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ABSTRACT

A MATHEMATICAL MODEL OF ACUTE RESPONSE OF
PARATHYROID HORMONE TO CHANGES IN PLASMA

IONIZED CALCIUM IN NORMAL HUMANS

MAY 2008

RAJIV P. SHRESTHA

B.E., INSTITUTE OF ENGINEERING, PULCHOWK CAMPUS, KATHMANDU,

NEPAL

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yossi Chait and Professor Christopher V. Hollot

A complex bio-mechanism, referred to as calcium homeostasis, regulates plasma ionized

calcium (Ca++) concentration in the human body to within a narrow physiologic range which

is crucial for maintaining normal physiology and metabolism. Various metabolic disorders

and pathologic conditions originate from acute and/or chronic disturbances/disorders in

calcium homeostatic system. This system relies on numerous sub-systems which operate in

different time-scales ranging from minutes to weeks. In this thesis we focus on a particular

sub-system that operates on the time-scale of minutes; the dynamics involves the response

of the parathyroid glands to acute changes in plasma Ca++ concentration. We develop a

two-pool, linear time-varying model describing the dynamics of the sub-system. We show

that this model can predict dynamics observed in clinical tests of induced hypo- and hyper-

vi



calcemia in normal humans. In addition, we develop a new protocol for the construction of

a Ca-PTH reverse sigmoid curve based on the mathematical model. This protocol removes

deficiencies in current protocols in that the resulting curve is invariant with respect to the

subject’s axis dynamics and calcium clamp test dynamics.
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CHAPTER 1

INTRODUCTION

Calcium homeostasis refers to a complex bio-mechanism that regulates plasma ionized

calcium (Ca++) concentration in the human body to within a narrow physiologic range which

is crucial for maintaining normal physiology and metabolism. Plasma Ca++ plays a vital

role in normal functioning of muscles, nerves, platelets, neutrophils, and coagulation factors,

cell growth, cell division, secretion of hormones and other regulators [1], and mineralization

of bones [2]. This complex bio-system comprises numerous sub-systems interconnected via

positive and negative feedback pathways.

Various metabolic disorders and pathologic conditions originate from acute and/or chronic

disturbances/disorders in the calcium homeostasis. They can be caused by any one or a com-

bination of the following factors: a) changes in plasma Ca++ levels and/or vitamin D levels

by a physiologically significant amount, b) impaired synthesis and/or secretion of parathy-

roid hormone (PTH), and c) pathological conditions of parathyroid glands and kidneys.

These disorders may affect normal bone remodeling process causing various metabolic bone

diseases, such as osteoporosis, a major public health concern in the United States [3, 4], be-

sides causing many other abnormalities and disease conditions (eg., primary and secondary

hyperparathyroidism).

The present understanding of calcium homeostasis and its disorders is based on the tra-

ditional approach of biological and medical science which involves discovering various signal-

ing pathways, identifying critical bio-markers, and employing statistical analysis. However,

calcium homeostasis is a sophisticated bio-system where numerous sub-systems interact at
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different time-scales. A perturbation in one sub-system has corresponding effects in the in-

terconnected sub-systems and these in turn have effects on the other sub-systems. These

cascade-effects propagate in positive and negative feedback pathways in multiple directions.

It becomes impractical, if not impossible, to keep track of all of these interactions in order

to derive an understanding of the bio-system as a whole using the traditional approach.

Systems biology, an emerging science, relies on the integration of mathematical models for

individual sub-systems into a single model, enabling us to study the effects of disturbances

in the various inputs, pools and processes of the overall bio-system [5, 6].

We took the systems biology approach in our overall calcium homeostasis modeling ef-

forts. We first developed a qualitative model of the overall bio-system. Based on this qual-

itative model, substantial progress was made towards the development of a mathematical

model (not presented in this thesis). However, during this process we realized that existing

models for a very important aspect of calcium homeostasis, the acute dynamical interaction

between plasma Ca++ and PTH (called the Ca-PTH axis for ease of notation) appeared

deficient. To address this issue we decided to focus our research goal only on this axis of the

bio-system.

The thesis is organized as follows. In Chapter 2, we present a detailed qualitative model

of overall calcium homeostasis in a normal human, and explain why the Ca-PTH axis can

be isolated from the overall bio-system. In Chapter 3, we develop a mathematical model

of the acute Ca-PTH axis dynamics. In Chapter 4, we address the inconsistency in current

procedures for deriving the calcium-PTH reverse sigmoid curve. This curve could potentially

be used as an important bio-marker of diseases disrupting calcium homeostasis and to assess

the effectiveness of treatment protocols, based on the mathematical model developed. The

conclusions are given in Chapter 5.

The specific contributions of this thesis work are:

2



1. A new mathematical model describing the response of plasma PTH to acute changes

in plasma Ca++ concentration in normal humans has been developed. This model can

successfully predict dynamics observed in clinical tests of induced hypo- and hyper-

calcemic clamp tests.

2. A new method of generating Ca-PTH reverse sigmoid curve has been formulated. The

resulting curve properties are independent of the manner by which the induced calcemic

clamp test is conducted.

3



CHAPTER 2

QUALITATIVE MODEL OF CALCIUM HOMEOSTASIS

A detailed qualitative model describing the interactions between various components

and signalling pathways of calcium homeostasis is presented in this chapter. We begin by

describing the major pools and fluxes of calcium next.

2.1 Major pools and fluxes

The intestine, bone, kidney, and plasma are the four major pools of Ca++ in the human

body. There is about 1-2 kg of calcium in a healthy adult, most of which (99%) is in the

form of hydroxypatite crystals in teeth and bones [7]. Of the remaining, 50% constitutes the

ionized or ‘free’ calcium in plasma, 40% is bound reversibly to proteins, and 10% is complexed

with citrate and phosphate [1]. The average total plasma calcium concentration in the human

body is 2.1-2.6 mmol/L [8]. At normal physiological state, about 1.1-1.3 mmol/L is ionized

calcium, 0.9-1.1 mmol/L is protein-bound calcium, 0.18 mmol/L is complexed calcium and

180 nmol/L is intracellular free calcium [8]. The ionized form of calcium, which is just 0.5%

of the total body calcium, is metabolically active [1] and tightly regulated by the homeostatic

system. The condition when Ca++ level falls below the normal range is called hypocalcemia

and the condition when it climbs above the normal range is called hypercalcemia.

An overall daily Ca++ balance in the plasma of a healthy adult is maintained by fluxes

of calcium between the plasma and the intestine, bone and kidney as shown in Figure 2.1.

Intestine receives calcium from the external environment through diet. A normal daily

diet contains about 1,000 mg of calcium. During the process of digestion only about 300

4
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Figure 2.1. Daily calcium balance in a normal adult. The arrows show the direction of
flux. Numerical values from [9].

mg are absorbed from the intestine into the plasma and roughly 125 mg are effluxed back

into the intestine, which is cleared out through fecal excretion along with the unabsorbed

fraction. Hence, the net dietary uptake of calcium into the plasma pool is 175 mg. There

is an exchange of 500 mg of calcium to and from the bone with the plasma but the net

exchange is zero assuming that in the time-scales of minutes to hours there is no change in

bone mass. On a daily basis, 10,000 mg of calcium are ultra-filtered out of the plasma into

nephrons in the kidney, where about 9,825 mg of calcium are reabsorbed. The net removal

of calcium via the kidney is 175 mg per day, which is excreted in urine. Thus, the additional

dietary calcium that enters into the circulation is excreted out and a normal plasma calcium

concentration is maintained.
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The flux exchange described above is actively regulated by two chief hormones: the

metabolically active form of vitamin D and PTH. The metabolism and regulation of vitamin

D and PTH are presented in the next sections, respectively.

2.2 Vitamin D metabolism and regulation

The general steps in the metabolism of vitamin D are shown in Figure 2.2 (the presen-

tation here follows the detailed exposition in [10]). There are two sources of vitamin D in

the human body: daily diet and skin. Daily diet provides vitamin D2 (ergocalciferol) and

7-dehydro

cholesterol

25 Dihydroxy

Vitamin D3

25 Dihydroxy

Vitamin D2

1, 25 Dihydroxy

Vitamin D2

Vitamin D3

Conversion

Conversion

1, 25 Dihydroxy

Vitamin D3Conversion

Conversion

Vitamin D3

Vitamin D2

Conversion

Liver Kidney

uv-Light

Skin

F
ro

m
 D

ie
t

Storage in Adipose 

Tissues

Plasma Pool of 25 D Plasma Pool of 1, 25 D

Figure 2.2. The general steps in vitamin D metabolism. Dotted arrows mean conversion
and solid arrows mean transportation.

vitamin D3 (cholecalciferol), whereas in skin, 7-dehydrocholesterol is converted into vitamin

D3 by exposure to uv-light. The biological actions of both forms of vitamin D is consid-

ered to be the same, hence, the term vitamin D is used to denote both forms in this work.

