
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

September 2015

Determining Critical Points of Handwritten
Mathematical Symbols Represented as Parametric
Curves
Aoesha G. Alsobhe
The University of Western Ontario

Supervisor
Dr. Stephen Watt
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Aoesha G. Alsobhe 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Alsobhe, Aoesha G., "Determining Critical Points of Handwritten Mathematical Symbols Represented as Parametric Curves" (2015).
Electronic Thesis and Dissertation Repository. 3182.
https://ir.lib.uwo.ca/etd/3182

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F3182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3182?utm_source=ir.lib.uwo.ca%2Fetd%2F3182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca


 Determining Critical Points of Handwritten Mathematical Symbols Represented as 
Parametric Curves  

 
(Thesis format: Monograph) 

 
 
 

by 
 
 
 

Aoesha Alsobhe  
 
 
 
 

Graduate Program in Computer Science 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

 Master of Science  
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Aoesha Alsobhe 2015  

 



 ii 

Abstract 

We consider the problem of computing critical points of plane curves represented in a finite 

orthogonal polynomial basis. This is motivated by an approach to the recognition of hand-

written mathematical symbols in which the initial data is in such an orthogonal basis and it is 

desired to avoid ill-conditioned basis conversions. Our main contribution is to assemble the 

relevant mathematical tools to perform all the necessary operations in the orthogonal 

polynomial basis. These include implicitization, differentiation, root finding and resultant 

computation. 

 

Keywords:  Handwriting recognition, parametric curve, implicit curve, orthogonal bases, 

critical points, Chebyshev basis, Legendre basis, resultants, resultants in orthogonal bases, 

Sylvester matrix, companion matrix. 
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Glossary of Terms 

 

Condition number:  The measure of how much a function's results change (at a given point) 

relative to a change in the argument. Functions with a small condition number are called 

"well-conditioned". Functions with a large condition number are called "ill conditioned". 

When calculated with finite precision, functions with a high condition number cannot be 

computed to full precision. 

Implicitization:  Implicitization is the process of conversion from the parametric form of a 

curve to its implicit form. 

Resultant:  A resultant matrix of two polynomials is a matrix whose entries are functions of 

their coefficients, such that a necessary and sufficient condition for the polynomials to have a 

common root is that the determinant of this matrix, called the resultant of the polynomials, is 

exactly zero. 

Inner Product:  A function with certain properties that takes two elements of a vector space 

and gives a scalar. In the context of this thesis, we use an integral inner product on the space 

of real functions. The integral inner product with weight 𝑤 on the interval [𝑎, 𝑏] of two 

functions, 𝑓(𝑥), and 𝑔(𝑥) is   

〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑤(𝑥)𝑑
𝑏

𝑎

𝑥 

 

Orthogonal Functions: Two functions 𝑓 and 𝑔 are orthogonal if 〈𝑓, 𝑔〉 = 0.  A set of 

functions {𝑓𝑖} is orthogonal if  〈𝑓𝑖 , 𝑓𝑗〉  = 0  when 𝑖 ≠ 𝑗.         



 v 

Chebyshev polynomials: Chebychev polynomials are orthogonal on [−1, 1] for weight 

𝑤(𝑡) = 1 √1 − 𝑡2⁄ : 〈𝑇𝑖, 𝑇𝑗〉 = ∫ 𝑇𝑖(𝑡)𝑇𝑗(𝑡) (
1

√1−𝑡2
)𝑑𝑡 = 0

1

−1
  when  i ≠ 𝑗      . 

Legendre polynomials: Legendre Polynomials are orthogonal on [−1, 1] with respect to the 

weight function 𝑤(𝑡) = 1: 〈𝑃𝑖, 𝑃𝑗〉  =  ∫ 𝑃𝑖(t
1

−1
) 𝑃𝑗(𝑡)𝑑𝑡 = 0  𝑖𝑓 𝑖 ≠ 𝑗                            
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Abbreviations and Notation 

 

𝑑𝑓

𝑑𝑥
   
𝜕𝑓

𝜕𝑥
, 𝑓𝑥                 The partial first derivative of function 𝑓 with respect to 𝑋 coordinate 

𝑑2𝑓

𝑑𝑥2
,
𝜕2𝑓

𝜕𝑥2
, 𝑓𝑥𝑥            The partial second derivative of function 𝑓 with respect to 𝑋 coordinate 

𝑅𝑒𝑠(𝑓, 𝑔)                   Resultant Matrix for Polynomials 𝑓(𝑥) and 𝑔(𝑥) 

𝑆𝑦𝑙(𝑓, 𝑔)                    The Sylvester resultant matrix for the Monomial polynomials 𝑓 and 𝑔 

𝐵(𝑓, 𝑔)                      The Bezout resultant matrix for the Monomial polynomials 𝑓 and 𝑔 

𝐷𝑒𝑡(𝑆𝑦𝑙(𝑓, 𝑔))         The determinant of the Sylvester matrix for polynomials 𝑓 and 𝑔 

𝐶𝑆𝑦𝑙(𝑓, 𝑔)                The Sylvester resultant matrix for the Chebyshev polynomials 𝑓 and 𝑔 

𝐿𝑆𝑦𝑙(𝑓, 𝑔)                The Sylvester resultant matrix for the Legendre polynomials 𝑓 and 𝑔 

𝑇𝑛(𝑥)                        Chebyshev Polynomial of degree 𝑛 

𝑃𝑛(𝑥)                        Legendre Polynomial of degree 𝑛 

〈𝑓, 𝑔〉                       The Inner product of two functions 𝑓 and 𝑔 

𝐺𝐶𝐷                         Greatest Common Divisor 

𝐶(𝑓)                       Companion matrix of the polynomial 𝑓(𝑥) 

𝑒𝑖𝑔 (𝐴)                   Eigenvalues of matrix (𝐴) 
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Chapter 1  

Introduction 

Handwriting recognition has been studied for several decades. The field has flourished due to 

its widespread application in economic activities such as cheque processing and mail sorting. 

In recent years, with the development of Personal Digital Assistants (PDAs) and smart 

phones with styluses, mathematical handwriting recognition has received increasing attention 

and has become a problem of particular interest.  

Recognition of handwritten mathematical expressions is more difficult than recognition of the 

handwritten characters of Western languages. There are more mathematics symbols than 

Western characters: mathematical expressions include different alphabets, digits, operators, 

and special characters. There are many similar characters which are written with just a few 

strokes and must be distinguished. Figure 1.1 shows symbols with similar features which are 

written with one stroke. In mathematical handwriting, there is no fixed dictionary of words to 

distinguish between similar symbols. Moreover, the two-dimensional nature of the input as 

well as placement information is important. Symbols are typically of several sizes, leading to 

ambiguous juxtapositions as shown in Figure 1.2. For all of these reasons, recognizing 

mathematical characters accurately is more challenging. New methods are required for the 

accurate recognition of handwritten mathematical symbols, owing to their complicated 

characteristics [1, 3]. 
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Figure 1.1: Similar single-stroke mathematical characters.  

Figure from [1].  Used with permission. 

 

 

Figure 1.2: Juxtaposition ambiguity. Are the first two symbols 𝑎𝑝𝑜𝑟 𝑎𝑃?  

Figure from [1].  Used with permission. 

 

There is a geometry theory that addresses these issues and is thus useful for recognizing 

mathematical symbols [4, 5, 6, 7]. According to this theory, handwritten mathematical 

symbols should be treated as parametric curves rather than sets of points. This approach, used 

in both earlier and later work [1, 4, 5, 6, 7], proposes to represent characters as parametric 

curves approximated by truncated orthogonal series such as Chebyshev polynomials, 

Legendre polynomials, or Legendre -Sobolev polynomials [4, 5 6]. Rather than considering 

character traces as collections of discrete points, symbols are mapped to low-degree 

polynomials. This approach has been found to yield a high recognition rate [1, 4, 5, 6]. By 

choosing an appropriate family of basis polynomials of high enough degree, the 

approximating curve can be made arbitrarily close to the original trace [1, 4, 5]. The trace is 

represented using the coefficients 𝑥𝑖  and 𝑦𝑖  from: 



 3 

𝑋(𝑡) ≈∑𝑥𝑖𝐵𝑖(𝑡),               𝑌(𝑡) ≈∑𝑦𝑖𝐵𝑖(𝑡)

𝑑

𝑖=0

𝑑

𝑖=0

 

This representation is compact, device independent, and allows algebraic treatment of the 

curves .The beauty of this representation is that finding the critical points (those that are used 

as features for recognition, such as self-intersection points, local maxima and minima, cusps, 

and loops) from polynomial approximations is robust against changes in device resolution [1, 

2]. Finding the critical points from the polynomial representation can be done by solving the 

differential equation system 𝑋′(𝜆) =  0, 𝑌′(𝜆) =  0 by finding univariate polynomial roots 

[1]. Roots of univariate polynomials are the eigenvalues of the companion matrix. 

Implicit representation is best suited for some operations on curves such as computing critical 

points of curves [21, 22]. This motivates converting from parametric representations to 

implicit representations. Motivation is provided by singular points problems on curves. If 

curves can be expressed implicitly as 𝑓(𝑥, 𝑦) = 0, then singular points can be obtained by 

solving for the roots of the partial differential system of bivariate polynomial equations 

given by  𝑓 = 𝑓𝑥 = 𝑓𝑦 = 0 where 𝑓𝑥 𝑎𝑛𝑑   𝑓𝑦  are the 𝑥 and 𝑦 partial derivatives of 𝑓, 

respectively.  The common solutions of the differential system can be obtained by 

finding the roots of the resultant matrices of 𝑓𝑥 and 𝑓𝑦   [25]: 

𝑅𝑒𝑠𝑥(𝑓𝑥 , 𝑓𝑦) = 0 𝑎𝑛𝑑 𝑅𝑒𝑠𝑦(𝑓𝑥, 𝑓𝑦) = 0 . 

Implicitization of a parametric curve can be obtained directly based on the resultant method 

[15, 21-23] as follows: 

  𝑅𝑒𝑠 (𝑋 − 𝑥(𝜆), 𝑌 − 𝑦(𝜆)) 
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On the other hand, the problem with this representation is that the transformation between 

orthogonal bases and the monomial basis is ill conditioned (change the representation of a 

polynomial from one basis to another can amplify numerical errors. Error bounds can grow 

exponentially with the degree of the polynomial, and the relative errors can be infinitely 

larger in one basis than in another) [1, 34, 40, 41]. This requires the development of 

derivatives and resultant matrices for orthogonal bases. We need to compute the first 

derivative of truncated orthogonal series and resultants in the right basis without transforming 

to the monomial basis. Changing the representation of a truncated series from one basis to 

another can amplify numerical errors.  We want to avoid this error. In this thesis, our goal is 

to determine whether the mathematical tools exist to perform all the necessary operations in 

the orthogonal polynomial basis without converting to monomial bases.  We are interested in 

computing the derivative of orthogonal series in orthogonal bases rather than doing ill-

conditioned conversions. We are also interested in computing roots of derivative orthogonal 

series based on resultant matrices computed in orthogonal bases in order to find the critical 

points of parametric and algebraic curves in orthogonal bases. Figure 1.3 shows the critical 

points of a handwritten character represented as a parametric curve in an orthogonal basis.  
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Figure 1.3: Critical points computed from parametric approximation. 

Figure from [1].  Used with permission. 

 

 

1.1 Motivation and Related Work 

The original motivation behind this thesis comes from a problem arising in handwriting 

recognition: handwriting represented as plane curves in an orthogonal function basis. 

Orthogonal polynomials arise in many applications: linear control theory, interpolation 

problems, rational interpolation problems, least-squares approximation, and approximation 

theory. This motivates us to compute resultant matrices, derivatives, and roots of polynomials 

in orthogonal bases rather than transforming to the monomial basis. 

Most approaches to the manipulation of polynomials assume that the polynomials are 

expressed in the monomial basis, for simplicity. When polynomials are represented in 

alternative bases such as orthogonal bases, we can convert them into polynomials in the 

monomial basis, do some polynomial manipulations such as resultants, 𝐺𝐶𝐷, derivative, etc., 

and then convert them back to the right orthogonal basis. In this thesis we avoid such 
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conversions and describe the arithmetic computations in the original bases [41]. There are 

reasons to avoid converting to the monomial basis: the conversion can convert a polynomial 

in a simple computational domain into one in a complex mathematic domain. Also, 

coefficients can grow large, the computation cost may increase, and an orthogonal 

polynomial basis is a better choice for numerical stability [41]. 

There has been considerable work done on the manipulation of polynomials represented in 

alternative bases. The Bezout matrix for Chebyshev polynomials is derived in [39]. 

Nakatsukasa, Noferini and Townsend develop practical strategies for bivariate root-finding 

including the Chebyshev Bezout matrix in [27]. Boyd computes roots for polynomials in 

Chebyshev and Legendre bases [53, 58, 64, 67]. The resultant of Chebyshev polynomials is 

investigated in [31]. The Sylvester resultant matrix in the Chebyshev basis is computed in 

[38].  

1.2 Contributions 

This thesis demonstrates an approach of computing critical points, maxima, and minima of an 

orthogonal truncated series based on resultants in orthogonal basis. In particular, we compute 

these points in Legendre basis based on resultant matrices built in Legendre basis. First, we 

compute the derivative of truncated Legendre series, and then we compute the roots of 

derivative series based on resultants. We develop an algorithm for computing first derivative 

in Legendre basis. We also compute resultant Sylvester matrix in Legendre basis. Usual 

methods for finding the critical points of a truncated orthogonal series p(x) is to express p (x) 

as a sum of monomials, and then to calculate the derivative and the roots of the monomial 

series. On the other hand, change the representation of 𝑝(𝑥) from one basis to another can 

amplify numerical errors. Error bounds can grow exponentially with the degree of the 

polynomial, and the relative errors can be infinitely larger in one basis than in another. Our 
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goal of this thesis is to avoid this conversion, and do computations in the right basis. 

 

1.3 Organization of This Thesis 

This thesis is organized as follows. Chapter 2 introduces orthogonal polynomial 

approximation in handwriting recognition. It describes some of the approaches in [1-10] of 

representing handwritten characters as parametric curves approximated by truncated 

orthogonal series such as Chebyshev polynomials, Legendre polynomials, and Legendre-

Sobolev polynomials. Moreover, this chapter presents some of the benefits of this 

representation. 

Chapter 3 describes the critical points of curves in general, and how to find maxima, minima, 

cusps, self-intersection points, etc., on curves, which help to identify algebraic features of 

curves. An algorithm to find the critical points and maxima and minima is introduced. The 

chapter also introduces computing the partial first and second derivatives with respect to 

𝑥 and 𝑦 coordinates at the critical points, and provides some possible types of singular points 

of curves.  

 In chapter 4, we introduce our approach of computing resultant Sylvester matrix in 

orthogonal bases. First we give a brief overview of the most common formulas for resultant 

matrices in the monomial basis. Then, we introduce computing resultants in orthogonal bases 

based on a basis conversion between orthogonal polynomials and monomial polynomials. 

Moreover, this chapter gives the basic ideas and theories of orthogonal polynomials and their 

properties. We also introduce our method to find the resultant matrix (Sylvester matrix) of an 

orthogonal basis (in particular, the Legendre basis).  

Chapter 5 presents some important applications of resultants in geometric fields. It introduces 



 8 

a method for root-finding of bivariate polynomial systems based on resultants. In this chapter, 

we analysis our approach of finding singular points of parametric and implicit curves based 

on resultants in the monomial basis. Moreover, we show how to use resultants to convert 

from parametric representations of curves to implicit representations.  

In chapter 6, the critical points of an orthogonal truncated series are computed. First, we 

develop an algorithm for computing the first derivative of a truncated Legendre series. 

Second, the roots of the derivative series are computed based on the Legendre-Companion 

matrix.  We also do some numerical examples to demonstrate our approach for computing 

critical points in orthogonal bases. 

Chapter 7 concludes the thesis and outlines future work. 

 

 

 

 

 

 

 

 

 

 



 9 

 

Chapter 2 

Orthogonal Polynomial Representation in 

Handwriting Recognition 

Traditional handwriting recognition methods are typically based on representing characters 

by sequences of discrete points, each of which contain 𝑥 and 𝑦 values in a rectangular 

coordinate system. Figure 2.3 shows the representation of a handwritten character using a 

sequence of sample points. This method of representing characters leads to a slow recognition 

rate, however, for character sets containing  many similar characters (like mathematical 

symbols) since comparison against all possible symbol models is then required. Furthermore, 

determining features such as the number of cusps, number of loops, and self-intersections 

from a set of points requires many ad hoc treatments such as smoothing, resampling, and 

various numerical heuristics. It is impractical to develop hand-tuned heuristics to recognize 

specific features for each symbol. To avoid all of these difficulties, handwritten characters 

should be treated as curves [1, 2, 3]. 

Handwritten symbols can be represented in the space of coefficients of a functional 

approximation. This approach has been used in earlier work [4, 5, 6]. Mathematical 

handwritten characters can be represented as parametric curves approximated by truncated 

orthogonal polynomial series. There are many possible parameterizations of a curve, 

including parameterization by time (as the curve was traced),  and parameterization by arc 

length [1]. It has been shown in [10] that arc length is the most robust parameterization in 
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most cases since it provides independence from variations in speed of writing, leading to 

curves that look the same regardless of their original parameterization. 

 

Figure 2.1:  Sequence of sample points for character “a”. 

Figure from [10].  Used with permission. 

 

This approach has many useful properties. It allows high recognition rates for small data 

sizes. It maps symbols from two dimensions to a low dimensional vector space of orthogonal 

series coefficients.  The Euclidean distance in this space is related to the integral between two 

curves and can be used to find similar symbols very efficiently [1, 2, 3]. By choosing the 

functional basis appropriately, the series coefficients can be computed in real-time, as the 

symbol is being written [5, 6]. Figure 2.4 shows a parametric curve approximation for the 

symbol ‘G’. 
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Figure 2.2: Approximated representation for symbol ‘G’. 

Figure from [1].  Used with permission. 

 

2.1 Series of Orthogonal Functions 

Truncated orthogonal series are an important subject in geometric symbolic-numeric 

polynomial algorithms. A set of functions {fi} is orthogonal with respect to their inner 

product with weight w(t) on domain [a, b] if  

〈𝑓𝑖 , 𝑓𝑗〉  = ∫ 𝑓𝑖(𝑡)𝑓𝑗(𝑡)
𝑏

𝑎
𝑤(𝑡)𝑑𝑡 = 0  𝑖𝑓 𝑖 ≠ 𝑗.                                                 2.1 

A well-known technique of approximation of a function 𝑓: 𝑅 → 𝑅  is finding a linear 

combination of functions from the truncated basis   𝑃 = {𝑃𝑖 ∶  𝑅 → 𝑅, 𝑖 = 0, 1, … , 𝑑}:  

𝑓(𝑡) ≈ ∑ 𝑐𝑖𝑃𝑖(𝑡),           𝑐𝑖  ∈ 𝑅, 𝑃𝑖 ∈ 𝑃
𝑑
𝑖=0                                                2.2 

 In orthogonal bases, the coefficients can be easily computed by the inner product of the 

orthogonal functions [6]. 

〈𝑓, ℎ𝑖〉  =  〈∑𝛼𝑗ℎ𝑗(𝑡), ℎ𝑖(𝑡)

∞

𝑗=0

〉 
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           =  ∑𝛼𝑗〈ℎ𝑗 , ℎ𝑖〉  =  𝛼𝑖〈ℎ𝑖, ℎ𝑖〉

∞

𝑗=0

 

𝛼𝑖 = 〈𝑓, ℎ𝑖〉 〈ℎ𝑖 , ℎ𝑖〉⁄                                                          2.3 

 

2.2 Bases for Approximation 

Handwritten symbols may be represented as the coefficients of an approximating basis in a 

finite function space [1].  

𝑋(𝑡) ≈ ∑ 𝑥𝑖𝐵𝑖(𝑡),               𝑌(𝑡) ≈ ∑ 𝑦𝑖𝐵𝑖(𝑡)
𝑑
𝑖=0

𝑑
𝑖=0                                             2.4 

By choosing appropriate basis functions 𝐵𝑖  , 𝑖 =  0, … . . , 𝑑, the approximating curve can be 

close to the original trace [2]. If the basis functions are orthogonal with respect to the 

function inner product, it is easy to compute the coefficients (𝑥𝑖 𝑦𝑖) by numeric integration 

[6, 7].  

It is more accurate to choose the function basis to be orthogonal polynomials, e.g. Chebyshev 

[4], Legendre [6] or Legendre-Sobolev [5]. Char and Watt propose to represent a character as 

a vector of coefficients of the approximation of the curve coordinates with truncated 

orthogonal series in [4]. The approximating orthogonal curve will be close to the curve of a 

character if we choose an appropriate orthogonal basis of polynomials [6, 7]. In the next 

sections of this chapter, we discuss in detail some approaches to handwritten character 

representation using orthogonal polynomial approximation. 

2.2.1 Chebyshev Representation 
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In early work [4], Char and Watt show that the coordinate function (𝑋, 𝑌) of handwritten 

characters can be represented as truncated series of Chebyshev polynomials of the first kind, 

𝑇𝑛(𝑡) = 𝑐𝑜𝑠 (𝑛 𝑎𝑟𝑐𝑜𝑠 𝑡). Chebychev polynomials are orthogonal on [−1, 1] for weight 

𝑤(𝑡) = 1 √1 − 𝑡2⁄ . 

