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ABSTRACT 

Differential item functioning (DIF) is a psychometric issue routinely considered in 

educational and psychological assessment. However, it has not been studied in the context of a 

recently developed componential statistical model, the model with internal restrictions on item 

difficulty (MIRID; Butter, De Boeck, & Verhelst, 1998). Because the MIRID requires test 

questions measuring either single or multiple cognitive processes, it creates a complex 

environment for which traditional DIF methods may be inappropriate. This dissertation sought to 

extend the MIRID framework to detect DIF at the item-group level and the individual-item level. 

Such a model-based approach can increase the interpretability of DIF statistics by focusing on 

item characteristics as potential sources of DIF. In particular, group-level DIF may reveal 

comparative group strengths in certain secondary constructs. A simulation study was conducted 

to examine under different conditions parameter recovery, Type I error rates, and power of the 

proposed approach. Factors manipulated included sample size, magnitude of DIF, distributional 

characteristics of the groups, and the MIRID DIF models corresponding to discrete sources of 

differential functioning. The impact of studying DIF using wrong models was investigated.  

The results from the recovery study of the MIRID DIF model indicate that the four delta 

(i.e., non-zero value DIF) parameters were underestimated whereas item locations of the four 

associated items were overestimated. Bias and RMSE were significantly greater when delta was 

larger; larger sample size reduced RMSE substantially while the effects from the impact factor 

were neither strong nor consistent. Hypothesiswise and adjusted experimentwise Type I error 



 

ix 

 

rates were controlled in smaller delta conditions but not in larger delta conditions as estimates of 

zero-value DIF parameters were significantly different from zero. Detection power of the DIF 

model was weak. Estimates of the delta parameters of the three group-level DIF models, the 

MIRID differential functioning in components (DFFc), the MIRID differential functioning in 

item families (DFFm), and the MIRID differential functioning in component weights (DFW), 

were acceptable in general. They had good hypothesiswise and adjusted experimentwise Type I 

error control across all conditions and overall achieved excellent detection power. 

When fitting the proposed models to mismatched data, the false detection rates were 

mostly beyond the Bradley criterion because the zero-value DIF parameters in the mismatched 

model were not estimated adequately, especially in larger delta conditions. Recovery of item 

locations and component weights was also not adequate in larger delta conditions. Estimation of 

these parameters was more or less affected adversely by the DIF effect simulated in the 

mismatched data. To study DIF in MIRID data using the model-based approach, therefore, more 

research is necessary to determine the appropriate procedure or model to implement, especially 

for item-level differential functioning.  
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CHAPTER ONE  

INTRODUCTION 

Modeling cognitive or behavioral constructs underlying item responses with decomposed 

processes has become an actively researched area in educational and psychological measurement. 

Different from the traditional practice of trait organization, such componential approaches 

recognize intermediate item responses that represent processes as well as the final responses and 

aim to explain final responses with properties of the intermediate responses. Observations on the 

“components” supply additional information on more dimensions than can be obtained by 

focusing on the trait alone. A prominent componential approach, the linear logistic test model 

(LLTM; Fischer, 1973, 1977), has been adopted by practitioners from many disciplines and 

served as the platform for development of newer psychometric models, such as the model with 

internal restrictions on item difficulty (MIRID; Butter, De Boeck, & Verhelst, 1998). Originally 

a member of the Rasch family of models, the MIRID has had many extensions which provide a 

new context for investigating measurement issues common to education and psychology. This 

dissertation concentrated on one of them, differential item functioning (DIF).  

Differential Item Functioning in the Context of the MIRID 

At the heart of test fairness and construct validity is the issue of differential item 

functioning, which has received extensive research in the past decades. A general definition 

provided by Chang, Mazzeo, & Roussos (1996) considers an item as having DIF when 

conditional on the latent trait being measured, one group of respondents having on average 
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higher probability than the other group to give a particular response to the item. Commonly seen 

in the literature are DIF analyses to answer the question whether particular items became unfairly 

easier for members of the focal group than for the reference group.  

Numerous procedures have been devised and implemented for DIF detection. Among the 

most often used are the Mantel-Haenszel (MH) (Holland & Thayer, 1988) method, which is non-

parametric, and several model-based procedures, such as Lord's chi-square method (Lord, 1980), 

Raju's (1990) area measures, and the likelihood ratio test (Thissen, Steinberg, & Wainer, 1993). 

These procedures have been proven successful in discovering DIF but not as much in helping to 

understand its possible causes. Moreover, it is unclear the extent to which these traditional 

approaches are effective when faced with the unique characteristics of the MIRID. 

A confirmative approach to examine how underlying processes affect a complex 

behavioral outcome, the MIRID assumes that the construct of interest can be decomposed into 

mental processes represented by different items and that there is a definitive between-item 

relationship similar to that of the LLTM with disparate groups of items retaining one or more 

properties. For example, performance on questions of addition, subtraction, and multiplication 

are expected to influence response to items subsuming all these operations. Tests designed in the 

framework of the MIRID are made of a number of item families, each of which consists of one 

or more component items measuring individual processes (subtasks) as well as a composite item 

requiring all these subtasks to answer. Every item family corresponds to a “situation” describing 

the construct and shares the same number of component items. The difficulty parameter of the 

composite item is defined as weighted summation of the parameters of all component items in 

this family plus an intercept.  In other words, the MIRID assumes that the difficulty of a 
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composite item is explained perfectly by the difficulty parameters of all the component items in 

its family and there is no room for error. 

The unique data structure resulting from this linear relationship gives rise to a complex 

DIF environment where different types of DIF may exist. A basic form occurs when multiple 

items from different item families and different components exhibit DIF. The sporadicity and 

lack of pattern therein would make the cause of this kind of individual item DIF difficult to 

explain. However, we are faced with another kind of DIF when classes of items sharing the same 

properties presumably contribute to the differential effect in a substantive way. Modeling this 

form of DIF (“differential facet functioning (DFF)”; Englehard, 1972) summarizes individual-

item DIF in a parsimonious fashion on the basis of commonality amongst these items. In the 

MIRID, there are two facets of item groups (“domains”), components and situations (item 

families), and one or more categories of each or both can potentially cause DIF. 

The DFF exhibited by item families (“DFFm”) can be labeled “situational” since each 

family of items describes a common setting. In a hypothetical case of measuring altruistic 

abstinence, the questions could inquire about sacrificing for children (the common setting) where 

women would be expected to outscore men. Consequently, items of the same family would have 

their location parameters differing between males and females and violate the null hypothesis of 

equal component item parameters across groups. The other type of group-level DIF is found with 

items within the same component (“DFFc”) and can be labeled “componential”, which comes 

into being when ALL or MOST of the items under one component or multiple components carry 

parameters that favor certain manifest groups over the others. Again, with the same example, 

suppose the construct of altruistic abstinence can be broken down into such factors as willpower, 
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faith, and life satisfaction, one would expect that respondents of certain cultural background tend 

to answer more strongly questions measuring a particular factor than the others.  

The fourth potential source of DIF in the MIRID is the weight parameter accompanying 

each component (component weight), including the intercept. This form of componential DIF 

(differential weight functioning or “DWF”) occurs when component items contribute to the 

difficulty of composite item varyingly from group to group; that is, a component (or its items on 

average) may be more important for the focal group than the reference group. Greater 

complexity ensues when more than one type of DIF happens. For example, when there is 

differential effect with one item family and a component at once, unequal location parameters 

coincide with unequal component weights across groups to create DIF parameters on two 

dimensions that will be challenging to detect.  

Any type of DIF in component items will lead to DIF in associated composite items 

whose parameters must be estimated through the linear relationship between component and 

composite items. When DIF occurs in component weights alone, only composite items will 

exhibit item-level DIF.  

In summary, the MIRID presents different types of possible DIF scenarios for manifest 

groups, including at both individual-item level and at item-group level, which further breaks 

down into componential DIF, situational DIF, and component weight DIF, as well as 

concurrence of any of these DIF types. Such complexity must be heeded during investigation.  

DIF as the Consequence of Construct Multidimensionality 

In measurement practice, the construct of interest can be viewed as comprising more than 

one dimension. This does not imply necessarily applying multidimensional psychometric models; 

rather, it provides a framework for study of differential item functioning. In the context of the 
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MIRID, the properties shared by component items or situational items can be viewed as 

secondary dimensions to the primary or the target trait being tested. Therefore, DFF and DWF 

may be thought of as the consequence of secondary dimensions not accounted for in normal 

assessments.  

Numerous studies adopted the DIF framework of secondary dimensions (Ackerman, 

1992; Bolt & Stout, 1996; Douglas, Roussos, & Stout, 1996; Finch, 2005; Roussos & Stout, 

1996; Shealy & Stout, 1993a, 1993b; Xie & Wilson, 2008). According to Shealy and Stout 

(1993a & 1993b), a secondary dimension is considered auxiliary and to cause benign DIF if it 

complements the primary dimension intended to be measured; on the contrary, if the item 

property is irrelevant to the construct, it is a nuisance dimension that leads to adverse DIF. 

Substantive analysis may be called upon to determine whether the DIF is benign or adverse. By 

retaining the auxiliary dimension of items and eliminating items with adverse DIF, construct 

validity and fairness of the test will be improved at once. Although the MIRID was conceived as 

a unidimensional model, it can be considered to some extent multidimensional if each 

component is treated as a dimension of the trait of interest. Thus the multidimensional DIF 

framework proposed by Shealy and Stout (1993a) can be applied in this research to untangle the 

complexity. 

By applying the paradigm of multidimensionality as the potential cause of differential 

functioning, differential functioning of items in the MIRID can be studied in the statistical 

framework of generalized linear and nonlinear mixed models (GLMMs and NLMMs) by adding 

grouping or interaction covariates. The nonlinearity in the difficulty of composite items results 

from the product of two parameters to be estimated: the latent item predictor and component 

weight, which makes up the fixed effects part of the MIRID. Such a model-based approach is 
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primarily based on Meulders and Xie (2004), who modeled DIF by including person-by-item 

interactions as predictors in the NLMM. Their work extended from a general DIF approach, 

differential facet functioning (Englehard, 1992), which allows various procedures to explore DIF 

at the level of item groups. The person property means group membership and the item property 

the subtask it measures so that their interaction reflects the difference in ability between the focal 

and the reference group. 

Purpose of the Study 

DIF studies are an important means to preserve test fairness and construct validity and 

have produced a voluminous literature and numerous detection methods. The MIRID and its 

extensions can become powerful tools to study cognitive and affective attributes underlying 

latent traits. However, due to its unique componential structure, applying conventional detection 

methods may lead to incorrect conclusions failing to account for the relationship between 

component and composite items. Like with other less applied psychometric models, in-depth 

knowledge on their statistical properties and appropriate and effective implementation 

procedures, such as ways of parameterization, methods to study differential functioning must be 

developed before they are ready for applied data application.  

No research on differential functioning in the context of the MIRID has been published 

so far. Wang and Jin (2010) postulated an approach of a likelihood ratio test based on nested 

models to study DIF in component items and composite items. Their method of DIF detection 

would need to be repeated for every studied item and will neither point out the potential source 

of nor explain the differential functioning. They did not carry out the study and no other research 

on this topic has been found.  
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In the past decades, research in differential functioning has gone through three phases of 

evolution in focus and efforts (Zumbo, 2007). In the first phase (“conceptual”), the emphasis was 

to distinguish between item bias and item impact by identifying item characteristics that were 

either intended to be assessed and thus causes of group differences in performance as a result of 

impact or unintended to be assessed so as to making the item unfairly easier and biased for one 

group over another. The focus of the next phase (“statistical”) was on establishing procedures to 

detect DIF with sufficient power and acceptable Type I error rates. Nevertheless, many standard 

DIF procedures do not lend themselves to identification of potential causes behind DIF after 

statistical analysis has flagged certain items and created the disjoint between techniques and 

meaning. In the current third phase (“substantive”), however, the efforts in DIF studies are 

poured into discovering reasons behind identified DIF for distinct groups of equal trait levels by 

ways of purposeful modeling and content analysis. 

The substantive approach to studying DIF is suitable for the complexity and various types 

of differential functioning with the MIRID. It avoids the often adopted practice of removing 

from the test any items flagged by statistical detection for the DIF exhibited may be benign 

instead of adverse, which are often confounded in reality. Removing items with adverse DIF 

improves test fairness. Conversely, keeping DIF items on auxiliary secondary dimensions 

improves construct validity of the test as it indicates that these items are capable of 

differentiating groups on valid grounds that are part of the construct being measured. If these 

dimensions as possible explanation of the benign DIF expectedly confirm the design theory 

behind the MIRID instrument and increase construct knowledge, such items or their improved 

version need to be kept in the test. On the other hand, keeping these “good” items saves the 

unnecessary cost that may be incurred from modifying or replacing them.  
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The objective of this research was two-fold. One was to propose and examine a model-

based approach to detecting and potentially explaining in the context of the MIRID differential 

functioning by taking into account its possible discrete sources, including individual items (DIF), 

item facets formed by components (DFFc) and item families (DFFm), and component weight 

(DWF). The proposed approach is formulated by extending the standard MIRID, a member of 

the Rasch family of models, to include differential effects in the nonlinear mixed models and was 

fitted to data structure of the MIRID. Since the extended MIRID does not include an item 

discrimination parameter, only uniform DIF was studied.  

The other objective was to investigate the effect from applying a DIF model to study 

differential functioning caused by a different source. For example, applying a MIRID DIF model 

to a data set where there is differential functioning present with one component weight. Would 

the DWF be conducive to statistically significant parameter estimates of individual item DIF and 

thus mislead the researchers? Similarly, would considerable DIF on one or two items lead to 

significant nonzero estimate of differential effects with an item family when the DFFm model is 

applied? Addressing these questions would provide insight into potential impact from fitting the 

wrong DIF model in conducting DIF investigation and alert researchers about the importance of 

following the correct procedures in DIF study with the MIRID as well as about the importance of 

substantive analysis.  

In empirical settings, more than one type of differential functioning can occur as a result 

of the unique data structure of the MIRID. For example, one component may be more important 

for the focal group than the reference group (DWF) when several individual items exhibit DIF 

favoring either group (DIF). However, it was decided that as the initial MIRID DIF exploration 
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this research would lay the foundation by tackling each source separately; the investigation of 

their concurrence is left for future research. 

Given the aforementioned research purposes, this study sought to answer the following 

questions: 

1.) Does the proposed MIRID differential functioning models maintain Type I error 

control? When it is under control, what is the power of the MIRID DIF, DFFc, DFFm, 

and DFW models in detecting differential functioning of different sources?  

2.) How accurate are the parameter estimates of these models, including the DIF 

parameters, item locations, component weights, and impact? 

3.) How do the following factors affect the performance of the proposed differential 

functioning approach, including sample size, DIF magnitude, and group differences 

in trait level? 

To investigate the effect of applying the incorrect model to study differential functioning 

in the context of the MIRID, the following questions were addressed based on the analysis 

results: 

4.) How well are the model parameters estimated if the wrong models are fitted to the 

data? Are they more adversely impacted under some conditions than others?  

5.) Are any of the estimates of the incorrectly specified DIF parameters statistically 

significant? Which differential effects in the data produce the most misleading 

findings when the unmatched model is fitted? 

Significance of the Study 

This model-based DIF approach in the context of the MIRID may be able to identify DIF 

in individual items as well as item groups simultaneously in keeping with the model’s structure 
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made up of component and composite items. It may differentiate between DIF that exists in item 

families and differential functioning exhibited by one or more components while taking into 

account of the group difference in the latent trait. This approach may be capable of identifying 

group weakness and strength on a part of the measured construct as a consequence of the 

presence of benign DIF. This utility, aided with substantive analysis, may enable interpretation 

of certain types of DIF by locating possible causes. Hypothetically, for instance, while a 

traditional DIF detection procedure locates a number of individual items with significant DIF, 

the proposed approach would be able to identify significant group-level DIF in one component 

even if only some of the associated individual items display small amounts of differential 

functioning. By means of this, differential functioning in separate items is summarized and 

explained by using item properties shared by the item group. 

The MIRID is a promising model to uncover the operational mechanism behind cognitive 

and psychological responses. Developing a compatible and pragmatic DIF investigation 

approach will increase the understanding and use of this componential modeling tool. From the 

perspective of applied research, the contribution from successfully developing the DIF approach 

will be the improvement of psychometric qualities of the MIRID through enhancing the fairness 

and construct validity at once and thus make it more accessible to researchers. 

Definitions 

Linear Logistic Test Model (LLTM): A statistical model which was first introduced by 

Fischer (1973) as a member of Rasch family of models. It re-expresses item difficulty as a 

weighted summative composite of the cognitive attributes identified a priori as underlying item 

responses. Parameters to estimate include coefficients of the every attribute. 
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The MIRID: The model with internal restrictions on item difficulty was developed on the 

basis of the LLTM (Butter et al., 1998). Instead of every item embodying one or more properties 

(attributes) to some extent like with the LLTM, the MIRID supposes one or more groups of 

items each of which reflects an attribute. The other items not representing the supposed item 

properties have their location parameters defined as weighted sums of difficulty of the former 

type of items. 

Components: Item properties (a.k.a. attributes, strategies, mental processes, etc.) in the 

MIRID are called components. 

Component Items: Since a component is embodied by a group of items in the MIRID, 

these items are labeled as component items, each of which belongs with only one component. 

Composite items: The other type of items in the MIRID that requires all component 

processes to answer and whose parameter is linearly related to those of its associated component 

items.  

Differential facets functioning (DFF): DIF shown by groups (facets) of items. In this 

study, it refers to DIF from either components or item families or both. 

Differential item functioning (DIF): With statistical evidence, the presence of differential 

performance on an item by two or more groups of examines conditioning on their trait levels. In 

this study, it also refers to the sporadic DIF exhibited by individual items. 

Differential weight functioning (DWF): DIF shown by component weights. This 

definition is limited to the MIRID only. 

Item families: A group of items led by a composite item and its associated component 

items, each of which reflects only one component. A family of items may describe a situation (or 

scenario) of the measured construct.  
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Component weights: The importance of each component item in the linear relationship 

that determines the location of the composite item. Items within a component share the same 

component weight.  
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CHAPTER TWO  

LITERATURE REVIEW 

This chapter is divided into four sections. Firstly, the statistical framework of the 

generalized linear/nonlinear mixed models (GLMMs/NLMMS) and its relationship with item 

response models are introduced to provide the backdrop for the MIRID, which is presented in the 

second section along with its estimation methods. Next, the issues around differential item 

functioning are discussed in the third section. On the basis of these sections, the definition and 

specification of the MIRID DIF approach are given in the final part. 

The purpose of traditional item response theory (IRT) models is to estimate from 

response data parameters of individual persons and items located on the same latent scale. A 

modern perspective conceptualizes item response models in a broader, generalized statistical 

framework, namely, the generalized linear mixed models (GLMMs) and nonlinear mixed models 

(NLMMs). Such a framework allows item and person parameters to be estimated in either fixed 

or random terms, introduces into the model effects from item and person properties, and is 

capable of incorporating a range of existing measurement models. The power of this modeling 

framework lies in the fact that in addition to location of persons and items on the scale of the 

latent trait, item characteristics (e.g., cognitive processes, format) and person attributes (e.g. 

demographics, psychological differences) can be integrated in the statistical model as either fixed 

or random effects. Under the traditional paradigm, however, this explanatory stage of analysis is 

not conducted until IRT calibration has been completed and is often performed separately in the 
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form of regression. In the context of item response models, the NLMMs are equivalent to the 

GLMMs plus the item discrimination parameter and are essentially the same family of models.  

The Generalized Linear Mixed Models 

Four types of statistical models are reviewed in this section, including the simplest linear 

regression model, the more complex but more general linear mixed models and generalized 

linear models, and finally the generalized linear mixed models (GLMMs), which are extensions 

of the other three models. After showing the connections between these models, the formulation 

of the GLMMs for dichotomous data will be presented. Since GLMMs are closely related to 

NLMMs as a special case with a slope parameter of one (Kackman, 2000), this discussion will 

concentrate on the GLMMs.  

The Linear Regression Model 

One of the elementary statistical techniques, linear regression is often used to model the 

relationship between a single variable y, the dependent or outcome variable, and one or more 

independent variables, also called regressors or covariates, x1,…,xk, with K as the number of 

independent variables. When K = 1, it is simple regression but when K > 1 it becomes multiple 

regression. By assuming a linear relationship between the dependent and independent variables, 

regression analysis describes the structure of the data, makes predictions over future observations, 

and explains the effect on the outcome variable from the covariates included in the model.  

The linear regression model can be represented in matrix terms as:  

 𝒚 = 𝑿𝜷 + 𝝐 , ( 1 ) 

where with n observations y = (y1,…, yn)
T
, the unknown regression parameters β = (β0,…,βk)

T
, 

the error term 𝜖 = (𝜖0,…, 𝜖n)
T
, and the design matrix is 
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𝑋 =

[
 
 
 
 
1 𝑥11 𝑥12 … 𝑥1𝑘

1 𝑥21 𝑥22 … 𝑥2𝑘

1 𝑥31 𝑥32 … 𝑥3𝑘

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘]

 
 
 
 

. 

The estimation of 𝜷 can be carried out using the least square approach, which defines its best 

estimate as one that minimizes the sum of the squared errors. The error term 𝝐 is typically 

assumed to be independent and identically normally distributed with mean of zero and variance 

of 𝜎2, that is to say, 𝝐 ~ N (0, 𝜎2𝑰). However, this is not always a reasonable assumption.  

Linear Mixed Models 

In linear regression models, effects from the predictor variables are considered 

unchanging (fixed), such as treatment and control in a biological experiment, and all 

observations are assumed independent of each other. However, for analysis of data in a nested 

structure, particularly, clustered (a.k.a. hierarchical) data or longitudinal (or repeated measures) 

data, this assumption is inappropriate. In such data, level-one observations (individuals or 

repeated observations) are nested within level-two observations (clusters or subjects), which may 

be nested within even-higher clusters. To account for the correlation within data, randomness 

needs to be included in modeling of cluster effects. Statistical models containing both fixed 

effects and random effects are mixed models. In matrix notation, linear mixed models can be 

represented as  

 𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 , ( 2 ) 

where 𝑦 is a vector of n observations, 𝛽 is a vector of fixed effects, and 𝛾 is a vector of random 

effects. The random effects represent the influence of subjects/persons on their repeated 

observations that is not captured by the observed covariates. These are treated as random effects 

because the sampled subjects are thought to represent a population of subjects. 𝑋 is the design 
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matrix for the fixed effects relating observations 𝑦 to 𝛽, and 𝑍 is the design matrix for the 

random effects relating 𝑦 to 𝛾. 𝛾 and 𝜖 are assumed to be unrelated with mean of zero and 

covariance matrices G and R, respectively, both of which are sources of random variation within 

the model.  

The expectation and variance of 𝑦 are presented as 

 𝐸[𝑦] = 𝑋𝛽 ( 3 ) 

 𝑉𝑎𝑟[𝑦] = 𝒁𝑮𝒁𝑇 + 𝑹 . ( 4 ) 

When both random sources are assumed to be normally distributed 𝛾 ~ N (0, G) and 𝜖 ~ N (0, R), 

the observed dependent variable is also normally distributed as 𝑦 ~ N [𝑋𝛽, Var(y)].  

Generalized Linear Models 

The linear regression model describes the relationship between the dependent variable 

and the fixed effect through a linear function (linearity), which assumes constant variance 

(homoscedasticity) and normal distribution of error terms (normality). Relaxing these 

assumptions but including in the model only fixed effects extends the linear regression model 

into generalized linear models (GLMs) (cf. Nelder. & Wedderburn, 1972; McCullagh & Nelder, 

1989).  

The class of GLMs allows for several types of dependent variables such as continuous, 

dichotomous, counts, etc., which are assumed to be generated from a particular member of the 

exponential distribution family, such as binomial, normal, and Poisson, and incorporate disparate 

statistical methods like linear regression, logistic regression, and Poisson regression. Three key 

components of a generalized linear model are identified as the linear predictor, a link function, 

and a form of the measurement variance as a function of the predicted value. The linear predictor 
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is denoted as 𝜂 = 𝑋𝛽, where X is the design matrix and 𝛽 the fixed effects. The link function 

𝑓𝑙𝑖𝑛𝑘(∙) converts the expected value of the outcome variable to the linear predictor, that is,  

 𝑓𝑙𝑖𝑛𝑘[𝐸(𝑌)] = 𝑓𝑙𝑖𝑛𝑘[𝜇] = 𝜂 ( 5 ) 

This transformed expected value is predicted by a linear combination of observed variables.  

Finally, the last key component specifies the variance of the dependent variable as a function of 

the mean: 

 𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟(𝜇) = 𝑉𝑎𝑟[𝑓𝑙𝑖𝑛𝑘
−1 (𝜂)] ( 6 ) 

When the distribution of the outcome variable is assumed normal, the inverse of the identity link 

function is 𝜂; when the distribution is binomial, the inverse link becomes  

 
𝜇 =

𝑒𝜂

1 + 𝑒𝜂
 . 

( 7 ) 

To capture non-systematic variability, a variance function is defined for the GLMs. For normal 

data it is one; but for binomial data, assuming dispersion parameter is one,  

 𝑉𝑎𝑟(𝑌) = 𝜇(1 − 𝜇) ( 8 ) 

Generalized Linear Mixed Models (GLMMs) 

A GLMM is a particular type of the linear mixed models which extends the generalized 

linear models by incorporating both fixed and random effects in the linear predictor (Breslow & 

Clayton, 1993; McCulloch & Searle, 2001; Stroup, 2012).  

As in the mixed models, the fixed and random effects are combined to form a linear predictor, 

 𝜂 = 𝑋𝛽 + 𝑍𝛾 ( 9 ) 

where 𝑋 is the design matrix for the fixed effects 𝛽 and 𝑍 the design matrix for the random 

effects 𝛾. With a vector of residuals 𝜖 added, the observed outcome data can be modeled as 
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 𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 = 𝜂 + 𝜖 ( 10 ) 

The random effects 𝛾 are assumed to be normally distributed with a mean of zero and 

variance matrix G (so called G-side variance), which are denoted as 𝛾 ~ 𝑁 (0, 𝑮).  