Vitamin D does not circulate for long in the blood stream. It is immediately taken up by
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adipose tissue for storage or by liver for 25-hydroxylation to form 25 hydroxy vitamin D1. 1,α

hydroxylation of 25D occurs in the kidney to form the metabolically active 1,25 dihydroxy

vitamin D2. In humans, tissue storage of vitamin D can last for months or even years. 25D

is the major circulating form of vitamin D.

In a normal individual, there is an ample supply of Vitamin D to plasma directly from

diet, skin, and storage in the adipose. The conversion of vitamin D to 25D in the liver is

only loosely regulated [10]. However, the conversion of 25D to 1,25D in the kidney is tightly

regulated by renal α hydroxylase enzyme and it has been established that the kidney is the

major source of the circulating pool of 1,25D [10]. For our modeling purpose, the different

steps in the vitamin D metabolism process have been lumped into a high-level schematic

diagram as shown in Figure 2.3. Next, we present the bio-synthesis and secretion of PTH

and their regulations.

Conversion
Plasma

(DP)

Plasma

(25DP)

Plasma

(1,25DP)
Conversion

Liver Kidney

Kidney

( K)

Figure 2.3. A high-level schematic diagram of the major steps in the metabolism of vitamin
D and its regulation. The darkened solid arrow indicates stimulation.

2.3 PTH bio-synthesis and secretion and their regulation

There are four parathyroid glands, each weighing 40 mg on average, located adjacent

to the thyroid gland in the neck [8] as shown in Figure 2.4(a). The chief cells, shown in

1We use 25D to denote 25 hydroxy vitamin D.

2We use 1,25D to denote 1,25 dihydroxy vitamin D.
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Figure 2.4(b), are the predominant cells in the parathyroid glands [11]. PTH is synthesized

Parathyroid Glands. Reproduced from: Atla

Larynx

Thyroid

Parathyroid
Glands

Trachea

(a) Anatomy of the parathyroid glands. Reproduced
from [12].

Chief Cell

(b) Histology of the parathyroid gland.
Stain: Hematoxylin-eosin.550x. Repro-
duced from [13].

Figure 2.4. Anatomy and histology of parathyroid glands.

and stored in the cytoplasmic vesicles of the chief cells. Normally, only about 20% of the

cell population is actively secreting PTH [11]. Next, a simple understanding of these steps

involved is presented based on [14, 15]. Figure 2.5 summarizes the steps.

The first step in the biosynthesis of PTH is the transcription process in which genetic

information is transferred from the DNA (Deoxyribonucleic acid) to a pre-mRNA (pre-

messenger ribonucleic acid) in the nucleus of the parathyroid cell. The post-transcriptional

process follows. The pre-mRNA matures into an mRNA that is transported to the cytoplasm,

the process being called transportation. The next step is the translation where the genetic

information in the mRNA is translated into a specific polypeptide, a larger precursor of

PTH, called pre-proPTH containing 115 amino acids. This process occurs in the endoplasmic

reticulum-bound polyribosomes. The pre-proPTH is then cleaved in the rough endoplasmic

reticulum to produce a 90 amino acid intermediate precursor of PTH called proPTH. This
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Figure 2.5. A schematic diagram describing various steps involved in PTH bio-synthesis
inside a parathyroid chief cell. PTH thus synthesized is stored in vesicles inside the cells.
PTH is secreted from the cells by exocytosis process.

process is called first cleavage. The second cleavage occurs in the golgi complex in the

cytoplasm to finally produce the PTH which accumulates in the vesicles. In response to

secretory stimulus caused by decrease in plasma Ca++ concentration to calcium sensing

receptors (CaR) on the cell membrane [16], the membrane of the storage vesicle fuses with

the cell membrane and PTH is released from the cell into circulation. This process is called

exocytosis.
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PTH bio-synthesis is regulated by plasma 1,25D during the transcriptional process [17]

and by Ca++ during post-transcriptional process [18] as depicted in the Figure 2.6. The

1,25D form of vitamin D, with the plasma half-life of 12 to 15 hours [1], regulates the long-

term parathyroid secretion function. It has been termed as a day-to-day regulator of calcium

Transportation

Cytoplasm

Nucleus

Exocytosis

Chief Cell

Translation

ø

ø

ø

øø

1st Cleavage2nd Cleavage

Pre-mRNA mRNA

[PTH]P

ProPTH PreProPTH

DNA

mRNAø

Legend

Pool

Flux

Conversion

Stimulation

Inhibition

Decayø

[1,25D]P

Post-Transcription

Transcription

VDR

[C
a] P

[PTH]C

ø

Figure 2.6. A schematic diagram showing the regulation of PTH bio-synthesis and secretion
by 1,25D and calcium.

homeostasis [1]. Higher concentrations of 1,25D inhibit the transcription of the PTH gene

[17] through signalling from the nuclear [8] vitamin D receptor (VDR). The effect occurs

within 2 hours [1]. A decrease in PTH mRNA levels to less than 4% of controls was observed

within 48 hours in rats that were injected with amounts of 1,25D which did not increase
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their calcium levels [17]. The time-scale of this regulation of PTH synthesis by 1,25D cannot

be pin-pointed. However, a time-scale of hours to days can be assumed based on [1, 17, 19].

Plasma Ca++ regulates PTH bio-synthesis during the post-transcriptional process. The

regulation occurs by affecting the mRNA stability [18]. An increase in plasma Ca++ concen-

tration decreases the overall PTH bio-synthesis by degrading the mRNA faster. Conversely,

a decrease in plasma Ca++ concentration increases the overall PTH bio-synthesis by increas-

ing the nuclear mRNA half-life. No known major regulatory effects have been observed at

the translational and post-translational levels [14]. The time-scale of this regulation has been

suggested to range from hours to days in [1, 14].

The regulation of exocytosis in response to changes in plasma Ca++ levels occurs strictly

by signaling pathways involving calcium sensing receptors (CaR) located on the cell mem-

brane of the chief cells of the parathyroid glands [16]. An increase in the plasma Ca++

concentration results in a decrease in PTH secretion. Conversely, a decrease in the plasma

Ca++ concentration results in an increase in PTH secretion. The time-scale of the parathy-

roid gland’s response to varying plasma Ca++ concentrations ranges from seconds to minutes

[20, 16]. In our qualitative model of the calcium homeostasis the above described 1,25D and

the plasma Ca++ concentration signaling pathways have been lumped together in terms of an

overall effect on the exocytosis. Next, we put together the descriptions presented in Sections

2.1-2.3 to form a qualitative model of plasma calcium homeostasis.

2.4 Qualitative model of plasma calcium homeostasis

The plasma calcium pool size is maintained by a flux balance with the intestine, bone,

and kidney. The influx of calcium from the intestine consists of both actively- and passively-

regulated channels, whereas the efflux to the intestine is mainly due to passive transportation

(Figure 2.7(a)). The efflux to the kidney involves ultrafiltration, where the filtration occurs
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under high pressure in the glomerular capillaries of the kidney. The influx from the kidney

involves a passive diffusion and an active reabsorption by the nephrons.

A decrease in the plasma Ca++ concentration acutely stimulates (a rise in the plasma

Ca++ concentration inhibits) PTH secretion by exocytosis from the parathyroid cells in a

time-scale of minutes [16]. In the time-scales of hours to days, a decrease in plasma Ca++

concentration increases (a rise in the plasma Ca++ concentration decreases) bio-synthesis

of PTH in the parathyroid cells [14]. PTH in turn stimulates bone calcium resorption and

active renal reabsorption of calcium. PTH also upregulates production of renal α hydroxylase

enzyme in the kidney which upregulates conversion of 25D into 1,25D in the kidney. 1,25D in

turn upregulates active intestinal calcium absorption and active renal calcium reabsorption.

It also downregulates PTH bio-synthesis in the parathyroid cells and production of the

renal α hydroxylase enzyme, resulting in the downregulation of its own production. These

pathways are shown in Figure 2.7(b).

