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In the United States, major portions of the annual electrical and primary energy are 

consumed for buildings. To help reduce the energy consumption of non-renewable 

energy sources, this study investigates a new technology for harvesting solar energy 

using a boiling-condensing cycle with water in a solar collector. The fluid circulation is 

under natural forced convection. A solar collector is made of a black lacquer copper with 

2 meters in length is used. The design of the system is presented to simulate heat transfer 

rate in a cold climate an average daily solar irradiation of 4.5kWh/m
2
/day, e.g. for Omaha 

Nebraska. The tube surface temperature is calculated based on specified ambient 

temperature and solar radiation, i.e. 302.6K.  

A constant tube surface temperature is considered in this simulation-based study. The 

solar collector will not freeze since this system uses the lower pressure inside the tube. 

The correlations for the heat transfer coefficients in non-boiling and boiling regions are 

presented. This study analyzes the heat transfer development of a single phase flow and 

two-phase flow boiling process in different regions such as subcooled flow region, 

saturated flow boiling region and vapor region in various pressures. This research 

investigates how to maximize heat transfer in a single vertical tube. The proper subcooled



 flow region in the overall tube length and also a specific pressure are optimized and 

estimated to calculate the maximum total heat transfer rate in a solar collector. It is 

concluded that the maximum heat transfer rate will be obtained when the vapor region is 

minimized and the subcooled and saturation region are maximized in overall tube length. 
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Chapter 1 

1. Introduction 
 

1.1 Motivation 

This chapter presents the motivation of the research tackled in this thesis. The chapter 

also provides the main objectives of the research and outlines each chapter. 

This research aims to develop a high-efficiency technology for harvesting solar 

energy using a boiling-condensing cycle in a domestic hot water system. Buildings 

dominate energy consumption in the U.S.  They consume 40% of primary energy and 

70% of electric energy. The U.S. Department of Energy (DOE) has adapted Zero-Net 

Energy Buildings (ZNEB) as a strategic goal in their efforts aimed at energy efficiency 

and sustainability. DOE plans to achieve ZNEB by (1) reducing the energy used by 

housing by an average 30% to 90% through improved energy systems efficiency and 

conservation, and (2) compensating the rest of the energy use by on-site renewable 

energy generation (DOE, 2009). However, the ability to cost-effectively harvest on-site 

renewable energy in environmentally friendly and safe manners is one of the primary 

barriers to an effective renewable energy solution. This problem is particularly important 

in the Midwest and Western areas of the United State because of the low population 

density and the limited availability of transmission lines. 

Besides achieving energy use reduction and system efficiency improvement, the 

success of the strategic goal of ZNEB relies greatly on offsetting part of the energy usage 

through on-site renewable energy generation. Solar domestic water heating systems are 
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generally efficient and cost-effective in climates where freeze protection is not required. 

In regions where freezing occurs, these systems become more complex and expensive. 

The proposed system in the present study is an innovative solar hot water system that 

uses a boiling-condensing cycle. Maximized heat transfer in the solar collectors can be 

achieved by forced convection boiling in two-phase flow. This system has the advantages 

of easy freeze protection and no pumping or control system requirements. The goal of 

this study is to develop a solar hot water system to maximize the efficiency and 

effectiveness of renewable energy usage, which can reduce non-renewable energy usage 

for hot water heating. 

The performance efficiency and cost-effectiveness of solar water heating is generally 

much higher than that of photovoltaic systems. The heat pipe, where heat absorbed at one 

end of a pipe by vaporization of the fluid can be released at the other end by condensation 

of the vapor, is a highly efficient device for heat transmission. It has advantages of 

transferring heat at high rates over considerable distances, with extremely small 

temperature drop between the evaporator section (heat region) and the condenser section 

(cooled region) of the pipe. However, current work on such systems has largely centered 

on using refrigerants as the working fluid. This means that a double-walled heat 

exchanger must be used to comply with the regulation of food safety in most states in the 

U.S and in the countries, which dramatically degrades the system performance and cost 

efficiency. This study will develop a solar collector system using a boiling-condensing 

cycle with water as the working fluid in order to significantly improve the system 

performance and applicability. Compared with the conventional solar water heating 

system, the system has the advantages of operating as a thermal diode (when the collector 
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temperature is less than the storage water temperature, the heat energy will not be lost 

from storage tanks); good resistance against corrosion; elimination of contamination of 

potable water; easy freeze protection; and no pumping or control system requirements. 

This latter point means that the system will not require an electrical connection. This 

study aims to develop an entirely new solar hot water system to collect and store the solar 

energy. Emphasis will be placed on optimizing a solar hot water system using the 

boiling-condensing cycle for harvesting solar energy. 

Solar domestic water heating systems can be economical in climates where the lowest 

temperatures in winter will not freeze the water in the collectors. Where the temperature 

may drop below freezing, they are not generally economical. This is partly because of the 

cost of freeze protection. The proposed system in this study avoids these difficulties by a 

solar collector system that operates at a low enough pressure. The water in it will boil at 

the temperatures that can be achieved under solar irradiation as shown in Figure 1.1. The 

water vapor (steam) will then flow from the top of the collector to a vapor-release drum 

and a heat exchanger in the domestic hot water (DHW) system. The vapor-release drum, 

which is connected between the solar collector and the heat exchanger, is used to assure 

that vapor always remains in the inlet of the heat exchanger during the normal operation 

of the system; then water vapor will condense, giving off its heat to the water. The 

condensate will then flow back into the bottom of the solar collector to be boiled and 

circulated again.  
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Figure  1.1 Schematic diagram of the proposed solar hot water system 

 

The heat transfer coefficients for boiling and condensation heat transfer are far higher 

(20 to 100 times higher) than for single phase convective heat transfer. Therefore the 

solar collectors will operate more efficiently, as will the heat exchanger between the solar 

loop and the potable water. The amount of water circulated can be far less than in 

conventional systems because the enthalpy of evaporation is so much higher than the 

sensible enthalpy changes that occur when water is heated and cooled. The enthalpy 

change that occurs when water is boiled is 50 times higher than when water is heated by 

20 
o
F (a reasonable temperature difference for a standard solar collector). 

Previous studies of related concepts have focused on using refrigerants (R410A, 

R407C, R134a and R11) as working fluids (Esen and Esen, 2005; Joudi et al., 1999). 
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Though Anderson et al. (2009) and Hwang et al. (2007) showed the application of the 

water heat pipe for extreme environments in the Moon and the Mars, the wick and 

titanium heat pipe are not necessary in domestic water heating. The study most relevant 

to the present study (Hussein, 2007) only showed the performance of components in a 

particular climate and configuration. A system is proposed very different from his, 

because it is maximized heat transfer in the solar collectors by optimization of forced 

convection boiling in two-phase flow. The proposed system can be operated in one of 

two ways, using natural circulation or using a pump. In the natural circulation system the 

bottom of the heat exchanger in the DHW system is above the top of the solar collectors. 

Water boils in the solar collectors, the steam flows to the heat exchanger and condenses, 

and the condensate returns to the solar collectors due to gravity. This system is cheap and 

simple, with no moving parts and no requirement for controls or for an electricity 

connection. 

In some situations, it isn’t practical to arrange the solar collectors and the DHW 

system so that gravity return is possible. In that case, a pump can be used.  However, the 

very low flow rate required means that the pump can be much smaller, reducing the cost 

of the pump, and its power consumption. Of course, using a pump means that an 

electrical connection would be required. 

The main advantage of the proposed low pressure system is freeze protection. 

Because the system is only partly filled with water, ice can form in the solar collector 

tubing without rupturing.  Ice forming in a partially-filled tube will simply squeeze along 

the tube as it expands. (This mechanism has been tested by Dr. Siu-Kit Lau, Dr. Gren 

Yuill and Mr. Carl Hart of the University of Nebraska-Lincoln, and freezing did not 
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rupture the tubing.) Eliminating the need for freeze protection greatly reduces the cost of 

a solar DHW heating system and/or increases its efficiency. 

1.2 Goals 

The rationale of the study is to establish an optimal and integrated domestic hot water 

system based on a boiling-condensing cycle to maximize high heat transfer coefficient 

and total heat transfer rate in a the solar collector tube.  Also one of the goals of the thesis 

is to understand the two-phase flow boiling process inside the solar collector tube and its 

behavior under different conditions with various factors (e.g. pressure and tube size). The 

study is preferred to maximize heat transfer and optimize the overall system performance 

with regarding to existing condition such as average surrounding temperature at cold and 

warm months and average solar irradiation at different territories. 

1.3 Structure of Thesis 

The next chapter presents the literature review of this study. The chapter 3 is focused 

on methodologies of this research. The chapter 4 discusses heat transfer coefficients. The 

chapter 5 focuses on optimization estimation and energy performance of system design. 

The chapter 6 concentrates on conclusions and recommendations for future work. 
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Chapter 2 

2. Literature Review 

2.1  Introduction 

There are several research works have been done regarding to process of flow boiling 

of a liquid. The process of liquid flow boiling in heated confined passage is discussed in 

various applications, for instance, steam generators in power plants, evaporators in 

refrigeration, and air conditioning equipment (Kandlikar et al., 1999). The heat transfer 

related from changing single-phase liquid to two-phase flow boiling in a vertical heating 

pipe is an important topic in evaporators in the process industry for mechanical, 

chemical, petrochemical and hydrometallurgical performances (Saffari and Ghobadi, 

2010). A boiling-condensing cycle in a domestic hot water system can also be applied in 

harvesting solar energy (Wangee Chun et al., 1999).  

