each technique will also be provided whenever

necessary. In chapter 3, we will show that the lung expansion estimates by 3D image

registration match equally well with the Xe-CT derived measures of regional venti-

lation in both breath-hold static imaging and retrospectively reconstructed dynamic

imaging. The quantitative evaluation of the registration accuracy further confirm our

results. We also discuss the related unsolved problems in our methods and future

work in the chapter 4.
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CHAPTER 2
MATERIALS AND METHODS

2.1 Data Acquisition

Appropriate animal ethics approval was obtained for these protocols from the

University of Iowa Animal Care and Use Committee and the study adhered to NIH

guidelines for animal experimentation. Four adult sheep were used for experiments.

The sheep were anesthetized using intravenous pentobarbital and mechanically ven-

tilated during experiments. All images were acquired with the animals in the supine

orientation on a Siemens Sensation 64 multi-detector CT scanner (MDCT) (Siemens

Medical Solutions; Erlangen, Germany).

2.1.1 Volumetric CT Data Acquisition

by Retrospectively Reconstructed

Dynamic Imaging

The dynamic scans are acquired using the dynamic imaging protocol during

tidal breathing with a pitch of 0.1 , slice collimation 0.6 mm, rotation time 0.5 sec,

slice thickness 0.75 mm, increment 0.5 mm, 120 kV, 400 mAs, and kernel B30f.

Images are reconstructed retrospectively at 0, 25, 50, 75, and 100% phase points of

the inspiratory portion and 75, 50 and 25% of the expiration portion of the respiratory

cycle(herein denoted as the T0, T1, T2, T3, T4, T5, T6, and T7 images).
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2.1.2 Volumetric CT Data Acquisition

by Static Breath-hold Imaging

The static scans are acquired in static imaging protocol at 10, 15, 20, and 25

cm H2O (herein denoted as the P10, P15, P20, and P25 images) airway pressure

with the animal held apneic. The protocol used a tube current of 100 mAs, a tube

voltage 120 kV, slice collimation of 0.6 mm, an effective slice thickness of 0.75 mm, a

slice separation of 0.5 mm, a pitch of 1, and a field of view selected to fit the lung field

of interest. Both of the two types of scans are acquired with a reconstruction matrix

of 512 by 512 and without moving the animal between scans, so after acquisition the

data sets are in rigid alignment.

2.1.3 Xenon CT Data Acquisition

The axial locations for the Xe-CT studies are selected from the whole lung

volumetric scan performed near end-expiration. Images are acquired with the scanner

set in ventilation triggering mode, typically using 80 keV energy for higher Xe signal

enhancement (as shown in pilot study [3]), 160 mAs tube current, a 360◦ rotation, a

0.33 sec scan time, a 512 by 512 reconstruction matrix, and a field of view adjusted

to fit the lung field of interest. The Xe-CT slice thickness is approximately 2.4 mm

thick, or about 3.4 times thicker than the volumetric CT slices. Twelve contiguous

xenon slices are acquired and provide approximately 3 cm of coverage along the axial

direction. Respiratory gating during image acquisition is achieved by replacing the

standard ECG gating signal with a trigger signal from a LabView program. Images

were acquired at the end expiratory point during the respiratory cycle. A respiratory

tidal volume of 8 cc/kg was used for the Xe-CT acquisition.
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The image acquisition sequence is as follows. Acquisition starts and images

are gathered as the animal breathes six to eight breaths of room air. Next, the xenon

delivery system is turned on and approximately 40 breaths of pure xenon are delivered

while imaging, and then the air source is switched back to room air for another 40

breaths. Thus, axial images are acquired for approximately 90 breaths as the xenon

gas washes in and out of the lungs.

2.2 Image Registration

and Mechanical Analysis

2.2.1 The Basics and Problem Modeling

In order to study lung mechanics, we wish to find the movement of all matter

inside the lung due to the interactions with each other caused by the change of

the transpulmonary pressure. The movement of the matter inside the lung, or lung

tissue, can be expressed in the form of spatial function of each region of the lung

if the mapping of the region between different conditions can be found. Therefore,

the problem can be stated as: Given images of the lungs in two or more different

conditions, find the region correspondences between the different conditions.

The problem statement brings us into the realm of image registration. Image

registration is the task of finding a spatial transform mapping on image into another.

Many image registration algorithms have been proposed and various of features such

as landmarks, contours, surfaces and volumes have been utilized to manually, semi-

automatically or automatically define correspondences between two images [24, 22].

The basic components of the registration frame and their interconnections are shown

in Figure 2.1 [19, 9]. The basic input data to the registration process are two images:
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one is defined as the moving or template image It(X) and the other as the fixed

or target image Is(X), where X represents a position in N-dimensional space. The

registration is treated as an optimization problem with the goal of finding the spatial

mapping that brings the features of the moving template image into alignment with

the fixed target image.

Figure 2.1: The basic components of the registration framework are two input images,
a transform, a cost function, an interpolator and an optimizer.