〈𝑇𝑖, 𝑇𝑗〉 = ∫ 𝑇𝑖(𝑡)𝑇𝑗(𝑡) (
1

√1−𝑡2
)𝑑𝑡 = 0

1

−1
        i ≠ 𝑗                                           2.5 

For series truncated at order d, the approximation is given  

𝑋(𝑡) ≈ ∑ 𝛼𝑖𝑇𝑖(𝑡),               𝑌(𝑡) ≈ ∑ 𝛽𝑖𝑇𝑖(𝑡)
𝑑
𝑖=0

𝑑
𝑖=0                                         2.6 

The Chebyshev series for 𝑋 and 𝑌 are developed in [4] along with a technique for computing 

the coefficients of a Chebyshev series for a function. An example of using Chebyshev 

polynomial approximation in handwriting recognition is shown in Figure 2.5. 

Although Chebyshev polynomials are easy to compute and allow the accurate approximation 

of a curve by low-degree series, the form of the corresponding weight function is not 

appropriate for the online computation of the approximation [6]. The weight function of 

Chebyshev polynomials is non-linear (1
√1 − 𝑡2
⁄ ), requiring the capture of the entire curve 

before the series coefficients can be computed [6].  Clearly, the problem with Chebyshev 

approximation is that we cannot compute the Chebyshev series directly in an online manner; 

this is related to the algebraic form of the weight function 𝑤(𝑡) = 1 √1 − 𝑡2⁄ .  Instead of 

using Chebyshev polynomials, a family of orthogonal polynomials with the simplest weight 

function can be considered [6]. 
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Figure 2.3: The x, y traces of 𝜖: Data Degree 3, 6, 10 Chebyshev fits. 

Figure from [4].  Used with permission. 

 

2.2.2 Legendre Representation 

Most handwriting recognition systems require characters to be completed before any 

recognition takes place. Another approach is for real-time recognition [6]; that is, a curve can 

be computed as the curve is being written and can be classified when the pen is lifted by 

using a different functional basis, allowing useful computation as the curve data is received. 

Golubitsky and Watt in [6] propose to use Legendre polynomials. The Legendre polynomials 

can be defined as 

𝑃𝑛(𝑡) =  
1

2𝑛𝑛!
 
𝑑𝑛

𝑑𝑡𝑛
 (𝑡2 − 1)𝑛.                                                             2.7 

These are orthogonal on [−1, 1] with respect to the weight function 𝑤(𝑡) = 1: 
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〈𝑃𝑖 , 𝑃𝑗〉  =  ∫ 𝑃𝑖(t
1

−1
) 𝑃𝑗(𝑡)𝑑𝑡 =  

2

2𝑛+1
𝛿𝑖𝑗 ,                                              2.8 

𝛿𝑖𝑗 = {
1         𝑖 = 𝑗 
𝑜         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

By using a Legendre polynomial basis, the coefficients can be computed from the moments 

of 𝑥 (𝜆) and 𝑦 (𝜆) integrated as the curve is written [6]. The main idea is to calculate 

moments of the coordinate curves in real time as the character is written and then compute 

the coefficients of the Legendre series representation when the pen is lifted [6]. Figure 2.6 

shows the approximations of the character ‘3’ with a Legendre series. 

 

 

Figure 2.4: Approximations of character ‘3’ with Legendre series.  Left: time 

parameterization. Right: arc length parameterization. 

Figure from [8].  Used with permission. 

 

It has been found [6, 8] that the Legendre series representation is the same as the Chebyshev 

representation; however, the Legendre series representation has the advantage of only 

requiring a small, fixed number of arithmetic operations at the end of a stroke, making it 

more appropriate for online computation. 



 16 

2.2.3 Legendre-Sobolev Representation 

In later work [5], it is shown that the Legendre-Sobolev basis allows curves to be 

approximated close to the original curve and with low degree.. It is shown that the real-time 

property is preserved using the Legendre-Sobolev basis [5, 7, 8], which is orthogonal with 

respect to the inner product: 

〈𝑓, 𝑔〉  =  ∫ 𝑓(𝜆
𝑏

𝑎
)𝑔(𝜆) 𝑑𝜆 +  𝜇 ∫ 𝑓` (𝜆)𝑔`(𝜆) 𝑑𝜆.

𝑏

𝑎
                                     2.9 

Legendre-Sobolev polynomials can be computed by Gram-Schmidt orthogonalization of the 

monomial basis {1, 𝜆,  𝜆2, ……} [1, 5, 7]. Figure 2.7 and Figure 2.8 show approximations of 

the characters ‘2’ and ‘B’ with the Legendre-Sobolev series of degrees 0 𝑡𝑜 12 for 𝑎 =

 0, 𝑏 =  0,  𝜇 = 1/8. 

 

(a) (b) 

Figure 2.5: Approximation using Legendre-Sobolev series.  

(a) Original. (b) Approximated using series of degree 12 with 𝜇 = 1/8. 

Figure from [2].  Used with permission. 
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(a)                                         (b) 

Figure 2.6: Another example of approximation using Legendre-Sobolev series.  

(a) Original. (b) Approximated using series of degree 12 with μ = 1/8. 

Figure from [11].  Used with permission. 

 

To summarize, Chebyshev, Legendre, and Legendre-Sobolev series approximations give the 

same convergence rates. However, Legendre and Legendre-Sobolev are the most convenient 

approaches to computing the coefficients online as the curve is written, unlike the other inner 

products with non-linear weight functions such as Chebyshev series [8]. Figure 2.9 shows 

Legendre-Sobolev on [0, 1]. 
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Figure 2.7: L-S polynomials on [0, 1] for 𝜇 = 1/8. 

         Figure from [1].  Used with permission. 

 

2.3 Computing Distances Between Curves 

Representing handwritten mathematical symbols as parametric curves in orthogonal spaces 

has many benefits [1]. One of these benefits is that distances in orthogonal functional bases 

are Euclidean distances in the coefficient space [1, 8]: 

||𝑓 − 𝑔|| ≈ √∑ (𝑓𝑖 − 𝑔𝑖)2 
𝑑
𝑖=0                                                          2.10 

The inner product of the function bases 𝐵𝑖𝐵𝑗    𝑖 ≠ 𝑗  is zero by orthogonality [1, 8]. This 

allows the computation of the integrals approximated by elastic matching very quickly. 

Polynomial parameterization allows computing distances between curves. The types of 

distance depend on the choice of the orthogonal polynomial basis. The Chebyshev basis 

maximal distance between points on curves is [10]: 

max
𝑡𝜖[−1,1]

((𝑥1(𝑡) − 𝑥2(𝑡))
2
+ ((𝑦1(𝑡) − 𝑦2(𝑡))

2
                           2.11 
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The Legendre basis to 𝐿2 distance is given by: 

∫ (𝑥1(𝑡) − 𝑥2(𝑡))
2
+ (𝑦1(𝑡) − 𝑦2(𝑡))

2
𝑑𝑡

1

−1
                                     2.12 

The Legendre-Sobolev to the distance in the Sobolev space is: 

∫ (𝑥1(𝑡) − 𝑥2(𝑡))
2
+ (𝑦1(𝑡) − 𝑦2(𝑡))

2
𝑑𝑡

1

−1
+ ∫ (𝑥`1(𝑡) − 𝑥`2(𝑡))

2
+ (𝑦`1(𝑡) − 𝑦`2(𝑡))

2
𝑑𝑡

1

−1
  

 

    2.4 Feature Extraction 

Another benefit of using orthogonal polynomial approximation in handwriting recognition is 

the convenience in determining the critical points such as self-intersections, number of local 

maxima, number of local minima, loops, cusps and all other points which are used in features 

detection for recognition [1]. The properties of curves can be computed algebraically by 

finding these critical points. The usual methods of feature extraction depend on device 

resolution (which means new algorithms are very important with rapidly changing 

technology), whereas determining the critical points from the polynomial representation is 

robust against changes in device resolution [1]. Figure 2.8 (a) shows the trace data of letter d. 

Finding the critical points from the polynomial approximation in parametric form, 

(𝑥(𝜆), 𝑦(𝜆)), can be achieved by solving the derivative equations for parametric 

curves: 𝑥′(𝜆) = 0, and  𝑦′(𝜆) = 0. This is obtained by univariate polynomial root-finding. 

Figure 2.8 (b) shows an approximation in parametric form, (𝑥(𝜆), 𝑦(𝜆)), with x, and y 

Legendre-Sobolev series. Figure 2.8 (c) shows the critical points found by solving 𝑥′(𝜆) =

0   and  𝑦′(𝜆) = 0. 



 20 

 The implicit representation, (𝑋, 𝑌)  = 0 , is most convenient for some operations. This can 

be obtained directly from the parametric representation as 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑋 − 𝑥(𝜆), 𝑌 −

𝑦(𝜆), 𝜆). Figure 2.8 (d) shows the implicit polynomial obtained by resultants. It is easy to 

obtain critical points of an implicit curve 𝑃(𝑋, 𝑌)  = 0 by solving for the roots of the partial 

differential system of polynomial equations,  𝑃 = 𝑃𝑥 = 𝑃𝑦 = 0 where 𝑃𝑥 and   𝑃𝑦  are the 

𝑥 and 𝑦 partial derivatives of 𝑃, respectively. One way of obtaining the common solutions is 

to find those roots of the resultant Sylvester matrix of 𝑃𝑥and 𝑃𝑦 :  

𝑅𝑒𝑠𝑥(𝑃𝑥 , 𝑃𝑦) = 0 𝑎𝑛𝑑 𝑅𝑒𝑠𝑦(𝑃𝑥, 𝑃𝑦) = 0                                             2.14 

Transformation between orthogonal bases and the monomial basis can leads to numeric error 

[1, 34, 40, 41]. This requires computing resultants in orthogonal bases without transforming 

to the monomial basis. In this thesis, we are interested in finding the resultant matrices in 

some orthogonal bases such as the Chebyshev basis and the Legendre basis. 

 

(a)                                                      (b) 
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                                            (c)                                                     (d) 

Figure 2.8: (a) Trace data of letter d,      (b) Parametric approximation (𝑥(𝜆), 𝑦(𝜆)). 
(c) Critical points computed from Parametric approximation (𝑥(𝜆), 𝑦(𝜆)). 
(d) Implicit approximation obtained by 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑋 − 𝑥(𝜆), 𝑌 − 𝑦(𝜆), 𝜆). 

Figure from [1].  Used with permission. 

 

2.5 Summary 

This chapter discusses the geometric theory of handwriting recognition, which is stated as 

treating handwritten characters as parametric curves approximated in orthogonal bases such 

as the Chebyshev basis, the Legendre basis, or the Legendre-Sobolev basis. Moreover, the 

chapter introduces the benefits of this representation. The most important benefit of using 

orthogonal polynomial approximation in handwriting recognition is that it is easy to 

determine algebraic features of curves such as loops, cusps, maxima, and so on. 

 The next chapter discusses critical points of algebraic curves.  It presents the use of the first-

derivative test to determine the critical points of the curves, and the use of the second-

derivative test to determine minima and maxima of the curves.  There are three types of 
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critical points: minima, maxima, and inflection points. We also introduce the algebraic 

properties of curves such as loops, cusps, self-intersections and so on. Computing the singular 

points of curves is discussed in subsequent chapters. 
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Chapter Three 

Critical Points on Curves 

The problem of finding the critical points of parametric and algebraic curves arises in many 

applications of computer graphics, computer vision, image processing, pattern recognition, 

and artificial intelligence [18]. We are concerned with the problem of finding critical points 

within the realm of handwriting recognition. An essential stage of handwriting recognition is 

finding the critical points (such as maxima, minima, cusps, loops, and points of intersection) 

of parametric curves representing handwritten characters, in order to detect their basic 

features. There are three types of critical points: maxima, minima, and inflection points. In 

this chapter, we give an overview on how to find the critical points on curves and how to 

classify them as maxima, minima, cusps, loop, and self-intersections. 

3.1 Finding Critical Points of a Function 

In mathematics, a critical point of a single variable function is a value in its domain where its 

derivative is zero or the derivative doesn't exist. For a function of several variables, the 

critical points are the values in its domain where all partial derivatives are zero or don’t exist 

[13, 14]. Example 3.1 illustrates how to find the critical points of a single-variable function  

and Example 3.2 illustrates how to find the critical points of a function of two variables. 

Definition 3.1 A critical point on 𝑓(𝑥) occurs at 𝑥0 if and only if either 𝑓′(𝑥0) is zero or the 

derivative doesn't exist. 
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Definition 3.2 Critical points on 𝑓(𝑥, 𝑦) occur at (𝑥, 𝑦) if and only if either the partial 

derivatives 
df

dx
,
df

dy
= 0 or 

df

dx
 ,
df

dy
  do not exist. 

Example 3.1 Consider the function of (𝑥) = √𝑥3 − 3𝑥
3

 . The critical points of this function 

can be found and classified in three steps [13]. First, we need to compute 𝑓′(𝑥) =   
𝑥2−1

√(𝑥3−3𝑥)2
3 . 

Second, we need to find the value of x for which 𝑓′(𝑥) =
𝑥2−1

√(𝑥3−3𝑥)2
3 =  0. The function 𝑓(𝑥) 

has critical points at  𝑥 = ±1 . Third, we need to classify the critical points. We plug the 

values of 𝑥 into the function f(x): 𝑓(1) =  √13 − 3(1)
3

= √−2
3

  < 0 (𝑚𝑖𝑛𝑖𝑚𝑢𝑚) and  

𝑓(−1) =  √(−1)3 − 3(−1)
3

= √2
3

  > 0 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚). Figure 3.1 shows the graph of 𝑓(𝑥) 

together with the maxima and minima of the graph. 

 

 

Figure 3.1: The graph of 𝑓(𝑥) =  √𝑋3 − 3𝑋
3

 shows critical points of the function at 𝑥 = ±1. 
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Example 3.2 Consider the function of two variables 𝑓(𝑥, 𝑦) = 4 + 𝑋3 + 𝑦3 − 3𝑥𝑦. The 

critical points are the solutions to the system of equations: 

𝑓′𝑥 = 3𝑥2  − 3𝑦 = 0                                      (1) 

𝑓′𝑦 = 3𝑦2 − 3𝑥 = 0                                       (2) 

Solving the first equation, we get 𝑦 = 𝑥2. Plugging this into the second equation gives:  

3𝑥4 − 3𝑥 = 0 ⇒ 𝑥(3𝑥3 − 3) = 0 ⇒ 

𝑥 = 0 or 𝑥 = 1 ⇒ 𝑦 = 0 or 𝑦 = 1 

The critical points of this function are (0, 0), (1, 1). 

3.2 Absolute, Local Maximum and Minimum Values 

The interest in critical points lies in the fact that the point where the function has an 

extremum ( maximum or minimum) is a critical point [13, 14]. The maximum and minimum 

of a function are the largest and smallest value that the function takes at a point. They are 

quite distinctive on the graph of a function, and useful in understanding the shape of the 

graph [12]. In many applied problems we want to find the largest or smallest value that a 

function achieves and so identifying maximum and minimum points is useful for applied 

problems [14]. There are two kinds of extrema: global and local (sometimes referred to as 

"absolute" and "relative", respectively). A global maximum is a point that takes the largest 

value on the entire range of the function, while a global minimum is the point that takes the 

smallest value on the range of the function. On the other hand, local extrema are the largest or 

smallest values of the function on a determined interval [14]. Figure 3.2 shows the absolute 

local extrema and end points of the given graph. 
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Definition 3.3 𝑓 (𝑥) has an absolute maximum value 𝑓 (𝑐) at the point 𝑥 = 𝑐 in its domain if 

𝑓 (𝑥)  ≤ 𝑓 (𝑐) holds for every 𝑥 in the domain of 𝑓 (𝑥). 

Definition 3.4 𝑓 (𝑥) has an absolute minimum value 𝑓 (𝑐) at the point 𝑥 =  𝑐 in its domain 

if 𝑓 (𝑥)  ≥ 𝑓 (𝑐) holds for every 𝑥 in the domain of 𝑓 (𝑥 ). 

Definition 3.5 𝑓 (𝑥) has a local maximum value 𝑓 (𝑐) at the point 𝑥 =  𝑐 in its domain if 

𝑓 (𝑥)  ≤ 𝑓 (𝑐) holds for every x in an interval around 𝑐. 𝑓 (𝑥) has a local minimum value 

𝑓 (𝑐) at the point 𝑥 =  𝑐 in its domain if 𝑓 (𝑥)  ≥ 𝑓 (𝑐) holds for every 𝑥 in an interval 

around 𝑐.  

 

Figure 3.2: Absolute maxima and minima, local maxima and minima, end points of the    

graph. 

Figure from [14].   

 

3.3 First Derivative Test of a Function 

In this section, we discuss the information given by the first derivative about the shape of the 
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graph of a function. The first derivative of the function 𝑓(𝑥),  
𝑑𝑓

𝑑𝑥
, tells us whether a function 

is increasing or decreasing [13, 15]: 

 

 If  
𝑑𝑓

𝑑𝑥
 (𝑝) > 0, then 𝑓(𝑥) is an increasing function at 𝑥 =  𝑝. 

 

 If  
𝑑𝑓

𝑑𝑥
 (𝑝) < 0, then 𝑓(𝑥) is a decreasing function at 𝑥 =  𝑝. 

 

 If  
𝑑𝑓

𝑑𝑥
 (𝑝) =  0 then 𝑥 =  𝑝 is called a critical point of 𝑓(𝑥), and we do not know 

anything new about the behavior of 𝑓(𝑥) 𝑎𝑡 𝑥 =  𝑝. 

 

 

Figure 3.3: The first derivative of the function shows the shape of the curve. 

Figure from [15].   

 

 

 

 



 28 

3.4. Second Derivative Test of a Function 

When 𝑥 is a critical point of a function 𝑓 (𝑥 ), we do not learn anything new about the 

function at that point. It may be increasing, decreasing, or a local maximum, a local 

minimum, or an inflection point. We can use the second derivative of the function to find out 

when x is a local maximum, a local minimum, or an inflection point [13, 14]. 

Suppose that 𝑥 is a critical point of a function and the second derivative of the function at that 

point is positive. The positive second derivative at 𝑥 tells us that the derivative of 𝑓 (𝑥 ) is 

increasing at that point and, graphically, that the curve of the graph is concave up at that 

point; then, x is a local minimum of 𝑓 (𝑥 ). If 𝑥 is a critical point of 𝑓 (𝑥 ) and the second 

derivative of 𝑓 (𝑥 ) is negative, then the curve of the graph is concave down. The only way to 

draw the corresponding graph is to make the point 𝑥 a local maximum of the function and the 

function is decreasing. When 𝑥 is a critical point of 𝑓 (𝑥 ) and the second derivative of 𝑓 (𝑥 ) 

is zero, we learn no new information about the point. The point x may be a local maximum or 

a local minimum, or may be an inflection point [13, 14]. The three cases above, (that is, when 

the second derivative is positive, negative, or zero) are collectively called the second 

derivative test for critical points. The second derivative test gives us a way to classify critical 

points and, in particular, to find local maxima and local minima (see Figure 3.5). To 

summarize the second derivative test [13, 14]: 

 

 If  
𝑑𝑓

𝑑𝑥
 (𝑝) = 0 𝑎𝑛𝑑 

𝑑2𝑓

𝑑𝑥2
 (𝑝) > 0, then 𝑓 (𝑥 ) has a local minimum at 𝑥 =  𝑝. 

 

 If  
𝑑𝑓

𝑑𝑥
 (𝑝) = 0 𝑎𝑛𝑑 

𝑑2𝑓

𝑑𝑥2
 (𝑝) < 0, then 𝑓 (𝑥 ) has a local maximum at 𝑥 =  𝑝. 
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 If  
df

dx
 (𝑝) = 0 and 

𝑑2𝑓

𝑑𝑥2
 (𝑝) = 0, then we learn no new information about the behavior 

of 𝑓 (𝑥 ) at 𝑥  =  𝑝 . 

 

 

Figure 3.4: The second derivative of the graph classifies critical points to find maxima 

and minima. For positive second derivative, the function is concave up; for negative 

second derivative, the function is concave down. 

Figure from [14].   

Example 3.3 Consider the function 𝑓(𝑥) =  𝑥3 − 9𝑥2 + 15𝑥 − 7. The first derivative of f(x) 

is 
𝑑𝑓

𝑑𝑥
 = 3𝑥2 − 18𝑥 + 15, and the critical points of 𝑓(𝑥) are when the first derivative of  

𝑓(𝑥) equals zero: 
𝑑𝑓

𝑑𝑥
 = 3𝑥2 − 18𝑥 + 15 = 0 ⟹ 𝑥 = 1 𝑜𝑟 𝑥 = 5. The critical points of 𝑓(𝑥) 

are 1 and 5. Now, we need to classify the critical points as maxima or minima. We will use 

the second derivative test of 𝑓(𝑥): 
𝑑2𝑓

𝑑𝑥2
= 6𝑥 − 18. The second derivative test at 𝑥 =  1 gives  

𝑑2𝑓

𝑑𝑥2
(1) = 6(1) − 18 = −12 < 0 (𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚), and the second derivative test at 𝑥 =

 5 gives  
𝑑2𝑓

𝑑𝑥2
(5) = 6(5) − 18 = 12 > 0  (local minimum). We can see from the second 

derivative that 𝑓(𝑥) has a local maximum at 𝑥 =  1, and a local minima at 𝑥 =  5. Now, if 

the second derivative is zero, we have a problem. It could be a point of inflection, or it could 

still be an extremum.  
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3.5 Inflection Points 

It should be noticed that not every critical point corresponds to a local maximum or local 

minimum. A slope of zero does not guarantee a maximum or minimum; there is a third class 

of stationary point called a point of inflection [13]. If we are trying to understand the shape of 

the graph of a function, knowing where it is concave up and concave down helps us to get 

more information. The graph of a function 𝑓 (𝑥 ) has an inflection point at 𝑥 if the graph of 

the function goes from concave up to concave down, or from concave down to concave up at 

that point [13].  

 

Figure 3.5 : Inflection points when the graph goes from concave up to concave 

down. 

Figure from [13].   