The seminal literatures on flow boiling will be reviewed in this chapter. In the second 

section of this chapter, forming different regions of water flow boiling in a vertical tube 

will be explained. The third section will present some of the background works related to 

the development of subcooled, saturated, and vapor boiling regions.  

2.2  Regions of Flow Boiling 

Figure 2.1 shows more details about various regions of flow boiling (Kandlikar et al., 

1999). Heat transfer to a liquid flowing inside a tube is by single-phase heat transfer as 

long as the temperatures of the liquid, Tf, and the wall, Tw, are less than the saturation 

temperature of the liquid, Tsat, at the local pressure from the inlet (location A). In the 

following sections of this dissertation Ts is used instead of Tw,  the subcooled liquid heat-
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transfer is initially transferred through single-phase forced convection. Farther 

downstream in the tube (upward of the tube in Figure 2.1), the wall temperature surpasses 

the local saturation temperature of the liquid, Tsat, at location C and vaporization is started 

in the subcooled flow boiling region. The boiling process in the subcooled flow 

significantly improves the heat transfer rate the single-phase value, which will be shown 

in later in this section. 

 

Figure  2.1 Flow boiling process in subcooled area (Kandlikar et al., 1999) 

 

In a condition of constant heat flux, the bulk water temperature and the wall 

temperature vary along throughout the tube. For a circular tube of diameter D, the water 

temperature variation in the flow direction in the non-boiling region (before location C) 

can be extracted from an energy balance over the tube lenght, L. In the single-phase 
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region, the heat transfer coefficient,    , is almost constant, and the wall temperature, Ts, 

linearly increases and its curve is parallel to that of the water tempreature,   , along the 

tube as shown in Figure 2.1. At location B, the wall temperature, Ts, would reach the 

saturation temperature of the liquid, Tsat . A certain amount of heat energy on the wall is 

required  to create vapour cavities on the suface of the tube wall. At location C, the first 

bubbles appear on the wall, which is considered the onset of nucleat boiling or ONB. The 

wall temperature starts to level off as more bubbles are created beyond ONB. Since more 

nucleation sites are activated farther downstream, the contribution to heat transfer from 

nucleate boiling will increase and single-phase convective contribution will disappear. 

This area is called partial boiling region. At location E, the convective contribution 

becomes unimportant and the fully developed boiling (FDB) will appear. The wall 

temperature stays constant in the FDB area until a point where the convective effects 

become more important due to the two-phase flow. The bubbles created at the wall 

instantly following ONB cannot grow because of the condensation that occures at the 

bubble surface exposed to the subcooled liquid flow. A slim layer of bubles is shaped on 

the wall surface. As the liquid water temperature rises in the flow direction, more bubbles 

will be formed with increasing bubble size and decreasing subcooling region. These 

bubbles finally separate from the wall and flow toward the liquid core at the location G. 

Some bubbles condense along  the way. Location G is known as the point of net vapor 

generation (NVG). The vapor after location NVG is at the saturation temperature 

(Kandlikar et al., 1999). The the state of a subcooled liquid is defined in terms of an 

equilibrim “quality” based on the liquid enthalpy relative to its saturation state at the 

same pressure. The quality is used as an independent variable to represent the fluid state 
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along with an evaporator tube. The negative quality condition is referred to as the 

subcooled region and the positive quality is referred to as the saturated region. With 

increasing heat along with the tube, a saturation condition under thermodynamic 

equilibrium will be reached at location H in Figure 2.1. Because of non-equilibrium 

conditions, the real liquid temperature is actually lower than  the saturation temperature 

as shown by a dashed line in Figure 2.1 (Kandlikar et al., 1999). 

Figure 2.2 is a more comprehensive view of flow boiling regimes rather than Figure 

2.1 that only shows the subcooled flow region. As shown in Figure 2.2 (Incropera et al., 

2006), if the wall temperature surpasses the local saturation temperature, saturated flow 

boiling would be created and vapor quality will be between zero and one. The heat 

transfer coefficient, h, is significantly increased in this region (at right of Figure 2.2). The 

first phase of saturated flow boiling region belongs to the bubbly flow regime. As  ̅, 

which denotes vapor mass fraction or vapor quality, increases, individual bubbles merge 

to create slugs of vapor. This is followed by the formation of an annular-flow regime in 

which a liquid film is created on the tube wall. The created film goes along the inner 

surface of the tube, while steam moves at a greater velocity through the center of the 

tube. Finally dry spots are formed on the inner surface of the tube and its size increases 

within a transition regime. Consequently, the tube surface will be entirely dry, and whole 

remaining liquid will be in the form of droplets that move at high velocity within the core 

of the tube in the mist regime. When all the droplets are vaporized, the second single–

phase forced convection region consisting of superheated vapor is formed and the heat 

transfer coefficient is dramatically dropped. While the vapor fraction is increased along 

the tube length, along with a major difference in the densities of the liquid and vapor 
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phases, the mean velocity of the fluid will be increased drastically between the first and 

the second single phase forced convection regions (Incropera et al., 2006). 

 

Figure  2.2 Flow regimes for forced convection boiling in a tube (Incropera, et al., 2006) 

 

 

2.3 Background 

 

Figure 2.3 shows a qualitative flow boiling map of thermal behavior for flow boiling 

by Collier and Thome (1996). This study discusses the primary relationship between the 

vapor quality and heat transfer coefficient, with different heat flux values as a parameter. 

Vapor quality of the saturated two-phase region is represented with a positive value, 

while a negative value of vapor quality is represented to the subcooled region.  
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Figure  2.3 Schematic flow boiling map (Collier and Thome, 1996) 

 

 

Each line in the map is presented with constant mass flux, G, and constant heat flux, 

q. In the single-phase liquid, the local convective heat transfer coefficient is constant 

because the influence of liquid temperature is not too great on the properties of the liquid. 

In the subcooled nucleate boiling region, the local heat transfer coefficient linearly 

increases because the difference between the wall and bulk liquid temperatures decreases 

linearly in along the tube length. The temperature difference between the wall and bulk 

liquid temperatures is constant in the saturated nucleate boiling region and thus the heat 

transfer coefficient remains constant. The heat transfer coefficient,  , increases when the 

heat flux rises from (i) to (vii). When the heat fluxes are at a low value, the liquid 
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deficient region is in the area of the dryout of annular film. Where the heat fluxes are the 

high value, the saturated film boiling is encountered to the process that moves from 

nucleate boiling (DNB), which this point is named by critical heat flux (CHF). The film 

boiling and an inverted annular flow can happen when vapor forms an annular film and 

there is liquid in the central core. In a condition of high heat flux, a decrease from 

nucleate boiling (DNB) may possibly occur in the subcooled region. This is becomes heat 

transfer coefficients in the wet wall region are greater than in the film boiling and liquid 

definition regions (Collier and Thome, 1996). 

Kandlikar (1991a) built a flow boiling map to define the heat transfer coefficient as a 

function of major parameters such as vapor quality, heat flux, and mass flux. The map in 

Figure 2.4 shows the dimensionless parameters (i.e. two- phase flow boiling heat transfer 

coefficient over single-phase flow boiling heat transfer coefficient,        , and vapor 

quality x) that are  developed. Vapor quality from negative value up to 0.8 is shown 

which covers the range from the onset of nucleate boiling in the subcooled region up to 

the saturated boiling region. In the subcooled flow region and saturated flow boiling 

region, the flow boiling map shows a progression using existing experimental and 

analytical evidence of the heat transfer mechanisms. These trends are achieved by 

correlations for the different regions. In circular tubes, effects on the heat transfer 

coefficient by most of the other important variable subcooled and saturated flow boiling 

regions are analyzed (Kandlikar, 1991). In the flow boiling map, the behavior of a 

variable that changes according to various circumstances during flow boiling is 

illustrated. The modified boiling number, Bo*, and density ratio,      , are used to 

calculate the two-phase flow boiling heat transfer coefficient over the single-phase flow 
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boiling heat transfer coefficient,        .    is the liquid density based on kg/m
3
 and 

   denotes to vapor density based on kg/m
3
. The modified boiling number, Bo*, is 

introduced by Kandlikar (1991) and takes into account  (1) the effect of the boiling 

number (Bo) that represents the effect of heat flux on nucleate boiling (Collier and 

Thome, 1996), and (2) the fluid-dependent parameter (   ). The saturated flow boiling 

region in Figure 2.4 consists of with two dominant regions such as the nucleate boiling 

and convective boiling dominant regions. The nucleate boiling dominant region happens 

at a lower value of vapor quality. The convective boiling dominant region exists at a 

higher value vapor quality. System parameters such as the density ratio,      , and Bo* 

operations pressure, heat flux, and mass flux (G) are important in determining the 

variation of heat transfer coefficient along the nucleate boiling dominant and the 

convective boiling dominant regions. This flow-boiling map helps in the design and 

optimization of different flow boiling experiments, and also in interpreting the 

fundamental mechanisms (Kandlikar, 1991).   
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Figure  2.4 Initiated map for flow boiling regions in the vertical tubes with         

versus  as coordinate by (Kandlikar, 1991a) 

 

 

Other researcher of the flow boiling region has been done to gain a more fundamental 

understanding of the flow boiling phenomenon besides that for obtaining experimental 

studies (Kandlikar, 1990). A general empirical correlation is obtained for predicting 

saturated flow boiling heat transfer coefficients against vapor quality inside horizontal 

and vertical tube by (Kandlikar, 1990). The heat transfer coefficient,      along an 

evaporator tube with the proposed general correlation (Kandlikar, 1990) varies 

continuously against vapor quality,  ̅. The correlation is used for a number of fluids 

during flow boiling formation in plain circular tubes. The effects of various parameters 

and their correlations are investigated and analyzed. A general correlation for the 

condition of vertical flow liquid is developed for the two- phase flow boiling heat transfer 

coefficient,    . The two-phase flow boiling heat transfer coefficient is the sum of 



16 
 

convective and the nucleate boiling terms. The effects of boiling number, convective 

number, constant heat flux and mass flux on the variation of heat transfer 

coefficient,      in these two terms are considered. The general correlation is extended to 

predict two-phase heat transfer coefficient to other fluids by using a fluid- dependent 

parameter, Ffl. The Ffl is a fluid–surface parameter that depends on the fluid and the 

heater surface characteristics. The introduction of Ffl is an important aspect of the 

Kandlikar correlation as the type of tube surface has a direct effect on the heat transfer 

coefficient. Table 1 gives values of the fluid-dependent parameters for several fluids in 

copper tubes (Kandlikar, 1990). 

