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ABSTRACT 

This study aimed to provide evidence of reliability and validity for the 42-item 

Perceptions of Practices Survey.  The scale was designed to assess educators’ perceptions of the 

extent to which their schools were implementing multi-tiered system of supports (MTSS) 

practices.  The survey was initially given as part of a larger evaluation project of a 3-year, 

statewide initiative designed to evaluate MTSS implementation.  Elementary educators (Level-1 

n = 2,109, Level-2 n = 62) completed the survey in September/October of 2007, 

September/October of 2008 (Level-1 n = 1,940, Level-2 n = 61), and January/February of 2010 

(Level-1 n = 2,058, Level-2 n = 60).  Multilevel exploratory and confirmatory factor analysis 

procedures were used to examine the construct validity and reliability of the instrument.  Results 

supported a correlated four-factor model: Tiers I & II Problem Solving, Tier III Problem 

Identification, Tier III Problem Analysis & Intervention Procedures, and Tier III Evaluation of 

Response to Intervention.  Composite reliability estimates for all factors across the three years 

approximated or exceeded .84.  Additionally, relationships were found between the Perceptions 

of Practices Survey factors and another measure of MTSS implementation, the Tiers I & II 

Critical Components Checklist.  Implications for future research regarding the psychometric 

properties of the survey and for its use in schools are discussed. 



 1	
  

 

 

CHAPTER I: Introduction 

Policy makers have promoted higher student achievement and have strived to make 

education in the United States more equitable for all students for the past 50 years.  The 

emphasis on improving student outcomes is evident in two major federal education laws.  One 

law, the Elementary and Secondary Education Act of 1965 (ESEA) and its subsequent 

reauthorizations, emphasized the importance of raising achievement and closing achievement 

gaps nationwide.  The reauthorization of the ESEA in 2001, the No Child Left Behind Act 

(NCLB, 2002), increased accountability for students and teachers through mandating the use of 

yearly standardized tests as a measure of how well schools were performing compared to set 

achievement standards.  Moreover, NCLB required the use of data-based decision making and 

evidence-based practices to ensure accountability for all students.  More recently (in 2011), the 

U.S. Department of Education (US DoE) allowed state educational agencies (SEAs) to request 

flexibility waivers that would allow states and their local educational agencies (LEAs) to 

implement state and local reform initiatives that differed from some of the specific requirements 

set forth by NCLB.  However, in order to get the waivers, states were required to continue 

emphasizing accountability by adopting rigorous student and educator evaluation practices 

(USDoE, 2012).  The trend toward increased flexibility for states continued with the latest ESEA 

reauthorization, the Every Student Succeeds Act (ESSA, 2016), but a focus on data-based 

accountability for student outcomes remained in the legislation.  

In addition to general education concerns, policy makers also focused on accountability 

for the outcomes of students with disabilities.  The Individuals with Disabilities Education 
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Improvement Act (IDEIA, 2004) specifically permitted school districts to use “a process that 

determines if the child responds to scientific, research-based intervention” (§ 1414[b][6]) for the 

purpose of identifying a student as having a Specific Learning Disability (SLD).  Traditionally, 

evaluations of eligibility for services under the SLD category used a discrepancy model that 

required a student to have a significant difference between achievement and intellectual ability.  

Many argued that the discrepancy model was a “wait to fail” model because students were 

delayed services until their achievement was considerably low enough for the discrepancy to 

exist (Reschly, 2008).  In fact, the inclusion of language in IDEIA emphasizing the use of 

“scientific, research-based interventions” underscored the role of general education in ensuring 

that students are consistently exposed to evidence-based practices prior to consideration for 

special education services. 

To best accommodate the needs of all learners, provide services and interventions to 

students sooner, and to meet the accountability requirements set forth in federal policy (IDEIA, 

2004; NCLB, 2002; USDoE, 2011), a Multi-Tiered System of Supports1 (MTSS) was suggested 

as a useful framework (Batsche et al., 2005; Prasse, 2014).  MTSS is a term used to describe a 

comprehensive model of schooling that employs data-based decision making to provide 

differentiated academic and behavioral supports to students (Batsche et al., 2005).  An MTSS is 

typically comprised of three tiers of services that are distributed on a continuum in proportion to 

student needs.  The first tier includes general academic and behavior instruction and support that 

is differentiated for all students.  Tier II resources are more focused and include targeted 

instruction and intervention supports that are provided to students in need of resources beyond 

what is provided to all students.  Finally, interventions and supports in Tier III are even more 

specialized and targeted and are given to a very small percentage of students in addition to what 
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is provided in the first two tiers.  Across tiers, decisions are made based on data and student 

progress is monitored more frequently as students receive more intensive services.  In essence, 

MTSS is a model for systematically making decisions about student services using data and 

proportionally allocating resources to students based on their needs.   

Many MTSS models require educators to use the problem-solving process in order to 

determine students’ needs and how to distribute resources efficiently (Batsche et al., 2007; 

Brown-Chidsey & Steege, 2010).  The problem-solving process commonly includes four steps.  

The first step is Problem Identification during which what students should know and be able to 

do are operationally defined and the discrepancy between what is occurring and what is expected 

is measured.  The second step is Problem Analysis.  During this stage, hypotheses are developed 

regarding why the problem is occurring and then the hypotheses are validated or invalidated 

using multiple sources of data.  The third step of the process is Intervention Plan Development 

and Implementation, which involves developing an intervention plan based on evidence-based 

strategies/interventions that are matched to students’ needs identified during Problem Analysis.  

The final step of the problem-solving process is the evaluation of students’ response to 

intervention.  In this phase, educators determine the amount of student progress after 

implementing the intervention plan with fidelity.  Based on students’ progress on the targeted 

skills, the intervention is continued, modified, or terminated.  Importantly, the problem-solving 

process is iterative and steps can be revisited based on how students respond to intervention.  

Additionally, it is important to note that the process is applied to groups of students as well as 

individual students receiving services across tiers in an MTSS. 

Research has indicated that when an MTSS is implemented with fidelity, schools and 

districts see improvements in reading and mathematics outcomes, academically related behaviors, 
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general academic performance, and decreases in retention and special education referral and 

placement rates (Burns, Appleton, & Stehouwer, 2005; Griffiths et al., 2007; Hughes & Dexter, 

2011).  Data recently collected indicate that efforts to implement MTSS are occurring throughout 

the nation.  In a 2008 report, approximately 90% of special education state department directors 

from the 50 United States and the District of Columbia indicated that their states were providing 

statewide trainings related to an MTSS (i.e., overview of MTSS, progress monitoring, use of 

data-driven decision-making; Hoover, Baca, Wexler-Love, & Saenz, 2008).  In 2009, according 

to Zirkel and Thomas (2010), 12 states required MTSS for SLD identification in their State laws, 

four states allowed a combined approach (e.g., MTSS and discrepancy formula), and 20 states 

permitted the use of a third research-based alternative.  Furthermore, in a Response to 

Intervention Adoption Survey of school districts across the United States (n = 1,390) in 2011, 

68% of the district administrators who responded indicated that they implemented MTSS 

compared to 32% in 2008 (Spectrum K12, 2011).  Most districts reported that MTSS was used 

for customization of instruction for all students (62%), early intervention services and supports 

(88%), and special education identification (66%).  Based on these results, it is evident that 

MTSS is being implemented throughout the U.S. with an aim of improving outcomes for all 

students.   

MTSS Implementation Fidelity 

Although policies support the use of an MTSS, the actual implementation of an MTSS is 

the responsibility of educators including administrators, teachers, student services staff, and other 

school personnel.  Moreover, it is the responsibility of educators to implement an MTSS with 

fidelity to ensure that the system is effective in meeting students’ needs and improving student 

outcomes.  Questions remain, however, regarding the extent to which educators can implement 
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the model with fidelity (Berkeley, Bender, Peaster, & Saunders, 2009; Glover & DiPerna, 2007; 

Kratochwill, Volpiansky, Clements, & Ball, 2007; Spectrum K12 School Solutions, 2011; 

Vaughn & Fuchs, 2006).  To determine how well educators implement MTSS with fidelity, it is 

necessary to have an instrument with evidence of reliability and validity to measure MTSS 

practices.  Through measuring and monitoring the fidelity of implementation, educators can 

better determine if an absence of improvement in student outcomes is related to poor 

implementation of the program and how implementation of the program can be improved 

(Carroll et al., 2007). 

Measuring MTSS Practices 

There are multiple research methods available for examining educators’ practices and the 

implementation of MTSS.  A few possible methods include direct observation, review of 

permanent products, interviews, and surveys.  With each of these research methods, there are 

various advantages and disadvantages that must be considered (Jackson, 2009).   