 

Example 3.4 Consider the function 𝑓 (𝑥 )  =  3𝑥3  +  1. The critical point of the function is   

𝑓′(𝑥) = 9𝑥2 = 0 ⇒ 𝑥 = 0. To classify the critical point, we find the second derivative of the 

function at the critical point x = 0: 𝑓′′(𝑥) = 18𝑥 = 18(0) = 0. We learn no new information 

about the behavior of 𝑓 (𝑥 ) at x  =  0 . If we plug the value of the point x = 0 into the 

function, we get 3𝑥2 + 1 = 1 > 0 ,  meaning it is a maximum; but, that is not true. Figure 

3.7 shows the graph of the function, and there is no maximum at x = 0. The second derivative 

of function 𝑓(𝑥)  at the critical points is zero, so we do not have any information to help us to 

classify the point. It may be a maximum, minimum, or inflection point.  We can pick a 
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number on either side of 𝑥 =  0 and check what the concavity is at those locations. Let's use 

𝑥 =  −1 and 𝑥 =  1 to check.  At 𝑥 =  −1, the second derivative gives: 𝑓′′(−1)  =  −18 <

0, so the function is concave down at 𝑥 =  −1. If we check 𝑥 =  1 we get 𝑓′′(1)  =  18 > 0 

which means the function is concave up at 𝑥 =  1. We can see that the function has different 

concavities on either side of x = 0 and the inflection point is at 𝑥 =  0.  As we can see, the 

inflection point is where the concavity actually changes. 

 

Figure 3.6: The graph of function 𝑓(𝑥)  =  3𝑥3  +  1. 

 

Theorem 3.1. (Fermat's Theorem or Local Extreme Point Theorem) If a function 𝑓(𝑥) 

has a local minimum or maximum at the point c and 𝑓′(𝑐) exists, then 𝑓′(𝑐)  =  0. 

This means that any time there is a local extremum, the derivative should be zero there. This is not 

always the case.  Consider the function 𝑓(𝑥)  = |𝑥|. Notice that this function is not differentiable at 

𝑥 = 0 but since 𝑓(𝑥)  = |𝑥| ≥ 0 =  𝑓(0) , we see that it has a local minimum at 0 (and in fact, this is 

a global minimum). 

Just having a zero derivative at a local extremum is not the whole picture. It turns out that the only 
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case where this fails is when the derivative does not exist. 

Algorithm 3.1. (Algorithm for finding global minima and global maxima) Let 𝑓  be a continuous 

function on a closed interval [𝑎;  𝑏] (so that our algorithm satisfies the conditions of the extreme value 

theorem). 

 Find all the critical points of (𝑎, 𝑏), that is, the points 𝑥 ϵ (𝑎;  𝑏) where 𝑓
`
′(𝑥) is not defined or 

where 𝑓
`
′(𝑥) =  0. Call these points 𝑥1,… ,𝑥𝑛. 

 Evaluate 𝑓(𝑥1), … . . , 𝑓(𝑥𝑛), 𝑓(𝑎), 𝑓(𝑏), that is, evaluate the function at all the critical points 

found from the previous step and at the two end point values. 

 The largest and the smallest values found in the previous step are the global minimum and 

global maximum values. 

3.6 Singular Points of Algebraic and Parametric Curves  

A singular point of a curve is a point on the curve where the tangent line of the curve is not 

uniquely defined [16]. A point (𝑎, 𝑏) on a curve 𝑓(𝑥, 𝑦)  =  0  is singular if the 𝑥 and 𝑦 

partial derivatives of 𝑓  are both zeros at the point (𝑎, 𝑏). Singular points play an essential 

role in the analysis of geometric curves. They help to define algebraic properties and features 

of curves. Moreover, the singularities of a curve represent shape features known as cusps, 

loops, and self-intersections [19]. Thus, detection of singularities helps to determine the 

geometric shape and topology of real curves, which has wide-ranging applications in 

computer-aided geometric design [19]. To find the singular points of the implicit curve 

𝑓(𝑥, 𝑦), we compute  
𝛿𝑓

𝛿𝑥
 and   

𝛿𝑓

𝛿𝑦
 and set both to zero. This gives us two equations for the two 

unknowns 𝑥 and 𝑦.  We need to solve these equations for 𝑥 and 𝑦 in order to find the singular 

points of the curve.  Suppose we have a curve C defined by equation: 𝑓(𝑥, 𝑦) = 0. We are 

interested in finding the singular points with respect to the coordinates 𝑥 and 𝑦; that is, the 

system of equations: 
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𝑓𝑥(𝑥, 𝑦) = 0       ,       𝑓𝑦(𝑥, 𝑦) = 0 

Example 3.5 Consider the implicit curve 𝑓(𝑥, 𝑦)  =  𝑦2  −  𝑥𝑦 + 𝑥2  −  2𝑦 +  𝑥. The 

singular points of the curve are the solutions of the system of equations: 

{
𝑓𝑥 = −𝑦 + 2𝑥 + 1 = 0
𝑓𝑦 = 2𝑦 − 𝑥 − 2 = 0

 

By solving the system, we obtain the singular point (0,1). 

 

3.7 Some of Possible Types of Singular Points 

Cusp 

A cusp is a type of singular point of a curve that is not formed by a self-intersection point of 

the curve. Consider the curve 𝐹(𝑥, 𝑦) =  𝑥3 − 𝑦2 = 0, and the partial derivatives with 

respect to x and y:  
𝜕𝑓

𝜕𝑥
 (𝑥, 𝑦) = 3𝑥2 = 0,  

𝜕𝑓

𝜕𝑦
 (𝑥, 𝑦) = 2𝑦 = 0. The singular point is (0, 0). 

Figure 3.7 shows the graph of the curve, which has a cusp at the origin [16, 20]. 

 

Figure 3.7: An ordinary cusp on the curve 𝑥3 + 𝑦2 = 0. 

Figure from [16, 20].  
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Node 

A node is a point where a curve intersects itself such that two branches of the curve have 

distinct tangent lines. It is also called an ordinary double point of a plane curve. Consider the 

curve 𝑓(𝑥, 𝑦) =  𝑥3 − 𝑥2 + 𝑦2. The singular points are given by 𝑓(𝑥, 𝑦) =
 𝜕𝑓

𝜕𝑥
 (𝑥, 𝑦) =

 
𝜕𝑓

𝜕𝑦
 (𝑥, 𝑦) = 0. Figure 3.8 shows the origin is an ordinary double point of the curve [16, 20]. 

 

Figure 3.8 : Singular point on the curve 𝑓(𝑥, 𝑦) =  𝑥3 − 𝑥2 + 𝑦2 with a loop and self- 

intersection. 

Figure from [16, 20].   

 

Self-intersection 

For an implicitly defined curve q, we refer to points where 𝑞(𝑥, 𝑦) = 0 and 𝑞′(𝑥, 𝑦) = (0, 0) 

as singularities of the curve. All self-intersections of algebraic curves are singularities, but the 

converse is not necessarily true. Singularities can also occur as cusps and isolated points 

known as acnodes [53]. 

Acnode 

An acnode is an isolated point not on a curve, but it satisfies the equation of the curve. 

Consider the curve  𝑥3 + 𝑥2 + 𝑦2 = 0. The origin is an isolated point of the real curve. 

Figure 3.9 shows the curve [16, 20]. 
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         Figure 3.9: Acnode on the curve 𝑥3 + 𝑦2 = 0. 

Figure from [16, 20].   

 

                      

                 (a)                                    (b)                              (c) 

    2𝑥4 − 3𝑥2𝑦 + 𝑦2 − 2𝑦3 + 𝑦4      𝑥4 + 𝑥2𝑦2 − 2𝑥2𝑦 − 𝑥𝑦2 + 𝑦2     (𝑥2 + 𝑦2)2 + 3𝑥2𝑦 − 𝑦3  

                                              

                      (d)                                                        (e) 

    ((𝑥2 + 𝑦2)3 − 4𝑥2𝑦2 =0                                                       𝑥6 − 𝑥2𝑦3 − 𝑦5 = 0 

Figure 3.10: Some algebraic curves with singular points at the origin. 

Figure from [16, 19, 20].   
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Computing singular points based on implicitization is well studied in the literature [19, 22, 

23, 25]. One standard way is to convert the parametric equation of the curve into an implicit 

equation 𝑓(𝑥, 𝑦) = 0, and then find the singular points by solving the system of equations: 

𝑓 = 𝑓𝑥 = 𝑓𝑦 = 0 , where 𝑓𝑥 and   𝑓𝑦   are the 𝑥 and 𝑦 partial derivatives of 𝑓, respectively [22, 

23, 25]. There are many existing numerical algorithms for bivariate root-finding based on 

resultants [23, 24, 27]. One way of obtaining the common solutions is to find those roots of 

the resultant matrices: 𝑅𝑒𝑠𝑥(𝑓𝑥 , 𝑓𝑦) = 0 , 𝑅𝑒𝑠𝑦(𝑓𝑥, 𝑓𝑦) = 0 [25]. There are many different 

types of resultant matrices such as Sylvester [38], Bézout[27], and others [24, 34, 49]. These 

resultant matrices are usually constructed for polynomials expressed in the monomial basis 

[28-30], but they can also be constructed for polynomials expressed in other bases [31, 38, 

39, 50]. The next chapter presents the different  resultant matrix  formulations and how they 

are constructed in the monomial basis and other orthognal bases such as the Chebyshev and 

the Legendre basis.  Theoretical properties of resultants are also discussed. 
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Chapter 4 

Resultants in Orthogonal Bases 

A fundamental problem in computational algebra that requires symbolic-numeric 

computations and manipulations is the computation of resultants. A resultant matrix of two 

polynomials is a matrix whose entries are functions of their coefficients, such that a necessary 

and sufficient condition for the polynomials to have a common root is that the determinant of 

this matrix, called the resultant of the polynomials, is exactly zero [28-30]. There is a long 

history of research into the properties of resultants due to their widespread application in 

algebraic geometry, computer graphics, computer vision, robotics, and computer-aided 

geometric design (CAGD) [15-28]. There has been a lot of research and investigation into 

their theoretical properties. 

In computer algebra, the resultant is a tool that can be used to analyze the greatest common 

divisor (GCD) of polynomials. Two polynomials have common roots if and only if their 

resultant is zero [29]. Moreover, resultants can be used in algebraic geometry to determine 

intersections [15, 20]. An important problem in computational geometry is to find the 

intersection of algebraic and parametric curves, which reduces to the case of determining 

whether two polynomials have a common root [15, 20]. In fact, there are many applications 

of resultants, but we will be concerned only with the problem of finding the critical points of 

algebraic and parametric curves based on resultants [15, 22-25]. 

The monomial basis is the standard basis in the literature due to its simplicity and flexibility 

for algebraic manipulations. Usually, resultant matrices are constructed from polynomials 
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expressed in the monomial basis; however, they can be derived when using any other bases. 

If polynomials are expressed in other bases, we can transfer the polynomials to the monomial 

basis, and then compute their resultant matrices [41]. We plan to apply resultant matrices in 

the same basis (non-monomial basis) to avoid change of basis and the ill-conditioned 

conversion [41]. This leads us to the problem of studying the generalization of resultant 

matrices to non-monomial bases like orthogonal bases such as the Chebyshev basis, Legendre 

basis, and so on [31, 38, 39]. 

In this chapter, we investigate the problem of computing the resultants of univariate 

polynomials expressed in orthogonal bases. In the first section, we discuss resultant matrix 

formulas and their theoretical properties (the most common in the literature, which are the 

Sylvester resultant matrix, Bezout resultant matrices, and companion resultant matrices) in 

the monomial basis [28-30]. Orthogonal polynomials (such as Legendre polynomials and 

Chebyshev polynomials) and their properties are introduced in the second section. In the third 

section, we investigate the resultants in orthogonal bases, and we plan to find the resultant 

Sylvester matrix in the Legendre basis. 

4.1 Resultants in the Monomial Basis 

Many mathematical problems require the computation of the resultant of two polynomials 

and most approaches to compute resultant matrices assume that the polynomials are 

expressed in the power basis. There are many different resultant matrices such as the 

Sylvester matrix, the Bezout matrix, the companion matrix, and others [23, 24]. This section 

contains a review of the Sylvester [21], Bezout [21, 27], and companion resultant matrices for 

power basis polynomials, and examples are included in order to show the form of each of the 

matrices.  
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4.1.1 Sylvester Matrix 

In the literature, the most common method of computing resultants is the Sylvester resultant 

matrix due to its ease of construction. In this section, we consider Sylvester resultant matrices 

defined in the power basis.  

Definition 4.1 Let   𝑓(𝑥) =  𝑎𝑛𝑥
𝑛   +  𝑎𝑛−1𝑥

𝑛−1  + ⋯+ 𝑎0 
  and   𝑔(𝑥)  =  𝑏𝑚𝑥

𝑚   +

 𝑏𝑚−1𝑥
𝑚−1   + ⋯… . . + 𝑏0  be two polynomials of degree n and m, respectively, with the 

coefficients {an, an-1, ….a0} and {bm, bm-1, ……b0} respectively. The resultant 𝑅𝑒𝑠(𝑓, 𝑔) is 

the determinant of the (m + n) by (m +n) Sylvester matrix, 𝑆𝑦𝑙(𝑓, 𝑔), given by [21, 28-30] 

𝑆𝑦𝑙(𝑓, 𝑔) =

[
 
 
 
 
 
 
 
 
𝑎0 𝑎1 … 𝑎𝑛 0 … 0
0 𝑎0 … 𝑎𝑛−1 𝑎𝑛 … 0
: : : : : : :
0 0 … 𝑎0 𝑎1 … 𝑎𝑛
𝑏0 𝑏1 … 𝑏𝑚 0 … 0
0 𝑏0 … 𝑏𝑚 0 … 0
: : : : : : :
0 0 … 𝑏0 … 𝑏𝑚−1 𝑏𝑚

]
 
 
 
 
 
 
 
 

                                            (4.1) 

where the 𝑚 first rows contain the coefficients of the polynomial 𝑓(𝑥), 

{𝑎𝑛, 𝑎𝑛−1, … . 𝑎0} shifted 0, 1, … .𝑚 − 1 steps and the 𝑛 last rows contain the coefficients of 

the polynomial  𝑔(𝑥), {𝑏𝑚, 𝑏𝑚−1, ……𝑏0} shifted 0, 1, . . . 𝑛 − 1 steps, and the remaining 

elements are zero.  

Example 4.1: Consider the polynomials 𝑓(𝑥)  =  4𝑥4  +  3𝑥3  + 𝑥2  +  4𝑥 –  7, and  

𝑔(𝑥)  =  3𝑥3 –  6𝑥2  +  𝑥 +  1, expressed in the power basis. The resultant of the two 

polynomials 𝑓(𝑥) and 𝑔(𝑥) is the determinant of the Sylvester matrix : 𝑅𝑒𝑠(𝑓, 𝑔) =

𝐷𝑒𝑡(𝑆𝑦𝑙(𝑓, 𝑔)) : 
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Det 

(

 
 
 
 

[
 
 
 
 
 
 
4 3 1
0 4 3
0
3
0
0
0

0
−6
3
0
0

4
1
−6
3
0

4 −7 0 0
1 4 −7 0
3
1
1
−6
3

1
0
1
1
−6

4
0
0
1
1

−7
0
0
0
1 ]
 
 
 
 
 
 

)

 
 
 
 

 

It is easily seen that 𝑆𝑦𝑙 (𝑓, 𝑔) is a square matrix and of order 𝑛 +𝑚 .The entries of the 

Sylvester matrix of two polynomials are coefficients of the polynomials, and the determinant 

of the Sylvester matrix of two polynomials is their resultant. A well-known theorem states 

that 𝑓(𝑥) and 𝑔(𝑥) are relatively prime if and only if the determinant is non-zero or, 

alternatively, if and only if 𝑆𝑦𝑙(𝑓, 𝑔) has full rank. Further, the rank of 𝑆𝑦𝑙(𝑓, 𝑔) is equal to 

the difference between the degree of the Sylvester matrix (𝑚 + 𝑛) and the degree of the 

greatest common divisor of 𝑓(𝑥) and 𝑔(𝑥). The degree of the greatest common divisor of 

𝑓(𝑥) and 𝑔(𝑥) is determined by the rank of the Sylvester matrix [29]. 

 Although the resultant doesn’t directly reveal a common root, it can be found from the 

resultant matrix [22]. To illustrate, the resultant of 𝑓(𝑥) =  𝑥2 − 4𝑥 − 5 and 𝑔(𝑥) =  𝑥2 −

7𝑥 + 10 is 0, which means they do have a common root. To find the common root, first we 

need to discard any row of the resultant matrix. By discarding the fourth row, we get: 

[
1 −4 −5 0
0 1 −4 −5
1 −7 10 0

] 

 The common root is computed by taking the ratio of the determinant of the coefficient matrix 

with columns 𝑖 and 𝑗, respectively, deleted and multiplying by (−1)𝑖+𝑗: 

𝑥 =
𝑥𝑖

𝑥𝑗
= (−1)𝑖+𝑗  

|𝐴𝑖|

|𝐴𝑗|
                                                        4.2 
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The common root x can be found as either 𝑥3/𝑥2, 𝑥2/𝑥, or 𝑥/1: 

𝑥 =
𝑥1

𝑥2
= − |

−4 −5 0
1 −4 −5
−7 10 0

| |
1 −5 0
0 −4 −5
1 10 0

| =⁄ −
−375

75
= 5 

Theorem 4.1.  There exist polynomials 𝐴 and 𝐵, of degree at most 𝑚− 1 and  𝑛 − 1, such 

that 𝑅𝑒𝑠 = 𝐴𝑓 +  𝐵𝑔. 

Proof.  We have: 

𝑓 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛 

𝑥𝑓 =              𝑎0𝑥 +⋯+ 𝑎𝑛−1𝑥
𝑛 + 𝑎𝑛𝑥

𝑛+1 

…………………………………………………… 

𝑥𝑚−1𝑓 =              𝑎0𝑥
𝑚−1 +⋯+ 𝑎𝑛𝑥

𝑚+𝑛+1 

𝑔 = 𝑏0 + 𝑏1𝑥 +⋯+ 𝑏𝑚𝑥
𝑚 

𝑥𝑔 =              𝑏0𝑥 +⋯+ 𝑏𝑚−1𝑥
𝑚 + 𝑎𝑚𝑥

𝑚+𝑛−1 

……………………………………………… 

𝑥𝑛−1𝑔 =              𝑏0𝑥
𝑛−1 +⋯+ 𝑏𝑚𝑥

𝑚+𝑛+1 

 

Let 𝐴1, … , 𝐴𝑚+𝑛 be the cofactors of the elements of the first column of 𝑅𝑒𝑠. If we multiply 

the 𝑖𝑡ℎ equation above by 𝐴𝑖 and add corresponding term for 𝑖 = 1,… ,𝑚 + 𝑛, we obtain: 

(𝐴0 + 𝐴1𝑥 + ⋯+ 𝐴𝑚𝑥
𝑚−1)𝑓 + (𝐴𝑚+1 + 𝐴𝑚+2𝑥 +⋯𝐴𝑚+𝑛𝑥

𝑛−1)𝑔 = 𝑅𝑒𝑠, 

     which proves the theorem [16, 20]. 

Another matrix, called the Bezout matrix [21, 27, 50], can be used to compute the resultant of 

two polynomials. It is discussed in the next section. 
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4.1.2 Bezout Matrix 

Definition 4.3   For two polynomials in one variable 𝑝(𝑥) and 𝑞(𝑥) of degree 𝑛 and 𝑚, 

respectively,   expressed in the monomial basis, there exists a uniquely determined  𝑛 ×  𝑛 

symmetric matrix, since it is assumed that 𝑛 ≥  𝑚  [21, 27] 

𝐵𝑛(𝑝, 𝑞) =  (𝑏𝑖𝑗)
𝑛

𝑖𝑗 = 1
                                                        4.3 

such that 

𝑃(𝑥)𝑞(𝑦)−𝑞(𝑥)𝑝(𝑦)

𝑥−𝑦
= ∑ 𝑏𝑖𝑗𝑋

𝑖−1𝑛
𝑖,𝑗=1 𝑦𝑗−1.                                       4.4 

The matrix 𝐵(𝑝, 𝑞)  is called the Bezout matrix of polynomials 𝑝 and 𝑞.  The Bezout matrix 

is smaller than the Sylvester matrix, but has more complicated entries, and its determinant 

still equals the resultant of the polynomials.  

Example 4.2 Consider two polynomials, expressed in the monomial basis, 𝑝(𝑥)  =  3𝑥 +  3, 

𝑞(𝑥)  =  𝑥3 – 𝑥2  +  2. Their Bezout matrix is: 

𝐵3(𝑝, 𝑞) = [
6 0 −6
3 3 0
0 3 3

] 

Let us now recall some essential properties of the Bezout matrix: 

1.𝐵(𝑝, 𝑞) is an 𝑁 × 𝑁 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥,where 𝑁 = 𝑚𝑎𝑥 {𝑛,𝑚} 

2. 𝐵(𝑝, 𝑞) =  −𝐵(𝑝, 𝑞) 

3. 𝐵(𝑝, 𝑞) is linear in 𝑝 and 𝑞, that is: 

𝐵(𝛼𝑝, 𝛽𝑓, 𝑣) =  𝛼𝐵(𝑝, 𝑞) + 𝛽𝐵(𝑓, 𝑞), 

𝐵(𝑝, 𝛼𝑞, 𝛽𝑔) =  𝛼𝐵(𝑝, 𝑞) +  𝛽𝐵(𝑞, 𝑔), 

for any polynomials 𝑓(𝑥), 𝑔(𝑥)and scalars 𝛼, 𝛽. 
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 4. 𝐵(𝑝, 𝑞)is invertible if and only if 𝑝(𝑥)and 𝑞(𝑥)are coprime: 

𝑑𝑖𝑚(𝑘𝑒𝑟𝐵(𝑝, 𝑞)) is equal to the degree of 𝐺𝐶𝐷(𝑝, 𝑞). 