 

 

Table  2.1 Fluid parameter Ffl in the proposed correlation 

 

Fluid Ffl 

Water 1.00 

R-11 1.30 

R-12 1.50 

R-13B1 1.31 

R-22 2.20 

R-113 1.3 

R-114 1.24 

R-152a 1.10 

Nitrogen 4.70 

Neon 3.50 

For stainless steel, Ffl =1 for all fluids  



17 
 

 

In another research study (Saffari and Ghobadi, 2010) regarding the pressure drop 

along the vertical tube, the convective heat transfer coefficient and the wall temperature 

in a uniform heat flux for two-phase vertical flow are considered. The pressure drop 

effect on the flow and fluid properties for a two-phase flow boiling region at sub-

atmospheric pressures cannot be ignored, because the pressure drop can be comparable to 

operating pressures. In this paper, the pressure drop, heat transfer, wall temperature, and 

properties of two-phase flow in a uniform heat flux on the onset nucleate boiling point at 

different sub-atmospheric conditions is analyzed. The total pressure drop increases along 

the tube because the initiation of bubbles causes a rise in the flow roughness (Saffari and 

Ghobadi, 2010).  

Two conditions can be considered in order to calculate the heat transfer coefficient 

rate and energy rate of the flow in an enclosed tube. They are constant surface heat flux 

and constant surface temperature conditions. As shown in Figures 2.6, in a constant 

surface heat flux condition, the liquid mean temperature,   , varies linearly in the 

entrance and fully developed regions along the tube length. The heat transfer coefficient 

in entrance region is largely value due to the small difference between the surface 

temperature,   , and    but in the fully developed region, the heat transfer coefficient 

decreases due to the increasing difference between    and    (Incropera et al., 2006). 
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Figure  2.5 Temperature variations with constant surface heat flux condition in a tube 

 

Figure 2.7 shows the plot for a constant surface temperature condition. The 

distribution of mean temperature for a liquid exponentially changes along the tube length. 

The temperature difference between surface and the liquid exponentially decays in 

distance along the tube length. The heat transfer coefficient increases exponentially 

(Incropera et al., 2006). 
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Figure  2.6 Temperature variation with constant surface temperature condition in a tube 

 

In Ziadi et al. (2008), an experimental investigation of heat transfer of boiling 

distilled water under natural convective flow in a single pipe vertical thermosiphon 

reboiler is presented. The material used for the pipe is stainless steel. The test pipe is 

heated electrically. The variations in wall temperature are measured along its axis with 

thermocouples. In (Ziadi et al., 2008), the effect of heat flux and submergence, i.e. the 

fraction of heated tube volume which contains liquid water, on circulation rates is 

investigated. Also, the variation of local heat transfer coefficient along the heated pipe 

length for distilled water is considered. The results of this study show that the circulation 

rate for pure liquid depends mainly on heat flux, liquid submergence, inlet liquid sub-

cooling and vapor fraction.  

In Kamil et al. (1995), an experimental study of heat transfer for boiling liquids (e.g. 

distilled water, methanol, benzene, toluene, and ethylene glycol) has been carried out on 
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a single tube natural circulation reboiler. A stainless steel tube is used for test. The heat is 

transferred electrically to test a section of the tube with uniform heat flux. The effect of 

heat flux and liquid submergence on the variation of wall and liquid temperatures is 

discussed. The heat transfer coefficients in subcooled liquid and boiling region in the 

atmospheric pressure were calculated. The conclusion of this paper is that the heat flux 

and liquid submergence greatly influence the heat transfer coefficient and its variation 

along the tube (Kamil et al., 1995). 

In Shamsuzzoha et al. (2004), an analysis of the onset of nucleate boiling for a 

vertical thermosiphon reboiler was investigated. The heat transfer coefficients at the onset 

of boiling are very high because of the nature of nucleate boiling and from a single-phase 

fluid to a two-phase flow. The point at which the two-phase region starts is called the 

incipient point of boiling, which corresponds to the condition of lowest amount of 

superheat or heat flux required for formation of the first vapor bubbles from the heated 

surface. The effect of submergence in natural circulation system was investigated. The 

result is that at constant submergence, as the heat flux increases, the superheated required 

for incipient boiling increases. At the low value of heat flux, the role of submergence has 

less effect than for high heat flux. Submergence is a significant parameter in the 

prediction of onset of nucleate boiling in a vertical thermosiphon reboiler (Shamsuzzoha 

et al., 2004). 

2.4 Summary 

In chapter 2, different regions of water flow boiling in vertical tube are discussed and 

reviewed. Also, some previous research of subcooled, saturated, and vapor boiling 

regions are presented. Kandlikar correlations are used for different flow boiling regions 
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in the present study, which describes the flow boiling mechanism and analyzing flow 

boiling in the single vertical tube. Further discussion of Kandlikar correlations will be 

presented in the next chapter. 
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Chapter 3 

3. Methodology 
 

3.1 Introduction 

To investigate the performance of a single vertical tube under various conditions, a 

simulation platform is developed. A dynamic model is considered for system 

optimization, which is formulated to analyze behavior of the thermodynamics and energy 

transfer processes in a single vertical tube in a solar collector. The model is designed (1) 

for different climates and/or latitudes with a constant wall surface temperature condition, 

and (2) for predicting the local heat transfer coefficient in different internal flow regions. 

The heat transfer coefficient at each location is estimated with the local pressure and 

constant surface wall temperature condition. The average daily solar irradiation in these 

territories and average surrounding temperature in warm and cold months during years 

reported in territories are used for the calculation of wall temperature. The energy 

equation is designed for evaluation of energy harvested.  

According to the regions in Figure 2.2, different heat transfer mechanisms are 

dominant at different regions. Therefore, variations of heat transfer coefficients and 

theoretical mechanisms at different regions are expected. The heat transfer coefficient, h, 

is used in computing the heat transfer, which is typically by convection or phase change 

between a fluid and a solid. The local heat transfer coefficient   (W/m
2
K) is based on  the 

local wall temperature, the local bulk fluid temperature difference and the local heat flux, 

which represents the distribution of energy across the surface of an object, from the wall 
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into the fluid at the axial position along the tube assuming a uniform tube diameter 

(Kandlikar,1991). It is given as:     

   
 

(     )
 , (3.1) 

where    (K) is the wall surface temperature,    (K) is the liquid mean temperature, 

and   (W/m
2
) is the heat flux. The local heat transfer coefficients in different regions are 

presented in the following sections. 

3.2 Subcooled Flow Region  

In a vertical tube (refer to Figure 2.2) at a constant wall temperature condition, the 

water enters the tube below its boiling point and the heat on the tube surface is transferred 

to water. The first region, which is the subcooled flow region, is formed. In this region, 

the convection heat transfer mechanism is formed. The convective heat transfer 

coefficient    (W/m
2
K) in the subcooled liquid region can be considered in two flow 

conditions: laminar flow and turbulent flow (Incropera, et al., 2006). 

Laminar flow is a motion of the particles of fluid that is arranged with all particles 

moving in straight lines parallel to the tube walls (Incropera, et al., 2006). Reynolds 

number,    , is a nondimensional number that helps to determinate laminar or turbulent 

flow. Reynolds number     provides a quantity of the ratio of inertial 

forces to viscous forces and measures the relation of these two forces for given flow 

circumstances (Incropera, et al., 2006). When The Reynolds number value is less than 

2300, the liquid flow is assumed to be a laminar flow.     is given as (Incropera, et al., 

2006): 

     
  ̇

    
 , (3.2) 
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where    ,   ,  ̇ and D are the density of liquid (kg/m
3
), the viscosity of liquid 

(Ns/m
2
), mass flow rate (kg/s), and tube inner diameter (m), respectively. 

The local convection heat transfer coefficient,    , can be written as follows 

(Incropera, et al., 2006): 

     
      

 
                 (3.3) 

where     is Nusselt number and    (W/mK) is the local thermal conductivity of the 

liquid. The local thermal conductivity is a function of local liquid temperature. 

For heat transfer on a surface in a fluid, The Nusselt number is a nondimensional 

number that represents the ratio of convective to conductive heat transfers across the 

surface. At a uniform surface wall temperature,    (K),      is a constant dimensionless 

number with a value of 3.66 (Incropera, et al., 2006). 

