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Abstract 

 

 

MATHEMATICAL MODELING FOR PLATFORM-BASED PRODUCT 

CONFIGURATION CONSIDERING TOTAL LIFE-CYCLE SUSTAINABILITY 

Many companies are using platform-based product designs to fulfill the requirements of 

customers while maintaining low cost. However, research that integrates sustainability into 

platform-based product design is still limited. Considering sustainability during platform-

based design process is a challenge because the total life-cycle from pre-manufacturing, 

manufacturing and use to post-use stages as well as economic, environmental and societal 

performance in these stages must be considered. In this research, an approach for 

quantifying sustainability is introduced and a mathematical model is developed for 

identifying a more sustainable platform. Data from life-cycle assessment is used to quantify 

environmental factors; criteria from the Product Sustainability Index (ProdSI) are used to 

quantify societal factors. The Analytic Hierarchical Process method is used to assess 

relative importance of societal factors and the weighted sum method is used in the objective 

function for overall multi-objective optimization. A bicycle platform configuration is used 

as a case study to demonstrate the application of the model. The relationship between 

commonality of the platform and sustainability performance is analyzed.  

Keywords: Sustainability, Product family design, Platform-based product configuration, 

Life Cycle Assessment, Optimization 
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1. Introduction 
  

The human population has increased from 2 billion to over 6 billion during the last century. 

This population growth has dramatically increased worldwide emissions and energy consumption 

due to intensive environmentally harmful human activities that include the burning of fossil fuels, 

deforestation, and land use changes. As a result, there are rising concerns about global warming, 

pollution, and waste around the world (Khasreen et al. 2009). “In 2006, the total output of the U.S. 

manufacturing sector (in the form of variety of products) had a gross value of 5.3 trillion dollars. 

These products were responsible for approximately 84% of energy-related carbon dioxide emissions 

and 90% of energy consumption in the industrial sector” (See Figure 1 & 2). Across the planet, human 

activity now adds as much as 7 billion tons of carbon dioxide to the atmosphere each year (Ramani, 

et al. 2010). Increasingly more serious environmental and social concerns and corresponding 

regulations are greatly impacting the manner in which companies design new products.  

 
Figure 1: Global Fossil Carbon Emissions (Source: Wikimedia Commons)  
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Figure 2: Total Global CO2 Emissions (source: http://tcktcktck.org/2011/08/top-

climate-solutions/317) 

 

Sustainability and sustainable product design can help alleviate this urgent problem. 

Sustainable product design means that economic, environmental, and societal factors are all 

considered during the product design process in total life-cycle stages from pre-manufacturing to post 

use (See Figure 3). In order to account for sustainability in the product design, a variety of methods 

and tools have been developed. Design for Environment (DfE) is a method that integrates 

environmental considerations into product and process engineering design procedures (Ramani, et al. 

2010). Life Cycle Assessment (LCA) has been widely adopted to evaluate environmental impact 

during the life-cycle of a product (Hendrickson, et al. 1998). The Eco-effective product design 

method integrates environmental aspects into the earliest design phases to improve environmental 

performance (Frei, 1998). Design for disassembly (DFD) is a method that considers the ease of 

disassembly for easier maintenance, recovery, and reuse of components (Lambert, et al. 2004). Tools 
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based on different strategies have also been developed to fulfill this requirement. Examples include 

tools based on LCA (Devanathan, et al. 2010), checklists (Luttropp, et al. 2006), and quality function 

deployment (QFD) (Chan, et al. 2002). These methods and tools are effective in reducing the 

environmental impact of products to increase sustainability. However, these methods only focus on 

the design of individual products. Given the existing market conditions, companies need different 

products that can be designed at low cost to meet the needs of a variety of customers. 

 

Figure 3: Life cycle of product (Badurdeen, 2009) 

 

In order to fulfill the requirements of all customers and be successful as a business, many 

companies are using product families and platform-based product development to provide sufficient 

variety for the market while simultaneously maintaining low cost (Simpson, 2004). A product family 

is a group of related products derived from a product platform to satisfy a variety of market niches 

(Simpson, et al. 2006).  A product platform can be defined as 'the collection of assets [i.e., components, 

processes, knowledge, people, and relationships] that are shared by a set of products' (Robertson, et 

al. 1998). With this definition, sharing product components can result in benefits to cost, speed (time 

to market), flexibility (product variety and product customization) and product quality. Component 
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sharing is one of the key characteristics of product family and platform design and is utilized to 

increase product variety and reduce cost. An expanding interest in component sharing has resulted in 

the development of product family design and platform design (Kwak , et al.  2011). 

There is considerable research in platform-based product family design. Most of the research 

focuses on the optimization of product family design. Two approaches are created for product family 

design, a top-down (proactive platform) approach and a bottom-up (reactive redesign) approach. Two 

types of product family, module-based product family and scale-based product family, are also 

created (Simpson, 2004). Much research has been conducted based on a different approach and 

different type of product family. For example, there are methods that use a single-stage approach with 

physical programming (Messac, et al. 2002), a genetic algorithm-based approach (D'Souza , et al. 

2003), and a combined use of a multi-agent framework & quality loss function (Rai, et al. 2003).  A 

fuzzy goal programming model is also proposed to examine multiple-platform architecture by 

maximizing overall utility and minimizing the total production cost (Tyagi, et al. 2012).  

It must be noted that there is no research in product family design that considers total life-

cycle sustainability during optimization. Most studies consider very few sustainability factors, which 

include product family design from a re-use perspective (Xu, et al. 2007), quantitative model for 

assessing product family design from an end-of-life perspective (Kwak, et al.  2011), and identifying 

sets of components that contain sensitive information in the product family designing process 

(Arciniegas, et al. 2012). All sustainability factors in the total life-cycle should be considered for a 

comprehensive assessment from the pre-manufacturing and manufacturing stages to the use and post-

use stages. Otto et al. (2009) introduce an assessment tool to evaluate a product platform considering 

a number of sustainability factors using a set of metrics (Hölttä-Otto, et al. 2006). However, the 

assessment tool is not a quantitative model and cannot be used during the early design optimization 
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process. In fact, no mathematical models exist that consider all total life-cycle factors in product 

platform design process. Therefore, developing tools with the consideration of sustainability is highly 

important in product family and platform design.   

This research introduces a mathematical model tool to evaluate total life-cycle sustainability 

and identify the best platform for platform-based product design. In particular, economic, 

environmental, and societal factors in the four life-cycle stages are considered, which include pre-

manufacturing, manufacturing, use, and post-use stages (See Figure 3). A quantitative model for 

assessing environmental and societal factors will be introduced, and data from Life Cycle Assessment 

(LCA) software, SimaPro, will be exported to the model to evaluate environmental factors, CO2 

emission, and energy consumption. While it is very difficult to mathematically express societal 

factors, this research introduces an empirical function and uses some components in Product 

Sustainability Index (ProdSI) to address the problem (Shuaib, et al. 2014). The units of criteria 

considered are optimized in the model. Therefore, data from an existing product will be used to 

normalize all the factors. Sustainability performance requires simultaneous consideration of 

economic, environmental, and societal factors. The weighted sum method will be used to solve this 

multiple objective optimization problem. 

This thesis is organized according to the following outline: the literature review is presented 

in Section 2 and the proposed methodology is described in Section 3. A mathematical model to assess 

sustainability of platform based design is presented in Section 4. A case study is presented in Section 

5 and study conclusions and discussion of future work are presented Sections 6 and 7, respectively.  
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2. Literature Review 
 

This chapter introduces definitions and relevant research for sustainability, 

sustainable product design, LCA, and product family design. First, the current research will 

be discussed regarding sustainable product design and common concept methodology. 

Second, product family design research will be presented. Third, new research that 

connects sustainability and product family design will be introduced. The advantages of 

sustainable product family design will also be reported.  

2.1 Sustainable Product Design 
 

Over time, the global economic growth and industry will result in significant 

increases in global fuel demand, material requirements, and CO2 emissions. As a result, 

sustainability will continue to be a critical issue for all of society to aim for more significant 

reductions to the overall environmental impact of industry across the globe (Mayyas, et al. 

2012).  Manufacturing is the primary contributor to the total CO2 emissions. For example, 

the U.S. manufacturing sector has accounted for $1.65 × 1012 (12.3%) of industry gross 

domestic product, but has been responsible for 36% of carbon dioxide emissions within the 

U.S. industrial sector, which has great impact on the environment (Haapala, et al. 2013). 

However, manufacturing plays a critical role within modern socio-economic systems and 

is a valuable contributor to wealth generation and offer jobs to thousands of peoples, 

particularly in developing economies. Industrial companies are increasingly forced to 

become more eco-efficient and to produce green products/systems in response to these 

emergency concerns (Haapala, et al. 2013). As a result, Sustainable Manufacturing is an 
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emergent concept that is not only fashionable but a real need to be pursued (Cerri, et al. 

2014).  Many methods and tools have been developed to address these urgent requirements. 

In order to achieve the target of sustainability, a wide range of concepts and 

methodology have been proposed to solve the problem. Some examples include the 

following: Design for X (DfX), Design for the Environment (Eco-design), Design for 

Disassembly, and Design for Recycling. The following section will provide a 

comprehensive review of these methodologies.  

2.1.1 Design for X 

 

Design for X includes Design for Manufacturing, Design for Assembly, and other 

“Design for’s” or “-abilities” (e.g., Design for Quality, Design for Maintainability, Design 

for Disassembly, and Design for Recyclability).  

Design for Manufacturing is defined as “the full range of policies, techniques, 

practices, and attitudes that cause a product to be designed for the optimum manufacturing 

cost, the optimum achievement of manufacturing quality, and the optimum achievement of 

life-cycle support, serviceability, reliability, and recyclability” (Stoll, 1990). In order to 

achieve the objectives of Design for Manufacturing, product concepts need to be identified 

for easy manufacturing, components need to be designed for ease of manufacturing and 

assembling, and manufacturing process design and product design need to match the 

market requirements (Stoll, 1988). Many tools have already been developed for Design for 

Manufacturing to assist in integrating product and process (e.g., three dimensional 

CAD/CAM modeling and Moldflow) (Kuo, et al. 2001). Group Technology (GT), Failure 
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Mode and Effect Analysis (FMEA), and value analysis are also tools that have been 

developed to achieve Design for Manufacturing targets (Chiu, et al. 2012).  

2.1.2 Design for Environment  

 

Due to the increasing number of environmental laws and public concern for 

environmental pollution and limited natural resources, customers are increasingly focused 

on material use for production, the production process, and energy consumption and waste 

accumulation of the production process (Madu, et al. 2002). As a result, environmental 

issues have been recognized as major challenges and environmentally conscious design, or 

green manufacturing are being proposed to meet these challenges. Design for environment 

(DFE) is a “practice by which environmental considerations are integrated into product and 

process engineering design procedures. DFE practices are meant to develop 

environmentally compatible products and processes while maintaining product, price, 

performance, and quality standards” (Ramani, et al. 2010). Checklists, Performance 

Indicators, Goals and decision checkpoints are usually used by company within the product 

development process. Quality management system (ISO 9001) and environmental 

management systems (ISO 14001) also are used to integrate all the tools to ensures the 

consistent application of DfE and continue improvement of environmental performance 

(Ilgin, et al. 2010). 

Quality Function Deployment (QFD) is a“method wily to transform qualitative 

user demands into quantitative parameters, to deploy the functions forming quality, and to 

deploy methods for achieving the design quality into subsystems and component parts, and 

ultimately to specific elements of the manufacturing process” (Akao, 1994) and was first 
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developed by Dr. Yoji Akao. QFD is a design work tool for the early design stage of 

product development. A “QFD for environment (QFDE)” is develop by considering 

environmental aspects (environmental VOC (Voice of the Customer) and environmental 

EM) into QFD to examine environmental and traditional product requirements together 

(Masui, et al. 2003). A new QFD method is developed by considering environmental 

impact based on traditional QFD. Sakao (2007) proposed a new methodology to connect 

three tools together, LCA (Life Cycle Assessment), QFDE (quanlity function deployment 

for environment), and TRIZ (theory of inventive problem solving). The requirements of 

customers and environment are considered first. The voice of recyclers, production 

engineers, and users within the product life cycle are also integrated with 11 environmental 

requirements, VOE (Voice of Environment) (Sakao, 2007). VOE is weighted and 

considered a requirement of the customer and environment. QFDE and eco-VA (Value 

Analysis) is then adopted to incorporate three major aspects of product development, which 

include quality, cost, and speed within the context of the environment. TRIZ is then 

employed to help designers find improvement solutions (Sakao, 2007). However, there is 

one disadvantage of QFD based tool. The correlation between environmental factors and 

product characteristics is completely based on the experience of the designer.  

2.1.3 Design for Disassembly 

 

Remanufacturing is a new approach for increasing sustainability and reducing CO2 

emissions. The component is reused after remanufacturing.  The manufacturing process of 

the component is eliminated and, as a result, energy consumption and waste accumulation 

is reduced.  In order to remanufacture the components, disassembly processes are needed. 

In response, Design for Disassembly is proposed to remanufacture more components and 
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simultaneously save more money and energy. The product that is designed for 

remanufacturing is easier to disassemble with more money and energy saved as compared 

to the product that is harder to disassemble. There are three major components of Design 

for Disassembly: (1) modeling and representation of product disassembly sequences; (2) 

disassembly process planning; and (3) disassembly system design and line balancing (Tang, 

et al. 2002).   

The optimal disassembly sequence of the product is one of the most important 

decisions. All research for disassembly sequence can be divided into four groups: 

connection graph, direct graph, AND/OR graph, and disassembly Petri net (Tang, et al. 

2002). Chu proposed a CAD-based approach that could change the combination of parts, 

select the assembly method, and rearrange the assembly sequence automatically with 

Genetic Algorithm (GA) techniques (Chu, et al. 2009). An analytic network process (ANP) 

method is created to evaluate all the alternative connections, including discrete fasteners, 

integral attachments, adhesive bonding, energy bonding, and other connectors (Güngör, 

2006).  A novel concept of eco-architecture is proposed to improve the ease of disassembly 

from the end-of-life view point. The product is represented as an assembly of EOL and a 

systematic approach is introduced to identify the optimal eco-architecture (Kwak, et al. 

2009).  

2.1.4 Design for Recycling 

 

Design for Recycling is different from Design for Disassembly. Design for 

Recycling needs material reproduction and the component cannot be used directly in the 

product. Materials play the key role in Design for Recycling. Choosing materials that can 
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be recycled means that materials can be reused again. Material recycling minimizes the 

consumption of raw material, reduces waste and air pollution during production, and 

reduces energy consumption (Mayyas, et al. 2012).  

Many tools are also created for Design for Recyclability. A metric is proposed to 

determine the best separation process in the early design phase and two design guidelines 

to two types of separation are discussed. A simple method for determining the appropriate 

separation process in the early stages of design is presented (Coulter, et al. 1998). A 

mathematical model is proposed to evaluate products for bulk recycling by determining the 

cumulative net profit/cost as materials separation proceeds. The paper deals with the 

analysis of materials separation, which determines the least cost or maximum profit level 

of materials separation. As a result, it can be used for the evaluation of product designs for 

efficient bulk recycling and the combination of disassembly and bulk recycling (Knight, et 

al. 2000). Liu et al. (2002) developed a procedure for recyclability assessment through 

integrating AHP and Neural Network (NN). The main product recyclability influencing 

factors are refined with the AHP method and then the size of the neural network is reduced. 

Boon et al. (2002) develop a new method to explore the electronic goods recycling 

infrastructure by identifying the factors that most influence the profitability of end of life 

processing of PCs (Boon, et al. 2002). A computer-based tool called ENDLESS was 

proposed to calculate the Global Recycling Index with a Multi-Attribute Decision-Making 

method, which considers energy, environmental, technical and economic indicators. This 

tool can help the designer choose the product with the highest recyclability potential from 

a set of different alternatives with a weight assigned to each parameter with the experience 

of designers (Ardente, et al. 2003). A methodology called CHAMP (Chain Management 
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of Materials and Products) was proposed to improve the recyclability of a fiber optic cable 

design. CHAMP combines elements of process and design engineering with life cycle 

approaches to enable the user to explore technical, economic, and environmental 

consequences of different materials, and process and technological options, including 

material recovery and recycling (Wright, et al. 2005).  A DFR (Design for Recycling) 

methodology was proposed to identify economically optimum recycling strategies by 

combining dismantling, shredding, and post-shredding activities. In response, given 

recycling and reuse rates are achieved. This new approach includes post-shredding sorting 

of materials and subsequent recycling and is an end-of-life processing strategy (Ferrão, et 

al. 2006). An analytical framework is created to quantify the environmental and economic 

benefits of DFR for plastic computer enclosures during the design process with 

straightforward metrics that can be aligned with corporate environmental and financial 

performance goals (Masanet, et al. 2007).  A prototype system is proposed for the 

translating of the recyclability norms in textual form into constraints which can be 

propagated throughout the product structure in order to identify the inconsistencies 

between the present design and a given norm (Houe, et al. 2007, Ilgin, et al. 2010).  

2.1.5 Material Selection 

 

Selection of materials for a particular application is primarily affected by the 

mechanical factors of weight and processability (Ilgin, et al. 2010). Increasingly more 

designers are considering environmental impact during the material selection process of 

product design. In order to address growing environmental concerns, many researchers are 

currently working on material selection for sustainable product design.  
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A selection procedure is created that elaborates data on the conventional and 

environmental properties of materials and processes, relates the data to the required 

performance of product components, and calculates the values assumed by functions that 

quantify the environmental impact over the whole life-cycle and the cost resulting from the 

choice of materials (Giudice, La et al. 2005).  A Grey Relational Analysis (GRA)-based 

Multi Criteria Decision Making (MCDM) approach is created to integrate methodology of 

performing an order pair of materials and end-of-life product strategy for the purpose of 

material selection. Grey relational analysis is used to solve the multi-criteria problem and 

the multi-criteria weighted average is proposed in the decision-making process in order to 

rank the materials according to several criteria (Chan, et al. 2007). An integration of 

artificial neural networks (ANN) with genetic algorithms (GAs) is proposed to optimize 

the multi-objectives of material selection while considering technical, economic, and 

environmental factors. Evaluation indicators of materials are presented and environmental 

impacts are calculated by the Life Cycle Assessment method (Zhou, et al. 2009). A life 

cycle engineering (LCE) approach is proposed to support material selection, integrating 

the performance of the material for specific application in technological, environmental, 

and economical dimensions throughout the duration of the product. The “best material 

domains” is identified through comparing a set of candidate materials and the aggregation 

of technical, economic, and environmental dimensions. Finally, the “best material domains” 

are presented in a ternary diagram (Lin, 2006). A methodology for material selection in 

green design with concern for toxic impact is proposed with a price competition model. 

