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Abstract
As we are currently in the information age, people expect access to information

to exist by default. In order to facilitate the communication of knowledge, efficient
networks must be built. In particular, the networks must be built satisfying some con-
straints while minimizing cost or time. These constraints often make these problems
NP-hard. In this thesis, we investigate two different sets of problems: communicating
information quickly and building cheap networks. In the communication problems, the
goal is to minimize the number of rounds of communication. In the network design
problems the goal is to construct a network of minimum cost.

First, we study the communication problem of computing a minimum time sched-
ule to spread rumors in a given graph under the telephone, radio, and wireless (also
called edge-star) models. In all of these communication models, the communication
happens in discrete rounds. In the telephone model, a matching is given every round
and matched nodes exchange all their information with each other. In the radio model,
any subset of nodes can broadcast in a round but only nodes with a single broad-
casting neighbor get a message. If a node has two or more neighbors broadcasting,
they receive no messages due to interference. In the wireless model, any subset of
nodes can broadcast in a round and a non-broadcasting node can tune to listen to ex-
actly one of its neighbors. The various rumor spreading problems assume a message
at several or all nodes and that each message must reach some target node or set of
nodes. The goal is to deliver all messages to their destinations in a minimum num-
ber of rounds. The various problems we study include gossip, multicommodity, and
asymmetric multicommodity. In the gossip problem, the goal is to communicate mes-
sages from every node to every other node. In multicommodity, pairs of nodes are
given must exchange their messages with each other. In asymmetric multicommodity,
ordered pairs of nodes are given where the source node must send their message to
the sink node. Our work exposes relationships across these models and problems and
opens up several new avenues for future study. We present a comprehensive study of



the approximation algroithms for these problems. We show various reductions from
harder to easier models for special demands. In addition, we develop the first sub-
linear approximation algorithm for the asymmetric multicommodity problem in the
edge-star model. Using a reduction from minimium induced matchings, we show the
minimum radio gossip time has a hardness of approximation of Ω(n

1
2
−ε) in an n-node

graph. We continue studying these communication problems in the case where the
host graph is planar. To aid us, we first study the poise problem, where the goal is to
build a subgraph which minimizes the sum of the diameter of the subgraph and the
maximum degree of the subgraph. We show poise has only a O( logn

log logn
) integrality

gap. This is the first upper bound on the integrality gap of the natural LP; all previous
algorithms for poise had yielded only approximations with respect to the integer opti-
mum. Using the poise result and shortest-path separators in planar graphs, we give a
poly-logrithmic approximation algorithm for the telephone multicommodity problem.
We also use shortest-path separators to show a poly-logarithmic approximation for the
radio gossip problem. This is the first result on radio gossip which does not rely on
the maximum degree of the graph. Lastly, we show that these results on planar graphs
naturally extend to minor-free families of graphs.

Next we turn to the problem of building minimum-cost networks. From the publish-
subscribe systems of the early days of the Internet to the recent emergence of Web 3.0
and the Internet of Things, new problems arise in the design of networks centered at
producers and consumers of constantly evolving information. In a typical problem,
each terminal builds a physical network in the form of a tree or a star centered at it
to push or pull its information from. Some publisher-subscriber pairs of nodes need
to coordinate which requires that their corresponding networks overlap at some node.
These pairs form the demands which must be satisfied. This simple overlap constraint,
along with the requirement that the network is a tree or a star, leads to a variety of
new questions on the design of overlapping networks. In this thesis, we show that with
metric costs and a complete demand graph, approximation algorithms with small con-
stant performance ratios exist regardless of whether the networks built must be trees
or stars. For the general demand case, we show that a natural LP formulation has a
non-constant integrality gap which indicates potential hardness of approximation. Fi-
nally, we show that the general demand version has a logarithmic-factor approximation
algorithm by adapting previously known methods.

Lastly, we study the tree augmentation problem (TAP), where the goal is to aug-
ment an existing connected network so that the network becomes 2-edge connected
with a minimum cost set of edges. A graph is 2-edge connected if the removal of any
one edge does not disconnect the graph. First, we show that in weighted TAP, we can
restrict our attention to trees which are binary and all the non-tree edges go between
two leaves of the tree. We give two different top-down coloring algorithms. Both of
our algorithms differ from known techniques for obtaining a 3

2
-approximation in un-

weighted TAP and current attempts to reach a 3
2
-approximation in weighted TAP. The

first algorithm we describe always gives a 2-approximation starting from any feasible
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fractional solution to the natural tree cut covering LP. When a fractional solution’s
non-zero edges are all at least α, then this algorithm achieves a 2

1+α
-approximation.

We propose a new conjecture on extreme points of LP relaxations for the problem,
which if true, will lead to a potentially constructive proof of an integrality gap of
at most 3

2
for weighted TAP. In the second algorithm, we introduce simple extra valid

constraints to the tree edge covering LP. In this algorithm, we focus on deficient edges,
which are edges that get covered to an extent less than 4

3
in the fractional solution. We

show that in the support of extreme points for this LP, deficient edges occurs in node-
disjoint paths in the tree. When the number of such paths is at most two, we give a
top-down coloring algorithm which decomposes 3

2
times the fractional solution into a

convex combination of integer solutions. We believe our algorithms will be useful in
eventually resolving the integrality gap of linear programming formulations for TAP.
We also investigate a variant of TAP where each edge in the solution must be covered
by a cycle of length three (triangle). We give a Θ(log n)-approximation algorithm for
this problem in the weighted case and a 4-approximation in the unweighted case.
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Chapter 1

Introduction

As the world grows and technology gets better, more and more information must be exchanged.
This creates problems in both how to build networks to support the connections cheaply and given
networks how to communicate information across them quickly. In building networks or network
design problems, the goal is to build a network that supports all the constraints while having mini-
mum cost. In communication problems, the goal is to set up a schedule for how information should
be sent across a network so that all information is received as quickly as possible.

Both of these types of problems give rise to many NP-hard problems. NP-hard problems are
believed to have no polynomial time exact algorithms. In other words, there is no fast way to
solve the problem exactly. As many of these problems need to be solved they are relaxed in some
way. Many times it is possible to find a feasible solution which is not too much more expensive or
longer than the optimal solution. Approximation algorithms are algorithms which find a feasible
solution with a guarantee on how far away its cost is from the cost of the optimal solution [82].
For approximation algorithms, a performance guarantee is given; this guarantee is how close to
optimal the solution provided is. In particular, a k-approximation algorithm provides a solution
which is at most k times the cost of the optimal solution. In this thesis, we provide many new
approximation algorithms for both communication and network design problems. In addition,
we also give lower bounds; these lower bounds prove that no approximation algorithm (or no
approximation algorithms of a given type) can guarantee a solution better than a certain ratio.

1.1 Faster Communication

One set of problems we study in this thesis are problems where the goal is to deliver messages
between terminals in the fewest number of rounds. We will look at three different models of
communication; radio, edge-star, and telephone. The model of communication determines how
messages can be delivered in a single round of communication, but all of our models communicate
messages in rounds and hence the goal is to minimize the total number of rounds within which all
the messages have been delivered to their required destinations. All these models of communica-
tion use a communication network, which is a connected graph where an edge represents two nodes
which can communicate directly in one round. In the telephone model, a matching is chosen in the
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communication network every round and the paired nodes exchange all their known messages with
each other. In the radio model, a subset of nodes broadcast every round and a non-broadcasting
node will hear the message from its broadcasting neighbor if it has exactly one broadcasting neigh-
bor. The radio model helps capture the concept of interference, as when more than one neighbor
broadcasts the node is unable to acquire any new messages. The edge-star model is similar to
the radio model in that some subset of nodes broadcasts at every round, but a non-broadcasting
node can choose which neighbor it listens to. The edge-star model is more closely related to how
wireless networks function. In addition, we will look at different sorts of demands for how the
messages must be delivered; broadcast, gossip, multicommodity, and asymmetric multicommod-
ity. In broadcast, one node must deliver its message to everyone. In gossip, everyone wants to
deliver their message to everyone. For multicommodity, pairs of nodes are given and every pair
of nodes must exchange their messages. In asymmetric multicommodity, some ordered pairs are
given where the first node must deliver its message to the second node.

In Chapter 2 we start the investigation of rumor spreading in a network. In the rumor spreading
problem, a schedule is built determining which nodes broadcast and which nodes listen in each
round. The goal in this problem is to transmit messages between some pairs of nodes in a minimal
number of rounds. In this chapter, we provide approximation algorithms for multiple communica-
tion problems in the edge-star model. In the gossip case, the goal is to deliver a message from every
node to every other node. In the multicommodity case, we consider where we are given some pairs
(si, ti) such that si’s message must be delivered to ti. We then further break the multicommodity
case further into two cases; asymmetric and symmetric. In the symmetric case, the pairs of nodes
want to exchange information, in other words, if (si, ti) is a pair then (ti, si) is also a pair. In the
asymetric case, there is no restriction on the structure of the demands. In Chapter 2, we derive
the first approximation algorithms for edge-star in both of these cases. We also investigated the
radio model, this model more closely models radio communication and interference occurs when
multiple neighboring terminals try to broadcast their messages at the same time. We derive a lower
bound of approximation for the gossip problem in the radio model.

In Chapter 3, we continue to investigate rumor spreading in structured graphs such as planar
graphs. We first study the telephone model, in this case disjoint pairs of terminals can exchange all
their information in a given round. In our study of this problem, we also investigate the problem
of poise. The poise of a graph is the maximum of its maximum degree and its diameter. In the
poise-problem, the goal is to build a network of smallest poise. Given a low poise graph, then
we can easily propagate messages through the graph losing only a small factor. In this chapter,
we also explore the radio model on the gossip case in planar graphs. In this case, we achieve a
poly-logarithmic approximation which is the first approximation for this problem which doesn’t
depend on the maximum degree.

1.2 Cheaper Networks
In this thesis, we also study the construction of cheap networks. In these problems, the goal is to
build a network or networks of the cheapest cost which satisfy some connectivity requirements. In
the first problem, we will have every terminal build its own network. Depending on the demands,
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different pairs of terminals will want their networks to overlap. In the second problem, you start
with a connected network (such as a tree) and want to add the cheapest set of edges so the resulting
graph is 2-edge connected. This means that between any two nodes there are two paths.

In Chapter 4, we investigate the publisher-subscriber problem. In the publisher-subscriber
problem, the problem will provide some demands (pairs of terminals), and a host graph. The
goal is to build a network for every terminal of a specified type, either a tree or a star rooted at
the terminal. A demand is satisfied if the networks built for its terminals overlap (share a node).
This is to model push-pull models where some of the nodes are publishers, and push out all their
information to all nodes in their network, and then the subscriber nodes pull the information in
from all the nodes in their network. In this problem, we consider the case where the demands
have certain structures. In particular, in the case with complete demands the optimal solution has
a nice structure and can easily be found in polynomial time. In the case where the demands form
a complete bipartite graph, then we give a constant approximation. For general demands, we give
an O(log n)-approximation and show that the natural LP has a gap of at least Ω(log log n) where n
is the number of vertices in the graph.

In Chapter 5, we study the tree augmentation probelem (TAP). In TAP, the goal is to transform
a connected network into one which is two-edge connected by adding a minimal cost set of links.
This problem is based on the problem of adding redundancy to a network so that single failure will
not cause the network to become disconnected. There have been many efforts to create a better than
2-approximation algorithm for weighted TAP. We give two different 3/2-approximation algorithms
for special cases of weighted TAP. With one of these approaches, we propose a conjecture which if
true would give a 3/2-approximation algorithm for weighted TAP. In addition, we examine a new
linear program for TAP and give a third approach with this LP.

Also, in Chapter 5, we study the 3-cycle tree augmentation problem (3TAP) variant. In this
variant, every edge must be in a cycle of size three, as opposed to just in a cycle. In this variant
we give an O(log n)-approximation algorithm and show a matching lower bound for the weighted
case where n is the number of nodes. In the unweighted case, we show that every minimal solution
is a 4-approximation.

1.3 Techniques and Approaches
Throughout this thesis, we rely on linear programming to provide us with an optimal fractional
solution. We start by producing an integer program which captures our problem and then relax
the integrality constraint to obtain a linear program. We can solve the linear program to find an
optimal fractional solution. Any optimal fractional solution will be cheaper than an optimal integer
solution, so we will often use the optimal fractional solution as a lower bound on the cost of the
optimal integer solution. We use a variety of techniques to convert this fractional solution into
in an integer solution. One simple technique we frequently use is randomized rounding. In this
case, we will randomly choose parts of the solution to maintain using probabilities based on the
fraction that part was used. We use LP rounding to approximate poise in Section 3.2. We also use
a deterministic LP rounding approach to achieve a O(log n) approximation for the general case of
the publisher-subscriber problem in Section 4.2.2.
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Another common technique we use is reductions to previously known problems. Reductions
were first used by Karp when he proved the existence of an NP-hard problem [53]. These reduc-
tions allow us to achieve better approximations, better lower bounds, and better integrality gaps.
Many of these reductions are also approximation preserving, this means that any improvements to
the approximations on the problem reduced to also provides an improved approximation to these
problems. We reduce to previously well-studied problems to achieve multiple cases of complete
bipartite and complete demands in the publisher-subscriber problem in Sections 4.2.2 and 4.3. We
also use reductions in the study of the edge-star and radio communication models; we use a re-
duction for hardness for radio gossip in Section 2.2 and a reduction for approximation algorithms
in multiple cases of edge-star in Sections 2.3.1, 2.3.2, and 2.3.3. In addition, we use a creative
reduction from group steiner tree to show that the natural LP for the publisher-subscriber problem
has a Ω(log log n) integrality gap 4.2.1.

Some of the algorithms described in this thesis are novel and built directly for the problem they
solve. One such problem is the complete demand case for Tree-tree DON in Section 4.5. In this
case, we use a flow based proof to show that there exists an optimal solution of a specific form.
From there, we are able to check the linear number of cases that are remaining to find the optimal
solution. Another algorithm built directly for the problem is our Õ(n2/3)-approximation for edge-
star asymmetric multicast in Section 2.3.4. In this algorithm, we create two algorithms: a local
algorithm and a greedy algorithm. We run the local algorithm to start and then once the number of
remaining demands is small enough then we switch to a greedy algorithm.

Another major technique we use is decomposing a fractional solution into a combination of
integer solutions. This technique provides not only an approximation algorithm but also gives an
upper bound on the integrality of the LP that the fractional solutions satisfy [9]. This technique
is used in two special cases of weighted TAP in Sections 5.3 and 5.4. These techniques are of
particular interest because they differ from all known better than 2-approximations for unweighted
TAP and from all attempts at a better than 2-approximation for weighted TAP. This algorithm in 5.3
leads us to a unique conjecture on the structure of the LP. If this conjecture were true, this would
be the first generalization of Jain [50] of its form.

For Chapter 3, we study planar graphs and minor-free families. We use the special structure
that they have separators that are a small number of shortest paths which gives a nice way to
decompose the problem we are studying among recursive pieces. In particular, planar graphs have
path-separators consisting of three shortest paths and minor-free families have path separators
consisting of a constant number of paths [1]. In Section 3.3, we solve an LP and find a path
separator. We combine the results of these two parts to create our approximation algorithm. In
Section 3.4, the approximation algorithm only relies on the existence of path separators with few
paths to run. In addition, we extend both of the previous results from planar graphs to minor-free
families in Section 3.5.

1.4 Roadmap
In Chapters 2 and 3, we study the communication problems. In particular, Chapter 2 provides an
in-depth study of the edge-star model and also provides the lower bound on radio gossip. Chapter 3
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focuses on the communication problems on planar graphs and also provides the first bound on the
integrality gap for poise. In Chapters 4 and 5, we study the network design problems. Chapter 4
provides approximation algorithms for the different variants of the publisher-subscriber problem
along with a new integrality gap lower bound for the problem. Chapter 5 provides multiple new
approaches to be used in achieving a better than 2-approximation for TAP. Lastly, Chapter 6 goes
over the major results and presents open problems.
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Chapter 2

Rumors

2.1 Introduction

Problems modeling rumor spread are central to the design of coordination networks that seek to
keep demand pairs of vertices in contact over time. The prototypical example is the broadcast
problem where a message in a root node must be sent to all the other nodes via connections repre-
sented by an undirected graph. We assume that communication proceeds in synchronized rounds.
When more than one message is being disseminated, we assume that in each round each node
can transmit an unlimited number of messages in one communication. A subset generalization of
broadcast is called the Multicast problem: a subset of nodes is specified as terminals and the goal
is to spread the rumor from the root only to this subset, using other non-terminal nodes if needed
in the process. An all-to-all generalization of the broadcast problem is termed gossip: every node
has its own piece of information that must be communicated to all nodes, and the goal is to have all
the information spread to all the nodes in the minimum number of rounds. Gossip and broadcast
are special cases of a more general demand model that we may call multicommodity multicast: in
this most general version, we are given a set of source-sink pairs so that each source has a rumor
that must be sent to the corresponding sink. Recall that messages from many sources can all be
aggregated and exchanged in one round between any pair that can communicate, and the goal is to
minimize the number of rounds. In this chapter, we will study a specialization of the multicom-
modity demand model called the symmetric multicommodity where for every source-sink pair, we
also have the symmetric requirment that the sink wants to send its rumor to the source; thus, the
demand pairs are unordered in this case. The more general version will be called the asymmetric
multicommodity demand model to distinguish it from the symmetric demands case.

2.1.1 Models: Telephone, Radio, and Edge-Star, a New Model from Wire-
less

Different communication models result in different constraints on the set of edges on which mes-
sages can be transmitted in a single round. The two most widely studied models are the telephone
and radio models: In the telephone model, in each round, a node can communicate with at most
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one other node, thus the edges on which communication occurs is a matching; In the radio model,
a set of transmitters broadcast the message out but only their neighbors who are adjacent to ex-
actly only one transmitter can successfully receive the message (while interference prevents other
neighbors from receiving the message): the set of edges through which the messages are sent in
any round in this model is a set of stars centered at the transmitters, where each leaf of each star
has that star’s center as its unique neighbor among all the star centers.

In this chapter, we expand the study of rumor spreading problems by introducing a new model
based on wireless communications between nodes, which we call the edge-star model. We assume
that during each round of wireless communication, each transmitter can choose its own channel or
frequency distinct from that of all other transmitters. The input undirected graph represents pairs of
nodes that are within wireless range of each other. Receiving nodes that are in the vicinity of many
different transmitting nodes can choose to tune into the frequency of one of them. In this way, the
set of edges in which communication happens in every round is a set of stars which are defined
by a subset of edges of the input graph. Note that unlike the radio model, there is no requirement
that a receiver be adjacent to exactly one transmitter. This model more closely models wireless
networks, where a machine may be able to see many wireless networks, but only interacts with one
of these networks at a time.

2.1.2 Previous Work
The radio broadcast and gossip problems have been extensively studied (see the work reviewed in
the survey [36]). The best-known scheme for radio broadcast is by Kowalski and Pelc [59] which
completes in time O(D + log2 n), where n is the number of nodes, and D is the diameter of the
graph and is a lower bound to get the message across the graph from any root. The O(log2 n) term
is also unavoidable as demonstrated by Alon et al. [3] in an example with constant diameter that
takes Ω(log2 n) rounds for an optimal broadcast scheme to complete. Elkin and Korsartz [20] also
show that this additive log-squared term is best possible unless NP ⊆ DTIME(nlog logn).

The best bound for radio gossip known so far, however, is O(D + ∆ log n) steps in an n-node
graph with diameter D and maximum degree ∆ [37]. The maximum degree is not a lower bound
on the gossip time, and indeed no previous results are known about the approximability for radio
gossip, which is mentioned as an open problem in [36].

In the telephone model, the first poly-logarithmic approximation for minimum broadcast time
was achieved by Ravi [70] and the current best known approximation ratio is O( logn

log logn
) due to

Elkin and Korsartz [24]. The best known lower bound on the approximation ratio for telephone
broadcast is 3− ε [22].

In his study of the telephone broadcast time problem, Ravi [70] introduced the idea of find-
ing low poise spanning trees to accomplish broadcast: the poise of a spanning tree of an undi-
rected graph is the sum of its diameter and its maximum degree. In the course of deriving a
poly-logarithmic approximation, Ravi also showed how a tree of poise P in an n-node graph can
be used to complete broadcast starting from any node in O(P · logn

log logn
) steps - we will use this

observation later.
Nikzad and Ravi [66] studied the telephone multicommodity multicast problem, and gave the

first sub-linear approximation algorithm with performance ratio 2O(log log k
√
log k) for instances with
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k source-sink pairs.
Gandhi et al. [33] recently studied the Radio Aggregation Scheduling problem which is a gath-

ering version of the rumor spreading problem in the radio model. The set of edges in which com-
munication occurs in every round is a matching with the additional property that if the edges within
receivers and within senders are ignored, the communicating edges form an induced matching. In
this model they prove a tight Θ(n1−ε)-approximation for their radio aggregation scheduling. Our
results were derived independently of their methods.

2.1.3 Our contributions

We give the first results on the approximability of gossip and multicommodity multicast problems
in the radio model. We introduce the edge-star model based on wireless channels and give the first
approximation results for minimum time rumor spreading by relating them to their analogs in the
telephone model.

1. We show that it is NP-hard to approximate gossip in the radio model within a factor of
O(n1/2−ε) in an n-node graph. This result is derived by isolating a gathering version of the
broadcast problem in the radio model and relating it in a simple bipartite graph to induced
matchings (Section 2.2).

2. We obtain an O( logn
log logn

) approximation algorithm for gossip in the edge-star model by re-
ducing the problem to the broadcast problem in the telephone model (Section 2.3.1).

3. We consider the special case where the underlying graph is a tree, and show that the mul-
ticommodity multicast in the edge-star model reduces to the broadcast problem in the tele-
phone model, thus proving an O( logn

log logn
) approximation (Section 2.3.2).

4. We show that the case of edge-star symmetric multicommodity multicast problem has the
same optimal solution (up to poly-log factors) as telephone multicommodity multicast, yield-
ing a 2O(log logn

√
logn) approximation (Section 2.3.3).

5. We give an O(n
2
3 )-approximation for the general (asymmetric) multicommodity multicast

problem in the edge-star model (Section 2.3.4).

Table 2.1 contains a summary of our results in context.

Broadcast Gossip Multicommodity
Radio D +O(log2 n) [59] O(D + ∆ log n) [37] Unknown

Ω(n1/2−ε) hard* Ω(n1/2−ε) hard*
Edge-star OPT= D OPT·O( logn

log logn
)* OPT·Õ(2

√
logn)*(symmetric)

OPT·O(n
2
3 )* (asymmetric)

Telephone OPT·O( logn
log logn

) [21] OPT·O( logn
log logn

) [21] OPT·Õ(2
√
logn) [66]

Table 2.1: A summary of upper and lower bounds achieved in the different problems. We prove
the results marked * in the table.
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2.2 Lower bound for gossip in the radio model
In this section, we show it is NP-hard to approximate gossip in the radio model within a factor
of O(n1/2−ε). This also implies the same hardness result for multicommodity multicast under the
radio model, because gossip is a special case of multicommodity multicast. In order to show these
hardness results, we first consider the smallest set of induced matchings which cover the vertices
of a bipartite graph.
Definition 2.2.1. An induced matching is a matching of some vertices U in a graph G, such
that G[U ] is a matching. (We use G[U ] to mean the graph G induced on the vertex set U .)
In other words, in the graph G only the matching edges are present between the nodes in
U .

A covering set of induced matchings (CSIM) is a set of induced matchings which cover
all the vertices in the graph. The size of a covering set of induced matchings is defined to
be the number of induced matchings.

First, we will show the hardness of finding a minimum CSIM by a reduction from coloring.
Then we will use the hardness of minimum sized CSIM to prove the hardness results for radio
gossip.
Theorem 2.2.2. It is NP-hard to approximate CSIM to within a n1/2−ε factor for any constant
ε > 0.

Proof. Given a coloring instance G = (V,E), we first turn this into a bipartite graph, where we
want to find a CSIM. For each v ∈ V we make n + 1 copies of v in each side of the partition;
vL1 , v

L
2 , . . . v

L
n+1 for L and vR1 , v

R
2 , . . . v

R
n+1 for R. We use the edges Ev = {(vLi , vRi )|v ∈ V, i ∈

[n + 1]}, called the straight edges and Ee = {(uLi , vRj )|uv ∈ E, i, j ∈ [n + 1]}, called the cross
edges. Now G′ = (L,R,Ev ∪ Ee) is the bipartite graph for which we want to find a CSIM.
Figure 2.1 shows an example construction.

Let χ be the number of colors in an optimal coloring in G. Let λ be the number of sets in a
minimal CSIM in G′.