Turbulent flow condition is the irregular nonlinear flow of a fluid caused by high 

velocity (Incropera, et al. 2006). The local subcooled heat transfer coefficient,    , with a 

turbulent flow condition can be calculated by empirical correlations based on the Prandtl 

number, Pr, of different fluids, Reynolds number and fraction factor at two conditions 

given (Kandlikar, 1991): 

1. (                           
 ), 

        
 

  
 

(        )(   )  

      (   )   (       )
  . (3.4) 

 

2.       (                            
 ), 

        
 

  
 

   (   )  

         (   )   (       )
 . (3.5) 
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The Prandtl number Pr is a nondimensional number. The ratio of momentum 

diffusivity (kinematic viscosity) to thermal diffusivity as the equation given:  

    = (   ) , (3.6) 

where  ,   and   are momentum diffusivity, thermal diffusivity (m
2
/s) and the single-

phase liquid friction factor, respectively.  

The friction factor   for the two correlations above is defined as: 

   [      (   )      ]
   . (3.7) 

The fraction factor is a dimensionless number and determined by pressure drop. 

Equipment, such as a pump, is used for overcoming the pressure drop in a tube. 

While the heat is transferred from the wall’s constant surface temperature to the 

liquid flow, the liquid outlet mean temperature,   ( )  along the tube subcooled flow 

region increases exponentially. The liquid mean temperature profile along tube subcooled 

flow region can be calculated by (Incropera et al., 2006): 

 
       ( )

       
    ( 

         ̅̅ ̅̅̅

 ̇     
) (3.8) 

where   ( ),     ,   ,     ,  ̇,  ,   and    ̅̅ ̅̅  are liquid outlet mean temperature in axial 

position  , liquid inlet mean temperature (K) wall temperature (K), specific heat 

(kJ/kgK), mass flow rate (kg/s), axial position within the tube length, L (m), tube 

diameter (m) and average convection heat transfer coefficient (W/m
2
K) in subcooled 

flow region, respectively.  

The average convective heat transfer coefficient,    ̅̅ ̅̅ , along tube subcooled flow 

region according to the liquid average thermal conductivity,   ̅, that is function of liquid 

temperature as: 
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     ̅̅ ̅̅ ̅  
      ̅̅̅

 
 . (3.9) 

The average thermal conductivity is determined by the average of liquid thermal 

conductivity at inlet temperature and thermal conductivity at saturation temperature. 

When heat is transferred from wall to liquid in upward flow, a change of phase and 

difference in density occurs. The change of phase and density, and the increase of vapor 

quality along tube length increase the velocity of the fluid. According to the initial values 

of parameters such as the liquid inlet temperature, liquid saturation temperature, the tube 

length between inlet and saturation temperature, wall temperature and the average heat 

transfer coefficient calculated based on average thermal conductivity at the subcooled 

flow region, the mass flow rate can be obtained by Equation (3.8). 

3.3 Saturated Flow Boiling Region 

The saturated boiling flow region starts from a point where the thermodynamic vapor 

quality reaches zero and water boils at saturation temperature. The saturation temperature 

is the temperature for a corresponding saturation pressure at which water boils into 

its vapor phase. The saturation temperature,        along the saturated boiling flow region 

is constant. The vapor quality in this region increase until a vapor quality of 1 is reached. 

After reaching a vapor quality of 1, the phase of fluid reaches another region called vapor 

region. 

In the saturated flow boiling region, the heat transfer mechanism is divided into (1) 

the convective boiling dominant (CBD) region (2) the nucleate boiling dominant (NBD) 

region (Kandlikar et al., 1999). The convective and nucleate boiling heat transfer 

contributions are formulated directly from empirical relationships, which can be 
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calculated by the two-phase heat transfer coefficient,      with a constant heat flux 

condition along the saturated flow boiling region. The heat transfer coefficient of the 

nucleate boiling dominant region (NBD) is given as: 

(   )       (      (     )
    ̅     (   ̅)      (   ))     (      

      (   ̅)
   ). (3.10) 

 

The heat transfer coefficient of the convective boiling dominant region (CBD) is 

written as: 

(   )       (     (     )
     ̅     (   ̅)      (   ))     (       

      (   ̅)
   ). (3.11) 

 

 

The maximum value of the heat transfer coefficient      calculated in Equations 

(3.10) and (3.11) should be used (Kandlikar, 1991), that is . 

  ,   ,  ̅,      ,   ,     and   (   ), are liquid density (kg/m
3
), vapor density (kg/m

3
), vapor 

quality, density ratio, boiling number, fluid-dependent parameter and  the stratification 

parameter, respectivily.     is a fluid-dependent parameter, which is 1.0 for water.   (   ) 

is the stratification parameter which accounts for stratification of liquid and vapor phases 

in horizontal or vertical tubes; 1.0 for a vertical tube. All properties of two-phase flow 

boiling correlations must be calculated using the saturated boiling temperature. 

The correlations in Equations 3.10 and 3.11 are valid for the mean vapor mass 

fraction ranging    ̅     . The local mean vapor mass fraction or vapor quality,  ̅, at 

saturated flow boiling region can be found: 

  ̅( )  
       

 ̇    
  (3.12) 

   is equal to boiling number and is defined as: 

hTP = max (hTP )NBD,(hTP )CBD[ ]

Convective boiling term Nucleate boiling term 

Convective boiling term Nucleate boiling term 
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 (3.13) 

where     and   are heat of vaporization (kJ/kg) and mass flux (kg/m
2
s). The boiling 

number is a dimensionless number involving the heat flux over mass flow rates per unit 

area and the heat of vaporization or effect of heat flux on nucleate boiling (Collier and 

Thome, 1996). 

Mass flux, G, is defined as mass flow rate per unit cross-sectional area (m
2
) of the 

tube. The mass flux along the tube length is constant because mass flow rate along inside 

tube length and sectional area of tube are constants (Saffari and Ghobadi, 2010). The 

mass flux can be found as (Incropera et al. 2006): 

   
 ̇

 
 (3.14) 

Remember that Equations (3.10) and (3.11) are for the cases of constant heat flux. For 

a constant wall temperature circumstance, heat flux,  , varies along saturated flow boiling 

region (Incropera et al. 2006). Therefore, an iteration method, called secant method 

(Kincaid, 2002), is used to find the appropriate heat flux, q, and two-phase heat transfer 

coefficient for each segment in the saturated flow boiling region. The vertical tube has 

been divided into a number of segments that is 200 in the present study. Each segment is 

assumed to have constant heat flux. This number of segments was selected in 

consideration of having a computational efficiency with minimum error. At the first step, 

q(0) is the maximum value of heat flux in subcooled flow region and q(1) is q(0)*2. Two 

initial values of heat flux, q(0) and q(1), are presented in Equation (3.15). The initial Error, 

E(1),  is considered 1 and Error threshold, Et, is defined as equal to 0.001W/m
2
 which is 

far below the minimum heat flux (around 4W/m
2
) calculated in the following chapters. 
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The maximum error involved is less than 0.025%. The maximum of (   )    

and (   )   , will be calculated from Equations (3.10) and (3.11), respectively, with the 

estimated q. From general Equation (3.1), Equation (3.16) is presented for saturated flow 

boiling region. When the final     value is extracted from (3.10) and (3.11), it will be 

placed in Equation (3.16) and a q can be estimated. Then the values of q(0) and q(1), which 

are initialized before, will be subtracted from generated q in equation (3.15). The 

difference between q(0) and q as well as q(1)  and q are considered as new estimated errors, 

 ( ) and  ( ) respectively (Kincaid et al. 2002). 

  (   )   ( )   ( ) [
 ( )  (   )

 ( )  (   )
]         (   ) (3.15) 

    (       )    (3.16) 

After computing these results, the error numbers and q values will be set in equation 

of (3.15) which is the secant iteration method. This will produce a new  (   ) that will be 

available for a new iteration. The iterations will continue until the produced error become 

smaller than threshold error, which is 0.001. When the error is less than the threshold 

error then the iteration will stop and  (   ) will be considered as the resultant local heat 

flux. Recalling this iteration method will be computed for each local point in the 

saturated flow boiling region. 

3.4 Vapor Region 

After the droplets have vaporized in the saturated flow boiling region, the fluid 

reaches to a second single-phase forced convection region. The properties of the fluid are 

based on the vapor in this region. The heat transfer coefficient in this region is the 

convection mode. The equations for finding temperature profile and heat transfer 
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coefficient at the vapor forced convection region are the same as the subcooled flow 

region except that the properties are based on vapor characteristics. For example, below 

is the equation of Nusselt number. 

    
      

 
  (3.17) 

Where    and     are single-phase vapor heat transfer coefficient (W/m
2
K) and vapor 

thermal conductivity (W/mK). 

All the liquid and vapor properties in subcooled flow, saturated flow boiling and 

vapor regions are determined using the liquid and vapor temperature. Properties’ values 

can be found at The International Association for the Properties of Water and Steam 

Website (IAPWS, 2007). 

3.5 Total Heat Transfer Rate  

Heat transfer rate is the energy transfer due to temperature differences in an element. 

The rate of heat transfer in a certain direction depends on the amount of the temperature 

rise along that direction. The increase of the rate of heat transfers occurs as the 

temperature gradient between two points increases (Incropera et al. 2006). 