The transformation component h defines how one image can be deformed

to match another. It can be a simple rigid or affine transformation which can be

described very compactly between 6 (3 translations and 3 rotations) and 12 (6 + 3

scalings + 3 shears) parameters for a whole image, or non-rigid registration such as

the spline-based registrations, elastic models, fluid models, finite element (FE) models

etc. The interpolator is used to evaluate the template image intensities at non-rigid

positions.

The cost function component can consist of a single metric such as a similarity

measure based on geometric and intensity approaches or a compound function with
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other regulations and constraints depending on potential models. It measures how

well the fixed target image is matched by the transformed moving template image.

This function forms the quantitative criterion to be optimized by the optimizer over

the search space defined by the parameters of the transform. Most registration al-

gorithms can employ standard optimization ways to solve the problems to find the

good transformation and there are several existing methods in numerical analysis

such as the partial differential equation(PDE) solvers to solve the elastic and fluid

transformation, Steepest Gradient Descent, the Conjugate Gradient Method etc.

It is very important to design the ideal cost function and the registration

model, since they largely affect the registration result and the time cost of the op-

timization. The ideal cost function and registration model should be application

oriented. For example, the elastic model treat the image as a linear, elastic solid

and deform it using forces derived from an image similarity measure. Because of the

assumption of linear elasticity, it is only applicable to small deformations and is hard

to recover large image difference. In contrast, the viscous fluid model allows large

deformations and greater flexibility but with the higher risks of mismatching.

Last, but not the least, is the validation of the registration algorithm. It is

used to prove that the algorithm can be applied to a specific task with acceptable

errors depending on the task itself. It is usually done by the methods of analyzing the

distance of the corresponding landmarks before and after registration. Though this

method can estimate well the errors of rigid-registration, it cannot represent all the

regions in the non-rigid registration. The validation of registration will be described

in the following subsections in more detail.

It is also worth to notice that typically the transformation is asymmetric: al-
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though there will be a vector that describes how to displace each point in the template

image to find the corresponding location in the target image, there is no guarantee

that, at the same scale, each point in the target image can be related to a correspond-

ing position in the template image. There may be gaps in the template image where

correspondence is not defined at the selected scale. However, it is necessary to avoid

these gaps since they may introduce ambiguity if our region of interest has been iden-

tified at different conditions. For example, as shown in Figure 2.2, we cannot confirm

which vessel region we are interested if we track same anatomical structure of the

vessel from the template image to the target image and the other way around.

Figure 2.2: The gap in the template image, when a forward transform and a reverse
transform is applied to a pair of corresponding points.

In other words, the registration algorithms can be used to determine the spatial

locations of corresponding voxels in a sequence of pulmonary scans. The computed
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correspondences immediately yield the displacement fields corresponding with the

motion of the lung between a pair of images.

Our problem now remains in to find an ideal registration algorithm that best

describes the transform of the regions of the lung between different conditions. Based

on the assumptions that lung is an elastic body and that the requirements of our

study that a specific region should be able to be trackable across different conditions

without ambiguity, we introduce the inverse consistent registration algorithm which

is inherently armed with these two features.

2.2.2 Inverse Consistent Image Registration

Inverse consistent linear elastic image registration was applied to register image

pairs [6]. The registration estimates the inverse consistency error between the for-

ward and reverse transformation, and hence provides more accurate correspondences

between two images compared to independent forward and reverse transformations.

Let the two input images of the registration be denoted as I0 and I1, and let the

transforms between two images be h and g. The forward transformation h is used to

deform the image I0 into the shape of the image I1, and the reverse transformation g

is used to deform the shape of I1 into that of I0. The deformed template and target

images are denoted by (I0 ◦ h) and (I1 ◦ g), respectively. The forward and reverse

transformations are defined by the equations: h(X) = X + u(X), g(X) = X + w(X),

h−1(X) = X + ũ(X), g−1(X) = X + w̃(X). The vector-valued functions u, w, ũ, and

w̃ are called displacement fields since they define the transformation in terms of a

displacement from a location X.
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The registration minimizes the cost function defined as:

C = σ[CSIM(I0 ◦ h, I1) + CSIM(I1 ◦ g, I0)] + (2.1)

χ[CICC(u, w̃) + CICC(w, ũ)] +

ρ[CREG(u) + CREG(w)],

The CSIM term of the cost function defines the symmetric intensity similarity.

The CICC term is the inverse consistency constraint or inverse consistency error cost

and is minimized when the forward and reverse transformations are inverses of each

other. The CREG term is used to regularize the forward and reverse displacement

fields. A 3D Fourier series representation [1] is used to parameterize the forward and

reverse transformations. Christensen and Johnson [6, 20] describe the Fourier series

parameterization used in the consistent registration algorithm in detail. The constants

σ, χ and ρ are used to enforce/balance the constraints. In our registrations, the mean

squared intensity difference is used as similarity measure to drive the registration, and

we set the weighting constants σ = 1, χ = 600, and ρ = 0.00125. The parameters were

decided on the basis of pilot experiments, previous work and experience. The forward

and reverse transformations are parameterized using Fourier series representation and

the gradient descent is used in the optimization step. More details of the inverse

consistent registration can be found in [6, 21].