The first method, observation of practices, is considered the least biased method that 

provides the most accurate description of behaviors (Noell & Gansle, 2006; Roach, Lawton, & 

Elliott, 2014).  However, observations are vulnerable to observer bias that can be related to 

inadequate understanding of how to observe the practices.  Additionally, the presence of the 

observer can influence the behavior of the person being observed because s/he may behave 

differently when being observed.  Direct observation does not always result in an adequate 

sample as well due to the amount of resources required to schedule and conduct observations 

(i.e., time, personnel, travel costs).  Permanent product reviews also are considered one of the 

less biased fidelity measurement methods (Noell & Gansle, 2006; Roach, Lawton, & Elliott, 

2014).  However, due to a lack of consensus among researchers and educators regarding the 
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critical components of an MTSS that need to be measured to adequately capture implementation 

(e.g., specific instruction and intervention strategies, data sources, steps of the problem-solving 

process), ample documentation or permanent products are not always available for review 

(Jackson, 2009).  Additionally, permanent products may not be readily available due to 

inadequate record keeping or a lack of understanding of how to record some elements of MTSS.  

Another possible research method is interviews.  Although interviews are thought to capture 

multiple dimensions of someone’s practices, they typically require more resources than are 

feasible to conduct enough interviews to get a representative sample of practices.  Interviews 

also are highly subject to interview bias (Desimone, 2009).   

Surveys are another potential research method that is considered practical for gathering 

large amounts of representative data (Desimone, 2009).  Although surveys that rely on educators 

to self-report their practices often are upwardly biased and can overestimate educators’ practices 

(Noell & Gansle, 2006; Roach, Lawton, & Elliott, 2014), they can be administered efficiently to 

large numbers of educators without as much demand on personnel.  Surveys can be useful for 

measuring perceptions of MTSS practices because educators are able to rate their practices 

across multiple settings anonymously.  Therefore, their reports of practices can be generalized 

across settings and are not influenced by an observer or an interviewer (Desimone, 2009).  In fact, 

Desimone (2009) found that confidential and anonymous data from robust and properly 

administered observation, interviews, and surveys for behavior-based constructs (e.g., 

professional development activities, classroom instruction) can provide similar information.   

Empirically validated measures of educators’ perceptions of MTSS practices are not 

widely available in the literature.  Although self-report instrumentation that measures MTSS 

implementation as reported by school leadership teams is available (e.g., Benchmarks of Quality 
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[BoQ; Kincaid, Childs, & George, 2010], Effective Behavior Support Survey [EBS; Sugai, 

Horner, & Todd, 2003], Self-Assessment of Problem-Solving Implementation [SAPSI; Castillo et 

al., 2010], Self-Assessment Tool [SET; Sugai, Lewis-Palmer, Todd, & Horner, 2001], Team 

Implementation Checklist [TIC; Sugai, Horner, Lewis-Palmer, Rossetto, 2012]), little 

instrumentation exists that can be administered to school staff across a building.  Because 

multiple school personnel implement various components of an MTSS, it is important that the 

practices of various stakeholders are captured rather than solely capturing the perceptions of a 

small sample of stakeholders that may have limited perspectives regarding what is being 

implemented.  One instrument known to measure staff perceptions is the Perceptions of 

Practices Survey.   

The Perceptions of Practices Survey originally was developed as part of a three-year 

state-level evaluation of MTSS implementation (Castillo, Hines, Batsche, & Curtis, 2011).  The 

survey was designed to assess educators’ perceptions of the extent to which their schools are 

implementing MTSS practices.  Data were to be aggregated to the school-level to inform 

activities related to facilitating staff consensus regarding implementation as well as facilitating 

implementation with fidelity (Castillo, et al., 2010).  The Perceptions of Practices Survey 

contained 42 items that aimed to measure school staff’s perceptions about practices in one or 

more of the following domains: data-based decision-making, tiered service delivery, the 

problem-solving process, and special education eligibility determination, as they pertain to 

academics and behavior.  The scale used was a 5-point scale (1 = Never Occurs to 5 = Always 

Occurs).  Items for the Perceptions of Practices Survey were developed through a review of 

relevant literature, presentations, instruments, and previous program evaluation projects.  The 

survey was sent to an Educator Expert Validation Panel (EEVP) that reviewed the items for 



 8	
  

clarity and quality.  Based on the EEVP members’ feedback, a few items were revised to provide 

clarification of terminology.  Preliminary construct validity evidence for the survey was 

established through single-level exploratory factor analysis (EFA).  Two factors that accounted 

for 75% of the common variance in perceived practices were established: Perceptions of RtI 

Practices Applied to Academic Content and Perceptions of RtI Practices Applied to Behavior 

Content.  Additionally, internal consistency reliability estimates were high for each factor (α 

= .97 & .96 respectively; Castillo et al., 2010).  Although the single-level EFA provided some 

preliminary evidence for the validity of the tool, further examination of the measure’s construct 

and criterion validity as well as reliability is needed.   

Validity and Reliability 

Validity is considered one of the most fundamental aspects of developing and evaluating 

measures.  It is defined as “the degree to which evidence and theory support the interpretations 

of test scores for proposed uses of tests” (American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 2014, p.11).  

Multiple forms of validity evidence exist including evidence regarding cognitive processes, 

internal structure, relationships with conceptually related constructs, relationships with criteria, 

evidence based on consequences of tests, and content-oriented evidence (American Educational 

Research Association, American Psychological Association, & National Council on 

Measurement in Education, 2014).  Depending on the intended purpose of the tool being 

developed and evaluated, different methods are needed to provide evidence of validity.  

One source of evidence for validity is construct validity, which involves the examination 

of the degree to which the tool measures the intended constructs based in theory (Cronbach & 

Meehl, 1955).  Construct validity is typically examined through exploratory or confirmatory 
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factor analysis (EFA or CFA) or cluster analysis.  These analyses are employed to determine the 

underlying factor structure present in the observed variables to better understand the shared 

variance among the measured variables that are hypothesized to characterize the construct 

(Thompson, 2004).  Traditionally, psychometric studies examining construct validity have 

inspected the factor structure of an instrument at a single-level.  However, conducting 

psychometric analyses at a single-level with data from educational settings often ignores the 

potential effects of the school-level variables on individual educators (nested data; Dedrick & 

Greenbaum, 2011).  When nested data are present (e.g.,, teachers nested within schools), 

multilevel approaches for examining validity evidence may provide more accurate and less 

biased estimates.  

To examine the validity and reliability at multiple levels (i.e., educator and school levels), 

researchers have suggested using a multilevel EFA or CFA (MCFA; Dedrick & Greenbaum, 

2011; D’Haenens, Van Damme, & Onghena, 2012).  MEFA and MCFA can account for variance 

in observed scores at both the educator- and school-levels.  More specifically, multilevel factor 

analysis procedures include within and between latent factors and within and between factor 

loadings that can assess construct validity at the teacher and school levels.  Reliability of latent 

factors also can be conducted across levels.  Examining reliability using a single-level approach 

(e.g., Cronbach’s alpha) for nested data can confound the within-group variance and between-

group variance and result in biased reliability estimates because it violates the assumption of 

independent residuals.  MCFA, however, allows for estimates of reliability to be derived at the 

school-level in addition to the educator-level (Dedrick & Greenbaum, 2011).  

In addition to examining construct validity, it is useful to investigate criterion validity, 

which includes concurrent validity.  Concurrent validity involves the degree to which a measure 
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correlates with other measures of the same construct that are assessed at the same time (Mislevy 

& Rupp, 2010).  Researchers have developed other methods for evaluating MTSS 

implementation fidelity that can be used to investigate the concurrent validity of the Perceptions 

of Practices Survey.  One such measure is the Tiers I and II Critical Components Checklist 

(Castillo et al., 2010). The Checklist involves permanent product review methodology in which 

trained reviewers use a standard rubric to evaluate evidence of MTSS practices in documents 

from data meetings focused on student performance.  Given concerns with self-report measures 

of fidelity raised in the literature, research is needed that relates self-report tools such as the 

Perceptions of Practices Survey to other methods of measuring fidelity such as the Checklist.  

Purpose  

The present study was a secondary analysis of the factor structure and reliability of the 

Perceptions of Practices Survey using data from educators nested within elementary schools in a 

southeastern state.  The Perceptions of Practices Survey was intended to examine perceptions of 

MTSS practices at the school-level through collection of data on the perceptions of individual 

educators.  Because the factor structure of an instrument can differ across units of analysis 

(Dedrick & Greenbaum, 2011), the factor structure of the tool was examined at both the 

educator- and school-levels.  The extent to which the tool related to another measure of fidelity 

(i.e., concurrent validity) also was investigated.  The research questions addressed through this 

study were:  

1. Is the factor structure (i.e., number of factors and factor loadings) underlying 

the Perceptions of Practices Survey at the educator-level similar to or 

different from the structure at the school-level? 
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2. Are the factor loadings underlying the Perceptions of Practices Survey 

significantly different between and within schools?  

3. To what extent are the factor structure, factor loadings, and correlations of 

factors different across multiple time points for the Perceptions of Practices 

Survey? 

4. What is the reliability of the scores from the Perceptions of Practices Survey 

at the educator and school levels across multiple time points? 

5. To what extent are the factor scores derived from the Perceptions of Practices 

Survey related to the Tiers I and II Critical Components Checklist? 

 

 

Endnotes 

1 Multi-Tiered System of Supports (MTSS) is the most recent term that has replaced the previous 
term Response to Intervention (RtI), thus MTSS will be used throughout the document in lieu of 
RtI to reflect the updated terminology.  
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CHAPTER II: Review of the Literature 

 
Relevant research on a Multi-Tiered System of Supports (MTSS) and educators’ 

perceptions of practices relative to MTSS will be reviewed in this chapter.  First, the context for 

the shift to an MTSS model of service delivery in the United States will be highlighted.  Next, a 

description of the MTSS model of service delivery, the student and systemic outcomes related to 

an MTSS, and current literature about the fidelity of implementation of MTSS will be reviewed.  