A fluid of velocity   and mean temperature    flows over a surface of the circular 

tube with area   . While the tube surface is at a uniform wall temperature condition, the 

natural convection heat transfer in the subcooled flow is caused by buoyancy forces due 

to the temperature differences and thus the density changes in the fluid. The natural 

convection heat transfer is a transfer of fluid sensible energy. At later stage of the 

process, the latent heat exchange is generally associated with a phase change between the 

liquid and vapor states of a fluid, which is related to the process of boiling and 
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condensation in the flow boiling region. Finally, the states of fluid are completely 

changed to single-phase vapor. Both the local heat transfer coefficient and local surface 

heat flux vary along the tube length. The total heat transfer rate  ̇(W) along the tube 

length is obtained by integral of the local heat flux over the entire surface as (Incropera et 

al. 2006), 

  ̇         ∫  ( )  
 

 
 (3.18) 

where D, L and  ( ) are tube inner diameter, tube length, heat flux, respectively. 

3.6 Uniform Tube Surface Temperature  

An equation is needed to model tube surface temperature regarding the amount of 

average daily solar radiation and surrounding temperature of each territory of a country. 

For determination of tube surface temperature, two parameters are required. They are 

solar radiation and surrounding temperature. Both of which are presented as follows.  

3.6.1 Solar Radiation 

The solar flux is the distribution of sun’s energy arriving at the Earth's atmosphere. 

The solar radiation is portion of this solar flux, which is 99.97% (WIK, 2012). Solar 

radiation is the energy given off by the sun in all directions. The amount of solar 

radiation is powerfully reliant on atmospheric conditions, the time of year, and the angle 

of incidence. The solar radiation incident on the earth’s surface is dependent on the 

atmospheric content of dust and other contaminants; hence all the energy expressed by 

the sun does not reach the surface of earth. A large amount of solar energy spreads out 

over the surface of the earth when the rays have a straight incident on the surface. Also, if 

the solar rays travel a smaller distance with a zero angle from normal, more energy will 

http://en.wikipedia.org/wiki/Solar_flux
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be reached to the surface  compared to rays that a greater angle from normal(Holman, 

1992). The solar radiation energy can be considered in term of insolation, which is the 

solar irradiation received over a period of time, typically one day. It is typically expressed 

as kWh/m
2
/day. The solar irradiation is the total amount of solar energy accumulated on 

an area over time. Insolation is usually used to rate the solar energy potential of a location 

by calculation of the average energy received on a surface per day (PV, 2010). From the 

radiation equilibrium equation, the equilibrium temperature for black lacquer tube 

surface, TS, given as follows (Holman, 1992): 

 (
 

 
)
   
               (  

       
 ) (3.19) 

where (
 

 
)
   

,     ,          ,  ,       ,    are solar flux, (W/m
2
), absorptivity for 

solar radiation, absorptivity for low-temperature radiation, Estefan-Boltzmann constant 

(W/m
2
K

4
), surrounding temperature (K) and wall temperature (K), respectively. Table 

3.1 shows the solar radiation absorptivity of different objects in low-temperature. 

Absorptivity for solar radiation,       and absorptivity for low-temperature 

radiation,          , on black lacquer surface is 0.96 and 0.95, respectively (Holman, 

1992). The amount of Estefan-Boltzmann constant,  , is            (W/m
2
K

4
), As 

shown in Table 3.1, the solar radiation absorptivity of opaque objects in low-temperatures 

is more than a for clear objects (Holman, 1992). 
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Surface 

Absorptivity 

 

For solar 

radiation 

For low- 

temperature 

radiation ~ 25 C 

Aluminum, highly polished 0.15 0.04 

Copper, highly polished 0.18 0.03 

Tarnished 0.65 0.75 

Cast iron 0.94 0.21 

Stainless, no. 301, polished 0.37 0.60 

White marble 0.46 0.95 

Asphalt 0.90 0.90 

Brick, red 0.75 0.93 

Gravel 0.29 0.85 

Flat black lacquer 0.96 0.95 

White paints, various types of 

pigments 

0.12-0.16 0.90-0.95 

 

Figure 3.2 (NREL, 2008) presents the amount of solar irradiation (Wh/m
2
/day) in the 

territories of the United States. The solar irradiation values in the map are established 

from the National Solar Radiation Data Base (NSRDB). The average values of solar 

irradiation for different regions are displayed in the map. The points shown on the map 

are different areas in the U.S. The average solar irradiation values are completed by 

Table 3.1 Comparisons of Absorptivity of a Variety of Surfaces to Solar and 

Low-Temperature Thermal Radiation 
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averaging all 30 years of data for each area. With regard to the present solar irradiation in 

each territory, the amount of solar flux(
 

 
)
   
  can be calculated (NREL, 2008). 

                                                                                         

Figure  3.1 Map of solar irradiation distribution, (NREL, 2008) 

 

3.6.2 Surrounding Temperature 

The surrounding temperature,      , for each territory of a country can be calculated 

from  the average temperature of warm and cold months during the years reported (for 

instance, Weather Channel, Omaha). The average temperature of Omaha, Nebraska is 

chosen for this system design. The maximum and minimum temperature of each month 

for Omaha is shown in Figure 3.3.  January, February, November and December, have 

lowest temperatures during the average year in Omaha (TWC, 2012). The surrounding 

temperature for this system design is selected from the average temperature of the coldest 

months. The reason for choosing the lowest temperature is to design a system that will 

eliminate freezing at the coldest month of year. 
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Figure  3.2 Graph of monthly average temperatures of Omaha (TWC, 2012) 

 

3.7 Summary  

In this chapter, the correlations and their formulations for calculating heat transfer 

coefficients, total heat transfer rate, and fluid temperature at different flow-boiling 

regions and conditions are discussed. Calculation of wall surface temperature is 

formulated based on solar radiation and ambient temperature. Also a map is presented 
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with values of solar radiation for each area of the U.S to be used in calculating solar flux. 

The results and discussion of this research is represented in the next chapter. 
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Chapter 4 

4. Analysis and Optimization 

4.1 Introduction 

As stated earlier in chapter 1, the main purpose of the current study is to analyze and 

optimize the performance efficiency of a single tube in a domestic hot water system 

based on a boiling-condensing cycle. In order to achieve this task, it is necessary to know 

how to maximize the heat transfer coefficient and the total heat transfer rate in the solar 

collector tube. Equations and empirical correlations introduced in Chapter 3 will be used 

to model the processes of a boiling-condensing cycle and to understand thermal behavior 

and energy transfer processes in vertical single tube. 

The investigation of the heat transfer coefficient and system performance is based on 

a parametrical analysis of design parameters (for instance, various pressures with fixed 

tube size) in a dynamic model. Subatmospheric pressures are adopted inside the tube 

because it will present the solar domestic water heating systems not freezing in the 

climates where very low temperatures occur.  

A computer simulation program is written with MATLAB and developed based on 

the dynamic model for better understanding and analyzing of solar thermodynamic 

behavior. The objective of this program is to estimate the heat transfer coefficient, heat 

flux, and total heat transfer rate which are the functions of parameters including vapor 

quality, wall temperature, mass flow rate, tube diameter, tube length and pressure inside 

the tube. The changes of the surface heat flux and fluid temperature profile are simulated 

in different flow regions. The thermodynamic processes for subcooled flow region, 
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saturated flow boiling region and single-phase vapor region (superheat region) are 

simulated.  

In this analysis section, plots of water temperature profile and heat flux along the tube 

are presented.  Heat transfer coefficients in different regions are sketched based on a tube 

diameter and internal pressures. Separately in each region, different properties (such as, 

various pressure characteristics, fluid density, thermal conductivity, and etc.) are 

presented to analyze the heat transfer coefficient, surface heat flux and total heat transfer 

rate. Properties for subcooled and vapor regions are calculated from a method called 

XSteam in MATLAB software, which has IAPWS (2007) as its reference. The properties 

of saturation region are shown in Table 4.1 (Incropera et al., 2006). 

4.2 Process parameters 

In the present study, distilled water is the working fluid inside the black lacquer 

copper tube. A tube diameter of 0.03 meter is used. The length of the solar collector tube 

is 2 meters long. The inlet water temperature into the tube is set to be 5 degree Celsius 

less than the saturation temperature of the specific pressure to ensure that pure liquid 

entering the inlet. The tube inlet temperature is controlled by valve installed where the 

heated water passes from the heat exchanger. Subatmospheric pressure is used for this 

study. Properties of saturated water in the tube are represented in Table 4.1 (Incropera et 

al., 2006). There are four different pressures presented in this study. 
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 Table  4.1 Thermophysical properties of saturated water 

                            Pressure 

Properties 

P1 P2 P3 P4 

Saturation pressure (Pa)    3531 2617 1917 1387 

Saturation temperature (K) 300 295 290 285 

Liquid specific volume (m
3
/kg) 0.001003 0.001002 0.00100 0.001 

Liquid specific density (kg/ m
3
) 997 998 999 1000 

Vapor specific volume (m
3
/kg) 39.13 51.94 69.7 99.4 

Vapor specific density (kg/ m
3
) 0.0255 0.019 0.014 0.010 

Latent heat of vaporization (J/kg) 2438000 2449000 246100 247300 

Liquid specific heat (J/kg.K) 4179 4181 4184 4189 

Vapor specific heat (J/kg.K) 1872 1868 1864 1861 

Liquid viscosity (N.s/m
2
) 0.00085 0.000959 0.00108 0.00122 

Vapor viscosity (N.s/m
2
) 0.000009 0.0000088 0.0000086 0.0000084 

Liquid thermal conductivity (W/m.K) 0.613 0.606 0.598 0.590 

Vapor thermal conductivity(W/m.K) 0.0196 0.0195 0.0193 0.0189 

Liquid Prandtl number 5.83 6.62 0.0756 8.81 

Vapor Prandtl number 0.857 0.849 0.841 0.833 

 

Solar flux is assumed to be 190 W/m
2
, which is the average value for Omaha, 

Nebraska. According to Equation (3.19), the temperature of the tube wall is calculated 
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based on solar flux an average of the lowest temperature for the coldest months in 

Omaha, e.g. -8 
o
C. The wall temperature is considered to be 302.6 K. 