Material alternatives are determined in each of the multiple market life-cycle stages, while 

considering customer utility function and environmental taxation (Lin, 2006).  
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2.1.6 LCA 

 

Life Cycle Analysis (LCA) is a method used to “evaluate the environmental impact 

of a product through its life cycle encompassing extraction and processing of the raw 

materials, manufacturing, distribution, use, recycling, and final disposal”(Ilgin, et al. 2010). 

LCA methodology is based on ISO 14040 and the usage of LCA that began in the 1960s. 

LCA was first used in a study conducted by the Coca-Cola company to quantify the 

environmental effects of packaging from cradle to grave (Khasreen, et al. 2009). Four main 

phases are included for the LCA analysis. First, goal definition and scope assessment, 

which defines the boundary of the system. Second, inventory analysis. Material and energy 

balance are performed here. Environmental burdens also are quantified here. Third, impact 

assessment. Aggregation of the burdens into generalized impact categories and impact 

characterization and aggregation of the environmental impacts into a single index happen 

in this phase. The final phase is improvement assessment. All the possibilities are identified 

for improving the performance of the system (Khan, et al. 2004).   

An environmentally responsible assessment matrix is proposed to simplify the 

process of LCA (Graedel, et al. 1996). LCA is used to analyze disassembly trees after a 

graph-based heuristic method for disassembly analysis of end-of-life is adopted. The 

disassemblibility and recyclability of products is evaluated with LCA analysis results (Kuo, 

2006). LCA is also used to assess the environmental performance of alternative solid waste 

management. Three selected scenarios are compared and the results quantify the relative 

advantages and disadvantages of different management schemes. As a result, some possible 

improvements can be suggested (Arena, et al. 2003). Current Environment Impact 

Assessment (EIA) methodologies are proposed with LCA and Artificial Neural Network 
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(ANN). ANN is used to estimate the missing data and LCA is used to obtain Life Cycle 

Assessment (LCA) information for major components in the study (Li, et al. 2008).  

LCA is only applied at the end of the design process. LCA analysis is time and 

resource consuming because of the level of product detail information needed. Thus, 

complete LCA can only be used to evaluate the environmental impact of an existing 

product and it is difficult to apply at the design stage (Chiu, et al. 2012).  

2.1.7 Product Service System 

 

Product Service System (PSS) is another approach that can increase environmental 

benefits and other product issues such as profit and competitiveness. PSS can be defined 

as“a system of products, services, networks partners and supporting infrastructure that is 

economically feasible, competitive, and satisfies customer needs. It offers dematerialized 

solutions that minimize the environmental impact of consumption” (Baines, et al. 2007).  

Most research divides the PSS into three categories, which include the following: 

product-oriented services, use-oriented services, and result-oriented services (Baines, et al. 

2007). ISCL methodology is proposed to integrate service CAD and life cycle simulator, 

CAD/CAE tool for PSS design. Service CAD is used to support systematic generation of 

alternative service options through the relationship between activities and corresponding 

service contents and channels. LCS is used to evaluate the life cycle costs of different 

options by observing the dynamic state of products (Komoto, et al. 2008). An industrial 

PSS (IPS²) is proposed to generate the principle solutions to meet specific customer 

requirements. The method can support an IPS² designer in generating heterogeneous IPS² 

concept models with a model-based approach in the early phase of development (Welp, et 
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al. 2008). Wijekoon presented a new methodology to evaluate and optimize sustainability 

of customizable product-service systems while considering economic, environmental, and 

societal constraints and activities across the total product lifecycle (Wijekoon, 2011).  

2.1.8 Methodology 

 

In order to balance economic, environmental, and societal factors, a plethora of 

methodology has been proposed to design for sustainability. In the 1990’s, the 3R 

methodology, reduce, reuse and recycle, was introduced to focused on environmentally 

benign manufacturing (Badurdeen, et al. 2009). However, this methodology is not a 

comprehensive approach, and does not include all four stage of total life cycle, pre-

manufacturing, manufacturing, use, and post-use. In order to solve this problem, 6R 

methodology was developed to establish a framework for sustainability design (Jawahir, 

2008). 6R methodology details are shown in Figure 5. 

 
Figure 4: Elements of product design for sustainability (Jawahir, 2008) 
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The 6R methodology achieved the Triple Bottom Line (TBL) aspects of Economy, 

Environment and Society and considered all four life cycle stages. This integrated approach 

for developing sustainable products is shown in Figure 5 (Wijekoon, 2011). 

 
Figure 5 Application of the 6R’s across Product Lifecycle Stages for TBL 

(Badurdeen, et al. 2009) 

A sustainable product conceptualization system (SPCS) has been proposed by Yan 

et al. (2009). In this methodology, general sorting and design knowledge hierarchy (DKH) 

are used to generate product platform. Morphological configuration is used to generate 

initial design options. The initial design space is narrowed down with the Hopfield network 

based on design criteria of domain experts. The sustainability-cost pairs are generated 

based on rated sustainability cost criteria to select the preferred design options for 

sustainable product conceptualization (Yan, et al. 2009). A new methodology is proposed 

for integrating sustainability considerations into process design in the early design stage. 

The methodology leads to the most sustainable performance of the plant and product over 
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their whole life cycles by enabling identification of relevant sustainability criteria and 

indicators, comparison of alternatives, and sustainability assessment of the overall design 

and identification of ‘hot spots’ in the life cycle of the system (Azapagic, et al. 2006). 

Detailed information for these process is shown in Figure 6.  

 

Figure 6: Stages in process design for sustainability (Azapagic, et al. 2006) 

2.1.9 Tool and Metrics  

 

Many tools have been developed based on many different methodologies. 

Qualitative and quantitative metrics are one common method to evaluate and improve the 

sustainability performance of manufacturing processes or products. The product 

sustainability index (ProdSI) was proposed to establish comprehensive methodology for 

assessing sustainability performance of manufacturing processes or products based on 6R 

(Zhang, et al. 2012, Shuaib, et al. 2014).  Tools Based on Checklists is another qualitative 

tool that is the easiest to implement and is the most popular, particularly for the small or 

medium size company (Devanathan, et al. 2010). The checklist is a common feature of 

these tools and the checklist is a set of questions used to assess a product according to the 

environmental perspective over its entire life cycle. However, expert knowledge in the area 

is needed and question responses are very subjective (Ramani, et al. 2010). Another method 

is the tool based on Quality Function Deployment (QFD). QFD method uses a functional 
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analysis to identify how quality characteristics correlate with engineering and 

environmental characteristics. Customer and environmental needs, developing correlations 

between these needs, and quality characteristics must be collected before using the tool. 

The disadvantage of this method is that the correlation is totally dependent on the designer 

and the correlation is built based on the traditional environmental engineering discipline 

(Bouchereau, et al. 2000). LCA tool is also based on ISO 14040. Life cycle assessment 

(LCA) is a method used to evaluate the environmental impact of a product through its life 

cycle, including extraction and processing of the raw materials, manufacturing, distribution, 

use, recycling, and final disposal (Chiu, et al. 2012). LCA is the most objective tool 

available for evaluating the environmental profile of a product or process, but LCA tools 

need detailed information about all of the product and is very time consuming. These 

factors make it not very suitable in the early design stage (Haapala, et al. 2013).  An eco-

design tool is proposed by integrating CAD and LCA without the assistance of an 

environmental expert. The environmental influence of the product during all life cycle 

stages is analyzed with the geometric characteristics of a CAD model (Gaha, et al. 2013).  

2.1.10 Summary 

 

There is one major disadvantage of all these concepts, methodologies, and tools. 

Each one only focuses on evaluation and designing one product or one system at a time. 

Designing one product cannot satisfy all the market customers and a company will then 

lose in the competition. Product family is one approach that many companies can use to 

simultaneously satisfy customers and save costs.  
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2.2 Product Family Design and Platform-based Product Design 
 

As commonly known, one product cannot fulfill all customer requirements. 

Manufacturing company competitiveness depends on its ability to respond quickly to all 

customers and to produce a variety of products at relatively low costs. Mass customization 

is proposed in the contemporary battlefield and aims to satisfy individual customer needs 

while taking advantage of mass production efficiency (Pine, 1999). Mass customization is 

“a new way of viewing business competition, one that makes the identification and 

fulfillment of the wants and needs of individual customers paramount without sacrificing 

efficiency, effectiveness, and low costs” (Pine, 1999). 

Many companies that design one product at a time have found that the focus on 

individual customers and products results in competitive global marketplace failure. 

Manufacturers have sought the means to expand their product lines and differentiate their 

product offerings to fulfill different requirement of customers (Jiao, et al. 2007).  In order 

to achieve these aforementioned goals, product family design and platform-based product 

development currently receives much attention. Designing and developing product families 

has been well recognized as an effective method to achieve the economy of scale and 

accommodate increasing product variety across diverse market niches (Utterback, et al. 

1993).  

Product family is “defined as a set of product variants each having some common 

components or technology” (Tyagi, et al. 2012). Two approaches are developed in 

platform-based product family design, module-based product family and scale-based 

product family (Simpson, 2004).  
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Module-based product family design is a top-down or bottom-up approach and all 

the product family members are derived by adding, substituting, and/or removing one or 

more functional modules (Du, et al. 2001).  Module identification/modularization is the 

primary problem to be solved in this approach. Quality function deployment (QFD) is 

developed to find the right product specification. In this method, module creation, interface 

analysis, and module configuration are carried out with the QFD matrix (Erlandsson, et al. 

1992). Modular function deployment (MFD) is created by applying the QFD matrix to 

modular analysis based on QFD (Erixon, et al. 1993). A concept selection techniques for 

managing modular product development is introduced in the early stages of design 

(Mattson, et al. 2001). A heuristic method is proposed to identify modules for these product 

architectures (Stone, et al. 1998) and another heuristic method is introduced to identify 

functional and vibrational modules within a product family (Zamirowski, et al. 1999).  A 

five-step algorithm is developed to find common modules across products by grouping and 

creating a dendrogram (Hölttä, et al. 2003). A data mining technique is proposed for 

product family design with emphasis on mapping specific functional requirements in a 

technical structure (Agard, et al. 2004).  

Scale-based product family is one approach that uses scaling variables that “stretch” 

or “shrink” the platform in one or more dimensions to satisfy a variety of customers in 

different markets (Simpson, 2004). Simpson et al. (2001) first introduced the product 

platform concept method by minimizing the sensitivity of performance variations in scaling 

factors (Simpson, et al. 2001). Two basic tasks are involved in the scale-based product 

family, platform selection and determination of the optimal values of common and 

distinctive variables (Jiao, et al. 2007). A new single-stage approach utilizing the Physical 
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Programming method is presented to provide a more effective approach for product family 

design (Messac, et al. 2002). In order to solve the tradeoff between commonality and 

performance within a product family, a penalty function is introduced to the selection of 

the right combination of common and scaling variables (Messac, et al. 2002). Sensitivity 

analysis is also used to derive the penalty on performance loss due to commonality (Fellini, 

et al. 2004).  

Measuring the success of all these platforms and platform leveraging strategies is 

also very important. Numerous metrics have been developed to measure commonality. A 

simple modularity metric is proposed with the function-to-component ratio for each 

product (Ulrich, 1995). Another metric is developed to measure product modularity with a 

component-to-component matrix (Guo, et al. 2004). A quantitative metric is developed for 

design-by-analogy based on the functional similarity of products (McAdams, et al. 2002). 

Numerous commonality indices for assessing product families are also developed and 

compared (Thevenot, et al. 2006). Indices include Degree of Commonality (Collier, 1981), 

Commonality Index (Martin, et al. 1997), Percent Commonality Index (Siddique, et al. 

1998), and Component Part Commonality Index (Jiao, et al. 2000). 

Product family design is typically a multi-objective optimization problem. Several 

optimization approaches have been developed to solve the multi-objective optimization 

problem. A single-stage approach is proposed to enable designers to formulate the product 

family optimization problem in terms of physically meaningful terms and parameters with 

the Physical Programming method (Messac, et al. 2002).  A two-stage approach is 

introduced to solve the computational challenges of single-stage approaches (Nelson, et al. 

2001). A multistage optimization approach is developed by viewing the product platform 
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design problem as a problem of access in a geometric space (Hernandez, et al. 2003). The 

Dynamic Programming model also is introduced to configure a module to maximize the 

total profit in a given planning horizon (Allada, et al. 2002). 

A variety of optimization algorithms are also used to solve the product family 

optimization problem. Exhaustive search techniques and orthogonal arrays can be used to 

enumerate different combinations of parameter settings and modules if design space is 

small enough (Simpson, 2004). Both linear and non-linear programming algorithms, such 

as SLP, SQP, NLP and GRG, are applied in many case studies, as well as derivative-free 

methods including genetic algorithms, simulated annealing, pattern search, and branch and 

bound techniques (Jiao, et al. 2007). Simpson (2004) generated a detailed comparison of 

these algorithms. The comparison is shown in Figure 7. 
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Figure 7: Summary of engineering optimization approaches for product family design (Simpson, 2004)
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It is noted that this research only considers economic and function performance 

during the mathematical modeling process.  

2.3 Sustainability and Product Family Design 
 

Life cycle cost issues associated with modular product architectures were first 

discussed in the mid-1990’s (Ulrich, 1995). A decomposition algorithm was created to 

partition architectures into modules based on different life cycle viewpoints (Newcomb, et 

al. 1998).  The impact of modularity on component reuse also was discussed (Kimura, et 

al. 2001).  

This research was only about modularity and a few life cycle factors. As of yet, 

there has been no research examining product family and total life cycle analysis.  

Some researchers have begun to consider environmental factors during product 

family design process. Product family design re-use (PFDR) is proposed for sustainability 

of product family design. A three-stage process model is proposed to manage the design 

processes and the information content assessment (ICA) method is proposed for product 

performance evaluation in (Xu, et al. 2007). A quantitative model for assessing product 

family design from an end-of-life perspective is proposed to identify an optimal strategy 

for managing product take-back and end-of-life recovery with mixed integer programming. 

Researchers assessed the product family design in terms of its profitability in end-of-life 

management (Kwak, et al. 2011). An assessment tool was also introduced to evaluate a 

product platform that considered a number of sustainability factors with a set of metrics 

(Hölttä-Otto, et al. 2006).  
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Despite researchers’ efforts, these methods have not yielded a mathematical model 

to design a product with total life cycle analysis and instead only consider a few stages of 

life cycle analysis. In response, the research presented in this thesis will yield a proposed 

mathematical model tool for considering all the stages of the total life cycle in product 

platform design process to address deficiencies through integration of LCA software and 

ProdSI. 
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3. Methodology 
 

The objective of this research is to develop a mathematical tool that can assist the 

designer in choosing the best combination of components to design a product family and 

to determine the best platform. Economic, environmental, and societal factors will be 

considered across all four life-cycle stages at the same time. The key characteristic of the 

product family in a platform based design is component sharing between different products 

in the family. One product family has multiple products and one product has multiple 

components with each component also having multiple options (See Figure 8). The 

mathematical model must assist in choosing the best combination of components and aid 

in determining the components that can be shared between products through optimization 

based on the data relevant to all stages of the life-cycle. This section will describe the 

methodology used to identify sustainability metrics and how to quantify them in designing 

sustainable product family and identifying shared components.  

 

Figure 8: Platform-based Product Configuration 
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Several steps need to be completed to develop the mathematical tool. First, the 

closed-loop material flow structure must be defined.  All the metrics required for economic, 

environmental, and societal product sustainability evaluation are identified according to 

the material structure. Metrics are also identified for all stages of the life-cycle to provide 

a total life-cycle sustainability assessment. Four tasks are proposed to calculate the 

sustainability metrics for sustainable product family design and component sharing. LCA 

software, SimaPro, is used to quantify environmental metrics, CO2 emissions, and energy 

consumption, and all the data from SimaPro will be utilized in the next step. A 

methodology to calculate a customer satisfaction index also is proposed based on different 

market segments. An empirical function is proposed to measure disassemblibility and 

service in order to capture the impact of this key characteristic in product family design. A 

learning curve is considered to calculate manufacturing cost, as sharing more components 

will reduce manufacturing time. Nearly of these factors have different units of 

measurement. Therefore, normalization is a necessary step after the metrics are quantified. 

Analytic Hierarchy Process (AHP) will be deployed to calculate the weight of different 

metrics. A multi-objective optimization problem is identified and a mixed integer linear 

programming model is formulated to find the best combination of components and identify 

component sharing. ILOG OPL optimization software will be used to solve this multi-

objective optimization problem and identify the platform and most sustainable product 

family design. Comparison of regular and sustainable product platform configuration 

design will then be studied. The following figure shows detailed information for the 

methodology (See Figure 9). Each of the steps are described in detail in the following 

sections.  
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Figure 9: Steps for developing the Decision Support Tool 

 

3.1 Defining Closed-loop Material Flow Structure 

 

In order to identify closed-loop material flow, all material included in the four 

stages of life cycle, which include pre-manufacturing, manufacturing, use, and post-use 

must be considered (See Figure 10).   
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Figure 10: The closed-loop product life-cycle system for material flow (Jaafar, et al. 

2007) 

 

The pre-manufacturing stage includes raw material extraction and preliminary 

material manufacturing processes. Raw material costs need to be paid after receiving the 

order from the factory. CO2 emission and energy consumption will be generated during the 

pre-manufacturing stage. The raw material must be transported to the factory for further 

manufacturing. Manufacturing stage include component manufacturing and component 

assembling for the final product. Raw materials need specific manufacturing processes 

(e.g., milling, cutting, etc. to become components). The product is manufactured after all 

components are assembled together. Many types of machines, labor, and energy will be 

necessary for this process, while CO2 emission, energy consumption also will be generated. 

Use stage includes all the activities involved in product use after the customer has received 

the product. All of the economic, environmental, and societal factors that impact this stage 

need to be incorporated into the model. The post-use stage includes recycling and 

remanufacturing of the used product. Some percentage of products can be reused again if 

the product is at the end of life stage and collected by OEM. However, it is not possible for 
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all of the components remanufactured or to be recycled for material. This work will set a 

recycling coefficient to decide how much material can be recycled and remanufactured. 

The company also will earn revenue and save costs with recycling. Once the closed-loop 

material flow is defined, all the major activities happening in the material flow will be 

considered in the model and will be quantified with metrics. Detailed information about 

these metrics will be introduced in the following section. 

3.2 Identifying Metrics  
 

Sustainability is an interdisciplinary research area which considers economic, 

environmental and societal factors by focusing on the dynamic interactions between nature 

and society (Clark, et al. 2003).  The Product Sustainability Index (ProdSI) methodology 

is developed by identifying a comprehensive set of product sustainability metrics that 

incorporate the four product life-cycle stages and include the 6R application (Shuaib, et al. 