1,25D and PTH play important roles in regulating bone formation and resorption pro-

cesses [8]. This results in the addition or removal of calcium from the plasma pool and the

transportation of it to and from the bone. This process, of course, plays an important role

in plasma calcium homeostasis. In fact, the bone acts as a big reservoir to supply calcium

to the plasma in case of need. Though the exact function of 1,25D and PTH in the bone

remodeling process is not well understood, it has now been generally accepted that 1,25D

upregulates calcium trapping for bone formation [8] and an intermittent rise in PTH helps

in a net positive bone formation [21, 22, 23] resulting in a net flux of calcium from plasma

to bone. A lack of 1,25D and continuous rise in PTH upregulates bone resorption resulting

in a net flux of calcium to the plasma. Phosphate in high concentrations stimulates PTH

secretion and PTH upregulates phosphate clearance through the kidney. The effect of phos-

phate on the parathyroid gland is independent of plasma Ca++ and vitamin D [18]. Thus,

the phosphate pool is not included in the present model.
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Figure 2.7. A qualitative model of plasma calcium homeostasis.
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The response of the parathyroid glands to acute changes in plasma Ca++ concentration

occurs in time-scales of seconds to minutes [16] which involves the exocytosis process. Be-

cause regulation of PTH bio-synthesis by plasma Ca++ and 1,25 D in the chief cells and all

other signaling pathways in the calcium homeostatic system run in the time-scales of hours

to days [18, 17], it is feasible to study the acute response of plasma PTH to changes in

the plasma Ca++ separately from the overall system. We refer to this isolated sub-system

(shown in Figure 2.7(c)) of the overall bio-system as the Ca-PTH axis from here on. Given

that a reasonable amount of information is available about this axis, this thesis focuses on

the development of a mathematical model for this axis, which is presented next in Chapter

3.
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CHAPTER 3

A MATHEMATICAL MODEL OF THE CA-PTH AXIS

In this chapter we develop a model describing the response of PTH to acute changes in

plasma Ca++ concentration (Ca-PTH axis) in humans. To fully appreciate this model, we

first present a literature review of relevant published models.

3.1 Literature review

Our literature survey unraveled numerous models of calcium homeostasis of varying de-

grees of details. The earlier works are theoretical or have utilized data from animals and birds

whereas the recent investigations have utilized data from humans. With the discovery of var-

ious receptors and ligands involved in the signalling pathways within individual sub-systems,

the understanding of the details of calcium homeostasis has progressed substantially. Hence,

most of the recent studies have focussed on modeling particular sub-systems of the calcium

homeostasis, e.g. Ca-PTH axis [19, 20] and bone remodeling process [21, 22, 24].

One of the earliest works relevant to mathematical modeling of calcium homeostasis dates

back to 1963 [25]. A theoretical approach of modeling calcium metabolism was presented. A

central blood calcium pool with a bidirectional calcium flux exchange with both the skeleton

and intestine and a unidirectional flux of calcium to urine were considered. Two schemes

of calcium metabolism were presented. Various options were suggested for the collection of

data required for parametrization of the model. The roles of regulating hormones were not

included in the model.
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Although the role of PTH in the acute regulation of plasma calcium levels was clearly

established as early as 1959 [26] it seems to have been incorporated in a mathematical model

for the first time in 1965 [27]. A model for the regulation of the blood calcium level in rats by

bone metabolism was presented in this paper. It concluded that feedback systems with an

integral control due to parathyroid hormone for a normal rat and a proportional control for

a thyro-parathyroidectomized rat can explain the response of bone metabolism to changes

in blood calcium levels.

Calcium homeostasis based on negative feedback control involving a proportional con-

trol by PTH during hypocalcemia and by calcitonin during hypercalcemia was suggested in

[28]. Linear relationships between PTH secretion and calcium concentration with a negative

slope and between calcitonin secretion and calcium concentration with a positive slope were

assumed. A very simplified model of the Ca-PTH axis in dogs was presented in [29]. Exper-

imental results from normal and thyro-parathyroidectomized dogs were utilized to calculate

model parameters. It was assumed that the action of PTH is limited only to the resorption

of bone and that its effects in the regulation of fluxes to and from the kidney and intestine

are negligible at steady-state.

A theoretical, quasi-linear, lumped-parameter model for calcium homeostasis for mam-

mals based on data from different animals, eg., dogs, rats, rabbits and pigs appears in [30].

PTH and calcitonin were assumed to be the prime hormones. Linear relationships were

assumed between plasma calcium and both plasma calcitonin and plasma PTH. Finally, due

to lack of data to validate the model, it only suggested possible experiments to obtain data

to parameterize the model.

A general mathematical model for calcium homeostasis in birds was presented in [31].

The roles of PTH and 1,25D as regulating hormones for different calcium fluxes between

bone, kidney, intestine, and plasma were taken into consideration. A calcium pool, a PTH

hormone pool, and a 1,25D pool in the plasma, and a 1,25D pool in the intestine were
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considered. A part of the intestinal flux of calcium was assumed to be regulated by 1,25D

and a part of the bone flux of calcium was assumed to be regulated by PTH. The model

also considered the regulation of renal hydroxylase enzyme by PTH, which in turn regulates

the conversion of 25D to 1,25D. An extension to this model was presented in [32] which

included the effects of body growth and energy intake models for chicks. This model utilized

the reverse sigmoidal relationship between PTH secretion and plasma Ca++ concentrations

presented in [33].

The first conclusive study demonstrating the nonlinear nature of the relationship between

PTH secretions and plasma Ca++ level in a bovine, normal human, and pathological human

parathyroid tissue in vitro was presented in [33]. A reverse sigmoidal model bearing four

parameters representing various aspects of the secretion dynamics was presented in the paper.

Further details on this model can be found in Chapter 4.

A proportional-integral feedback control structure was utilized to develop a dynamical

model for calcium homeostasis in healthy dairy cows for longer time-scale of days in [34].

The proportional-integral feedback control was realized by assuming the production of 1,25D

to be proportional to PTH concentration. Nonlinearities were introduced in the form of a

saturation function in the relationships between: 1) PTH and calcium transportation from

the bone to plasma, and 2) plasma Ca++ concentration and calcium transport from the

intestine. These were used to study calcium homeostatic disorder and breakdown in dairy

cows called parturient paresis or milk fever which occasionally affects them after calving. The

results suggested that a reduction in bone remodeling reaction to PTH may cause milk fever.

Moreover, for the breakdown to occur this reduced responsiveness must be accompanied by

reduced gut motility.

A relatively recent attempt to model plasma calcium homeostasis consisting of separate

pools of calcium, phosphate, PTH, calcitriol in plasma, intracellular phosphate, and parathy-

roid gland mass was presented in [35]. The exchangeable pools of calcium and phosphate
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in bone were introduced to model flux exchange between the plasma and bone. Similarly, a

renal 1,α hydroxylase pool, a phosphate pool, and an intestinal calcium pool were utilized to

capture the dynamics involving the kidney and the intestine. Clinical data from a renal fail-

ure case was compared with simulation results with a favorable match. Generally speaking

this model seems to have incorporated all the important aspects and recent understanding

of calcium homeostasis and signalling pathways. However, this model cannot predict the

observed Ca-PTH dynamics for short time-scales of less than 10 minutes. This becomes

evident by comparing simulation results presented in the paper with clinical data for shorter

time-scales presented in [20]. Moreover, the fact that the model uses a single PTH pool

rules out the possibility of achieving dynamics observed in clinical data. A mathematical

proof of the deficiency of the single PTH pool model will be presented in Section 4.4. Short

time-scale dynamics may be important in an overall model of plasma calcium homeostasis,

especially when we incorporate the interaction with bone because the intermittent change

in PTH levels helps in net positive bone formation [21, 22, 23]. A brief review of the two

mathematical models that capture short time-scale Ca-PTH interaction are discussed next.

3.1.1 Ca-PTH axis models

A multi-parameter deconvolution analysis method suggested in [36] was used to study the

tonic and pulsatile nature of PTH secretion in normal humans in [37]. A two-pool, linear,

time-invariant (LTI) model was arbitrarily assumed to represent the Ca-PTH axis. The

model was parameterized using the hypo- and hyper-calcemic clamp test data separately.

The parameterized models were used to estimate the tonic and pulsatile PTH secretion.

For the first time, [19] utilized the biological events in the process of PTH secretion

to derive a two-pool model of Ca-PTH dynamics for short time-scales (in minutes). Two

PTH pools, one in the parathyroid cells and the other in the blood, were considered. An

important simplifying assumption that the change in calcium occurs instantaneously was
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used to render the model into an LTI system. The presentation in [19] differs from the ones

in [20, 37] in the respect that it utilizes the biological events to explain the origin of the

model. This model, parameterized based on a hypocalcemic clamp test, matched the test

results. Nevertheless, we note that the assumption of an instantaneous change in plasma

calcium levels is not expected to hold in practice. The ability of this model to predict

dynamics of a hypercalcemic clamp test was not explored. Next, we present some clinical

observations on the Ca-PTH axis.

3.2 Clinical observations

A clinical protocol, referred to as an induced calcemic clamp test, is typically employed to

study the status of the Ca-PTH axis. During an induced hypocalcemic clamp test, plasma

Ca++ concentration is decreased by an intravenous infusion of sodium citrate. Similarly,

during an induced hypercalcemic clamp test, plasma Ca++ concentration is increased by an

intravenous infusion of calcium gluconate [20, 38, 39, 40, 41, 42]. Plasma Ca++ concentration

and the corresponding plasma PTH concentration are measured at frequent time intervals.