4.3 Research analysis 

 In this section, single-phase and two-phase flow development in a vertical tube were 

simulated and analyzed to gain a better understanding thermodynamic behavior of fluid 

flow in phase different regions and different pressures. The single tube configurations of 

heat transfer process are shown in Table 4.2. 

Table  4.2 Parameters of a test 

   (K) D (m) P (Pa) L (m)    (m)      (K) Ti (K) 

302.6 0.03 3531 2 0.5 300 295 

 

For the case of saturation pressure, P, at 3,531Pa (i.e. Case P1 in Table 4.1), the water 

inlet temperature, Ti, is 295K. The saturation water temperature, Tsat, is 300K. The length 

of subcooled flow region,    that is the length from tube inlet to the point at saturation 

water temperature, is 0.5m. Zf  and Ti are used to determinate mass flow rate and average 

heat transfer coefficient in subcooled flow region. The estimated mass flow rate,   ̇  is 

0.0006745kg/s from Equation 3.8, which is a constant throughout all regions, consisting 

of the subcooled flow, saturated flow boiling and vapor regions. The Reynolds number is 

33.13 and less than 2300; therefore, the liquid flow is laminar. 

4.3.1 Analysis of water temperature profile 

For constant wall temperature, the liquid temperature profile along the tube (2m in 

length) is shown as Figure 4.1. Horizontal axis represents the coordinate, z [m], along the 
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2-meter-length pipe from water inlet, while vertical axis is the liquid and wall 

temperatures, respectively. The red line shows the constant wall temperature along the 

tube due to solar irradiation. The black line is liquid temperature in different flow boiling 

region.   

 

 

Figure  4.1 Water temperature profile; Pressure 3531Pa; Tube diameter 0.03m 

 

In the subcooled flow region, the water temperature increases exponentially from 295 

K to 300K as z increases, due to convective heat transfer. The temperature difference 

between the wall temperature and the water temperature reduces as z increases.  After 

reaching the saturation water temperature at 300K, the water boils and the temperature is 

constant in the saturation region (at saturation temperature) until it reaches its fully vapor 

phase at saturation pressure. After the saturated flow boiling region, the vapor 
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temperature in the vapor region increases gradually due to convective heat transfer along 

the tube based on Equation 3.8. The temperature difference between wall temperature and 

vapor temperature reduces as z increases.   

 4.3.2 Analysis of heat transfer coefficient in subcooled flow region 

Figure 4.2 presents a plot of the heat transfer coefficient,  , along the tube, z, at a 

pressure of  3531Pa  and a tube diameter of  0.03m. Three different regions of flow 

boiling are shown. The first section of the graph which is from the entrance of the tube to 

the beginning of saturated flow boiling region is called subcooled flow region. To better 

show that the subcooled flow region plot, the heat transfer coefficient along x-axis, z is 

zoomed in Figure 4.3. 

 

 

Figure  4.2 Heat transfer coefficient in different regions along a 2-m tube; Pressure 3531 

Pa; Tube diameter 0.03m 

 

As presented in Figure 4.3, the heat transfer coefficient increases gradually along z 

because the thermal conductivity of water is increasing due to the heat transfer of wall 
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temperature to water and sensible heat in the subcooled flow region. The sensible 

heat is exchanged and thus the temperature increases. 

 

 

Figure  4.3 Heat transfer coefficient at subcooled flow region along tube; Pressure 3531 

Pa; Tube diameter 0.03m 

 

4.3.3 Analysis of heat transfer coefficient in saturated flow boiling region 

In Figure 4.2, the heat transfer in the two-phase saturated flow boiling region consists 

of convective and boiling modes. The heat transfer coefficient dramatically increases 

along z. In this region, the thermodynamic quality (vapor quality) is between 0 and 1. The 

range of vapor quality,  ̅, in the saturated flow boiling region is in a range of    ̅      

in the present study due to the limitations of Kandlikar correlation. In consideration of 

limited contribution of the section with      ̅    in total heat transfer rate, this small 

section is ignored in the present study without significant error on total heat transfer rate. 

Because of this reason, the heat transfer coefficient in the saturation region drops 

suddenly in the beginning of vapor region.  
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The saturation flow boiling region is divided into two dominant regions which are the 

nucleate boiling dominant region (NBD) and the convective boiling dominant (CBD) 

region. As Figure 4.2 shows, at the end of subcooled flow region there is a small 

downward slope and then an increasing trend in the saturation flow boiling region. Figure 

4.4 shows the same graph of Figure 4.2 but zooms in to the end of the subcooled flow 

region and the beginning of saturation region. This small downward slope is relevant to 

the nucleate boiling dominant (NBD) region (see Figure 4.4). The nucleate boiling 

dominant region occurs at the low vapor quality in the beginning of the saturated flow 

boiling region (see rectangle in Figure 4.4).  

 

Figure  4.4 Heat transfer coefficient in the transition between subcooled, nucleate boiling 

dominant, and convective boiling regions against z; Pressure 3531 Pa; Tube diameter 0.03m 

 

As shown in Figure 4.4, the heat transfer coefficient in the nucleate boiling dominant 

region, i.e. the small downward trend, decreases initially since the nucleate boiling 

component, water, is reducing because of increasing vapor quality (see Figure 2.1 in area 

between NVG and H). Therefore, the amount of water plays the main role in convective 
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heat transfer coefficient increase. In Figure 4.4, following the decreasing slope of 

nucleate boiling dominant region, there is a plateau in the beginning of the convective 

boiling dominant region because the effect of nucleate boiling still exists.  

After the plateau in the start point of convective boiling dominant region, around 

point 0.52m in the tube length, the dramatic upward trend curve is observed in the 

saturated flow boiling region (see Figure 4.2). It indicates convective boiling dominate 

region. This region occurs where mass fraction of vapor increases. In the convective 

boiling dominant region, the two-phase heat transfer coefficient is greatly influenced by 

vapor quality,  ̅. The amount of vapor is significantly high in this region. Increase of 

vapor quality,  ̅, and significant difference in the densities of water and vapor cause the 

velocity of fluid and the heat transfer coefficient to increase. After the saturation region, 

flow reaches to the vapor region. 

4.3.4 Analysis of heat transfer coefficient in vapor region 

In the vapor region, there are no water droplets because the water is completely 

vaporized. In Figure 4.2, the vapor region starts with a vapor quality of 0.8 after the 

saturation region in the present study. The heat transfer mode in this region is convective 

and the heat transfer coefficient significantly decreases after the saturation region. The 

reason for the drop in the heat transfer coefficient is that thermal conductivity of vapor is 

small compared with other regions. In the vapor region, with additional heat to the vapor 

and  the effect of sensible heat transfer, the thermal conductivity of vapor increases based 

on the increase of vapor temperature (See Figure 4.1) along the vapor region. Therefore 

the convective heat transfer coefficient slightly increases based on Equation (3.17). To 

better present the increase in heat transfer coefficient in the vapor region, the heat transfer 
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coefficient along z is zoomed in Figure 4.5.  As presented in Figure 4.5, the increase of 

heat transfer coefficients is very small and it changes from 2.254W/m
2
K to 2.256W/m

2
K 

in the vapor region. 

 

Figure  4.5 Heat transfer coefficient in vapor region against z; Pressure 3531Pa; Tube 

diameter 0.03m 

 

4.3.5 Analysis of heat flux in three regions 

Figure 4.6 presents a plot of heat flux,  , at different locations along z. Heat flux is 

defined as the rate of heat energy per unit area which transfers through water from a 

given wall surface in unit of W/m
2
.  
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Figure  4.6 heat flux (W/m
2
) in different regions versus z 

 

In the Figure 4.6, the heat flux is dropping gradually from the water inlet along the 

subcooled flow region. The reason is because there is higher temperature difference 

between the inlet water and tube wall. Though the convective heat transfer coefficient 

gradually increases (as shown in Figure 4.3), this temperature difference is dramatically 

decreasing (as shown in Figure 4.1). Therefore, the heat flux in the subcooled flow region 

decreases based on Equation 3.1.  

In the saturated flow region in Figure 4.1, the temperature difference between wall 

and water is a constant. As mentioned above, the dramatic change of heat transfer 

coefficient in this region and thus the heat flux from Equation (3.1) varies along the 

saturation region. The heat flux in the first of nucleate boiling dominant (NBD) region 

decreases and then in the convective boiling dominant (CBD) gradually increases up to 

the vapor region. 
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The heat flux in the vapor region gradually decreases because of the decrease of 

temperature difference between the wall and vapor (see Figure 4.1), though the heat 

transfer coefficient along the vapor region increases insignificantly (see Figure 4.5). To 

better show the vapor region plot in Figure 4.6, the heat flux along z is zoomed in on 

Figure 4.7. Heat flux decreases from 4.513W/m
2
 at the beginning of vapor region to 

4.099W/m
2
 at the end of tube. 