After finding out the transforms and the correspondence for each voxel of two

images, we are ready for mechanical analysis on a regional level. In three-dimensional

space, the vector displacement function ~u(x, y, z) that maps image I0 to image I1 is
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used to calculate the local lung expansion using the Jacobian determinant J(x, y, z)

defined as:

J(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + ∂ux(x,y,z)
∂x

∂ux(x,y,z)
∂y

∂ux(x,y,z)
∂z

∂uy(x,y,z)

∂x
1 + ∂uy(x,y,z)

∂y

∂uy(x,y,z)

∂z

∂uz(x,y,z)
∂x

∂uz(x,y,z)
∂y

1 + ∂uz(x,y,z)
∂z

∣∣∣∣∣∣∣∣∣∣∣∣

,

where ux(x, y, z) is the x component of ~u(x, y, z), uy(x, y, z) is the y component of

~u(x, y, z), and uz(x, y, z) is the z component of ~u(x, y, z).

The Jacobian measures the differential expansion at position (x, y, z) in the

image I1. If the Jacobian is greater than one, there is local tissue expansion; if the

Jacobian is less than one, there is local tissue contraction (Figure 2.3).

(a) (b)

Figure 2.3: Color-coded maps showing (a) the Jacobian of the image registration
transformation (unitless) for approximately the same anatomic slice computed from
the T0− T1 inspiration image pair and (b) the T4− T5 expiration image pair. Note
that the color scales are different for (a) and (b). Red regions on the inspiration image
(a) are regions that have high expansion while dark blue regions on the expiration
image (b) have high contraction.
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2.2.3 Image Preprocessing

and Registration Procedures

All volumetric CT data were converted from DICOM format and stored in

16-bit AnalyzeTM (Mayo Clinic, Rochester, MN) format. To reduce memory require-

ments during the image registration and increase the image contrast, the original

16-bit CT data were then converted to 8-bit values [0, 255] using a threshold window

of [-1024HU, 0HU]. The intensity discontinuity at the boundary along the chest wall

and the large intensity difference between the regions inside and outside the lung

increase the mean squared intensity difference of our similarity measure and thus

the total cost function, if the regions are misaligned at boundaries. In this way, the

boundaries of each region are forced to match. Yet the matching does not constrain

the sliding motion between the lungs and the ribs along the boundary at different

pressure or phases(Figure 2.4)

As described Section 2.2.2, the inverse consistent registration algorithm uses

Fourier series representation to parameterize the transformations, so it requires the

sizes of the input images to be a power of two. Therefore the images are padded with

zeros to size 512×512×2round(log2 Nz), where Nz is the size of the image in Z-direction.

Then to reduce the memory requirements, the images are downsampled by a factor

of two in all three directions using trilinear interpolation.

Since both of the dynamic and static scans are acquired without moving the

animal between scans, and after acquisition the data sets are in rigid alignment, so the

common rigid registration step to initially align two images as seen in other papers

is not performed.

In our study, inverse consistent image registration followed by regional me-
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(a) (b)

Figure 2.4: The intensity transformation maps the CT values to 8-bit unsigned char-
acter data before registration. (a) Original CT data. (b) Data after intesity mapping.

chanical analysis as described in Section 2.2.2 is performed for T0 to T1, T1 to T2,

. . . , and T6 to T7 in the dynamic scans and for P10 to P15, P15 to P20 and P20 to

P25 in the static scans.

2.3 Xenon CT and Specific Ventilation

2.3.1 Review of Xenon CT Imaging

Xe-enhanced computed tomography (CT; Xe-CT) is a method for the nonin-

vasive measurement of regional pulmonary ventilation in intact subjects [34, 25, 36].

Xenon is a nonradioactive, monatomic noble gas that is denser than air. When im-

aged in a conventional CT scanner, the density of Xe measured in Hounsfield units

(HU) increases linearly with its concentration. When Xe concentrations of 30-60%

in air are delivered to the lung, CT enhancements of parenchymal density of 50-150

HU are obtained. If the Xe is introduced and eliminated from the lung during a

controlled washin-washout (wi/wo) ventilation protocol, repeat CT scans taken at

constant lung volume (i.e., at the same point in the respiratory cycle) will yield a
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local exponential density curve for any specified region of interest (ROI)within the

lung field. The regional ventilation can be quantified by fitting a single-compartment

exponential model to the rise and decay portions of the curve using a least-squares

fit. For each ROI to be analyzed, the mean region density, D(t), is calculated versus

time (or equivalently, image number). For the wash-in phase, the compartment model

gives [34]:

D(t) =





D0 0 ≤ t < t0

D0 + (Df −D0)(1− e−
t−t0

τ ) t ≥ t0,

(2.2)

where D0 is the baseline density in the ROI prior to switching to xenon gas, Df is the

density that would be observed if xenon was inspired until equilibrium, t0 is the start

time of the switchover from room air to xenon, and τ is the model time constant.

