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Abstract 

 

In multilevel MIMIC models, covariates at the between level and at the within level can 

be modeled simultaneously. Covariates interaction effect occurs when the effect of one covariate 

on the latent factor varies depending on the level of the other covariate. The two covariates can 

be both at the between level, both at the within level, and one at the between level and the other 

one at the within level. And they can create between level covariates interaction, within level 

covariates interaction, and cross level covariates interaction. Study One purports to examine the 

performance of multilevel MIMIC models in estimating the covariates interaction described 

above. Type I error of falsely detecting covariates interaction when there is no covariates 

interaction effect in the population model, and the power of correctly detecting the covariates 

interaction effect, bias of the estimate of interaction effect, and RMSE are examined. The design 

factors include the location of the covariates interaction effect, cluster number, cluster size, intra-

class correlation (ICC) level, and magnitude of the interaction effect. The results showed that 

ML MIMIC performed well in detecting the covariates interaction effect when the covariates 

interaction effect was at the within level or cross level. However, when the covariates interaction 

effect was at the between level, the performance of ML MIMIC depended on the magnitude of 

the interaction effect, ICC, and sample size, especially cluster size.  In Study Two, the impact of 

omitting covariates interaction effect on the estimate of other parameters is investigated when the 

covariates interaction effect is present in the population model. Parameter estimates of factor 

loadings, intercepts, main effects of the covariates, and residual variances produced by the 
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correct model in Study One are compared to those produced by the misspecified model to check 

the impact. Moreover, the sensitivity of fit indices, such as chi-square, CFI, RMSEA, SRMR-B 

(between), and SRM-W (within) are also examined. Results indicated that none of the fit indices 

was sensitive to the omission of the covariates interaction effect. The biased parameter estimates 

included the two covariates main effect and the between-level factor mean.  
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Chapter One: Introduction 

 

Over the past few decades, there has been increasing attention to investigating group 

differences on latent variables in many research studies in social behavioral sciences (Smeden & 

Hessen, 2013). Latent variables are not directly observed, but measured by other variables, such 

as attitude, confidence, and satisfaction. Muthén (1989) pointed out that in the application of 

latent variable analysis, the heterogeneity of subpopulations in parameter values should be taken 

into account. Multigroup confirmatory factor analysis (MG-CFA) has been a commonly used 

method for studying group differences in latent variables. However, in MG-CFA the model is 

fitted to data for each group separately by dividing the samples based on the number of groups 

(Muthén, 1989). This is problematic when sample size is a concern, especially when there are 

more than two groups, for example, four ethnic groups. The sample size of each group is much 

smaller than the total sample size when there are multiple groups. Moreover, MG-CFA usually 

limits to only one grouping variable (e.g., gender or race), but often there are multiple grouping 

covariates (e.g. gender and race) to be modeled simultaneously in the research context of social 

behavioral sciences. When more than one grouping variable is present, the multiple indicators 

multiple causes (MIMIC) model is a more effective alternative technique to study group 

differences in latent variables. In the presence of two or more grouping variables (e.g. gender, 

race, and categorical social economic status), instead of fitting the same CFA model to each of 

gender ×  race  × social economic status groups as in MG-CFA, the MIMIC model fits only one 
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model by regressing a set of dummy coded grouping variables on the construct of the CFA 

model. 

The typical feature of the MIMIC model is that the latent factor is measured by the 

observed indicators, which is the measurement model part, and is regressed on observed 

grouping variables, which is the structural model part (Jöreskog & Goldberger, 1975). The 

MIMIC model was shown to detect and describe heterogeneity situations that the regular MG-

CFA cannot handle (Muthén, 1989); that is, when total sample size is small or when there are 

multiple grouping variables. For example, when the sample size is small or even when the total 

sample size is big but with many groups, fitting multiple CFA models for each group renders 

unstable parameter estimate because of insufficient sample size in each group. In contrast to 

MG-CFA, the MIMIC model uses the total sample size to get the variance covariance matrix to 

estimate the parameters in the model without splitting the data into different groups based on the 

grouping variables. Apart from its advantage of no need to divide the total sample size based on 

number of groups, the MIMIC model is flexible in modeling multiple covariates, which may be 

continuous or discrete, observed or latent. The inclusion of a set of covariates provides the 

MIMIC model with important extra information in addition to the measurement model (Chen, 

1981; Cheng, Shao, & Lathrop, 2016; Muthén, 1989). The MIMIC model has also been utilized 

extensively by applied researchers, especially for testing latent factor mean, or the regression 

effect from the grouping variable on the latent factor (Condon, 2010; Ogg, McMahan, Dedrick, 

Mendez, 2013, Thompson & Green, 2006). In the study by Ogg et al. (2013), they used the 

MIMIC model to compare the latent mean of engaging in academic activities with two groups of 

students: students with ADHD symptoms and those without ADHD. In this study, the MIMIC 

model is used in the context of latent factor mean differences. 
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In the modeling of the effect of multiple observed covariates on the latent factor, in 

addition to the main effects of the covariates, the interactions between the covariates should also 

be investigated. This interaction effect is also referred to as moderation effect. Moderation 

occurs when the magnitude of the effect of the independent variable on the dependent variable 

varies with different levels of the moderating variable (Marsh, Wen, & Hau, 2006). If the effect 

of one covariate on the latent factor is moderated by another covariate, the regression effect of 

one covariate on the latent factor depends on the level of the other covariate. In this study, 

moderation and interaction are treated as synonymous, and exchangeable. Compared to research 

on the interaction effect in multiple regression with observed independent and dependent 

variables, there has been less research on the interaction effect in latent factor models. Smeden 

and Hessen (2013) conducted a study comparing the performance of the log likelihood ratio test 

and the Wilks’s lambda statistic in detecting the significance of the interactions in a two-way 

multigroup common factor model. In their study, the authors didn’t mention the term of MIMIC, 

but in fact, the two-way interaction effect is the interaction effect between the covariates in the 

MIMIC model as described above. 

Just as the MIMIC model is gaining popularity in educational and psychological 

research (Finch & French, 2011; Thompson & Green, 2006), so is the presence of 

hierarchical or nested data in educational and other social sciences; for example, 

students are nested within classrooms which are nested within schools. Multilevel 

modeling accounts for the fact that individuals belonging to the same group share more 

similarities with each other than with individuals from other groups. Statistical analyses 

that do not account for the nested data structure can yield biased parameter estimates 

and associated standard errors for a variety of statistical models, including latent 
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variable models (Muthén, 1994). The primary problem of employing single level 

statistical models using nested data is the violation of the assumption of independence 

of individuals in the same group (Raudenbush & Bryk, 2002). Previous studies showed 

that models that analyzed hierarchically structured data without accounting for the 

multilevel nature yielded negatively biased standard error estimates, which 

consequently resulted in an inflation of the Type I error rates in the context of multiple 

regression (Snijders & Bosker, 1999). Under the framework of multilevel structural 

equation modeling (SEM), Muthén and Satorra (1995) conducted one of the earliest 

simulations to compare the performance of multilevel CFA and the ordinary CFA that 

did not account for the multilevel data structure. Their findings suggested that the 

ordinary CFA yielded negatively biased standard errors for factor loadings. Kim, Kwok, 

and Yoon (2012) investigated factorial invariance testing in multilevel MG-CFA, and 

their findings suggested that ignoring nested data structure resulted in inflated type I 

error rates when the grouping variable was at the between level. Similar problems, that 

is, inflated type I error rates and underestimated standard errors, were observed in 

multilevel MIMIC models when the nested data structure was not taken into account 

and the covariate was at the between level (Finch & French, 2011). 

For multiple group analysis under the context of SEM, multilevel MIMIC 

models have also been gaining popularity in educational and psychological research 

(Davidov, Dülmer, Schlüter, Schmidt, & Meuleman, 2012; Jak, Oort, & Dolan, 2014; 

Kim & Cao, 2015; Kim, Yoon, Wen, & Kwok, 2015). Given the prevalence of SEM in 

social and educational sciences, combined with the frequency of the presence of 

hierarchical data structure, it is critical for the researchers to employ the right statistical 
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methods for modeling hierarchical data in the context of latent variable models. 

Compared to multilevel MG-CFA, there have been fewer studies examining the 

performance of the multilevel MIMIC models. One of these studies was conducted by 

Finch and French (2011). They compared the performance of multilevel MIMIC models 

and standard MIMIC models that did not take into account the nested data with one 

covariate occurring at the between level and the within level, respectively. Their results 

showed that the multilevel MIMIC models outperformed the standard MIMIC models 

in terms of controlling type I error rates and estimating standard error of the parameter 

estimate when the observed covariate was at the between level; however, the 

performance of multilevel MIMIC models and standard MIMIC models was 

comparable when the covariate was at the within level. It was shown in this study that 

the nested structure of data should be taken into account in MIMIC models when data 

are hierarchical. However, in their study, only one covariate at the between level or at 

the within level was considered. Although some studies have mentioned the flexibility 

of the MIMIC model in modeling multiple covariates (Cheng, Shao, & Lathrop, 2016; 

Muthén, 1989; Thompson & Green, 2006), there have been few studies to date that 

examined the performance of MIMIC models in estimating multiple covariates effects 

as well as their interactions on the latent factor in the multilevel SEM context.  

The intent of this research is to examine the performance of multilevel MIMIC 

models in estimating the covariates interaction effect under a set of manipulated 

conditions. In the situation of MIMIC models with a moderating covariate, the effect of 

one covariate on the latent variable depends on the value or the level of another 

covariate as presented in Figure 1 and Figure 2. In Figure 1, the two covariates are at 
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the between level, and the effect of covariate 2 on the latent variable depends on the 

value of covariate 1. Note that the six indicators are represented by circles instead of 

squares, because the indicators in the between level are considered as latent random 

intercepts and they are the cluster mean of the observed indicators at the within level. 

Research scenarios with two covariates at the between level include research on the 

impact of some contextual variables on latent factors. One example of this type of 

research scenario is whether the impact of control or treatment status on a construct is 

identical for public and private schools. In this example, the school control or treatment 

status, and school type (public or private) are both between level covariates.  

In Figure 2, the two covariates are at the within level, and similarly, the effect of 

covariate 2 on the within level latent variable depends on the value of covariate 1. 

Example of research scenarios in Figure 2 includes the main effects and interaction 

effect of two within level covariates (e.g. gender, free lunch status) on a latent construct. 

In Figure 3, one of the covariates is at the between level and the other one at the within 

level. The regression effect of the within level covariate CW predicting the latent factor 

FW is a random slope at the between level and this random slope can be explained by 

the between level covariate CB. If the effect of CB on the random slope is significant, 

there exists the cross level covariates interaction, indicating that the effect of the within 

level covariate on the latent factor depends on the value of the between level covariate. 

One possible example of research scenarios in Figure 3 is that the effect of gender on a 

latent variable differs for students from different types of school (public or private). To 

the best of my knowledge, there has been a paucity of research in the performance of 

multilevel MIMIC in estimating the covariates interaction effect. This study aims to 
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explore the performance of multilevel MIMIC models in detecting a categorical 

covariate moderation effect and the impact of model misspecification in multilevel 

MIMIC models. The dissertation will comprise two studies. Study One focuses on the 

parameter estimate of the covariates interaction in multilevel MIMIC models. In Study 

One, multilevel MIMIC models have two dichotomous covariates and their interaction 

in addition to the measurement component of CFA. There are 3 scenarios of the two 

covariates: (a) they both are at the between level (e.g., public vs. private school, urban 

vs. rural school); (b) they both are at the within level (e. g., gender, categorical social 

economic status (SES)); and (c) one is at the between level and the other one at the 

within level (e.g., public vs. private school, male vs. female). Therefore, the covariates 

interaction involves the between level covariates interaction, the within level covariates 

interaction, and the cross level covariates interaction.  

 

 

Figure 1. The between level MIMIC model with two categorical covariates and the 
moderation effect 
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Figure 2. The within level MIMIC model with two categorical covariates and the 
moderation effect 
 

 

Figure 3. The cross level covariates interaction in the MIMIC model with one 
categorical covariate at the between level and one categorical covariate at the within 
level 
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Study One 

Study One will examine the performance of multilevel MIMIC models in 

estimating the covariates interaction parameter when the two covariates are both at the 

between level, both at the within level, and one covariate at the between and the other 

one at the within level, respectively, assuming strict measurement invariance across 

levels. The presence of two categorical covariates with two levels each creates four 

groups. For example, there are two dichotomous covariates at the within level: gender 

(male, female), and SES (high, low).Then, four groups can be formed using the two 

covariates, i.e., male high SES group, female high SES group, male low SES group, and 

female low SES group. If there is an interaction effect present, the factor mean 

difference between male and female varies depending on the SES high or low status. 

Similarly, the factor mean difference between SES high and low groups hinges on 

gender. When one of the covariates is at the between level and the other one is at the 

within level, the cross level interaction exists when the effect of the within level 

covariate on the factor differs significantly for the two levels of the between level 

covariate. For example, the effect of gender, which is a within level covariate, on the 

latent factor is different for school type (e.g., public vs. private), which is a between 

level covariate. The research questions include: 

1. What is the performance of multilevel MIMIC models in testing the covariates 

interaction effect (between level covariates interaction, within level covariates 

interaction, and cross level covariates interaction)? The performance will be 

examined through Type I error control, statistical power, bias and relative bias 



10 
 

of parameter estimate of covariates interaction effect, and root mean square error 

(RMSE). 

2. What impact do the designed factors (i.e., intraclass correlations (ICCs), cluster 

number, and cluster size) have on the simulation outcomes of testing and 

estimating the covariates interaction effect? 

 

Study Two 

Study Two focuses on the impact of model misspecification on parameter 

estimates in multilevel MIMIC models. To be more specific, the effect of ignoring 

covariates interaction on the estimate of other parameters when the interaction effect is 

present in the population data. The impact of misspecification in SEM on parameter 

estimates has been studied extensively by researchers in educational and psychological 

research (Farley & Reddy, 1987; Gallini, 1983; Kaplan, 1988; Sörbom, 1975), and so 

has been the sensitivity of model fit indices to model misspecification (e.g., Fan, 

Thompson, &Wang, 1999; Fan & Wang, 1998; Gerbing & Anderson, 1993; Hu & 

Bentler, 1988, 1989; Marsh, Balla, & Hau, 1996). However, related research on the 

effect of model misspecification in multilevel models, particularly multilevel SEM 

models has been much less. In these few previous studies about model misspecification 

impact on multilevel modeling parameter estimate, bias was observed. For example, in 

the study about assuming constant level-1 residual variances when they are in fact 

varying in each subpopulation in growth mixture models (Enders & Tofighi, 2008), all 

parameter estimates exhibited bias to some degree. In an investigation into the impact of 

misspecifying the within level error structure in a two level growth models, results 
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demonstrated that the misspecification produced biased estimates of  variance 

parameters but unbiased estimates of fixed effects (Ferron, Dailey, & Yi, 2002). The 

model misspecification of multilevel MIMIC models has not been studied in literature. 

Model misspecification can take various forms. In this study, model misspecification 

will focus on the omission of the covariates interaction effect in multilevel MIMIC 

models. The impact of omitting covariates interaction effect at the within or between 

level on the parameter estimates at both levels in multilevel MIMIC models has not 

been examined in literature. The population model is the one in Study One with 

covariates interaction effect, but the specified model omitted the covariates interaction 

effect. The research questions of Study Two include: 

1. What is the impact of omitting covariates interaction at the between level, 

the within level, and the cross level on parameter estimation at the between 

and the within levels, including factor mean, factor residual variance, 

indicator error variance parameters and the main effects of both covariates? 

The performance will be examined via parameter estimation bias and model 

fit indices (CFI, RMSEA, SRMR-B (between), SRMR-W (within), AIC, 

BIC, and SaBIC). 

2. What are the effects of manipulated factors on the simulation outcomes? 

 

Significance of the Dissertation 

On the basis of the previous research in multilevel SEM, studies conducted in 

this dissertation are expected to make unique contributions to the literature of multilevel 

MIMIC models and the moderation effect in the multilevel model context. First, 
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although Finch and French (2011) examined the path linking the covariate and the latent 

factor by comparing the parameter estimation of multilevel MIMIC models and 

ordinary MIMIC models that didn’t account for the hierarchical data structure, there has 

been no study investigating the estimation of the effect of multiple covariates and their 

interaction effects. They called for further studies to include covariates at both the 

within level and the between level to have a more comprehensive understanding of 

MIMIC models with more complex data structures. Second, to the best of my 

knowledge, the cross level covariates interaction effect in multilevel SEM has not been 

examined. The performance of the cross level covariates interaction in multilevel 

MIMIC models may shed light on examining the effect of some individual and 

contextual characteristics on latent factors for practitioners. For example, the effect of 

gender on engagement in academic activities is different for public school and private 

school students. In this case, gender is a within level covariate, and its effect on the 

latent factor depends on the school type, which is a between level covariate. If the 

multilevel MIMIC performs well in detecting the cross level interaction effect, 

researchers and practitioners can be confident in their conclusion about the inferences 

about the presence or absence of the effect of a certain covariates interaction on the 

latent factor. Third, the impact of ignoring the covariates interaction on other 

parameters estimation in multilevel MIMIC models has not been examined yet. The 

simulation result can provide some insight into the credibility of parameter estimation in 

multilevel MIMIC models when the covariates interaction effect is neglected, which 

happened very often in multilevel SEM.  
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Chapter Two: Literature Review 

 

The literature review part consists of four sections: introduction of the MIMIC 

model and its properties, MIMIC models with multilevel data, covariates interaction, 

and the impact of model misspecification in multilevel SEM.  

 

Multiple-Indicator Multiple-Cause (MIMIC) Models 

Group mean comparison is very common practice in social and behavioral 

science. When the outcome variable is observed, for example, height, and if there are 

only two groups involved in the comparison, a t-test is frequently used to compare the 

group mean. In the case of more than two groups to be compared, analysis of variance 

(ANOVA) is the method that can be used to test if there is a statistically significant 

difference in the outcome variable between the groups. Sometimes the outcome variable 

is a latent variable, for example, the construct of engagement in academic activities. It is 

usually measured by a set of observed items that are reflective of the latent variable. In 

the past few decades there has been increasing interest in testing latent group mean 

differences in educational and social sciences. Various SEM models can be used to test 

latent mean differences, and the most commonly employed models are MG-CFA and 

the MIMIC model (Muthén, 1989). In MG-CFA, a CFA measurement model is 

specified for each group using the grouping variable, to test factor mean differences 

across observed groups (e.g., gender, and ethnicity). In MIMIC models, a single CFA is 
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specified for the total sample by incorporating a dummy coded covariate that has a 

direct effect on the latent factor to test latent mean differences (Jöreskog & Goldberger, 

1975; Muthén, 1989). The advantages of the MIMIC models over MG-CFA have been 

already elaborated in the introduction part and will not be repeated here.  

The MIMIC method is very flexible in modeling multiple covariates (i.e. more 

than two covariates) and their interactions (Cheng, Shao, & Lathrop, 2016; Fleishman, 

Spector, & Altman, 2002). It has been employed in various contexts, including as a way 

employed for testing group mean differences in latent variables (e.g., Allua, Stapleton, 

& Beretvas, 2008; Finch & French, 2011; Hancock, 2001, Thompson & Green, 2006), 

and a method for detecting differential item functioning (DIF) in educational testing and 

psychological measurement (Chun, Stark, Kim, & Chernyshenko, 2016; Finch, 2005; 

Woods, 2009; Woods & Grimm, 2011;). When the covariate(X) is categorical, the 

MIMIC model employs it to explain group differences. The MIMIC model describing 

the linear relation between observed variables and latent factors consists of two parts: a 

measurement model and a structural regression model: 

𝑦𝑦𝑖𝑖 = 𝜈𝜈 + Λ𝜂𝜂𝑖𝑖  + 𝜀𝜀𝑖𝑖, 

𝜂𝜂𝑖𝑖 =  Γ𝑋𝑋𝑖𝑖  + 𝜁𝜁𝑖𝑖 , 

𝜀𝜀~𝑁𝑁(0,Θ𝜀𝜀), 

𝜁𝜁~𝑁𝑁(0,Ψ), 

where, for individual i, y is a vector of observed indicator variables, 𝜈𝜈 is a vector of 

intercepts, Λ is a matrix of factor loadings, η is a vector of common factors, and 𝜀𝜀 is a 

vector of residuals; Γ represents a matrix of pattern coefficients estimating the effect of 

the covariates (X) on latent factors (𝜂𝜂) and 𝜁𝜁 is a vector of disturbance. Residuals (ε) and 

(1-1) 

(1-2) 

(1-3) 

(1-4) 
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disturbances (ζ) are normally distributed with a mean of zero and a variance of Θ𝜀𝜀 and 

Ψ, respectively. Moreover, residuals (ε) and disturbances (ζ) are uncorrelated. X can be 

continuous or categorical, observed or even a latent variable. When the covariate X is a 

dummy-coded dichotomous variable that represents two groups, the coefficient 

Γ indicates the latent factor mean difference of the two groups. Note that if there are 

multiple covariates that have regression effects on the latent factor in MIMIC models, 

these coefficients linking the covariates and the latent variable can be estimated 

simultaneously. Similar to multiple regression, the interaction effect of two or more 

covariates can be included in the model by creating a product term of the covariates.  

As mentioned above, residuals are normally distributed with a mean of zero and 

uncorrelated with latent factors: E (ε) = 0 and Cov (η,ε) = 0. The population variance covariance 

matrix Σ is written as: 

Σ = ΛΦΛ′ + Θ𝜀𝜀, 

where Φ and Θ𝜀𝜀 are variance covariance matrices for common factors and residuals, 

respectively. 

 

Multilevel MIMIC Models 

 Hierarchical or nested data are very common in educational and psychological 

research as well as in other social and behavioral sciences. Examples include students 

nested within classrooms, and patients nested within doctors or clinics. Some sampling 

methods also result in nested data structure, for example, cluster sampling or multistage 

sampling. In the previous section about MIMIC models, all individuals are assumed to 

be sampled using simple random sampling, and the observations are independent from 

(1-5) 
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each other. As mentioned above, in educational research, it is very common that 

individuals are nested in a higher unit, or a cluster. Individuals belonging to the same 

cluster are more similar to each other than to those from a different cluster because of 

the environmental context. Given the ubiquity of multilevel data in research, and the 

popularity of MIMIC models under the framework of SEM, it is important for 

researchers to be familiar with the detailed modeling procedures and techniques in 

multilevel MIMIC models.  