We now show that λ ≤ χ ≤ n. Let Ci be a set of vertices of color i in the coloring on G. If
we take the edges {(vLj , vRj )|v ∈ Ci, j ∈ [n + 1]}, they are an induced matching. Each vertex has
one straight edge in G′, and if a vertex is used in the matching, then its straight edge is used. So,
we only need to show that no cross edges go between vertices in this matching. If a cross edge
(uLj , v

R
k ) did exist, then (u, v) ∈ E but then u, v couldn’t be the same color. So, for each color we

have defined an induced matching. These induced matchings cover all the nodes since every node
receives some color in the coloring on G.

Now we will show that χ ≤ λ or n + 1 ≤ λ. Let S1, S2, . . . Sλ be the induced matchings
covering G′. Assume that there is some v ∈ V that has all of its corresponding vertices in G′

matched via cross edges. Then we can only have at most one cross edge per induced matching
adjacent to the vLi ’s. If an induced matching has (vLi , u

R
` ) and (vLj , w

R
`′ ) then this is not an induced

matching since (vLj , u
R
` ) is an edge. Therefore in this case to match all the vLi in some induced

matching, we will need at least n+ 1 induced matchings. Now consider each v ∈ G has one of its
straight edges used in some induced matching. Let Sj be the first induced matching containing a
straight edge adjacent to some vLi . In Sj , because some vLi is matched via its straight edge, then no
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G G’

L R

k=3

Straight edgesCross edges

Figure 2.1: Here is an example of the construction of G′ from G. The thick edges represent
complete bipartite subgraphs.

vL` is matched via a cross edge. Now in G color v with the jth color. This is a valid coloring. If
some (vLi , v

R
i ) and (uL` , u

R
` ) were both in the same induced matching, then there can’t be the edge

(u, v) in the original graph G.
Combining the above two parts we get that χ = λ.
We begin with a graph G such that it is NP-hard to distinguish if there is a coloring of size

|V (G)|ε from if the coloring requires at least |V (G)|1−ε colors [26]. Therefore, in the graph G′ we
created, it is NP-hard to distinguish if there is a set of induced matchings that cover the vertices of
size nε or n. We have O(n2) vertices in G′ though. So, in a graph with n vertices it is NP-hard
to approximate the number of induced matchings needed to cover the vertices within a factor of
O(n1/2−ε).

Now that we have developed the hardness result for CSIM, we will use the graph we created
for CSIM, to create instances of radio gossip.
Corollary 2.2.3. It is NP-hard to approximate radio gossip to within a n1/2−ε factor for any
constant ε > 0.

Proof. We convert the induced matching instance to a gossip problem in a similar fashion to above.
We can consider that we have the bipartite graph G′ and we build a complete binary tree with its
leaves being the nodes vLi . The terminal nodes in the gossip problem are set to be all the nodes.
To communicate the message to all other nodes, each node vRi must at some point be the only
node trying to talk to some node on the other side of the bipartition. In other words, we need
to have induced matchings at each point in order for the vRi to propagate their messages to some
other node without interference. Therefore, we need at least as many induced matchings as it takes
to cover the graph to complete the gossip. Call this number C; we can now achieve gossip in
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time 2C + 3 log n as follows. We do this by using the induced matchings so that each vertex vRi
communicates its message to someone on the other side of the partition. Next we propagate the
message up the binary tree to the root node. This takes time at most 2 log n since at each node
of the path in the binary tree, a message can be delayed only for two steps, and the path length is
logarithmic. Then we broadcast the message down the tree. This takes time log n since we can use
the edge-star model to just broadcast all the gathered messages from the root along the down-stars
in one time step per level. Lastly, we need to communicate the message back to the vRi , which
takes time C. We know that radio gossip takes time at least C and can be done in time 2C+3 log n
on this graph.

Therefore, it is NP-hard to approximate radio gossip better than a factor ofO(n1/2−ε) otherwise,
we could approximate the CSIM within the same factor.

2.3 The Edge-Star Model
In this section, we consider the edge-star model which generalizes the telephone model. We focus
on three specific classes of problems; gossip, symmetric multicommodity multicast, and asym-
metric multicommodity. In the symmetric multicommodity problem, we are given a set of demand
pairs, and if (si, ti) is a demand, then (ti, si) is also a demand. In the asymmetric multicommodity
case, there are no restrictions on which demand pairs are present.

In Section 2.3.1, we first obtain an O( logn
log logn

) approximation algorithm for gossip in the edge-
star model by reducing the problem to the broadcast problem in the telephone model. Next, in
Section 2.3.2, we consider the special case where the underlying graph is a tree. In this special
case, then we show that the multicommodity multicast in the edge-star model reduces to the broad-
cast problem in the telephone model, yielding an O( logn

log logn
) approximation. In Section 2.3.3, we

show that the case of edge-star symmetric multicommodity multicast problem has the same optimal
solution (up to poly-log factors) as telephone multicommodity multicast, yielding an Õ(2

√
logn)

approximation. Lastly, in Section 2.3.4, we give an O(n
2
3 )-approximation for the general (asym-

metric) multicommodity multicast problem in the edge-star model.

2.3.1 Gossip
Here we show an O( logn

log logn
) approximation for edge-star gossip. First, we show that a solution

to the gossip problem in the edge-star model gives a solution to the broadcast problem in the
telephone model of the same length. Next, we show that using a solution for the broadcast problem
in telephone we can get a solution of twice the length to the gossip problem in the edge-star model.
This show that their optimal solutions differ in cost by a factor of at most two.
Lemma 2.3.1. The optimal broadcast time in the telephone model is no more than the
optimal gossip time in the edge-star model.

Proof. Let S denote an optimal schedule for gossip in the edge-star model that completes in T
rounds. Let r denote the root node for the broadcast problem in the telephone model. Fix a node
v. Let Pv denote a path taken by the message from v to arrive at r in the schedule S. Let Et denote
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the set of all directed edges in ∪vPv that are activated in round t in S. By definition of the edge-star
model, if (u1, v1) and (u2, v2) are in Et, then v1 6= v2. Furthermore, by our choice of the paths, we
obtain that (i) for any distinct (u1, v1) and (u2, v2) in Et, u1 6= u2; and (ii) the edges of Pv appear
in order of increasing time in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E ′t = REV(ET−t)
forms a broadcast schedule from the root, where REV(X) equals {(v, u) : (u, v) ∈ X} for any
set X of directed edges. In any round t, for any distinct (u1, v1) and (u2, v2) in Et, we have
u1 6= u2 and v1 6= v2; therefore, REV(Et) is a matching. Since the edges of Pv appear in order
of increasing time in the collection of Ets, the edges of the REV(Pt) appear in order of increasing
time in the collection of E ′ts. Consequently, the message from the root is delivered to each node in
T rounds.

Lemma 2.3.2. The optimal gossip time in the edge-star model is no more than twice the
optimal broadcast time in the telephone model.

Proof. The proof mirrors the proof of Lemma 2.3.1. Let S denote an optimal schedule for broad-
cast from root r in the telephone model that completes in T rounds. Fix a node v. Let Pv denote
a path taken by the message from r to arrive at v in the schedule S. Let Et denote the set of all
directed edges in ∪vPv that are activated in round t in S. By definition of the telephone model, for
distinct (u1, v1) and (u2, v2) in Et, u1 6= u2 and v1 6= v2. Furthermore, by our choice of the paths,
we obtain that the edges of Pv appear in order of increasing time in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E ′t = REV(ET−t)
forms a schedule for gathering in the edge-star model. In any round t, for any distinct (u1, v1) and
(u2, v2) in Et, we have u1 6= u2 and v1 6= v2; therefore, REV(Et) is a matching, and is a valid set
of edges to activate in the edge-star model in round T − t. Since the edges of Pv appear in order
of increasing time in the collection of Ets, the edges of the REV(Pt) appear in order of increasing
time in the collection of E ′ts. Consequently, the message from any node v is delivered to the root
in T rounds.

Once the root has all the messages, we can complete the gossip by running the broadcast
schedule. Since any schedule in the telephone model is valid in the edge-star model, it follows
that this broadcast completes in T rounds. We thus have a gossip schedule that completes in the
edge-star model in 2T rounds.

There exists an O( logn
log logn

) approximation for telephone broadcast [21]. Therefore this same
approximation holds for the edge-star gossip problem.

2.3.2 Multicommodity multicast on a tree
In this part, we consider the multicommodity multicast problem in the edge-star model in the
special case where our host graph is a tree. Here we give a reduction to telephone broadcast. When
the host graph is a tree, the path taken by any message is known, so we simply need to coordinate
the communications.
Lemma 2.3.3. There is an O( logn

log logn
) approximation for the edge-star multicommodity mul-

ticast problem in a tree.
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Proof. We will start by choosing some vertex r to be the root of the tree. Let the optimal solution
take time D (we can try all 2n possible values for D only losing a polynomial factor in runtime).
Now for each demand pair, (si, ti) the message will have to go from si to lca(si, ti), and then from
the lca(si, ti) down to ti. Bringing all the messages down the tree from lca(si, ti) to ti can be
done in time D + 1; we spend D + 1 time steps alternating between the odd layers broadcasting
their messages down and the even layers broadcasting their message down. Since each layer is a
collection of edge-disjoint stars, this can be implemented in one round in the edge-star model.

The hard part is bringing the messages up from si to t′i = lca(si, ti). So, we will consider that
we simply have the constraints of the form (si, t

′
i). First we will break the tree up into sets of 2D

consecutive layers starting every D layers. This guarantees that every constraint (si, ti) is in some
set of 2D layers.

Now consider some 2D layers in the tree. Look at the union of all the (si, t
′
i) paths in these

layers. These form a forest, where each tree has depth at most 2D and each node has a max degree
of D; so each tree has poise 5D (recall that the poise is the sum of the maximum degree and the
diameter). Therefore each of these trees can gather all their messages to their uppermost nodes in
time O(D logn

log logn
).

We can run all the gathers to satisfy (si, t
′
i) in two groups; we can run every other set of 2D

layers in the tree simultaneously, as they are disjoint. Hence, in time O(D logn
log logn

), we can satisfy
the demands (si, t

′
i). After this, in D+ 1 more steps, we can satisfy the demands (t′i, ti). Therefore

in time O(D logn
log logn

) we satisfy all the (si, ti) demands.

2.3.3 Symmetric Multicommmodity Multicast

Note that the symmetric multicommodity multicast problem in the telephone model is equiva-
lent (within constant factors) to the general multicommodity multicast problem [7, 70] for which
an Õ(2

√
log k) approximation algorithm is known, where k is the number of terminals [66]. We

show a reduction from the symmetric multicommodity multicast problem in the edge-star model
to the symmetric multicommodity multicast problem in the telephone model, losing an additional
O( log3 n

log logn
) factor in the approximation ratio in an n-node graph.

Theorem 2.3.4. Given a ρ-approximation for the symmetric multicommodity multicast prob-
lem on k terminal pairs in an n-node undirected graph under the telephone model, we can
design an O(ρ · log2 k · logn

log logn
) approximation for the same problem in the edge-star model.

Proof. Given an optimal solution to symmetric multicommodity multicast in the edge-star model,
we demonstrate a solution to the symmetric multicommodity multicast problem in the telephone
model with a poly-log multiplicative loss in performance. Consider an input instance with demand
pairs {si, ti} for i = 1 · · · k on an undirected graph G. Consider an optimal schedule for the edge-
star symmetric multicommodity multicast problem on this instance. This defines for each pair s, t,
a pair of paths from one node to the other where the edges of the paths are labeled in increasing
time order denoting the periods in which these edges participated in an information transmission.
Suppose the optimal time for multicasting isL; then these paths are of length at mostL. Also, given
the in-degree one bound for the edge-star model (each receiver can listen to at most one transmitter
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in this wireless model), the indegree of the sugraph representing the union of these optimal trans-
missions is also at most L. Our goal is to use these paths to aggregate the messages from a set of
these pairs into a subset of carefully selected terminals using a reverse broadcast scheme, and then
transmit the aggregated messages back to the corresponding mates of these sources. Both these
steps of gathering and sending will be accomplished using multicommodity multicast instances in
the telephone model.

To define the aggregation pattern, define an auxiliary graph H with one node per demand pair
si, ti. This graph is only for the sake of argument so we will use optimal paths in the edge-star
multicommodity multicast scheme in defining it. Note that the optimal transmission paths for a pair
represent two paths: one from si to ti and the second from ti to si, where these two paths may share
edges. Concatenated together they define what we will call an “optimal cycle” for this pair. Define
an edge between two pairs if their optimal cycles intersect at a node. In Figure 2.2, we can see an
example of when optimal cycles intersect. Thus H defines the conflict or interference between the
demand pairs in the optimal multicommodity multicast schedule in the edge-star model.

𝑠𝑖

𝑡𝑖

𝑠𝑗

𝑡𝑗

𝑠𝑘

𝑡𝑘

Figure 2.2: Here is an example of the optimal paths between some (si, ti) pairs. Here we see that
the (sj, tj) pair intersects (si, ti) and (sk, tk), but (si, ti) and (sk, tk) do not intersect.

We now use a network decomposition procedure [5] on H to decompose the k demand pairs
into log2 k disjoint layers with the following property: the set of nodes in each layer can be de-
composed into node-disjoint shallow trees, i.e., each tree in one of the layers has diameter at most
2 log2 k. This decomposition is done as follows: pick any vertex v in H and build a BFS tree from
v. Now let i be the smallest depth such that the number of nodes at depth i or less is more than the
number of nodes at depth i + 1. Put v and everything within distance i of v into the current layer.
Now remove v and it’s BFS tree up to depth i+ 1 from H . Repeat this process to form each layer.
Once H is empty, let U be the vertices not yet assigned to a layer. Then start forming a new layer
from the graph H[U ].

This process assigns at least half of the remaining nodes to the current layer, hence we build at
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most log2 k layers. The diameter of each component in a layer is at most 2 log2 k, because as we
move down the BFS tree the number of nodes contained in it double at each step.

Now we can use these layers to define our gathering problems. Consider one layer i and one
tree Ti,j in this layer in the decomposition. This represents a shallow subgraph in H , so let us
root this at a demand pair denoted Pij . By following the paths in this subgraph from every other
node to Pij , we can replace their intersections with paths in the optimal multicast originating at
each terminal s in any of the pairs to one of the two terminals, say tij in the pair Pij . This defines
one of the gathering trees gathering to the terminal tij . By construction, the in-degree of any
node in the gathering tree is at most L and the distance from any node to the root tij is at most
O(L log k). Note that by the disjointness of the subgraphs in one layer i, all the gather trees are
node disjoint. For each gather tree Tij , we now set up a gathering multicast problem with all the
terminals in the tree going to the root tij . Note that since each tree has total degree + diameter at
most O(L log k), the poise of each tree is bounded by O(L log k) and thus each of these trees has
a gathering schedule in the telephone model taking at most O(Poise · logn

log logn
) steps in an n-node

graph [70]. This gives a feasible solution to the set of all gathering problems in one layer i running
in timeO(L · log k · logn

log logn
). Repeating this over the layers finally gives a set of gathering problems

in the telephone model that complete in total time O(L · log2 k · logn
log logn

).
Note that the same schedules can be reversed to send all the gathered information in each tree

to all the terminals in a tree finishing the requirements. Employing a ρ-approximation for this
multicommodity multicast problem in the telephone model proves the theorem.

2.3.4 Asymmetric Multicommodity Multicast
For the edge-star asymmetric multicommodity multicast problem, we will use the network decom-
position used in the previous proof, along with telephone broadcast in trees with small poise.
Theorem 2.3.5. There is an Õ(n

2
3 )-approximation for the asymmetric multicommodity mul-

ticast problem in the edge-star model.

Proof. We develop the algorithm in two phases. First, we design an Õ(
√
p)-approximation algo-

rithm for the case with p demand pairs (note that p can be up to O(n2) in an n-node graph). Then
we combine this with an algorithm that satisfies all the demands in the in-neighborhood of a node
in the demand graph with high indegree to get the final result.

A Greedy Algorithm. To design the Õ(
√
p)-approximation algorithm, we use a greedy method:

assume that the value of the optimal multicast time is L (we can try all the 2n possible guesses in
parallel to dispense this assumption with a polynomial running-time overhead). For every unsat-
isfied demand pair (si, ti) (note that demand pairs are ordered in the asymmetric case), we look
for a path of length at most L from si to ti. If we find one, we add it to the greedy collection and
delete all the nodes in this path. Suppose we are able to collect g paths for the pairs denoted G in
the greedy phase until we can find no more paths of small length for the remaining demands.

Now it must be the case that all optimal paths for the remaining demands in P \Gmust intersect
the greedy paths. This implies that for every demand pair (s, t) in P \G, we can follow its optimal
path to its intersection with one of the greedy paths, say for the pair (si, ti), and then continue in
the greedy path to ti. In this way, every demand source in P \G can be routed and assigned to one
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of the sinks in the greedy pairs G in a collection of paths: each such path has length at most 2L
(coming from at most L steps to the intersection with the greedy collection and another L from the
intersection to the sink at the end of this greedy path); also the indegree of the collection of these
paths is at most L+ 1 since they arise from the optimal collection plus the greedy subgraph which
adds at most one to each node’s indegree. We now set up a dummy broadcast problem (following
Nikzad and Ravi [66]) by hooking up the set of sinks at the end of the greedy paths, say T (G), as
leaves in a complete binary tree with new dummy nodes and a dummy root t. We solve for the
broadcast problem in this graph from the dummy root t to all the sources si in all the pairs. By
the above construction, there exists a tree of poise O(L + log n) that connects all the sources to
this root. From the result of Ravi [70], this implies a broadcast scheme completing in O(L logn

log logn
).

Using an α-approximation algorithm for broadcast in the telephone model, we get a tree that assign
the sources in P to the sinks in T (G) in O(α · L logn

log logn
) steps. Let us denote the set of sinks in

T (G) by t′1, ·, t′g and the set of sources assigned to a sink t′i by Si.
The remaining task is to send back the messages gathered from Si at t′i to the sinks correspond-

ing to the sources in Si - let us denote this sink set by Ti. Note that by construction, all the sinks
in Ti are at a distance at most O(α · L logn

log logn
) from t′i by following the paths to the corresponding

source s and then concatenating the undirected path to its mate t. However, these local broadcasts
must obey the edge-subgraph condition of having indegree at most one which is tricky to enforce.

If the number of greedy pairs g = |G| is at least
√
p, we simply satisfy these pairs and move

to the next iteration: the number of such iterations is at most
√
p and each iteration can be imple-

mented in O(L) steps (running the disjoint greedy path schedules in parallel). If the number of
pair is less than

√
p, we can carry out the broadcast from each greedy sink t′i to its sink set Ti in

time O(α · L logn
log logn

) by reversing the gathering in the earlier broadcast tree and extending it to the
corresponding sinks. Processing these trees one after another, we use a total ofO(

√
p·α ·L logn

log logn
).

Since α is sublogarithmic [24], we finally get an Õ(
√
p)-approximation as claimed.

A Local Algorithm. For the second ingredient we observe that if the in-degree of any node v
in the demand graph is δ, then we can satisfy all the demand requirements of the predecessors of
v in the demand graph In(v) in time Õ(L). Note that since all the terminals in In(v) send their
message to v, the union of the directed paths that transmit these messages in the optimal solution
have distance at most L from the terminals to v and induce an in-degree of at most L. This defines
a tree of poise O(L) and hence enables us to find a broadcast scheme that gathers all the messages
from In(v) at v in time Õ(L). By reversing this broadcast tree and then following the optimal
paths from each terminal in In(v) to its other sinks, we can find a tree of depth (not poise) at most
Õ(L) rooted at v where these messages are gathered. Since v is the only node sending out the
gathered messages, we can send all these messages to their intended sinks in a breadth-first tree in
time Õ(L) in the edge-star model. Note that we have taken care of all the demands originating in
|In(v)| nodes.

Combining the two algorithms. We can now combine the two algorithms as follows: As long
as p, the number of demand pairs in the n-node graph, is at least Ω(n

4
3 ), we use the local algorithm.

By averaging over the indegrees that partition the demand pairs, there exists a node of indegree at
least Ω(n

1
3 ) in the demand graph. The local algorithm thus satisfies the demands originating in

at least this many nodes in one iteration. The number of iterations is thus at most n
2
3 each taking
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Õ(L) multicast steps. On the other hand, when p drops below O(n
4
3 ), we use the greedy algorithm

to get an approximation ratio of Õ(
√
p) = Õ(n

2
3 ) giving the result.

2.4 Conclusion
We have obtained new results in the approximability of rumor spreading problems in the well-
studied radio model as well as a new model motivated by wireless communications, which we
call the edge-star model. For the radio model, we present an Ω(n1/2−ε) hardness of approximation
bound for radio gossip, making progress on an open problem mentioned in [36]. For the edge-star
model, we present an O( logn

log logn
) approximation algorithm for gossip, an Õ(2

√
logn) approxima-

tion algorithm for symmetric multicommodity multicast, and an Õ(n2/3) approximation algorithm
for asymmetric multicommodity multicast. Our approximation algorithms expose relationships
between the edge-star model and the well-studied telephone model.

Our work leaves several interesting open problems. Among the nine cells listed in the matrix
of Table 2.1 of Section 2.1, only radio broadcast and edge-star broadcast are resolved. Significant
gaps between the best known upper and lower bounds on approximability remain for telephone
broadcast, the gossip problem under all three models, and the multicommodity multicast problem
under all three models. In the edge-star model, the symmetric and asymmetric versions of the mul-
ticommodity multicast problem are distinct, and both are open, in terms of the best approximation
factor achievable in polynomial-time.
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Chapter 3

Planar Gossip

3.1 Introduction

Rumor spreading in networks has been an active research area with questions ranging from finding
the minimum possible number of messages to spread gossip around the network [6, 44, 80] to
finding graphs with minimum number of edges that are able to spread rumors in the minimum
possible time in the network [42]. There is also considerable work in the distributed computing
literature on protocols for rumor spreading and gossip based on simple push and pull paradigms
(e.g., see [27, 29, 38, 51]).

The focus of this chapter is the class of problems seeking to minimize the time to complete
the rumor spread, the prototypical example being the minimum broadcast time problem where a
message at a root node must be sent to all nodes via connections represented by an undirected graph
in the minimum number of rounds. Under the popular “telephone” model, every node can partic-
ipate in a telephone call with at most one other neighbor in each round to transmit the message,
and the goal is to minimize the number of rounds. This problem has seen active work in designing
approximation algorithms [8, 24, 57, 70]. One generalization of broadcast is the minimum multi-
cast time problem: We are given an undirected graph G(V,E) representing a telephone network
on V , where two adjacent nodes can place a telephone call to each other. We are given a source
vertex r and a set of terminals R ⊆ V . The source vertex has a message and it wants to inform
all the terminals of the message. To do this, the vertices of the graph can communicate in rounds
using the telephone model. The goal is to deliver the message to all terminals in the minimum
number of rounds.

Recently, a more general demand model called the multicommodity multicast was introduced
in [66]. In the minimum multicommodity multicast time problem, a graph G(V,E) is given
along with a set of pairs of nodes P = {(si, ti)|1 ≤ i ≤ k}, known as demand pairs. Each vertex
si has a message mi which needs be delivered to ti. The vertices communicate similar to the
multicast problem. The goal is to deliver the message from each source to its corresponding sink
in the minimum number of rounds. Note that there is no bound on the number of messages that can
be exchanged in a telephone call. In this sense, the telephone model captures a classic information
dissemination problem where the primary communication constraint is the number of connections
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that a given node can make in each round, not link bandwidth.

3.1.1 Poly-logarithmic approximation for planar multicommodity multicast.

While even sub-logarithmic ratio approximations have been known for the minimum time multi-
cast problem [8, 24, 57, 70], the best known approximation guarantees for the multicommodity
case [66] is Õ(2

√
log k) where k is the number of different source-sink pairs.

Theorem 3.1.1. There is a polynomial time algorithm for minimum time multicommodity
multicast with k source-sink pairs in n-node undirected planar graphs that constructs a
schedule of length O(OPT log3 k logn

log logn
) where OPT is the length of the optimal schedule.

This result to extends in a natural way to bounded genus graphs. Our results make critical use
of the fact that planar graphs admit small-size balanced vertex separators that are a combination
of three shortest paths starting from any given node [79]. We aggregate messages at the paths,
move them along the path and then move them onto their destinations using a local multicast. To
break the overall multi-commodity multicast problem into recursive subproblems, we solve an LP
relaxation for the overall problem and for those pairs for which the LP uses the separator path
nodes in sending messages by a ”large” amount, we aggregate them to the separator paths and
move them along the paths. However, to define this aggregation automatically we need to use a
linear program which requires us to relate another lower bound for the schedule length that we
describe next.