Thus, using this model, the Df − D0 term represents the enhancement due to the

inspired xenon. The model gives a similar expression for the wash-out phase:

D(t) =





Df 0 ≤ t < t0

D0 + (Df −D0)e
− t−t0

τ t ≥ t0,

(2.3)

where for the wash-out phase t0 denotes the time of switchover from xenon back to

room air. Figure 2.5 shows the density–time variation predicted by the model.

2.3.2 Xenon CT Ventilation Analysis

Prior to Xe-CT data analysis, the lung region was defined using the method

from [17], followed, when necessary, by manual editing. Figure 2.6a shows an example

Xe-CT slice with the lung segmentation overlaid. After lung segmentation, non-

overlapping 8× 8 pixel regions of interest (ROIs) were defined in the lung region on
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Figure 2.5: Wash-in and wash-out behaviors predicted by compartment model for
t0 = 5 seconds, τ = 10 seconds, D0 = −620 HU, and Df = −540 HU. (Figure
from [30])

each 2D slice.

As discussed by [4], the time constants of the rising and falling phases of the

curves may be fitted separately or may be forced to be equal. In our analysis, only

the wash-in phase of the Xe protocol was analyzed. To reduce aberrations in the

time series data due to the ROIs overlapping with large blood vessels or regions of

atelectasis (see, for example, the bottom left side of the lungs shown in Figure 2.6a),

we eliminated from consideration any ROI that had more than 40% of its pixels

above -300 HU. Time series data was measured and analyzed for the remaining

ROIs. Specific ventilation (sV, ventilation per unit lung air volume in min−1) for

each ROI was calculated as the inverse of the time constant τ .

Figures 2.6a–b shows screen shots from the software tool ”time-series image

analysis” (TSIA) used to analyze the Xe-CT data [4]. This tool facilitates lung

segmentation, region of interest specification, and allows control over the curve fitting

parameters during the exponential fits.
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(a)

(b)

Figure 2.6: Time series data from Xe-CT study. (a) shows the Xe-CT image of the
lungs, with the lung boundaries marked in blue and a rectangular region of interest in
yellow. (b) shows the raw time series data for this region of interest (wash-in phase)
and the associated exponential model fit.
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2.4 Quantitative Evaluation

of Registration Accuracy

Although registration result can be assessed by visual comparison, it is highly

desired to have quantitative evaluation of registration accuracy. An attempt has been

made to establish the registration reference by synthetically warping data such that

the original image and the transformed image are known in advance as well as the

ideal transform between them [37]. However, this approach provides only a generic

evaluation and algorithm performance on real clinical data cannot be measure in

this way. In [30], we measured the registration accuracy based on small numbers of

manually annotated landmarks position which provide information about the registra-

tion quality at only a small number of manually selected locations at airway branches.

While the airway branchpoints can be easily recognized by trained observer, the mean

movement of the airway branchpoints cannot represent the movement of parenchyma

in other regions which have larger movement during respiration. It is our interest to

know how the algorithm performs in the regions where large deformation appears,

such as the regions near diaphragm (Figure 2.7).

2.4.1 Semi-Automatic Reference Standard

Automatic landmark detection algorithm [28] was applied to find and match

the landmarks across the static scans and the dynamic scans. The algorithm auto-

matically detects “Distinctive” points in the fixed image as the landmarks based on

the distinctiveness value D(p). Around each point p, 45 points, q1...q45 are uniformly

distributed on a spherical surface with a radius of 8 voxels. A region of interest

ROI(qi) is compared with the corresponding region of interest ROI(p) around the
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Figure 2.7: An example of image intensity difference before registration which depicts
larger difference near the diaphragm than other regions.

original point p. D(p) is calculated as:

D(p) =
G(p)

maxj(G(pj))

45∑
i=1

Diff(ROI(p), ROI(qi))

45
(2.4)

where G(p) is the gradient value of point p(x, y, z), j is the total number of

the landmarks we intend to have and Diff(ROI(p), ROI(qi)) is the average difference

of the voxel intensities in the two ROIs.

Figure 2.8 shows an example projection view of all landmarks generated by

the algorithm for a scan.

A semi-automatic system [28] is then applied to guide the observer to find the

landmarks in the fixed image with their corresponding voxels in the moving image.

Each landmark-pair manually annotated by the observer is added to a thin-plate-

spline to warp the moving image. The system utilize the warped image to estimate
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Figure 2.8: An example projection view of all landmarks generated by the algorithm
for a scan.

where the anatomic match will be located for a new landmark point presented to

the observer, therefore the observer can start the matching from a system estimated

location. Thus, as the warped image becomes more accurate by the new added

landmarks, the task of the observer and becomes easy. The system will calculate

the automatic point correspondence for the rest of the landmarks if the user has

successfully marked 30 landmarks fully manually and the computer has predicted at

least 10 correspondences in a row correctly. Screen shots from the system are shown

in Figure 2.9.