Finally, the current research on the measurement of practices relative to MTSS will be reviewed 

and a need for more reliable and valid measures of fidelity of MTSS implementation will be 

discussed. 

Context for the Shift to an MTSS Model 
 
The educational system in the United States is continuously evolving with an increasing 

focus on improving outcomes for all students.  This increasing focus was most evident when the 

No Child Left Behind Act of 2001 (NCLB) was enacted in an attempt to increase accountability 

for schools and improve education for all students including general and special education 

students.  More specifically, NCLB required the use of standardized assessments to measure 

student performance (annually for grades 3-8 and once in high school) and evaluate schools.  

NCLB also required that schools, districts, and states publicly report aggregate test results and 

disaggregated results by student demographic subgroups, including low-income students, 

students with disabilities, English language learners, and racial groups.  Additionally, as part of 

NCLB’s aim to improve schools, the law required that educational programs and practices be 

based on scientific research providing evidence of the effectiveness of the educational programs.  
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In 2004, IDEA was reauthorized and renamed the Individuals with Disabilities Education 

Improvement Act (IDEIA), which reformed the traditional method for identifying students with 

disabilities in a manner consistent with the accountability focus of NCLB (2002).  Prior to the 

reauthorization of IDEIA, schools determined learning disabilities based on a “significant 

discrepancy” between a child’s IQ and achievement scores.  This model was highly criticized as 

a “wait to fail” model because children typically struggled two to three years before they 

exhibited a “significant discrepancy” and were given the services they needed (Lyon et al., 2001).  

Instead of the traditional “significant discrepancy” formula that was used for identifying learning 

disabilities based on IQ tests, IDEIA allowed school districts to adopt alternative models such as 

the Response to Intervention (RTI) model (IDEIA, 2004).  The RTI model is a multi-tiered 

approach that allows schools to implement interventions at increasing levels of intensity to 

support struggling learners and to identify students with disabilities based on a failure to respond 

to high-quality, evidence-based interventions that are implemented with fidelity.  In addition to 

recommending the use of RTI, IDEIA also promoted the implementation of early evidence-based 

intervention services to prevent students from falling too far behind expectations (IDEIA, 2004).  

NCLB (2002) and IDEIA (2004) highlighted the importance of high quality, evidence-

based instruction and interventions, and held schools accountable for all students’ progress in 

meeting rigorous standards.  More recently, the U.S. Department of Education (DoE; 2010) 

published its blueprint for the reauthorization of NCLB.  In this blueprint, the U.S. DoE outlined 

priorities that included raising standards and accountability for all students, improving 

assessments to measure student growth in relation to college and career readiness, providing an 

all-encompassing education (e.g., history, language arts, fine arts, technology, financial literacy, 

mathematics) using evidence-based practices, meeting the needs of diverse learners (e.g., English 
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Language Learners, students with disabilities, neglected/delinquent students, homeless students), 

and eliminating the achievement gap.  Moreover, the U.S. DoE called for comprehensive student 

services and the use of data to improve students’ safety, health, and well-being.  

Despite the vision for the NCLB reauthorization set forth in the U.S. DoE’s (2010) 

blueprint, Congress did not act to reauthorize NCLB (2002) for several years.  As a result, the 

U.S. DoE provided waivers for flexibility from some requirements of NCLB to 43 states, the 

District of Columbia (D.C.), and Puerto Rico.  With these waivers, State Educational Agencies 

(SEAs) were able to develop and implement “rigorous and comprehensive” plans to improve 

education for all students (U.S. DoE, 2012).  To obtain a waiver, states had to clearly outline 

their plans including learning standards, student assessments, and school and educator 

accountability systems.  The waivers explicitly required that states adopt rigorous statewide 

standards and assessments that measure student achievement and growth, an accountability 

system that identifies high- and low-performing schools and supports the consistently low-

performing schools, and educator evaluations that focus on improving instruction.  This trend 

toward state flexibility continued with the recent reauthorization of NCLB, the Every Student 

Succeeds Act (ESSA, 2016). Although greater flexibility was provided to states, data-based 

accountability for student performance remained a key component of the legislation.  

Overview of the MTSS Model 

The MTSS Model incorporates many of the critical components set forth by national 

legislation (e.g., NCLB, IDEIA) and policy including scientifically-based instruction and 

interventions matched to students’ needs.  An MTSS is a multi-tiered approach for identifying 

students with learning and behavior needs as early as possible through ongoing student 

assessment (e.g., universal screening and progress monitoring) and providing support for these 



15 

students through levels of differentiated interventions and supports (Fletcher & Vaughn, 2009; 

Stoiber, 2014).   

The goal of an MTSS is to support all students in meeting their post-secondary goals by 

distributing resources appropriately to all students based on their levels of need.  To accomplish 

this goal, need-driven decision-making occurs at various levels of the educational system (i.e., 

district, school, classroom).  There are three primary components of an MTSS including a 

problem-solving framework, a tiered system of supports, and a data collection and assessment 

system to inform decision-making at each tier (Batsche et al., 2005; Fletcher & Vaughn, 2009; 

Stoiber, 2014).  Notably, different MTSS models exist such as RTI and Positive Behavior 

Supports (PBS), however, these models have similar components mentioned previously.  

Currently, the term MTSS is used as a more encompassing term that describes organized tiers of 

resources using data-based decision making and includes RTI (academics focus) and PBS 

(behavior/social-emotional focus).  

The problem-solving framework is used at multiple levels of the system such as the state-, 

district-, school-, classroom-, and individual student-level.  A commonly used problem-solving 

framework in an MTSS includes the following four steps: (1) Problem Identification (i.e., well-

defined problem that includes the discrepancy between what is occurring and what is expected); 

(2) Problem Analysis (i.e., hypotheses regarding why the problem is occurring that are either 

confirmed or rejected based on data); (3) Intervention Plan Development and Implementation 

(i.e., a plan is developed and implemented that includes evidence-based strategies that are 

matched to needs determined by validated hypotheses); and (4) Evaluation of the response to 

intervention (i.e., a decision regarding how much progress was made based on frequently 

collected data).   
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 Within an MTSS, the problem-solving framework is used to distribute resources and 

services among multiple tiers.  Although different MTSS models exist, most models include 

three tiers of services (Batsche, Curtis, Dorman, Castillo, & Porter, 2007; Burns & 

VanDerHeyden, 2006; Fletcher & Vaughn, 2009; Stoiber, 2014).  Tier I includes scientifically-

based instruction and supports (academic, behavioral/social-emotional) aligned with district 

curriculum and state standards that are provided to all students.  Tier II is comprised of “more 

intensive” instruction and interventions (e.g., more time, narrower focus of instruction) that some 

students receive in addition to Tier I instruction and supports.  Tier II services are given to 

students in need of additional support to meet performance expectations and can be given in 

various settings by various professionals.  Tier III includes the “most intensive,” more 

individualized services that are provided to few students (e.g., approximately 5% of the students 

in a school).  Instruction and support in Tier III are more time intensive and have a narrower 

focus than services offered in Tier II to help reduce significant barriers for students so that they 

are better able to meet expectations.  

An integrated data collection and assessment system is crucial for decision-making across 

tiers in an MTSS (Batsche et al., 2005; Burns & VanDerHeyden, 2006; Fletcher & Vaughn, 

2009; Stoiber, 2014).  To determine which students are not meeting expectations and are in need 

of additional supports, educators must engage in ongoing data collection and analysis.  An 

integrated data collection and assessment system provides an efficient method for determining 

whether or not instruction and supports are effective at Tiers I, II, and III.  Within an MTSS, 

educators use instructionally relevant assessments with evidence of reliability and validity 

including screening, diagnostic, progress monitoring, formative, and summative measures.  At 

Tier I, educators use universal screening assessments that identify which students are not 
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meeting expectations.  At Tiers II and III, various assessments are given more frequently to 

monitor students’ progress.  Through using these assessments, educators are able to determine 

students’ responsiveness to instruction/intervention and make meaningful decisions (Burns & 

VanDerHeyden, 2006a; Fletcher & Vaughn, 2009; Florida’s MTSS, 2014; Stoiber, 2014).     

Student and Systemic Outcomes in the Traditional Model of Education 

 Despite policy reforms and the calls for MTSS to be implemented to meet the needs of 

students, a substantial number of students in the U.S. are struggling to meet basic proficiency 

(i.e., partial mastery of fundamental skills; Kena et al., 2014).  Although scaled scores have 

gradually increased for 4th and 8th graders in reading, 32% of 4th grade students and 22% of 8th 

grade students were not meeting basic proficiency in 2013.  Although more 4th and 8th grade 

students were meeting basic proficiency in mathematics as compared to reading, a number of 

students still were not meeting basic proficiency in math (17% of 4th graders and 26% of 8th 

graders).  Additionally, despite increased reading and mathematics scores for all racial/ethnic 

groups, there still remain large gaps among demographic groups (see Table 1 for more details; 

Kena et al., 2014).  