3.1.2 Poise and a new LP rounding algorithm.

Suppose that the (single-commodity) multicast problem in a graph G with root r and terminals
R admits a multicast schedule of length L. Consider all the nodes I ⊆ V in the graph that are
informed of the message from the root in the course of the schedule. For every node v ∈ I
consider the edge through which v first heard the message and direct this edge into v. It is easy to
verify that this set of arcs forms an out-arborescence T rooted at r and spanning I . In particular,
every node in I except r has in-degree exactly one and there is a directed path from r to every
vertex in I .
Definition 3.1.2. Define the poise of an undirected tree T to be the sum of the diameter of
the tree and the maximum degree of any node in it. Define the poise of a directed tree to
be that of its undirected version (ignoring directions).

The discussion above of constructing a directed tree from a multicast schedule implies that the
poise of the tree constructed from a multicast schedule of length L is at most 3L (see also [70]).
The following lemma gives the relation in the other direction.
Lemma 3.1.3. [70] Given a tree on n nodes of poise L, there is a polynomial time algorithm
to construct a broadcast scheme of length O(L · logn

log logn
) from any root.

Note that a complete d-ary regular tree of depth d requires time d2 to finish multicast from the
root; If the size of the tree is n, then d = O( logn

log logn
). For this tree L = O( logn

log logn
) while any

broadcast scheme takes Ω(( logn
log logn

)2) steps showing that the multiplicative factor is necessary.
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Even though approximation algorithms for minimum poise trees connecting a root to a set
of terminals were known from earlier work [8, 24, 70], their guarantees are with respect to an
optimal (integral) solution and not any specific LP relaxation. In particular, the LP-based algorithm
of [70] rounds a solution to the poise LP in phases without preserving the relation of the residual
LPs that arise in the phases to the LP for the poise of the whole graph. Similarly, the LP-based
algorithm of [8] solves a series of LPs determining how to hierarchically pair terminals and form
the desired broadcast tree with cost within a logarithmic factor of the integral optimum poise, but
without relating the resulting tree to the LP value of the poise of the original graph. It is not
straightforward to use these methods to derive an integrality gap for the minimum poise LP, and
this has remained an open problem. Deriving an approximation algorithm for minimum poise
subgraphs for the single-commodity multicast version with a small integrality gap is a critical
ingredient in our approximation algorithm for multicommodity multicast problem in planar graphs
(Theorem 3.1.1). We derive the first such result.
Theorem 3.1.4. Given a fractional feasible solution of value L to a natural linear program-
ming relaxation of the minimum poise of a tree connecting a root r to terminals R (POISE-
L LP, see Section 3.2), there is a polynomial time algorithm to construct a tree spanning
r ∪R of poise O(L log k) where k = |R| and n = |V |.

Our LP rounding for minimum poise are based on exploiting a connection to the theory of
multiflows [15, 30, 63]; this is an interesting technique in its own right that we hope will be useful
in obtaining other LP rounding results for connectivity structures while preserving degrees and
distances.

3.1.3 Radio Gossip in Planar Graphs.

Our techniques for addressing multicommodity multicast are also applicable to radio gossip in
planar graphs. In the radio model of communication that also occurs in rounds, a transmitting
node may broadcast to multiple nodes in around but a node may receive successfully in a given
time step only if exactly one of its neighbors transmits. The gossip problem is a special case of
the multicommodity multicast problem where the demand pairs include all possible pairs of nodes
(alternately, every node’s message must be transmitted to every other node). The minimum gossip
problem in the radio model has been widely studied [37] but all known upper bounds involve
both the diameter and degree of the network. In particular, for general n-node graphs, there is an
Ω(n

1
2
−ε)-hardness of approximation result for computing a minimum gossip schedule [47]. Our

next result breaks this barrier for planar graphs (the proof and algorithm are in Section 3.4).
Theorem 3.1.5. There is a polynomial time algorithm for minimum time radio gossip in
an n-node undirected planar graph that constructs a schedule of length O(OPT · log2 n)
where OPT is the length of the optimal gossip schedule.

Since radio broadcast from any node can already be achieved with additive poly-logarithmic
time overhead above the optimum [64], our algorithm for radio gossip focuses on gathering all
the messages to a single node. For this, we use the path-separator decomposition in planar graphs
to recursively decompose the graph and gather messages bottom up. However, the diameter of
subgraphs formed by the decomposition are not guaranteed to be bounded so we use a carefully
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constructed degree-bounded matching subproblem to accomplish the recursive gathering: these
techniques adapt and extend the methods used for constructing telephone multicast schedules [66]
but apply them for the first time to the radio gathering case.

3.1.4 Minor-free Graphs

In Section 3.5, we show that both our results on planar graphs also naturally extend to minor-free
graphs, as similar path separator results are also known for minor-free graphs [1].
Theorem 3.1.6. There is a polynomial time algorithm for minimum time multicommodity
multicast with k source-sink pairs in n-node undirected H-minor-free graph for a con-
stant sized H that constructs a schedule of length O(OPT log3 k logn

log logn
) where OPT is the

length of the optimal schedule.
Theorem 3.1.7. There is a polynomial time algorithm for minimum time radio gossip in an
n-node undirected H-minor-free graph for a constant sized H that constructs a schedule
of length O(OPT log2 n) where OPT is the length of the optimal gossip schedule.

3.1.5 Previous Work

Minimum time multicast in the telephone model. Finding optimal broadcast schedules for trees
was one of the first theoretical problems in this setting and was solved using dynamic programming
[69]. For general graphs, Kortsarz and Peleg [57] developed an additive approximation algorithm
which uses at most c · OPT + O(

√
n) rounds for some constant c in an n-node graph. They

also present algorithms for graphs with small balanced vertex separators with approximation ratio
O(log n ·S(n)) where S(n) is the size of the minimum balanced separator on graphs of size n from
the class. The first poly-logarithmic approximation for minimum broadcast time was achieved by
Ravi [70] and the current best known approximation ratio is O( logn

log logn
) due to Elkin and Kor-

sartz [24]. The best known lower bound on the approximation ratio for telephone broadcast is
3− ε [22].

In his study of the telephone broadcast problem, Ravi [70] introduced the idea of finding low
poise spanning trees to accomplish broadcast. In the course of deriving a poly-logarithmic ap-
proximation, Ravi also showed how a tree of poise P in an n-node graph can be used to complete
broadcast starting from any node in O(P · logn

log logn
) steps. His result provided an approximation

guarantee with respect to the optimal poise of a tree but not its natural LP relaxation that we inves-
tigate.

Guha et al. [8] improved the approximation factor for multicasting in general graphs toO(log k)
where k is the number of terminals. The best known approximation factor for the multicast prob-
lem isO( log k

log log k
) [24]. Both of [8, 24] present a recursive algorithm which reduces the total number

of uninformed terminals in each step of the recursion, while using O(OPT ) number of rounds in
that step. In [8], they reduce the number of uninformed terminals by a constant factor in each
step and so they obtain a O(log k)-approximation, but in [24], the number of uninformed termi-
nals is reduced by a factor of OPT which gives a O( log k

log log k
)-approximation due to the fact that

OPT = Ω(log k). These papers also imply an approximation algorithm with factors O(log k) and
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O( log k
log log k

) for the Steiner minimum poise subgraph problem; however, these guarantees are again
with respect to the optimum integral value for this problem and not any fractional relaxation.

For the multicommodity multicast problem, Nikzad and Ravi [66] adapt the methods of [23, 24]
to present an algorithm with approximation ratio Õ(2

√
log k) where k is the number of different

source-sink pairs. They also show that there is a poly-logarithmic approximation inter-reducibility
between the problem of finding a minimum multicommodity multicast schedule and that of finding
a subgraph of minimum generalized Steiner poise (i.e., a subgraph that connect all source-sink
pairs, but is not necessarily connected overall, and has minimum sum of maximum degree and
maximum distance in the subgraph between any source-sink pair).

Radio Gossip. The radio broadcast and gossip problems have been extensively studied (see
the work reviewed in the survey [36]). The best-known scheme for radio broadcast is by Kowalski
and Pelc [59] which completes in time O(D + log2 n), where n is the number of nodes, and D
is the diameter of the graph and is a lower bound to get the message across the graph from any
root. The O(log2 n) term is also unavoidable as demonstrated by Alon et al. [3] in an example with
constant diameter that takes Ω(log2 n) rounds for an optimal broadcast scheme to complete. Elkin
and Korsartz [20] also show that achieving a bound better than additive log-squared is not possible
unless NP ⊆ DTIME(nlog logn). For planar graphs, the best upper bound for radio broadcast
time is D + O(log n) given by [64]. The best bound for radio gossip known so far, however, is
O(D + ∆ log n) steps in an n-node graph with diameter D and maximum degree ∆ [37], even
though there is no relation in general between the optimum radio gossip time and the maximum
degree. Indeed, for general graphs, there is a polynomial inapproximability lower-bound for the
minimum time radio gossip problem [47].

Planar path separators. For our results on planar graphs, we rely on the structure of path-
separators. Lipton and Tarjan first found small O(

√
n)-sized separators for n-node undirected

planar graphs [62]. More recently, planar separators based on any spanning tree of a planar graph
were found [79] with the following key property: these balanced vertex separators can be formed
by starting at any vertex and taking the union of three shortest paths from this vertex. Minor-free
graphs also admit small path-separators as found by [1]; in this case, the number of paths used
depends on the graphs which are excluded minors, but stays constant for constant-sized excluded
minors.

3.2 LP Rounding for Multicast in General Graphs

In this section we present an approximation algorithm for finding a minimum poise Steiner sub-
graph, and establish an LP integrality gap upper bound, thus proving Theorem 3.1.4. We begin
by presenting a linear program for a multicommodity generalization of minimum poise Steiner
subgraph, which is useful for the multicommodity multicast problem. This linear program, when
specialized to the case where we need to connect a root r to a subset R of terminals, is our LP for
the minimum poise Steiner subgraph problem.
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3.2.1 Linear Program for Poise
The generalized Steiner poise problem is to determine the existence of a subgraph containing paths
for every demand pair in K = {(si, ti)|1 ≤ i ≤ k} of poise at most L, i.e. every demand pair is
connected by a path of length at most L and every node in the subgraph has degree at most L.

We use indicator variables x(e) to denote the inclusion of edge e in the subgraph. Since the
poise is at most L, this is also an upper bound on the length of the path from any terminal to the
root. For every terminal (si, ti) ∈ K, define Pi to be the set of all (simple) paths from si to ti.
We use a variable yt(P ) for each path P ∈ Pi that indicates whether this is the path used by si to
reach ti in the subgraph. For a path P , let `(P ) denote the number of hops in P . The integer linear
program for finding a subgraph of minimum poise is given below.

minimize L = L1 + L2 (POISE − LP )
subject to

∑
e∈δ(v) x(e) ≤ L1 ∀v ∈ V∑
P∈P(t,r) yt(P ) = 1 ∀t ∈ R∑
P∈P(t,r) `(P )yt(P ) ≤ L2 ∀t ∈ R∑
P∈P(t,r):e∈P yt(P ) ≤ x(e) ∀e ∈ E, t ∈ R

x(e) ∈ {0, 1} ∀e ∈ E
yt(P ) ∈ {0, 1} ∀t ∈ R,P ∈ PL(t, r).

The first set of constraints specifies that the maximum degree of any node using the edges in
the subgraph is at most L1. The second set insists that there is exactly one path chosen between
every pair (si, ti) ∈ K. The third set ensures that the length of the path thus selected is at most L2.
The fourth set requires that if the path P ∈ Pi is chosen to connect si to ti, all the edges in the path
must be included in the subgraph.

We will solve the LP obtained by relaxing the integrality constraints to nonnegativity con-
straints1, and get an optimal solution x, y ≥ 0.

For the remainder of this section, we will focus on the rooted version of this problem. In
particular, there will be a root r and set of terminals R, then we will make K = {(r, t)|t ∈ R}.
It still remains to round a solution to POISE-LP to prove Theorem 3.1.4. Before presenting the
rounding algorithm in Section 3.2.3, we describe a result on multiflows that will be useful in
decomposing our LP solution into a set of paths that match terminals with each other.

3.2.2 Preliminaries
Given an undirected multigraph G with terminal set T ⊂ V of nodes, a multiflow is an edge-
disjoint collection of paths each of which start and end in two distinct terminals in T . The value of
the multiflow is the number of paths in the collection. Such a path between two distinct terminals
is called a T -path and a multiflow is called a T -path packing. For any terminal t ∈ T , let λ(t, T \ t)
denote the minimum cardinality of an edge cut separating t from T \ t in G. Note that in any
multiflow, the maximum number of paths with t as an endpoint is at most λ(t, T \ t). Furthermore,

1Even though the number of path variables is exponential, it is not hard to convert this to a compact formulation
on the edge variables that can be solved in polynomial time. See e.g., [70]
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since every path in a multiflow has to end in distinct vertices in T , the maximum value of any
multiflow for T is upper bounded by

∑
t∈T

λ(t,T\t)
2

, by summing over the maximum number of
possible paths from each terminal and dividing by two to compensate for counting each path from
both sides. This upper bound can be achieved if a simple condition is met.
Theorem 3.2.1. [15, 63] If every vertex in V \ T has even degree, then there exists a
multiflow for T of value

∑
t∈T

λ(t,T\t)
2

.
The following simple construction will be useful in the rounding algorithm to identify good

paths to merge clusters. It is based off of a lemma from [70].
Lemma 3.2.2. Let G be a digraph where every node has at most one outgoing edge (and
no self loops). In polynomial time, one can find an edge-induced subgraph H of G such
that H is a partition of the nodes of G into a forest of directed trees each being an inward
arborescence, and with |E(H)| ≥ |E(G)|/2.

Proof. Consider any connected component of G, if there are v vertices, then there are either v or
v−1 edges (as each vertex has outdegree at most 1). If there are v edges, there is a cycle. When we
remove an edge from the cycle, we now have a connected component with v−1 edges. If there are
v−1 edges and all the vertices have outdegree at most 1, then it is already an inward arborescence.

An algorithm to find H would simply check the graph for directed cycles, and if any cycle
exists, it would remove an edge from that cycle. Any component which had a cycle has at least
2 edges, and we remove at most 1 edge from every component. So, the resulting graph H has at
least half the edges that the original graph G had.

3.2.3 The Rounding Algorithm
The main idea of Algorithm 1 is to work in O(log k) phases, reducing the number of terminal-
containing components in the subgraph being built by a constant fraction at each stage [72]. We
begin with an empty tree containing only the terminals R, each in a cluster by themselves. In each
phase, we will merge a constant fraction of the clusters together carefully so that the diameter of
any cluster increases by at most an additive O(L) per phase: for this, we choose a terminal as a
center of each cluster. When we merge clusters, we partition the clusters into stars where we have
paths of lengthO(L) from the centers of the star leaf clusters to the center of the star center-cluster.
These steps closely follow those in [70]. The crux of the new analysis is to extract a set of stars
that merge a constant fraction of the current cluster centers using a solution to POISE-L LP.

The key subroutine to determine paths to merge centers is presented in Algorithm 2. This uses
the multiflow packing theorem of [15, 63].

3.2.4 Performance Ratio
In this section, we prove Theorem 3.1.4. The performance ratio of the rounding algorithm in the
theorem is a consequence of the following claims, the first of which follows directly from the path
pruning in Algorithm 2.
Lemma 3.2.3. The length of each path output by Merge-Centers(C∗) is at most 4L.
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Algorithm 1 LP Rounding for Poise-L tree

1: Clusters C ← R; Centers C∗ ← R; Solution graph H ← ∅; Iteration i← 1.
2: while |C| > 1 do
3: Use Algorithm Merge-Centers(C∗) to identify a subgraph Fi whose addition reduce the num-

ber of clusters by a constant fraction;
4: H ← H ∪Fi; Update C to be the set of clusters after adding the subgraph Fi, and update C∗

to be the centers of the updated clusters based on the star structure from Algorithm Merge-
Centers(C∗). Increment i.

5: end while
6: Add a path of length at most L from r to the center of the final cluster in H . Find a shortest

path tree in H rooted at r reaching all the terminals in R and output it.

Lemma 3.2.4. The expected number of paths output by Merge-Centers(C∗) is Ω(|C∗|).

Proof. The main observation here is that the total number of edges in the multigraph G is at
most |C∗| · L ·M . To see this, note that each terminal t retains its flow of value 1 in POISE-LP
corresponding to the paths with nonzero value for yt. Thus in the scaled version, it retains M
paths to the root, and the average number of hops in these paths is at most L2 ≤ L hops, for each
terminal. Summing over all terminals, the number of edges in G is at most |C∗| · L ·M .

The total number of paths discarded cannot exceed |C
∗|·M
4

. Otherwise the paths each of length
at least 4L each would need more edges in G than we started with. After discarding, we expect to
still collect at least 1

M
· (|C∗| ·M − |C

∗|·M
4

) = 3|C∗|
4

paths fractionally. Hence the expected number
of terminals in the subgraph H is at least 3|C∗|

4
. The set of arcs finally retained in H ′′ is at least one

third of the nodes of H , the worst case being a path of two arcs. This leads to an expectation of at
least |C

∗|
4

paths finally output to merge the initial clusters.

Lemma 3.2.5. The distance of any node in a cluster to its center increases by at most 4L
in the newly formed cluster by merging paths corresponding to stars in H ′′. Thus, the
diameter of any cluster in iteration i is at most 8iL.

Proof. The proof is by induction over i, and is immediate by observing that any node can reach the
new merged cluster center say c by first following the path to its old center, say t and then following
the path Pt corresponding to the arc in H ′′ from t to c. By Lemma 3.2.3 above, the length of Pt is
at most 4L and the claim follows.

Lemma 3.2.6. The maximum degree at any node of G induced by the union of paths output
by Merge-Centers(C∗) is O(L).

Proof. This is a simple consequence of the performance guarantee of rounding the LP solution
obtained for the collection of paths. Since the paths we found pack into the LP solution 2x (from
the property of the multiflow packing), the expected congestion due to the chosen random paths
on any edge e is at most 2x(e). From the first constraint in the LP, the expected congestion at any
node due to paths incident on it is at most 2L1 ≤ 2L, by linearity of expectation.
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Algorithm 2 Merge-Centers(C∗) using LP solution x
1: Multiply the POISE-LP solution x by the least common multiple M of the denominators in

the nonzero values of x to get a multigraph.
2: For every terminal t ∈ C∗, retain the edges in the paths corresponding to the paths in its LP-

solution with nonzero value (i.e., paths P with nonzero yt(P )), for a total of M connectivity
from t to r. Note that the union of all the retained edges gives connectivity M from every
t ∈ C∗ to r and hence by transitivity, between each other.

3: Double each edge in the multigraph and use Theorem 3.2.1 to find a multiflow of value∑
t∈C∗

λ(t,C∗\t)
2
≥

∑
t∈C∗

2M
2

= |C∗| ·M . Note that each terminal in C∗ has at least M paths in
the multiflow.

4: Eliminate all the paths in the multiflow of length longer than 4L.
5: For every terminal t, pick one of the M paths incident on it uniformly at random and set this

path to be Pt. If the chosen path is eliminated due to the length restriction, set Pt ← ∅.
6: Let H be an auxiliary graph on vertex set C∗ with at most one arc coming out of each t ∈ C∗

pointing to the other endpoint of Pt (or add no edge if Pt = ∅).
7: Apply Lemma 3.2.2 to the subgraph of H made of nodes, to get a collection H ′ of in-trees.

For each in-tree, partition the arcs into those in odd and even levels of the tree and pick the set
with the larger number of arcs. Note that these sets form stars originating from a set of centers
and going to a single center. Let H ′′ denote the set of these stars.

8: For each arc of the stars in H ′′, include the path Pt originating at the leaf of the star corre-
sponding to the arc in H ′′, and output the collection of paths.

We apply the classic rounding algorithm of [52]. Since the length of each path in the collection
is at most 4L and the expected congestion is at most 2L, we obtain that there is a rounding, which
can be determined in polynomial time, such that the node congestion (degree) in the rounded
solution of at most 4L. 4L.

By Lemma 3.2.4, the number of iterations of the main Algorithm 1 is O(log k) where k is the
number of terminals. Lemma 3.2.5 guarantees that the subgraph of the final cluster containing all
the terminals has distance O(log k · L) between any pair of terminals. Since the final output is a
shortest path tree of this subgraph rooted at r, its diameter is also of the same order. Lemma 3.2.6
ensures that the total degree of any node in the subgraph of the final cluster is O(log k ·L), and this
is also true for the tree finally output. This completes the proof of Theorem 3.1.4. We can deran-
domize the above randomized algorithm using the standard method of pessimistic estimators [65].

3.3 Approximating multicommodity multicast on planar graphs

In this section we prove Theorem 3.1.1. Let G = (V,E) be the given planar graph, with n = |V |,
and let K = {(si, ti) : 1 ≤ i ≤ k} be the set of the k source-destination pairs that need to be
connected. Let γ = 1/ log k. We given a brief overview of our algorithm PlanarMCMulticast,
which is fully described in Algorithm 3.
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PlanarMCMulticast is a recursive algorithm, breaking the original problem into smaller prob-
lems each with at most a constant fraction of the demand pairs in K in each recursive call, thus
having O(log k) depth in the recursion. For a given graph, the algorithm proceeds as follows.
• Find a node separator composed of three shortest paths from an arbitrary vertex [79] to break

the graph into pieces each with a constant fraction of the original nodes.
• Solve a generalized Steiner poise LP on the given pairs to identify demand pairs that cross

the separator nodes to an extent at least Ω(γ).
• Satisfy these demand pairs by routing their messages from the sources to the separator, mov-

ing the messages along the separator (since they are shortest paths, so this movement takes
minimal time) and back to the destinations, by scaling the LP values by a factor of O( 1

γ
) and

using Theorem 3.1.4 to find a low poise tree to route to/from the separator.
• For the remaining demand pairs (which are mainly routed within the components after re-

moving the separators), PlanarMCMulticast recurses on the pieces.
The key aspect of planarity that is used here is the structure theorem that planar graphs contain
[79] small-size balanced vertex separators that are a combination of three shortest paths starting
from any given node.

We now prove that PlanarMCMulticast constructs, in polynomial-time, a multicommodity mul-
ticast schedule a schedule of length O((OPT log3 k · logn

log logn
) where OPT is the length of the

optimal schedule.
1. Observe that 3OPT is an upper bound for the value L for the POISE-LP for this instance.

2. In Step 2 of PlanarMCMulticast, the separator is obtained using the algorithm in [79]. In
Step 3, we use POISE-LP, as specified in Section 3.2 to find the fractional solution. In
Step 4 of PlanarMCMulticast, unit si − ti flow is achieved by scaling up the LP cost by at
most a factor of 3/γ since at least γ/3 flow intersects one of the three paths in P . Now,
observe that this scaled LP solution immediately yields a valid solution to POISE-LP in Step
5. Applying Theorem 3.1.4, in Step 6, with the value of L = O(OPT log k) gives a tree of
poise O(OPT log2 k).

3. The algorithm performs O(log k) (recursive) phases; the poise of the tree at the ith level of
recursion is itself based on an LP that has been scaled by a factor of at most 1

1−γ (in Step
8) in the previous i − 1 = O(log k) iterations followed by a final scaling of 3

γ
in the last

iteration. In any iteration, the total factor by which the initial LP value of OPT is scaled is
at most ( 1

1−γ )i−1 · 3
γ
≤ (1 + γ)

1
γ · 3

γ
= O(log k) since γ = 1

log k
.

4. In Step 7, we incur a multiplicative factor of O( logn
log logn

) in going from a small poise tree to
a schedule. Here, we crucially use the fact that the separator paths are shortest paths - for
a demand pair (si, ti) let fi denote the first vertex on the separator path that the message
arrives at after leaving source si and let li denote the last vertex (on the separator path) that
the message departs from, on its way to the destination ti; then fi and li must be at most an
additive O(OPT ) of the sum of the lengths of the paths from si to fi and li to ti along the
separator path, since every demand pair has a path of length O(OPT ) between them in the
LP solution in this subgraph. Thus in Step 7, we can wait to aggregate all messages from the
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Algorithm 3 PlanarMCMulticast(G,K)

1: Base case: When K = {(s1, t1)} has one demand pair, schedule the message on the shortest
path between the source, s1, and destination, t1.

2: Separate the graph: Define the weight of a node as the number of source-destination pairs
it is part of, and the weight of a subset of nodes as the sum of their weights. Find a 3-path
separator P of G, given by shortest paths P1, P2, and P3, whose removal partitions the graph
into connected components each of which has weight at most half that of the graph [79].