Both hypo- and hyper-calcemia can be induced at a fast or a slow rate depending upon the

rate of infusion of sodium citrate or calcium gluconate, respectively. Examples of clamp tests

induced slowly [40] or rapidly [20] can be seen in Figure 3.1 and Figure 3.2, respectively. For

ease of illustration and analysis, typical time profiles of plasma Ca++ and PTH concentrations

for induced hypo- and hyper-calcemic clamp tests are depicted in Figure 3.3 and Figure 3.4,

respectively. Next, we present the dynamical model development.

3.3 Model Development

Based on the description of the PTH secretion process and its regulation in Sections 2.3

and clinical observations in Section 3.2 we consider two pools of PTH: one in the parathyroid
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(a) Typical time profiles of plasma Ca++ concentrations, x, during
induced hypocalcemic clamp tests. The dashed profile represents
a slower decrease and the solid profile represents a faster decrease
from initial steady-state Xi to a final steady-state Xf .
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(c) A typical PTH response, y,
to rapid induction of hypocalcemia.
Note the conspicuous peak.

Figure 3.3. An illustration of typical results in induced hypocalcemic clamp tests.
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(a) Typical time profiles of plasma Ca++ concentrations,
x, during induced hypercalcemic clamp tests. The dashed
profile represents a slow increase and the solid profile rep-
resents a rapid increase from initial steady-state Xi to a
final steady-state Xf .
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(b) A typical PTH response, y, to a slow induction of
hypercalcemia represented by the dashed line and a rapid
induction of hypercalcemia by represented by the solid
line. Note the inconspicuous dip in PTH response for the
rapid induction of hypercalcemia.

Figure 3.4. An illustration of typical results of induced hypercalcemic clamp tests.
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glands (PTG pool) and the other in plasma (plasma pool), as shown in Figure 3.5. In
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Pool
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Decayø

Figure 3.5. The Ca-PTH axis isolated from the qualitative model of calcium homeostasis
shown in Figure 2.7.

response to an acute decrease (time-scale of minutes) in plasma Ca++ concentration, signaling

pathways involving calcium sensors on the parathyroid chief cell stimulate exocytosis of the

PTH stored in the vesicles of the cells. Similarly, they inhibit exocytosis of the PTH in

response to a rise in the plasma Ca++ concentration. The PTH response occurs in time-scale

of minutes [20]. Since we are considering the response of PTH to acute changes in plasma

Ca++ concentration, we can assume the bio-synthesis rate of PTH to remain constant because

the regulation of PTH bio-synthesis in response to changes in the plasma Ca++ concentration

occurs in the times-scale of hours to days [1, 14, 18].

Using mass balance and assuming that we model average dynamics of n active chief cells

in the parathyroid glands, the rate of change of PTH in the PTG pool is given by

ẋ1(t) = k︸︷︷︸
PTH production

− λCa(t)x1(t)︸ ︷︷ ︸
Secretion to plasma

− λ1x1(t)︸ ︷︷ ︸
Decay

, (3.1)

where x1(t) denotes the total amount of PTH in the PTG pool, k denotes the constant

production rate of PTH in the PTG pool, λCa(t) denotes the secretion rate function which

depends on plasma Ca++ concentration, and λ1 denotes the decay rate constant of PTH
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inside the parathyroid cells. We use the four-parameter reverse-sigmoidal relationship [33]

to relate λCa(t) and plasma Ca++ concentration

λCa(t) =
A−B

1 +
(

Ca(t)
S

)m + B, (3.2)

where A and B denote maximal and minimal values of the secretion rate constant, Ca(t)

denotes plasma Ca++ concentration, and S is the value of Ca(t) when λCa = A+B
2

, and m

gives the slope of the curve at S, respectively. These characteristic features of the reverse

sigmoid relationship are depicted in Figure 3.6. EM Brown originally used this relationship

Ca(t)
S

Ca(t)

A

B

= tan-1[m]

A+B

2

Figure 3.6. The reverse sigmoid curve.

[33] to relate PTH secretion rate and plasma Ca++ concentration. Note that we have used

the relationship to relate PTH secretion function (λCa(t)) to plasma Ca++ concentration and

not PTH secretion (λCa) to plasma Ca++ concentration. The rate of change of PTH in the

plasma pool is given by a mass balance relation

ẋ2(t) = λCa(t)x1(t)︸ ︷︷ ︸
Secretion from parathyroid glands to plasma

−λ2x2(t)︸ ︷︷ ︸
Clearance

, (3.3)
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where x2(t) denotes the amount of PTH in the plasma pool and λ2 denotes the biological

clearance rate constant for PTH in circulation. Writing Equations (3.1) and (3.3) in a matrix

form




ẋ1

ẋ2


 =



−(λCa(t) + λ1) 0

λCa(t) λ2







x1

x2


 +




k 0

0 0







1

0


 , (3.4)

we observe that the two equations form a hierarchy of differential equations. We can solve

the first equation, which has a constant forcing function reflecting the assumption of constant

rate of PTH production at fast time-scale, to compute x1(t) and then substitute it into the

second equation to solve for x2(t).

Note that λCa is a function of time. Thus the dynamical system (3.4) is an LTV system.

The solution of the system is given by

x1(t) =φ1(t, t0)x10 + k

∫ t

t0

φ1(t, σ)dσ

x2(t) =φ2(t, t0)x20 +

∫ t

t0

φ2(t, σ)λCa(σ)x1(σ)dσ

t ≥ t0, x1(t0) = x10, x2(t0) = x20, (3.5)

where, φ1(t, t0), φ2(t, t0), φ1(t, σ), and φ2(t, σ) are transition scalars given by

φ1(t, t0) =e
−∫ t

t0
(λCa(σ)+λ1)dσ

= e
−∫ t

t0

(
A−B

1+(Ca(σ)
S )

m +λ1

)
dσ

φ2(t, t0) =e
−∫ t

t0
λ2dσ

φ1(t, σ) =e−
∫ t

σ(λCa(τ)+λ1)dτ = e
−∫ t

σ

(
A−B

1+(Ca(τ)
S )

m +λ1

)
dτ

φ2(t, σ) =e−
∫ t

σλ2dτ .

We have used Ca(t) = c1 + c2e
−λt and Ca(t) = c3 − c4e

−λt to approximate calcium-time

profiles during hypo- and hyper-calcemic clamp tests [see Figure 3.8(a) and Figure 3.9(a)].
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Unfortunately, the solution (3.5) is analytically intractable because the integral terms on the

right-hand side cannot be solved in a closed form. One way to simplify the analysis is to

assume a step-change in calcium [19], which renders λCa(t) a constant and thus the system

(3.4) becomes an LTI. Using λCa(t) = λCa, and t0 = 0, we have

φ1(t, t0) =e
−(λCa+λ1)

∫ t
t0

dσ
= e−(λCa+λ1)t

φ2(t, t0) =e
−λ2

∫ t
t0

dσ
= e−λ2t

φ1(t, σ) =e−(λCa+λ1)
∫ t

σdτ = e−(λCa+λ1)(t−σ)

φ2(t, σ) =e−λ2

∫ t
σdτ = e−λ2(t−σ).

So, the solution is given by

x1(t) =
k

λCa + λ1

+

(
x10 − k

λCa + λ1

)
e−(λCa+λ1)t

x2(t) =
λCak

(λCa + λ1) λ2

+

(
x20 − λCak

(λCa + λ1) λ2

+
λCax10

(λCa + λ1 − λ2)
− λCak

(λCa + λ1) (λCa + λ1 − λ2)

)
e−λ2t

+

(
λCak

(λCa + λ1) (λCa + λ1 − λ2)
− λCax10

(λCa + λ1 − λ2)

)
e−(λCa+λ1)t.

In practice, Ca++ concentration changes at a much slower rate than a step. So the

step-change assumption in plasma Ca++ concentration is not valid. Moreover, plasma PTH

response depends on the rate of change of plasma Ca++ concentration [38, 43]. Thus a model

has to be able to capture the expected time-varying nature of the system (3.4). Next we

present our computational approach for parameterizing the system equations.

