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6.2 Results 

Figure 31 shows the calibrated model range of motion as compared to the 

experimental C2-C7 range of motion for all specimens for each loading direction. The 

C2-C7 model-predicted motion matched the experimental motions well for a majority of 

the loading curves. The model over predicts extension and slightly under predicts lateral 

bending. However, lateral bending has the largest range of motion and the largest neutral 

zone, making it challenging to capture the nonlinearity. For axial rotation and flexion, the 

motion matches the experimental results well, including at the ends of the loading curve. 

Figure 32, Figure 33, and Figure 34 compare the finite element predicted motions 

to the average experimental motion at each level for flexion-extension, lateral bending, 

and axial rotation, respectively. Comparing level by level, the model over predicts 

extension at C2-C3 and C4-C5; however it matches the C6-C7 motion throughout the 

loading curve The model matches the flexion moment-rotation curve well at all levels 

except C4-C5. For lateral bending, the model matches well at C3-C4 and C4-C5. The 

motion is slightly under predicted at C5-C6 and C6-C7; however the motion is greatest at 

these levels as well. For axial rotation, the model over predicts the rotation at C2-C3 and 

matches well at the other levels. Overall, the predicted motion is within one standard 

deviation of the experimental motion for a majority if the loading curves. 

Table 8 compares the percentage of coupled motion during lateral bending and 

axial rotation predicted by the model to the experimental coupled motions. The percent of 

coupled motion is the fraction of off-axis motion to primary motion. In general, the 

model captured the coupling, especially for the off-axis axial rotation during lateral 

bending. 

The von Mises stress distributions for flexion and extension, lateral bending, and 

axial rotation are illustrated in Figure 35, Figure 36, and Figure 37, respectively. The 

peak von Mises stresses occurred at the capsular ligament attachment sites; however this 
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is related to the point loading of the ligaments. Overall the stresses are largest in the 

cortical shell, corresponding to the higher Young’s modulus. 

 

 

 

 

Figure 31 The C2-C7 finite element predicted motion compared to the experimental 
motion-rotation curves for flexion-extension, lateral bending, and axial 
rotation. 
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Figure 32 Finite element flexion-extension results compared to the average experimental 
moment-rotation curves for each level.  
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Figure 33 Finite element lateral bending results compared to the average experimental 
moment-rotation curves for each level. 
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Figure 34 Finite element axial rotation results compared to the average experimental 
moment-rotation curves for each level. 
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Table 8 The percentage of coupled motion between axial rotation and lateral bending 
at 2.5 Nm. 

Primary Motion Coupled Motion 

Percent of Primary Motion 

Experimental Finite Element 

RLB RAR 54.7% 43.1% 

LLB LAR 57.5% 43.8% 

LAR LLB 110.1% 74.4% 

RAR RLB 53.2% 64.1% 

 

 

 

 

Figure 35 The von Mises stress distribution at 2.5 Nm for flexion and extension. 
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Figure 36 The von Mises stress distribution at 2.5 Nm for right and left lateral bending. 

 

Figure 37 The von Mises stress distribution at 2.5 Nm for left and right axial rotation. 
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6.3 Discussion 

To better understand spinal biomechanics, finite element (FE) analyses are often 

performed. FE models afford the ability to study internal biomechanics in response to a 

given external stimulus. Several studies have focused on the human cervical spine [37, 

40, 43, 82], however to my knowledge there has only been one study [17]that has 

employed an FE analysis to study the sheep cervical spine focusing on the C3-C4 FSU 

only. Since the sheep is often used for in vivo studies [11, 75, 83], it is important to have 

a comprehensive understanding of both external (i.e. motion) and internal biomechanics 

(i.e., bone stress and strains, disc pressures, facet contact, etc.) of the sheep. This is the 

first multilevel model of the sheep cervical spine and to include species-specific material 

properties. 

Overall, this model corresponds well with experimental data. The model does 

over predict extension and under predict lateral bending, however it is more accurate than 

the initial model that incorporated human material properties. Due to the large neutral 

zone it is difficult to determine material properties that can account for the high flexibility 

and neutral zone while still capturing the elastic zone as well. 

The model compared favorably for the off-axis motions in lateral bending and 

axial rotation as well. The computational off-axis axial rotation during lateral bending 

was similar to the experimental results. The model was not as accurate at capturing the 

off-axis lateral bending during axial rotation. However, the experimental axial rotation 

test was the least stable (only five of the ten specimens could be tested) so the large off-

axis lateral bending motion may be due to the instability of the specimen.  