3: Partition the terminal pairs: Partition the set K into two subsets, by solving the POISE-LP.
• Let K1 consist of pairs (si, ti) such that in POISE-LP, the fraction of the unit flow from
si to ti that intersects P is at least γ.

• Let K2 = K −K1 consist of the remaining pairs, i.e. pairs (si, ti) such that in the LP,
the fraction of the unit flow from si to ti that intersects P is less than γ

4: Scale flow for pairs in K1: For each pair (si, ti) in K1, scale the flow between si and ti in
the POISE-LP by 3

γ
so there exists a path Pj which intersects a unit of this scaled si-ti flow;

remove other si-ti flows that does not intersect Pj up to a unit. Assign (si, ti) to a set Sj .
5: Create 3 minimum poise Steiner tree problems forK1: For each path Pj , create a minimum

Steiner poise problem as follows: (i) attach, to the graph, an auxiliary binary tree Tj with nodes
of Pj forming the leaves, and adding new dummy internal nodes (This step is similar to [66]);
(ii) set the root of the binary tree to be the root for the Steiner poise problem, and the terminals
to be all the si and ti in Sj .

6: Round the POISE-LP solution: For each Pj , round the LP to obtain a Steiner tree Tj of small
poise connecting all the terminals in Sj with the root using the algorithm from Theorem 3.1.4.

7: Construct schedule for K1: Use Lemma 3.1.3 on the tree Tj to perform a multicast between
all terminals in it as follows: use the multicast schedule to move the messages, from the
sources, till they hit the path Pj , then move messages along the path followed by the multicast
schedule in reverse to move them towards the destinations. (Moving messages along a path
can be achieved by a schedule that alternates between the even and odd matchings in the path
for as many steps as the target length of the schedule)

8: Scale flow for K2: For each pair (si, ti) in K2, remove any flow that intersects P and scale the
remaining flow (by a factor of at most 1

1−γ ) so as to continue to have unit total flow between
the pair.

9: Recurse for K2: For each connected component Cj , let Kj
2 denote the subset of K2 with both

terminals in Cj . Run PlanarMCMulticast(Cj, K
j
2) in parallel.

sources at the separator path, then move all the messages one way along the path and then
the opposite way, for as many time steps as the poise of the integral tree, without more than
tripling the total schedule.

5. Since there are O(log k) recursive phases, the final schedule has length
O(OPT log3 k logn

log logn
).

This proves Theorem 3.1.1.
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3.4 A polylogarithmic approximation for radio gossip on pla-
nar graphs

In this section, we present an O(log2 n)-approximation algorithm for finding a radio gossip sched-
ule on planar graphs, and prove Theorem 3.1.5.

Let G = (V,E) be a given planar graph. Once the messages from all nodes have all been
gathered together at a node we can easily broadcast them back out in O(OPT + log2 n) rounds
using [59]. So we focus on gathering the messages together at one node. To do this, we recursively
find 3-path separators in the graph [79] to decompose it into connected components. Then, working
backwards, we gather messages from the 3-path separators found in an iteration at the nodes of the
3-path separators found in previous iterations, using techniques from telephone multicast [66].
The key properties used in the recursive algorithm are that the number of paths in the separator is
a constant 3 and the paths are all shortest paths in the component they separate from some vertex.

We assume the optimal schedule has length L. Note that L ≤ 2n since gossip can be achieved
by simply choosing any spanning tree and broadcasting one node at a time in post-order (to gather
all messages at the root) and then in reverse post-order (to spread all messages back to all nodes).
We also assume that L > 2 ( L ≤ 2 only occurs if there are 1 or 2 nodes total). The details of the
algorithm are given in Algorithm 4.

We will first prove a couple lemmas needed for the proof of Theorem 3.1.5.
Lemma 3.4.1. The graph G′i has a 3L matching which matches ever vertex of Ni to a some
vertex of Ui and every vertex of Ui has degree at most 3L.

Proof. Consider the graph G′i = (Ni, Ui, E
′
i). Let pv be a path that v’s message take from v to r

in the optimal solution. Let p′v be the prefix of pv until the first vertex of Ui. All the paths pv have
length at most L (since this is the length of the optimal schedule). For each node w ∈ Vi, w is in
at most one of the p′v for v ∈ Ni. This is because if two p′v’s from the same path in Pi arrive at a
node, there would be a path of length at most 2L between two nodes in Ni from the same path Pi;
But the paths in Pi were chosen to be shortest paths in Ci−1, and Ni were nodes that were pairwise
distance 2L+1 from each other, a contradiction. Now consider u ∈ Ui and the p′v forNi that match
to u: there can be at most L nodes from which messages go from Vi to u (since that is an upper
bound on its message receiving degree in the optimal solution). Thus, in the optimal solution there
are at most 3L paths from Ni to any specific node in Ui and these paths have length at most L. So,
there must exist a 3L-matching in G′ which matches every vertex of Ni to some vertex of Ui and
no vertex of Ui has degree more than 3L.

Lemma 3.4.2. Each iteration of the step 13 in algorithm 4 takes time at most O(L log n)
and moves the messages to Ui.

Proof. In Algorithm 4, step 13 is just to achieve the last step of message movement in the qv paths.
Each node w ∈ Vi can be adjacent to at most 3 nodes in a given path of Pj for any j < i, as these
paths are shortest paths inGj−1, and in particular these nodes are within 2 of each other in the path.
Also, for a given w ∈ Vi, w can be adjacent to multiple paths in Pj but they must all be in the same
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Algorithm 4 A gathering procedure for radio gossip in planar graphs.

1: Clusters C0 ← {V }; Vertices V0 ← V ; Graph G0 ← G; Iteration i← 1.
2: while Vi−1 6= ∅ do
3: for all connected component C ∈ Ci−1 do
4: Choose some v ∈ C. Find shortest paths p1, p2, p3 from v that form a 3-path separator in

C using [79]; Add these to Pi, the paths found in the ith iteration.
5: Add v and every (2L+ 1)st vertex along paths p1, p2, p3 to Ni

6: end for
7: Remove the vertices in Pi from Vi−1 to get Vi; Let Gi be G[Vi] and Ci denote the connected

components of Gi; Increment i.
8: end while
9: while i > 0 do

10: Do 2L rounds of radio broadcasts in series on nodes that are 2L + 1 apart from each other
along the paths in Pi to gather all the messages on Pi at the nodes Ni.

11: Form G′i a bipartite graph from Ni to Ui = ∪i−1j=1Pj . Add an edge uv ∈ E ′i if there is a path
from u ∈ Ni to v in G[Ci−1 ∪ {v}] of length at most L. Find a 3L-matching in G′ where
every vertex of Ui has degree at most 3L.

12: Do up to L rounds of radio broadcast to get the messages from Ni to within one node of
Ui, along the paths in the 3L-matching found above. Note that the messages stay within the
component in Ci−1 containing u for this part.

13: Move the messages from the last nodes in Ci−1 to their destination nodes in Ui in the 3L-
matching using at most 9L rounds for each of the paths (27L log n total).

14: Decrement i
15: end while

component of Cj−1, and there is at most three such paths. Let Skj (`) be every third vertex on the
paths P k

j starting with the `th vertex. In 3L steps (the maximum degree of the matching at these
nodes) we can gather the messages that need to be received at Skj (`) as no node is adjacent to two
nodes in this set. Doing this gathering for every shift ` from one to three, and each of three choice
of which path k, a total of 27L steps gets the message from the qv to Pj . This process is repeated
for each collection Pj with j < i. Now all the messages that were along Pi have been moved to
some node in Ui = ∪i−1j=1Pj in 27L log n steps.

Having established the lemmas, we now give the proof of Theorem 3.1.5.

Proof of Theorem 3.1.5. First, we establish that the algorithm runs correctly. Let r be the root
(chosen in the first iteration). First the algorithm gathers the messages on the Pi to Ni. We will
divide the paths into P 1

i , P
2
i , P

3
i , so that each component of Ci−1 that has three paths puts one path

in each of these sets. Now, we will handle each of the P j
i one at a time. To deal with P j

i , in the kth
step, the nodes which are 2L−k further from a node in Ni broadcast all their messages to the node
one closer to Ni. There is no interference amongst the nodes in Vi−1 as only nodes at distance at
least 2L in each component of Ci−1 are broadcasting at a time, and nodes in different components
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are non-adjacent (since they are disconnected by the separators Pi−1). This will gather all the
messages along P j

i . Doing this once for each of the P j
i in 2L steps, all the messages currently on

Pi will be gathered at the Ni in 6L steps. The messages are all currently at Ni or Ui.
Lemma 3.4.1 tells us thatG′i has a 3L-matching as desired, and so we can find such a matching.

Once a matching is chosen, let qv be a shortest path within Gi−1 from v ∈ Ni to the vertex it is
matched with in Ui. Within each component of Ci, we can broadcast along the qv for every Ni

in one of the paths simultaneously; There will be no interference as the Ni’s and their matching
paths are far apart within Ci−1. Thus, it takes at most L rounds of radio broadcasting to move the
messages from Ni along their qv to the vertex before Ui.

Lemma 3.4.2 gives us that in time O(L log n) we move the messages onto Ui.
In the last iteration of the process, we will have all the messages on the first path separator P1.

P1 is a path separator of shortest paths on the whole graph and the diameter of G is a lower bound
on L. So, in 3L steps we can move the messages from P1 to r. We have now successfully gathered
all the messages to r.

The time it takes to deliver all the messages to r is at most O(L log2 n). The path separator
ensures that each component has at most a constant fraction of the number of vertices of the original
graph. Therefore, the final i ≤ log n. Each iteration, the number of rounds of broadcast we do is
6L in the first part and 27L log n in the last step. So, this schedule uses O(L log2 n) steps to gather
all the messages at r.

3.5 Minor-free graphs
In this section, we prove that both results on planar graphs can be extended to any family of minor-
free graphs. For this section, we will have to use the more general definition for path-separators.
Definition 3.5.1. [1] A vertex-weighted graph G is k-path separable if there exists a sub-
graph S, called a k-path separator, such that:

1. S = P0∪P1∪. . . where each subgraph Pi is the union of ki shortest paths inG\∪j<iPj
2.

∑
i ki ≤ k

3. either G\S is empty, or each connected component of G\S is k-path separable and
has total vertex weight at most half of the original.

This definition of path separator while more complicated can be integrated into our PlanarM-
CMulticast algorithm and algorithm 4 with only small adjustments. We will use the following to
theorem which tells us when a k-path separator exists and can be found.
Theorem 3.5.2. [1] Every H-minor-free weighed connected graph is k(H)-path separable,
and a k(H)-path separator can be computed in polynomial time.

Note that k(H) = O(|H|) in the above construction.

3.5.1 Multicommodity multicast in minor-free graphs

Consider that our graph is H-minor free and k(H) is the number of paths needed for the path
separator. We will need to repeat steps 3-8 of the original algorithm for each subgraph of shortest
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paths. Other than that, the algorithm remains the same.

The main changes to the algorithm are as follows.

• The path separator we find is different.
• We may need to iterate through steps 3-8 of the original algorithm multiple times.

Since these are the only changes to the algorithm, we first see that finding the path separator
takes polynomial time, and the number of iterations increases by at most a factor of k(H) (a
constant) so the algorithm still runs in polynomial time.

The only other change to the analysis is that the number of recursions is k(H) log k. This gives
that we incur a factor of ( 1

1−γ )k(H)γ 3
γ

when scaling the LP. Since γ = 1
log k

, the LP gets scaled
by a factor of O(ek(H) log k). Since |H| and hence k(H) is a constant, we get that the resulting
schedule from this algorithm is at most O((OPT log k + log n) log2 k logn

log logn
). In terms of k(H),

our algorithm builds a schedule that takes O((OPT log k + log n) log2 k logn
log logn

k(H)ek(H))

This proves theorem 3.1.6.

3.5.2 Radio Gossip in Minor-free Graphs

The modification to go from radio gossip on planar graphs to radio gossip on minor-free graphs is
even more simple. Let k = k(H) where our graph G is H-minor-free. We only change how we set
up all of our initial sets; Pi, Ci, Vi, Ni, Ui. For each iteration, we will define up to k of these sets
one for each of the (potential) subgraphs which compose the path separator.

The only major change to this algorithm is the set-up. In the set-up, we have to process the
subgraphs which compose the path separator one at a time (as opposed to there only being one
subgraph which is the whole path separator). This only increases the number of iterations by a
factor a k(H).

The other change is that everywhere we had a 3 before it now becomes a k = k(H). All
our previous lemmas and theorems hold if we change the 3 arising from the planar case to k.
Therefore, we have shown that this algorithm produces a schedule for gathering which runs in
time O(L log2 n) (or O(Lk3 log2 n) if k is not constant) to gather all the messages in one place.

We again use the result of Kowalski and Pelc to broadcast the messages once they have been
gathered [59]. This broadcast takes time L + O(log2 n), so the whole gossip schedule takes
time O(L log2) proving Theorem 3.1.7 as desired. We again use the result of Kowalski and
Pelc to broadcast the messages once they have been gathered [59]. This broadcast takes time
L + O(log2 n), so the whole gossip schedule takes time O(L log2 n) proving Theorem 3.1.7 as
desired. If we don’t assume k = k(H) is a constant, then the algorithm takes time O(Lk3 log2 n).
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3.6 Conclusion
We gave the first proof of an upper bound of O(log k) on the integrality gap of the POISE-
LP. We utilized the poise result combined with path separators to develop an O(log3 k logn

log logn
)-

approximation for telephone multicommodity problem on planar graphs. In addition, we develop
an O(log3 n)-approximation for radio gossip on planar graphs. Lastly, we extend these results to
graphs which are minor-free. One natural open problem is if these path separator techniques can
extend to the other communication problems in planar graphs. In particular, does the path separa-
tor technique or poise problem allow for better approximations for the edge-star model in planar
graphs.
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Chapter 4

Design of Overlapping Networks

4.1 Introduction

In large Internet publishing systems, a variety of sources of information constantly refresh their
content, while a set of subscribers continuously pull this updated information. The recent widespread
adoption of the “Internet of Things” and “Web 3.0” tools similarly involves the constant real-time
sharing of information between producers of relevant content and their corresponding consumers.
Common examples include syndication systems as well as distributed databases that contain infor-
mation originating at sources with sinks interested in the most up to date copies.

A natural approach to enable efficient information transfer in such systems is to build a cost-
effective collection of networks, one for each publisher and supplier: the publishers push their
updates to a set of locations via their respective networks, while the subscribers pull the informa-
tion, refreshed by multiple publishers, from these intermediate nodes using their own networks.
Note that each subscriber network needs only to overlap those publishers’ networks that are of
interest. Such interests are represented by an auxiliary bipartite demand graph with publishers on
one side, subscribers on the other, and edges (of interest) between the two. Since the individual
networks are being used for scatter/gather or push/pull operations (by publishers/subscribers re-
spectively) the two natural structures are: trees and overlay stars. Trees correspond to situations
where the entity (e.g. a pusher, such as Facebook, or a puller, such as the IRS) has sufficient
network presence to employ multicast/reverse-multicast while overlay stars correspond to point-
to-point communication.

This basic framework gives rise to a class of problems we have christened DON or Design of
Overlapping Networks. Given their relevance to developments in the Internet ecosystem, these
theoretical problems are significant from a practical perspective. Our central goal is to settle the
polynomial-time approximability for the most general DON problem, in which we have an arbi-
trary demand graph, and arbitrary choice of tree or overlay star by each publisher/subscriber. In this
chapter, we obtain a constant approximation for the special case when all subscribers are interested
in all publishers, and a logarithmic approximation for the general case. The latter approximation
is, in fact, with respect to the value of a natural linear programming relaxation of the problem. In
a contrasting result, we establish a non-constant integrality gap for this linear program. However,
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the exact approximability status of the general DON problem remains tantalizingly open.

4.1.1 Problem Definition

In the general DON problem we are given an undirected graph G = (V (G), E(G)) with non-
negative costs on the edges c : E → Z+, subsets of nodes P, S ⊆ V (publishers and subscribers
respectively), the type of network to be installed for each publisher and subscriber, Type : P ∪
S → {tree, star}, and an auxiliary demand graph D = (V (D), E(D) where V (D) = P ∪ S and
E(D) ⊆ P × S specifying (publisher, subscriber) pairs whose networks are required to overlap
(intersect); the goal is to build a collection of networks satisfying the input requirements. We
assume that the edge costs form a metric: they are symmetric and satisfy the triangle inequality.
Any instance of the general DON problem can be split into four sub-instances. When the type
requirement Type is tree (resp., star) for all publishers and subscribers we refer to the problem
as tree-tree DON (resp. star-star DON). We also use tree-star DON to refer to the two problem
variants where on one side, say the publishers, we have rooted trees while on the other, we have
rooted stars. We use the prefixes general and complete to denote arbitrary and complete demand
graphs, respectively, as in general tree-tree DON or complete tree-star DON, etc. Thus, the term
general (complete) DON refers to the problem where the demand graph is arbitrary (complete) and
the type requirement may vary across terminals.

We denote the installed network byN = (V,EN); Pi denotes the network installed at publisher
pi and Sj the network rooted at subscriber sj . Then, the multi-graph N = (∪pi∈PPi) ∪ (∪sj∈SSj)
is the (multi-set) union of all the installed networks. The cost of N is the sum of the costs of
all the constituent networks, with each edge counted as many times as the number of individual
networks they are present in. Recall that the installed networks are operated autonomously by each
publisher and subscriber, and thus the cost of an edge needs to be multiplied by the number of such
independent networks that build and utilize it in their updates.

4.1.2 Results and Techniques

We present new algorithms and results for several DON problems.
1. We conjecture that a polynomial-time constant-factor approximation for general DON is

not achievable. We present in Section 4.2.1 an Ω(log log n) integrality gap for a natural
LP relaxation of the general tree-tree DON; note that this result also extends to the general
DON problem. This integrality gap proof, which is our strongest technical contribution, is
based on a novel reduction from a well-studied LP relaxation for the group Steiner problem,
applied to a hypercube demand graph instance of DON.
On the positive side, we present an O(log n)-approximation algorithm for the general DON
problem in Section 4.2.2. The main ingredient of our result is a constant-factor approxi-
mation algorithm for tree-star DON on tree metrics, by a careful deterministic rounding of
an LP relaxation of the problem. The logarithmic approximation for general DON follows
by extending to general metrics and combining with results for the star-star and tree-tree
variants.
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2. We next study the complete DON variants where the demand graph is complete. We give
constant-factor approximation algorithms for all three variants— tree-tree, star-star and tree-
star— which together yield a constant-factor approximation for complete DON. Unlike our
algorithm for general DON, all of our algorithms for the complete demand case are combi-
natorial; they combine structural characterizations of near-optimal solutions with interesting
connections to access network design and facility location problems.

(a) Our approximation factor for complete tree-tree DON in Section 4.3.1 is 4ρTS where
ρTS is the best known approximation for the tree-star Access Network Design prob-
lem (which is generalized by the Connected Facility Location or CFL problem). Thus
ρTS ≤ ρCFL ≤ 4 [19].

(b) Our approximation factor for complete star-star DON in Section 4.3.2 is 4α, where α
is the best approximation factor achieved for uncapacitated facility location, improves
over the result in [10].

(c) For the complete tree-star-DON problem, we get a 4ρTS-approximation in Section 4.3.3.

3. Lastly, we consider when the publishers and subscribers are the same. In this case, there is a
flow proof that the optimal solution has one node to which all the other nodes take a shortest
path to. In Section 4.5, we provide a proof of this case, and a different approximation
algorithm for the complete tree DON case which has an improved approximation factor
when P and S are close to the same size.

4.1.3 Related Work

Data Dissemination Networks. Our formulation of DON generalizes network data dissemination
problems first studied in [10]. Using our terminology, the relevant results of [10] are O(log n)-
approximation algorithms for general tree-tree DON and general star-star DON, and a 14.57-
approximation for the complete star-star DON. Our work improves the approximation factor for
complete star-star DON to under 6 (since the current best approximation for uncapacitated facil-
ity location is 1.488 [61]), and presents new results for many other DON problems. The star-star
DON problem is also closely related to the minimum-cost 2-spanner problem studied in [17, 58].
In particular, a greedy algorithm essentially along the same lines as an algorithm of [17] yields an
O(log n)-approximation for the star-star-DON problem even when the underlying distances do not
form a metric.
Network Design. There has been considerable work in network design, which is concerned with
the design of network structures that satisfy some connectivity properties and optimize some under-
lying cost structure [82]. Well-known problems in this area include the minimum Steiner tree [34],
group Steiner tree [35], and general survivable networks [81]. One key distinction between many
of these network design problems and DON is that the desired solution in DON is a collection
of networks (as opposed to a single network), and each edge contributes to the total cost of the
solution as many times as it occurs in the network collection. On the other hand, the goal in many
classical network design problems is to build a single network. Note that the problem of building a
single minimum-cost network such that every pair of nodes in a given demand graph is connected
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in the network is exactly the generalized Steiner network problem, for which polynomial-time
constant-factor approximations exist.
Multicommodity facility location. Another stream of work has addressed the extension of facility
location problems to reach clients with additional restrictions on the facility opening costs, to reach
facilities more robustly [78], or with the addition of services that facilities open to satisfy the
clients with various cost functions governing the installation of services and facilities [74, 76]. The
work in [68] arising from publisher-subscriber mechanisms is most closely related to our work,
and rather than use a network from each publisher, models the publisher as a commodity that
can be supplied at various nodes in the network by installing “facilities” of appropriate costs; the
subscribers build minimum-cost networks to reach these facility installations of the appropriate
publishers.
Access Networks and Connected Facility Location. Our algorithms for the complete DON prob-
lem are connected to to the access network design and facility location problems. In a version of
the Access Network Design problem [73], we are given an undirected graph, a root node and non-
negative metric costs on the edges, along with a subset of terminal nodes. The goal is to design a
backbone network in the form of a tree or tour which is built with higher speed and higher quality
cables, while the terminals access the backbone using direct access edges. Thus the overall net-
work is a backbone rooted Steiner tree (or tour), with access networks that are stars arising from the
terminals and ending at the nodes of the backbone. We are given a cost multiplier µ that denotes the
cost overhead factor for the backbone compared to the access network and the objective to be mini-
mized is the total cost µ·c(backbone network T )+

∑
stars s c(s).A ρAN = 3+2

√
2-approximation

is presented for this problem [73] when the backbone is a ring and the access network is a star.
Subsequent work [19, 43, 77] present constant-factor approximations for other generalizations and
variants of this problem as well using LP rounding and primal-dual methods. The current best
approximation factor for the CFL generalization is ρCFL ≤ 4 [19], which also extends to tree-star
access network design, i.e. ρAN ≤ ρCFL ≤ 4.
Virtual Private Network. The DON problems are also closely related to the VPN and asym-
metric VPN problems. The VPN problem can be solved exactly [41], while the asymmetric VPN
problem is NP-Hard but has a constant approximation [75]. The VPN problems differ from DON
as each VPN problem instance seeks only one network, while a DON instance builds multiple
networks. Nevertheless, we are able to decompose an approximate solution for asymmetric VPN
into multiple networks, and obtain a useful approximation for the complete tree-tree DON problem
(Section 4.4). As we establish in Section 4.3.1, however, a more direct approach yields a much
better approximation factor.

4.2 DON with General Demands

In this section, we consider approximation algorithms for the general DON problem. We present
in Subsection 4.2.1 an Ω(log log n) integrality gap for a natural LP relaxation of the tree-DON
problem (with general demands). We present a constant approximation algorithm for tree-star
DON on tree metrics and establish Theorem 4.2.2.
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4.2.1 Integrality Gap for Tree-Tree DON

In this section, we show that a natural LP formulation for the tree-tree DON problem has super-
constant integrality gap. We note that the same lower bound on integrality gap extends to the
appropriate LP for general DON. A natural integer program, IPBT for the tree-tree DON problem
is as follows (all variables are 0− 1): we let r ∈ P ∪ S denote a publisher or subscriber node that
serves as the root of its tree Nr; zre is an indicator variable that is 1 iff edge e ∈ E(G) is in tree Nr;
yrh is an indicator variable that is 1 iff vertex h is in tree Nr; x

r,s
h is an indicator variable that is 1 iff

vertex h is in both trees, Nr and Ns; C will refer to a cut which is a subset of vertices of V (G) and
E(C) will denote the edges between C and its complement V (G) \ C. The integer program IPBT

for the tree-tree DON has the following nontrivial constraints.

min
∑

r∈V (D),e∈E(G)

cez
r
e∑

e∈E(C)

zre ≥ yrh ∀C, r ∈ C, h ∈ V (G) \ C

xr,sh ≤ yrh ∀r, s ∈ V (D), h ∈ V (G)∑
h∈V (G)

xr,sh ≥ 1 ∀(r, s) ∈ E(D)

IPBT

The first set of cut covering constraints enforce that the tree rooted at r is connected with all
nodes h for which yrh is set to one. The third set enforces all pairs of terminals r, s in the demand
graph must meet in some hub vertex h, while the second set enforces that if a node h is used as a hub
for a pair, it is required to occur in both these trees. Relaxing the above integer program by allowing
the variables to take values in [0, 1] gives us the natural linear program LPBT. Observe that the
feasible integral points of the linear program are exactly the solutions to the integer program.
Theorem 4.2.1. For every sufficiently large n, there exist instances of tree-tree DON with
n = |V (G)| for which LPBT has an Ω(log log n) integrality ratio.