For each animal, after 200 anatomic landmarks are identified in the static

scan P10 and dynamic scan T0, the observer marked the locations of the voxels

corresponding to the anatomic locations of the landmarks in the rest static or dy-

namic scans. For each landmark, the actual landmark position was compared to the

registration-derived estimate of landmark position and the error was calculated.
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Figure 2.9: A screen shot of the software system to semi-automatically match hun-
dreds of landmarks.

2.4.2 Manual Reference Standard

For each animal, 20 anatomic landmarks were also manually selected and

matched between all four static scans P10, . . . , P25 and all eight dynamic scans

T0, . . . , T7. The selected landmarks were recognizable branchpoints of the airway

branches. For each landmark, the actual landmark position was compared to the

registration-derived estimate of landmark position and the error was calculated.

2.4.3 Comparison between Semi-Automatical

and Full-Manual Reference Standards

The estimates of the registration accuracy by both methods were compared.

In addition, in order to compare performance of automatic points calculation of the

system, 20 anatomic landmarks picked manually at the airway branchpoints were also
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matched automatically across scans.

2.5 Comparison between Estimates

from Registration and sV

2.5.1 Comparison between Estimates

of Lung Expansion

from Dynamic Scans and sV

To compare the Jacobian values with the sV, we must identify corresponding

regions in the two images. The Xe-CT has only twelve slices of axial coverage and the

data sets are acquired in rigid alignment as described in Section 2.1, so we register

the twelve-slice Xe-CT data to the T0 whole-volume retrospectively reconstructed

dynamic CT data using rigid affine registration as shown in Figure 2.10. We subdivide

the Xe-CT data into around 30 slabs along the y (ventral–dorsal) axis. We track

the deformation of each slab across the sequence of volume images (i.e., from T0

to T1, T1 to T2 and etc.) and compare the average Jacobian within each slab to

the corresponding average sV measurement in the Xe-CT images in the manner of

correlation coefficient by linear regression.

2.5.2 Comparison between Estimates

of Lung Expansion

from Static Scans and sV

Similarly, we first register the twelve-slice Xe-CT data to the P10 whole-

volume breath-hold static CT data using same rigid affine registration. The lung

region corresponding to the Xe-CT image in the static scan is divided into slabs and

the motion of each slab can be tracked using resulting displacement fields. Then
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(a) (b) (c)

Figure 2.10: Example of the result of affine registration between Xe-CT data and
dynamic respiratory-gated CT data. (a) T0 whole-volume dynamic respiratory-gated
CT data. (b) Fused image. (c) Deformed first breath of the Xe-CT data.

the average Jacobian in each slab is compared with the average sV. The correlation

coefficients between the two estimates are calculated by linear regression.

It is worth noticing that because of the different data acquisition methods

of the dynamic scans, static scans and Xe-CT data, the correlation coefficient may

be affected by different breathing pattern. For example, the Xe-CT data and the

dynamic scans are all acquired when the animals are during tidal breathing while the

static data is acquired at discrete breath-hold pressures.



25

CHAPTER 3
RESULTS

3.1 Registration Accuracy

3.1.1 Landmark Errors

from Semi-Automatic Reference Standard

In our study, 200 landmarks were automatically generated by the algorithm de-

scribed in Section 2.4.1. Figure 3.1 a and b shows the projection of the automatically-

generated landmark locations onto coronal and sagittal slices for one animal. This

figure shows that landmarks are distributed widely inside the lung.

(a) (b)

Figure 3.1: Automatically-generated landmark locations projected onto (a) a coronal
slice and (b) a sagittal slice for one animal at T0 breathing phase.
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Figure 3.2 shows the registration accuracy as assessed by predicting the mo-

tion of the 200 automatically generated landmarks across seven phase change pairs.

Overall the registration accuracy is on the order of 1 mm, or about 2 voxels.

Figure 3.3 shows the registration accuracy as assessed by predicting the motion

of the 200 automatically generated landmarks across three pressure change pairs. It

can be noticed that the registration error is abnormally large for pressure change pair

P10 to P15 for animal AS70078. After further inspection, it is observed that the large

registration error is caused by the poor contrast in most of the dorsal region where

the animal may have atelectasis. It is shown in Figure 3.4, in which the location of

the cross is the position of the landmark that shows largest registration error (9mm).
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Figure 3.2: Registration accuracy from semi-automatic reference standard by mean
± standard deviation of landmark errors for each phase change pair and for each
animal.
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Figure 3.3: Registration accuracy from semi-automatic reference standard by mean
± standard deviation of landmark errors for each pressure change pair and for each
animal.