3.3.1 Model parametrization

We start by deriving parameter constraints of the system (3.1)-(3.3) at steady-state. We

then use both known data and a guided iterative procedure to match clinical tests. In the

following subsections we describe the model parametrization steps.
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3.3.1.1 Deriving parameter constraints at steady-state

At steady-state, (3.1) becomes

k =

[
A−B

1 +
(

CaSS

S

)m + B

]
x1,SS + λ1x1,SS, (3.6)

where x1,SS and CaSS denote steady-state values of PTH in the PTG pool and plasma Ca++

concentration in plasma, respectively. Similarly, (3.3) becomes

[
A−B

1 +
(

CaSS

S

)m + B

]
x1,SS =λ2x2,SS, (3.7)

where x2,SS denotes steady-state values of PTH concentration in plasma. From (3.6) and

(3.7) we have

k =λ2x2,SS + λ1x1,SS. (3.8)

Considering normal steady-state1 values of a healthy individual, 3.8 becomes

k =λ2x2,SS,N + λ1x1,SS,N, (3.9)

where x1,SS,N and x2,SS,N are steady-state values of PTH in the PTG pool and PTH in plasma

of a healthy individual, respectively. Since the steady-state PTH secretion rate in response

to acute changes in plasma Ca++ has maximum and minimum saturation values [33], we

assume that there is a maximum or a minimum saturation steady-state value that plasma

PTH concentration can attain as well. At extreme values, (3.8) becomes

k = λ2x2,SS,Min + λ1x1,SS,Max, (3.10)

1By normal steady-state we mean the average concentrations of either plasma Ca++ or PTH when an
individual is not under clamp test.
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and

k = λ2x2,SS,Max + λ1x1,SS,Min, (3.11)

where x1,SS,Max and x1,SS,Min denote maximum and minimum steady-state values of PTH

in the PTG pool, respectively, and x2,SS,Min and x2,SS,Max denote minimum and maximum

steady-state values of PTH in the plasma pool, respectively. Evaluating (3.7) at upper and

lower plasma Ca++ levels we have

lim
Ca→0

Ax1,SS,Min = λ2x2,SS,Max =⇒ A =
λ2x2,SS,Max

x1,SS,Min

, (3.12)

lim
Ca→∞

Ax1,SS,Max = λ2x2,SS,Min =⇒ B =
λ2x2,SS,Min

x1,SS,Max

. (3.13)

Finally, the set point S can be isolated from (3.2) as follows

S = exp


log (CaSS)− 1

m
log






 A−B

λ2x2,SS

x1,SS
−B


− 1






 . (3.14)

Relevant steady-state data is listed in Table 3.1 obtained from [20]. Since our model is based

Variables Concentration Units
x2,SS,N 2.41 pmolL−1

x2,SS,Max 5.20 pmolL−1

x2,SS,Min 0.96 pmolL−1

CaSS,N 1.23 mmolL−1

Table 3.1. Average steady-state plasma PTH (x2,SS) and Ca++ concentrations from 7
healthy individuals obtained from Figure 3.2 [20].

on mass balance, the available data in concentration units (pmolL−1) have been multiplied
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by average adult plasma volume, ≈ 2.75 L [44], to convert into pmols and listed in Table

3.2.

Variables Amount Units
x2,SS,N 6.63 pmol
x2,SS,Max 14.39 pmol
x2,SS,Min 2.65 pmol

Table 3.2. Data from Table 3.1 converted into pmols.

There are 10 unknowns, k, λ1, λ2, x1,SS,N, x1,SS,Max, x1,SS,Min, A, B, S, and m, in the

6 equations (3.9)-(3.14). If we know the values of λ1, λ2, x1,SS,N, and m we can get a

closed form solution for the rest of the unknowns. These four unknowns can have infinite

number of possible values. Our aim is to find values that make appropriate biological sense.

The resulting numerical solution of (3.1)-(3.3) should also match well with the clinical data

(presented in Section 3.2). Next, we present some information that we utilized to define a

reasonable starting values of these four unknowns.

3.3.1.2 Estimating starting values of λ1, λ2, x1,SS,N, and m

1. The half-life of PTH in circulation, τ2 = ln(2)
λ2

, has been reported to vary from 2 to 15

minutes in [19], 2.04-2.93 minutes in [20], and 2.5 in [37]. The later also states that

these values represent upper estimates, as any continued PTH release above the post

infusion baseline during the decay measurements would slightly prolong the calculated

half-life. Hence, we assume plasma PTH disappearance half life in a healthy adult to

be less than 15 minutes. As a starting value we used τ2=2.5 minutes. So, λ2 = ln(2)
τ2

.

2. We assume that the half-life of PTH in the parathyroid cell, τ1 = ln(2)
λ1

, is much greater

than τ2, since there is no clearance by kidney or liver while the PTH is still in the chief

cell. As a starting value we have used τ1= 30 minutes. So, λ1 = ln(2)
τ1

.
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3. We assume that x1,SS,N >> x2,SS,N when there is no acute disturbance in the plasma

calcium level. Clinical data in [20, 38] suggests that a sustained high PTH secretion

rate is possible for hours during sustained hypocalcemia. Since the rate of biosynthesis

doesn’t vary substantially in that time scale [1, 14, 19], this sustained secretion of PTH

at a higher rate is only possible if there is a very large storage of PTH in the vesicles

of the PTG pool. Thus, we have used x1,SS,N = 10× x2,SS,N as the starting value.

4. The parameter m controls the sensitivity of λCa(t) with respect to the plasma Ca++

concentration. We have used m = 100 as a starting point, assuming a very high

sensitivity consistent with observations from clinical data [33, 42].

At this point we only know the starting guess values of the four unknowns λ1, λ2, x1,SS,N,

and m which we will use for the guided iteration. The next step is to calculate k, x1,SS,Max,

x1,SS,Min, A, B, and S.

3.3.1.3 Calculating k, x1,SS,Max, x1,SS,Min, A, B, and S

We use the six equations (3.9)-(3.14) to calculate k, x1,SS,Max, x1,SS,Min, A, B, and S

respectively:n

k = λ2x2,SS,N + λ1x1,SS,N,

x1,SS,Max =
k − λ2x2,SS,Min

λ1

,

x1,SS,Min =
k − λ2x2,SS,Max

λ1

,

A =
λ2x2,SS,Max

x1,SS,Min

,

B =
λ2x2,SS,Min

x1,SS,Max

, and

S = exp


log (CaSS)− 1

m
log






 A−B

λ2x2,SS

x1,SS
−B


− 1






 .
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At this point we have estimated the values of all the parameters k, λ1, λ2, A, B, S,

and m for our model (3.1)-(3.3). The next step is to see if our model simulation can match

clinical data of a hypocalcemic clamp test using these values. For this, we looked to match

the features of the curve such as the peak value Ymax, the time taken to reach this value

tmax, and the rate of exponential decrease of plasma PTH concentration from Ymax to the

final steady-state Yf as shown in Figure 3.3. The next step is to tune the values of the four

parameters: λ1, λ2, x1,SS,N, and m from the starting values mentioned in Section 3.3.1.2

in an iterative fashion to get a better match. Some observations made during this tuning

process were used as guidelines for tuning process as described in the following section.

3.3.1.4 Guidelines for tuning λ1, λ2, x1,SS,N, and m

1. Increasing τ1 (or decreasing λ1) increases Ymax, decreases tmax and increases the rate

of exponential decrease of PTH after peak in PTH response.

2. Increasing τ2 (or decreasing λ2) decreases Ymax and increases tmax and decreases the

rate of exponential decrease of PTH after peak in PTH response.

3. Increasing x1,SS,N decreases Ymax and increases tmax larger.

4. Increasing m increases Ymax and increases tmax larger.

The above guideline is diagrammatically represented in Figure 3.7. Using these guidelines

we iteratively tune the values of λ1, λ2, x1,SS,N, and m until we achieve a good match with

the hypocalcemic clamp test data.

This guided iterative process results in the parameter values listed in Table 3.3. The

values of the remaining unknown parameters calculated from the steady-state relations (3.9)-

(3.14) are listed in Table 3.4. Using these parameters, our simulation result (Figure 3.8(b))

matches very well with the plasma PTH response presented in Figure 3.2(b) for the calcium

input as shown in Figure 3.2(a).
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Result

Action
Ymax tmax

Rate of Exponential Decrease 

of PTH after Peak

1

2

X1,SS,N -

m -

Figure 3.7. The qualitative effects of tuning the parameters on PTH response for hypocal-
cemic clamp test simulation.

Parameters Values Units
τ1 55.0000 min
λ1 0.0126 min−1

τ2 1.8000 min
λ2 0.3851 min−1

x1,SS,N 321.7500 pmol
m 170.0000 −

Table 3.3. Values of model parameters tuned to fit average induced hypocalcemic clamp
test data obtained from 7 healthy individuals in Figure 3.8(b) [20].

Next, we used this model to predict the dynamics of hypercalcemic clamp test conducted

on the same set of healthy subjects (Figure 3.2(d)). The same model, with the same set

of parameters as in Table 3.3 successfully predicted observed clinical data as seen in Figure

3.9(b).