 

 

Figure  4.7 Vapor region graph with heat flux versus along tube length as coordinates 

 

4.3.6 Analysis of heat transfer coefficient in different pressures 

Figure 4.8 presents a plot of the heat transfer coefficient,  , along z with various 

pressure at 3,531, 2,617, 1,917 and 1,387Pa. The tube diameter and length are the same 

as 0.03 meter and 2 meter, respectively. Wall temperature stays constant at 302.6K.  
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Figure  4.8 Heat transfer coefficient along z with various pressures 

 

To better show the subcooled flow region plot, the subcooled flow region in Figure 

4.8 is zoomed in on Figure 4.9. The variation of heat transfer coefficients at different 

pressures in the subcooled flow region is due to water inlet temperature to the tube and 

water thermal conductivity. Water saturation temperature decreases as pressure decrease. 

In this study, the water inlet temperature is set 5 
o
C below the saturation temperature to 

ensure pure water at the inlet. The water inlet and saturation temperatures at different 

pressures influences on the variation of the heat transfer coefficient (see Figure 4.10). As 

Figure 4.9 shows, the heat transfer coefficient is dependent on the temperature of inlet 

water and the pressure inside the tube. 
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Figure  4.9 Heat transfer coefficient in subcooled flow region at different pressures 

 

 

Figure  4.10 The temperature profile with different pressures; Tube diameter of 0.03m 

 

In the saturated flow-boiling region, the slope of the upward trend of the heat transfer 

coefficient increases as the pressure increases as shown in Figure 4.8. As pressure 

decreases, the specific density of liquid increases and specific density of vapor decreases 
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(see Table 4.1). Therefore, the increase of liquid density increases the local convective 

heat transfer coefficient based on Equation (3.10) and (3.11). In these two equations 

density ratio       increases that will cause an increase of heat transfer coefficients. 

At high pressure (such as 3531Pa), liquid boils at a higher temperature, so the 

nucleate boiling region has to be extended. The stronger and longer effect of the nucleate 

boiling region causes the less steep upward convective trend (see Figure 4.11).  

 

Figure  4.11 Effect of nucleate boiling dominant region in different pressures 

 

4.3.7 Analysis of heat flux with different pressures 

In Figure 4.12, heat fluxes with various pressures are shown. From Equation 3.1, the 

heat flux is related to the heat transfer coefficient. When the local heat transfer coefficient 

varies along the tube, the local heat flux along the tube also varies. Since the local heat 

transfer coefficient increases as pressure decreases along the tube in the saturation flow 

region, the local heat flux accordingly increases along the tube. From Equation 3.18, the 

total heat transfer rate  ̇( ) increases along the tube. 
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Figure  4.12 Variation of heat flux in different pressures 

 

4.4 Experiments’ Limitations 

An experiment was set to verify the simulation results. The test rig, that is a system 

with boiling–condensing cycle, consists of a heat exchanger connected to fresh water 

supply (as shown in Figure 6.1) and was used to simulate the situation of a constant heat 

flux boundary condition. However, due to missing data and unsteady boiling flow, the 

exact mass flow rate entering to the tube cannot be determined. The steady-state is 

difficult to be reached in the boiling natural circulation loop as mentioned in Goswami et 

al. (2011). Kandlikar correlations are used for simulating heat transfer coefficient along 

the tube in our case study. The correlation model has been widely verified (Kandlikar et 

al., 1999) with past experimental data. 
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4.5  Summary 

In this chapter, heat transfer coefficients and heat flux at different flow regions are 

analyzed based on a tube length of 2 m, tube diameter 0.03m, wall temperature of 

302.6K, and different pressure consisting of 3,531Pa, 2,617Pa, 1,917Pa, and 1,387Pa. 

The plots of heat flux versus tube length in a specific tube diameter and different 

pressures are presented. In each region, the characteristics of properties and parameters 

on the heat transfer coefficient and heat flux are discussed and analyzed. Based on the 

analysis of heat transfer coefficient and heat flux, it is shown that the low pressure of 

1387Pa among four pressures being considered is the best in terms of maximizing these 

two parameters. It is concluded that the total heat transfer rate in a solar collector tube at 

lower pressure should be increased with the proposed configuration. The next step of the 

analysis is to optimize the tube size to obtain a higher total heat transfer rate at a specific 

pressure. 
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Chapter 5 

5. Optimization Estimation 

5.1 Introduction 

A series of parametric studies are conducted with the developed model to optimize 

the two-phase solar collector tube for a specific case study, i.e. at the average temperature 

of -8
o
C in coldest months of Omaha, Nebraska. The parameters to be considered include 

the tube diameter, pressure, and tube length. The approach should be able to model the 

thermal behavior of the proposed system as a tool for design and optimization. The best 

tube size and pressure is discussed to maximize the total heat transfer rate through the 

tube for the possible average minimum temperature in Omaha, Nebraska.   

Mappings of total heat transfer rate of a 2m-length tube with a diameter of 0.03m are 

carried out with various lengths of a subcooled flow region and at various pressures 

(3,531, 2,617, 1,917, and 1,317Pa). Also, heat transfer coefficients at various locations 

along the tube with another tube diameter and pressure are plotted. Different lengths of 

subcooled flow regions are considered in order to investigate the optimized length of 

subcooled flow region and to produce the maximum heat transfer rate. 

5.2 Heat transfer rate based on variation of subcooled flow region in 

different pressures 

In Figure 5.1, the heat transfer rate is shown based on change of the lengths of the 

subcooled flow region and pressures with a tube diameter of 0.03m. The length of 

subcooled flow regions considered consists of 0.3m, 0.4m, 0.6m, 0.8m, 0.9m, 1.1m, 

1.2m, 1.5m and 2m, while the pressures are 3,531Pa, 2,617Pa, 1,917Pa and 1,387Pa. It is 
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assumed that inlet water temperature is 5 
o
C less than saturation temperature in each 

selected pressure. The wall temperature is 302.6K based on the average solar radiation in 

Omaha.  The reason for selecting the pressures above is that their saturation temperature 

is less than the estimated wall temperature, e.g. 302.6K (see Table 4.1). Therefore, the 

wall temperature can boil the water inside the tube in these pressures. 

The heat transfer rate,    ̇( ), will be computed and plotted in a contour plot, with the 

pressure in axis Y and tube coordinate in axis X. As shown in Figure 5.1, the total heat 

transfer rate increases as pressure inside the tube decreases. However, as the subcooled 

flow region decreases, for example to 0.3m, a decrease of the heat transfer rate occurs 

(between 1m and 1.2m but not exceeding 1.2m). The reason for the lower heat transfer 

rate with the smaller subcooled region is because of a smaller mass flow rate (see Table 

5.2). As shown in the figure, if the subcooled flow region extends over 1.2m at pressure 

of 1,387Pa, the heat transfer rate will decrease. It is because the 2m tube can only cover a 

part of the saturation flow boiling region where it has a higher heat transfer coefficient 

than when its length is smaller than 0.8 m. Wet vapor will be produced. Therefore, for a 

tube length of 2m, the best size for the subcooled flow region in order to get the highest 

heat transfer rate is in the range of 1m and 1.2m, which maximizes the subcooled flow 

and saturation flow region (In turn, minimize the vapor region). Table 5.1 shows the 

actual values of heat transfer rates in different tests presented above.  
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Figure  5.1 Heat transfer rate in a constant tube diameter (0.03m) with different 

pressures and length of the subcooled flow regions 
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                            Pressure 

 

Subcooled Flow Region  

P1=3531Pa 

 

   ̇(W) 

P1=2617Pa 

 

   ̇(W) 

P2=1917Pa 

 

   ̇(W) 

P3=1387Pa 

 

   ̇(W) 

   =0.3m 280 645 957 1229 

   =0.4m 380 867 1323 1660 

   =0.6m 556 1307 1952 2522 

   =0.8m 403 1749 2584 3553 

   =0.9m 242 1970 2946 3983 

   =1.1m 96 1019 3120 4845 

   =1.2m 68 594 1844 4530 

   =1.5m 60 154 344 732 

   =2m 55 127 194 258 

 

In the Table 5.2, the values of mass flow rate at different pressures with different 

subcooled flow regions are presented. At 3531Pa, as the subcooled flow region increases 

from 0.3 m to 2 m, the mass flow rate increases. Also, decreasing pressure from 3,531Pa 

to 1,387Pa with a fixed subcooled flow region, the mass flow rate increases due to 

reduced saturation temperature.  

 

 

 

 

 

 

Table 5.1 The total heat transfer rate in constant tube diameter 
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                                   Pressure 

 

Subcooled Flow Region  

P1=3531Pa 

 

 ̇(kg/s) 

P1=2617Pa 

 

 ̇(kg/) 

P2=191Pa 

 

 ̇(kg/s) 

P3=1387Pa 

 

 ̇(kg/s) 

   =0.3m 0.0004 0.000917 0.0014 0.0019 

   =0.4m 0.0005 0.0012 0.0019 0.0025 

   =0.6m 0.0008 0.0018 0.0028 0.0037 

   =0.8m 0.0011 0.0024 0.0037 0.005 

   =0.9m 0.0012 0.0028 0.0042 0.0056 

   =1.1m 0.0015 0.0034 0.0051 0.0058 

   =1.2m 0.0016 0.0037 0.0056 0.0074 

   =1.5m 0.002 0.0046 0.007 0.0093 

   =2m 0.0027 0.0061 0.0093 0.0124 

 

5.3 Heat transfer rate based on variation of subcooled flow region in 

constant pressure 

As shown in the Figure 5.2, the change of the subcooled flow region,   , in overall 

tube length, with a constant pressure and a constant tube diameter affects the amount of 

total heat transfer rate in a solar collector. The goal of this section is to maximize the heat 

trasfer rate in a solar collector with a length of 2m and a diameter of 0.03m at a pressure 

of 1387Pa. The reason of choosing this pressure, i.e. 1,387Pa, is that the saturation 

temperature of the pressure is 285K and can transfer heat energy to the potable water 

Table 5.2 Mass flow rate in constant tube diameter 
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supply at a temperature close to 275K. However, one limitation of this system is that it 

may superheat the water and there will be a large vapor region at a higher tempratures. It 

may cause the system to be inefficient at over time. Any pressure under this specified 

pressure (1387Pa) is not a proper pressure for the design of a solar system because the 

saturation tempressure would be less than 285K which may not be enough to heat inlet 

water temprature. We should note that this system is designed and optimized for a 

specific case study, i.e. the average minimum temprature in the coldest months in Omaha, 

Nebraska. The optimization of the system for hot temperature, e.g. summer, is left for 

future study and it is outside of the scope of this study. 

