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ABSTRACT 
 

The Multilevel modeling (MLM) approach has a great flexibility in that can handle 

various methodological issues that may arise with single-case studies, such as the need to model 

possible dependency in the errors, linear or nonlinear trends, and count outcomes (e.g.,Van den 

Noortgate & Onghena, 2003a). By using the MLM framework, researchers can not only model 

dependency in the errors but also model a variety of level-1error structures.   

The effect of misspecification in the level-1 error structure has been well studied for 

MLM analyses. Generally, it was found that the estimates of the fixed effects were unbiased but 

the estimates of variance parameters were substantially biased when level-1 error structure was 

misspecified. However, in previous misspecification studies as well as applied studies of 

multilevel models with single-case data, a critical assumption has been made. Researchers 

generally assumed that the level-1 error structure is constant across all participants.  

It is possible that the level-1 error structure may not be same across participants. Previous 

studies show that there is a possibility that the level-1 error structure may not be same across 

participants (Baek & Ferron, 2011; Baek & Ferron, 2013; Maggin et al., 2011). If much variation 

in level-1 error structure exists, this can possibly impact estimation of the fixed effects and 

random effects. Despite the importance of this issue, the effects of modeling between-case 

variation in the level-1 error structure had not yet been systematically studied.  The purpose of 

this simulation study was to extend the MLM modeling in growth curve models to allow the 

level-1 error structure to vary across cases, and to identify the consequences of modeling and not 

modeling between-case variation in the level-1 error structure for single-case studies. 
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A Monte Carlo simulation was conducted that examined conditions that varied in series 

length per case (10 or 20), the number of cases (4 or 8), the true level-1 errors structure 

(homogenous, moderately heterogeneous, severely heterogeneous), the level-2 error variance in 

baseline slope and shift in slope (.05 or .2 times the level-1 variance), and the method to analyze 

the data (allow level-1 error variance and autocorrelation to vary across cases (Model 2) or not 

allow level-1 error variance and autocorrelation to vary across cases (Model 1)). All simulated 

data sets were analyzed using Bayesian estimation. For each condition, 1000 data were 

simulated, and bias, RMSE and credible interval (CI) coverage and width were examined for the 

fixed treatment effects and the variance components. 

The results of this study found that the different modeling methods in level-1 error 

structure had little to no impact on the estimates of the fixed treatment effects, but substantial 

impacts on the estimates of the variance components, especially the level-1 error standard 

deviation and the autocorrelation parameters. Modeling between case variation in the level-1 

error structure (Model 2) performs relatively better than not modeling between case variation in 

the level-1 error structure (Model 1) for the estimates of the level-1 error standard deviation and 

the autocorrelation parameters. It was found that as degree of the heterogeneity in the data (i.e., 

homogeneous, moderately heterogeneous, severely heterogeneous) increased, the effectiveness 

of Model 2 increased.  

The results also indicated that whether the level-1 error structure was under-specified, 

over-specified, or correctly-specified had little to no impact on the estimates of the fixed 

treatment effects, but a substantial impact on the level-1 error standard deviation and the 

autocorrelation. While the correctly-specified and the over-specified models perform fairly well, 

the under-specified model performs poorly. 
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 Moreover, it was revealed that the form of heterogeneity in the data (i.e., one extreme 

case versus a more even spread of the level-1 variances) might have some impact on relative 

effectiveness of the two models, but the degree of the autocorrelation had little to no impact on 

the relative performance of the two models.  
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CHAPTER ONE: INTRODUCTION 

 

Single-case research measures an outcome repeatedly for a single case or small samples 

which allow researchers to fully explore treatment effects (Kazdin, 2011). There is growing 

interest in single-case designs due to many advantages that these designs offer. For example, 

single-case designs provide information about not only the treatment effect for each individual, 

but also individual variations in the treatment effect (Barlow, Nock, & Hersen, 2009), and they 

also allow researchers to study population groups that have a low prevalence rate (Van den 

Noortgate & Onghena, 2003a). In addition, using single-case designs allows practitioners to 

implement research in their own setting which reduces the gap between research and practice 

(Morgan & Morgan, 2001). There are a variety of single-case designs that are commonly used 

(Kazdin, 2011; Shadish & Sullivan, 2011). In single-case designs, data are obtained before 

implementing intervention (baseline phase) and after implementing intervention (treatment 

phase). AB design is the most basic design that has a baseline phase and a treatment phase. The 

additional designs include an extension of this design, such as an ABAB design that has more 

phases for removal of the treatment and reintroduction of the treatment. There are other 

alternative designs that are commonly used, such as the multiple baseline design that can be used 

to study several cases at the same time.   

Many methods have been developed to analyze single-case data. Traditionally, several 

non-parametric and statistical methods have been proposed to analyze single-case data (e.g., 

visual analysis, nonoverlap statistics, and randomization tests); and more recently, regression 
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based methods have been developed. Regression based analyses include single-level analyses, 

such as ordinary least squares (OLS) and generalized least squares (GLS) regression, and multi-

level analysis, such as multilevel modeling (MLM).  

 Generally, in single-case studies, the errors are considered to be autocorrelated as 

opposed to independent. It has been found that misspecification issues could arise if the possible 

dependency of errors is not taken into account in the statistical model. It was found that positive 

autocorrelation inflates Type I error rates in significance tests of the treatment effect when 

autocorrelation is not taken into account (Matyas & Greenwood, 1990; Toothaker, Banz, Noble, 

Camp, & Davis, 1983). For example, in the regression based models, the regression coefficients 

are unbiased, but the standard errors of the regression coefficients would be underestimated, 

which leads to confidence intervals that are too small (Neter, Wasserman, & Kutner, 1990).  

Specifically, for the multilevel models, many researchers found that when level-1 errors are 

assumed to be independent, it may bias the estimation of the standard errors of the fixed effects 

and estimation of the random effects (Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 2007; 

Sivo, Fan & Witta, 2005; Sivo & Willson, 2000).  

There are several methods available which take autocorrelation into consideration. 

Particularly, the GLS regression method and multilevel modeling can take autocorrelation into 

consideration (Mcknight & Huitema, 2000; Maggin et al., 2011). However, studies have 

demonstrated that GLS methods still produce high Type I error rates when applied to small 

samples (e.g., Johnston, 1984; Huitema & Mckean, 1991; Solanas, Manolov, & Sierra, 2010). 

Multilevel modeling is flexible for handling dependency of errors in that researchers are able to 

model various dependent error structures and complex models (e.g., heterogeneity of variance, 

and the nesting of cases within studies). 
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There are several estimation methods available to run multilevel analysis of single-case 

data, including restricted maximum likelihood (REML) and Bayesian methods. The REML 

method is the most commonly used method to analyze multilevel models, and has been 

implemented by several software procedures that allow easy access. However, the REML has 

inferential and technical issues associated with analyzing complex multilevel models of single-

case data such as non-convergence with more complex models (Baek, Petit-Bois, & Ferron, 

2012). The Bayesian method has the potential to resolve the issue with REML. It was found that 

a complex multilevel model that fails to converge using REML can be run by using the Bayesian 

approach (Baek, Petit-Bois, & Ferron, 2013). Studies in multilevel research have also found that 

Bayesian methods have potential benefits over likelihood methods in that the Bayesian approach 

could perform as well or better regarding bias, efficiency, and coverage (Browne, 2008; Baldwin 

& Fellingham, 2013), and provide more accurate results in cases using small samples or unequal 

sample sizes per subject (Shadish, Kyse, & Rindskopf, 2013).   

 

Problem Statement 

Although single-case researchers have recognized the misspecification effect of level-1 

error structures on statistical inferences of multilevel models, researchers have overlooked how 

they have made a critical assumption in their studies. They have generally assumed that the 

level-1 error structure is constant across all cases. Past applications of multilevel modeling to 

single-case data (e.g., Van Noortgate & Onghena, 2003a, 2003b) as well as methodological 

studies of multilevel models with single-case data (Ferron, Bell, Hess, Rendina-Gobioff, & 

Hibbard, 2009; Ferron, Farmer, & Owens, 2010) have assumed the level-1 error structure is the 

same for all cases. It is possible that the error structure may not be same across cases (Baek & 
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Ferron, 2011; Baek & Ferron, 2013). If great variation exists in the level-1 error structure, and it 

is not taken into account, this can possibly impact the inferences of a study. Thus, it is important 

to examine the consequences of not modeling and modeling between case variation in the level-1 

error structure. Despite the importance of this issue, neither the effects of non-modeled between 

case variation nor the performance of modeled between case variation in the level-1 error 

structure have been systematically examined.  

 

Purpose of the Study 

The purpose of this simulation study is to extend the MLM modeling in single-case 

design to allow between case variation in the level-1 error structure which allows the level-1 

error and autocorrelation to vary across cases, and to identify the consequences of not modeling 

and modeling between case variation in the level-1 error structure for single-case studies using 

Bayesian estimation. Specifically, two level models where the level-1 error structures are 

modeled different ways (i.e., not modeling between case variation vs. modeling between case 

variation) will be examined in terms of the accuracy of estimates of parameters. More 

specifically, credible interval coverage rates, credible interval widths, the bias of the point 

estimates, and the root mean squared error (RMSE) will be investigated as functions of specific 

design (number of cases and series length per case), and data factors (true level-1 error structure, 

average level of autocorrelation, and variance of level-2 error). The following research questions 

are of interest: 
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Research Questions 

1. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effect in single-case 

design?  

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation at the level-2 error)? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of design factors (number of cases and 

series length per case), and data factors  (true level-1 error structure and variation 

at the level-2 error)? 

2. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  

1) to what extent are the bias and RMSE for the variance components impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation at the level-2 error)? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of design factors (number of cases and series 

length per case), and data factors  (true level-1 error structure and variation at the 

level-2 error)? 
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Overview of the Study 

 Monte Carlo simulation methods will be used to address the impact of modeling and not 

modeling between case variation in the level-1 error structure on inferences of two-level 

multilevel single-case study using the Bayesian estimation approach. In the study, multiple data, 

design and analysis factors will be manipulated. The data factors include three factors. These are 

(a) true level-1 error structure (homogeneous, moderately heterogeneous, severely 

heterogeneous); (b) variation in the level-2 errors (most of the variance at level-1 and most of the 

variance at level-2).  More specifically for the true level-1 error structure, the data set will be 

generated in two ways where the level-1 error structure is constant across cases, referred to as the 

Homogeneous error structure, and where the level-1 error structure is varying across cases, 

referred to as the Moderate or the Severe heterogeneous error structure, depending on the degree 

of severity in the generated data sets. There are two factors included in the design factors. These 

factors are (a) number of cases (4 and 8); (b) series length per case (10 and 20).  The analysis 

factor addresses how to model the level-1 error structure (not modeling between case variation 

(Model 1), and modeling between case variation (Model 2)) to analyze the Homogeneous, the 

Moderate or the Severe heterogeneous error structures. Crossing all the factors creates a total of 

48 conditions (see Table 1). The impact of the inferences will be made from the 95% credible 

interval coverage, width, and the RMSE as well as the bias of point estimates. 

 

Significance of the Study 

This dissertation provides insights about how non- modeled and modeled between case 

variation in level-1 error structure, a misspecification issue of the level-1 error structure, impacts 

statistical inferences, an issue which has not been systematically explored. It could possibly 



7 

influence the precision of estimation and the efficiency of inferences on single-case data. This 

study also provides a way to model between case variation in level-1 error structure using 

WinBUGS, making these created codes accessible to applied researchers for use in their own 

research. 

 

Table 1  
Study design 

   True level-1 error structure 

   
Homogeneous     

Moderately 
heterogeneous 

Severely 
heterogeneous 

   Method to modeling the level-1 error structure 

Number 
of cases 

Series 
length 

per case 

Error 
variance 
(Most of 

variance at ) 

Method 
1 

Method 
2 

Method 
1 

Method 
2 

Method 
1 

Method 
2 

4 10 Level-1   
  Level-2   
 20 Level-1   
  Level-2   
8 10 Level-1   
  Level-2   
 20 Level-1   
  Level-2   

 

Limitations 

The data in this study will be simulated based on specific conditions. Those conditions 

will be chosen based on a review of single-case literature. The specific conditions chosen for this 

study are only some of the possible options. Therefore, the results of this study can only be 

generalized to studies with similar conditions. Any conclusions beyond the observed conditions 

should be interpreted with caution. 
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Definitions of Terms 

Autocorrelation. The degree to which errors from repeated measured data are correlated with 

each other (dependency of the errors). 

Bayesian estimation. A practical method for analyzing multilevel modeling that is known to take 

into account the uncertainty of estimating both fixed effect and variance components by 

using constructed prior distributions. Bayesian inference is the process of fitting a 

probability model, given the observed data, and summarizing uncertainty of parameters 

by a probability distribution (Gelman, Carlin, Stern, & Rubin, 2004).  

Bias. The difference between a known parameter value (true value) and an estimated parameter 

value. 

Credible interval. Known as Bayesian confidence interval that is corresponding to the 

confidence interval in general statistics. 

Credible interval coverage. The proportion of 95% credible intervals that contain a true value for 

the estimated parameter. 

Credible interval width. The difference between the upper and lower limits of the 95% credible 

intervals for the estimated parameter. 

Fixed effects. Parameters that estimate average effects (e.g., average intercept, average treatment 

effect) that are represented by regression coefficients in the multilevel model.  

Hyperparameters. Parameters of prior distributions, not the direct parameters of the model. 

Level-1 error. The difference between the observed values and predicted values of an outcome in 

a case in multilevel single-case designs.  

Level-1 error structure. A variance and covariance structure among the level-1errors.. 
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Multilevel modeling (MLM). A statistical model that  accounts for nested data (e.g., students in 

classrooms, repeated observations of students) or more than one level of the 

parameters. It is also known as hierarchical linear modeling or random effects 

modeling.  

Prior distribution. A probability distribution represents the approximation about an unknown 

parameter that is believed prior to observing the specific data. 

Restricted maximum likelihood estimation (REML). A traditional estimation method to analyze 

multilevel modeling. The rationale behind likelihood estimation is that the best way to 

estimate a parameter is to find the value that allows the observed data most likely to 

have occurred (Fienberg &Linden, 1997). 

Root Mean Squared Error (RMSE). The square root of the average squares of the errors. 

Series length. The level-1 sample size in the multilevel model, or the number of observations of a 

case in a single-case study. 

Single-case research. The intensive study that repeatedly measures a single case or small 

samples to determine the effectiveness of one or more treatments. 

Treatment effect. The change in a dependent variable attributed to a specific treatment. 

Variance components. Parameters that estimate variation within cases and between cases. 
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CHAPTER TWO: LITERATURE REVIEW 

 

This literature review will be divided into four parts. First, single-case studies are 

introduced, and a brief overview of the design and analysis is given. Next, level-1 error 

structures and the effects of misspecification in level-1 error structures are described. Third, a 

typical assumption that the level-1 error structure is constant across cases is addressed. Finally, a 

method to model between case variation in level-1 error structures is suggested. 

 

Single-Case Studies 

Single-case research focuses on studying changes in an outcome over time. By measuring 

an outcome repeatedly through time, single-case studies allow the direct study of changes within 

individuals and the factors that influence changes.  However, unlike other forms of longitudinal 

research that gathers information from relatively large samples (> 30; Hox, 1998), single-case 

research focuses on the study of a single case or small samples and its growth over time. Thus 

single-case research can be defined as a study that repeatedly measures a single case over time to 

examine the effectiveness of treatments (Kazdin, 2011).  

In single-case designs, observations are obtained during at least two phases, one baseline 

phase and one treatment phase. Phase is an important feature of the single-case design. When the 

observations of the outcome occur before a treatment, it refers to a baseline phase. When the 

observations of the outcome occur after a treatment, it refers to a treatment phase.  By comparing 
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outcome scores from both phases, single-case researchers can evaluate changes in the outcome 

scores after introducing the treatment (Onghena & Edgington, 2005). 

Interest in single-case designs has been growing in many areas of research, including 

psychology, education, social science, counseling, and other disciplines (Barlow, Nock, & 

Hersen, 2009; Franklin, Allison, & Gorman, 1997; Ittenbach & Lawhead, 1997; Kazdin, 2011; 

Kratochwill, 1985; Wacker, Steege, & Berg, 1988) because they have several advantages over 

other designs. Single-case design allows researchers to investigate the effect of intervention for 

each individual by providing information about individual treatment effects and variation of the 

treatment effects among cases. This type of information is difficult to capture using group 

comparison designs where the focus is the average treatment effect (Barlow, Nock, & Hersen, 

2009). In addition, because only a small sample size is needed, single-case studies allow 

researchers to study populations of people that have a low prevalence rate (e.g., children with 

autism) that are difficult to study with large sample based designs (Van den Noortgate & 

Onghena, 2003a). There are more benefits to using single-case designs. By using single-case 

designs, researchers can reduce the gap between research and practice because practitioners can 

implement research in their current setting (Morgan & Morgan, 2001). Finally, this type of 

design also allows researchers to design an experimental condition within a case by measuring 

outcome variables prior to the treatment and after the treatment. This feature makes it feasible for 

the case to provide its own control for the comparison.  

 

Type of Single-Case Design 

There are several commonly used single-case designs, such as an AB design, an ABAB 

design, and a multiple-baseline design (Kazdin, 2011; Shadish & Sullivan, 2011). The AB design 
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is one of the basic designs that has a baseline phase (A) and a treatment phase (B). By comparing 

outcome scores from the baseline phase and the treatment phase, the treatment effect (changes in 

the outcome scores between the baseline and the treatment phase) can be evaluated. Figure 1 

illustrates a visual display of the basic AB design.  

 

Figure 1. AB design 

There is a criticism to using the basic AB design. When using the AB design, it is 

difficult to conclude that a change of outcome between a baseline and a treatment phase is solely 

due to a treatment and not due to some external factors which could have occurred at the same 

time (Ferron & Rendina-Gobioff, 2005).  For example, in a case that a researcher finds that the 

reading score of a child increases after implementing a new reading treatment using an AB 

design, the researcher may conclude that the new reading treatment is effective in improving 

reading performance. However, the improvement of the reading performance may be due to 

natural growth of learning, or due to academic assistance at home from the parent of the child 

that occurs at the same time that the treatment occurs. Thus, there is a limitation in examining the 

true effect of the treatment by using the basic AB design. This limitation can be partially 
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overcome by applying more complex designs, such as an ABAB design or a multiple baseline 

design.  

The ABAB design is an extension of the AB design. The ABAB design consists of four 

phases, two baseline phases and two treatment phases. It has observations of an initial baseline 

phase (A), followed by observations of an initial treatment phase (B), then observations of a 

second baseline phase (A), followed by observations of a second treatment phase (B). A 

treatment is introduced in the initial treatment phase like the AB design, and then the treatment is 

withdrawn in the second baseline phase and reintroduced in the second treatment phase. A 

second treatment phase provides the opportunity to demonstrate the performance of the initial 

treatment phase in that the observed performance pattern of the second treatment phase should 

replicate the performance change shown in the initial treatment phase. Figure 2 shows a visual 

display of the ABAB design.  

 

Figure 2. ABAB design 

There is an ethical or practical concern for using the ABAB design due to the fact that the 

treatment should be withdrawn (Kazdin, 2011). Researchers may expect that the behavior will 

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

Baseline (A) Treatment (B) Treatment (B) Baseline (A) 



14 

revert toward baseline levels when the treatment is withdrawn which is required to demonstrate 

the treatment effect. However, in some cases, the treatment effect might be permanent, or 

maintained after treatment is withdrawn. For example, in an educational setting, once learning 

occurs after introducing a treatment, it is hard to remove and might be maintained even after 

withdrawing the treatment.   

Another type of extension of the AB design is a multiple-baseline design. Multiple-

baseline designs have a baseline phase and a treatment phase that is established for multiple 

cases. The treatment is introduced to different cases at different points in time so that the 

initiation of the treatment phase can be staggered across time for the different cases. If changes 

occur for each baseline when the treatment is introduced, then the treatment effects can be more 

likely to be attributed to the treatment, not to extraneous events (e.g., history or maturation) 

(Ferron & Rendina-Gobioff, 2005; Kazdin, 2011). Another benefit of the multiple-baseline 

design is that the treatment does not need to be removed once the treatment is introduced. This 

benefit allows researchers to avoid the practical or ethical issues commonly encountered when 

removing the treatment in the ABAB design. Figure 3 illustrates a visual display of the multiple-

baseline design.  

Although multiple-baseline designs have some advantages over other designs, there is a 

limitation due to the potential dependence among cases. In multiple- baseline designs, baselines 

can be interconnected in that change in a behavior for one case carries over to other cases where 

the treatment has not been introduced (e.g.,Whalen, Schreibman, &Ingersoll, 2006; Watson , 

Meeks, Dufrene, & Lindsay, 2002). For example, in the multiple-baseline design across 

individuals, it is plausible that changes in the behavior of an individual who has received a 

treatment could impact the behavior of another individual who has not received the treatment. 



15 

This can occur more likely in school or home settings where a child or sibling can usually 

observe the behavior changes of other children or siblings. 

 

 

 

 

Figure 3. Multiple baseline design  
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Analysis of Single-Case Design 

Several methods to analyze single-case design data have long been developed. These 

methods can be categorized with four groups: (1) visual analysis, (2) overlap statistics, (3) 

randomization tests, and (4) regression based analyses.  

Visual analysis.  Visual analysis has been historically the most commonly used analysis 

method (Kazdin, 2011; Parsonson & Baer, 1992). Visual analysis is conducted to examine 

treatment effects by visually inspecting graphed data (Kazdin, 2011). This analysis is intended to 

focus on a potent treatment effect that can be obviously observed by graphed data. Therefore, it 

has been argued that researchers who typically use visual analysis tend to be more conservative 

when evaluating a treatment effect. This can lead the researchers to commit fewer Type I errors 

but more Type II errors than those who primarily use statistical analyses (Parsonson & Baer, 

1986; Kazdin, 2011).  

However, several studies have found that using visual analysis is not as conservative as 

previously thought, and several factors can influence a judgment of treatment effects examined 

by visual analysis (DeProspero & Cohen, 1979; Fisch, 2001; Jones, Weinrott, & Vaught,1978; 

Matyas & Greenwood, 1990; Wampold & Furlong, 1981). For example, Matyas and Greenwood 

(1990) found that visual analysts tend to make high Type I error rates, and relatively low Type II 

error rates. Fisch (2001) also found that trained behavior analysts often misreport treatment 

effects when a visual graph of data displayed no treatment effects (Type I error). In order to 

handle the issue of accuracy raised in visual analysis, several methods such as training, 

structured criteria and response-guided modification have been suggested (Hogaopian et al., 

1997; Ferron, & Jones; 2006; Fisher, Kelley & Lomas; 2003; Parsonson & Baer, 1992). By using 

these methods, it was demonstrated that the accuracy of visual analysis as well as agreement 
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among visual analysts can be improved (Ferron, & Jones; 2006; Fisher et al., 2003; Hagopian et 

al., 1997).  

However, many researchers have still suggested that it is more valuable to use visual 

analysis along with other statistical models when evaluating more complex data that have 

variability in baselines, trends, and complex error structures (Barlow, Nock, & Hersen, 2009; 

Ferron, & Jones; 2006; Kazdin, 2011). 

Nonoverlap statistics.  A number of nonoverlap statistics can be utilized in order to 

describe an overall size of a treatment effect. The underlying rationale for these statistics is to 

consider nonoverlapping data as an indicator of performance differences between baseline and 

treatment phases (Sidman, 1960). The extent to which data overlap between baseline and 

treatment phases can be quantified as the percentage of non-overlapping data (PND; Scruggs, 

Mastropieri, & Castro, 1987), percentage of all non-overlapping data (PAND; Parker, Hagan-

Burke, & Vannest, 2007), and percent exceeding the median (PEM; Ma, 2006). Nonoverlap 

methods have some strengths in that they don’t require an assumed parametric model (Armitage, 

Berry, & Matthews, 2002). 

Despite these strengths, several weaknesses are more often addressed. Parker and 

Vennest (2009) indicate these weaknesses for the previously listed three nonoverlap indices. 

They claim that (a) PND has a lack of a known underlying distribution that limits building 

confidence intervals, (b) PEM has issues of a weak relationship with other effect sizes, (c) PEM 

and PND are hardly able to discriminate among published studies, and (d) all three indices have 

also an issue of human error from hand calculations of the graphed data.  Recently, new indices 

have been developed to overcome these weaknesses. Nonoverlap of all pairs (NAP; Parker 

&Vannest, 2009), and Tau-U (Parker, Vannest, Davis, & Sauber, 2011) have been suggested as 
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alternative nonoverlap indices that potentially overcome some of the weaknesses of the 

traditional nonoverlap indices. 

Randomization tests.   Randomization tests can also be used to test the effectiveness of a 

treatment for single-case studies. This method allows single-case studies to be experimental 

designs by randomly assigning measurement occasions to the baseline or treatment phase 

(Onghena & Edgington, 2005). The logic behind these tests is that if there are no treatment 

effects on an outcome, the observations should not be influenced by random assignment of 

measurement occasions to the baseline or treatment, and therefore, the same scores of the 

outcome will be found regardless of the treatment assignment (Barlow, Nock, & Hersen, 2009). 

Based on assuming this null hypothesis is true, a randomization distribution is formed in a 

randomization test. Randomization tests are not driven by theoretical distributions. They only 

utilize available sample data to create a randomization distribution. This distribution is formed 

by rearranging the data to consider all permutations –one rearrangement for each of the possible 

random assignments. By comparing an obtained test statistic to the randomization distribution, 

the null hypothesis can be tested (Barlow, Nock, & Hersen, 2009).  

There are several benefits to using randomization tests to analyze single-case data. The 

use of an experimental design with randomization tests can improve both internal validity and 

statistical conclusion validity of the study by controlling extraneous variables related with natural 

growth or history. In addition, several studies show that the presence of a treatment effect can be 

examined while controlling Type I error rates by incorporating a randomized component in 

single-case design (Edgington, 1980; Ferron & Jones, 2006). 

However, there are several drawbacks of this method. A limitation of this method is that 

it only provides inferences about the presence of a treatment effect. It does not provide 
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inferences about the form of the effect (i.e., change in level and change in trend) or the size of 

the effect (Morgan & Morgan, 2001; Onghena & Edgington, 2005). Another concern relates to 

statistical power. It was found that power for randomization tests can be influenced by many 

factors, such as design types, effect sizes, series lengths, and forms of randomization which in 

turn, make it difficult to estimate the power of randomization tests (Ferron & Ware, 1995; Ferron 

& Onghena, 1996; Onghena & Edgington, 2005).  

Regression based analyses.  Regression analyses have been proposed as methods that 

are able to capture both changes in level and changes in trend in single-case data.  Regression 

methods can be categorized based on the number of levels allowed in the analysis: (1) single-

level analysis for one case, and (2) multilevel analysis for multiple cases.  

Single-level analysis.  Single-level analyses are simple regression types of analyses 

including ordinary least squares regression and generalized least squares regression. Ordinary 

least squares (OLS) regression was first suggested (Center, Skiba, & Casey, 1985-1986; Huitema 

& McKean, 1998) as a single-level regression method to analyze a single-case. This OLS 

regression can be illustrated by the following regression model:   

                                 yi  = β0 + β1  phase  + ei                                                                              (1) 

where yi  is the observed value at the ith point in time, β0  is an average of the baseline phase, 

phase is a dummy variable with 0 for the baseline phase and 1 for the treatment phase, β1 is the 

mean difference between the baseline and the treatment phase which indicates the treatment 

effect, and ei is the error at the ith point in time. This simple regression model can be expanded to 

include more variables to capture trends in phases (e.g., Center, Skiba, & Casey, 1985; Huitema 

& McKean, 2000). The use of OLS regression methods has raised concern that errors in the 
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statistical model are considered to be independent as opposed to dependent (autocorrelated) (e.g., 

Kratochwill et al., 1974; McKnight, McKean, & Huitema, 2000). 