3.3.2 Guided iterative parametrization scheme

Listed below are the general steps used to parameterize our model:

1. Derive steady-state relations (3.9)-(3.14).

33



120 140 160 180 200 220 240 260 280 300
1

1.1

1.2

1.3

1.4

1.5

time (min)

P
la

sm
a 

C
al

ci
um

 C
on

ce
nt

ra
tio

n 
(p

m
ol

/L
)

Clinical
Simulated

(a) Induced hypocalcemia (input).

120 140 160 180 200 220 240 260 280 300
0

5

10

15

time (min)

P
la

sm
a 

P
T

H
 C

on
ce

nt
ra

tio
n 

(p
m

ol
/L

) Clinical
Simulated
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Figure 3.8. Clinical (dots) vs. tuned-model simulation (solid lines) result of an induced
hypocalcemic clamp test. Clinical data represents the average response of 7 healthy subjects
[20].
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Figure 3.9. Clinical (dots) vs. prediction by tuned-model (solid lines) of an induced
hypercalcemic clamp test. Clinical data represents the average response of 7 healthy subjects
[20].
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Parameters Values Units
k 6.6102 pmol/min
x1,SS,Max 443.5062 pmol
x1,SS,Min 84.6236 pmol
A 0.0655 pmol/min
B 0.0023 pmol/min
S 1.2159 mmol/L

Table 3.4. Values of model parameters calculated using Table 3.3 and equations (3.9)-(3.14).

2. Estimate the starting values of λ1, λ2, x1,SS,N, and m based on the guidelines presented

in the Subsection 3.3.1.2.

3. Calculate k, x1,SS,Max, x1,SS,Min, A, B, and S using (3.9)-(3.14), using the starting

guess from step 2 and the available steady-state data for x2,SS,N, x2,SS,Max, x2,SS,Min,

and CaSS,N.

4. Use the values of k, λ1, λ2, A, B, S, and m obtained from steps 2 and 3 to produce

the response of our model (3.1)-(3.3) to the input approximating data presented in

Figure 3.8(a) numerically using a simulink model in matlab.

5. Compare the clinical data and model simulation [Figure 3.8(b)] with respect to various

features of the curve such as Ymax, tmax and the rate of exponential decrease of PTH

after peak. If they don’t match well , tune the value of one of the parameters λ1, λ2,

x1,SS,N, and m based on the guidelines set forth in subsection 3.3.1.4 and go to step 3.

Stop if a favorable match is achieved between them.

The final result obtained by following the guided iterative parametrization scheme as de-

scribed above is presented in Figure 3.8(b).

To further test our model and the guided iterative parametrization scheme, we obtained

proprietary data from the lead author of [20], Prof. Claus P Schmitt, Division of Pediatric
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Nephrology, University of Heidelberg, Germany. These data describe the responses of 3

healthy individuals to hypo- and hyper-calcemic clamp test. From these data we found the

steady-state values for x2,SS,N, x2,SS,Max, x2,SS,Min, and CaSS,N for these individuals which has

been tabulated in Table 3.5. We followed the guided iterative parametrization scheme pre-

sented in Section 3.3.2. The final values of λ1, λ2, x1,SS,N, and m tuned to match the induced

hypocalcemic clamp test data appear in Table 3.6. The calculated values of the unknown

parameters in the steady-state Equations (3.9)-(3.14) are given in Table 3.7. The results

of model parametrization and model prediction for these data from individual subjects are

shown in Figures 3.10-3.15. Note that for the induced hypercalcemic clamp test for individ-

ual subjects (e.g., Figure 3.11), a portion of the transient data is missing. Unfortunately,

this data could not be made available by Prof. Schmitt.

Subject x2,SS,N (pmolL−1) x2,SS,Min (pmolL−1) x2,SS,Max (pmolL−1) CaSS,N (mmolL−1)
1 2.6767 0.4896 6.0320 1.2000
2 2.7527 0.5077 6.2027 1.2475
3 3.1044 0.7573 6.8011 1.2500

Table 3.5. Steady-state data of the individual subjects.

Subject τ1 (min) λ1 (min−1) τ2 (min) λ2 (min−1) x1,SS,N (pmolL−1) m
1 48.0 0.0144 1.43 0.4647 412.50 100
2 21.0 0.0330 0.70 0.9902 412.50 100
3 49.5 0.0140 1.10 0.6301 563.75 50

Table 3.6. Values of model parameters tuned to fit induced hypocalcemic clamp test data
of the individual subjects.

Based on the successful predictive tests presented in this chapter we conclude that our

two-pool, linear, time-varying model (3.1)-(3.3) provides a reasonable description of expected

dynamics of the Ca-PTH axis. This is the first report of its kind to the best of our knowledge.
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(b) PTH response for induced hypocalcemia (output).

Figure 3.10. Clinical (dots) vs. tuned-model simulation (solid line) of an induced hypocal-
cemic clamp test conducted on a healthy individual (Subject 1). Clinical data provided by
the lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology, University
of Heidelberg, Germany.
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(b) PTH response for induced hypercalcemia (output).

Figure 3.11. Clinical (dots) vs. prediction by tuned-model (solid line) of an induced
hypercalcemic clamp test conducted on a healthy individual (Subject 1). Clinical data
provided by the lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology,
University of Heidelberg, Germany. Note: Prof. Schmitt could provide only the steady-state
data but not the transient data for the PTH response.
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(b) PTH response for induced hypocalcemia (output).

Figure 3.12. Clinical (dots) vs. tuned model simulation (solid line) results of an induced
hypocalcemic clamp test conducted on a healthy individual (Subject 2) provided by the
lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology, University
of Heidelberg, Germany. Note the non-smooth nature of Ca++ which translates into non-
smooth PTH response at >600 minutes. This prediction is based on the smooth (solid) Ca++

dynamics shown in (a). So such non-smooth behavior is not accounted for.
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Figure 3.13. Clinical (dots) vs. prediction by tuned-model (solid line) of an induced
hypercalcemic clamp test conducted on a healthy individual (Subject 2). Clinical data
provided by the lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology,
University of Heidelberg, Germany.
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Figure 3.14. Clinical (dots) vs. tuned-model simulation (solid line) of an induced hypocal-
cemic clamp test conducted on a healthy individual (Subject 3). Data provided by the
lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology, University of
Heidelberg, Germany.
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Figure 3.15. Clinical (dots) vs. prediction by tuned-model (solid line) of an induced
hypercalcemic clamp test conducted on a healthy individual (Subject 3). Clinical data
provided by the lead author of [20], Prof. Claus P Schmitt, Division of Pediatric Nephrology,
University of Heidelberg, Germany. Note: Prof. Schmitt could provide only the steady-state
data but not the transient data for the PTH response.
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Subjects k x1,SS,Max x1,SS,Min A B S
1 9.5247 614.3838 102.7813 0.0782 0.0011 1.1737
2 21.1112 597.7091 127.8721 0.1321 0.0023 1.2231
3 13.2737 854.2064 106.2867 0.1109 0.0015 1.1881

Units pmolL−1min−1 pmolL−1 pmolL−1 min−1 min−1 mmolL−1

Table 3.7. Values of model parameters for individual subjects calculated using Table 3.6
and equations (3.9)-(3.14).

The guided iterative method that relies on the available clinical data and biologically-driven

assumptions provides a simple and an intuitive parametrization of our model. In the next

chapter, we turn our focus to the calcium-PTH (Ca-PTH) reverse sigmoid curve.
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CHAPTER 4

THE CA-PTH REVERSE SIGMOID CURVE

The reverse sigmoid curve describing steady-state Ca-PTH relationship has been sug-

gested as a possible bio-tool for assessing health and disease states associated with calcium

homeostasis [40, 41, 45, 46]. However, our analysis revealed that the accepted method im-

plemented to quantify this curve has certain weaknesses. In this context, we present a new

protocol to obtain a consistent Ca-PTH reverse sigmoid curve that is independent of the

dynamics of the Ca-PTH axis and the induced calcemic clamp test procedure. We begin

with a literature review.

4.1 Literature review

The reverse sigmoid relationship between plasma Ca++ and PTH concentrations in vivo

was first reported in 1974 in Jersey cows from the plasma samples collected before, during

and after parturition [47]. In 1978 Mayer, one of the co-authors of [47], and Hurst reported a

reverse sigmoid relationship between plasma Ca++ concentration and PTH secretion rate [48].