In multilevel MIMIC, a subscript j is included to indicate a certain parameter of 

interest can vary across clusters. Equation 1-1 is decomposed into the between level and 

within level models and rewritten in Equation 2-1: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜈𝜈B + ΛB𝜂𝜂B𝑖𝑖 + ΛW𝜂𝜂W𝑖𝑖𝑖𝑖 + 𝜀𝜀B𝑖𝑖 + 𝜀𝜀W𝑖𝑖𝑖𝑖, 

𝜀𝜀W𝑖𝑖𝑖𝑖~𝑁𝑁(0,Θ𝜀𝜀W) 

𝜀𝜀B𝑖𝑖~𝑁𝑁(0,Θ𝜀𝜀B) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the observed outcome y for individual i in cluster j; 𝜈𝜈B is the between level intercept; 

ΛB is the between level factor loading; 𝜂𝜂B𝑖𝑖  is the between level cluster factor; Λw is the within 

level factor loading, and it is not random; 𝜂𝜂wi𝑖𝑖 is the within level latent factor; 𝜀𝜀B𝑖𝑖 and 𝜀𝜀W𝑖𝑖𝑖𝑖 are 

the between level and the within level residuals respectively. Note that the within level intercept 

(𝜈𝜈w ) is fixed at zero because individual scores are simply the sum of the group mean and 

individuals’ deviation from the group mean (Heck & Thomas, 2000). 

When there is a covariate only at the between level, a between level grouping covariate 

(𝑋𝑋𝐵𝐵𝑖𝑖) is included in the regression model with a direct effect on the latent factor 𝜂𝜂B𝑖𝑖  as shown in 

Equation 2-4: 

𝜂𝜂B𝑖𝑖 = ΓB𝑋𝑋B𝑖𝑖 + 𝜁𝜁B𝑖𝑖 , 

(2-1) 

(2-4) 

(2-3) 
(2-2) 
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𝜁𝜁B𝑖𝑖~𝑁𝑁(0,ΨB), 

where ΓB represents the between level group differences in latent variable mean if 𝑋𝑋B𝑖𝑖 is a 

grouping variable. Similarly, the total covariance matrix in Equation 1-5 is divided into the 

within level and the between level components: 

ΣT = ΣB + ΣW, 

where subscripts W and B denote the within and the between respectively; ΣT represents the total 

covariance matrix; ΣB is the variability across the clusters; and ΣW corresponds to the variability 

of individual deviations from the cluster mean.  

When the covariate is at the between level, ΣW and ΣB can be written as follows, 

respectively: 

ΣW = ΛWΦWΛW′ + Θ𝜀𝜀W, 

ΣB = ΛB(ΓBΦBΓB′  + ΨB)ΛB′ + Θ𝜀𝜀B, 

On the other hand, when the covariate is only at the within level, the latent variable at the within 

level (𝜂𝜂W𝑖𝑖𝑖𝑖) is explained by the within level grouping covariate: 

𝜂𝜂Wi𝑖𝑖 = ΓW𝑋𝑋W𝑖𝑖𝑖𝑖 + 𝜁𝜁W𝑖𝑖𝑖𝑖, 

ΣW = ΛW(ΓWΦWΓW′  + ΨW)ΛW′ + Θ𝜀𝜀W, 

ΣB = ΛBΦBΛB′ + Θ𝜀𝜀B 

𝜁𝜁Wi𝑖𝑖~𝑁𝑁(0,ΨW). 

In this case, ΓW represents the coefficient of the latent mean difference between groups at the 

within level, and it is a fixed effect. 

In the two scenarios described above, the covariate is either at the between level or the 

within level. However, sometimes covariates of both the between level (e.g., public vs. private 

school type) and the within level (e.g., gender) can be introduced into the model. In this case, the 

(2-6) 

(2-7) 

(2-8) 

(2-5) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 
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effect of the between level covariate 𝑋𝑋B𝑖𝑖 on the between level latent factor and the effect of the 

within level covariate 𝑋𝑋W𝑖𝑖𝑖𝑖 on the within level latent factor are specified in the model, that is, the 

Equation 2-4 and Equation 2-9 are in the model, and correspondingly, the between level 

covariance matrix and the within level covariance matrix are listed in Equation 2-8 and Equation 

2-10 respectively. In addition to its flexibility in modeling different types of covariates, for 

example, categorical, continuous, and even latent covariate, the multilevel MIMIC model has the 

advantage of incorporating covariates at different levels simultaneously. This feature is not easy 

with multiple group analysis. 

 

Measurement Invariance Assumption in MIMIC Models 

Unlike MG-CFA, which specifies a separate model for each group separately 

and tests measurement parameter equalities across groups, for example, factor loadings, 

item intercepts, and item residual variances, the MIMIC model specifies only one model 

for the total sample from all the groups. The MIMIC model implicitly assumes that the 

same measurement model holds in all the groups. To be more specific, factor loadings, 

item intercepts, residual variances, and factor variance are invariant for all the groups; 

that is, all sources of covariation among observed variables are assumed to be equal 

across groups (Hancock, Lawrence, & Nevit, 2000; Muthén, 1989). In a recent study by 

Kim and Cao (2015), multilevel MIMIC models showed robustness to residual 

variances noninvariance in terms of estimating factor mean difference. The performance 

of ML MIMIC in testing latent mean differences across groups was comparable to that 

of multiple group multilevel CFA (MG ML CFA), which does not require stringent 

measurement invariance assumptions, when the assumption of homogeneous factor 
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disturbance variances or residual variances was violated across the two groups. 

However, strong measurement invariance, that is, identical factor loadings and 

intercepts across groups, is a prerequisite to compare latent factor mean across groups 

(Meredith, 1993). 

 

Covariates Interaction 

Instances in which the effect of one predictor on the dependent outcome are hypothesized 

to depend on the value of another predictor are prevalent in substantive theories within 

psychology, education and other social sciences (Bauer & Curran, 2005).There are different 

types of interactions that are of interest to researchers, and the most widely known covariates 

interaction is in the regular multiple linear regression context. The most common case concerns 

two continuous observed variables interacting in their influence on a dependent variable (see 

Aiken & West, 1991). With respect to modeling, the interaction effect is handled by including a 

product term of the two variables to predict the dependent variable in multiple regression. When 

the interaction effect of the covariates is statistically significant, main effects should be 

interpreted with caution. In multiple regression the relationship between the outcome variable y 

and the two predictors can be written in Equation 3-1: 

𝑦𝑦 = 𝛾𝛾0 + 𝛾𝛾1𝑥𝑥1 + 𝛾𝛾2𝑥𝑥2 + 𝛾𝛾3𝑥𝑥1𝑥𝑥2 + 𝜀𝜀, 

where 𝛾𝛾0 represents the intercept; 𝛾𝛾1 and 𝛾𝛾2 correspond to the main effects, or the first-order 

effects (Marsh, Wen, & Hau, 2004) of predictors 𝑥𝑥1and 𝑥𝑥2; 𝛾𝛾3 is the interaction effect of the two 

predictors; the residual 𝜀𝜀 represents the difference between observed and predicted y value. 

Apart from being both continuous, one of the two predictors in Equation 3-1 can be continuous 

(3-1) 
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and the other one can be categorical. The categorical predictor can be dummy coded in linear 

regression. 

When the two predictors are both categorical with a relatively small number of levels, the 

interaction effect can be estimated very conveniently with traditional analysis of variance 

(ANOVA).  

 

Covariates Interaction in Multilevel Data 

The multiple regression model in Equation 3-1 belongs to the fixed effect regression 

models. However, in hierarchical or nested data structure, the same model above can be a 

random effect regression model, with coefficients that can vary across clusters. An interaction 

effect can be present in a variety of ways in multilevel multiple regression models. When the two 

predictors are both at the within level, the interaction occurs at the within level. On the other 

hand, when they are at the between level, the interaction is modeled at the between level. 

Moreover, cross level interaction arises if the random effect of a within level predictor is 

predicted by a between level predictor. For simplicity, the level-1 model with a single predictor 

can be written as: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the dependent variable for individual i in cluster j, 𝑥𝑥1𝑖𝑖𝑖𝑖 is the predictor, 𝛽𝛽0𝑖𝑖 and 𝛽𝛽1𝑖𝑖 

are the intercept and the regression coefficient of y on 𝑥𝑥1 within cluster j, respectively, and 𝜀𝜀𝑖𝑖𝑖𝑖 is 

the residual. 

If the intercept and slope coefficients vary randomly across clusters, they are considered 

as random effects that can be predicted by a level-2 predictor (a between level variable). Again 

for simplicity, there is only one level-2 predictor and the level-2 model can be written as: 

(3-2) 
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𝛽𝛽𝑜𝑜𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01𝑤𝑤1𝑖𝑖 + 𝑢𝑢0𝑖𝑖, 

𝛽𝛽1𝑖𝑖 = 𝛾𝛾10 + 𝛾𝛾11𝑤𝑤1𝑖𝑖 + 𝑢𝑢1𝑖𝑖, 

where 𝑤𝑤1𝑖𝑖 is the level-2 predictor for cluster j, 𝛾𝛾00 and 𝛾𝛾10 are the fixed intercepts of 𝛽𝛽𝑜𝑜𝑖𝑖 and 𝛽𝛽1𝑖𝑖 

on 𝑤𝑤1𝑖𝑖,  𝛾𝛾01and 𝛾𝛾11 correspond to the coefficients of 𝛽𝛽𝑜𝑜𝑖𝑖 and 𝛽𝛽1𝑖𝑖 predicted by 𝑤𝑤1𝑖𝑖, and 𝑢𝑢0𝑖𝑖 and 

𝑢𝑢1𝑖𝑖 represent the residual of the level-1intercept and slope coefficient predicted by 𝑤𝑤1𝑖𝑖. The 

combined equation is as follows when 𝛽𝛽𝑜𝑜𝑖𝑖 and 𝛽𝛽1𝑖𝑖 are substituted using Equations 3-3, and 3-4: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01𝑤𝑤1𝑖𝑖 + 𝛾𝛾10𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝛾𝛾11𝑥𝑥1𝑖𝑖𝑖𝑖𝑤𝑤1𝑖𝑖 + 𝑢𝑢𝑜𝑜𝑖𝑖 + 𝑢𝑢1𝑖𝑖𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝑢𝑢1𝑖𝑖. 

In the reduced form equation, 𝛾𝛾11 reflects the interaction effect of the level-1 predictor 𝑥𝑥1𝑖𝑖𝑖𝑖 and 

the level-2 predictor 𝑤𝑤1𝑖𝑖 (Raudenbush & Bryk, 2002). The approach for modeling the interaction 

in linear multiple regression, be it single level or multilevel, has already been established and is 

simple to implement in applied research. Researchers have emphasized on the importance of 

estimating interaction effect using theoretical and substantive implications (Marsh, Wen, & Hau, 

2004). 

 

Covariates Interaction Involving Latent Variables 

The interaction effect discussed in the previous section involves only manifest or 

observed variables, and the modeling of the interaction is relatively simple and straightforward. 

However, educational and psychological research is replete with latent constructs that are 

measured by multiple indicators. The modeling of interaction effect involving latent variables, 

for example, the interaction between a latent variable and an observed variable, the interaction 

between latent variables, falls into the framework of SEM. Such models have advantages in that 

they allow us to estimate linear model coefficients while controlling for measurement error 

(Kenny & Judd, 1984). 

(3-3) 
(3-4) 

(3-5) 
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Muthén and Asparouhov (2003) summarized different cases of interaction effect between 

latent variables and observed variables and their corresponding modeling approaches in an 

Mplus web note. The first case concerns the interaction between a latent continuous variable and 

an observed categorical variable, and it can be handled by traditional SEM using multiple group 

analysis. The categorical variable can be treated as groups, and the regression coefficient of the 

latent continuous variable predicting the dependent variable can vary across different groups. 

One example of this case can be the regression parameter of one latent factor predicting another 

latent factor varies for control and treatment groups. The second case is the interaction of a latent 

categorical variable known as latent classes and an observed variable. The mixture modeling 

under the framework of SEM can handle this type of interaction. One example of this type of 

interaction is the regression parameter of the observed variable on the dependent variable varies 

depending on the latent classes. The third case involves the interaction of a latent continuous 

variable and an observed continuous variable, which cannot be handled by traditional SEM. The 

last case is about the interaction between two latent continuous variables, and a common 

example of this case is the interaction of two exogenous latent constructs that are measured by 

multiple indicators. Interaction between two latent constructs is very common in applied 

psychological and other social sciences; however, many applied researchers didn’t use the right 

modeling approach to estimate the interaction effect because of the complexity of specifying and 

estimating the model (Marsh, Wen, & Hau, 2006). 

Because the last case is the most complicated situation in modeling interaction effects in 

SEM, more detail is provided here. Kenny and Judd (1984) started the research on the interaction 

between two latent continuous variables, and they hypothesized the interaction between two 

exogenous latent variables and used cross-products to represent the latent interaction effect. The 
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specification of this SEM model in which two exogenous variables predict the endogenous latent 

variables and the two latent predictors interact with one another can be written as: 

𝜂𝜂 = 𝛼𝛼 + 𝛾𝛾1𝜉𝜉1 + 𝛾𝛾2𝜉𝜉2 + 𝛾𝛾3𝜉𝜉1𝜉𝜉2 + 𝜁𝜁, 

where 𝜂𝜂 is a latent endogenous variable, 𝜉𝜉1 and 𝜉𝜉2 refer to the two latent exogenous variables, 

𝜉𝜉1𝜉𝜉2 represents the latent interaction term, 𝛼𝛼 is the regression intercept, 𝛾𝛾1 and 𝛾𝛾2 correspond to 

the two first-order regression coefficients, 𝛾𝛾3 is the interaction effect of the two latent continuous 

predictors, and 𝜁𝜁 denotes the latent regression residual. Equation 3-6 looks very similar to 

multiple regression, but it involves two latent predictors that are measured by multiple indicators. 

As to how to construct the cross-product interaction using the measured indicators, and how to 

deal with the nonlinearity and non-normality using different specification approaches have 

evolved during the past few decades. For more specifics, the research done by Marsh, Wen, and 

Hau (2004), and Harring, Weiss, and Li (2015) provided very elaborative and useful summary.  

 

Covariates Interactions in Multilevel MIMIC Models 

In this study, the two covariates in MIMIC models are observed categorical variables, as 

in multiple regression; however, the dependent variable is a latent factor instead of a manifest 

variable. When the two covariates are at the same level (the within level or the between level), 

the interaction of the two covariates is similar to but still different from multiple regression, 

because this model is under the framework of SEM which models the hypothesized pattern of 

linear relations between a set of observed variables and a latent variable. When there are two 

grouping covariates (𝑋𝑋1𝐵𝐵𝑖𝑖 and 𝑋𝑋2𝐵𝐵𝑖𝑖) at the between level, and there exists interaction effect of 

the two covariates, the regression model in multilevel MIMIC models with paths from the 

covariates to the latent factor in Equation 2-4 can be written as: 

(3-6) 
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𝜂𝜂B𝑖𝑖 = 𝛾𝛾1B𝑋𝑋1B𝑖𝑖 + 𝛾𝛾2B𝑋𝑋2B𝑖𝑖 + 𝛾𝛾3B𝑋𝑋1B𝑖𝑖 ∗ 𝑋𝑋2B𝑖𝑖 + 𝜁𝜁B𝑖𝑖, 

where 𝛾𝛾1B is the main effect of covariate𝑋𝑋1B𝑖𝑖,  𝛾𝛾2B is the main effect of covariate𝑋𝑋2B𝑖𝑖, and 𝛾𝛾3B 

is the interaction effect of the two covariates above. This model is displayed in Figure 1. The 

parameter of interest is the covariates interaction effect, 𝛾𝛾3B. Similarly, when there are two 

grouping covariates (X1Wij and X2Wij) at the within level, the latent variable at the within level 

(𝜂𝜂W𝑖𝑖𝑖𝑖) will be explained by the within level grouping covariates and their interaction. Equation 

2-9 can be written as: 

𝜂𝜂Wi𝑖𝑖 = 𝛾𝛾1W𝑋𝑋1Wi𝑖𝑖 + 𝛾𝛾2w𝑋𝑋2Wij + 𝛾𝛾3W𝑋𝑋1Wi𝑖𝑖 ∗ 𝑋𝑋2Wi𝑖𝑖 + 𝜁𝜁Wi𝑖𝑖  

In this case, 𝛾𝛾1W is the main effect of the covariate 𝑋𝑋1Wi𝑖𝑖, 𝛾𝛾2W is the main effect of covariate 

𝑋𝑋2W𝑖𝑖, and 𝛾𝛾3W is the interaction effect of the two covariates above. 

On the other hand, when two covariates are at different levels (i.e., one is at the within 

level and the other one at the between level), the interaction effect of the two covariates falls into 

the first case described above. To be more specific, the interaction is constructed by a latent 

continuous variable and an observed categorical variable. This is because the cross level 

interaction indicates that the random regression coefficient of the within level covariate on the 

within level latent variable (this regression slope is a latent continuous variable) is moderated by 

the between level categorical variable as shown in Figure 3. An empirical example of cross level 

covariates interaction in the educational context is that the effect of gender (male vs. female) on 

a construct is moderated by school type (public vs. private). In this example, gender is the within 

level covariate, and school type is the between level covariate. The regression slope of gender 

predicting the construct is a random slope effect at the between level, and it is explained by the 

between level covariate, school type. As shown in Figure 3, the within level latent variable is 

regressed on the within level covariate XW, and this regression slope is a random effect that 

(4-1) 

(4-2) 
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varies across the clusters at the between level. The random slope effect is designated by a solid 

dot on the regression slope and it is written as: 

𝜂𝜂Wi𝑖𝑖 = 𝛾𝛾Wj𝑋𝑋W𝑖𝑖𝑖𝑖 + 𝜁𝜁W𝑖𝑖𝑖𝑖  , 

where 𝛾𝛾Wj is the regression slope of covariate 𝑋𝑋Wi𝑖𝑖 predicting the within level latent variable, 

𝜂𝜂Wi𝑖𝑖;  𝜁𝜁W𝑖𝑖𝑖𝑖 refers to the residual of the latent factor, 𝜂𝜂Wi𝑖𝑖 .  At the between level, the between 

level latent factor is regressed on the between level covariate, XB.  XB also explains the random 

slope effect at the between level. The equations of the between level latent variable and the 

random slope regressed on the between level covariate, XB can be written as: 

𝜂𝜂B𝑖𝑖 = 𝛾𝛾B𝑋𝑋B𝑖𝑖 + 𝜁𝜁B𝑖𝑖  ,    
𝛾𝛾Wj = 𝛾𝛾10+𝛾𝛾C𝑋𝑋B𝑖𝑖 + 𝜁𝜁𝛾𝛾W𝑖𝑖  , 

where 𝛾𝛾B indicates the between level regression slope of the between level latent 

variable 𝜂𝜂B𝑖𝑖  on the between level covariate, 𝑋𝑋B𝑖𝑖; 𝜁𝜁B𝑖𝑖  refers to the residual of 𝜂𝜂B𝑖𝑖  that cannot be 

explained by 𝑋𝑋B𝑖𝑖. 𝛾𝛾10 and 𝛾𝛾C represents the regression intercept and slope of random slope, 𝛾𝛾Wj 

on 𝑋𝑋B𝑖𝑖, respectively. 𝜁𝜁𝛾𝛾W𝑖𝑖 is the residual variance, the proportion of variance in the random 

slope that cannot be explained by the between level covariate, 𝑋𝑋B𝑖𝑖. The combined model for the 

within level latent variable, 𝜂𝜂Wi𝑖𝑖, in Equation 4-3, can be written as follows by substituting 𝛾𝛾Wj 

in Equation 4-5: 

𝜂𝜂Wi𝑖𝑖 = 𝛾𝛾10𝑋𝑋W𝑖𝑖𝑖𝑖 + 𝛾𝛾C𝑋𝑋W𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋B𝑖𝑖 + 𝜁𝜁𝛾𝛾W𝑖𝑖 ∗ 𝑋𝑋W𝑖𝑖𝑖𝑖 + 𝜁𝜁W𝑖𝑖𝑖𝑖  , 

where 𝛾𝛾C is the cross level covariates interaction effect, which is the focus of the study when the 

two covariates in MIMIC models are at the within level and the between level. 

Misspecification in Multilevel Structural Equation Modeling 

SEM has been a very attractive methodology for educational and psychological 

researches to investigate the linear relationship between a set of observed variables and latent 

(4-3) 

(4-5) 

(4-4) 

(4-6) 
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factors, and it takes into account measurement errors. However, researchers should be cautious 

about model misspecification in SEM, using empirical theory to specify models.  

 

Misspecification in Single-level SEM 

The impact of misspecification in SEM on parameter estimates has been studied 

extensively by educational and psychological researchers (e.g., Gallini, 1983; Kaplan, 1988; 

Yuan, Marshall, & Bentler, 2003). Gallini (1983) utilized path analysis and CFA models to show 

that omitted variables cause severe parameter bias if the omitted variables are strongly related to 

the exogenous variable. Kaplan (1988) used CFA and structural equation models between 

exogenous and endogenous latent factors to illustrate the impact of misspecification on 

parameter estimates. The author considered misspecification of the measurement model, the 

specification error of the structural component (e.g., the path between exogenous and 

endogenous factors, and covariance among themselves), as well as misspecification of both 

measurement part and structural components. In this study it was found that the combination of 

measurement and structural misspecification produced the most biased parameter estimates 

(Kaplan, 1988). Bentler and Chou (1993) proposed to examine the mean absolute parameter 

change for all the free parameters and their findings implied that not all parameters in the model 

were affected when a variable was omitted in the model, and only parameters that were closely 

related to the misspecification would be affected. Yuan, Marshall, and Bentler (2003) also 

studied whether all parameters were affected by the misspecification, and they used three 

procedures to evaluate the impact - that is, analyzing the path, using a functional relationship, 

and using a statistical test. Interested readers can refer to this research for details about the three 

procedures. Most studies about misspecification in SEM employed CFA and path models to 
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evaluate the impact of model misspecification on parameter bias, and no studies used MIMIC 

models, especially the path linking the observed covariate and the latent factor. The 

misspecification of the path linking the observed covariates and the latent factor is the focus of 

Study Two. 

 

Sensitivity of Model Fit Indices in SEM 

Closely related to the research in model misspecification in SEM is the research in the 

sensitivity of model fit indices to model misspecification in SEM. To evaluate how well the 

hypothesized models fit the data, several fit indices have been commonly used by empirical 

researchers in the SEM framework. Chi-square (χ2) test examines the exact model fit, that is, 

whether the sample covariance matrix is identical to the model-implied covariance matrix 

(Bollen & Long, 1993). A significant χ2 test indicates that the sample covariance matrix is not 

equal to the model implied covariance matrix, but it cannot show the magnitude of the misfit. 