(a) (b)

Figure 3.4: Sagittal view of the landmark position that shows largest registration
error in (a) P10 and (b) P15.
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3.1.2 Landmark Errors

from Manual Reference Standard

In our study, 20 landmarks were manually selected. Figure 3.5 a and b shows

the projection of the manually-selected landmark locations onto coronal and sagittal

slices for one animal. This figure shows that landmarks are centrally located, with

no landmarks in the apices. Figure 3.6 shows the landmark error across seven phase

(a) (b)

Figure 3.5: Manually-generated landmark locations projected onto (a) a coronal slice
and (b) a sagittal slice for one animal at T0 breathing phase.

change pairs. Overall the registration accuracy is on the order of 1 mm, or about 2

voxels.

Figure 3.7 shows the registration accuracy across three pressure change pairs.

We can also see the abnormally large landmark error in pressure change pair P10 to
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P15 for animal AS70078 as discussed.
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Figure 3.6: Registration accuracy by mean ± standard deviation of landmark errors
for each phase change pair and for each animal.

3.1.3 Comparison of Semi-Automatic

and Manual Reference Standards

As shown in Figure 3.1 and Figure 3.5, while showing the similar results of

landmark errors, the semi-automatic reference has much wider range of landmarks in

which registration performance in the whole lung has been evaluated and its assistance

to the observer to identify the landmarks shows promising application in quantitative

evaluation of registration accuracy. With tracking 200 widely distributed landmarks,

we can also see the relationship of landmark error and their locations as shown in

Figure 3.8. The landmark error is normal distributed along y axis.
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Figure 3.7: Registration accuracy by mean ± standard deviation of landmark errors
for each pressure change pair and for each animal.
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Figure 3.8: Landmark error versus lung height for pressure change pair P10 to P15
in animal AS70080.
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20 anatomic landmarks picked manually at the airway branchpoints were

also matched automatically across scans. The distance between the automatically

matched landmark and the manually matched landmark is shown in Table 3.1.

Landmark ID P15 P20 P25 Average
1 0.89 0.50 1.05 0.81
2 0.89 0.74 0.89 0.84
3 0.50 0.74 0.74 0.66
4 0.74 0.74 1.58 1.02
5 0.50 0.55 0.55 0.53
6 0.00 0.74 0.74 0.49
7 0.74 0.55 1.05 0.78
8 0.74 0.00 0.00 0.25
9 0.89 1.05 1.65 1.20
10 0.50 0.55 0.92 0.65
11 0.00 1.56 0.89 0.82
12 0.92 0.55 0.55 0.67
13 0.00 0.55 0.50 0.35
14 0.89 0.00 0.50 0.46
15 0.74 1.05 1.65 1.15
16 0.74 0.00 0.55 0.43
17 1.05 0.00 0.92 0.65
18 0.74 0.55 0.55 0.61
19 0.74 0.74 0.74 0.74
20 0.89 0.89 0.89 0.89

Table 3.1: An example of the distance between the automatically matched landmark
and the manually matched landmark in differen pressure for animal AS70078.

3.2 Regional Lung Expansion

and Xe-CT Estimates of sV

From the registration results and Xe-CT analysis, Jacobian and specific ven-

tilation were calculated, respectively. Color-coded Jacobian map and sV map at

approximately the same anatomic location for a sheep are shown in Figure 3.9. From
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the two maps, a relationship between the two measurements can be observed.

(a) (b)

Figure 3.9: Color-coded maps showing (a) Jacobian of the registration transforma-
tion and (b) specific ventilation (1/min) for approximately the same anatomic slice
computed from the P10− P15 image pair of the same sheep. Note that the physical
units and color scales are different for (a) and (b).

3.2.1 Estimate of Regional Lung Expansion

in Dynamic Scans

Figure 3.10a shows the average Jacobian vs. lung height for all phase change

pairs. Figure 3.10b shows the average sV vs. lung height calculated from the Xenon-

CT study. Both figures show the expected ventralCdorsal gradient in lung expansion

and ventilation which is caused by more blood flow in the dorsal regions than the

ventral regions [10]. Figure 3.11 shows average Jacobian vs. average sV at the T0 to

T1 inspiration phase change pair and T4 to T5 expiration phase change pair. The

figure gives the equation of the linear regression line with r2 values and 95% confidence

for the linear fits between average sV and the average Jacobian. Figure 3.12 shows
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the correlation coefficients r2 from the linear regression of average Jacobian and sV

for each phase change pair and each animal. The phase change pair T2 to T3 shows

the highest average correlation r2 = 0.85 among all phase change pairs.
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Figure 3.10: Example of Jacobian and sV measurements vs. lung height for one animal
AS70078. (a) Average Jacobian values for all phase change pairs. (b) Average sV
vs. lung height. Lung height equal to 0 cm is the most dorsal position and positive
heights move toward the ventral direction.
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Figure 3.11: Examples of scatter plot of average sV and average Jacobian for one
animal AS70078 with linear regression with 95% confidence interval for (a) T0 to T1
phase change pair and (b) T4 to T5 phase change pair.