Instead of measuring plasma PTH concentration, PTH secretion rate was measured directly

by collecting PTH gland effluent blood samples from cows at regular intervals to measure

the blood flow rate and the concentrations of PTH. The experiment was conducted over a

period of 5 to 7 hours. Brown et al., also in 1978, studied the relationship of PTH release

to Ca++ concentration in vitro [49]. The study was conducted on dispersed parathyroid

cells of normal and abnormal parathyroid tissues from patients with adenoma or primary

hyperplasia. Brown et al. published a series of similar studies conducted on the dispersed
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parathyroid cells from patients with hyperparathyroidism [50], adenoma [51] and secondary

hyperparathyroidism due to chronic renal failure [52]. In 1983, EM Brown, for the first

time proposed the four parameter mathematical model [33] to describe the reverse sigmoidal

relationship between parathyroid hormone release and Ca++ concentration in vitro observed

in earlier data [49, 50, 51, 52]. This model was described by

y =
A−B

1 +
(

x
S

)m + B (4.1)

where y denotes PTH secretion rate, x denotes the Ca++ concentration, A denotes maximal

PTH secretion rate, B denotes minimal PTH secretion rate, S denotes the value of x at

which y = A+B
2

, and m denotes the slope of the curve at S as shown in Figure 4.1.

x

y

S

A

B

= tan-1[m]

A+B

2

Figure 4.1. A reverse sigmoid curve.

Hysteresis in the relationship between the plasma Ca++ and PTH concentrations was

reported in [39]. Hysteresis of PTH response to hypocalcemia in hemodialysis patients

with bone disease was reported in [53]. In [42] it has been hypothesized that hysteresis in

the relationship between plasma Ca++ concentration and PTH secretion in normal animals

and humans and in hemodialysis patients results from a sensing of directional change or
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acceleration or deceleration in the rate of change of the plasma Ca++ concentration by the

parathyroid glands.

Numerous clinical studies utilized the reverse sigmoid curve to find possible correla-

tion with normal and diseased calcium homeostasis. For example, studies conducted on

patients with familial benign hypercalcemia and primary hyperparathyroidism were pre-

sented in [46], and secondary hyperparathyroidism in [40, 41]. Studies conducted on pa-

tients undergoing hemodialysis were presented in [45], hemodialysis with marked secondary

hyperparathyroidism in [54], uremic patients on dialysis in [43, 55], and haemodialysis

with different forms of renal osteodystrophy in [56] Studies conducted on normal indi-

viduals were presented in [57], and hyperparathyroidism patients before and after total

parathyroidectomy with autotransplantation were presented in [58]. The above references

[40, 41, 43, 45, 46, 54, 55, 56, 57, 58] discussed the similarities and differences in the char-

acteristic features of a reverse sigmoid curve such as the set-point, the slope of the curve at

set-point and the maximal or minimal plasma PTH concentration.

The effect of using different methods of calculation on assessment of the set-point in the

calcium-PTH reverse sigmoid has been studied in [59]. The dependence of the characteristic

features of a reverse sigmoid curve on the rate of change of plasma Ca++ was first presented

in [38]. Dependence of plasma PTH response on the rate of change of Ca++ concentration

was also reported in [43, 60, 61]. Next, we describe the current method used to obtain

Ca-PTH reverse sigmoid curve in vivo based on the references cited in this section.

4.2 Current method to obtain the Ca-PTH reverse sigmoid curve

The current method of obtaining a Ca-PTH reverse sigmoid curve involves, in general,

slowly induced hypo- and hyper-calcemic clamp tests conducted on a set of subjects to obtain

plasma Ca++ and PTH concentrations measurements at frequent intervals. An example is

shown in Figure 4.2 [40]. In this particular example, hypo- and hyper-calcemic clamp tests are
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conducted on two sets of subjects: patients with secondary hyperparathyroidism and normal

individuals. Plasma Ca++ and PTH concentrations are measured every 10 minutes during

the test periods of 120 minutes (Figure 4.2). Corresponding plasma Ca++ concentration

and PTH concentration values of patients with secondary hyperparathyroidism and normal

individuals [40] are plotted in Ca-PTH graph to obtain the reverse sigmoid curves as shown

in Figure 4.3. Note the differences in the features such as set-point values, slope of the curve

Figure 4.3. A typical calcium-PTH reverse sigmoid curve corresponding to the data shown
in Figure 4.2. Solid dots represent data of healthy subjects. Squares represent data of
patients with secondary hyperparathyroidism. Scanned from [40].

at the set-point and the minimal saturation values of plasma PTH concentration between

the curves obtained for the two sets of subjects. The purpose of this discussion is to give

readers an idea of how the Ca-PTH reverse sigmoid curve is obtained. So, we will not get

into details of significance of these differences. Next, we present a limitation of the current

method to plot Ca-PTH reverse sigmoid curve.
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4.3 A limitation of the current method

Taking pairs of points at arbitrary times can lead to a misleading curve. For example,

consider a rapidly induced calcemic clamp test [20] as shown in Figure 4.4. The curve

obtained by plotting corresponding plasma Ca++ and PTH concentrations is not a reverse

sigmoid [62] in shape as shown in Figure 4.5. It appears that one cannot select any arbitrary

pair of (plasma Ca++ concentration, plasma PTH concentration) data points to construct

the reverse sigmoid curve. Next, we use our model to analyze this problem of obtaining a

meaningful Ca-PTH curve.

4.4 Analysis of simulation results

The model developed in Chapter 3 is described by




ẋ1

ẋ2


 =



−(λCa(t) + λ1) 0

λCa(t) λ2







x1

x2


 +




k 0

0 0







1

0


 , (4.2)

where

λCa(t) =
A−B

1 +
(

Ca(t)
S

)m + B. (4.3)

For simulation purposes, the parameter values of the model parameterized for the third sub-

ject from Tables 3.7-3.5 are used. Figure 4.6 represents the simulation for induced hypocal-

cemic clamp test, where Ca(t) = c1 + c2e
−σt. Plasma Ca++ concentration is decreased at

a slower rate initially, represented by the profile with σ1 and subsequently at progressively

faster rates, represented by σ2, and σ3 as shown in Figure 4.6(a), to a same lower steady-state

value (σ1 < σ2 < σ3). Note that for the slowest rate calcium input, the corresponding PTH

response doesn’t show a peak as shown in Figure 4.6(b). But for the faster rate calcium

inputs, peaks in the PTH responses are conspicuous. The peak value progressively increases

as the calcium input rate becomes faster. A step input produces the maximum value of the
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Figure 4.5. A calcium-PTH curve that would result from the conventional approach using
data from a rapidly induced calcemic clamp test [20]. This curve doesn’t resemble the
expected reverse sigmoidal shape. Scanned from [62].

peak and smallest tmax. This result is consistent with the observation made in [38] (Figure

4.7) in which hypocalcemia was induced in healthy subjects to attain multiple intermediate

steady-states. Same intermediate steady-state of plasma Ca++ concentration was achieved

at a faster and a slower rate as shown in Figure 4.7(a). The faster decrease in plasma Ca++

concentration produced higher peak in the PTH response as shown in Figure 4.7(b). The

PTH responses appear to settle at same value after each 30 minutes duration for both faster

and slower hypocalcemia induction.

Figure 4.8 represents the simulation of an induced hypercalcemic clamp test where

Ca(t) = c3 − c4e
−σt. Plasma Ca++ concentration is increased at a slower rate initially,

represented by the profile with σ1 and subsequently at progressively faster rates, repre-

sented by σ2, and σ3, as shown in Figure 4.8(a), and eventually to a lower steady-state

value (σ1 < σ2 < σ3). Note that for the slowest rate calcium input, the corresponding PTH

response doesn’t show a dip as shown in the Figure 4.8(b). With progressively faster rate cal-

cium inputs, the dips in the PTH responses become more prominent. A step input produces

52



(a) Induced hypocalcemia at varying rates (input). σ1 < σ2 < σ3.

(b) Corresponding PTH response (output).

Figure 4.6. Simulation of PTH response for hypocalcemia induced at varying rates. The
model was parameterized using data from healthy subject 3 (Figure 3.14 and Tables 3.5-3.7).
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(a) Induced hypocalcemia attaining multiple
intermediate steady-states. Same intermedi-
ate steady-state of plasma Ca++ concentra-
tion was achieved at a faster (dots) and a
slower (circles) rate.

(b) PTH response corresponding to Figure (a).
Note the higher peaks in the PTH responses corre-
sponding to faster change in Ca++ (dots) and lower
peaks corresponding to slower change in Ca++ (cir-
cles). The responses appear to settle at same value
after each 30 minutes duration.

Figure 4.7. An induced hypocalcemic clamp test. Scanned from [38].

the minimum dip value and smallest tmax. Unfortunately, we could not find the appropriate

published data for comparison. However, one thing seems to be consistent, that is, the dips

for PTH response obtained during hypercalcemic clamp tests are not as conspicuous as the

peaks obtained during hypocalcemic clamp tests. The simulations shows that even for the

fastest (step) increase in plasma Ca++ concentration, there isn’t a conspicuous dip in the

PTH response profile. This is again consistent with the observed clinical data [20] in which

plasma Ca++ concentration has been raised very fast but the resulting PTH response doesn’t

show a conspicuous dip (Figure 4.4(c)-(d)).