2014).  Wijekoon (2011) also identified a list of metrics to evaluate sustainability factors 

for Product Service Systems across all stages of the total life-cycle. However, these metrics 

are for evaluation of a single product or component. One product family includes multiple 

products and many components can be shared between those products. The evaluation 

metrics should capture the influence on sustainability when components are shared. This 

work will modify these metrics to adapt them for sustainability evaluation of the product 

family. However, some evaluation metrics are very difficult to incorporate in component 

sharing (e.g., energy cost, raw material cost, and recyclability). Some metrics from ProdSI 

are utilized directly in the evaluation of product family sustainability.  
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Once all economic, environmental, and societal metrics of the product family are 

built in across all stages, the total life-cycle sustainability evaluation of product family can 

be done. According to the Closed-loop Material Flow Structure which is defined in Section 

3.1, the most important metrics are considered and the list of metrics selected to evaluate 

sustainability is shown in the following table (See Table 1). The relevant ‘R’ covered by 

the metric is also identified.  

Table 1: The Metrics for Product Family Evaluation 

 Metric  PM M U PU 6R 

Economic  Labor Cost X X  X Reduce 

Energy Cost X X X X Reduce 

Raw material Cost X X   Reduce, Reuse, Redesign 

Facilities Cost X X  X Reduce, Reuse 

Design and Development 

Cost 

 X   Reduce, Redesign 

Revenue from recycle X   X Reduce, Reuse, Recycle, 

Remanufacture 

Environmental  Energy Consumption X X X X Reduce 

CO2 Emission X X X  Reduce 

Societal Recyclability     X Reduce, Reuse, Recycle, 

Remanufacture 

Service   X X  

Disassemblibility    X Reduce, Reuse, Recover, Recycle 

Safety X X X  Reduce 

Customer Satisfaction    X   
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3.3 Quantifying metrics  
 

In order to consider the influence on sustainability performance when more 

components are shared, this work will try to consider all the metrics as a function of 

components variability or the number of components shared between products. As a result, 

the evaluation of each metric will be changed as component sharing is changed and further 

influences sustainability performance.  

Manufacturing cost will be less if more components are shared because workers 

will be more familiar with manufacturing process. Facility costs, and design and 

development costs also will be less as more components are shared because less machines 

will be needed. Because CO2 emission and energy consumption are primary factors that 

influence global warming, this work only include CO2 emission and energy consumption 

in the evaluation of environmental impact. Yet, the relationship between energy cost, raw 

material cost, revenue from recycling, and component sharing are unknown at this time. 

The relationship between CO2 emissions, energy consumption, and components sharing is 

also unknown. This work will use LCA software to calculate CO2 emissions and energy 

consumption of the product family and does not consider component sharing in the 

evaluation of CO2 emissions and energy consumption.  The service and disassemblibility 

of the product will be improved because of repeated work from component sharing. Each 

product needs different machines in the pre-manufacturing and manufacturing stages and 

the safety of workers in machine operations is a major concern. Sharing components can 

reduce the total number of machines used in the work involved and, as a result, safety will 

be improved. The relationship between recyclability, customer satisfaction and component 

sharing is unknown and warrants further study. This work will directly use ProdSI and CSI 
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to measure the recyclability and customer satisfaction of the product family design. The 

relationship between these metrics and components sharing is showed in Table 2. Detailed 

information of the methodology is presented in the following section. 

Table 2: Metrics and Influence Due to components sharing 

 Metric  Sharing Components 

Economic  Labor Cost Reduced 

Energy Cost Exact relationship not known yet 

Raw material Cost Exact relationship not known yet 

Facilities Cost Reduced 

Design and Development Cost Reduced 

Revenue from recycle Exact relationship not known yet 

Environmental  Energy Consumption Exact relationship not known yet 

CO2 Emission Exact relationship not known yet 

Societal Recyclability  Exact relationship not known yet 

Service Increase 

Disassemblibility Increase 

Safety Increase 

Customer Satisfaction  Exact relationship not known yet 

 

3.3.1 Developing Methodology to Estimate Manufacturing Cost 

 

One major part of overall cost comes from manufacturing processes. Components 

require all types of machines for fabrication, labor is needed to operate these machines, 

and energy is consumed. The total manufacturing cost will include facility cost, labor cost, 

and energy cost. Fewer machines will be needed if more components are shared and facility 

cost can be saved. As commonly known, the cumulative average direct labor cost per unit 
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will decrease as production volume increases. The decrease is caused by increased operator 

proficiency as they perform various repetitive tasks (Kar, 2007). As a result, labor cost 

savings are present when more components are shared. The learning curve can capture 

what happens to labor cost when more components are shared in the product family. The 

exponential function for the learning curve is described as follows (Grant, 2010):  

 C𝑛 = C1𝑛−𝑎  (1) 

Where: 𝐶1 is the cost of the first unit of production, 𝐶𝑛 is the cost of the nth unit of 

production, n is the cumulative volume of production, and a is the learning rate of 

production. In order to simplify the model, a linear learning curve will be used: 

 𝑇 = 𝐴 − 𝐵 ∗ 𝑁 (2) 

Where T is the average production time of each component, N is the total number 

of components that need to be produced, 𝐴, 𝐵 are the coefficients of the linear learning 

curve. 𝐴, 𝐵 can be obtained from the performance records based on labor times  used for 

previous product. but 𝐴, 𝐵 are assumed here due to lack of data.  

3.3.2 Developing a Methodology to Quantify Metrics for Environmental Assessment 

 

In examining environmental impact, CO2 emissions and energy consumption of the 

production process significantly impacts global warming. Each component requires 

different manufacturing processes for fabrication and assembly of the final product. They 

each need energy which results in CO2 emissions. Detailed information for each 

manufacturing process must be collected in a comprehensive evaluation of CO2 emissions 

and energy consumption. But because manufacturing processes are different across 

companies, accurate CO2 emission data is difficult to collect. As a result, there is very little 
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data that can be used to make an evaluation of CO2 emissions and energy consumption. 

Life cycle software, such as SimaPro, can provide CO2 emission and energy consumption 

data for some standard manufacturing processes. LCA software will be used in this study 

to compute CO2 emissions and energy consumption for the manufacturing processes in the 

product family studied.  

The manufacturing processes required for components will be identified based on 

process flow (Such as shown in Figure 11) and the corresponding flow will be incorporated 

into SimaPro. The output will be generated by selecting the manufacturing process in the 

SimaPro database and using it to calculate the CO2 Emission and Energy consumption for 

each manufacturing process required for the product being studied. An example output 

from SimaPro is shown in Figure 12, where the amount of raw materials that will be 

required in each manufacturing step to produce 1kg of component is shown. An example 

of numerical data that can be derived from the flow chart is shown in Figure 12 and Table 

3. All data from SimaPro will be used for environmental impact evaluation and will be 

imported into the mathematical model (See Table 3). All available components in the 

product design will be evaluated in SimaPro, and CO2 emission and energy consumption 

data will be generated from SimaPro.  

 

Figure 11: Example Manufacturing Process for a Component 
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Figure 12: Example Output of SimaPro 
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Table 3: Example SimaPro Data Export 

 
 

3.3.3 Developing Methodology to Quantify Societal Assessment 

 

3.3.3.1 Service and Disassemblibility 

Service, which mainly includes repair of the damaged product/dysfunctional 

product, is one of the most important factors in determining if a product will succeed in the 

market. Customers will be more likely to come back for a product if the service is excellent.  

Service. Quality of serve is determined by how quickly the service department can respond 

to the customer and how quickly the repaired product is returned. With product family 

design, one product family can potentially have multiple products. Sharing components 

between the products will make the service staff more familiar with the products and repair 

work can be completed faster. This assumption also holds true for disassemblibility. 

Sharing components will make disassembly simpler and the operator will be more familiar 

with the disassembly process so that less machine time will be needed and efficiency will 

be improved.  

In order to capture the impact of component sharing on service and 

disassemblibility, an empirical function is introduced. The empirical function will be a 

function of component variability in the product family. The method for calculating the 
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empirical function is as follows. Assume that there are two scenarios for the quality of 

service. First, we assume service will be worst if there is no component sharing between 

completely customized products. The employees in the service department will need more 

time to figure out how to repair such products and they will need a larger knowledge base 

to handle a greater number of components. The service coefficient will be set to 0 in this 

case. Second, we assume service will be the best if all components are shared with only 

one product in the product family. The employees will be very familiar with all components, 

and will need less time to repair the product. The employees will be easily trained and a 

larger knowledge base is not needed. The service coefficient will be set to 1 in this case.  

In order to simplify the model, a linear empirical function is assumed to quantify 

the above relationship: 𝑆𝐸 = 𝑎 + 𝑏 ∗ 𝑥 . The function can be solved based on the two 

scenarios described above where 𝑎  and 𝑏 can be found.  

 𝑎 + 𝑏 ∗ 𝑋𝑚𝑎𝑥 = 0 (3) 

 𝑎 + 𝑏 ∗ 𝑋𝑚𝑖𝑛 = 1 (4) 

Where, 𝑋𝑚𝑎𝑥 is the maximum possible component variability in the product family, 

𝑋𝑚𝑖𝑛is the minimum possible components variability in the product family and 𝑎  and 𝑏 

are the coefficient of the empirical function.  

The same approach is followed to obtain the disassemblibility empirical function. 

Even if there is only one product in the product family, it will still take some time to 

disassemble all of the product so 0.9 assumed for this best case scenario and 0.1 is assumed 

for the worst case scenario. When more components are shared, the disassemblibility will 

be higher.  
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 𝑐 + 𝑑 ∗ 𝑋𝑚𝑎𝑥 = 0.1 (5) 

 𝑐 + 𝑑 ∗ 𝑋𝑚𝑖𝑛 = 0.9 (6) 

Where 𝑐 and 𝑑 are the coefficient of the disassemblibility empirical function.  

3.3.1.2 Customer Satisfaction 

Customer satisfaction is also one of the most important factors for societal 

sustainability. More customers will buy a product when satisfaction is high. Many criteria 

have been developed to measure customer satisfaction. Wijekoon (2011) proposed a 

Customer Satisfaction Index (CSI) to distinguish between customer satisfaction 

performance for different product options. However, this method can only measure 

customer satisfaction for one product, not a product family based on a platform. A new 

method is proposed to measure customer satisfaction for multiple products based on CSI. 

This work will not focus on criteria, but will examine how to use CSI to measure customer 

satisfaction for multiple products.  

Multiple products (P1, P2, and P3) will be included in one product family. Let’s 

assume each product meets the requirements of customers in one specific market segment 

(Market 1, Market 2, and Market 3). P1 meets the requirement of Market 1, P2 meets the 

requirement of Market 2, and P3 meets the requirement of Market 3 (See Table 4). Several 

options (O11, O12… O1i) are available for each component (C1). So customer satisfaction 

is different for the same component option (for example, O11) between different products 

(P1, P2, and P3) in different markets (Market 1, Market 2, and Market 3) (See Table 4). 

CSI measures each components option based on different products in different markets. 

After all the customer satisfaction data is collected with CSI criteria, the information will 

be used in the mathematical model.  
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Table 4: Customer satisfaction for different market 

Market Product C1 C2 C3 … 

O11 O12 … O1i O21 O22 … O2i O31 O32 … O3i … 

Market 1 P1 4 7  9          

Market 2 P2 6 4  3          

Market 3 P3 2 1  6          

 

3.4 Normalization  
 

All these metrics must be added together after the data is collected. However, the 

units of measurement for the metrics are not the same, and they cannot be added together 

directly. Thus they must be converted into unitless quantities. This work proposes to use 

the data from a prior product as the baseline to normalize the metrics. One example is 

shown below. 

 
𝐶𝑛𝑒𝑤 =

𝐶

𝐶′
 

(7) 

Where, 𝐶 is the cost of a new product family, 𝐶′ is the cost of the baseline product, 

and 𝐶𝑛𝑒𝑤  is the unitless measure for the cost. Normalization interpretation yields how 

much the cost of a new product family improves compared to the old product. For example, 

the cost will be reduced by 20% if 𝐶𝑛𝑒𝑤 is 0.8, and the cost will increase 20% if 𝐶𝑛𝑒𝑤 is 

1.2. The same method will be used for all the other metrics that have different units.  

3.5 Weighting with AHP 
 

The normalized metrics still cannot be added together directly after the 

normalization process. Different metrics have diverse impact on product sustainability 
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performance, which can also vary depending on the industry. Some industries have high 

energy consumption and pollution that requires more weight be given to environmental 

metrics during sustainability evaluation in the early design process for reducing 

environmental impact. For example, environmental metrics play a key role in the 

sustainability evaluation of the chemical industry, while they may not be as important in 

the service industry. Determining the relative weight must be amplified. This work will 

propose a method to obtain the relative weights of the metrics for product platform design.   

The Analytic Hierarchy Process (AHP) is an effective and efficient method for 

choosing the best decision in a set of competing alternatives evaluated under conflicting 

criteria (Saaty, 1986). AHP method can be used to obtain priority importance of variables 

by making a series of paired comparisons. In this research, all criteria that must be 

considered for sustainability evaluation will be compared pair-wise to assign a number, as 

shown in Table 5. A basic assumption of this method is that if attribute A is absolutely 

more important than attribute B and is assigned a number at 9, then B must be absolutely 

less important than A and is valued at 1/9. 
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Table 5: AHP Pairwise Comparison Scale 

Intensity Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 Weak importance of one over another Experience and judgment slightly favor one activity over 

another 

5 Essential or strong importance Experience and judgment strongly favor one activity over 

another 

7 Demonstrated importance An activity is strongly favored, and its dominance demonstrated 

in practice 

9 Absolute importance The evidence favoring one activity over another is of the highest 

possible order of affirmation 

2, 4, 6, 8 Intermediate values between the 

two adjacent judgments 

When compromise is needed 

 

AHP results rely on the expertise of the person who conducted the comparison. To 

obtain more precise results, the comparison should be conducted with multiple experts in 

the area. Assume there are four criteria that are going to be compared (See Table 6). A 

questionnaire will be sent to each expert separately comparing two criteria at a time and 

they will choose a number according to Table 5 to rate relative importance.  

Table 6: Questionnaire for Expert 

 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  

criteria 1                  criteria 2 

criteria 2                  criteria 3 

criteria 3                  criteria 4 

criteria 4                  criteria 1 

criteria 2                  criteria 4 

criteria 1                  criteria 3 
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Pair-wise comparisons will be put into a matrix and the weights will be calculated through the eigenvector method (See Table 

7). There are many methods for calculating eigenvector. Multiplying together the entries in each row of the matrix and then taking the 

nth root of that product gives a very good approximation of the correct answer (Saaty, 1986). Then the nth roots are summed and the sum 

is used to normalize the eigenvector elements. The normalized eigenvector is the weight needed. The detailed process of this calculation 

is shown in Table 7. The relative importance of each criteria is obtained by dividing the nth root of the product of values corresponding 

to that criteria by the sum of the same values for all the criteria, as shown in Table 7. 

Table 7: The calculation of AHP Weight 

 Criteria 1 

 

Criteria 2 Criteria 3 Criteria 4 nth root of product of values Eigenvector 

Criteria 1 1 a b c √1 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐
4

 √1 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐
4

𝑠𝑢𝑚⁄  

Criteria 2 1/a 1 d e √(1/𝑎) ∗ 1 ∗ 𝑑 ∗ 𝑒
4

 √(1/𝑎) ∗ 1 ∗ 𝑑 ∗ 𝑒
4

𝑠𝑢𝑚⁄  

Criteria 3 1/b 1/d 1 f √(1/𝑏) ∗ (1/𝑑) ∗ 1 ∗ 𝑓
4

 √(1/𝑏) ∗ (1/𝑑) ∗ 1 ∗ 𝑓
4

𝑠𝑢𝑚⁄  

Criteria 4 1/c 1/e 1/f 1 √(1/𝑐) ∗ (1/𝑒) ∗ (1/𝑓) ∗ 1
4

 √(1/𝑐) ∗ (1/𝑒) ∗ (1/𝑓) ∗ 1
4

𝑠𝑢𝑚⁄  

Totals     Sum  
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3.6 Multi-objective Optimization  

 

The total life-cycle sustainability evaluation includes metrics for the economic, 

environmental, and societal evaluations of the product family design. The target is to 

increase economic and societal benefit, reduce environmental impact, and identify the 

components that can be shared in the platform at the same time. This target could be 

achieved by multi-objective optimization.  

Different methods can be used in the multi-objective optimization problem. The 

weighted sum is one of the simplest and most widely used classical methods. This method 

can aggregate a set of objective functions by multiplying each objective function with a 

user decided weight to obtain a single objective function. In this research, a weighted sum 

method will be used to solve the multi-objective optimization problem. The weighted sum 

method can be formulated as follows:  

 
𝐺 = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑂𝑖 
(8) 

 
∑ 𝑤𝑖

𝑛

𝑖=1

= 1, 𝑤𝑖 ≥ 0 
(9) 

Where G is the final objective function value, 𝑛  is the number of objective 

functions in the set (n is 3 in this case) and 𝑤𝑖 is the relative weight of objective function 𝑂𝑖.  

A mixed integer linear programming (MILP) model will be developed to 

formulate the multi-objective problem. ILOG OPL optimization software will used to 

solve this optimization problem. The detail mathematical model will be introduced in the 

next section.  
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4. Mathematical model 
 

4.1 Problem Statement 

 

This work proposes a model for identifying platform-based product configuration 

from a total life-cycle sustainability perspective. The proposed model is summarized 

according to the following optimization problem: 

(1) Given: 

 The number of market segments needed to fulfill the requirements of all customers 

 All the information for available components that can be used in the product family 

 Manufacturing processes for all the components and all the equipment needed 

 Costs of raw material, design and development cost for every component, and cost 

of all equipment 

 Labor time required for every component, coefficient of the learning curve, and 

empirical functions 

 Customer satisfaction index and safety coefficient for every machine  

 (2) Determine: 

 Optimal combination of components to achieve sustainability of the product family 

 The shared components in the product family  

 (3) Subject to: 

 The functional performance of products fulfilling the requirements of the market 

segment 

 Environmental regulations: CO2 emission and energy consumption target   

 Variable condition: binary variable 
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 Component combination: some components cannot be assembled together 

 (4) The objective 

• Maximizing total life-cycle sustainability of the product family 

The model assumption and notations will be presented in the following sections to 

explain all equations in extensive detail.  

4.2 Cost Estimation  
 

4.2.1 The Cost of Raw Material 

 

Raw material is a common cost in the production of a specific product. The cost of 

raw material, 𝐶𝑅,  for this product family includes the raw materials cost for all the 

components used for all the products in the family. Every product needs different 

components, so one combination of different components must be chosen.  In order to 

calculate the total cost of raw materials, the total number of products needed in each market 

will be collected.  The weight of every chosen component, W, and the cost per unit weight 

for this component, C, also must be calculated as the total cost of raw material. The total 

raw material cost will be estimated with the following formula. 𝐶𝑅𝑐𝑘
 is the cost of raw 

material for component 𝑐𝑘 and is calculated in Equation (10).  𝐶𝑅 is the cost of material 

for the total  product family and is calculated in Equation (11). 