As with the linear mixed model, common link functions available for GLMMs 𝑓𝑙𝑖𝑛𝑘, depending 

on distributions, include identity (for normal distribution), logit, and probit (for binomial 

distribution).  

Unlike GLMs, which specify for 𝑦 a probability distribution from the exponential family, 

GLMMs assume a conditional response distribution that depicts the relationship between linear 

predictor and observations,  

 𝑦|𝛾~[𝑓𝑙𝑖𝑛𝑘
−1 (𝜂), 𝑅] , ( 11 ) 

that is, the conditional distribution of 𝑦 given random effects 𝛾, often called the error distribution, 

has a mean of 𝑓𝑙𝑖𝑛𝑘
−1 (𝜂) and variance R (referred to as R-side variance). Related, the expected 

values of the dependent variables of a GLMM are 

 𝐸[𝑦|𝛾] = 𝜇 = 𝑓𝑙𝑖𝑛𝑘
−1 (𝑋𝛽 + 𝑍𝛾) = 𝑓𝑙𝑖𝑛𝑘

−1 (𝜂) ( 12 ) 

That is, the conditional mean of the outcome variable depends on the linear predictor through the 

inverse link function. In addition, the covariance matrix R depends on the conditional mean μ 

through a variance function 𝜇(1 − 𝜇)/𝑛.  

Mixed models for continuous normal dependent variables have been well researched (e.g., 

Laird & Ware, 1982). The power of the GLMMs lies with its ability to handle non-normal 

categorical data. In the special case of binary outcomes (dichotomous data), the GLMM logit 

link function is formulated as 

 
𝑓𝑙𝑖𝑛𝑘[𝜇] = 𝑙𝑜𝑔𝑖𝑡(𝜇) = 𝑙𝑜𝑔 [

𝜇

1 − 𝜇
] = 𝜂 . 

( 13 ) 
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The conditional expectation equals the conditional probability of receiving a positive score given 

the random effects: 

 𝐸[𝑦|𝛾] = 𝜇 = 𝑃(𝑦 = 1|𝛾). ( 14 ) 

The model can be formulated as  

 𝑃(𝑌𝑗𝑖 = 1|𝛾𝑗 , 𝑥𝑗𝑖 , 𝑧𝑗𝑖) = 𝑓𝑙𝑖𝑛𝑘
−1 (𝜂𝑗𝑖) = 𝛹(𝜂𝑗𝑖) ( 15 ) 

where j represents the higher-level unit (cluster, subjects) and i as the level-one unit (repeated 

observations, items) nested within j. The inverse link 

 𝛹(𝜂𝑗𝑖) = [1 + exp(−𝜂𝑗𝑖)]
−1 ( 16 ) 

happens to be the logistic cumulative distribution, which simplifies parameter estimation by 

relating to the probability density function in a simple way: 

 𝜓(𝜂𝑗𝑖) = 𝛹(𝜂𝑗𝑖)[1 − 𝛹(𝜂𝑗𝑖)] ( 17 ) 

The alternative to this logistic model is the probit model, which is based on standard 

normal distribution and uses the normal cumulative distribution and probability density function.  

In conclusion, the differences between the four closely connected classes of models can be 

summarized in the following way. The ordinary linear regression model contains no random 

effects and assumes normal distribution of the error terms. The generalized linear models utilize 

a link function to relate the linear model to the outcome variable, which allows the error 

distribution to be other than normal. The homoscedasticity assumption of the linear regression 

extends into specifying that the variance of the dependent variable is a function of its predicted 

value (the mean). Furthermore, the linear mixed models assume that the function relating μ to the 

fixed and random effects can be linear, that the variance is not a function of the mean, and that 

the random effects follow a normal distribution. All these assumptions become untenable with 
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non-normal dependent variables (e.g., binary outcomes) so that linear models cannot be directly 

applied.  

Nonlinear Mixed Models (NLMMs) 

Some IRT models are nonlinear because of their multiplicative functions in their 

specification (e.g., a product of a slope parameter and a threshold). Although some authors 

consider that GLMMs include NLMMs (Lindstrom & Bates, 1990), the class of generalized 

linear mixed models is said to be a subset of nonlinear mixed models (McCulloch & Searle, 2001; 

Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003). Often the two terms combine to refer to a 

broad family of models that incorporate such characteristics as fixed and random effects on the 

outcome, independent observations from exponential distributions, and linear predictors through 

a link function. Nonlinearity occurs when the fixed or the random effects or both are modeled in 

a nonlinear fashion; or in the case of the proposed DIF modeling approach, the nonlinearity in 

the difficulty of composite items resides in the product of two parameters in estimation: the 

latent item predictor and component weight, which makes up the fixed effects part of the MIRID.  

Item Response Modeling in the GLMMs Framework 

Regular item response theory (IRT) models can be conceptualized within the GLMMs 

framework, including binary data models such as the Rasch model and componential models like 

the Logistic Linear Test Model (LLTM). Since the MIRID was developed on the basis of the 

Rasch model and the LLTM, the section below will describe formulation of the Rasch in the 

GLMM framework after the rationale for doing so is given. Because the standard MIRID does 

not involve the item discrimination parameter, there is no nonlinear term in the specification.  
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The Rationale of a Generalized Statistical Approach to Item Response Modeling 

The purpose of conventional item response models is to measure certain affective or 

cognitive outcomes in relation to individuals in order to evaluate, compare, or predict their 

“performance” on the measured variable. This modeling approach gives individual estimates of a 

person parameter, which, dependent on the outcome variable, can be person’s ability, proficiency, 

psychological traits, attitudes, etc. At the same time, each of the items on the assessment 

instrument (e.g., a test, a survey, etc.) administered also receives estimate of its parameter, which 

is often labeled as “location” or “difficulty”. Estimated person parameters and item parameters 

imply that the persons and the items have been placed on the same scale of the construct being 

measured. This modeling approach “describes” the locations occupied by individual items and 

persons alike. 

In other academic disciplines, conventional statistical methods are often used to test 

hypotheses in connection with design effects, for example, in sciences and medical research, and 

attempt to answer the question of “why.” Such studies are explanatory, whose principal mission 

is to explain the outcome variable in association with the design factors under investigation. The 

broad framework of GLMMs are of explanatory nature and item response models defined within 

this framework are ‘explanatory,’ too (De Boeck & Wilson, 2004). Since there are multiple items 

on an instrument, item responses are inherently repeated observations and conform to a structure 

where items are nested within persons. This new angle of looking at item response models forms 

the basis for the explanatory approach, which relates IRT to the broad statistical literature on 

mixed models.  

This approach brings into the model item and person characteristics to complement the 

location parameters. That is, characteristics such as the cognitive operations an item taps into, 
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item content, students’ SES, anxiety level, etc., can be added to the model as regression 

predictors (covariates). The GLMMs framework satisfies the measurement goal by providing an 

estimate of the location parameter on the measurement scale for each person and each item based 

on the probability of a correct response. In addition, the estimates of the regression coefficients 

give us the understanding of the correlation between item responses and the predictors. In other 

words, the regression function explains the extent to which item and person properties affected 

item responses. Depending on research interests and questions, different covariates can be 

incorporated to adapt or extend standard item response models to serve a specific scientific query 

or special data set. Therefore, this generalized approach achieves both the descriptive and 

explanatory purposes of modeling.  

The estimated regression weights in the generalized IRT models are in fact the effects of 

explanatory variables on how individuals responded to items. The item and person location 

parameter estimates in this model are obtained in a different way from a descriptive model, 

although both sets are fixed point estimates on the measurement scale. Conventional models treat 

items and persons as unchanging entities with only one location parameter each. The GLMMs 

approach combines the effects from all included predictors, which vary across items and persons, 

to estimate the location parameters, often resulting in greater accuracy and better model fit. 

Conceptualized within this statistical framework, traditional and newly created item response 

models can be fitted with computer programs designed for GLMMs and NLMMs. Details of 

such estimation and software can be found in later sections. 

Recasting the Rasch Model within the GLMMs 

Item response theory models as types of latent trait models were developed outside the 

GLMMs in the fields of educational and psychological measurement. Statisticians have sought to 
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merge the two classes of models. For example, Mellenbergh (1994) developed generalized linear 

item response theory (GLIRT) that is analogous to the generalized linear models. Moustaki and 

Knott (2000) proposed generalized latent trait models to analyze manifest variables with 

different distributions. Rijmen et al. (2003) introduced a nonlinear IRT framework based on the 

mixed logistic model. The explanatory item response theory models by De Boeck and Wilson 

(2004) clarified the differences between various item response models and statistical models and 

placed them in a broad statistical framework that enables a generalized statistical approach to 

data analysis which takes advantage of the flexibility of available statistical computing packages. 

In binary data analysis with link function being either logistic or probit, and the random 

effects assumed to be normal, the close relationship between the basic Rasch model and the 

GLMMs is the most evident. Under the Rasch model, the responses to items (i = 1, 2, …, I) by 

subjects (persons) (j = 1, 2, …, J) are assumed to be conditionally independent Bernoulli 

observations, where the conditional probabilities of getting a score of 1 are modeled as follows: 

 
𝑝(𝑌𝑗𝑖 = 1|𝜃𝑗 , 𝛽𝑖) = 𝜋𝑗𝑖 =

exp(𝜃𝑗 − 𝛽𝑖)

1 + exp(𝜃𝑗 − 𝛽𝑖)
. 

( 18 ) 

where 𝜋𝑗𝑖is the probability of success on item i by person j; 𝛽𝑖 is the item parameter of item i; 𝜃𝑗 

is the person parameter (ability) of person j. The person parameter is a latent variable that is 

treated as fixed in the Rasch conception. To enter this model into the realm of the GLMMs, we 

need to 1) consider the 𝜃𝑗 values as randomly sampled from a normally distributed population 

and 2) regard item responses as nested within persons.  

Equation 9 gave the GLMMs linear equation in matrix terms. In summation format, this 

equation can be re-written for subject j and item i as follows: 
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𝜂𝑗𝑖 = ∑ 𝛽𝑘𝑋𝑖𝑘

𝐾

𝑘=0

+ ∑ 𝛾𝑗𝑝𝑍𝑖𝑝

𝑃

𝑝=0

 , 
( 19 ) 

where k represents the fixed-effect predictors (items) and p the random-effect predictors 

(persons). To comply with the tradition of psychometrics, 𝛾 as the personal parameter is replaced 

with 𝜃 and the item parameter β takes on the negative form. Since no person predictor is 

included in the Rasch model, the random part of the equation reduces to 𝜃𝑗 as the intercept. For 

the fixed-effect part, 𝑋𝑖𝑘 = 1 only when i = k, so only one term of this sum is kept. After these 

changes, the linear predictor for the recast Rasch model is 

 𝜂𝑗𝑖 = 𝜃𝑗 − 𝛽𝑖 = 𝐿𝑛
𝜋𝑗𝑖

1 − 𝜋𝑗𝑖
 , ( 20 ) 

which is the expected value on the logit scale with 𝜃𝑗 ~ N (0, 𝜎𝜃
2). This Rasch model can also be 

considered a regression model as follows: 

 𝜂𝑗𝑖 = 𝜃𝑗 − 𝛽1𝑋𝑖1 − ⋯− 𝛽𝑘𝑋𝑖𝑘 − ⋯− 𝛽𝐼𝑋𝑖𝐼 ( 21 ) 

Since the mean of 𝜃𝑗 is specified as zero, the random effects are defined as the deviations from 

the mean effect. The mean of β is also constrained to be zero to ensure that the model is 

identifiable (otherwise, X would not be of full column rank).  

The GLMMs can be extended to handle response data with more than two categories 

(1/0). However, since polytomous data are out of the scope of this study, extensions in this 

regard are not reviewed here but their details can be found in such studies as Tuerlinckx and 

Wang (2004), Fox (2007), and Natesan, Limbers,and Varni (2010). Like the standard Rasch 

model, the polytomous models introduced by these authors can be seen as members of the 

multivariate generalized mixed models. Because GLMMs are by nature hierarchical models 
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suitable to analyze data of nested structure when items are considered nested within persons, 

they are also labeled hierarchical models or multilevel models, which are a class of the GLMMs.  

Within the framework of the GLMMs, explanatory item response modeling provides 

additional utility to the data description brought by conventional IRT modeling. Not only does it 

serve the measurement purpose, it also provides insight as to why the level of measurement is 

achieved in terms of the item or person properties being investigated. The added benefits of the 

GLMMs framework call for more attention to this modeling approach.  

The Model with Internal Restrictions on Item Difficulty (MIRID) 

This section reviews the conception and formulation of the standard binary MIRID (a 

Rasch model) from the perspective of generalized linear mixed models.  

MIRID in the Generalized Statistical Models Framework 

The GLMM framework created space for development of nonstandard, “specialized” 

item response models, one of which is the model with internal restrictions on item difficulty 

(MIRID). By incorporating latent item characteristics, the MIRID can be applied to instruments 

consisting of item families created with component and composite items. In essence, the MIRID 

is designed to explain item responses by modeling the assumed latent linear relationship between 

different types of component items and composite items within each situation. Since its official 

publication in 1998 as a Rasch type of item response model, various extensions have been 

proposed that have turned the MIRID far more generalizable although these extensions are not 

considered here. For example, Wang and Jin (2010a) formulated two types of polytomous 

MIRID for ordinal response data, one for the cumulative logits and the other for adjacent-

category logits. In addition, the authors proposed (2010b) a multilevel, two-parameter MIRID 
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with random weights. Also recently, Lee (2010) suggested that two generalizations be added to 

the model: the random item effects and the multidimensionality. 

The primary utility of the MIRID is investigate affective and cognitive outcomes using 

item specific componential difficulties and component weights that are more realistic to model 

than the components themselves being latent. By designing component items to represent 

“subtasks” as predictors of the corresponding composite item, the MIRID can be used to test 

theories on how complex psychological constructs can be broken down and influenced by their 

parts.  

The power of item response modeling in the GLMMs/NLMMs framework lies in its 

ability to allow covariates to enter the model at either subject or item level as independent 

variables to explain their effects on item responses. Outside this framework, such an analysis is 

typically conducted in two phases: first, item and person parameter estimation under the regular 

item response theory structure and second, a regression analysis to bring the research variables 

into the model to explain and predict their effects on the latent outcome variable.  

The generalized linear mixed models framework for item response data reviewed here is 

mainly based on Rijmen, Tuerlinckx, De Boeck, and Kuppens, (2003) and De Boeck and Wilson 

(2004). In this framework, the basic Rasch model is regarded as a regression model where the 

logit of a correct response (𝜂𝑗𝑖) functions as the expected value, the person parameter (𝜃𝑗) as the 

intercept in the regression, and item parameter (−𝛽𝑗) as the regression weight of 𝑋𝑖𝑘 (see 

Equation 20). The typical predictors in the Rasch model are person parameter and item 

predictors, one for each item. When k = i, 𝑋𝑖𝑘 = 1; otherwise 𝑋𝑖𝑘 = 0. The full Rasch model in 

regression format taking into account all items is spelled out in Equation 21. The values of the 

item parameters (−𝛽𝑗) do not vary across persons.  
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Recast in this mode, item and person predictors are used to explain the effects of items 

and persons and therefore the basic Rasch model becomes a case of an explanatory item response 

model (De Boeck & Wilson, 2004). In addition to item and person predictors, item and person 

properties can be incorporated in the regression model. For person properties, the predictors can 

be both manifest variables (e.g. gender, SES, etc.) and latent variables that are regressed on 

external personal variables (Adams, Wilson, & Wu, 1997) such as motivation, attitude towards 

school, etc. Item properties can be the cognitive processes an item is written to tap into. When 

covariates reflecting both item and person properties are introduced into the model, it becomes 

“doubly explanatory” (De Boeck & Wilson, 2004).  

The MIRID belongs with the category containing only item property predictors, along 

with the linear logistic test model (LLTM; Fischer, 1973). The relationships between the two 

models will be described later following the introduction of MIRID. 

The Rasch MIRID 

The MIRID model was proposed originally by De Boeck (1991) to explore the 

componential structure of an affective or cognitive construct measured using a test or 

questionnaire. Later, Butter (1994) and Butter, De Boeck and Verhelst (1998) developed it into 

full formulation. As their version of MIRID was devised to fit binary response data based on the 

basic Rasch model, it is labeled as the dichotomous Rasch MIRID. By design, the MIRID 

models are not suitable for regular assessments but only for a particular type of data which 

consist of component items and composite items. The multiple mental processes in a cognitive or 

affective construct can each be considered a subtask or a single operation when measured. At the 

lowest cognitive level, hypothetically, one can imagine such a construct as a hand calculation 

problem involving three subtasks, addition, subtraction and multiplication. The item 
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encompassing all three subtasks is a composite item, whereas the other three items each 

measuring one subtasks are component items. Together the four items form an item family. 

Table 1 below illustrates this structure. Hypothetically, each item family could represent 

a hand calculation problem fully spelled out in composite items four, eight, and twelve. 

Component one to three correspond to the three subtasks, addition, subtraction, and 

multiplication, represented by the three component items from each family (items one to three, 

five to seven, and nine to eleven). On the affective side, a hypothetical example could be 

evaluating a complex latent trait, such as “grit”, which comprises components like perseverance, 

concentration, and motivation. Item families could be designed to measure this trait from 

disparate real-life contexts such as work, study, exercise, etc., often labeled as “situations” as the 

items can be written for specific environments.  

The MIRID assumes that the difficulty of the composite item can be decomposed as a 

weighted sum of the difficulties of the component items. This linear relationship creates internal 

restrictions on the difficulty of the composite item, hence the name MIRID. The purpose of the 

MIRID is to investigate the underlying relationship between the processes behind a complex 

psychological construct and examine the internal validity of the component and composite items 

appearing on the same assessment.  

Formulation of the Rasch MIRID 

Within the generalized mixed models framework, the MIRID formulation contains both 

fixed and random effects. One piece of the fixed effects is reflected by an item predictor matrix 

A as shown in Table 2-2, where k represents one of a total of K components, m as one of a total 

of M item families, and 𝛽𝑚𝑘 is the difficulty for component k in item family m. This matrix 
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summarizes the K component item parameters across M item families as well as a vector of 

constant.  

The other piece of fixed effects is shown in Table 3 as the component weight matrix Ψ 

reflecting component item weights for every item family. In this table, the identity matrix reflects 

the component items under every component; 𝜔𝑘 is the weight of component k; 𝜔0 as the 

intercept is a normalization constant.  

Table 1. 

Item Families and Component Items 

    Component 1 Component 2 Component 3 

Family1 Item1 1 0 0 0 0 0 0 0 0 

 
Item2 0 0 0 1 0 0 0 0 0 

 
Item3 0 0 0 0 0 0 1 0 0 

 
Item4 1 0 0 1 0 0 1 0 0 

Family2 Item5 0 1 0 0 0 0 0 0 0 

 
Item6 0 0 0 0 1 0 0 0 0 

 
Item7 0 0 0 0 0 0 0 1 0 

 
Item8 0 1 0 0 1 0 0 1 0 

Family3 Item9 0 0 1 0 0 0 0 0 0 

 
Item10 0 0 0 0 0 1 0 0 0 

 
Item11 0 0 0 0 0 0 0 0 1 

  Item12 0 0 1 0 0 1 0 0 1 

 

Table 2. 

Item Predictor Matrix 

 Predictor 1 Predictor 2 … Predictor K-1 Predictor K Constant 

Family 1 𝛽11 𝛽12 … 𝛽1(𝐾−1) 𝛽1𝐾 1 

Family 2 𝛽21 𝛽22 … 𝛽2(𝐾−1) 𝛽2𝐾 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Family M-1 𝛽(𝑀−1)1 𝛽(𝑀−1)2 … 𝛽(𝑀−1)(𝐾−1) 𝛽(𝑀−1)𝐾 1 

Family M 𝛽𝑀1 𝛽𝑀2 … 𝛽𝑀(𝐾−1)1 𝛽𝑀𝐾 1 
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Table 3. 

Component weight Matrix for One Item Family 

 Component 1 Component 2 … Component K Composite 

Item 1 1  …  𝜔1 

Item 2 0 1 …  𝜔2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Item R 0  … 1 𝜔𝐾 

Intercept 0 0 … 0 𝜔0 

 

The product of the two pieces, component weight matrix and item predictor matrix, 

becomes the fixed effects of the model, as shown in Equation 22, which is exemplified in 

Equation 23 with a two-family three-component structure. The right-hand side of this equation 

shows the item parameter matrix for the six component items and two composite items. 

 (𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡)𝑗𝑖 = 𝐴𝑓𝛹𝑟 = 𝛽𝑖
′ , ( 22 ) 

where 𝛽𝑖
′ = 𝛽𝑚𝑘 for component items and 𝛽𝑖

′ = ∑ 𝜔𝑘𝛽𝑚𝑘
𝐾
𝑘=1 + 𝜔0 for composite items with 

𝑖 = 1,2, … , 𝐾 + 1,…𝑀(𝐾 + 1) as defined in 2-23 with three components.  

 

(
𝛽11 𝛽12 𝛽13 1
𝛽21 𝛽22 𝛽23 1

)(

1 0 0 𝜔1

0 1 0 𝜔2

0 0 1 𝜔3

0 0 0 𝜔0

)

=

(

 
 
 

𝛽11 𝛽12 𝛽13 ∑ 𝜔𝑘𝛽1𝑘

3

𝑘=1

+ 𝜔0

𝛽21 𝛽22 𝛽23 ∑ 𝜔𝑘𝛽2𝑘

3

𝑘=1

+ 𝜔0
)

 
 
 

 . 

( 23 ) 

Definition of the fixed effects imply that the values of the latent item predictors are also the item 

difficulties of the component items. For composite items, their fixed effects are explained in 

terms of latent item predictors and their weights (Smits & Moore, 2004). Note that in generalized 

terms, the difficulty of the composite item is assumed to be 
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𝛽𝑚0 = ∑ 𝜔𝑘𝛽𝑚𝑘

𝐾

𝑘=1

+ 𝜔0 , 
( 24 ) 

where m is one of the M item families.  

The random effects in the MIRID mirror those in the Rasch model in that the person 

parameter is allowed to vary randomly as expressed by 𝜃𝑗~𝑁(0, 𝜎𝜃
2). In regression format, the 

dichotomous MIRID model is defined as  

 
log [

𝑃(𝑥𝑗𝑚𝑘 = 1|𝜃𝑗)

𝑃(𝑥𝑗𝑚𝑘 = 0|𝜃𝑗)
] = 𝜂𝑗𝑖 = 𝜃𝑗 − 𝛽𝑖

′. 
( 25 ) 

An Example 

The MIRID model hats been applied in both the cognitive and affective domains. To 

illustrate the circumstances where it can be applied and how it can be applied, the methods and 

empirical data from a previous study (Smits & De Boeck, 2003) are described briefly in the 

following paragraphs. The standard MIRID, as well as its extensions like polytomous MIRID, 

has been applied to this data set. 

In this study about measuring a construct, guilt, the cited theory suggests that the feeling 

of guilt in a given situation can be decomposed mainly into three components: 1) feeling of a 

norm being violated; 2) a tendency to worry about what one has and has not done; 3) a desire to 

make restitution for one’s misdeeds (Barrett, 1995; Gilbert, Pehl, & Allan, 1994; Tangney, 1995). 

On the basis of this theory, the researchers interviewed a group of teenagers and asked them to 

describe a situation where they felt guilty in one of the three contexts: work or study situation, 

personal relationships, and leisure time.  
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From the interviews ten scenarios were collected and summarized as environments 

conducive to the feeling of guilt. The first two of the ten have to do with breakup and trumpet 

and are given below as examples: 

1. During some time you were having a love affair, but you’re not really in love 

with him or her. Making an end at this relation, you discover he or she 

supposed the relation was serious. He or she is very grieved. 

2. A few years ago, you started playing trumpet in a brass band. The schooling 

you needed is completely paid by the brass band. At the moment, you’re a good 

musician, you stop playing in the brass band, because you find yourself not 

fitting in the group of musicians. 

Survey questions written for these scenarios were administered to 270 high school 

students, who were asked to answer the following four questions on a four-point rating scale (0 = 

“No”; 1 = “Not Likely”; 2 = “Likely”; and 3 = “Yes”): 

1. Do you feel like having violated a moral, an ethic, a religious and/or a personal 

code? (the norm-violation component) 

2. Do you worry about what you did or failed to do? (the worrying component 

item) 

3. Do you want to do something to rectify what you did or failed to do? (the 

restitution component item) 

4. Do you feel guilty about what you did or failed to do? (the guilt composite item)  

These three component items (1
st
 to 3

rd
) and the corresponding composite item (4

th
) form 

an item family for every one of the ten scenarios/situations. The table below is reproduced from 

the study to illustrate the output of parameter estimates. Judging by the estimated values, for 
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example, it is clear that the componential contributions from situation 10 were lower with all 

three components than the contributions from situation 5. That is, the teenagers in the sample 

were less likely to feel guilty in situation 10 than 5. Using hand calculation, the reconstructed 

composite item parameter in situation 5 amounts to (.245 * 563) + (.591 * .775) + (.300 * 1.094) 

- .082 = .842. The authors noted that since the sum of the component weights is only slightly 

larger than 1.00 (1.136) and the intercept is nearly zero (-.082), the linear function got nearer to a 

weighted average.  
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Table 4. 

Parameter Estimates from the Example Study 

Situation Component 1 Component 2 Component 3 Intercept Composite 

 
Parameter Weight Parameter Weight Parameter Weight 

  
1 -.245 .245 .507 .591 .089 .300 -.082 .184 

2 -1.536 
 

-1.971 
 

-2.062 
  

-2.242 

3 -.745 
 

-.060 
 

-.321 
  

-.396 

4 -.122 
 

.009 
 

.053 
  

-.091 

5 .563 
 

.775 
 

1.094 
  

.842 

6 1.272 
 

1.006 
 

.830 
  

1.073 

7 .352 
 

.604 
 

.170 
  

.412 

8 -.193 
 

-.279 
 

-.108 
  

-.327 

9 -.077 
 

.814 
 

1.461 
  

.819 

10 -.623 
 

-.718 
 

-.541 
  

-.821 

Note: Standard errors of estimation are omitted. 