In addition to issues related to its construction, there appears to be some confusion as

to what the reverse sigmoid model actually represents. Some researchers have used it to

represent steady-state PTH secretion rate vs steady-state plasma Ca++ concentration [33],

some researchers have used it to represent PTH secretion rate as a function of plasma Ca++

concentration in the dynamical model of the Ca-PTH axis [35], while most have used it to

represent relationship between plasma PTH concentration and plasma Ca++ concentration
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(a) Induced hypercalcemia at varying rates (input). σ1 < σ2 < σ3.

(b) Corresponding PTH response for induced hypocalcemia (output).

Figure 4.8. Simulation of PTH response for hypercalcemia induced at varying rates. The
model was parameterized using data from healthy subject 3 (Figure 3.14 and Tables 3.5-3.7).
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during induced hypo- and hyper- calcemic clamp test [40, 41, 43, 45, 46, 54, 55, 56, 57, 58,

59]. These papers present clinical studies based on the characteristic features of the reverse

sigmoid curve such as the set-point, the slope of the curve at set point, and the maximal or

minimal plasma PTH concentrations to find a possible explanation of normal and diseased

states of calcium. The method used to plot the reverse sigmoid curve has been presented

in Section 4.2. We note that [19] used it to represent the secretion-rate function in the

two-pool LTI model. Let us study these differing interpretations using our model. Recalling

the steady-state Equations (3.6) and (3.7):

k =

[
A−B

1 +
(

CaSS

S

)m + B

]
x1,SS + λ1x1,SS,

λ2x2,SS =

[
A−B

1 +
(

CaSS

S

)m + B

]
x1,SS,

and using y = x2,SS (steady-state plasma PTH level) and x = CaSS (steady-state plasma

Ca++ concentration ), we get

y(x) =
k

λ2


 1

1 + λ1
A−B

1+( x
S

)m
+B


 .

Evaluating limits,

ymax ≡ lim
x→0

y =
k

λ2

[
1

1 + λ1

A

]

ymin ≡ lim
x→∞

y =
k

λ2

[
1

1 + λ1

B

]
.

Since A > B from the definition of the curve, it follows that, ymax > ymin for all x ∈ [0,∞].

Next, let us rewrite y(x) as
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y(x) =
k

λ2


 1

1 + λ1
A−B

1+( x
S

)m
+B


 =

k

λ2




(
A−B

1+( x
S

)m + B
)

(
A−B

1+( x
S

)m + B
)

+ λ1


 =

k

λ2

[
A + B

Sm xm

A + B
Sm xm + λ1 + λ1

Sm xm

]
.

Differentiating with respect to x gives

dy

dx
=

k

λ2

d

dx

[
A + B

Sm xm

A + B
Sm xm + λ1 + λ1

Sm xm

]

=
k

λ2

(
A + B

Sm xm + λ1 + λ1

Sm xm
)

B
Sm mxm−1 − (

A + B
Sm xm

) (
B

Sm mxm−1 + λ1 + λ1

Sm mxm−1
)

(
A + B

Sm xm + λ1 + λ1

Sm xm
)2

=− k

λ2

(A−B) λ1

Sm mxm−1

(
A + B

Sm xm + λ1 + λ1

Sm xm
)2 .

Since (A−B) > 0 and A, B, k, x, λ1, λ2, S, m > 0, it follows that dy
dx

< 0. Thus, y(x) is

a monotonically decreasing function. Since we already showed that y(x) is bounded above

by ymax and bounded below by ymin, the model implies that a reverse sigmoidal relationship

exists between plasma Ca++ and PTH concentrations at steady-state. Now if we consider

that the reverse sigmoid relationship represents the model for PTH secretory rate as a func-

tion of plasma Ca++ concentration as in [33, 35], the dynamical model for the rate of change

of plasma PTH concentration from Section 3.3 becomes

ẋ2(t) =
A− B

1 +
(

Ca
S

)m + B

︸ ︷︷ ︸
Secretion to plasma from parathyroid gland

−λ2x2(t).︸ ︷︷ ︸
Clearance

Note that the system has been reduced into single pool model. For x2(t0) = 0 at t0 = 0, the
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solution of the above system is given by

x2(t) =

∫ t

t0


 A− B

1 +
(

Ca(t)
S

)m + B


 e−λ2σ dσ , t ≥ t0, x2(t0) = 0, t0 = 0.

Considering a step decrease in calcium

Ca(t) = Ca, t < t0

= 0, t ≥ t0

the solution can be simplified to

x2(t) =

(
A− B

1 +
(

Ca
S

)m + B

)∫ t

t0

e−λ2σ dσ =

(
A− B

1 +
(

Ca
S

)m + B

)(
1− e−λ2t

λ2

)
.

Here, due to (1− e−λ2t), the time profile of the solution always looks like Figure 3.3(b) and

can never exhibit the peak shown in Figure 3.3(c). But we know from the clinical data in

[20, 38] that even much slower changes in plasma Ca++ result in plasma PTH responses as

shown in Figure 3.3(c).

Based on above analysis, we conclude that the reverse sigmoid model should not be used

to represent the secretion rate as a function of plasma Ca++ concentration in the dynamical

model for calcium-PTH axis. In fact, the reverse sigmoid relationship presented in [33]

is nothing but the curve fitting done for approximated steady-state values of Ca++ and

corresponding PTH secretion rates in vitro. Moreover, the clinical studies based on the

characteristic features of the reverse sigmoid curve such as the set-point, the slope of the

curve at set point and the maximal or minimal plasma PTH concentrations to find a possible

explanation of normal and diseased states of calcium homeostasis in [40, 41, 43, 45, 46, 54, 55,

56, 57, 58, 59] used transient data to construct the curve, rendering the results questionable.

58



We also noted that PR Conlin with his colleagues including EM Brown reported hysteresis

in the relationship between plasma Ca++ and PTH concentration [39] using transient data.

Since a hysteresis curve should represent only the steady-state values [63, 64], the reported

hysteresis is questionable. Hysteresis of PTH response to hypocalcemia in hemodialysis

patients with bone disease was reported in [42, 53]. Unfortunately, this claim was also based

on the transient data. Next, we propose a new protocol to construct a Ca-PTH reverse

sigmoid curve to overcome the limitations of present procedures.

4.5 The new protocol

Consider the three asymptotes L1, L2, and L3 in the Ca-PTH reverse sigmoid curve as

shown in Figure 4.9:
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Figure 4.9. Constructing the Ca-PTH reverse sigmoid curve.

1. Asymptote L1 passing through the upper saturation level,

2. asymptote L2 passing through the lower saturation level, and
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3. asymptote L3 passing through the normal region.

We need at least 2 points to define each of these asymptotes. Therefore, a minimum of

6 points are required to construct a working reverse sigmoid curve. Induced hypocalcemic

clamp tests should be conducted to obtain three steady-state data points P1, P2, and P5 and

induced hypercalcemic clamp tests should be conducted to obtain three steady-state data

points P3, P4,and P6. Note that P5 and P6 should be very close to PN corresponding to the

normal plasma Ca++ and PTH concentration values. Assuming that the curve is linear in

this neighborhood, they define L3.

In conclusion, we state that:

1. reverse sigmoid model should not be used to represent the secretion rate in the dynam-

ical model of calcium-PTH axis, but should only be used to represent the secretion

rate function,

2. only steady-state data should be used in plotting Ca-PTH reverse-sigmoid curve to

obtain consistent result and meaningful interpretation,

3. only steady-state data should be used in the investigation of possible hysteresis in

relationship between plasma PTH and Ca++ concentrations, and

4. if transient data are used, then the resulting curve becomes dependent on the particular

subject’s axis dynamics or the calcemic clamp test procedure rendering such studies

unreliable. Transient data can be useful only to study the overall dynamic response of

plasma PTH to the changes in plasma Ca++ concentration.
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CHAPTER 5

CONCLUSIONS

In this thesis a two-pool, linear, time-varying model was developed to describe the acute

Ca-PTH axis dynamics. This model, parameterized based on clinical data from hypocalcemic

clamp test successfully predicted PTH response for hypercalcemic clamp test in healthy hu-

mans. Using analysis and simulation, we proposed a new protocol for the construction of the

Ca-PTH reverse sigmoid curve, an integral part of this model. The proposed protocol over-

comes limitations of current procedures in that it is independent of the particular subject’s

axis dynamics or the manner by which the calcemic clamp test is conducted. This model is

a good candidate for inclusion in an overall calcium homeostasis model that may be used to

study the health and disease associated with calcium homeostasis.
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