Proof. Recall that the integrality ratio of a (minimizing) linear program is the minimum ratio
between any feasible integral point and the optimum fractional solution. Our proof will proceed
by a reduction from a linear program for the Group Steiner Tree (GST) problem.

Given a tree T with edge costs and a collection of groups of leaves, the Group Steiner Tree
problem is to find a minimum cost subtree such that at least one vertex from every group is con-
nected to the root. In [45] it was shown that a natural linear program for the GST problem has an
Ω(log2 n) integrality ratio even when the input metric costs c arise from an underlying tree. Similar
to the linear program for the tree-tree DON problem we present the linear program LPGST as the
relaxation of an integer program IPGST with 0− 1 variables.
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min
∑

e∈E(T )

xece

gi ∩ C = φ ∀C, r ∈ C∑
e∈E(C)

xe ≥ 1

IPGST

Here is an intuitive explanation of what the variables in IPGST represent: xe is an indicator
variable that is 1 iff edge e ∈ E(T ) is in the solution subtree; gi, 1 ≤ i ≤ k are the k groups and C
is a subset of vertices of V (G) referring to a cut and E(C) will denote the edges between C and its
complement V (G) \ C. The main cut covering constraints enforce that each group is connected to
the root node r.

As stated before [45] show that LPGST has an integrality ratio of Ω(log2 n) even on tree metrics
when k, the number of groups, is Ω(n) where n = |V (T )|.

Given an instance, TGST of LPGST with n = V (T ) vertices and k groups, we transform it into
an instance, GDBT of LPBT with N = 2kn = |V (G)| vertices in the host graph such that

• corresponding to every fractional solution, of value fGST , of LPGST there is a fractional
solution of value fBT = 2kfGST to LPBT, and

• corresponding to every feasible integral point, of value IBT , of LPBT there is a feasible
integral point of value IGST = IBT (1+log k)

2k
to LPBT.

The transformation is intuitive: we take a “graph product” of the Group Steiner Tree instance
with a hypercube of dimension k, where k is the number of groups. In more detail, given the tree
T for the Group Steiner Tree instance, the demand graph D is a hypercube of dimension k, with
the ith dimension of the hypercube being associated with group gi. The host graph G has 2k copies
of T , one for each vertex of the demand hypercube (where the demand edges go between the roots
of the corresponding trees). For every edge (r, s) in D in the ith dimension we connect pairwise
with zero-cost edges the leaves in group gi of the copy of T corresponding to r, with the leaves in
group gi of the copy of T corresponding to s.

It is easy to see that fBT = 2kfGST for the above transformation - observe that replicating the
fractional solution to LPGST in each of the 2k copies of T is a valid fractional solution to LPBT.

For the other direction, i.e., to see IGST = IBT (1+log k)
2k

first observe that for edge (r, s) in di-
mension i of the demand hypercube, at least one of the trees corresponding to r or s must cross
dimension i and the only way to cross dimension i is along a 0-cost edge connecting two cor-
responding group gi leaves. Now note that any tree T ′ in an integral solution to LPBT can be
transformed into a subtree of T by keeping an edge in T if T ′ contains the corresponding edge in
any copy of T inG. Let the subtree of T so obtained be called the retract of T ′. It is easy to see that
if T ′ ever crosses dimension j then a leaf in group gj is connected to the root of T in its retract and
that the cost of a retract is never more than the cost of the original T ′. By our earlier observation
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for any edge (r, s) in dimension i at least one of the two retracts, that of the tree corresponding to
r or corresponding to s must connect a node in group gi to the root. Hence if we select a node in D
at random and take its retract then any given group is connected with probability at least 1/2 and it
has expected cost IBT

2k
. Thus if we take the union of 1 + log k retracts chosen uniformly at random

then the resulting subgraph of T has expected cost IBT log k
2k

and the probability any given group is
not connected to the root is less than 1

k
. Since there are k groups this means there exists a subgraph

of T , connecting the root to every group, of cost at most IBT (1+log k)
2k

, i.e., IGST = IBT (1+log k)
2k

.

From fBT ≤ 2kfGST and IGST ≤ IBT (1+log k)
2k

it follows that IBT
fBT
≥ IGST

fGST
(1 + log k). By [45],

when k = θ(n) we have that IGST
fGST

= Ω(log2 n) from which it follows that IBT
fBT

= Ω( log
2 n

log k
) =

Ω(log n) but the size of the transformed instance is N = 2kn, i.e., n = Ω( logN
log logN

). In other words,
the integrality gap IBT

fTT
= Ω(log n) = Ω(log( logN

log logN
)) = Ω(log logN)

4.2.2 A logarithmic approximation for general DON

We next show that the general DON problem can be approximated to within an O(log n) factor
in polynomial time. As discussed in Section 4.1, the general DON problem can be split into
three problems: tree-tree DON, star-star DON, and tree-star DON. In previous work, O(log n)-
approximation algorithms have been developed for tree-tree DON and star-star DON [10]. We
now present an O(log n)-approximation for tree-star DON, implying an O(log n)-approximation
for general DON.

Our O(log n)-approximation for tree-star DON is obtained by deriving a constant-factor ap-
proximation for the special case of tree metrics, and invoking the standard reduction from general
metrics to tree metrics [25]. Our constant-factor approximation algorithm, which rounds an LP
relaxation, essentially generalizes a result of [68] on multicommodity facility location from a uni-
form facility cost case to the case where the facility costs form a tree metric.

Theorem 4.2.2. The tree-star DON problem with general demands on tree metrics can
be approximated to within a constant factor in polynomial time. This implies an O(log n)-
approximation algorithm for general DON on general metrics.

We first present a linear programming relaxation for the problem. Let T denote the given tree
which is our metric. For a publisher j and an edge e of T , let zje represent the extent to which j’s
tree uses e. For a subscriber i and leaf node v, let yiv denote the extent to which i’s star visits v.
For leaf node u, subscriber i and publisher j such that (i, j) is in the demand graph, let xi,ju denote
the extent to which j meets i at u. Let d(u, v) denote the distance between u and v under the tree
metric; abusing notation somewhat, let d(e) denote the distance between the two endpoints of the
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edge e. Then, we have the following LP.

minimize
∑

j,e z
j
ed(e) +

∑
i,u y

i
ud(i, u)

subject to
zje ≥

∑
u:e∈Pju x

i,j
u for all i, j, e∑

u x
i,j
u ≥ 1 for all (i, j) in demand graph

yiu ≥ xi,ju for all i, j, u
xi,ju , y

i
u, z

j
e ≥ 0 for all i, j, u, e

We now present our algorithm. We introduce some useful notation first. Let Y i
v denote the sum

of yiw, over all leaves w in the subtree rooted at v. Similarly, let X i,j
v denote the sum of xi,jw , over

all leaves w in the subtree rooted at v.
1. Solve the above LP to obtain a fractional solution (x, y, z).

2. For every subscriber i:
• For every node v such that Y i

v ≥ 1/3 and there is no child c of v such that Y i
c ≥ 2/3:

we mark node v.
• For each marked node v such that no ancestor of v is marked, we add v to σ(v); we

refer to v as a type-C hub for i.
• For every node v such that (a) there is no ancestor of v that is a type-C hub for i, and

(b) there are two children c1 and c2 of v such that Y i
c1
≥ 1/3 and Y i

c2
≥ 1/3, we add v

to σ(v); we refer to v as a type-A hub for i.
• For every node v that is an ancestor of a type-C hub, we define W i

v to be sum, over
every child c of v that is not an ancestor of a type-C hub, of Y i

c .
• For every path p from the root or a type-A hub node to a descendant type-A hub or

type-C hub node: we divide p into minimal contiguous segments such that the sum of
W i
v, over all v in the segment, is at least 1/3; for each such segment, we create a type-B

hub for i at the lowest node in the segment.
• The star network for i connects i to each type-A, -B, and -C hub.

3. For every publisher j, the tree network consists of all edges e such that zje ≥ 1/3.
We prove Theorem 4.2.2 by establishing the following two lemmas.

Lemma 4.2.3. For any edge (i, j) in the demand graph, the tree of publisher j overlaps
with the star of subscriber i at least one node.

Proof. Fix publisher j and subscriber i such that (i, j) is an edge in the demand graph. Consider
some subtree rooted at a node r0 such X i,j

r0
is at least 1/3 in the LP solution, while for any child c

of r0, X i,j
c < 1/3. Suppose (r0, r1, . . . , rf ) denote the path from r0 to the root of the tree.

We first show that if there is a type-C hub at a node rk, then the tree of publisher j includes
node rk. By our algorithm’s choice of locating type-C hubs, it follows that Y i

rk−1
< 2/3. Therefore,

publisher j meets subscriber i less than 2/3 in the subtree rooted at rk−1. We consider two cases.
If j is in the subtree rooted at rk−1, then for the edge e = (rk−1, rk), zje ≥ 1/3. Otherwise, since
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X i,j
rk−1
≥ X i,j

r0
≥ 1/3, again we have zje ≥ 1/3. Thus, in both cases, we ensure that the tree for

publisher j contains rk.
We next show that if there is a type-A or type-B hub for i at a node rk and there are no hubs

for i at any rg, 0 ≤ g < k, then the tree for j must include rk. Since there is no type-A hub at any
rg, 0 ≤ g < k, each rg has at most one child that has a descendant with a type-C hub; if there were
two such children, then rg would have a type-A hub. Furthermore, there must be a type-C hub in
the subtree rooted at r0; if not, then the first ancestor of r0 to have a hub would have a type-C hub,
which would contradict our assumption. So suppose there is a type-C hub in the subtree rooted at
r0, say under the child r−1 of r0. Then, it must be the case that the sum of W i

rg , over 0 ≤ g < k, is
at most 1/3, since otherwise we would have a type-B hub at rg. Furthermore, by the definition of
r0, X i,j

r−1
< 1/3. This implies that j meets i to an extent of 1/3 outside the subtree rooted at rk−1

and at least 1/3 inside the subtree rooted at rk−1. Thus, regardless of where j is located for edge
e = (rk−1, rk), we will have zje ≥ 1/3, ensuring that the tree for publisher j contains rk.

Lemma 4.2.4. The total cost of the tree and star networks is at most a constant factor
times the LP optimal.

Proof. An edge e is added to the tree of publisher j exactly when zje ≥ 1/3. Therefore, the cost of
the tree network of j is within the cost for j in the LP.

We next consider the costs of the subscriber stars. There are three parts to it. First is the distance
to the type-A hubs. If a type-A hub for i is created at a node r, then there exist two children c1 and
c2 of r such that Y i

c1
and Y i

c2
are both at least 1/3. Clearly, i is either not in the subtree rooted at c1

or not in the subtree rooted at c2. In either case, the cost for i in the LP solution for reaching the
fractional hubs in one of c1 or c2 is at least d(i, r)/3. Adding this over all the type-A hubs yields a
cost that is at most 3 times the LP cost for i.

If a type-C hub is created at a node r, then we consider two cases: the LP cost associated with
the fractional hubs under the subtree at r is at least d(i, r)/3.

If a type-B hub is created at a node r, then consider the sequence of ancestors a of r, whose
W i
a add up to 1/3. The cost of i reaching the fractional hubs in the LP that contribute to these W i

a

is at least d(i, r)/3.
The fractional hubs against which we have charged the type-C and type-B hubs are different,

so the cost for the type-B and type-C hubs is at most 3 times the LP cost for i, yielding an O(1)-
approximation for the overall total cost.

4.3 DON with Complete Demands

In this section, we present constant factor approximation algorithms for the DON problem when
the demand graph is complete. We obtain this result by deriving constant-factor approximations
for the three variants—tree-tree, star-star and tree-star— in the following subsections.
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4.3.1 Complete tree-tree DON

The complete tree-tree DON problem has an interesting connection to the asymmetric VPN prob-
lem [75], which we can exploit to obtain a constant-factor approximation. As we discuss this
reduction and explain in Section 4.4, however, the approximation we obtain using the best known
asymmetric VPN algorithm is 49.84. Here, we present a more direct approximation algorithm for
which we are able to establish a much better approximation factor.
Theorem 4.3.1. There is a 4ρTS-approximation algorithm for complete tree-tree DON, where
ρTS is the best factor for the tree-star access network design problem.

In the rest of this subsection, we give a proof of Theorem 4.3.1. Given N∗, an optimal solution,
let us denote the publisher and subscriber networks by P1, P2, . . . , Pk and S1, S2, . . . , Sl where we
index the nodes so that we have c(P1) ≤ c(P2) ≤ · · · ≤ c(Pk) and c(S1) ≤ c(S2) ≤ · · · ≤ c(Sl).
Let c∗P and c∗S denote the total cost of the publisher and subscriber trees. Let sj be the subscriber
whose network is Sj and let pi be the publisher whose network is Pi. Note that feasibility requires
that Pi ∩ Sj 6= ∅ for all i, j. Let us also assume without loss of generality that c(P1) ≤ c(S1)

The key transformation of the optimal solution is a reconfiguration of the subscriber networks
where we replace each tree Sj for j 6= 1 by the direct edge from subscriber node j to subscriber
node 1 concatenated with the subscriber tree S1. In other words, we set S ′j = {(sj, s1)} ∪ S1 for
every subscriber sj 6= s1. Let us assign S ′j = Sj .

Note that the modified subscriber trees are still feasible since the original subscriber tree S1

intersects every publisher tree. We now bound the cost of the additional edge from subscriber j to
the subscriber 1, the root of S1.
Lemma 4.3.2. For every subscriber j 6= 1, we have ci1 ≤ 3c(Sj).

p1

s1

si

Figure 4.1: The solid lines show the trees Si and S1 and the dashed lines show the tree P1. The
dotted line here is the path from si to s1 through the trees Si, P1, and S1.

Proof. To see this, note that by taking the path from j in Sj to its intersection with P1 and following
it to the intersection of P1 and S1 and continuing along S1 to the subscriber node 1, we have found
a path from j to 1 of cost no more than the sum of the costs of Sj, P1 and S1. However, since
c(Sj) ≥ c(S1) ≥ c(P1), the length of this path is at most 3c(Sj).
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Given that every subscriber contains the tree S1, it is particularly simple to design the publisher
network P ′i (for publisher pi) that needs to reach this tree: it will simply be a direct edge that
represents the shortest path from the publisher pi to the tree S1. The union of all such direct edges
gives a collection of stars that end at the subscriber tree S1. Furthermore since the subscriber tree
S1 is going to be used by every subscriber node, its cost must be counted |S| = l times in the
objective.

The resulting problem of finding the best tree for S1 is exactly the tree-star access network
design problem [73] with the root being subscriber 1, the multiplier M = |S| and the terminals
being R = P , the publisher nodes. Given an optimal solution N∗ for the complete tree-tree
DON problem, we thus have a solution to the tree-star access network instance of cost at most
c(P ∗) + |S| · c(S1). We thus have the following lemma.
Lemma 4.3.3. For the correct choice of the subscriber node 1 as the root with multiplier
|S| and terminals P , there is a solution to the tree-star access network design problem of
cost at most c∗P + |S| · c(S1).

Proof of Theorem 4.3.1. The approximation algorithm tries every subscriber node as the root of
the tree-star access network problem formulated above. By adding the direct edge from each other
subscriber to this root, and extending the backbone tree with each such edge, we get a solution
to the complete tree-tree DON problem. The algorithm keeps the solution of smallest total cost
among all choices of the root subscriber node. The total cost of the solution is the sum of the cost
of the tree-star access network design problem and the sum of the costs of the direct edges from the
subscribers to the root. By Lemma 4.3.2, the latter cost is no more than three times the cost of the
tree (with the multiplier of —S—) in the solution to the tree-star access network design problem.
By 4.3.3 and the ρTS-approximation factor for the tree-star access network design problem, we
thus obtain a total cost of at most 4ρTS(c∗P + |S| · c(S1)) which is at most 4ρTS times the cost of
N∗.

It is not hard to extend the above methods to the case when the input terminals are partitioned
into more than two subsets, say R = P1 ∪ P2 ∪ . . . ∪ Pk and the demand graph is the complete
k-partite graph between these k subsets. By considering the partition that has the cheapest tree
network in the optimal solution to be in P1, the above argument can be adapted to give a constant-
factor approximation. We omit the details in this extended abstract.

4.3.2 Complete star-star DON
In this section, we present a constant-factor approximation for complete star-star DON.
Theorem 4.3.4. There is a 4α-algorithm for complete star-star DON, where α is the best
approximation achievable for metric uncapacitated facility location.

Our algorithm and the proof of Theorem 4.3.4 are based on an argument that there exists a
constant-factor approximate solution that has a special structure; our algorithm then computes a
constant-factor approximate solution with this special structure.

Given a solution where the publisher network is P1, P2, . . . , Pk and subscriber network is
S1, S2, . . . Sl, let P1 be the publisher network of smallest cost and S1 be the subscriber network
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of smallest cost without loss of generality. Also, let σ(Pi) denote the set of nodes (which we refer
to as hubs for Pi) in the star for the ith publisher. Likewise, let σ(Sj) be the set of nodes in the star
for the jth subscriber. Thus, we can refer to solutions using the maps defined by σ and denote the
optimal one by σ∗. The next lemma shows a near-optimal solution with a very simple structure.
Lemma 4.3.5. There exists a solution σ such that c(σ) ≤ 4c(σ∗)), and either σ(Si) = σ(Sj)
for all pairs of subscriber networks Si, Sj and |σ(Pi)| = 1 for each publisher network Pi or
σ(Pi) = σ(Pj) for all pairs of publisher networks Pi, Pj and |σ(Si)| = 1 for each subscriber
network Si.

Proof. Without loss of generality, let c(P1) ≤ c(S1). Since each subscriber star intersects all
publisher stars, we have d(si, s1) ≤ c(Si) + c(P1) + c(S1) ≤ 3c(Si). Let C1 denote the set of
publishers that share any hub with p1. Let p2 denote the least-cost publisher not in C1. Let C2 be
the set of all publishers not in C1 that share any hub with p2. In general, let pj+1 be the least-cost
publisher not in

⋃
1≤i≤j Ci. Let Cj+1 denote the set of all publishers not in

⋃
1≤i≤j Ci that share

any hub with pj+1. Let hj denote any hub in σ∗(s1) ∩ σ∗(pj).
Let p′j be an arbitrary publisher inCj . We first obtain the following equation d(p′j, pj) ≤ 2c(Pj′)

(owing to a shared hub and the fact that c(Pj) ≤ c(Pj′)). By construction, for any two distinct pi
and pj , we have σ∗(pi) ∩ σ∗(pj) = ∅; i.e., pi and pj do not share any hubs. Note that this may not
be true of all pairs of publishers in Ci × Cj .

pi

s1

σ(pi)

Ci

Figure 4.2: Here is an example of a Pi. We have shown all it’s hubs, σ(pi). Ci consists of all those
pj’s not in a previous Ck connecting to one of the hubs. Here hi can be chosen to be either of the
top two hubs in σ(Pi).

We now consider two cases. In the first case when c(Pj) ≤ d(s1, hj), we have all subscribers
meet all the publishers in cluster Cj at pj . Consider any subscriber si. It meets pj at some hub, say
hij . Its increase in cost for meeting pj now is at most cσ∗(pj) ≤ d(s1, hj), which equals one leg of
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s1’s star. Since two different pj’s do not share any hubs, the hij’s (for a given i) are all different.
Hence, the total increase in cost for si is at most

∑
j d(s1, hj), which is at most c(S1).

If c(Pj) > d(s1, hj), then we will have all publishers in Cj , go to s1. Fix a publisher p′j in
Cj . Its total cost is at most d(p′j, pj) + c(Pj) + d(s1, hj) ≤ d(p′j, pj) + 2c(Pj) ≤ 4c(P ′j). All the
subscribers also go to s1 to handle this case. We have d(si, s1) ≤ c(Si) + c(P1) + c(S1) ≤ 3c(Si).

So overall, we obtain a blowup of at most 4 in the cost for each publisher and each subscriber.
We have proved that there exists a solution of cost at most 4 · OPT in which every subscriber’s
star connects to exactly the same set of hubs and every publisher’s star is just a line to one of the
hubs.

Proof of Theorem 4.3.4. Using Lemma 4.3.5, we now give a polynomial-time 4α-algorithm where
α is the best approximation achievable for the uncapacitated facility location problem.

Our algorithm considers all possible choices for S1, a linear number (where by symmetry S1

could be on either side). For a given choice of S1, we formulate an uncapacitated facility location
problem, with the set of publishers as the clients, and the potential facility locations being the
publishers and S1. The cost of opening a facility at any of these nodes is the sum of the distances
of all the subscribers to that node. Given a solution to this facility location problem, we obtain
a solution to the complete star-star DON problem as follows: each publisher’s star is a singleton
edge to the facility it is assigned to; each subscriber’s star consists of edges to all the open facilities.

We solve all the linear number of facility location problems, and then the corresponding prob-
lems with the roles of subscribers and publishers reversed, and take the best solution. This yields
the desired approximation.

4.3.3 Complete tree-star DON
We now present a constant factor approximation for complete tree-star DON. Without loss of
generality, let us suppose that the publishers will build trees, and the subscribers will build stars.
The main idea is to show that either the appropriately defined complete star-star DON solution or
complete tree-tree DON solution is within a constant factor of optimal.

Let N∗ be an optimal solution. Let the trees be indexed P1, P2, . . . Pk and the stars S1, . . . S`
such that c(P1) ≤ · · · ≤ c(Pk) and c(S1) ≤ · · · ≤ c(Sk).

First consider the case where c(P1) ≥ c(S1). Note that every Pi and Sj must have a non-empty
intersection. Now for every tree Pj we can redirect it to P1 and then make a copy of P1. So we
will let: P ′j = {(pj, p1)} ∪ Pj .

This solution is feasible because P1 must intersect all the stars. These additions to the solution
cost at most 3c(N∗), as seen in lemma 4.3.2. Now all the stars can simply take an edge which is
the shortest edge to the tree.

The approximation algorithm from this point follows the tree-tree case exactly. In this case, we
get that the final solution has cost at most 4ρTSc(N

∗). Where ρTS is the best constant approxima-
tion for the tree-star access problem.

Next consider the case that c(S1) ≥ c(P1). We will now choose pi’s in a similar fashion to
the complete star-star DON problem. Let p1 be the publisher with the smallest cost tree. Let C1

be all the publishers whose trees meet p1’s tree. Now let p2 be the smallest tree which does not
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intersect p1’s tree. Let C2 be all the publishers not in C1 who meet p2’s tree. Likewise pj+1 will be
the smallest tree not in ∪1≤i≤jCi. Let Cj+1 be all the publishers which intersect pj+1’s tree not in
∪1≤i≤jCi.

Now from hereon, the proof follows that for the complete star-star DON case. Hence we have
a solution within a constant factor of optimal where all the stars go to s1 (the subscriber with star
S1), and some of the publishers; Popen. Each tree goes to the nearest node in S1 ∪ Popen. This
establishes the following lemma.
Lemma 4.3.6. The complete tree-star DON has an O(1)-approximate solution in which
either all the subscribers go to some hubs and each tree goes to the nearest hub among
a set of one subscriber and some publishers, or where all the publisher trees are identical
and all the subscribers go to the closest node in that tree.

For solving the complete tree-star DON problem, we apply our constant-factor approximation
algorithm for the complete tree-tree DON instance, together with our constant-factor algorithm for
the complete star-star DON instance, and take the better of the two. This completes our argument
showing that complete tree-star DON can be approximated to within a constant factor.

4.4 Alternate Algorithm for Complete Tree-Tree DON using
VPNs

We use results from the asymmetric VPN problem [41, 75] and show how it gives an approximation
for complete tree-tree DON. First we introduce the VPN problem. Given a graph G, with edge
costs c, and marginals for each vertex, the VPN problem is to build a network of minimum cost
such that for any set of pairwise demands which obey the marginals, the flow can be routed on our
network. A set of pairwise demands obeys the marginals if the demands a vertex is involved in
does not exceed its marginal. One crucial distinction between VPN and the DON problems is that
while the VPN problem seeks the design of a single network, DON problems seek networks for
every node involved.