As mentioned in the Section 6.1, the model incorporated larger ligament toe 

regions than were found experimentally. The toe region was minimal during experimental 

studies because the ligaments were preloaded to 5 N to define a uniform reference 

starting point. However, in some cases this introduced a pre-strain, as described by 

Ambrosetti-Giudici et al. [64], and thus reduced the physiological toe region. Therefore, 
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the introduction of the toe region in the finite element model accounts for the 

experimental pre-strain. 

To more accurately predict all motions, future studies should focus on 

determining the intervertebral disc material properties at the level and regional basis. The 

annulus properties of the current model were based on variations of the stress-strain curve 

for the human lumbar spine [81]. Although this curve was adjusted to capture the more 

flexible nature of the sheep cervical spine, experimental testing of the sheep 

intervertebral disc would provide species-specific properties to better define the annulus 

grounds and fibers. Corresponding to this, determining the fiber orientation and material 

properties on a regional basis would be beneficial. Currently, the model incorporates the 

same fiber angle throughout the entire annulus. Previous studies [50, 54]for the human 

lumbar spine have reported that the fiber orientation and material properties vary between 

annular layers (inner versus outer) as well as annulus regions (posterior versus anterior). 

This may be true for the sheep intervertebral disc as well. The regional differences were 

taken into consideration with the region dependent annulus ground, but in the future this 

should be extended to the annular fibers as well. 

Another future effort to more accurately define the intervertebral disc would be to 

incorporate user-defined material properties. The current model incorporates hyperelastic 

(annulus grounds) and hypoelastic (annulus fibers) material property functions provided 

by Abaqus (Simulia, Rhode Island, USA). However, more recently user-defined material 

properties are being incorporated to better capture the human intervertebral disc [37, 56]. 

Similar techniques should be explored to capture the high nonlinearity observed in the 

sheep spine and to correlate the annulus matrix deformation with the annulus fiber strain. 

However, there are also challenges and limitations to user-defined material properties as 

well. They are time consuming to develop and are highly dependent on experimental 

input. It is also important to check the stability and validity of the user defined materials 

because many hyperelastic models become unstable at different strain rates and 
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magnitudes. If a predefined hyperelastic function captures the nonlinearity of the 

intervertebral disc, then that function should be incorporated since it has been validated 

for accuracy in formulation. 

Beyond the intervertebral disc, future work should also focus on the facet joint. 

Currently, the facet cartilage is modeled assuming a uniform layer which is not 

anatomically accurate. This is a valid assumption if the facets are not the focus of the 

study. Since it is difficult to determine the anatomical cartilage layer from medical 

imaging, other studies [38-40] have made the assumption of a uniform cartilage layer. 

However, if the facet contact pressure and area are of particular interest, it would be 

beneficial to incorporate an anatomically accurate cartilage layer to capture the contact 

pattern and forces more accurately. The utilization of high resolution magnetic resonance 

imaging could assist in capturing the facet cartilage. These images could be registered 

with corresponding computed tomography images to obtain accurate definitions of both 

bone and soft tissues. 

Although this study has limitations it still provides insight into the sheep 

biomechanics such as stress distribution and intervertebral disc stress. The model predicts 

the large change in motion at the neutral zone and captures the high flexibility of the 

sheep cervical spine. Also, the model captured the coupling between axial rotation and 

lateral bending. The model affords additional biomechanical insight into the intact sheep 

cervical spine that cannot be easily determined experimentally. The model illustrates the 

stress distributions for the given loading conditions and can be used to predict regions of 

high stress concentration in the bone, facets, and intervertebral discs. This validated 

model can be used to study disc pressures, facet contact, and bone stresses under given 

loading conditions. Additionally, the validated model can be used to study various 

surgical techniques and material properties of new implant and fixation devices.  
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7.2 Results 

To obtain the same range of motion as the intact model, the resultant moment 

increased to over 3.5 Nm for extension and axial rotation and over 5 Nm for flexion and 

lateral bending after fusion. The motion at the fused level C3-C4 was reduced to less than 

one degree (0.23˚ to 0.71˚). To obtain the same peak range of motion, the motion at the 

unaltered levels increased (Figure 38). The largest compensation in motion was at the C6-

C7 with an average increase of 27%.  

 

 

 

 

Figure 38 The percent increase in motion at each level after fusion at the C3-C4 level. 

With the increase in resultant moment, the von Mises stresses also increased. 