Furthermore, χ2 is a function of sample size, implying that a large sample size leads to a big χ2 

value (rejecting the null hypothesis) even when there is a minor difference between the model 

implied covariance matrix and the sample covariance matrix. Therefore, it tends to reject the null 

hypothesis, and the exact overall fit χ2 test is not of major interest. Some other commonly used 

fit indices, for example, root mean square error of approximation (RMSEA), comparative fit 

index (CFI), and Tucker-Lewis Index (TLI), are derived from the χ2 statistic.  

RMSEA is based on the non-centrality parameter, and its formula is: 

RMSEA=�max (0, 𝜒𝜒2−df
𝑑𝑑𝑑𝑑(𝑁𝑁−1)

),  

where χ2 is the chi-square test statistic, df represents degrees of freedom, and N denotes the total 

sample size. RMSEA measures the average discrepancy between observed sample covariance 

(4-7) 
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matrix and model implied covariance matrix per degree of freedom after taking model 

complexity into account (Browne & Cudeck, 1993; Steiger, 2007). A smaller value of RMSEA is 

associated with a better model fit, as RMSEA reflects the degree of misfit or badness of the 

tested model.  

CFI measures the relative goodness of fit of a particular tested model compared with a 

baseline model in which there is no covariance between any pair of variables (Bentler, 1990, 

Tanaka, 1993). Its computation formula is: 

CFI=1- 𝑚𝑚𝑚𝑚𝑚𝑚(𝜒𝜒21−𝑑𝑑𝑑𝑑1,   0)
max (𝜒𝜒20−𝑑𝑑𝑑𝑑0,    𝜒𝜒21−𝑑𝑑𝑑𝑑1,   0)

,   

where χ2
1 and df1 represent the chi-square test statistic and degrees of freedom of the tested 

model, while χ2
0 and df0 denote chi-square test statistic and degrees of freedom of the baseline 

model. CFI ranges between zero and 1 (Bentler, 1990, Tanaka, 1993), and a larger CFI indicates 

a better overall model fit of the tested model. 

TLI penalizes for model complexity (Tucker & Lewis, 1973), and its computation 

formula is as follows: 

TLI=(𝜒𝜒20
𝑑𝑑𝑑𝑑0

− 𝜒𝜒21
𝑑𝑑𝑑𝑑1

) (𝜒𝜒20
𝑑𝑑𝑑𝑑0

− 1� ),  

Where χ2
0 and df0 denote chi-square test statistic and degrees of freedom of the baseline model, 

and χ2
1 and df1 represent chi-square test statistic and degrees of freedom of the tested model. 

Like CFI, a larger TLI suggests a better overall model fit. 

Standardized root mean square residual (SRMR) is defined as the standardized 

discrepancy between the observed sample covariance matrix and model implied covariance 

matrix. It is computed as follows: 

SRMR=��2∑  𝑝𝑝
𝑘𝑘=1 ∑  𝑘𝑘

𝑖𝑖=1 �𝑠𝑠𝑘𝑘𝑖𝑖−𝜎𝜎𝑘𝑘𝑖𝑖
𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠𝑗𝑗𝑗𝑗

�
2
� 𝑝𝑝(𝑝𝑝 + 1)� ,  

(4-8) 

(4-9) 

(4-10) 
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where skj is the sample covariance between any two variables k and j; 𝜎𝜎𝜎𝜎𝜎𝜎 represents the model 

implied covariance between variables k and j; skk and sjj denote the observed standard deviations 

for variables k and j; and p is the total number of variables in the model. A smaller SRMR means 

a better fit. In multilevel SEM, the covariance matrix can be separated into the between-level 

covariance matrix and the within-level covariance matrix, and SRMR can be obtained using the 

within-level covariance matrix (SRMR-W), and the between-level covariance matrix (SRMR-B), 

separately. 

 In the past few decades, substantial research has been done in the sensitivity of model fit 

indices in detecting model misspecification in SEM (Fan & Sivo, 2007; Hu & Bentler, 1998; 

Hsu, Kwok, Lin, & Acosta, 2015; Ryu & West, 2009) and in establishing cutoff criteria for fit 

indices produced in SEM models, and the most widely known research of this type was 

conducted by Hu and Bentler (1988, 1989). The cutoff golden rule of model fit indices 

recommended by Hu and Bentler (1989) (RMSEA≤0.06; CFI ≥ 0.95; TLI ≥ 0.95; SRMR ≤ 0.08) 

was referred to very frequently by applied researchers in the area of SEM in their reporting of 

model results. However, some researchers started to ask questions about the generalizability of 

the criterion, for example, whether or not the cutoff criterion applies to any type of models in 

SEM (simple models with fewer variables, or complicated models with more variables), and 

whether or not the fit indices are equally sensitive to different degree of misspecification (e.g., 

Kenny & McCoach, 2003; Fan & Sivo, 2007). Fan and Sivo (2007) used a systematic design to 

study the sensitivity of fit indices to model misspecification by controlling for the magnitude of 

misspecification and model types based on complexity as represented by number of indicators in 

CFA models. The results showed that absolute indices, such as Gamma Hat  (GAMMA), root-

mean-square error of approximation (RMSEA), and  McDonald’s centrality index (Mc), 
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outperformed incremental fit indices, such as the comparative fit index (CFI) and Tucker-Lewis 

index (TLI); GAMMA performed better than RMSEA and Mc when the model was simple with 

fewer indicators. Therefore, researchers are supposed to report different types of fit indices and 

keep in mind that the cutoff criterion is not generally useful for any type of models.  

 

Misspecification in Multilevel SEM 

Methodology for analyzing hierarchical or multilevel data has witnessed great 

development, such as approach for hierarchical linear models (Raudenbush & Bryk, 2002), and 

multilevel structural equation models (Heck & Thomas, 2015; Mehta & Neale, 2005; Muthén, 

1994). The popularity of multilevel SEM among educational and psychological researchers is 

due to the fact that these models allow researchers to analyze multilevel data by simultaneously 

examining the separate within level and between level models while accounting for measurement 

errors in the models (Heck & Thomas, 2015). However, compared to the research on the impact 

of model misspecification in traditional single level SEM, there has been a paucity of research in 

model misspecification in multilevel models, and even less in the multilevel SEM context. 

Among the infrequent research about model misspecification in multilevel data, Enders and 

Tofighi (2008) utilized growth mixture modeling to investigate the impact of specifying level-1 

residual variance constant across latent classes when they are in fact varying in each 

subpopulation. Their results demonstrated that misspecification resulted in bias at the within 

class growth slopes and variance components, and parameter estimates were substantially less 

precise than those produced by a correctly specified growth mixture modeling. In an 

investigation into the impact of misspecifying the first level error structure in a two-level growth 

models, results demonstrated that the misspecification produced biased estimates of variance 
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parameters but unbiased estimates of fixed effects (Ferron, Dailey, & Yi, 2002). The model 

misspecification of multilevel MIMIC model has not been discussed in literature. Model 

misspecification can take various forms. In this study, model misspecification will focus on the 

omission of the covariates interaction effect in multilevel MIMIC models. The impact of 

omitting covariates interaction at one level on the parameter estimates at another level as well as 

at the same level in multilevel MIMIC models has not been examined in literature. The intent of 

Study Two is to investigate the impact on parameter estimates at both levels in multilevel 

MIMIC models when the covariates interaction was omitted from the model but it was present in 

the population model. Additionally, the sensitivity of model fit indices (e.g., CFA, RMSEA, 

SRMR-W, SRMR-B, AIC, BIC, and SaBIC) to omitting the covariates interaction effect in 

multilevel MIMIC model is also examined. 

 

Sensitivity of Model Fit Indices in Multilevel SEM 

Similar to the situation of insufficient research in model misspecification impact in 

multilevel SEM, the sensitivity of model fit indices in multilevel SEM has not attracted as much 

attention as single level SEM. In some empirical research of multilevel CFA models, applied 

researchers still used the cutoff criteria from conventional SEM to evaluate multilevel SEM 

model fit. However, methodological researchers started to investigate the appropriateness of 

using single level model fit indices to the evaluation of multilevel SEM. Ryu and West (2009) 

examined the sensitivity of two fit indices (i.e., RMSEA and CFI) in detecting model 

misspecification in multilevel SEM. They showed that RMSEA and CFI failed to detect the 

misspecification at the between level model, although the two fit indices were able to detect the 

misspecification at the within level model. This was a great starting point for evaluating fit 
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indices in multilevel SEM. However, Ryu and West (2009) used a single ICC level of 0.5, which 

was very high in educational and psychological data. Also, they included only one type of model 

misspecification; that is, the correlation of the two factors was specified higher than the true 

correlation in the population. Lastly, they examined only two fit indices (i.e., RMSEA and CFI). 

Hsu, Kwok, Lin, and Acosta (2015) expanded Ryu and West’s (2009) simulation study by 

including more design factors, such as, number of clusters, cluster size, ICC, and 

misspecification type. Their findings showed that CFI, TLI, and RMSEA could only detect the 

misspecification at the within level, but not the between level. Moreover, CFI, TLI, and RMSEA 

were more sensitive to misspecification of pattern coefficients whereas SRMR-W was more 

sensitive to misspecification of factor covariance, and SRMR-B was the only fit index that was 

sensitive to the model misspecification in the between level model.  

 

Model Misspecification in Interaction Effect 

Among the studies about various types of model misspecification in SEM, most of them 

examined the CFA model, and the misspecification type was manifested as misspecified factor 

loadings, factor variance covariance, and residuals correlation (Fan & Sivo, 2007; Hu & Bentler, 

1999). None of them examined misspecification of covariates interaction. However, in empirical 

research, researchers tend to model only the main effects of the covariates, ignoring the 

covariates interaction effect. If that is the case, the interpretation of the main effects of the 

covariates is misleading. Moreover, the estimation of the interaction effect between variables has 

important theoretical, substantive, and empirical implications in psychology and other social 

sciences (Marsh, Wen, & Hau, 2004), and the interaction effect is even more interesting than the 

main effects of the covariates (Wen, Marsh, Hau, Wu, Liu, & Morin, 2014). Little is known 
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about the impact of omitting an existing covariates interaction effect in SEM models, especially 

multilevel SEM models. In Muthén and Asparouhov’s (2003) summary of all types of possible 

interaction in SEM models, they called for Monte Carlo study to investigate the mis-estimation 

of parameters as a result of omitting interaction effect when the interaction effect was present in 

the population model.  
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Chapter Three: Method 

 

Two studies were conducted using simulation. In the first study, the performance of 

multilevel MIMIC models in testing covariates interaction effect was examined under different 

simulation conditions. The two covariates were both at the between level, both at the within 

level, and one at the between level and the other at the within level producing cross level 

interaction effect. In the second study, the impact of model misspecification on other parameters 

in multilevel MIMIC models was investigated. To be more specific, the impact of the omission 

of an existing covariates interaction effect in multilevel MIMIC models was examined. The three 

scenarios of the two covariates and design factors were the same as in Study One.  

 

Study One: Testing Covariates Interaction Effect in MIMIC Models with Multilevel Data 

In this simulation study, two-level data with two dichotomous covariates were generated 

using PROC IML in SAS/IML 9.4. For both the between and the within level models, a single 

factor with six continuous indicators was generated. At the within level, factor loadings were all 

.80, so the residual variances were .36. The factor variance was set to be 1.00 at the within level. 

At the between level, the six indicators were regarded as latent variables (random intercepts) in 

the multilevel SEM. By assuming measurement invariance across levels, the six factor loadings 

were set to be equal at .80 at the between level, and the between level residual variances of all 

six indicators were set to be equal at .02, .01 and .004 for the large, medium, and small factor 

ICC, respectively. The between level residual variances were selected based on the following 
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considerations. Satisfying scalar measurement invariance in two-level SEM models required to 

have between level residual variances of zero based on the research on measurement bias in 

multilevel data conducted by Jak et al. (2014). In real world data, it is very difficult to have 

scalar invariant construct when there are many groups (represented by clusters in this study), so a 

close to zero (.02, .01, and .004) but not zero was selected as the between level residual variance. 

The between level factor variance was varied to form different ICCs, which will be explained 

later.  

When the two covariates were at the same level (i.e., both at the within level, or at the 

between level), the main path coefficients of the two covariates to the factor were not varied. In 

all conditions they were set to be .30 and .40 respectively, with .30 representing a moderate-sized 

relationship in prior research (Maas & Hox, 2005). These numbers also accorded with the values 

of some empirical research in applied psychology literature. Mathieu, Aguinis, Culpepper, and 

Chen (2012) conducted a review of studies published in the Journal of Applied Psychology 

involving tests of cross level interactions, and they reported a within level slope range between -

.06 and .45 and a between level slope range between -.23 and .35. On the other hand, when one 

of the two covariates was at the within level and the other one at the between level, the within 

level main effect was set at .40, and the between level main effect was set at .50.  The population 

parameters are summarized in Table 1. When the two covariates were at the between level, refer 

to Figure 1 and Equation 4-1 for the measurement and structural relations in the between-level 

MIMIC model. When the two covariates were at the within level, Figure 2 and Equation 4-2 

described the model in the within-level MIMIC model. When one of the covariates was the 

within level and the other one at the between level, Figure 3 and Equation 4-6 showed the cross-

level covariates interaction effect. 
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Table 1. Parameters in the population data generation 

 
Location of the two covariates 

 

 Within Between  Cross 

number of indicators 6 6 6 

factor loadings .8 .8 .8 

within level item 

residual variance 
.36 .36 .36 

between level item 

residual variance 

.02, .01, and .004 for 

L, M, and S ICC 

.02, .01, and .004 for 

L, M, and S ICC 

.02, .01, and .004 for 

L, M, and S ICC 

within level factor 

variance 
1 1 1 

main effects of the 

two covariates 
.3,  .4 .3, .4 .4 (W),  .5 (B) 

Note. L=large; M=medium; S=small; W=at the within level; B=at the between level. 

 

Data Generation 

PROC IML was used to generate the simulated data meeting the design factors. The 

between-level measurement and the within-level measurement parts were simulated first using 

the population parameters in Table 1. Basically, the two-level CFA measurement part was 

generated first, and then the effects of the covariates on the factor mean was manipulated. To 

simulate the interaction effect of the two dichotomous covariates, the factor means of the four 

cells, which represent the four groups created by two dichotomous variables (for example, 

female with high SES, female with low SES, male with high SES, and male with low SES), were 

manipulated to reflect the covariates interaction effect as presented in data generation code in 



37 
 

Appendix 1. When the two covariates were at the between level, the between-level factor means 

of the four cells varied to create the interaction effect. To be specific, when the main effects were 

.30 and .40, and the covariates interaction was .30, in the first cell (X1=0, X2=0), the factor 

mean was 0; in the second cell (X1=0, X2=1, the factor mean was .40; in the third cell (X1=1, 

X2=0), the factor mean was .30; in the fourth cell (X1=1, X2=1), the factor mean was 1.0. The 

difference between cell Two and cell One was the main effect of X2, and the difference between 

cell Three and cell One was the main effect of X1. When X2=0, the effect of X1 on factor mean 

was .30 (Cell Three minus Cell One), whereas when X2=1, the effect of X1 on factor mean was 

.60 (Cell Four minus Cell Two). Thus the effect of covariate X1 on the between-level factor 

mean was moderated by covariate X2, and the moderation effect was .30 as presented in Figure 

4. When the interaction effect was at .60, the factor mean of Cell Four changed to 1.30. When 

there was no interaction effect, the effect of X1 on factor mean was the same regardless of the 

value of X2, and the factor mean of cell Four was .70.  When the two covariates were at the 

within level, very similar manipulation of the within-level factor means was conducted to create 

the within-level covariates interaction effect. The only difference was that within-level factor 

mean was manipulated instead of between-level factor mean. The procedure was very similar to 

that in the between-level interaction effect and it was not going to be repeated here.  

 

 

 

 

 

Figure 4. Marginal factor means for the between-level and within-level covariates interaction  
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When the random slope of the within-level factor regressed on the within-level covariate 

was moderated by the between-level covariate (cross-level interaction), a slightly different 

manipulation of the factor means of the between-level factor and the within-level factor was 

utilized to create the cross-level covariates interaction effect. Both the between-level factor mean 

and the within-level factor mean were manipulated to reflect the cross-level interaction. As 

shown in Figure 5 to create two main effects of .40 and .50 , and an interaction effect of .20, the 

within-level covariate main effect was .40 (cell Three minus Cell One), and the between-level 

covariate main effect was .50 (cell Two minus Cell One). For the between-level factor mean, 

When XB=0, the average factor mean was .20 (the sum of cell One and cell Three divided by 2: 

(0+.4)/2); when XB=1, the average factor mean was .80 (the sum of cell Two and cell Four 

divided by 2: (.5+1.1)/2). Thus, the between-level factor mean was .60 higher for XB=1 than for 

XB=0 as shown in Appendix 1 for the SAS code of cross-level covariates interaction. For the 

within-level factor mean, when XB=0, the factor mean difference of the two within-level cells 

was .40; when XB=1, the factor mean difference of the two within-level cells was .60 as shown in 

Appendix 1 for the cross-level interaction effect generation code. Similarly, when the covariates 

interaction was .40, the factor mean in cell Four was 1.3, and all the other three cells remained 

the same. Therefore, the between-level factor mean was .70 higher for XB=1 than for XB=0. For 

the within-level factor mean, when XB=0, the factor mean difference of the two within-level cells 

was .40; when XB=1, the factor mean difference of the two within-level cells was .80 

 

 

 



39 
 

 

  

 

 

 

Figure 5. Marginal factor means for the cross-level covariates interaction  

 

Simulation Conditions 

To examine the performance of multilevel MIMIC models in detecting the covariates 

interaction effect, a set of design factors were taken into account. Simulation conditions included 

the location of the interaction effect with 3 levels (at the between level, at the within level, and at 

the cross level), number of clusters (CN), cluster size (CS), intraclass correlation (ICC), and 

magnitude of the covariates interaction effect.  

 

Location of the Interaction Effect 

There were three levels of the location of the interaction effect: the covariates interaction 

effect at the between level, the covariates interaction effect at the within level, and the cross level 

covariates interaction effect. When the location of the covariates interaction effect was different, 

some of the other design factors varied, too, which will be explained in the coming session. For 

the two-level random effect model, the within-level random slope was specified to be predicted 

by the between-level covariate (cross-level covariates interaction effect) as mentioned above. 

However, the random slope was not explained 100% by the between-level covariate, and the 

residual variance of this random slope was specified to be at .10, which is a reasonable value for 

Mean=0 Mean=0.5 

Mean=0.4 Mean=1.1 

XW=0 

XW=1 

XB=0 XB=1 
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the magnitudes of the cross-level interaction effect. Also, the specification of the residual 

variance of the random slope is very important for the model to converge. 

 

Number of Clusters (CN) 

CN was included because previous simulation studies on multilevel modeling found that 

CN had an impact on estimating parameters of multilevel models (Hox & Maas, 2001; Kim et 

al., 2012; Maas & Hox, 2005). Because CN and CS influence sample size, it is expected that they 

are directly related to the power to detect the covariates interaction effect in multilevel MIMIC 

models. When the two covariates were at the between level, three levels of numbers of clusters 

were simulated (40, 80, and 120). Note that two dichotomous covariates were at the between 

level, creating four groups. Four balanced groups were generated, with 10, 20, and 30 in each 

group for the three levels of number of clusters, respectively. When the two covariates are at the 

within level, the number of clusters are set at 20, 40, and 60, respectively. The number of clusters 

at the within level covariates interaction was only half of the clusters at the between level 

covariates interaction to control for the total sample size. The cluster size of the within level 

covariates interaction was different from the cluster size of the between level covariates 

interaction, which will be explained in the next section. When one covariate is at the between 

level and one at the within level, the number of clusters was set to be identical as the conditions 

of two covariates at the between level, that is, 40, 80, and 120 clusters. 

 

Cluster Size (CS) 

When the two covariates were at the between level, CS was examined at two levels (10 

and 20). A cluster size of 10 and 20 was suggested by Hox (1998) as a typical cluster size for 
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designing multilevel research. Multiplying CN by CS, the minimum total sample size was 400 

(CN=40, CS=10), and the maximum sample size was 2400 (CN=120, CS=20). When the two 

dichotomous covariates were at the within level, cluster size was set to be 20 and 40, so that the 

4 balanced groups had a cluster size of 5 and 10, respectively. The minimum total sample size is 

also 400 (CN=20, CS=20), and the maximum sample size is 2400 (CN=60, CS=40). Note that 

when the two covariates were at the between level, the cluster number was twice that at the 

within level, but the cluster size was only half of that at the within level. Thus, the total sample 

size was the same for the two different locations of the interaction effect. The major reason for 

adopting this method was because the grouping was at different levels. When one of the 

covariates is at the within level, and the other one at the between level, the cluster size was the 

same as the situation of both covariates at the between level: 10 and 20. In sum, the total sample 

size remained the same when the two covariates were at the between level, at the within level, 

and at the cross level. 

 

Intraclass Correlation (ICC) 

ICC was also manipulated, as the previous studies (e.g., Kim, Kwok, & Yoon, 2012) 

showed that ICC had an impact on Type I error and power of measurement invariance tests in 

multilevel CFA models. It may have an effect on detecting the covariates interaction effect in 

multilevel MIMIC models. ICC is defined as the ratio of the between factor variance over the 

total factor variance, which is the sum of the between factor variance and the within factor 

variance. As previously stated, the within-level factor variance was set to be 1, so varying ICC 

levels depend on different values of the between-level factor variance. In this study, the between 

factor variance was set to be .10, .25, and .50, resulting in three ICCs of .09, .20, and .33, 
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respectively as the small, medium, and large ICC. These ICC levels are typical of educational 

and psychological data and were employed in previous simulation studies (e.g., Hox & Maas, 

2001; Kim et al., 2012; Maas & Hox, 2005). The corresponding item level ICCs were .07, .15, 

and .25 for all six items, respectively, because all the factor loadings of the six items were the 

same using the item level ICC formula ICC=B/(B+W), where B was the between variance for 

the observed variable and W was the within variance for the observed variable. Item level ICC 

represented the proportion of variances in the indicators at the between level. Item level ICCs 

were positively related to factor ICC. 

 

Magnitude of the Covariates Interaction 

Prior research showed that the power of detecting cross level interaction in multilevel 

multiple regression depended mainly on the magnitude of the effect size (Mathieu et al., 2012). 

Thus, the magnitude of the covariates interaction was manipulated in this research. When the two 

covariates were both at the between level and both at the within level, the covariates interaction 

effect was set to 0, .30, and .60, which are consistent with the range (-.06 to .45) reported in the 

literature review by Mathieu et al. (2012), and in their simulation study, they manipulated the 

cross level interaction effect range from 0 to .75. The value of zero for the covariates interaction 

was used to assess Type I error rate when in the population there was no covariates interaction. 