 

𝐶𝑅𝑐𝑘
= ∑ (𝑁𝑖 ∙ (∑ 𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

∙ 𝑊𝑐𝑘,𝑗 ∙ 𝐶𝑐𝑘,𝑗

𝑛𝑝

𝑖=1
)) 

(10) 

 
𝐶𝑅 = ∑ 𝐶𝑅𝑐𝑘

𝑛𝑐

𝑐𝑘=1
 

(11) 

Where 𝑛𝑝 is the total number of products in the family, 𝑛𝑘is the total number of 

alternates for component 𝑐𝑘, 𝑛𝑐 is the total number of components needed to make one 
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product,  𝑁𝑖 is the number of unites of product i needed to satisfy all customer demands in 

the market segment i, 𝑊𝑐𝑘,𝑗 is the weight of alternate j for component 𝑐𝑘and 𝐶𝑐𝑘,𝑗 is per 

unit raw material cost of alternate j for component 𝑐𝑘 . 𝑏𝑐𝑘,𝑖,𝑗  is the binary variable 

represented if option j of component 𝐶𝑘 will be chosen in product i.  

4.2.2 The Cost of Design and Development 

 

It is assumed that the design and development cost of all the components is known. 

Design and development cost needs to be paid if a certain component is chosen, because a 

professional engineer is needed to design the component. The design and development 

costs vary because of different designing times for components. When components are 

shared in the product family, design cost will be less due to fewer components being 

designed. Take one component 𝑐𝑘 for example, the design and development cost of 

component 𝑐𝑘 will be calculated with Equation (12), and the total design and development 

cost of the product family is estimated by Equation (13).  

 

𝐶𝑜𝑑𝑑𝑐𝑘
= ∑(𝑏𝑐𝑘,1,𝑗

𝑛𝑘

𝑗=1

∪. . 𝑏𝑐𝑘,𝑛𝑝,𝑗) ∙ 𝐶𝑜𝑑𝑑𝑐𝑘,𝑗 

(12) 

 
𝐶𝑜𝑑𝑑 = ∑ 𝐶𝑜𝑑𝑑𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(13) 

Where 𝑛𝑘 is the number of choices for components 𝑐𝑘, np is the number of products 

in the family. 𝐶𝑜𝑑𝑑𝑐𝑘
 is the design and development cost of components 𝑐𝑘, 𝐶𝑜𝑑𝑑𝑐𝑘,𝑗 is 

the design cost of alternate j for component 𝑐𝑘 , and 𝐶𝑜𝑑𝑑  is the total design and 

development of the product family.  
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4.2.3 Facilities Cost 

 

Most production takes place in high volume production systems. It is assumed that 

equipment can be shared in the manufacturing of same components and that sharing 

equipment between different components is not allowed to simplify the flow of material. 

Equipment can be shared if the same kind of component is produced in the production line. 

The facility cost is estimated by the following formula. 𝑏𝑚𝑐𝑘,𝑖,𝑘  represents if the kth 

machine will be chosen to make the product i and is calculated with Equation (14), 𝐶𝐸𝑐𝑘,𝑘 

is the per annum cost of the kth machine to make the component 𝑐𝑘 and is estimated with 

Equation (15). 𝐶𝐹 is the facilities cost of the product family and is calculated with Equation 

(16). 

 

𝑏𝑚𝑐𝑘,𝑖,𝑘 = ∑ 𝑏𝑐𝑘,𝑖,𝑗 ∙ 𝑏𝑏𝑐𝑘,𝑗,𝑘

𝑛𝑘

𝑗=1

 

(14) 

 

𝐶𝐹𝑐𝑘
= ∑ 𝐶𝐸𝑐𝑘,𝑘 ∙ (𝑏𝑚𝑐𝑘,1,𝑘

𝑛𝑘,𝑚

𝑘=1

∪. . 𝑏𝑚𝑐𝑘,𝑐𝑝,𝑘) 

(15) 

 
𝐶𝐹 = ∑ 𝐶𝐹𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(16) 

Where 𝑏𝑏𝑐𝑘,𝑗,𝑘is represented if the kth machine will be chosen to make the choice j 

of component  𝑐𝑘, 𝑛𝑘,𝑚 is the number of machines needed to make components 𝑐𝑘in the 

family,  

4.2.4 The Cost of Processing 

 

The cost of Processing 𝐶𝑃 is composed of labor cost 𝐿𝐶 and energy cost 𝐸𝐶. 
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Labor cost: It is assumed that the cost of labor per hour is known. Each component 

has different manufacturing processes and equipment. The total manufacturing time of 

each component can be obtained from the manufacturing process of the component. 

However, when workers produce a large number of products, the time to produce one 

product will differ based on the learning curve. Sharing components means that more of 

the same component will be produced, so it will save time and labor costs. In order to 

simplify the model, it is assumed that the learning curve is a linear function. This learning 

curve will be estimated for each factory according to production data of the factory. Take 

a component 𝑐𝑘, for example. Learning curve for component 𝑐𝑘: 

  𝑇 = 𝐵 − 𝐴 ∗ 𝑁 (21) 

Where A, B are the coefficient of the learning curve, N is the number of components 

that will be produced. 𝐿𝐶𝑐𝑘,𝑗 is the labor cost for the alternate j of component 𝑐𝑘 and is 

calculated with Equation (22). 𝐿𝐶𝑐𝑘
is the labor cost for component 𝑐𝑘 and is calculated 

with Equation (23). LC is the total labor cost for the family and is estimated with Equation 

(24). 

 

𝐿𝐶𝑐𝑘,𝑗 = (𝐵𝑐𝑘,𝑗 − 𝐴𝑐𝑘,𝑗 ∙ (∑ 𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑝

𝑖=1

𝑁𝑖)) ∙ (∑ 𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑝

𝑖=1

𝑁𝑖) ∙ 𝐿𝐶𝐻 

(22) 

 

𝐿𝐶𝑐𝑘
= ∑ 𝐿𝐶 𝑐𝑘,𝑗

𝑛𝑘

𝑗=1

 

(23) 

 
𝐿𝐶 = ∑ 𝐿𝐶𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(24) 
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Where, LCH is the labor cost per hour, 𝑛𝑘  is the number of alternates for 

component 𝑐𝑘. 

Energy cost: Energy will be needed when operating machines to convert raw 

material and manufacturing components. It is assumed that the cost of energy per unit is 

known and the energy will only be used in the conversion of raw material and the 

production process. The relationship between component sharing and energy cost is 

unknown yet, so this work will not consider component sharing when energy cost is 

calculated. The estimate of energy cost will be calculated with Equation (25) and the total 

cost of processing will be estimated with Equation (26).  

 𝐸𝐶 = 𝐸𝑛𝑒 ∙ 𝐸𝐶𝐻 (25) 

Where 𝐸𝐶𝐻 is the cost of energy per unit. The calculation of 𝐸𝑛𝑒 is described in 

the following paragraph. Cost of processing can be obtained after add EC and LC together. 

 𝐶𝑃 = 𝐸𝐶 + 𝐿𝐶 (26) 

 

4.3 Environmental Metrics Calculation  
 

4.3.1 CO2 Emission and Energy Consumption 

 

The relationship between components sharing and CO2 emission and energy 

consumption is unknown. It is assumed that component sharing does not affect the total 

environmental impact. CO2 emission and energy consumption of the product family will 

be attained through adding the CO2 emission and energy data of all the components, which 

will be obtained from SimaPro. 
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Take one component 𝑐𝑘, for example. The CO2 emission and energy consumption 

of component 𝑐𝑘 will be estimated from Equation (27) and (29) by adding all the data of 

the chosen component for each product. The total CO2 emission and energy consumption 

of the product family is obtained from Equation (28) and (30) by adding the data of all the 

components together. 

 

𝐶𝑂𝐸𝑐𝑘
= ∑ ∑ 𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑘

𝑗=1

𝑊𝑐𝑘,𝑗

𝑛𝑝

𝑖=1

∙ 𝐶𝑂𝐸𝑟𝑐𝑘,𝑗 ∙ 𝑁𝑖  

(27) 

 
𝐶𝑂𝐸 = ∑ 𝐶𝑂𝐸𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(28) 

 

𝐸𝑛𝑒𝑐𝑘
= ∑ ∑(𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑘

𝑗=1

𝑊𝑐𝑘,𝑗

𝑛𝑝

𝑖=1

∙ 𝐸𝑛𝑒𝑟𝑐𝑘,𝑗 ∙ 𝑁𝑖) 

(29) 

 
𝐸𝑛𝑒 = ∑ 𝐸𝑛𝑒𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(30) 

Where 𝐶𝑂𝐸𝑐𝑘
 is CO2 emission of component 𝑐𝑘in this product family, 𝐶𝑂𝐸𝑟𝑐𝑘,𝑗 is 

per unit CO2 emission of choice j of component 𝑐𝑘 , 𝐸𝑛𝑒𝑐𝑘
 is energy consumption of 

component 𝑐𝑘, 𝐸𝑛𝑒𝑟𝑐𝑘,𝑗 is per unit energy consumption of choice j of component 𝑐𝑘. 

4.4 Societal Metrics Calculation 
 

In this work, customer satisfaction, service, safety, disassemblibility, and 

recyclability will be considered to evaluate societal sustainability of the product family.  

The reason for considering each of these metrics and how they are calculated is explained 

in detail in the following section.  
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4.4.1 Customer Satisfaction Index Estimation  

 

The customer in different market segmentations will have different expectations for 

the same product. As a result, the customers of different markets will have different levels 

of customer satisfaction for the same components. The customer satisfaction index will be 

set to every component in different markets according to CSI criteria (Wijekoon 2011). 

The satisfaction coefficient will be a number from 0 to 10. 0 means totally unsatisfied, 

while 10 means totally satisfied. So the customer satisfaction metric for the total product 

family will be obtained with Equation (31) through adding the customer satisfaction index 

of all the components and normalization process. 𝐶𝑆𝑐𝑘
is total customer satisfaction of 

component 𝑐𝑘 in the product family and is calculated with Equation (31). 𝐶𝑆  is total 

customer satisfaction of the product family and is estimated with Equation (32).  

 

𝐶𝑆𝑐𝑘
= ∑ ∑ 𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑘

𝑗=1

𝑛𝑝

𝑖=1

𝐶𝑆𝑐𝑘,𝑖,𝑗 ∙ 𝑁𝑖  

(31) 

 

𝐶𝑆 = ( ∑ 𝐶𝑆𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/(𝑛𝑐 ∙ 10 ∙ ∑ 𝑁𝑖

𝑛𝑝

𝑖=1

) 

(32) 

Where 𝐶𝑆𝑐𝑘,𝑖,𝑗 is satisfaction coefficient of choice j of component 𝑐𝑘for product i. 

4.4.2 Service Metric Estimation  

 

Service includes the maintenance and repair of the product. When more 

components are shared, it will be easier to repair the product and our service will be 

improved. It is assumed that the service metric can be represented with a linear empirical 

function, which can be summarized from the service record. Empirical function is a 

function of component variety of the product family. The service metric can be estimated 
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by Equation (35) after considering components variability of the product family (Equation 

(34)). 

 

𝐶𝑁𝑐𝑘
= ∑(𝑏𝑐𝑘,1,𝑗

𝑛𝑘

𝑗=1

∪. . 𝑏𝑐𝑘,𝑛𝑝,𝑗) 

(33) 

 
𝐶𝑁 = ∑ 𝐶𝑁𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(34) 

 𝑆𝐸 = 𝛼 − 𝛽 ∙ 𝐶𝑁 (35) 

Where 𝐶𝑁𝑐𝑘
is the component variety of component 𝑐𝑘 , 𝐶𝑁 is the component 

variety of the total product family, 𝛼 and 𝛽 are coefficient of service empirical function, 

𝑆𝐸 is the service ratio.  

4.4.3 Safety Metric Estimation  

 

 It is assumed that the safety of factory workers is only considered in the safety 

metric. When the workers in the factory operate the equipment to produce components, 

different equipment have different safety coefficients, because some equipment is more 

challenging to operate which leads to more accidents. The safety coefficient of all the 

equipment in the factory will be obtained from history records. The safety coefficient is set 

as a scale from 0 to 9, 9 meaning totally safe and 0 meaning totally unsafe. The total safety 

will be less when more components are shared because fewer machines will be needed. 

𝑆𝐴𝑐𝑘
is the total safety coefficient of a machine to make component 𝑐𝑘  and is 

calculated with Equation (36). 𝑆𝐴 is the safety ratio of the product family and is estimated 

with Equation (37). 
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𝑆𝐴𝑐𝑘
= ∑ 𝑁𝑖 ∙ (∑(𝑏𝑐𝑘,𝑖,𝑗 ∙

𝑛𝑘

𝑗=1

𝑛𝑝

𝑖=1

∑ (𝑏𝑏𝑐𝑘,𝑗,𝑘

𝑛𝑘,𝑚

𝑘=1

∙ 𝑆𝐴𝑐𝑘,𝑘))) 

(36) 

 

𝑆𝐴 = ( ∑ 𝑆𝐴𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/(∑ 𝑁𝑖

𝑛𝑝

𝑖=1

∙ (∑ 𝑛𝑘,𝑚

𝑛𝑐

𝑘=1

) ∙ 9) 

(37) 

 

4.4.4 Disassemblibility Metric Estimation  

 

When sharing components, workers will be more familiar with similar products, so 

it will take less time to disassemble, repair, and recycle them. It is assumed that the 

empirical function of disassemblibility is also related to component variety of the product 

family and is a linear function. The disassemblibility will be obtained with Equation (38).  

 𝐷𝐴 = 𝜇 − 𝜈 ∙ 𝐶𝑁 (38) 

Where 𝜇 and 𝜈 are coefficient of disassemblibility empirical function, 𝑆𝐸 is the 

service ratio. 

4.4.5 Recyclability Metric Estimation  

 

Some components can be recycled after disassembling the product. Different 

components are made of different materials, so components will have different 

recyclability. A number will be assigned to each component from 0 to 1, where 1 means it 

can be totally recycled and 0 means it cannot be recycled, according to the property of the 

material of the component. 𝑅𝐸𝑐𝑘
 is the total recyclability of components 𝑐𝑘 in the product 

family and is calculated with Equation (39). RE is the total recyclability of the product 

family. 
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𝑅𝐸𝑐𝑘
= ∑ ∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

𝑛𝑝

𝑖=1

∙ 𝑅𝐸𝑐𝑘,𝑗 ∙ 𝑁𝑖) 

(39) 

 

𝑅𝐸 = ( ∑ 𝑅𝐸𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/ (𝑛𝑐 ∙ ∑ 𝑁𝑖

𝑛𝑝

𝑖=1

) 

(40) 

4.4.6 Revenue from Recycling 

 

Some component can be reused again after the product is recycled, and some 

revenue can be obtained from the recycling. It is assumed that all the recycled material can 

be reused again. The total revenue of recycling will be the total cost of the recycled 

components. 𝑅𝑅𝑐𝑘
 is the recycle revenue of component 𝑐𝑘 and is calculated with Equation 

(41). 𝑅𝑅 is the recycle revenue of the total family and is estimated with Equation (42). 

 

𝑅𝑅𝑐𝑘
= ∑ ∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

𝑛𝑝

𝑖=1

∙ 𝑅𝐸𝑐𝑘,𝑗 ∙ 𝑊𝑐𝑘,𝑖,𝑗 ∙ 𝐶𝑐𝑘,𝑖,𝑗1 ∙ 𝑁𝑖) 

(41) 

 
𝑅𝑅 = ( ∑ 𝑅𝐸𝑐𝑘

𝑛𝑐

𝑐𝑘=1

) 
(42) 

 

4.5 Constraints 
 

Function performance range: In order to fulfill requirements of the market 

segment, the function performance of each product must be in the performance range of 

every market segment. The function performance must be satisfied in order to fulfill the 

requirements of all customers in each market segment.  
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∑ (∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

∙ 𝐹𝑃𝑐𝑘,𝑗

𝑛𝑐

𝑐𝑘=1
)) < 𝐹𝑃𝑀𝑖+1, ∀ 𝑖 ∈ 𝐼 

(43) 

 

∑ (∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

∙ 𝐹𝑃𝑐𝑘,𝑗

𝑛𝑐

𝑐𝑘=1
)) ≥ 𝐹𝑃𝑀𝑖 , ∀ 𝑖 ∈ 𝐼 

(44) 

 

Where 𝐹𝑃𝑀𝑖+1 is the upper limit of function performance of the market segment, 

𝐹𝑃𝑀𝑖  is the lower limit of function performance of the market segment. 𝐹𝑃𝑐𝑘,𝑗  is the 

function performance ratio of alternate j for component 𝑐𝑘.                                                                              

Environmental regulation: Environmental regulations must be satisfied to fulfill 

the requirements of environmental law across countries. This constraint is represented by 

the regulation on CO2 emission and energy consumption. The proposed model set a target 

α for the manufacturing company, which means that the new product platform must reduce 

α% of CO2 emission and energy consumption as compared to an existing product family.  

 𝐶𝑂𝐸 ≤ (1 − 𝛼%) ∙ 𝐶𝑂𝐸′ (45) 

 𝐸𝑛𝑒 ≤ (1 − 𝛼%) ∙ 𝐸𝑛𝑒′ (46) 

Variable Condition: All decision variables in the model are represented if one 

component will be chosen, so 𝑏𝑐𝑘,𝑖,𝑗 is a binary variable. Only one option can be chose 

from all available options for the specific component.   

 𝑏𝑐𝑘,𝑖,𝑗=0 or 1, (binary) (47) 

 ∑ 𝑏𝑐𝑘,𝑖,𝑗
𝑛𝑘
j=1 = 1 , ∀ 𝑖 ∈ 𝐼 , ∀ 𝑐𝑘 ∈ 𝐶𝑘 (48) 

Component combination: As commonly known, some combinations of component 

options will not work because of the components’ different physical properties. This 



 

58 

 

5
8

 

constraint means that these two binary variables are not chosen '1' at the same time. S is 

the component notation for the components that cannot be assembled together. 