 

MIRID and LLTM 

In the GLMMs, both the LLTM and the MIRID belong with the same class that employs 

only item properties as predictors. In statistical terms, either model was proved to be 

generalization of the other; under certain conditions, the two models can be equivalent (Butter et 

al., 1998; Bechger et al., 2002; Maris & Bechger, 2004). It is therefore important to describe 

briefly the close relationships between the two models.  

Researchers were interested to investigate the factors behind the level of test performance 

and item difficulty as well as the relationships between these factors. A psychometric model that 

serves this purpose was the linear logistic test model (LLTM; Fischer, 1973), which was built up 

to explain item difficulty parameters with respect to the underlying cognitive processes the items 

were posited to measure. Items’ association with componential processes is considered an item 
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property which can be incorporated as a predictor in the generalized statistical modeling 

framework.   

The standard LLTM is also a dichotomous Rasch model whose item parameters are 

modeled as linear contributions in a way similar to how the difficulty of composite item in the 

MIRID is derived. However, the so-called complexity factor values (𝑞𝑖𝑘) replaces the component 

item parameters in Equation 24.  

 

𝛽𝑖 = ∑ 𝜔𝑘𝑞𝑖𝑘

𝐾

𝑘=1

+ 𝜔0  . 
( 26 ) 

The values of the complexity factor are given a priori as specified by the Q-matrix. For item i, if 

component (or process) 𝑘 = 𝑖, 𝑞𝑖𝑘 ≠ 0, otherwise 𝑞𝑖𝑘 = 0.  

The starkest distinction between the two models is the fact that there is no composite item 

in LLTM as every item parameter reflects certain item properties, the extent of which is assumed 

known and given by the entries in the Q-matrix. On the opposite, the MIRID does not require 

any prior knowledge about the size of the componential contributions 𝑞𝑖𝑘 but estimate the 

parameters of the component items (𝛽𝑚𝑘). That is, the MIRID estimates the entries in the Q-

matrix which are provided in the LLTM. The weights of the contribution (𝜔𝑘) are parameters to 

be estimated in both models. 

Estimation Methods and Computer Programs for the MIRID 

Likelihood-based methods are commonly used in statistical estimation. In this category 

there are three popular procedures, joint maximum likelihood estimation (JMLE), conditional 

maximum likelihood estimation (CMLE), and marginal maximum likelihood estimation 

(MMLE). Their popularity is in part due to the well-understood properties of maximum 

likelihood estimators: asymptotic consistency and normality, as well as estimation efficiency. 
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The basic MIRID was devised with CMLE for parameter estimation but the authors of its various 

extensions proposed and applied their modeling approaches using MMLE procedure. With 

CMLE, the person parameters are eliminated by being conditioned on a sufficient statistic for the 

latent trait 𝜃. For MMLE, the marginal likelihood is maximized by first integrating out the 

person parameters and using the first- and second-derivatives to derive item parameter estimates. 

The estimates of person parameters can then be obtained using the estimated item parameters. 

Other authors proposed estimation approaches with resampling-based Bayesian methods, 

particularly the Markov Chain Monte Carlo (MCMC) procedure, for more complex MIRID 

models (such as multilevel ones). This section will focus on MMLE only as it is the approach 

used in this research and discuss its basic concepts and main usage. After, the software to 

implement this method will be introduced.  

Marginal Maximum Likelihood Estimation 

In the standard Rasch model, item difficulties (𝛽s) are treated as fixed effects and person 

parameters 𝜃s are regarded as random effects, as defined below: 

 𝜂𝑗𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜋𝑗𝑖) = 𝜃𝑗 − 𝛽𝑖 , ( 27 ) 

which portrays the relationship between J persons and I items. In the Rasch model, the concept 

of sufficient statistics (Andersen, 1980) is defined by the total score of an individual, that is, 

𝑠𝑗 = ∑ 𝑦𝑗𝑖
𝐼
𝑖=1 .  

In addition to item effects, person effects can be brought into the likelihood as 

independent random draws from a density defined over a population denoted by 𝑔(𝜃𝑗|𝜓). In 

psychometrics, this population density is typically assumed to be normally distributed with a 

mean of zero and unknown variance with the population parameters 𝜓 estimated along with item 

parameters. The marginal maximum likelihood (MML) can be defined as 
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𝐿(𝛽, 𝜓) = ∏∫∏Pr (𝑌𝑗𝑖 = 𝑦𝑗𝑖

𝐼

𝑖=1

|𝜃𝑗)𝑔(

𝐽

𝑗=1

𝜃𝑗|𝜓)𝑑𝜃𝑗 , 

( 28 ) 

which is to be integrated with respect to the random effects. Parameter estimates are derived 

through maximizing this likelihood. As the normal distribution of the random effects can be 

denoted as 𝜙(𝜃𝑗|𝜇𝜃, 𝜎𝜃
2), where 𝜇𝜃 is often set as zero and 𝜎𝜃

2 represents the variance to be 

estimated, Equation 4 can be redefined as follows  

 

𝐿(𝛽, 𝜎𝜃
2) = ∏𝐿𝑗(𝛽, 𝜎𝜃

2) =

𝐽

𝑗=1

∏∫Pr (𝑦𝑗|𝛽, 𝜃𝑗)𝜙(𝜃𝑗|0, 𝜎𝜃
2

𝐽

𝑗=1

)𝑑𝜃𝑗 

( 29 ) 

where 𝐿𝑗(𝛽, 𝜎𝜃
2) represents individual contribution to the marginal likelihood. Since the integral 

in this formulation does not have a closed-form solution (Tuerlinckx et al, 2004), numerical 

integration techniques are employed to approximate the integral to get at maximizing the 

likelihood.  

Different maximization methods are available for MMLE, such as the Gauss-Hermite 

quadrature method (Abramowitz & Stegun, 1974), which is popular in item response modeling 

research. In a nutshell, the Gauss-Hermite quadrature method approximates the integral by 

replacing it with a single finite number of rectangles as close in total size as the area under the 

integrand. The Gaussian quadrature approximation is defined as follows (Naylor & Smith, 1982): 

 

𝐿𝑗(𝛽, 𝜎𝜃
2) = ∫Pr ( 𝑦𝑗|𝛽, 𝜃𝑗)𝜙(𝜃𝑗|0, 𝜎𝜃

2)𝑑𝜃𝑗 ≈ ∑ Pr(𝑦𝑗|𝛽, √2𝜎𝜃𝑞𝑚)
𝑤𝑚

√𝜋
,

𝑀

𝑚=1

 

( 30 ) 

where 𝑞𝑚 and 𝑤𝑚 are the mth quadrature node and weight, respectively. In Gaussian quadrature 

approximation, the quadrature points are centered at zero for each random effect so that the 

current random effects variance matrix is used as the scale matrix. That is, every person has the 

same rescaled nodes, which may be unrealistic for individuals located at either end of the normal 
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distribution. The adaptive Gaussian method (Pinheiro & Bates, 1995) corrects this shortcoming 

by using the empirical Bayesian estimate of 𝜃𝑗 calculated along with its asymptotic variance (�̂�𝑗
2) 

for each person. This Bayesian estimate 𝜃𝑗 needs to be added to the node 𝑞𝑚, which must be 

multiplied by √2�̂�𝑗. The marginal likelihood for person j can be defined with adaptive Gaussian 

quadrature as follows:  

 
𝐿𝑗(𝛽, 𝜎𝜃

2) = ∫Pr ( 𝑦𝑗|𝛽, 𝜃𝑗)𝜙(𝜃𝑗|0, 𝜎𝜃
2)𝑑𝜃𝑗

= ∫
Pr(𝑦𝑗|𝛽, 𝜃𝑗) 𝜙(𝜃𝑗|0, 𝜎𝜃

2)

𝜙(𝜃𝑗|𝜃𝑗 , �̂�𝑗
2)

𝜙(𝜃𝑗|𝜃𝑗 , �̂�𝑗
2)𝑑𝜃𝑗 , 

( 31 ) 

 

Although adaptive Gaussian method requires fewer quadrature nodes than the non-adaptive 

Gaussian method, it takes more computing resource since empirical Bayesian estimates must be 

calculated at each step of the optimization process. However, it was shown that the two methods 

yielded similar results (De Boeck & Wilson, 2004).  

The approximated likelihood function then goes through optimization through some 

iterative numerical methods, such as the Newton-type algorithms, of which the Newton-Raphson 

technique and Fisher scoring algorithms are the most widely used. Both of these techniques are 

direct approaches based on the first and second derivatives.  Because they are expensive to 

compute and unreliable in convergence, a few quasi-Newton algorithms were proposed that 

require only the gradient (first derivative) and thus are more efficient. A representative indirect 

maximization approach is the Expectation-Maximization (EM) algorithm.  

The more complex MIRID models such as those of multilevel and of crossed random 

effects adopted the Bayesian Markov Chain Monte Carlo (MCMC) estimation as a valid 
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alternative (Lee, 2010; Hung, 2011). However, this method has its own points of complexity, 

like selection of priors and possibly lengthy burn-in time, convergence evaluation, etc.  

Overall, the differences between maximum likelihood approaches and Bayesian MCMC 

are obvious (Tuerlinckx et al., 2004). First, the distinctions between fixed and random effects are 

clear with CML and MML; with MCMC, all effects are in essence random. In addition, 

maximum likelihood estimation gives standard errors based on an asymptotic normal 

approximation to the likelihood but only parameter intervals of posterior distributions are yielded 

by MCMC. Thirdly, convergence evaluation is less straightforward with MCMC than with CML 

and MML approaches.  

Software 

The software that implements the conditional maximum likelihood (CML) approach was 

the MIRID CML program (Smits et al., 2001), which was created for the original Rasch-MIRID 

and dichotomous data only. The SAS NLMIXED procedure can also apply the CML approach 

and was found to produce different person parameter estimates than the MIRID CML program 

and essentially the same item parameter estimates (Smits & De Boeck, 2003). Since then, 

MMLE as implemented by SAS NLMIXED has been the engine behind much of the 

psychometric modeling research, including many studies to extend and generalize the MIRID. 

This is logical since the MIRID and its extensions can be viewed as special cases of generalized 

nonlinear mixed models. Also, the well-understood properties of MMLE and the ease in 

implementation and output interpretation with SAS NLMIXED remain attractive.  

For the extended models, such as the random-weights MIRID, polytomous MIRID, 

OPLM MIRID, random-weights polytomous MIRID, the two-parameter MIRID, the NLMIXED 

procedure was the tool for parameter estimation built upon marginal maximum likelihood (MML) 
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approach. In terms of integration methods, both Gauss-Hermite quadrature and adaptive 

Gaussian approaches were chosen in different studies. The number of quadrature points in 

combination with the Gaussian approximation equals the number of points used in each 

dimension of the random effects, one of which is the intercept. The number used during the 

evaluation of the integral were specified to be 15 or 20 in different studies to obtain a reasonable 

precision in describing the distribution of the random effects without increasing the estimation 

time significantly.  

As for the optimization techniques to carry out the maximization; NLMIXED provides a 

number of options. The default is a dual quasi Newton-Raphson algorithm. In contrast to the 

original Newon-Raphson technique that calculates standard errors of the parameter estimates 

from the second derivative matrix of the likelihood function, the quasi-Newton approach 

computes only the first derivatives and thus takes much less time to run.  

It has been shown that complex, multilevel, and nonlinear models can be difficult or 

impossible to estimate using existing MLE-based software (Congdon, 2003; Fox, 2010). 

However, because the DIF models proposed in this dissertation are not overly complex, MMLE 

using NLMIXED is chosen for parameter estimation in this research and the MCMC approach is 

not necessary.  

Differential Item Functioning 

When examinees at the same ability level from the reference and focal group have 

different probabilities of answering it correctly, the item is considered to have DIF (Pine, 1977). 

In measurement practice, the construct of interest can be viewed as comprising more than one 

dimension. This does not imply necessarily applying multidimensional psychometric models; 

rather, it provides a framework for study of differential item functioning. DIF at item-group level 
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can be viewed as a consequence of secondary dimensions to the primary or the target trait being 

tested but unaccounted for in normal assessments. In keeping with the multidimensionality 

paradigm, Shealy and Sout (1993) suggested that DIF can be studied for a group of items with 

the method of “differential bundle functioning”. When groups of items sharing the same 

properties presumably contribute to the differential effect in a substantive way, this form of DIF 

is labeled as “differential facet functioning” (Englehard, 1972), which summarizes individual-

item DIF in a parsimonious fashion on the basis of commonality amongst these items.  

DIF studies at item-group level have been conducted, such as Kim and Huynh (2010) 

who discovered that some items administered in paper-based mode favored students without 

disabilities. Similarly, Wainer, Sireci, and Thissen (1991) demonstrated how to model DIF at the 

testlet score level (“differential testlet functioning”). Other studies adopted the DIF framework of 

secondary dimensions (Ackerman, 1992; Bolt & Stout, 1996; Douglas, Roussos, & Stout, 1996; 

Finch, 2005; Roussos & Stout, 1996; Shealy & Stout, 1993a, 1993b; Xie & Wilson, 2008). 

According to Shealy and Stout (1993a & 1993b), a secondary dimension is considered auxiliary 

and to cause benign DIF if it complements the primary dimension intended to be measured; on 

the contrary, if the item property is irrelevant to the construct, it is a nuisance dimension that 

leads to adverse DIF. Substantive analysis may be called upon to determine whether the DIF is 

benign or adverse. By retaining the auxiliary dimension of items and eliminating items with 

adverse DIF, construct validity and fairness of the test will be improved at once. Although the 

MIRID was conceived as a unidimensional model, it can be considered to some extent 

multidimensional if each component or item family (“situation”) is treated as a dimension of the 

trait of interest. Thus the multidimensional DIF framework proposed by Shealy and Stout (1993) 

can be applied in this research to untangle the complexity.  
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Numerous DIF detection methods have been developed and implemented, among which 

the most representative and widely used are the Mantel-Haenszel method and SIBTEST, whose 

brief descriptions are given below. 

The Mantel-Haenszel Procedure 

Holland (1985) and Holland and Thayer (1988) first described and applied the MH 

procedure in DIF studies. With MH, detection is conducted via comparing the odds ratios of item 

endorsement frequencies across reference and focal groups after examinees have been matched 

on a measure of the latent trait, which is typically the total score. Next, both groups are divided 

into a number of strata on the basis of the test score levels. Within each stratum, a 2 (groups) x 2 

(item score) contingency table is constructed for the studied item with group membership as a 

function of item response frequency. The odds of endorsing an item in each stratum are obtained 

and aggregated across the strata to compute the MH statistic, which is distributed as a chi-square 

with 1 df. If the observed MH exceeds the critical value of 3.84, the item is flagged as exhibiting 

DIF, and the process is repeated for all the remaining items.  

Simultaneous Item Bias Test (SIBTEST) 

SIBTEST was developed on the basis of the multidimensionality DIF framework (Shealy 

& Stout, 1993a, 1993b). This procedure is able to detect both uniform and nonuniform DIF in 

multiple items at once. In practice, the test is divided into two, one “suspect" subtest containing 

the item(s) suspected of DIF and the other assumed to be DIF-free, the score on the DIF-free 

subtest serving as the matching variable. A weighted mean difference in subtest score between 

the two groups as well as its standard error are calculated and their ratio becomes the DIF 

statistic to be tested against the null hypothesis of it being zero.  
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The Model-based DIF Approach for the MIRID 

By applying the paradigm of multidimensionality to potentially explain differential 

functioning, the MIRID DIF can be studied in the statistical framework of generalized linear and 

nonlinear mixed models (GLMMs and NLMMs) with the inclusion of grouping and interaction 

covariates. The nonlinearity in the difficulty of composite items results from the product of two 

parameters to be estimated: the latent item predictor and component weight, which makes up the 

fixed effects part of the MIRID. Such a model-based approach is primarily based on Meulders 

and Xie (2004), who modeled DIF by including person-by-item interactions as predictors in the 

NLMM. Their work extended from a general DIF approach, differential facet functioning 

(Englehard, 1992), which allows various procedures to explore DIF at the level of item groups.  

The proposed DIF approach also falls within the framework of explanatory measurement 

(De Boeck & Wilson, 2004), which involves person properties and/or item properties to explain 

the effects of persons and/or items and is grounded in the GLMMs and NLMMs. In this 

framework, traditional item response models like the Rasch model are viewed as “descriptive” 

due to the lack of covariates representing item or person properties; however, a model like the 

LLTM is considered “item explanatory” because of the inclusion of item attributes but no person 

properties. In case of DIF modeling, the person property means group membership and the item 

property is embodied in the cognitive operation(s) it measures so that their interaction reflects the 

difference in ability between the focal and the reference group.  

Individual-item Level Model Specification (DIF) 

The proposed DIF models extend the standard MIRID by incorporating covariates to 

explain various potential sources of DIF. Since the standard MIRID is of the Rasch family, the 

proposed DIF models here contain no discrimination parameters and focus on only uniform DIF.  
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The most fundamental type is sporadic differential functioning exhibited by individual 

items which can be modeled by extending the specification of a component item in Equation 25. 

Let j denote one of J persons (students, examinees) in the MIRID with M item families and K 

components. There are (𝐾 + 1)𝑀 items in total, with mk denoting an item in family m under 

component k and m0 representing a composite item in family m. Let 𝑥𝑗𝑚𝑘 be the binary response 

to the component item which takes value 1 for success and 0 for failure by person j. Assuming 

𝑥𝑗𝑚𝑘 as an independent random variable with Bernoulli distribution and the probability of correct 

response as 𝑝𝑗𝑚𝑘 = 𝑃(𝑥𝑗𝑚𝑘 = 1), the item-level MIRID DIF model can be expressed as follows: 

  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑗𝑚𝑘) = 𝜂𝑗𝑚𝑘 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (𝛽𝑚𝑘 + 𝐺𝑗𝛿𝑚𝑘), ( 32 ) 

where   

𝜃𝑗 is the trait level (ability) of person j (𝜃𝑗~𝑁(0, 𝜏)), a random effect.  

𝛾𝑔 accounts for the average group difference in the latent trait to solve the problem of 

ability matching in traditional DIF studies; that is, there is no longer need for separate 

estimation of trait level of group members. In this model, 𝛾𝑔 is a fixed effect from the 

focal group.  

𝐺𝑗 denotes group membership of person j, with a value 0 indicating reference group and 

1 focal group.  

𝛽𝑚𝑘 represents the difficulty parameter for component item in family m under 

component k, a fixed effect.  

𝛿𝑚𝑘 is the fixed effect reflecting the magnitude of DIF for component item in family m 

under component k. If negative, it implies DIF effect favoring the reference group. 
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𝐺𝑗𝛿𝑚𝑘 can be viewed as the interaction term between an item and a person’s group 

membership, which is doubly explanatory.  

With this individual-item DIF model, when a constant is added to all J ability parameters 

and all 𝐾 × 𝑀 item location parameters, 𝜂𝑗𝑚𝑘 remains unchanged. On the other hand, a constant 

could be added to 𝛾𝑔 and all of the 𝐾 × 𝑀 DIF effects to arrive at the same 𝜂𝑗𝑚𝑘. Such a model 

is not identified. According to Paek (2002), identifiability in DIF modeling can be obtained by 

constraining the mean of the distribution of 𝜃𝑗 to be zero or setting one or more of the 𝛿𝑚𝑘 as 0. 

Such a constraint assumes a priori knowledge of at least one item being group invariant, which is 

not uncommon in empirical situations.  

The logit of success for a composite item with DIF can be modeled as 

 

𝜂𝑗𝑚0 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (∑ 𝜔𝑘(𝛽𝑚𝑘 + 𝐺𝑗𝛿𝑚𝑘)

𝐾

𝑘=1

+ 𝜔0) , 
( 33 ) 

where DIF effects from all component items within family m are summed up in the parentheses 

at the right side of the equation.  

Item-group Level Models (DFFm and DFFc) 

The two domains (facets) of the MIRID, components and situations, can have their 

group-level DIF modeled simultaneously for a component item. The component differential 

model (DFFc) and the item family differential model (DFFm) can be specified as such: 

 𝜂𝑗𝑚𝑘 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (𝛽𝑚𝑘 + 𝐺𝑗𝛿𝑘), ( 34 ) 

 𝜂𝑗𝑚𝑘 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (𝛽𝑚𝑘 + 𝐺𝑗𝛿𝑚) , ( 35 ) 
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with 𝛿𝑘 and 𝛿𝑚 representing item facet DIF effect for a component and a situation, respectively. 

Analogous to the item-level DIF model, identification can be achieved here by constraining the 

mean of the distribution of 𝜃𝑗 to be zero.  

Accordingly, the DFFm for a composite item is expressed as:  

 

𝜂𝑗𝑚0 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (∑ 𝜔𝑘𝛽𝑚𝑘 + 𝐺𝑗𝐾𝛿𝑚

𝐾

𝑘=1

+ 𝜔0) . 
( 36 ) 

Similarly, the DFFc for a composite item is defined as 

 

𝜂𝑗𝑚0 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (∑(𝜔𝑘𝛽𝑚𝑘 + 𝐺𝑗𝛿𝑘)

𝐾

𝑘=1

+ 𝜔0) . 
( 37 ) 

Note that item facet DIF does not interact with component weights in above specifications. 

Component Weight Model (DWF) 

It is a likely scenario that the importance of one component weighs more for one group 

than the other. As a result, this component contributes more to the parameters of the composite 

items. This differential effect is captured with 𝛿𝑤 and can be seen only in the formulation of the 

composite DIF model: 

 

𝜂𝑗𝑚0 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (∑(𝜔𝑘+𝐺𝑗𝛿𝑤)𝛽𝑚𝑘

𝐾

𝑘=1

+ 𝜔0) . 
( 38 ) 

Given the presence of individual item DIF, the component weight model can be applied after the 

item-group model (component DIF only) to compare which one fits the data better. 

It is quite likely more than one type of differential functioning exists within a MIRID 

data set. For example, one component may be more important to the focal group while a few 

items in different components contain adverse DIF. However, such a scenario will be left for 

future research.  
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In conclusion, the model-based MIRID DIF approach includes multiple models targeted 

at different potential DIF sources, which can be extended to accommodate the presence of more 

than one type of DIF. This approach conforms to the structure of the standard MIRID and thus 

detects only uniform DIF. These models, particularly the DFF models, facilitate explanation of 

differential functioning effects from a substantive perspective. Modeling DIF effect through 

interaction terms of group and facets or group and items is an approach under the framework of 

generalized linear mixed models that can be implemented with general-purpose statistical 

software. Because a large number of parameters affect the quality of marginal maximum 

likelihood estimation, it is suggested to start the DIF study by exploring DIF in individual items 

and conducting a substantive analysis so that parameters related to non-DIF items are not 

included in the model.  
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CHAPTER THREE  

METHOD 

Design of the Research 

The Scope 

The objective of this research was to propose and examine a model-based approach to 

detecting and potentially explaining in the context of the MIRID differential functioning by 

taking into account its possible discrete sources, including individual items (DIF), item facets 

formed by components (DFFc) and item families (DFFm), and component weight (DWF). The 

proposed approach is formulated by extending the standard MIRID, a member of the Rasch 

family of models, to include differential effects in the nonlinear mixed models and was fitted to 

the data structure of the MIRID. Since the extended MIRID does not include an item 

discrimination parameter, only uniform DIF was studied.  

In the context of the MIRID, the most common type of differential functioning would be 

the one scattered in a number of individual items that does not exhibit any marked pattern, which 

can naturally be detected by the DIF model. In addition, the proposed approach incorporates the 

“item bundling” technique to model differential effect at the item bundle level. Items sharing the 

same properties form item bundles, also called facets, which, in the case of the MIRID, are item 

families (“situations”) and components, and the differential functioning by these item facets are 

labeled “DFFm” and “DFFc”, respectively, in the dissertation. The fourth kind of differential 

functioning occurs with component weights, meaning the importance of certain component(s) 
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differs between the focal and reference group, and is called “DWF” henceforth. There are as well 

other types of possible differential effects within the MIRID, for example, DIF with composite 

items alone, but they are beyond the research scope here. 

In empirical settings, more than one type of differential functioning can occur as a result 

of the unique data structure of the MIRID. For example, one component may be more important 

for the focal group than the reference group (DWF) when several individual items exhibit DIF 

favoring either group (DIF). However, it was decided that as the initial MIRID DIF exploration 

this research would lay the foundation by tackling each source separately; the investigation of 

their concurrence is left for future research. 

The Simulation Study 

A Monte Carlo simulation study was carried out to achieve the objective of the research 

that was two-fold: assess the efficacy of the proposed models in detecting the four types of 

differential functioning; and investigate the impact from fitting the “wrong” model to the data 

generated from a different source of differential functioning. First, simulation conditions were 

constructed by keeping some variables constant, allowing others to vary, and manipulating a few 

in order to generate item parameters and response data. The four DIF models were then fitted to 

all simulated data sets. Based on derived estimates, such measures as bias, RMSE (to check 

parameter recovery), power, and Type I error rates (for efficacy in DIF detection) were computed 

and evaluated in order to answer the research questions.  

With no prior DIF studies available in the context of the MIRID, direct guidance for 

research design was not available from the literature. However, the widely acknowledged factors 

that potentially affect DIF detection in traditional DIF studies were considered in designing the 

simulation such as sample size, test length, proportion of items on the test containing DIF, the 
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magnitude of DIF, and the difference in ability distribution between the reference and focal 

group (Mazor, Clauser, & Hambleton, 1992; Rogers & Swaminathan, 1993). In addition, other 

factors that must be looked at due to the unique framework of the MIRID were also considered, 

including number of components, number of item families (situations), and correlation between 

components. These factors were involved in other MIRID-related research (e.g., Butter, De 

Boeck, & Verhelst, 1998; Wang & Jin, 2010a, 2010b). Since it would not be feasible to examine 

the impact of all of the aforementioned factors in one DIF study, in the simulation only a few of 

them were altered or allowed to vary while others were fixed in all conditions. 

Manipulated variables. Four factors were altered to construct simulation conditions: 

sample size, magnitude of differential functioning, distributional properties of the reference and 

focal groups, and sources of differential functioning (individual items, components, item families, 

and component weights). Note that for the three sources at item-group level (DFFc, DFFm, and 

DWF), the differential magnitude was reflected in data generation through manipulating 

parameters of individual items as explicated later.  