Some alternative approaches have been suggested to resolve the dependency of the 

errors, autocorrelation, in single-case data. Generalized least squares (GLS) regression is one of 

the alternative single-level analyses that can handle the autocorrelated errors (Cochrane & 

Orcutt, 1949; McKnight, McKean, & Huitema, 2000; Simonton, 1977; Solanas, Manolov, & 

Sierra, 2010). The GLS regression shares a similar statistical framework with the OLS 

regression, but unlike OLS regression, the autocorrelation among the errors can be estimated and 

taken into account for the analyses (Maggin et al., 2011).  More explicit explanation about 

autocorrelation has been provided in a later section (see the Level-1 Error Structure section). 

Multi-level analysis.  In recent years, multilevel modeling (MLM) has been suggested as 

an alternative method to the single-level model to analyze single-case data (e.g., Nugent,1996; 

Shadish & Rindskopf, 2007; Shadish, Rindskopf, & Hedges, 2008; Van den Noortgate & 

Onghena, 2003a, 2003b, 2007, 2008; Baek et al, 2013).  

Multilevel modeling provides great flexibility which is considered as a potential 

advantage of using multilevel modeling over single-level analyses. Multilevel modeling can 

provide more detailed information regarding the treatment effects than single-level models 

because in addition to individual treatment effect estimates, they also provide an estimate of the 

average treatment effect, and the variability of treatment effects across cases. In addition, since 

multilevel analyses can provide empirical Bayes estimates, person specific estimates of short 

series from multilevel analyses can be more reliable than the estimates from single-level analyses 

(Raudenbush & Bryk, 2002). Moreover, multilevel models can handle a variety of modeling 

issues that may arise in single-case studies (e.g., the modeling of possible dependency, linear or 



21 

nonlinear trends, and count outcomes) (Van den Noortgate & Onghena, 2003a). Thus, this 

flexible modeling approach can provide more in-depth information regarding inferences of the 

study.  

A basic two-level multilevel model for single-case studies (e.g. an AB design), assuming 

no time trends during the baseline and treatment phase, is shown in equations 2 and 3. Equation 

2 is for the first level of the multilevel model, which is comparable to the OLS regression model.  

                                 yij  = β0j + β1j  Phaseij  + eij                                                                              (2) 

                                           β0j  = θ00 + u0j                                                                                            (3) 

                                                      β1j  = θ 10 + u1j 

yij  is the observed value (outcome) at the ith observation for the jth case. β0j  is the baseline 

intercept for the jth case, and Phaseij is a dichotomous variable that indicates the phase in which 

the observation occurred, being 0 indicates the baseline phase and 1 indicates the treatment 

phase.  β1j is the difference between the baseline level and the treatment level (shift in level) for 

the jth case which indicates a treatment effect.  eij   is residual that indicates within case variation 

(level-1 error).  Equation 3 is for the second level of the multilevel model which can allow 

variation in the baseline intercept and the shift in level across cases. θ00  is the average baseline 

intercept, θ 10 is the average shift in level, and u0j  and u1j  are errors for the average baseline 

intercept and the average shift in level across cases. u0j  and u1j  are assumed to be multivariate 

normally distributed N(0,Σu).  

This basic model can be extended to include slopes in the baseline and the treatment 

phase. Equation 4 is the first level of the extended model that includes the Timeij variable as an 

indicator of the slope. β0j  is the baseline intercept for the jth case and  β1j is the difference 

between the baseline level and the treatment level (shift in level) for the jth case when Timeij 
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equal to 0. β2j as the baseline slope for the jth case, and β3j  as the change in slopes between the 

baseline and the treatment phase (shift in slope).  

yij  = β0j + β1j  Phaseij  + β2j  Timeij + β3j Timeij *Phaseij + eij                       (4) 

 

                                    β0j  = θ00 + u0j                                                                                (5) 

                                                       β1j  = θ10 + u1j 

           β2j  = θ20 + u2j 

          β3j  = θ30 + u3j 

Equation 5 is the second level of the extended model that allows variation across cases in the 

baseline intercept, the baseline slope, the shift in level, and the shift in slope. θ00  is the average 

baseline intercept and θ 10 is the average shift in level at Timeij equal to 0, θ20  is the average 

baseline slope, and θ 30 is the average shift in slope.  u0j , u1j , u2j  and u3j  are errors in the second 

level equation.  

Although several advantages exist, some concerns involving the use of multilevel models 

also exist regarding assumptions. In order to make valid inferences of multilevel models, several 

assumptions need to be met. For example, the variance in the baseline phase and in the treatment 

phase is assumed to be equal, and the level-1 variance is also assumed to be equal for all the 

cases. However, it is difficult to test the violation of these assumptions prior to conducting the 

analyses, particularly with the single-case data that have typically small sample sizes. 

 

Level-1 Error Structures 

As mentioned previously, the errors in the first-level model (eij) in equations 1, 2, and 4 

are within case errors that indicate the discrepancy between the observed values and predicted 
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values of outcome from an individual’s growth trajectory.  Several assumptions regarding the 

within case errors (or level-1 errors) have to be taken into account when we use regression based 

methods to analyze the data. Errors are assumed to have covariance Σe, and they are both 

identically and normally distributed. Various error structures can be assumed for the covariance 

Σe. It can be assumed as either having an independent error structure or having an autocorrelated 

structure. In the following sections, autocorrelation in single-case design is introduced and then it 

is explained how the covariance Σe can be modeled in single-level and multilevel models using 

the autocorrelation. Some issues which arise when misspecifying the level-1 error structures are 

also discussed. 

 

Autocorrelation in Single-Case Design 

Many researchers have argued that the observations from single-case design may yield 

positive autocorrelations (Busk & Marascuilo, 1988; Huitema, 1985; Huitema & McKean, 1998; 

Matyas & Greenwood, 1996). Since an outcome is measured repeatedly across time in a single-

case study, it is possible level-1 errors produced by these repeated measurements may be more 

similar when they are close in time which leads to dependency in the errors, or autocorrelation. A 

number of non-modeled factors (e.g., illness, moving to a new school) could affect the level-1 

errors that indicate discrepancy between actual observed outcome values and predicted outcome 

values from an individual’s growth trajectory. If the non-modeled factors affect the sequential 

errors that are close in time, then the errors may be more similar at close points in time. For 

example, a growth trajectory of reading achievement for a child may show a constant increasing 

trend. Actual observations of the child, however, may deviate from this trajectory due to a non-

modeled factor such as illness of the child. She might feel tired and sick; that could affect an 
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observation of reading achievement. The sickness of the child is more likely to affect the next 

couple or more sequential observations. In this case, the errors that were closer in time would be 

more similar, which leads to positive autocorrelation.  

 

Level-1 Error Structures in Single-Case Design 

There are a number of possible level-1 error structures Σe that can be modeled in single-

case design. Level-1 error structures can be modeled as being autocorrelated or as independent in 

single-case data analysis. The independent error structure is a fairly simple structure compared to 

autocorrelated error structures. Variance components (VC) or Identity structure (ID) is the 

simplest error structure and assumes the errors are independent of each other. There are various 

error structures that assume the errors to be autocorrelated. These error structures include 

unstructured, compound symmetry, banded toeplitz  or moving average, first-order 

autoregressive [AR(1)], AR(1) plus a diagonal, AR(1) plus a common covariance, and an AR(1) 

generalization for unequally-spaced observations (Goldstein, 1995; Goldstein, Healy, & 

Rasbash, 1994; Heitjan & Sharma, 1997; Jennrich & Schluchter, 1986; Ware, 1985; Wolfinger, 

1993; Yang & Goldstein, 1996). The recognition that autocorrelation may exist among the level-

1 errors leads autocorrelated error structures to be utilized more often in single-case data 

analysis.  Figure 4 illustrates examples of the level-1 error structures generally used for single-

case data analysis.  Identity structure (ID) contains a single parameter (σ2) on the main diagonal 

of a diagonal matrix that assumes no correlation between any pair of random errors (Raudenbush 

& Bryk, 2002). This oversimplified structure is very unlikely to be true in repeated measures 

data (Goldstein, Healy, &, Rasbash, 1994).  First-order autoregression [AR(1)] structures are 

composed of two parameters, σ2 and ρ, and ρ represents the autocorrelation coefficient. The 
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correlations between two errors that are separated by one, two, three, and n points in time are 

represented by ρ, ρ2, ρ3, and ρn, respectively.  First-order autoregression and first-order moving 

average [ARMA(1,1)] has the same two parameters (σ2 , ρ) as AR(1) has and the moving average 

coefficient (r). This structure contains σ2 on the main diagonal to represent error variance, and 

the correlations between two errors that are separated by one, two, three, and n points in time 

represent by r, r ρ, r ρ2, and r ρn, respectively. Second-banded Toeplitz [TOEP(2)] contains two 

parameters, σ2  and σ1, and σ1 represents constant covariance between two errors that are 

separated by one point in time. This error structure assumes the errors that are separated by more 

than one point in time are not correlated, which means zero correlation. 

  ID      AR(1)     ARMA(1,1)          TOEP(2)  

                        

 

 

Figure 4.  Examples of the level-1 error structures used in single-case data analysis   

 

Misspecification Issues of Level-1 Error Structures in Single-Case Design 

When the existing autocorrelation is not modeled in the analysis, it can lead level-1 error 

structures to be misspecified. Research has shown significant impacts of misspecifying level-1 

error structure on statistical inferences. These misspecification issues of level-1 error structure 

arise for both single-level and multilevel analyses.  

Single-level model.   In single-level model analyses, much research shows that positive 

autocorrelation inflates Type I error rates in significance tests of the treatment effect when the 

autocorrelation is not taken into account (Matyas & Greenwood, 1990; Toothaker, Banz, Noble, 
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Camp, & Davis, 1983). More specifically, under a general linear model like OLS regression, the 

positive autocorrelation can lead the regression coefficients to be unbiased, but the standard 

errors of the regression coefficients to be underestimated which implies inflated t-values. As a 

result, 95% confidence intervals tend to be too small and significance tests of the treatment effect 

tend to be liberal (Neter, Wasserman, & Kutner, 1990). Typically, as the level of autocorrelation 

increases, the degree to which confidence intervals and significance tests are impacted increases. 

The impact of positive autocorrelation has been also demonstrated with various series lengths 

and patterns of autocorrelation (Beretvas & Chung, 2008; Greenwood & Matyas, 1990; Huitema, 

McKean, & McKnight, 1999; Scheffé, 1959; Toothaker, Banz, Noble, Camp, & Davis,1983).   

Some efforts have recently been made to resolve this issue by using the GLS regression 

method. GLS regression requires two steps to account for autocorrelation in the analyses. The 

autocorrelation can be first estimated from the errors of the initial fit of the linear model, and 

then can be included in the analyses to refit the linear model (Mcknight, Meckean & Huitema, 

2000; Maggin et al., 2011). There are several methods that are available to estimate the 

autocorrelations under the GLS regression approaches, such as Simonton (Simonton,1977), 

Cochrane-Orcutt (Cochrane-Orcutt, 1949), and Paris-Winsten (Paris-Winsten,1954) versions of 

GLS (McKnight, McKean, & Huitema, 2000; Solanas, Manolov, & Sierra, 2010). However, 

studies have demonstrated that GLS methods still produce high Type I error rates when applied 

to small samples (e.g., Johnston, 1984; Huitema & Mckean, 1991; Solanas, Manolov, & Sierra, 

2010). McKnight, McKean, and Huitema (2000) found that a double-bootstrapping procedure 

under the GLS regression can improve the accuracy of the parameter estimates as well as 

autocorrelation estimates and control Type I error rates. Their Monte Carlo simulation study 

shows that the bootstrap bias-adjusted method estimates of the autocorrelation are substantially 
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less biased than initial estimates of the autocorrelation obtained by other traditional GLS 

methods (i.e., Cochrane-Orcutt, and Paris-Winsten). Type I error rates for all parameter estimates 

using the bootstrap bias-adjusted method are close to the nominal level, less than .05. In addition, 

Maggin et al. (2011) proposed applying the Bayesian estimation approach under the GLS 

regression method to compute effect sizes for single-case data. This method is particularly 

applicable to small-sample time-series data with autoregressive errors. They recommend the use 

of the GLS method as a support for visual analysis. However, sufficient empirical evidence has 

not yet been gathered for this method.  

Multi-level model.  Multilevel modeling (MLM) is another method that allows the 

possible dependency of the observations to be taken into account, and has been used as an 

alternative method for analyzing single-case data (Nugent, 1996; Shadish & Rindskopf, 2007; 

Shadish, Rindskopf, & Hedges, 2008; Van den Noortgate & Onghena, 2003a, 2003b, 2007, 

2008). The flexibility of the multilevel approach makes it possible not only to allow for 

dependent error structures, but also to allow the covariance parameter values to differ across 

cases. By using this approach, researchers can model the variety of error structures described in 

the previous section. 

Misspecifying the level-1 error structure in MLM analyses has also been found to bias 

estimates of the parameters (Ferron et al., 2009; Ferron, Dailey, & Yi, 2002; Guerin & Stroup, 

2000; Kwok et al., 2007; Sivo, Fan, & Witta, 2005; Sivo & Willson, 2000). For example, Ferron 

et al. (2009) conducted a Monte Carlo simulation study to examine the utility of multilevel 

models for multiple baseline design of single-case data. They found that the fixed effect estimate 

of the average treatment effect was relatively unbiased, regardless of whether the level-1 error 

structure was correctly specified or not. However, they indicated that the confidence interval 
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coverage of the treatment effect was less accurate and estimates of the variance components 

tended to be more biased when level-1 error structure was misspecified. Ferron, Dailey and Yi 

(2002) also studied the effect of the misspecified level-1 error structure using a parsimonious 

covariance structure (ID) rather than the true structure [AR(1)] in MLM analyses. In their 

simulation study, they found that the estimates of the fixed effects were unbiased but the 

estimates of variance parameters were substantially biased when the level-1 error structure was 

misspecified for all conditions (i.e.,variety of series lengths, sample sizes, and levels of 

autocorrelation).  Specifically, both variance in the intercept and the slope (level-2 variance) 

were overestimated; the level-1 error variance was underestimated.  Kwok and his colleagues 

(2007) studied the impact of broader types of misspecifying the level-1 error structure in 

repeated measured data analysis under the multilevel model framework. Their simulation results 

implied the impact of misspecification of the Σe matrices were more likely to result in 

overestimation in random effects, when parsimonious covariance structures were used, and 

underestimation in random effect variances when other types of misspecification occurred. 

Furthermore, using parsimonious covariance structure resulted in overestimation of the standard 

errors in the fixed effect, which resulted in lower statistical power relative to the correct 

specification. Recently, Petit-Bois (in press) investigated the effects of various types of 

misspecifications of the level-1 error structure when using a three-level meta-analytic single-case 

model. She found consistent results from the previous studies. Her simulation results indicate 

that misspecification of the level-1 error structure has little or no impact on the treatment effects, 

but, it has significant impact on the variance components. Specifically, the estimates of error 

variances and autocorrelation were more biased; confidence interval coverage for the level-2 and 
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level-1 error variance, and autocorrelation tended to be small, and confidence interval width 

tended to be large for some cases.       

Overall, previous research for both single-level and multilevel models implies that 

misspecification of level-1 error structure has little to no impact on the point estimates of the 

fixed effects, but it has a significant impact on the corresponding standard errors of the fixed 

effects. These impacts can lead to lower statistical power of the inferences. Moreover, 

misspecification of level-1 error structure leads to significant bias on random effect estimation. 

Depending on the types of the misspecification, it was more likely to be either overestimated or 

underestimated. Thus, single-case researchers should inspect for the presence of the 

autocorrelation in their data, and consider modeling autocorrelation if it presents in their data. By 

doing this, they can avoid possible misspecification on the level-1 error structure (Barlow, Nock, 

& Hersen, 2009; Kazdin, 2011). If there is uncertainty about the level-1 error structure, it is 

generally recommended to avoid an overly parsimonious error structure (i.e., ID) (Ferron, 

Dailey, & Yi, 2002), and to consider using a slightly over-specified model (e.g., TOEP(2) or 

AR(1)) (Kwok et al., 2007).     

 

Assumption of Between Case Homogeneity in Level-1 Error Structures 

Although multilevel modeling allows autocorrelation among level-1 errors to be taken 

into consideration in single-case data analyses, this approach still holds a critical assumption that 

the level-1 error structure is the same for all cases. Specifically, it is assumed that (a) the degree 

of autocorrelation is the same for all cases and (b) the level-1 error variance is the same for all 

cases. Previous single-case research using multilevel modeling application as well as 

misspecification research of level-1 error structures has often assumed the autocorrelation and 
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level-1 error variance to be equal for all cases (Ferron et al.,2009; Ferron, Farmer, & Owens, 

2010; Van Noortgate & Onghena, 2003; Kwok et al., 2007).  

However, it is possible that this assumption may not be true all the time. The 

autocorrelation and level-1 error variance may vary across cases. Level-1 errors could be 

attributed by measurement errors, and the differences of measurement errors across cases can 

lead the level-1 error variances to vary. For example, differences in mood, motivation, and 

fatigue among cases are some of the sources causing measurement error. The measurement error 

caused by these personal related factors is likely to be different across cases, and this could lead 

the level-1 error variances to vary. The findings from previous studies of level-1 error structures 

in single-case data support that variations in level-1 error structures could exist (Baek & Ferron, 

2011; Baek & Ferron, 2013). Baek and Ferron (2013) discovered relatively large differences 

found in terms of estimates of autocorrelation and level-1 error variances, after estimating level-1 

errors separately for each case. In the study, five single-case data sets from published papers 

were selected and reanalyzed separately using a two-level multilevel model with varying error 

structures across cases. The results of the analyses found substantial differences in terms of the 

autocorrelation [AR(1)] estimates among the cases in all five studies. For example, in one study, 

the autocorrelation ranged from -.04 to .46 when estimated separately for each case, while it was 

estimated to be .22 when estimated to be constant across cases. The study also found that level-1 

error variance estimates were substantially different across cases in all five studies. For example, 

in one study the error variance ranged from 164.41 to 795.62 when estimated separately for each 

case, while it was estimated to be 269.54 when estimated to be constant across cases.  

If the variation which exists in a level-1 error structure is not taken into consideration, it 

can conceivably impact the inferences of the study for both fixed effects and random effects. 
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Thus, it is critical to examine the consequences of different modeling approaches (modeling and 

not modeling between case variation) in the level-1 error structure. Despite the importance of 

this issue, the effects of the different approaches to modeling the level-1 error structure has not 

been systematically studied.   

   

Modeling Between Case Variation in Level-1 Error Structures 

The two level model that allows between case variation in the level-1 error structure in 

single-case design can still be represented by the Equations (4) and (5). In Equation (4), eij   

represents level-1 errors, and the covariance structure ∑e of the errors can be assumed as any of 

the error structures being autocorrelated or being independent that have been introduced 

previously. 

When we model between case variation in the level-1 error structure, the covariance 

structure ∑e is assumed to be one of the autocorrelated covariance structures, and is allowed to 

vary across cases. More specifically, autocorrelation and level-1 error variance are estimated 

separately for each case; therefore, every case is allowed to have a unique autocorrelation and 

level-1 error variance value. The following example illustrates three different ways of modeling 

level-1 covariance structure ∑e . Assume that there are single-case data with three cases. The 

simplest way to model the covariance structure ∑e is to assume it to have an independent 

structure (ID). Assume the level-1 error variance is estimated as 35, and held constant across 

cases. This is illustrated in Figure 5. 
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Figure 5.  ∑e is assumed to be ID and held constant across three cases 

Another way of modeling ∑e is assuming it to have one of the autocorrelated error structures. 

Assume that the first-order autoregressive structure [AR(1)] is assumed for the covariance 

structure ∑e . When the covariance structure ∑e is held constant across cases with the 

autocorrelation and the variance of level-1 error being estimated as .2 and 30, respectively, these 

values apply for all three cases. This is illustrated in Figure 6. 
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Figure 6.  ∑e is assumed to be AR(1) and held constant across three cases 

Those two ways of modeling ∑e are traditional ways that are often modeled for the single-case 

analysis. For the proposed approach where the covariance structure ∑e is allowed to vary across 

cases, the autocorrelation and the variance of level-1 error will be estimated with as many values 

as cases. An example of this approach is illustrated in Figure 7. As you see in Figure7, each case 

has unique autocorrelation and variance when between case variation is modeled for the level-1 

error covariance structure.   
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Figure 7.  ∑e is assumed to be AR(1) and allowed to vary across three cases    

 

Estimation Methods  

Restricted maximum likelihood (REML) estimation. The traditional estimation 

method to run the three specified models is restricted maximum likelihood (REML) estimation 

(Patterson & Thompson, 1971; Kenward & Roger, 1997, 2009). This estimation method has 

been historically and commonly utilized to analyze multilevel models. It has become a standard 

of variance component estimation in MLM and has provided computation advantages in that it is 

relatively fast and automated by many software programs (e.g., HLM, MLwiN, SAS, SPSS, R, 

and Stata). The rationale behind likelihood estimation is that the best way to estimate a parameter 

is to find the value for which the observed data were most likely to have occurred (Lynch, 2007). 

The REML estimation has been commonly used to estimate the traditional models in 

many single-case applications (e.g., Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009; 

Ferron, Farmer, & Owens, 2010; Van Noortgate & Onghena, 2003a). Generally, it has been 

found that the REML method used to estimate multilevel models in single-case data produces 

correct inferences for fixed effects by adjusting standard errors and degrees of freedom 

(Kenward & Roger, 1997, 2009), but produces biased variance components. Several 

methodological research studies of single-case also support these findings (Ferron, Bell, Hess, 

Rendina-Gobioff, & Hibbard, 2009; Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 
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2013a, 2013b; Owens & Ferron, 2012). Specifically, Monte Carlo simulation studies suggest that 

using REML to estimate a variety of multilevel models and data conditions for single-case data 

leads to: (1) unbiased fixed effects (i.e., treatment effect) regardless of sample sizes, (2) accurate 

confidence intervals for the fixed effects (average treatment effect) regardless of sample sizes, as 

long as Kenward-Roger or Satterthwaite methods are used for the degree of freedom estimates, 

and (3) biased variance estimates particularly with small sample sizes. 

However, for the proposed model where the covariance structure ∑e is allowed to vary 

across cases, using the REML estimation has raised a technical issue (Baek, Petit-Bois, & 

Ferron, 2012).  The estimation can be computationally intensive since the level-1 error structure 

should be estimated for each case. It turns out that as the number of cases increases, the number 

of parameters increases, and that leads to non-convergence issues. For example, in a recent study 

of single-case studies (Baek, Petit-Bois, & Ferron, 2012), the multilevel meta-analytic model of 

single-case data was extended to allow the autocorrelation [AR(1)] and error variance to vary 

across studies and cases using REML estimation.  In this analysis, convergence criteria were not 

met when the level-1 error structure was allowed to vary across studies or cases. Thus, in order 

to apply the proposed idea of allowing between variation in level-1 error structure, it is necessary 

to use an alternative estimation approach that can solve the convergence issue.  

Bayesian estimation.  Bayesian estimation can be one of the alternative estimation 

methods to handle the convergence issue. Bayesian estimation method has been considered as a 

practical method for analyzing data for many areas such as education, social science, 

psychology, and medical decision making (Lindley & Smith, 1972; Gelman, Carlin, Stern, & 

Rubin, 2004). Bayesian inference is the process of fitting a probability model, given the observed 

data, and summarizing uncertainty of parameters by a probability distribution (Gelman, Carlin, 
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Stern, & Rubin, 2004). This method incorporates existing information into the analysis by 

constructing prior distributions using the existing information (e.g., Howard, Maxwell, & 

Fleming, 2000). Bayesian estimation can take into account the uncertainty of estimating both 

fixed effects and variance components by using these constructed prior distributions (Gelman, 

2002; Gelman, Carlin, Stern, & Rubin, 2004).  

Bayesian estimation methods are well known for their benefits of analyzing social 

science data (e.g., Gelman & Hill, 2007; Howard, Maxwell, & Fleming, 2000; Kruschke, 2011a, 

2011b; Lynch, 2007; Yuan & MacKinnon, 2009). They have great flexibility to construct 

hypothesis tests and interval estimates, and they also have a benefit to estimate parameters in 

special cases (e.g., non-normal sampling distributions). Bayesian estimation can also handle 

inferential and technical challenges of using likelihood estimation in multilevel analysis 

(Gelman, Carlin, Stern, & Rubin, 2004; Shadish, Rindskopf, & Hedges, 2008; Shadish & 

Rindskopf, 2007). Studies in multilevel analyses have found that Bayesian methods perform as 

well or better than likelihood methods regarding bias, efficiency, and coverage (Browne, 2008; 

Baldwin & Fellingham, 2013). For the multilevel single-case research, the Bayesian approach 

could provide more accurate results when using small samples or unequal sample sizes per 

subject (Shadish, Kyse, & Rindskopf, 2013).  Convergence issues could also be resolved by 

using Bayesian estimation methods (Baek, Petit-bois, & Ferron, 2013). Bayesian methods are 

capable of performing with computationally intensive cases by using Markov Chain Monte Carlo 

(MCMC) procedures (e.g., Chen & Shao, 1999; Cowles &Carlin, 1996; Gelman, Carlin, Stern, & 

Rubin, 2004; Gilks, Richardson, & Spiegelhalter, 1996; Tierney, 1994). Baek, Petit-bois, and 

Ferron (2013) found that more complex multilevel models of single-case data, which failed 

previously using REML, can reach convergence using the Bayesian estimation method. Bayesian 
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estimation can also be implemented by a variety of software programs, such as MLwinN, R, 

SAS, and WinBugs.  

Bayesian form of the equation for multilevel models.   Since Bayesian estimation method 

is implemented using a probability framework, the multilevel model can also be expressed using 

probability distributions. Thus the simple traditional two-level single-case model which is 

represented by equation (4) and (5) can be re-written as seen in the following equation:   

yij ~ Normal(μij, σ
2)                                                      (6) 

μij  = αj + βjTimeij+ γjPhaseij+ δjTimeij*Phaseij 

αj ~ Normal(μα, σ
2
α) 

βj ~ Normal(μβ, σ
2
β) 

γj ~ Normal(μγ, σ
2
γ) 

δj ~ Normal(μδ, σ
2
δ) 

where, yij  is the observed value (outcome) for the ith observation at the jth case; αj  is the intercept 

of the baseline for the jth case; βj is the baseline slope for the jth case; γj is the shift in level for the 

jth case; δj is the shift in slope for the jth case. σ2
   is the variance of the within case errors and it is 

assumed constant across cases in this equation. For the second level equation, μα is the average 

intercept of the baseline; μβ is the average baseline slope; μγ is the average shift in level; μδ is the 

average shift in slope, and σ2
α, σ

2
β, σ

2
γ, and σ2

δ are corresponding error variances. These μα , μβ , 

μγ , μδ ,σ
2
α , σ

2
β, σ

2
γ, and σ2

δ are refered to as hyperparameters in that they are the upper level of 

parameters, not the direct parameters (i.e., αj, βj, γj, δj ) of the model.  