 

All of these properties can be found in computer algebra texts [28-30]. 

 

4.1.3 Companion Matrix 

Finding the roots of a polynomial is one of the main applications of the resultant. We now 

show how to use the resultant to find the eigenvalues of polynomials. Suppose polynomials 

𝐴(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  and  𝑥 −  𝛼 have common root, meaning 𝐴(𝛼) =  0. The resultant matrix 

of these polynomials can be written as [42]: 

𝑀 =

[
 
 
 
 
𝑎0
1
0
0. .
0

𝑎1
−𝛼
1
0. .
0

𝑎2
0
−𝛼
1. .
. .

. .
0
0
−𝛼. .
. .

𝑎𝑛−1
0
0
0. .
1

𝑎𝑛
0
0
0. .
−𝛼]

 
 
 
 

                                              4.5 

If 𝑎0  = 1 , we can subtract the first row from the second row to eliminate the first element in 

the second row and we end up with a matrix 𝑁. The determinant of matrix 𝑁 can be obtained 

by crossing off the first row and column of 𝑁, and taking the determinant of the resulting 

matrix. This determinant is the characteristic polynomial of the matrix [42]: 

𝐶 = 

[
 
 
 
 
 
 
−𝑎1 −𝑎2 … … −𝑎𝑛−1 −𝑎𝑛
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
: : : : : :
0 0 : : 1 0

]
 
 
 
 
 
 

                                   4.6 
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The roots of the polynomial 𝐴(𝑥) are the eigenvalues of the matrix 𝐶. The matrix 𝐶 is called 

the companion matrix. 

4.1.4 Properties of Resultants 

This section reviews the basic properties of resultants. If 𝑓(𝑥) and 𝑔(𝑥) are two polynomials 

of degree 𝑚 𝑎𝑛𝑑 𝑛 respectively, and they are expressed in term of their zeros such that 

𝑓(𝑥) =  𝑎𝑚∏ (𝑥 − 𝛼𝑘)
𝑚
𝑘=1   

and 

𝑔(𝑥) = 𝑏𝑛∏ (𝑥 − 𝛽𝑗)
𝑛
𝑗=1 ,  

 

then the resultant can be expressed by the products: 

𝑅𝑒𝑠(𝑓, 𝑔) = 𝑎𝑚
𝑛 ∏ 𝑔(𝛼𝑖) = 𝑏𝑛

𝑚∏ 𝑓(𝛽𝑗)
𝑛
𝑗=1

𝑚
𝑖=1                                        4.7 

𝑅𝑒𝑠(𝑓, 𝑔) =  𝑎𝑚
𝑛 𝑏𝑛

𝑚  ∏ ∏ (𝛼𝑖 − 𝛽𝑗)
𝑛
𝑗=1

𝑚
𝑖=1                                           4.8 

Other well-known properties of resultants are: 

𝑅𝑒𝑠(𝑓, 𝑔) = (−1)𝑚𝑛𝑅𝑒𝑠(𝑔, 𝑓)                                                  4.9 

𝑅𝑒𝑠(𝑓, 𝑞𝑔) =  𝑅𝑒𝑠(𝑓, 𝑞)𝑅𝑒𝑠(𝑓, 𝑔)                                                4.10 

If 𝑎 ≠ 0 is a constant, then 

𝑅𝑒𝑠(𝑓, 𝑎) =  𝑅𝑒𝑠(𝑎, 𝑓) =  𝑎𝑚.                                                     4.11 

The fundamental property of the resultant is stated in the following theorem: 

Theorem 4.2 Let 𝑓 and 𝑔 be polynomials. Then 𝑅𝑒𝑠 (𝑓, 𝑔)  =  0 if and only if 𝑓 and 𝑔 have 

common roots. 
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Lemma 4.1 Let 𝑓 and 𝑔 be polynomials 

1- If we can write 𝑓(𝑥) =  𝑞(𝑥)𝑔(𝑥) +  𝑟(𝑥), with polynomials 𝑞, 𝑟, 𝑎𝑛𝑑 𝛿 =

deg( 𝑟) , then 𝑟𝑒𝑠(𝑓, 𝑔) = 𝑏𝑛
𝑚−𝛿  𝑟𝑒𝑠(𝑔, 𝑟). 

2- 𝐼𝑓 𝑑𝑒𝑔(𝑞𝑓, 𝑔) = deg𝑔 for a polynomial q, then    𝑟𝑒𝑠(𝑓, 𝑞𝑓) + 𝑔) = 𝑟𝑒𝑠(𝑓, 𝑔). 

All of these properties and proofs of these theorems are well known and can be found in most 

linear algebra texts [28-30]. 

The resultant matrices reviewed in this section are the most familiar methods of computing 

resultants between polynomials written in the monomial basis {1, 𝑥, 𝑥2,· · · , 𝑥𝑛}. However, 

resultant matrices can be written relative to polynomial bases other than the monomial basis. 

Bases other than the monomial basis find many applications. Orthogonal bases such as the 

Legendre polynomials and Chebyshev polynomials are often the most useful in many 

applications including interpolation and least-squares approximation, and approximation 

theory. They are more stable for numerical analysis than the monomial basis [44]. This 

motivates us to compute resultant matrices in orthogonal bases rather than perform a 

transformation to the monomial basis. In the next subsection, we give an overview of the 

most important classical orthogonal polynomials and their applications. 

4.2 Orthogonal Polynomials 

A set of orthogonal polynomials is an infinite set of sequence of polynomials 𝐵0(𝑥), 𝐵1(𝑥),

𝐵2(𝑥), 𝐵3(𝑥), …… . 𝐵𝑛(𝑥), such that any family of polynomials orthogonal on [a, b] with 

respect to an inner product of the form 4.12 [44]. Table 4.3 shows the common classical 

orthogonal polynomails. 

〈𝐵𝑖, 𝐵𝑗〉 =  ∫ 𝐵𝑖(𝑥)𝐵𝑗(𝑥)𝑤(𝑥) 𝑑𝑥
𝑏

𝑎
                                     4.12 



 46 

〈𝐵𝑖, 𝐵𝑗〉 = 0     𝑖𝑓   𝑖 ≠ 𝑗 

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization 

process to the monomial basis {1, 𝑥, 𝑥2, … } [47]: 

𝐵0(𝑥) =  1, 

 

𝐵1(𝑥) =  𝑥 −
〈𝑥, 𝐵𝑜〉

〈𝐵0, 𝐵0〉
𝑃0(𝑥), 

 

𝐵1(𝑥) =  𝑥
2 −

〈𝑥2, 𝐵0〉

〈𝐵0, 𝐵0〉
𝑃0(𝑥) − 𝐵1(𝑥) =  𝑥 −

〈𝑥2, 𝐵1〉

〈𝐵1, 𝐵1〉
𝑃1(𝑥), 

 

…………………………………………………………… .. 

𝐵𝑛(𝑥) =  𝑥
𝑛 −

〈𝑥𝑛, 𝐵𝑜〉

〈𝐵0, 𝑃0〉
𝐵0(𝑥) − ⋯−

〈𝑥𝑛, 𝐵𝑛−1〉

〈𝐵𝑛−1, 𝐵𝑛−1〉
𝐵𝑛−1(𝑥), 

 

𝐵0, 𝐵1, 𝐵2, …… . . 𝐵𝑛 are orthogonal polynomials. 

 

4.2.1 Three-Term Recurrence Relation 

Any orthogonal polynomial has a recurrence formula given by [45]: 

𝐵−1 = 0 

𝐵0 = 1 

𝐵(𝑛+1) = (𝑎𝑛𝑥 + 𝑏𝑛)𝐵𝑛 − 𝑐𝑛𝐵𝑛−1            𝑛 = 0, 1, 2, …… .. 

 

The three-term recurrence relation satisfied by orthogonal polynomials is very important 

information for the constructive and computational use of the orthogonal polynomials. It is 
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used to generate the values of orthogonal polynomials and their derivatives. It also allows the 

zeros of orthogonal polynomials to be computed, and it allows an efficient evaluation of 

expansion in orthogonal polynomials [45, 46]. The most widely used orthogonal polynomials 

are the classical orthogonal polynomials consisting of the Hermite polynomials, the Laguerre 

polynomials, and the Jacobi polynomials, together with their special cases the Chebyshev 

polynomials and the Legendre polynomials [44]. 

4.2.2 Example of Orthogonal Polynomials 

In this subsection, we briefly discuss properties of Legendre, Jacobi, and Chebyshev 

polynomials, which are classical examples of orthogonal families of polynomials. 

Legendre Polynomials 

 Legendre polynomials are usually used in numerical analysis such as approximation theory. 

They are orthogonal in the interval [−1, 1], and satisfy the 3-term recurrence relation [46]: 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥 𝑃𝑛(𝑥) −  𝑛𝑃𝑛−1(𝑥)                              4.13 

𝑃0(𝑥) =  1 

𝑃1(𝑥) =  𝑥 

They may be expressed using Rodrigues’s formula  

𝑃𝑛(𝑥) =  
1

2𝑛𝑛!
 
𝑑𝑛

𝑑𝑥𝑛
 (𝑥2 − 1)𝑛.                                    4.14 

Legendre’s differential equation is: 

𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑

𝑑𝑥
𝑃𝑛(𝑥)] + 𝑛(𝑛 + 1) 𝑃𝑛(𝑥) =  0                                                 4.15 
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Table 4.1: Legendre Polynomials [46]. 

 

 

Figure 4.1 shows Legendre polynomials up to degree 5. Table 4.1 shows the Legendre 

polynomials up to degree 6. 

 

Figure 4.1: The graphs of the Legendre polynomials (up to n = 5). 

Figure from [46].   

 

𝑃0 = 1 

𝑃1 = 𝑥 

𝑃2 =
3

2
𝑥2 −

1

2
 

𝑃3 =
5

2
𝑥3 −

3

2
𝑥 

𝑃4 =
35

8
𝑥4 −

30

8
𝑥2 +

3

8
 

𝑃5 =
63

8
𝑥5 −

70

8
𝑥3 +

15

8
𝑥 

𝑃6 =
231

16
𝑥6 −

315

16
𝑥4 +

105

16
𝑥2 −

5

16
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Chebyshev Polynomials 

Chebyshev polynomials are important in approximation theory.They are orthogonal with 

respect to the weight 
1

√(1−𝑥2)
 on the interval [−1, 1]. The classical Chebyshev polynomial of 

the first kind is defined by the three following recurrence formula [44]: 

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)                                                    4.16 

𝑇1(𝑥) =  𝑥 

𝑇0(𝑥) =  1 

The Chebyshev differential equation is: 

(1 − 𝑥2)𝑦′′ − 𝑥𝑦 + 𝑛2𝑦 = 0                                           4.17 

The product formula of Chebyshev polynomials of the first kind is [45]: 

𝑇𝑖(𝑥)𝑇𝑗(𝑥) =
1

2
( 𝑇𝑖+𝑗 (𝑥) + 𝑇|𝑖−𝑗|(𝑥))                                       4.18 

Figure 4.2 shows the graphs of Chebyshev polynomials of the first kind up to degree 5. Table 

4.2 shows the values of Chebyshev polynomials up to degree 5. 

 

 Table 4.2: Chebyshev Polynomials [45] 

𝑇0 = 1 

𝑇1 = 𝑥 

𝑇2 = 2𝑥2 − 1 

𝑇3 = 4𝑥3 − 3𝑥 

𝑇4 = 8𝑥
4 − 8𝑥2 + 1 

𝑇5 = 16𝑥
5 − 20𝑥3 + 5𝑥 

𝑇6 = 32𝑥6 − 48𝑥4 + 18𝑥2 − 1 
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Figure 4.2: The graphs of the Chebyshev polynomials of the first kind in the 

interval −1 ≤  𝑥 ≤  1 up to 𝑛 =  5. 
Figure from [45].  

 

Jacobi Polynomials 

 Jacobi polynomials 𝑃𝑛
𝛼,𝛽
(𝑥) are a class of classical orthogonal polynomials [44]. They are 

orthogonal with respect to the weight (1 −  x)α(1 +  x)β on the interval [−1, 1]: 

∫ (1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑃𝑛
𝛼,𝛽(𝑥)𝑃𝑚

𝛼,𝛽(𝑥)𝑑𝑥
1

−1

 

Legendre and Chebyshev polynomials are special cases of Jacobi polynomials. For 𝛼 =  𝛽 =

0, it is called a Legendre polynomial with weight function 1, and for  𝛼 =  𝛽 = ±1/2  , we 

obtain the Chebyshev polynomial [44].  
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Table 4.3 Most Common Classical Orthogonal Polynomials [45]. 

Polynomial Name Notation Interval Weight function 𝜔𝑖(𝑥) 

Chebyshev of the first kind 𝑇𝑛(𝑥) 

 

[-1,1] 1

√(1 − 𝑥2)
 

Chebyshev of the second kind 𝑈𝑛𝑥 

 

[-1,1] √(1 − 𝑥2) 

Legendre polynomial 𝑃𝑛(𝑥) [-1, 1] 1 

Jacobi polynomial 𝑃𝑛
(𝛼,𝛽)

(𝑥) (-1, 1) (1 − 𝑥)𝜎(1 + 𝑥)𝛽 

Hermite polynomial 𝐻𝑛(𝑥) (−∞,∞) 𝑒−𝑥
2
 

 

 

4.3 Resultant in Orthogonal Bases 

Polynomials can be expressed in many different bases such as the monomial, Chebyshev, 

Legendre, and any orthogonal bases. Each basis has its advantages and disadvantages, and by 

choosing the appropriate bases, many problems can be solved. For example, orthogonal basis 

polynomials such as Chebyshev, Legendre, and Legendre-Sobolev are very useful for 

polynomial approximation in handwriting recognition. They have the advantage of providing 

a high recognition rate. Since symbolic methods are too slow for practical applications of 

resultants such as computer-aided geometric design, the numerical computation of resultants 

must be considered. In this section, we compute resultant matrices in orthogonal bases. 

4.3.1 Basis Conversion among Power Basis Polynomial Representations 

and Orthogonal Basis Polynomial Representation 
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When polynomials are expressed in orthogonal bases, we are able to convert them into 

polynomials in the power basis, compute resultant matrices, and then convert back to the 

right orthogonal basis. In many theoretical and practical applications, several representations 

of polynomials are used, and they can be converted between each other. In the literature, 

there exist several conversion algorithms [32-37] for changing from any univariate basis 

(monomial and orthogonal polynomials: Legendre, Chebyshev, and Jacobi) into another one. 

In this section, we discuss a basis conversion from an orthogonal basis to the monomial basis. 

 As we mentioned above (in the orthogonal polynomials section) the sequence of orthogonal 

polynomials Fi can be defined by:  

𝐹−1 =  0 

𝐹0 = 1 

𝐹𝑖 = (𝑎𝑖𝑥 + 𝑏𝑖)𝐹𝑖−1 + 𝑐𝑖𝐹𝑖−2 

In order to perform the basis change between the orthogonal basis (𝐹𝑖) and the monomial 

basis (𝑥𝑖), we need to study the following problems [35]. 

Expansion Problem (Expand): Given the coefficients {𝛼0, … . . 𝛼𝑛−1} in an orthogonal basis, 

compute the coefficients on the monomial basis of the polynomial 𝐴 defined by the map 

[𝛼0, … . . 𝛼𝑛−1 ] →  𝐴 =  ∑ 𝛼𝑖
𝑛−1
𝑖=0 𝐹𝑖                                               4.19 

Decomposition Problem (Decomp): Conversely, given the coefficients of 𝐴 in the 

monomial basis, recover the coefficients {𝛼0, … . . 𝛼𝑛−1}. 

Let 𝐹𝑛   be 𝑛 ×  𝑛 translation matrix; then, multiply the matrix 𝐹𝑛 by the vector 

[𝛼0……𝛼𝑛−1]
𝑡  for problem Expand. 𝐹𝑛 is an upper triangular matrix whose diagonal entry is 

non-zero; so, it is linearly independent and its matrix inverse can be computed [35]. Next two 

sections, we introduce Legendre-Power and Chebyshev-Power basis transformation. 
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4.3.1.1 Legendre-Power Basis Transformation 

A polynomial 𝑄(𝑥) of degree 𝑛 can be written in the form of the power basis and the 

Legendre basis as[34]: 

𝑄(𝑥) =  ∑𝑎𝑖𝑋
𝑖   =  ∑𝑙𝑗𝑃𝑗(𝑥)

𝑛

𝑗=0

𝑛

𝑖=0

. 

In this section, we try to find the entries of the translation matrix M which transforms the 

coefficients of the power basis {𝑎0, 𝑎1, 𝑎2, … . . 𝑎𝑛} to the coefficients of the Legendre basis 

{𝐿0, 𝐿1, 𝐿2, … . . 𝐿𝑛}: 

𝐿𝑗 = ∑ 𝑎𝑖𝑀𝑖𝑗  
𝑛
𝑖=0 .                                                           4.20 

Introducing the vectors 𝑎𝑡  =  [𝑎0, 𝑎1, 𝑎2, … . 𝑎𝑛] and 𝑙𝑡  =  [𝑙0, 𝑙1, 𝑙2, …… . . 𝑙𝑛], we can write 

(4.20) in matrix-vector form as 

𝑙 = 𝑎𝑀.                                                                        4.21 

By computing the inverse of 𝑀, we can get the monomial coefficients from the orthogonal 

polynomial [34]: 

    𝑎 = 𝑙𝑀−1.                                                                   4.22 

The transition matrix 𝑀 from the monomial basis to the Legendre basis can be computed 

from the recursive relation of the Legendre polynomials. 

[

1
𝑋
𝑋2……
𝑋𝑛

] = 𝑀 ∗

[
 
 
 
 
𝑃0(𝑥)
𝑃1(𝑥)
𝑃2(𝑥)
……
𝑃𝑛(𝑥)]

 
 
 
 

                                                   4.23 
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𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 
1
0 1
1

3
0

2

3

0
3

5
0

2

5
7

35
0

20

35
0

8

35
 

0
27

63
0

28

63
0

8

63
0

8

63
: : : : : : : :

]
 
 
 
 
 
 
 
 
 
 
 

 

By using Equation (4.23), a polynomial expressed by the power basis 

𝛼(𝑥) =  𝛼𝑛𝑥
𝑛 + 𝛼𝑛−1𝑥

𝑛−1 +⋯ .𝛼1𝑥 + 𝛼0 

can be expressed by the Legendre polynomial basis in the following form: 

𝛼(𝑥) =  [𝛼0  𝛼1  𝛼2… . . 𝛼𝑛]𝑀 [

𝑃0(𝑥)
𝑃1(𝑥)……
𝑃𝑛(𝑥)

] 

𝑀 is linearly independent and it has full rank, so it is invertible. We have 𝑀−1 given by: 

𝑀−1 =

[
 
 
 
 
 
 
 
 
 
 
 
1
0 1

−
1

2
0

3

2

0 −
3

2
0

5

2
3

8
0 −

15

4
0

35

8
 

0
15

8
0 −

35

4
0

63

8
0

8

63
: : : : : : : :

]
 
 
 
 
 
 
 
 
 
 
 

 

 

A polynomial expressed by the Legendre basis, 

𝛽(𝑥) =  𝛽𝑛𝑃𝑛(𝑥) + 𝛽𝑛−1𝑃𝑛−1(𝑥) + ⋯ . 𝛽1𝑃1 + 𝛽0, 
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can be expressed by the power polynomial basis in the following form [34]: 

𝛽(𝑥) =  [𝛽0  𝛽1  𝛽2… . . 𝛽𝑛] 𝑀
−1 [

𝑥0

𝑥1……
𝑥𝑛

]                                            4.24 

Example 4.5 Consider two polynomials expressed in the Legendre basis,  𝐴(𝑥) = 3𝑃3(𝑥)  −

2𝑃2(𝑥)  − 3𝑃1(𝑥) + 10𝑃0(𝑥) and 𝐵(𝑥) = 𝑃3(𝑥) + 5𝑃2(𝑥)  − 7𝑃1(𝑥) + 11𝑃0(𝑥). Using 

equation 4.20, we can obtain the polynomials in the power basis: 

 

𝐴(𝑥) = [10 −3 −2 3]

[
 
 
 
 
 
1 0 0 0
0 1 0 0

−
1

2
0

3

2
0

0 −
3

2
0

5

2

]
 
 
 
 
 

  [

𝑥0

𝑥1

𝑥2

𝑥3

] = 11 −
15

2
𝑥 − 3𝑥2 +

15

2
𝑥3  

 

𝐵(𝑥) = [11 −7 5 1]  

[
 
 
 
 
 
1 0 0 0
0 1 0 0

−
1

2
0

3

2
0

0 −
3

2
0

5

2

]
 
 
 
 
 

 [

𝑥0

𝑥1

𝑥2

𝑥3

] =
17

2
−
17

2
𝑥 +

15

2
𝑥2 +

5

2
𝑥3 

 

An algorithm for converting a polynomial in the power basis to a polynomial in the Legendre 

basis can be deduced as follows [40]. 