 𝑏𝑐𝑘1,𝑖,𝑗1 + 𝑏𝑐𝑘2,𝑖,𝑗2 ≤ 1, ∀ 𝑖 ∈ 𝐼, ∀ (𝑐𝑘1, 𝑗1, 𝑐𝑘2, 𝑗2) ∈ 𝑆 (49) 

Weight of criteria: The weight of different criteria should be equal to 1, for all the 

equations when weight are used.  

  w1 + w2 + w3 = 1 (50) 

 𝑤𝑒1 + 𝑤𝑒2 = 1 (51) 

 𝑤𝑐𝑠 + 𝑤𝑠𝑒 +  𝑤𝑠𝑎 +  𝑤𝑑𝑎 + 𝑤𝑟𝑒 = 1 (52) 

4.6 Objective Function 
 

As discussed in the methodology, the objective of this optimization problem is to 

maximize sustainability of the product family. In order to model sustainability, the 

objective of this model will be modified to minimize Z, which means reducing cost of the 

total product family, reducing environmental impact, and increasing societal benefit. 

Sustainability is improved when Z is less. Equation (53) shows the final formulation of 

sustainability of the product family, the value for which is obtained using the Equations 

(54), (55), and (56). Equation (57) shows how the cost of the product family is computed. 

Equation (55) shows the environmental evaluation of the product family, and Equation (56) 

shows the societal evaluation of the product family. C, E, and S are cost, environmental, 

and societal metrics respectively, and have different units. They are normalized when using 

in Equation (53) as shown.   

 𝑍 = w1 ∙ 𝐶/𝐶′ + w2 ∙ 𝐸 − w3 ∙ 𝑆/𝑆′ (53) 

 𝐶 = 𝐶𝑅 + 𝐶𝑜𝑑𝑑 + 𝐶𝐹 + 𝐶𝑃 − 𝑅𝑅 (54) 
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 𝐸 = 𝑤𝑒1 ∙ 𝐸𝑛𝑒/𝐸𝑛𝑒′ + 𝑤𝑒2 ∙ 𝐶𝑂𝐸/𝐶𝑂𝐸′ (55) 

 𝑆 =  𝑤𝑐𝑠  ∙  𝐶𝑆 +  𝑤𝑠𝑒 ∙  𝑆𝐸/𝑆𝐸′  +  𝑤𝑠𝑎  ∙  𝑆𝐴 +  𝑤𝑑𝑎 ∙  𝐷𝐴 +  𝑤𝑟𝑒 ∙  𝑅𝐸 (56) 

Where C', S', Ene', COE' are data from an existing product used to normalize C, S, 

Ene and COE. w1, w2, w3 are weight of cost, environmental and societal factors, and 𝑤𝑐𝑠, 

𝑤𝑠𝑒, 𝑤𝑠𝑎, 𝑤𝑑𝑎, 𝑤𝑟𝑒 are weight of societal factors. 𝐶𝑅, 𝐶𝑜𝑑𝑑, 𝐶𝐹, 𝐶𝑃, 𝑎𝑛𝑑 𝑅𝑅 are the cost 

of raw material, design and development, facilities, and processing, and the revenue from 

recycling respectively. 𝐸𝑛𝑒 and 𝐶𝑂𝐸 are energy consumption and CO2 emission of the 

product family. CS, SE, SA, DA, RE are Customer Satisfaction, Service, Safety, 

Disassemblability, and Recyclability. 

4.7 Summary  
 

Based on the discussion presented for the formulation of the mathematical model 

can be summarized as follows: 

Objective: 

Maximize Sustainability of product family (Minimize Z) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝑍 = w1 ∙ 𝐶/𝐶′ + w2 ∙ 𝐸 − w3 ∙ 𝑆/𝑆′ (57) 

 

Where, 

 𝐶 = 𝐶𝑅 + 𝐶𝑜𝑑𝑑 + 𝐶𝐹 + 𝐶𝑃 − 𝑅𝑅 (58) 

 𝐸 = 𝑤𝑒1 ∙ 𝐸𝑛𝑒/𝐸𝑛𝑒′ + 𝑤𝑒2 ∙ 𝐶𝑂𝐸/𝐶𝑂𝐸′ (59) 

 𝑆 =  𝑤𝑐𝑠  ∙  𝐶𝑆 + 𝑤𝑠𝑒 ∙  𝑆𝐸/𝑆𝐸′  +  𝑤𝑠𝑎  ∙  𝑆𝐴 + 𝑤𝑑𝑎 ∙  𝐷𝐴 +  𝑤𝑟𝑒 ∙  𝑅𝐸 (60) 
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𝐶𝑅 = ∑ 𝐶𝑅𝑐𝑘

𝑛𝑐

𝑐𝑘=1
 

(61) 

 
𝐶𝑜𝑑𝑑 = ∑ 𝐶𝑜𝑑𝑑𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(62) 

 
𝐶𝐹 = ∑ 𝐶𝐹𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(63) 

 
𝐿𝐶 = ∑ 𝐿𝐶𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(64) 

 𝐸𝐶 = 𝐸𝑛𝑒 ∙ 𝐸𝐶𝐻 (65) 

 𝐶𝑃 = 𝐸𝐶 + 𝐿𝐶 (66) 

 
𝐶𝑂𝐸 = ∑ 𝐶𝑂𝐸𝑐𝑘 

𝑛𝑐

𝑐𝑘=1

 
(67) 

 
𝐸𝑛𝑒 = ∑ 𝐸𝑛𝑒𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(68) 

 

𝐶𝑆 = ( ∑ 𝐶𝑆𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/(𝑛𝑐 ∙ 10 ∙ ∑ 𝑁𝑖

𝑛𝑝

𝑖=1

) 

(69) 

 
𝐶𝑁 = ∑ 𝐶𝑁𝑐𝑘

𝑛𝑐

𝑐𝑘=1

 
(70) 

 𝑆𝐸 = 𝛼 − 𝛽 ∙ 𝐶𝑁 (71) 

 

𝑆𝐴 = ( ∑ 𝑆𝐴𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/(∑ 𝑁𝑖

𝑛𝑝

𝑖=1

∙ (∑ 𝑛𝑘,𝑚

𝑛𝑐

𝑘=1

) ∙ 9) 

(72) 

 𝐷𝐴 = 𝜇 − 𝜈 ∙ 𝐶𝑁 (73) 
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𝑅𝐸 = ( ∑ 𝑅𝐸𝑐𝑘

𝑛𝑐

𝑐𝑘=1

)/ (𝑛𝑐 ∙ ∑ 𝑁𝑖

𝑛𝑝

𝑖=1

) 

(74) 

 
𝑅𝑅 = ( ∑ 𝑅𝐸𝑐𝑘

𝑛𝑐

𝑐𝑘=1

) 
(75) 

Subject to: 

 

∑ (∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

∙ 𝐹𝑃𝑐𝑘,𝑗

𝑛𝑐

𝑐𝑘=1
)) < 𝐹𝑃𝑀𝑖+1, ∀ 𝑖 ∈ 𝐼 

(76) 

 

∑ (∑(𝑏𝑐𝑘,𝑖,𝑗

𝑛𝑘

𝑗=1

∙ 𝐹𝑃𝑐𝑘,𝑗

𝑛𝑐

𝑐𝑘=1
)) ≥ 𝐹𝑃𝑀𝑖 , ∀ 𝑖 ∈ 𝐼 

(77) 

 𝐶𝑂𝐸 ≤ (1 − 𝛼%) ∙ 𝐶𝑂𝐸′ (78) 

 𝐸𝑛𝑒 ≤ (1 − 𝛼%) ∙ 𝐸𝑛𝑒′ (79) 

 𝑏𝑐𝑘,𝑖,𝑗=0 or 1, (binary) (80) 

 ∑ 𝑏𝑐𝑘,𝑖,𝑗
𝑛𝑘
j=1 = 1 , ∀ 𝑖 ∈ 𝐼 , ∀ 𝑐𝑘 ∈ 𝐶𝑘 (81) 

 𝑏𝑐𝑘1,𝑖,𝑗1 + 𝑏𝑐𝑘2,𝑖,𝑗2 ≤ 1, ∀ 𝑖 ∈ 𝐼, ∀ (𝑐𝑘1, 𝑗1, 𝑐𝑘2, 𝑗2) ∈ 𝑆 (82) 

  w1 + w2 + w3 = 1 (83) 

 𝑤𝑒1 + 𝑤𝑒2 = 1 (84) 

 𝑤𝑐𝑠 +  𝑤𝑠𝑒 + 𝑤𝑠𝑎 + 𝑤𝑑𝑎 +  𝑤𝑟𝑒 = 1 (85) 

A case study will be showed in the next section to formulate the model.  
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5. Case study 
 

This chapter presents a case study using a family of bicycles to demonstrate the 

application of the proposed models and discussed in Chapters 4.  The results will help 

managers to make decisions about optimal product platform configuration. The detailed 

framework of the proposed methodology is shown in Figure 13. 

 
 

Figure 13: Framework for sustainable product family design 

 

5.1 Bicycle Product Platform Configuration 
 

Suppose that a bicycle company offers a variety of bicycle designs for customers 

that can be individualized to personal requirements. Each bicycle component that is 

customizable is referred to as a feature and several options are available for each of the 

features. A market survey is conducted to research what the customers really need with 

final results showing that different customers have different requirement for the frame, 
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fork, handle bar, pedals, and wheel. These parts can be custom manufactured in-house after 

receiving the customer’s order. In total, we assumed that there 16 frame options, 20 fork 

options, 20 handle bar options, 6 wheel options, and 5 pedal options that customer can 

choose from. These different options differ in term of type of material, design, shape, and 

dimensions (See Table 8). Examples of some selected components obtained from various 

sources on the internet is shown in Figure 15. These feature-options together offer 

192,000  (16 × 20 ×  20 ×  6 ×  5 ) different bicycle models (See Table 8). Detailed 

information about these components is in the Appendix B.  

A customer can choose options from Table 8 to construct a bicycle. Some selected 

components are showed in Figure 14. Each customer can choose one frame, one fork, one 

handle bar, one wheel, and one pedal to construct a bicycle that fulfills their requirement.   

However, fulfilling all the requirements of all the customers will make the cost very 

high. Customers can be divided into different groups according to similar requirements.  

The most important product performance features that customers value must be identified 

to satisfy the requirements of different groups of customers.  The goal is to design a 

sustainable bicycle platform that reduces cost and simultaneously meets customer 

requirements.  Due to the fact that there are not enough data available at hand, this case 

study will be based on some assumed data and scenarios, for example, customer 

satisfaction of all the customers, the real sales data of all the bicycles.  The assumed data 

will be presented in the following sub-sections. 
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Table 8: Number of Feature-Options for Custom Manufactured Features 

Feature Number of Feature-options Variations(materials, design, shape, and 

dimensions) 

Frame 16 Aluminum, Titanium, Steel, Carbon Fiber, 

different design and shape 

Fork 20 Aluminum, Titanium, Steel, Carbon Fiber, 

different design and shape 

Handle bar 20 Aluminum, Titanium, Steel, Carbon Fiber, 

different design and shape 

Wheel 6 Alloy, Carbon Fiber, Size, and shape 

Pedals 5 Aluminum, Magnesium, Plastic, and 

different design 

 

                                        

 

Figure 14: Selected components for the case study 
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5.2 Design Scenario 
 

The weight is a major factor for customers to consider when choosing a bicycle. To 

fulfill the requirements of all customers, a market segmentation process can be conducted 

according to different weights. It is assumed that 4 market segments will be made and that 

the weight range of these segments will be the same. Four bicycle models will be chosen 

from 192,000 combinations to fulfill all customer requirements. The number of bicycles 

needed for each market segment can be obtained from the company’s marketing 

department. However, we do not have a real data-base of bicycle marketing. So some data 

will be assumed here as sources to demonstrate the methodology. The weight ranges and 

number of products needed for each market segment are summarized in Table 9.   

Table 9: Weight range and product demand 

Market segment Product Weight range(kg) Number of products needed 

Light  1 2.53 – 4.51 58839 

Regular 1 2 4.51 – 6.49 107085 

Regular 2 3 6.49 - 8.47 23989 

Heavy 4 8.47 - 10.45 2087 

 

5.3 Data Preparation  
 

In order to use the currently proposed model, environmental and social evaluation 

needs to be conducted for all of the components with data imported to the mathematical 

model. The following sub-sections will introduce the data and how the data is 

collected/generated. 
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5.3.1 Data Sources 

 

Many datasets will be used in the development of this mathematical model. The 

following section introduces the sources of all these input datasets. This mathematical 

model incorporates the manufacturing processes of all available components which came 

from a working paper at the University of Kentucky (Badurdeen, 2012). The weight of 

each component and other information for all of the components was obtained from bicycle 

component websites. Examples include the following: http://weightweenies. starbike.com 

/listings.php, http://www.chainreactioncycles.com/us/en/wellgo-b109-plastic-pedals/rp-

prod70423, http://www.amazon.com, www.ebay.com, https://www.google.com/. 

The customer satisfaction index, recyclability, manufacturing time, development 

cost of all components, and safety coefficient for all of the machines was randomly 

generated due to a lack of actual industry data. The cost of raw materials for aluminum, 

iron, titanium, carbon fiber, plastic, and magnesium were obtained from an international 

raw material price website, http://www.metalprices.com/. More detailed information will 

be presented in the following sections. 

5.3.2 Weight Calculation with AHP for All the Other Factors 

 

Weight of different metrics can be obtained with AHP.  There are lots of software 

that can be used to calculate weight based on AHP method.  Among these softwares, Super 

Decisions, is the best software to save time to do the complex calculation.  Therefore Super 

Decisions is employed here to calculate weight of different criteria based on AHP.  One 

example using Super Decisions is shown in Figure 15. 
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First, the number of criteria will be decided. There are three criteria in this example, 

economy, environment, and society. Second, make pairwise comparison between these 

three criteria. The relative weight of these three criteria will obtained with Super Decisions 

after pairwise comparison is done (Figure 15).  

 
 

 

 
Figure 15: Weight of different factors through Super Decisions (Source: Super 

Decisions) 

As we discussed in methodology (Chapters 3), AHP is very subjective and AHP 

results rely on the expertise of the person who conducted the comparison.  In order to 

increase the accuracy of weight in the thesis, the comparison is conducted in multiple 

people and one questionnaire (Appendix C3) is sent to one research team in Institute of 

Sustainable Manufacturing in University of Kentucky.  All the comparison of different 

criteria is averaged based on response of all the team member.  Then the weight of different 

metrics is calculated from Super Decision and produce the averaged comparisons.  The 

Weight of Economic, Environmental, and Societal Factors from Super Decisions is 

calculated and listed in Table 10.   
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Table 10: Weight of Economic, Environmental, and Societal factors 

Factors  Weight 

Economic  0.7 

Environmental  0.2 

Societal  0.1 

 

The final result show that weight of economic factor is 0.7, the weight of 

environmental factor is 0.2, and the weight of societal factor is 0.1 based on the knowledge 

of the research team. 

The weight of CO2 Emission and Energy Consumption is shown in Table 11. The 

result show that the weight of CO2 emission is 0.4 and the weight of Energy Consumption 

is 0.6 based on the response of the team. 

Table 11: Weight of CO2 Emission and Energy Consumption 

Factors Weight 

CO2 Emission  0.4 

Energy Consumption  0.6 

 

The weight of different societal factors is shown in Table 12. The result show that 

weight of Customer Satisfaction, Service, Safety, Disassemblibility, and Recyclability is 

0.4, 0.15, 0.1, 0.17, 0.18, specifically.  
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Table 12: Weight of Societal Factors 

Factors Weight 

Customer Satisfaction  0.4 

Service 0.15 

Safety  0.1 

Disassemblibility 0.17 

Recyclability  0.18 

 

5.3.3 Environmental Evaluation of All the Components  

 

In this case study, SimaPro will be utilized in the environmental evaluation of all 

components, 67 available components for this case study. The name of components in 

Table 13 is the order of the components in Appendix B.  For example, Pedal 1 means that 

this pedal is the first pedal option in Appendix B5. The CO2 emission and energy 

consumption of each component is also listed in Table 13 with data exported into the 

mathematical model, which is proposed in Chapter 4.  

Table 13: CO2 Emission and Energy Consumption Data 

Components CO2 Emission 

(kg) 

Energy 

Consumption(1000Mj) 

Pedal 1 1.4 0.76 

Pedal 2 1.02 0.48 

Pedal 3 0.85 0.37 

Pedal 4 0.82 0.36 

Pedal 5 0.984 0.404 

Wheel 1 0.78 3.05 

Wheel 2 1.01 3.45 

Wheel 3 0.64 2.76 

Wheel 4 0.76 3 

Wheel 5 1.29 5.55 

Wheel 6 1.45 6 
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Handle bar 1 0.56 0.32 

Handle bar 2 0.32 0.19 

Handle bar 3 2.13 1.32 

Handle bar 4 0.25 0.12 

Handle bar 5 0.62 0.35 

Handle bar 6 0.52 0.3 

Handle bar 7 1.45 1.03 

Handle bar 8 1.14 0.65 

Handle bar 9 0.79 0.42 

Handle bar 10 0.6 0.32 

Handle bar 11 0.49 0.27 

Handle bar 12 0.89 0.49 

Handle bar 13 4.67 2.04 

Handle bar 14 2.84 1.19 

Handle bar 15 6.02 2.56 

Handle bar 16 0.78 0.39 

Handle bar 17 1.34 0.65 

Handle bar 18 0.72 0.32 

Handle bar 19 2.912 1.24 

Handle bar 20 1.45 0.6 

Fork 1 0.93 0.45 

Fork 2 0.42 0.18 

Fork 3 1.335 0.588 

Fork 4 0.65 0.29 

Fork 5 1.02 0.49 

Fork 6 0.32 0.15 

Fork 7 1.34 0.62 

Fork 8 0.45 0.23 

Fork 9 1.25 0.61 

Fork 10 0.39 0.21 

Fork 11 1.19 0.49 

Fork 12 0.34 0.19 

Fork 13 0.69 0.43 

Fork 14 0.39 0.24 

Fork 15 1.23 0.77 

Fork 16 0.43 0.32 

Fork 17 1.43 1.41 

Fork 18 1.23 1.17 

Fork 19 1.53 1.73 

Fork 20 1.29 1.28 

Frame 1 1.42 0.675 

Frame 2 1.19 0.562 

Frame 3 2.32 0.92 
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Frame 4 1.23 0.49 

Frame 5 1.9 0.86 

Frame 6 1.43 0.6 

Frame 7 2.31 1.21 

Frame 8 1.51 0.69 

Frame 9 1.78 0.81 

Frame 10 1.56 0.72 

Frame 11 1.853 0.826 

Frame 12 1.52 0.7 

Frame 13 2.12 1.24 

Frame 14 1.93 1.19 

Frame 15 1.67 0.79 

Frame 16 1.42 0.62 

 

5.3.4 Societal Evaluation of All the Components  

 

5.3.4.1 Customer Satisfaction 

 

As we discuss in the methodology, the Customer Satisfaction Index (CSI) can be 

used to calculate customer satisfaction of each component based on each market segment. 