 Educators and policymakers also paid special attention to services for children and youth 

with disabilities (Kena et al., 2014).  From 1990 to 1995, the number of students (ages 3-21) who 

received special education services increased from 4.7 million to 6.7 million (Kena et al., 2014).  

In 2002, the President’s Commission on Excellence in Special Education (PCESE) reported that 

almost half of the six million students being served through special education were identified as 

having a “specific learning disability.”  Moreover, from 1976 to 2002, the number of students 

identified as having a specific learning disability increased more than 300%.  Additionally, the 

traditional discrepancy model of identification for special education resulted in the over-
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identification of racially and ethnically diverse students, males, English Language Learners, and 

students from low income families (Donovan & Cross, 2002; Heller, Holtzman, & Messick, 

1982).  These data seem to indicate that the traditional service delivery model was not sufficient 

in helping all students achieve academic proficiency, including those students from 

disadvantaged backgrounds.  Despite access to special education services through previous 

iterations of IDEIA (2004), many researchers called for changes in special education that were 

included in the 2004 reauthorization of IDEIA (Heller, Holtzman, & Messick, 1982; Hosp & 

Reschly, 2003; PCESE, 2002; Vaughn & Fuchs, 2003).   

Table 1 

Average National Assessment of Educational Progress (NAEP) Reading and Mathematics Scale 
Scores of 4th- and 8th-grade Public School Students in 2013 by Race/Ethnicity 
 
 Asian White Hispanic Black 

4th-grade Students Reading Scale 
Score1 

237 231 207 205 

8th-grade Students Reading Scale 
Score 

280 275 255 250 

4th-grade Students Mathematics 
Scale Score 

260 250 230 224 

8th-grade Students Mathematics 
Scale Score 308 293 271 263 
1Scale scores range from 0 to 500. 
Note. Data derived from U.S. Department of Education, National Center for Education Statistics, National 
Assessment of Educational Progress (NAEP), 2013 Mathematics and Reading Assessments, retrieved March, 2014 
from the Main NAEP Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/).  
 

With the authorization of NCLB, the President’s Commission on Excellence in Special 

Education was formed to develop recommendations to improve the education of children with 

disabilities.  In the Commission’s (2002) report, “A New Era: Revitalizing Special Education for 

Children and Their Families,” it was recommended that IDEA focus on student outcomes, 

emphasize early identification and intervention using scientifically-based methods to prevent 

student failure using models such as RTI, and consider all children general education students 
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first and use general education funds for these students.  After the policy reforms that occurred in 

IDEA, in 2012, the number of students receiving special education services declined to 

approximately 6.4 million.  Of those 6.4 million students, the most common disabilities served 

included “specific learning disabilities” (36%), “speech or language impairments” (21%), and 

“other health impairments” (12%; Kena et al., 2014).  Thus, after the changes in national 

education policy, the rates of students identified with a specific learning disability declined from 

approximately 50% of students to about 36% of students in special education (Kena et al., 2014; 

PCESE, 2002).  

Student and Systemic Outcomes in an MTSS Model 

The limited research studies that have examined the impacts of various MTSS models 

have shown promising results for a range of student and systemic outcomes.  Burns, Appleton, 

and Stehouwer (2005) conducted a meta-analytic review of the effectiveness of MTSS models 

implemented for research purposes as well as field-based models of MTSS.  In their meta-

analysis, they examined the effectiveness of an MTSS model related to student and systemic 

outcomes through a review of studies from four large-scale district or state MTSS 

implementation initiatives (i.e., Heartland Agency Model, Ohio Intervention Based Assessment 

Model, Pennsylvania Instructional Support Team Model, Minneapolis Public School’s Problem-

Solving Model).  Burns et al. (2005) reviewed 21 MTSS implementation studies and found 

positive results for both research-implemented MTSS models and field-based models.  High, 

unbiased estimates of effect (UEE; a weighted estimator of effect that employs effect size and 

the sample size for each study) were found for both existing field-based RtI models (1.42) and 

research-implemented models (.92).  Furthermore, positive results were found for both student 

and systemic outcomes.  The authors found higher overall UEEs for systemic outcomes (1.54) 
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than for student outcomes (1.02), yet both UEEs were greater than 1.00, indicating a large effect 

size for both systemic and student outcomes.  However, there were differences in student and 

systemic outcomes between the two groups.  Specifically, although existing field-based models 

resulted in larger UEEs for systemic outcomes (1.80) than for student outcomes (.94), research-

implemented models, on the other hand, had larger UEEs for student outcomes (1.14) than for 

systemic outcomes (.47).  The researchers mentioned that the differences between the two 

models could be due to the length of program implementation.  In this case, it is likely that teams 

implementing field-based models had more time to refine their implementation models because 

of the longer period of implementation, which could have resulted in increased systemic 

outcomes.  Additionally, it is possible that the policies and procedures implemented by the 

school districts and states impacted the systemic outcomes.  Rates of special education referrals 

and placements also were reviewed.  Results indicated that 1.68% of the student population was 

placed into special education, as opposed to previous estimates that about 5% of the student 

population was identified with a learning disability (Lerner, 2002).   

Griffiths, Parson, Burns, VanDerHeyden, and Tilly (2007) also conducted a review of the 

literature on the effectiveness of MTSS implementation.  Through their review, the authors 

found that the school-based teams served more students and special education rates remained 

constant, or in some cases, decreased.  Additionally, a larger percentage of students referred for 

evaluation qualified for services in comparison to previous years when the traditional model was 

employed.  Griffiths et al. (2007) also found that some studies reported a decline in grade 

retention rates.  Finally, many of the teachers in the studies reported a better ability to develop 

quality Individualized Education Plans (IEPs) and interventions based on the data that were 

collected throughout the process.   
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Hughes and Dexter (2011) also reviewed field studies examining the effectiveness of 

MTSS.  Included in their review were 13 published studies that included a problem-solving 

component (n = 7), a standard protocol form of MTSS (i.e., preselected interventions that are 

used when a student fails to respond; n = 5), or a combination of both (n = 1).  Overall, the 

authors found that the studies that examined the impact of MTSS on students’ academic 

outcomes reported a positive impact on early reading and mathematics skills.  The authors also 

found that special education referral rates either remained constant, or showed slight declines.   

Researchers also have found that schools implementing MTSS with effective core 

curricula had positive improvements in reading test scores for all students (high and low 

achievers) and the gap between the performance of high and low achievers was reduced 

throughout the year (Mellard, Frey, & Woods, 2012).  Additionally, researchers have shown 

reduced retention rates in elementary school after two years of MTSS implementation (Murray, 

Woodruff, & Vaughn, 2010).  Reductions in special education referral rates and more accurate 

special education evaluations (i.e., increased likelihood that a student referred would be found 

eligible) also have been reported (VanDerHeyden, Witt, & Gilbertson, 2007).  Finally, 

researchers found that with the implementation of an MTSS model, children were identified with 

learning disabilities earlier allowing for them to receive targeted interventions sooner (Gettinger 

& Stoiber, 2008; Torgeson, 2009).   

Fidelity of MTSS Implementation 

Research indicates that when MTSS is implemented with fidelity, schools and districts 

see improvements in reading and mathematics outcomes, academically related behaviors, general 

academic performance, and decreases in retention and referral and placement rates (Burns et al., 

2005; Griffiths et al., 2007; Hughes & Dexter, 2011).  Recent data indicate that efforts to 
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implement MTSS are occurring throughout the United States.  In 2008, approximately 90% of 

special education state department directors from the 50 United States and the District of 

Columbia indicated that their states were providing statewide trainings related to an MTSS (i.e., 

overview of MTSS, progress monitoring, use of data-driven decision-making; Hoover, Baca, 

Wexler-Love, Saenz, 2008).  According to Zirkel and Thomas (2010), in 2009, 12 states required 

MTSS for SLD identification in their laws, four states allowed a combined approach (e.g., MTSS 

and discrepancy formula), and 20 states permitted the use of a third research-based alternative.  

Through a Response to Intervention Adoption Survey of school districts across the United States 

(n = 1,390) in 2011, 68% of the district administrators who responded indicated that they 

implemented MTSS compared to 32% in 2008 (Spectrum K12, 2011).  Most districts reported 

that MTSS was used for customization of instruction for all students (62%), early intervention 

services and supports (88%), and special education identification (66%).  Based on these results, 

it is evident that MTSS is being implemented throughout the U.S. with an aim of improving 

outcomes for all students.   

Although implementation of an MTSS has resulted in positive outcomes, some school 

districts and researchers have been concerned that MTSS is not always resulting in improved 

outcomes for students (O’Connor & Freeman, 2012).  This suggested lack of improvement in 

student outcomes may be due to MTSS not being implemented with fidelity, or in other words, 

the critical components of MTSS have not been implemented in the manner that they are 

intended to be implemented (Berkeley, Bender, Peaster, & Saunders, 2009; Glover & DiPerna, 

2007; Kratochwill, Volpiansky, Clements, & Ball, 2007; Spectrum K12 School Solutions, 2011; 

Vaughn & Fuchs, 2006).  To determine if an intervention or program results in anticipated 

outcomes and to determine the particular parts of a program that result in those outcomes, it is 
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necessary to evaluate the fidelity of implementation of the program.  If fidelity of 

implementation is not measured, then it is difficult to determine whether the lack of impact is 

due to components of the program itself or poor implementation of the program (Carroll et al., 

2007).   