In addition, it is assumed that all regression coefficients, αj, βj, γj, δj, follow a normal 

distribution.  In the Bayesian method, this distribution is called a prior distribution, and all 

parameters and hyperparameters are required to have a prior distribution.  
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Prior probability distribution.   The prior distribution is a crucial part of Bayesian 

inference. It represents the plausible distribution for an unknown parameter that is believed prior 

to observing the specific data (Gelman, 2002; Gelman, Carlin, Stern, & Rubin, 2004). The belief 

could be obtained from previous research or theoretical rationale. Without using a prior 

distribution, any Bayesian inference cannot be made. 

Reasonable choices of objective prior distributions, noninformative prior distributions, 

will have minor effects on posterior inferences (Berger, 2006; Efron & Morris, 1975; Goldstein, 

2006; Gelman, 2002; Jeffreys, 1961; Morris, 1983). The rationale for using noninformative prior 

distributions is to make the data speak for themselves so that posterior inferences are unaffected 

by external information out of the current data (Gelman, 2006; Gelman, Carlin, Stern, & Rubin, 

2004). 

Reasonable noninformative prior distributions have been developed for the parameters of 

the multilevel models. Typically, enough data is available to estimate fixed effect (i.e, μα , μβ , μγ , 

and μδ in Equation 6) and level-1 error variance (σ2) in multilevel models that one can use any 

reasonable noninformative prior distribution (Gelman, Carlin, Stern, & Rubin, 2004; Gelman, 

2006). A common prior distribution used in applied work for the fixed effects is a 

noninformative normal distribution, and a noninformative uniform distribution is a commonly 

used prior distribution for σ.  

In general, noninformative normal distributions are constructed with large variance (i.e., 

10002), so that posterior inferences cannot be influenced by the choice of variance value. 

Similarly, for the uniform distribution, when the upper limit of σ (standard deviation unit) goes 

sufficiently large, it yields a proper posterior distribution, and inferences are not sensitive to the 

choice of the upper limit value. The term sufficiently large is subjective in that it will be defined 
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by the scale of the target parameter (i.e., σ). One could obtain a rationale for the proper scale of 

the target parameter by conducting a marginal analysis (e.g., general regression based analysis). 

The lower limit of σ is commonly set to be 0 due to the fact that the value of standard deviation 

could not be negative.   

Unlike fixed effects and level-1 error variance, noninformative prior distributions for 

level-2 variance parameters (i.e., variance of the hyperparameters; σ2
α, σ

2
β, σ

2
γ, and σ2

δ in 

Equation 6) have been more difficult to construct. The choice of noninformative prior 

distribution for level-2  variance parameters can have a substantially large impact on inferences, 

especially in the case where the number of j (cases; unit of the higher level) is small or the 

corresponding level-2 variance is close to zero (Gelman, 2002; Gelman, 2006).  

Many researchers have suggested various noninformative prior distributions for the 

hierarchical variance parameters in multilevel models, including uniform, inverse-gamma family, 

and half-t distributions (Berger & Strawderman, 1996; Daniels & Kass, 1999; Gelman, 2006; 

Spiegelhalter, Thomas, Best, & Lunn, 2003).  For example, Gelman (2006) demonstrated the 

impact of various proposed noninformative prior distributions for the level-2 variance parameters 

in multilevel models by using a simple example. He found that the uniform distribution generally 

works well in that it has little impact on posterior inferences, as long as the number of j ≥ 3 

which is required to ensure a proper posterior density. Thus, he recommended starting with a 

noninformative uniform prior density for the standard deviation of the level-2 variance.  

Convergence criteria.  In the Bayesian estimation approach, convergence refers to 

diagnosing if MCMC techniques reach a proper posterior distribution. MCMC techniques will 

eventually converge to the posterior distribution, but if iterations have not proceeded long 

enough, the simulations may not be representative of the population distribution. Therefore, in 
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Bayesian estimation, one must determine when convergence occurs, and then, how many 

samples are needed to make accurate posterior inferences after reaching convergence (Gelman, 

Carlin, Stern, & Rubin, 2004; Cowles &Carlin, 1996; Spiegelhalter, Thomas, Best, & Lunn, 

2003).  

A number of techniques have been implemented in various software packages to identify 

these two issues. Various techniques of monitoring convergence are available in WinBUGS 

software, including trace plots, history plots, Kernel density plots, and Brooks–Gelman–Rubin 

(BGR) plots. A trace or history plot is one of the intuitive diagnostic criteria which plots the 

parameter value at time against the iteration number. When more than one chain is assigned 

simultaneously, the trace and history plots show each chain in a different color. If all the chains 

overlap one another, we can be confident to say that convergence has been achieved (see 

Spiegelhalter, Thomas, Best, & Lunn, 2003). A clear sign of non-convergence occurs when we 

observe some trends in the plots.  Kernel density plot shows the final posterior distribution of the 

estimated parameter. This plot could be another useful diagnostic criterion. When converge 

occurs, the distribution shows a smooth shape. Generally, as more iterations are performed, the 

distribution will become smoother. WinBUGS also has the Brooks-Gelman-Rubin (BGR) 

diagnostic which is computed based on the ratio of between-within chain variances (Brooks & 

Gelman, 1997; Brooks & Roberts, 1998; Cowles & Carlin, 1996; Gelman & Rubin, 1992). The 

intuition is that the variance within the chains should be the same as the variance across the 

chains. BGR plots have three lines: green lines represent the normalized width of the central 80% 

interval of the pooled, blue lines represent the normalized average width of the 80% intervals 

within the individual, and red lines represent the BGR statistic, R. When R converges to 1, and 

both the pooled and within interval widths converge with stability, we consider convergence has 
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occurred. Convergence for analyses of this study will be visually inspected by these different 

diagnostic criteria. 

Even if the simulations have reached convergence, the early iterations could still be 

influenced by the starting point rather than the population distribution. To eliminate the effect of 

the starting point on posterior distribution, it is generally recommended to discard the first half of 

each chain and focus on the second half as a conservative choice (Gelman, Carlin, Stern, & 

Rubin, 2004; Spiegelhalter, Thomas, Best, & Lunn, 2003). The practice of discarding early 

iterations in MCMC is referred to as burn-in. The final inferences, after discarding early 

iterations, will be made based on the assumption that the distributions of the simulated values are 

close to the population distribution.  

 

Summary 

Single-case studies are essential to intensively study the effect of a treatment on a single 

case over time.  Single-case designs have growing interest over many disciplines including 

education, psychology, and social science due to several advantages that single-case designs 

have. They provide information about individual effects as well as group effects (Barlow, Nock, 

& Hersen, 2009). They also allow the study of special population groups that particularly have a 

low population prevalence rate (Van den Noortgate & Onghena, 2003a). In addition, the 

characteristics of these designs allow a reduction in the gap between research and practice, and 

provide a mechanism for cases to serve as their own control (Morgan & Morgan, 2001). 

Several non-parametric and parametric methods have been proposed to analyze single-

case data including visual analysis, nonoverlap statistics, randomization tests, and regression 

based methods. In single-case data, it is often considered that the errors are autocorrelated as 
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opposed to be independent, and the possible dependency of the errors should be taken into 

account in the model. There are several methods available to take autocorrelation into 

consideration. Particularly, regression based methods can take autocorrelation into consideration, 

using the GLS regression method for one case or multilevel modeling for multiple cases.  By 

using a multilevel framework, researchers are able to model various dependent error structures, 

and complex models (e.g., heterogeneity of variance, and the nesting of cases within studies). 

Although the multilevel model has the flexibility to handle dependency of the errors, it 

should be noted that a critical assumption has typically been made in the multilevel approach. 

Past applications of multilevel modeling to single-case data (e.g., Van Noortgate & Onghena, 

2003a, 2003b) as well as methodological studies of multilevel models with single-case data 

(Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009; Ferron, Farmer, & Owens, 2010) have 

assumed the level-1 error structure is the same for all cases.  

It is plausible that the level-1 error structure may not be same across cases (Baek & 

Ferron, 2011; Baek & Ferron, 2013). Failure to account for variation that exists in a level-1 error 

structure can impact the inferences of a study. Thus, it is important to examine the consequences 

of both not modeling between case variation and modeling between case variation in the level-1 

error structure. Despite the importance of this issue, neither the effects of non-modeled between 

case variation effects nor the performance of modeled between case variation effects in the level-

1 error structure have been systematically examined.  

There are several estimation methods available to make it feasible to allow the level-1 

error structure to vary across cases including restricted maximum likelihood (REML) and 

Bayesian methods. The REML method is the most commonly used method to analyze multilevel 

models, and has been implemented by several software procedures that allow easy access. 
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However, the REML has inferential and technical issues associated with analyzing complex 

multilevel models of single-case data such as non-convergence with more complex models. The 

Bayesian method has the potential to resolve this issue found with REML. It was found that a 

complex multilevel model that fails to converge using REML can be run by using the Bayesian 

approach (Baek, Petit-Bois, & Ferron, 2012). 

Therefore, this study will examine the consequences of modeling and not modeling 

between case variation in level-1 error structure on parameter estimations and inferences for 

single-case data using Bayesian estimation. Specifically, two level multilevel models where the 

level-1 error structures are modeled in different ways (i.e., ID, AR(1) constant across cases, and 

AR(1) varies across cases) will be compared in terms of the quality of the fixed effects (i.e., the 

overall average baseline intercept, the overall baseline slope,  and the overall average treatment 

effects (shift in level and shift in slope)) and the variance components (i.e., the between case 

variance in the average baseline intercept, the between case variance in the average baseline 

slope, the between case variance in the average treatment effect, and the level-1 error variance, 

and the autocorrelation). This will be achieved by investigating credible interval coverage rates, 

credible interval widths, RMSE, and bias of the point estimates as a function of specific design 

and data factors.  
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CHAPTER THREE: METHODS 

 

This chapter outlines the methods for this study including the purpose, research 

questions, design, sample and analysis conditions, data generation, and outcome measures. 

 

Purpose 

The purpose of this simulation study was to extend the MLM modeling in single-case 

design to allow between case variation in the level-1 error structure which allows the level-1 

error and autocorrelation to vary across cases. This study identified the consequences of not 

modeling and modeling between case variation in the level-1 error structure for single-case 

studies using the Bayesian estimation approach. Specifically, two level multilevel models where 

the level-1 error structures were modeled in different ways (i.e., not modeling between case 

variation vs. modeling between case variation) were examined in terms of the accuracy of the 

estimates of the parameters. More specifically, this study investigated credible interval coverage 

rates, credible interval widths, bias of the point estimates, and root mean squared error (RMSE) 

as a function of specific design, data, and analysis factors such as number of cases, series length 

per case, true level-1 error structure, variation in the level-2 errors, and methods to modeling 

level-1 error structure.  
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Research Questions 

1. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effect in single-case 

design?  

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation in the level-2 errors)? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of design factors (number of cases and 

series length per case), and data factors  (true level-1 error structure and variation 

in the level-2 errors)? 

2. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  

1) to what extent are the bias and RMSE for the variance components impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation in the level-2 errors)? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of design factors (number of cases and series 

length per case), and data factors  (true level-1 error structure and variation in the 

level-2 errors)? 
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Design 

This study was conducted with a 2x2x3x2x2 factorial design.  These factors included (1) 

number of cases (4 and 8); (2) series length per case (10 and 20); (3) true level-1 error structure 

(level-1 error structure as constant across cases (homogeneous), level-1 error structure as varying 

across cases(moderately heterogeneous and severely heterogeneous); (4) variation in the level-2 

errors (most of the variance at level-1 and most of the variance at level-2); (5) analysis methods 

to modeling level-1 error structure (not modeling between case variation (Model 1), and 

modeling between case variation(Model 2)). For each of the 48 conditions, 1,000 data sets were 

generated using SAS IML (SAS Institute Inc., 2008) and analyzed using WinBUGS software. 

The dependent variables were bias (the average difference between the known parameter value 

and the parameter estimate for both the fixed effects and the variance components), credible 

interval coverage (the proportion of 95% credible intervals (equal tailed credible interval) 

containing both the fixed effects estimates and the variance components), credible interval width 

(the average difference between the upper and lower limits of the 95% credible intervals (equal 

tailed credible interval) for both the fixed effects and the variance components), and RMSE (the 

square root of the average squares of the errors). 

Limiting the number of conditions to 48 was partially based on the result of a preliminary 

pilot test that was conducted prior to the study. The pilot test was conducted to verify the 

accuracy of the simulation program, and to estimate the approximate amount of time required to 

run the simulation. For checking the accuracy of the program, a small number of the replications 

was run for some of the conditions.  Datasets and outputs from the analyses were examined to 

ensure the correct dataset and models were being created and analyzed. For estimating the 

approximate amount of time to run the simulation, several conditions were run with 1000 



46 

replications. The result of the pilot test shows that the amount of time required for each condition 

varied from the least amount of time being 4 days to the longest amount of time being over two 

weeks for a condition.  The series length per case and the number of cases are two main factors 

that most affect the amount of time required. As the series length per case and the number of 

cases increase, the amount of time required to run a simulation increases substantially. Based on 

this finding, only a limited number of conditions were selected to meet reasonable time period to 

finish this study.     

 

Sample 

The sample for this study was generated through Monte Carlo simulation methods. Three 

factors were manipulated in this study: (1) data factors, (2) design factors, and (3) analysis factor. 

The data factors addressed two conditions: true level-1 error structure (how to generate the level-

1 error structures) and variation in the level-2 errors. For the true level-1 error structure, three 

different types of data sets were generated, homogeneous, moderately heterogeneous, and 

severely heterogeneous error structures. For the homogeneous error structure, the level-1 error 

structure was generated as constant across cases. For the moderately and severely heterogeneous 

error structures, the level-1 error structure was generated as varying across cases. Design factors 

addressed specific values of the following two conditions: number of cases and series length per 

case. The analysis factor addressed how to model the level-1 error structure, Model 1 and Model 

2. For Model 1, the level-1 error structure was assumed and analyzed as constant across cases. 

For Model 2, the level-1 error structure was assumed and analyzed as varying across cases. The 

data, design, and analysis factors which were used to define the simulated data are further 

defined below. 
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Data factors 

True level-1 error structure. Two different types of data sets were generated depending 

on how the level-1 error structure was modeled, homogeneous error structure and heterogeneous 

error structures. The general equations used to generate data are presented in equations (7) and 

(8).  

         Level-1 equation: 

yij  = β0j + β1j  Phaseij  + β2j  Timeij + β3j Timeij *Phaseij + eij                       (7) 

         Level-2 equation: 

                                    β0j  = θ00 + u0j                                                                              (8) 

                                                       β1j  = θ10 + u1j 

           β2j  = θ20 + u2j 

          β3j  = θ30 + u3j 

where yij  was the observed value (outcome) at the ith observation for the jth case. β0j  was the 

baseline intercept for the jth case and  β1j was the difference between the baseline level and the 

treatment level (shift in level) for the jth case when Timeij was equal to 0. β2j was the baseline 

slope for the jth case, and β3j  was the change in slopes between the baseline phase and the 

treatment phase (shift in slope). For the interaction term (Timeij *Phaseij), Timeij was centered so 

that 0 corresponds to the first observation of the treatment phase. eij   was the residual that 

indicates within case variation (level-1 errors) and was assumed to be multivariate normally 

distributed N(0,Σe). In this study, Σe was assumed to follow first-order autoregressive error 

structure, AR(1). For the level-2 equation, θ00  was the average baseline intercept and θ 10 was the 

average shift in level at Timeij which  was equal to 0, θ20  was the average baseline slope, and θ 30 

was the average shift in slope.  u0j , u1j , u2j  and u3j  were level-2 errors and were assumed to be 
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multivariate normally distributed N(0,Σu). In this study, the fixed effect value was fixed for both 

data sets so that the average baseline intercept (θ00) and the average baseline slope (θ20) were 1, 

and the shift in level (θ10) was 2 and the shift in slope (θ30) was .2.   

Although both homogeneous error structure and heterogeneous error structure data sets 

were generated using this same general equation, they were distinguished by how the level-1 

error structure was generated. For the homogeneous error structure, the level-1 error structure 

was generated using the ARMASIM function in SAS version 9.3 (SAS Institute, 2008) with a 

level-1 error variance of 1.0 and autocorrelation values of .2. This led to all cases included in the 

study having the same value of level-1 error variance and autocorrelation for each condition. For 

the moderately heterogeneous error structure, the level-1 error structure was also be generated 

using the ARMASIM function, but values of autocorrelation and  level-1 error variance were 

generated from a normal distribution using the RANNOR random number generator, and from a 

uniform distribution using the RANUNI random number generator in SAS version 9.3 (SAS 

Institute, 2008), respectively. For the autocorrelation, the normal distribution followed a mean of 

.2 and a standard deviation of .1 for the moderately heterogeneous, and the normal distribution 

followed a mean of .2 and a standard deviation of .2 for the severely heterogeneous error 

structure. The mean value of the autocorrelation .2 had been selected based on the literature 

review of single-case designs. According to the survey conducted by Shadish and Sullivan 

(2011), the average autocorrelation value of the studies reviewed was .2, after correcting for 

sampling errors. The values of the standard deviation of .1 and .2 were selected based on a 

consideration of possible range of autocorrelation distribution. The mean of .2 with standard 

deviation of .1 creates a distribution that 99% of the autocorrelation values fall between -.1 and 

.5.  The mean of .2 with standard deviation of .2 creates a distribution that 99% of the 
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autocorrelation values fall between - .4 and .8. The range of these values is covered the possible 

autocorrelation values typically found in behavior research (Huitema, 1985; Matyas & 

Greenwood, 1996; Shadish & Sullivan, 2011). For the level-1 error variance, standard deviation 

unit was used. The uniform distribution of the level-1 error standard deviation with a lower 

bound of .7 and an upper bound of 1.3 led the uniform distribution to follow a mean of 1 and a 

standard deviation of .17 for the moderately heterogeneous, and the uniform distribution of the 

level-1 error standard deviation with a lower bound of .4 and an upper bound of 1.6 led the 

uniform distribution to follow a mean of 1 and a standard deviation of .35 for the severely 

heterogeneous. This process was led to every case included in the study to have their unique 

value of level-1 error standard deviation and autocorrelation within a specified range. The level-1 

error standard deviation were generated in the way the largest level-1 error variance ((1.3)2) 

value can be either as much as 3.5 times of the smallest level-1 error variance value ((.7)2) or as 

much as 16 times ((1.6)2) of the smallest level-1 error variance value ((.4)2). The motivation for 

this rationale was based on the analyses of real datasets. Baek and Ferron (2013) found that when 

they allowed the level-1 error variance to vary across cases in real datasets, the largest level-1 

error variance tended to be about average four times the smallest, and ranged up to 16 times the 

smallest. 

For all data sets, the level-2 errors were generated from a normal distribution using the 

RANNOR random number generator in SAS version 9.3 (SAS Institute, 2008). For each of the 

24 conditions (not included the analysis methods design), 1,000 data sets of homogeneous, 

moderately heterogeneous, and severely heterogeneous data sets were generated which led to a 

total of 72,000 datasets being generated.  
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Variation in the level-2 errors.  The variation in the level-2 errors had two levels (most 

variance at the level-1 and most variance at the level-2). The previous simulation studies either 

had the most variance at level-1(Ferron et al., 2009; Van den Noortgate, 2008), or had most of 

the variance at the higher levels (level-2 or level-3) (Van den Noortgate, 2008). Their simulation 

studies were motivated by analyses of real datasets where it was found that in some studies the 

largest variance component was at level-1 whereas in other studies the largest variance 

components were at level 2. Based on these finding, both cases were incorporated into this study. 

The average value of level-1 error variance was fixed to 1.0. The first category will model the 

data having most of the variance at the level-1, so that the level-2 error variances in intercept, 

phase, time, and interaction had the values of .5, .5, .05, and .05, respectively. It was assumed 

that there was no covariance among level-2 errors. The second category modeled the data having 

most of the variance at the level-2, so that the level-2 error variance in intercept, phase, time, and 

interaction had the values of 2, 2, .2, and .2, respectively. 

 

Design factors 

Number of cases. The number of participants had two levels (small and large). The small 

category included 4 participants, and the large category included 8 participants.  

These numbers had been selected based on previous findings of single-case studies. 

Farmer, Owens, Ferron, and Allsopp (2010) found that the average number of participants per 

single-case study are less than or equal to 7. Another study that reviewed published single-case 

studies found that the number of participants or sample size per single-case study falls between 1 

and 13, with an average of 3.64 (Shadish & Sullivan, 2011).  Some applied studies that 

synthesized published single-case studies also found that the average number of participants per 
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study was 3.25 (Petit-Bois, 2012) and 4.60 (Baek, Petit-Bois, & Ferron, 2012). In addition, 

Kazdin (2011) suggests that a minimum of three or more baselines are recommended to see a 

treatment effect. He states that 8 or 9 baselines (participants, settings, and behaviors) are needed 

in order to see clear treatment effects. 

Previous Monte Carlo simulation studies have been conducted for single-case studies 

using 4 or 8 participants (Owens & Ferron, 2011; Petit-Bois, in press), and 4 or 7 participants 

(Ugille, Moeyaert, Beretvas, Ferron, & Van den Noortgate, 2012).  

Series length per case. The series length per case had two levels (small and moderate). 

The small category included series lengths of 10, and the moderate category included series 

lengths of 20.  Previous studies were used to determine the series lengths for this study. Shadish 

and Sullivan (2011) found that 90% of the studies reviewed had 49 or fewer observations. In 

addition, previous simulation studies in this area used series lengths of 10, 20 and 30 (Ferron et 

al., 2009; Ferron, Farmer, & Owens, 2010; Owens & Ferron, 2011), or 10 and 30 (Ugille, 

Moeyaert, Beretvas, Ferron, & Van den Noortgate, 2012). Only two levels of the series length 

per case were chosen due to the great impact on the amount of time to run the simulation. These 

selected values cover small to moderate series lengths found in the previous studies. 

 

Analysis factor 

Two different methods of modeling level-1 error structure were applied to the generated 

data (both homogeneous and heterogeneous error structures). The first method was modeling the 

level-1 error structure to be constant across cases (Model 1). The second method was modeling 

the level-1 error structure to vary across cases (Model 2). This cross effect provides in-depth 
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information about the performance of the proposed idea.  More detailed information about Model 

1 and Model 2 is in the following section. 

 

Analysis of Each Simulated Data Set 

 

Equations for the specified models (Model 1 and Model 2) 

Each data set was analyzed using the two different models. The two level models were 

estimated using the Bayesian estimation method via WinBUGS software version 1.4.3 which 

uses a Gibbs sampler. The equations of two-level single-case design (equations (7) and (8)) used 

for this study can also be expressed using Bayesian forms (probability distributions) as shown in 

below.  Equation (9) was for Model 1 that assumed the first-order autoregressive structure for the 

level-1 error structure where the autocorrelation and the within error variance were assumed 

constant across cases. This equation is an extension from equation (6) in that the equation 

includes the autocorrelation parameter (ρ). 

yij ~ Normal(θij, σ
2)      (9) 

μij  = αj + βjTimeij+ γjPhaseij+ δjTimeij*Phaseij 

θ0j = μ0j  

θij = μij + ρ (y(i-1)j – μ(i-1)j)  (i ≥1) 

αj ~ Normal(μα, σ
2
α) 

βj ~ Normal(μβ, σ
2
β) 

γj ~ Normal(μγ, σ
2
γ) 

δj ~ Normal(μδ, σ
2
δ) 
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where yij  was the observed value (outcome) for the ith observation at the jth case, and follows 

normal distribution as a prior distribution with the mean of θij  instead of μij, and variance of σ2 ; 

θij was defined by adding the correlated error term between the adjacent two time points to the μij, 

where ρ represented the autocorrelation, and (y(i-1)j – μ(i-1)j)  represented the error term in the i-1 

time point. When i=0, θ0j was same as μ0j ; αj  was the intercept of the baseline for the jth case; βj 

was the baseline slope for the jth case; γj was the shift in level for the jth case; δj was the shift in 

slope for the jth case. σ2
   was the error variance that leads to within-case variation. It was 

assumed that all regression coefficeints, αj, βj, γj, δj, follow a common prior distribution (Gelman, 

Carlin, Stern, & Rubin, 2004; Gelman, 2006). In this study, normal distributions were assigned 

as prior distributions for all parameters. More detailed information about how to model the prior 

distributions is in the following section.   

For the second level equation, μα was the average intercept of the baseline; μβ was the 

average baseline slope; μγ was the average shift in level; μδ was the average shift in slope, and 

σ2
α, σ

2
β, σ

2
γ, and σ2

δ are corresponding error variances.  

 Model 2 could be further developed from Model 1 with modeling between case variation 

in the level-1 error structure which can be accomplished by changing σ2
 to σ2

j and ρ  to ρj  which 

indicated the values were specified to the jth case.  Model 2 was defined in the same way that 

Model 1 was defined where intercept, baseline slope, shift in level, and shift in slope were 

included and they were all allowed to vary across cases.  Model 1 and Model 2 were 

distinguished only in the way to model the level-1 error structure. In Model 2, the level-1 error 

variance and autocorrelation were allowed to vary across cases (j) as follows:   

yij ~ Normal(θij, σj
2)      (9) 

μij  = αj + βjTimeij+ γjPhaseij+ δjTimeij*Phaseij 
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θ0j = μ0j  

θij = μij + ρj (y(i-1)j – μ(i-1)j)  (i ≥1) 

αj ~ Normal(μα, σ
2
α) 

βj ~ Normal(μβ, σ
2
β) 

γj ~ Normal(μγ, σ
2
γ) 

δj ~ Normal(μδ, σ
2
δ) 

σ j ~ Uniform(Lσ, Uσ)  
 

ρ j ~ Normal (μρ, σ
2
ρ) I (-1< ρ j < 1)  

 

Prior distributions for the parameters 

A common prior distribution used in applied work for μα , μβ , μγ , and μδ is a 

noninformative normal distribution with a mean of 0 and a variance of 10002, and σ is a uniform 

distribution with the lower limit of 0 and the upper limit of 100.  Thus, these prior distributions 

were constructed for the fixed effect (i.e., μα , μβ , μγ , and μδ) and level-1 error standard 

deviation (σ) in this study. 

μα , μβ , μγ , μδ ~ Normal(0, 10002) 

σ ~ Uniform(0, 100) 

For the fixed effect, noninformative normal distributions were constructed with large variance 

(i.e., 10002), so that posterior inferences could not be influenced by the choice of variance value. 

Similarly, for the level-1 error variance, the uniform distribution was constructed with the large 

upper limit of σ (standard deviation unit of the level-1 error variance). The value of 100 was 

considered as sufficiently large because the true value of σ was set as 1 in this study. The lower 

limit of  σ was set to 0 due to the fact that the value of the standard deviation cannot be negative.   
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In addition, uniform distributions were assigned to be the priors for the level-2 error 

variance parameters (i.e., σ2
α , σ

2
β, σ

2
γ, and σ2

δ) by Gelman (2006)’s recommendation. 

Specifically, the noninformative prior distributions for the standard deviation unit of the level-2 

error variance (σα , σβ, σγ, and σδ ) were assigned to be the uniform distribution with the lower 

limit of 0 and the upper limit of 100.  