And the values of .30 and .60 were used to assess power, with the former value representing a 

medium moderating effect and the latter representing a large moderating effect. The cross level 

covariates interaction effect was set to be at 0, .20, and .40, with .20 representing a small cross 

level covariates interaction and .40 indicating a moderate cross level interaction effect. One of 

the major purposes of the study is to examine the performance of multilevel MIMIC in detecting 
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cross level covariates interaction - even a small interaction effect. Thus, only small and moderate 

cross level interactions were simulated to examine the performance of multilevel MIMIC 

models, since we expect that the performance will improve with a larger interaction effect. 

In short, there were 3 levels of location of the covariates interaction effect, 3 levels of 

cluster number, 2 different cluster sizes, 3 varying ICC levels, and 3 levels of the interaction 

effect size. Thus, there were a total of 162 conditions (3×3×2×3×3). For each condition, 1000 

replications were generated. 

 

Analysis of Simulation Results and Outcome Variables 

 Each replication was analyzed using multilevel MIMIC models with correct 

specification based on the population model and estimated with the robust maximum likelihood 

(MLR) estimation which is the default estimation method of Mplus 7.1 (Muthén & Muthén, 

1998-2012). Outcomes variables included admissible solution rates (ASR), power, and Type I 

error. The replications were classified as inadmissible solutions if they had one of these 

following scenarios: no output was produced, i.e., no parameter estimates or standard errors were 

obtained; the estimated parameters did not make sense, such as negative variance. The 

admissible rate was defined as the proportion of replications that produced admissible solutions. 

Power was defined as the proportion of replications in which multilevel MIMIC models detected 

the covariates interaction effect as statistically significant. Type I error was defined as the 

proportion of replications in which multilevel MIMIC models falsely flagged a statistically 

significant covariates interaction when there was no covariates interaction in the population 

model. 
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Standard error of estimate (SE) is used to test if the coefficient is significantly from zero 

by using the ratio of the parameter estimate over the standard error. Bias, relative bias, and root 

mean square error (RMSE) were used to evaluate the accuracy and precision of a parameter 

estimate. The parameter of interest in this study was the covariates interaction effect, 𝛾𝛾3B, 𝛾𝛾3W, 

and 𝛶𝛶𝐶𝐶in Equations 4-1, 4-2, and 4-3, respectively. Standard error of the parameter estimate was 

extracted from the Mplus output. Bias was calculated as the deviation of the parameter estimate 

from the population parameter (𝜃𝜃) on average across replications (r = 1, 2, …,R): 

𝐵𝐵(𝜃𝜃) = 𝑅𝑅−1�(
𝑅𝑅

𝑟𝑟=1

𝜃𝜃�𝑟𝑟 − 𝜃𝜃) 

Relative bias was computed as the ratio of the raw bias (deviation of the parameter estimate from 

the population parameter (𝜃𝜃) across replications) over the population parameter (𝜃𝜃) itself 

(Hoogland & Boomsma, 1998): 

 𝑅𝑅𝐵𝐵(𝜃𝜃) = 𝑅𝑅−1�(
𝑅𝑅

𝑟𝑟=1

𝜃𝜃�𝑟𝑟 − 𝜃𝜃)/ 𝜃𝜃 

RMSE was defined as the average estimate error showing the variability of the estimates: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜃𝜃) = (𝑅𝑅−1 ∑ (𝜃𝜃�𝑟𝑟 − 𝜃𝜃)2𝑅𝑅
𝑟𝑟=1 )1/2 

To examine the impact of design factors (i.e., cluster number, cluster size, magnitude of 

interaction effect, and ICC level) on outcome variables (i.e., ASR, type I error, power, SE, bias, 

relative bias, and RMSE). Factorial analysis of variance (ANOVA) with generalized eta-squared 

(η2) was used. η2 was derived by dividing the Type III sum of squares of a particular design 

factor or interaction of design factors by the corrected total sum of squares. 
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Study Two: The Impact of Model Misspecification in Multilevel MIMIC Models 

The purpose of Study Two was to assess the impact of model misspecification in 

multilevel MIMIC models on parameter estimates and the sensitivity of model fit 

indices. Specifically, the impact on parameter estimates when the covariates interaction 

was omitted in multilevel MIMIC models was examined. In Study Two, the simulated 

model population parameters, simulation conditions, and design factors were the same 

as those in Study One except that the interaction effect value of 0 was excluded for all 

three models (i.e., the between-level covariates interaction, the within-level covariates 

interaction, and the cross-level covariates interaction). This was because the focus of 

Study Two was on the impact of omitting the interaction effect on estimates of all the 

other parameters in the model. When there was no covariates interaction in the 

population model, omitting the covariates interaction effect cannot be considered as 

model misspecification. Therefore, there was a total of 108 (3×3×2×3×2) conditions in 

Study Two. 

For each replicated data set generated by the population model with covariates 

interaction effect present, two models were run. One estimated model was the correct 

model which specified the covariates interaction as in Study One, and the other 

estimated model was misspecified by omitting the covariates interaction. All parameter 

estimates as well as model fit indices of both correct and misspecified models of the 

same data were saved and stacked in one file for comparison.  
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Outcome Variables  

Firstly, model fit indices such as SEM-based CFI, RMSEA, SRMR (between), 

and SRMR (within) were compared between the correctly specified model and 

misspecified model to see if the model fit indices were sensitive to the omission of the 

covariates interaction in multilevel MIMIC models. The average SEM-based model fit 

indices across the replications and their standard deviations were reported. Also, Akaike 

Information Criterion (AIC; Akaike, 1974), Bayesian Information Criterion (BIC; 

Schwarz, 1978), and sample-size adjusted BIC (SaBIC; Sclove, 1987) were compared 

for the correct and misspecified models to examine if they were sensitive to the model 

misspecification. For AIC, BIC, and SaBIC, a smaller value indicates a better fit of the 

model to the data. When the AIC, BIC, and SaBIC were larger in the misspecified 

model than in the correct model, they selected the correct model. The proportion of 

replications in which the correct model was selected in model comparisons was 

computed for AIC, BIC, and SaBIC. 

Secondly, the estimation bias of a series of parameters, including factor mean, 

factor variance, factor loading, intercept, residual of both levels, and the main effect of 

the two covariates, in the correctly specified and misspecified model was compared to 

examine the impact of omitting the covariates interaction effect on the estimation of the 

other parameters in the model. Special attention was paid to the cross-level covariates 

interaction model. When the cross-level covariates interaction was omitted from the 

model, what parameters were impacted the most?  

Thirdly, the impact of the simulation design factors (i.e., cluster number, cluster 

size, magnitude of interaction effect, and ICC level) on the estimation would be 
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investigated using factorial ANOVA with eta-squared (η2) if the bias in some 

parameters varied as a result of the design factors in Study Two. 
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Chapter Four: Results 

 

Results of Study One 

 

The outcome variables of Study One include the admissible rates, power, Type I error, 

bias, relative bias, standard error of estimates, and RMSE. The results of between-level 

covariates interaction conditions, within-level covariates interaction conditions, and cross-level 

covariates interaction conditions are presented in Tables 2, 3, and 4, respectively. 

 

Admissible Solution Rate 

In multilevel MIMIC modeling with two covariates at the between level, the proportions 

of the admissible solutions rate (ASR) seemed to be related to ICC and the total sample size as 

presented in Table 2. The ASRs were higher with the small ICC. Simulation conditions with the 

combination of large ICC and small total sample size produced relatively lower percentage of 

admissible solutions (76% with CN=40, CS=10 in large ICC when covariates interaction effect 

was at .30). Under all conditions in small ICC, the ASRs were above 97%. As the total sample 

size increased, the ASR increased in medium and large ICCs, but the pattern was not very 

consistent. In the biggest total sample size of 2400, the ASRs were above 0.98 regardless of the 

ICC levels. The ASRs were very identical for the two different covariates interaction magnitude 

of .30 and .60. When the two covariates were at the within level, ASRs were all 100% except one 

condition that was at 99%, across all simulation conditions. When the two covariates were at 
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cross level, ASRs were all 100% except some conditions with smaller sample size. In sum, ASRs 

were higher when the two covariates were at the within level or at the cross level than the two 

covariates at the between level. When the two covariates were at the within level or at the cross 

level, ICC had no impact on the ASR. However, when the two covariates were at the between 

level, lower ASR was associated with larger ICC.  

 

Type I Error 

 Type I error rates of falsely detecting covariates interaction effect when there was no 

covariates interaction effect in multilevel MIMIC with two covariates at the between level 

ranged from .04 to .08, most of which were around .06. In general, multilevel MIMIC with 

between-level covariates adequately controlled the Type I error rates, as presented in Table 2. 

The design factors appeared to have no impact on Type I error rates. When the two covariates 

were at the within level, Type I error rates were very similar to those observed in between-level 

covariates interaction conditions. In cross-level covariates interaction conditions, Type I error 

rates were controlled well, ranging from .04 to .06. Thus, in all simulation conditions of Study 

one, Type I error rates were under control in ML MIMIC modeling. This was consistent with the 

result of the previous study that showed Type I error was well controlled when the hierarchical 

data structure was properly modeled (Finch & French, 2011). 

 

Power 

When the two covariates were at the between level, the power of detecting the between-

level covariates interaction varied considerably as a result of the design factors with a minimum 

at .14 and a maximum at 1.00. The power decreased when the ICC level increased from small, to 
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medium, and large after controlling for the other design factors. The power increased 

concomitantly with sample size. The lower end of the power stratum (i.e., .14 and .15) was found 

when sample size was small in large ICC of the covariates interaction of .30 (CN=40 and 

CS=10/20). CN seemed to have a stronger impact on power than CS or total sample size. To 

state it in another way, when total sample size was the same, a higher power was observed with 

more clusters (e.g., CN=80, CS=10) than with bigger cluster size (e.g., CN=40, CS=20). When 

CN was constant, a bigger power was observed with a bigger cluster size. When all the other 

factors were kept constant, the power of detecting a bigger magnitude of covariates interaction, 

.60 was higher than that of the smaller magnitude, .30. 

When the two covariates were at the within level, the power of detecting within level 

covariates interaction effect differed substantially for the interaction effect magnitudes of .30 

and .60. When the interaction magnitude was at .60, the power rates in all conditions were 

above .95, and most of which were at 1.00. On the other hand, when the effect size was at .30, a 

considerable variability was observed across the simulation conditions. ICC appeared to have no 

impact on the power, which varied depending on the total sample size. Cluster number seemed to 

have a positive impact effect on power, but not as big as cluster size. When the total sample size 

was the same, the power was always higher with bigger cluster number when the interaction 

effect was at .30. 

The power of detecting cross-level covariates interaction ranged from .22 to .83 when the 

covariates interaction effect was at .20. When the interaction effect increased to .40, the power 

went up considerably, ranging from .60 to 1.00. As total sample size increased, the power 

increased. When the total sample size was the same, the impact of cluster number on the power 

was not consistent across different simulation conditions. When the cross-level interaction effect 
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reached .40, and the sample size was bigger than 800, the power was above .89. With a smaller 

interaction effect of .20, a sample size of 2400 was needed to achieve a power of above .80. 

With respect to the power, the location of the interaction effect was the most important 

factor. When the covariates interaction occurred at the within level or cross level, the power of 

detecting the interaction effect was much higher than the between level covariates interaction 

effect because of the sample size. This was expected because the sample size at the between 

level was smaller than the total sample size because the unit of analysis was the clusters (not 

individuals); however, the unit of analysis at the within level was individuals utilizing the total 

sample size when the interaction effect was at the within level or at the cross level. 

 

Standard Error 

Standard error (SE) of parameter estimate is used to test the statistical significance for 

which the parameter estimate is divided by the standard error. In the between-level covariates 

interaction conditions, SE ranged from .11 to .38, varying as a function of the ICC and the total 

sample size. SE increased with the increasing level of ICC, and it decreased as the total sample 

size increased. The smallest SE, .11, was observed in a total sample size of 2400 in small ICC, 

while the biggest SE, .38, was found in a total sample size of 400 in large ICC. SEs were very 

similar in the two different covariates interaction magnitudes of .30 and .60.  

In the within-level covariates interaction conditions, SE ranged from .07 to .17, smaller 

than that of the between-level covariates interaction conditions, after controlling for all other 

simulation factors. SE was influenced by the total sample size. As total sample increased, SE 

decreased. ICC had no impact on the SE. In the conditions of the cross-level covariates 
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interaction, SE was very similar to the conditions in which the covariates interaction effect was 

at the within level. 

 

Bias and Relative Bias 

Bias was calculated as the deviation of the estimated covariates interaction effect from 

the simulated value in the population. When the interaction effect occurred at the between level, 

bias rates were from -.03 to .02 with most of them at -.01 and zero, implying that the estimated 

parameter was around the simulated effect of covariates interaction regardless of the simulation 

conditions. For the within-level covariates interaction conditions, bias rates were mostly at zero, 

indicating that bias rates were negligible. With respect to the cross-level covariates interaction, 

bias rates ranged from zero to .02. In sum, bias rates were negligible across all simulation 

conditions. With respect to relative bias, in the conditions of between-level covariates 

interaction, it ranged from -.06 to .08 when the interaction effect was at .30, and it was smaller 

when the interaction effect was at .60, ranging from -.04 to zero. In the conditions of the within-

level or cross-level covariates interaction, relative bias was all around zero.  

 

RMSE 

RMSE was employed to measure the precision of the parameter estimate. The smaller the 

RMSE was, the more precise the parameter estimate was. RMSE varied as a function of ICC 

level and the sample size, ranging from .07 to .39, when the covariates interaction effect was at 

the between level. A smaller ICC level was associated with a smaller RMSE value controlling 

for the other design factors. As the total sample size increased, cluster number in particular, 

RMSE decreased. RMSE was similar for covariates interaction effect of .30 and .60. When the 
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covariates interaction effect was at the within level, RMSE was smaller than that of the between-

level covariates interaction effect conditions, ranging from .07 to .17. RMSE varied as a function 

of only the total sample size. While ICC and covariates interaction magnitude seemed not to 

affect RMSE. Similar value and pattern of RMSE were observed in cross-level covariates 

interaction conditions as in within-level covariates interaction ones.  

The second purpose of Study One was to examine the impact of design factors on 

outcome variables (i.e., ASR, Type I error, power, SE, bias, relative bias and RMSE). Factorial 

analysis of variance (ANOVA) with generalized eta-squared (η2) was used to examine the impact 

of design factors on outcome variables. η2 indicated the proportion of the variance explained by a 

specific design factor or the interaction of two or more of the design factors, and it was obtained 

by dividing the Type III sum of squares of a particular design factor or interaction of design 

factors by the corrected total sum of squares. The Cohen’s (1973) moderate effect size of .0588 

was applied as the practical significance level. ASR, Type I error, bias, relative bias did not vary 

much across different simulation conditions. Thus, only power, SE, and RMSE were used as the 

dependent variable in the ANOVA analyses. 

 

Sources of Variance in Power 

For the power, when the covariates interaction effect was at the between level, covariates 

interaction effect magnitude, ICC level, and cluster number were significantly associated with 

the power as shown in Table 5. The three factors accounted for 95% of the variance of power as 

shown in Table 5. Interaction effect magnitude, ICC, and cluster number explained 56%, 20%, 

and 19% of the variance of the power, respectively. Cluster size was not significantly associated  
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Table 2. Power, Type I error, bias, relative bias, standard error of estimate, and root mean square error (RMSE) under design factors 
with between-level covariates interaction effect at .30 and .60  

Between-level covariates interaction 
  Covariates interaction of .30  Covariates interaction of .60 

ICC CN/CS Error ASR Power S.E. Bias R Bias RMSE  ASR Power S.E. Bias R Bias RMSE 

Small 

40/10 .07 .97 .23 .24 -.02 -.06 .23  .98 .72 .23 -.01 -.02 .24 

40/20 .07 .98 .33 .19 -.01 -.04 .20  .97 .87 .19 .00 .00 .20 

80/10 .05 .98 .44 .16 .00 -.01 .17  .99 .96 .16 .00 .00 .17 

80/20 .06 .97 .59 .14 .00 .00 .14  .97 .99 .14 -.01 -.02 .14 

120/10 .04 .98 .60 .13 .00 .01 .13  .98 1.00 .13 -.01 -.02 .13 

120/20 .06 .97 .75 .11 .00 -.01 .11  .97 1.00 .11 -.01 -.02 .12 

Medium 

40/10 .05 .90 .17 .30 -.01 -.04 .30  .90 .49 .30 -.02 -.03 .30 

40/20 .06 .84 .20 .27 -.01 -.03 .28  .85 .57 .27 -.03 -.04 .28 

80/10 .06 .89 .27 .21 -.01 -.05 .21  .89 .80 .21 -.01 -.02 .21 

80/20 .05 .91 .31 .19 -.01 -.05 .20  .93 .84 .19 -.02 -.03 .20 

120/10 .06 .90 .39 .17 -.01 -.03 .18  .90 .93 .17 .00 -.01 .17 

120/20 .06 .97 .47 .16 .00 -.01 .16  .97 .97 .16 .00 .00 .16 

Large 

40/10 .06 .76 .14 .38 .01 .02 .39  .78 .35 .38 -.01 -.02 .39 

40/20 .08 .91 .15 .36 .00 .01 .38  .88 .39 .36 .00 .00 .40 

80/10 .05 .89 .18 .27 -.01 -.03 .27  .88 .59 .28 .00 .00 .27 

80/20 .06 1.00 .23 .26 .02 .08 .27  1.00 .63 .26 .00 .00 .26 

120/10 .06 .97 .26 .22 -.01 -.03 .23  .96 .75 .22 .00 .00 .23 

120/20 .06 1.00 .33 .21 .01 .04 .21  1.00 .80 .21 .00 .00 .21 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; ASR = admissible solution rate; Error = Type I error; S.E. 
= standard error of the parameter estimate (i.e., latent group mean difference); R Bias=relative bias; RMSE=root mean square error. 
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Table 3. Power, Type I error, bias, relative bias, standard error of estimate, and root mean square error (RMSE) under design factors 
with within-level covariates interaction effect at .30 and .60  

Within-level covariates interaction 
  Covariates interaction of .30  Covariates interaction of .60 

ICC CN/CS Error ASR Power S.E. Bias R Bias RMSE  ASR Power S.E. Bias R Bias RMSE 

Small 

20/20 .06 1.00 .46 .16 .00 .01 .17  1.00 .95 .16 .00 .01 .17 

20/40 .07 .99 .74 .11 .00 .02 .12  1.00 1.00 .12 .00 .00 .12 

40/20 .06 1.00 .69 .12 -.01 -.02 .12  1.00 1.00 .12 .01 .01 .12 

40/40 .06 1.00 .95 .08 .00 .01 .08  1.00 1.00 .08 .00 .00 .08 

60/20 .05 1.00 .88 .10 .00 -.01 .10  1.00 1.00 .10 .00 -.01 .10 

60/40 .06 1.00 .99 .07 .00 .01 .07  1.00 1.00 .07 .00 .01 .07 

Medium 

20/20 .06 1.00 .48 .17 .01 .02 .17  1.00 .95 .16 .01 .01 .17 

20/40 .07 1.00 .74 .11 .00 .00 .12  1.00 1.00 .11 -.01 -.01 .12 

40/20 .06 1.00 .73 .12 .00 .00 .12  1.00 1.00 .12 .00 .01 .12 

40/40 .07 1.00 .95 .08 .00 .00 .08  1.00 1.00 .08 .00 .00 .08 

60/20 .06 1.00 .87 .10 .00 .00 .10  1.00 1.00 .10 -.01 -.01 .09 

60/40 .05 1.00 .99 .07 .00 .00 .07  1.00 1.00 .07 .00 .01 .07 

Large 

20/20 .07 1.00 .51 .16 .01 .05 .17  1.00 .95 .16 .00 .00 .17 

20/40 .06 1.00 .74 .11 .00 .01 .12  1.00 1.00 .11 .00 .01 .12 

40/20 .05 1.00 .70 .12 .00 -.01 .12  1.00 1.00 .12 .00 .00 .12 

40/40 .05 1.00 .96 .08 .00 .00 .08  1.00 1.00 .08 .00 .01 .08 

60/20 .05 1.00 .87 .10 .00 .00 .09  1.00 1.00 .10 .00 .00 .10 

60/40 .06 1.00 1.00 .07 .00 .01 .07  1.00 1.00 .07 .00 .00 .07 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; ASR = admissible solution rate; Error = Type I error; S.E. 
= standard error of the parameter estimate (i.e., latent group mean difference); R Bias=relative bias; RMSE=root mean square error. 
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Table 4. Power, Type I error, bias, relative bias, standard error of estimate, and root mean square error (RMSE) under design factors 
with cross-level covariates interaction effect at .20 and .40 

Cross-level covariates interaction 
  Covariates interaction of .20  Covariates interaction of .40 

ICC CN/CS Error ASR Power S.E. Bias R Bias RMSE  ASR Power S.E. Bias R Bias RMSE 

Small 

40/10 .06 .91 .22 .19 .02 .11 .18  .93 .62 .19 .02 .04 .18 

40/20 .05 1.00 .38 .12 .01 .04 .12  .99 .92 .12 .01 .02 .12 

80/10 .05 1.00 .38 .12 .00 .01 .13  .99 .91 .12 .01 .03 .13 

80/20 .05 1.00 .65 .09 .00 .00 .09  1.00 1.00 .09 .01 .02 .09 

120/10 .05 1.00 .56 .10 .01 .05 .10  1.00 .98 .10 .01 .03 .10 

120/20 .05 1.00 .83 .07 .00 .00 .07  1.00 1.00 .07 .00 .01 .07 

Medium 

40/10 .06 1.00 .20 .22 .02 .12 .18  1.00 .61 .19 .02 .04 .18 

40/20 .06 1.00 .37 .13 .01 .05 .12  1.00 .89 .13 .00 .01 .13 

80/10 .04 1.00 .36 .13 .01 .05 .12  1.00 .91 .13 .01 .02 .12 

80/20 .04 1.00 .67 .09 .01 .03 .08  1.00 1.00 .09 .01 .02 .09 

120/10 .06 1.00 .54 .10 .01 .03 .10  1.00 .98 .10 .00 .01 .10 

120/20 .05 1.00 .83 .07 .00 .01 .07  1.00 1.00 .07 .01 .01 .07 

Large 

40/10 .05 1.00 .21 .19 .02 .09 .18  1.00 .60 .19 .02 .05 .19 

40/20 .05 1.00 .38 .13 .01 .06 .12  1.00 .89 .13 .01 .02 .13 

80/10 .05 1.00 .39 .13 .01 .03 .12  1.00 .91 .13 .01 .02 .12 

80/20 .03 1.00 .62 .09 .00 .02 .09  1.00 .99 .09 .01 .01 .09 

120/10 .04 1.00 .54 .10 .01 .04 .10  1.00 .98 .10 .00 .00 .10 

120/20 .05 1.00 .82 .07 .00 .02 .07  1.00 1.00 .07 .01 .02 .07 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; ASR = admissible solution rate; Error = Type I error; S.E. 
= standard error of the parameter estimate (i.e., latent group mean difference); R Bias=relative bias; RMSE=root mean square error.
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with the power with an eta-squared value of .01. Also, only the three main effects were 

significant, and no interactions between the factors were significantly associated with the power. 