DIF studies with item response models typically involve more parameters to be estimated, 

and the larger the sample size the better the detection results. For example, in their research on 

LLTM, Green and Smith (1987) simulated data with sample sizes of 30, 200, and 1000 and 

concluded that a sample size of at least 1000 would lead to optimal estimation and sample sizes 

smaller than 200 would result in poor accuracy. In this research, only two levels of sample size 

were set, 250 or 1,500 for either manifest group, providing a total sample of 500 or 3,000, in 

order to contrast the effects of small and large sample sizes. Such a choice was inspired by the 

original MIRID research (Butter et al., 1998) where sample sizes of 300 and 3,000 were part of 

the simulation design. The issue of unequal groups was not addressed. 
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Magnitude of DIF is a crucial factor. A common practice in DIF research is to set the 

magnitude at different levels so that detection power can be tested thoroughly. Accordingly, the 

amount of individual-item DIF was altered as either 0.2 or 0.7 to represent low and high level of 

DIF magnitude with the high level expected significant enough to be detected. With no previous 

research describing the amount of differential functioning in item groups or component weight 

which can be reasonably anticipated in a practical MIRID setting, extra consideration was given 

to determining suitable magnitude of DFF and DWF. Through simulation, Nandakumar (1993) 

showed that items tested for DIF as a group produced more effective detection results with 

moderate to large differential functioning because of the amplifying effect. This research 

provided a wonderful opportunity to confirm this finding in a different, unconventional data 

structure. As there is not a location parameter for an item group in the MIRID, differential 

functioning supposedly manifested at the item group level had to be represented by modeling it 

at individual item level, which in the dissertation was achieved by adding a delta effect to every 

item within the group. That is, DFFc, DFFm, and DWF were simulated by adding the differential 

amount to the location parameters of the items belonging with the group. For the sake of 

simplicity, only positive and unidirectional DIF was involved in this research; canceling effect 

from conflicting differential effects could be studied in the future. In reality, some items could 

exhibit stronger differential facet functioning than others but here only averaged effects on items 

were considered.  

Research has demonstrated that group differences in latent trait affect DIF detection 

(Mazor, Clauser, & Hambleton, 1992; Narayanon & Swaminathan, 1996; Shealy & Stout, 1993). 

Unequal ability distributions make DIF detection more difficult than equal ability distributions. 

Hence, two conditions in trait distribution were constructed: a matched one where both the 
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reference and focal groups had the same distribution of N(0, 1), and an unmatched one in which 

the reference group ability distribution was simulated as N(0, 1), and the focal group was 

simulated as N(-.7, 1). A difference of about 1 in group means is commonplace in application 

research (e.g., Donoghue, Holland, & Thayer, 1993).  

For this study, the four sources of differential functioning became four levels of the key 

variable to manipulate. At each level, only one form of differential effect was included in 

constructing generation conditions and therefore, the differences in item parameters between the 

reference and the focal groups carried only the effect from one source of DIF.  
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Variables that remained constant. Other than the aforementioned four variables, 

several factors that could impact DIF detection efforts were assumed constant in constructing 

different conditions. The MIRID data structure is made of groups of items (components on one 

dimension and item families on the other). Although some researchers (e.g., Lee, 2010) designed 

their simulation with large numbers of components, in reality a test based on the MIRID with 

many components would be difficult to develop. The empirical data sets commonly used in 

MIRID-related studies were built upon one to three components (Lee, 2010). Therefore in this 

study only three components were designed to approximate practical settings. On the contrary, 

the number of item families is likely to vary in practice as evidenced by the fact that existing 

empirical MIRID data sets involve 5 to 12 item families. Thus a middle ground of 10 item 

families was used here. Because the numbers of components and families determine test length, 

which equals to the number of components plus one times the number of item families, there 

were a total of 40 items simulated for the study. Longer tests increase precision of parameter 

estimation at the cost of additional computing resources. The effect of varying test lengths on 

DIF detection in the MIRID should be investigated in future research.  

The linear relationship defining the difficulty of a composite item in the MIRID requires 

an intercept and parameters of component weights. These parameters were simulated by 

emulating Wang and Jin (2010b), who, for convenience, assumed the intercept in all conditions 

to be zero and specified the three component weights as 0.5, 0.33, 0.17; these values were also 

used in this study.  

In DIF research, the number of DIF-containing items is pertinent to studying differential 

functioning of individual items. Previous research has found that the percentage of DIF items 

impacts DIF detection. Too many DIF items can contaminate the conditioning variables (Gierl, 
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Gotzmann, & Boughton, 2004; Narayanon & Swaminathan, 1996). In practice, it is common to 

see 10% to 20% of items functioning differentially in conventional testing conditions (e.g., 

Narayanon & Swaminathan, 1996; Zhang, 2007). In this research, 20% of the items (four 

component items and four associated composite items) were selected as having DIF for 

constructing conditions. As for differential item group functioning, one component was selected 

for DFFc, two item families for DFFm and one component weight for DFW were used in the 

design. In other words, there were a total of 20 items involved in creating group level DIF for 

components, eight items (including two composite items) for building differential functioning 

item families, and 10 composite items impacted when constructing component weight DIF 

conditions.  

Variables that varied. Since the proposed DIF models extend from the standard MIRID 

model, only item location parameters were necessary for data generation. Instead of fixing these 

parameters, the simulation added more randomness by randomly drawing values from a specified 

distribution, that is, a uniform distribution of U[-2, 2]. This method of generating true parameters 

was inspired by Wang and Jin (2010b) although their MIRID research was not about differential 

functioning.  

Another important element of the MIRID is the correlation between components. With 

highly correlated attributes (components), the test is more unidimensional than not so that the 

presence of DIF may stand out and thus is likely to be detected. Conversely, low correlation may 

render DIF detection more difficult. The levels of component correlation specified in the original 

MIRID study by Butter et al. (1998) included only two levels, 0 and 0.7, although it is unlikely 

that the components in a test are entirely uncorrelated. Interestingly, none of the later MIRID 

studies considered this variable. Since all the difficulty parameters of the component items were 
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drawn randomly from a uniform distribution no control was applied to constrain componential 

correlations. As a result, these correlations varied widely across different simulation conditions. 

In summary, there were in total 32 conditions constructed for the simulation study: 2 

sample sizes (500, 3000)  × 2 levels of differential functioning magnitude (0.2, 0.7) × 2 levels of 

population impact (0, -0.7) × 4 levels of differential functioning (DIF, DFFc, DFFm, and DWF). 

A summary of these conditions is given in Table 5.  

Implementation 

Data Generation 

Since the analysis was to be conducted using SAS, it was reasonable to employ a 

different computer program for data generation in order to render results more valid. WinGen 3 

(Han, 2007) was selected to generate all the item parameters and response data. The following 

procedures were taken to create data sets under every simulation condition. 

1. On WinGen, randomly drew 30 values from U[-2,2] and broke them into three groups of 

10 as location parameters of component items that belong with each of the three 

components.  
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Table 5. 

Simulation Conditions 

Cell Sample Impact Type (Items involved) Magnitude 

1 500 0 DIF (8 items, 20%) 0.2 

2 500 0 DIF (8 items, 20%) 0.7 

3 500 -0.7 DIF (8 items, 20%) 0.2 

4 500 -0.7 DIF (8 items, 20%) 0.7 

5 3000 0 DIF (8 items, 20%) 0.2 

6 3000 0 DIF (8 items, 20%) 0.7 

7 3000 -0.7 DIF (8 items, 20%) 0.2 

8 3000 -0.7 DIF (8 items, 20%) 0.7 

9 500 0 DFFc (1 component, 50%) 0.2 

10 500 0 DFFc (1 component, 50%) 0.7 

11 500 -0.7 DFFc (1 component, 50%) 0.2 

12 500 -0.7 DFFc (1 component, 50%) 0.7 

13 3000 0 DFFc (1 component, 50%) 0.2 

14 3000 0 DFFc (1 component, 50%) 0.7 

15 3000 -0.7 DFFc (1 component, 50%) 0.2 

16 3000 -0.7 DFFc (1 component, 50%) 0.7 

17 500 0 DFFm (2 families, 20%) 0.2 

18 500 0 DFFm (2 families, 20%) 0.7 

19 500 -0.7 DFFm (2 families, 20%) 0.2 

20 500 -0.7 DFFm (2 families, 20%) 0.7 

21 3000 0 DFFm (2 families, 20%) 0.2 

22 3000 0 DFFm (2 families, 20%) 0.7 

23 3000 -0.7 DFFm (2 families, 20%) 0.2 

24 3000 -0.7 DFFm (2 families, 20%) 0.7 

25 500 0 DWF (10 composite, 25%) 0.2 

26 500 0 DWF (10 composite, 25%) 0.7 

27 500 -0.7 DWF (10 composite, 25%) 0.2 

28 500 -0.7 DWF (10 composite, 25%) 0.7 

29 3000 0 DWF (10 composite, 25%) 0.2 

30 3000 0 DWF (10 composite, 25%) 0.7 

31 3000 -0.7 DWF (10 composite, 25%) 0.2 

32 3000 -0.7 DWF (10 composite, 25%) 0.7 
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2. Calculated location parameters of the composite items using the component item 

parameters drawn above and the pre-specified intercept (0) and three component weights 

(.5, .33, .17). 

3. Imported item parameters of all 40 items into WinGen. 

4. Created true theta values for the reference group according to the distribution property of 

N(0,1). 

5. Based on generated person trait scores and item parameters, simulated 500 samples of 

item response data for the reference group using the Rasch model because the proposed 

models are extensions of the standard MIRID. 

6. Created another set of item parameters by randomly drawing 30 values from U[-2,2] 

before accounting for the sources of differential functioning. For DIF, the magnitude of 

the current condition was added to the parameters of pre-selected four component items; 

for DFFc, it was added to all the items within the second component; for DFFm, the 

component items within two families had this effect added to their parameters; for DWF, 

the differential amount was added to the second of the component weight. After, the 

parameters of the composite items were computed accordingly. (Details of these linear 

relations can be found in Chapter Two.) 

7. Imported this second set of 40 item parameters into WinGen. 

8. Created true theta values for the focal group by following either distribution, N(0,1) or 

N(-.7, 1). 

9. Based on person trait scores and item parameters for the focal group, simulated 500 item 

response data sets for the focal group using the Rasch model.  
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Research has shown that Monte Carlo simulations would have greater statistical power 

with more samples (e.g., Robey & Barcikowski, 1992). However, for research in social sciences, 

it is common to employ several hundred replications in simulation studies. Moreover, very long 

computing time due to complexity in modeling and analysis creates problems that force 

researchers to even opt for less than 100 replications (e.g., in the case of the MIRID research, 

Wang & Jin, 2010a; 2010b). In the DIF literature, the number of replications ranges typically 

from 100 to 500. For this study it was determined that 500 replications for every condition would 

achieve satisfactory precision albeit at a great cost of computing resources. A pilot study was 

conducted to test the stability of parameter estimates and found satisfactory estimation stability 

when there were 100 samples and that the estimates from the first 100 samples resembled closely 

to those from the second, third, fourth, and fifth 100 samples.  

Estimation 

Since much of the IRT literature that explored DIF in the GLMM framework utilized 

maximum likelihood estimation, the proposed models as extensions of the Rasch model also 

followed this method that was implemented using the SAS NLMIXED procedure. 

The marginal maximum likelihood estimation (MMLE) adopted by many MIRID studies 

typically adopted numerical integration as the integral in this formulation does not have a closed-

form solution (Tuerlinckx et al., 2004). As for the different maximization algorithms available 

for MMLE, the Gauss-Hermite quadrature method (Abramowitz & Stegun, 1974) was popular in 

earlier MIRID related research. However, analysis in this research used the non-adaptive 

Gaussian method instead of the more time-consuming adaptive Gaussian approach. It has been 

found that the two methods yielded very similar results (De Boeck & Wilson, 2004). Both 

Gauss-Hermite quadrature and adaptive Gaussian approaches are available through NLMIXED, 
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which also offers the flexibility for specifying the number of quadrature points desired. For the 

optimization phase, NLMIXED provides a number of options, the default of which is a dual 

quasi Newton-Raphson algorithm. In contrast to the original Newon-Raphson technique that 

calculates standard errors of the parameter estimates from the second derivative matrix of the 

likelihood function, the quasi-Newton approach computes only the first derivatives and thus 

takes much less time to run. As a note of shortcomings, mixed modeling through SAS 

NLMIXED is computationally intensive and requires considerable amount of memory and CPU 

time. In addition, the default algorithms sometimes lead to failure to converge or other estimation 

problems, such as the final Hessian matrix not being positive definite (Kierman, Tao, & Gibbs, 

2012). 

As an alternative to MMLE, Bayesian estimation was introduced in more recent MIRID 

studies which proposed multilevel or crossed random effect extensions of the MIRID, where a 

high number of parameters make it difficult to apply maximum likelihood estimation. The 

Bayesian Markov Chain Monte Carlo (MCMC) estimation has been offered as a valid alternative 

(Lee, 2010; Hung, 2011). The Bayesian method was not used in the study since the proposed 

models are not overly complicated. Also, the Bayesian MCMC method provides no point 

estimates of parameters but distributions of parameters.  In addition, convergence evaluation is 

less straightforward with MCMC than with MMLE approach. Model comparison based on 

maximum likelihood is a powerful feature of this approach.  

In conclusion, MMLE as implemented by SAS NLMIXED has been the engine behind 

much of psychometric modeling research, including earlier studies to extend and generalize the 

MIRID. This is logical since the MIRID and its extensions can be viewed as special cases of 

generalized nonlinear mixed models. Also, the well-understood properties of MMLE and the 
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ease in implementation and output interpretation with NLMIXED attract researchers. Because 

the models proposed in this dissertation are not overly complex, MMLE using NLMIXED is 

selected to perform estimation despite the downside that this method can be very demanding of 

computing resources.  

Analysis Procedures 

Before proceeding with the MIRID differential functioning analysis, a recovery analysis 

was conducted to determine the extent to which the generating parameters could be recovered 

from the simulated data sets simulated using the WinGen program. For this purpose, 500 data 

sets were simulated from the standard MIRID on the basis of the study design discussed above 

but minus the differential functioning effects.  

In keeping with the two-fold research objective, the analysis of differential functioning 

consisted of two parts: to examine the efficacy of the proposed DIF models in detecting the 

corresponding source of differential effects and to investigate the impact from fitting the DIF 

models to the data with mismatched DIF source. Steps taken in the analysis under every 

condition are as follows, the details of which can be found in the SAS example code in Appendix 

A. 

1. For each replication, read in the output files from WinGen and combined the reference 

group and focal group response data sets. 

2. Converted the combined data set into “long format” by putting all item responses in one 

column. 

3. Created indicator variables for items, item families, and components. 

4. Fitted MIRID DIF models one at a time to the combined data and saved the output 

parameter estimates data. 
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Evaluation Procedures 

The accuracy and precision of parameter estimates were gauged through recovery 

analysis. The root mean square error (RMSE) and bias were calculated for estimated parameter 

values to assess the deviance between the generating values and estimated ones. According to 

Sinharay, Grant, and Blew (2009), bias can be defined as 

 

𝐵𝑖𝑎𝑠 =
1

𝑆
∑�̂�𝑟

𝑆

𝑠=1

− 𝛿 , 
( 39 ) 

where 𝑆 is the number of replications, 𝛿 refers to the true magnitude of differential functioning 

whereas �̂�𝑟 the estimated magnitude in the r
th

 replication. Note that the subscript for an item, or a 

facet, or a component weight is omitted. On the other hand, RMSEs can be expressed as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑆
∑(�̂�𝑟 − 𝛿)2

𝑆

𝑠=1

 , 

( 40 ) 

using the aforementioned notation. Comparison of RMSE and bias reveals estimation accuracy 

of fitted models under a certain data construction condition. 

Often when a DIF model is implemented, null hypotheses (“No DIF”) are tested against 

the estimates of the differential functioning parameters. In this study, SAS NLMIXED procedure 

produced a maximum likelihood estimate for every model parameter, including a number of 

zero-value DIF parameters (individual or group), followed by a p-value based on a t distribution 

with approximate degrees of freedom computed as the number of subjects minus the number of 

random effects. If the estimate was not zero with a p-value significant at .05 level, the true null 

hypothesis of no differential functioning was incorrectly rejected and a Type I error was 

committed (a “false positive”). The efficacy of the proposed models in DIF detection was 

assessed by computing and examining the Type I error rates and statistical power.  
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Testing a host of null hypotheses simultaneously gives rise to the problem of Type I error 

inflation. With a nominal 𝛼 level that is typically pre-determined for probability, different types 

of Type I error rates were defined (Ryan, 1959): the error rate in a single hypothesis test (per-

comparison or hypothesiswise Type I error), the average number of errors in a host (“family”) of 

hypotheses tests (per-experiment Type I errors), and the probability of one or more errors in a 

host of hypothesis tests (experimentwise or familywise Type I error). Of the three, the 

experimentwise error rate (𝛼𝐸𝑊 ) has often been the main concern with multiple hypotheses 

testing (Kromrey & La Rocca, 1995).  It can be defined as 𝛼𝐸𝑊 = 1 − (1 − 𝛼)𝑐, where c 

represents of the number of tests. It is obvious that experimentwise Type I error can grow fast as 

the number of tests increases. In this study, the number of per-experiment Type I errors was not 

computed. 

In DIF studies, effective control of Type I error has always been of interest. Adjustment 

procedures that protect hypothesis testing from inflated Type I errors include the Bonferroni 

correction and Hochberg’s sequential procedure (Hochberg, 1988), which is a modified 

Bonferroni correction procedure. The Bonferroni procedure simply calculates a new alpha to 

keep the experimentwise alpha value at .05 (or another specified value). The formula for 

calculating the adjusted significance level is 𝛼𝐻𝑊 =
𝛼𝐸𝑊

𝑐
, where 𝛼𝐻𝑊 is the new alpha to 

evaluate each hypothesiswise significance test. The Bonferroni correction is probably the most 

commonly used post hoc test for its flexibility and simplicity; however, it is conservative and 

lacks statistical power. For the Hochberg approach, the hypotheses are first ordered according to 

their associated p-value in ascending order. The sequential adjustment of the experimentwise 

alpha calculates 
𝛼𝐸𝑊

𝑐
 as the first of the set of criteria for the reject/fail-to-reject decision and 
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𝛼𝐸𝑊

𝑐−1
as the second in line, and so on, with the final one being 

𝛼𝐸𝑊

1
. That is, evaluation starts with 

the smallest observed p-value evaluated against 
𝛼𝐸𝑊

𝑐
, followed by the second smallest p-value 

compared with 
𝛼𝐸𝑊

𝑐−1
, and proceeds up the set of p-values until a null hypothesis is rejected. 

Details of the criteria calculation and evaluation can be found in Kromrey and Hogarty (2002). In 

addition, researchers can certainly opt for no adjustment at all when they conduct an unprotected 

test for every hypothesis.  

For hypothesis testing, statistical power refers to the probability of rejecting a false null 

hypothesis. Researchers often target maximizing statistical power while maintaining the 

probability of a Type I error at or below the pre-determined level. Analogous to the 

aforementioned three types of Type I errors, three kinds of statistical power were promoted in the 

literature (Seaman et al., 1991). Any-pairs power is the probability of rejecting at least one false 

null hypothesis in the entire set. In contrast, all-pairs power is the probability of rejecting all the 

false null hypotheses across the tests, which never exceeds the any-pairs power. Finally, per-pair 

power is the probability of rejecting each false null hypothesis in the entire host of hypotheses. 

The all-pairs power index is naturally the lowest of the three and was not calculated for this 

research because the per-pair power has been the most commonly used in DIF studies and the 

any-pairs index is the most relevant in the context of multiple hypotheses testing. 

Meaningful power comparisons across conditions depends on well controlled Type I 

error rates. Inflated Type I error rates result in overestimated power and deflated Type I error 

rates lead to underestimated power. After Type I error rates were evaluated, the ability of each 

model to correctly identify items with DIF (power) was examined. Specifically, the per-pair and 

any-pairs indices of power were calculated. Power were assessed using Cohen’s (1988) standard 

of .8 or greater (at α= .05) as being adequate.  
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To review the steps of analysis, after data sets had been simulated, bias and RMSE were 

computed for all model parameters as well as the differential functioning parameters for the 500 

replications under each condition. For the conditions where every extended MIRID model (DIF, 

DFFc, DFFm, and DWF) was fitted to data generated based on themselves, different types of 

Type I error rates and power were calculated for each condition before being compared and 

evaluated. These evaluative measures were taken in order to address the following questions: 

1.) How well are the Type I error rates controlled? When the Type I error control is 

maintained, what is the power of the MIRID DIF, DFFc, DFFm, and DFW models in 

detecting differential functioning of different sources?  

2.) How accurate are the parameter estimates of these models, including the DIF 

parameters, item locations, component weights, and impact (𝛾𝑔)? 

3.) How do the following such factors affect the performance of the proposed differential 

functioning approach as sample size, DIF magnitude, and group differences in trait 

level? 

To investigate the effect of applying the unmatched model to study differential 

functioning in the context of the MIRID, the following questions were addressed based on the 

analysis results: 

4.) How well are the model parameters estimated if the wrong models are fitted to the 

data? Are they more adversely impacted under some conditions than others?  

5.) Are any of the estimates of the incorrectly specified DIF parameters statistically 

significant? Which differential effects in the data produce the most misleading 

findings when the unmatched model is fitted?  
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CHAPTER FOUR  

RESULTS 

Analysis results of this study are presented in three parts: First, outcome from the pilot 

study was provided. Since the proposed MIRID differential functioning approaches are model-

based, their performance on detection mainly depends on how well the relevant parameters are 

recovered. Accordingly, a discussion on the recovery of DIF relevant and non-DIF parameters 

formulated in the four models, including the MIRID differential item functioning model (DIF), 

the model for differential facet functioning in components (DFFc), the model for differential 

facet functioning in item families (DFFm), and the model for differential facet functioning in 

component weights (DWF), is presented in the second section. In this section the generating 

MIRID differential functioning (“true”) models were fitted to their generated data so that the 

Type I error control and power in DIF testing for these models were calculated and presented. In 

the last part, each of the proposed models was applied to data simulated with the other (“wrong”) 

models. Because the DIF parameters (delta) in these scenarios all had a true value of zero, only 

false detection rates were discussed here before parameter recovery in these conditions was 

described.  

Parameter Recovery of the Standard MIRID  

Before the DIF simulation study, a simulation study of parameter recovery for the 

standard MIRID model was conducted to evaluate the accuracy and precision of the parameter 

estimation methods used in this research. Specifically, a standard MIRID model mimicking the 
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DIF simulation design which includes 10 item families and 3 components was used to generate 

data. Table 6 lists the 35 parameters, including 30 item location parameters (b1 – b30), one 

intercept (w0), three component weights (w1 – w3), and the standard deviation of the sample 

(sd), that were produced by the WinGen program using the method described in Chapter Three. 

Five hundred data sets of 1,000 persons were then created based on these parameters and 

analyzed with SAS PROC NLMIXED. (1,000 is common as a medium-level sample size in 

educational DIF studies.) 

Bias and RMSE results from the recovery analysis are given in Table 6. Bias values for 

30 item location parameters ranged from .027 to .070, indicating slight over-estimation which is 

on par with the results by Butter et al. (1998) where the standard MIRID was introduced with full 

details. All but two (.140 and .160) of the RMSE values were low, ranging from .107 to .132, 

suggesting acceptable estimation. In contrast, the intercept (-.010) and three component weights 

parameters (-.003, -.005, and -.001), and standard deviation of the sample (-.036) were 

underestimated with almost negligible bias.  Their associated RMSE were also small, ranging 

from .037 to .056. In summary, parameter recovery of the standard MIRID confirmed that the 

data generation and parameter estimation approaches were adequate and would be employed for 

study of differential functioning models. 

Results for the Proposed Differential Functioning Models 

For each proposed model, eight simulation conditions were constructed by crossing three 

factors: sample size, magnitude of differential functioning in items or item groups (DIF size), 

and group difference in trait level (impact). For each condition, 500 replications were simulated, 

resulting in 16,000 data sets in total. In the first phase of the study, the generating models were 

applied to the data simulated based on themselves to investigate parameter recovery and Type I 
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error rates and power (a.k.a. when they were the “true models”). Results from phase one are 

presented in Table 6. 

Recovery of the True DIF (Delta) Parameters 

Defined in the MIRID DIF model are thirty DIF parameters, four of which had non-zero 

values (d2, d14, d16, and d28) that represented the differences in item location between the focal 

and reference groups. The other 26 were delta parameters considered to have true value of zero 

in the analysis. The average bias for the four non-zero delta parameters from the 500 replications 

is displayed in Table 7, where every value is negative, suggesting that all the delta parameters 

were under-estimated in the eight conditions. In addition, there is much variation both in the 

estimates of each parameter and between the estimates in the same condition when true values 

are the same. For example, in the condition with larger delta (.7), non-zero impact (.7), and 

smaller sample (500), bias in estimates of d2 (-.113) and d28 (-.110) were much greater than 

those of d14 (-.039) and d16 (-.045). Such variation points to the fact that the quality of 

estimation was less than optimal.  

Figure 1 graphs the average bias of the four estimated delta parameters with the left graph 

showing the four conditions of smaller sample size and the right one the four conditions with 

larger sample size. Dashed lines represent larger delta conditions and solid lines smaller delta 

conditions. Clearly, larger delta size resulted in significantly more bias than smaller delta for 

both sample size conditions (-.101 and .030 on average). Also, larger samples increased average 

bias but to a smaller extent (-.058 versus -.074). From these graphs, it seems that the presence of 

population difference (impact) decreases the bias only slightly, which is more obvious in larger 

delta conditions.  
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Table 6. 