The fidelity of MTSS implementation is arguably one of the most important components 

of implementation efforts, yet fidelity has received little attention in comparison to other 

elements of implementation (Gansle & Noell, 2007).  Although there is a lack of consensus 

regarding a definition of fidelity of MTSS implementation, fidelity commonly captures a range 

of complex activities that are required to implement a model of MTSS (Keller-Margulis, 2012).  

The fidelity of implementation of MTSS components has received some attention in the 

literature (e.g., Duhon, Mesner, Gregerson, & Witt, 2009; Fletcher, Francis, Morris, & Lyon, 

2005; Glover & DiPerna, 2007; Kelleher, Riley-Tillman, & Power, 2008; Noell et al., 2005).  

However, most of the literature focuses on the fidelity of intervention implementation or fidelity 

of individual MTSS components rather than the fidelity of implementation of multiple 

components of an MTSS model (e.g., problem-solving, tiered levels of supports, assessments, 

decision making procedures) as a whole.   

In order to assess the effectiveness of the implementation of an MTSS model, Keller-

Margulis (2012) suggested that the general domains and critical components that exist among the 

multiple tiers of an MTSS model must be assessed including “(1) assessment practices, (2) 

instruction and intervention delivery, and (3) procedural decision making” (p. 345).  

VanDerHeyden, Witt, and Gilbertson (2007) were the first to attempt to examine the fidelity of 

an MTSS system rather than monitoring the fidelity of intervention components alone.  In their 

study, VanDerHeyden, Witt, and Gilbertson (2007) examined the fidelity of implementation of 



24 

the System to Enhance Educational Performance (STEEP), which is a program that incorporates 

components of an MTSS model.  In this study, fidelity of assessment techniques (e.g., universal 

screening) and decision-making (e.g., evaluating students’ response to intervention) procedures 

were conducted through observations by trained observers using checklists and through 

calculating the percent agreement between judgments of responsiveness to intervention. 

Although it is recognized that multiple domains are important components of MTSS models that 

should be monitored for fidelity, there is a dearth of research indicating efficient and appropriate 

methods for measuring the fidelity of implementation of the domains altogether.  

Measuring Fidelity  

Measuring fidelity is important to gain information regarding quality of program 

implementation, examine the foundational theories underlying the program, and to provide 

feedback for continuous improvement (James Bell and Associates, 2009).  To examine the 

fidelity of implementation of MTSS, it is necessary to have an accurate and statistically adequate 

measure of practices.  Mowbray et al. (2006) suggested that there are three critical steps to 

adequately measure the fidelity of practices: identify indicators or critical components of the 

program, gather data to measure the indicators, and examine the reliability and validity of the 

indicators.  Once the critical components are identified, multiple sources of data collection 

should be considered for gathering the necessary data.  

Multiple methods of measuring MTSS practices have been utilized, including 

observations, interviews, reviews of permanent products, and self-report measures.  Observations 

of practices are generally considered to be the most “accurate” method of measurement for 

behaviors (Noell & Gansle, 2006; Roach, Lawton, & Elliott, 2014); however, limitations of 

observation data exist.  For instance, observer bias and effects of an outside observer on 
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educators’ behaviors can influence observation data.  Additionally, observation data can be 

limited due to the high cost of conducting multiple observations and limited availability of 

trained observers.  Moreover, when examining MTSS practices specifically, it is difficult to 

observe all practices and know whether or not the practices consistently occur because the 

practices can span a lengthy period of time (e.g., working through problem solving process as a 

team and monitoring intervention plans can take six weeks or more).  Due to the aforementioned 

barriers to observations, alternative methods are needed that are more feasible yet valid (Berkel 

et al., 2011).    

Interviews are another common method used to measure educators’ practices.  Interviews 

are useful because the researcher can gather in depth qualitative data regarding educator 

practices.  However, interview data can be limited in that they are subject to interviewer bias and 

the interviewee’s potential desire to appear “good” (Desimone, 2009).  Additionally, interviews 

require extensive time and resources and provide data from only a few perspectives.  Another 

potential method for measuring educators’ MTSS practices is to review permanent products.  A 

review of permanent products can provide a sample of MTSS practices across time and settings, 

but permanent products are limited in that they can provide false data (e.g., not completed 

correctly, over-reporting practices) or they may fail to characterize all practices related to MTSS 

(Noell & Gansle, 2006; Roach, Lawton, & Elliott, 2014).  Reviewing permanent products also is 

not the most efficient method of data collection because it requires additional time for staff to 

collect the permanent products, review the permanent products, and rate the level of 

implementation based on the products.  Additionally, research indicates that there can be 

considerable differences between permanent product reviews and direct observations indicating 



26 

that permanent product reviews may not provide accurate data regarding implementation (Sanetti 

& Collier-Meek, 2014).  

A final method commonly used to gather data regarding educators’ practices is through 

self-report measures.  Despite the fact that some researchers consider self-report measures biased 

measures of practices because reporters may answer questions in a socially desirable manner 

(Noell & Gansle, 2006), others consider self-report measures desirable for collecting data on 

large samples because they require less resources, provide quantitative measures of practices, 

and have potential to provide accurate information regarding practices (Desimone, 2009).  

Desimone (2009) found that confidential and anonymous data from robust and properly 

administered observation, interviews, and surveys for behavior-based constructs (e.g., 

professional development activities, classroom instruction) can provide similar information.  

Desimone (2009) further noted, “social desirability bias can occur in any form of data collection” 

(p. 189).  Thus, self-report measures may be adequate measures of educators’ practices related to 

MTSS.  

In sum, there are multiple methods for examining the fidelity of implementation of a 

program.  Each method appears to have strengths and weaknesses related to accuracy and 

efficiency.  Of all the methods previously mentioned, self-report is a desirable method of data 

collection for large samples due to the less obtrusive nature of the method and the lesser amount 

of resources required, which can result in the ability to gather data more frequently.  Furthermore, 

self-report data can be quantified making it easier to more objectively measure and examine 

changes in implementation.   
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Measuring Fidelity of MTSS Practices 

Multiple measures have been created to assess the fidelity of implementation of various 

tiered models.  One example is process checklists that measure whether or not the foundational 

features of the tiered service delivery model are in place.  For instance, the Team Implementation 

Checklist (TIC) can be completed once a quarter by the school’s Positive Behavior Intervention 

Supports (PBIS) team to rate activities related to PBIS implementation as “achieved,” “in 

progress,” or “not yet started” (Sugai, Horner, Lewis-Palmer, & Rossetto, 2012).  Measures of 

quality and quantity also have been developed that assess the degree to which the model has been 

implemented school-wide.  Examples of these measures for PBIS are the Self-Assessment Tool 

(SET; Sugai, Lewis-Palmer, Todd, & Horner, 2001), the Benchmarks of Quality (BoQ; Kincaid, 

Childs, & George, 2010), and the Effective Behavior Support Survey (EBS; Sugai, Horner, & 

Todd, 2003).  The SET is a 28-item observation and interview instrument that is completed by a 

trained coach/researcher.  For the BoQ, PBIS team members rate each of the 53-items as “in 

place,” “needs improvement,” or “not in place.”  The EBS is a tool that is used to rate the current 

status and priorities for PBIS and can be completed by all school staff.  

Although there are multiple tools that have been created to assess the implementation of 

PBIS specifically, few empirically validated measures exist that evaluate the school-wide 

implementation of an integrated academic and behavior MTSS model in a cost-effective, 

minimally intrusive manner.  The Tier I and II Observation Checklist (Castillo et al., 2010) is 

one observation tool that can be used to examine fidelity of MTSS implementation.  The 

instrument has 20 items that assess roles and responsibilities of stakeholders and components of 

the problem-solving process that should be present during Tier I and II problem-solving data 

meetings.  During the data meetings, a trained observer marks each item as “present” or “absent.”    
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Tools are also available for trained reviewers to assess the extent to which fidelity is 

evident in permanent products from data review meetings.  These tools include the Tier I and II 

Critical Components Checklist and the Tier III Critical Components Checklist (Castillo et al., 

2010).  For these checklists, a trained reviewer examines the permanent products from either Tier 

I or II data meetings or Tier III data meetings and rates each of the items (11 items for the Tier I 

and II Critical Components Checklist and 16 for Tier III Critical Components Checklist) that 

address the problem-solving process as 0 = Absent; 1 = Partially Present; or 2 = Present.  

The RTI Fidelity of Implementation Rubric (Center on Response to Intervention, 2014) 

was also developed in an effort to examine the fidelity of MTSS implementation.  The rubric is 

intended for use by school personnel responsible for monitoring the fidelity of school-wide 

implementation of an MTSS model, particularly MTSS coordinators or evaluators with MTSS 

experience.  The rubric is organized according to key components of MTSS implementation 

identified by the National Center on Response to Intervention (NCRTI) including screening, 

progress monitoring, multi-level prevention system, and data-based decision making.  For each 

factor, there are descriptions for each level of the ratings of 1, 3, and 5 that the rater chooses to 

rate the level of implementation of the factor based on interviews with a school’s MTSS 

leadership team and/or site visits.   