When the covariates interaction effect was at the within level, the magnitude of 

covariates interaction effect, cluster number, and cluster size, as well as the interaction between 

the magnitude and cluster number, and the interaction between magnitude and cluster size were 

significantly associated with the power of detecting within-level covariates interaction effect. 

They accounted for 97% of the variance of the power as shown in Table 6. Note that cluster size 

was significant when the covariates interaction was at the within level. 

When the covariates interaction effect was at the cross level, the combination of 

magnitude, cluster number, and cluster size accounted for 96% of the variance in the power as 

presented in Table 7. The proportion of variance explained by cluster number is larger than that 

explained by cluster size.  

Table 5. Eta-squared (η2) of different sources for power, standard error, and RMSE when the 
covariates interaction effect was at the between level  

Sources 
Outcome variable 

power standard error RMSE 

Overall η2 96.99% 99.91% 99.67% 

magnitude 55.72% 0.00% 0.01% 

ICC 19.65% 47.04% 45.89% 

CN 19.43% 48.28% 49.27% 

CS 1.27% 2.06% 1.17% 

magnitude*CN 0. 61% 0.01% 0.03% 

magnitude*ICC 0.49% 0.01% 0.02% 

ICC*CN 0.21% 2.09% 3.02% 

ICC*CS 0.17% 0.14% 0.24% 

magnitude*CS 0.04% 0.00% 0.01% 

CN*CS 0.01% 0.28% 0.01% 
Note. ICC = intraclass correlation; CN= number of clusters per group;  
CS= cluster size; RMSE= root mean square error. 
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Table 6. Eta-squared (η2) of different sources for power, standard error, and RMSE when the 
covariates interaction effect was at the within level 

Sources 
Outcome variable 

power standard error RMSE 
Overall η2 99.14% 99.79% 100.00% 
magnitude 39.83% 0.00% 0.00% 
ICC 0.02% 0.02% 0.01% 
CN 21.03% 52.79% 62.64% 
CS 12.54% 44.83% 34.91% 
magnitude*CN 15.05% 0.00% 0.00% 
magnitude*ICC 0.02% 0.06% 0.04% 
ICC*CN 0.04% 0.04% 0.03% 
ICC*CS 0.01% 0.14% 0.01% 
magnitude*CS 9.09% 0.04% 0.4% 
CN*CS 1.51% 1.87% 2.11% 

Note. ICC = intraclass correlation; CN= number of clusters per group; 
 CS= cluster size; RMSE= root mean square error. 

 

Table 7. Eta-squared (η2) of different sources for power, standard error, and RMSE when the 
covariates interaction effect was at the cross level 

Sources 
Outcome variable 

power standard error RMSE 

Overall η2 97.48% 99.26% 99.73% 

magnitude 57.70% 0.04% 0.10% 

ICC 0.03% 0.36% 0.05% 

CN 24.30% 62.46% 62.76% 

CS 12.28% 31.44% 33.29% 

magnitude*CN 1.77% 0.09% 0.09% 

magnitude*ICC 0.00% 0.09% 0.05% 

ICC*CN 0.01% 0.31% 0.32% 

ICC*CS 0.01% 0.09% 0.05% 

magnitude*CS 1.01% 0.04% 0.02% 

CN*CS 0.37% 4.34% 3.00% 

Note. ICC = intraclass correlation; CN= number of clusters per group;  
CS= cluster size; RMSE= root mean square error. 
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Sources of Variance in Standard Error of Estimation  

With respect to SE, when the covariates interaction effect was at the between level, 

cluster number and ICC accounted for 95% percent of the variance in SE as shown in Table 5. 

Cluster size accounted for only 2% of the variance in SE, and the magnitude of covariates 

interaction effect didn’t explain any of the variance.  

When the covariates interaction effect was at the within level, cluster number, and cluster 

size accounted for 97% of the variance in SE as shown in Table 6. All the other design factor had 

negligible effect on the variance in SE. 

When the interaction effect was at the cross level, cluster number and cluster size 

accounted for 93% percent of the variance in SE as shown in Table 7. Cluster number explained 

62% of the variance, twice as large as that of cluster size. The other main effects and interactions 

were not significantly associated with SE. 

 

Sources of Variance in RMSE 

With respect to RMSE, for the between-level covariates interaction effect, ICC and 

cluster number were significantly associated with RMSE as shown in Table 5, explaining about 

63% and 35% of variance in RMSE, respectively. For the within-level and cross-level covariates 

interaction conditions, cluster number and cluster size explained around 96% of the variance in 

RMSE, and the other design factors were not significantly associated with RMSE. 

In sum, for all the three outcome variables (i.e., power, SE, and RMSE), the magnitude of 

covariates interaction, ICC level, and cluster number explained most of the variance of them 

when the covariates interaction effect was at the between level. On the other hand, when the 

covariates interaction was at the within and the cross level, cluster number, and cluster size 
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explained most of variance in SE and RMSE; the magnitude of interaction effect, cluster number, 

and cluster size accounted for most of the variance in the power.  

 

Discussion 

MIMIC models are flexible in modeling covariates that are related to the latent variables 

in educational and psychological research. However, the performance of ML MIMIC models in 

detecting the covariates interaction effect has not been examined yet. The purpose of Study one 

was to examine the performance of ML MIMIC models in detecting covariates interaction effect. 

In multilevel data, the covariates can be all at the within level, all the between level, and some 

covariates are at the within level and some covariates are at the between level, thus allowing for 

a more systematic investigation of the variance in latent variables. The location of the covariates 

creates interaction effect at different levels. Specifically, this study examined the efficacy of ML 

MIMIC in detecting covariates interaction effect when the interaction effect was at the between 

level, at the within level, and at the cross level. Prior research has demonstrated the importance 

of using multilevel MIMIC modeling rather than traditional single level MIMIC modeling in the 

presence of multilevel data structure when there was only one within-level or between-level 

covariate related to the latent variable (Finch & French, 2011). This study extended the prior 

research by examining the performance of ML MIMIC models in estimating covariates 

interaction effect when the covariates were at the within level, or at the between level, or at both 

levels, creating three possible types of covariates interaction effect.  

The results of Study One suggested that when the covariates interaction effect was at the 

between level, the power of ML MIMIC in detecting the covariates interaction depended on 

magnitude of the interaction effect, the ICC level, and the cluster number. When the interaction 
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effect was at .30, a large sample size (e.g., 2400) was required to get a power of around .70 for a 

small ICC level of .09. In conditions of large ICC, even the largest sample size produced a power 

of .33 of detecting the interaction effect. For an interaction effect at .60, the power of ML 

MIMIC in detecting the interaction effect was very decent for the small ICC level, ranging from 

.72 to 1.00. However, when the ICC level became larger, the power decreased. When the other 

design factors were kept constant, ICC had a negative impact on power in detecting interaction 

effect in ML MIMIC models. This was expected, given the formula of design effect of multilevel 

model. Design effect (deff) is defined as: deff=1+(n-1)*ICC, where n represents cluster size, and 

ICC is the intraclass correlation. Deff gauges the extent to which the sampling error occurs in 

sampling individuals from a specific sampling design that differs from the traditional simple 

random sampling in which each individual has equal chance of being selected. (Heck & Thomas, 

2015). For the within-level modeling, the within-level sample size (total sample size) is of main 

importance, and this design effect is not shown in the within level. Design effect increases as the 

ICC level increases, holding cluster size constant. When the data has no clustering effect (i.e., 

ICC=0), design effect equals 1. In this case, the data are simple random sampling. A design 

effect of 3.0 would suggest that a sample three times as large as the sample in simple random 

sampling is required to produce identical sample variability to simple random sampling (Heck & 

Thomas, 2015). Thus, the larger the design effect is, the bigger the sample size is required. In 

this study, the smallest design effect was 1.81 (ICC=.09, CS=10), and the largest design effect 

was 7.27 (ICC=.33, CS=20). ICC, the ratio of the between-level variability to total variability, 

also indicates the correlation of individuals within the same cluster (Hox, 2010). An ICC of .33 

means that 33% of the variance of an outcome variable exists at the between level, and it also 

indicates that the correlation between any two selected individuals in a cluster is .33. The higher 
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the within cluster correlation is, the more homogeneous the individuals in the cluster are, 

implying that adding sampling individuals in the cluster doesn’t add much information. 

Therefore, as design effect increases, the effective sample size decreases. When the effective 

sample size became smaller as a result of the increasing ICC, the power of detecting covariates 

interaction effect decreased in ML MIMIC models. For the same reason, the ASR rate was lower 

in large ICC conditions than in smaller ICC conditions when the total sample size was smaller. 

When the sample size was large, for example, 2400, the ASR was not affected much by the ICC 

level. Similarly, standard error and RMSE were affected by ICC as well controlling for all other 

design factors. As expected, when the ICC level increased, standard error and RMSE increased. 

It is of note that standard error and RMSE were not affected by interaction effect magnitude, but 

by ICC, and sample size.  

The performance of ML MIMIC was more impressive with within-level covariates 

interaction effect than with between-level covariates interaction effect. The power of detecting 

the interaction effect was around .95 when the sample size reached 1600 for an interaction effect 

of .30. When the interaction effect was at .60, the power was 1.00 except the smallest sample 

size of 400. All the outcome variables were affected by sample size, but not affected by the ICC 

level. This is also expected, as the interaction effect was at the within level and the estimation of 

the interaction effect utilized the within-level total sample size. The magnitude of the ICC level 

was not associated with the ASR, power, standard error, bias, relative bias, and RMSE.  

The focus of the study was the performance of ML MIMIC modeling in detecting cross-

level covariates interaction effect. For a small interaction effect at .20, the power varied as a 

function of total sample size, ranging from .21 to .83. Note that when the total sample size was 

identical, cluster number had no impact on power, that is, the power of 40 clusters with a cluster 
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size of 20 was very similar to that of 80 clusters with a cluster size of 10. When sample size was 

as big as 2400, the power of ML MIMIC in detecting cross-level covariates interaction effect 

could be around .83.  Therefore, even with a small cross-level interaction effect, the power of 

ML MIMIC in detecting it could be above .80 when the sample size was 2400. For a moderate 

cross-level interaction effect at .40, the power of ML MIMIC in detecting a significant cross-

level covariates interaction effect was above .90 when the sample size reached 800 or above. In 

sum, the performance of ML MIMIC in detecting and estimating cross-level covariates 

interaction effect was promising. When the interaction effect was at the cross level, the ICC level 

didn’t have an impact on the outcome variables. Type I error, Power, standard error, bias, and 

RMSE were similar across different ICC levels when the other design factors were held constant.  

This tendency was more similar to that of the performance of MLMIMIC with within-level 

covariates interaction effect than to that of the between-level covariates interaction effect. Also, 

the magnitude of standard error and RMSE was also similar to the results in the within-level 

covariates interaction conditions.  

Type I error was well controlled in all conditions for the between-level covariates 

interaction effect model, the within-level covariates interaction effect model, and the cross-level 

covariates interaction effect model. This was very important for the interpretation of power, 

because the interpretation of power was meaningless if Type I error rate was high.  

Previous research has demonstrated the lower power of ML MIMIC in detecting the 

effect of  the between-level covariate on the latent factor, especially when the ICC was large and 

sample size was small (Finch & French, 2011). Similarly, lower power was observed in detecting 

between-level covariates interaction effect in ML MIMIC than in detecting within-level 

covariates interaction effect and cross-level covariates interaction effect. Practitioners using ML 
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MIMIC to examine covariates interaction effect should be cognizant of the location of the 

interaction effect. The performance ML MIMIC in detecting the covariates interaction effect was 

more promising when the covariates interaction effect was at the within level or at the cross 

level.  

The decent performance of the ML MIMIC modeling in detecting and estimating the 

cross-level covariates interaction effect assured the researchers and practitioners of its correct 

statistical modeling of the data structure, but also led to greater insights into examining the 

influence of covariates from both the between level and within level on latent factors. The 

substantively meaningful cross-level covariates interaction, that is, the association between 

within-level covariate and within-level outcome varying as a function of the value of the 

between-level, or contextual covariates, can be modeled flexibly and estimated accurately in ML 

MIMIC with a relatively big sample size. With the increasing prevalence of examining cross-

level interaction effect in applied psychology (Mathieu et al., 2012), the decent performance of 

ML MIMIC in estimating cross-level covariates interaction renders the practitioners to apply it 

more comfortably. On the contrary, the estimation and interpretation of the between-level 

covariates interaction effect should be made with caution, particularly when the ICC level is high 

and cluster number is small. 

The impact of cluster number and cluster size on power in detecting covariates 

interaction effect varied depending on the location of the interaction effect in ML MIMIC. To be 

more specific, cluster number was more important than cluster size in detecting between-level 

covariates interaction effect, while both cluster number and cluster size were important in 

estimating within-level covariates interaction effect and cross-level covariates interaction effect. 

These shed lights to the sampling strategies and allocation for resources for researchers. If the 
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researcher is interested in estimating between-level covariates interaction effect, more clusters 

should be sampled if resources allow (sampling more clusters is more expensive than sampling 

more individuals from a smaller number of clusters). If the researcher is interested in estimating 

within-level or cross-level covariates interaction, more thorough sampling of individual in 

clusters (less costly than sampling more clusters with a smaller cluster size) enables an enhanced 

power because the total sample size is an important factor at the within level.  

As mentioned in the data generation part, cluster invariance was met in ML MIMIC 

modeling. To be more specific, factor loadings were constrained to be equal across levels (within 

level factor loadings are identical to between-level factor loadings). Intercepts had a very small 

variance at the between level (.02, .01, and .004 for large, medium, and small ICC levels, 

respectively), implying that intercepts were very similar across clusters. Moreover, the residual 

variances were constant across clusters. The impact of violating cluster invariance on the 

performance of ML MIMIC in detecting covariates interaction effect is unknown.  

The generalizability of the performance of ML MIMIC should not be extended beyond 

the design of the measurement part and structural part of ML MIMIC modeling in this study. 

Specifically, there was only one factor with 6 continuous indicators with factor loadings all at 

.80. The main effects of the covariates were .30 and .40 when the two covariates were at the 

same level, and .40 (within-level covariate main effect) and .50 (between-level covariate main 

effect) for the cross-level. The impact of changing the design factors mentioned above on the 

performance of ML MIMIC is unknown. More comprehensive simulation studies varying the 

measurement and structural parts of the model are called for. 
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Results of Study Two 

The purpose of Study Two was to investigate the impact of ignoring covariates 

interaction on model fit indices and model parameter estimates in ML MIMIC models. In Study 

Two, the population models were the models in Study One, with covariates interaction effect at 

the between level, at the within level, and at cross level. The population models in Study One 

with no covariates interaction effect used to evaluate Type 1 error were excluded from Study 

Two. When the two covariates were both at the between level or at the within level, the analysis 

models specified the main effects of the two covariates on the between level factor or the within 

level factor, but omitted the interaction effect (i.e., the product term of the two covariates) on the 

latent factor. Similarly, in the case of cross-level interaction effect the analysis model specified 

that the within-level factor and the between-level factor were regressed on the within-level 

covariate and the between-level covariate, respectively; however, the within-level regression 

effect was not specified to be predicted by the between-level covariate, that is, the interaction 

effect was ignored. 

The impact of omitting covariates interaction effect in ML MIMIC has not been 

examined in literature. It is expected that some of the parameters in the models are to be affected 

as a result of the model misspecification. It remains unknown which of the parameters are going 

to be impacted and how they are affected. In SEM, a set of fit indices (CFI, TLI, RMSEA, 

SRMR) can be used to evaluate model adequacy. It is yet known whether the fit indices can 

detect the misspecification as compared to the results from the analysis of the correct model in 

Study One.  
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The results of Study Two were presented in the sequence of omitting between-level 

covariates interaction, omitting within-level covariates interaction, and omitting cross-level 

covariates interaction.  

 

Omitting the Between-level Covariates Interaction 

When the between-level covariates interaction was omitted, among all the SEM-based fit 

indices examined in this study: CFI, TLI, RMSEA, SRMR-B, and SRMR-W, none of them was 

found to be sensitive to the omission of the covariates interaction effect as presented in Table 8. 

The CFI values of both correct model and misspecified model were identical, at .98 or .99, and 

the same pattern was observed for TLI, ranging from .96 to .99 for both correct and misspecified 

model, indicating a very good model fit. TLI was very similar to CFI, and it was not presented in 

Table 8. RMSEA for both correct and misspecified model was around .05. SRMR-B produced in 

the correct model and the misspecified model was very similar, ranging from .01 to .05. SRMR-

W was at .05 in all conditions, regardless of the model specified. CFI, TLI, RMSEA, SRMR-B, 

and SRMR-W were very similar for interaction effect at .30 and .60. The standard deviation of 

these fit indices in the correct model was very similar to that in the misspecified model.  

The proportion of the replications that AIC, BIC, and SaBIC selected the correct model 

(i.e., a model with an interaction effect) were computed to denote their sensitivity to model 

misspecification. When the omitted covariates interaction effect was .30, the proportions ranged 

from .30 to .90, from .03 and .42, from .18 to .68 for AIC, BIC, and SaBIC, respectively. The 

results showed that their proportions increased as sample size increased, especially as cluster 

number increased. ICC had a negative impact on their sensitivity to model misspecification. 

When ICC increased, their proportions decreased, controlling for all the other design factors. 
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Therefore, AIC, BIC, and SaBIC had the best performance in the condition with the biggest 

sample size and small ICC. Although the pattern of the three fit indices was very similar to each 

other, AIC was more sensitive to the misspecification than SaBIC which was more sensitive than 

BIC. When the omitted covariates interaction was at .60, all the three fit indices were more 

sensitive to the model misspecification than the covariates interaction of .30. The proportions of 

replications that selected the correct model for AIC, BIC, and SaBIC ranged from .54 to 1.00, 

from .19 to .98, from .41 to 1.00, respectively. In some conditions with bigger sample size and 

small ICC, AIC, and SaBIC selected the correct model in all replications. The impact of sample 

size and ICC on the performance of the three fit indices was similar to that in the covariates 

interaction effect of .30. 

AIC and SaBIC outperformed BIC in terms of selecting the correct model. BIC is defined 

as: 

BIC=-2logL(θ) + log(n)r, 

where logL(θ) denotes the log likelihood; n represents sample size; r is the number of parameters 

in the model. Lukočiené and Vermunt (2010) discussed a specific issue when using BIC in the 

case of multilevel analysis: It is not clear whether the sample size, n, should be the cluster 

number, J, or the total sample size at the within level. Pauler (1998) suggested the using of J for 

decisions about between-level model features and n for within-level model features in the 

context of linear mixed models. In Mplus output, BIC was calculated using the total sample size, 

n. To evaluate the sensitivity of BIC using the cluster number as sample size in the calculation, 

BIC(J) was computed and listed in Table 8. BIC(J) performed better than BIC in selecting the 

correct model, but still not as good as AIC and SaBIC. Note that BIC(J) was calculated only for 
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the between-level covariates interaction model, because in the within-level and cross-level 

covariates interaction models total the sample size was used for decisions about model features. 