35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T0-T1 T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7

Phase change pair

C
o

rr
el

at
io

n AS70077
AS70078
AS70079
AS70080

Figure 3.12: Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each phase change pair and for each animal.

3.2.2 Estimate of Regional Lung Expansion

in Static Scans

Figure 3.13 shows the correlation coefficients r2 from the linear regression of

average Jacobian and sV for each pressure change pair and each animal. The phase

change pair P20 to P25 shows the highest average correlation r2 = 0.84 among all

pressure change pairs.
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Figure 3.13: Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each pressure change pair and for each animal.



37

CHAPTER 4
DISCUSSION

4.1 Image Registration

In the introduction of the inverse consistent linear elastic image registration

described in Section 2.2.2, we mentioned that the registration algorithm is based on

the elastic model which is also our assumption of the mechanical property of the lungs.

As we pointed out in Section 2.2.1, because of the assumption of linear elasticity,

the registration based on the elastic model is only applicable to small deformations

and may fail when recovering large image differences. Though in Section 3.1 we

have shown small landmark errors (less than 2 mm), it is our interest to know the

relationship between the landmark errors and difference of the input images or in other

words, the pressure change in our experiments. Since our objective is to translate our

methods for use with humans, it would be necessary to know the limitations of the

registration algorithm by more experiments. In current clinical diagnosis, the patient

is usually scanned at two different lung volumes - functional residual capacity (FRC)

and total lung capacity (TLC). Because of the large anatomic difference between

these two scans, whether the basic assumption that the lung as an elastic body still

holds true, remains under further investigation. Certainly, the registration model can

be replaced by other models. Fluid model, which allows large deformation, can be

applied to the cases in which the lungs expand or contract non-elastically when large

anatomical difference appears. Figure 3.9 shows the color-coded Jacobian map and

sV map at approximately the same anatomic location for a sheep. While the sV map

shows strong transition between adjacent anatomical structures such as the airway
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and the vessel, the Jacobian value along the boundary is smoothed possibly due to the

strong linear elastic constraint [8, 7] used to ensure that the transformations maintain

the topology of the images. In contrast, finite element models allow more principled

control of localized deformations. With the available image segmentation algorithms

for lung, airway tree and vascular tree [17, 2, 33], finite element models which assign

to these anatomical structures a local physical description may have more principled

control of localized deformations and therefore the mechanical analysis can generate

more accurate results than the linear elastic model.

Another issue in registration is the similarity measure CSIM in the equation 2.1.

The use of similarity measure such as mean squared intensity leads to the assumption

that point intensity is conserved from one image to another, but at different locations.

This intensity conservation assumption is globally valid for each volume element out-

side the lungs because images are of the same modality. However, it is invalid inside

the lung where the quantity of inspired air leads to a decrease of lung density as shown

in Figure 4.1. Therefore, using the mean squared intensity as the similarity measure

alone without further rectification may result in errors in registration. This problem

might be solved by changing the similarity measure to other metric such as the mu-

tual information (MI), which is widely used in inter-modality registration [40, 26], by

the A priori Lung Density Modification technique (APLDM) [32]. We can propose

a more complex metric by combining the difference of both intensity change as the

measure of the density change and the Jacobian as a measure of volume hcange. The

product of these two changes as ”tissue weight change” should be conserved during

the registration of two lung images since no more matters are added to lungs except

air.
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(a) (b)

Figure 4.1: Intensity difference of the lung after inspiration of air. (a) a slice of P0
image. (b) a slice of P10 image.

4.2 Lung Mechanical Changes

During Tidal Breathing

We have calculated estimates of lung expansion from the Jacobian of the reg-

istration deformation field during tidal breathing for respiratory phase change pairs.

The Jacobian values were compared to the Xe-CT based measures of specific venti-

lation. The correlation to the Xe-CT sV is equally high in the Jacobian calculated

from the dynamic retrospectively reconstructed images (r2 = 0.85) and from the

static breath-hold images (r2 = 0.84) as we reported in Section 3.2. Since the Xe-CT

data is collected over several breaths during tidal breathing, it is reasonable to expect

that the Jacobian calculated from the dynamic scans would more closely reflect the

ventilation patterns measured by the Xe-CT. However, the results do not prove our

preassumptions. It might be caused by the relatively small and close pressure differ-

ence in the static scans so that those scans are at similar airway pressure level as the

dynamic scans in tidal breathing. Further investigation of the pressure measurement

for the dynamic scans during the tidal breathing is needed.
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Even though the comparison of the Jacobian to the sV shows equally good

result in both dynamic scans and static scans in the terms of correlation coefficient, the

true dynamics of the respiratory system are probably better revealed using dynamic

scans acquired across free breathing since the moving lungs have mass, inertia, and

hysteresis. Figure 4.2 and Figure 4.3 show the different phases change pair for different

regions of the lung when largest expansion and contraction occur. Most of the lung

regions will have the largest expansion at the middle phase (T1 to T2 or 25% to 50%

of the inspiration duration) and the largest contraction at the beginning phase (T4 to

T5 or 100% to 75% of the expiration duration). The color coded regions show that the

lung does not expand or contract uniformly along the phases. It would be interesting

to determine if the regions will shift with different position and level of inspiration.