σα , σβ, σγ, σδ ~ Uniform(0, 100) 

For autocorrelation, ρ, a reasonable noninformative prior distribution can be a normal 

distribution. Shadish and Sullivan (2011) summarize the characteristics of single-case designs 

using 809 published studies. The characteristics include types of designs, outcome variables, 

cases per study, series length per case, number of phases, and autocorrelations. In their report, 

the histogram of the autocorrelation among the published studies seems to follow a normal 

distribution ranging from -.931 to .786.  Thus, the noninformative prior for ρ that follows a 

normal distribution with a mean of 0 and a standard deviation (σ) of 1000 was assigned. 

However, since ρ is a correlation parameter, the scale of this parameter should be the same as a 

correlation scale, from -1 to 1.  Therefore, the scale of the prior distribution for ρ was stationary 

restricted so that its range falls between -1 and 1 (Gamerman & Lopes, 2006).  

ρ ~ Normal (0, 10002) I (-1< ρ < 1)  

Since no one has worked through the proposed idea that the level-1 error structure could 

vary across cases, no literature was found to define priors for σ j and ρ j. This study had suggested 

one possible theoretical way to construct the priors for σ j and ρ j as follows: 

σ j ~ Uniform(Lσ, Uσ) with Lσ ~ Uniform(0, 100) 
                 Uσ ~ Uniform(Lσ, 100) 

 
ρ j ~ Normal (μρ, σ

2
ρ) I (-1< ρj < 1) with μρ~ Normal (0, 10002) 

   σρ~ Uniform(0, 100) 
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The prior for σj could simply be assumed to follow the same prior that σ follows, which is the 

uniform distribution with the lower limit of Lσ and the upper limit of Uσ. The lower limit of Lσ 

can be assumed to follow a uniform distribution with the lower limit of 0 and the upper limit of 

100. The upper limit of Uσ can be also assumed to follow a uniform distribution but with the 

lower limit of 0, and the upper limit of Lσ since the Uσ value should be bigger than the Lσ value. 

The mean and the standard deviation of the uniform distribution for σj will be computed using 

the following formula:   and 
| |

, respectively. 

A reasonable way to construct the prior for ρj is to assume the same prior used to 

construct ρ.  One can assume that ρj follows the same prior that ρ follows, which is the normal 

distribution with a mean of μρ and a variance of σ2
ρ but with the restricted range between -1 and 

1. The μρ and σρ could be further defined as a normal distribution with a mean of 0 and a 

variance of 10002 for μρ , and a uniform distribution with the lower limit of 0 and the upper limit 

of 100 for σρ.  

 

Convergence criteria for the analysis 

Pilot simulation data were generated to test convergence and to make decisions about the 

number of iterations, and the burn-in period. A data set per each condition of the design factors 

(24 data) was created and run with two models (Model 1 and Model 2). This ended up testing all 

48 conditions. The various diagnostic criteria were used in monitoring convergence, including 

trace plots, history plots, Kernel density plots, and Brooks–Gelman–Rubin (BGR) plots for the 

created data set using two different MCMC chains. The specific information about each criterion 

is illustrated in Figures 8 through 10.  
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Trace or history plots. One of the intuitive diagnostic criteria is a trace plot or history 

plot which plots the parameter value at time against the iteration number. Trace plot is dynamic, 

being redrawn each time the screen is redrawn, and history plot is showing a complete trace for 

the targeted variables. When more than one chain is assigned simultaneously, the trace and 

history plots show each chain in a different color. If all the chains overlap one another, we can be 

confident to say that convergence has been achieved (see Spiegelhalter, Thomas, Best, & Lunn, 

2003).  A clear sign of non-convergence occurs when we observe some trends in the plots. An 

example of trace and history plots is illustrated in Figure 8. In the figure, two chains are assigned 

simultaneously, and overall the convergence looks reasonable since both chains appear to be 

overlapping each other.  

 

            

  

Figure 8 An Example of Trace and History plots (first raw: history plots, second raw: trace plots) 
 

Kernel density plots (Posterior distributions of each parameter).  Kernel density plot 

shows the final posterior distribution of the estimated parameter. This plot could be another 

useful diagnostic criterion. When converge occurs, the distribution shows a smooth shape. 
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The deviation between the known value of parameters and the estimated value of the 

parameters (  ) was first aggregated across 1000 replications within each condition [ 

∑  ] and then was divided by 1000 to obtain an average bias value. Bias for the level-

1 error variance and autocorrelation parameters were also computed as the average difference 

between the known value of parameters and the estimated posterior mean value of the 

parameters. However, since the level-1 error variance and the autocorrelation parameters were 

generated to vary across cases for heterogeneous error structure data sets, and estimated to vary 

across cases for Model 2, bias for the level-1 error variance and autocorrelation parameters were 

computed as the average difference between the known value of parameters for each case and the 

estimated posterior mean value of the parameters for each case. The equation of the bias is 

shown below: 

∑
∑

1000
 

The deviation between the known value of parameters for each case and the estimated value of 

the parameters  was first aggregated across the number of cases per each replication 

[ ∑ ] and then divided by the number of cases m to obtain an average bias value per 

each replication [
∑

]. This average bias value per each replication was then aggregated 

across 1000 replications within each condition [∑
∑

] and then divided by 1000 to 

obtain an average bias value. 

Relative bias for parameters whose known value is anything other than 1.0 or 0 was also 

computed which can be represented as a percentage of the known parameter value. Since relative 

bias is represented by percentages rather than a value, this statistic allows comparisons of bias 

among parameters that have different scales of the value. Relative bias for the average treatment 
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effects and average variances of treatment effects parameters (shift in level, shift in slope, level-1 

error variances) was computed as the average difference between the known value of parameters 

and the estimated value of the parameters divided by the known parameter values. The equation 

of the relative bias is shown below: 

	
∑

1000
 

The deviation between the known value of a parameter and the estimated value of the 

parameter divided by the known value of the parameter  was first aggregated across 1000 

replications within each condition [  ∑  ] and then was divided by 1000 to obtain an 

average relative bias value. Relative bias for the level-1 error variance and autocorrelation 

parameters was computed as the average difference between the known value of parameters for 

each case and the estimated value of the parameters for each case divided by the known 

parameter values for each case. The equation of the relative bias is shown below: 

	
∑

∑

1000
 

The deviation between the known value of a parameter for each case and the estimated value of 

the parameter for each case divided by the known value of the parameter for each case  

was first aggregated across the number of cases per each replication [ ( ∑  ] and then 

divided by the number of cases m to obtain an average relative bias value per each condition 

[
∑

. This average relative bias value per each condition was then aggregated across 1000 
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replications within each condition [  ∑
∑

 ] and then divided by 1000 to obtain an 

average relative bias value.  

The root mean squared error for the average treatment effects and average variances of 

treatment effects parameters (shift in level, shift in slope, level-1 error variances) was computed 

as the square root of the average sums of the squares of the errors. The equation of the RMSE is 

shown below: 

∑

1000
 

The squared deviation between the known value of a parameter and the estimated value of the 

parameter [( )2 ] was first aggregated across 1000 replications within each condition 

[	∑ ] and then was divided by 1000, and the average RMSE value was obtained 

through the square root of the entire equation. The root mean squared error for the level-1 error 

variance and the autocorrelation was computed as the square root of the average sums of the 

squares of the errors for each case. The equation of the RMSE is shown below: 

∑
∑

1000
 

The squared deviation between the known value of a parameter for each case and the estimated 

value of the parameter for each case [  ] was first aggregated across the number of cases 

per each replication [∑ 	and then divided by the number of cases m to obtain an 

average squared deviation value per each replication. This average squared deviation per each 

replication was then aggregated across 1000 replications within each condition 
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[	∑
∑

] and then divided by 1000, and the average RMSE value was obtained 

through the square root of the entire equation.  

Credible interval coverage was computed as proportion of the 95% credible interval 

(equal tailed credible interval) that contains the known parameter value.  The credible interval 

width was computed as the average difference between the upper and lower limits of the 95% 

credible intervals (equal tailed credible interval). These statistics were aggregated across 1000 

replications within each condition to represent the average values of the statistics.  

 

Analyses to Examine Relationships between Data, Design, and Analysis Factors and Bias of 

the Point Estimates, Credible Interval Coverage, and Credible Interval Width, and Root 

Mean Squared Error 

Box and whisker plots along with general linear modeling (GLM) were examined to 

evaluate the bias estimate and RMSE of each parameter. Box and whisker plots illustrated the 

distribution of the bias and the RMSE estimate of the each parameter across the simulation 

conditions. GLM illustrated the explained variability of the bias and the RMSE estimates 

associated with each parameter as a function of the main effects of and interaction effects 

between the design, data, and analysis factors to inform the source of bias and error. A main 

effect only model was built first, then two-way or three-way interactions were added in the 

model. If a main effect only model explained a significant proportion of the variability (at least 

94% of the total variability), then no further models were investigated. However, if the model 

failed to explain the minimum variability, then interactions were included in the model. The 

effects size, eta-squared (η2), was also calculated to determine the proportion of variability 

associated with each effect. The eta-squared value of the each effect was compared to Cohen’s 
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(1988) criteria to determine the size of each effect. According to the criteria, a small effect size is 

.01, a medium effect size is .06, and a large effect size is .14 or greater. Finally the line graphs 

were created for a factor that has a medium or larger effect (η2 ≥.06) to illustrate the relationship 

between the different level of the factor and the dependent variables. 
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CHAPTER FOUR: RESULTS 

 

This chapter provides the results of the research questions. The chapter starts with 

describing how the results were obtained, and then displays convergence information (trace 

plots, history plots, Kernel density plots, and Brooks–Gelman–Rubin (BGR) plots along with 

MC error). Then the outcome measures (bias, RMSE, credible interval coverage and width) of 

the fixed treatment effects and the variance components are provided in sequential order. The 

following research questions were addressed: 

3. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effects in single-case 

design?  

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variance of level-2 errors)? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of design factors (number of cases and 

series length per case), and data factors  (true level-1 error structure and variance 

of level-2 errors)? 

4. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  
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1) to what extent are the bias and RMSE for the variance components impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variance of level-2 errors)? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of design factors (number of cases and series 

length per case), and data factors  (true level-1 error structure and variance of 

level-2 errors)? 

There were 48 conditions simulated using the five factors in this Monte Carlo study.  

These factors were (1) number of cases (4 and 8); (2) series length per case (10 and 20); (3) true 

level-1 error structure (homogeneous , moderately heterogeneous, and severely heterogeneous; 

(4) variation in the level-2 errors (most of the variance at level-1 and most of the variance at 

level-2); and (5) analysis methods to modeling level-1 error structure (not modeling between 

case variation (Model 1), and modeling between case variation(Model 2).  This yielded a 

2x2x3x2x2 factorial design. 

A small set of data sets were first generated to test convergence and to make decisions 

about the number of iterations, and the burn-in period. A data set per each condition of the 

design factors (24 conditions) was created and run with two models (Model 1 and Model 2). The 

various diagnostic criteria were used in monitoring convergence, including trace plots, history 

plots, Kernel density plots, and Brooks–Gelman–Rubin (BGR) plots for the created data sets 

using two different MCMC chains. The initial values of the first chain were randomly given for 

all parameters and the initial values of the second chain were generated for all parameters using a 

gen inits option in WinBUGS software. In WinBUGS, the initial values are generated by 

sampling either from the prior or from an approximation to the prior given in the model. The MC 
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error was also tracked for all parameters to check the computational accuracy of the posterior 

estimates. Specifically, the MC error of each parameter was examined if it was less than 5%. 

Next, the outcome measures (bias, RMSE, credible interval coverage and width) were 

evaluated for the fixed treatment effects and the variance components. In addition, relative bias 

was calculated for the parameter where its value was not equal to 1. The relationship between 

five factors (number of cases, series length per case, true level-1 error structure, variation in the 

level-2 errors, and analysis methods to modeling level-1 error structure) and outcome measures 

(bias, RMSE, confidence interval coverage and width) were then evaluated using PROC GLM in 

SAS. Models were built to find medium effects or larger (eta-squared values (η2) were equal to 

or greater than .06). The η2 value is measuring the degree of association between the outcome 

measures and the main and interaction effects of the independent variables (five factors). The 

η2is the proportion of variability of each outcome measure that is associated with each of the 

effects in the simulation study. It is computed as the ratio of the effect variance (SSeffect) to the 

total variance (SStotal).  

η2 = SSeffect / SStotal 

 The computed η2 values were interpreted using Cohen’s (1988) standards with a small 

effect size as .01; a medium effect as .06; and a large effect as .14 or greater. Each model was 

first built as a main effects only model, and if this model explained at least 94% of the total 

variability then no interaction effects were included. However, if the model explained less than 

94% of the total variability, then interactions (two or higher order interactions, sequentially) 

were added until the model explained at least 94% of the total variability. For the independent 

variables (both main and interaction effects) that showed η2values of .06 and larger, box plots 

and line graphs were created to further examine the association with outcomes of interest. 
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The results of the fixed treatment effects and variance components were also looked by 

three different types of specifications in the level-1 error structure: under-specified (i.e., Model 1 

when the data were generated to be heterogeneous), correctly-specified (i.e., Model 1 when the 

data were generated to be homogeneous, or Model 2 when the data were generated to be 

heterogeneous), and over-specified (i.e., Model 2 when the data were generated to be 

homogeneous).  

 

Convergence 

In order to meet convergence criteria, a very long run of iterations was required because 

of the complex models used in this study. As the complexity of the model to be estimated 

increased (i.e., more parameters to estimate), longer iteration time was required. Therefore, when 

the data were analyzed with Model 2, it required more iterations than when the data were 

analyzed by Model 1. In addition, the parameters that had the most difficulty meeting the 

convergence criteria were the level-2 error standard deviation parameters, especially the level-2 

error standard deviation of phase parameter. It was more difficult to meet the convergence 

criteria when the number of cases was small (4), than large (8). One possible reason that the 

level-2 error standard deviation parameters presented more difficulty in meeting the convergence 

criteria is because number of units at level-2 (case) is relatively small compared to the number of 

units at level-1(series length).  

After checking all simulated data sets for convergence analyses (24 data sets), it was 

decided to use a burn-in of 2,000 iterations and to run an additional 500,000 iterations, but to use 

only 50,000 samples of the 500,000 iterations to form the posterior distribution for the main 

analyses.  Thinning is a technique that can help reduce storage requirements when very long 
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iteration chains need to run. The samples from every kth iteration are stored by using the value of 

thin k.  In this study, 50,000 samples were used to form the posterior distribution and thin was 

set to be 10, so a total of 500,000 (10*50,000) iterations were actually run, of which 50,000 

samples (every 10th) were stored.  

The 50,000 samples were twice the required sample to form the posterior distribution.  

The required sample was 25,000 samples (after thinning to select 1 in every 10 iterations) based 

on estimates of the parameters and the models that required the longest iteration. They were the 

level-2 error standard deviations parameters estimated by Model 2 with the number of cases 4.  

Once the required sample size, 25,000 was selected based on the various convergence criteria 

and MC error statistics, the final sample size 50,000 was selected as double of the required 

sample size to be make sure that all simulated samples would reach the convergence criteria.  

More detailed information about each convergence criteria follows. In the generated data 

sets for the convergence test (24 data sets), more than 10 parameters for Model 1 and more than 

18 parameters for Model 2 were estimated that yield a total of over 336 parameters to be 

estimated. Therefore, only convergence results of some of the parameters were provided in 

detail. Since the level-2 error standard deviations were the most difficult parameters to reach 

convergence criteria, the results of the convergence criteria were provided for those parameters 

along with some of the fixed treatment effect parameters.  

 

Trace and History Plots 

The trace and history plots of the level-2 error standard deviation for phase and the 

interaction, and the average treatment effect for phase parameters were illustrated in Figure 11. 
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In this analysis, two chains were assigned simultaneously, and overall the convergence looks 

reasonable since both chains appear to be overlapping each other.  

 

Figure 11.  Trace and history plots of estimated parameters (sigmabeta: Level-2 error standard 
deviation for phase; betac: Average treatment effect for phase; sigmada: Level-2 error standard 
deviation for interaction )  
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The trace and history plots of the rest of the parameters look similar to Figure 11.  The 

plots from the first two rows were obtained when Model 1 was used to estimate the parameters 

for the condition where the number of cases equaled 4 and the series length per case was 10 

(First row: History plots; second row: Trace plots). The rest of the plots were from when Model 

2 was used to estimate the parameters for the same condition (Third row: History plots; Last row: 

Trace plots). 

 

Kernel Density Plots (Posterior distributions of each parameter) 

Figure 12. Kernel density plots of estimated parameters (sigmabeta: Level-2 error standard 
deviation for phase; beta[3] :Individual treatment effect for phase for the case who had id 
number 3; betac: Average treatment effect for phase; tgamma[4]: autocorrelation for the case 
who had id number 4; tsigma[2]; level-1 error standard deviation for the case who had id number 
2 ) 
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Figure 12 shows the Kernel density plots of the level-2 error standard deviation for phase, 

the individual treatment effect of phase for the case who had the id number 3, the average 

treatment effect for phase, the autocorrelation for the case who had the id number 4, and the 

level-1 error standard deviation for the case who had the id number 2. The plots were created 

from 50,000 samples.  

Overall, the convergence looks reasonable in that the distributions are smooth. The 

density plots of the rest of the parameters all show a smooth shape. The two plots of the first row 

were from the analysis of Model 1 for the condition where the number of cases was 4 and the 

series length per case was 10. The rest of the plots were from the analysis of Model 2 for the 

same condition. 

 

Brooks–Gelman–Rubin (BGR) Plots 

Figure 13 shows the BGR plots of the level-2 error standard deviation for phase and the 

interaction, the average treatment effect for phase, and the autocorrelation for the case who had 

the id number 3.  

Overall, the convergence looks reasonable for most of the parameters since three lines 

converge to one with stability. The two plots of the first row were from Model 1 and the 

condition when the number of cases was 4 and the series length per case was 10, whereas the rest 

of the plots were from Model 2 for the same condition. 
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Figure 13. BGR plots of some parameters (sigmabeta: Level-2 error standard deviation for 
phase; sigmada: Level-2 error standard deviation for interaction; betac: Average treatment effect 
for phase; tgamma[3]: autocorrelation for the case who had id number 3) 
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.002 (level-1 error standard deviation for the case who had the id number 2) to .03 (level-2 error 

standard deviation for phase). 

sigmabeta chains 1:2

start-iteration

1130 5000 10000

    0.0

    0.5

    1.0

 

sigmada chains 1:2

start-iteration

1130 5000 10000

    0.0

    0.5

    1.0

    1.5

 

betac chains 1:2

start-iteration

2125 5000 10000

    0.0

    0.5

    1.0

   

tgamma[3] chains 1:2

start-iteration

2125 5000 10000

    0.0

    0.5

    1.0

    1.5

sigmabeta chains 1:2

start-iteration

2125 5000 10000

    0.0

    0.5

    1.0
sigmada chains 1:2

start-iteration

2125 5000 10000

    0.0

    0.5

    1.0

    1.5

 



74 

As each of the 48 conditions were run with the selected number of burn-in and iterations 

(2,000 burn-in and 500,000 more iterations), the convergence rate that indicated a complete 

analysis of each condition (1000 samples per each condition) was also tracked for each 

condition. In the WinBUGS software, several types of trap messages can be popped up during a 

running analysis which indicates an error that cannot be solved by WinBUGS, as a result, the 

running analysis cannot be completed. In the analyses of the current study, the ‘undefined real 

result’ trap message was obtained occasionally throughout the analysis of each condition. This 

message indicates numerical overflow which can be caused by several reasons. One possible 

reason is that the initial values generated may be numerically too extreme, especially when 

‘noninformative (vague)’ priors are used. Another possible reason is that the analysis faces on 

the numerical difficulties in sampling. For more information about trap messages, please refer to 

WinBUGS user manual version 1.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003).  

The trap message does not explicitly provide a reason that the ‘undefined real result’ 

error occurred, therefore, it was assumed the combinations of these possible reasons caused this 

error in the current study. The error had occurred in every condition. Since the analysis of the 

targeted sample could not be completed when this error occurred, not all of the 1000 samples 

were analyzed. Therefore, the total number of samples that were analyzed were tracked per each 

condition, which was indicated by the convergence rate. The Convergence rate was over 97% for 

all 48 conditions.       

 

Fixed Treatment Effects 

The first research question involves the estimates of the fixed treatment effects and the 

consequences of modeling and not modeling between case variation in the level-1 error structure. 
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More specifically, (1) the bias and the RMSE for the fixed treatment effects as function of the 

design and data factors, and (2) the credible interval coverage and width for the fixed treatment 

effects as function of the design and data factors.  

 

Bias 

The distribution of bias values of the fixed effect for treatment effects (shift in level and 

shift in slope) are illustrated in Figures 14 through 21. Relative bias values for the treatment 

effect are provided in Appendix A. The full information about the η2values for the GLM models 

is also provided in Appendix B. 

Average treatment effect for phase (shift in level). The average bias values of the 

treatment effect for phase were close to 0 across the two models (Model 1 and Model 2) with 

little variation (Figure 14). The type of model explained little of the variability (η2 = .00078), but 

the average bias value for Model 2 (M = 0.0003, SD = 0.024) where between case variation was 

modeled in the level-1 error structure was slightly smaller than the average bias value for Model 

1(M = 0.0016, SD = 0.024) where between case variation was not modeled in the level-1 error 

structure.  

The average bias values of the treatment effect for phase across the two models were also 

examined within the three different types of true level-1 error structures (homogeneous, 

moderately heterogeneous, and severely heterogeneous) (Figure 15). The average bias values 

were all close to 0 across the two models within the three true level-1 error structures with little 

variability. The different types of the true level-1 error structures explained little of the 

variability (η2 = .01196) which indicates similarity of the average bias values across the three 

true level-1error structures. Specifically, the smallest average bias value was found when the true 
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4, the series length per case was 10, and the variation in the level-2 errors was such that most 

variance was at level-1 which was a bias of .5 (M= -0.001, SD = 0.004). The largest bias value 

was found when the number of case was 4, the series length per case was 20, and the variation in 

the level-2 errors was such that most variance was at level-1 which was a bias of .5 (M= -0.022, 

SD < 0.001). However, when the true level-1 error structure was the moderately or the severely 

heterogeneous, the average bias values were impacted by the level of factors. Specifically, the 

average bias values were varied the most across the variation in the level-2 errors when the 

number of cases and the series length per case were small which was 4 and 10 respectively. 

When the variation in the level-2 errors shifted from most variance at level-1 (0.5) to most 

variance at level-2 (2), the average bias values increased for both the moderately or the severely 

heterogeneous error structure (from M= -0.025, SD = 0.001; M= 0.028, SD = 0.001, respectively 

to M= 0.057, SD = 0.004; M= -0.069, SD = 0.005, respectively).   

Average treatment effect for interaction (shift in slope). The average bias values for 

the treatment effect for interaction were very similar and close to 0 across the two models 

(Model 1 and Model 2) with little variation (η2 = .00059) (Figure 17). The average bias value for 

Model 1 was M = 0.0035, SD = 0.008, and the average bias value for Model 2 was M = 0.0031, 

SD = 0.008.  

The average bias values for the treatment effect for interaction across the two models 

were also examined within the three different types of true level-1 error structures 

(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 18). The average 

bias values were very similar and close to 0 across the two models within the three true level-1 

error structures. 
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series length per case, and the variation in the level-2 errors (η2 = .09), and  the 3-way interaction 

among the series length per case, the true level-1 error structure, and the variation in the level-2 

errors (η2 = .08). These three interaction effects were illustrated using a line graphs in Figure 19, 

20, and 21.  

The relationship for the average bias for the shift in slope as function of the number of 

cases, the series length per case, and the true level-1 error structure is illustrated with line graph 

in Figure 19.  The graph shows that there was some variability of the average bias values across 

the true level-1 error structures. When the true level-1 error structure was moderately or severely 

heterogeneous error structure, the average bias value was decreased (close to 0) as the number of 

cases increased from 4 to 8, regardless of the series length per case. Specifically, when the 

number of cases increased from 4 to 8, the average bias value in the moderately heterogeneous 

error structure decreased from M= 0.0074, SD = 0.005 to M= -0.0022, SD = 0.004 for the series 

length per case of 10, and from M= 0.0001, SD = 0.005 to M= -0.0001, SD = 0.001 for the series 

length per case of 20. The average bias value in the severely heterogeneous error structure 

decreased from M= -0.0052, SD = 0.010 to M= 0.0005, SD = 0.002 for the series length per case 

of 10, and from M= 0.0022, SD = 0.009 to M= 0.0013, SD = 0.005 for the series length per case 

of 20.  However, when the true level-1 error structure was homogeneous, the average bias values 

were positively biased, and relatively higher than when the true level-1 error structure was 

moderately or severely heterogeneous error structure. In addition, the difference of the average 

bias across the number of cases was changed depending on the series length per case. 

Specifically, when the series length per case was 10, the average bias value was increased from 

M= 0.0091, SD = 0.011 to M= 0.0162, SD = 0.009 as the number of cases was increased from 4 
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(2), the average bias value with the series length per case of 10 was relatively larger and 

positively biased (M= 0.0083, SD = 0.008) than the average bias value with the series length per 

case of 20 which was relatively small and negatively biased (M= -0.0006, SD = 0.007). 

The relationship for the average bias for the shift in slope as a function of the variation in 

the level-2 errors, the series length per case, and the true level-1 error structure is illustrated with 

a line graph in Figure 21.  The graph shows that there was some variability of the average bias 

values across the true level-1 error structures. However, the pattern of the variability across the 

true level-1 error structures was changed depending on the series length per case, and the 

variation in the level-2 errors. When the series length per case was 20, the average bias values 

were changed relatively little across the variation in the level-2 errors for all three true level-1 

error structures. The average bias value was changed from M= 0.0042, SD = 0.008 to M= 0.0058, 

SD = 0.002 for the homogeneous error structure, from M= 0.0016, SD = 0.003 to M= -0.0016, 

SD = 0.003 for the moderately heterogeneous error structure, and from M= 0.0037, SD = 0.007 to 

M= -0.0002, SD = 0.006 for the severely heterogeneous error structure. However, when the 

series length per case was 10, the average bias values changed more, either decreased or 

increased, across the variation in the level-2 errors for all three true level-1 error structures. The 

average bias value was decreased from M= 0.006, SD = 0.006 to M= -0.001, SD = 0.005, and 

from M= -0.007, SD = 0.007 to M= 0.003, SD = 0.003 for the moderately and the severely 

heterogeneous error structure, respectively. The average bias value was increased from M= 

0.004, SD = 0.005 to M= 0.021, SD = 0.003 for the homogeneous error structure. 
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In addition, as the variation in the level-2 errors shifted from most of the variance at the level-1 

error to most of the variance at the level-2 error, the average CI width increased from M = 1.39, 

SD = 0.81to M = 1.97, SD = 1.00. 

In addition to the examination of the average fixed treatment effects, individual treatment 

effects were also examined in terms of the four outcome measures (Bias, RMSE, CI coverage 

and width). The results of the individual treatment effects were similar with the average fixed 

treatment effects across all outcome measures. Although the CI coverage and the widths of the 

individual treatment effects were closer to the nominal level, and narrower than the CI coverage 

and the widths of the average treatment effects, there was no substantial difference across the 

two models, which is consistent with the average treatment effects results. Since the interest of 

the current study is focused on the average treatment effects rather than the individual treatment 

effects, and the results of both the average and the individual treatment effects were very similar, 

the results of the average treatment effects were only provided in this section. However, the 

summary table and the figures of the individual treatment effects were provided in Appendix C 

for the researchers who are interested in the results of the individual treatment effects.   