Let  𝑃(𝑥) = ∑ 𝑎𝑘𝑥
𝑘𝑛

𝑘=0  and 𝑃(𝑥) =  ∑ 𝑏𝑘𝑃𝑘
𝑛
𝑘=0  be the polynomials in the power basis and 

the Legendre basis, respectively. Then: 

𝑃𝑛+1 = 𝐴𝑛𝑥𝑃𝑛 + 𝐶𝑛𝑃𝑛−1 
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⟹ 𝑥𝑃𝑛 =
1

𝐴𝑛
𝑃𝑛+1 − 

𝐶𝑛
𝐴𝑛
 𝑃𝑛−1        (𝑛 > 1), 

 

𝑃1 = 𝐴0𝑥𝑃0 ⟹ 𝑥𝑃𝑜 = 
1

𝐴0
 𝑃1 

we have 

𝑃𝑛 = ∑ 𝑎𝑘𝑥
𝑘 

𝑗−1

𝐾=0

+ 𝑥𝑗 ∑𝑏𝑘𝑃𝑘  

𝑛−𝑗

𝐾=0

(𝑥) 

 

⇛ ∑ 𝑎𝑘𝑥
𝑘 + 𝑥𝑗

𝑗

𝑘𝑘=0

 ∑ 𝑏𝑘
𝑗+1

𝑛−𝑗−1

𝑘=1

  (
1

𝐴𝑘
 𝑃𝑘+1 −

𝐶𝑘
𝐴𝑘
𝑃𝑘−1) + 𝑥

𝑗+1𝑏0
𝑗+1 

𝑃0 

 

4.3.1.2 Chebyshev-Power Basis Transformation 

A polynomial 𝑄(𝑥) of degree 𝑛 can be written in the form of the power basis and the 

Chebyshev basis as 

𝑄(𝑥) =  ∑𝑎𝑖𝑥
𝑖   =  ∑𝑐𝑗𝑇𝑗(𝑥)

𝑛

𝑗=0

𝑛

𝑖=0

. 

The translation matrix 𝑁 transforms the coefficients in the power basis {𝑎0, 𝑎1, 𝑎2, … . . 𝑎𝑛} to 

the coefficients in the Chebyshev basis {𝑐0, 𝑐1, 𝑐2, … . . 𝑐𝑛 } where 

𝑐𝑗 = ∑ 𝑎𝑖𝑁𝑖𝑗  
𝑛
𝑖=0 .                                                        4.25 

Introducing the vectors 𝑎𝑡  =  [𝑎0, 𝑎1, 𝑎2, … . 𝑎𝑛] and 𝑐𝑡  =  [𝑐0, 𝑐1, 𝑐2, …… . . 𝑐𝑛], we can write 

(4.25) in matrix- vector form as 

𝑐 = 𝑎𝑁. 
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By computing the inverse of N, we can get the monomial coefficients from the Chebyshev 

polynomial 

𝑎 = 𝑐𝑁−1. 

The transition matrix 𝑁 from the monomial basis to the Chebyshev basis can be computed 

from the recursive relation of the Chebyshev polynomial. 

[

1
𝑥
𝑥2……
𝑥𝑛

] = 𝑁

[
 
 
 
 
𝑇0(𝑥)

𝑇1(𝑥)
𝑇2(𝑥)
……
𝑇𝑛(𝑥)]

 
 
 
 

                                                    4.26 

 

𝑁 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1
0 1
1

2
0

1

2

0
3

4
0

1

4
3

8
0

1

2
0

1

8

0
5

8
0

5

16
0

1

16
5

16
0

15

32
0

3

16
0

1

32

0
35

64
0

21

64
0

7

64
0

1

64
: : : : : : : :

]
 
 
 
 
 
 
 
 
 
 
 
 

  

𝑁 is linearly independent and has full rank, so it is invertible. We have: 

𝑁−1 =

[
 
 
 
 
 
 
 
 
 
1
0 1
−1 0 2
0 −3 0 4
1 0 −8 0 8
0 5 0 −20 0 16
−1 0 18 0 −48 0 32
0 −7 0 56 0 −112 0 64
: : : : : : : :

]
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4.3.2 Transformation of the Sylvester Matrix Resultant between the Power 

Basis and Orthogonal bases 

A simple way to compute a resultant matrix in the Legendre basis is to transform the 

polynomials to the power basis, compute their Sylvester matrix in the power basis, and then 

convert it back to the orthogonal basis. The transformation of the Sylvester resultant matrix 

between the power and orthogonal bases is computed in this section.   

Consider two polynomials of degree n and m respectively, expressed in the Legendre basis: 

𝑓(𝑥) =  ∑ 𝑎𝑖𝑃𝑖
𝑛
𝑖=0  𝑎𝑛𝑑 𝑔(𝑥) =  ∑ 𝑏𝑗𝑃𝑗

𝑚
𝑗=0  with𝑛 ≥ 𝑚. To compute their Sylvester matrix, 

consider the equation: 

 

[
 
 
 
 
 
 
 
 
𝑎0 𝑎1 … 𝑎𝑛 0 … 0
0 𝑎0 … 𝑎𝑛−1 𝑎𝑛 … 0
: : : : : : :
0 0 … 𝑎0 𝑎1 … 𝑎𝑛
𝑏0 𝑏1 … 𝑏𝑚 0 … 0
0 𝑏0 … 𝑏𝑚 0 … 0
: : : : : : :
0 0 … 𝑏0 … 𝑏𝑚−1 𝑏𝑚

]
 
 
 
 
 
 
 
 

.

[
 
 
 
 
 
 

𝑥0

𝑥1… .
𝑥𝑚…
𝑥𝑛

𝑥𝑛+1… .

𝑥𝑚+𝑛−1]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝑓(𝑥)𝑥0

𝑓(𝑥)𝑥1

𝑓(𝑥)𝑥2

…… .
𝑓(𝑥)𝑥𝑚−1

𝑔(𝑥)𝑥0

𝑔(𝑥)𝑥1

𝑔(𝑥)𝑥2
…… . .

𝑔(𝑥)𝑥𝑛−1]
 
 
 
 
 
 
 
 
 
 

⟹ [𝐿𝑆𝑦𝑙 (𝑓, 𝑔)]. 

[
 
 
 
 
 
 
 

𝑃0(𝑥)
𝑃1(𝑥)…
𝑃𝑚(𝑋)…
𝑃𝑛(𝑥)
𝑃𝑛+1(𝑥)… .
𝑃𝑚+𝑛−1(𝑥)]

 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
 
𝑃0(𝑥)𝑓(𝑥)
𝑃1(𝑥)𝑓(𝑥)

𝑃2(𝑥)𝑓(𝑥)…
𝑃𝑚−1(𝑥)𝑓(𝑥)
𝑃0(𝑥)𝑔(𝑥)
𝑃1(𝑥)𝑔(𝑥)

𝑃2(𝑥)𝑔(𝑥)… .
𝑃𝑛−1(𝑥)𝑔(𝑥)]

 
 
 
 
 
 
 
 
 

 

Multiplying the Sylvester matrix in the power basis by the translation matrix M, we get the 
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Sylvester matrix in the Legendre basis: 

𝐿𝑆𝑦𝑙𝑥(𝑓, 𝑔) =  𝑆𝑦𝑙(𝑓, 𝑔) ∗ 𝑀                                            4.27 

 

[
 
 
 
 
 
 
 
 
𝑎0 𝑎1 … 𝑎𝑛 0 … 0
0 𝑎0 … 𝑎𝑛−1 𝑎𝑛 … 0
: : : : : : :
0 0 … 𝑎0 𝑎1 … 𝑎𝑛
𝑏0 𝑏1 … 𝑏𝑛 0 … 0
0 𝑏0 … 𝑏𝑛 0 … 0
: : : : : : :
0 0 … 𝑏0 … 𝑏𝑚−1 𝑏𝑚

]
 
 
 
 
 
 
 
 

  ∗  

[
 
 
 
 
 
 
 
 
 
 
 
1
0 1
1

3
0

2

3

0
3

5
0

2

5
7

35
0

20

35
0

8

35
 

0
27

63
0

28

63
0

8

63
0

8

63
: : : : : : : :

]
 
 
 
 
 
 
 
 
 
 
 

⟹ 𝐿𝑆𝑦𝑙𝑥(𝑓, 𝑔) 

Consider two polynomials in the power basis: 𝐴(𝑥) = 11 − 6𝑥 − 3𝑥2 + 8𝑥3 and 𝐵(𝑥) =

3 − 9𝑥 + 2𝑥2 + 5𝑥3. Their Sylvester matrix in the power basis is: 

[
 
 
 
 
 
11 −6 −3 8 0 0
0 11 −6 −3 8 0
0
3
0
0

0
−9
3
0

11
2
−9
3

−6
5
2
−9

−3 8
0 0
5
2

0
5 ]
 
 
 
 
 

 

By using equation 4.27, we obtain the Sylvester matrix in the Legendre basis: 

𝐿𝑆𝑦𝑙(𝑓, 𝑔) =

[
 
 
 
 
 
 
 
 
 
 
 
 10 −

6

5
−2 

16

5
0 0

−
2

5

46

5

4

7
−
6

5

64

35
0

46

15
−
6

35

118

21

52

45
−
24

35

64

63
11

3
−6

4

3
2 0 0

−2
21

5
−
22

7

4

5

8

7
0

7

5
−
114

35

22

7
−
62

45

16

35

40

63 ]
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It has been shown that this change of basis is ill conditioned [34]. It is concluded that the 

Sylvester matrix resultant should be constructed and computed in the Legendre basis, such 

that the power basis is not used. In the next section, computation of the Sylvester matrix in 

the Legendre basis is considered. 

4.3.3 Computation of the Sylvester Matrix Resultant in Orthogonal Bases  

In order to compute the Sylvester matrix resultant in an orthogonal basis, we begin with the 

familiar construction of the Sylvester matrix in the monomial basis. Consider two 

polynomials of degree n and m respectively: 𝑓(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  and 𝑔(𝑥) =  ∑ 𝑏𝑗𝑥
𝑗𝑚

𝑗=0 . For 

the 𝑚 first columns, for the first column of the matrix, we have 𝑥0 times the coefficients of 

𝑓(𝑥). For the second column, we have 𝑥1  times the coefficients of 𝑓(𝑥), and so on until the 

𝑚𝑡ℎ column, where we have 𝑥𝑚−1 times the coefficients of 𝑓(𝑥). For the 𝑛 last columns, for 

the first column of the matrix, we have 𝑥0 times the coefficients of 𝑔(𝑥), for the second 

column, we have 𝑥2  times the coefficients of 𝑔(𝑥) etc. until the 𝑛𝑡ℎ column, where we have 

𝑥𝑛−1 times the coefficients of 𝑓(𝑥). The columns look like: 

    𝑓(𝑥)𝑥0  𝑓(𝑥)𝑥1…𝑓(𝑥)𝑥𝑚−1  𝑔(𝑥)𝑥0   𝑔(𝑥)𝑥1…𝑔(𝑥)𝑥𝑛−1  

𝑥0

𝑥1

:
:
:
:
:

𝑥𝑚+𝑛−1

 

[
 
 
 
 
 
 
 
 

    

𝑎0 0 … 0 𝑏0 0 : 0
𝑎1 𝑎0 … 0 𝑏1 𝑏0 : 0
: : : : : : : :
𝑎𝑛 : … 𝑎0 𝑏𝑚 : : 𝑏0
0 𝑎𝑛−1 … 𝑎1 0 𝑏𝑚 : :
: 𝑎𝑛 … : : : : :

: : : : : : : 𝑏𝑚−1
0 0 … 𝑎𝑛 0 0 : 𝑏𝑚

     

]
 
 
 
 
 
 
 
 

 

As long as we have the product formula for bases, it is possible to have the formula for the 

resultant matrices. Consider a polynomial 𝐴(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖 𝑚

𝑖=0  in the monomial basis. We 
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know that the product formula for the monomial basis is 𝑥𝑘𝑥1 = 𝑥𝑘+1 and the recursive 

relation is xk = x1xk−1. Clearly, we have 𝑥1 𝐴(𝑋) = ∑ 𝑎𝑖𝑥
𝑖+1𝑚+1

𝑖=0  and more generally we 

can compute the Sylvester matrix based on the formula: 

𝑥𝑗 ∗ 𝐴(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖+𝑗𝑛

𝑖=0                                                                 4.28 

Consider the two polynomials 𝐴(𝑥)  =  𝑎3𝑥
3 + 𝑎2𝑥

2  +  𝑎1𝑥 + 𝑎0, 𝐵(𝑥)  =  𝑏3𝑥
3 + 𝑏2𝑥

2 +

𝑏1𝑥 + 𝑏0, based on the multiplication formula, we can compute the Sylvester matrix as: 

𝑥0 𝑥1 𝑥2   𝑥3 𝑥4 𝑥5 

𝑥0𝐴(𝑥)

𝑥1𝐴(𝑥)

𝑥2𝐴(𝑥)

𝑥0𝐵(𝑥)

𝑥1𝐵(𝑥)

𝑥2𝐵(𝑥) [
 
 
 
 
 
𝑎0 𝑎1 𝑎2 𝑎3 0 0

0 𝑎0 𝑎1 𝑎2 𝑎3 0

0
𝑏0
0
0

0
𝑏1
𝑏0
0

𝑎0
𝑏2
𝑏1
𝑏0

𝑎1
𝑏3
𝑏2
𝑏1

𝑎2 𝑎3
0 0
𝑏3
𝑏2

0
𝑏3]
 
 
 
 
 

 

For non-monomial bases such as orthogonal bases (e.g. Chebyshev and Legendre bases), we 

can apply the same process as long as we have the multiplication formula; however, in 

general it is not always possible to have a simple product formula as for monomial basis 

polynomials.  

4.3.3.1 Resultant Sylvester Matrix in Chebyshev Basis 

This section is based on the work in [38].  The Sylvester matrix can be generalized for the 

Chebyshev basis using the multiplication formula in the Chebyshev basis.  Let 𝑓(𝑧) =

 ∑ 𝑓𝑖𝑇𝑖(𝑧)
𝑑
𝑖=0  be a polynomial of degree d expressed in the Chebyshev basis, and let 𝑇𝑗(𝑧) be 

a Chebyshev polynomial. Then,  the product 𝑇𝑗(𝑧)𝑓(𝑧) is given by 

 𝑇𝑗(𝑧)𝑓(𝑧) =
1

2
∑ 𝑓𝑖𝑇𝑖+𝑗
𝑑
𝑖=0 (𝑧) +

1

2
∑ 𝑓𝑖𝑇𝑖−𝑗
𝑑
𝑖=𝑗 (𝑧) +

1

2
∑ 𝑓𝑖𝑇𝑗−𝑖
𝑗−1
𝑖=0 (𝑧).                 4.29 
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The formula will be proven in the next section. 

Assume that 𝑓(𝑧) =  ∑ 𝑎𝑘𝑇𝑘(𝑧)
𝑚
𝑘=0 , 𝑔(𝑧) =  ∑ 𝑏𝑘𝑇𝑘(𝑧)

𝑛 
𝑘=0 , and we want to compute their 

Sylvester matrix in the Chebyshev basis, 𝐶𝑆𝑦𝑙(𝑓, 𝑔): We have to compute: 

𝑇0(𝑧)𝑓(𝑧) 

𝑇1(𝑧)𝑓(𝑧) 

: 

: 

𝑇𝑛−1(𝑧)𝑓(𝑧) 

𝑇0(𝑧)𝑔(𝑧) 

𝑇1(𝑧)𝑔(𝑧) 

: 

: 

𝑇𝑚−1(𝑧)𝑔(𝑧) 

 

By the previous formula (4.29): 

 𝑇𝑖(𝑧)𝑓(𝑧) =
1

2
∑𝑎𝑘𝑇𝑘+𝑖

𝑚

𝑘=0

(𝑧) +
1

2
∑𝑎𝑘𝑇𝑘−𝑖

𝑚

𝑘=𝑖

(𝑧) +
1

2
∑𝑎𝑖𝑇𝑖−𝑘

𝑖−1

𝑘=0

(𝑧) 

 

 

=
1

2
(𝐵𝑖,0

𝑓
(𝑧) + 𝐵𝑖,1

𝑓
(𝑧) + 𝐵𝑖,2

𝑓
(𝑧)), 

where  

 

𝐵𝑖,0
𝑓 (𝑧) =  ∑𝑎𝑘𝑇𝑘+𝑖

𝑚

𝑘=0

(𝑧) 
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 𝐵𝑖,1
𝑓 (𝑧) = ∑ 𝑎𝑘𝑇𝑘−𝑖

𝑚
𝑘=𝑖 (𝑧), 

and   𝐵𝑖,2
𝑓 (𝑧) = ∑ 𝑎𝑖𝑇𝑖−𝑘

𝑖−1
𝑘=0 (𝑧). 

 

 

 

 

For the product, we have the three matrices: 

 

                    𝐵0,0
𝑓

   𝐵1,0
𝑓

   … 𝐵𝑛−1,0
𝑓

𝐵0,0
𝑔

𝐵1,0
𝑔

… 𝐵𝑚−1,0
𝑔

 

 𝑆0 =

𝑇0
𝑇1
:
:
:
:

𝑇𝑛+𝑚−1

 

(

 
 
 
 
 
 

𝑎0 𝑏0
𝑎1 𝑎0 𝑏1 𝑏0
: : : : : 𝑏0
𝑎𝑚 𝑎𝑚−1 : 𝑎0 𝑏𝑛 𝑏𝑛−1 : 𝑏0

𝑎𝑚 𝑎𝑚−1 : 𝑏𝑛 𝑏𝑛−1 :

𝑎𝑚 𝑎𝑚−1 𝑏𝑛 𝑏𝑛−1
𝑎𝑚 𝑏𝑛

)

 
 
 
 
 
 

 

 

  𝐵0,1
𝑓

 𝐵1,1
𝑓

…  𝐵𝑛−1,1
𝑓

𝐵0,1
𝑔

𝐵1,1 
𝑔
…   𝐵𝑚−1,1

𝑔  

𝑆1 =

𝑇0
𝑇1
:
:
:
:

𝑇𝑛+𝑚−1
(

 
 
 
 
 
 

𝑎0 𝑎1 … 𝑎𝑛−1 𝑏0 𝑏1 … 𝑏𝑛
𝑎1 𝑎2 … : 𝑏1 : …

: : : 𝑎𝑚 : : :

𝑎𝑚−1 𝑎𝑚 : : 𝑏𝑛 :

𝑎𝑚 𝑏𝑛
0
:

)

 
 
 
 
 
 

 

 

𝑆2 =

(

 
 
 

0 0 0 0 0 0
0 𝑎0 … … 𝑎𝑛−1 0 𝑏0 … 𝑏𝑚 0

: : : : : :
0 𝑎0 0 𝑏0 0

0 0 0 0 0
)
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The resultant of 𝑓(𝑥) and 𝑔(𝑥) is the determinant of the sum of the matrices: 

𝑅𝑒𝑠(𝑓, 𝑔) =
1

2
𝐷𝑒𝑡 (𝑆0 + 𝑆1 + 𝑆2) 

Example 4.7 Let  𝑓(𝑥) =  𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥), and  𝑔(𝑥) =  𝑏0𝑇0(𝑥) +

𝑏1𝑇1(𝑥) + 𝑏2𝑇2(𝑥) be polynomials expressed in the Chebyshev basis. Suppose we wish to 

compute their Sylvester resultant matrix in the same basis to avoid basis conversion such that 

the power basis is not used. We have four columns containing 

(𝑇0𝑓(𝑥), 𝑇1𝑓(𝑥), 𝑇0𝑔(𝑥), 𝑇1𝑔(𝑥)):  

𝑇0𝑓(𝑥) =  𝑓(𝑥) =
1

2
(𝑎0𝑇0 + 𝑎1𝑇1 + 𝑎2𝑇2) +

1

2
(𝑎0𝑇0 + 𝑎1𝑇1 + 𝑎2𝑇2) 

𝑇1𝑓(𝑥) =
1

2
𝑎0𝑇1 +

1

2
𝑎0𝑇1 +

1

2
(𝑎1𝑇0 + 𝑎1𝑇2) +

1

2
(𝑎2𝑇3 + 𝑎2𝑇1) 

 

We have the same multiplication for 𝑔(𝑥): 

𝑇0𝑔(𝑥) = 𝑔(𝑥) =
1

2
(𝑏0𝑇0 + 𝑏1𝑇1 + 𝑏2𝑇2) +

1

2
(𝑏0𝑇0 + 𝑏1𝑇1 + 𝑏2𝑇2) 

𝑇1𝑔(𝑥) =
1

2
𝑏0𝑇1 +

1

2
𝑏0𝑇1 +

1

2
(𝑏1𝑇0 + 𝑏1𝑇2) +

1

2
(𝑏2𝑇3 + 𝑏2𝑇1) 

 

The resultant is given by: 

𝑅𝑒𝑠(𝑓, 𝑔) = (
1

2
)  𝐷𝑒𝑡

(

 
 
(

𝑎0 0 𝑏0 0

𝑎1 𝑎0 𝑏1 𝑏0
𝑎2
0

𝑎1
𝑎2

𝑏2
0

𝑏1
𝑏2

) + (

𝑎0 𝑎1 𝑏0 𝑏1
𝑎1 𝑎2 𝑏1 𝑏2
𝑎2
0

0
0

𝑏2
0

0
0

) + (

0 0 0 0
0 𝑎0 0 𝑏0
0
0

0
0

0
0

0
0

)

)

 
 
=  
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= (
1

2
)𝐷𝑒𝑡

(

 
 

[
 
 
 
 
2𝑎0 𝑎1 2𝑏0 𝑏1
2𝑎1 2𝑎0 + 𝑎2 2𝑏1 2𝑏0 + 𝑏2
2𝑎2 𝑎1 2𝑏2 𝑏1
0 𝑎2 0 𝑏2

]
 
 
 
 

)

 
 

  

 

= 𝐷𝑒𝑡

(

 
 
 
 

[
 
 
 
 
 
 𝑎0

1

2
𝑎1 𝑏0

1

2
𝑏1

𝑎1 𝑎0 +
1

2
𝑎2 𝑏1 𝑏0 +

1

2
𝑏2

𝑎2
1

2
𝑎1 𝑏2

1

2
𝑏1

0
1

2
𝑎2 0

1

2
𝑏2

]
 
 
 
 
 
 

)

 
 
 
 

  

 

 

= 𝐷𝑒𝑡

(

 
 
 
 

(

 
 
 

𝑎0 𝑎1 𝑎2 0
𝑎1
2

𝑎0 +
𝑎2
2

𝑎1
2

𝑎2
2

𝑏0
𝑏1
2

𝑏1

𝑏0 +
𝑏2
2

𝑏2
𝑏1
2

0
𝑏2
2 )

 
 
 

)

 
 
 
 

 

 

If we do the same example using the basis change method (where we convert the polynomials 

in the Chebyshev basis into polynomials in the power basis, compute the resultant Sylvester 

matrix, and then convert back to the Chebyshev basis) then we get the same answer. 