Customer satisfaction will be different in each market segment because the customer 

requirements are different in diverse markets. The Customer Satisfaction Index can be 

obtained with CSI criteria if we have real data. However, there is no real customer response 

data for this case study. So the data of Customer Satisfaction Index will be assumed here. 

The following tables list the assumed Customer Satisfaction Index of pedals, wheels, 

handle bar, fork, and frame based on different markets.  
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5.3.4.1.1 Customer Satisfaction of Pedals  

Table 14: Customer Satisfaction of Pedals in Different Market 

 Customer satisfaction of pedals 

Pedal Market 1 Market 2 Market 3 Market 4 

Pedal 1 5 6 7 10 

Pedal 2 6 7 10 8 

Pedal 3 9 10 6 6 

Pedal 4 10 8 7 6 

Pedal 5 8 8 8 8 

 

5.3.4.1.2 Customer Satisfaction of Wheel 

Table 15: Customer Satisfaction of Wheels in Different Market 

 Customer satisfaction of wheel 

Wheel Market 1 Market 2 Market 3 Market 4 

Wheel 1 9 10 8 7 

Wheel 2 6 7 10 8 

Wheel 3 10 8 7 6 

Wheel 4 9 8 8 7 

Wheel 5 7 7 7 10 

Wheel 6 7 7 6 9 

 

5.3.4.1.3 Customer Satisfaction of Handle Bar 

Table 16: Customer Satisfaction of Handle Bar in Different Market 

 Customer satisfaction of Handle bar 

Handle bar  Market 1 Market 2 Market 3 Market 4 

Handle bar 1 9 8 7 6 

Handle bar 2 10 8 6 5 

Handle bar 3 6 7 10 9 

Handle bar 4 10 8 7 5 

Handle bar 5 9 10 7 7 

Handle bar 6 9 8 7 6 

Handle bar 7 7 7 10 8 

Handle bar 8 7 8 9 7 

Handle bar 9 8 9 8 7 

Handle bar 10 9 10 7 7 
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Handle bar 11 7 8 10 8 

Handle bar 12 8 9 8 7 

Handle bar 13 5 6 7 10 

Handle bar 14 6 7 9 10 

Handle bar 15 5 6 7 9 

Handle bar 16 9 10 7 6 

Handle bar 17 7 9 8 7 

Handle bar 18 9 10 8 6 

Handle bar 19 6 7 9 10 

Handle bar 20 8 9 8 7 

 

5.3.4.1.4 Customer Satisfaction of Fork 

Table 17: Customer Satisfaction of Fork in Different Market 

 Customer satisfaction of fork 

Fork Market 1 Market 2 Market 3 Market 4 

Fork 1 8 10 9 8 

Fork 2 10 7 7 6 

Fork 3 7 8 10 9 

Fork 4 9 7 8 7 

Fork 5 8 10 9 8 

Fork 6 10 7 7 6 

Fork 7 7 8 10 9 

Fork 8 9 10 8 7 

Fork 9 8 9 10 8 

Fork 10 10 8 7 6 

Fork 11 7 9 10 9 

Fork 12 10 8 7 6 

Fork 13 8 10 9 8 

Fork 14 9 7 7 7 

Fork 15 7 9 10 9 

Fork 16 9 7 8 7 

Fork 17 6 8 9 10 

Fork 18 6 8 9 10 

Fork 19 6 8 9 10 

Fork 20 6 8 9 10 
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5.3.4.1.5 Customer Satisfaction of Frame 

Table 18: Customer Satisfaction of Frame in Different Market 

 Customer satisfaction of frame     

Frame Market 1 Market 2 Market 3 Market 4 

Frame 1 9 10 9 7 

Frame 2 10 8 8 6 

Frame 3 6 8 9 10 

Frame 4 10 8 8 7 

Frame 5 7 8 10 8 

Frame 6 9 9 8 7 

Frame 7 6 7 8 10 

Frame 8 9 9 8 7 

Frame 9 8 9 10 8 

Frame 10 9 10 8 7 

Frame 11 8 8 10 8 

Frame 12 9 9 8 7 

Frame 13 6 7 7 7 

Frame 14 7 7 7 8 

Frame 15 8 10 8 8 

Frame 16 9 10 8 8 

 

5.3.4.2 Safety  

 

Safety metric evaluation is one part of societal metrics evaluation. Safety evaluation 

decide the safety of operator of machines. Each machine has its own safety coefficient. 

This information can be obtained from the factory record of accident rate. One example 

safety coefficient of all the machine that needed to make pedals is shown in Table 19 and 

other data is presented in Appendix C. 10 means that the machine is totally safe and have 

no accident, while 0 means that there are lots of accidents for the machine. 
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Table 19: Safety coefficient of all the machines needed for pedal 

                     Machines Required 

     Data

Safety coefficient 7 7 8 7 6 8 7 7 7 7 7 8
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5.3.4.3 Service 

 

Real service data will be needed to obtain the accurate empirical function. In order 

to simplify our mathematical model proposed in Chapter 4, a linear service empirical 

function is assumed due to the fact that there is no data. The method to get the coefficient 

of the following formula is introduced in methodology. The empirical function of service 

is:  

 SE =  0.96 − 0.022 ∗ Var (76) 

Var is the total number of components in the product family. 

5.3.4.4 Disassemblibility 

 

A linear disassemblibility empirical function is also assumed here to simplify the 

proposed model in Chapter 4. The method to get the following formula also is introduced 

in Methodology. The empirical function of disassemblibility is:  

 DA =  1.06 − 0.032 ∗ Var (77) 

Var is the total number of components in the product family.       
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The empirical function of Service and Disassemblibility are a function of the total 

number of components in the product family. When the number of components in the 

product family increase, the service evaluation and disassemblibility evaluation decrease.            

5.5 Model Formulation of the Case Study 
 

After all data is collected/calculated, this case study is carried out following the 

mathematical model designed with the proposed methodology in Chapter 3. The detailed 

formulation of this case study’s mathematical model is presented in Appendix A.  

5.6 Results 
 

This work utilized IBM ILOG Optimization Studio to solve the mathematical 

model.  The final results of sustainable platform were identified.  The comparison between 

sustainable platform based design and regular platform based design is also discussed in 

the following sub-sections. This model demonstrates what happens to sustainability when 

component sharing is changed.  It also demonstrates what happens to cost and 

environmental and societal factors.  

5.6.1 Sustainable Platform Results 

 

After considering cost, environmental, and societal factors during the optimization 

process, the results of sustainable platform design are shown in Figure 16.  The result show 

that Cast & Machined Mg pedals w/o knurling pedal, Size A3X, Y spoke Carbon Fiber 

wheel, and Al Fork Tapered straight legs with V crown w bolts w threaded steerer are 

chosen as platform by the mathematical model. The detailed information for these 

components are in presented in Table 20. 
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Figure 16: Platform chosen by the sustainable platform configuration design model 

 

Table 20: Sustainable platform configuration design details 

Market 

segment 

Pedal Wheel Fork Handle bar Frame 

Light  Cast & 

Machined Mg 

pedals w/o 

knurling 

Size A3X, 

Y spoke 

Carbon 

Fiber wheel 

Al Fork Tapered 

straight legs with 

V crown w bolts 

w threaded 

steerer 

Al Single piece 

handle bar w/o 

cross bar 

Standard Steel 

Frame with straight 

top tube, straight 

chain/seat stays, 

standard head tube 

Regular 1 Cast & 

Machined Mg 

pedals w/o 

knurling 

Size A3X, 

Y spoke 

Carbon 

Fiber wheel 

Steel Fork Non-

tapered straight 

legs with curved 

crown 

Al Single piece 

handle bar w/o 

cross bar 

Standard Steel 

Frame with straight 

top tube, straight 

chain/seat stays, 

standard head tube 

Regular 2 Cast & 

Machined Mg 

pedals w/o 

knurling 

Size A3X, 

Y spoke 

Carbon 

Fiber wheel 

Steel Fork Non-

tapered straight 

legs with curved 

crown 

Steel Three 

piece handle 

bar w welded 

cross bar & 

tapered handles 

Standard Steel 

Frame with straight 

top tube, straight 

chain/seat stays, 

standard head tube 

Heavy Cast & 

Machined Mg 

pedals w/o 

knurling 

Size A3X, 

Y spoke 

Carbon 

Fiber wheel 

Al Fork Air 

sprung oil-

damped 

Steel Three 

piece handle 

bar w welded 

cross bar & 

tapered handles 

Standard Steel 

Frame with straight 

top tube, straight 

chain/seat stays, 

standard head tube 
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The sustainable platform is pedal, wheel, and frame, which means that the total 

product family will achieve the best sustainability when the pedals, wheels, and frames are 

shared between these different products. 

5.6.2 Comparison of Sustainable Platform Based Design and Regular Platform 

Based Design 

 

Regular platform based design only considers cost in the objective function while 

environmental and societal factors are not considered in objective function and constraints. 

In order to identify the regular platform, a new mathematical model is generated based on 

the mathematical model in Chapter 4 and only cost is considered in the final objective 

function of the model. The original objective function (Equation 78) is changed to cost 

(Equation 79) and the result of regular platform based design on this case study is shown 

in Figure 17. The detailed information of this chosen component is showed in Table 21. 

 Minimize: 𝑍 = w1 ∙ 𝐶/𝐶′ + w2 ∙ 𝐸 − w3 ∙ 𝑆/𝑆′ (78) 

 Minimize: 𝐶 (79) 
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Figure 17: Platform chosen by regular platform based design 

 

Table 21: Regular platform configuration design details 

Market 

segment 

Pedal Wheel Fork Handle bar Frame 

Light  Extruded 

Al pedals 

Size AX, 

Y spoke 

alloy 

wheel 

Al Fork Non-

tapered straight 

legs with curved 

crown 

Al Single piece 

handle bar w/o 

cross bar 

Standard Steel Frame 

with straight top tube, 

straight chain/seat 

stays, standard head 

tube 

Regular 1 Extruded 

Al pedals 

Size AX, 

Y spoke 

alloy 

wheel 

Steel Fork Non-

tapered straight 

legs with curved 

crown 

Al Single piece 

handle bar w/o 

cross bar 

Standard Steel Frame 

with straight top tube, 

straight chain/seat 

stays, standard head 

tube 

Regular 2 Extruded 

Al pedals 

Size AX, 

Y spoke 

alloy 

wheel 

Steel Fork Non-

tapered straight 

legs with flat 

inverted-T crown 

Steel Single piece 

handle bar w/o 

cross bar 

Standard Steel Frame 

with straight top tube, 

straight chain/seat 

stays, oversized head 

tube 

Heavy Extruded 

Al pedals 

Size AX, 

Y spoke 

alloy 

wheel 

Steel Fork Non-

tapered straight 

legs with flat 

inverted-T crown 

Steel Three piece 

handle bar w 

welded cross bar 

& tapered 

handles 

Standard Steel Frame 

with straight top tube, 

straight chain/seat 

stays, oversized head 

tube 
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Comparison of the sustainable platform based design and the regular platform 

design is shown in Table 22. For sustainable platform based design, the cost will increase 

42.3%, environmental impact will decrease 52.5%, and the societal factor remains nearly 

the same as compared to regular platform based design. Cost will have to be sacrificed in 

order to reduce environmental impact.  

There are two reasons why the societal factor is nearly the same across designs.  

First, the weight of societal factors in final objective function of sustainable platform-based 

product family design is 0.1, which is small compared to cost and environmental factors in 

this case study.  To achieve a higher sustainability, societal factors are the least factors that 

will affect sustainability.  As a result, societal factors do not need to change significantly.  

Second, the final objective function of regular platform based design is cost.  In order to 

minimize cost, more components need to be shared.  Sharing more components will 

improve disassemblibility and service.  As a result, some society factors will increase in 

regular platform based design.  Cost will be minimized in regular platform design, which, 

in turn, will maximize some societal factors.  Cost and environmental factors will be 

minimized and societal factors will be maximized in sustainable platform based design.  In 

both designs, all societal factors will be maximized and societal factors will not be changed 

significantly. 

Table 22: Comparison of Sustainable Platform Based Design and Regular Platform 

Design 

Sustainability factors Cost Environment Society 

Regular platform based design 0.2702 0.9750 0.7601 

Sustainable platform based design 0.3844 0.4627 0.7544 

Change +42.3% -52.5% -0.75% 
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5.6.3 Commonality and Sustainability 

  

Component sharing is major feature of platform based design. In order to examine 

the relationship between components sharing and sustainability, more constraints must be 

added to the model to control the number of components shared in the product family. The 

sustainability rating can then be obtained when component sharing is varies from 0 to 5. 

Results are shown in Table 23 and Figure 18. The Z value will decrease as more 

components are shared, which means that when more components are shared, sustainability 

improves (lower score). The components selected for each scenario are shown next (Figure 

18) to each data point. Components are gradually added as the number of platform size is 

increased.  

When more components are shared, fewer components have to be designed with 

more equipment sharing which reduces cost, improves service, and increases 

disassemblibility to yield better societal performance. When four components are shared, 

the model becomes infeasible because the combination of components cannot be found to 

fulfill the weight requirement for different market segments.  

Table 23: Component sharing and Z 

Component sharing 0 1 2 3 4 

Sustainability (Z) 0.32662 0.32663 0.3260 0.3256 Infeasible  
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Figure 18: Component sharing and sustainability (note: sustainability is high when 

Z is low) 

 

Sustainability is combination of environmental, economical, and social factors with 

different weight. When component sharing is changed, it is necessary to separately 

examine what happened to environmental, economic, and societal impact. 

5.6.4 The Relationship between Commonality and Cost  

 

In order to understand the platform better, the relationship between component 

commonality and cost also is investigated.  The final results show that the cost of the 

product family is decreased when more components are shared (Figure 19). The cost 

includes labor costs, energy costs, raw material costs, facility costs, design and 

development, and recycle revenue. As discussed in methodology, labor costs will decrease 

when more components are shared due to the learning curve in the production process. The 

facility cost also will decrease when more components are shared.  

Wheel 

Wheel and frame 

Pedal, Wheel, and Frame 
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Less machines will be needed if more components are shared, and, as a result, the 

factory will not need to buy so many machines with facility cost being saved. Design and 

development costs also decrease as more components are shared. With less components 

needed as more components are shared, less components need to be designed. 

Correspondingly, fewer engineers are needed and less design and development costs are 

incurred.  

In summary, many factors in the cost of the product family are decreased when 

more components are shared. As a result, the total cost is decreased as more components 

are shared.   

 

Figure 19: The relationship between cost and components sharing 

 

5.6.5 Commonality and Environmental  

 

Environmental impact determines if the design fulfills requirements of 

environmental regulations. CO2 emission and energy consumption is one of the primary 



 

84 

 

8
4

 

causes of global warming, a major concern of this century. In order to understand the 

relationship between components sharing and environmental impact, a specific 

optimization is achieved by adjusting the numbers for component sharing in the 

optimization. The relationship is presented in Figure 20. 

 

Figure 20: The relationship between environment and components sharing 

 

Environmental impact will increase as more components are shared. The 

reason behind this occurrence is that environmental impact was not considered when 

more components are shared. Environmental assessment of the product family 

includes CO2 emission and energy consumption evaluation obtained from SimaPro. 

The relationship between components sharing and CO2 emission and energy 

consumption is unknown at this point, and, therefore, is not considered in the model. 

The final objective function of the optimization model is sustainability, a balance of 

cost, environmental factors, and societal factors. The weight of environmental impact 
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is 0.2, very low when compared with cost and societal factors. As a result, the 

environmental factor is scarified in order to obtain better sustainability.  

5.6.6 Commonality and Society  

 

 The relationship between societal factors is also studied here.  The final result is 

shown in Figure 21.  

 

Figure 21: The relationship between societal impact and components sharing 

 

As Figure 21 shows, societal impact will decrease first and then increase as 

more components are shared. There are two potential reasons for this. The societal 

factors include recyclability, service, disassemblibility, safety, and customer 

satisfaction. As discussed in the methodology section, service and disassemblibility 

will be improved when more components are shared, as sharing more components 

means that the worker will be more familiar with all of the products.  
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Factory safety of factory will also be improved as more components are shared 

because less machines will be needed and, as a result, accidents will be less likely to 

occur.  

However, the relationship between recyclability and customer satisfaction and 

components sharing is currently unknown. It is possible that recyclability and 

customer satisfaction will not increase when component sharing increase from 0 to 1, 

while service, disassemblibility, safety do not increase a lot.  The weight of 

recyclability and customer satisfaction in total societal impact is 0.17 and 0.4, 

respectively. As a result, recyclability and customer satisfaction are the major factors 

affecting the final societal evaluation and final societal performance do not increase a 

lot.  

The weight of societal impact is 0.1. So societal factors will be sacrificed in 

order to achieve better sustainability compared with cost and environmental impact. 

As a result, societal impact decrease when component sharing increase from 0 to 1.  

Service, disassembibilty, and safety will greatly increase as more components 

are shared and dominate the societal evaluation. As a result, societal impact increase 

a lot and societal impact will increase when component sharing is larger than 1.  
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6. Conclusions 
 

Many companies consider sustainability when they design products to take into 

account their responsibility for protecting the environment. A large amount of research has 

been conducted to meet this requirement. Yet, sustainable product design has only 

considered single product design and one product design certainly cannot meet the 

requirements of all customers.  To simultaneously meet the requirements of the majority 

of customers and to reduce cost, product family design is an excellent method. However, 

there have been very few research studies conducted to design a product family with 

consideration of total life-cycle sustainability.  

This work provides a mathematical tool to help a company design a product family 

or redesign their product family to identify the components that can be shared and the 

platform to achieve the best total life-cycle sustainability. A mixed integer linear 

mathematical model is built to formulate the optimization problem and identify a 

sustainable platform to address total life-cycle sustainability.  

Research was initiated by choosing metrics that could evaluate activities across the 

total life-cycle (from pre-manufacturing to post use) and from all aspects of the TBL. 

Specifically, economic, environmental, and social factors in pre-manufacturing, 

manufacturing, use, and post use stages were considered in the model. Several methods 

have been proposed to solve the problem. First, it is very difficult to evaluate environmental 

impact with no related data. This work utilized LCA software, SimaPro, to obtain the CO2 

emissions and energy consumption of all the manufacturing processes for all available 

components. Second, manufacturing cost will be reduced if more components are shared, 
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which is a key characteristic of product family design. Learning curve was utilized to 

examine manufacturing costs when components are shared. Third, CSI can be used to 

evaluate customer satisfaction for components of individual products. This work modified 

the CSI and used it to evaluate customer satisfaction for components based on different 

markets. Fourth, in order to consider what happens to some societal factors when more 

components are shared, specifically disassemblability and service, an empirical function is 

introduced in the model. Sustainability is then formulated as a multi-objective optimization 

problem to increase economic impact, reduce environmental impact, and increase societal 

impact. Economic, environmental, and societal factors have different units, so these factors 

cannot be directly added together. In response, normalization is used with all the factors 

that have different units. Finally, this work used the AHP method to obtain all weights of 

different factors and proposed to use the weight sum method to solve the multi-objective 

optimization problem. The optimal product family platform configuration was determined 

by ILOG OPL optimization software. 