The omission of the covariates interaction effect was expected to impact the other 

parameter estimates in the model. Results consistently showed that the main effects of the two 

covariates were overestimated as presented in Table 9. In the correct model, the main effects of 

the two covariates were around .30 and .40, respectively. In the misspecified model omitting the 

covariates interaction effect, the two main effects were overestimated around .44, and .54, 

respectively, when the interaction effect was at .30. The two main effects were estimated to be 

around .59 and .69 when the interaction effect was at .60, under all conditions. This indicated 

that the omitted interaction effect was carried through the main effects, divided almost equally 

between the two main effects. Between-level factor mean was underestimated in all conditions 

when the interaction effect was omitted. In the correct model, the between-level factor mean was 

around zero in all conditions. In the misspecified model omitting the covariates interaction 

effect, the between-level factor mean was estimated to be around -.07, and -.14, when the 

covariates interaction was at .30, and .60, respectively. In addition to the affected three 

parameters above, between-level factor residual variance was slightly impacted as shown in 

Table 9. The between-level residual variance was overestimated by approximately .01 and .02 

for covariates interaction of .30 and .60, respectively. The estimates of all other parameters were 

not impacted by the misspecification, including the between-level factor loadings, the between-

level intercepts, the between-level residual variances, the within-level factor loadings, the within-

level factor mean, and the within-level residual variances.  
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Table 8. The proportion of the replications that AIC, BIC, BIC(J), and SaBIC selected the correct model, as well as CFI, RMSEA, 
SRMR-B, and SRMR-W and their standard deviations of correct and misspecified models with between-level covariates 

  Between-level covariates interaction 

        SEM based fit indices (correct model)  SEM based fit indices (misspecified model) 

effect ICC CN/CS AIC BIC BIC 
(J) 

Sa 
BIC 

 CFI 
(sd) 

RM 
(sd) 

SRb 
(sd) 

SRw 
(sd)  CFI 

(sd) 
RM 
(sd) 

SRb 
(sd) 

SRw 
(sd) 

.30 

S 

40/10 .45 .14 .28 .36  .98(.02) .06(.02) .05(.02) .05(.01)  .98(.04) .07(.04) .04(.01) .05(.01) 

40/20 .54 .15 .35 .37  .98(.01) .05(.01) .03(.01) .05(.01)  .98(.02) .06(.01) .03(.01) .05(.01) 

80/10 .68 .24 .41 .50  .99(.00) .05(.01) .04(.01) .05(.01)  .99(.01) .05(.01) .03(.01) .05(.01) 

80/20 .77 .28 .54 .56  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .05(.01) .02(.00) .05(.01) 

120/10 .81 .36 .52 .62  .99(.00) .04(.01) .03(.01) .05(.01)  .99(.00) .05(.01) .03(.01) .05(.01) 

120/20 .90 .42 .66 .68  .99(.00) .04(.00) .02(.00) .05(.00)  .99(.00) .04(.00) .02(.00) .05(.01) 

M 

40/10 .37 .09 .20 .27  .99(.01) .05(.01) .04(.01) .05(.01)  .98(.01) .06(.02) .04(.01) .05(.01) 

40/20 .38 .07 .22 .24  .99(.01) .05(.01) .03(.01) .05(.01)  .98(.01) .06(.02) .04(.01) .05(.01) 

80/10 .48 .11 .24 .31  .99(.00) .04(.01) .03(.01) .05(.01)  .99(.01) .05(.01) .03(.01) .05(.01) 

80/20 .53 .12 .27 .28  .99(.00) .04(.00) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

120/10 .59 .18 .32 .39  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

120/20 .68 .18 .38 .40  .99(.00) .04(.00) .02(.00) .05(.00)  .99(.00) .04(.00) .01(.00) .05(.00) 

 
L 

40/10 .33 .03 .16 .23  .98(.01) .05(.01) .03(.01) .05(.01)  .98(.01) .05(.01) .03(.01) .05(.01) 

40/20 .30 .06 .16 .18  .99(.00) .04(.01) .03(.01) .05(.01)  .99(.00) .04(.01) .02(.01) .05(.01) 

80/10 .38 .07 .16 .20  .99(.00) .04(.01) .02(.01) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

80/20 .43 .08 .20 .21  .99(.00) .04(.00) .02(.00) .05(.01)  .99(.00) .04(.00) .02(.00) .05(.01) 

120/10 .47 .10 .20 .26  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

120/20 .53 .08 .24 .25  .99(.00) .04(.00) .01(.00) .05(.00)  .99(.00) .04(.01) .01(.01) .05(.01) 
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Table 8 (Continued). The proportion of the replications that AIC, BIC, BIC(J), and SaBIC selected the correct model, as well as CFI, 
RMSEA, SRMR-B, and SRMR-W and their standard deviations of correct and misspecified models with between-level covariates 

  Between-level covariates interaction 

        SEM based fit indices (correct model) SEM based fit indices (misspecified model) 

effect ICC CN/CS AIC BIC BIC 
(J) 

Sa 
BIC 

 CFI 
(sd) 

RM 
(sd) 

SRb 
(sd) 

SRw 
(sd)  CFI 

(sd) 
RM 
(sd) 

SRb 
(sd) 

SRw 
(sd) 

.60 

S 

40/10 .87 .57 .75 .81  .98(.02) .05(.01) .03(.01) .05(.01)  .98(.01) .06(.02) .03(.01) .05(.01) 

40/20 .96 .68 .88 .89  .98(.01) .05(.01) .02(.01) .05(.01)  .98(.01) .05(.01) .02(.01) .05(.01) 

80/10 .99 .86 .95 .97  .99(.00) .05(.01) .02(.01) .05(.01)  .99(.00) .05(.01) .02(.01) .05(.01) 

80/20 1.00 .92 .99 .99  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .05(.01) .01(.00) .05(.01) 

120/10 1.00 .96 .99 1.00  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .05(.01) .02(.00) .05(.01) 

120/20 1.00 .98 1.00 1.00  .99(.00) .04(.00) .01(.00) .05(.00)  .99(.00) .04(.00) .01(.00) .05(.00) 

M 

40/10 .71 .33 .52 .60  .98(.01) .05(.01) .03(.01) .05(.01)  .98(.01) .06(.01) .03(.01) .05(.01) 

40/20 .74 .33 .59 .61  .99(.01) .04(.01) .02(.01) .05(.01)  .99(.01) .05(.01) .02(.01) .05(.01) 

80/10 .92 .58 .77 .83  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

80/20 .94 .60 .80 .81  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .01(.00) .05(.01) 

120/10 .98 .77 .89 .92  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

120/20 .99 .83 .95 .95  .99(.00) .04(.00) .01(.00) .05(.00)  .99(.00) .04(.00) .01(.00) .05(.00) 

L 

40/10 .54 .19 .36 .45  .98(.01) .05(.01) .03(.01) .05(.01)  .99(.01) .05(.01) .03(.01) .05(.01) 

40/20 .58 .20 .40 .41  .99(.01) .04(.01) .02(.01) .05(.01)  .99(.00) .04(.01) .02(.01) .05(.01) 

80/10 .79 .34 .54 .62  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

80/20 .81 .32 .58 .60  .99(.00) .04(.00) .02(.00) .05(.01)  .99(.00) .04(.01) .01(.00) .05(.01) 

120/10 .88 .50 .69 .75  .99(.00) .04(.01) .02(.00) .05(.01)  .99(.00) .04(.01) .02(.00) .05(.01) 

120/20 .91 .49 .72 .74  .99(.00) .04(.00) .01(.00) .05(.00)  .99(.00) .04(.00) .01(.00) .05(.00) 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; S=small; M=medium; L=large; AIC=Akaike information 
criterion; BIC=Bayesian information criterion; BIC(J)=BIC with between-level sample size; SaBIC=sample-size adjusted BIC; CFI=Comparative 
Fit Index; sd= standard deviation; RM=root mean square error of approximation; SRb= standardized root mean square residual for the between 
level; SRw= standardized root mean square residual for the within level. 
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Table 9. The estimated values of main covariates effects and between-level factor mean of correct and misspecified models with 
between-level covariates 

  Betwee-level covariates interaction 

  Covariates interaction of .30  Covariates interaction of .60 

  Correct model  Misspecified model  Correct model  Misspecified model 
ICC CN/CS M1 M2 fb fbv  M1 M2 fb fbv  M1 M2 fb Fbv  M1 M2 fb fbv 

Small 40/10 .30 .40 .00 .03  .44 .54 -.07 .04  .30 .39 .00 .03  .60 .69 -.14 .06 

40/20 .29 .40 .01 .04  .44 .54 -.06 .05  .29 .39 .01 .04  .59 .68 -.14 .07 

80/10 .29 .39 .01 .04  .44 .54 -.07 .04  .29 .39 .01 .04  .59 .69 -.14 .06 

80/20 .29 .39 .01 .05  .44 .54 -.07 .06  .30 .40 .00 .05  .59 .69 -.14 .07 

120/10 .29 .39 .01 .04  .44 .54 -.07 .05  .30 .40 .00 .04  .59 .69 -.14 .06 

120/20 .30 .39 .01 .05  .44 .54 -.07 .06  .30 .40 .00 .05  .60 .69 -.14 .07 
Medium 40/10 .29 .39 .01 .11  .43 .53 -.06 .12  .30 .40 .01 .12  .59 .69 -.14 .14 

40/20 .30 .40 .00 .13  .45 .54 -.07 .14  .31 .41 .00 .13  .60 .70 -.14 .15 

80/10 .30 .39 .01 .12  .44 .54 -.06 .13  .29 .40 .01 .13  .59 .69 -.14 .15 

80/20 .30 .40 .00 .14  .45 .54 -.07 .14  .30 .40 .01 .14  .59 .69 -.14 .16 

120/10 .29 .39 .01 .13  .44 .54 -.06 .14  .29 .39 .01 .13  .59 .69 -.14 .16 

120/20 .30 .39 .00 .14  .45 .54 -.07 .15  .29 .39 .01 .14  .59 .69 -.14 .17 
Large 40/10 .29 .38 .01 .25  .45 .53 -.06 .27  .28 .39 .01 .26  .58 .69 -.14 .29 

40/20 .30 .40 .00 .27  .45 .56 -.07 .29  .29 .39 .01 .28  .59 .69 -.14 .31 

80/10 .29 .40 .00 .27  .44 .54 -.07 .28  .29 .39 .01 .28  .59 .69 -.14 .31 

80/20 .28 .38 .02 .29  .44 .54 -.06 .30  .30 .40 .00 .29  .60 .70 -.15 .32 

120/10 .30 .39 .01 .28  .44 .54 -.07 .29  .29 .39 .01 .28  .59 .69 -.14 .31 

120/20 .29 .39 .01 .29  .45 .54 -.07 .30  .30 .39 .00 .29  .60 .69 -.14 .32 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; M1=main effect of covariate 1 (.30); M2=main effect of 
covariate 2 (.40); fb= between-level factor mean; fbv=between-level factor residual variance.
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Omitting the Within-level Covariates Interaction 

When the within-level covariates interaction effect was omitted in the model, CFI, TLI, 

RMSEA, SRMR-B, SRMR-W produced in the correct model were identical to those in the 

misspecified model as shown in Table 10. None of these fit indices detected the misspecification. 

CFI and TLI ranged from .99 to 1.00 in both correct and misspecified model; RMSEA was 

between zero and .03 in the correct model, and between .01 and .04 in the misspecified model; 

SRMR-B was between .01 and .06 (in the smallest sample size) in both correct and misspecified 

models; SRMR-W was between .01 and .02 in both correct and misspecified models. The 

proportions of replications that AIC, BIC, and SaBIC selected the correct model increased as the 

total sample size increased. Note that cluster number didn’t have an effect on them. ICC was not 

associated with the sensitivity of the three fit indices. The proportions were very similar in small, 

medium, and large ICC when the other design factors were constant. When the omitted 

covariates interaction effect was at .30, the proportions of AIC, BIC, and SaBIC ranged from .66 

to 1.00, from .24 to.96, from .54 to.99, respectively. When the omitted covariates interaction was 

at .60, all three fit indices selected the correct model in 100% of the replications except in the 

conditions with the smallest sample size.  

With respect to parameter estimates, biased parameter estimates included the main effects 

of the two within-level covariates, and the between-level factor mean. Similar to the scenario of 

omitting between-level interaction effect, the omitted covariates interaction effect was carried 

through the two main effects. Note that the two main effects received exactly half of the 

interaction effect. For instance, when the interaction effect was at .30, the two main effects in the 

misspecified model were 0.15 higher than in the correct model; when the interaction effect was 

.60, the two main effects were 0.30 higher than in the correct model. The between-level factor 
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mean was underestimated when the within-level covariates interaction effect was omitted. In the 

correct model the between-level factor mean was around -.20, which was estimated to be around 

-.27, and around -.35 when the interaction effect was .30, and .60, respectively. The other 

parameters in the multilevel MIMIC model were not affected. 

 

Omitting the Cross-level Covariates Interaction 

The two-level random effect modeling didn’t produce CFI, RMSEA, SRMR, fit indices 

that are commonly used in SEM; however, it did produce AIC, BIC, and SaBIC. Therefore, 

checking the sensitivity of fit indices to misspecification in cross-level covariates interaction 

conditions applies only to AIC, BIC, and SaBIC. When the cross-level covariates interaction 

of .20 was omitted, AIC (from .08 to .31), BIC (from .02 to .10), and SaBIC (from .05 to .25) 

often failed to select the correct model. However, when the omitted covariates interaction effect 

increased to .40, the sensitivity of the three fit indices improved substantially. The proportions of 

replications that AIC, BIC, and SaBIC selected the correct model ranged from .54 to .90, 

from .30 to .78, and from .49 to .85, respectively. The sensitivity of the three fit indices increased 

as sample size increased. As ICC increased, the sensitivity of the fit indices improved a little bit.  

With respect to the bias in parameter estimates resulted from the omission of the cross-

level covariates interaction effect, more parameters were affected than in the conditions of 

omitting within-level or between-level covariates interaction effect. Again, the main effects of 

the within-level covariate and the between-level covariate were overestimated, receiving 

approximately half of the size of the omitted interaction effect, respectively. To be specific, 

when the omitted interaction effect was at .20, the within-level main effect was overestimated to  
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Table 10. The proportion of the replications that AIC, BIC, SaBIC selected the correct model, as well as CFI, RMSEA, SRMR-B, and 
SRMR-W and their standard deviations of correct and misspecified models with within-level covariates 

 Within-level covariates interaction 

       SEM based fit indices (correct model)  SEM based fit indices (misspecified model) 

effect ICC CN/CS AIC BIC SaBIC  CFI(sd) RM(sd) SRb(sd) SRw(sd)  CFI(sd) RM(sd) SRb(sd) SRw(sd) 

.30 

S 

20/20 .66 .24 .54  .99(.04) .03(.03) .06(.06) .02(.00)  .99(.02) .04(.03) .05(.06) .02(.00) 

20/40 .87 .51 .76  1.00(.01) .02(.02) .03(.03) .01(.00)  1.00(.01) .02(.02) .03(.03) .01(.00) 

40/20 .84 .48 .70  1.00(.00) .02(.01) .03(.02) .01(.00)  1.00(.00) .02(.01) .03(.02) .01(.00) 

40/40 .98 .83 .94  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

60/20 .95 .68 .87  1.00(.00) .01(.01) .03(.01) .01(.00)  1.00(.00) .01(.01) .03(.01) .01(.00) 

60/40 1.00 .96 .99  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

M 

20/20 .66 .27 .56  1.00(.00) .03(.02) .03(.02) .02(.00)  .99(.02) .03(.02) .03(.02) .02(.00) 

20/40 .88 .46 .75  1.00(.00) .02(.01) .02(.01) .01(.00)  1.00(.00) .02(.01) .02(.01) .01(.00) 

40/20 .88 .45 .75  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

40/40 .99 .80 .92  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

60/20 .95 .66 .87  1.00(.00) .01(.01) .01(.01) .01(.00)  1.00(.00) .01(.01) .01(.01) .01(.00) 

60/40 1.00 .95 .98  1.00(.00) .00(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

L 

20/20 .69 .28 .60  .99(.03) .02(.02) .02(.01) .02(.00)  1.00(.00) .02(.02) .02(.01) .02(.00) 

20/40 .87 .49 .75  1.00(.00) .01(.01) .01(.01) .01(.00)  1.00(.00) .01(.01) .01(.01) .01(.00) 

40/20 .87 .46 .74  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

40/40 .99 .82 .95  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

60/20 .95 .68 .87  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

60/40 1.00 .96 .99  1.00(.00) .00(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 
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Table 10 (Continued). The proportion of the replications that AIC, BIC, SaBIC selected the correct model, as well as CFI, RMSEA, 
SRMR-B, and SRMR-W and their standard deviations of correct and misspecified models with within-level covariates 

 Within-level covariates interaction 

       SEM based fit indices (correct model)  SEM based fit indices (misspecified model) 

effect ICC CN/CS AIC BIC SaBIC  CFI(sd) RM(sd) SRb(sd) SRw(sd)  CFI(sd) RM(sd) SRb(sd) SRw(sd) 

.60 

S 

20/20 .98 .88 .97  .99(.04) .03(.03) .06(.06) .02(.00)  .99(.04) .04(.04) .06(.06) .02(.00) 

20/40 1.00 .99 1.00  1.00(.01) .02(.02) .03(.03) .01(.00)  1.00(.01) .02(.02) .03(.02) .01(.00) 

40/20 1.00 1.00 1.00  1.00(.00) .02(.01) .03(.02) .01(.00)  1.00(.00) .02(.01) .03(.02) .01(.00) 

40/40 1.00 1.00 1.00  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

60/20 1.00 1.00 1.00  1.00(.00) .01(.01) .03(.01) .01(.00)  1.00(.00) .01(.01) .03(.01) .01(.00) 

60/40 1.00 1.00 1.00  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

M 

20/20 .99 .88 .97  1.00(.02) .03(.02) .03(.02) .02(.00)  .99(.01) .03(.02) .03(.01) .01(.00) 

20/40 1.00 1.00 1.00  1.00(.00) .02(.01) .02(.01) .01(.00)  1.00(.00) .02(.01) .02(.01) .01(.00) 

40/20 1.00 1.00 1.00  1.00(.00) .01(.01) .02(.01) .01(.00)  1.00(.00) .01(.01) .02(.01) .01(.00) 

40/40 1.00 1.00 1.00  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

60/20 1.00 1.00 1.00  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

60/40 1.00 1.00 1.00  1.00(.00) .00(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 

L 

20/20 .98 .87 .97  1.00(.00) .02(.02) .02(.01) .02(.00)  1.00(.00) .02(.02) .02(.01) .02(.00) 

20/40 1.00 .99 1.00  1.00(.00) .01(.01) .01(.01) .01(.00)  1.00(.00) .01(.01) .01(.01) .01(.00) 

40/20 1.00 1.00 1.00  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 
 40/40 1.00 1.00 1.00  1.00(.00) .01(.01) .01(.01) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 
 60/20 1.00 1.00 1.00  1.00(.00) .01(.01) .01(.00) .01(.00)  1.00(.00) .01(.01) .01(.00) .01(.00) 
 60/40 1.00 1.00 1.00  1.00(.00) .00(.01) .01(.00) .01(.00)  1.00(.00) .00(.01) .01(.00) .01(.00) 

Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; S=small; M=medium; L=large; AIC=Akaike information 
criterion; BIC=Bayesian information criterion; SaBIC=sample-size adjusted BIC; CFI=Comparative Fit Index; sd= standard deviation; RM=root 
mean square error of approximation; SRb= standardized root mean square residual for the between level; SRw= standardized root mean square 
residual for the within level. 
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Table 11. The estimated values of main covariates effects and between-level factor mean of correct and misspecified models with 
within-level covariates 

Within-level covariates interaction 
  Covariates interaction of .30 Covariates interaction of .60 

  Correct model  Misspecified model Correct model Misspecified model 
ICC CN/CS M1 M2 fb  M1 M2 fb  M1 M2 fb  M1 M2 fb 

Small 

40/10 .30 .40 -.20  .45 .55 -.27  .30 .39 -.20  .60 .70 -.35 

40/20 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

80/10 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

80/20 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

120/10 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

120/20 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.35 

Medium 

40/10 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.36 

40/20 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

80/10 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

80/20 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

120/10 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.34 

120/20 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.35 

Large 

40/10 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.34 

40/20 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.35 

80/10 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

80/20 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

120/10 .30 .40 -.20  .45 .55 -.27  .30 .40 -.20  .60 .70 -.35 

120/20 .30 .40 -.20  .45 .55 -.28  .30 .40 -.20  .60 .70 -.35 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; M1=main effect of covariate 1 (.30); 
M2=main effect of covariate 2 (.40); fb= between-level factor mean. 
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be .50, which was .40 in the correct model; the between-level main effect was overestimated to 

be .60, which was .50 in the correct model. When the omitted interaction effect was at .40, the 

within-level main effect and the between-level main effect were overestimated to be .60 and .70, 

respectively, each receiving half of the magnitude of the interaction effect. Apart from the two 

main effects, the between-level factor residual variance, and the between-level intercepts of the 

six indicators were also affected. The between-level factor residual variance was underestimated. 

In the true model, it was around .05, .15, and .30 for the small, medium, and large ICC 

conditions, respectively. In the misspecified model, the between-level factor residual variance 

was underestimated around .02, .04, and .07 for the small, medium, and large ICCs, regardless of 

the size of the interaction effect. The severity of the underestimation became slightly worse as 

the sample size increased.  The between-level intercepts of the six indicators were also 

underestimated. In the true model, they were estimated to be around -.20, but were 

underestimated to be around -.25, and -.30 for covariates interaction effect of .20 and .40, 

respectively. All the between-level intercepts of indicators were affected in a similar manner, 

thus, only indicator 3 was used as an example of the bias in intercepts of indicators. Note that the 

design factors in the simulation study, including cluster number, cluster size, and ICC, had little 

impact on the bias of parameter estimates in the misspecified models except between-level factor 

residual variance, as shown in Table 13.  

 

Sources of Variance in the Sensitivity of AIC, BIC, and SaBIC 

The proportions of replications that AIC, BIC, and SaBIC selected the correct model 

varied across the conditions. Eta-squared (η2) was calculated to evaluate the proportion of  
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Table 12. The proportion of the replications that AIC, BIC, SaBIC selected the correct model 
with cross-level covariates 

 Cross-level covariates interaction 

  Covariates interaction of .20  Covariates interaction of .40 

ICC CN/CS AIC BIC SaBIC  AIC BIC SaBIC 

Small 

40/10 .23 .07 .19  .54 .30 .49 

40/20 .16 .05 .11  .57 .36 .49 

80/10 .20 .06 .14  .68 .46 .61 

80/20 .11 .03 .06  .72 .53 .65 

120/10 .20 .07 .13  .76 .58 .69 

120/20 .08 .02 .05  .78 .62 .71 

Medium 

40/10 .28 .09 .23  .59 .35 .54 

40/20 .23 .07 .15  .65 .40 .58 

80/10 .26 .08 .17  .74 .50 .65 

80/20 .16 .06 .11  .80 .61 .73 

120/10 .24 .08 .16  .81 .61 .74 

120/20 .12 .04 .07  .86 .75 .81 

Large 

40/10 .31 .10 .25  .65 .40 .60 

40/20 .24 .08 .18  .71 .48 .63 

80/10 .32 .10 .26  .79 .55 .71 

80/20 .23 .08 .16  .86 .68 .79 

120/10 .30 .12 .21  .84 .64 .78 

120/20 .18 .07 .11  .90 .78 .85 
Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; S=small; 
M=medium; L=large; AIC=Akaike information criterion; BIC=Bayesian information criterion; 
SaBIC=sample-size adjusted BIC. 
 

variance in the sensitivity of AIC, BIC, and SaBIC that the design factors and their interactions 

accounted for. As shown in Table 14, when omitting the between-level covariates interaction 
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Table 13. The estimated values of main covariates effects, intercept, and between-level factor 
residual variance of correct and misspecified models with cross-level covariates 

 Cross-level covariates interaction 
   Correct model  Misspecified model 
effect ICC CN/CS MB MW Intercept fb_v  MB MW Intercept fb_v 

.20 

S 

40/10 .48 .39 -.19 .05  .60 .50 -.25 .03 
40/20 .49 .40 -.19 .05  .60 .50 -.25 .02 
80/10 .49 .40 -.20 .05  .60 .50 -.25 .02 
80/20 .50 .40 -.20 .06  .60 .50 -.25 .02 

120/10 .49 .40 -.20 .05  .60 .50 -.25 .02 
120/20 .50 .40 -.20 .06  .60 .50 -.25 .01 

M 

40/10 .48 .39 -.18 .13  .59 .50 -.24 .06 
40/20 .49 .40 -.19 .14  .60 .50 -.25 .04 
80/10 .50 .40 -.20 .14  .60 .50 -.25 .04 
80/20 .50 .40 -.20 .15  .60 .50 -.25 .03 

120/10 .50 .40 -.20 .15  .60 .50 -.25 .03 
120/20 .50 .40 -.20 .15  .60 .50 -.25 .03 

L 

40/10 .48 .39 -.19 .29  .59 .49 -.24 .09 
40/20 .48 .40 -.19 .29  .59 .50 -.25 .08 
80/10 .49 .40 -.19 .30  .59 .50 -.25 .07 
80/20 .49 .40 -.20 .30  .59 .50 -.25 .06 

120/10 .50 .40 -.20 .30  .60 .50 -.25 .05 
120/20 .50 .40 -.20 .31  .60 .50 -.25 .05 

.40 

S 

40/10 .48 .40 -.19 .05  .70 .60 -.30 .03 
40/20 .50 .40 -.20 .05  .70 .60 -.30 .02 
80/10 .49 .40 -.20 .05  .70 .60 -.30 .02 
80/20 .50 .40 -.20 .05  .70 .60 -.30 .02 

120/10 .50 .40 -.20 .05  .70 .60 -.30 .02 
120/20 .49 .40 -.20 .06  .70 .60 -.30 .01 

M 

40/10 .48 .39 -.19 .14  .70 .60 -.30 .06 
40/20 .49 .40 -.20 .14  .70 .60 -.30 .04 
80/10 .50 .40 -.20 .14  .70 .60 -.30 .04 
80/20 .50 .40 -.20 .15  .70 .60 -.30 .03 

120/10 .50 .40 -.20 .14  .70 .60 -.30 .03 
120/20 .50 .40 -.20 .15  .70 .60 -.30 .03 

L 

40/10 .47 .39 -.18 .29  .69 .60 -.29 .09 
40/20 .50 .40 -.20 .30  .70 .60 -.31 .08 
80/10 .49 .40 -.19 .30  .70 .60 -.29 .07 
80/20 .50 .40 -.20 .31  .70 .60 -.30 .06 

120/10 .50 .40 -.20 .30  .70 .60 -.30 .05 
120/20 .50 .40 -.20 .31  .70 .60 -.30 .05 

Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; S=small; 
M=medium; L=large; MB=between-level covariate main effect (.50); Mw=within-level covariate main 
effect (.40); fb_v=between-level factor residual variance. 
 