More experiments would need to be designed to decide whether the regions depend on

two or more factors. The motion hysteresis, which is patient specific, can be revealed

by tracking individual points using the deformation filed across dynamic scans as

shown in Figure 4.4.

4.3 Limitations and Future Improvements

Like other registration-based lung functional imaging analysis, the proposed

approaches have few apparent limitations. One is the time cost of the 3D image

registration. Even working on a workstation with dual Intel Xeon 2.33GHz processors

and 16 GB of RAM, the 3D registration of one image pair took an average of 40 to 50

minutes. The relatively long computational time will limit its clinical application if

no further improvement regarding time cost is achieved. However, recently there is a

promising technique to translate the registration problem into a linear programming



41

Figure 4.2: Color coded image showing coronal view of the the phase change pair when
the largest expansion occurs during inspiration(first row) and the largest contraction
occurs during expiration(second row). From left to right: Sheep AS70077, AS70078,
AS70079 and AS70080.

Figure 4.3: Color coded image showing sagittal view of the phase change pair when
the largest expansion occurs during inspiration(first row) and the largest contraction
occurs during expiration(second row). From left to right: Sheep AS70077, AS70078,
AS70079 and AS70080.
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Figure 4.4: An example of the motion hysteresis of a point near diaphragm of sheep
AS70078 during tidal breathing.

problem [12] and reduces the computational time from hours to several minutes.

The other limitation is the registration accuracy that depends on the model and the

similarity measure. As discussed in Section 4.1, the linear elastic model used in our

registration algorithm is based on the assumption that the lung is an elastic body.

Also our similarity measure does not take into consideration the intensity decrease

with inspired air. The accuracy of the registration will directly affect our resolution

of the Jacobian map and mechanical analysis, hence more experiments should be

done to validate the registration and improve the accuracy whenever necessary before

translation for use in humans. Finally, for imaging humans during normal respiration,

the dynamic scans may pose some challenges. The retrospectively reconstructed

respiratory-gated images require regular and repeatable breathing patterns, so the
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subject must be trained to breath properly before images are acquired. In addition,

since image data is gathered over several breaths and then reconstructed at different

phases, the dynamic imaging will deliver more radiation dose than a single pair of

breath-hold scans. Low dose imaging and/or prospective respiratory-gating may be

able to reduce the radiation exposure. With the validation of the best correlated

phase change pair during tidal breathing, the subject will only need to be scanned at

two certain phases and the radiation dose will be significantly reduced.

In order to eliminate above limitations, future work will be done to improve

the registration model and metric if the registration does not work equally well as

shown in animal data when applied to humans. More research is required to determine

how the image acquisition protocol can be modified for use in humans and how the

increased noise might affect the image registration if we use low dose scans. Since

our long-term objective of this research is to utilize high-resolution maps of regional

lung mechanical properties to detect and follow the progression of lung disease, more

work needs to be done to compare the normal lung and diseased lung. Study of the

mechanical properties and indexes such as the Jacobian and strain will be necessary

for establishing a functional atlas of the normal lung by applying the inter-subject

image registration.
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CHAPTER 5
CONCLUSION

We have described a technique that uses multiple respiratory-gated CT images

of the lung acquired at different levels of inflation with both breath-hold static imaging

and retrospectively reconstructed dynamic imaging, along with non-rigid 3D image

registration, to make local estimates of lung tissue expansion. We have compared

these lung expansion estimates to Xe-CT derived measures of regional ventilation to

validate our measurements. The correlation to the Xe-CT sV is equally high in the Ja-

cobian calculated from the dynamic retrospectively reconstructed images (r2 = 0.85)

and from the static breath-hold images (r2 = 0.84). Our semi-automatic reference

standard and manual reference standard to quantitatively evaluate the accuracy of

3D image registration have indicated that the average registration error is less than

2 mm. The ability to estimate regional expansion maps as a surrogate of the Xe-CT

ventilation imaging for the entire lung, from quickly and easily obtained respiratory-

gated images, is a significant contribution to functional lung imaging because of the

potential increase in resolution, and large reductions in imaging time, radiation, and

contrast agent exposure. If these methods can eventually be extended to humans,

they would provide important new tools for studying the lung. Xe-CT requires the

use of expensive xenon gas and the associated hardware to control delivery of the

gas and harvest the gas from expired air for recycling. In addition, it is known that

xenon gas has a strong anesthetic effect that must be carefully monitored. Finally,

Xe-CT imaging protocols require high temporal resolution imaging, so typically ax-

ial coverage is limited to just a few slices at a time. However, if a registration-based
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analysis of easy-to-acquire volumetric images at two different volumes by either static

or dynamic scans could be registered, high-resolution maps of lung expansion could

be produced for the entire lung with low cost and dose.
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