 We need these steps: 

 Convert polynomials into polynomials in the power basis: 

𝑓(𝑥) = [𝑎0 𝑎1 𝑎2] ∗ [
1 0 0
0 1 0
−1 0 2

] [
𝑥0

𝑥1

𝑥2
] 

 

𝑓(𝑥) = (𝑎0 − 𝑎2) + 𝑎1𝑥 + 2𝑎2𝑥
2 
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𝑔(𝑥) = [𝑏0 𝑏1 𝑏2] ∗ [
1 0 0
0 1 0
−1 0 2

] [
𝑥0

𝑥1

𝑥2
] 

𝑔(𝑥) = (𝑏0 − 𝑏2) + 𝑏1𝑥 + 2𝑏2𝑥
2 

 

 Compute their Sylvester matrix resultant in the power basis: 

𝑆𝑦𝑙(𝑓, 𝑔, 𝑥) =

[
 
 
 
 
𝑎0 − 𝑎2 𝑎1 2𝑎2 0
0 𝑎0 + 𝑎2 𝑎1 2𝑎2

𝑏0 − 𝑏2 𝑏1 2𝑏2 0
0 𝑏0 − 𝑏2 𝑏1 2𝑏2

]
 
 
 
 

 

 

 

 Convert the Sylvester matrix back to the Chebyshev basis: 

 

[
 
 
 
 
𝑎0 − 𝑎2 𝑎1 2𝑎2 0
0 𝑎0 + 𝑎2 𝑎1 2𝑎2

𝑏0 − 𝑏2 𝑏1 2𝑏2 0
0 𝑏0 − 𝑏2 𝑏1 2𝑏2

]
 
 
 
 

∗

[
 
 
 
 
 
 
1 0 0 0
0 1 0 0
1

2
0

1

2
0

0 −
3

4
0

1

4
]
 
 
 
 
 
 

 

 

=

[
 
 
 
 
 
 
𝑎0 𝑎1 𝑎2 0
𝑎1
2

𝑎0 +
1

2
𝑎2

1

2
𝑎1

1

2
𝑎2

𝑏0 𝑏1 𝑏2 0
1

2
𝑏1 𝑏0 +

1

2
𝑏2

1

2
𝑏1

1

2
𝑏2

]
 
 
 
 
 
 

 

As you can see, we get the same result. The resultant matrix in the Chebyshev basis can be 



 67 

computed in the following way. On the first matrix, we shift the first column down to get the 

second column. On the second matrix, we shift the first column up, but 𝑎0 will go out of the 

matrix and it is pushed on the third matrix. 

 4.3.3.2 Resultant in Legendre Basis 

In the case of the Legendre basis, we can apply the same process as with the Chebyshev basis 

to compute the Sylvester matrix resultant in the same basis as long as we have the 

multiplication formula. The Neumann-Adams formula gives the expansion of a product of two 

Legendre polynomials in a finite series of such polynomials. The multiplication formula for 

Legendre polynomials is [55]: 

 

𝑃𝑛(𝑥)𝑃𝑚(𝑥) = ∑
𝐴𝑟𝐴𝑛−𝑟𝐴𝑚−𝑟

𝐴𝑚+𝑛−𝑟 

𝑚
𝑟=0

2𝑛+2𝑚−4𝑟+1

2𝑛+2𝑚−2𝑟+1
𝑃𝑛+𝑚−2𝑟(𝑥)                            4.31 

where 𝑚 ≥ 𝑛,    𝐴𝑟 =
(
1

2
)
𝑟

𝑟!
     (𝑎)𝑟 = 𝑎(𝑎 + 1)(𝑎 + 2)… (𝑎 + 𝑟 − 1), and (𝑎)0 = 1. 

For most orthogonal basis polynomials, a simple product formula is not always possible (like 

in the Chebyshev or monomial basis). We assume that we have a special element (𝑧) that acts 

on orthogonal polynomials via a special multiplication rule. The special rule allows us to 

define a multiplication 𝑃𝑛(𝑥)  ∗  𝐴(𝑥) for any orthogonal polynomials in orthogonal bases. 

Table 4.4 summaries the special element (𝑧) with corresponding coefficients for the 

Chebyshev and Legendre bases. This approach is used in [41, 43]. For monomial 

polynomials, the special multiplication rule is simply the standard multiplication by 𝑥: 

𝑥 ∗ 𝑥𝑖 = 𝑥𝑖+1 

𝑥𝑗 ∗ 𝑥𝑖 = 𝑥𝑖+𝑗                                                        4.32 

Now assume 𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0   be a polynomial of degree d  expressed in the monomial 
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basis and let 𝑥𝑗  be a power basis polynomial, then the product 𝑥𝑗  𝑓(𝑥)   is given by: 

𝑥𝑗 ∗ 𝑓(𝑥) =∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

∗ 𝑥𝑗  

= ∑ 𝑎𝑖𝑥
𝑖+𝑗𝑛

𝑖=0                                                 4.33 

 

For Chebyshev polynomials 𝑇𝑖(𝑥), the special element is 𝑧 =  2𝑥 given by the rule: 

𝑧. 𝑇𝑖(𝑥) = 𝑇𝑖+1 + 𝑇𝑖−1(𝑥) 

 

From the recursive definition of Chebyshev polynomials, we have: 

𝑇𝑖+1 = 2𝑥𝑇𝑖(𝑥) − 𝑇𝑖−1(𝑥) 

 

𝑇1(𝑥) =  𝑥 ⇛ 

 

𝑇1(𝑥) ∗ 𝑇𝑖(𝑥) =  
1

2
(𝑇𝑖+1(𝑥) + 𝑇𝑖−1(𝑥)) 

 

We then get the multiplication formula: 

𝑇𝑗(𝑥)𝑇𝑖(𝑥) =  
1

2
(𝑇𝑖+𝑗(𝑥) + 𝑇𝑖−𝑗(𝑥))                                   4.34 

Now assume 𝑓(𝑧) = ∑ 𝑎𝑖𝑇𝑖
𝑛
𝑖=0   be a polynomial of degree d  expressed in the Chebyshev 

basis and let 𝑇𝑗(𝑧)  be a Chebyshev polynomial, then the product 𝑇𝑗(𝑧) 𝑓(𝑧)  can be 

expressed in the Chebyshev basis using 𝑂(𝑑)  arithmetic operations: 

𝑓(𝑧) ∗ 𝑇𝑗(𝑧) =∑𝑎𝑖𝑇𝑖

𝑛

𝑖=0

∗ 𝑇𝑗(𝑧) 
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=∑𝑎𝑖 (
1

2
(𝑇𝑖+𝑗(𝑧) + 𝑇𝑖−𝑗(𝑧)))

𝑛

𝑖=0

 

=
1

2
∑𝑎𝑖𝑇𝑖+𝑗 +

1

2
∑𝑎𝑖𝑇𝑖−𝑗(𝑧)

𝑛

𝑖=0

𝑛

𝑖=0

 

 

and we decompose it in the following way: 

 

1

2
∑𝑎𝑖𝑇𝑖+𝑗 +

1

2
∑𝑎𝑖𝑇𝑗−𝑖(𝑧)

𝑗−1

𝑖=0

𝑛

𝑖=0

+
1

2
∑𝑎𝑖𝑇𝑖−𝑗(𝑧)

𝑛

𝑖=𝑗

 

 

which is the formula in (4.29). 

 

                    Table 4.4 : Orthogonal Polynomial Bases with Special Element 𝒛 [41] 

Basis  Special element (z) 𝑐𝑖,𝑖+1 𝑐𝑖,𝑖−1 

Standard X 0 1 

Chebyshev 2x 1 1 

Legendre X 𝑖 + 1

2𝑖 + 3
 

𝑖

2𝑖 − 1
 

 

 In the case of Legendre polynomials, it is observed that the formula is very complicated. To 

make it simple, we assume we have a special element z that acts on Legendre polynomials via 

a special multiplication rule. As we mentioned before, the basic recursive formula for 

Legendre polynomials is: 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥 𝑃𝑛(𝑥) −  𝑛𝑃𝑛−1(𝑥)    
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𝑃0(𝑥) =  1 

𝑃1(𝑥) =  𝑥 

We can obtain a simple product formula based on the special element z = x: 

𝑥 ∗ 𝑃𝑛(𝑥) =  
(𝑛 + 1)

(2𝑛 + 1)
𝑃𝑛+1(𝑥) + 

𝑛

(2𝑛 + 1)
 𝑃𝑛−1(𝑥) 

 

𝑃1(𝑥) =  𝑥 ⇒ 

 

𝑃1(𝑥) ∗  𝑃𝑛(𝑥) =  
(𝑛+1)

(2𝑛+1)
𝑃𝑛+1(𝑥) + 

𝑛

(2𝑛+1)
 𝑃𝑛−1(𝑥)                                4.35 

 

Let 𝑓(𝑥) =  ∑ 𝑎𝑖𝑃𝑖(𝑥)
𝑑
𝑖=0  be a polynomial of degree d expressed in the Legendre basis and let 

𝑃1(𝑥) be a Legendre polynomial. Then the product 𝑃1(𝑥)𝑓(𝑥) is: 

𝑃1(𝑥) ∗ 𝑓(𝑥) =  ∑𝑎𝑖𝑃1(𝑥)𝑃𝑖(𝑥)

𝑛

𝑖=0

 

 

= 𝑎0𝑃1(𝑥) +∑𝑎𝑖 (
𝑖 + 1

2𝑖 + 1
𝑃𝑖+1(𝑥) +

𝑖

2𝑖 + 1
𝑃𝑖−1(𝑥))

𝑛

𝑖=1

 

 

𝑎0𝑃1(𝑥) +∑𝑎𝑖
𝑖 + 1

2𝑖 + 1
𝑃𝑖+1(𝑥) +∑𝑎𝑖

𝑛

𝑖=1

𝑖

2𝑖 + 1

𝑛

𝑖=1

𝑃𝑖−1(𝑥) 

 

∑𝑎𝑖
𝑖 + 1

2𝑖 + 1
𝑃𝑖+1(𝑥) + ∑𝑎𝑖

𝑛

𝑖=1

𝑖

2𝑖 + 1

𝑛

𝑖=0

𝑃𝑖−1(𝑥) 
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∑𝑎𝑖−1
(𝑖 − 1) + 1

2(𝑖 − 1) + 1
𝑃𝑖+1−1(𝑥) + ∑𝑎𝑖+1

𝑛−1

𝑖=0

𝑖 + 1

2(𝑖 + 1) + 1

𝑛+1

𝑖=1

𝑃𝑖−1+1(𝑥) 

 

=∑𝑎𝑖−1

𝑛+1

𝑖=1 

 
𝑖

2𝑖 − 1
𝑃𝑖(𝑥) +∑𝑎𝑖+1 

𝑖 + 1

2𝑖 + 3

𝑛−1

𝑖=𝑜

 𝑃𝑖(𝑥) 

More generally, 

𝑃1(𝑥)𝑓(𝑥) ≡ ∑ 𝑏𝑛𝑃𝑛(𝑥),
∞
𝑛=0                                            4.36 

where  

𝑏𝑛 =
𝑛

2𝑛−1
𝑎𝑛−1 +

𝑛+1

2𝑛+3
𝑎𝑛+1,         𝑛 ≥ 1        [𝑏0 = 0]. 

 

 

The Sylvester matrix can be generalized for the Legendre basis based on the multiplication 

formula in (4.31).  Let 𝑓(𝑥) =  ∑ 𝑎𝑖𝑃𝑖(𝑥)
𝑛
𝑖=0  be a polynomial of degree n expressed in the 

Legendre basis and let 𝑃𝑖(𝑥) be a Legendre polynomial. Then, the product 𝑃𝑚(𝑥)𝑓(𝑥) is: 

𝑃𝑚(𝑥)𝑓(𝑥) = 𝑃𝑚(𝑥)∑𝑎𝑖𝑃𝑖(𝑥)

𝑛

𝑖=0

 

=∑𝑎𝑖𝑃𝑖(𝑥)𝑃𝑚(𝑥)

𝑛

𝑖=0

 

=∑𝑎𝑖

𝑛

𝑖=0

(∑
𝐴𝑟𝐴𝑖−𝑟𝐴𝑚−𝑟
𝐴𝑚+𝑖−𝑟 

.

𝑚

𝑟=0

2𝑖 + 2𝑚 − 4𝑟 + 1

2𝑖 + 2𝑚 − 2𝑟 + 1
𝑃𝑖+𝑚−2𝑟(𝑥)) 

=∑𝑎𝑖

𝑛

𝑖=0

(∑𝐴𝑚,𝑖
𝑟

𝑚

𝑟=0

𝑃𝑖+𝑚−2𝑟(𝑥)) 

= ∑ 𝑎𝑖
𝑚
𝑖=0 (∑ 𝐴𝑚,𝑖

𝑟𝑖
𝑟=0 𝑃𝑖+𝑚−2𝑟(𝑥)) + ∑ 𝑎𝑖 (∑ 𝐴𝑚,𝑖

𝑟𝑛
𝑟=0 𝑃𝑖+𝑚−2𝑟(𝑥))

𝑛
𝑖=𝑚+1        4.37 
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where, for convenience, 

𝐴𝑚,𝑖 
𝑟 =

𝐴𝑟𝐴𝑖−𝑟𝐴𝑚−𝑟

𝐴𝑚+𝑖−𝑟 
(
2𝑖+2𝑚−4𝑟+1

2𝑖+2𝑚−2𝑟+1
)   

and 

𝐴𝑚 =
1.3.5… (2𝑚 − 1)

𝑚!
 

where 𝑚, 𝑖 ∈ 𝑁; 𝑛 ≥ 𝑚 > 1. 

Even though the formula seems complicated, it is enough for the algorithmic process. The 

point is that once we have the product formula in (4. 31), it is possible to have almost all the 

classical formulations of matrices for resultants. Consider two polynomials of degree n and m 

respectively, expressed in the Legendre basis: 𝑓(𝑥) =  ∑ 𝑎𝑖𝑃𝑖
𝑛
𝑖=0  𝑎𝑛𝑑 𝑔(𝑥) =  ∑ 𝑏𝑗𝑃𝑗

𝑚
𝑗=0 . To 

compute their Sylvester matrix, we have the first m columns containing 𝑓(𝑥)’𝑠 coefficients 

multiplied by (𝑃𝑜 , 𝑃1, ……𝑃𝑚−1) respectively, and the last n columns containing 𝑔(𝑥)’𝑠 

coefficients multiplied by ( 𝑃𝑜 , 𝑃1, ……𝑃𝑛−1),  respectively: 

𝑓(𝑥)𝑃0(𝑥) 𝑓(𝑥)𝑃1(𝑥) … . 𝑓(𝑥)𝑃𝑚−1(𝑥) 𝑔(𝑥)𝑃0(𝑥) 𝑔(𝑥)𝑃1(𝑥) … 𝑔(𝑥)𝑃𝑛−1(𝑥)  

𝑃0

𝑃1
:
𝑃𝑚
:
𝑃𝑛
𝑃𝑛+1
:
:

𝑃𝑛+𝑚−1 [
 
 
 
 
 
 
 
 
 
 𝑎0

𝑎1

3
… 𝛾𝑚−1,0 𝑏0

𝑏1

3
… 𝛿𝑛−1,0

𝑎1 𝑎0 +
2

5
𝑎2 … 𝛾𝑚−1,1 𝑏1 𝑏0 +

2

5
𝑏2 … 𝛿𝑛−1,1

: : … : : : … :

𝑎𝑚
𝑚

2𝑚−1
𝑎𝑚 +

𝑚+1

2𝑚+3
𝑎𝑚+1 … 𝛾𝑚−1,𝑚 𝑏𝑚 𝑏𝑚−1

𝑚

2𝑚+1
… 𝛿𝑛−1,𝑚

: : … : : : … :

𝑎𝑛 𝑎𝑛−1
𝑛

2𝑛+1
… 𝛾𝑚−1,𝑛 0 0 … 𝛿𝑛−1,𝑛

0 𝑎𝑛
𝑛+1

2𝑛−1
… 𝛾𝑚−1,𝑛+1 0 0 … 𝛿𝑛−1,𝑛+1

: : … : : : … :
0 0 … 𝛾𝑚−1,𝑚+𝑛−1 0 0 … 𝛿𝑛−1,𝑚+𝑛−1]
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Example 4.7 Let  𝑓(𝑥) =  𝑎0 + 𝑎1𝑃1(𝑥) + 𝑎2𝑃2(𝑥) and 𝑔(𝑥) =  𝑏0 + 𝑏1𝑃1(𝑥) + 𝑏2𝑃2(𝑥)  

be two polynomial expressed in the Legendre  basis. We need to compute their Sylvester 

resultant matrix in the Legendre basis, 𝑅𝑒𝑠(𝑓, 𝑔) = Det (𝐿𝑆𝑦𝑙(𝑓, 𝑔)), such that the power 

basis is not used. We have four columns:  (𝑃0𝑓(𝑥),  𝑃1𝑓(𝑥),  𝑃0𝑔(𝑥),  𝑃1𝑔(𝑥)). Then: 

 

𝑓(𝑥)𝑃0(𝑥) = 𝑓(𝑥) 

 

𝑓(𝑥)𝑃1(𝑥) =  𝑎0𝑃1(𝑥) +
2

3
𝑎1𝑃2(𝑥) +

3

5
𝑎2 𝑃3(𝑥) +

1

3
 𝑎1 𝑃0(𝑥) +

2

5
𝑎2𝑃1(𝑥) 

 

= 
1

3
𝑎1𝑃0(𝑥) + (𝑎0 +

2

5
𝑎2)𝑃1(𝑥) +

2

3
𝑎1𝑃2(𝑥) +

3

5
𝑎2𝑃3(𝑥) 

 

         The same for 𝑔(𝑥): 

𝑔(𝑥)𝑃0(𝑥) =  𝑔(𝑥) 

 

𝑔(𝑥)𝑃1(𝑥) =  𝑏0𝑃1(𝑥) +
2

3
𝑏1𝑃2(𝑥) +

3

5
𝑏2 𝑃3(𝑥) +

1

3
 𝑏1 𝑃0(𝑥) +

2

5
𝑏2𝑃1(𝑥) 

 

=
1

3
𝑏1𝑃0(𝑥) + (𝑏0 +

2

5
𝑏2)𝑃1(𝑥) +

2

3
𝑏1𝑃2(𝑥) +

3

5
𝑏2𝑃3(𝑥) 

 

The resultant is the determinant of the matrix: 
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𝐿𝑆𝑦𝑙𝑣(𝑓, 𝑔) = 

[
 
 
 
 
 
𝑎0 𝑎1 𝑎2 0
1

3
𝑎1 𝑎0 +

2

5
𝑎2

2

3
𝑎1

3

5
𝑎2

𝑏0 𝑏1 𝑏2 0
1

3
𝑏1 𝑏0 +

2

5
𝑏2

2

3
𝑏1

3

5
𝑏2
]
 
 
 
 
 

                                     4.38 

 

If we do the same example using the basis change method (convert polynomials in Legendre 

basis into polynomials in the power basis, compute the resultant Sylvester matrix, and then 

convert back to the Legendre basis) then we get the same answer. 

 We need these steps: 

 Convert polynomials into polynomials in the power basis: 

 

𝑓(𝑥) = (𝑎0 −
1

2
𝑎2) + 𝑎1𝑥 +

3

2
𝑎2𝑥

2 

 

and     

    𝑔(𝑥) = (𝑏0 −
1

2
𝑏2) + 𝑏1𝑥 +

3

2
𝑏2𝑥

2    

    

 Compute their Sylvester matrix resultant in the power basis: 

 

[
 
 
 
 
 
 
 
 𝑎0 −

1

2
𝑎2 𝑎1

3

2
𝑎2 0

0 𝑎0 −
1

2
𝑎2 𝑎1

3

2
𝑎2

𝑏0 −
1

2
𝑏2 𝑏1

3

2
𝑏2 0

0 𝑏0 −
1

2
𝑏2 𝑏1

3

2
𝑏2

]
 
 
 
 
 
 
 
 

 

 

 Convert the Sylvester matrix back to the Legendre basis: 
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[
 
 
 
 
 
 𝑎0 −

1

2
𝑎2 𝑎1

3

2
𝑎2 0

0 𝑎0 −
1

2
𝑎2 𝑎1

3

2
𝑎2

𝑏0 −
1

2
𝑏2 𝑏1

3

2
𝑏2 0

0 𝑏0 −
1

2
𝑏2 𝑏1

3

2
𝑏2
]
 
 
 
 
 
 

*

[
 
 
 
 
 
1 0 0 0
0 1 0 0
1

3
0

2

3
0

0
3

5
0

2

5

]
 
 
 
 
 

 

[
 
 
 
 
 
 
𝑎0 𝑎1 𝑎2 0
1

3
𝑎1 𝑎0 +

2

5
𝑎2

2

3
𝑎1

3

5
𝑎2

𝑏0 𝑏1 𝑏2 0
1

3
𝑏1 𝑏0 +

2

5
𝑏2

2

3
𝑏1

3

5
𝑏2

]
 
 
 
 
 
 

 

 

 

As you can see, we get the same result in (4.38). To sum up, for bases other than monomial 

bases, it is possible to follow the same scheme to find Sylvester matrix as soon the basis is 

graduated by the degree. This is the case for classical orthogonal polynomials since they are 

given by a recurrence. In the monomial case, the product formula is 𝑥𝑖𝑥𝑘 = 𝑥𝑖+𝑘,   and in a 

classical orthogonal polynomials basis, one needs a product formula expressing 𝑃𝑖(𝑥)𝑃𝑘(𝑥). 