81 
 

effect, the magnitude of the interaction effect, ICC, and cluster number explained around 54%, 

21%, and 20% for AIC, respectively; 55%, 23%, and 13% of BIC, respectively, and 62%, 24%, 

and 10% for SaBIC, respectively. When the omitted covariates interaction effect was at the 

within level, magnitude of interaction effect, cluster number, cluster size, interaction between 

magnitude and cluster number, interaction between magnitude and cluster size were statistically 

significantly associated with the sensitivity of AIC, BIC, and SaBIC. Among these factors or 

interactions, the magnitude of the interaction effect explained the most proportion of the variance 

in the three fit indices. When the cross-level covariates interaction effect was omitted, the 

magnitude of the covariates interaction effect explained around 90% of the variance in the 

sensitivity of the three fit indices. All the other factors were not significant for AIC and SaBIC, 

but the interaction between the magnitude and the cluster number was significant for BIC. 

 

Discussion 

The purpose of Study Two was to examine the impact of omitting covariates interaction 

in multilevel MIMIC model on fit indices (RMSEA, CFI, TLI, SRMR-W, SRMR-B, AIC, BIC, 

and SaBIC) and parameter estimates in the model. It purported to enhance the understanding of 

the sensitivity of SEM based fit indices and other fit indices to omitting a parameter, and of the 

impact on other parameters in the model. The simulation results indicated that none of the SEM 

based fit indices (RMSEA, CFI, TLI, SRMR-W, and SRMR-B) detected the misspecified model 

in which the covariates interaction effect was omitted. All these fit indices produced in the 

misspecified model were identical to those in the correct model. Based on these fit indices, the 

misspecified model was concluded to fit the data very well, even though the existing covariates  
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Table 14. Eta-squared (η2) of different sources for proportions of replications of AIC, BIC, and SaBIC that selected the correct model 
of between-level, within-level, and cross-level covariates interaction 

 between Level fit indices  within level fit indices  cross level fit indices 

 AIC BIC SaBIC  AIC BIC SaBIC  AIC BIC SaBIC 

Overall η2 96.89% 99.04% 98.05%  97.59% 98.83% 99.24%  99.90% 99.75% 99.87% 

magnitude 53.64% 54.60% 62.08%  31.21% 54.67% 46.51%  90.06% 85.15% 90.38% 

ICC 20.52% 23.47% 23.74%  0.08% 0.02% 0.06%  2.59% 1.59% 2.29% 

CN 20.43% 12.60% 10.37%  22.39% 17.67% 18.29%  1.40% 4.97% 1.24% 

CS 0.84% 0.13% 0.01%  11.79% 10.68% 10.68%  0.15% 0.37% 0.10% 

magnitude*ICC 0.79% 4.36% 0.56%  0.07% 0.04% 0.06%  0.02% 0.34% 0.10% 

magnitude*CN 0.37% 3.01% 0.87%  18.76% 9.46% 14.40%  3.91% 5.75% 4.24% 

ICC*CN 0.11% 0.72% 0.20%  0.06% 0.01% 0.04%  0.03% 0.01% 0.04% 

ICC*CS 0.10% 0.14% 0.21%  0.03% 0.01% 0.09%  0.02% 0.07% 0.03% 

magnitude*CS 0.09% 0.02% 0.00%  9.88% 6.19% 8.44%  1.67% 1.46% 1.43% 

CN*CS 0.01% 0.00% 0.02%  3.32% 0.09% 0.67%  0.06% 0.02% 0.02% 

Note. ICC = intraclass correlation; CN= number of clusters per group; CS= cluster size; AIC=Akaike information criterion; 
BIC=Bayesian information criterion; SaBIC=sample-size adjusted BIC.
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interaction effect was not specified in the model. Thus, obtaining very good fit indices didn’t 

guarantee that the specified model was a very good fit to the data.  

According to Ryu and West (2009), CFI and RMSEA produced in traditional standard 

method failed to detect model misspecification that occurred at the between level, but succeeded 

to detect model misspecification in the within-level model. The simulation results in this study 

were consistent with their results with respect to the misspecification at the between level (failure 

to detect the between-level misspecificaition), but conflicted with the results of their study with 

respect to misspecification at the within level (CFI and RMSEA in their study were sensitive to 

the within-level model misspecification, whereas they were not in this study). Note that the form 

of misspecification in their study was different from the misspecification form in this study. 

They misspecified the correlation between two factors, whereas in this study, the covariates 

interaction effect was omitted. The sensitivity of the fit indices may vary as a result of different 

forms of the misspecification. Hsu and colleagues (2015) conducted simulation studies to 

examine the common fit indices in detecting missepecified multilevel SEMs, and the results 

showed that CFI, RMSEA, and TLI could detect misspecification only in the within-level model 

but not misspecification in the between-level model; SRMR-B was the only fit index sensitive to 

misspecification in the between-level model. However, in our study, SRMR-B was not sensitive 

to the omission of covariates interaction in the between-level model. One explanation for the 

insensitivity of fit indices in multilevel SEMs was that the misspecification in one parameter 

(constraining the covariates interaction effect to be zero in this study) might be manifested as 

biased estimates of other related parameters without substantially changing the overall sample 

mean and covariance matrices (Gerbing & Anderson, 1993; Tomarken & Waller, 2003). When 

sample mean and covariance matrices were not affected much by the model misspecification, the 
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χ2 statistic produced by the misspecified model was not very different from the χ2 of the true 

model. Therefore, fit indices, such as CFI, RMSEA, TLI, which are a function of the overall 

model χ2 test statistic, were not sensitive to the model misspecification. 

The previous research about the sensitivity of fit indices to model misspecification 

focused on the misspecification of pattern coefficients (factor loadings) or factor covariance 

(e.g., Hsu et al., 2015; Hu & Bentler, 1998; Ryu & West, 2009). Misspecification of these forms 

had an effect on the sample covariance matrices, thus impacting the fit indices. On the other 

hand, omitting a covariates interaction effect in multilevel MIMIC had a less severe impact on 

the sample covariance matrices, and the fit indices were not sensitive enough to capture 

misspecification of this form. Therefore, the fit indices in SEM have their limitations in detecting 

model misspecification of a variety of forms. The fit indices are sensitive to some forms of 

model misspecification but not the other types. Good fit indices based on the gold rule criteria 

cannot guarantee that the relations of the variables in the model are correctly modeled.  

In the cross-level covariates interaction model (two-level random slope modeling), no 

SEM based fit indices (i.e., CFI, RMSEA, TLI, and SRMR) were produced in the output. 

Instead, AIC, BIC, and SaBIC were used to make model comparison. In the between-level and 

within-level covariates interaction model, AIC, BIC, and SaBIC were also available. The 

performance of AIC, BIC, and SaBIC differed as a result of the location and size of the 

covariates interaction effect. When the between-level covariates interaction was omitted in the 

model, the proportions of replications that AIC, BIC, and SaBIC selected the correct model 

increased as sample size increased. The performance of the three fit indices also depended on the 

ICC (lower proportions as ICC increased), similar to the power of testing the covariates 

interaction effect. As expected, the larger the omitted covariates interaction effect was, the more 
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sensitive the three fit indices were. In the conditions with small ICC and larger sample size, AIC 

and SaBIC selected the correct model in all replications. AIC performed better than SaBIC, 

which performed better than BIC. AIC, BIC, and SaBIC were more sensitive to the omission of 

the within-level covariates interaction effect than to the omission of the covariates interaction 

effect. When the omitted interaction effect reached .60, the three fit indices selected the correct 

model in almost 100% of the replications except the conditions with the smallest sample size. 

When the omitted within-level covariates interaction was .30, the sensitivity of three fit indices 

depended on sample size. When sample size was small, AIC was more sensitive than SaBIC, 

which was more sensitive than BIC; however, when sample size was big, the difference between 

the three fit indices was very small. ICC had no impact on the sensitivity of the three fit indices. 

The sensitivity of AIC, BIC, and SaBIC in omitting cross-level covariates interaction effect 

depended majorly on the magnitude of the interaction effect. When the omitted interaction effect 

was .20, a very small percentage (below 32%) of the replications selected the correct model, 

especially BIC. When the omitted covariates interaction was .40, the sensitivity of the three fit 

indices improved. A bigger proportion of replication that selected the correct model was 

associated with bigger sample size, and smaller ICC. Generally, AIC, SaBIC performed better 

than BIC in selecting the correct model. Also, when the covariates interaction effect was at the 

within level, AIC, BIC, and SaBIC were more sensitive to the misspecification than that was at 

the between-level and cross-level.  

Compared to the large body of literature into the sensitivity of fit indices of SEM (e.g., 

Fan & Sivo, 2005, 2007; Hsu et al., 2015; Hu & Bentler, 1998, 1999; Ryu & West, 2009), only a 

small number of studies (Ferron, Dailey, & Yi, 2002; Enders & Tofighi, 2009; Kwok, West, & 

Green, 2007) examined the impact of model misspecification on estimates of other parameters in 
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the model. The misspecification in these three studies were in the form of misspecifying the 

residual variances in two-level growth model. So far no studies have explored the impact of 

omitting covariates interaction effect in multilevel MIMIC models. The simulation results in this 

study indicated that the omitted interaction effect was manifested as biased estimates of the two 

main effects regardless of the location of the covariates interaction. It was of interest that each of 

the two main effects was overestimated by approximately half of the magnitude of the covariates 

interaction effect. Note that the direction of the bias in the two main effects was related to the 

direction of the omitted covariates interaction effect. The overestimation of the two main effects 

was due to the positive direction of the covariates interaction effect in the simulated data. If 

negative covariates interaction effect was omitted, the two main effects would be 

underestimated. Meanwhile the between-level factor mean was underestimated, and the 

underestimation varied as a function of the size of the interaction effect, when the covariates 

interaction was at the between level or at the within level. In addition to overestimated main 

effects, the between-level factor residual variance (no estimation of between-level factor mean 

was produced in the random slope modeling) and intercepts of the six indicators were 

underestimated when the covariates interaction was at the cross level. When necessary 

parameters are omitted from the model, not all parameters in the model are affected, but only 

affecting certain parameters that are closely related to the misspecification (Yuan & Marshall, 

2003). Thus, in this study, only the parameters that were closely related to the omitted interaction 

effect were affected, including the two main effects of the two covariates and the between-level 

factor mean. When the cross-level interaction effect was omitted, the between-level factor 

residual variance and indicator intercepts were also affected, apart from the affected two main 

effects. In this two-level random slope modeling, the between-level factor mean was not 
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estimated, and maybe that was why the indicators’ intercepts were affected. In the between-level 

and within-level covariates interaction models, the omitted covariates interaction effect resulted 

in an underestimation of the between-level factor mean of around -.07 and -.15 for interaction 

effect of .30 and .60, respectively. When the cross-level covariates interaction effect was 

omitted, the six indicators’ intercepts were underestimated by -.05 and -.10 for interaction effect 

of .20 and .40, respectively. The degree of bias in the between-level factor mean or the between-

level indicators’ intercepts was comparable given that the covariates interaction effect was 

different for different locations of covariates (.30 and .60 for the between-level and within-level 

covariates interaction effects; .20 and .40 for the cross-level covariates interaction effects). 

The affected parameters were intuitive based on the path analysis proposed by Yuan, 

Marshall, and Bentler (2003). Using the path analysis, it was expected that parameters mentioned 

above (i.e., main effects and between-level factor mean) were to be affected, as they were closely 

related to the misspecification. However, to what degree they were to be affected was not certain. 

In this study, it showed that the two main effects of the two covariates carried approximately half 

of the interaction effect. The other two parameters affected by the omission of the interaction 

effect were the between-level factor mean and between-level factor residual variance when the 

two covariates were both at the between level; the between-level factor mean and within-level 

factor residual variance when the two covariates were both at the within level. The between-level 

factor mean was underestimated by approximately .08 and .15, when the omitted covariates 

interaction effect was at .30 and .60, respectively, in the conditions of the two covariates being at 

the between level or at the within level. When the omitted covariates interaction was at the 

between level, the between-level factor residual variance was overestimated by 

approximately .01 and .02, respectively, for omitted .30, and .60 interaction effect, in all 
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conditions examined. When the omitted covariates interaction was at the within level, the within-

level factor residual variance was overestimated by approximately .01 in some conditions for 

omitted .30 interaction effect, and was overestimated by .02 in all conditions for omitted .60 

interaction effect. In sum, all the parameters affected by the omitted covariates interaction effect 

were closely related to the misspecification.  
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Chapter Five: Conclusions and Suggestions 

 

Conclusions 

The MIMIC model has been known for its flexibility in modeling multiple covariates in 

latent variable modeling, and the covariates can be continuous or categorical. Thus, it has been 

utilized frequently by methodological and empirical researchers in latent variable modeling. The 

extension of ML MIMIC with multilevel data enables the modeling of covariates from both the 

within level and the between level. It is common in educational and psychological research that 

the effect of some covariates on the latent factor are conditional on other covariates, that is, 

covariates interaction effect. However, there is a lack of research into the performance of ML 

MIMIC modeling in detecting the covariates interaction effect and the impact of omitting the 

existing covariates interaction effect. Two simulation studies were conducted to investigate the 

performance of ML MIMIC models in detecting covariates interaction effect and the impact of 

omitting the interaction effect. Study One aimed to examine the performance of ML MIMIC in 

detecting covariates interaction effect when the covariates interaction effect was at the between 

level, at the within level, and at the cross level, respectively. Study Two purported to examine 

the sensitivity of SEM fit indices (CFI, TLI, RMSEA, SRMR-W, and SRMR-B) and other fit 

indices, like AIC, BIC, and SaBIC, to the omission of the covariates interaction effect, as well as 

the impact of the omission on the estimates of other parameters in the model.  

Simulation results of Study One showed that the performance of ML MIMIC in detecting 

the covariates interaction effect varied as a result of the location of the covariates interaction 
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effect. Also, the impact of the design factor on the performance of ML MIMIC varied depending 

on the location of the covariates interaction effect. When the covariates interaction was at the 

between level, ASR was above 90% in most of the conditions except the large ICC combined 

with smaller sample size. Type I error rate was under control in all conditions. Power of 

detecting the covariates interaction effect varied substantially as a function of the magnitude of 

the covariates interaction effect, ICC level, and the sample size, especially cluster number. When 

the interaction effect was at .30, power ranged from .14 (large ICC combined with the smallest 

sample size) to .75 (small ICC combined with the largest sample size). As the covariates 

interaction effect increased to .60, power increased considerably, particular in small and medium 

ICC conditions, ranging from .72 to 1.00, from .49 to .97, and from .35 to .80 for small, medium, 

and large ICCs. Bias and relative bias of the covariates interaction effect were negligible in most 

conditions. The impact of cluster number on power was larger than that of cluster size. Standard 

error of parameter estimate and RMSE had very similar pattern, increasing as ICC became larger 

controlling for the other design factors, and decreasing as sample size increased. Standard error 

was similar for the two different magnitudes of the covariates interaction effect, whereas RMSE 

was smaller in the larger interaction effect of .60. 

When the covariates interaction was at the within level, the performance of ML MIMIC 

was very decent. ASR was close to 100% in all conditions. Type I error rate was similar to that 

of the between-level interaction conditions. Power in detecting the covariates interaction effect 

ranged from .46 to .99 for the covariates interaction of .30, and was almost 1.00 in all conditions 

except the smallest sample size for the covariates interaction of .60. Power increased as the 

sample size became bigger, and ICC seemed to have no impact on power. Standard error of 
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parameter estimate and RMSE decreased as sample size increased, and they were similar in the 

two different magnitudes of the covariates interaction effect.  

For the cross-level covariates interaction effect conditions, the performance of ML 

MIMIC was adequate even with a small interaction effect of .20. Power was impacted only by 

total sample size, but not ICC level or cluster number. Relative bias was negligible except the 

smallest sample size conditions. When the interaction effect increased to .40, power ranged from 

.61 to 1.00. In all conditions power seemed to be impacted only by the total sample size, and so 

were the other outcome variables.  

In sum, ML MIMIC had decent performance in detecting and estimating covariates 

interaction effect when the covariates were at the within level and at the cross level. However, 

when the covariates were at the between level, a large ICC and smaller number of cluster number 

compromised the performance of ML MIMIC. When ICC was small and cluster number was big, 

the performance of ML MIMIC was adequate. This finding provides useful implications for 

empirical researchers who are interested in estimating the covariates interaction effect in ML 

MIMIC. The location of the interaction effect, the ICC level, and the total sample size (especially 

cluster number) available render the research understand whether the chosen method was 

adequate or not. When the two covariates are at the between level, applied researchers need to 

check ICC level and cluster number before proceeding to estimating covariates interaction effect 

in ML MIMIC. However, when the two covariates are at the within level or cross level, 

researchers need to make sure that the total sample size is big enough to achieve decent power of 

detecting covariates interaction effect.  

Simulation results in Study Two indicated that none of the SEM fit indices (CFI, TLI, 

RMSEA, SRMR-W, and SRMR-B) was sensitive to the omission of the covariates interaction 
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effect, irrespective of the location of the covariates interaction effect. The insensitivity of these 

fit indices was partly because that the omitted interaction effect was carried through the other 

parameters in the model and the total variance-covariance matrices did not change substantially. 

This is similar to the equivalent or close to equivalent models in SEM, where structural 

relationship between variables (conceptual interpretation) is different but model fit is equivalent 

or close to equivalent, making it difficult to distinguish empirically which model is correct.  

These fit indices have been commonly used by applied researchers to evaluate SEM model fit. 

When all these fit indices are more than adequate based on the golden rule criteria, the applied 

researchers feel relieved that their models have good fit to the data. However, the simulation 

results in Study Two showed that very good fit indices did not guarantee that all the significant 

relationships between variables have been modeled correctly in the model. A missing interaction 

effect, which resulted in biased estimates of some other parameters in the model, was not 

detected by the fit indices.  

The consequences of the insensitivity of fit indices to a missing covariates interaction 

effect pose serious issues for applied researchers to make references about the relationship 

between variables in the data. It is recommended that applied researchers use theoretical 

framework in specific research areas to guide the modeling of the variables in the model to avoid 

omitting some important effects between some variables. If no established theory has been in 

place, more explorations into the relationship between the variables are suggested to have a more 

complete understanding of the data. It is important to run both models with and without 

interaction effects. Because power of testing interaction effect was fairly decent at least at the 

within level and cross level, we can detect the presence of interaction effect by testing statistical 

significance of the interaction effects. Moreover, the estimate was also unbiased, and the 
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magnitude of the interaction effect can be estimated accurately. For methodologist, it would be 

helpful to develop different but potentially more sensitive methods for detecting omitted 

interaction effect.  

When the omitted interaction was small, none of AIC, BIC, and SaBIC selected the 

correct model consistently for the three scenarios of covariates interaction effect. On the other 

hand, when the omitted interaction effect reached .60, the three fit indices performed much 

better, especially for the omitted within-level covariates interaction effect (AIC, BIC, and SaBIC 

selected the correct model almost in all conditions). In sum, AIC performed better than SaBIC, 

which outperformed better than BIC. BIC(J) performed better than BIC in the model of omitting 

between-level interaction effect.  

The biased parameter estimates in the model resulted from the model misspecification 

included the covariates main effects and the between-level factor mean. Of note that when 

between-level factor mean was not produced in the cross-level covariates modeling, all indicator 

intercepts were underestimated. Interestingly, the two main effects were overestimated by 

approximately half of the size of the covariates interaction effect. Between-level factor mean was 

underestimated. The underestimation of the between-level factor mean might be due to the 

overestimation of the two main effects. Of note that the direction of bias in between-level factor 

mean depended on the way in which the interaction effect was simulated (a positive interaction 

effect in this study). If a negative covariates interaction effect is simulated, the two main effects 

are to be underestimated by receiving half of the magnitude of the interaction effect, and I 

speculate that the between-level factor mean may be overestimated, correspondingly. This 

speculation was substantiated by another simulation in which the covariates interaction effect 

was negative. In the misspecified cross-level covariates interaction effect model, between-level 
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factor residual variance was underestimated, in addition to the affected parameters mentioned 

above. The other parameters in the model were not affected much by the omission of the 

covariates interaction effect. Applied researchers need to interpret the main effects of the 

covariates and factor mean in ML MIMIC with caution if they do not rule out the possibility of 

covariates interaction effect in the model.  

 

Limitations and Future Research Direction 

The two studies have limitations that we should be aware of. First, in the ML MIMIC 

model, the measurement CFA part at both the between level and within level had good 

measurement quality with all factor loadings of the six indicators at .80. In real research 

scenarios it is too ideal to have factor loadings of all indicators so high. The impact of varying 

measurement quality (e.g., lower factor loadings) on the performance of ML MIMIC in detecting 

covariates interaction effect remains unknown. Future research on the performance of ML 

MIMIC in estimating covariates interaction effect with varying measurement quality of the CFA 

measurement part is encouraged. 

Second, a limited number of manipulated factors were considered in these two studies. 

Some other parameters in the model were fixed at a common value for those parameters. The 

two main effects were fixed. Varying main effects to have different ratio of the main effects to 

the covariates interaction effect may impact the performance of ML MIMIC. Moreover, all the 

clusters had the same cluster size. In real research scenario, it is more common to have 

unbalanced design. More design factors can be included in the simulation to have a more 

comprehensive understanding of the performance. 
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Third, strict invariance in terms of the grouping covariates and strong measurement 

cluster invariance (identical cross-level factor loadings and intercepts) was assumed in ML 

MIMIC in the simulation studies. The violation of strong measurement invariance (e.g., 

noninvariant intercepts) in ML MIMIC may impact the performance of ML MIMIC in 

estimating covariates interaction effect. Future research on the impact of violating measurement 

invariance in ML MIMIC is called for.  