A case study was used to demonstrate the effectiveness of the proposed model. The 

sustainable product platform was identified by the model and was compared with the 

regular platform. Results of interest include the following: 

 Cost will increase in order to get high sustainability  

 Sharing more components will improve sustainability  
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7. Future Work 
 

This research is only in its initial stages and the model is not perfect. Much more 

work is needed to yield improvement in the future. The potential future works are listed as 

follows.  

1. More metrics should be considered for a comprehensive sustainability evaluation. 

This work only considered cost as the economic factor and more economic factors 

need to be studied to represent the true economic impact of the product family. 

SimaPro could import more environmental related data from the manufacturing 

processes of all components. This data can then be used in the mathematical model. 

Because of the limited scope of this research, only CO2 emissions and energy 

consumption were considered to evaluate environmental impact.  

2. Better market segmentation strategies need to be initiated to understand what 

customers genuinely want from products. The weight of every bicycle was 

identified as the primary customer requirement for the market segment in this work. 

Real sales data can be obtained to analyze the actual preferences of different 

customers.  

3. Product family design methodology could be improved. There is much research in 

product family design and many methodologies and tools have been developed, for 

example, two stages approach, multi-stage approach. New research can be done 

with implementation of all of these methodologies and focus on sustainability. 

MILP is used to solve this mathematical model in the thesis, and new optimization 

algorithm can be used to solve the problem. 



 

90 

 

9
0

 

4. The number of products needed in each market segment was an assumption in this 

work, but using a forecasted demand function to obtain the number of needed 

products could be a promising approach for future research. 

5.  An empirical function of service factors and disassemblability is assumed in this 

paper. Different industries and companies will have different service and 

disassemblability coefficients. Real data and corresponding suitable statistical 

methods will be very helpful in determining a more accurate empirical function. 

More accurate service and disassemblability evaluation can then be conducted. 

6. Weighted sum methods were utilized to solve the multi-objective optimization 

problem and AHP method was used to obtain the weight of different factors. Other 

multi-objective optimization methods and the weights of criteria (e.g. Borda Count) 

could be employed. 
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 Detail Formulation of the Case Study 

Objective function 

𝑚𝑖𝑛:     𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑤1 ∗ 𝐶/𝐶′ + 𝑤2 ∗ 𝐸 − 𝑤3 ∗ 𝑆/𝑆′  

Where 𝐶 = 𝐶𝑅 + 𝐶𝑜𝑑𝑑 + 𝐶𝐹 + 𝐶𝑃 − 𝑅𝑅  

𝐶𝑅 = 𝐶𝑅𝑝𝑒𝑑𝑎𝑙 + 𝐶𝑅𝑊ℎ𝑒𝑒𝑙 + 𝐶𝑅ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝑅𝑓𝑜𝑟𝑘 + 𝐶𝑅𝑓𝑟𝑎𝑚𝑒  

𝐶𝑅𝑝𝑒𝑑𝑎𝑙 = ∑ (𝑁𝑖 ∗ (∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗
5
𝑗=1 ∗ 𝑊𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ 𝐶𝑝𝑒𝑑𝑎𝑙,𝑗

4
𝑖=1 ))   

𝐶𝑅𝑊ℎ𝑒𝑒𝑙 = ∑ (𝑁𝑖 ∗ (∑ 𝑏𝑊ℎ𝑒𝑒𝑙,𝑖,𝑗
6
𝑗=1 ∗ 𝑊𝑊ℎ𝑒𝑒𝑙,𝑗 ∗ 𝐶𝑊ℎ𝑒𝑒𝑙,𝑗

4
𝑖=1 ))  

𝐶𝑅ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ (𝑁𝑖 ∗ (∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗
20
𝑗=1 ∗ 𝑊ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ 𝐶ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗

4
𝑖=1 ))   

𝐶𝑅𝑓𝑜𝑟𝑘 = ∑ (𝑁𝑖 ∗ (∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗
20
𝑗=1 ∗ 𝑊𝑓𝑜𝑟𝑘,𝑗 ∗ 𝐶𝑓𝑜𝑟𝑘,𝑗

4
𝑖=1 ))   

𝐶𝑅𝑓𝑟𝑎𝑚𝑒 = ∑ (𝑁𝑖 ∗ (∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗
16
𝑗=1 ∗ 𝑊𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ 𝐶𝑓𝑟𝑎𝑚𝑒,𝑗

4
𝑖=1 ))  𝐶𝑜𝑑𝑑 = 𝐶𝑜𝑑𝑑𝑝𝑒𝑑𝑎𝑙 +

𝐶𝑜𝑑𝑑𝑊ℎ𝑒𝑒𝑙 + 𝐶𝑜𝑑𝑑ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝑜𝑑𝑑𝑓𝑜𝑟𝑘 + 𝐶𝑜𝑑𝑑𝑓𝑟𝑎𝑚𝑒 

𝐶𝑜𝑑𝑑𝑝𝑒𝑑𝑎𝑙 = ∑ (𝑏𝑝𝑒𝑑𝑎𝑙,1,𝑗
5
𝑗=1 ∪. . 𝑏𝑝𝑒𝑑𝑎𝑙,3,𝑗) ∗ 𝐶𝑜𝑑𝑑𝑝𝑒𝑑𝑎𝑙,𝑗  

𝐶𝑜𝑑𝑑𝑤ℎ𝑒𝑒𝑙 = ∑ (𝑏𝑤ℎ𝑒𝑒𝑙,1,𝑗
6
𝑗=1 ∪. . 𝑏𝑤ℎ𝑒𝑒𝑙,3,𝑗) ∗ 𝐶𝑜𝑑𝑑𝑤ℎ𝑒𝑒𝑙,𝑗  

𝐶𝑜𝑑𝑑ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ (𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,1,𝑗
20
𝑗=1 ∪. . 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,3,𝑗) ∗ 𝐶𝑜𝑑𝑑ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗  

𝐶𝑜𝑑𝑑𝑓𝑜𝑟𝑘 = ∑ (𝑏𝑓𝑜𝑟𝑘,1,𝑗
20
𝑗=1 ∪. . 𝑏𝑓𝑜𝑟𝑘,3,𝑗) ∗ 𝐶𝑜𝑑𝑑𝑓𝑜𝑟𝑘,𝑗  

𝐶𝑜𝑑𝑑𝑓𝑟𝑎𝑚𝑒 = ∑ (𝑏𝑓𝑟𝑎𝑚𝑒,1,𝑗
16
𝑗=1 ∪. . 𝑏𝑓𝑟𝑎𝑚𝑒,3,𝑗) ∗ 𝐶𝑜𝑑𝑑𝑓𝑟𝑎𝑚𝑒,𝑗  

𝐶𝐹 = 𝐶𝐹𝑝𝑒𝑑𝑎𝑙 + 𝐶𝐹𝑊ℎ𝑒𝑒𝑙 + 𝐶𝐹ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝐹𝑓𝑜𝑟𝑘 + 𝐶𝐹𝑓𝑟𝑎𝑚𝑒  
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2

 

𝐶𝐹𝑝𝑒𝑑𝑎𝑙 = ∑ 𝐶𝐸𝑝𝑒𝑑𝑎𝑙,𝑘 ∗ (𝑏𝑚𝑝𝑒𝑑𝑎𝑙,1,𝑘
12
𝑘=1 ∪. . 𝑏𝑚𝑝𝑒𝑑𝑎𝑙,3,𝑘)  

𝐶𝐹𝑤ℎ𝑒𝑒𝑙 = ∑ 𝐶𝐸𝑤ℎ𝑒𝑒𝑙,𝑘 ∗ (𝑏𝑚𝑤ℎ𝑒𝑒𝑙,1,𝑘
13
𝑘=1 ∪. . 𝑏𝑚𝑤ℎ𝑒𝑒𝑙,3,𝑘)  

𝐶𝐹𝑓𝑜𝑟𝑘 = ∑ 𝐶𝐸𝑓𝑜𝑟𝑘,𝑘 ∗ (𝑏𝑚𝑓𝑜𝑟𝑘,1,𝑘
28
𝑘=1 ∪. . 𝑏𝑚𝑓𝑜𝑟𝑘,3,𝑘)  

𝐶𝐹ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ 𝐶𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑘 ∗ (𝑏𝑚ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,1,𝑘
20
𝑘=1 ∪. . 𝑏𝑚ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,3,𝑘)  

𝐶𝐹𝑓𝑟𝑎𝑚𝑒 = ∑ 𝐶𝐸𝑓𝑟𝑎𝑚𝑒,𝑘 ∗ (𝑏𝑚𝑓𝑟𝑎𝑚𝑒,1,𝑘
27
𝑘=1 ∪. . 𝑏𝑚𝑓𝑟𝑎𝑚𝑒,3,𝑘)  

𝐶𝑃 = 𝐸𝐶 + 𝐿𝐶  

𝐸𝐶 = 𝐸𝑛𝑒 ∗ 𝐸𝐶𝐻  

𝐿𝐶 = 𝐿𝐶𝑝𝑒𝑑𝑎𝑙 + 𝐿𝐶𝑊ℎ𝑒𝑒𝑙 + 𝐿𝐶ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐿𝐶𝑓𝑜𝑟𝑘 + 𝐿𝐶𝑓𝑟𝑎𝑚𝑒  

𝐿𝐶𝑝𝑒𝑑𝑎𝑙 = ∑ ((𝐵𝑝𝑒𝑑𝑎𝑙,𝑗 − 𝐴𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ (∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖)) ∗ (∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗3

𝑖=1 𝑁𝑖) ∗5
𝑗=1

𝐿𝐶𝐻)  

𝐿𝐶𝑤ℎ𝑒𝑒𝑙 = ∑ ((𝐵𝑤ℎ𝑒𝑒𝑙,𝑗 − 𝐴𝑤ℎ𝑒𝑒𝑙,𝑗 ∗ (∑ 𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖)) ∗ (∑ 𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗3

𝑖=1 𝑁𝑖) ∗6
𝑗=1

𝐿𝐶𝐻)  

𝐿𝐶ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ((𝐵ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 − 𝐴ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ (∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖)) ∗20

𝑗=1

(∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖) ∗ 𝐿𝐶𝐻)  

𝐿𝐶𝑓𝑜𝑟𝑘 = ∑ ((𝐵𝑓𝑜𝑟𝑘,𝑗 − 𝐴𝑓𝑜𝑟𝑘,𝑗 ∗ (∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖)) ∗ (∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗3

𝑖=1 𝑁𝑖) ∗ 𝐿𝐶𝐻)20
𝑗=1   
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3

 

𝐿𝐶𝑓𝑟𝑎𝑚𝑒 = ∑ ((𝐵𝑓𝑟𝑎𝑚𝑒,𝑗 − 𝐴𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ (∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗3
𝑖=1 𝑁𝑖)) ∗ (∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗3

𝑖=1 𝑁𝑖) ∗16
𝑗=1

𝐿𝐶𝐻)  

𝐸 = 𝑤𝑒1 ∗ 𝐸𝑛𝑒/𝐸𝑛𝑒′ + 𝑤𝑒2 ∗ 𝐶𝑂𝐸/𝐶𝑂𝐸′  

𝐶𝑂𝐸 = 𝐶𝑂𝐸𝑝𝑒𝑑𝑎𝑙 + 𝐶𝑂𝐸𝑊ℎ𝑒𝑒𝑙 + 𝐶𝑂𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝑂𝐸𝑓𝑜𝑟𝑘 + 𝐶𝑂𝐸𝑓𝑟𝑎𝑚𝑒  

𝐶𝑂𝐸𝑝𝑒𝑑𝑎𝑙 = ∑ ∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗5
𝑗=1 𝑊𝑝𝑒𝑑𝑎𝑙,𝑗

3
𝑖=1 ∗ 𝐶𝑂𝐸𝑟𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ 𝑁𝑖   

𝐶𝑂𝐸𝑤ℎ𝑒𝑒𝑙 = ∑ ∑ 𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗6
𝑗=1 𝑊𝑤ℎ𝑒𝑒𝑙,𝑗

3
𝑖=1 ∗ 𝐶𝑂𝐸𝑟𝑤ℎ𝑒𝑒𝑙,𝑗 ∗ 𝑁𝑖   

𝐶𝑂𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗20
𝑗=1 𝑊ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗

3
𝑖=1 ∗ 𝐶𝑂𝐸𝑟ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ 𝑁𝑖   

𝐶𝑂𝐸𝑓𝑜𝑟𝑘 = ∑ ∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗20
𝑗=1 𝑊𝑓𝑜𝑟𝑘,𝑗

3
𝑖=1 ∗ 𝐶𝑂𝐸𝑟𝑓𝑜𝑟𝑘,𝑗 ∗ 𝑁𝑖   

𝐶𝑂𝐸𝑓𝑟𝑎𝑚𝑒 = ∑ ∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗16
𝑗=1 𝑊𝑓𝑟𝑎𝑚𝑒,𝑗

3
𝑖=1 ∗ 𝐶𝑂𝐸𝑟𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ 𝑁𝑖   

𝐸𝑛𝑒 = 𝐸𝑛𝑒𝑝𝑒𝑑𝑎𝑙 + 𝐸𝑛𝑒𝑊ℎ𝑒𝑒𝑙 + 𝐸𝑛𝑒ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐸𝑛𝑒𝑓𝑜𝑟𝑘 + 𝐸𝑛𝑒𝑓𝑟𝑎𝑚𝑒  

𝐸𝑛𝑒𝑝𝑒𝑑𝑎𝑙 = ∑ ∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗5
𝑗=1 𝑊𝑝𝑒𝑑𝑎𝑙,𝑗

3
𝑖=1 ∗ 𝐸𝑛𝑒𝑟𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ 𝑁𝑖   

𝐸𝑛𝑒𝑤ℎ𝑒𝑒𝑙 = ∑ ∑ 𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗6
𝑗=1 𝑊𝑤ℎ𝑒𝑒𝑙,𝑗

3
𝑖=1 ∗ 𝐸𝑛𝑒𝑟𝑤ℎ𝑒𝑒𝑙,𝑗 ∗ 𝑁𝑖   

𝐸𝑛𝑒ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗20
𝑗=1 𝑊ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗

3
𝑖=1 ∗ 𝐸𝑛𝑒𝑟ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ 𝑁𝑖   

𝐸𝑛𝑒𝑓𝑜𝑟𝑘 = ∑ ∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗20
𝑗=1 𝑊𝑓𝑜𝑟𝑘,𝑗

3
𝑖=1 ∗ 𝐸𝑛𝑒𝑟𝑓𝑜𝑟𝑘,𝑗 ∗ 𝑁𝑖  

𝐸𝑛𝑒𝑓𝑟𝑎𝑚𝑒 = ∑ ∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗16
𝑗=1 𝑊𝑓𝑟𝑎𝑚𝑒,𝑗

3
𝑖=1 ∗ 𝐸𝑛𝑒𝑟𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ 𝑁𝑖  

𝑆 =  wcs ∗  CS +  wse ∗  SE +  wsa ∗  SA +  wda ∗  DA +  wre ∗  RE  

𝐶𝑆 = (𝐶𝑆𝑝𝑒𝑑𝑎𝑙 + 𝐶𝑆𝑊ℎ𝑒𝑒𝑙 + 𝐶𝑆ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝑆𝑓𝑜𝑟𝑘 + 𝐶𝑆𝑓𝑟𝑎𝑚𝑒)/(𝑛𝑐 × 10 ∗ ∑ 𝑁𝑖
3
𝑖=1 )  
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𝐶𝑆𝑝𝑒𝑑𝑎𝑙 = ∑ ∑ 𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 𝐶𝑆𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗ 𝑁𝑖   

𝐶𝑆𝑤ℎ𝑒𝑒𝑙 = ∑ ∑ 𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗6
𝑗=1

3
𝑖=1 𝐶𝑆𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗ 𝑁𝑖  

𝐶𝑆ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ∑ 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗20
𝑗=1

3
𝑖=1 𝐶𝑆ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗ 𝑁𝑖  

𝐶𝑆𝑓𝑜𝑟𝑘 = ∑ ∑ 𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗20
𝑗=1

3
𝑖=1 𝐶𝑆𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗ 𝑁𝑖   

𝐶𝑆𝑓𝑟𝑎𝑚𝑒 = ∑ ∑ 𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗20
𝑗=1

3
𝑖=1 𝐶𝑆𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗ 𝑁𝑖   

𝑆𝐸 = 𝛼 − 𝛽 ∗ 𝐶𝑁  

𝐶𝑁 = 𝐶𝑁𝑝𝑒𝑑𝑎𝑙 + 𝐶𝑁𝑊ℎ𝑒𝑒𝑙 + 𝐶𝑁ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝐶𝑁𝑓𝑜𝑟𝑘 + 𝐶𝑁𝑓𝑟𝑎𝑚𝑒  

𝐶𝑁𝑝𝑒𝑑𝑎𝑙 = ∑ (𝑏𝑝𝑒𝑑𝑎𝑙,1,𝑗
5
𝑗=1 ∪. . 𝑏𝑝𝑒𝑑𝑎𝑙,3,𝑗)  

𝐶𝑁𝑤ℎ𝑒𝑒𝑙 = ∑ (𝑏𝑤ℎ𝑒𝑒𝑙,1,𝑗
6
𝑗=1 ∪. . 𝑏𝑤ℎ𝑒𝑒𝑙,3,𝑗)  

𝐶𝑁ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ (𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,1,𝑗
20
𝑗=1 ∪. . 𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,3,𝑗)  

𝐶𝑁𝑓𝑜𝑟𝑘 = ∑ (𝑏𝑓𝑜𝑟𝑘,1,𝑗
20
𝑗=1 ∪. . 𝑏𝑓𝑜𝑟𝑘,3,𝑗)  

𝐶𝑁𝑓𝑟𝑎𝑚𝑒 = ∑ (𝑏𝑓𝑟𝑎𝑚𝑒,1,𝑗
16
𝑗=1 ∪. . 𝑏𝑓𝑟𝑎𝑚𝑒,3,𝑗)  

𝑆𝐴 = (𝑆𝐴𝑝𝑒𝑑𝑎𝑙 + 𝑆𝐴𝑊ℎ𝑒𝑒𝑙 + 𝑆𝐴ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝑆𝐴𝑓𝑜𝑟𝑘 + 𝑆𝐴𝑓𝑟𝑎𝑚𝑒)/(∑ 𝑁𝑖
3
𝑖=1 ×

(∑ 𝑛𝑚
𝑘5

𝑘=1 ) × 9)  

𝑆𝐴𝑝𝑒𝑑𝑎𝑙 = ∑ 𝑁𝑖 ∗ (∑ (𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 ∑ (𝑏𝑏𝑝𝑒𝑑𝑎𝑙,𝑗,𝑘