 

Variance Components 

The second research question considers the estimates of the variance components and the 

consequences of modeling and not modeling between case variation in the level-1 error structure. 

More specifically, (1) the bias and the RMSE for the variance components as function of the 

design and data factors, and (2) the credible interval coverage and width for the variance 

components as function of the design and data factors. All variance components parameters 
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results are displayed in standard deviation units, since the results of the variance components 

parameters were produced in the standard deviation units in all analyses.  

 

Bias 

The distribution of bias values of the level-2 error standard deviation of intervention 

effects (shift in level and shift in slope), the level-1 error standard deviation, and autocorrelation 

are illustrated in Figures 48 through 62. Relative bias values for the all parameters are provided 

in Appendix A. The full information about the η2 values for the GLM models is also provided in 

Appendix B. 

Level-2 error standard deviation for phase (shift in level). The average bias values of 

the level-2 error standard deviation (SD) for phase were similar and positively biased across the 

two models (Model 1 and Model 2) with little variability explained by the type of model (η2 = 

.00005) (Figure 48). The average bias value for Model 1 and Model 2 was M = 0.86, SD = 0.64 

and M = 0.85, SD = 0.63, respectively.  

The average bias values were similar across the two models within the three true level-1 

error structures. The different types of the true level-1 error structures explained little of the 

variability (η2 = .0004) which indicates similarity of the average bias across the true level-1error 

structures. Specifically, the smallest average bias value was found when the true level-1 error 

structure was moderately heterogeneous and estimated by Model 2 (M= 0.83, SD = .66), and the 

largest average bias was found when the true level-1 error structure was severely heterogeneous 

and estimated by Model 1 (M= 0.87, SD = .69). 
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In addition, the CI coverage of the autocorrelation for Model 1 had more variability than Model 

2. The type of model explained substantial variability (η2 = .2). 

The average CI coverage values for the autocorrelation across the two models were also 

examined within the three different types of true level-1 error structures (homogeneous, 

moderately heterogeneous, and severely heterogeneous) (Figure 94). The average CI coverages 

were different across the two models within the three true level-1 error structures, and there were 

differences across the true level-1 error structures, with substantial variability explained by the 

different types of true level-1 error structures (η2 = .30). When the true level-1 error structure 

was homogeneous, the average CI coverage was over the nominal value for both Model 1 and 

Model 2 (Model 1: M = 0.97, SD = 0.01; Model 2: M = 0.99, SD < 0.01). However, when the 

true level-1 error structure was one of the heterogeneous error structures, the average CI 

coverage for Model 1 was severely under the nominal value (moderately hetero: M = 0.77, SD = 

0.15; severely hetero: M = 0.70, SD = 0.15), while the average CI coverage for Model 2 was 

either close to the nominal level or slightly under the nominal level (moderately hetero: M = 

0.94, SD = 0.05; severely hetero: M = 0.90, SD = 0.07). The smallest average CI coverage 

difference between the two models was found when the true level-1 error structure was 

homogeneous (|M2-M1| = 0.028), and the biggest average CI coverage difference between the 

two models was found when the true level-1 error structure was severely heterogeneous (|M2-M1| 

= 0.204). Generally, the CI coverage for Model 1 tended to have more variability than the CI 

coverage for Model 2.  
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between the series length per case of 10 and 20 was smaller when the true level-1 error structure 

was homogeneous than one of the heterogeneous error structures, and as the severity of the 

heterogeneity in the level-1 error structure increased from moderately heterogeneous to severely 

heterogeneous, the difference of the CI coverage between the series length per case of 10 and 20 

increased greatly. 

 

Credible Interval Width 

The distribution of credible interval width values of the level-2 error standard deviation 

for intervention effects (shift in level and shift in slope), the level-1 error standard deviation, and 

the autocorrelation are illustrated in Figures 97 through 115. The full information about the η2 

values for the GLM models is provided in Appendix B. 

Level-2 error standard deviation for phase (shift in level). The average credible 

interval (CI) width values of the level-2 error standard deviation for phase were very similar 

across the two models (Model 1 and Model 2) (Figure 97). The average CI width for Model 1 

was M = 6.43, SD = 3.87, and the average CI width for Model 2 was M = 6.44, SD = 3.88. The 

type of model explained little of the variability (η2 <.00001). 

The average CI width values of the level-2 error standard deviation for phase across the 

two models were also examined within the three different types of true level-1 error structures 

(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 98). 
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Types of Specifications 

The results of the fixed treatment effects and variance components were also looked by 

three different types of specifications in the level-1 error structure: under-specified (i.e., Model 1 

when the data were generated to be heterogeneous), correctly-specified (i.e., Model 1 when the 

data were generated to be homogeneous, or Model 2 when the data were generated to be 

heterogeneous), and over-specified (i.e., Model 2 when the data were generated to be 

homogeneous).  

 

Fixed Treatment Effects 

Bias.   The average bias values of the treatment effect for phase (shift in level) and the 

average treatment effect for the interaction effect (shift in slope) by three different types of 

specifications are illustrated in Figures 116 and 117.  

Figure 116 portrays that the average bias values for the shift in level were very similar 

and close to 0 for all three types of specifications, ranging from 0 to .003. The over-specified 

models had the smallest variability among the three types of specifications.  

Similarly, Figure 117 illustrated that the average bias values for the shift in slope were 

slightly different, but close to 0 for all three types of specifications, ranging from .001 to .009. 

The under-specified models had the smallest bias value and variability among the three types of 

specifications. 
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under-specified, over-specified, or correctly-specified had little to no impact on the estimates of 

the fixed treatment effects, but a substantial impact on the estimates of the variance components, 

especially the level-1 error standard deviation and the autocorrelation. In addition, it was found 

that the different type of true level-1 error structure had substantial impact on the estimates of the 

level-1 error standard deviation and the autocorrelation. The summary tables of these findings 

are provided in Tables 2 through 5.  

The fixed treatment effects were not biased for both Model 1 and 2. The average RMSE 

values for the fixed treatment effects were similar across the models. The interval coverage for 

the fixed treatment effects tended to be over the nominal level for both models. The interval 

width values were similar across the two models. In addition, under- or over-specification of the 

level-1 error structure had little to no impact on the estimates of the fixed treatment effects.  

For the variance components, all level-2 error standard deviation estimates were 

positively biased for both Model 1 and 2. The average RMSE values for the level-2 error 

standard deviation estimates were similar across the two models. The interval coverage for the 

level-2 error standard deviations tended to be over the nominal level for both models. The 

interval width values were similar across the two models. In addition, different types of 

specifications in the level-1 error structure had little to no impact on the estimates of the level-2 

error standard deviations.  

Unlike the level-2 error standard deviations that had similar results across Model 1 and 2, 

the level-1 error standard deviation and autocorrelation show some differences in terms of the 

results across Model 1 and 2. The level-1 error standard deviation was similar and positively 

biased for both models, but the average RMSE values were different across the two models. The 

average RMSE value was smaller and had less variability when estimated by Model 2 than 
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Model 1. In addition, the interval coverage had a substantial difference across the two models. It 

was under the nominal level when estimated by Model 1, but close to the nominal level when 

estimated by Model 2. The interval width was smaller when estimated by Model 1 than Model 2. 

Similarly, the autocorrelation was similar but negatively biased for both models, and the average 

RMSE value was similar across the two models. The interval coverage was substantially 

different across the two models. It was under the nominal level when estimated by Model 1 but 

close to the nominal level when estimated by Model 2. The interval width was smaller when 

estimated by Model 1 than Model 2.  

In addition, different types of specifications in the level-1 error structure had a substantial 

impact on the estimates of the variance components, especially the level-1 error standard 

deviation and the autocorrelation. For the average bias and RMSE values of the level-1 error 

standard deviation and the autocorrelation, over-specified models had the smallest bias and 

RMSE values, and for the CI coverage of the level-1 error standard deviation and the 

autocorrelation, the correctly-specified models led to coverage that was the closest to the 

nominal level. 

 Moreover, different types of the true level-1 error structures had a substantial impact on 

the estimates of the level-1 error standard deviation and the autocorrelation. As the degree of 

heterogeneity in the level-1 error structures increased, estimates of the level-1 error standard 

deviation and the autocorrelation tended to be more accurate when estimated by Model 2 than 

Model 1.  
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Table 2 
Summary of the results for the fixed treatment effects 
 
Parameter estimate Bias RMSE CI coverage CI width 

Shift in level  Close to 0 for both 
Model 1 (M=.002) and 
Model 2 (M<.001) 

 Similar across the two 
models (M=.68 for both 
models) 

 Over the nominal level 
for both models (M=.98 
for both models) 

 Similar across the two 
models (Model 
1:M=4.96; Model 2: 
M=4.95) 

  The moderately 
heterogeneous error 
structure had the 
smallest bias but largest 
variability 

 No or  little difference 
across the true level-1 
error structures (η2 = 
.001) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.008) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0002) 

  One medium effect (η2 
= .10) for the 4-way 
interaction among  
number of cases, series 
length per case, 
variation in the level-2 
errors, and true level-1 
error structure 

 Three of the design 
factors had a medium or 
large effect, including 
the number of cases (η2 
= .48), variation in the 
level-2 errors (η2 = .38), 
and the series length per 
case (η2 = .11) 

 One large effect (η2 = 
.88) for the number of 
case 

 Two of the design 
factors had a medium or 
large effect including 
the number of cases (η2 
= .84) and the variation 
in the level-2 errors (η2 
= .12) 

Shift in slope  Close to 0 for both 
Model 1 (M=.004) and 
Model 2 (M=.003) 

 Similar across the two 
models (Model 1: 
M=.23; Model 2: 
M=.22) 

 Over the nominal level 
for the both Model 1 and 
Model 2. M=.99 for 
both models 

 Similar across the two 
models (M=1.68 for 
both models) 

  The severely 
heterogeneous error 
structure had the 
smallest bias, and the 
homogeneous error 
structure had the largest 
bias  

 No or little difference 
across the true level-1 
error structures (η2 = 
.00143) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0005) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0005) 
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Table 2 (continued) 
Summary of the results for the fixed treatment effects 
 

  Three interaction effects 
had a medium effect, 
including the 3-way 
interaction among the 
number of cases, the 
series length per case, 
and the true level-1 error 
structure (η2 = .10), the 
3-way interaction 
among the number of 
cases, the series length 
per case, and the 
variation in the level-2 
errors (η2 = .09), and 
the  3-way interaction 
among the series length 
per case, the true level-1 
error structure, and the 
variation in the level-2 
errors (η2 = .08) 

 Three of the design 
factors had a large 
effect, including the 
series length per case 
(η2 = .47), the number 
of cases (η2 = .28), and 
the variation in the 
level-2 errors (η2 = .22) 

 Two of the design 
factors had a medium or 
large effect, including 
the number of cases (η2 
= .83) and the series 
length per case (η2 = 
.08) 

 Three of the design 
factors had a medium or 
large effect including 
the number of cases (η2 
= .65), the series length 
per case (η2 = .19), and 
the variation in the 
level-2 errors (η2 = .10) 
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Table 3 
Summary of the results for the variance components 
 
 

Parameter estimate Bias RMSE CI coverage CI width 

Level-2 error 
standard deviation 
for shift in level 

 Similar across the two 
models and both 
positively biased 
(Model 1: M=.86; 
Model 2:M=.85) 

 Similar across the two 
models (Model 1: 
M=1.23; Model 
2:M=1.21) 

 Over the nominal level 
across the two models 
(Model 1: M=0.97; 
Model 2:M=0.97) 

 Similar across the two 
models (Model 1: 
M=6.43; Model 
2:M=6.44) 

  No or little difference 
across the true level-1 
error structures (η2 = 
.0004) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0003) 

 Little difference across 
the true level-1 error 
structures (η2 = .02) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0002) 

  One of the design 
factors, the number of 
cases, had a large effect 
(η2 = .96) 

 Two of the design 
factors had a medium 
or large effect, 
including the number of 
cases (η2 = .89), and 
the variation in the 
level-2 errors (η2 = .08) 

 Two main effects and 
one interaction effect 
had a medium or large 
effect, including the 
variation in the level-2 
errors (η2 = .29), the 
type of model (η2 = 
.07), the 3-way 
interaction among the 
series length per case, 
the number of cases and 
the true level-1 error 
structure (η2 = .11) 

 Two of the design 
factors had a medium 
or large effect including 
the number of cases (η2 
= .88) and the variation 
in the level-2 errors (η2 
= .08) 
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Table 3 (continued) 
Summary of the results for the variance components 
 

Level-2 error 
standard deviation 
for shift in slope 

 Similar across the two 
models and both 
positively biased 
(Model 1: M=.31; 
Model 2:M=.30) 

 Similar across the two 
models (Model 1: 
M=.42; Model 
2:M=.41) 

 Over nominal level 
across the two models 
(Model 1: M=0.97; 
Model 2: M=0.98) 

 Model 1 had a smaller 
CI width than Model 2. 
(Model 1: M=1.62; 
Model 2: M=2.16).  

  No or little difference 
across the true level-1 
error structures (η2 = 
.0004) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0002) 

 Some difference across 
the true level-1 error 
structures (η2 = .05) 

 No or little difference 
across the true level-1 
error structures (η2 = 
.0002) 

  One medium effect (η2 
= .07) for the 2-way 
interaction between the 
number of cases and the 
series length per case  

 Two of the design 
factors had a medium 
or large effect, 
including the number of 
cases (η2 = .73) and the 
series length per case 
(η2 = .13) 

 Two of the design 
factors  and one 
interaction effect that 
had a medium or large 
effect, including the 
series length per case 
(η2 = .65), the type of 
model (η2 = .06), and 
the 2-way interaction 
between the variation in 
the level-2 errors and 
the true level-1 error 
structure (η2 = .07) 

 Three main effects that 
had a medium or large 
effect, including the 
number of cases (η2 = 
.70), variation in the 
level-2 errors (η2 = 
.10), and the series 
length per case (η2 = 
.07) 
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Table 3 (continued) 
Summary of the results for the variance components 
 

Level-1 error 
standard deviation 

 Similar across the two 
models and both 
positively biased 
(Model 1: M=.05; 
Model 2:M=.04) 

 Model 2 had a smaller 
RMSE value than 
Model 1 (Model 1: 
M=.22; Model 
2:M=.18) 

 Substantial difference 
across the two models 
(η2 = .3). Under 
nominal level and more 
variability for Model 1. 
Over nominal level for 
Model 2 (Model 1: 
M=.85; Model 2: 
M=.97) 

 Model 1 had a smaller 
CI width than Model 2 
(Model 1: M=0.47; 
Model 2:M=0.81) 

  Substantial differences 
across the true level-1 
error structures (η2 = 
.22). For the 
homogeneous or 
moderately 
heterogeneous error 
structure, more biased 
when estimated by 
Model 2 than Model 1. 
For the severely 
heterogeneous error 
structure, more biased 
when estimated by 
Model 1 than Model 2. 

 Substantial differences 
across the true level-1 
error structures (η2 = 
.62).  For the 
homogeneous error 
structure, larger when 
estimated by Model 2 
than Model 1. For the 
heterogeneous error 
structures, smaller 
when estimated by 
Model 2 than Model 1.  

 Substantial differences 
across the true level-1 
error structures (η2 = 
.3). For the 
homogeneous error 
structure, over the 
nominal level for the 
both models. For the 
heterogeneous 
structures, under the 
nominal level for 
Model 1 and either at or 
slightly over the 
nominal level for 
Model 2. 

 Little difference across 
the true level-1 error 
structures (η2 = .02). 
Generally, the CI width 
for Model 1 was 
smaller than the CI 
width for Model 2. 
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Table 3 (continued) 
Summary of the results for the variance components 
 

  Three main effects and 
one 2-way interaction 
had a medium or large 
effect, including the 
series length per case 
(η2 = .25), the variation 
in the level-2 errors (η2 
= .19), the number of 
cases (η2 = .11), and 
the 2-way interaction 
between the type of 
model and the true 
level-1 error structure 
(η2 = .10) 

 One main effect and 
one interaction effect 
had a medium or large 
effect, including the 
series length per case 
(η2 = .11) and the 2-
way interaction 
between the type of 
model and the true 
level-1 error structure 
(η2 = .16) 

 One main effect and 
one interaction effect 
had a medium or large 
effect, including the 
series length per case 
(η2 = .06), the 2-way 
interaction between the 
type of model and the 
true level-1 error 
structure (η2 = .19) 

 Three of the design 
factors had a medium 
or large effect, 
including the type of 
model (η2 = .44), the 
number of cases (η2 = 
.38), and the series 
length per case (η2 = 
.11) 

Autocorrelation  Similar across the two 
models and both 
negatively biased 
(Model 1: M=-.10; 
Model 2:M=-.09) 

 Similar across the two 
models (Model 1: 
M=.26; Model 2:M=-
.25) 

 Substantial difference 
across the two models 
(η2 = .2). Under 
nominal level and more 
variability for Model 1. 
Close to the nominal 
level for Model 2 
(Model 1: M=.81; 
Model 2: M=.94). 

 Model 1 had a smaller 
CI width than Model 2 
(Model 1: M=0.74; 
Model 2:M=1.10) 
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Table 3 (continued) 
Summary of the results for the variance components 
 
  Substantial differences 

across the true level-1 
error structures (η2 = 
.22). More biased for 
the heterogeneous error 
structures than the 
homogeneous error 
structure, regardless of 
the type of model. 

 Substantial differences 
across the true level-1 
error structures (η2 = 
.62). For the 
homogeneous error 
structure, larger when 
estimated by Model 2 
than Model 1. For the 
heterogeneous error 
structures, smaller when 
estimated by Model 2 
than Model 1.  Larger for 
the heterogeneous error 
structures than the 
homogeneous error 
structure, regardless of 
the type of model 

 Substantial differences 
across the true level-1 
error structures (η2 = .3). 
Over nominal level for 
the homogeneous error 
structure. For the 
heterogeneous error 
structures, Model 1 was 
severely under the 
nominal level, while 
Model 2 was either close 
to the nominal level or 
slightly under the 
nominal level. 

 No or little difference 
across the true level-
1 error structures (η2 
= .0003). Generally, 
the CI width for 
Model 1 was smaller 
than the CI width for 
Model 2. 

  One large effect for the 
true level-1 error 
structure (η2 = .88) 

 Two of the design 
factors had a medium or 
large effect, including 
the true level-1 error 
structure (η2 = .83) and 
the series length per case 
(η2 = .06). 

 Two interaction effects 
had a medium effect, 
including the 2-way 
interaction between the 
type of model and the 
true level-1 error 
structure (η2 = .07), and 
the 2-way interaction 
between the series length 
per case and the true 
level-1 error structure 
(η2 = .07) 

 Three of the design 
factors had a large 
effect, including the 
series length per case 
(η2 = .47), the type of 
model (η2 = .34), and 
the number of cases 
(η2 = .17) 
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Table 4  
Summary of the results for the fixed treatment effects by over-, under-, and correct-specification of the level-1 error structure 
 
Parameter estimate Bias RMSE CI coverage CI width 

Shift in level  Close to 0 for all three 
types of specifications, 
ranging from 0 to .003 

 Similar across the types 
of specifications, 
ranging from .68 to .69 

 Over nominal level 
across all three types of 
specifications, ranging 
from .983 to .985 

 Similar across the types 
of specifications, 
ranging from 4.94 to 
4.99 

Shift in slope  Close to 0 for all three 
types of specifications, 
ranging from .001 to 
.009. The under-
specified type had the 
smallest bias value and 
variability among the 
three types of 
specifications 

 Similar across all three 
types of specifications, 
ranging from .22 to .23 

 Over nominal level 
across all three types of 
specifications, .985 for 
all three types of 
specifications 

 Similar across all three 
types of specifications, 
ranging from 1.68 to 
1.71 
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Table 5  
Summary of the results for the variance components by over-, under-, and correct-specification of the level-1 error structure 
 
Parameter estimate Bias RMSE CI coverage CI width 

Level-2 error 
standard deviation 
for shift in level 

 Similar and positively 
biased for all three 
types of specifications, 
ranging from .85 to .86. 

 Similar across all three 
types of specifications, 
ranging from 1.21 to 
1.23 

 Similar and over 
nominal level across all 
three types of 
specifications, ranging 
from .967 to .974 

 Similar across the three 
types of specifications, 
ranging from 6.43 to 
6.48 

    More conservative CI 
coverage for the over-
specified type than 
other types of 
specifications 

 

Level-2 error 
standard deviation 
for shift in slope 

 Similar and positively 
biased for all three 
types of specifications, 
ranging from .30 to .31. 

 Similar across the three 
types of specifications, 
ranging from .41 to .42 

 Slightly different and 
over nominal level 
across all three types of 
specifications, ranging 
from .970 to .982 

 Slightly different across 
the three types of 
specifications, ranging 
from 1.61 to 2.20 

    More conservative CI 
coverage for the over-
specified type than 
other types of 
specifications 

 The widest average CI 
width for the over-
specified type among 
the three types of 
specifications. 
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Table 5 (continued) 
Summary of the results for the variance components by over-, under-, and correct-specification of the level-1 error structure 
 
     For the correctly-

specified models, 
the homogeneous 
error structure had 
smaller CI width 
than the 
heterogeneous error 
structures 

Level-1 error 
standard deviation 

 Different and positively 
biased for all three 
types of specifications, 
ranging from .034 to 
.056 

 Different across all 
three types of 
specifications, ranging 
from .14 to .27 

 Different, and under the 
nominal level for the 
under-specified models 
(M = .79), close to the 
nominal level for the 
correctly-specified 
models (M = .96), and 
over the nominal level 
for the over-specified 
models (M = .99)  

 Different for all three 
types of specifications, 
ranging from .47 to .74 

  The over-specified type 
had the smallest bias 
and variability, and the 
under-specified type 
had the largest bias 
value  

 The over-specified type 
had the smallest 
average RMSE value 
and variability, and the 
under-specified type 
had the largest average 
RMSE value and 
variability  

 The under-specified 
type had substantially 
larger variability than 
the other types of 
specifications 

 The under-specified 
type had a smaller 
average CI width value 
than the other types of 
specifications 
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Table 5 (continued) 
Summary of the results for the variance components by specifications of the level-1 error structure 
 
  For the under-specified 

models, the average 
bias increased as the 
degree of heterogeneity 
increased. For the 
correctly-specified, the 
homogeneous error 
structure had the 
smallest average bias  

 For the under-specified 
models, the average 
RMSE increased as the 
degree of heterogeneity 
increased. For the 
correctly-specified, the 
homogeneous error 
structure had the 
smallest average RMSE 

 For the under-specified 
models, the average CI 
coverage tended to be 
under the nominal level 
for both heterogeneous 
error structures, and as 
the degree of 
heterogeneity 
increased, the average 
CI coverage value 
substantially decreased. 
For the correctly-
specified models, the 
average CI coverage 
tended to be close to the 
nominal level, 
regardless of the true 
level-1 error structure 

 For the Under-specified 
models, the average CI 
width was similar 
across the true level-1 
error structures. For the 
correctly-specified 
models, the 
homogeneous error 
structure had the 
smallest average CI 
width 

Autocorrelation  Different and 
negatively biased for 
the both under-
specified and correctly-
specified models (M = -
0.16, M = -0.09, 
respectively), but close 
to 0 for the over-
specified models (M = 
0.01)  

 Different across all 
three types of 
specifications, ranging 
from .18 to .30 

 Different, and under the 
nominal level for the 
under-specified models 
(M = .74), close to the 
nominal level for the 
correctly-specified (M 
= .94), and over the 
nominal level for the 
over-specified models 
(M = .99) 

 Different across all 
three types of 
specifications, ranging 
from .73 to 1.09 
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Table 5 (continued) 
Summary of the results for the variance components by specifications of the level-1 error structure 
 
  The over-specified type 

had the smallest bias 
and variability 

 The over-specified type 
had the smallest 
average RMSE values 
and variability, and the 
under-specified type 
had the largest 
variability 

 The under-specified 
type had substantially 
larger variability than 
the other types of 
specifications 

 The under-specified 
type had smaller 
average CI width than 
the other types of 
specifications. 

  For the under-specified 
models, the average 
bias values were similar 
across the 
heterogeneous error 
structures. For the 
correctly-specified 
models, the average 
bias value was 
substantially smaller for 
the homogeneous error 
structure than the 
heterogeneous error 
structures 

 For the under-specified 
models, the average 
RMSE values increased 
as the degree of 
heterogeneity 
increased. For the 
correctly-specified 
models, the 
homogeneous error 
structure had the 
smallest average RMSE 
value 

 For the under-specified 
models, the average CI 
coverage tended to be 
under the nominal level 
for the heterogeneous 
error structures, and as 
the degree of 
heterogeneity 
increased, the average 
CI coverage decreased. 
For the correctly-
specified models, the 
average CI coverage 
decreased as the degree 
of heterogeneity 
increased 

 For the under-specified 
models, the average CI 
width was similar 
across the true level-1 
error structures. For the 
correctly-specified 
models, the 
homogeneous error 
structure had the 
smallest average CI 
width  
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Based on these findings, it seemed worthwhile to explore if these results can be 

generalized to other important conditions that had not been covered in the main study, such as 

different degrees of the average level of autocorrelation, and the way of generating heterogeneity 

in the level-1 error structure. Therefore, two small follow up studies with fewer conditions, 

Study 2 and Study 3, were conducted for further exploration. More detailed information and 

results of Study 2 and Study 3 are provided in following sections. 

 

Follow-Up Study: Study 2 

In terms of the average autocorrelation, the main study had one level of autocorrelation 

(0.2), and this is the typical average autocorrelation value found in behavior studies (Shadish & 

Sullivan, 2011). However, other simulation work done in this area used the levels of 

autocorrelation 0.1, 0.2, 0.3 and 0.4 (Ferron et al., 2009; Ferron, Farmer, & Owens, 2010) which 

covered the possible autocorrelation values commonly found in behavior research (Huitema, 

1985; Matyas & Greenwood, 1996). Thus, it was decided to examine one more level of 

autocorrelation, .04 in this study. More specifically, average level of autocorrelation .4 with 

standard deviation of .1 was selected to be examined along with selected conditions used in the 

main study. The autocorrelation .4 with standard deviation of .1 was selected because it creates a 

distribution that 99% of the autocorrelation values fall between .1 and .7 that covers the 

autocorrelation values typically found in behavior research (Huitema, 1985; Matyas & 

Greenwood, 1996; Shadish & Sullivan, 2011). Thus, in Study 2, there were 6 conditions 

simulated using the two factors.  These factors were (1) the true level-1 error structure 

(homogeneous, moderately heterogeneous, and severely heterogeneous); (2) the analysis 

methods modeling level-1 error structure (not modeling between case variation (Model 1), and 
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modeling between case variation (Model 2). Autocorrelation was fixed as .4 and all other factors 

used in the main study were also fixed;  (1) the number of cases, 4 ; (2) the series length per case, 

10; (3) the variation in the level-2 errors, most of the variance at level-1 (.5, .05). This yielded a 

2x3 factorial design. 

 

Results of the study 

The outcomes of all of the simulated conditions for the fixed treatment effects and 

variance components are provided in Tables 6 and 7. 