In the case of the Chebyshev polynomials of first kind the product formula is simple: 𝑇𝑖  𝑇𝑗 =

 𝑇𝑖+𝑗 + 𝑇|𝑖−𝑗|, and leads to a simple structure of the Sylvester matrix. However, for general 

orthogonal polynomials basis, it is not always possible to have a simple product formula like 

for monomials or Chebyshev polynomials. For instance, the product formula for Legendre 

basis is complicated. Even though the formula seems to be very complicated, it is possible to 

have almost all the classical formulations of matrices for resultant.  
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4.4 Summary 

This chapter introduces the basic ideas and theories of resultants. It introduces a review of the 

most common resultant matrices for monomial basis polynomials. Moreover, the conversion 

between power basis polynomial representations and orthogonal polynomial representations 

is considered. Furthermore, resultant matrices for orthogonal basis polynomials are 

investigated and the Sylvester matrix of Legendre basis polynomials is computed. It is noted 

that resultant matrices are widely applied in computer-aided geometric design (CAGD). As 

stated earlier, resultants are used for implicitization and bivariate-polynomial root finding. An 

important problem in CAGD is to compute the common zeros of two bivariate polynomial 

equations, which can be solved using resultant matrices. This problem is discussed in the next 

chapter. 
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Chapter 5 

Resultant-Based Methods for Critical 

Points of Plane Curves Problems 

In Chapter 4, we presented the resultant tool for determining whether or not two polynomials 

have a common root. In this chapter, we apply this tool to find the critical points of 

parametric curves. In order to find the critical points of parametric curves, we first convert 

the parametric equation of  a curve into an implicit equation of the form 𝑓(𝑥, 𝑦) = 0. This 

operation can be obtained by resultants [15]. Then, we can find the critical points by  finding 

the roots of the bivariate polynomial system : 𝑓 = 𝑓𝑥 = 𝑓𝑦 = 0. The common zeros of 

polynomials can be also computed by resultants [24, 27]. 

5.1 Computing the Common Zeros of a Two Bivariate Polynomial 

Equations System Via Resultants 

 Finding the solutions of a system of nonlinear polynomial equations is a classical and 

fundamental problem in the computational literature including computer algebra, robotics, 

computer graphics, geometry, and computer vision [51]. For example, in geometric modeling, 

the solutions of a system of polynomial equations are used to find the intersection of 

parametric and algebric curves.  Moreover, this problem arises for example when detecting 

the critical points of a curve 𝐶(𝑥, 𝑦) = 0 , since the critical points satisfy 𝑓(𝑥, 𝑦) =
𝜕𝐶

𝜕𝑥
= 0,

𝑔(𝑥, 𝑦) =
𝛿𝐶

𝛿𝑦
= 0. Solutions of a system of  partial derivatives of polynomial equations are 

used to find the critical points  of parametric and algebric curves .There are many existing  
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approaches for computing the roots of a system of polynomial equations based on resultants 

[23,  24, 27, 50]. In this section, we discuss a method for computing the roots of a polynomial 

equations system  based on the resultants of a system of polynomial equations. The method 

described in this chapter is based on the hidden variable resultant method for polynomials 

expressed in the power basis [27, 50]. 

5.2 Hidden Variable Resultant Method 

The hidden variable resultant method is based on selecting one variable, say 𝑦, and rewriting 

bivariate polynomials 𝐹 and 𝐺 of degrees 𝑚 and 𝑛 as polynomials in 𝑥 with coefficients that 

are polynomials in y [50, 51, 53]. Suppose we have a system of  two polynomial equations 

𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦): 

 

𝐹(𝑥, 𝑦) = ∑ 𝑎𝑖𝑏𝑗𝑥
𝑖𝑦𝑗𝑚

𝑖=0,𝑗=0 ,             𝐺(𝑥, 𝑦) = ∑ 𝑎𝑖𝑏𝑗𝑥
𝑖𝑦𝑗𝑛

𝑖=0,𝑗=0                           5.1 

 

By selecting the variable y and rewriting bivariate polynomials fx and fy of degrees m and n 

as polynomials in x with coefficients in y we get: 

𝐹(𝑥, 𝑦) =  𝐹𝑦(𝑥) = ∑ 𝑎𝑖(𝑦)𝑥
𝑖 ,𝑚

𝑖=0                𝐺(𝑥, 𝑦) = 𝐺𝑦(𝑥) =  ∑ 𝑏𝑖(𝑦)𝑥
𝑖𝑛

𝑖=0               5.2 

 

 

It is well known that two univariate polynomials have a common root if and only if  a 

resultant is zero [59]. In particular, the two polynomials 𝐹𝑦(𝑥) and 𝐺𝑦(𝑥) in (5.2), thought 

of as univariate in 𝑥, have a common zero if and only if a resultant matrix is singular. 

Therefore, the 𝑦-values of the solutions to 𝐹 =  𝐺 =  0 can be computed by finding the 𝑦-

values such that a resultant matrix is singular [50, 51].  
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𝑅𝑒𝑠(𝐹𝑦(𝑥),  𝐺𝑦(𝑥), 𝑥) = ∑ 𝑎𝑖𝑦
𝑖 =𝑚

𝑖=0  0                                               5.3 

 

Once we have found the 𝑦-values of the solutions we then fnd the 𝑥 −values by a univariate 

root-finding algorithm based on computing the eigenvalues of the companion matrix. 

 

𝐶 =

[
 
 
 
 
0 0 … 0 −𝑎0/𝑎𝑖
1 0 … 0 −𝑎1/𝑎𝑖
0
…
0

1
…
0

…
…
…

0
…
1

−𝑎2/𝑎𝑖
…

−𝑎𝑖−1/𝑎𝑖]
 
 
 
 

 

 

5.3 Resultant Methods with Sylvester Resultants 

In the case of two equations in two variables, the Sylvester resultant, described in a previous 

chapter, can be used to eliminate one variable. Then, the system can be solved for the other 

variable. Once the roots for one variable are known, those values can be substituted into 

either polynomial to solve for the other variable. Although our focus is on Sylvester 

resultants, other resultants can also be applied to solve polynomial systems such as Cayley’s 

formulation [23], the Macaulay resultant [24], or the Bezout resultant matrix [27, 50]. 

Example 5.1 illustrates which variable the resultant method should hide. 

Example 5.1 Consider a system of two polynomials: 

{
𝑓1(𝑥, 𝑦) = 𝑥

2 + 6𝑥 + 3𝑦 − 4

𝑓2(𝑥, 𝑦) = 2𝑥2 + 3𝑦2 − 7𝑥 + 3𝑦 + 5
 

If we treat them as polynomials in 𝑥, then the Sylvester matrix is a 4 𝑏𝑦 4 square matrix, and 

the size of eigenvalues problem will be a 4 𝑏𝑦 4 companion matrix. 
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{
𝑓1(𝑥) = 𝑥

2 + 6𝑥 + (3𝑦 − 4)

𝑓2(𝑥) = 2𝑥2 − 7𝑥 + (3𝑦2 + 3𝑦 + 5)
 

 

𝑆𝑦𝑙𝑥(𝑓1(𝑥), 𝑓2(𝑥)) =  

[
 
 
 
 
1 6 3𝑦 − 4 0
0 1 6 3𝑦 − 4

2 −7 3𝑦2 + 3𝑦 + 5 0

0 2 −7 3𝑦2 + 3𝑦 + 5
]
 
 
 
 

 

 

𝑅𝑒𝑠(𝑓1(𝑥), 𝑓2(𝑥), 𝑥) =  9𝑦4 − 18𝑦3 + 429𝑦2 + 663𝑦 + 207 = 0 

 

𝐶 =

[
 
 
 
 
2 −47.6667 −73.6667 −23
1 0 0 0
0 1 0 0
0 0 1 0

]
 
 
 
 

 

If we treat them as polynomials in 𝑦, then the Sylvester matrix is a 3 𝑏𝑦 3 square matrix, and 

the size of eigenvalues problem will be a 4 𝑏𝑦 4 companion matrix. 

5.4 Finding Critical Points of Parametric Curves Based on Resultants in 

the Monomial Basis 

Consider the parametric curve : 𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯𝑎𝑛−1𝑡

𝑛−1  and     𝑦(𝑡) = 𝑏0 +

𝑏1𝑡 + 𝑏2𝑡
2 +⋯𝑏𝑚−1𝑡

𝑚−1. To find the critical points we compute 𝑥′(𝑡) = 𝑎1 + 2𝑎2𝑡 +

3𝑎3𝑡
2 +⋯(𝑛 − 1)𝑎𝑛−1𝑡

𝑛−2  and 𝑦′(𝑡) = 𝑏1 + 2𝑏2𝑡 + 3𝑏3𝑡
2 +⋯+ (𝑚 − 1)𝑏𝑚−1𝑡

𝑚−2. 

Then, we compute the roots of 𝑥′(𝑡) = 0 and 𝑦′(𝑡) = 0. For finding the roots of a 

polynomial, the companion matrix can be used. The roots of a polynomial are the eigenvalues 
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of the companion matrix. The default root solver in Matlab, for example, via the “roots” 

command, is a companion-matrix method.  

Example 5.2 Consider the parametric curve 𝑥(𝑡) = 𝑡3 − 3𝑡2   and    𝑦(𝑡) =
1

3
𝑡3 − 4𝑡. Then, 

𝑥′(𝑡) = 3𝑡2 − 6𝑡 𝑎𝑛𝑑 𝑦′(𝑡) = 𝑡2 − 4. 

 The roots of derivatives are the eigenvalues of the companion matrices: 

𝐶(𝑥′(𝑡)) = [
2 0
1 0

]      ,    𝑒𝑖𝑔(𝐶(𝑥′(𝑡))) = 0, 2 

𝐶(𝑦′(𝑡)) = [
0 4
1 0

]   ,    𝑒𝑖𝑔(𝐶(𝑦′(𝑡)) = 2,−2 

Every parametric curve can be implicitized into an algebraic curve of the form 𝑓(𝑥, 𝑦) , 

where 𝑓(𝑥, 𝑦) is a bivariate polynomial. There are several methods for implicitization 

(finding an implicit representation of an algebraic curve given by its parametric equations): 

the classical implicitization using Groebner bases, the implicitization using resultants, 

polynomial interpolation, moving curves and surfaces, and the direct implicitization method. 

All of these methods are used for finding the implicit equation of curves, which are common 

objects in geometric modeling. The problem of computing implicit representations from 

parametric representations based on resultants is well studied in the literature [15, 21-23]. 

The resultant method is efficient and known to be better than the other methods. It can be 

applied in numerical computations, while the other three methods cannot be used to do this 

task.  
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5.5 Implicitization 

 There are two standard ways of representing algebraic curves: the implicit representation and 

the parametric representation. The choice of either an implicit or parametric representation of 

an algebraic curve depends on the operations to be performed on the curve. The parametric 

representation is appropriate for generating points of the curve and for plotting it with the 

computer. The implicit representation is convenient for checking whether a given point lies 

on the curve. That's why the transition from one representation to the other is important. 

Some operations can be more natural on implicit curve models. Implicitization is the process 

of conversion from the parametric form of a curve to its implicit form. This section discusses 

how to use resultants to obtain the implicit representation from the parametric representation 

[61]. Two implicitization methods, by direct substitution and by resultant, are discussed in 

this section. 

 Direct substitution can be used to convert some curves expressed parametrically to their 

implicit form. For example, given a curve represented by two parametric equations 

𝑥(𝑡) = 𝑡 + 4     and    𝑦(𝑡) =  𝑡2 + 2𝑡 − 3, 

we can solve t in term of x to obtain 𝑡 = 𝑥 − 4, and substituting into 𝑦 = 𝑡2 + 2𝑡 − 3 gives 

its implicit equation 𝑥2 − 6𝑥 − 𝑦 + 5 = 0.  

This method is suitable for the implicit forms of linear and quadratic curves. However, it can 

not be applied to curves of higher degree [52]. A more general approach is to use the resultant 

of two polynomials [57, 60, 61]. Implicit representation of curves can obtained directly from 

the parametric representation as 𝑅𝑒𝑠(𝑋 −  𝑥(𝑡), 𝑌 −  𝑦(𝑡), 𝑡). Consider a curve defined by 

two parametric equations: 
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𝑥(𝑡) =  𝑎𝑚𝑡
𝑚 + 𝑎𝑚−1𝑡

𝑚−1 +⋯… . 𝑎1𝑡 + 𝑎0 

𝑦(𝑡) =  𝑏𝑛𝑡
𝑛 + 𝑏(𝑛−1)𝑡

𝑛−1 +⋯ . .+𝑏1𝑡 + 𝑏0 

 

To implicitize this curve, two auxiliary polynomials need to be created: 

𝑥(𝑡) =  𝑎𝑚𝑡
𝑚 + 𝑎𝑚−1𝑡

𝑚−1 +⋯… . 𝑎1𝑡 + (𝑎0 − 𝑥) 

𝑦(𝑡) =  𝑏𝑛𝑡
𝑛 + 𝑏(𝑛−1)𝑡

𝑛−1 +⋯ . .+𝑏1𝑡 + (𝑏0 − 𝑦) 

If the point (𝑥, 𝑦) lies on the curve, the polynomials 𝑥(𝑡) and  𝑦(𝑡) have at least one common 

root. Det (𝑆𝑦𝑙(x(t), y(t), t)) = 0  and Det (𝑆𝑦𝑙(𝑥(𝑡), 𝑦(𝑡))) is the resultant of x(𝑡), and 𝑦(𝑡) 

in 𝑡. Det( 𝑆𝑦𝑙(x(t), y(t), t)) is a function of 𝑥 and 𝑦, and thus it is the implicit equation for 

the curve. We give an example to illustrate the implicitization of a curve. 

Example 5.3. Consider a curve defined by two parametric equations 𝑥(𝑡) =  2𝑡2 + 𝑡 + 3 and 

𝑦(𝑡) =  𝑡2 + 3𝑡 + 1. Creat two polynomials: 𝑥(𝑡) =  2𝑡2 + 𝑡 + (3 − 𝑥) and 𝑦(𝑡) =  𝑡2 +

3𝑡 + (1 − 𝑦). The Sylvester resultant matrix of 𝑥(𝑡), 𝑦(𝑡) is: 

𝑆𝑦𝑙(𝑥(𝑡), 𝑦(𝑡), 𝑡) =

[
 
 
 
 
2 1 3 − 𝑥 0
0 2 1 3 − 𝑥
1 3 1 − 𝑦 0
0 1 3 1 − 𝑦

]
 
 
 
 

 

 

The resultant of 𝑥(𝑡), and 𝑦(𝑡)  is: 

Det( 𝑆𝑦𝑙(𝑥(𝑡), 𝑦(𝑡), 𝑡)) = 𝑥2 − 4𝑥𝑦 + 4𝑦2 − 17𝑥 + 9𝑦 + 41 

the implicit form of the curve is: 
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𝑥2 + 4𝑦2 − 4𝑥𝑦 − 17𝑥 + 9𝑦 + 41 = 0 

5.6 Finding Critical Points of Implicit Curves Based on Resultants in the 

Monomial Basis 

Critical points of implicit and algebraic curves 𝐶 = 𝑓(𝑥, 𝑦) can be obtained by finding the 

roots of the system of bivariate polynomial equations 𝑓 = 𝑓𝑥 = 𝑓𝑦 = 0, where 𝑓𝑥 and   𝑓𝑦   are 

the x and y partial derivatives of 𝑓, respectively. The roots of a polynomial system can be 

computed based on the resultant of the system of polynomial equations.  In the literature, 

there are many methods for bivariate polynomial root finding based on resultants [22, 23, 24, 

27]. The method used in this thesis is based on the hidden variable resultant method for 

polynomials as described in previous section [50]. Figure 5.1 shows the approach to finding 

the critical points of an implicit curve in the monomial basis. 

Example 5.4 Consider the curve 𝑥3 + 𝑥2𝑦 − 𝑦2 − 4𝑦. In order to find the critical points, we 

need to compute : 

𝑑𝑓

𝑑𝑥
= 3𝑥2 + 2𝑥𝑦 

𝑑𝑓

𝑑𝑦
= 𝑥2 − 2𝑦 − 4 

𝑆𝑦𝑙 (
𝑑𝑓

𝑑𝑥
 ,
𝑑𝑓

𝑑𝑦
, 𝑥) =

[
 
 
 
 
3 2𝑦 0 0
0 3 2𝑦 0
1 0 −2𝑦 − 4 0
0 1 0 −2𝑦 − 4

]
 
 
 
 

 

𝐷𝑒𝑡 (𝑆𝑦𝑙 (
𝑑𝑓

𝑑𝑥
 ,
𝑑𝑓

𝑑𝑦
, 𝑥)) = −8𝑦3 + 20𝑦2 + 144𝑦 + 144 
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𝐶 (𝐷𝑒𝑡 (𝑆𝑦𝑙 (
𝑑𝑓

𝑑𝑥
 ,
𝑑𝑓

𝑑𝑦
, 𝑥))) = [

2.5 18 18
1 0 0
0 1 0

] 

𝑒𝑖𝑔(𝐶 (𝐷𝑒𝑡 (𝑆𝑦𝑙 (
𝑑𝑓

𝑑𝑥
 ,
𝑑𝑓

𝑑𝑦
, 𝑥)))) = [

6
−2
−1.5

] 

 

Table 5.1 Maple Code for Example 5.3  

f := x^3+x^2*y-y^2-4*y;  

with(LinearAlgebra);  

diff(f, x);  

diff(f, y);  

SylvesterMatrix(diff(f, x), diff(f, y), x);  

Determinant(SylvesterMatrix(diff(f, x), diff(f, y), x)); 

CompanionMatrix(Determinant(SylvesterMatrix(diff(f, x), diff(f, 

y), x))); 

Eigenvalues(CompanionMatrix(Determinant(SylvesterMatrix(diff(f, 

x), diff(f, y), x)))) 

 

 

 
 

 

Figure 5.1: Flowchart of our approach for computing critical points of implicit curves in the 

power basis. Finding roots of bivariate derivative polynomials by computing the determinant 

of the Sylvester matrix. After that, we find the roots of univariate polynomials by computing 

the eigenvalues of the companion matrix. 

 

𝑥(𝑡) ≈∑𝑥𝑖𝑡
𝑖

𝑛

𝑖=0

 

𝑦(𝑡) ≈∑𝑦𝑖𝑡
𝑖

𝑛

𝑖=0

 

Implicitization 

Res(x(t)-x, y(t)-y) 

C=F(x,y) 

Univariate root-

finding 

Companion 

Matrix 

Partial 

derivatives 

𝑓′𝑥 , 𝑓′𝑦 

Bivariate root-

finding  

𝐷𝑒𝑡(𝑠𝑦𝑙(𝑓′𝑥, 𝑓′𝑦)) 



 86 

 

The analysis of the approach to computing singular points presented in this section is 

restricted to the monomial basis, but it is well known that the conversion to the power basis is 

ill conditioned. One needs orthogonal basis equivalents of the Sylvester matrix and 

companion matrix resultants. In the case that the curve 𝑓(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑃𝑖(𝑥)𝑃𝑗(𝑦)
𝑚
𝑗=0

𝑛
𝑖=0  is 

expressed in an orthogonal basis, we can follow this general algorithm to find the critical 

points: 

1. Compute the partial derivative series  
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
   in orthogonal bases: 

𝑓𝑥(𝑥, 𝑦) =  ∑∑𝑎𝑖𝑗𝑃𝑖(𝑥)𝑃𝑗(𝑦),      𝑓𝑦(𝑥, 𝑦) =  ∑∑𝑏𝑖𝑗𝑃𝑖(𝑥)𝑃𝑗(𝑦),   

𝑟

𝑖=0

𝑞

𝑗=0

 

𝑟

𝑖=0

𝑞

𝑗=0

 

 

2. Rewrite the polynomials 𝑓𝑥(𝑥, 𝑦) 𝑎𝑛𝑑 𝑓𝑦(𝑥, 𝑦) as univariate polynomials in 𝑃𝑖(𝑥) 

with coefficients that depend on 𝑃𝑗(𝑦) to find roots based on the hidden variable 

method: 

 

𝑓𝑥(𝑥, 𝑦) =  𝑓𝑥(𝑥) =  ∑𝛼𝑗(𝑦)𝑃𝑖(𝑥),     𝑓𝑦(𝑥, 𝑦) = 𝑓𝑦(𝑥) =  ∑𝛽𝑗(𝑦)𝑃𝑖(𝑥)

𝑟

𝑖=0

                 

𝑟

𝑖=0

 

where 𝛼𝑗(𝑦),  𝛽𝑗(𝑦) are polynomials in y : 

 

 

𝛼𝑗(𝑦) =  ∑𝑎𝑗𝑃𝑗(𝑦)       

𝑞

𝑗=0

 𝛽𝑗(𝑦) =∑𝑏𝑗𝑃𝑗(𝑦)

𝑞

𝑗=0

 

 

 

3. Form a Sylvester matrix for the orthogonal series: 

 

Syl(𝑓𝑥(𝑥),  𝑓𝑦(𝑥), 𝑥) 
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4. Compute the determinant of the Sylvester matrix: 

 

Res(𝑓𝑥(𝑥),  𝑓𝑦(𝑥)) = 0 = ∑ 𝑎𝑖𝑃𝑖(𝑦) = 0
𝑛
𝑖=0  

 

 

5. Form the companion matrix for the orthogonal series. 

 

6. Compute the eigenvalues of the orthogonal companion matrix. 

 

We need to compute derivatives, roots, and resultants in orthognal bases to avoid ill-

conditioned conversion. In the next chapter, we compute the critical points of curves 

expressed in Legendre and Chebyshev bases. We compute the first derivative of Legendre 

series. Then, we compute the roots of Legendre and Chebyshev series based on the 

eignvalues of companion matrices expressed in orthogonal bases. 
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Chapter 6 

Computing Critical Points of Orthogonal 

Truncated Series: Chebyshev and Legendre 

Truncated series 

Finding the maxima, minima, and inflection points of a truncated Chebyshev or Legendre 

series is also a problem of finding the zeros of a polynomial when written in truncated 

orthogonal form. In fact, computing maxima, minima, and inflection points can be computed 

by first finding first derivatives in an orthogonal basis, and then computing the roots of the 

derivative series. The Chebyshev or Legendre coefficients of the derivatives of a function 

𝑓 (x) can be computed by trivial recurrences from those of the function itself.  