Recovery of Item Location Parameters of the Standard MIRID 

Parameter No. Parameter True Value Bias RMSE 

1 b1 1.366 0.057 0.110 

2 b2 1.221 0.057 0.123 

3 b3 -1.152 0.050 0.107 

4 b4 0.750 0.061 0.111 

5 b5 -1.441 0.040 0.112 

6 b6 1.957 0.070 0.140 

7 b7 -0.949 0.061 0.113 

8 b8 -1.227 0.065 0.118 

9 b9 0.299 0.060 0.113 

10 b10 -0.635 0.056 0.109 

11 b11 -1.700 0.028 0.124 

12 b12 0.912 0.038 0.112 

13 b13 -0.944 0.053 0.108 

14 b14 -1.294 0.031 0.111 

15 b15 0.075 0.048 0.101 

16 b16 1.211 0.062 0.132 

17 b17 0.519 0.062 0.112 

18 b18 -0.304 0.050 0.113 

19 b19 -1.893 0.062 0.160 

20 b20 -1.924 0.027 0.128 

21 b21 -0.085 0.044 0.110 

22 b22 1.573 0.041 0.124 

23 b23 -0.807 0.035 0.119 

24 b24 -0.160 0.063 0.112 

25 b25 -0.683 0.068 0.117 

26 b26 1.155 0.055 0.123 

27 b27 -0.988 0.048 0.113 

28 b28 -0.677 0.043 0.120 

29 b29 1.959 0.045 0.131 

30 b30 -0.096 0.042 0.111 

31 w0 -0.010 -0.010 0.051 

32 w1 0.497 -0.003 0.045 

33 w2 0.325 -0.005 0.037 

34 w3 0.169 -0.001 0.056 

35 sd 0.964 -0.036 0.041 
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Table 7 

Bias of the Non-zero DIF Parameter Estimates under the MIRID DIF Model 

   

d2 d14 d16 d28 

delta=.2 N=250*2 Impact=0 -0.013 -0.015 -0.039 -0.053 

  

Impact=-.7 -0.035 -0.019 -0.006 -0.038 

 

N=1500*2 Impact=0 -0.050 -0.031 -0.021 -0.037 

  

Impact=-.7 -0.038 -0.028 -0.026 -0.031 

delta=.7 N=250*2 Impact=0 -0.141 -0.068 -0.072 -0.116 

  

Impact=-.7 -0.113 -0.039 -0.045 -0.110 

 

N=1500*2 Impact=0 -0.152 -0.099 -0.098 -0.135 

  

Impact=-.7 -0.122 -0.101 -0.100 -0.111 

 

 

  

Figure 1. Average bias of the non-zero DIF parameter estimates under the MIRID DIF model by 

sample size 

 

Table 8 lists the RMSEs of the estimates of the four non-zero DIF parameters and Figure 

2 plots the average RMSEs of these estimates under the MIRID DIF model by sample size. As 

expected, larger sample sizes (sample=3,000) decreased RMSE for all parameters (<.2). 

Conversely, larger delta magnitude increased the sizes of RMSE in either sample size condition; 

specifically, a negligible increase with smaller samples but conspicuous increase for larger 

samples. For example, with larger samples and zero impact, RMSE went up from .091 to .169 as 
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delta rises from .2 to .7 for d2; with smaller samples and zero impact, however, the increase was 

only from .192 to .231 for the same parameter. Figure 2 confirms the prominent influence of 

sample size not only in reducing the RMSEs significantly but also in widening the gap in average 

RMSE between the two delta sizes. Also, it was obvious from Table 8 that there was very little 

difference in RMSEs between the two impact levels, suggesting virtually no effect from this 

factor. This is confirmed graphically on Figure 2, where the dotted line of larger delta runs 

parallel to the solid line of smaller delta in both plots and reveals a very weak relationship 

between group difference and DIF magnitude.  

Table 8. 

RMSEs of the Non-zero Delta Parameter Estimates under the MIRID DIF Model 

   

d2 d14 d16 d28 

delta=.2 N=250*2 Impact=0 0.192 0.214 0.244 0.266 

  

Impact=-.7 0.227 0.225 0.226 0.262 

 

N=1500*2 Impact=0 0.091 0.092 0.087 0.086 

  

Impact=-.7 0.087 0.119 0.085 0.090 

delta=.7 N=250*2 Impact=0 0.231 0.217 0.234 0.274 

  

Impact=-.7 0.258 0.211 0.201 0.310 

 

N=1500*2 Impact=0 0.169 0.130 0.127 0.160 

  

Impact=-.7 0.145 0.163 0.130 0.142 

 

  

Figure 2. Average RMSEs of the non-zero DIF parameter estimates under the MIRID DIF model 

by sample size 
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The DIF detection performance of the MIRID DIF model can be evaluated from another 

perspective by examining the estimation of the locations of the component items that were 

associated with the four delta parameters. This is because the estimation process may not be able 

to distinguish the delta and location parameters; thus the under-estimation of the former may lead 

to the over-estimation of the latter, and vice versa. As seen from Table 9, the four items (b2, b14, 

b16, and b28) were all over-estimated but considerably so in larger delta conditions with bias 

ranging from .135 to .237. Such over-estimation is also shown graphically in Figure 3 where 

RMSEs of all 30 location parameters are plotted for all four conditions formed by sample and 

impact sizes. In each plot, the solid line represents RMSEs in the smaller delta (.2) condition 

while the dashed line connects the 30 RMSEs for the larger delta (.7) condition. Note that the 

spikes on the larger-delta line in all four conditions are pronounced for the four DIF-associated 

component items. Overall, larger delta led to more significant bias and RMSEs; for smaller delta 

conditions, only larger sample coupled with zero impact caused more conspicuous RMSEs for 

delta-associated component items. For instance, for b28, the condition of smaller delta, larger 

sample and zero impact had slightly larger bias (.087) than smaller delta, larger sample, and 

impact (.056). Table 8 also shows that larger sample size inflated bias but to a lesser degree than 

delta size and that the presence of group difference (impact) decreased bias slightly.  

In Chapter Two, the MIRID extensions for item group level differential functioning were 

formulated using Equation 36, 37, and 38 as the DFFc, DFFm, and DWF models, respectively. 

The item-group level differential effect is involved in modeling individual item responses (see 

Chapter Two for details). The effectiveness of these models in DIF detection determines whether 
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in the context of the MIRID differential functioning can be explained effectively with common 

characteristics in a group of items.  

In the DFFc model, three delta parameters were defined, each representing a component 

but only one of them (kd2) was given a non-zero value (delta) in the simulation. For the DFFm 

model, 10 DIF parameters were formulated to correspond to the 10 item families, two of which 

(fd3 and fd7) were simulated with nonzero values. Similarly, the second of the three DIF 

parameters (wd2) in the DWF model was simulated as the delta parameter while the other two 

had true values of zero. Table 10 and Table 11 list the RMSE and bias of these four item-group 

level delta parameters over 500 replications. Clearly, all group-level delta parameters were 

estimated adequately as the bias values were very close to zero (mostly between -.004 and .004) 

and there was sign of neither over- nor under-estimation. With sample size and impact held 

constant, larger DIF led to greater RMSE. The estimation appeared to be the worst in the 

condition of smaller sample, larger DIF, and larger impact. The mean estimate of wd2 in the 

condition of larger sample, no impact, and larger DIF deviated the most from the true value (bias 

= .021).  

 

Table 9. 

Bias of the DIF-related Item Location Parameters under the MIRID DIF 

   

b2 b14 b16 b28 

delta=.2 N=250*2 Impact=0 0.053 0.061 0.055 0.072 

  

Impact=-.7 0.038 0.047 0.047 0.040 

 

N=1500*2 Impact=0 0.089 0.083 0.086 0.087 

  

Impact=-.7 0.053 0.036 0.046 0.056 

delta=.7 N=250*2 Impact=0 0.196 0.192 0.193 0.206 

  

Impact=-.7 0.172 0.218 0.216 0.168 

 

N=1500*2 Impact=0 0.237 0.215 0.220 0.234 

  

Impact=-.7 0.211 0.135 0.223 0.172 
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Figure 3. Recovery of the location parameter of component items under the MIRID DIF model 

by sample and impact 

 

Figure 4 displays the RMSE of the DFFc model delta estimate (kd2) by sample size, 

where it is clear that DIF size and impact had no influence on estimation and the only influential 

factor was sample size. There is a difference of approximately .04 in magnitude between the 

RMSEs from larger sample conditions and smaller sample ones. In Figure 5, the averages 
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RMSEs of the two delta parameters in the DFFm model were plotted. Once again, larger sample 

size lead to smaller RMSEs by at least .04 when larger DIF size also reduced RMSEs, especially 

for non-zero impact conditions, suggesting an interaction between delta size and impact. The 

RMSEs of the delta parameter in the MIRID DWF model are graphed in Figure 6. Larger sample 

size and smaller DIF magnitude resulted in smaller RMSEs and the interaction between impact 

and DIF size appears to be in opposite direction to that in the DFFm model: the non-zero impact 

did not reduce but increased RMSEs. Across all the three group DIF models, the RMSEs for 

larger sample conditions were acceptable (<.05).  

 

Table 10  

RMSE of the Delta Parameters under the MIRID DFFc, DFFm, and DWF Models 

   

kd2 fd3 fd7 wd2 

delta=.2 N=250*2 Impact=0 0.069 0.068 0.067 0.048 

  

Impact=-.7 0.068 0.063 0.070 0.067 

 

N=1500*2 Impact=0 0.027 0.026 0.025 0.027 

  

Impact=-.7 0.028 0.027 0.027 0.033 

delta=.7 N=250*2 Impact=0 0.068 0.098 0.070 0.093 

  

Impact=-.7 0.070 0.121 0.114 0.089 

 

N=1500*2 Impact=0 0.028 0.029 0.028 0.034 

  

Impact=-.7 0.029 0.034 0.054 0.034 

 

Note that because estimation of these group-level delta parameters was at an acceptable 

level, there was no need to examine the estimation quality of the location parameters of their 

associated component items.  
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Table 11  

Bias of the Delta Parameters under the MIRID DFFc, DFFm, and DWF Models 

   

kd2 fd3 fd7 wd2 

delta=.2 N=250*2 Impact=0 0.001 0.001 0.000 0.005 

  

Impact=-.7 -0.002 0.001 -0.004 0.007 

 

N=1500*2 Impact=0 0.001 0.000 0.002 0.002 

  

Impact=-.7 0.000 -0.001 -0.001 0.002 

delta=.7 N=250*2 Impact=0 0.003 -0.004 0.001 0.005 

  

Impact=-.7 0.001 0.011 0.002 0.021 

 

N=1500*2 Impact=0 0.002 -0.002 -0.003 -0.002 

  

Impact=-.7 -0.003 0.001 -0.003 0.001 

 

Recovery of Zero-value DIF Parameters 

Estimation of the delta parameters directly affects the power of DIF detection of the 

proposed models. On the other hand, estimation quality of the zero-value DIF (non-delta) 

parameters formulated in the proposed models influences the Type I error rates in their detection. 

A Type I error is committed when the estimated parameter is significantly different than zero. 

Figure 7 presents the average estimation bias of the 26 non-delta DIF parameters in the MIRID 

DIF model by sample size. (Average bias and RMSE for estimates of the zero-value DIF 

parameters in the four models are provided in Appendix B.) Overall, bias was acceptable in 

smaller DIF size conditions at about -.02 for either sample condition. The levels of bias were so 

much higher in larger delta conditions (< -.08) that DIF size alone was the dominant factor for 

these results. Figure 7 also demonstrates very weak effects from impact on recovery of non-delta 

DIF parameter as it decreased the bias slightly for larger delta under both sample size conditions 

but had no effect when the DIF magnitude was small.  

In Figure 8, the average RMSEs of the non-delta parameter estimates for smaller sample 

(.167) are greater than those for larger sample (.154). From another perspective, the level of  
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Figure 4. RMSEs of the non-zero DIF parameter estimates under the MIRID DFFc by sample 

size 

  

Figure 5. Average RMSEs of the non-zero DIF parameter estimates under the MIRID DFFm by 

sample size 

  

Figure 6. RMSEs of the non-zero DIF parameter estimates under the MIRID DWF by sample 

size 
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RMSEs for smaller delta was significantly lower (.114) than larger delta conditions (.226). In 

addition, larger sample also increased the gap in RMSE between the two delta sizes. Note that 

the plots in Figure 7 and 8 resemble those in Figure 1 and 2 that depict the average bias and 

RMSEs of the non-zero DIF parameters. Therefore, there was virtually no difference in 

estimation quality between the delta and zero-value DIF parameters. 

 

  

Figure 7. Average bias in estimation of zero-value DIF parameters in the MIRID DIF model 

  

Figure 8. Average RMSEs in estimation of zero-value DIF parameters in the MIRID DIF model 

 

As discussed previously, a number of zero-value DIF parameters are included in the 

formulation of every group-level differential functioning model: two component DIF parameters 

(kd) in the DFFc model, eight item family DIF parameters (fd) in the DFFm model, and two 
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component weight DIF parameters (wd) in the DWF model. Figure 9 and 10 give their average 

estimate bias in conditions formed by DIF magnitude and sample size. In the left graph of Figure 

9 (smaller delta and sample), the zero-value DWF parameters were noticeably over estimated 

and such over-estimation lessened with larger sample size as shown in the right graph. In Figure 

10, larger delta, smaller sample, and large impact resulted in huge bias for the DWF parameters 

(left) but with larger sample all the bias fell to acceptable level (right). Overall, bias of zero-

value DIF parameter estimates in the DFFc and DFFm models were acceptable in all conditions 

and the zero-value DWF parameter estimates were the most volatile.  

 

  

Figure 9. Average bias in estimation of zero-value DIF parameters in the MIRID DFFc, DFFm, 

and DWF models (smaller delta conditions) 

  

Figure 10. Average bias in estimation of zero-value DIF parameters in the MIRID DFFc, DFFm, 

and DWF models (larger delta conditions) 
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A similar scenario can be found in Figure 11 and 12 where the average RMSEs for these 

group-level zero-value DIF parameters are graphed. Once again, for these group-level DIF 

parameters, DIF size was not the prominent factor in determining their estimation quality; rather, 

RMSEs decreased conspicuously in large sample size conditions. Estimation quality of the zero-

value DIF parameters and those of the delta parameters in the group-level DIF models is 

essentially the same.  

 

  

Figure 11. Average RMSEs in estimation of zero-value DIF parameters in the MIRID DFFc, 

DFFm, and DWF models (smaller delta conditions) 

  

Figure 12. Average RMSEs in estimation of zero-value DIF parameters in the MIRID DFFc, 

DFFm, and DWF models (larger delta conditions) 
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In addition, recovery of the other parameters of the MIRID DIF, DFFc, DFFm, and DWF 

models was evaluated and found to be acceptable with no unusual patterns. Since their 

estimation quality does not bear direct effect on study of differential functioning of individual 

items or item groups, their recovery will not be discussed here but the details in the form of bias 

and RMSEs can be found in the Appendices C. 

This section answered the second and third research questions, which focus on estimation 

quality of the proposed models in terms of parameter recovery and on the effects from 

manipulating factors.  In summary, recovery of the delta and other parameters for the three item 

group DIF models was found to be adequate. For these models, larger samples reduce both bias 

and RMSE; the effect from the magnitude DIF was not strong.  

For the individual item DIF model, the recovery was less than acceptable, especially in 

larger DIF size conditions where the magnitude of delta was shown to be the most influential 

factor. In particular, items associated with a real DIF parameter had their locations over-

estimated consistently while the paired delta parameters were consistently under-estimated. 

Overall, both the four delta and 26 zero-value DIF parameters were underestimated with 

considerable and varying RMSEs, even under larger sample conditions. Larger sample size 

decreased the RMSEs of the delta and zero-value DIF parameters alike but not the bias. The 

effect from between-group impact was mostly weak and inconsistent. 

Type I Error Control and Power of the MIRID Differential Functioning Models 

A Type I error occurs when an item, item group, or an item weight was identified as 

functioning differentially but was not simulated with any differential effect. In the analysis, the 

SAS NLMIXED procedure produced a maximum likelihood estimate for every model parameter, 

including the zero-value DIF parameters (individual or group), followed by a p-value based on a 
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t distribution with approximate degrees of freedom computed as the number of subjects minus 

the number of random effects. If the estimate was not zero with the p-value significant at .05 

level, the null hypothesis of no differential functioning was incorrectly rejected and a Type I 

error was committed.  

In the MIRID DIF model, 26 of the 30 DIF parameters were simulated to have a true 

value of zero. In the DFFc, DFFm, and DWF models, the numbers of zero-value DIF parameters 

are two, eight, and two, respectively. A total of eight conditions were simulated for each of the 

four proposed models and 500 data sets were generated for each condition. Thus, the empirical 

Type I error rate was calculated for each simulation condition over the 500 replications. The 

liberal definition of robustness by Bradley (1978) that empirical Type I error rate should not 

exceed .075 at a nominal alpha of .05
1
 was employed in this study as the criterion to determine 

whether the Type I error rate is adequately controlled or not.  

Two kinds of Type I error rates were calculated: per-comparison (hypothesiswise) rates 

(PCER) that capture the probability of a false rejection of a single null hypothesis and 

experimentwise rates (EWER) as the probability of one or more Type I errors in the set of null 

hypothesis tests within each replication. Typically used in studies of differential item functioning, 

PCER is simply calculated as the number of false positives divided by the number of null 

hypotheses across all replications. EWER (also known as familywise Type I error rates), on the 

other hand, applies when a host of null hypotheses is being tested at once, or in the context of 

DIF studies, multiple items being tested for differential effects. Calculation of EWER involves 

treating each replication/sample data as an experiment and finding the probability of at least one 

Type I error within the experiment. Three decision criteria were used in the calculation: the 

                                                 
1 Bradley (1978) also defined a lower bound for the robustness at .025 for a nominal alpha of .05. Since the harm of 

inflated Type I errors outweighs that of conservative ones, only the upper bound of .075 was applied in this research. 
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unprotected testing, the Bonferroni correction, and the Hochberg procedure, the latter two of 

which aim at avoiding inflation of Type I error resulting from multiple significance testing in a 

single replication (details can be found in Chapter Three).  

Table 11 lists the empirical Type I error rates across the eight conditions under the 

MIRID DIF model. The error rates from the unprotected approach were calculated without 

adjusting for multiple tests and are thus naturally higher than those with the Bonferroni or 

Hochberg procedure applied. From the results for smaller delta conditions presented in the top 

half of the table, it is clear that the two adjustment methods led to very conservative PCER 

according to Bradley’s criterion and that higher but still acceptable control was found in adjusted 

EWER. Note that the unprotected testing results under PCER are what typically get reported in 

DIF literature and they looked well controlled in all smaller delta conditions but with EWER this 

approach generated very high error rates. For instance, in the condition of no impact and smaller 

sample, the overall Type I error occurred to only 5.1% of the hypotheses based on PCER but 

they occurred in 73.8% of the generated data sets.  

In the bottom half of Table 12 where results in larger delta conditions are reported, the 

unprotected PCER were not controlled in larger sample conditions (underlined) although the two 

sets of adjusted PCER were no longer conservative but still controlled. The EWER results on the 

right hand side were all above the Bradley upper bound of .75 even with the two adjustment 

procedures. Note that in all these conditions, the Bonferroni and Hochberg procedures gave very 

similar, if not the same, PCER and EWER.  

Figure 13 depicts the influential effects from sample size and DIF magnitude by graphing 

the Hochberg-adjusted EWER by sample size. For smaller delta (the solid lines), the EWER 

were slightly higher with larger samples but still within the Bradley bound. Larger delta 
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conditions, however, resulted in conspicuously heightened EWER with larger samples. The 

presence of group difference seemed to lower the EWER somewhat for greater delta conditions. 

 

Table 12  

Type I Error Rates for MIRID DIF over 500 Replications 

    

Per-comparison % Experimentwise % 

   

# True 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact=

0 26 0.051 0.002 0.002 0.738 0.040 0.040 

 

Impact=

-.7 26 0.049 0.002 0.002 0.710 0.038 0.038 

N=1500*

2 

Impact=

0 26 0.065 0.002 0.002 0.846 0.058 0.058 

 

Impact=

-.7 26 0.062 0.002 0.002 0.814 0.050 0.050 

d
el

ta
=

.7
 

N=250*2 

Impact=

0 26 0.079 0.004 0.005 0.882 0.108 0.110 

 

Impact=

-.7 26 0.069 0.004 0.004 0.852 0.088 0.088 

N=1500*

2 

Impact=

0 26 0.253 0.040 0.045 1.000 0.686 0.702 

 

Impact=

-.7 26 0.192 0.025 0.028 1.000 0.494 0.522 
Note: Underlined values represent inflated Type I error rates according to Bradley’s liberal criterion of 

robustness. 

 

These Type I error rates are consistent with the recovery results of the zero-value DIF 

parameters under the MIRID DIF (Figure 7 and 8), where it is clear that larger delta resulted in 

increased bias and RMSE. Specifically, the highest Type I error rates occurred as a consequence 

of larger DIF interacting with larger sample. The effect from the factor of group difference was 

not strong. 
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Figure 13.The MIRID DIF model experiment-wise Type I error rates after Hochberg adjustment 

by sample size 

 

As discussed in Chapter Three, two kinds of power were computed for each condition. 

The “per-pair” index represents the power for every hypothesis test and was calculated as the 

percentage of the delta (non-zero DIF) items correctly detected as DIF in each condition. On the 

other hand, “any-pairs” index refers to the probability of identifying at least one false null 

hypothesis in a set of tests and was computed as percentages of the simulated data sets in which 

at least one true DIF item was correctly detected. Because Bonferroni and Hochberg adjustments 

were employed to evaluate Type I error rates, the significance levels derived from them as well 

as the nominal alpha, used by the unprotected approach, were adopted to calculate the two kinds 

of statistical power.  

Statistical power of the MIRID DIF in the eight conditions is displayed in Table 13. As 

shown in Table 12, PCER in smaller delta conditions had adequate control and so did EWER 

apart from the unprotected ones. In larger delta conditions, PCER under Bonferroni or Hochberg 

methods had acceptable level of control. Correspondingly, the underlined values in Table 13 

represent disregarded power where in conditions or methods necessary Type I error level was not 

maintained. Power comparisons were made only for the valid values not underlined. In the top 
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half of the table, larger sample increased effective power somewhat but the level remained low. 

For smaller sample size, the power became as weak as almost nonexistent, particularly for per-

pair index. In the bottom half, the power of hypothesiswise comparisons (per-pair index) were 

strong in conditions of larger sample and larger delta with the Bonferroni or the Hochberg 

adjustment.  

 

Table 13  

Power of the MIRID DIF over 500 Replications 

    

Per-pair Index Any-Pairs Index 

   

# False 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 4 0.121 0.011 0.011 0.424 0.044 0.044 

 

Impact

=-.7 4 0.123 0.007 0.007 0.422 0.026 0.026 

N=1500*

2 

Impact

=0 4 0.505 0.119 0.120 0.956 0.420 0.420 

 

Impact

=-.7 4 0.483 0.115 0.115 0.944 0.408 0.408 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 4 0.805 0.391 0.398 0.880 0.880 0.904 

 

Impact

=-.7 4 0.754 0.341 0.347 1.000 0.852 0.852 

N=1500*

2 

Impact

=0 4 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 4 1.000 0.987 0.989 1.000 1.000 1.000 
Note: Underlined values represent conditions where Type I error rates were either deflated or inflated 

according to Bradley’s criterion. 

The group DIF modeling with the MIRID presented a different outlook. The Type I error 

rates of the MIRID DFFc are presented in Table 14. This model is designed to capture 

differential functioning at the item group (component) level and only one of the three 

components was simulated to have DIF. The unprotected, Bonferroni-, and Hochberg-adjusted 
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PCER were well controlled in all eight conditions. The Hochberg procedure produced PCER at 

around or slightly above the lower boundary of Bradley’s liberal criterion (.025), which were 

expectedly higher than those deflated rates from the Bonferroni correction. The unprotected 

EWER were high but the adjusted rates in all eight conditions were all well controlled. Overall, 

the MIRID DFFc demonstrated significant improvement over the MIRID DIF in this aspect.  

 

Table 14 

Type I Error Rates for the MIRID DFFc over 500 Replications 

    

Per-comparison % Experimentwise % 

   

# True 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 2 0.045 0.018 0.020 0.090 0.036 0.040 

 

Impact

=-.7 2 0.053 0.017 0.030 0.102 0.034 0.056 

N=1500*

2 

Impact

=0 2 0.060 0.020 0.026 0.118 0.040 0.050 

 

Impact

=-.7 2 0.047 0.018 0.028 0.094 0.036 0.056 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 2 0.061 0.020 0.029 0.122 0.040 0.058 

 

Impact

=-.7 2 0.049 0.014 0.026 0.098 0.028 0.052 

N=1500*

2 

Impact

=0 2 0.048 0.017 0.024 0.094 0.034 0.046 

 

Impact

=-.7 2 0.048 0.017 0.025 0.092 0.032 0.046 
Note: Underlined values represent either deflated or inflated Type I error rates according to Bradley’s 

criterion. 

The Hochberg adjusted EWER by sample size are presented in Figure 14. On average, 

the results from both graphs are roughly equal, suggesting no obvious effects from sample size. 

Also, the effects from delta size were mixed since larger DIF did not necessarily lead to higher 

error rates. The effects from group difference were not clear either as since the interaction 
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between this factor and delta size were not consistent between smaller and larger sample sizes. 

These findings confirmed the recovery results in Figure 9 and 10 (dotted lines) where the non-

zero DIF parameters in the DFFc model were shown to be well estimated with negligible bias in 

all conditions.  

 

  

Figure 14. The MIRID DFFc model experimentwise Type I error rates after Hochberg 

adjustment by sample size 

 

Statistical power of the MIRID DFFc in the eight conditions is given in Table 15. 

Because Table 14 suggests that, other than the unprotected EWER, there was adequate Type I 

error control, power comparisons were made for those valid values not associated with 

unprotected EWER. In smaller delta and smaller sample conditions, the per-pair power was 

adequate with the unprotected approach (>.8) and the two adjustment procedures lowered the 

power to slightly below the adequate level. For the remaining conditions or methods, there was 

100% probability of rejecting the false hypothesis. Note there was only one false H0 here; thus 

the Bonferroni and Hochberg procedures gave identical outcome.  