Now we define asymmetric VPN. Here the flows are directed, and each vertex has two marginals,
one for how much can flow out of the node, and one for how much can flow into the node. We
restrict to the case where the terminals allow 1 flow out of the node and no flow in, sources, or they
allow 1 flow into the node, and no flow out, sinks.

It turns out that for asymmetric VPN, there is always a tree solution which is within a constant
factor of an optimal solution [75]. We now use this tree solution to get a solution for complete
tree-tree DON.
Lemma 4.4.1. Given a complete tree-tree DON problem, consider an asymmetric VPN
problem with the same input as the DON problem, with the subscribers as sources, and
the publishers as sinks. Then, any tree solution for the asymmetric VPN problem can be
transformed into a solution of the same cost for the complete tree-tree DON problem.

Proof. Let T be the tree which is a solution to asymmetric VPN. Since our solution to asymmetric
VPN is a tree which is adjacent to all the publishers and subscribers, then every edge in the tree
induces a partition of the terminal nodes.
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Consider any edge e ∈ T ; we decide which trees use e. Let S1, P1 be the subscribers and
publishers respectively on one side of the partition; likewise let S2, P2 be the remaining subscribers
and publishers respectively. Now let a = min(|S1|, |P2|) and b = min(|P1|, |S2|). Now a valid
demand matrix would be to require a unit flow from a elements of S1 to a elements of P2 and to
require a unit flow from b elements of S2 to b elements of P1. These a + b flows must all cross e
since T is a tree, therefore e has multiplicity at least a+ b.

Now if |S1| ≤ |P2|, then we assign e to be in the trees for the elements of S1, otherwise e is
in the trees for the elements of P2. Likewise if |S2| ≤ |P1| we assign e to be in the trees for the
elements of S2, otherwise e is in the trees for the elements of P1. The number of times we use e is

min(|S1|, |P2|) + min(|S2|, |P1|) = a+ b

So, we don’t overuse e.
We next need to show that the edges assigned to a node form a tree. Since the original structure

was a tree, we only need to show that the edges assigned to a terminal t are connected. Without
loss of generality, suppose that a copy of e was assigned to be in Ts for s ∈ S1. Let Q be the path
in the tree T from e to s. Let e′ ∈ Q. Let V ′ be the vertices on the same side as s of the partition
formed by removing e′ from T . We know that S∩V ′ ⊆ S1. Likewise we know that P2 ⊆ P ∩V ′C .
Since |S1| ≤ |P2| (because e ∈ Ts), then we know |S ∩V ′| ≤ |P ∩V ′C |. So, e′ is assigned to be in
the tree for nodes in S ∩ V ′. Therefore we have that Q ⊆ Ts. Therefore e is connected to s. Hence
the graphs formed by our assignment scheme are connected.

Lastly, we must show that for every s ∈ S and p ∈ P then Ts and Tp intersect. Consider s ∈ S
and p ∈ P . Let Q be the path in T from p to s and e be an edge in Q. When we look at the
S1, S2, P1, P2 formed by removing e, then either s ∈ S1 and p ∈ P2, or s ∈ S2 or p ∈ P1. Without
loss of generality, assume s ∈ S1 and p ∈ P2. Then e is assigned to be in either the tree for all
elements of S1 or for all elements in P2. So e is in either Ts or Tp. Since Ts and Tp are connected
subtrees of the same tree, and Q ⊆ TS ∪ Tp then Ts and Tp meet at some vertex in Q. Therefore,
all demands are satisfied and this is a valid solution to the complete tree-tree DON problem.

This provides an 49.84 approximation algorithm for the complete tree-tree DON problem.

4.5 DON with complete Demands

4.5.1 Subscribers are also Publishers
For this section, we will begin by considering the case where P = S and the set of demands is
P × P . We present the optimal solutions for the star-star case where the edge costs are metric and
the tree-tree case. We define a hub star to be solution such that there is some node h such that
the network Np for each node is the smallest network containing h. In the star-star case each Np

will just be an edge in a hub star solution. In the tree-tree case each Np will be a shortest path
to h in a hub-star solution. The optimal solution for the star-star case with metric costs and the
tree-tree case is the cheapest hub star. Clearly, computing the optimal solution in both of these
cases becomes straightforward; simply try every possibility for the center of the hub star and take
the cheapest one.
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Theorem 4.5.1. There exists an optimal solution for complete tree-tree (star-star) DON with
P = S which is a hub star.

Proof. To show optimality, we will start with any feasible solution;N = ∪p∈PNp. On this network,
we will construct a multicommodity flow with cost at most that of N . Then we will show that the
flow we constructed is a convex combination of hub stars, and hence the cheapest hub star is
cheaper than the flow.

For any solution N = ∪p∈PNp, let c(p, q) be any node in both Np and Nq. We will call c(p, q)
the connection between p and q. For simplicity , we will have c(p, q) = c(q, p) and c(p, p) = p. Let
wp(v) be the number of connections v makes to connect p to other nodes; this will be the weight
of v with respect to Np.

Now we will begin with the star-star case where the edge costs are metric. Let h(p) be a node
in Np which has the largest weight with respect to Np. We will call h(p) the hub of p.

Now to set up the flow, first each node in P will have one unit of a commodity. For each pair,
p 6= q and p, q ∈ P , then they will send 1/n of their commodity to each other with c(p, q) being
the only intermediate node. Now each node in P has 1/n of each commodity at it. Every p will
now push all the commodities it has to h(p). So, the paths that this flow follows are of the form
p, c(p, q), q, h(q). Where the first edge it follows it uses the edge in Np and the second two edges
it follows are in Nq. If it is the case that c(p, q) = h(q) we will allow this path to shortcut and just
become p, h(q). Now we will show that no edge in N has more than one unit of flow.

Consider an edge in Np which goes to a vertex v which is not the hub of p. So, p will send
wp(v)/n of it’s commodity along this edge, and receive 1/n of wp(v) different commodities. The
total flow on this edge is 2wp(v)/n. Since v is not the hub of p there is some node with weight at
least as large as v. So, wp(v) ≤ n/2 and the flow on the edge pv is at most 1.

Now consider the edge going to h(p) in Np. If c(p, q) = h(p), then p will send 1/n of it’s
commodity on edge (p, h(p)) to get to q, but q’s commodity will not use any of the edges in Np. If
c(p, q) 6= h(p), then p will use the edge (p, h(p)) to push 1/n of q’s commodity to h(p). Therefore
for each q ∈ P , it will cause exactly 1

n
flow on this edge. So, this edge will have flow exactly 1 on

it.
Therefore the given flow is valid and has cost at most that of the original solutionN . Each h(p)

receives 1/n flow from each node q ∈ P . The costs are metric, therefore the cost of the flow for
these commodities must be at most 1/n of the cost to connect each of the q ∈ P directly to h(p).
So, the flow has cost at most that of a convex combination of hub stars. Hence, the cheapest hub
star has cost at most that of the flow. So, the cheapest hub star is at most the cost of any feasible
solution. The cheapest hub star is always an optimal solution.

We will now consider the tree-tree case. We will assume that all the Np in N are trees. If a
given Np is not a tree, then we can simply remove an edge in a cycle of Np and reduce the cost
while maintaining connectivity. The centroid of a tree is a node v such that removing the node
creates subtrees each with weight at most n/2. We will redefine h(p) to be a centroid of the tree
Np with respect to the weights wp.

Now the flow we will create will be similar to the flow for the star-star case. Each node in
P will have one unit of a commodity. Now for each p, q ∈ P we will have p send 1/n of it’s
commodity to c(p, q) via Np and then from c(p, q) to h(q) via Nq.
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Now consider any edge e in Np. Consider removing this edge, it will create two subtrees T1
and T2. Let wp(Ti) denote

∑
v∈Ti wp(v). Without loss of generality let p be in T1. So, e will have

to send wp(T2)/n of p’s commodity for when the commodity goes from p out to it’s connections.
If h(p) ∈ T1, then e will also have to handle wp(T2)/n flow coming to h(p). Since h(p) /∈ T2 then
it must be the case that wp(T2) is at most n/2 since h(p) is the centroid. So, the total weight that
e handles in this case is at most 2wp(T2)/n ≤ 1. If h(p) ∈ T2 then e will have wp(T1)/n flow
coming into h(p). We know that wp(T1) + wp(T2) must account for the weight of all the vertices
and must be exactly n. So, in this case e has a flow of exactly 1 on it.

Again we have that the flow is valid and has cost at most that of the original solution N . Each
h(p) receives 1/n flow from each node q ∈ P . The flow is at most a convex combination of hub
stars again. Thus, a hub star is optimal for the tree-tree version where all demands are present.

In both of these cases if there are no zero cost edges, and the feasible solution has more than an
edge or a path to h(p) from p for any Np than the flow has cost strictly less than that of the feasible
solution, as there is some edge with flow strictly less than one. Therefore, when there are no zero
cost edges then a hub star is the only form an optimal solution can have.

There is an alternate proof of this theorem which follows via a reduction to the VPN problem
and then using the result that an optimal VPN solution is a hub-star [41].

4.5.2 Publishers and Subscribers are disjoint
Now we will consider the case where P and S are disjoint, but both have exactly n vertices. We
will work in the case where the demands are all of P ×S. Again we will be looking at the star-star
case with metric edge costs, and the tree-tree case. We will show that the cheapest hub star solution
is within 9/8 of optimal in both these cases.

To show this, we will start with any feasible solution, and then create a flow which puts at most
flow 9/8 on each edge. This flow will again be a convex combination of hub stars.

For this part, we let c(p, s) be defined for p ∈ P and s ∈ S as some node in Np and Ns. We
will again use wp(v) to be the number of connections that v makes for p.

Starting with the star-star case on metric costs, the flow will be similar to the previous part
without a dedicated hub for each vertex. We will start with any feasible solution N = (∪p∈PNp)∪
(∪s∈SNs). Again each p ∈ P and each s ∈ S starts with one unit of it’s own commodity. Each
s ∈ S will start by sending 1/n of it’s commodity to c(p, s) via Ns for all p ∈ P . Now from here
it will split it’s commodity further. For each v ∈ Np, s will send wp(v)/n2 from c(p, s) to v using
Np. Likewise, each p ∈ P will start by sending 1/n of it’s commodity to c(p, s) via Np for all
s ∈ S. Again further splitting the commodity, for each v ∈ Ns, p will send ws(v)/n2 from c(p, s)
to v using Ns.

Now consider any p ∈ P and any edge (p, v) in Np, let x = wp(v)/n. We will look at the flow
that this edge receives. It will get x flow of p’s commodity going to v. Now 1− x of the flow that
v receives from other nodes will have to go into p on their way to other nodes in Np. v initially
receives x flow from nodes in S. So, the flow from v to p is of size x(1− x). Lastly, there will be
1− x commodities coming to Np via nodes besides v. We will need to get x of these to v. So, the
flow of commodities from S going to v from elsewhere Np will contribute x(1 − x). So, the total
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flow that this edge receives is
x+ 2x(1− x).

This quantity is maximized when x = 3
4
. So, the flow along this edge is at most 9

8
. By symmetry,

all edges in any Ns also have flow at most 9
8
. Hence the cost of the flow is at most 9

8
the cost of our

original feasible solution.
Now for each p ∈ P and s ∈ S, we have that c(p, s) will receive 1/n2 of each of the 2n

commodities from both P and S. Since the flow may take a path instead of an edge, we can
shortcut and just take the direct edge because the edge costs are metric. So, the cost of the flow is
again bounded below by a convex combination of hub stars. Hence, the cheapest hub star is within
9
8

of optimal in this case.
Let N = (∪p∈PNp) ∪ (∪s∈SNs) be a feasible solution for the tree-tree case. Again we can

assume that each Np is a tree, as if is not a tree we can always remove an edge in a cycle to get
a network of smaller cost that is still feasible. The flow is set up in exactly the same way as the
star-star case on metric costs. We only need to be careful when examining the flow on each edge.

Consider any p ∈ P and e ∈ Np. Let T1 and T2 be the subtrees of Np generated by removing e.
Again let wp(Ti) be

∑
v∈Ti wp(v). Let p ∈ T1 and let x = wp(T2)/n. The flow of p’s commodity

from p to the NS will be x across this edge. Now for the x flow of commodities from S which
reach Np via T2, e will have to support 1 − x of this x flow going from T2 to T1. For the 1 − x
flow of commodities from S which reach Np via T1, e will have to support x of the 1− x of these
commodities which go from T1 to T2. Again we have the total flow on this edge is:

x+ 2x(1− x)

So, it is maximized when x = 3
4

and is at most 9
8
. Likewise for every edge in a Ns it has flow at

most 9
8
. Therefore the cost of the flow is at most 9

8
that of the original solution N .

Now for each p ∈ P and s ∈ S, we have that c(p, s) will receive 1/n2 of each of the 2n
commodities from both P and S. Since the flow may not take the shortest path, we can always
take the shortest path without increasing costs. So, the cost of the flow is again bounded below by
a convex combination of hub stars. Hence, the cheapest hub star is within 9

8
of optimal in this case.

Unfortunately, a hub-star solution is only good when P and S are close in size. Without loss
of generality, let |P | > |S|. With unequal P and S, then a hub star is only within 9

8
|P |
|S| of optimal.

This can be seen by using a similar flow, simply scaled to account that one side is larger than the
other.

4.6 Conclusion
We gave constant factor approximations in the case where the demands were complete bipartite.
In the case of the complete demand graph, then we showed that an optimal solution is a hub-star
and can be found in polynomial time. For general demands, we addressed the tree-star case and
gave an O(log n)-approximation algorithm. Lastly, we gave an Ω(log log n) integrality gap on the
natural LP relaxation.

Perhaps the most interesting set of questions arising from our work is the approximation status
of the bipartite and more general DON problems with general demands. While the integrality
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gap demonstrates that an LP rounding approach based on the natural formulation will not yield
constant guarantees, we have not yet been able to convert these ideas into a hardness of constant-
factor approximation proof.

Another avenue of open problems concern removing the metric requirement on the cost func-
tion: the tree-DON and tree-star-DON problems then become significantly different and harder
(they generalize group Steiner problem, for instance) and require new ideas.

Finally, there exists O(log n)-approximations for all three design metrics, but the techniques
used are specific to each problem. One further avenue would be to find a unified O(log n)-
approximation for all three design types:star-star, tree-tree, tree-star.
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Chapter 5

Tree Augmentation Problem

5.1 Introduction

We consider the weighted tree augmentation problem (TAP): Given an undirected graph G =
(V,E) with non-negative weights c on the edges, and a spanning tree T , find a minimum cost
subset of edges A ⊆ E(G) \ E(T ) such that (V,E(T ) ∪ A) is two-edge-connected. Here E(G)
denotes the edges of G and E(T ) denotes the edges of T . A graph is two-edge connected if the
removal of any edge does not disconnect the graph, i.e., it does not have any cut edges. Since
cut edges are also sometimes called bridges, this problem has also been called bridge connectivity
augmentation in prior work [31]. We will call the elements of E(T ) as (tree) edges and those of
E(G) \ E(T ) as links for convenience.

While TAP is well studied in both the weighted and unweighted case [2, 11, 16, 28, 31, 54, 56,
71], it is NP-hard even when the tree has diameter 4 [31] or when the set of available links form a
single cycle on the leaves of the tree T [13]. Weighted TAP remains one of the simplest network
design problems without a better than 2-approximation. TAP can also be viewed as a covering
problem. The cuts in a tree which have a single edge crossing them are exactly the cuts that must
be covered.

A link ` is said to cover an edge e if the unique cycle of ` + T contains e. Here we use δ(e)
for a tree edge e to denote the set of links which cover e. The natural covering linear programming
relaxation for the problem, EDGE-LP, is a special instance of a set covering problem with one
requirement (element) corresponding to each cut edge in the tree (Since the tree edges define
shores that form a laminar family, this is also equivalent to a laminar cover problem [13]).

min
∑
`∈A

c`x`

x(δ(e)) ≥ 1 ∀e ∈ E(T ) (5.1)
x` ≥ 0 ∀` ∈ A (5.2)

Fredrickson and Jájá showed that the integrality gap for EDGE-LP can not exceed 2 [31] and
also studied the related problem of augmenting the tree to be two-node-connected (biconnectivity
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versus bridge-connectivity augmentation) [32]. Cheriyan, Jordán, and Ravi, who studied half-
integral solutions to EDGE-LP and proved an integrality gap of 4

3
for such solutions, also con-

jectured that the overall integrality gap of EDGE-LP was at most 4
3

[13]. However, Cheriyan et
al. [14] demonstrated an instance for which the integrality gap of EDGE-LP is at least 3/2.

We study the integrality gap of the EDGE-LP and its generalizations in this work. We first
show that without loss of generality, we can focus our attention on binary trees where every node
has degree 1 or 3 (and every link goes between a pair of leaves). By focusing on the internal nodes
of degree 3, we can add a simple valid constraint. In particular, at any node of degree 3, since no
link can cover all three edges which meet at this node, the total number of (integral) links which
must cover its neighbors is at least 2. This gives one additional constraint per internal node that we
can add to the EDGE-LP. The resulting LP, called the NODE-LP follows where we use δT (v) for
a node v to refer to its three incident edges in the tree T .

min
∑
`∈E

c`x`

x(δ(e)) ≥ 1 ∀e ∈ T
x(δ(e1) ∪ δ(e2) ∪ δ(e3)) ≥ 2 ∀v ∈ T and δT (v) = {e1, e2, e3} (5.3)

x` ≥ 0 ∀` ∈ E

Fiorini et. al extended node constraints for all classes of odd subsets of tree edges as {0, 1
2
}-

Chvátal-Gomory cuts of EDGE-LP to obtain new constraints on all odd sets of edges [28]. We
call their extended linear program the ODD-LP. Since we will show that we can assume the tree is
binary, every node has odd degree (1 or 3) in the input tree, so if S ⊆ V is odd, then it follows that
δ(S) ∩ T is also odd. Using this observation, we can write the ODD-LP as follows. Recall that
δ(S) for S ⊂ V is the set of all edges and links with exactly one endpoint in S.

min
∑
`∈E

c`x`

x(δ(S)) +
∑

e∈δ(S)∩T

x(δ(e)) ≥ |δ(S) ∩ T |+ 1 ∀S ⊆ V, |S| odd (5.4)

x` ≥ 0 ∀` ∈ E

In addition to the standard version, we also study the problem of 3TAP in which every tree
edge in the final solution must be in a cycle of length 3 (instead of every tree edge being in a cycle
of any length). This is a natural variant of TAP. While TAP models increasing the resilience of
a tree network, 3TAP requires local resilience: i.e., in case of any edge failure, the overhead of
implementing a rerouting protocol is not too high (3TAP solutions only need the identity of the
midpoint of the alternate 2-path for every edge in the solution).

5.1.1 Related Work
Weighted TAP has several 2-approximation algorithms. The earliest proof of this result used meth-
ods that were tailored for this problem: Frederickson and JáJá [31] convert the problem into one
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of finding a minimum weight arborescence in an appropriate directed graph: First, they root the
given tree at an arbitrary node and direct it outwards; Links that go from a node to an ancestor are
directed upward in the tree, while cross links are replaced by two links of the same weight going
from each endpoint to their least common ancestor in the tree. After given the original tree edges
directed downward weight zero, their method finds a minimum weight in-arborescence pointing
to the root, which they argue is of cost at most twice the optimal weighted TAP solution for this
instance (coming from the duplication of cross links). Khuller and Thurimella improved the run-
time of this algorithm [54]. It is also worth noting that the directed instance when viewed as an
undirected instance of TAP consists of all links going top-down in the tree (since cross links are
replaced with two such links from their ends to their LCA). The EDGE-LP for all links going top-
down in a tree is totally unimodular (see, e.g., Section 2 of [40]). Hence this version can be solved
to optimality (providing an alternate to the use of the in-arborescence algorithm). Later, other 2-
approximation algorithms have been devised for weighted TAP using other techniques such as the
primal-dual method [71] and iterative rounding [50].

Special cases of weighted TAP has also been investigated. Cheriyan, Jordán and Ravi [13] de-
veloped a 4

3
-approximation for TAP when the optimal fractional solution is half-integral. Another

special case of weighted TAP is when the tree has bounded depth. In this special case, Cohen and
Nutov showed there exists a (1 + ln 2)-approximation [16]. Recently, Adjiashvili [2] showed a
1.96-approximation for another special case of weighted TAP where all link weights are between
1 and some constant M by using a bundling type linear program. Building off this work, Fiorini
et. al [28] generalized the constraints from [55] and combined them with the bundle constraints
from [2] to propose the ODD-LP we described above and achieved a 3

2
+ ε approximation for the

same special case (when all the costs are between 1 and some constant M ). Another recent paper
by Nutov takes a subset of Adjiashvili’s constraints and achieves a 12

7
+ ε approximation when all

the costs are between 1 and some constant M [67]. All of these techniques rely heavily on the
bundle constraints that are focused on link weights being in a bounded range; hence they do not
seem to be generalizable to the case of arbitrary weights. We believe the general problem requires
a more polyhedral approach of the type we investigate.

Numerous papers attempted to reach a target 3
2
-approximation in the unweighted case of TAP

when all links have the same weight. One paper by Kortsarz and Nutov [55] presents a new linear
program with a 1.75-approximation for the unweighted case, in the hope that this linear program
could help break the 2-approximation barrier for the weighted case. This LP used properties of
an optimal solution for the unweighted case to add multiple new constraints; In retrospect, these
additional constraints are all included in the ODD-LP. Two papers achieved a 3

2
-approximation for

the unweighted case with very different approaches; one paper by Kortsarz and Nutov relies on
a unique token giving argument [56]. The other paper by Cheriyan and Gao uses semi-definite
programming [11, 12] to arrive at an initial fractional solution for which this integrality gap is
proved. While both of these approaches are very different, they still heavily rely on the fact that all
the links have the same weight.
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5.1.2 Our Results

Our results gives new approaches to determine the integrality gap of weighted TAP: our methods
provide constructive proofs of convex decompositions of given fractional solutions appropriately
scaled into integer solutions.

1. We show that any instance of weighted TAP can be reduced to equivalent instances where
the underlying tree is binary and all the links have their endpoints at leaves (Theorem 5.2.1
in Section 5.2). The simpler structure of input instances helps us in several of our proofs and
may also be key in future approaches in settling the integrality gap of weighted TAP.

2. We give a simple new top-down coloring algorithm that gives a constructive proof of the
integrality gap of 2 for EDGE-LP by providing a convex decomposition. Furthermore, if the
minimum non-zero value in the solution for any link is α then we can achieve an improved
2

1+α
-approximation (Theorem 5.3.1 in Section 5.3). This result generalizes the result of

Cheriyan et al. [13]which we can recover by setting α = 1
2
. Even more interestingly, this

provides a new 3
2
-approximation when all nonzero values in the solution are at least 1

3
.

3. We provide a new conjecture on the ODD-LP (Conjecture 5.3.3) that says that every vertex
solution to this LP has all large nonzero entries (greater than 1

3
) or there is a single very

large valued entry (at least 2
3
). In the former case, we can use the previous theorem to get

a 3
2
-approximation while in the latter, we can apply one step of iterative rounding [60], and

reapply the conjecture to prove a 3
2
-approximation.

4. We provide a 3
2
-approximation for weighted TAP based on fractional solutions to NODE-

LP with a particular structure. Let a deficient edge be an edge which gets covered to the
extent less than 4

3
by this fractional solution. In Section 5.4, we show that if the deficient

edges for the NODE-LP form at most two paths in the tree, then we can extend our coloring
construction to give a 3

2
-approximation.

5. Even though we provide improved approximations for specially structured extreme points
of NODE-LP, we can show that such constraints do not strengthen EDGE-LP. In particular,
in Section 5.5, we show how to transform any TAP instance to a slightly bigger one by a
gadget expansion at every node so that any feasible solution to the EDGE-LP on the original
instance is feasible to the NODE-LP in the expanded instance. Moreover, EDGE-LP has
extreme points which violate our conjecture above, motivating a deeper study of ODD-LP
for future work.

6. In Section 5.7, we provide a complete study of 3TAP in which every tree edge must be
in a triangle in the final solution. Via a reduction from set cover, we show an Ω(log n)-
inapproximability result and give a matching approximation algorithm. In the unweighted
case, we show that any minimal solution gives a 4-approximation.

Our approach is a top-down coloring algorithm on the scaled fractional solution where each
color class is a feasible solution. In particular, 3

2
times the fractional solution is decomposed into

a convex combination of integer solutions. This provides not only an approximation algorithm
but also directly proves the integrality gaps for the corresponding covering LPs [9]. In addition,
this technique of top-down coloring differs from all current 3

2
-approximation algorithms on un-
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Figure 5.1: An example of a v0 node with three children before and after the transformation.

weighted TAP and all current algorithms which achieve better than 2-approximations for special
cases of weighted TAP. Since our methods decompose scaled fractional solutions, they also have
the potential to extend to give tight integrality gap proofs - we propose some ideas for doing this
in Section 5.5.