In the Figure 5.2, heat transfer coefficients are plotted along the tube. For maximizing 

the heat transfer rate, a tube with different initial subcooled flow region is considered in 

this figure for lengths varied from 0.3m to 2m. Referring to Figure 5.2, the best 

subcooled flow region is 1.15m which has a maximized heat transfer for this 

configuration. The vapor region that has the lowest heat transfer rate should be 

minimized. The saturated region which has the maximum heat transfer should be 

maximized. The subcooled region which governs the maximum mass flow should be 

maximized too. The Table 5.3 presents the value of the heat transfer rate along the tube 

with different subcooled flow regions. 

For the case with a subcooled flow region larger than 1.15m, the vapor region would 

diminish and the saturation region will gradually decrease as the total length of pipe 

cannot cover the whole development of saturation flow boiling region. The reduction of 

the saturation region results in a decrease of heat transfer. That is why the heat transfer 

rate will eventually decrease after this point.  
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Figure  5.2 Different sizes of subcooled flow region to obtain maximum heat transfer 

coefficients; Pressure 1387Pa; Tube diameter 0.03m 
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Table  5.3 Total heat transfer rate in constant pressure, tube diameter of 0.03m 

Subcooled Flow Region    ̇(W) 

   =0.3m 1228 

   =0.6m 2520 

   =1m 4114 

   =1.1m 4845 

   =1.15m 5145 

   =1.2m 4530 

   =1.5m 732 

   =2m 258 

 

In the next case, the tube diameter is enlarged to 0.06m. In Figure 5.3, a plot is 

created for heat transfer coefficients along the tube with various length of the subcooled 

flow region. The condition of given data in this test is the same as the 5.3 section test, 

except that the tube diameter is 0.06m. The goal of this test is to compare the estimated 

total heat transfer rate with the change in diameter from 0.03m to 0.06m. 

Table 5.4 presents the value of heat transfer rate overall for a tube length of 2m with 

different subcooled flow regions at a pressure of 1387Pa. The heat transfer rate increases 

as the subcooled flow region increases from 0.3m to 1.15m. When the subcooled flow 

region extended from 1.15m to 2m, the heat transfer rate decreases. Regard to the tube 

diameter change from 0.03m to 0.06m, the comparison of Figure 5.2 and Figure 5.3 

shows that the heat transfer coefficient along the tube as the diameter decreases from 

0.03m to 0.06m.  But the comparison of Table 5.4 with Table 5.3 shows that the total heat 
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transfer rate obtained with a diameter of 0.06m is more than the tube with diameter of 

0.03m. 

 

Table  5.4 Total heat transfer rate in constant pressure, tube diameter of 0.06m 

Subcooled Flow Region     ̇(W) 

   =0.3m 1263 

   =0.6m 2566 

   =1m 4466 

   =1.1m 4899 

   =1.15m 5200 

   =1.2m 4583 

   =1.5m 746 

   =2m 259 
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Figure  5.3 Heat transfer coefficients in different subcooled flow regions along a 2-m 

tube; Pressure 1387Pa; Tube diameter 0.06m 

 

5.4 Summary 

The objective of this chapter is to optimize the heat transfer rate in a case study of a 

low temperature, i.e. -8 
o
C, based on the variation of subcooled flow region along the 

tube at a pressure of 1,387Pa, to obtain a maximum heat transfer rate from a boiling-
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condensing cycle. Generally, the maximum heat transfer rate occurs when the subcooled 

flow and saturations flow regions can be maximized and the vapor regions minimized. In 

the case of a 2m length pipe, the studies show that there is a specific length for the 

subcooled flow region that produces the highest heat transfer rate. This number is around 

1m to 1.2m for a tube length of 2m. The heat transfer rate from the solar irradiation 

increases as the pressure decreases. 
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Chapter 6 

6. Conclusion and Future Work 

6.1 Summary 

This study have investigated the heat transfer process and thermodynamic behaviors 

of fluid flow patterns of single and two-phase flow boiling in a black lacquer copper solar 

collator tube. A series of parametric studies were conducted to optimize a two-phase solar 

collector for a case study that considers the minimum surrounding temperature of -8
o
C, 

which is the average minimum temperature of Omaha, Nebraska in the coldest months. 

Optimization of the heat transfer rate and prevention of freezing in solar collector 

pipe depend on tube diameter, the length of subcooled flow region and pressure. A 

simulation model programmed in MATLAB was developed for system design and 

operation. The solar collector was exposed average daily solar irradiation of 4.5 

kWh/m
2
/day in Omaha. The tube surface temperature was calculated to be 302.6K.  

The variation of local heat transfer coefficient and heat flux in subcooled flow region, 

saturated flow boiling region and vapor region were simulated in particular pressures 

with a fixed tube diameter. In chapter 4, the increase of thermal conductivity of water in 

the subcooled flow region and vapor flow region caused the convective heat transfer 

coefficient to increase for given pressure. However, heat flux decreases due to mild 

increases of convective the heat transfer coefficient and temperature difference, between 

the wall and water dramatically decreased. In the saturated flow boiling region, the two-

phase heat transfer coefficient in the nucleate boiling dominant region decreased due to 

reduction of the nucleate boiling component and the small difference of density between 
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water and vapor. Also, the heat flux dropped due to a decrease of the heat transfer 

coefficient.  After the nucleate boiling dominant region along the saturation region, there 

is a convective boiling dominant region in which the convective heat transfer coefficient 

increased due to an increase of vapor quality and a significant difference of density 

between water and vapor. The heat flux in this region dramatically increased because of 

an increase of the heat transfer coefficient. As presented in chapter 4, as pressure 

decreases inside the tube, the local heat transfer coefficient and local heat flux increases. 

In Chapter 5 (System Optimization), a contour plot was presented for optimization of 

heat transfer rate in a solar collector. The tube diameter was considered 0.03m. Different 

initial subcooled flow regions from 0.3m to 2m with overall tube length of 2m and 

pressures at 3,531Pa, 2,617Pa, 1,917Pa, and 1,387Pa were considered too. The result 

showed that a high heat transfer rate happens in the lowest pressure when the subcooled 

flow region is in the range of 1 to 1.2m, with an overall tube length of 2m. 

In chapter 5, the high heat transfer rate happens along the tube when the subcooled 

flow region is around 1.15m, while the saturation flow region and minimum portion of 

vapor region exist along the tube.  Based on the results of this research, the optimum 

design for subcooled, saturation, and vapor region happens in the case where the 

subcooled flow and saturation flow regions are maximized, and the vapor region is 

minimized. In this case, the mass flow and heat transfer are maximized for subcooled and 

saturation regions, respectively. Therefore, the total heat transfer rate increases in the 

overall size of the tube. 
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6.2 Future work 

There are several topics that can be expanded for the future research: 

A. A solar collector can be designed in different weather conditions, and the 

thermodynamic behavior of two-phase system can be simulated. For example, in 

this research, the solar collector system is designed and optimized based on 

coldest months in Omaha, Nebraska with a surrounding temperature of -8
o
C. 

However, if someone wants to use this system annually and optimize the heat 

transfer rate for all seasons, it is suggested that the system be designed and 

optimized for other surrounding temperatures.  Designing the system with a 

higher surrounding temperature may increase the optimal pressure inside the 

tube. In this case, the water inside the tube may freeze in the coldest temperature, 

e.g. -8
o
C More investigation about the optimal system in terms of annual energy 

saving can be done in future. 

 

B. Other parts of the domestic water heating system, such as heat exchanger, water 

return pipe and condensate return pipe can be designed and investigated as future 

research. For example, the proper heat exchanger and the number of tubes needed 

in the system should be investigated more in future study. 

 

 

C. An experimental case study can be developed to further study of the effectiveness 

of the proposed solar collector in improving the ability to save energy.  
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D. Cost-effectiveness and the payback period for a solar domestic water heating 

system that depends on the design, installation and consumption of energy can be 

investigated in future work.  

 

E. As the primary research in this study, a test rig for testing a single pipe 

thermosiphon has been completed and a battery of tests conducted.  A number of 

modifications to the original thermosiphon design were required for maintenance 

and testing purposes.  A counter-flow valve was installed next to the flow meter 

in order to deal with cool down conditions after a test was run.  Thermal 

insulation was installed on all exposed unheated pipe.  Additionally, a drain valve 

was installed for maintenance purposes (see Figure 6.1).  Several tests were 

conducted with a variety of constant heat flux conditions and data was gathered 

for each run. For future work, it is suggested that the heat transfer coefficient of 

this equipment be computed for different regions such as subcooled, saturation, 

and vapor in various pressures based on constant heat flux for verification.  
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Figure  6.1 Test rig 
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