Another available self-report measure that can be used for measuring the fidelity of 

MTSS implementation is the Self-Assessment of Problem-Solving Implementation (Castillo et al., 

2010).  The SAPSI contains 27 items that assess the consensus, infrastructure, and 

implementation of MTSS practices and procedures.  The assessment tool is completed 

collaboratively by the School-Based Leadership Team who rates each item as N= Not Started 

(the activity occurs less than 25% of the time); I= In Progress (the activity occurs approximately 
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25% to 74% of the time); A= Achieved (the activity occurs approximately 75% to 100% of the 

time); or M= Maintaining (the activity was rated as achieved last time and continues to occur 

approximately 75% to 100% of the time).  

 The previously mentioned measures that exist capture limited aspects of integrated 

MTSS models and are typically completed by only a few members of school personnel (i.e., the 

leadership team) who may have limited perspectives regarding school-wide implementation.  

Because multiple school personnel implement various components of an MTSS, it is important 

that the practices of various stakeholders are captured rather than solely capturing the 

perceptions of a small sample of stakeholders that may have limited perspectives of what is 

being implemented.  To adequately capture the school-wide implementation of an integrated 

MTSS model, a cost-effective, efficient, and valid method of data collection is needed that 

multiple stakeholders can complete.  

One self-report tool that was developed in an effort to evaluate the school-wide 

implementation of MTSS was the School Implementation Scale (Erickson, Noonan, & Jenson, 

2012).  The School Implementation Scale is a 42-item online survey that requires educators to 

rate each statement on a scale ranging from “NOT true of me” to “very true of me.”  Items on the 

scale relate to school culture, ongoing professional development, evidence-based practices, and 

family engagement, all of which are thought to be critical components of effective multi-tiered 

models in school systems (Erickson, Noonan, & Jenson, 2012; Jenson, 2008).  Although the 

School Implementation Scale is a useful tool for gathering data regarding multiple components of 

MTSS, the items on the survey do not specifically address some of the nuances of problem-

solving (e.g., clearly defining the problem, developing hypotheses, developing interventions 
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based on confirmed hypotheses) and tiered levels of supports (e.g., school-wide supports, 

targeted supports) that are foundational to many MTSS models.  

Another self-report measure developed to examine the extent to which MTSS practices 

are implemented school-wide and gather more detailed information regarding problem solving 

and tiered levels of supports is the Perceptions of Practices Survey.  The Perceptions of 

Practices Survey originally was developed as part of a three-year state-level evaluation of MTSS 

implementation (Castillo, Hines, Batsche, & Curtis, 2011).  The survey was designed to assess 

educators’ perceptions of the extent of implementation of MTSS practices within their schools.  

Data were to be aggregated at the school-level to inform activities related to facilitating staff 

consensus regarding implementation as well as facilitating implementation with fidelity.  The 

Perceptions of Practices Survey contained 42 items using a 5-point scale (1 = Never Occurs to 5 

= Always Occurs) that measured school staff’s perceptions about practices in one or more of the 

following domains: data-based decision-making, tiered service delivery, the problem-solving 

process, and special education eligibility determination, as they pertain to academics and 

behavior.   

Items for the Perceptions of Practices Survey were developed through a review of 

relevant literature, presentations, instruments, and previous program evaluation projects.  An 

Educator Expert Validation Panel (EEVP) reviewed the items for clarity and quality.  A few of 

the items were revised for clarification of terminology based on feedback from the EEVP.  

Preliminary construct validity evidence for the survey was established through single-level 

exploratory factor analysis, which established two factors (Perceptions of RtI Practices Applied 

to Academic Content, and Perceptions of RtI Practices Applied to Behavior Content) that 

accounted for 75% of the common variance in perceived practices.  Additionally, internal 
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consistency reliability estimates were high for each factor (α = .97 & .96 respectively; Castillo et 

al., 2010).  Although the Perceptions of Practices Survey may be a useful tool for measuring 

MTSS practices, additional evidence for the reliability and validity of the tool is needed before 

the self-report measure should be used to measure fidelity effectively (Mowbray et al., 2006).    

Measuring Reliability and Validity 

The validity of an assessment tool is the degree to which the tool measures the constructs 

it is intended to measure, or the accuracy of the assessment tool (American Educational Research 

Association, American Psychological Association, & National Council on Measurement in 

Education, 2014).  Validation is a process employed by a test developer to gather evidence to 

support the inferences that are to be made from test results (Cronbach, 1971).  Various forms of 

evidence for validity exist including evidence regarding cognitive processes, internal structure, 

relationships with conceptually related constructs, relationships with criteria, evidence based on 

consequences of tests, and content-oriented evidence (American Educational Research 

Association, American Psychological Association, & National Council on Measurement in 

Education, 2014).  Depending on the intended purpose of the tool being developed and evaluated, 

different methods are needed to provide evidence of validity.  

Three common types of validation studies include: content validation (an examination of 

the measurement tool to determine if it covers a representative sample of content related to the 

construct to be measured, typically examined by an expert review panel), criterion-related 

validation (examining the correlation between the assessment tool and existing criterion 

variable(s) that represent the construct), and construct validation (examination of the degree to 

which the tool measures the intended constructs based in theory; Cronbach & Meehl, 1955). 
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In the fidelity literature, there are five commonly used methods for assessing the 

reliability and validity of fidelity measures (Mowbray et al., 2003).  The first method, exploring 

reliability, involves examining reliability across respondents, calculating the inter-rater 

agreement through coefficient kappa, intra-class correlations (ICC), percent agreement, or 

Pearson correlations.  Internal consistency reliability estimates (e.g., Cronbach’s alpha) also have 

been used to determine reliability.   

The second through fifth approaches examine the validity of a fidelity measure 

(Mowbray et al., 2003).  The second approach involves using exploratory or confirmatory factor 

analysis (EFA or CFA) or cluster analysis to determine the underlying factor structure present in 

the observed variables to better understand the shared variance among the measured variables 

that are hypothesized to characterize the construct (Thompson, 2004).  A third approach requires 

a comparison of fidelity across groups that are expected to be different (e.g., treatment and 

control groups).  Another validation approach commonly used is convergent validity in which 

two sources of data about the program are compared to determine how well the data align.  The 

final commonly used approach for assessing fidelity is to examine the relationship between 

measures of fidelity and intended outcomes to determine if fidelity of implementation resulted in 

desirable outcomes.  

Need for Multilevel Analyses 

Schools are social systems because they are organized around integral people (e.g., 

students, teachers, administrators, student services personnel, parents) who reciprocally interact 

to achieve defined outcomes (Castillo & Curtis, 2014).  Moreover, while school buildings 

contain smaller systems (e.g., grade-level teams, problem-solving teams), they are 

simultaneously part of the larger system that is the school district.  Thus, educators are part of a 
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complex hierarchical system in which educators are nested within schools, which are nested in 

districts, which are nested within states.  Each component of the system influences each other as 

well as the larger system as a whole.  Therefore, the implementation of MTSS in a district is 

dependent upon the myriad parts of the system and can vary due to the differences found in the 

various parts of the system (e.g., leadership, available data, policies and procedures, knowledge 

and beliefs of educators; Castillo & Curtis, 2014).  

Because of the hierarchically nested structure of the school system, it is rare that one 

level of the system (e.g., educators) is not systematically influenced by another level (e.g., 

schools).  Hence, when researching constructs within the educational context, it is important to 

consider and account for the multiple levels of influence within the system.  In essence, multiple 

levels of influence must be taken into account when they exist or else incomplete or misspecified 

models will result (Kozlowski & Klein, 2000).   

To assess MTSS practices within a school, it is advantageous and efficient to collect 

survey data at the individual-level.  MTSS practices include shared responsibilities among 

multiple stakeholders in a school (e.g., administrators, data specialists, general education and 

special education teachers, school psychologists, counselors), all of whom have various roles and 

responsibilities and consequently varying perspectives of the practices occurring in a school.  

Accordingly, it is beneficial to gather the perspectives of all stakeholders and aggregate 

individual-level data to get a more complete view of the MTSS practices in a school.   

Typically, researchers have used single-level confirmatory factor analysis (CFA) to 

determine latent factors when expectations regarding the factor structure exist.  With this method, 

the latent factors only represent individual teachers’ perceptions of their school environment 

rather than the school processes altogether.  Although this approach is commonly employed, 
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there are problems that arise when there is hierarchically nested data (i.e., teachers nested in 

schools nested in districts; Kozlowski & Klein, 2000; O’Connell & McCoach, 2008).  First, 

statistically, this method violates the assumption of independence because teachers are nested 

within schools that are nested within districts.  Thus, the teachers’ survey data are likely 

correlated because they implement common school-wide and district-wide practices.  Second, 

different latent factors may be present at various levels of analysis (e.g., time, teacher, school; 

Dedrick & Greenbaum, 2011; D’Haenens, Van Damme, & Onghena, 2012; Kozlowski & Klein, 

2000; Raudenbush & Bryk, 2001).  To overcome these issues and examine the factor structures 

of a measurement tool at educator- and school-levels, researchers have suggested using a 

multilevel CFA (MCFA; Dedrick & Greenbaum, 2011; D’Haenens, Van Damme, & Onghena, 

2012; O’Connell & McCoach, 2008; Raudenbush & Bryk, 2001).  Using MCFA to analyze the 

statistical adequacy of a survey would yield more accurate factors at the school-level.  Moreover, 

employing an MCFA results in an analysis that includes the within and between latent factors 

and within and between factor loadings that assess validity at the educator- and school-levels.   