In Table 16, Type I error rates of the MIRID DFFm model look very similar to those in 

Table 14, where once again unprotected EWCR were the only offenders. With two item-family 
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differential effects simulated, there were eight true null hypotheses to test. The PCER from the 

unprotected test were similarly well controlled to those under the DFFc model; however, the two 

adjustment procedures played a very conservative role in producing even lower error rates than 

those in the DFFc model in part due to more true null hypotheses to evaluate. For EWER, the 

unprotected approach resulted in inflated error rates expectedly. With the two adjustment 

approaches, the Type I rates fell within Bradley’s boundaries across all eight conditions.  

 

Table 15  

Power of the MIRID DFFc over 500 Replications 

    

Per-pair Index Any-Pair Index 

   

# False 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 1 0.850 0.734 0.734 0.850 0.734 0.734 

 

Impact

=-.7 1 0.806 0.684 0.688 0.806 0.684 0.688 

N=1500*

2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 
Note: Underlined values represent conditions or procedures where Type I error rates were not well 

maintained according to Bradley’s criterion. 

 

The Hochberg EWCR for the DFFm model were graphed by sample size in Figure 15. 

On average there was almost no difference between the two levels of sample sizes, especially for 
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smaller delta. The condition of larger delta, smaller sample, and no impact resulted in the largest 

error rate, .058, well within Bradley’s range. Note that Figure 15 resembles Figure 14 closely 

both in values and in where the interactions occurred. These findings confirmed the recovery 

results in Figure 9 (dashed lines) where the non-zero DIF parameters in the DFFm model were 

shown to be well estimated with negligible bias in all conditions. 

 

Table 16 

Type I Error Rates for the MIRID DFFm Model over 500 Replications 

    

Per-comparison % Experimentwise % 

   

# True 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 8 0.054 0.005 0.006 0.318 0.034 0.038 

 

Impact

=-.7 8 0.048 0.006 0.007 0.282 0.044 0.050 

N=1500*

2 

Impact

=0 8 0.050 0.005 0.005 0.288 0.034 0.036 

 

Impact

=-.7 8 0.044 0.005 0.006 0.278 0.038 0.048 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 8 0.052 0.007 0.008 0.318 0.052 0.058 

 

Impact

=-.7 8 0.049 0.006 0.007 0.290 0.042 0.048 

N=1500*

2 

Impact

=0 8 0.048 0.004 0.005 0.308 0.028 0.036 

 

Impact

=-.7 8 0.056 0.006 0.007 0.348 0.036 0.044 
Note: Underlined values represent inflated Type I error rates according to Bradley’s criterion. 

 

The power of the MIRID DFFm can be found in Table 17, where values not underlined 

represent valid power. Given the Type I error results in Table 16, power analysis applied to the 

three per-pair indices and the two adjusted any-pair power indices. Similar to the DFFc model 

(Table 15), only smaller delta/smaller sample conditions saw less than perfect power in rejecting 
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the two false null hypotheses. The small number of false null hypotheses might have again 

contributed to the high levels of power. The unprotected approach generated adequate per-pair 

power (> .8) before any adjustments. The any-pair index was also acceptable with the Bonferroni 

and Hochberg adjustments. With such high power in most conditions, the effect from the impact 

factor was not clear. These power results were consistent with good recovery of the two item 

family delta parameters (Table 10 and Figure 5). 

 

  

Figure 15. The MIRID DFFm model experimentwise Type I error rates after Hochberg 

adjustment by sample size 

 

For the last group level DIF model, the MIRID DWF, the Type I error control is given in Table 

18. Since only one of the three component weights was simulated to have differential effect, 

there were only two true null hypotheses. The PCEW were well controlled using the unprotected 

approach and were conservative with the two adjustments. For EWER, although the unprotected 

procedure was again not controlled, the Hochberg and Bonferroni rates were all within the 

healthy range. Notably, the unprotected EWER were better controlled than the DFFc (Table 14) 

and DFFm (Table 16) models. 
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These Hochberg rates are split by sample size and displayed graphically in Figure 16. On 

the right plot, what is remarkable was the high error rates in larger sample and larger delta 

conditions. On the left, larger delta did not produce higher error rates in smaller sample 

conditions. In fact, they were at a level very similar to the rates in the smaller delta conditions. 

The interaction between group difference and delta magnitude was not consistent between the 

two sample sizes. 

 

Table 17 

Power of the MIRID DFFm over 500 Replications 

    

Per-pair Index Any-Pair Index 

   

# False 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 2 0.848 0.593 0.600 0.958 0.784 0.784 

 

Impact

=-.7 2 0.858 0.578 0.586 0.958 0.780 0.780 

N=1500*

2 

Impact

=0 2 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 2 1.000 1.000 1.000 1.000 1.000 1.000 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 2 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 2 1.000 1.000 1.000 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 2 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 2 1.000 1.000 1.000 1.000 1.000 1.000 
Note: Underlined values represent conditions where Type I error rates were inflated according to 

Bradley’s criterion. 

 

In correspondence to the obtained Type I error rates, only the unprotected any-pair power 

was not valid and consequently, power comparisons were made to per-pair index for all three 
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procedures and any-pair index for the two adjustments. In Table 19, there is very good power for 

all these procedures, even for smaller sample and smaller delta conditions. There was virtually 

no difference between the Bonferroni and Hochberg procedures in both types of power. Again, it 

was impossible to observe the effect of impact given the perfect power in where the alpha was 

maintained. 

 

Table 18 

Type I Error Rates for the MIRID DWF over 500 Replications 

    

Per-comparison % Experimentwise % 

   

# True 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 2 0.050 0.014 0.021 0.098 0.028 0.040 

 

Impact

=-.7 2 0.048 0.014 0.021 0.092 0.028 0.038 

N=1500*

2 

Impact

=0 2 0.044 0.013 0.020 0.084 0.024 0.036 

 

Impact

=-.7 2 0.043 0.014 0.021 0.084 0.028 0.040 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 2 0.039 0.013 0.017 0.076 0.024 0.032 

 

Impact

=-.7 2 0.045 0.010 0.022 0.084 0.020 0.038 

N=1500*

2 

Impact

=0 2 0.050 0.020 0.028 0.096 0.038 0.052 

 

Impact

=-.7 2 0.048 0.020 0.029 0.096 0.040 0.058 
Note: Underlined values represent inflated Type I error rates according to Bradley’s criterion. 

 

Additionally, influences of the design factors on the Type I Error control was investigated 

via a factorial ANOVA analysis with the generalized eta square used as the effect size to 

determine the impact. PCER and EWER were the dependent variables in separate analyses which 

included model, delta size, sample size, group difference, and their interactions as independent 
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variables. Cohen’s (1988) moderate effect size of .059 was used as a cutoff value to indicate the 

significant level.  

 

  

Figure 16. The MIRID DWF model experimentwise Type I error rates after Hochberg 

adjustment by sample size 

 

When per-comparison Type I error was the dependent variable, among all design factors, 

model (.294), interaction between model and delta (.212), interaction of model by sample size 

(.171), and delta (DIF magnitude) (.074) had significant effects across all hypotheses tests. The 

factor of group difference had negligible impact. For analysis of experimentwise Type I error, 

the same four design factors or factor interactions were significant across all tests only with 

slightly different effect sizes: model (.235), interaction between model and delta (.228), 

interaction of model by sample size (.170), and delta (DIF magnitude) (.082).  

To illustrate the significant impact from the factor of model, Table 19 and 20 list the per-

comparison and experimentwise Type I error rates after Hochberg adjustments from all 

conditions, respectively. (In the context of multiple testing of hypotheses, experimentwise errors 

were more of the concern but the two kinds of Type I error rates look much alike.) These tables 

show that the DIF model produced tremendous error rates in larger delta conditions (underlined), 
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setting this model apart from the other three. On the other hand, the Type I errors for the DFFc 

model were greater on average than the DFFm and DWF models and the DWF model had the 

lowest rates.  

 

Table 19 

Power of the MIRID DWF over 500 Replications 

    

Per-pair Index Any-Pair Index 

   

# False 

H0 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 1 0.994 0.978 0.978 0.994 0.978 0.978 

 

Impact

=-.7 1 0.892 0.788 0.790 0.892 0.788 0.790 

N=1500*

2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 1 1.000 1.000 1.000 1.000 1.000 1.000 
Note: Underlined values represent conditions or procedures where Type I error rates were inflated 

according to Bradley’s criterion. 

 

In summary, the MIRID DFFc, DFFm, and DWF models had adequate hypothesiswise 

Type I error control across all data generation conditions; as for the experimentwise Type I 

errors, these models maintained the alpha level through the Bonferroni and Hochberg 

adjustments. When Type I errors were well controlled, all three models exhibited perfect or near 

perfect per-pair and any-pairs statistical power in larger DIF conditions and smaller DIF but 
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larger sample conditions. Even when sample and delta magnitude were small, there was decent 

per-pair and any-powers power with the former greater than .80 and the latter more than .68 for 

all three group-level DIF models. Such level of Type I error control and power in detection was 

 

Table 20 

Hypothesiswise Type I Error Rates for the Four Proposed MIRID Models 

   

MIRID DIF MIRID DFFc MIRID DFFm MIRID DWF 

d
el

ta
=

.2
 N=250*2 Impact=0 0.051 0.045 0.054 0.050 

 

Impact=-.7 0.049 0.053 0.048 0.048 

N=1500*2 Impact=0 0.065 0.060 0.050 0.044 

 

Impact=-.7 0.062 0.047 0.044 0.043 

d
el

ta
=

.7
 N=250*2 Impact=0 0.079 0.061 0.052 0.039 

 

Impact=-.7 0.069 0.049 0.049 0.045 

N=1500*2 Impact=0 0.253 0.048 0.048 0.050 

 

Impact=-.7 0.192 0.048 0.056 0.048 
Note: Underlined values represent either deflated or inflated Type I error rates according to Bradley’s 

criterion. 

 

Table 21 

Experimentwise Type I Error Rates after Hochberg Adjustment for the Four Proposed MIRID 

Models 

   

MIRID DIF MIRID DFFc MIRID DFFm MIRID DWF 

d
el

ta
=

.2
 N=250*2 Impact=0 0.040 0.040 0.038 0.040 

 

Impact=-.7 0.038 0.056 0.050 0.038 

N=1500*2 Impact=0 0.058 0.050 0.036 0.036 

 

Impact=-.7 0.050 0.056 0.048 0.040 

d
el

ta
=

.7
 N=250*2 Impact=0 0.110 0.058 0.058 0.032 

 

Impact=-.7 0.088 0.052 0.048 0.038 

N=1500*2 Impact=0 0.702 0.046 0.036 0.052 

 

Impact=-.7 0.522 0.046 0.044 0.058 
Note: Underlined values represent either deflated or inflated Type I error rates according to Bradley’s 

criterion. 
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related to the adequate recovery of both the delta parameters and the zero-value DIF parameters. 

As for the effects of the design factors on Type I error control, the models themselves, their 

interaction with DIF size and sample size, as well as DIF size itself, were significant. The 

influence of group ability difference was not apparent.  

On the other hand, the MIRID DIF model had acceptable per-comparison and 

experimentwise Type I error rates only in smaller delta conditions whereas larger sample size 

increased errors. In larger delta conditions, neither PCER nor EWER was well maintained even 

after Hochberg and Bonferroni corrections when EWER were higher than PCER. For the DIF 

model, the group difference factor led to lower Type I errors in all conditions constructed. In 

conditions with Type I errors under control, the statistical power was weak. Such outcome was 

related to the underestimation of the delta and non-zero parameters of the MIRID DIF model as 

depicted in Figure 1, 2, 7, and 8.  

Results from Fitting the Mismatched Differential Functioning Models 

The second phase of the research sought to further study the characteristics of the four 

proposed differential functioning models by examining their performances in various scenarios; 

in particular, when they were fitted to data generated using other models (a.k.a. when they were 

the “wrong model” for the data). This part of the study was akin to research on “model 

misspecification” that investigates the potential impact from applying the wrong model. 

Performances were evaluated by examining the robustness of the estimation of the model 

parameters and how severe the false detection rates were associated with each data simulation 

condition.  
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False Detection Rates of the Mismatched MIRID Differential Functioning Models 

When a MIRID differential functioning model is fitted to data with a different source of 

differential effects, it attempts to estimate its own delta parameters regardless of the true source 

of DIF. For example, when the MIRID DIF model is applied to the DWF data, the 30 individual 

item DIF parameters are estimated from the data where there is a degree of differential 

functioning from one of the component weights. Naturally, the true values of these DIF 

parameters are zero and any non-zero estimates reflect deviation from the true value whose 

statistical significance indicate false detection errors.  

Figures 17 and 18 demonstrate the bias and RMSE of the estimated DIF parameters when 

the DIF model fitted to the four different differential functioning data, the DIF data serving as 

the reference in the leftmost column. The dashed lines connect the average bias values and 

RMSEs in larger delta conditions and the solid lines represent the bias and RMSEs from smaller 

delta conditions. For the DFFc and DFFm data, the item DIF estimates in larger delta conditions 

were severely inflated by the presence of item group DIF, which is depicted by the high rise or 

the spikes of the lines that represent those DIF parameters associated with items within the item 

group (component or family). Figure 17 shows that the items where no DIF effect was simulated 

were under-estimated. The estimation error was also present in smaller delta conditions but to a 

much less extent. All the three columns that show mismatched models exhibit higher bias and 

RMSEs than when the correct model was applied. Especially, the most inflated estimates were 

with the DFFm model where the highly spiked part of the dashed lines represents those DIF 

parameters associated with items that belong with the two item families for which differential 

effects were simulated. It shows that the MIRID DIF model was unable to identify the true 

source of DIF and “assigns” in estimation the differential effects to related individual items. In 
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other words, when all or the most of a group of items show significant delta when applying the 

DIF model it signals the presence of differential functioning effects from the item group.  

However, this pattern was not found with the DWF data in the rightmost column. 

Although that the second component weight was simulated to have differential effects, there is 

no indication that the individual DIF parameters in the second component had increased bias and 

RMSEs. The smaller delta conditions (the solid lines) did not produce considerable level of bias 

or RMSEs across all conditions. On the other hand, the larger delta conditions resulted in more 

conspicuous bias and RMSEs for certain items but there was no clear pattern of which items had 

their DIF parameters estimated with huge error.  

The bias and RMSEs of all three mismatched models were greater than when the correct 

model was applied. Of the design factors, delta magnitude increased RMSEs while sample size 

reduced them. The effects from group difference were not clear.  

As a consequence of the conspicuous RMSEs, false detection rates became very high for 

the MIRID DIF model when fitted to the three mismatched models. For example, as shown in 

Table 21, when the DIF model was used to analyze the DFFc data, in the condition of no impact, 

larger sample, and larger delta, the per-experiment error rates after the Hochberg adjustment 

were 100%. The unprotected error rates were also high although they decreased with the help of 

adjustment in smaller delta and smaller sample conditions, where the Hochberg experimentwise 

error rates were at .15 and .16, three times the nominal level. 

In Table 22 the false detection rates with the DFFm data are presented. Note that the 

DFFm data had lower per-comparison rates in larger delta conditions than in the DFFc data. It 

can be explained that fewer DIF parameters had inflated RMSEs with the DFFm data (six versus 
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10) although their RMSEs were greater. The experimentwise error rates from fitting the DIF 

model to the DFFm data were larger than those from the DFFc data in smaller delta conditions.  

 

 

Figure 17. Bias of the 30 estimated DIF parameters of the MIRID DIF model when fitted to data 

with different sources of differential functioning 
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Figure 18. RMSE of the 30 estimated DIF parameters of the MIRID DIF model when fitted to 

data with different sources of differential functioning 

 

For example, in smaller delta and smaller sample conditions, the rates with the DFFm data 

were .35 and .28 as compared with .15 and .16 from the DFFc data. 

In Table 23, it can be seen that the per-comparison false detection rate with the DWF data 

were lower than the other two data sets on average due to fewer DIF parameters being impacted. 

The Bonferroni and Hochberg procedures led to very deflated false detection rates in smaller 
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delta conditions. The experimentwise error rates were also lower than the other two DIF sources 

but still at very high levels.  

 

Table 22 

False Detection Rates when the MIRID DIF Model Was Applied to the DFFc Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 30 0.100 0.010 0.010 0.930 0.160 0.160 

 

Impact

=-.7 30 0.100 0.010 0.010 0.900 0.150 0.150 

N=1500*

2 

Impact

=0 30 0.360 0.090 0.090 1.000 0.910 0.910 

 

Impact

=-.7 30 0.350 0.090 0.090 1.000 0.890 0.890 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 30 0.610 0.310 0.330 1.000 1.000 1.000 

 

Impact

=-.7 30 0.600 0.330 0.350 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 30 0.930 0.800 0.890 1.000 1.000 1.000 

 

Impact

=-.7 30 0.940 0.780 0.890 1.000 1.000 1.000 

 

The outcome from fitting the MIRID DFFc model to other types of DIF data is discussed 

below. The plots look stable because there were only three zero-value DIF parameters to test. 

Compared to the recovery results from the matched data on the leftmost column of Figure 19 and 

20, the mismatched data exhibited greater bias and RMSEs but all at acceptable levels in general. 

The most significant bias as shown in Figure 19 occurred to DFFm and DWF data in larger delta 

and zero impact conditions. The bias and RMSEs with the DFFm and DWF data were slightly 

greater than those with the DIF data. Across DIF sources and conditions, larger sample size 

reduced bias and RMSEs and larger delta size increased the levels of bias and RMSE. The 
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impact of larger delta was the most obvious with the DFFm data in the scenario of larger sample 

and no group difference.  

 

Table 23 

False Detection Rates when the MIRID DIF Model Was Applied to the DFFm Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 30 0.120 0.010 0.010 0.970 0.350 0.350 

 

Impact

=-.7 30 0.110 0.010 0.010 0.960 0.280 0.280 

N=1500*

2 

Impact

=0 30 0.300 0.130 0.140 1.000 0.910 0.910 

 

Impact

=-.7 30 0.280 0.130 0.130 1.000 0.890 0.890 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 30 0.310 0.180 0.180 1.000 1.000 1.000 

 

Impact

=-.7 30 0.270 0.130 0.140 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 30 0.840 0.500 0.580 1.000 1.000 1.000 

 

Impact

=-.7 30 0.680 0.350 0.380 1.000 1.000 1.000 

 

Table 24 shows the false detection rates when the DFFc model was fitted to the DIF data. 

When delta = .2, the error rates were all within the Bradley’s acceptable range, including both 

per-comparison and experimentwise error rates. When delta = .7, only smaller samples saw 

acceptable per-comparison error rates after adjustments and in the other conditions they all went 

beyond the upper boundary (.75). These results indicate that very unlikely a significant 

component differential effect would be found when fitting the DFFc model to data with small 

individual item DIF. This finding is consistent with the plots in Figure 18.  
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Table 24 

False Detection Rates when the MIRID DIF Model Was Applied to the DWF Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 30 0.090 0.000 0.000 0.930 0.110 0.110 

 

Impact

=-.7 30 0.070 0.000 0.000 0.860 0.050 0.050 

N=1500*

2 

Impact

=0 30 0.150 0.020 0.020 1.000 0.450 0.450 

 

Impact

=-.7 30 0.110 0.010 0.010 0.980 0.260 0.260 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 30 0.260 0.080 0.080 1.000 0.920 0.920 

 

Impact

=-.7 30 0.540 0.280 0.300 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 30 0.420 0.250 0.260 1.000 1.000 1.000 

 

Impact

=-.7 30 0.680 0.420 0.460 1.000 1.000 1.000 

 

The false detection rates became much worse when the DFFc model was fitted to the 

DFFm data as shown in Table 25. Only the per-comparison error rates in smaller sample 

conditions were within the Bradley’s range after either Bonferroni or Hochberg adjustment. On 

the other hand, the false detection rates were very high in larger sample conditions even with the 

adjustment. Interestingly, the non-zero impact factor decreased the error rates for larger delta 

conditions.  
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Figure 19. Bias of the three estimated DIF parameters of the MIRID DFFc model when fitted to 

data with different sources of differential functioning 
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Figure 20. RMSE of the three estimated DIF parameters of the MIRID DFFc model when fitted 

to data with different sources of differential functioning 

 

When fitted to DWF data simulated with larger delta size (.7), the false detection rates of 

the DFFc model were inflated across the conditions. Although the per-comparison rates were 

acceptable in lower delta and smaller sample conditions, the larger delta and larger sample 

conditions had very high false detection rates where all three DFFc parameters obtained 

significant non-zero estimates in virtually all replications.  



 

106 

 

 

Table 25 

False Detection Rates when the MIRID DFFc Model Was Applied to the DIF Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 3 0.050 0.020 0.020 0.160 0.050 0.050 

 

Impact

=-.7 3 0.050 0.020 0.020 0.150 0.050 0.050 

N=1500*

2 

Impact

=0 3 0.060 0.020 0.020 0.160 0.060 0.060 

 

Impact

=-.7 3 0.060 0.020 0.020 0.160 0.060 0.060 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 3 0.100 0.040 0.050 0.270 0.130 0.130 

 

Impact

=-.7 3 0.100 0.040 0.040 0.270 0.120 0.120 

N=1500*

2 

Impact

=0 3 0.300 0.180 0.190 0.690 0.450 0.450 

 

Impact

=-.7 3 0.080 0.040 0.040 0.230 0.110 0.110 

 

When applied to its own data, delta parameter recovery of the DFFm model was in 

general acceptable except at the third and seventh parameters where delta effect was simulated. 

The application of the DFFm model to mismatched data is shown in the three columns on the 

right in Figure 21 and 22. The pattern repeated that larger samples reduced bias and RMSEs and 

larger delta increased them. The DIF data caused the smallest RMSEs, which were quite 

comparable to the matched data in smaller delta conditions (the solid lines). The fluctuating bias 

values in Figure 21 suggest the difficulty in estimating the family delta parameters due to the 

presence of individual item DIF. For the DFFc data, the bias and RMSEs were consistently 

higher, particularly in larger delta conditions. The component differential functioning impacted 

all the items in the component, which also meant one item in every item family. The estimation  
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Table 26  

False Detection Rates when the MIRID DFFc Model Was Applied to the DFFm Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 3 0.110 0.050 0.050 0.290 0.130 0.130 

 

Impact

=-.7 3 0.080 0.030 0.030 0.220 0.090 0.090 

N=1500*

2 

Impact

=0 3 0.300 0.170 0.190 0.670 0.420 0.430 

 

Impact

=-.7 3 0.320 0.170 0.190 0.700 0.440 0.440 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 3 0.340 0.210 0.230 0.740 0.510 0.520 

 

Impact

=-.7 3 0.100 0.050 0.050 0.270 0.140 0.140 

N=1500*

2 

Impact

=0 3 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 3 0.720 0.560 0.660 0.980 0.920 0.930 

 

process attributed this effect to every item family delta parameter as a result. Regarding the DFW 

data, there was no easy explanation for the volatility demonstrated by the bias and RMSEs in 

both delta sizes.  

The false detection rates from applying the DFFm model to data of three mismatched DIF 

sources are shown in Tables 27 to 29. When fitted to the DIF data, smaller delta and smaller 

sample conditions produced acceptable unprotected per-experiment and Hochberg-adjusted 

experimentwise error rates (Table 27). For the DFFc and DWF data, these two error rates were 

inflated even for the same scenarios and were highly inflated in larger delta conditions, which is 

consistent with the RMSEs in Figure 19. 
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Table 27  

False Detection Rates when the MIRID DFFc Model Was Applied to the DWF Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer

-roni 

Hoch-

berg 

Un-

protect. 

Bonfer

-roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact=

0 3 0.070 0.030 0.030 0.210 0.080 0.080 

 

Impact=

-.7 3 0.060 0.020 0.020 0.170 0.060 0.060 

N=1500*2 

Impact=

0 3 0.250 0.120 0.140 0.570 0.320 0.330 

 

Impact=

-.7 3 0.450 0.280 0.330 0.840 0.610 0.630 

d
el

ta
=

.7
 

N=250*2 

Impact=

0 3 0.270 0.150 0.170 0.620 0.390 0.390 

 

Impact=

-.7 3 0.140 0.050 0.050 0.360 0.130 0.130 

N=1500*2 

Impact=

0 3 0.820 0.690 0.790 0.990 0.970 0.980 

 

Impact=

-.7 3 0.820 0.700 0.810 1.000 0.980 0.990 
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Figure 21. Bias of the ten estimated DIF parameters of the MIRID DFFm model when fitted to 

data with different sources of differential functioning 
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Figure 22. RMSE of the ten estimated DIF parameters of the MIRID DFFm model when fitted to 

data with different sources of differential functioning 

 

DIF parameter recovery in the DWF model itself was acceptable, especially in larger 

sample or larger delta conditions (see also Table 10, Figures 11 and 12). The bias and RMSEs 

from fitting it to the DIF data were very comparable as shown in the second column of Figures 

23 and 24. However, when fitted to the DFFc data and the DFFm data, the bias and RMSEs 

became very high for one or two but not all delta parameters and exhibited a lot of volatility.  
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Table 28  

False Detection Rates when the MIRID DFFm Model Was Applied to the DIF Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 10 0.050 0.010 0.010 0.390 0.050 0.050 

 

Impact

=-.7 10 0.050 0.010 0.010 0.400 0.070 0.070 

N=1500*

2 

Impact

=0 10 0.090 0.010 0.010 0.560 0.110 0.110 

 

Impact

=-.7 10 0.090 0.010 0.010 0.580 0.110 0.110 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 10 0.130 0.030 0.030 0.750 0.260 0.260 

 

Impact

=-.7 10 0.100 0.020 0.020 0.630 0.160 0.160 

N=1500*

2 

Impact

=0 10 0.500 0.220 0.250 1.000 0.930 0.930 

 

Impact

=-.7 10 0.370 0.160 0.170 1.000 0.910 0.910 

 

Because differential functioning in a component (DFFc data) or in two item families (DFFm data) 

impacted items which were related different component weights, the estimation outcome became 

less than predictable.  