Figure 39, Figure 40, and Figure 41 show the von Mises stress distribution after fusion 

for flexion and extension, lateral bending, and axial rotation, respectively. Figure 42 
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Figure 40 The von Mises stress distribution after C3-C4 fusion for right and left lateral 
bending. 

 

Figure 41 The von Mises stress distribution after C3-C4 fusion for left and right axial 
rotation. 
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Figure 42 The percent change in von Mises pressure after fusion at level C3-C4. 

7.3 Discussion 

The finite element model was used to simulate a single level fusion at the C3-C4 

level. As described in literature [9-11], the intervertebral disc is removed and replaced 

with a bone graft. It was assumed the bone graft had fused completely with the adjacent 

bodies. No cages or plates were used for the fusion. 

The fused model was rotated to the motion at 2.5 Nm of the corresponding intact 

model. This resulted in an increase in motion at adjacent levels following a fusion, which 

was expected. Similarly, the disc stress also increased after fusion, corresponding to an 

increase in motion. The largest increase in motion and stress occurred at the C6-C7 disc 

followed by C2-C3 disc. The increase in stress and motion could lead to damage at the 

adjacent levels over time. The effect of the increased motion and stresses is difficult to 
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determine theoretically, however coupled with in vivo studies, it could provide insight 

into the long term effects of fusion. 

This study is just one example of how the finite element model can be used to 

gain insight into different surgical techniques and procedures. It provides researchers 

with additional biomechanical parameters to consider when designing relevant in vivo 

and in vitro studies. The changes in stress distribution and magnitude can gives insight 

into problematic or beneficial results for a given change. In conclusion, the finite element 

model is a great tool for researchers to study the biomechanics of the sheep spine and is a 

great complement to experimental studies. 
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CHAPTER 8: CONCLUSIONS 

The sheep is often used as a precursor to human cadaveric and clinical trials; 

however there is limited knowledge of the flexibility and material properties. It is 

important to understand the biomechanics of the intact sheep spine in order to design 

sound in vivo and in vitro sheep cervical spine studies focusing on surgical techniques 

such as discectomies and fusions. Therefore, this study provides insight into the 

multilevel biomechanics of the sheep cervical spine as well as the ligament properties. 

This study presents in vitro biomechanical data for the mulitlevel sheep cervical 

spine as well as insight into the roles of stabilizing structures. The sheep cervical spine is 

highly flexible, with motion increasing with caudal progression. Additionally, there is a 

large neutral zone, accounting for 50% to 75% of the total motion. The large flexibility 

and neutral zone of the sheep spine should be accounted for when designing future 

studies and interpreting results.  

Additionally, understanding the roles of the ligaments and facets is important 

when planning surgical techniques. This study found the capsular ligaments and facets 

provide stability during flexion, extension, and axial rotation. The ligaments and facets 

do not provide a great deal of stability in lateral bending however. Also, the ligaments 

play a key role in stabilizing the C2-C3 level. Future work should focus on testing 

additional specimen at the various levels of destabilization to gain a better understanding 

of the stabilizing structures. 

In addition to destabilization, ligament tensile testing was conducted to determine 

the material properties of each ligament. The capsular ligament has the highest failure 

force whereas the ligamentum flavum has the largest failure stress. The longitudinal 

ligaments had the largest failure strain. Due to the small sample size and limitations in the 

test setup, there was a great deal of variation in the material properties for the same type 

of ligaments. Thus, future studies should include additional specimen so statistical 
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analysis can be conducted, thereby establishing whether significant differences exist 

between the different levels and ligament types. 

Moreover, the finite element model was validated against the experimental 

flexibility data. A majority of the model predicted motions were within one standard 

deviation of the experimental motion. The model was used to study the effects of fusion 

at C3-C4. The motion at the fused level decreased to nearly zero degrees for all loading 

conditions. To compensate for the loss of motion, the non-fused level motion increased 

15- 27% with the largest increase at C6-C7. Also, to obtain the same range of motion as 

the intact case, the resultant moment increased to over 5Nm for a flexion and lateral 

bending over 3.5Nm for extension and axial rotation. 

 Overall, this study provides valuable insight into the sheep cervical spine 

multilevel biomechanics. The high flexibility and neutral zone should be considered 

when designing studies for comparison to the human cervical spine. Additionally, the 

finite element model can provide important biomechanical data that is difficult to 

determine experimentally. The model can be used to study the effects of different surgical 

procedures such as fusion. 
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