6.1  Computing Coefficients of a General-Order Derivative of an Orthogonal     

Series 

Suppose we are given a function 𝑓(𝑥) which is infinitely differentiable in the closed interval [−1,1]. 

Then, we can write 

𝑓(𝑥) = ∑𝑎𝑛𝑃𝑛(𝑥)

∞

𝑛=0

 

and for the 𝑞𝑡ℎ derivative of 𝑓(𝑥) we have  

𝑓𝑞(𝑥) = ∑ 𝑎𝑛
𝑞𝑃𝑛(𝑥)

∞
𝑛=0 .                                                6.1 

so that the superscript “𝑞 ” denotes the coefficients of the 𝑞𝑡ℎ  derivative. Phillips in [65] 
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proved that the Legendre coefficients, 𝑎𝑛
𝑞
, of the 𝑞𝑡ℎ derivative of 𝑓(𝑥) are related to the 

Legendre coefficients, 𝑎𝑛, of 𝑓(𝑥) by: 

 

 

𝑎𝑛
𝑞 = (

(2𝑛 + 1)

2𝑞−2(𝑞 − 1)!
)∑

(𝑖 + 𝑞 − 2)! (2𝑛 + 2𝑖 + 2𝑞 − 3)! (𝑛 + 𝑖)!

(𝑖 − 1)! (2𝑛 + 2𝑖)! (𝑛 + 𝑖 + 𝑞 − 2)!

∞

𝑖=1

𝑎𝑛+2𝑖+𝑞−2 

Now, we compute first derivative from this formula: 

 

𝑎𝑛
1 = (

(2𝑛 + 1)

21−2(1 − 1)!
)∑

(𝑖 + 1 − 2)! (2𝑛 + 2𝑖 + 2 × 1 − 3)! (𝑛 + 𝑖)!

(𝑖 − 1)! (2𝑛 + 2𝑖)! (𝑛 + 𝑖 + 1 − 2)!

∞

𝑖=1

𝑎𝑛+2𝑖+1−2 

𝑎𝑛
1 = (

(2𝑛 + 1)

2−1(0)!
)∑

(𝑖 − 1)! (2𝑛 + 2𝑖 − 1)! (𝑛 + 𝑖)!

(𝑖 − 1)! (2𝑛 + 2𝑖)! (𝑛 + 𝑖 − 1)!

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = (

(2𝑛 + 1)

2−1
)∑

(𝑖 − 1)! (2𝑛 + 2𝑖 − 1)! (𝑛 + 𝑖)(𝑛 + 𝑖 − 1)!

(𝑖 − 1)! (2𝑛 + 2𝑖)(2𝑛 + 2𝑖 − 1)! (𝑛 + 𝑖 − 1)!

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = 2(2𝑛 + 1)∑

(𝑛 + 𝑖)

(2𝑛 + 2𝑖)

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = 2(2𝑛 + 1)∑

(𝑛 + 𝑖)

2(𝑛 + 𝑖)

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = 2(2𝑛 + 1)∑(

1

2
)

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = (2𝑛 + 1)∑2(

1

2
)

∞

𝑖=1

𝑎𝑛+2𝑖−1 

𝑎𝑛
1 = (2𝑛 + 1)∑𝑎𝑛+2𝑖−1

∞

𝑖=1

 

 

         𝑎𝑛
1 = (2𝑛 + 1) ∑ 𝑎𝑝

∞
𝑝=𝑛+1,𝑝+𝑛 𝑜𝑑𝑑                       6.2                                                              
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If  𝑓(𝑥) is a polynomial of degree less than or equal to 𝑁, then the expansion coefficents of 

its first derivative can be computed only with 𝑂(𝑁) opreations. 

 

 

            Table 6.1 Maple Code for the Legendre Polynomial First Derivative 

 

LegendreRep := proc (coeffs, x) local i, lRep;  

    lRep := 0;  

  for i from 1 to nops(coeffs) do lRep :=lRep+coeffs[i]*P[i-

1](x) od;  

lRep  

end:  

ll := LegendreRep([7, 23, 55, 0, 12, 0, 0, 405, 0, 598, 0, 0, 

0, 444, 0, 0, 0, 663], xi); 

LegendreCoeff := proc (lRep, x, i)  

   coeff(lRep, P[i](x), 1)  

end: 

LegendreCoeff(ll, xi, 2); 

dll := diff(ll, xi); 

LegendreDegree := proc (e)  

   local lRep, i, d;  

   lRep := e;  

    d := -infinity;  

    for i from 0 while has(lRep, P) do lRep := eval(subs(P[i] 

= (x->0), lRep)); d := i od;  

    d  

end: 

coeffOfDiff := proc (lRep, x, n)  

local i, s, d; 

 d := LegendreDegree(lRep);  

s := 0; 
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 for i from 1 to d-n by 2 do  

s := s+LegendreCoeff(lRep, x, n+i)  

od; 

 (2*n+1)*s  

end: 

for i from 0 to LegendreDegree(ll) do  

       coeffOfDiff(ll, xi, i)  

od; 

 

6.2  Computing Roots of Orthogonal Series 

Frobenius showed that the roots of a polynomial are the eigenvalues of the “Frobenius 

companion matrix” whose elements are the coefficients of the polynomial. One way to find 

the roots of an orthogonal series 𝑃(𝑥) is to express 𝑃(𝑥) as a sum of monomials, and then to 

calculate the roots as the eigenvalues of the standard companion matrix. However, expressing 

a polynomial by its monomial coefficients is not as well conditioned as expressions in terms 

of orthogonal polynomials. It is not necessary to convert the orthogonal series into the power 

basis. It has been shown that a polynomial equation in the form of a truncated orthogonal 

series can be solved directly: the roots are the eigenvalues of the orthogonal Frobenius matrix 

[53, 58, 62-64, 67].  

6.2.1 Computing Roots of Legendre Truncated Series 

For general orthogonal polynomials, the companion matrix was first discovered by Specht, 

and then independently rediscovered several times for specific orthogonal polynomials. Let 

𝑓𝑁(𝑥)  be a polynomial of degree 𝑁 expressed in the Legendre basis as 

𝑓𝑁(𝑥) =  ∑𝑎𝑖𝑃𝑖(𝑥)

𝑁

𝑖=0

. 
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All roots of 𝑓𝑁(𝑥) are eigenvalues of the 𝑁 ×𝑁 matrix 𝐶  whose elements are: 

 

{
 

 
𝛿2,𝑘             𝑖 = 1, 𝑘 = 1, 2, … . 𝑁,

𝑖−1

2𝑖−1
𝛿𝑖,𝑘+1 +

𝑖

2𝑖−1
𝛿𝑖,𝑘−1

(−1)
𝑁

2𝑁−1

𝑎𝑖−1

𝑎𝑁
+

𝑁−1

2𝑁−1
𝛿𝑘,𝑁−1  ,                               𝑖 = 𝑁, 𝑘 = 1,… ,𝑁,

, 𝑖 = 1… (𝑁 − 1), 𝑘 = 1…𝑁,         6.3 

where 𝛿𝑖𝑘 is the Kronecker delta function such that 𝛿𝑖𝑘  =  0 𝑖𝑓 𝑖 ≠  𝑘,while 𝛿𝑖𝑖  =  1 for all 𝑖. 

 

Table 6.2 Matlab code for the Legendre polynomial companion matrix 

 

clear all 

N=16; 

s=[2133 201 10550 84 18990 0 27430 0 28985 0 23247 0 27675 0 19227 0 

21879] 

P=zeros(N,N); 

P(1,2)=1; 

P(N,1)=-(s(1)/s(N+1))*(N/(2*N-1)); 

for j=2:(N-1), P(j,j-1)=(j-1)/(2*j-1); P(j,j+1)=j/(2*j-1); P(N,j)=-

(s(j)/s(N+1))/(N/(2*N-1)); end 

P(N, N-1)=P(N,N-1)+(N-1)/(2*N-1); P(N,N)=-(N*s(N)/(s(N+1)*(2*N-1))); 

x=eig(P) 

 

 

6.2.2  Computing Roots of Chebyshev Truncated Series 

 Day and Romero [63] have shown that a polynomial equation in the form of a truncated 

Chebyshev series can be solved directly: the N roots are the eigenvalues of the Chebyshev–

Frobenius matrix. Let 𝑓𝑁(𝑥) a polynomial of degree 𝑁 expressed in the basis as: 

𝑓𝑁(𝑥) =  ∑𝑎𝑗𝑇𝑗(𝑥)

𝑁

𝑖=0
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All roots of 𝑓𝑁(𝑥)   are eigenvalues of the 𝑁𝑋𝑁 𝑚𝑎𝑡𝑟𝑖𝑥 𝐶  whose elements are: 

 

𝑎𝑗𝑘 =

{
 

 
𝛿2,𝑘     ,                                𝑗 = 1, 𝑘 = 1, 2, … . 𝑁,

1

2
{𝛿𝑗,𝑘+1 + 𝛿𝑗,𝑘−1},

(−1) 
𝑎𝑗−1

𝑎𝑁
+ (

1

2
)𝛿𝑘,𝑁−1,   𝑗 = 𝑁, 𝑘 = 1,… ,𝑁,

, 𝑗 = 2… (𝑁 − 1), 𝑘 = 1…𝑁,         6.4 

          where 𝛿𝑗𝑘 is the Kronecker delta function such that 𝛿𝑗𝑘  =  0 𝑖𝑓 𝑗 ≠  𝑘,while 𝛿𝑗𝑗  =  1 for all 𝑗. 

 

Table 6.3 Matlab Code for the Chebyshev Polynomial Companion Matrix 

 

n=18 

c=[7 23 55 0 12 0 0 405 0 598 0 0 0 444 0 0 0 663] 

% Define A as the Frobenius-Chebyshev companion matrix.  

A=zeros(n-1);    

A(1,2)=1;        

for j=2:n-2      

    for k=1:n-1  

        if j==k+1 || j==k-1  

            A(j,k)=0.5;      

        end 

    end 

end 

for k=1:n-1 

    A(n-1,k)=-c(k)/(2*c(n));   

end 

A(n-1,n-2)=A(n-1,n-2)+0.5; 

eigvals=eig(A) 
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Figure 6.1: Flowchart of our approach for computing critical points of parametric curves 

approximated by orthogonal polynomials. First, we represent handwritten characters as 

parametric curves approximated by orthogonal truncated series. Then, we compute the first 

derivative of the orthogonal series. After that, we find the roots of orthogonal polynomials by 

computing the eigenvalues of the orthogonal companion matrix. 

 

Algorithm for Computing Critical Points of Parametric Curves Expressed  in 

Orthogonal Bases: 

 

1. Compute the coefficents 𝑎𝑖 of the first derivative of the expanded orthogonal series. 

2. Form a companion matrix for the orthogonal polynomial with the 𝑎𝑛 insterted as the 

coefficents of  the derivative orthogonal series. 

3. Compute the eignvalues of  the orthogonal companion matrix. 

 

6.3 Numerical Examples 

In this section we present some examples to illustrate our technique for finding critical points 

of orthogonal series. We use different approaches: The first approach is to convert the 

orthogonal series to the power basis, and then compute the derivative and the roots of the 

derivative in the power basis.  The second approach is to compute the derivative and the roots 

of derivative in the orthogonal basis. 

 

 

𝑥(𝑡) ≈∑𝑥𝑖𝑃𝑖(𝑡)

𝑛

𝑖=0

 

𝑦(𝑡) ≈∑𝑦𝑖𝑃𝑖(𝑡)

𝑛

𝑖=0

 

𝑥′(𝑡) 

 𝑦′(𝑡) 

Univariate 

Companion-

Orthogonal 

Matrix 

Eigenvalues 
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Example 6.1 Consider the Legendre series 𝑓(𝑥) = 7𝑃0(𝑥) + 23𝑃1(𝑥) + 55𝑃2(𝑥) +

12𝑃4(𝑥) + 405𝑃7(𝑥) + 598𝑃9(𝑥) + 444𝑃13(𝑥) + 663𝑃17(𝑥).  

 

 1- First approach (convert the Legendre series to the monomial series, and then compute 

critical points in monomial basis): 

𝑓(𝑥) = −16 +
135141493

32768
 𝑥 +

75

2
𝑥2 −

675098565

4096
𝑥3 +

105

2
𝑥4 +

16770760083

8192
𝑥5

−
49743153603

4096
𝑥7 +

651677744575

16384
𝑥9 −

309748225059

4096
𝑥11

+
679524501075

8192
𝑥13 −

199258149285

4096
𝑥15 +

386795230965

32768
𝑥17 

 

𝑑𝑓(𝑥)

𝑑𝑥
=
 135141493

32768
+ 75𝑥 −

2025295695

4096
𝑥2 + 210𝑥3 +

83853800415

8192
𝑥4

−
348202075221

4096
𝑥6 +

5865099701175

16384
𝑥8  −

3407230475649

4096
𝑥10

+
8833818513975

8192
𝑥12 −

2988872239275

4096
𝑥14 +

6575518926405

32768
𝑥16 

 

2- Second approach (computing critical points in the Legendre basis): 

 

𝑓(𝑥) = 7𝑃0(𝑥) + 23𝑃1(𝑥) + 55𝑃2(𝑥) + 12𝑃4(𝑥) + 405𝑃7(𝑥) + 598𝑃9(𝑥) + 444𝑃13(𝑥) +

663𝑃17(𝑥).  

 

𝑑𝑓(𝑥)

𝑑𝑥
= 21879𝑃16(𝑥) + 19227𝑃14(𝑥) + 27675𝑃12(𝑥) + 23247𝑃10(𝑥) + 28985𝑃8(𝑥)

+ 27430𝑃6(𝑥) + 18990𝑃4(𝑥) + 84𝑃3(𝑥) + 10550𝑃2(𝑥) + 201𝑃1(𝑥)

+ 2133𝑃0(𝑥). 
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Compute eigenvalues of Legendre-companion matrix for Legendre series. Table 6.4 shows 

roots of the   polynomial in Legendre basis and monomial basis. 

 

 

 Table 6.4 Critical Points of the Legendre Truncated Series of Degree 17 

Critical points in Legendre 

basis 

Critical points in 

monomial basis 

  -0.9561 + 0.0000i 

  -0.8556 + 0.0000i 

  -0.8534 + 0.0000i 

   0.9556 + 0.0000i 

   0.8681 + 0.0000i 

   0.8400 + 0.0000i 

  -0.6267 + 0.0000i 

  -0.4800 + 0.0000i 

  -0.2965 + 0.2957i 

  -0.2965 - 0.2957i 

   0.6308 + 0.0000i 

   0.4759 + 0.0000i 

   0.2967 + 0.2953i 

   0.2967 - 0.2953i 

   0.0005 + 0.0906i 

   0.0005 - 0.0906i 

 

0.9578 
0.9102 
0.8513 
0.7123 
0.5586 
0.4925 
−0.9584 
−0.9078 
−0.8543 
−0.7093 
−0.5644 
−0.4877 
0.3056 
−0.3067 
0.1021 
−0.1018 

 

 

 

Example 6.2 Consider the Chebyshev series 𝑓(𝑥) = 7𝑇0(𝑥) + 23𝑇1(𝑥) + 55𝑇2(𝑥) +

12𝑇4(𝑥) + 405𝑇7(𝑥) + 598𝑇9(𝑥) + 444𝑇13(𝑥) + 663𝑇17(𝑥) 

1- First approach (convert the Chebyshev series to monomial series): 

𝑓(𝑥) = 43450368𝑥17 − 184664064𝑥15 + 324980736𝑥13 − 305989632𝑥11

+ 166236928𝑥9 − 52360128𝑥7 + 9080016𝑥5 + 96𝑥4 − 751704𝑥3

+ 14𝑥2 + 19613𝑥 − 36. 

2- Second approach (computing roots in the Chebyshev basis): 
 

Compute eigenvalues of Chebyshev-companion matrix for Chebyshev series. Table 6.5 

shows roots of the   polynomial in Chebyshev basis and monomial basis. 
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                      Table 6.5 Roots of Chebyshev Truncated Series of Degree 17 

 
  Roots in Chebyshev basis  Roots in monomial basis 

  0.9908 + 0.0000i 

   0.9195 + 0.0120i 

   0.9195 - 0.0120i 

   0.8117 + 0.0000i 

   0.6298 + 0.0000i 

   0.5343 + 0.0000i 

   0.4383 + 0.0000i 

   0.2105 + 0.0000i 

   0.0018 + 0.0000i 

  -0.2145 + 0.0000i 

  -0.9916 + 0.0000i 

  -0.9199 + 0.0182i 

  -0.9199 - 0.0182i 

  -0.8101 + 0.0000i 

  -0.4307 + 0.0000i 

  -0.6260 + 0.0000i 

  -0.5436 + 0.0000i 

-0.9916 + 0.0000i 

-0.9199 + 0.0182i 

-0.9199 - 0.0182i 

-0.8101 + 0.0000i 

-0.6260 + 0.0000i 

-0.5436 + 0.0000i 

-0.4307 + 0.0000i 

0.9908 + 0.0000i 

0.9195 + 0.0120i 

0.9195 - 0.0120i 

0.8117 + 0.0000i 

0.6298 + 0.0000i 

0.5343 + 0.0000i 

0.4383 + 0.0000i 

-0.2145 + 0.0000i 

0.2105 + 0.0000i 

0.0018 + 0.0000i 

 

 

 

 

 

 

 

 

 

 

 



 98 

Chapter 7 

Conclusion and Future work 

7.1 Summary 

The original motivation for this thesis was to find the critical points of parametric curve 

representations in handwriting recognition. Handwritten symbols can be represented as 

parametric curves approximated in orthogonal bases such as Chebyshev, Legendre, or 

Legendre-Sobolev bases. It is easy in this representation to find all the critical points such as 

self-intersection points, number of local maxima, minima, loops, cusps, and so on. These 

critical points are used to determine features for recognition. 

 

These points can be computed by finding the roots for 𝑥′(𝑡) = 0 and 𝑦′(𝑡) = 0. This is done 

by univariate polynomial root finding. Roots of univariate-approximated polynomials can be 

found by computing the eigenvalues of the companion resultant matrix. Another approach to 

finding critical points is to convert parametric representations to implicit representations of 

the form 𝑓(𝑥, 𝑦)  = 0,where 𝑓(𝑥, 𝑦) is a bivariate polynomial. Singular points of parametric 

curves can be computed based on resultants. First, we convert the parametric curves to 

implicit curves of the form 𝑓(𝑥, 𝑦) = 0. This operation can be done as 𝑅𝑒𝑠(𝑋 − 𝑥(𝑡), 𝑌 −

𝑦(𝑡)). Then, the critical points are computed from the implicit representation by solving the 

roots of the system of polynomial equations   𝑓 = 𝑓𝑥 = 𝑓𝑦 = 0.  The common zeros of 

bivariate polynomial equations are computed based on the resultant. The method described in 

this thesis is based on the hidden variable resultant method for polynomials.  The hidden 

variable resultant method is based on selecting one variable, say 𝑦, and rewriting bivariate 
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polynomials 𝑓𝑥  and 𝑓𝑦 in 𝑥 with coefficients in that are polynomials in 𝑦. The critical points 

of truncated orthogonal series are computed by first computing the first derivative of the 

orthogonal series, and then computing the roots of the derivative series. One way to find the 

derivative and the roots of the derivative of a truncated orthogonal series 𝑃(𝑥) is to express 

𝑃(𝑥) as a sum of monomials, and then to calculate the derivative and the roots as the 

eigenvalues of the standard companion resultant matrix. On the other hand, the conversion 

between an orthogonal basis polynomial and its power basis form is ill conditioned (change 

the representation of a polynomial from orthogonal basis to power basis can amplify 

numerical errors. Error bounds can grow exponentially with the degree of the polynomial, 

and the relative errors can be infinitely larger in one basis than in another. Our contribution in 

this thesis is to determine whether the mathematical tools (roots, derivatives, resultants) exist 

to perform all the necessary operations in the orthogonal polynomial basis without converting 

to monomial bases.  We introduce our approaches for computing critical points based on 

resultants in an orthogonal basis, rather than perform ill-conditioned conversions. First, we 

develop an algorithm to compute the coefficients of the derivative of orthogonal series in 

orthogonal bases, and then we compute the roots of the derivative based on resultants 

matrices built in orthogonal bases such as the Sylvester matrix and the companion matrix. In 

this work, we compute the Sylvester resultant matrix for the Legendre basis. 

 

7.2 Future Work 

The treatment of handwritten symbols as parametric curves approximated by polynomials in 

non-monomial bases points to several directions for further investigation. Transformation 

from orthogonal bases to the power basis is ill conditioned. We need to avoid such 

conversion, and compute all polynomial manipulations such as resultants, derivatives, QR 

decompositions, SVDs, and GCDs in the right basis. These computations are to be done 
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without conversion into the standard power basis. Moreover, as long as we have simple 

multiplication formulas for orthogonal polynomial bases, we can compute all resultants 

matrices in orthogonal bases based on multiplication formulas. We wish to simplify the 

multiplication formula for Legendre polynomials in order to have a simple algorithm to 

compute resultant matrices in the Legendre basis. 
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