It also is important to use multilevel analyses to assess the reliability of latent constructs 

due to the nested structure of the data.  For example, teachers’ ratings in one school may be more 

alike than teachers’ ratings in another school.  Examining reliability using a single-level 

approach (e.g., Cronbach’s alpha) for nested data can confound the within-group variance and 

between-group variance and result in biased reliability estimates because it violates the 

assumption of independent residuals.  Through use of the MCFA, an estimate of reliability 

within- and between-clusters can be derived, thereby allowing reliability estimate to be acquired 

at each level (i.e., teachers and schools; Dedrick & Greenbaum, 2011).  
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Conclusion and Rationale 

 Schools across the nation are widely adopting MTSS models as the primary method of 

determining services and supports for students.  Due to the widespread adoption of integrated 

MTSS models, there is a need for cost-effective measures that capture school-wide 

implementation from various stakeholders to make data-based decisions, determine the fidelity 

of implementation of multiple components of the MTSS model, and evaluate the effectiveness of 

implementation.  Likewise, in this era of accountability, it is necessary to pinpoint why a 

program succeeds or fails at producing positive outcomes.  In order to determine the aspects of 

the program that impact outcomes, it is crucial to measure the fidelity of implementation of the 

program.  Through monitoring the fidelity of implementation, it can then be determined whether 

or not a lack of impact was due to poor implementation or aspects of the program itself.  

Accurate measurement of fidelity requires the development of measures that are reliable and 

valid.  When evaluating the reliability and validity of measures, it is essential that multilevel 

psychometric analyses be conducted when data are nested.  The current study aims to address 

these needs by examining the reliability and validity of the Perceptions of Practices Survey using 

multilevel psychometric analyses. 
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CHAPTER III: Method 

This study examined data gathered from a larger evaluation project of a 3-year, statewide 

initiative designed to evaluate MTSS implementation—the Florida Problem-Solving/Response to 

Intervention (PS/RtI) Project.  As part of the comprehensive program evaluation project, 

evaluators developed several measures of MTSS implementation fidelity for use in schools (see 

Castillo et al., 2010).  Two of the instruments developed as part of the project were used in the 

current study.  The Perceptions of Practices Survey was the focus of the current study.  The other 

instrument, the Tiers I and II Critical Components Checklist was used as a measure for 

concurrent validity analysis.  What follows is a description of the methods relevant to the 

proposed study.  

Participants 

Participants in the study were part of a longitudinal study—conducted by the PS/RtI 

Project, a grant-funded project approved by the Florida Department of Education (FLDOE)—

that initially was intended to evaluate the implementation of MTSS in pilot schools and 

demonstration districts in the state of Florida (Batsche et al., 2007).  PS/RtI Project staff 

provided trainings on implementation of an MTSS model four to five days per year for three 

years to School-Based Leadership Teams (SBLTs) in pilot schools.  SBLT members included 

school staff (e.g., administrators, school psychologists, reading and math coaches) that was 

responsible for facilitating MTSS implementation in their schools.  The Project staff and district-

based MTSS Coaches also provided technical assistance to SBLT members and pilot school 

instructional staff to facilitate the implementation of MTSS following trainings.  Comparison 
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schools also were included to provide a referent against which to evaluate MTSS implementation.  

Comparison schools received no training or technical assistance from Project staff.  See Castillo 

et al. (2011) for more information on the larger evaluation study.   

Schools.  The number of schools that participated varied slightly across the three-year 

period.  Sixty-two (40 pilot schools), 61 (34 pilot), and 60 (34 pilot) elementary schools 

participated during Years 1, 2, and 3, respectively.  Schools were located in eight, seven, and 

seven demonstration school districts, respectively, and were selected from a competitive 

application process to participate in the MTSS evaluation project.  Diversity in the schools was 

represented in terms of geography (districts were located across the southern, central, and 

northern regions of the state) and student populations served (schools were diverse in terms of 

race, free-reduced lunch status, etc.).  During Year 1, for example, school size ranged from 284 

to 1,316 students (M = 686, SD = 224).  Student characteristics were diverse across the 

participating schools with approximately 52% (SD = 28) of the students being White, 25% (SD = 

27) African American, 12% (SD = 10) Hispanic, 2% (SD = 2) Asian, 0.2% (SD = 0.3) Native 

American, and 4% (SD = 2) multi-racial.  The percentage of students (a) eligible for free-reduced 

lunch was 52% (SD = 26), (b) who were English language learners was 9% (SD = 12), and (c) 

identified as having a disability was 16% (SD = 6; Castillo et al., 2015).   

Educators.   An average of 2,076 educators participated across the schools.  On average, 

there were 32-34 educators per school.  Participants in the proposed study were educators 

working within each of the participating schools.  Educators included administrators, teachers 

(general and special education), student support services personnel (e.g., school psychologists, 

guidance counselors), and other instructional positions (e.g., intervention specialists, 

instructional coaches).  Non-instructional staff (e.g., school janitors, paraprofessionals) were not 



38 

included.  A summary of the characteristics of the educator participants is provided in Table 2 

for September/October of 2007 (n = 2,140), September/October of 2008 (n = 2,001), and 

January/February of 2010 (n = 2,088).  The majority of survey respondents during 

September/October 2007 and September/October 2008 data collection waves were general 

education teachers (69-70%).  Most participants’ highest degree earned was a bachelor’s or 

master’s degree (greater than 90%) and participants’ years of experience ranged from 1-24 years.  

Throughout the three years of data collection, the schools remained constant; however, some 

educator turnover occurred.  Therefore, although the demographics of the participants remained 

similar, some individual survey respondents changed during the three years.   

Table 2 

Demographic Characteristics of Survey Respondents 

 September/October 
2007a 

September/October 
2008b 

January/February 
2010c 

 n (%) n (%) n (%) 
Position    

  MTSS Coach 14 (0.87)    4 (0.30) 3 (0.23) 
School Counselor 44 (2.74) 32 (2.43) 32 (2.43) 

  Principal 33 (2.06)   30 (2.28) 24 (1.82) 
  General Education Teacher  1151 (71.71) 1003 (76.16) 1034 (78.57) 
  School Psychologist 30 (1.87) 18 (1.37) 18 (1.37) 
Assistant Principal   28 (1.74) 12 (0.91) 14 (1.06) 

  Special Education Teacher 191 (11.90) 143 (10.86) 116 (8.81) 
School Social Worker 11 (0.69) 6 (0.46) 5 (0.38) 
Other 103 (6.42) 69 (5.24) 70 (5.32) 

Highest Degree Earned    
  Bachelor’s 964 (59.88) 799 (60.58) 820 (62.22) 
  Master’s 584 (36.27) 487 (36.92) 463 (35.13) 
  Ed.S. 43 (2.67) 22 (1.67) 24 (1.82) 
  Doctorate 15 (0.93) 6 (0.45) 5 (0.38) 
  Other 4 (0.25) 5 (0.38) 6 (0.46) 

Years of Experience    
  <1 79 (4.90) 12 (0.91) 26 (1.97) 
  1-4 329 (20.40) 218 (16.52) 227 (17.24) 
  5-9 353 (21.88) 291 (22.05) 320 (24.30) 
  10-14 264 (16.37) 237 (17.95) 237 (18.00) 
  15-19 188 (11.66) 177 (13.41) 154 (11.69) 
  20-24 168 (10.42) 161 (12.20) 155 (11.77) 
  > 25 232 (14.38) 224 (16.97) 198 (15.03) 

Note. Ed.S. = Educational Specialist; MTSS = Multi-Tiered System of Supports. 
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Instrumentation 

Perceptions of Practices Survey.  The Perceptions of Practices Survey was designed to 

assess educators’ perceptions of the extent to which their schools were implementing MTSS 

practices.  The survey contained 21 items that were intended to measure school personnel’s 

perceptions about practices in one or more of the following domains: data-based decision-

making, tiered service delivery, the problem-solving process, and special education eligibility 

determination, as they pertain to academics and behavior.  For each item, educators rated the 

item for (a) academics and (b) behavior.  The 5-point scale used ranged from 1 = Never Occurs 

to 5 = Always Occurs.  A Don’t Know option also was available for educators to select when 

they were unsure of the extent to which the school was engaging in a particular practice.  