When fitted to the DIF data, the DWF model found acceptable unprotected per-

comparison and Hochberg-adjusted experimentwise false detection rates in smaller delta 

conditions (Table 30). With smaller delta, the larger sample with non-zero impact led to error 

rates above Bradley’s range but when delta size was large, smaller sample with non-zero impact 

had acceptable error rates. In other conditions, fitting the DWF data meant that differential 

functioning in component weights was likely to be found significant. 
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Table 29  

False Detection Rates when the MIRID DFFm Model Was Applied to the DFFc Data 

    

Per-comparison % Experiment-wise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 10 0.180 0.040 0.050 0.690 0.280 0.280 

 

Impact

=-.7 10 0.170 0.030 0.030 0.670 0.210 0.210 

N=1500*

2 

Impact

=0 10 0.720 0.390 0.500 0.990 0.920 0.920 

 

Impact

=-.7 10 0.650 0.330 0.420 0.990 0.900 0.900 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 10 0.940 0.740 0.890 1.000 1.000 1.000 

 

Impact

=-.7 10 0.930 0.720 0.870 1.000 0.990 0.990 

N=1500*

2 

Impact

=0 10 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact

=-.7 10 1.000 1.000 1.000 1.000 1.000 1.000 

 

When fitted to the DFFc data, only conditions with acceptable unprotected per-

comparison and adjusted experimentwise false detection rates were smaller delta and smaller 

sample (see Table 31). Elsewhere the error rates were high, particularly in larger delta conditions. 

With the DFFm data, the DWF model obtained high per-comparison and adjusted 

experimentwise false detection rates; only adjusted per-comparison error rates were controlled in 

conditions of smaller delta and smaller sample. Similar results were found when the DWF model 

was fitted to the DWF data (Table 32). For all three type of data, larger sample aggravated false 

detection rates even in smaller delta conditions.  
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Table 30  

False Detection Rates when the MIRID DFFm Model Was Applied to the DWF Data 

    

Per-comparison % Experiment-wise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 10 0.220 0.050 0.060 0.920 0.400 0.400 

 

Impact

=-.7 10 0.140 0.030 0.030 0.740 0.250 0.250 

N=1500*

2 

Impact

=0 10 0.580 0.340 0.390 1.000 1.000 1.000 

 

Impact

=-.7 10 0.460 0.280 0.310 1.000 0.990 0.990 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 10 0.560 0.390 0.420 1.000 1.000 1.000 

 

Impact

=-.7 10 0.740 0.580 0.640 1.000 1.000 1.000 

N=1500*

2 

Impact

=0 10 0.600 0.520 0.540 1.000 1.000 1.000 

 

Impact

=-.7 10 0.800 0.710 0.770 1.000 1.000 1.000 

 

Non-DIF Parameter Recovery of the Mismatched Models 

In addition to the delta and non-zero DIF parameters, a MIRID differential functioning 

model estimates its non-DIF parameters: locations of the component items, intercept and 

component weights, group difference, and population variance, even when it is fitted to data of 

mismatched DIF source. Since the real source of differential effects remains unknown in 

empirical settings, understanding whether estimates of other parameters are by and large accurate 

despite the distortion from the DIF effects helps to evaluate the utility of the model. This section 

examines recovery of non-DIF parameters from fitting the proposed models to data of “incorrect” 
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DIF sources by using bias as the main evaluative measure because bias provides information on 

over- or under-estimation of the parameters. RMSEs were also provided as supplement evidence.  

 

 

Figure 23. Bias of the three estimated DIF parameters of the MIRID DWF model when fitted to 

data with different sources of differential functioning 
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Figure 24. RMSE of the three estimated DIF parameters of the MIRID DWF model when fitted 

to data with different sources of differential functioning 

 

Figure 25 shows the bias when fitting the DIF model to data of different DIF sources, 

including itself (individual item DIF). The dashed lines connect all bias values from the 30 

estimates in larger delta conditions and the solid lines connect bias in smaller delta conditions. It 

is clear that over the DIF data (the leftmost column) the four items with simulated DIF effects 

had their locations over-estimated while the related DIF parameters were underestimated (see 
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Table 7). The other 26 location parameters had decent recovery outcome. Overall, the location 

parameters in the DIF model were under-estimated when the DIF effect in data matched and 

larger delta conditions led to greater bias.  

 

Table 31  

False Detection Rates when the MIRID DWF Model Was Applied to the DIF Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

    Per-comparison % Per-experiment error # Experiment-wise % 

   

# True 

H0 

Non-

prot. t 

Bonfe

rroni 

Hoch-

berg 

Non-

prot. t 

Bonfe

rroni 

Hoch-

berg 

Non-

prot. t 

Bonfe

rroni 

Hoch-

berg 

N
=

2
5
0

*
2
 

Impact

=0 

delta

=.2 3 0.06 0.02 0.02 0.18 0.07 0.07 0.17 0.07 0.07 

 

delta

=.7 3 0.36 0.22 0.26 1.07 0.66 0.77 0.69 0.50 0.52 

Impact

=-.7 

delta

=.2 3 0.05 0.02 0.02 0.15 0.05 0.05 0.14 0.05 0.05 

 

delta

=.7 3 0.66 0.59 0.63 1.97 1.78 1.88 0.98 0.95 0.96 

N
=

1
5
0

0
*

2
 

Impact

=0 

delta

=.2 3 0.20 0.11 0.13 0.61 0.33 0.38 0.43 0.27 0.27 

 

delta

=.7 3 0.77 0.72 0.77 2.30 2.15 2.30 1.00 1.00 1.00 

Impact

=-.7 

delta

=.2 3 0.09 0.04 0.04 0.28 0.12 0.13 0.26 0.12 0.12 

 

delta

=.7 3 0.69 0.66 0.69 2.08 1.98 2.07 1.00 1.00 1.00 

N=250*2 

Impact

=0 3 0.050 0.020 0.020 0.140 0.050 0.050 

 

Impact

=-.7 3 0.060 0.020 0.020 0.170 0.060 0.060 

N=1500*2 

Impact

=0 3 0.070 0.030 0.030 0.170 0.070 0.070 

 

Impact

=-.7 3 0.080 0.030 0.040 0.190 0.080 0.080 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 3 0.160 0.080 0.090 0.400 0.220 0.220 

 

Impact

=-.7 3 0.060 0.020 0.020 0.150 0.050 0.050 

N=1500*2 

Impact

=0 3 0.310 0.180 0.200 0.740 0.480 0.490 

 

Impact

=-.7 3 0.290 0.180 0.190 0.610 0.400 0.400 

 

Over the DFFc data, locations of the 10 items in the second component for which a DIF 

effect was simulated were slightly over-estimated whereas the other item locations were 

underestimated with larger delta causing greater bias. Similar story when the DIF model was 

applied to the DFFm model. Items with simulated DIF effect were over-estimated but on average 

the bias values were negative. Larger delta led to greater bias in both directions. Such 

distinctions were unclear with the RMSEs on Figure 26, where it is plain to see that larger 

sample reduced RMSEs. 
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The situation was different when the DIF model was fitted to the DWF model. Although 

larger delta still caused more fluctuations in bias, the average bias is no longer negative across all 

eight conditions like the other models. Smaller sample, larger delta, and no-zero impact created 

the greatest bias. Overall, when fitted to mismatched models, recovery of the location parameters 

in the DIF model was acceptable when delta magnitude was small (.2). 

 

Table 32  

False Detection Rates when the MIRID DWF Model Was Applied to the DFFc Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 3 0.060 0.020 0.020 0.170 0.070 0.070 

 

Impact

=-.7 3 0.050 0.020 0.020 0.140 0.050 0.050 

N=1500*2 

Impact

=0 3 0.200 0.110 0.130 0.430 0.270 0.270 

 

Impact

=-.7 3 0.090 0.040 0.040 0.260 0.120 0.120 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 3 0.360 0.220 0.260 0.690 0.500 0.520 

 

Impact

=-.7 3 0.660 0.590 0.630 0.980 0.950 0.960 

N=1500*2 

Impact

=0 3 0.770 0.720 0.770 1.000 1.000 1.000 

 

Impact

=-.7 3 0.690 0.660 0.690 1.000 1.000 1.000 
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Table 33  

False Detection Rates when the MIRID DWF Model Was Applied to the DFFm Data 

    

Per-comparison % Experimentwise % 

   

# 

Parms 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact

=0 3 0.120 0.050 0.060 0.350 0.150 0.150 

 

Impact

=-.7 3 0.090 0.040 0.040 0.240 0.120 0.120 

N=1500*2 

Impact

=0 3 0.280 0.210 0.220 0.770 0.610 0.620 

 

Impact

=-.7 3 0.380 0.340 0.350 1.000 0.990 0.990 

d
el

ta
=

.7
 

N=250*2 

Impact

=0 3 0.720 0.680 0.710 1.000 1.000 1.000 

 

Impact

=-.7 3 0.400 0.290 0.310 0.910 0.760 0.760 

N=1500*2 

Impact

=0 3 0.990 0.980 0.990 1.000 1.000 1.000 

 

Impact

=-.7 3 0.670 0.570 0.630 1.000 1.000 1.000 

 

As Figure 27 shows, when fitted to its own data and the DWF data, the DFFc model 

produced the least amount of bias with minor difference between conditions of smaller and larger 

delta. When applied to the DIF and DFFm data, however, significant bias occurred at items 

where DIF effect was simulated even with smaller delta conditions (the solid) lines. The pattern 

of deviance is less clear with the RMSEs on Figure 28, where the estimation quality seems worse.  
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Figure 25. Bias of the Estimated Item Locations when the DIF Model Was Fitted to Different 

Models 
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Figure 26. RMSE of the Estimated Item Locations when the DIF Model Was Fitted to Different 

Models 
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Figure 27. Bias of the Estimated Item Locations when the DFFc Model Was Fitted to Different 

Models 
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Figure 28. RMSE of the Estimated Item Locations when the DFFc Model Was Fitted to 

Different Models 

 

In Figure 29, item location estimates of the DFFm model were seriously distorted by the 

delta size at items with non-zero DIF effects. The influence of larger delta size was evidenced by 

the significant fluctuations of the dashed lines. Again, items where DIF was simulated were 
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over-estimated whereas the rest were underestimated. The RMSEs for smaller delta and larger 

sample size were in general acceptable (< .1) (Figure 30).  

 

 

Figure 29. Bias of the Estimated Item Locations when the DFFm Model Was Fitted to Different 

Models 
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Figure 30. RMSE of the Estimated Item Locations when the DFFm Model Was Fitted to 

Different Models 

 

Fitting the DWF model to mismatched data resulted in similar pattern but with greater 

bias (Figure 31). For example, comparing the bias over the DFFc data in Figures 25, 27 and 29 

revealed that the DWF model generated the greatest amount of bias in either direction. 

Interestingly, the DFFm data in the conditions of no group difference and larger delta led to the 
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greatest under-estimation of the items without simulated delta. In Figure 32, the RMSEs look 

much worse in larger DIF condition for items with simulated delta effects.  

 

 

Figure 31. Bias of the Estimated Item Locations when the DWF Model Was Fitted to Different 

Models 
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Figure 32. RMSE of the Estimated Item Locations when the DWF Model Was Fitted to 

Different Models 

 

In parallel, recovery of the intercept and three component weights is presented in Figure 

33 to 40, where the first data point in each plot represents the intercept and the remaining three 

the component weights. Recovery of these parameters by models over their own data is 

presented on the leftmost column of each graph as reference. Because estimation of the variance 
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and group difference parameters did not result in conspicuous bias and a manifest pattern, its 

results are not discussed here. 

In Figure 33, when fitting the DIF model to the DFFc data, the intercept was over-

estimated in all conditions although the component weights did not have much bias. With the 

DWF data, the second component weight had the worst bias due to the simulated delta effect, 

especially when it was larger. The corresponding RMSEs (Figure 34) are tremendous. Overall, 

estimation of component weights over mismatched data had poor quality even in larger-sample 

scenarios.  

The DFFc model produced smaller bias, especially with the DIF data across all 

conditions (Figure 35). In fact, the recovery here was almost as good as the DFFc data as seen on 

the leftmost column. Its performance when fitted to the DFFm data resembled that of the DIF 

model with the DFFm data. Its recovery when applied to the DWF data was comparable to that 

of the DIF model fitted to the same data but with smaller bias and RMSEs (Figure 36) on the 

second component, which was associated with simulated delta, even in the condition of larger 

delta, smaller sample, and non-zero group difference. 

Compared to the other three models when applied to mismatched data, the DFFm model 

produced the least amount of bias and RMSE in estimation of the component weights (Figure 37 

and 38). Again the pattern resembled those of the previous models but both the dashed and solid 

lines were very smooth with the effect of delta size only obvious in the DWF data. Interestingly, 

the DFFm model had much lower bias and RMSEs when fitted to the DFFc data than when the 

DFFc model applied to the DFFm data. There appeared to be little difference in effects from 

larger and smaller delta. 

 



 

128 

 

 

Figure 33. Bias of the Estimated Component Weights when the DIF Model Was Fitted to 

Different Models 
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Figure 34. RMSE of the Estimated Component Weights when the DIF Model Was Fitted to 

Different Models 
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Figure 35. Bias of the Estimated Component Weights when the DFFc Model Was Fitted to 

Different Models 
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Figure 36. RMSE of the Estimated Component Weights when the DFFc Model Was Fitted to 

Different Models 
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Figure 37. Bias of the Estimated Component Weights when the DFFm Model Was Fitted to 

Different Models 
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Figure 38. RMSE of the Estimated Component Weights when the DFFm Model Was Fitted to 

Different Models 

 

In Figures 39 and 40, the DWF model produced negligible bias and RMSEs with the DIF 

data in estimation of the component weights and the intercept. For the DFFc and DFFm data, 

there were significant bias and RMSEs on the intercept and one or two components, especially in 

conditions of larger DIF. In comparison to the estimation of location parameters (Figure 31 and 

32), the level of bias in this outcome was malevolent.  
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Figure 39. Bias of the Estimated Component Weights when the DWF Model Was Fitted to 

Different Models 

 

To sum it up, the four proposed DIF models produced the best recovery results when 

fitted to data generated consistent with the model. When fitted to mismatched data, there were 

much greater bias and more considerable RMSEs in estimation of item locations than with 

component weights; noticeably, estimation quality was adversely affected by the presence of 

differential functioning. Although the influence of sample size and group difference on 
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estimation bias was not persuasive, for both individual item DIF and item group DIF, large delta 

magnitude resulted higher bias across most of the conditions under the mismatched models.  

 

 

Figure 40. RMSE of the Estimated Component Weights when the DWF Model Was Fitted to 

Different Models 

 

In summary, this section answered the fourth and fifth research questions. When the 

wrong model was fit to the data, location parameters were generally not estimated well for items 
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associated with generated DIF effects but component weights were estimated better. The most 

influential adverse design factor was delta size, which produced significant bias and RMSEs 

across conditions of different sample size and impact. The zero-value DIF parameters as well as 

other model parameters were estimated when the model was fitted to each mismatched data set. 

As a result of simulated differential functioning in other items or item group in the data, bias and 

RMSEs of these estimates were much greater than when the correct model was applied. The high 

level of estimation errors with DIF parameters led to high level of false detection rates as 

evaluated with unprotected per-comparison and Hochberg-adjusted errors. For both measures, 

larger delta source and larger sample always led to error rates above Bradley’s upper boundary 

(.075) and in conditions of smaller delta and smaller sample the false detection rates were often 

acceptable. The model with the least estimation error of the DIF parameters and thus the lowest 

false detection rates was the MIRID DFFc model.  
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CHAPTER FIVE  

DISCUSSION 

This chapter presents a summary of the research, its findings, implications, and 

recommendations for researchers. The limitations and suggestions for future research are also 

discussed. 

Summary 

This dissertation proposed extensions to the model with internal restrictions on item 

difficulty (MIRID) to study differential item functioning (DIF). Each of the proposed models 

corresponds to a distinct potential source of differential functioning in the MIRID data: the 

MIRID DIF model (differential functioning in individual items), the MIRID DFFc model 

(differential functioning in components), the MIRID DFFm model (differential functioning in 

item families), and the MIRID DWF model (differential functioning in component weights). 

These models are designed to capture differential effects by specifying DIF parameters in their 

formulation in addition to the regular model parameters. As members of the Rasch family of 

models, estimation method of these proposed models was conceived as maximum likelihood 

method in keeping with the standard MIRID. 

A simulation study was conducted to examine model recovery, Type I error rates, and 

power under practical measurement conditions as well as recovery and false positive detection 

rates with mismatched models. Three factors were manipulated in the simulation study: sample 

size (500 and 3,000), magnitude of DIF (delta) (0.2 and 0.7), and group difference (impact) (0 



 

138 

 

and -0.7). Consequently, cross-product of these factors constructed eight conditions for each of 

the four proposed models. For each condition, 500 data sets were generated. Because the 

estimation quality of the specified DIF (delta) and the non-DIF parameters affects the Type I 

error rates and power in DIF detection, the recovery of these parameters under each model was 

crucial and was evaluated by calculating bias and root mean squared error (RMSE) of the 

parameter estimates. Type I error rates and power were calculated to assess the effects of 

different testing conditions on detection of both item-level and group-level DIF for all eight 

conditions under each proposed model. Specifically, two types of Type I error rates were 

calculated for each condition: per-comparison (PCER) and experimentwise (EWER), for which, 

in addition to the unprotected error rates, adjusted values were computed using Bonferroni and 

Hochberg procedures. The Bonferroni adjustment produces Type I error rates similar to the 

Hochberg method but was more conservative in detection. The liberal range suggested by 

Bradley (1978) provided reference for assessing the Type I error control. Parallel to PCER and 

EWER, power in DIF detection was evaluated with per-pair and any-pair indices, each of which 

was also calculated three times: the unprotected and the Bonferroni and Hochber adjusted ones. 

To further study the characteristics of the four proposed models, they were fitted to data 

generated using other models. This part of the study investigated the potential impact from 

applying the wrong model. The robustness of the model estimation when mis-specified and how 

severe the false detection rates were associated with each data simulation condition were 

examined. 

Findings 

Data generation and estimation methods used in this research were validated in a separate 

parameter recovery study prior to the main research. For a standard MIRID with three 
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components and ten item families (30 item location parameters, 3 component weight, and 1 

intercept), adequate accuracy in parameter estimation was observed.  

Item-Level DIF 

In the DIF model, parameter recovery was less than acceptable, especially in large DIF 

conditions where the magnitude of delta was observed as the most influential factor. Both the 

four true DIF and 26 zero-value DIF parameters were underestimated with varying RMSEs. 

Conspicuously, both bias and RMSEs were significantly greater in conditions of large DIF 

magnitude (delta=.7). As expected, large sample size decreased the RMSEs for all parameters 

but not the bias. In small delta conditions, only large sample coupled with zero impact caused 

great RMSEs for DIF-associated component items. The effect from group difference was mostly 

weak and inconsistent. 

Because the MIRID DIF model was formulated with the product of the component 

weight and summation of the item-specific delta parameter and item location, the reason for the 

inadequate estimation may be that the computer program did not distinguish well the two parts 

within the summation in their interaction with the weight. One possible explanation is that the 

estimation process may give greater share of the summed value to item location, the first of the 

summation, than the delta parameter.  

Another factor that could have possibly contributed to the less than adequate estimation 

of the DIF and item location parameters was the large number of parameters (66 in total) to 

estimate at once. To answer this question, a pilot study was carried out to estimate one DIF 

parameter at a time. It was found that the recovery, Type I error rates, and power were very 

similar to the initial analysis when the DIF parameters in one component were estimated together. 
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Comparison of Type I error rates and power obtained through the two methods is presented in 

Appendix D. 

The effect of DIF size on DIF parameter recovery was inconsistent according to literature. 

For example, Paek and Wilson (2011) discovered that for the Rasch DIF model the large DIF 

size (.681) had on average slightly greater bias than with the medium DIF (.468). Similarly, 

Fukuhara and Kamata (2011) found that with the 2PL model and a bi-factor multidimensional 

IRT model bias in large DIF (.7) parameter estimates was on average greater than that in medium 

DIF (.5) parameter estimates. On the other hand, other IRT-based studies that modeled item-level 

DIF (Jeon, Rijmen, & Rabe-Hesketh, 2011) discovered minor differences in bias between 

small/zero and medium delta magnitude in data conditions which did not resemble those 

specified in this research. In the DIF literature, design variables such as model characteristics, 

sample size, and test length confound the effect of delta size on DIF parameter estimation.  

In terms of statistical inferences, the unprotected PCER under the DIF model was 

controlled in all small DIF (delta = 0.2) conditions but not with large DIF (delta=0.7), especially 

when sample size was also large (N = 3,000). In other words, many of the biased estimates of the 

non-DIF parameters were significantly different from zero, resulting in high Type I error rates. 

The unprotected EWER was above the nominal level in all conditions. However, the two 

adjustment procedures had PCER under control in all conditions and EWER under control in 

small delta conditions. Such findings are consistent with previous DIF studies showing that Type 

I error rates tended to inflate as sample size and the degree of differential functioning increased 

(e.g., Kim et al., 2011). When Type I errors were under control, there was good per-pair power in 

large sample and large delta conditions. 
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Because conventional DIF detection methods such as logistic regression and Mantel-

Haenszel focus on one item after another, it is normal to consider only hypothesiswise Type I 

errors (PCER) under no adjustment conditions, which is reported most frequently in the DIF 

literature. Nonetheless, for model-based approaches like proposed in this study where more than 

one specified DIF parameters are evaluated at once, it presents a situation of multiple 

significance testing, for which the appropriate Type I error rates are familywise or 

experimentwise Type I error (EWER). To deal with the common problem of greater EWER in 

situations like this, adjustment procedures have been devised to correct the critical criteria such 

as the Bonferroni procedure (Bonferroni, 1936) and the similar but less conservative Hochberg 

correction (Hochberg, 1988) in order to keep the Type I error under control. The findings on the 

DIF model support the use of these corrections. In parallel to PCER and EWER, this study also 

calculated two kinds of power indices, per-pair and any-pair.  

Group-Level DIF 

Estimates of the DIF and non-DIF parameters of the three group-level DIF models, DFFc, 

DFFm, and DWF, were not biased. In large sample conditions, average bias and RMSEs of these 

parameter estimates were very similar, particularly in the DFFc model. There was inconsistent 

variation between the two levels of impact in small sample conditions and it was the most 

obvious for the DWF parameter. Such effect disappeared in large sample conditions. DIF 

parameters in the DFFc and DFFm models are only an additive component in the specification 

and were relatively easy to estimate. On the other hand, although the DWF parameter was 

similarly formulated to the DIF parameter in the item-level DIF model, their estimates were not 

biased. A possible explanation is that their estimation was more informative as their quantity was 

shared by 10 component items.  
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For group-level models, all three PCER indices were controlled across conditions and the 

EWER with the two adjustments were under control. There was perfect or near perfect per-pair 

and any-pairs statistical power in large DIF conditions and small DIF but large sample conditions. 

Even when sample and delta were small, decent per-pair and any-pair power were observed. 

These findings are consistent with previous studies on group-level DIF, which provided 

good Type I error control and greater statistical power than individual item DIF analyses (e.g., 

Banks, 2013). Nevertheless, many of previous studies employed SIBTEST or similar procedures, 

and little research has been conducted on group-level DIF (i.e., differential bundle/facet 

functioning) using model-based approaches. A very pertinent example (Nixon, 2013) examined 

issues on a model-based DIF approach under the logistic linear test model (LLTM) and reported 

that lower bias occurred with large samples and small DIF size and that only small sample and 

medium DIF conditions led to acceptable Type I error rates.  

Mismatching DIF Model and DIF Source 

Studying differential item functioning means applying sometimes the “wrong” detection 

model to data whose real source of differential functioning remains to be discovered. The second 

phase of the research attempted to investigate the effects in these situations in order to 

understand the potential detriments. When fitting the DIF model to the other data, the false 

detection rates (percentages of DIF parameters in the mismatched model that gained statistically 

significant estimates) were mostly beyond the Bradley range. Large DIF even led to 100% false 

detection rates for both hypothesiswise and experimentwise errors using the Bonferroni and the 

Hochberge adjustment. Similarly, in their study on a Rasch DIF model, Paek and Wilson (2011) 

found highly inflated false detection rate for the non-DIF parameters defined in their Rasch DIF 

model, for which their supposition was underestimated standard deviation of the DIF parameter. 
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Recovery of other model parameters, including item locations, intercept, and component weights, 

was less than adequate in large DIF conditions. In particular, estimation of item locations was 

adversely affected by the differential effect in the data being fitted to.  

When the DFFc model was applied to data with small DIF, the false detection rates were 

acceptable but the location parameter estimates were biased where the DIF effects were 

simulated. Interestingly, when applied to the DWF data, the recovery of item locations was 

acceptable but not the component weight, especially when the DIF was large. The DFFm model 

was not easy to use due to the high false detection rates when fitted to other DIF sources. 

Recovery of its item locations and component weights was unacceptable as the mismatched 

differential effects in the data led to more variation in their estimation. Fitting the DWF model to 

the DIF model resulted in acceptable false detection rates when DIF was small. Estimates of the 

item locations in the three mismatched data types were biased in large DIF conditions. However, 

the bias from component weights was less obvious than that from fitting the other models to 

mismatched data. It needs to be noted that recovery of the non-DIF model parameters when the 

model matched the data was largely acceptable.  

In sum, the consequences of mismatching a proposed DIF model to a DIF source 

included high false detection rates and great error in model parameter estimation, which 

increased as the number of differential functioning items went up. Fitting a mismatched DIF 

model could lead to biased, misleading conclusions as to both detection and model validity.  

Implications 

Conventional DIF detection methods study one item at a time and can be quite laborious 

for a long test. More importantly, the commonly adopted DIF detection procedures may be 

incompatible with the unique, restrictive data structure the MIRID. The extended models as 
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proposed here account for these characteristics of within the framework of the generalized linear 

mixed models which can be conveniently implemented with general-purpose statistical packages.  

The proposed models are also rooted in the framework of explanatory item response 

modeling, the strength of which lies with the fact it is a “one-step” approach: detecting, sizing up, 

and explaining differential functioning while estimating group difference all at once. By 

targeting different types of differential functioning, these extended MIRID models form a model-

based approach to DIF investigation that is capable of separating likely construct irrelevant (i.e., 

adverse) DIF in individual items from probably construct pertinent (i.e., nonmalignant) DIF 

displayed in item groups (e.g., components, component weights, or item families). Detection of 

the former ensures test fairness and increases validity regarding group difference in item 

performance having controlled for the gap between the groups on trait level. Detection of the 

latter using the DFFc, DFFm, or DWF model naturally aids in its interpretation through 

properties shared by the group of items, and provides insight into group strength and weakness in 

terms of a domain of or a scenario within the trait being measured after accounting for group 

disparity in the primary construct. In order to utilize these advantages, this research assessed the 

efficacy of these models from different angles. Its results had implications for content-oriented 

applied researchers, who would be more interested to understand the MIRID nature of the data, 

and the methodologists, whose intentions are to come up with efficient ways to study DIF in the 

context of the MIRID.  