12
𝑘=1 ∗ 𝑆𝐴𝑝𝑒𝑑𝑎𝑙,𝑘)))  

𝑆𝐴𝑤ℎ𝑒𝑒𝑙 = ∑ 𝑁𝑖 ∗ (∑ (𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 ∑ (𝑏𝑏𝑤ℎ𝑒𝑒𝑙,𝑗,𝑘

13
𝑘=1 ∗ 𝑆𝐴𝑤ℎ𝑒𝑒𝑙,𝑘)))  

𝑆𝐴ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ 𝑁𝑖 ∗ (∑ (𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 ∑ (𝑏𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗,𝑘

28
𝑘=1 ∗ 𝑆𝐴ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑘)))  
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𝑆𝐴𝑓𝑜𝑟𝑘 = ∑ 𝑁𝑖 ∗ (∑ (𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 ∑ (𝑏𝑏𝑓𝑜𝑟𝑘,𝑗,𝑘

20
𝑘=1 ∗ 𝑆𝐴𝑓𝑜𝑟𝑘,𝑘)))  

𝑆𝐴𝑓𝑟𝑎𝑚𝑒 = ∑ 𝑁𝑖 ∗ (∑ (𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗5
𝑗=1

3
𝑖=1 ∑ (𝑏𝑏𝑓𝑟𝑎𝑚𝑒,𝑗,𝑘

27
𝑘=1 ∗ 𝑆𝐴𝑓𝑟𝑎𝑚𝑒,𝑘)))  

𝐷𝐴 = μ − ν ∗ 𝐶𝑁  

𝑅𝐸 = (𝑅𝐸𝑝𝑒𝑑𝑎𝑙 + 𝑅𝐸𝑊ℎ𝑒𝑒𝑙 + 𝑅𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝑅𝐸𝑓𝑜𝑟𝑘 + 𝑅𝐸𝑓𝑟𝑎𝑚𝑒)/ (𝑛𝑐 ∗ ∑ 𝑁𝑖
3
𝑖=1 )  

𝑅𝐸𝑝𝑒𝑑𝑎𝑙 = ∑ ∑ (𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗
5
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ 𝑁𝑖)  

𝑅𝐸𝑤ℎ𝑒𝑒𝑙 = ∑ ∑ (𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗
6
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑤ℎ𝑒𝑒𝑙,𝑗 ∗ 𝑁𝑖)  

𝑅𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ∑ (𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗
20
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ 𝑁𝑖)  

𝑅𝐸𝑓𝑜𝑟𝑘 = ∑ ∑ (𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗
20
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑓𝑜𝑟𝑘,𝑗 ∗ 𝑁𝑖)  

𝑅𝐸𝑓𝑟𝑎𝑚𝑒 = ∑ ∑ (𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗
20
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ 𝑁𝑖)  

𝑅𝑅 = 𝑅𝑅𝑝𝑒𝑑𝑎𝑙 + 𝑅𝑅𝑊ℎ𝑒𝑒𝑙 + 𝑅𝑅ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 + 𝑅𝑅𝑓𝑜𝑟𝑘 + 𝑅𝑅𝑓𝑟𝑎𝑚𝑒  

𝑅𝑅𝑝𝑒𝑑𝑎𝑙 = ∑ ∑ (𝑏𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗
5
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑝𝑒𝑑𝑎𝑙,𝑗 ∗ 𝑊𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗 ∗ 𝐶𝑝𝑒𝑑𝑎𝑙,𝑖,𝑗1 ∗ 𝑁𝑖)  

𝑅𝑅𝑤ℎ𝑒𝑒𝑙 = ∑ ∑ (𝑏𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗
6
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑤ℎ𝑒𝑒𝑙,𝑗 ∗ 𝑊𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗 ∗ 𝐶𝑤ℎ𝑒𝑒𝑙,𝑖,𝑗1 ∗ 𝑁𝑖)  

𝑅𝑅ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟 = ∑ ∑ (𝑏ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗
20
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑗 ∗ 𝑊ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗 ∗

𝐶ℎ𝑎𝑛𝑑𝑙𝑒 𝑏𝑎𝑟,𝑖,𝑗1 ∗ 𝑁𝑖)  

𝑅𝑅𝑓𝑜𝑟𝑘 = ∑ ∑ (𝑏𝑓𝑜𝑟𝑘,𝑖,𝑗
20
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑓𝑜𝑟𝑘,𝑗 ∗ 𝑊𝑓𝑜𝑟𝑘,𝑖,𝑗 ∗ 𝐶𝑓𝑜𝑟𝑘,𝑖,𝑗1 ∗ 𝑁𝑖)  

𝑅𝑅𝑓𝑟𝑎𝑚𝑒 = ∑ ∑ (𝑏𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗
16
𝑗=1

3
𝑖=1 ∗ 𝑅𝐸𝑓𝑟𝑎𝑚𝑒,𝑗 ∗ 𝑊𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗 ∗ 𝐶𝑓𝑟𝑎𝑚𝑒,𝑖,𝑗1 ∗ 𝑁𝑖)  
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 The Manufacturing Process of All the Components 

Appendix B1 Frame Feature-Options Available with MyBike 

                     Machines Required 

      Frame Options

1 Al Frame with curved top tube, curved chain/seat stays, oversized head tube X X X X X X X  X X X

2 Ti Frame with curved top tube, curved chain/seat stays, oversized head tube  X X X X X X X  X X

3 Steel Frame with curved top tube, curved chain/seat stays, oversized head tube  X X X X X X X  X X X

4 Carbon Fiber Frame with curved top tube, curved chain/seat stays, oversized head tube     X X X X

5 Standard Al Frame with straight top tube, straight chain/seat stays, oversized head tube X X X X X  X X X

6 Standard Ti Frame with straight top tube, straight chain/seat stays, oversized head tube  X X X X X  X X

7 Standard Steel Frame with straight top tube, straight chain/seat stays, oversized head tube   X X X X X  X X X

8 Standard Carbon Fiber Frame with straight top tube, straight chain/seat stays, oversized head tube     X X X X

9 Standard Al Frame with straight top tube, straight chain/seat stays, standard head tube X X X X X  X X X

10 Standard Ti Frame with straight top tube, straight chain/seat stays, standard head tube  X X X X X  X X

11 Standard Steel Frame with straight top tube, straight chain/seat stays, standard head tube   X X X X X  X X X

12 Standard Carbon Fiber Frame with straight top tube, straight chain/seat stays, standard head tube    X X X X

13 Al Crosstrac Suspension Frame X X X X X X X X

14 Carbon Fiber Crosstrac Suspension Frame X X X X X X X

15 Al Softride Power V Frame X X X X X X X

16 Carbon Fiber Softride Power V Frame X X X X
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Appendix B2 Fork Feature-Options Available With MyBike 

                     Machines Required 

      Fork Options

1 Al Fork Non-tapered straight legs with curved crown X X X X X X X

2 Ti Fork Non-tapered straight legs with curved crown X X X X X X

3 Steel Fork Non-tapered straight legs with curved crown X X X X X X X

4 Carbon Fiber Fork Non-tapered straight legs with curved crown X X X X

5 Al Fork Non-tapered straight legs with flat inverted-T crown X X X X X X X X

6 Ti Fork Non-tapered straight legs with flat inverted-T crown X X X X X X X

7 Steel Fork Non-tapered straight legs with flat inverted-T crown X X X X X X X X

8 Carbon Fiber Fork Non-tapered straight legs with flat inverted-T crown X X X X

9 Al Fork Tapered straight legs with V crown w/o bolts w threaded steerer X X X X X X X X

10 Ti Fork Tapered straight legs with V crown w/o bolts w threaded steerer X X X X X X X X

11 Steel Fork Tapered straight legs with V crown w/o bolts w threaded steerer X X X X X X X X X

12 Carbon Fiber Fork Tapered straight legs with V crown w/o bolts w threaded steerer X X X X X

13 Al Fork Tapered straight legs with V crown w bolts w threaded steerer X X X X X X X X X

14 Ti Fork Tapered straight legs with V crown w bolts w threaded steerer X X X X X X X X

15 Steel Fork Tapered straight legs with V crown w bolts w threaded steerer X X X X X X X X X X

16 Carbon Fiber Fork Tapered straight legs with V crown w bolts w threaded steerer X X X X X

17 Al Fork Air sprung oil-damped X X X X X X X X X

18 Ti Fork Air sprung oil-damped X X X X X X X X

19 Steel Fork Air sprung oil-damped X X X X X X X X X

20 Carbon Fiber Fork Air sprung oil-damped X X X X
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Appendix B3 Handle Bar Feature-Options Available With MyBike 

                     Machines Required 

    Handle Bar Options

1 Al Single piece handle bar w/o cross bar X X X X X

2 Ti Single piece handle bar w/o cross bar X X X X

3 Steel Single piece handle bar w/o cross bar X X X X X

4 Carbon Fiber Single piece handle bar w/o cross bar X X X X

5 Al Single piece handle bar w bolted cross bar X X X X X X

6 Ti Single piece handle bar w bolted cross bar X X X X X

7 Steel Single piece handle bar w bolted cross bar X X X X X X

8 Carbon Fiber Single piece handle bar w bolted cross bar X X X X

9 Al Single piece handle bar w welded cross bar X X X X X X

10 Ti Single piece handle bar w welded cross bar X X X X X

11 Steel Single piece handle bar w welded cross bar X X X X X X

12 Carbon Fiber Single piece handle bar w cross bar X X X X

13 Al Three piece handle bar w welded cross bar & tapered handles X X X X X X

14 Ti Three piece handle bar w welded cross bar& tapered handles X X X X X

15 Steel Three piece handle bar w welded cross bar & tapered handles X X X X X X

16 Carbon Fiber Three piece handle bar w cross bar & tapered handles X X X X

17 Al Double bent Two piece handle bar X X X X X

18 Ti Double bent Two piece handle bar X X X X X

19 Steel Double bent Two piece handle bar X X X X X

20 Carbon Fiber Double bent Two piece handle bar X X X X
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Appendix B4 Wheel Feature-Options Available with MyBike 

                     Machines Required 

      Wheel Options

1 Size AX, Y spoke alloy wheel X X X X X X X

2 Size BX, Y spoke alloy wheel X X X X X X X

3 Size A3X, Y spoke Carbon Fiber wheel X X X X X

4 Size B3X, Y spoke Carbon Fiber wheel X X X X X

5 Size A3X  spokeless Carbon Fiber  wheel X X X X

6 Size B3X  spokeless Carbon Fiber  wheel X X X X
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Appendix B5 Pedal Feature-Options Available with MyBike 
 

                     Machines Required 

      Pedal Options

1 Cast & Machined Al pedals w/o knurling X X X X

2 Cast & Machined Al pedals w knurling X X X X X

3 Cast & Machined Mg pedals w/o knurling X X X X

4 Extruded Al pedals X X X

5 Plastic pedals X X X X
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 The other dataset  

Appendix C1 Recyclability, Manufacturing Time, and Development Cost of 

all the components  
Components Recyclability  Manufacturing 

Time(h) 

Development 

Cost ($) 

Pedal 1 0.75 0.1 10000 

Pedal 2 0.75 0.12 15000 

Pedal 3 0.71 0.1 13000 

Pedal 4 0.75 0.08 15600 

Pedal 5 0.8 0.08 10000 

Wheel 1 0.7 0.13 20000 

Wheel 2 0.7 0.14 21000 

Wheel 3 0.5 0.21 24000 

Wheel 4 0.5 0.23 24300 

Wheel 5 0.5 0.28 27000 

Wheel 6 0.5 0.31 28000 

Handle bar 1 0.75 0.15 18000 

Handle bar 2 0.82 0.2 22000 

Handle bar 3 0.72 0.15 13400 

Handle bar 4 0.5 0.22 20000 

Handle bar 5 0.75 0.18 20000 

Handle bar 6 0.82 0.23 24000 

Handle bar 7 0.72 0.18 15000 

Handle bar 8 0.5 0.28 21000 

Handle bar 9 0.75 0.2 19000 

Handle bar 10 0.82 0.25 23000 

Handle bar 11 0.72 0.2 14000 

Handle bar 12 0.5 0.3 21000 

Handle bar 13 0.75 0.34 24000 

Handle bar 14 0.82 0.41 26000 

Handle bar 15 0.72 0.34 17000 

Handle bar 16 0.5 0.49 24000 

Handle bar 17 0.75 0.31 28000 

Handle bar 18 0.82 0.45 30000 

Handle bar 19 0.72 0.29 20000 

Handle bar 20 0.5 0.47 25000 

Fork 1 0.75 0.32 20000 

Fork 2 0.82 0.48 23000 

Fork 3 0.72 0.33 15000 

Fork 4 0.5 0.51 22000 
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Fork 5 0.75 0.34 21000 

Fork 6 0.82 0.49 24000 

Fork 7 0.72 0.35 16000 

Fork 8 0.5 0.5 24000 

Fork 9 0.75 0.35 22000 

Fork 10 0.82 0.55 25000 

Fork 11 0.72 0.38 17000 

Fork 12 0.5 0.56 24000 

Fork 13 0.75 0.36 26000 

Fork 14 0.82 0.52 28000 

Fork 15 0.72 0.35 18000 

Fork 16 0.5 0.59 27000 

Fork 17 0.75 0.45 30000 

Fork 18 0.82 0.65 35000 

Fork 19 0.72 0.48 30000 

Fork 20 0.5 0.7 34000 

Frame 1 0.75 0.48 35000 

Frame 2 0.82 0.68 40000 

Frame 3 0.72 0.45 30000 

Frame 4 0.5 0.7 37000 

Frame 5 0.75 0.42 32000 

Frame 6 0.82 0.63 37000 

Frame 7 0.72 0.41 28000 

Frame 8 0.5 0.62 34000 

Frame 9 0.75 0.39 30000 

Frame 10 0.82 0.6 34000 

Frame 11 0.72 0.35 25000 

Frame 12 0.5 0.62 30010 

Frame 13 0.75 0.54 43000 

Frame 14 0.5 0.72 47000 

Frame 15 0.75 0.5 48000 

Frame 16 0.5 0.7 52000 
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Appendix C2 Questionnaire for AHP 

Identifying Factors for Sustainability Assessment for Bicycle configuration  

1. Sustainability Assessment  

Sustainability includes economic, environmental and societal factors. If you want to design 

a sustainable bicycle, which factor would you give weight to? Economic factors include 

cost of raw material, cost of design and development, cost of facility, labor cost and energy 

cost.  Environmental factors include CO2 emission and energy consumption. Societal 

factors includes customer satisfaction, service, safety, disassemblability, and recyclability 

Please pick a number and circle it to represent their importance when compared pairwise. 

 
Economic 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Environmental 

Economic 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Societal 

Environmental 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Societal 

 

2. Societal Sustainability Assessment  

Societal factors include customer satisfaction, service, safety, disassemblability, and 

recyclability. Which factor do you think is more important in these societal factors? You 

are required to identify the relative importance of these factors. 

Please pick a number and circle it to represent their importance when compared pairwise. 

 
Customer 

satisfaction 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Service 

Customer 

satisfaction 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Safety 

Customer 

satisfaction 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Disassembly 

Customer 

satisfaction 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Recyclability 

Service 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Safety 

Service 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Disassembly 

Service 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Recyclability 

Safety  9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Disassembly 

Safety 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Recyclability 

Disassembly 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Recyclability 

Table 24.  The Fundamental Scale for Making Judgments 

1 Equal 
2 Between Equal and Moderate 
3 Moderate 
4 Between Moderate and Strong 
5 Strong 
6 Between Strong and Very Strong 
7 Very Strong 
8 Between Very Strong and Extreme 
9 Extreme 
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Appendix C3 Other Data for The Manufacturing Process of All the Components 

                  Machines Required 

  Variable (Frame) 

1 Productivity(1000)/day 3 2.8 3 3.4 2.9 3.4 4 3.2 2.9 4 1.9 2.5 3.4 2.3 4.3 2.1 3.5 2.4 5.2 3.4 2.4 3.4 2 2.4 3.4 3.1 4

2 Cost of the machine(10000$) 1 2 1 2 3.2 2 1.8 3 1.8 3.2 2 1.8 1.3 3 4.5 2.5 3.8 1.7 5 3.5 3 3.9 1.5 2.8 1 2 1.6

3 Safety coefficient 9 8 9 8 7 8 7 6 7 7 8 7 8 7 6 7 7 9 8 8 8 9 9 8 8 8 8
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                     Machines Required 

  Variable (Fork)

1 Productivity(1000)/day 3 2.8 3 3.4 2.9 3.4 4 3.2 2 1.9 3.2 3.8 4 2 1.3 2.4 3.1 2.5 2.9 3 3.1 2.3 3 3.2 2.6 3.1 1.8 4

2 Cost of the machine(10000$) 1 2 1 2 3.2 2 1.8 3 1.8 3.2 2.4 3.5 2.5 2 4 2.1 3 5 3.2 4 2 2.4 2 1.5 2.8 1.9 2 2.3

3 Safety coefficient 9 8 9 8 7 8 7 6 7 7 8 7 7 8 7 8 7 6 7 7 8 8 8 8 8 7 8 8
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                     Machines Required 

  Variable (Handle Bar)

1 Productivity(1000)/day 3 2.8 3 3.4 2.9 3.4 4 3.2 1.9 3 2.8 3.9 4.2 2.8 2.5 1.7 4.2 3.1 2

2 Cost of the machine(10000$) 2 1 2 3.2 4.5 3 3 4.8 3.1 3 4.9 3.1 3.4 4.5 2 2.5 2 2.1 1.5

3 Safety coefficient 9 8 9 8 7 8 7 6 7 7 8 7 7 8 7 8 7 6 7
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                     Machines Required 

      Variable (Wheel)

1 Productivity(1000)/day 2 2.2 1.9 4 3.5 2.9 3 3.2 2 2.2 4 5 5.2

2 Cost of the machine(10000$) 2.3 3 4.2 3.2 3.3 2 2.4 2.5 2.7 3 2.2 1.9 2.4

3 Safety coefficient 8 7 7 7 7 8 8 8 8 7 8 8 8
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                     Machines Required 

      Variable (Pedal)

1 Productivity(1000)/day 1.8 2 3.4 2.9 3.2 4 2.3 3.2 2.9 4 2.8 4

2 Cost of the machine(10000$) 2.3 3 1 3 3.2 1.3 3.5 3.8 3.1 1.4 2 1

3 Safety coefficient 7 7 8 7 6 8 7 7 7 7 7 8
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Appendix C4 The Cost of Raw Material and Labor Cost per Hour 
 

Material Aluminum Iron Titanium Carbon fiber Plastic Magnesium 

Price($/Kg) 2.048 0.912 25 20 2.5 3.2 

 

Cost  Price($/Hour) 

Labor Cost 20 
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