The results of the fixed treatment effects and the variance components from the main 

study that used 0.2 as the average autocorrelation value were very similar to the results of the 

fixed treatment effects and variance components from Study 2 that used 0.4 as the average 

autocorrelation value. The different modeling methods in level-1 error structure had little to no 

impact on the estimates of the fixed treatment effects, but substantial impacts on the estimates of 

the variance components, especially the level-1 error standard deviation and the autocorrelation 

parameters.  

The fixed treatment effects were not biased for both Model 1 where between case 

variation was not modeled and Model 2 where between case variation was modeled. The average 

RMSE values for the fixed treatment effects were similar across the models. The interval 

coverage for the fixed treatment effects tended to be over the nominal level for both models. The 

interval width values were similar across the two models. In addition, different types of 

specifications (i.e., over-, under-, and correct-specification) in the level-1 error structure had 

little to no impact on the estimates of the fixed treatment effects.  
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Table 6 
The results of the fixed treatment effects for Study 2 
 

 
Homogeneous Moderately hetero Severely Hetero 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 
Bias 

Intercept -0.011 -0.010 0.015 0.014 -0.001 -0.003 

Phase -0.035 -0.040 -0.009 -0.008 0.036 0.036 

Time 0.004 0.004 0.007 0.007 -0.004 -0.003 

Interaction -0.009 -0.008 -0.006 -0.006 0.011 0.011 

RMSE 

Intercept 0.608 0.607 0.512 0.513 0.541 0.524 

Phase 0.736 0.742 0.727 0.725 0.722 0.699 

Time 0.211 0.212 0.197 0.197 0.198 0.191 

Interaction 0.325 0.326 0.282 0.281 0.296 0.284 

CI coverage 

Intercept 0.995 0.996 0.999 0.999 0.999 0.999 

Phase 0.998 0.997 0.999 1.000 1.000 1.000 

Time 0.996 0.996 0.998 0.999 0.998 0.999 

Interaction 0.997 0.997 1.000 1.000 0.999 0.999 

CI width 

Intercept 5.165 5.128 4.473 4.483 4.617 4.574 

Phase 6.617 6.650 6.323 6.345 6.499 6.379 

Time 1.669 1.657 1.552 1.549 1.595 1.550 

Interaction 2.862 2.845 2.598 2.601 2.654 2.599 

 

For the variance components, the different modeling methods in level-1 error structure 

had little to no impact on the estimates of the level-2 error standard deviations for phase (the 

shift in level) and the interaction (the shift in slope). Unlike the level-2 error standard deviations, 

the level-1 error standard deviation and autocorrelation show some differences in terms of the 

results across Model 1 and 2. The average bias and RMSE values were similar across the models, 

but the average CI coverage values were substantially different across the two models. The 

coverage was substantially under the nominal level when estimated by Model 1, but close to the 

nominal level when estimated by Model 2. The interval width was smaller when estimated by 

Model 1 than Model 2. In addition, different types of specifications in the level-1 error structure 

had a substantial impact on the estimates of the level-1 error standard deviation and the 
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autocorrelation. For the average bias and RMSE values of the level-1 error standard deviation 

and the autocorrelation, the over-specified models had the smallest bias and RMSE values, and 

for the CI coverage of the level-1 error standard deviation and the autocorrelation, the correctly-

specified models had coverages closest to the nominal level.  

Table 7 
The results of the variance components for Study 2 
 

 Homogeneous Moderately hetero Severely Hetero 
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Bias 

Level-2 
error 

standard 
deviation 

Intercept 1.101 1.091 0.851 0.844 0.900 0.881 

Phase 1.542 1.550 1.409 1.408 1.468 1.424 

Time 0.325 0.324 0.288 0.285 0.300 0.287 

Interaction 0.716 0.716 0.626 0.624 0.643 0.623 
Level-1 error standard 

deviation 
0.006 0.016 0.038 0.059 0.075 0.067 

Autocorrelation -0.058 -0.116 -0.376 -0.356 -0.365 -0.331 

RMSE 

Level-2 
error 

standard 
deviation 

Intercept 1.363 1.349 1.090 1.067 1.160 1.126 

Phase 1.806 1.804 1.650 1.636 1.733 1.670 

Time 0.396 0.395 0.363 0.355 0.376 0.357 

Interaction 0.799 0.800 0.705 0.696 0.732 0.705 
Level-1 error standard 

deviation 
0.144 0.179 0.225 0.227 0.356 0.265 

Autocorrelation 0.223 0.221 0.456 0.431 0.491 0.449 

CI coverage 

Level-2 
error 

standard 
deviation 

Intercept 0.969 0.977 0.986 0.992 0.977 0.985 

Phase 0.964 0.968 0.978 0.984 0.979 0.984 

Time 0.989 0.990 0.981 0.990 0.991 0.994 

Interaction 0.985 0.984 0.981 0.990 0.983 0.993 
Level-1 error standard 

deviation 
0.978 0.991 0.845 0.973 0.617 0.953 

Autocorrelation 0.989 0.999 0.784 0.939 0.743 0.916 

CI width 

Level-2 
error 

standard 
deviation 

Intercept 7.189 7.156 6.182 6.223 6.358 6.350 

Phase 9.198 9.245 8.736 8.780 8.972 8.850 

Time 2.247 2.242 2.075 2.077 2.134 2.088 

Interaction 2.247 3.924 2.075 3.580 2.134 3.581 
Level-1 error standard 

deviation 
0.652 0.976 0.679 1.057 0.695 1.125 

Autocorrelation 1.078 1.359 1.081 1.424 1.069 1.430 
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These results imply that the degree of the autocorrelation had little to no impact on the estimates 

of the fixed treatment effects and the variance components.   

 

Follow-Up Study: Study 3 

In terms of the method of generating heterogeneity in the level-1 error structure, in the 

main study, data having the heterogeneous level-1 error structure had been generated in a way 

that every case included in the study had a unique value of the level-1 error standard deviation 

and autocorrelation within a specified range.  However, it is possible that the values will not be 

evenly spread out within a specified range in a real dataset. Instead, one or more cases can have a 

substantial difference of the level-1 error standard deviation and the autocorrelation. For 

example, Baek, Petit-Bois, Van den Noortgate, Beretvas, and Ferron (2014) found that in a real 

dataset from a single-case study, one of the cases had a substantially larger variance compared 

with the other cases, which can lead to differences in the level-1 error variance and the 

autocorrelation. Therefore, in Study 3, data were generated in a way that one case had a 

substantial difference in the level-1 error variance and the autocorrelation compared to the other 

cases (extremely heterogeneous error structure). More specifically, one case had a 16 times 

bigger level-1 error variance than the other cases, and an autocorrelation that was either half or 

twice as large as the other cases (either .2 and .4, or .4 and .2).  All other cases were generated to 

have a same level-1 error variance (1) and autocorrelation value (either .2 or .4).  This extreme 

condition in which one case had 16 times the level-1 error variance of the others was selected 

based on the finding from Baek and Ferron (2013). They found that when they allowed the level-

1 error variance to vary across cases in real datasets, the largest level-1 error variance ranges up 

to 16 times the smallest. Thus, in Study 3, there were 8 conditions simulated using the three 



233 

factors.  These factors were (1) the analysis method for modeling level-1 error structure (not 

modeling between case variation (Model 1), and modeling between case variation (Model 2); (2) 

the combination of number of cases and series length per case (4, 10 or 8, 20); and (3) the 

combination of level of autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, 

.2). All other factors used in the main study were fixed; (1) the true level-1 error structure, 

extremely heterogeneous; (2) the variation in the level-2 errors, most of the variance at level-

1(.5, .05). This yielded a 2x2x2 factorial design. 

 

Results of the study 

The outcomes of all of the simulated conditions for the fixed treatment effects and 

variance components are provided in Tables 8 and 9. The results of the fixed treatment effects 

and the variance components from this study were different from the main study. Unlike the 

main study that shows the different modeling methods for the level-1 error structure had little to 

no impact on the estimates of the fixed treatment effects, this study found that the different 

modeling methods for the level-1 error structure had some impact on the estimates of the fixed 

treatment effects. The average bias and RMSE values were generally smaller when estimated by 

Model 2 where between case variation was modeled. In addition, unlike the main study that 

showed the different modeling methods for the level-1 error structure had little to no impact on 

the estimates of the level-2 error standard deviation, this study found that the different modeling 

methods for the level-1 error structure had some impact on the estimates of the level-2 error 

standard deviation. Since this study only has one type of true level-1 error structure, extremely 

heterogeneous, Model 1 represents the under-specified condition in that the model assumed a 

homogeneous level-1 error structure but the data had a heterogeneous level-1 error structure, and 
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Model 2 represents the over-specified condition in that the model assumed a heterogeneous 

level-1 error structure where everyone had their unique value of the level-1 error variance and 

the autocorrelation value, but the data had a heterogeneous level-1 error structure where only one 

case had a different level-1 error variance and autocorrelation value than others.  

Table 8 
The results of the fixed treatment effects for Study 3 
 
Series 
length 

per 
case 

Number 
of cases 

Variation 
in the 

level-2 
errors 

Intercept Phase Time Interaction 
Model 

1 
Model 

2 
Model 

1 
Model 

2 
Model 

1 
Model 

2 
Model 

1 
Model 

2 
Bias 

10 4 

Extreme(.2, 
4) 0.025 0.020 0.030 0.008 0.006 0.010 -0.008 -0.008 

Extreme(.4, 
4) -0.003 -0.021 -0.033 -0.032 0.003 0.009 0.023 0.008 

20 8 

Extreme(.2, 
4) 0.013 0.006 -0.005 -0.006 -0.008 -0.007 0.007 0.005 

Extreme(.4, 
4) -0.029 -0.017 -0.008 -0.006 0.005 0.002 -0.003 0.002 

RMSE 

10 4 

Extreme(.2, 
4) 0.920 0.702 1.440 1.029 0.342 0.255 0.626 0.410 

Extreme(.4, 
4) 0.877 0.668 1.411 0.989 0.349 0.256 0.642 0.419 

20 8 

Extreme(.2, 
4) 0.435 0.362 0.585 0.446 0.104 0.093 0.148 0.113 

Extreme(.4, 
4) 0.439 0.351 0.587 0.442 0.106 0.095 0.140 0.111 

CI coverage 

10 4 

Extreme(.2, 
4) 0.999 1.000 0.999 1.000 0.996 0.998 0.999 1.000 

Extreme(.4, 
4) 0.999 0.998 1.000 1.000 0.998 1.000 1.000 1.000 

20 8 

Extreme(.2, 
4) 0.982 0.965 0.993 0.973 0.968 0.971 0.977 0.971 

Extreme(.4, 
4) 0.977 0.971 0.990 0.989 0.959 0.964 0.976 0.968 

CI width 

10 4 

Extreme(.2, 
4) 7.213 6.157 11.307 9.329 2.318 1.942 5.465 4.354 

Extreme(.4, 
4) 7.147 6.087 11.278 9.244 2.333 1.947 5.536 4.382 

20 8 

Extreme(.2, 
4) 2.053 1.748 2.910 2.279 0.495 0.459 0.711 0.575 

Extreme(.4, 
4) 2.066 1.766 2.942 2.328 0.491 0.459 0.684 0.569 
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Table 9 
The results of the variance components for Study 3 
Series 
length 

per 
case 

Numb
er of 
cases 

Variation 
in the 

level-1 
errors 

Level-2 error standard deviation 
Level-1 error 

standard deviation 
Autocorrelation 

Intercept Phase Time Interaction 
Model 1 Model 2 

Model 
1 

Model 2 
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Bias 

10 4 

Extreme 
(.2, 4) 1.657 1.331 2.944 2.299 0.459 0.380 1.568 1.139 0.326 0.035 -0.374 -0.300 

Extreme 
(.4, 4) 1.616 1.305 2.927 2.260 0.461 0.384 1.591 1.151 0.340 0.031 -0.265 -0.197 

20 8 

Extreme 
(.2, 4) 0.189 0.125 0.459 0.251 0.038 0.038 0.103 0.051 0.292 -0.009 -0.387 -0.354 

Extreme 
(.4, 4) 0.204 0.137 0.493 0.286 0.035 0.038 0.082 0.045 0.290 -0.006 -0.236 -0.205 

RMSE 

10 4 

Extreme 
(.2, 4) 2.013 1.587 3.461 2.620 0.526 0.435 1.962 1.335 1.424 0.661 0.494 0.367 

Extreme 
(.4, 4) 1.960 1.554 3.422 2.568 0.525 0.447 2.007 1.373 1.430 0.655 0.416 0.321 

20 8 

Extreme 
(.2, 4) 0.474 0.377 0.797 0.500 0.101 0.096 0.214 0.129 1.054 0.357 0.432 0.382 

Extreme 
(.4, 4) 0.487 0.382 0.818 0.505 0.100 0.098 0.190 0.123 1.052 0.359 0.301 0.258 

CI coverage 

10 4 

Extreme 
(.2, 4) 0.946 0.988 0.927 0.974 0.986 0.998 0.893 0.985 0.055 0.932 0.674 0.972 

Extreme 
(.4, 4) 1.000 0.993 0.938 0.985 0.988 0.995 0.907 0.982 0.057 0.935 0.748 0.955 

20 8 

Extreme 
(.2, 4) 0.977 0.970 0.933 0.980 0.955 0.959 0.918 0.967 0.000 0.935 0.173 0.582 

Extreme 
(.4, 4) 0.976 0.971 0.931 0.978 0.954 0.945 0.939 0.979 0.002 0.932 0.407 0.848 

CI width 

10 4 

Extreme 
(.2, 4) 9.707 8.549 15.197 12.950 2.907 2.556 2.907 6.199 1.283 2.099 0.970 1.436 

Extreme 
(.4, 4) 9.598 8.447 15.182 12.851 2.922 2.564 2.922 6.239 1.287 2.091 0.964 1.429 

20 8 

Extreme 
(.2, 4) 2.037 1.834 2.949 2.462 0.440 0.422 0.440 0.614 0.414 0.965 0.381 0.767 

Extreme 
(.4, 4) 2.051 1.853 3.000 2.536 0.437 0.422 0.437 0.609 0.413 0.967 0.382 0.771 
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Figure 150 illustrated that the average bias values of the treatment effect for phase were 

minimal and similar across the two models, and Model 2 (over-specified) had less variability of 

the bias values than Model 1(under-specified). One of the data factors, the combination of the 

autocorrelation of the extreme case and the autocorrelation for the others, had an impact on the 

average bias of the shift in level. When the extreme case had an autocorrelation of .2, which 

indicated that the rest of cases had an autocorrelation of .4, the average bias value for Model 1 

was positive, but the average bias value for Model 2 was close to 0. In addition, Model 2 had 

substantially less variability of bias values than Model 1. However, when extreme case had an 

autocorrelation of .4, which indicated that the rest of cases had an autocorrelation of .2, the 

average bias values for Model 1 and Model 2 were both negative.  

Similarly, Figure 151 illustrated that the average bias values of the treatment effect for 

the interaction were minimal and similar across the two models, but Model 2, which was the 

over-specified model, had less variability of the bias values than Model 1. The factor of the 

autocorrelation of the extreme case and others also had an impact on the average bias of the shift 

in slope. When extreme case had an autocorrelation of .2, which indicated that the rest of cases 

had an autocorrelation of .4, the average bias value for both Model 1 and 2 were close to 0, and 

Model 2 had less variability than Model 1. However, when the extreme case had an 

autocorrelation of .4, which indicated that the rest of cases had an autocorrelation of .2, the 

average bias values for Model 1 and Model 2 were both positive, and Model 1 had substantially 

larger variability than Model 2.  
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Figure 152 portrays that the average RMSE values of the treatment effect for phase and 

the interaction were different across the two models. Model 2 had smaller average RMSE values 

and less variability of the RMSE values than Model 1. These results were consistent regardless 

of the pairing of the autocorrelation of the extreme case and others.  The rest of the outcomes, the 

CI coverage and the width had similar results with the results from the main study. The interval 

coverage for the fixed treatment effects tended to be overly conservative for both models, and the 

interval width values were similar across the two models. 

In terms of the variance components, the average bias and RMSE values of the level-2 

error standard deviation for phase and the interaction were similar across the two models. 

However, Model 2 had generally smaller average bias and RMSE values than Model 1. These 

results of the average bias and RMSE values of the level-2 error standard deviation for phase and 

the interaction are illustrated in Figures 153 and 154. These results were consistent regardless of 

the different pairings of the autocorrelation of the extreme case and others.  

In addition, the CI coverage of the level-2 error standard deviation for phase and the 

interaction were substantially different across the two models. As illustrated in Figure 155, the 

CIs under covered when estimated by Model 1 for both the level-2 error standard deviation for 

phase and the interaction, but over covered when estimated by Model 1 for both the level-2 error 

standard deviation for phase and the interaction. The CI width values of the level-2 error 

standard deviation for phase and the interaction were similar across the two models.  
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Similar to the results from the main study, the different modeling methods in level-1 error 

structure had substantial impacts on the estimates of the level-1 error standard deviation and the 

autocorrelation. Figure 156 illustrated that the average bias values of the level-1 error standard 

deviation and the autocorrelation were substantially different across the two models. Model 2 

had smaller average bias values than Model 1 for both the level-1 error standard deviation and 

the autocorrelation.  

Similarly, the average RMSE values of the level-1 error standard deviation and the 

autocorrelation were also different across the two models. Model 2 had smaller average RMSE 

values than Model 1 for both the level-1 error standard deviation and the autocorrelation.  

In addition, the average CI coverage of the level-1 error standard deviation and the 

autocorrelation were substantially different across the two models. As illustrated in Figure 157, 

the CIs substantially under covered when estimated by Model 1 for both the level-1 error 

standard deviation and the autocorrelation, but provided coverages close to the nominal level for 

the level-1 error standard deviation and slightly under the nominal level for the autocorrelation 

when estimated by Model 2.  

Lastly, the interval width was smaller when estimated by Model 1 than Model 2. These 

results imply that the nature of the heterogeneity in the data (i.e., an outlying case versus an even 

spread of level-1 error variances) might impact the effect of heterogeneity on the estimates of the 

fixed treatment effects and the variance components.  

 



Figure 15
autocorre

56. Box plot
elation 

ts depicting tthe estimate

245 

d bias of thee level-1 erro

 

 

or standard ddeviation andd the 



Figure 15
and the a
 

57. Box plot
autocorrelatio

ts depicting t
on 

 

the estimate

246 

d CI coveragge of the levvel-1 error st

 

 

tandard deviation 



247 

 
 
 
 
 

CHAPTER FIVE: DISCUSSION 

 

This chapter provides a summary of the studies and results, along with a discussion of the 

findings, limitations of the studies, and implications for applied single-case researchers and 

methodologists.  

 

Summary of the Studies 

 

Purpose 

The purpose of the studies was to extend the MLM modeling in single-case design to 

allow between case variation in the level-1 error structure such that the estimated level-1 error 

variance and autocorrelation varies across cases, and to identify the consequences of not 

modeling and modeling between case variation in the level-1 error structure for single-case 

studies using Bayesian estimation.  

 

The Main Study 

Research questions.  Research questions for the main study are following: 

1. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effects in single-case 

design?  
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1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation in the level-2 errors)? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of design factors (number of cases and 

series length per case), and data factors  (true level-1 error structure and variation 

in the level-2 errors)? 

2. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  

1) to what extent are the bias and RMSE for the variance components impacted as 

a function of design factors (number of cases and series length per case), and data 

factors  (true level-1 error structure and variation in the level-2 errors)? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of design factors (number of cases and series 

length per case), and data factors  (true level-1 error structure and variation in the 

level-2 errors)? 

Method.  Monte Carlo simulation methods were used to address the research questions. 

In the study, multiple data, design and analysis factors were manipulated. This study used a 

2x2x3x2x2 factorial design. These factors were the (1) number of cases (4 and 8); (2) series 

length per case (10 and 20); (3) true level-1 error structure (homogeneous, moderately 

heterogeneous, and severely heterogeneous); (4) variation in the level-2 errors (most of the 

variance at level-1 and most of the variance at level-2); (5) analysis methods for modeling level-
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1 error structure (not modeling between case variation (Model 1), and modeling between case 

variation (Model 2). For each of the 48 conditions, 1,000 data sets were generated using SAS 

IML (SAS Institute Inc., 2008). These data sets were then analyzed using WinBUGS software. 

 This study first examined the convergence criteria by using a sample of simulated data 

sets to test convergence and to make decisions about the number of iterations, and the burn-in 

period. Secondly, this study examined the fixed effects (i.e., average treatment effect for phase 

and the interaction) and the variance components (i.e., level-2 error standard deviation for phase 

and the interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model. 

 

Follow-Up Study: Study 2 

Research questions. Research questions for Study 2 are following: 

1. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effects in single-case 

design?  

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of the true level-1 error structure when the average level of 

autocorrelation is .4? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of the true level-1 error structure when 

the average level of autocorrelation is .4? 

2. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  
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1) to what extent are the bias and RMSE for the variance components impacted as 

a function of the true level-1 error structure when the average level of 

autocorrelation is .4? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of the true level-1 error structure when the 

average level of autocorrelation is .4? 

Method.  Monte Carlo simulation methods were used to address the research questions. 

In the study, multiple data and analysis factors were manipulated. This study used a 2x3 factorial 

design. These factors were (1) true level-1 error structure (homogeneous, moderately 

heterogeneous, and severely heterogeneous); (2) analysis method for modeling the level-1 error 

structure (not modeling between case variation (Model 1), and modeling between case variation 

(Model 2)). Autocorrelation was fixed as .4 and all other factors used in the main study were also 

fixed;  (1) the number of cases, 4 ; (2) the series length per case, 10; (3) the variation in the level-

2 errors, most of the variance at level-1 (.5, .05).  For each of the 6 conditions, 1,000 data sets 

were generated using SAS IML (SAS Institute Inc., 2008). These data sets were then analyzed 

using WinBUGS software. 

 This study examined the fixed effects (i.e., average treatment effect for phase and the 

interaction) and the variance components (i.e., level-2 error standard deviation for phase and the 

interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model. 

 

Follow-Up Study: Study 3  

Research questions. Research questions for Study 3 are following: 
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1. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the fixed treatment effects in single-case 

design?  

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as 

a function of the pairing of the number of cases and series length per case (4, 10 

or 8, 20), and the pairing of the level of autocorrelation for the extreme case and 

the rest of the cases (.2, .4 or .4, .2) when the true level-1 error structure is 

characterized as having one case with variance that is 16 times the variance of the 

other cases (extremely heterogeneous)? 

2) to what extent are the credible interval coverage and width for the fixed 

treatment effects impacted as a function of the pairing of the number of cases and 

series length per case (4, 10 or 8, 20), and the pairing of the level of 

autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2) when 

the true level-1 error structure is characterized as having one case with variance 

that is 16 times the variance of the other cases (extremely heterogeneous)? 

2. What are the consequences of modeling and not modeling between case variation in the 

level-1 error structure in terms of estimation of the variance components in single-case 

design?  

1) to what extent are the bias and RMSE for the variance components impacted as 

a function of the pairing of the number of cases and series length per case (4, 10 

or 8, 20), and the pairing of the level of autocorrelation for the extreme case and 

the rest of the cases (.2, .4 or .4, .2) when the true level-1 error structure is 
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characterized as having one case with variance that is 16 times the variance of the 

other cases (extremely heterogeneous)? 

2) to what extent are the credible interval coverage and width for the variance 

components impacted as a function of the pairing of the number of cases and 

series length per case (4, 10 or 8, 20), and the pairing of the level of 

autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2) when 

the true level-1 error structure is characterized as having one case with variance 

that is 16 times the variance of the other cases (extremely heterogeneous)? 

Method. Monte Carlo simulation methods were used to address the research questions. In 

the study, multiple data and analysis factors were manipulated. This study used a 2x2x2 factorial 

design. These factors were (1) analysis method for modeling the level-1 error structure (not 

modeling between case variation (Model 1), and modeling between case variation (Model 2)); 

(2) the pairing of the number of cases and series length per case (4, 10 or 8, 20); (3) the pairing 

of the level of autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2). All 

other factors used in the main study were fixed; (1) the true level-1 error structure, extremely 

heterogeneous such that one case has variance that is 16 times the variance of the other cases; (2) 

the variation in the level-2 errors, most of the variance at level-1(.5, .05).  For each of the 8 

conditions, 1,000 data sets were generated using SAS IML (SAS Institute Inc., 2008). These data 

sets were then analyzed using WinBUGS software. 

 This study examined the fixed effects (i.e., average treatment effect for phase and the 

interaction) and the variance components (i.e., level-2 error standard deviation for phase and the 

interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model. 
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Discussion of the Studies Results 

 

Convergence 

As the complexity of the model increased, such that the model required more parameters 

to be estimated, a longer iteration run was required. Therefore, when the data were analyzed by 

Model 2, it required more iterations than when the data were analyzed by Model 1. In addition, 

the parameters that required the most iterations to meet the convergence criteria were the level-2 

error standard deviation parameters, especially the level-2 error standard deviation of the phase 

parameter. Based on the pilot test of a sample of simulated data sets, this study used a burn-in of 

2,000 iterations and ran an additional 500,000 iterations, but only used 50,000 samples of the 

500,000 iterations to form the posterior distribution for all analyses by thinning at every 10th of 

the iterations. 

All convergence criteria that were used in this study (i.e., trace and history plots, Kernel 

density plots, Brooks–Gelman–Rubin (BGR) plots) were met for all tested datasets and for all 

estimated parameters. The computational accuracy index, MC error, was also satisfied in that it 

was less than .05 for all tested datasets and all estimated parameters. Convergence rates that 

indicated the number of samples that completely analyzed each condition were over 97% for all 

48 conditions.     

 

The Main Study 

 Fixed treatment effects. The consequences of modeling and not modeling between case 

variation in the level-1 error structure in terms of estimation of the fixed effects were examined 

in terms of four outcome measures: bias, RMSE, credible interval coverage and width. The 
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results indicated that for the treatment effects, the shift in level and the shift in slope, the average 

bias values were close to 0, regardless of modeling (Model 2) and not modeling (Model 1) 

between case variation in the level-1 error structure. In addition, there were no design factors that 

had meaningful effects on the average bias values of the shift in level and shift in slope. The 

unbiased fixed effect estimates found in the current study are consistent with the previous 

research regarding the inferences made from the fixed effects in both the two-level and the three-

level models (Ferron et al., 2009; Owen, 2011; Merlande, 2014; Ferron, Dailey, & Yi, 2002; 

Kwok et al., 2007). 

Similarly, the average RMSE values for both treatment effects were similar across the 

two models. However, the average RMSE values were impacted by three of the design factors, 

the number of cases, the series length per case, and the variation in the level-2 errors. As the 

number of cases and the series length per case increased, the average RMSE values decreased. 

As the variation in the level-2 errors shifted from most of the variance at level-2 to most of the 

variance at level-1, the average RMSE values decreased.  

An examination of the credible interval coverage indicated that the average interval 

coverages tended to be over the nominal level for both models. There were two design factors 

that had impact on the average credible interval coverage. As the number of cases increased, the 

average credible interval coverage for both treatment effects approached the nominal level. As 

the series length per case increased, the average credible interval coverage for the shift in slope 

approached the nominal level. The analysis of the credible interval width revealed that the 

average credible interval width was similar across the two models.  