5.2 Problem Structure
In this section, we show that we can restrict our attention to only certain instances of weighted
TAP. This structure restricts not only the structure of the links but also the structure of the tree
itself.
Theorem 5.2.1. Any instance of weighted TAP (T, c, L) can be reduced to a corresponding
instance of weighted TAP (T ′, c′, L′) of where the tree T ′ is binary, T ′ has at most three
times as many nodes as T , and all the leaves in L′ go between two leaves. In addition,
every feasible solution to (T, c, L) provides a feasible solution to (T ′, c′, L′) of equal cost
and vice versa.

The construction is a local operation performed on all the nodes of T in a top-down fashion.
Let v = v0 be a node in the tree with children v1, v2, . . . vk (if v0 is a leaf then no operation will
be done). Let (T, c, L) be the initial tree, the transformation on v will give us a new instance
(Tv, cv, Lv). We will add dummy nodes v′i for v and all its children and a dummy node v′k+1 for v.
We remove the edges X = {v0vi}i and add the edges Y = {viv′i}i ∪ {v′iv′i+1}i. We leave all the
existing links at their corresponding nodes. The only link we add is a link called `v from v0 to v′k+1

of cost 0. The new instance has changed as follows:

V (Tv) = V (T ) ∪ {v′i : 0 ≤ i ≤ k + 1}
E(Tv) = E(T )−X + Y

Lv = L ∪ {v0v′k+1}
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Figure 5.1 gives an example of this transformation on a node with three children.
We will now show that performing this transformation on every non-leaf vertex of T produces

an instance of TAP with a binary tree and leaf-to-leaf links with corresponding feasible solutions
to the original problem.

Proof. First we observe that this transformation adds nodes v′0, v
′
1, . . . v

′
k all of degree 3, adds node

v′k+1 of degree 1, and node v0 ends with degree 1. The transformation also keeps the degree of
v1, v2 . . . vk unchanged. Once this transformation has been applied to all non-leaves of T then the
resulting tree T ′ will have only nodes of degree 1 and 3; giving a binary tree as desired.

Now observe that every original node is a leaf in T ′. The only links we added were `v which
have the form v′k+1 to v0 where v′k+1 is also a leaf under the transformation. The resulting set of
links L′ is leaf-to-leaf.

We will now consider any feasible solutionA to (T, c, L). LetA′ = A∪{`v}v∈V . The cost ofA
and A′ are the same as we added only links `v which were given cost 0. First observe that `v covers
all the edges of the form v′iv

′
i+1 and v′0v0. Now consider an edge v′ivi after the transformation.

There is some link ` ∈ A which covers v0vi in T and now that same link must cover v′ivi in T ′. So,
A′ is a valid solution to (T ′, c′, L′) of the same cost.

Now let A′ be a feasible solution (T ′, c′, L′) now consider there is a vertex v0 which was not
initially a leaf node in T . It must be the case that A′ contains `v as this is the only link in L′ which
covers v′kv

′
k+1. So, let A = A′ − {`v}v∈V . Now by the same argument as previously, as A′ is a

feasible solution for T ′ and the only edges in T ′ not in T are those covered by the `v then A is a
valid solution to (T, c, L). Notice that A and A′ have the same cost as we only removed links of
cost 0 from the solution.

5.3 Large Links
The main result of this section is the following theorem.
Theorem 5.3.1. Given a solution x to the EDGE-LP with x` ≥ α when x` > 0 and m is the
number of non-zero links then there exists integer solutions x1, x2, . . . x2m and λ1, . . . , λ2m
such that:

2

1 + α
x ≤

2m∑
i=1

λix
i

and this convex combination can be found in strongly polynomial time.
This gives an alternative proof of Cheriyan, Jordán and Ravi [13]. In particular, it gives a 4

3
-

approximation when we start with a fractional solution where all non-zero links have weight at
least 1

2
.

5.3.1 Algorithm
We will be working with a tree rooted at an arbitrary node, r. The least common ancestor (LCA)
of a link, is the least common ancestor of its endpoints. We let L` (R`) be the path in the tree from
the LCA of ` to the left (right) endpoint of ` (this path could be empty).
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Given a fractional solution, x let α = min`:x` 6=0 x`, and let β = 2
1+α

. Let k be the smallest
integer such that kβx is an even integer for all entries. In order to find our convex decomposition
in the algorithm below, we will decompose kβx into k different colors such that each color is a
feasible tree augmentation.

The main idea of how the algorithm works is that it goes down the tree looking at links which
have their LCA at the current node and colors all the copies of each link with different colors so
as to help cover the edges as much as possible with new colors. This guarantees that the first αβk
links (copies of one link) which are colored through an edge all get distinct colors. Afterward, we
only guarantee that of the remaining links that cover an edge half of them give a new color to that
edge.

Algorithm 5 The simple coloring algorithm
Data: T a tree, x LP solution, β approximation factor, k colors
Result: Decomposition of kβx into k different colors where each color is a feasible tree augmen-

tation
Make kβx` copies of each link `
while some link is not colored do

` has the highest LCA among uncolored links
while not all copies of ` colored do

Color a copy of ` with the first color not present on L`
if all edges of L` are covered by all k colors then

Color a copy of ` with any color not already on a copy of `
end
Color a copy of ` with the first color not present on R`

if all edges of R` are covered by all k colors then
Color a copy of ` with any color not already on a copy of `

end
end

end

We will now show that this coloring does indeed give us a convex combination as desired.
Theorem 5.3.2. Algorithm 5 guarantees that every edge is covered by a link in every one
of the k colors.

Proof. For a given e without all k colors, every time a link through e receives a pair of colors, then
one of those colors is new to e. Let us consider some link ` through e. Each inner while loop of
the algorithm gives two colors to copies of `. One of the two paths L`, R` must contain e; without
loss of generality let e ∈ L`. Consider the highest edge f ∈ L` without all k colors. If f is missing
a color c, then e must also be missing color c. We have only colored links whose LCA is above f ,
therefore any link with a color which covers e must also cover f . So, for each pair of colors chosen
for a link through e, at least one of them is a new color for e. In other words, half of the time a link
covering e gets colored, it is a new color for e.

The first time a link through an edge e is colored, then all its colors are distinct (unless βx` > 1).
For a given link `, every time a color is picked for a copy of ` it has to be a color not on one of the
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edges ` covers or a color not on any copy of `. If βx` > 1, then we can color the copies of ` with
all k colors and all the edges which ` covers will be covered by all k colors. In this case, e would
get all k colors.

Thus the first time an edge has one of its links colored it receives at least αβk distinct colors.
Combining this with the fact that every edge gets colors at rate 1

2
subsequently, the total number of

colors e receives in this process is at least

αβk +
1− α

2
βk =

1 + α

2
βk = k.

Now we will show how this implies Theorem 5.3.1.

Proof of Theorem 5.3.1. By scaling our x up by kβ we can write this scaled version as the sum of
k different feasible colors (integer solutions). This gives us that:

kβx =
k∑
i=1

xi

where the xi are integer solutions. Dividing by k gives the desired result.
Algorithm 5 does not need to first multiply by βk before being run. The algorithm can be

run by just multiplying the solution by β. As the algorithm runs, it will keep track of a convex
combination of integer partial solutions. In each while loop when a link ` is added, ` will be
fully added to some integer partial solutions and added to a fraction of at most two partial integer
solutions (one for R` and one for L`). This creates at most two more integer partial solutions. The
number of different integer solutions at the end can be bounded by 2m where m is the number of
non-zero links. This guarantees this algorithm can be run in strongly polynomial time.

5.3.2 Conjecture
Theorem 5.3.1 deals with the case when x does not have fractional parts which are very small. In
particular, the case where α = 1

3
gives a 3

2
approximation with this algorithm. Another approach to

this problem would be to iteratively round when a solution has a link with fractional value at least
2
3

(See e.g., [60]).
In particular, when a fractional solution has x` ≥ 2

3
we can immediately round up x` to 1 and

resolve the linear program with this added constraint. This approach combined with using our
approximation when x` ≥ 1

3
for all ` would achieve a 3

2
approximation as every individual link

gets rounded up by at most 3
2

and the cost of the residual LPs do not increase in the process.
By combining these two approaches one would be able to provide a 3

2
approximation to weighted

TAP. It would be very convenient if some polynomial-time computable or every extreme point
fractional solution had one of these two properties: a link ` with x` ≥ 2/3, or x` ≥ 1/3 for all
non-zero x`. Unfortunately, there exists extreme points of the EDGE-LP which satisfy neither of
these properties as shown in Section 5.5. Therefore, we propose the following conjecture.
Conjecture 5.3.3. Every extreme point solution x∗ to the ODD-LP has one of the two prop-
erties: x∗` ≥ 1/3 for all non-zero x∗` or there is some ` such that x∗` ≥ 2/3.
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5.4 Deficient Paths
In this section, we will start with a solution to NODE-LP and use the additional structure from the
constraints 5.3 to help us. Due to our previous observation, we will assume that the TAP instance is
a binary tree with all links going from leaf-to-leaf. We will break edges into two groups depending
on how much coverage they receive.
Definition 5.4.1. An edge e ∈ T is considered deficient if x(δ(e)) < 4/3 and abundant if
x(δ(e)) ≥ 4/3.

The deficient edges in a solution to the NODE-LP can not be too dense; this would violate the
node constraint 5.3.
Lemma 5.4.2. The deficient edges form paths in T .

Proof. Suppose there was a node, v, adjacent to three deficient edges: e1, e2, e3. By the node
inequality 5.3, we know that:

x(δ(e1) ∪ δ(e2) ∪ δ(e3)) ≥ 2

In this particular case, every link through v goes through exactly 2 of e1, e2, e3. So, we have:

x(δ(e1) ∪ δ(e2) ∪ δ(e3)) ≤
1

2
(x(δ(e1)) + x(δ(e2)) + x(δ(e3))) < 2

This is a contradiction to the feasibility of x for the NODE-LP. So, there is no node with three
deficient edges in a solution to the NODE-LP, and the deficient edges form paths as desired.

5.4.1 A Top-Down Greedy 2-approximation and Ramifications
In this section, we present a simple 2-approximation which will be used to deal with the abundant
edges in future cases. There are numerous 2-approximations for TAP, but we will use a specific
coloring one as it allows us to extend colorings.

Choose any vertex r to be the root. Let k be the smallest non-negative integer such that kx`
is an integer for all links `. For this approach, we will multiply our fractional solution by 4k and
then break it up into 2k integral solutions. The cost of the cheapest such solution will be at most
4k/2k = 2 times the cost of the original.

We will be using LCA(`), R` and L` as defined in the previous section.
The top-down algorithm is given in 6. The main idea is to double each link and use one copy

to cover the left path from its LCA and the other for its right path. In this sense, it is reminiscent of
the approach of Frederickson and JáJá [31] of splitting each cross link in the tree to two up links
to devise a 2-approximation algorithm. The main idea of the coloring algorithm is to only supply
colors to links that are missing at one of the edges it covers. Since the links are colored top down,
this ensures that any color missing at an edge is also missing in all its descendant edges.
Lemma 5.4.3. The 2k colors returned by 6 are valid solutions.

Proof. Consider any e ∈ T . When the algorithm starts, there are at least 4k links which cover e,
because x(δ(e)) ≥ 1. After the transformation of the links, there are at least 2k edges which cover
e.
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Algorithm 6 Greedily colors the links representing of the EDGE-LP top-down to give 2k solutions.
Input: Tree T , root r, feasible solution x to EDGE-LP, least common multiple k
Output: Breaks 4kx into 2k colors each of which is a solution
for Links ` do

Break the 4kx` into 2kx` copies of R` and 2kx` copies of L`
end
while Not all 2k colors are solutions do

Let e be the highest edge without all 2k colors
Choose an uncolored link ` in x(δ(e))
Choose a color ci not on e
Color ` with ci

end
Use the colors L`, R` for `

As the algorithm progresses, the colors covering every edge are a subset of those covering its
parent. Let p be the parent of e. The first time we color a link through e that is not through p, then
we must have given p all 2k colors already.

Every time a link through e gets a color, it is because some edge e′ above e was missing that
color. By the above observation, the colors missing from e′ are also missing from e. Therefore, e
also got a new color. Hence, every time e gets one of it’s 2k links colored, it gets a new color.

Every edge is covered by all 2k colors, so every color is a solution as desired.

The correctness of the algorithm implies that taking the cheapest color (in terms of total link
cost) is a valid solution, leading to the following result.
Corollary 5.4.4. There is a greedy top-down coloring based 2-approximation for TAP.

When none of the edges are deficient, then we can push this result even further.
Corollary 5.4.5. Given a solution x to TAP with no deficient edges, 3kx can be decomposed
into 2k feasible colors.

Proof. We can re-use Algorithm 6 and its proof. The only thing we have to change is that we break
3kx` into two parts of size 3

2
kx`. Since all edges are abundant, x(δ(e)) ≥ 4/3 and so after the split,

every edge e has 2k links covering it.

We will strengthen this further to allow us to finish off the abundant parts after we deal with
the deficient parts of the tree in later proofs.
Definition 5.4.6. A rooted subtree is considered abundant if all its edges are abundant.
Definition 5.4.7. A partial coloring of 3kx causes a conflict if there is an edge e which is
covered by three links of the same color c and e does not yet have all 2k colors covering
it. A partial coloring is considered conflict-free if it causes no conflicts.

In particular, we show that given the start of the coloring we can finish it off if we didn’t do too
much wrong.
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Theorem 5.4.8. Given a rooted partial conflict-free coloring of 3kx on some links with all
deficient edges getting all 2k colors, the coloring can be extended to cover all the edges
in the subtree.

Proof. We can simply start the greedy algorithm at the root and finish every edge off. In the proof
of correctness of the greedy algorithm, we simply needed that the number of uncolored links was
at least twice the number of colors needed. Every abundant edge has at least 4k links covering it
originally. If the edge already has c colors, then the number of uncolored links is at most 4k − 2c
which is twice the number of colors the edge still needs, 2k − c.

5.4.2 One Deficient Path
We now extend the greedy coloring algorithm to show that if the deficient edges only form one
path in the tree, then there exists a 3

2
approximation.

Consider we have a solution x to NODE-LP with only one deficient path P ; let u1, u2, . . . uj
be the deficient path. We will deal with this case by first coloring some links such that every edge
in P gets all 2k colors. Then we will split up all the uncolored links that go through P . We root
the tree at u1, then we will use Theorem 5.4.8 to finish all the abundant subtrees.

Algorithm 7 Greedily colors the links to give 2k solutions that cover the path. Also, it avoids
overcoloring the links through abundant edges and results in a conflict-free coloring.
Input: Tree T with one deficient path P = u1u2 . . . uj , feasible solution x to NODE-LP, least

common multiple k
Output: Breaks 3kx into 2k colors which cover P and is conflict-free at all abundant edges
for uiui+1 an edge in P do

for Color c not covering uiui+1 do
Pick an uncolored link, `, through uiui+1 Color ` with color c

end
end
while There is some uiui+1 with at least three links of color c do

Let the three links through uiui+1 of color c be `1, `2, `3 With respect to the edges in P , let `1
cover only a subset of the edges covered by `2 and `3
(At least one such labeling exists by making `2 and `3 the two links with the furthest coverage
in the two sides of uiui+1 respectively)
Uncolor `1

end

Theorem 5.4.9. Algorithm 7 provides all 2k colors to all the edges in P and is conflict-free.

Proof. As the algorithm progresses, an edge in P either has all 2k colors or all of the colored links
covering it are distinct colors. If an edge e in P were to receive a duplicate color c before all 2k
colors, then there were two edges e1, e2 that both needed c. Without loss of generality let e2 lie
between e and e1. When e1 takes color c on a link that also covers e, then the link must cover e2.

65



This contradicts that e2 would need color c. Therefore, every edge in P gets all 2k colors in the
first part of the iteration.

The clean-up phase does not remove any colors from edges in P . A link ` of color c that
becomes uncolored, is uncolored only if all the edges in P it covers have color c from other links.
So, the clean-up phase never removes any colors from edges of P .

The clean-up phase guarantees that for all the rooted subtree, the coloring induces at most two
links of that color and therefore causes no conflicts.

Now by combining the previous theorem, and Theorem 5.4.8 there is a 3
2

approximation when
there is only one deficient path.
Corollary 5.4.10. Given a solution x for NODE-LP on tree T which induces at most one
deficient path, there is an integral solution of cost at most 3

2
the cost of x.

5.4.3 Two Deficient Paths

We’ve shown how to deal with a single deficient path. To extend our approach to two deficient
paths, we need to deal with the abundant path of tree edges which connects the two deficient paths
in the binary tree . The goal is to color links to cover the two deficient paths and the abundant
path between them, and maintain that every remaining abundant subtree doesn’t receive too many
copies of each color. We will prove the following in this section:
Theorem 5.4.11. Given a solution x on tree T which induces at most two deficient paths,
there is an integral solution of cost at most 3

2
the cost of x.

To deal with the deficient edges and the abundant path between them, we will have to examine
the structure of links near deficient edges.
Lemma 5.4.12. Given a solution x to the NODE-LP and a deficient edge e = uv where u is
an internal node, then the total weight of links through u but not e is at least 2

3
.

Proof. Let the neighbors of u be v, w1, w2. The triangle constraint on edges uv, uw1, uw2 says the
total weight of the links that cover these edges is at least 2. All the links that cover uv, uw1, or uw2

also go through u. So, the total weight of links through u is at least 2. The weight of links through
the deficient edge uv is less than 4

3
by definition; this gives the total weight of links through u but

not through uv is at least 2
3

as desired.

Consider x is a solution to NODE-LP with two deficient paths; let P1, P2 be the deficient paths
and let Q = q1q2 . . . qj be the abundant path which connects them. In order to deal with this case,
we will first color the links that form the intersections of Q with P1 and P2. Then, we will finish
coloringQ. Lastly, we will color P1, P2. Throughout the whole process we will also guarantee that
the coloring is conflict free, i.e., every abundant edge not in Q gets all 2k colors or has at most two
copies of every color. In order to deal with this coloring, we will have to treat links which cover
all of Q differently.
Definition 5.4.13. A link ` is considered to be a long link if ` covers all the edges of Q. A
link ` which is not a long link, is considered to be a short link.
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Let e1, e2 be the edges of P1 adjacent to Q. Let e3, e4 be the edges of P2 adjacent to Q. If P1 or
P2 only has one edge adjacent to Q this simplifies the case greatly. We will address this case last.
Algorithm 8 finds a coloring starting at the ends of Q.

Algorithm 8 Takes two adjacent deficient edges e1, e2 and pairs up 2k of the 3kx links covering
e1 and e2 in a way that avoids any edge not in Q being covered by both links in a pair unless it is
covered by all pairs.
Input: Tree T , feasible solution x to NODE-LP, least common multiple k, adjacent deficient edges

e1, e2 in P1 between which the abundant path Q to the other deficient path P2 originates
Output: Pairs up 2k links covering e1 and 2k links covering e2 in a way that avoids overusing any

edge not on Q
for i = 1 to 2k do

Let fi be the link through e1 which covers the ith most number of edges of Q
Let gi be the link through e2 which covers the ith most number of edges of Q

end
Pair up the edges such that fi gets paired with g2k+1−i
for e not on Q do

while fi, gj are paired and both cover e do
Choose a second pair fi′ , gj′ where neither covers e
if No such pair fi′ , gj′ exists then

Break from the While loop
end
Change the pairing so that fi, gj′ are paired and fi′ , gj are paired

end
end

Lemma 5.4.14. Algorithm 8 finds a pairing such that every edge not on Q is either covered
by all 2k pairs or is only covered by at most one link in every pair.

Proof. Let e be an edge which had a conflict, so a swap occurred, and let e′ not on Q be an edge
which has more conflicts due to this swap. We will show that e′ can’t exist.

Consider that some swap occurred because e was covered by both fi, gj but not covered by
fi′ , gj′ . If e′ is covered by both links in both pairs fi, gj′ and fi′ , gj then it was covered by both
links in the pairs before the swap. So, consider that e′ is covered by both links fi, gj′ after the swap
but was not covered by both links in either of the pairs before the swap. So, neither of fi′ , gj cover
e′.

Right now we have that fi covers e1, e′, e but not e2; gj covers e2, e but not e1, e′; fi′ covers
only e1; gj′ covers e2, e′ and not e1, e.

Consider the tree T ′ which is all the edges of T contracted except for e, e′, e1, e2. The edges
e1, e2 were adjacent in T so they are still adjacent in T ′. e1 can’t separate e2 and e as gj covers e
and e2. Similarly, e2 can’t separate e1 and e because of fi. Likewise, e1 can’t separate e2 and e′

because of gj′ , and e2 can’t separate e1 and e′ because of fi. This leaves only the three possibilities
shown in Figure 5.2.
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Figure 5.2: The three possible configurations of the edges e1, e2, e, e′

In the first case of Figure 5.2, then gj′ must cover e as it covers e2 and e′. This is a contradiction
as gj′ does not cover e. In the second case of Figure 5.2, gj would cover e′ as it covers e2 and e.
This is a contradiction as gj does not cover e′. Due to fi covering e′, e1, e, it must be the case that
e1, e, e

′ are all on a path; this removes the third case in Figure 5.2.
Therefore, e′ doesn’t exist and the swaps never increase the number of pairs which both cover

an edge. When the algorithm ends, every pair covers an edge, or that edge is covered in every
pair.

Note that this swapping algorithm would work regardless of which 2k links through e1, and
through e2 were chosen and how we initially paired them.

Now we can use Algorithm 8 to start a coloring on either side of the abundant path Q. We
now need to coordinate the pairings and then finish coloring the abundant path. The first thing to
observe, we can swap any two long links as long as the two edges of e1, e2, e3, e4 they cover are
the same. This will never create any edges which have two links from the same pairing but not a
link from every pairing. To coordinate the pairings on either side of Q then we need to deal with
the long links. We consider them in three mutually exclusive and collectively exhaustive cases: the
first case where there are at most 2k long links, the second when there are more than 2k long links,
and finally, when we have 2k long links covering one of e1, e2, e3, e4.

At most 2k long links. In this case, we first observe that the initial pairing will use all the long
links, and none of the long links are paired up with each other in Algorithm 8. In addition, a swap
will always be initiated by a pair of short links fi, gj; if it were a pair of a long link and a short
link, fi, gj would have no common edges outside of Q. So, any swap involves at most one long
link. Therefore, a swap never creates a pair of two long links.

Use Algorithm 8 to pair up 2k links for e1, e2 and 2k links for e3, e4. Every long link is used in
a pairing for e1, e2 and a pairing for e3, e4 and no pairing has two long links. We use Algorithm 9
to color the links to cover Q.
Lemma 5.4.15. The coloring produced by Algorithm 9 is conflict-free, when there are at
most 2k long links.

Proof. Suppose for a contradiction that there was some edge e covered by 3 links of a color c but
not covered by all 2k colors. This edge e is not on Q (as all edges of Q are covered by all 2k
colors). Let qi be the closest vertex of Q to e in T . Without loss of generality, two of the links
of color c (f1, f2) through e also go through qi−1 (the other possibility is that there are two links
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Algorithm 9 Takes the pairs from Algorithm 8 and extends them to cover all of Q, and be conflict
free
Input: Tree T , solution x to NODE-LP, least common multiple k, adjacent deficient edges e1, e2,

2k pairs of links through e1, e2, adjacent deficient edges e3, e4, 2k pairs of links through
e3, e4

Output: Colors the pairs and some other links in a conflict-free way to cover Q
for fi, gi one of the 2k pairs covering e1, e2 do

Color fi, gj with an unused color ci
if fi or gi is a long link then

WLOG let fi, hi be a pair of e3, e4
Color hi with ci

end
end
for i = 1 to j − 1 (j is the number of nodes in Q) do

while qiqi+1 doesn’t have a color c do
Let f be the uncolored link covering qiqi+1 and the most number of edges onQ after qiqi+1

Color f with color c
if f is in a pair for e3, e4 then

Let f, g be the pair
Color g with color c

end
end

end
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of color c through qi+1. If both f1, f2 were part of a pair from e1, e2, then Algorithm 8 would
guarantee e has all 2k colors covering it. So, without loss of generality f1 was added to extend the
coloring of color c along Q when f2 was already colored c. If f1 covers a subset of the edges of
Q that f2 does, then f1 never would have been colored with color c by Algorithm 9. If f2 covers a
subset of the edges of Q that f1 does, then f1 would have been chosen and colored before f2. Both
of these are a contradiction to the correct running of Algorithm 9.