Implications for Content Researchers 

This study found that under the MIRID DIF model the unprotected hypothesiswise Type 

I error rate was not well maintained when DIF effect was trivial and that the unprotected 

experimentwise Type I error rates were always high. These results plus the detrimental outcome 
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from fitting a DIF model to data with a mismatched source of differential effects advised 

practitioners and content-oriented researchers against applying the DIF model up front in their 

study; rather, the first step is to have content experts conduct a substantive analysis (Paek & 

Fukuhara, 2014; Xie & Wilson, 2008) to identify potential items that may perform differentially 

on manifest groups of interest. In the simulation, when Type I errors were under control, good 

per-pair power in large sample and large delta conditions were observed for the DIF model. The 

researchers are thus encouraged, after the substantive analysis, to apply non-MIRID procedures, 

like the Mantel-Haenszel or the multiple-group CFA, as exploratory means in addition to the 

confirmatory DIF model. The target would be an agreement between the substantive analysis and 

the detection methods as to which items exhibit DIF. With sufficient but not massive sample 

sizes (1,000 ~ 3,000) a model-based but more parsimonious approach such as the Rasch DIF 

model may be considered so that all potential DIF items identified in the content analysis can be 

modeled at once.  

In the simulation, detection performance of the proposed group-level DIF models was 

satisfactory. Therefore, if the pattern of the items exhibit DIF points to one particular fact, the 

MIRID DFFc, DFFm, or DWF can be fitted to the data. If the pattern does not give a clear 

distinction with an inclusive substantive analysis, for example, differential effects from a 

component and a component weight, the two models can be applied separately in order to 

determine the better-fitting model for explaining the extant DIF. It may be advisable to use 

information-based statistics such as Akaike's Information Criterion (AIC; Akaike, 1974) or 

Schwarz's Bayesian Information Criterion (BIC; Schwarz, 1978), both offering estimates of the 

relative differences between solutions. These statistics are appropriate for the extended MIRID 

models because of the maximum likelihood estimation they use. Small values of these indices 
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give indication of better model-data fit. Simulation studies on other IRT models indicated that 

BIC selects the correct model in general while for more complex model AIC fares better along 

with several other less known indices (Lee & Beretvas, 2014). However, there must be a sizeable 

sample (>500) before fitting an extended MIRID model according to the results here.  

Implications for Methodology Researchers 

Results on the DIF model suggest that the quality of model estimation was less than 

optimal, which had more to do with the model’s inability to distinguish the two parts in the 

summation: the location and the DIF parameters. Methodologies could improve it as such: 1) 

obtain estimates of component item locations in a reduced model (the standard MIRID or the 

Rasch model), 2) deploy them as the starting values for the MIRID DIF model estimation, 3) 

even use the obtained estimates of the location and DIF parameters as the starting value of the 

next round of analysis, 4) stop when the estimated values stabilize.  

The standard MIRID assumes strict underlying structure of the measured construct that is 

difficult to satisfy with empirical data. This inherent restrictiveness may be a reason for its being 

used less than other componential IRT models as well as the difficulty in estimation encountered 

in the simulation study. Various extensions have been proposed to generalize the model (see 

Chapter Two for details). For example, if the effect of a component is allowed to vary over 

people, that is, when a component weight is assumed as a random effect in order to account for 

individual differences in how they are affected by processes. In this case, the weight is 

decomposed into a mean and a variance parameter as extended from Equation 38.  

 

𝜂𝑗𝑚0 = 𝜃𝑗 + 𝐺𝑗𝛾𝑔 − (∑(𝜔𝑗𝑘+𝐺𝑗𝛿𝑤)𝛽𝑚𝑘

𝐾

𝑘=1

+ 𝜔0) . 
( 41 ) 
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where 𝜔𝑗𝑘 = 𝜃𝑗𝑘 + 𝜔𝑘 and the multivariate normal distribution is assumed for the vector of 

random effects. For example, if the first component weight is allowed to vary across persons, 

𝜃𝑗 = (𝜃𝑗0, 𝜔𝑗1). Formulated like this, DIF investigation would consider if the mean of this 

random weight differs significantly between two manifest groups.  

This simulation study calculated on absolute bias when evaluating parameter recovery. 

Very large absolute bias values were observed for the delta parameters in the MIRID DIF model. 

Another evaluative criterion, relative bias, was devised to answer the question “What would be 

an acceptable size of bias in an estimator after controlling for the magnitude of the parameter?” 

and has been reported by DIF studies. Hoogland and Boomsma (1998) formulated the relative 

bias of parameter estimators: 

 
𝐵𝑖𝑎𝑠(𝜃𝑖) =

𝜃𝑖
̅ − 𝜃𝑖

𝜃𝑖
 , 

( 42 ) 

where 𝜃𝑖
̅  is the mean of the estimates of parameter 𝜃 for item i over all replications. They 

suggested an acceptability criterion for this index is its absolute value does not exceed .05. 

Relative bias was reported in IRT model parameter recovery (e.g., Wang & Jin, 2010) and in DIF 

research (e.g., Chaimongkol, Huffer, & Kamata, 2006). Reporting relative bias in simulation 

results would change the outlook and interpretation of the findings. For methodology research, it 

may be advisable to report both absolute and relative bias.  

In the findings on statistical inferences, there are quite incongruous outlooks when 

different Type I error rates and different adjustments were implemented in the DIF models. For 

example, under the DIF model, large delta conditions with the Bonferroni and Hochberg 

corrections resulted in PCER that were well below the nominal level but out-of-control EWER. 

As the most common index in DIF simulation research, the unprotected PCER is appropriate for 
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detection methods that test items individually. For other methods that assess multiple items at 

once, such as the DIF approach proposed in here, EWER is the more appropriate Type I errors as 

an evaluative criterion in a setting of multiple significance testing. Given the fact that the two 

correction procedures in this research were successful in avoiding Type I error inflation in a 

number of conditions, methodologists would benefit from incorporating them in their research. 

Or, they could explore other ways to adjust the critical value such as the Benjamini and 

Hochberg False Discovery Rate method (Benjamini & Hochberg, 1995; Kromrey & Hogarty, 

2002) or the adjustment suggested by Oort (1992, 1998).  

Lastly, for simulation research on complex models sample size matters: large sample 

sizes are necessary for reliable and accurate parameter estimation. For example, in a recent study 

of explanatory IRT model involving multiple predictors (Tay, Huang, & Vermunt, 2016), sample 

sizes were set at 5,000, 10,000, 20,000, and 40,000.  

Limitations and Future Studies 

Due to limited resources, performance of the proposed DIF models was not assessed in 

light of the easy-to-use, conventional methods such as the Mantel-Haenszel procedure, logistic 

regression, SIBTEST, etc. Future research may include such comparisons. Another direction is to 

experiment with some of the newly tested methods. For example, the forward procedure in the 

multiple-group categorical CFA approach (Kim & Yoon, 2011) could prove to be a useful 

alternative.  

This dissertation was not able to look into the issue of non-uniform DIF and considered 

only single-source differential functioning. Future studies on the former can be conducted from 

the platform of the two-parameter MIRID (Wang & Jin, 2010). The latter, concurrent DIF 

sources, however, could be investigated from different angles. Xie and Wilson (2008) 
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demonstrated with the LLTM that in educational assessments more than one content domain can 

be incorporated in the same DIF model, which in the MIRID context would be analogous to 

modeling DFFc and DFFm at once, for instance. Obviously, there needs to be more simulation-

based studies featuring model-comparison to evaluate this approach for its efficacy in various 

conditions.  

Through a DIF decomposition perspective, Paek and Fukuhara (2014) showed that item-

level and group-level (i.e., testlet) level DIF can be modeled simultaneously; but in the MIRID 

context modeling the two levels of differential functioning at once has yet to be experimented. 

Despite different modeling assumptions and purpose, cognitive diagnostic modeling (CDM) 

could provide another alternative to study DIF because the data structure in the MIRID could be 

seamlessly converted to a CDM Q-matrix where each attribute would encompass all items within 

one component and the “composite” attribute would have all items indexed as 1. Unfortunately, 

there is no parallel in CDM to an item family. The various techniques developed in the CDM 

DIF literature could be useful such as modeling attribute DIF with a higher order model. 

The maximum likelihood estimation method as implemented with PROC NLMIXED was 

time consuming. Plus, a sizable sample and a large number of replications were necessary for 

consistent and trustworthy outcome in Monte Carlo simulation studies. As a consequence, the 

research design was constrained by time such that only three factors and two levels of variation 

were possible. Specifically, the design in this study evaluated only the large and small DIF levels 

but left unconsidered the medium DIF level, which arguably can be more relevant in DIF 

research. For example, a DIF magnitude around .4, a group difference in mean trait level of .4, 

and a sample size of 1,500. A possible follow-up of the research may involve more levels in 
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design factors and factors deployed as fixed in this research, such as test length in terms of 

numbers of item families and components, correlation between components, direction of DIF, etc.  

Conclusions 

A model-based approach to studying differential functioning of individual items and item 

bundles in the context of the model with internal restrictions on item difficulty (MIRID) was 

proposed and evaluated in this dissertation. In the simulation study, the group-level DIF models 

had good Type I error control and overall achieved excellent detection power across the 

conditions while the item-level DIF model maintained Type I error control in conditions of small 

DIF but failed to gain considerable power. Research on this topic should be continued, especially 

on detecting item-level DIF. For content-oriented practitioners, DIF study in the context of the 

MIRID must begin with a substantive analysis of potential DIF source; without it, misleading 

outcome may arise from applying a DIF model up front. It is more important to be able to 

interpret discovered group-level differential functioning, which through substantive analysis can 

be determined as either a nuisance or complementary dimension, secondary to the primary 

construct. 
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APPENDIX A: 

EXAMPLES OF ANALYSIS CODE IN SAS 

 

title 'DIF model';  

 proc nlmixed data=dif method=gauss qpoints=15 noad  

    technique=quanew maxfunc=5000 ; 

    parms b1-b30=0 w0-w3=.3 d11-d20=0 gamma=0 sd=1;  

    beta1=b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10;  

beta2=b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19

+b20*x20;  

beta3=b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29

+b30*x30;  

delta2=d11*x11+d12*x12+d13*x13+d14*x14+d15*x15+d16*x16+d17*x17+d18*x18+d19*x1

9+d20*x20;  

    ex=exp(theta+gamma*grp-(1-co)*(beta1+beta2+beta3+delta2*grp)  

    -co*(w0+w2*(beta2+delta2*grp)+w1*beta1+w3*beta3));  

    p=ex/(1+ex);  

    model y ~ binary(p);  

    random theta ~ normal(0,sd*sd) subject=person;  

    estimate 'sd**2' sd*sd;  

    run;  

 

title 'DFFc model ';  

 proc nlmixed data=dffc method=gauss qpoints=15 noad  

    technique=quanew maxfunc=5000 ; 

    parms b1-b30=0 w0-w3=.3 kd1-kd3=0 gamma=0 sd=1;  

    beta1=b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10;  

beta2=b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19

+b20*x20;  

beta3=b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29

+b30*x30;  

    kd=kd1*k1+kd2*k2+kd3*k3;  

    ex=exp(theta+gamma*grp-(1-co)*(beta1+beta2+beta3+kd*grp)  

    -co*(w0+w1*beta1+w2*beta2+w3*beta3+kd*grp));  

    p=ex/(1+ex);  

    model y ~ binary(p);  

    random theta ~ normal(0,sd*sd) subject=person;  
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    estimate 'sd**2' sd*sd;  

run; 

 

title 'DFFm model ';  

 proc nlmixed data=dffm method=gauss qpoints=15 noad  

    technique=quanew maxfunc=5000 ; 

    parms b1-b30=0 w0-w3=.3 fd1-fd10=0 gamma=0 sd=1;  

    beta1=b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10;  

beta2=b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x

19+b20*x20;  

beta3=b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x

29+b30*x30;  

fd=fd1*m1+fd2*m2+fd3*m3+fd4*m4+fd5*m5+fd6*m6+fd7*m7+fd8*m8+fd9*m9+fd10*m

10;  

    ex=exp(theta+gamma*grp-(1-co)*(beta1+beta2+beta3+fd*grp)  

    -co*(w0+w1*beta1+w2*beta2+w3*beta3+3*fd*grp));  

    p=ex/(1+ex);  

    model y ~ binary(p);  

    random theta ~ normal(0,sd*sd) subject=person;  

    estimate 'sd**2' sd*sd;  

    run;  

 

 

 title 'DWF model ';  

 proc nlmixed data=dwf method=gauss qpoints=15 noad  

    technique=quanew maxfunc=5000 ; 

    parms b1-b30=0 w0-w3=.3 wd1-wd3=0 gamma=0 sd=1;  

    beta1=b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10;  

beta2=b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x

19+b20*x20;  

beta3=b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x

29+b30*x30;  

    ex=exp(theta+gamma*grp-(1-co)*(beta1+beta2+beta3)  

    -co*(w0+(w1+wd1*grp)*beta1+(w2+wd2*grp)*beta2+(w3+wd3*grp)*beta3));  

    p=ex/(1+ex);  

    model y ~ binary(p);  

    random theta ~ normal(0,sd*sd) subject=person;  

    estimate 'sd**2' sd*sd;  

    run;  
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APPENDIX B: 

ESTIMATION BIAS AND RMSES OF THE ZERO-VALUE DIF PARAMETERS OF 

THE MIRID DIF, DFFC, DFFM, AND DWF MODELS 

 

Table B1: Average Bias and RMSEs of the Zero-value Delta Parameter Estimates under the 

MIRID DIF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 26 -0.022 0.013 0.213 0.023 

  

Impact=-.7 26 -0.020 0.016 0.220 0.030 

 

N=1500*2 Impact=0 26 -0.029 0.013 0.093 0.008 

  

Impact=-.7 26 -0.025 0.012 0.092 0.011 

delta=.7 N=250*2 Impact=0 26 -0.095 0.051 0.242 0.020 

  

Impact=-.7 26 -0.078 0.047 0.229 0.029 

 

N=1500*2 Impact=0 26 -0.106 0.042 0.142 0.027 

  

Impact=-.7 26 -0.088 0.038 0.131 0.022 

 

Table B2: Average Bias and RMSEs of the Zero-value Delta Parameter Estimates under the 

MIRID DFFc Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 2 0.001 0.002 0.066 0.000 

  

Impact=-.7 2 -0.004 0.001 0.068 0.004 

 

N=1500*2 Impact=0 2 0.001 0.001 0.028 0.000 

  

Impact=-.7 2 -0.001 0.000 0.028 0.000 

delta=.7 N=250*2 Impact=0 2 -0.002 0.001 0.069 0.000 

  

Impact=-.7 2 -0.001 0.000 0.068 0.002 

 

N=1500*2 Impact=0 2 -0.001 0.001 0.028 0.001 

  

Impact=-.7 2 -0.001 0.001 0.029 0.002 
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Table B3: Average Bias and RMSEs of the Zero-value Delta Parameter Estimates under the 

MIRID DFFm Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 8 0.000 0.002 0.067 0.002 

  

Impact=-.7 8 -0.002 0.003 0.068 0.003 

 

N=1500*2 Impact=0 8 0.000 0.001 0.026 0.001 

  

Impact=-.7 8 -0.001 0.001 0.027 0.002 

delta=.7 N=250*2 Impact=0 8 0.000 0.003 0.066 0.004 

  

Impact=-.7 8 0.002 0.002 0.067 0.004 

 

N=1500*2 Impact=0 8 -0.002 0.001 0.026 0.002 

  

Impact=-.7 8 0.001 0.001 0.028 0.002 

 

Table B4: Average Bias and RMSEs of the Zero-value Delta Parameter Estimates under the 

MIRID DWF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 2 0.003 0.001 0.059 0.000 

  

Impact=-.7 2 0.004 0.001 0.055 0.011 

 

N=1500*2 Impact=0 2 0.001 0.000 0.025 0.006 

  

Impact=-.7 2 0.001 0.003 0.025 0.000 

delta=.7 N=250*2 Impact=0 2 0.000 0.003 0.073 0.003 

  

Impact=-.7 2 0.013 0.014 0.095 0.034 

 

N=1500*2 Impact=0 2 -0.001 0.000 0.027 0.001 

  

Impact=-.7 2 0.000 0.000 0.029 0.006 
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APPENDIX C: 

ESTIMATION BIAS AND RMSES OF THE MODEL PARAMETERS OF THE MIRID 

DFFC, DFFM, AND DWF MODELS 

 

Table C1: Average Bias and RMSEs of Item Location Parameter Estimates under the MIRID 

DIF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 30 -0.004 0.026 0.119 0.014 

  

Impact=-.7 30 -0.014 0.024 0.121 0.015 

 

N=1500*2 Impact=0 30 0.028 0.024 0.057 0.016 

  

Impact=-.7 30 -0.008 0.023 0.053 0.008 

delta=.7 N=250*2 Impact=0 30 -0.012 0.084 0.138 0.038 

  

Impact=-.7 30 0.009 0.075 0.131 0.041 

 

N=1500*2 Impact=0 30 0.023 0.082 0.073 0.063 

  

Impact=-.7 30 -0.001 0.076 0.076 0.048 

 

Table C2: Average Bias and RMSEs of the Intercept and Component Weights Estimates under 

the MIRID DIF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 4 0.000 0.001 0.047 0.011 

  

Impact=-.7 4 -0.001 0.001 0.044 0.011 

 

N=1500*2 Impact=0 4 0.000 0.000 0.017 0.002 

  

Impact=-.7 4 0.000 0.001 0.019 0.002 

delta=.7 N=250*2 Impact=0 4 0.002 0.002 0.036 0.004 

  

Impact=-.7 4 0.001 0.004 0.048 0.012 

 

N=1500*2 Impact=0 4 0.000 0.000 0.016 0.002 

  

Impact=-.7 4 0.001 0.001 0.017 0.003 
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Table C3: Average Bias and RMSEs of Item Location Parameter Estimates under the MIRID 

DFFc Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 30 0.002 0.004 0.114 0.009 

  

Impact=-.7 30 0.013 0.006 0.113 0.012 

 

N=1500*2 Impact=0 30 0.009 0.002 0.047 0.004 

  

Impact=-.7 30 0.009 0.002 0.048 0.005 

delta=.7 N=250*2 Impact=0 30 -0.020 0.007 0.112 0.009 

  

Impact=-.7 30 -0.019 0.006 0.117 0.014 

 

N=1500*2 Impact=0 30 0.001 0.002 0.045 0.004 

  

Impact=-.7 30 0.000 0.003 0.048 0.005 

 

Table C4: Average Bias and RMSEs of the Intercept and Component Weights Estimates under 

the MIRID DFFc Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 4 0.000 0.002 0.045 0.011 

  

Impact=-.7 4 0.001 0.002 0.043 0.009 

 

N=1500*2 Impact=0 4 0.000 0.001 0.019 0.004 

  

Impact=-.7 4 0.000 0.001 0.017 0.004 

delta=.7 N=250*2 Impact=0 4 -0.001 0.002 0.052 0.009 

  

Impact=-.7 4 0.004 0.003 0.060 0.022 

 

N=1500*2 Impact=0 4 0.000 0.001 0.018 0.004 

  

Impact=-.7 4 0.000 0.000 0.020 0.004 
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Table C5: Average Bias and RMSEs of Item Location Parameter Estimates under the MIRID 

DFFm Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 30 -0.019 0.005 0.117 0.008 

  

Impact=-.7 30 -0.003 0.006 0.119 0.014 

 

N=1500*2 Impact=0 30 0.001 0.002 0.047 0.004 

  

Impact=-.7 30 0.005 0.002 0.049 0.005 

delta=.7 N=250*2 Impact=0 30 -0.038 0.007 0.123 0.011 

  

Impact=-.7 30 0.021 0.006 0.121 0.018 

 

N=1500*2 Impact=0 30 -0.018 0.002 0.050 0.004 

  

Impact=-.7 30 0.000 0.003 0.048 0.006 

 

Table C6: Average Bias and RMSEs of the Intercept and Component Weights Estimates under 

the MIRID DFFm Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 4 -0.002 0.003 0.051 0.018 

  

Impact=-.7 4 0.001 0.001 0.042 0.009 

 

N=1500*2 Impact=0 4 0.000 0.000 0.020 0.005 

  

Impact=-.7 4 0.001 0.001 0.021 0.005 

delta=.7 N=250*2 Impact=0 4 0.001 0.003 0.057 0.015 

  

Impact=-.7 4 0.000 0.002 0.055 0.008 

 

N=1500*2 Impact=0 4 0.001 0.002 0.018 0.004 

  

Impact=-.7 4 0.000 0.001 0.021 0.004 
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Table C7: Average Bias and RMSEs of Item Location Parameter Estimates under the MIRID 

DWF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 30 0.005 0.007 0.113 0.011 

  

Impact=-.7 30 -0.001 0.005 0.111 0.010 

 

N=1500*2 Impact=0 30 -0.008 0.001 0.045 0.005 

  

Impact=-.7 30 -0.010 0.002 0.046 0.004 

delta=.7 N=250*2 Impact=0 30 -0.001 0.005 0.110 0.012 

  

Impact=-.7 30 -0.020 0.006 0.112 0.009 

 

N=1500*2 Impact=0 30 -0.003 0.003 0.044 0.004 

  

Impact=-.7 30 0.003 0.002 0.044 0.005 

 

Table C8: Average Bias and RMSEs of the Intercept and Component Weights Estimates under 

the MIRID DWF Model 

   

# Bias Bias_sd RMSE RMSE_sd 

delta=.2 N=250*2 Impact=0 4 -0.001 0.003 0.043 0.005 

  

Impact=-.7 4 -0.001 0.002 0.045 0.008 

 

N=1500*2 Impact=0 4 0.000 0.001 0.020 0.003 

  

Impact=-.7 4 0.000 0.001 0.029 0.008 

delta=.7 N=250*2 Impact=0 4 -0.001 0.003 0.062 0.005 

  

Impact=-.7 4 -0.002 0.004 0.063 0.015 

 

N=1500*2 Impact=0 4 0.000 0.001 0.021 0.003 

  

Impact=-.7 4 -0.001 0.001 0.022 0.003 
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APPENDIX D: 

TYPE I ERROR RATES AND POWER OBTAINED FROM ESTIMATING ITEM DIF 

PARAMETERS BY COMPONENT AND BY ITEM  

Table D1: Type I Error Rates for the MIRID DIF Model Obtained from Estimating by 

Component and by Item 

    

Per-comparison % Experimentwise % 

   

by 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact=

0 

Comp

onent 0.051 0.002 0.002 0.738 0.040 0.040 

Item 0.053 0.001 0.001 0.782 0.036 0.036 

 

Impact=

-.7 

Comp

onent 0.049 0.002 0.002 0.710 0.038 0.038 

 

Item 0.048 0.002 0.002 0.728 0.040 0.040 

N=1500*

2 

Impact=

0 

Comp

onent 0.065 0.002 0.002 0.846 0.058 0.058 

Item 0.067 0.002 0.002 0.852 0.058 0.060 

 

Impact=

-.7 

Comp

onent 0.062 0.002 0.002 0.814 0.050 0.050 

 

Item 0.062 0.002 0.002 0.818 0.058 0.060 

d
el

ta
=

.7
 N=250*2 

Impact=

0 

Comp

onent 0.079 0.004 0.005 0.882 0.108 0.110 

Item 0.081 0.004 0.004 0.924 0.104 0.106 

 

Impact=

-.7 

Comp

onent 0.069 0.004 0.004 0.852 0.088 0.088 

 

Item 0.071 0.004 0.004 0.872 0.092 0.094 

N=1500*

2 

Impact=

0 

Comp

onent 0.253 0.040 0.045 1.000 0.686 0.702 
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Per-comparison % Experimentwise % 

   

by 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Item 0.264 0.040 0.044 1.000 0.666 0.712 

 

Impact=

-.7 

Comp

onent 0.192 0.025 0.028 1.000 0.494 0.522 

 

Item 0.211 0.029 0.033 0.094 0.218 5.492 
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Table D2: Power for the MIRID DIF Model Obtained from Estimating by Component and by 

Item 

    

Per-comparison % Experimentwise % 

   

by 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

Un-

protect. 

Bonfer-

roni 

Hoch-

berg 

d
el

ta
=

.2
 

N=250*2 

Impact=

0 

Comp

onent 0.121 0.011 0.011 0.012 0.061 0.000 

Item 0.128 0.013 0.013 0.013 0.071 0.000 

 

Impact=

-.7 

Comp

onent 0.123 0.007 0.007 0.007 0.067 0.000 

 

Item 0.128 0.007 0.007 0.008 0.069 0.000 

N=1500*

2 

Impact=

0 

Comp

onent 0.505 0.119 0.120 0.145 0.347 0.036 

Item 0.551 0.144 0.144 0.178 0.386 0.070 

 

Impact=

-.7 

Comp

onent 0.483 0.115 0.115 0.144 0.328 0.052 

 

Item 0.523 0.137 0.139 0.172 0.359 0.046 

d
el

ta
=

.7
 

N=250*2 

Impact=

0 

Comp

onent 0.805 0.391 0.398 0.520 0.692 0.424 

Item 0.831 0.446 0.452 0.584 0.756 0.490 

 

Impact=

-.7 

Comp

onent 0.754 0.341 0.347 0.437 0.638 0.268 

 

Item 0.788 0.359 0.364 0.468 0.655 0.344 

N=1500*

2 

Impact=

0 

Comp

onent 1.000 1.000 1.000 1.000 1.000 1.000 

Item 1.000 1.000 1.000 1.000 1.000 1.000 

 

Impact=

-.7 

Comp

onent 1.000 0.987 0.989 0.995 0.998 0.998 

 

Item 1.000 0.990 0.991 0.998 0.999 0.998 
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