These findings from the fixed effects suggest that if possible, researchers should increase 

their level-2 and level-1 sample sizes (number of cases and series length per case). In addition, 
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these findings are consistent with previous literature related to two level or three level models for 

single-case data that states larger numbers of upper level units lead to greater accuracy and 

precision (Ferron et al., 2009; Merlande, 2014; Owen, 2011). 

In addition, an exploration of the different types of specifications (under-specified, 

correctly-specified, and over-specified) in the level-1 error structure revealed that the different 

types of specifications had little to no impact on the estimates of the fixed effects. The average 

bias values were close to 0, regardless of the different types of specifications in the level-1 error 

structure. The average RMSE values were similar across the three types of specifications, the 

average interval coverages were over the nominal level for all three types of specifications, and 

the average interval widths were similar across all three types of specifications. These results 

also supported the findings of previous multilevel modeling and the latent growth curve 

modeling work which showed that the estimates of the fixed effects appear not to be biased by 

the misspecification of the level-1 error structure tests of the fixed effects (Ferron, 2002; Kwok 

et al., 2007; Merlande, 2014; Sivo, Fan & Witta, 2005). One interesting finding is that the 

interval coverages were consistently over the nominal level across models and across model 

specifications. This finding is different from studies that have examined REML estimation of 

multilevel models for single-case data (e.g., Shadish & Rindskopf, 2007; Shadish, Rindskopf, & 

Hedges, 2008; Van den Noortgate & Onghena, 2003a, 2003b, 2007, 2008; Ferron et al., 2009; 

Merlande, 2014; Owen, 2011), where the CI coverage is very close to the nominal level across 

conditions, but can be explained by an impact of the Bayesian estimation method. Baek, Petit-

Bois, and Ferron (2014) found that there was an impact of estimation method (REML versus 

Bayesian) on estimating multilevel models for single-case studies. Specifically for the average 

interval coverage, Baek and her colleague found that the average CI coverage rates for the fixed 
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effects tended to be over the nominal level when using the Bayesian estimation method, while 

they tended to be close to the nominal level or slightly under when using the REML estimation 

method. 

Variance components. The consequences of modeling and not modeling between case 

variation in the level-1 error structure in terms of estimation of the variance components were 

examined in terms of four outcome measures: bias, RMSE, credible interval coverage and width. 

The results indicated that the level-2 error standard deviation estimates for shift in level and shift 

in slope were positively biased for both Model 1 and 2. Two design factors, the number of cases 

and the series length per case, had some impact on the estimates of the level-2 error standard 

deviation. As the number of cases increased, the average bias of the level-2 error standard 

deviation for shift in level was decreased. The impact of the series length per case on the average 

bias of the level-2 error standard deviation for shift in slope was dependent on the number of 

cases. As the number of cases increased, the impact of the series length per case on the average 

bias of the level-2 error standard deviation for shift in slope decreased. These findings are 

consistent with the previous studies that had generally found a substantial bias in the variance 

components across the various conditions (Kwok et al., 2007; Murphy & Pituch, 2009; Ferron et 

al., 2009; Merlande, 2014; Owen, 2011). These findings also suggest that as the number of upper 

units increased, the impact of the number of lower units decreased. Thus, if possible, researchers 

should try to increase their level-2 units sample size. These results were also supported by the 

previous work that had revealed the variance components were more biased when the number of 

cases and the series length per case was small (Kwok et al., 2007; Murphy & Pituch, 2009; 

Ferron et al., 2009).  The impact of the upper units sample size on the bias estimate of the 

variance components, related with the treatment effects, seems to be showing more in the two-



257 

level model studies. Previous studies with the three-level single-case models had not found 

explicitly this relationship between the upper level unit sample size with the bias estimate of the 

variance components for the treatment effects (Merlande, 2014; Owen, 2011).  

Similarly, the average RMSE values of the level-2 error standard deviation for shift in 

level and shift in slope were similar across the two models. Three of the design factors, the 

number of cases, the series length per case, and the variation in the level-2 errors had some 

impact on the estimates of the level-2 error standard deviation. As the number of cases increased, 

the average RMSE values for both level-2 error standard deviations decreased. As the variation 

in the level-2 errors shifted from most of the variance at level-2 to most of the variance at level-

1, the average RMSE value of the level-2 error standard deviation for shift in level decreased. As 

the series length per case increased, the average RMSE value of the level-2 error standard 

deviation for shift in slope decreased. 

An examination of the credible interval coverage of the level-2 error standard deviation 

for shift in level and shift in slope indicated that the credible interval coverages tended to be over 

the nominal level for both models. Four of the design factors, the variation in the level-2 errors, 

the type of model, the series length per case, and the true level-1 error structure, had a 

meaningful impact on the average interval coverage of the level-2 error standard deviations. 

Generally, Model 2 was more conservative than Model 1 in that it had coverage estimates that 

were further above the nominal level. As the variation in the level-2 errors shifted from most of 

the variance at level-1 to most of the variance at level-2, the average credible interval coverage 

of the level-2 error variance for shift in level approached the nominal level. An impact of the 

variation in the level-2 errors on the average interval coverage of the level-2 error standard 

deviation for shift in slope was dependent on the true level-1 error structure. As the variation in 
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the level-2 errors shifted from most of the variance at level-1 to most of the variance at level-2, 

the average credible interval coverage of the level-2 error variance for shift in slope approached 

the nominal level across all three true level-1 error structures. However, the average interval 

coverage in the moderately heterogeneous error structure was impacted the most by the variation 

in the level-2 errors. The analysis of the credible interval width for the level-2 error standard 

deviations revealed that the average credible interval widths were similar across the two models. 

Three of the design factors had some impact on the credible interval width of the level-2 error 

standard deviations. As the number of cases increased, and the variation in the level-2 errors 

shifted from most of the variance at level-2 to most of the variance at level-1, the average width 

of the CIs for the level-2 error standard deviations decreased.  As the series length per case 

increased, the average width of the CIs for the level-2 error standard deviation for shift in slope 

decreased. Similar to the results of the CI coverages in the fixed effects, the CI coverages of the 

level-2 standard deviations were over the nominal level. This finding is not consistent with the 

previous work that had found the CI coverages of the level-2 error variances were under the 

nominal level. Both of the studies with the two-level models (Ferron et al., 2009) and the three-

level models (Owen, 2011; Merlande, 2014) of the single-case data using the REML estimation 

method had found that the CI coverages of the level-2 error variances were generally under the 

nominal level. This contradictory finding of the current study could also be explained by an 

impact of the Bayesian estimation method. Although Baek and her colleagues (2014) had not 

explicitly looked at the average CI coverage rates for the variance components, given the impact 

of the Bayesian estimation method on the average CI coverage rates for the fixed effects, it 

would seem reasonable to assume that there could be an impact of the Bayesian estimation 

method on the CI coverage rates for the variance components. 
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In addition, an exploration of the different types of specifications (under-specified, 

correctly-specified, and over-specified) in the level-1 error structure revealed that the different 

types of specifications had little to no impact on the estimates of the level-2 error standard 

deviations. The level-2 error standard deviation for shift in level and shift in slope were similar 

and positively biased across the three types of specifications in the level-1 error structure. The 

average RMSE values were similar across the three types of specifications, the average interval 

coverages were over the nominal level for all three types of specifications, and the average 

interval widths were similar across all three types of specifications. Although the interval 

coverages and widths were similar across all three types of specifications, the over-specified type 

generally had higher coverage probabilities (more conservative) and wider interval widths than 

the other types of specifications. These results also supported the findings of the previous work, 

with the three-level model of the single-case data, that had found the bias of the level-2 error 

variances were comparable across the different types of the specifications (Merlande, 2014). 

Overall, these findings suggest that the different modeling in the level-1 error structures had no 

or little impact on the estimates of the level-2 error standard deviations.  

 Unlike the level-2 error standard deviations, the results for the level-1 error standard 

deviation and the autocorrelation indicated that different modeling of the level-1 error structure 

had a substantial impact on the estimates of the level-1 error standard deviation and the 

autocorrelation. Consistent to the previous research on the two-level and the three-level models, 

with the single-case data, that had found the level-1 error variance was biased (Ferron et al., 

2009; Merlande, 2014; Owen, 2011), the average level-1 error standard deviations of the current 

study were similar and positively biased for both models. However, there were some differences 

between Model 1 and Model 2 within the true level-1 error structure. For Model 1, the bias of the 
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level-1 error standard deviation increased constantly as the true level-1 error structure shifted 

from the homogeneous to the moderately heterogeneous to the severely heterogeneous error 

structure. However, for Model 2, the bias of the level-1 error standard deviation increased as the 

true level-1 error structure shifted from the homogeneity to the moderately heterogeneous error 

structure, but decreased as the true level-1 error structure shifted from the moderately 

heterogeneous to the severely heterogeneous error structure. The analysis of the average RMSE 

value indicated that there was a difference across the two models. There were substantial 

differences between Model 1 and Model 2 within the true level-1 error structure. For the 

homogeneous error structure, the average RMSE value was larger when estimated by the Model 

2 than Model 1, but for the heterogeneous error structures, the average RMSE values were 

smaller when estimated by Model 2 than Model 1. In addition, as the series length per case 

increased, the average RMSE value decreased regardless of the type of models. 

An examination of the average credible interval coverage revealed that there were 

substantial differences between the two models across the true level-1 error structures. For the 

homogeneous error structure, the average credible interval coverage was over the nominal level 

across the two models. For both heterogeneous error structures, the average credible interval 

coverage was substantially under the nominal level for Model 1, but either approached the 

nominal level or was slightly over the nominal level for Model 2. In addition, as the series length 

per case increased, the interval coverage decreased. Previous studies also had found impact of 

the series length per case on the CI coverage of the level-1 error variance (Merlande, 2014). 

The analysis of the CI width indicated that the CI width for Model 1 was smaller than the 

CI width for Model 2. Moreover, as the number of cases and the series length per case increased, 

the CI width decreased. These findings are consistent with the previous work that had found the 
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CI width of the level-1 error variance decreased as the series length per case and the number of 

cases increased (Merlande, 2014; Owen, 2011; Ferron et al., 2009). 

The results of the autocorrelation were very similar with the results of the level-1 error 

standard deviation. The autocorrelation values were similar and negatively biased for both 

models, which is consistent with the previous work that had found the estimate of the 

autocorrelation was generally biased (Ferron et al., 2009; Merlande, 2014). However, there were 

substantial differences across the true level-1 error structures. The autocorrelation values were 

more biased when the true level-1 error structure was one of the heterogeneous error structures 

than the homogeneous error structure. In addition, the autocorrelation parameter tended to be 

slightly more biased when estimated by Model 1 than Model 2 for all three types of the level-1 

error structures.  

Similarly, the analysis of the average RMSE value indicated that the average RMSE 

values of the autocorrelation were similar across the two models. However, there were 

substantial differences across the true level-1 error structures. The average RMSE value was 

larger for the heterogeneous error structures than the homogeneous error structure, regardless of 

the type of model. In addition, for the homogeneous error structure, the average RMSE value 

was larger when estimated by Model 2 than Model 1, but for the heterogeneous error structures, 

the average RMSE values were smaller when estimated by Model 2 than Model 1. Moreover, as 

the series length per case increased, the average RMSE value decreased regardless of the type of 

model. 

An examination of the average credible interval coverage revealed that there were 

substantial differences between the two models across the true level-1 error structures. For the 

homogeneous error structure, the average credible interval coverage was over the nominal level 
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across the two models. For the heterogeneous error structures, the average credible interval 

coverage was substantially under the nominal level for Model 1, but either approached the 

nominal level or was slightly over the nominal level for Model 2. In addition, an impact of the 

series length per case on the CI coverage was dependent on the true level-1 error structure. The 

impact of the series length per case was smaller when the true level-1 error structure was the 

homogeneous error structure than one of the heterogeneous error structures, and as the severity 

of the heterogeneity in the level-1 error structure increased, the impact of the series length per 

case increased greatly. 

The analysis of the CI width indicated that the average CI width for Model 1 was smaller 

than the average CI width for Model 2. Moreover, as the number of cases and the series length 

per case increased, the CI width decreased.  

These findings from the level-1 error standard deviation and autocorrelation indicated 

that Model 2 provides better estimates of some of the variance components when analyzing data 

that are severely heterogeneous. These findings also suggest that researchers should model 

between case variation in the level-1 error structure when they analyze data that have a severely 

heterogeneous level-1 error structure.  

In addition, an exploration of the different types of specifications (under-specified, 

correctly-specified, and over-specified) of the level-1 error structure revealed that the different 

types of specifications had substantial impacts on the estimates of the level-1 error standard 

deviation and the autocorrelation. The level-1 error standard deviation was different and 

positively biased across the three types of specifications in the level-1 error structure. The over-

specified type had the smallest bias and variability, and the under-specified type had the largest 

bias value among the three types of specifications. Similarly, the average RMSE values were 
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different across the three types of specifications. The over-specified type had the smallest 

average RMSE value and variability, and the under-specified type had the largest average RMSE 

value and variability. The average interval coverage was under the nominal level for the under-

specified type, close to the nominal level for the correctly-specified type, and over the nominal 

level for the over-specified type. The average interval width was smaller for the under-specified 

type than other types of specifications. These findings indicate that the estimates of the level-1 

error standard deviation are better when the level-1 error structure is either correctly-specified or 

over-specified, rather than under-specified. These findings were also consistent with the findings 

from the previous work which showed that the correctly-specified, and the over-specified, level-

1 error structures tended to work better than the under-specified level-1 error structure, in terms 

of the estimates and inferences of the variance components in a multilevel model (Kwok et al., 

2007; Merlande, 2014; Sivo, Fan & Witta, 2005).  

The results for the autocorrelation were very similar with the results for the level-1 error 

standard deviation. The autocorrelation was negatively biased for both the under-specified and 

the correctly-specified, but was close to 0 for the over-specified type. Similarly, the over-

specified type had the smallest average RMSE value and variability, and the under-specified type 

had the largest average RMSE value and variability. The average interval coverage was under 

the nominal level for the under-specified type, close to the nominal level for the correctly-

specified type, and over the nominal level for the over-specified type. The average interval width 

was smaller for the under-specified type than other types of specifications. These findings 

indicate that the estimates of the autocorrelation are better when the level-1 error structure is 

either the correctly-specified or over-specified, as opposed to under-specified.  These findings 

were also consistent with the findings, from the previous work, which showed that the correctly-
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specified and the over-specified level-1 error structures, tended to work better than the under-

specified level-1 error structure, in terms of the estimates and inferences of the variance 

components in a multilevel model (Kwok et al., 2007; Merlande, 2014; Sivo, Fan & Witta, 

2005).  

These findings from the level-1 error standard deviation and the autocorrelation also 

suggest that researchers should try to select either a correctly-specified or over-specified level-1 

error structure rather than an under-specified level-1 error structure when they run a multilevel 

modeling for single-case data.  

 

Follow-Up Study: Study 2 

The results of the fixed effects and the variance components from the main study that 

used 0.2 as the average autocorrelation value were very similar to the results of the fixed effects 

and variance components from Study 2 that used 0.4 as the average autocorrelation value. The 

different modeling methods for the level-1 error structure had little to no impact on the estimates 

of the fixed effects, but had a substantial impact on the estimates of the variance components, 

especially the level-1 error standard deviation and the autocorrelation parameters.  

Fixed treatment effects. Fixed effects were analyzed in terms of bias, RMSE, credible 

interval coverage and widths. The estimates of the shift in level and the shift in slope were not 

biased for either Model 1 or Model 2. The average RMSE values for the shift in level and the 

shift in slope were similar across the models. The confidence intervals for the shift in level and 

the shift in slope tended to be overly conservative for both models, producing coverage 

probabilities above the nominal level. The interval widths were similar across the two models. In 
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addition, different types of specifications in the level-1 error structure had little to no impact on 

the estimates of the shift in level and the shift in slope.  

Variance components. Variance components were also analyzed in terms of bias, 

RMSE, credible interval coverage and widths. For the variance components, the different 

modeling methods in the level-1 error structure had little to no impact on the estimates of the 

level-2 error standard deviations for phase and the interaction. Unlike the level-2 error standard 

deviations, the level-1 error standard deviation and autocorrelation showed some differences in 

terms of the results across Model 1 and Model 2. The average bias and RMSE values were 

similar across the models, but the average CI coverage values were substantially different across 

the two models. The coverage probabilities were substantially under the nominal level when 

estimated by Model 1, but close to the nominal level when estimated by Model 2. The interval 

width was smaller when estimated by Model 1 than estimated by Model 2. In addition, different 

types of specifications of the level-1 error structure had a substantial impact on the estimates of 

the level-1 error standard deviation and the autocorrelation. For the average bias and RMSE 

values of the level-1 error standard deviation and the autocorrelation, the over-specified type had 

the smallest bias and RMSE values. For the CI coverage of the level-1 error standard deviation 

and the autocorrelation, the correctly-specified type works the best, in that it was the closest to 

the nominal level. These findings imply that the degree of the autocorrelation had little to no 

impact on the relative performance of the two models regarding the estimates of the fixed effects 

and the variance components.   
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Follow-Up Study: Study 3 

The results of the fixed effects and the variance components from this study were 

different from the main study. Unlike the main study that showed the different modeling 

methods for the level-1 error structure had little to no impact on the estimates of the fixed effects, 

this study found that the different modeling methods in the level-1 error structure had some 

impact on the estimates of the fixed effects. The average bias and RMSE values were generally 

smaller when estimated by Model 2 than Model 1. Unlike the main study that showed the 

different modeling methods for the level-1 error structure had little to no impact on the estimates 

of the level-2 error standard deviations, this study found that the different modeling methods for 

the level-1 error structure had some impact on the estimates of the level-2 error standard 

deviations, along with the level-1 error standard deviation and the autocorrelation. 

Fixed treatment effects. Fixed effects were analyzed in terms of bias, RMSE, 

confidence interval coverage and widths. The average bias values for the shift in level and the 

shift in slope were minimal and similar across the two models, but unlike the results from the 

main study, Model 2 (over-specified) had substantially less variability of the bias values than 

Model 1(under-specified). One of the design factors, the pairing of the autocorrelation of the 

extreme case and others, had an impact on the average bias of the shift in level and shift in slope. 

For the shift in level, when the extreme case had an autocorrelation of .2, which indicated that 

the rest of cases had an autocorrelation of .4, the average bias value for Model 1 was positive, 

but the average bias value for Model 2 was close to 0. In addition, Model 2 (over-specified) had 

substantially less variability of the bias values than Model 1(under-specified). However, when 

the extreme case had an autocorrelation of .4, which indicated that the rest of the cases had an 

autocorrelation of .2, the average bias values for Model 1 and Model 2 were both negative. 
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Similarly, the average bias values for the shift in slope were minimal and similar across the two 

models, and Model 2 (over-specified) had less variability of the bias values than Model 1(under-

specified). For the shift in level, when the extreme case had an autocorrelation of .2 which 

indicated that the rest of cases had an autocorrelation of .4, the average bias value for both Model 

1 and 2 were close to 0, and Model 2 (over-specified) had less variability than Model 1 (under-

specified). However, when the extreme case had an autocorrelation of .4, which indicated that 

the rest of cases had an autocorrelation of .2, the average bias values for Model 1 and Model 2 

were both positive, and Model 1 (under-specified) had substantially larger variability in bias 

estimates than Model 2 (over-specified).  

Unlike the results of the main study that showed the similar average RMSE values across 

the two models, the average RMSE values of the treatment effect for the shift in level and the 

shift in slope were different across the two models. Model 2 (over-specified) had a smaller 

average RMSE value and less variability of the RMSE values than Model 1 (under-specified). 

These results were consistent regardless of the different pairings of the autocorrelation of the 

extreme case and others. The rest of the outcomes, the CI coverage and the width had similar 

results with the results from the main study. The interval coverage for the fixed effects tended to 

be over the nominal level for both models, and the interval width values were similar across the 

two models. These findings indicate that the different modeling methods in the level-1 error 

structure had substantial impact on the estimates of the fixed effects when the level-1 error 

structure is the extremely heterogeneous level-1 error structure (i.e., one case has 16 times the 

variance of the other cases). Generally, Model 2 (over-specified) that models between case 

variation in the level-1 error structure worked better than Model 1 (under-specified) that does not 

model between case variation in the level-1 error structure. 
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Variance components. Variance components were also analyzed in terms of bias, 

RMSE, confidence interval coverage, and widths. The average bias and RMSE values of the 

level-2 error standard deviation for the shift in level and the shift in slope were similar across the 

two models, but Model 2 (over-specified) had a generally smaller average bias and smaller 

RMSE values than Model 1 (under-specified). These results were consistent, regardless of the 

different pairings of the autocorrelation of the extreme case and others. Unlike the results from 

the main study, the CI coverage of the level-2 error standard deviations for both treatment effects 

were substantially different across the two models. The average coverage probabilities were 

under the nominal level when estimated by Model 1 (under-specified), but over the nominal level 

when estimated by Model 2 (over-specified). The CI widths were similar across the two models.  

Similar to the results from the main study, the different modeling methods in the level-1 

error structure had substantial impacts on the estimates of the level-1 error standard deviation 

and the autocorrelation. The average bias values of the level-1 error standard deviation and the 

autocorrelation were substantially different across the two models. Model 2 (over-specified) had 

smaller average bias values than Model 1 (under-specified) for both the level-1 error standard 

deviation and the autocorrelation. Similarly, the average RMSE values of the level-1 error 

standard deviation and the autocorrelation were also different across the two models. Model 2 

(over-specified) had smaller average RMSE values than Model 1 (under-specified) for both the 

level-1 error standard deviation and the autocorrelation. In addition, the average CI coverage of 

the level-1 error standard deviation and the autocorrelation were substantially different across the 

two models. The average CI coverage was substantially under the nominal level when estimated 

by Model 1 (under-specified) for both the level-1 error standard deviation and the 

autocorrelation, but close to the nominal level for the level-1 error variance, and slightly under 
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the nominal level for the autocorrelation when estimated by Model 2 (over-specified). Lastly, the 

interval width was smaller when estimated by Model 1 (under-specified) than Model 2 (over-

specified). These findings indicate that the different modeling methods in the level-1 error 

structure had substantial impact on the estimates of the variance components when the level-1 

error structure was the extremely heterogeneous level-1 error structure. Generally, Model 2 

(over-specified) that models between case variation in the level-1 error structure worked better 

than Model 1 (under-specified) that does not model between case variation in the level-1 error 

structure. 

These results from Study 3 also imply that the form of heterogeneity in the data (i.e., one 

extreme case versus a more even spread of the level-1 variances) might have some impact on 

relative effectiveness of the two models for estimating the fixed effects and the variance 

components. In addition, these results suggest that researchers should try to model between case 

variation in the level-1 error structure when they analyze data that have the extremely 

heterogeneous structure showing one or more cases have substantially different variability than 

other cases. 

 

Limitations of the Study 

Since this study was conducted using the Monte Carlo simulation method, there are 

generalizability limitations regarding this study. Although the Monte Carlo method used in this 

study allowed the investigation of how various design factors can impact the parameter 

estimates, specific conditions (design factors) used in the study limit the generalizability of the 

study. The conditions were chosen based on a review of single-case literature and applied studies 

that were done using two-level models to analyze single-case data. The specific conditions 
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chosen for this study, however, are only some of the possible options that could have been 

included in the study. Specifically, the follow up studies (Study 2 and Study 3) used only a few 

conditions. Therefore, the results of this study can only be generalized to studies with the same 

or similar conditions. Any conclusions beyond the observed conditions should be interpreted 

with caution. 

Another limitation is related to the model specification and the types of outcome 

measure. First, this study assumed the outcome variable is continuous. There are various types of 

outcomes that are commonly used in single-case studies, such as binary, ordinal, or count 

outcomes which require different types of assumptions using a different distribution (e.g., Beta 

distribution and Poisson distribution) (Shadish & Rindskopf, 2007; Shadish et al., 2008). 

In addition, the two level model used in this study only included linear trends.  However, 

there are more complex trends (e.g., non-linear trends) that are also used in models to investigate 

single-case data (Shadish & Rindskopf, 2007). Moreover, this study only investigated the first-

order autoregressive level-1 error structure (AR(1)). As previously mentioned, there are various 

complex level-1 error structures that assume the errors to be autocorrelated, such as compound 

symmetry, second order autoregressive, banded toeplitz, or moving average. The benefit of 

choosing the AR(1) model is that it is one of the simplest autocorrelated level-1 error structures, 

and is the most commonly studied and applied the correlated error structure for the time series 

data (Velicer & Fava, 2003; West & Hepworth, 1991), and, therefore, the most logical for an 

initial study into modeling between case variation in the level-1 error structure 
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Implications of the Study 

Although single-case researchers have recognized the misspecification effect of level-1 

error structures on statistical inferences of multilevel models, researchers have overlooked how 

they have made a critical homogeneity assumption about the level-1 error structure in their 

studies. This study provides insight about how not modeling and modeling between case 

variation in the level-1 error structure, a misspecification issue of the level-1 error structure, 

impacts statistical inferences, an issue that had not previously been systematically explored. The 

results lead to various implications for applied single-case researchers who are conducting 

intervention studies, as well as for the methodologists who seek precise methods for determining 

intervention effects when analyzing single-case research. 

 

Implications for the Applied Single-Case Researchers   

The findings from this study provide a few recommendations for researchers who 

conduct single-case studies. The results of this study confirm that single-case researchers should 

feel comfortable interpreting the overall average treatment effects (shift in level and shift in 

slope) when they have data that show no between case variation of data, and furthermore, that 

the overall average treatment effects can also be comfortably interpreted when there is some 

between case variation in the variance (evenly spread out up to a variance ratio of 16), regardless 

of whether the heterogeneity has been explicitly modeled. However, researchers should be 

cautious to interpret overall treatment effects from a model that assumes homogeneity when they 

have data that show one or more cases that have substantially different variability than other 

cases. In the real world, single-case data that show one of the cases have a substantially larger 

amount of variability compared with the other cases exist (e.g., Harris, Friedlander, Saddler, 
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Frizzelle, & Graham, 2005). The results of this study indicate that if researchers had this kind of 

data, but they failed to correctly model or specify the level-1 error structure, then the results of 

the treatment effects would be inaccurate. Therefore, findings from this study suggest that 

researchers need to carefully inspect their data, and if they have data that show one or more cases 

that have a large amount of variability compared to the other cases, then they should try to model 

between case variation in the level-1 error structure to obtain more accurate and precise average 

treatment effects.    

Generally, variance components were biased in multilevel modeling of single-case data 

analysis. The results from this study were consistent with this previous finding. However, this 

study suggests that accuracy and precision of the variance components can be improved by 

modeling between case variation in the level-1 error structure. Specifically, for researchers that 

have data regardless of showing or not showing between case variation, modeling between case 

variation can be beneficial to improve accuracy and precision of the estimates of the variation 

within cases and the autocorrelation. For researchers that have data that show one case that has a 

substantially larger amount of variability compared with the other cases, modeling between case 

variation can be beneficial to improve accuracy and precision of the estimates of all variance 

parameters, including variation in the treatment effects across cases, and variation within cases, 

and autocorrelation.      

In addition, it was found that the design factors that continued to impact parameter 

estimates were the number of cases and the series length per case. As the number of cases and 

the series length per case increased, the accuracy and precision of the parameter estimates 

increased. This conclusion suggests that researchers should try to increase the number of 

participants or cases as well as the number of time points in their studies whenever possible. 
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Particularly, increasing the number of participants or cases can be more beneficial since the 

impact of the number of time points can be reduced if the number of participants or cases 

increases. 