This shows when there are at most 2k long links, we can form a conflict-free partial coloring
that covers all of Q, e1, e2, e3, e4.

More than 2k long links In this case, we don’t have to worry about covering Q as every pair
will have a long link. However we will have to be a little more careful with the coordination of the
two pairings. In this case, consider there are 2k + c long links. We will first show we can create
c pairs that use two long links, and then just create the remaining 2k − c pairs with one long link
each.
Lemma 5.4.16. If there are 2k + c long links, and no edge of e1, e2, e3, e4 has more than
2k long links, then there exists c pairs of long links such that each of these c pairs cover
e1, e2, e3, e4.

Proof. Let cij be the number of links that cover ei and ej . A pair that covers all of e1, e2, e3, e4
consists of a long link through e1, e3 and a long link through e2, e4 or a long link through e1, e4 and
a long link through e2, e3. Let cA = min(c13, c24), cB = min(c14, c23). If there were not c pairs that
covered all of e1, e2, e3, e4 then cA + cB < c. Without loss of generality, cA = c13, cB = c14 so the
number of long links covering e1 is less than c. But then, the total number of long links covering
e2 is more than 2k. This is a contradiction. Therefore, we can make c pairs such that each of these
c pairs cover e1, e2, e3, e4.

For this case, we simply create these c pairs of long links indicated in the lemma above as the
first c colors. Next, we can use the remaining 2k − c long links as the start to fill the remaining
colors using Algorithm 8. Now, if ei isn’t covered by a color, pick an uncolored link f that doesn’t
go through any other ej and color f with the remaining color. This creates no conflicts. Each color
consisting of two long links covers only the edges of Q twice and everywhere else once. Each
color with only one long link only has two short links, and the color covers each of e1, e2, e3, e4
exactly once; each edge can only have at most two links of this color covering it.

More than 2k long links cover a single ei In this case, without loss of generality e1 has 2k long
links. In this case, we simply start by creating and coloring the 2k pairs as in Algorithm 8 for
e3, e4. Each of these pairs will cover all of Q and e1, e3, e4. For each color which e2 is missing, let
f be an uncolored link covering e2 but not e1. Color f with the color that e2 is missing. This again
keeps the coloring conflict-free by the same reasoning as before. This gives a partial coloring that
covers all of Q, e1, e2, e3, e4.
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Finishing the deficient paths In all the cases above, we colored the links to create a conflict-
free partial coloring that covers all of Q and e1, e2, e3, e4. To finish the deficient paths, we will
use Lemma 5.4.12 to observe there are 2k uncolored links crossing every deficient edge. Consider
starting at e1 and moving away from Q along P1. Let e be the deficient edge; there are 2k links
through e not through e1. For each color e is missing, choose one of these uncolored links for this
color. Repeat this moving away from e1 along P1. We can do this same process along P1 moving
away from e2. This guarantees that we only add colors to the abundant subtrees hanging off of P1

(and not to abundant subtrees hanging off of Q or P2). In addition, we can add each color at most
twice to every subtree. We can repeat this process similarly with e3, e4 on P2. This gives a conflict-
free partial coloring which gives all the edges of P1, P2, Q all 2k colors. By Theorem 5.4.8, this
coloring can be completed and there is a 3

2
approximation when there are only two deficient paths.

End of P1, P2 If P1 or P2 have only one edge adjacent to Q the entire process above can be done
simply without creating a pairing on such a side. Consider P1 only has one edge e1 adjacent to Q;
instead of 2k pairs created for P1 just take the 2k links through e1 which go the furthest down Q.
This replaces Algorithm 8 for P1 and then we proceed according to the case we are in.

This proves Theorem 5.4.11 as in all the cases we have provided a 2k coloring of 3kx such that
every color is a feasible solution. This coloring method could potentially be extended to the gen-
eral case of multiple deficient paths, with the key difficulty being that there are links that cover
segments of potentially several such deficient paths, and their colorings must be somehow glob-
ally coordinated. We have no counter examples to the success of such a potential approach even
though we have no candidate algorithm that might complete the job for all feasible solutions of
NODE-LP.

5.5 Comparing the linear programs

In section 5.3, we proposed a conjecture that every extreme point solution to the ODD-LP has a
link which gets x` ≥ 2/3 or all the non-zero x` are at least 1/3. This conjecture does not hold for
extreme points of the EDGE-LP. An example is given in Figure 5.3.

v0 v1 v2 v3 v4

u1 u2 u3

1/2

1/4 3/8

5/8

1/2

1/4 3/8

Figure 5.3: An example of an extreme point of EDGE-LP which doesn’t fulfill the conjecture.
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(a) The original internal node v and it’s neigh-
borhood
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n1

b1
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b2 a3

n3

b3

(b) The gadget which gets placed around v. The
dotted links are added and given weight zero. No
other links are added adjacent to b1, b2, b3

Figure 5.4: The left figure shows the original node, and the right figure shows the node after the
gadget transformation has been applied to it

We believe the conjecture to be true for extreme points of ODD-LP. We have performed ex-
haustive searches on all extreme points of ODD-LP to verify it on small trees (binary trees with at
most 12 nodes). In addition, Fiorini et. al [28] showed that in the special case of no in-links then
ODD-LP is integer. Given a rooted tree T with root r then an in-link is a link ` where ` does not
go through r and ` does not go from one node to it’s ancestor. This indicates that the ODD-LP
potentially has more structure than the EDGE-LP that might be exploited to prove the conjecture.

In this chapter, we use the structure given from the NODE-LP (e.g. Lemma 5.4.12) to prove
theorem 5.4.11. While the NODE-LP does add some constraints to the EDGE-LP, the NODE-LP
is not much stronger than the EDGE-LP as we show in the next observation. In particular, we
can transform any TAP instance to a slightly bigger one by a gadget expansion at every node so
that any feasible solution to the EDGE-LP on the original instance is feasible to the NODE-LP in
the expanded instance. This shows that if we were to do the gadget expansion for any input, the
NODE-LP constraints alone (without the other ODD=LP constraints) will not add any strength to
the resulting solutions.
Lemma 5.5.1. After a transformation of any TAP instance that leaves the solutions un-
changed, the integrality gap for the NODE-LP on the transformed instance is the same as
the integrality gap for the EDGE-LP in the original instance.

Proof. In order to show this result, we will show that for every binary tree T we can transform it
to another binary tree T ′ such that every feasible solution of the EDGE-LP for T corresponds to a
feasible solution of the NODE-LP for T ′.

Consider an original node v ∈ T with neighbors n1, n2, n3 as shown in Figure 5.4a. We will
transform v as shown into the structure given in Figure 5.4b.

Any feasible solution to the EDGE-LP on T can be made a feasible solution to the NODE-LP
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on T ′ by adding all the zero-cost links with value 1 in the solution. These zero cost links guarantee
all new tree edges that we added are covered. Every degree 3 node, u has at least 2 weight of links
covering its neighbors.

Consider any feasible solution to the NODE-LP on T ′. For every node vthe solution must
choose links b1b2 and b2b3 with value 1 for otherwise a1b1 and a3b3 will not be covered. To get a
feasible solution to the EDGE-LP on T we simply remove the links b1b2, b2b3 around every node.

Neither of these transformations change the cost, so we have proven our result as desired. This
gadget forces b1, b3 to be covered fully by the dotted links. These ensure that the node constraints
around v, a1, a2, a3 are all satisfied as long as the edge constraints are satisfied.

While the NODE-LP is not any stronger than the EDGE-LP, we believe that the ODD-LP is
stronger than both of these LPs. As noted before, the ODD-LP may add key constraints which
would allow us to extend the top-down deficient path coloring beyond just one or two deficient
paths.

5.6 Odd Constraints
In this section, we provide a new proof of correctness of the ODD-LP. In addition, we rewrite the
ODD-LP into a form which resembles the T-join LP. Lastly, we show that using this formulation
we can also achieve a 3

2
-approximation in a special case.

Lemma 5.6.1. The constraints in ODD-LP are valid for any integer solution to TAP.

Proof by Robert Carr. Consider an odd set of vertices S. By adding together the edge constraints
for δ(S) ∩ T we get: ∑

e∈δ(S)∩T

x(δ(e)) ≥ |δ(S) ∩ T |

Now we can add any non-negative terms to the left hand side and still remain feasible. Therefore

x(δ(S)) +
∑

e∈δ(S)∩T

x(δ(e)) ≥ |δ(S) ∩ T |

is also feasible. Now consider any link `. If x` appears an even number of times in
∑

e∈δ(S)∩T x(δ(e))

then ` is not in δ(S). Similarly, if x` appears an odd number of times in
∑

e∈δ(S)∩T x(δ(e)) then ` is
in δ(S). So, the coefficient of every x` on the left hand side of this expression is even. In particular,
for any integer solution the left hand side is even and the right hand side is odd. Therefore, we
can strengthen the right hand side by increasing it by one, and the resulting constraint will still be
feasible for any integer solution. The constraint

x(δ(S)) +
∑

e∈δ(S)∩T

x(δ(e)) ≥ |δ(S) ∩ T |+ 1

is valid for any integer solution to TAP as desired.
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The ODD-LP is very close to being a T-join LP. Let’s introduce a variable ye for every edge
e. For now we will let δ(S) denote the links with exactly one node in S, and δT (S) denote the
edges of T with exactly one endpoint in S. If we let ye = x(δ(e))− 1 then we can rewrite the odd
constraints as:

x(δ(S)) +
∑

e∈δ(S)∩T

x(δ(e)) ≥ |δ(S) ∩ T |+ 1

x(δ(S)) +
∑

e∈δ(S)∩T

(x(δ(e))− 1) ≥ 1

x(δ(S)) +
∑

e∈δ(S)∩T

ye ≥ 1

x(δ(S)) + y(δT (S)) ≥ 1

Now we can rewrite the ODD-LP as follows:

min
∑
`∈E

c`x`

x(δ(S)) + y(δT (S)) ≥ 1 ∀S ⊆ V, |S| odd (5.5)
ye = x(δ(e))− 1 ∀e ∈ T (5.6)
x` ≥ 0 ∀` ∈ E

Notice that constraint 5.5 is in fact the inequalities for the up-hull of the T -join polytope [18].
This means that we could easily decompose any fractional solution (x, y) into a convex combi-
nation of T -joins easily. Unfortunately, these T-joins might contain copies of tree edges resulting
from the ye values.

The equations 5.5 and non-negtivity constraints define the dominate of the T-join polytope.
Therefore we can decompose any feasible solution (x`, ye) into T-joins. Let the decomposition be∑

i λiHi where Hi are T-joins, and
∑

i λi = 1. Unfortunately, due to the ye variables it could be
the case that a tree edge is included in a T-join but that edge is not covered by any links. We call
such an edge e dangerous. We let d(e) denote the fraction of time that e is dangerous. By the
definition of dangerous, we have ye ≥ d(e).

5.6.1 Patching a tight odd cut

In this section, we will show that if we restrict our attention to one tight odd cut S that we can
patch this cut. In other words, we will use the T-join decomposition and 1

2
x to guarantee the edges

in the cut are all covered by some link.
Lemma 5.6.2. Given a feasible solution (x, y) to the modified ODD-LP and a tight odd cut
S, there exists a decomposition of 3

2
x into a convex combination of integer solutions, such

that every integer solution covers δT (S).
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Proof. Let us start with a decomposition of (x, y) into T-joins
∑

i λiHi. We will give a matching
of links to edges such that every edge e gets covered to the extent at least d(e).

S is crossed by exactly weight 1 on edges and links. Therefore, each T-join Hi can have at
most one edge of δ(S) be dangerous (as every T-join crosses S exactly once).

xf
2

is the fraction of time link f can be used to cover. Consider the bipartite graph G =
(L,R,E) where L is the set of links, R is the set of edges δT (S) and there is an edge uv ∈ E iff
u ∈ L, v ∈ R and the link corresponding to u covers the edge corresponding to v.

In order to find a patching, we will find a fractional matching in G such that every vertex in
u ∈ R is used at least d(u) and every vertex in v ∈ L is used at most xv

2
. To show this we will check

Hall’s condition; in particular we will show that for any set U ⊆ R we have d(U) ≤ x(N(U))/2.
Consider that U contains three edges which are incomparable, then by the feasibility of the

solution, the weight of links covering these edges is at least 2. We know the total dangerous of
d(R) is at most 1 as every T-join misses at most 1 edge in R. So, we get that 1 ≤ 2/2 as desired.

Now consider that U has no three edges which are incomparable, that means that U is a set of
edges u1, u2, ...uk which all lie on a path in T . Without loss of generality let u1, . . . uk be the edges
in order on this path. By constraint 5.6 the coverage of u1 must be at least 1 + d(u1). The d(ui) of
the time that ui is dangerous, there is a link covering ui+1, as ui+1 is not dangerous. These d(ui)
links must be disjoint from the links covering ui otherwise ui would not be dangerous. Therefore,
the total coverage of these edges is at least

1 + d(u1) + d(u1) + d(u2) + · · ·+ d(uk−1).

Without loss of generality, d(u1) ≥ d(uk). Therefore, we get the desired result, our total coverage
is

1 + d(u1) + d(u1) + d(u2) + · · ·+ d(uk−1) ≥ 1 + d(u1) + · · ·+ d(uk) ≥ 2(d(u1) + · · ·+ d(uk))

Hence, we can find a matching. This allows us to use 1
2
x to patch up the T-joins we got from

decomposing (x, y) and cover all the edges of δT (S).

Unfortunately, this approach does not give a patching directly, nor does it give a clear way to
extend to even two tight cuts.

5.7 Three-Cycle TAP

5.7.1 Weighted Version

In this section, we will consider the weighted version of 3TAP where the weights on the links, cf ,
can take on any value. We first present an O(log n) approximation algorithm, and then we present
a matching lower bound of Ω(log n), where n is the number of nodes in the tree.
Theorem 5.7.1. There is aO(log n) approximation algorithm for weighted 3TAP on n nodes.
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Figure 5.5: The 3TAP instance created from a set cover instance.

Proof. Consider any feasible solution A to 3TAP, such that T ∪A has every tree edge in a 3-cycle.
For a vertex v, let δ(v) be the edges of T ∪ A adjacent to v.

To turn this problem into a set cover problem, we let the edges of E(T ) be the elements. For
any subset of edges adjacent to a vertex v, Sv, we construct a set with cost c(Sv) which covers the
edges induced by the endpoints of the edges in Sv (except for those edges adjacent to v).

By doubling each edge in the feasible solution, then we can decompose the entire solution
into these stars. So, given a solution to 3TAP of total cost C, the corresponding set cover has a
solution of at most 2C. Given any solution to the set cover problem, then we simply add all the
edges specified by the stars to the tree (with maybe some duplicates when edges are added from
both endpoints’ stars). Thus, any solution of cost C to the set cover gives a solution to the original
3TAP solution of cost between C/2 and C. Therefore the optimal solutions to these two problems
are within a factor of two of each other.

It is well known that minimum-cost set cover with n elements has an O(log n) approximation
as long as the densest set (that has the maximum ratio of newly covered elements divided by the
cost of the set) can be found in polynomial time. For a fixed vertex v, we can find the maximum
density star centered at v as follows. Due to a result by Goldberg, one can find the maximum
density subgraph; S ⊂ V which minimizes |E(S)|

c(S)
in polynomial time [39]. For the given center

v, by setting the cost of another vertex u to be c(uv), we can use the maximum density subgraph
algorithm to find the maximum density star from v, where the edges in the subgraph are the tree
edges covered in triangles by the corresponding star. By repeating this for every choice of center
vertex v, we can find the maximum density star in polynomial time. This gives the maximum
density set for the set cover problem in polynomial time. Then we can use the greedy algorithm
for set cover to get an O(log n) approximation for 3TAP.

Notice that in the above algorithm we used no properties of the original graph T . This algorithm
will in fact work for any graph T where the goal is to augment such that every edge is in a 3-cycle.
Corollary 5.7.2. The problem of finding a minimum cost augmentation of any graph G
where every edge must be in a 3-cycle has an O(log n) approximation.

The above approximation is tight as the weighted 3TAP problem captures set-cover exactly.
We will now show the matching lower bound.
Theorem 5.7.3. 3TAP does not have a Ω(log n)-approximation unless NP ⊆ P .
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Proof. Consider an instance of set cover with sets S1, S2, . . . , Sk and elements e1, e2, . . . en and
cost function c on the sets. We will have our tree be as shown in Figure 5.5. The vertex set is

{r, s, t} ∪ {Si}ki=1 ∪ {ej}nj=1

with the following costs on the links:

• Links from s to vertices {r, t} ∪ {Si}ki=1

• Links from t to Si have cost c(Si)
• If ej ∈ Si then the link from ej to Si has cost 0
• All remaining links have cost 1 +

∑k
i=1 c(Si). Call the set of these remaining edges L.

In any optimal solution, we will not use any edges from L as taking all the edges not in that set
have smaller cost and give a feasible solution. The zero edges from s allow every edge except for
the tej edges to be in a three-cycle and they have cost 0. Now the only way to have an edge tej in
a three cycle is for tSi and ejSi to be used for some Si such that ej ∈ Si. So, the non-zero edges
bought correspond to sets being chosen.

Consider any feasible solution to set cover Si1 , . . . Sik , this can be turned into a feasible solution
to 3TAP of the same cost. All the zero cost edges in addition to the tSi` edges form a feasible
solution. We know all the edges in the tree except for the tej edges are in a three cycle with zero
cost edges. Consider any j ∈ [n]. There is some Sit that contains j. The edge tej is then in a three
cycle with tSi` and Si`ej . Hence, every feasible solution to the set cover instance gives a feasible
solution of the same cost to the 3TAP instance.

Consider any feasible solution to our 3TAP instance. If the 3TAP solution contains an edge
from L then the solution has weight at least 1 +

∑k
i=1 c(Si), by taking all the sets Si we get a

feasible solution to the set cover instance of less cost. Now consider there are no edges from L in
the feasible solution for the 3TAP instance. Let tSi1 , . . . tSit be the non-zero edges in the solution.
Therefore Si1 , . . . Sit is a feasible solution to the set cover instance. Consider any element ej . The
edge tej must be in some three cycle with tSi` and Si` therefore, Si` contains ej and is a set in our
solution to set cover. Therefore every feasible solution to 3TAP has a corresponding solution of set
cover with the same or smaller cost.

Any feasible solution to set cover gives a solution to 3TAP of the same cost. Any feasible
solution to 3TAP, gives a feasible solution to set cover of the same or smaller cost. Therefore,
by the hardness of set cover, it is impossible to approximate three-cycle TAP to within a Ω(log n)
factor unless NP ⊆ P [4].

Remark: Suppose we were given an empty initial graph to augment and wish to find a
minimum-cost two-edge-connected spanning subgraph where every edge is in a triangle, it is not
hard to adapt the above hardness: We give all edges in the tree zero cost. By further subdividing
the path of set nodes S1, S2, . . . , Sk to add new dummy nodes between every pair of set nodes, we
can ensure that every element node ej is covered only by triangles containing edge (t, ej). This
requires that the other edges in the cycle are of the form (t, Si), (Si, ej) for some set Si containing
the element ej .
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5.7.2 Unweighted Version
While weighted 3TAP has many similarities to set cover, the unweighted version admits a constant
approximation unlike set cover. Here we consider the case that every non-tree edge has cost either
1 or infinity, and every tree edge is present (and has cost 0). This 4-approximation comes from
lower bounding the cost of every feasible solution to unweighted 3TAP.
Lemma 5.7.4. Every feasible unweighted 3TAP solution has cost at least n−1

2
.

Proof. Consider any solution S. Duplicate all the links of S and edges T and forming stars around
every vertex consisting of the edges adjacent to it. Call the star around v, Sv. This doubles the cost
of the solution, but now we can see that every tree edge is covered by some star. At every vertex,
we can further decompose Sv into S1

v , . . . S
`v
v such that we get stars that cover different connected

components of the tree and every star contains at most one tree edge.
Now consider any star Siv. If Siv has x links, then the number of tree edges it can cover with

3-cycles is at most x. So, in the doubled instance of S there must be at least n − 1 edges. Every
link is in at most 2 stars; there must be at least n−1

2
edges in any feasible solution.

Corollary 5.7.5. Unweighted 3TAP has a 4-approximation.

Proof. We can get a 4 approximation by simply taking any minimal feasible solution. For every
edge ab, pick a v such that av, bv both have cost 0 or 1. If no such vertex exists, then no fea-
sible solution exists. Otherwise, the algorithm chooses at most 2(n − 1) links. This gives a 4
approximation as desired.

5.8 Conclusion
We have introduced a new top down coloring method that gives a strict improvement over existing
2-approximation algorithms for weighted TAP, with better improvements for larger minimum val-
ues in the LP. Our methods give constructive convex combinations into feasible solutions and when
coupled with the strengthened ODD-LP for the problem have much potential to settle the integrality
gap for this fundamental network design problem. We also settled the approximation complexity
of the special case when all edges in the final solution must be in triangles – the extensions to short
constant-length cycles in place of triangles is immediate. We hope our new algorithms will provide
a stepping stone to settling the integrality gap for weighted TAP.
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Chapter 6

Conclusion and Open Questions

In chapter 2, we have obtained new results in the approximability of rumor spreading problems
in the well-studied radio model as well as a new model motivated by wireless communications,
which we call the edge-star model. For the radio model, we present an Ω(n1/2−ε) hardness of ap-
proximation bound for radio gossip, making progress on an open problem mentioned in [36]. For
the edge-star model, we present an O( logn

log logn
) approximation algorithm for gossip, an Õ(2

√
logn)

approximation algorithm for symmetric multicommodity multicast, and an Õ(n2/3) approxima-
tion algorithm for asymmetric multicommodity multicast. Our approximation algorithms expose
relationships between the edge-star model and the well-studied telephone model.

Our work leaves several interesting open problems. Among the nine cells listed in the matrix
of Table 2.1 of Section 2.1, only radio broadcast and edge-star broadcast are resolved. Significant
gaps between the best known upper and lower bounds on approximability remain for telephone
broadcast, the gossip problem under all three models, and the multicommodity multicast problem
under all three models. In the edge-star model, the symmetric and asymmetric versions of the mul-
ticommodity multicast problem are distinct, and both are open, in terms of the best approximation
factor achievable in polynomial-time.

In chapter 3, we continued the study of these communication problems in planar graphs. We
gave the first proof of an upper bound of O(log k) on the integrality gap of the POISE-LP. We uti-
lized the poise result combined with path separators to develop an O(log3 k logn

log logn
)-approximation

for telephone multicommodity problem on planar graphs. In addition, we develop an O(log3 n)-
approximation for radio gossip on planar graphs. Lastly, we extend these results to graphs which
are minor-free. One natural open problem is if these path separator techniques can extend to the
other communication problems in planar graphs. In particular, does the path separator technique
or poise problem allow for better approximations for the edge-star model in planar graphs.

In chapter 4, we studied publisher-subscriber problems. We gave constant factor approxima-
tions in the case where the demands were complete bipartite. In the case of the complete demand
graph, then we showed that an optimal solution is a hub-star and can be found in polynomial
time. For general demands, we addressed the tree-star case and gave an O(log n)-approximation
algorithm. Lastly, we gave an Ω(log log n) integrality gap on the natural LP relaxation.

Perhaps the most interesting set of questions arising from our work is the approximation status
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of the bipartite and more general DON problems with general demands. While the integrality
gap demonstrates that an LP rounding approach based on the natural formulation will not yield
constant guarantees, we have not yet been able to convert these ideas into a hardness of constant-
factor approximation proof.

Another avenue of open problems concern removing the metric requirement on the cost func-
tion: the tree-DON and tree-star-DON problems then become significantly different and harder
(they generalize group Steiner problem, for instance) and require new ideas.

Finally, there exists O(log n)-approximations for all three design metrics, but the techniques
used are specific to each problem. One further avenue would be to find a unified O(log n)-
approximation for all three design types:star-star, tree-tree, tree-star.

In our last chapter, we introduced new top-down coloring methods that gives a strict improve-
ment over existing 2-approximation algorithms for weighted TAP, with better improvements for
larger minimum values in the LP. Our methods give constructive convex combinations into fea-
sible solutions and when coupled with the strengthened ODD-LP for the problem have much po-
tential to settle the integrality gap for this fundamental network design problem. We also settled
the approximation complexity of the special case when all edges in the final solution must be in
triangles – the extensions to short constant-length cycles in place of triangles is immediate. We
hope our new algorithms will provide a stepping stone to settling the integrality gap for weighted
TAP. In particular, resolving whether conjecture 5.3.3 is true or not would provide insight into the
ODD-LP. Another open problem is just to simply achieve a better than 2-approximation for general
weighted TAP.
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