Fourth, the fit indices examined in Study Two included SEM based fit indices, AIC, BIC, 

BIC(J), and SaBIC. Given the nested nature of the correct model and the misspecified model, 

likelihood-ratio test can be used to evaluate its performance in detecting the misspecified model. 

Lastly, previous study showed the sensitivity of traditional SEM fit indices (i.e., CFI, 

RMSEA, TLI, SRMR) to the within level model misspecification (Hsu et al., 2015; Ryu & West, 

2009). Of note that in their study model misspecification took the form of misspecified factor 

loadings and factor covariance. A quantification of the misspecification severity (Fan & Sivo, 

2005) of omitting covariates interaction effect is encouraged to compare the degree of model 

misspecifications of different studies. Thus, a more profound understanding of the sensitivity of 

SEM based fit indices is possible.  
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Appendix 1: Data Generation SAS Code 

Between-level covariates interaction effect of .30 with small ICC 

/****************************************/ 
/*            Pattern Matrix            */ 
/****************************************/; 
* specify matrices at the between level; 
* step 1: obtain correlation matrix and SDs; 
options noxwait xsync; 
proc iml; 
LY = {.8, .8, .8, .8, .8, .8}; 
PH = {.1};       **For medium and large ICC,PH is .25 and .50, respectively*; 
TE = {.004 0 0 0 0 0, 
   0 .004 0 0 0 0, 
   0 0 .004 0 0 0, 
   0 0 0 .004 0 0, 
   0 0 0 0 .004 0, 
   0 0 0 0 0 .004}; *TE is .01, and .02 for medium and large ICCs*; 
COV = LY*PH*LY` + TE; 
*print COV ; 
 * obtain correlation matrix and SDs from COV; 
S = sqrt(diag(cov)); 
R = (inv(S))*cov*(inv(S)); 
 create STDB from S [colname={y1 y2 y3 y4 y5 y6}]; 
  append from S; 
create CR from R [colname={y1 y2 y3 y4 y5 y6}]; 
     append from R; 
print S R;  
 
* step 2: obtain between-level pattern matrix; 
data A (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.9411765         1 . . . . 
        0.9411765 0.9411765         1 . . . 
        0.9411765 0.9411765 0.9411765         1 . . 
        0.9411765 0.9411765 0.9411765 0.9411765         1 . 
        0.9411765 0.9411765 0.9411765 0.9411765 0.9411765         1 
 
; 
*obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutB noprint; 
data patternB; set facoutB; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
* specify within-level model; 
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* step 1: obtain correlation matrix and SDs; 
proc iml; 
LYW = {.8, .8, .8, .8, .8, .8}; 
PHW = {1}; 
TEW = {.36 0 0 0 0 0, 
   0 .36 0 0 0 0, 
   0 0 .36 0 0 0, 
   0 0 0 .36 0 0, 
   0 0 0 0 .36 0, 
   0 0 0 0 0 .36}; 
COVW = LYW*PHW*LYW` + TEW; 
*print COVW ; 
 * obtain correlation matrix and SDs from COV; 
SW = sqrt(diag(covW)); 
RW = (inv(SW))*covW*(inv(SW)); 
 create STDW from SW [colname={y1 y2 y3 y4 y5 y6}]; 
  append from SW; 
*print SW RW; 
 
* step 2: obtain within-level pattern matrix; 
data B (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.64   1 . . . . 
        0.64 0.64   1 . . . 
        0.64 0.64 0.64   1 . . 
        0.64 0.64 0.64 0.64   1 . 
        0.64 0.64 0.64 0.64 0.64   1 
; 
 *obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutW noprint; 
data patternW; set facoutW; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
 
/****************************************/ 
/*           Data Generation            */ 
/****************************************/; 
options nonotes; 
*libname ml 'U:\mlMIMIC\dataSAS'; 
 
%let mc = 1000; *number of replications; 
 
%macro mlmimic;  
 * do loop for cluster number; 
%do cnloop = 1 %to 3; 
 %if &cnloop = 1 %then %do; %let cn = 40; %end; 
 %if &cnloop = 2 %then %do; %let cn = 80; %end; 
 %if &cnloop = 3 %then %do; %let cn = 120; %end; 
   * do loop for cluster size; 
 %do csloop = 1 %to 2; 
   %if &csloop = 1 %then %do; %let cs = 10; %end; 
   %if &csloop = 2 %then %do; %let cs = 20; %end; 
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   X mkdir "U:\dissertation simulation\between_3\S_icc\cn&cn.cs&cs\"; 
    * do loop to generate the given number of replications; 
  %do i=1 %to &mc; 
   proc iml; 
    use patternB; 
    read all var _NUM_ into F; 
    F = F`; 
   use stdb; 
   read all var _NUM_ into STB; 
    * create two groups with interaction (i.e., 4 cells); 
   n = &cn/4; 
    Y1 = rannor(J(n, 6, 0)); 
    Y1 = Y1`; 
    z1 = F*Y1; 
    z1 = STB*z1; 
    z1 = z1`; 
   Y2 = rannor(J(n, 6, 0)); 
    Y2 = Y2`; 
    z2 = F*Y2; 
    z2 = STB*z2 +.4; 
    z2 = z2`; 
   Y3 = rannor(J(n, 6, 0)); 
    Y3 = Y3`; 
    z3 = F*Y3; 
    z3 = STB*z3 +.3; 
    z3 = z3`; 
   Y4 = rannor(J(n, 6, 0)); 
    Y4 = Y4`; 
    z4 = F*Y4; 
    z4 = STB*z4 +1.0;  *1.3 for interaction effect of .60*;                                               
    z4 = z4`; 
  z = z1//z2//z3//z4; 
  *print n z2 z21 z; 
    /* z is a set of cluster means */ 
   %do j = 1 %to &cn; 
     use patternW; 
     read all var _NUM_ into FW; 
     FW = FW`; 
    use stdW; 
   read all var _NUM_ into STW; 
    YW = rannor(J(&cs, 6, 0)); 
    YW = YW`; 
    zW = FW*YW; 
    zW = STW*zW; 
    zW = zW`; 
   cmean = z[&j,1:6]; 
   wthn = zw + cmean; 
   clid = J(&cs, 1, &j); 
   W = wthn||clid; 
    run; 
    * create a SAS dataset per cluster; 
    create cl&j from W [colname={y1 y2 y3 y4 y5 y6 clus}]; 
    append from W; 
   *print YW zW z cmean W; 
   %end; *end of cluster loop; 
   * stack up clusters to create a final dataset; 
   data rep&i ; 
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    %if &cnloop = 1 %then %do; 
     set cl1-cl40; 
     if clus lt 11 then d1 = 0; 
     if clus lt 11 then d2 = 0; 
     if clus gt 10 and clus lt 21 then d1 = 0; 
     if clus gt 10 and clus lt 21 then d2 = 1; 
     if clus gt 20 and clus lt 31 then d1 = 1; 
     if clus gt 20 and clus lt 31 then d2 = 0; 
     if clus gt 30 then d1 = 1; 
     if clus gt 30 then d2 = 1; 
    %end; 
    %if &cnloop = 2 %then %do; 
     set cl1-cl80; 
     if clus lt 21 then d1 = 0; 
     if clus lt 21 then d2 = 0; 
     if clus gt 20 and clus lt 41 then d1 = 0; 
     if clus gt 20 and clus lt 41 then d2 = 1; 
     if clus gt 40 and clus lt 61 then d1 = 1; 
     if clus gt 40 and clus lt 61 then d2 = 0; 
     if clus gt 60 then d1 = 1; 
     if clus gt 60 then d2 = 1; 
    %end; 
    %if &cnloop = 3 %then %do; 
     set cl1-cl120; 
     if clus lt 31 then d1 = 0; 
     if clus lt 31 then d2 = 0; 
     if clus gt 30 and clus lt 61 then d1 = 0; 
     if clus gt 30 and clus lt 61 then d2 = 1; 
     if clus gt 60 and clus lt 91 then d1 = 1; 
     if clus gt 60 and clus lt 91 then d2 = 0; 
     if clus gt 90 then d1 = 1; 
     if clus gt 90 then d2 = 1; 
    %end; 
   run; 
   proc export data= rep&i 
     outfile = "U:\dissertation 
simulation\between_3\S_icc\cn&cn.cs&cs\rep&i..dat" 
     dbms = dlm replace ; 
     putnames = no; 
   run; 
  %end; *end of replication loop; 
 %end; *end of cluster size loop; 
%end; *end of cluster number loop; 
%mend mlmimic; * end of macro; 
%mlmimic; run; 
 

Within-level covariates interaction effect of .30 with small ICC 

/****************************************/ 
/*            Pattern Matrix            */ 
/****************************************/; 
* specify matrices at the between level; 
* step 1: obtain correlation matrix and SDs; 
options nonotes nosource nosource2 noxwait xsync; 
proc iml; 
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LY = {.8, .8, .8, .8, .8, .8}; 
PH = {.10};     **For medium and large ICC,PH is .25 and .50, respectively*; 
TE = {.004 0 0 0 0 0, 
   0 .004 0 0 0 0, 
   0 0 .004 0 0 0, 
   0 0 0 .004 0 0, 
   0 0 0 0 .004 0, 
   0 0 0 0 0 .004}; *TE is .01, and .02 for medium and large ICCs*; 
 
COV = LY*PH*LY` + TE; 
*print COV ; 
 * obtain correlation matrix and SDs from COV; 
S = sqrt(diag(cov)); 
R = (inv(S))*cov*(inv(S)); 
 create STDB from S [colname={y1 y2 y3 y4 y5 y6}]; 
  append from S; 
create CR from R [colname={y1 y2 y3 y4 y5 y6}]; 
     append from R; 
print S R;  
 
* step 2: obtain between-level pattern matrix; 
data A (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.9411765         1 . . . . 
        0.9411765 0.9411765         1 . . . 
        0.9411765 0.9411765 0.9411765         1 . . 
        0.9411765 0.9411765 0.9411765 0.9411765         1 . 
        0.9411765 0.9411765 0.9411765 0.9411765 0.9411765         1 
; 
 
*obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutB noprint; 
data patternB; set facoutB; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
* specify within-level model; 
* step 1: obtain correlation matrix and SDs; 
proc iml; 
LYW = {.8, .8, .8, .8, .8, .8}; 
PHW = {1}; 
TEW = {.36 0 0 0 0 0, 
   0 .36 0 0 0 0, 
   0 0 .36 0 0 0, 
   0 0 0 .36 0 0, 
   0 0 0 0 .36 0, 
   0 0 0 0 0 .36}; 
COVW = LYW*PHW*LYW` + TEW; 
*print COVW ; 
 * obtain correlation matrix and SDs from COV; 
SW = sqrt(diag(covW)); 
RW = (inv(SW))*covW*(inv(SW)); 
 create STDW from SW [colname={y1 y2 y3 y4 y5 y6}]; 
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  append from SW; 
*print SW RW; 
 
* step 2: obtain within-level pattern matrix; 
data B (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.64   1 . . . . 
        0.64 0.64   1 . . . 
        0.64 0.64 0.64   1 . . 
        0.64 0.64 0.64 0.64   1 . 
        0.64 0.64 0.64 0.64 0.64   1 
; 
 *obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutW noprint; 
data patternW; set facoutW; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
 
/****************************************/ 
/*           Data Generation            */ 
/****************************************/; 
options nonotes; 
*libname ml 'U:\mlMIMIC\dataSAS'; 
 
%let mc = 1000; *number of replications; 
 
%macro mlmimic;  
 * do loop for cluster number; 
%do cnloop = 1 %to 3; 
 %if &cnloop = 1 %then %do; %let cn = 20; %end; 
 %if &cnloop = 2 %then %do; %let cn = 40; %end; 
 %if &cnloop = 3 %then %do; %let cn = 60; %end; 
   * do loop for cluster size; 
 %do csloop = 1 %to 2; 
   %if &csloop = 1 %then %do; %let cs = 20; %end; 
   %if &csloop = 2 %then %do; %let cs = 40; %end; 
   X mkdir "U:\dissertation simulation\within_3\S_icc\cn&cn.cs&cs\"; 
    * do loop to generate the given number of replications; 
  %do i=1 %to &mc; 
   proc iml; 
    use patternB; 
    read all var _NUM_ into F; 
    F = F`; 
   use stdb; 
   read all var _NUM_ into STB; 
  Y = rannor(J(&cn, 6, 0)); 
   Y = Y`; 
   z = F*Y; 
   z = STB*z; 
   z = z`; 
   /* z is a set of cluster means */ 
   %do j = 1 %to &cn; 
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     use patternW; 
     read all var _NUM_ into FW; 
     FW = FW`; 
    use stdW; 
   read all var _NUM_ into STW; 
   n= &cs/4; 
    YW = rannor(J(&cs, 6, 0)); 
    YW = YW`; 
    zW = FW*YW; 
    zW = STW*zW; 
    zW = zW`; 
   cmean = z[&j,1:6]; 
   wthn = zw + cmean; 
   wthn1 = wthn[1:n, ] - 0.2; 
   wthn2 = wthn[n+1:2*n, ] + 0.2; 
   wthn3 = wthn[2*n+1:3*n,] + 0.1; 
   wthn4 = wthn[3*n+1:4*n,] +0.8; 
   g1 = J(n, 2, 0); 
   g2 = J(n, 2, 0); 
   g2[,2] = 1;  
   g3 = J(n, 2, 0); 
   g3[,1] = 1;  
   g4 = J(n, 2, 1); 
   wthn = (wthn1||g1)//(wthn2||g2)//(wthn3||g3)//(wthn4||g4); 
   clid = J(&cs, 1, &j); 
   W = wthn||clid; 
    run; 
    * create a SAS dataset per cluster; 
    create cl&j from W[colname={y1 y2 y3 y4 y5 y6 d1 d2clus}]; 
    append from W; 
   print YW zW z cmean W; 
   %end; *end of cluster loop; 
   * stack up clusters to create a final dataset; 
   data rep&i ; 
    %if &cnloop = 1 %then %do; 
     set cl1-cl20; 
    %end; 
    %if &cnloop = 2 %then %do; 
     set cl1-cl40; 
    %end; 
    %if &cnloop = 3 %then %do; 
     set cl1-cl60; 
    %end; 
   run; 
   proc export data= rep&i 
     outfile = "U:\dissertation 
simulation\within_3\S_icc\cn&cn.cs&cs\rep&i..dat" 
     dbms = dlm replace ; 
     putnames = no; 
   run; 
  %end; *end of replication loop; 
 %end; *end of cluster size loop; 
%end; *end of cluster number loop; 
%mend mlmimic; * end of macro; 
%mlmimic; run; 
 

**1.1 replaces .80 for interaction 
effect of .60**; 
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Cross-level covariates interaction effect of .20 with small ICC 

/****************************************/ 
/*            Pattern Matrix            */ 
/****************************************/; 
* specify matrices at the between level; 
* step 1: obtain correlation matrix and SDs; 
title ' '; 
proc iml; 
LY = {.8, .8, .8, .8, .8, .8}; 
PH = {.1};  **For medium and large ICC,PH is .25 and .50, respectively*; 
TE = {.004 0 0 0 0 0, 
   0 .004 0 0 0 0, 
   0 0 .004 0 0 0, 
   0 0 0 .004 0 0, 
   0 0 0 0 .004 0, 
   0 0 0 0 0 .004};*TE is .01, and .02 for medium and large ICCs*; 
COV = LY*PH*LY` + TE; 
*print COV ; 
 * obtain correlation matrix and SDs from COV; 
S = sqrt(diag(cov)); 
R = (inv(S))*cov*(inv(S)); 
 create STDB from S [colname={y1 y2 y3 y4 y5 y6}]; 
  append from S; 
 /*create CR from R [colname={y1 y2 y3 y4 y5 y6}]; 
     append from R;*/ 
*print S R;  
 
* step 2: obtain between-level pattern matrix; 
data A (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.9411765         1 . . . . 
        0.9411765 0.9411765         1 . . . 
        0.9411765 0.9411765 0.9411765         1 . . 
        0.9411765 0.9411765 0.9411765 0.9411765         1 . 
        0.9411765 0.9411765 0.9411765 0.9411765 0.9411765         1 
; 
*obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutB noprint; 
data patternB; set facoutB; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
* specify within-level model; 
* step 1: obtain correlation matrix and SDs; 
proc iml; 
LYW = {.8, .8, .8, .8, .8, .8}; 
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PHW = {1}; 
TEW = {.36 0 0 0 0 0, 
   0 .36 0 0 0 0, 
   0 0 .36 0 0 0, 
   0 0 0 .36 0 0, 
   0 0 0 0 .36 0, 
   0 0 0 0 0 .36}; 
COVW = LYW*PHW*LYW` + TEW; 
*print COVW ; 
 * obtain correlation matrix and SDs from COV; 
SW = sqrt(diag(covW)); 
RW = (inv(SW))*covW*(inv(SW)); 
 create STDW from SW [colname={y1 y2 y3 y4 y5 y6}]; 
  append from SW; 
*print SW RW; 
 
* step 2: obtain within-level pattern matrix; 
data B (type = corr); 
_TYPE_ ='CORR'; 
input y1 y2 y3 y4 y5 y6; 
cards; 
        1 . . . . . 
        0.64   1 . . . . 
        0.64 0.64   1 . . . 
        0.64 0.64 0.64   1 . . 
        0.64 0.64 0.64 0.64   1 . 
        0.64 0.64 0.64 0.64 0.64   1 
; 
 *obtain factor pattern matrix for data generation; 
proc factor n=6 outstat=facoutW noprint; 
data patternW; set facoutW; 
 if _TYPE_ = 'PATTERN'; 
 drop _TYPE_ _NAME_ ; 
run; 
 
 
/****************************************/ 
/*           Data Generation            */ 
/****************************************/; 
options nonotes; 
options noxwait xsync; 
*libname ml 'U:\mlMIMIC\dataSAS'; 
 
%let mc = 1000; *number of replications; 
 
%macro mlmimic;  
 * do loop for cluster number; 
%do cnloop = 1 %to 3; 
 %if &cnloop = 1 %then %do; %let cn = 40; %end; 
 %if &cnloop = 2 %then %do; %let cn = 80; %end; 
 %if &cnloop = 3 %then %do; %let cn = 120; %end; 
   * do loop for cluster size; 
 %do csloop = 1 %to 2; 
   %if &csloop = 1 %then %do; %let cs = 10; %end; 
   %if &csloop = 2 %then %do; %let cs = 20; %end; 
   X mkdir "U:\dissertation simulation\cross_2\S_ICC\cn&cn.cs&cs\"; 
    * do loop to generate the given number of replications; 
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  %do i=1 %to &mc; 
   proc iml; 
    use patternB; 
    read all var _NUM_ into F; 
    F = F`; 
   use stdb; 
   read all var _NUM_ into STB; 
    * create two level-2 group marginal means ; 
   n = &cn/2; 
    Y1 = rannor(J(n, 6, 0)); 
    Y1 = Y1`; 
    z1 = F*Y1; 
    z1 = STB*z1; 
    z1 = z1`; 
   Y2 = rannor(J(n, 6, 0)); 
    Y2 = Y2`; 
    z2 = F*Y2; 
    z2 = STB*z2 +.6; 
    z2 = z2`; 
    
  z = z1//z2; 
  *print n z1 z2 z; 
    /* z is a set of cluster means */ 
   %do j = 1 %to &cn/2; * cluster loop 1; 
     use patternW; 
     read all var _NUM_ into FW; 
     FW = FW`; 
    use stdW; 
   read all var _NUM_ into STW; 
   m= &cs/2; 
    YW = rannor(J(&cs, 6, 0)); 
    YW = YW`; 
    zW = FW*YW; 
    zW = STW*zW; 
    zW = zW`; 
   cmean = z[&j,1:6]; 
   wthn = zw + cmean; 
   wthn1 = wthn[1:m, ] - 0.2; 
   wthn2 = wthn[m+1:2*m, ] + 0.2; 
   g1 = J(m, 1, 0); 
   g2 = J(m, 1, 1); 
   wthn = (wthn1||g1)//(wthn2||g2); 
   l2g = J(&cs, 1, 0); 
   clid = J(&cs, 1, &j); 
   W = wthn||l2g||clid; 
    run; 
    * create a SAS dataset per cluster; 
  create cl&j from W [colname={y1 y2 y3 y4 y5 y6 L1grp L2grp clus}]; 
    append from W; 
   *print YW zW z cmean W; 
   %end; *end of cluster loop 1; 
   %do j = &cn/2 + 1 %to &cn; * cluster loop 2; 
     use patternW; 
     read all var _NUM_ into FW; 
     FW = FW`; 
    use stdW; 
   read all var _NUM_ into STW; 

**.70 replaces .60 for interaction 
effect of .40**; 
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   m= &cs/2; 
    YW = rannor(J(&cs, 6, 0)); 
    YW = YW`; 
    zW = FW*YW; 
    zW = STW*zW; 
    zW = zW`; 
   cmean = z[&j,1:6]; 
   wthn = zw + cmean; 
   wthn1 = wthn[1:m, ] - 0.3; 
   wthn2 = wthn[m+1:2*m, ] + 0.3; 
   g1 = J(m, 1, 0); 
   g2 = J(m, 1, 1); 
   wthn = (wthn1||g1)//(wthn2||g2); 
   l2g = J(&cs, 1, 1); 
   clid = J(&cs, 1, &j); 
   W = wthn||l2g||clid; 
    run; 
    * create a SAS dataset per cluster; 
  create cl&j from W [colname={y1 y2 y3 y4 y5 y6 L1grp L2grp clus}]; 
    append from W; 
   *print YW zW z cmean W; 
   %end; *end of cluster loop2; 
   * stack up clusters to create a final dataset; 
   data rep&i ; 
    %if &cnloop = 1 %then %do; 
     set cl1-cl40; 
    %end; 
    %if &cnloop = 2 %then %do; 
     set cl1-cl80; 
    %end; 
    %if &cnloop = 3 %then %do; 
     set cl1-cl120; 
    %end; 
   run; 
   proc export data= rep&i 
     outfile = "U:\dissertation 
simulation\cross_2\S_ICC\cn&cn.cs&cs\rep&i..dat" 
     dbms = dlm replace ; 
     putnames = no; 
   run; 
  %end; *end of replication loop; 
 %end; *end of cluster size loop; 
%end; *end of cluster number loop; 
%mend mlmimic; * end of macro; 
%mlmimic; run; 
 
quit; 
 

**.40 replaces .30 in these two lines 
for interaction effect of .40**; 
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