Lastly, this study also provides a way to model between case variation in the level-1 error 

structure using WinBUGS, and makes these created codes accessible to applied researchers for 

use in their own research (Appendix D). 

 

Implications for Methodologists 

This study provides a few implications for methodologists who use a multilevel modeling 

to conduct single-case data analyses. Since this study only used the simplest correlated level-1 

error structure, AR(1), methodologists may want to look at more complex correlated level-1 

error structures to investigate if the results from this study can be replicated with other error 

structures. Similarly, further research can be done using different types of outcomes, such as 

binary, ordinal, or count outcomes. This would be reasonable because many of the outcomes 

used in single-case research are not continuous outcomes.   

In addition, more simulation work can be done with data having an extremely 

heterogeneous error structure. The results of Study 3 indicate that the different modeling 

methods in the level-1 error structure can have a substantial impact on both fixed effects and 

variance components when analyzing data having the extremely heterogeneous error structure. 

This finding is particularly distinguished from previous works that have investigated the 

misspecifications of the level-1 error structures on the single-case research and other research on 

the longitudinal analysis. The previous studies have found that the fixed effects are generally 

robust to misspecifications of the level-1 error structure (Ferron et al., 2009; Ferron et al., 2002; 
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Kwok et al, 2007; Merlande, 2014; Owen, 2011). However, Study 3 found that the 

misspecification of the level-1 error structure can have a substantial impact on both fixed effects 

and variance components. Therefore, these finding can be meaningful and beneficial for both 

researchers who are interested in average treatment effects as well as researchers who are 

interested in variation in the treatment, variation within cases, and autocorrelation, if it can be 

generalized to a broad range of the conditions. Because Study 3 only included a few conditions, 

further work should include more conditions that would allow for a thorough investigation of the 

impact of different models of the level-1 error structure on the estimates of multilevel models 

used with heterogeneous single-case data. 

Additionally, this study can be expended to more general growth curve studies or meta-

analysis studies using multilevel modeling. For those studies, it is possible that the level-1 error 

structure may vary across upper levels (e.g., classes or schools) or studies. Further work needs to 

be done to explore if the level-1 error structure varies across different studies or upper levels in 

real data sets, and if so, methodologist may want to examine if different methods of modeling 

level-1 error structure have some impact on the results of those studies. 

Furthermore, further research should be done to find the alternative estimation 

approaches on estimating variance components. This study indicated that the variance 

components are generally biased, especially the level-2 error variance. Thus, it would be worth 

investigating if the observed bias in the variance components can be reduced by using different 

approaches, such as different choices of priors (e.g., the use of more informative priors) in the 

Bayesian framework.   

Finally, this study focused on only the Bias, RMSE, the CI coverage, and the width 

outcomes of the parameter estimates. It would be interesting to investigate the impact of the 
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different modeling in the level-1 error structure on Type I error rates and the power estimates of 

the treatment effects. Some previous research on the misspecification of the multilevel growth 

curve models had found that the under specified models showed within the nominal alpha level 

(.05) of Type I error rates but the low statistical power of the fixed effects (Kwok et al., 2007; 

Ferron et al., 2002). There are few single-case studies that looked at the Type I error rate and the 

power estimates. Previous work with the three-level models on the single-case data (Merlande, 

2014) had found that the Type I error rates tended to be close to the nominal level which is 

consistent with the previous studies of the multilevel growth curve models. In addition, Merlande 

(2014) had found that the variability at the upper levels had substantial impact on the power 

estimates of the fixed effects. Since few studies were done on the Type I error rates and the 

power estimates in the multilevel modeling frame work on the single-case data analyses, it would 

be worthwhile to investigate these outcomes of the parameter estimates.  
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APPENDIX A: TABLES OF RELATIVE BIAS VALUES 
 
Table A1  
Relative bias for the fixed treatment effects 

Num
ber 
of 

cases 

Series 
length 

per 
case 

Variation 
in the 

level-2 
errors 

Shift in level Shift in slope 

Homo 
Moderately 

hetero 
Severely hetero Homo Moderately hetero Severely hetero 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 1 
Model 

2 
Model 

1 
Model 

2 
Model 

1 
Model 

2 

4 10 Level-2 -0.004 -0.005 0.030 0.027 -0.033 -0.036 0.094 0.090 0.018 0.011 0.033 0.002 

  Level-1 0.001 -0.002 -0.013 -0.012 0.014 0.014 -0.001 -0.001 0.063 0.055 -0.062 -0.076 

 20 Level-2 0.012 0.009 -0.008 -0.007 0.000 -0.001 0.038 0.040 -0.018 -0.021 -0.027 -0.029 

  Level-1 -0.011 -0.011 -0.005 -0.007 0.007 0.008 0.052 0.056 0.020 0.021 0.051 0.051 

8 10 Level-2 0.004 0.003 0.020 0.017 0.010 0.007 0.122 0.118 -0.030 -0.024 0.012 0.009 

  Level-1 0.007 0.008 -0.003 -0.002 0.001 0.003 0.040 0.043 0.006 0.004 -0.010 -0.002 

 20 Level-2 0.007 0.007 -0.004 -0.005 -0.002 -0.004 0.017 0.021 0.004 0.003 0.027 0.026 

  Level-1 0.005 0.005 -0.008 -0.010 -0.003 -0.001 -0.011 -0.012 -0.005 -0.004 -0.016 -0.011 
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Table A2  
Relative bias for the variance components 

Num
ber 
of 

cases 

Series 
length 

per 
case 

Variation 
in the 

level-2 
errors 

Level-2 error SD for shift in level Level-2 SD for shift in slope 

Homo 
Moderately 

hetero 
Severely hetero Homo Moderately hetero Severely hetero 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 1 Model 2 
Model 

1 
Model 2 

Model 
1 

Model 2 

4 10 Level-2 1.134 1.129 1.175 1.159 1.257 1.235 1.610 1.604 1.548 1.545 1.678 1.618 

  Level-1 2.104 2.099 2.019 2.012 2.122 2.049 2.983 2.975 2.860 2.860 2.885 2.795 

 20 Level-2 1.045 1.052 1.056 1.062 1.111 1.104 0.941 0.927 0.987 0.974 1.001 0.983 

  Level-1 1.743 1.759 1.654 1.670 1.657 1.636 1.240 1.248 1.227 1.210 1.229 1.199 

8 10 Level-2 0.177 0.172 0.182 0.170 0.177 0.174 0.279 0.271 0.217 0.202 0.242 0.212 

  Level-1 0.434 0.432 0.423 0.418 0.432 0.384 0.650 0.650 0.589 0.567 0.657 0.590 

 20 Level-2 0.164 0.158 0.143 0.133 0.154 0.162 0.173 0.154 0.169 0.153 0.159 0.148 

  Level-1 0.362 0.363 0.296 0.287 0.281 0.262 0.192 0.172 0.150 0.134 0.196 0.183 
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APPENDIX B: TABLES OF ETA-SQUARED VALUES 
 
Table A3 
Eta-squared values (η2) for the association of the design factors with the bias for the 
shift in level parameter 

 

 
 

99%
Variation in the level-2 errors*True level-1 error structure 0.24476
Series length per case*Variation in the level-2 errors*True level-1 error structure 0.20389
Number of cases*Variation in the level-2 errors*True level-1 error structure 0.14989
Series length per case*True level-1 error structure 0.11015
Series length per case*Number of cases*Variation in the level-2 errors*True level-1 error 
structure 0.10181
Series length per case*Number of cases*True level-1 error structure 0.04305
Number of cases 0.02686
Series length per case*Number of cases 0.02642
Series length per case 0.02012
Series length per case*Number of cases*Variation in the level-2 errors 0.02011
Number of cases*True level-1 error structure 0.01605
True level-1 error structure 0.01196
Number of cases*Variation in the level-2 errors 0.00999
Variation in the level-2 errors 0.00896
Variation in the level-2 errors*Type of model 0.00124
Variation in the level-2 errors*Type of model*True level-1 error structure 0.00087
Series length per case*Variation in the level-2 errors*Type of model*True level-1 error 
structure 0.00086
Type of model 0.00078
Number of cases*Type of model 0.00043
Series length per case*Variation in the level-2 errors*Type of model 0.00029
Number of cases*Type of model*True level-1 error structure 0.00025
Series length per case*Variation in the level-2 errors 0.00021
Series length per case*Type of model 0.00018
Series length per case*Number of cases*Type of model 0.00014
Number of cases*Variation in the level-2 errors*Type of model 0.00012
Series length per case*Number of cases*Variation in the level-2 errors*Type of model 0.00011
Type of model*True level-1 error structure 0.0001
Series length per case*Number of cases*Type of model*True level-1 error structure 0.00003
Number of cases*Variation in the level-2 errors*Type of model*True level-1 error structure 0.00003
Series length per case*Type of model*True level-1 error structure 0.00002
Total Explained 99%
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Table A4 
Eta-squared values (η2) for the association of the design factors with the bias for the 
shift in slope parameter 
 

η2 
True level-1 error structure 0.24789
Variation in the level-2 errors*True level-1 error structure 0.14349
Series length per case*Number of cases*True level-1 error structure 0.10482
Series length per case*True level-1 error structure 0.09062
Series length per case*Number of cases*Variation in the level-2 errors 0.08815
Series length per case*Variation in the level-2 errors*True level-1 error structure 0.08258
Series length per case*Variation in the level-2 errors 0.06979
Number of cases*True level-1 error structure 0.03448
Variation in the level-2 errors 0.02223
Number of cases*Variation in the level-2 errors 0.0209
Series length per case*Number of cases 0.01767
Series length per case 0.01627
Number of cases 0.00464
Number of cases*Variation in the level-2 errors*True level-1 error structure 0.00158
Number of cases*Type of model 0.00144
Number of cases*Type of model*True level-1 error structure 0.00139
Series length per case*Type of model 0.00119
Series length per case*Number of cases*Type of model 0.00118
Type of model*True level-1 error structure 0.00079
Variation in the level-2 errors*Type of model*True level-1 error structure 0.0007
Type of model 0.00059
Variation in the level-2 errors*Type of model 0.0005
Series length per case*Type of model*True level-1 error structure 0.00047
Series length per case*Variation in the level-2 errors*Type of model 0.00011
Number of cases*Variation in the level-2 errors*Type of model 0.00004
Total Explained 95%

 

Table A5 
Eta-squared values (η2) for the association of the design factors with the RMSE for the 
shift in level parameter 
 

η2 
Number of cases 0.48343
Variation in the level-2 errors 0.3801
Series length per case 0.10668
True level-1 error structure 0.00113
Type of model 0.00025
Total Explained 97%
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Table A6 
Eta-squared values (η2) for the association of the design factors with the RMSE for the 
shift in slope parameter 

η2 
Series length per case 0.47322
Number of cases 0.27695
Variation in the level-2 errors 0.22127
True level-1 error structure 0.00143
Type of model 0.00013
Total Explained 97%

 

Table A7 
Eta-squared values (η2) for the association of the design factors with the CI coverage for the 
shift in level parameter 

η2 
Number of cases 0.88425
Variation in the level-2 errors 0.03597
Series length per case 0.01128
True level-1 error structure 0.00842
Type of model 0.00127
Total Explained 94%

 

Table A8 
Eta-squared values (η2) for the association of the design factors with the CI coverage for the 
shift in slope parameter 

η2 
Number of cases 0.8304
Series length per case 0.08105
Variation in the level-2 errors 0.0166
Series length per case*Number of cases 0.01376
Series length per case*Variation in the level-2 errors 0.00771
Series length per case*True level-1 error structure 0.00529
Variation in the level-2 errors*True level-1 error structure 0.00168
Number of cases*Variation in the level-2 errors 0.00064
True level-1 error structure 0.00051
Series length per case*Type of model 0.00032
Type of model 0.00032
Type of model*True level-1 error structure 0.00019
Number of cases*True level-1 error structure 0.00011
Variation in the level-2 errors*Type of model 0.00006
Number of cases*Type of model 0.00002
Total Explained 96%
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Table A9 
Eta-squared values (η2) for the association of the design factors with the CI width for the 
shift in level parameter 

shift in level η2 
Number of cases 0.84039
Variation in the level-2 errors 0.11522
Series length per case 0.01657
True level-1 error structure 0.0002
Type of model 0
Total Explained 97%

 
 

Table A10 
Eta-squared values (η2) for the association of the design factors with the CI width for the 
shift in slope parameter 

η2 

Number of cases 0.65402

Series length per case 0.19115

Variation in the level-2 errors 0.0952

True level-1 error structure 0.00046

Type of model 0.00003

Total Explained 94%
 
 

Table A11 
Eta-squared values (η2) for the association of the design factors with the bias of the level-2 error 
standard deviation for the shift in level parameter 

η2 

Number of cases 0.95699
Series length per case 0.01168
Variation in the level-2 errors 0.00933
True level-1 error structure 0.00035
Type of model 0.00005

Total Explained 98%
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Table A12 
Eta-squared values (η2) for the association of the design factors with the bias of the level-2 error 
standard deviation for the shift in slope parameter 

η2 
Number of cases 0.74042
Series length per case 0.15689
Series length per case*Number of cases 0.06818
Variation in the level-2 errors 0.01321
Number of cases*Variation in the level-2 errors 0.01295
Series length per case*Variation in the level-2 errors 0.00605
Series length per case*True level-1 error structure 0.00046
True level-1 error structure 0.0004
Type of model 0.00017
Variation in the level-2 errors*True level-1 error structure 0.00016
Type of model*True level-1 error structure 0.00007
Number of cases*True level-1 error structure 0.00006
Series length per case*Type of model 0.00001
Variation in the level-2 errors*Type of model 0.00001
Number of cases*Type of model 0
Total Explained 99%

 
 

Table A13 
Eta-squared values (η2) for the association of the design factors with the bias of the level-1 error 
standard deviation parameter 

99%
Series length per case 0.25041
True level-1 error structure 0.22317
Variation in the level-2 errors 0.19479
Number of cases 0.11453
Type of model*True level-1 error structure 0.10383
Series length per case*Variation in the level-2 errors 0.04285
Number of cases*Type of model 0.01779
Series length per case*Number of cases 0.01247
Series length per case*Type of model 0.00873
Series length per case*True level-1 error structure 0.00854
Number of cases*True level-1 error structure 0.00729
Type of model 0.00456
Number of cases*Variation in the level-2 errors 0.00016
Variation in the level-2 errors*True level-1 error structure 0.0001
Variation in the level-2 errors*Type of model 0.00008
Total Explained 99%
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Table A14 
Eta-squared values (η2) for the association of the design factors with the bias of the 
autocorrelation parameter 

η2 
True level-1 error structure 0.88205
Variation in the level-2 errors 0.04965
Series length per case 0.02232
Type of model 0.0043
Number of cases 0.00322
Total Explained 96%

 

Table A15 
Eta-squared values (η2) for the association of the design factors with the RMSE of the level-2 
error standard deviation for the shift in level parameter 

η2 
Number of cases 0.8857
Variation in the level-2 errors 0.08459
Series length per case 0.00822
True level-1 error structure 0.00029
Type of model 0.00015
Total Explained 98%

 

Table A16 
Eta-squared values (η2) for the association of the design factors with the RMSE of the level-2 
error standard deviation for the shift in slope parameter 

η2 
Number of cases 0.73172
Series length per case 0.13375
Variation in the level-2 errors 0.05757
Series length per case*Number of cases 0.05416
Number of cases*Variation in the level-2 errors 0.01477
Series length per case*Variation in the level-2 errors 0.00456
Type of model 0.00026
Number of cases*True level-1 error structure 0.00023
True level-1 error structure 0.00023
Series length per case*True level-1 error structure 0.00018
Type of model*True level-1 error structure 0.00011
Variation in the level-2 errors*True level-1 error structure 0.00009
Series length per case*Type of model 0.00003
Number of cases*Type of model 0.00001
Variation in the level-2 errors*Type of model 0
Total Explained >99% 
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Table A17 
Eta-squared values (η2) for the association of the design factors with the RMSE of the level-1 
error standard deviation parameter 

η2 
True level-1 error structure 0.62073
Type of model*True level-1 error structure 0.16449
Series length per case 0.10855
Type of model 0.05149
Number of cases 0.02176
Series length per case*Type of model 0.00789
Number of cases*True level-1 error structure 0.00775
Variation in the level-2 errors 0.0043
Series length per case*Number of cases 0.00315
Number of cases*Type of model 0.00207
Series length per case*Variation in the level-2 errors 0.00181
Series length per case*True level-1 error structure 0.00046
Variation in the level-2 errors*True level-1 error structure 0.00013
Variation in the level-2 errors*Type of model 0.00005
Number of cases*Variation in the level-2 errors 0.00001
Total Explained 99%

 
 
 

Table A18 
Eta-squared values (η2) for the association of the design factors with the RMSE of the 
autocorrelation parameter 

η2 

Series length per case 0.06078

Number of cases 0.04635

Type of model 0.00194

Variation in the level-2 errors 0.00032

Total Explained 94%
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Table A19 
Eta-squared values (η2) for the association of the design factors with the CI coverage of the 
level-2 error standard deviation for the shift in level parameter 

η2 
Variation in the level-2 errors 0.29178
Series length per case 0.20843
Series length per case*Number of cases*True level-1 error structure 0.10725
Type of model 0.06713
Series length per case*Variation in the level-2 errors 0.05435
Series length per case*Number of cases*Variation in the level-2 
errors*True level-1 error structure 0.04182
Series length per case*True level-1 error structure 0.04138
Series length per case*Variation in the level-2 errors*True level-1 error 
structure 0.03496
True level-1 error structure 0.0204
Number of cases*Variation in the level-2 errors 0.01805
Number of cases*Variation in the level-2 errors*True level-1 error 
structure 0.01632
Number of cases 0.0156
Series length per case*Number of cases*Type of model*True level-1 error 
structure 0.01346
Variation in the level-2 errors*True level-1 error structure 0.01297
Number of cases*True level-1 error structure 0.00824
Number of cases*Type of model 0.00806
Type of model*True level-1 error structure 0.00682
Series length per case*Number of cases*Variation in the level-2 errors 0.0055
Number of cases*Variation in the level-2 errors*Type of model 0.00373
Series length per case*Type of model*True level-1 error structure 0.00367
Number of cases*Variation in the level-2 errors*Type of model*True 
level-1 error structure 0.00227
Number of cases*Type of model*True level-1 error structure 0.00169
Series length per case*Type of model 0.00136
Series length per case*Number of cases*Type of model 0.00094
Variation in the level-2 errors*Type of model 0.00061
Series length per case*Variation in the level-2 errors*Type of model*True 
level-1 error structure 0.00027
Variation in the level-2 errors*Type of model*True level-1 error structure 0.00017
Series length per case*Number of cases*Variation in the level-2 
errors*Type of model 0.00008
Series length per case*Number of cases 0.00003
Series length per case*Variation in the level-2 errors*Type of model 0.00003
Total Explained 99%
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Table A20 
Eta-squared values (η2) for the association of the design factors with the CI coverage of the 
level-2 error standard deviation for the shift in slope parameter 

η2 
Series length per case 0.64808
Variation in the level-2 errors*True level-1 error structure 0.06562
Type of model 0.06035
Variation in the level-2 errors 0.05248
Series length per case*Variation in the level-2 errors 0.04775
True level-1 error structure 0.04525
Number of cases*True level-1 error structure 0.01203
Series length per case*True level-1 error structure 0.00568
Number of cases*Variation in the level-2 errors 0.00503
Number of cases 0.00384
Series length per case*Type of model 0.00283
Type of model*True level-1 error structure 0.00199
Series length per case*Number of cases 0.00057
Variation in the level-2 errors*Type of model 0.0001
Number of cases*Type of model 0
Total Explained 95%

 
 

Table A21 
Eta-squared values (η2) for the association of the design factors with the CI coverage of the 
level-1 error standard deviation parameter 

η2 
True level-1 error structure 0.32557
Type of model 0.30486
Type of model*True level-1 error structure 0.18597
Series length per case 0.06123
Series length per case*Type of model 0.04574
Series length per case*True level-1 error structure 0.03272
Number of cases*True level-1 error structure 0.00187
Number of cases 0.00077
Variation in the level-2 errors*True level-1 error structure 0.0004
Number of cases*Type of model 0.00018
Number of cases*Variation in the level-2 errors 0.00014
Series length per case*Variation in the level-2 errors 0.00013
Series length per case*Number of cases 0.00011
Variation in the level-2 errors*Type of model 0.00011
Variation in the level-2 errors 0
Total Explained 96%
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Table A22 
Eta-squared values (η2) for the association of the design factors with the CI coverage of the 
autocorrelation parameter 

η2 
True level-1 error structure 0.29609
Type of model 0.22422
Series length per case 0.17723
Type of model*True level-1 error structure 0.07331
Series length per case*True level-1 error structure 0.07218
Number of cases 0.05228
Series length per case*Type of model 0.02828
Number of cases*True level-1 error structure 0.02098
Number of cases*Type of model 0.01599
Variation in the level-2 errors 0.00922
Variation in the level-2 errors*True level-1 error structure 0.00419
Series length per case*Number of cases 0.00185
Variation in the level-2 errors*Type of model 0.0015
Number of cases*Variation in the level-2 errors 0.00053
Series length per case*Variation in the level-2 errors 0.00003
Total Explained 98%

 
 

Table A23 
Eta-squared values (η2) for the association of the design factors with the CI width of the level-2 
error standard deviation for the shift in level parameter 

η2 

Number of cases 0.88199
Variation in the level-2 errors 0.08128
Series length per case 0.00941
True level-1 error structure 0.00015
Type of model 0

Total Explained 97%
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Table A24 
Eta-squared values (η2) for the association of the design factors with the CI width of the level-2 
error standard deviation for the shift in slope parameter 

η2 
Number of cases 0.698
Variation in the level-2 errors 0.09949
Series length per case 0.06895
Type of model 0.04344
Number of cases*Variation in the level-2 errors 0.03027
Series length per case*Number of cases 0.02176
Series length per case*Type of model 0.01841
Number of cases*Type of model 0.01166
Variation in the level-2 errors*Type of model 0.00052
True level-1 error structure 0.00017
Series length per case*Variation in the level-2 errors 0.00008
Type of model*True level-1 error structure 0.00006
Series length per case*True level-1 error structure 0.00004
Variation in the level-2 errors*True level-1 error structure 0.00002
Number of cases*True level-1 error structure 0.00001
Total Explained 99%

 
 
Table A25 
Eta-squared values (η2) for the association of the design factors with the CI width of the level-1 
error standard deviation parameter 

η2 
Type of model 0.43862
Series length per case 0.38414
Number of cases 0.11094
True level-1 error structure 0.0172
Variation in the level-2 errors 0.00949
Total Explained 96%

 
 
Table A26 
Eta-squared values (η2) for the association of the design factors with the CI width of the 
autocorrelation parameter 

η2 
Series length per case 0.47031
Type of model 0.33877
Number of cases 0.16732
Variation in the level-2 errors 0.00931
True level-1 error structure 0.00028
Total Explained 99%
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APPENDIX C: TABLES AND FIGURES OF INDIVIDUAL ESTIMATES OF 
OUTCOME VALUES 

 
 
 
 
Table A27  
Individual bias, RMSE, CI coverage and width for the fixed treatment effects 

 
Shift in level Shift in slope 

 
Model 1 Model 2 Model1 Model2 

 
Mean SD Mean SD Mean SD Mean SD 

Bias -0.001 0.019 -0.002 0.019 0.003 0.008 0.002 0.007 

RMSE 0.887 0.149 0.874 0.147 0.281 0.108 0.277 0.105 

CI coverage 0.953 0.009 0.958 0.009 0.958 0.013 0.964 0.012 

CI width 3.636 0.613 3.654 0.632 1.237 0.549 1.249 0.537 
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APPENDIX D: WinBUGS codes for Model 1 and Model 2  
 

 
Model 1: 
 
Model 
{ 
for( i in 1 : N ) {    
for( j in 1 : T ) {   
Y[i , j] ~ dnorm(theta[i ,j],tauc) 
mu[i , j] <- alpha[i] + beta[i]*step(x[j]-CP[i])+ ca[i] * (x[j]) + 
da[i]*(x[j] - CP[i])*step(x[j]-CP[i]) 
} 
theta [i,1]<- mu [i,1]  
for ( j in 2 : T) { 
theta[i ,j]<-mu[i ,j]+tgamma*(Y[i ,j-1]-mu[i ,j-1]) 
} 
alpha[i] ~ dnorm(alphac,alphatau)  
beta[i] ~ dnorm(betac,betatau) 
ca[i] ~ dnorm(cac,catau) 
da[i] ~ dnorm(dac,datau) 
} 
alphac ~ dnorm(0.0,1.0E-6)   
betac ~ dnorm(0.0,1.0E-6) 
cac ~ dnorm(0.0,1.0E-6) 
dac ~ dnorm(0.0,1.0E-6) 
sigmaalpha~ dunif(0,100) 
sigmabeta~ dunif(0,100) 
sigmaca~ dunif(0,100) 
sigmada~ dunif(0,100) 
alphatau<-1/(sigmaalpha*sigmaalpha) 
betatau<-1/(sigmabeta*sigmabeta) 
catau<-1/(sigmaca*sigmaca) 
datau<-1/(sigmada*sigmada) 
tgamma~dnorm(0.0,1.0E-6)I(-0.99999,0.99999) 
tsigma~ dunif(0,100) 
tauc<- 1 / (tsigma*tsigma) 
} 
 
 
Model 2: 
 
Model 
{ 
for( i in 1 : N ) {     
for( j in 1 : T ) {   
Y[i , j] ~ dnorm(theta[i ,j],tauc[i]) 
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mu[i , j] <- alpha[i] + beta[i]*step(x[j]-CP[i])+ ca[i] * (x[j]) + 
da[i]*(x[j] - CP[i])*step(x[j]-CP[i]) 
} 
theta [i,1]<- mu [i,1]  
for ( j in 2 : T) { 
theta[i ,j]<-mu[i ,j]+tgamma[i]*(Y[i ,j-1]-mu[i ,j-1]) 
} 
alpha[i] ~ dnorm(alphac,alphatau)  
beta[i] ~ dnorm(betac,betatau) 
ca[i] ~ dnorm(cac,catau) 
da[i] ~ dnorm(dac,datau) 
tgamma[i]~dnorm(simge,gr)I(-0.99999,0.99999) 
tsigma[i] ~ dunif(sa,sb) 
tauc[i] <- 1 / (tsigma[i]*tsigma[i]) 
} 
alphac ~ dnorm(0.0,1.0E-6) 
betac ~ dnorm(0.0,1.0E-6) 
cac ~ dnorm(0.0,1.0E-6) 
dac ~ dnorm(0.0,1.0E-6)   
sigmaalpha~ dunif(0,100) 
sigmabeta~ dunif(0,100) 
sigmaca~ dunif(0,100) 
sigmada~ dunif(0,100) 
alphatau<-pow(sigmaalpha, -2) 
betatau<-pow(sigmabeta, -2) 
catau<-pow(sigmaca, -2) 
datau<-pow(sigmada, -2) 
simge~dnorm(0.0,1.0E-6) 
simgr~ dunif(0,100) 
gr <- pow(simgr, -2) 
sa~ dunif(0,100) 
sb~ dunif(sa,100) 
tmsig<-mean(tsigma[]) 
tmgamma<-mean(tgamma[]) 
smsig<- (sa+sb)/2 
svsig<- sqrt((pow((sb-sa), 2))/12) 
} 
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