Project staff first developed items that represented critical MTSS practices based on 

literature reviews (i.e., journal articles and book chapters), reviews of presentations related to 

MTSS, instruments, and previous program evaluations.  Next, the drafted items were sent to an 

Educator Expert Validation Panel (EEVP) that consisted of 14 educators (e.g., general and 

special education teachers, school- and district-level administrators, student support services 

personnel, content specialists) from a nearby school district who had background knowledge 

regarding and experience with MTSS.  Devellis’s (2012) guidelines were used to gather feedback 

from the EEVP on the representativeness of the items, clarity and quality of the individual items, 

and suggested modifications to items.  Participants were asked to “rate each proposed item as 

Good (item is clearly and accurately written); Redundant (there are items with similar content 

and meaning); Nonessential (the content is non-related to any of the domains); Poorly Written 

(item has semantic or grammatical errors); or Ambiguous (item has abstract or vague content, or 

is double-barreled)” (Castillo et al., 2015, p. 9)2.  For any response other than Good, participants 
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were asked to suggest modifications to the item or write, “delete item.”  Participants also were 

given the opportunity to suggest additional items that they believed to be important to accurately 

measure MTSS related practices (Castillo et al., 2015). 

The EEVP provided feedback on the representativeness of the items and the clarity and 

quality of the individual items as well as suggested modifications to items.  EEVP members’ 

feedback was analyzed and revisions to the survey were made using a structured process.  Items 

that had 80% member agreement indicating that the item was relevant and well written were kept.  

Any items with less than 80% agreement were reviewed and discussed among a team of Project 

staff.  Suggested changes to improve the clarity of the item without altering the meaning of the 

item were made.  EEVP members’ suggestions were then compared to the revised item to 

determine if the disagreements had been resolved.  Members whose concerns were resolved were 

then added to the number of members that initially agreed with the item and the percentage of 

members in agreement was recalculated.  As a result of this process, nine items were revised.  

Revisions included spelling out acronyms (i.e., “CBM” was spelled-out as Curriculum Based 

Measures), defining terms (i.e., benchmarks), and adding or altering words (e.g., changing “data 

are collected to” to “data are used to”).  See Appendix A for the Perceptions of Practices Survey.   

Tiers I and II Critical Components Checklist.  The Tiers I and II Critical Components 

Checklist was developed as part of the larger 3-year study.  The Checklist was designed to 

measure implementation fidelity of the data-based decision-making processes that inform 

instruction and intervention in MTSS models (Castillo et al., 2011).  The instrument contained 

15 items that examined the extent to which each of the four stages of problem solving (i.e., 

Problem Identification, Problem Analysis, Intervention Development & Implementation, and 

Program Evaluation/RtI) were observed in the permanent products reviewed.  The Checklists 
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were completed by trained MTSS Coaches who received training and ongoing technical 

assistance from study personnel on MTSS, permanent product review procedures, and on 

completion of the Checklist.  The MTSS Coaches examined permanent products (e.g., 

charts/graphs, meeting notes, meeting worksheets) from school data meetings in which grade-

level student data were analyzed for the purpose of informing Tier I instruction and/or Tier II 

intervention.  MTSS Coaches used a 3-point-scale scoring rubric (0 = Absent; 1 = Partially 

Present; 2 = Present) to evaluate implementation of critical MTSS components using available 

permanent products.  For selected items, Coaches could select Not Applicable if a defensible 

decision was made to not address a specific critical component.  Internal consistency estimates 

(using Cronbach’s alpha) for the total scores used in the current study exceeded .80.  See 

Appendix B for the Tiers I & II Critical Components Checklist.  

Data Collection Procedures 

The Perceptions of Practices Survey was administered during September/October 2007, 

September/October 2008, and January/February 2010.  SBLT members and other instructional 

school staff in pilot and comparison schools completed each survey.  Project trainers collected 

survey data from SBLT members at SBLT Trainings.  MTSS Coaches collected survey data 

from the remaining instructional staff.  Staff and grade-level meetings were used to administer 

the surveys whenever possible.  Dissemination through staff mailboxes with directions for 

completing and returning the surveys was used when administration at staff or grade level 

meetings was not possible.  These procedures resulted in return rates of 45% for 

September/October of 2007, 48% for September/October of 2008, and 52% for January/February 

of 2010.   
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MTSS Coaches completed the Checklists during September/October 2007, 

September/October 2008, and January/February 2010.  Coaches coordinated with school 

personnel to identify and collect permanent products (e.g., data printouts and charts, worksheets, 

forms, action plans, notes) from grade-level data meetings focused on Tier I instruction and/or 

Tier II intervention.  After permanent products were collected, the Coaches completed the 

Checklists as mentioned previously.  Inter-rater agreement procedures were conducted to check 

for accuracy on checklists completed during the middle of each year.  Project personnel or 

another MTSS Coach independently completed Checklists on a subset of grade-level products 

and calculated inter-rater agreement.  Because inter-rater agreement procedures occurred only 

during the middle of the year, there are no estimates for fall and spring; however, average inter-

rater agreement estimates across the three years of the macro-level evaluation study exceeded .90.  

Trained Graduate Assistants entered and checked the data for accuracy.  Graduate 

assistants randomly selected 10% of the entered data for accuracy checks.  When accuracy fell 

below 95%, all data in the section being reviewed were examined for accuracy.  Accuracy 

exceeded .95 for data entry.  

Analyses 

A series of statistical analyses were performed in order to answer the following research 

questions posed in this study: 

1.  Is the factor structure (i.e., number of factors and factor loadings) underlying the 

Perceptions of Practices Survey at the educator level similar to or different from 

the structure at the school level? 

2. Are the factor loadings underlying the Perceptions of Practices Survey 

significantly different between and within schools?  
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3. To what extent are the factor structure, factor loadings, and correlations of factors 

different across multiple time points for the Perceptions of Practices Survey? 

4. What is the reliability of the scores from the Perceptions of Practices Survey at 

the educator and school levels across multiple time points? 

5. To what extent are the factor scores derived from the Perceptions of Practices 

Survey related to the Tiers I and II Critical Components Checklist? 

Preliminary analyses.  Preliminary analyses were conducted using IBM SPSS Statistics, 

Version 22.0.  Data were examined for accuracy by examining the ranges for each variable to 

make sure the values fell within the expected ranges.  Means, standard deviations, and additional 

descriptive data were calculated for the sample for all variables of interest.  Skewness and 

kurtosis values were calculated to examine the extent to which the data were normally distributed. 

Item correlations also were reviewed to determine the relationships among items.  Finally, 

correlations were conducted between items with Don’t Know responses to determine if there was 

a response pattern among different types of educators.  

Intraclass correlations (ICCs) for each of the items also were examined.  ICCs close to 

zero indicate that nearly all variation is at the educator level, whereas ICCs close to 1.00 indicate 

that nearly all variation is at the school level.  ICCs at or above .05 indicate that multi-level 

factor analysis is an appropriate method (Dedrick & Greenbaum, 2008; Dyer, Hanges, & Hall, 

2005). 

Multilevel exploratory factor analysis.  Multilevel exploratory factor analyses were 

conducted with the September/October 2007 sample using Mplus Version 7.3 (Muthén & 

Muthén, 1998-2012) as a first step to addressing Research Question 1.  This method was used 

because educators (Level 1) were nested within schools (Level 2).  Model fit was evaluated using 
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the χ2 likelihood ratio statistic, Bentler’s (1990) comparative fit index (CFI), the Bayesian 

Information Criterion (BIC; Schwarz, 1978), sample adjusted BIC (saBIC), Akaike’s 

Information Criterion (AIC; Akaike, 1987), the root mean square error of approximation 

(RMSEA; Steiger & Lind, 1980), and the standardized root mean square residual (SRMR-within 

and -between).  CFIs greater than or equal to .95 and SRMR and RMSEA values less than or 

equal to .08 (Hu & Bentler, 1999) were used as the criteria to indicate good levels of fit.  The 

BIC and AIC were used to compare the relative fit of models derived from the MEFA (lower 

values indicated better relative fit).  To determine whether the items contributed to resultant 

factors, a criterion of .30 (Hair, Tatham, Anderson, & Black, 1998) for the item pattern 

coefficients (i.e., factor loading) was used.  The models resulting from the MEFA were critically 

evaluated for theoretical and conceptual sense as well.  Final decisions regarding the selection of 

factors and the items that loaded on them were made based on a combination of statistical fit and 

consistency with theory from the literature.   

Multilevel confirmatory factor analyses.  First, multilevel confirmatory factor analysis 

(MCFA; Muthén, 1994) procedures were conducted using the September/October 2007 sample. 

Results of the MEFA were used to construct the MCFA model as the second step to addressing 

Research Question 1.  MCFA was conducted using Mplus Version 7.3 (Muthén & Muthén, 

1998-2012).  The first factor pattern coefficient (i.e., loading) was set to 1.0 to scale the educator 

and school-level factors.  Models were based on the pooled within-group and between-group 

covariance matrices.  Robust maximum likelihood estimation was used to determine the 

parameters of the models.  Overall goodness of fit for each model was examined using the 

criteria for the MEFA described above.  These analyses were designed to determine the extent to 

which factors derived at the educator-level were similar to or different from school-level factors.  
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Research has demonstrated that the factor structure at Level 2 often differs from Level 1 

(Dedrick & Greenbaum, 2011).    

Because factor labels and items that loaded on each factor were the same across the 

educator- and school-levels, the Satorra-Bentler chi-square difference test was used to determine 

whether the null hypothesis of equal factor loadings could be rejected (Research Question 2). 

Alpha was set at .05.  Additionally, the BIC and saBIC for both the unconstrained model (the 

model derived from Research Question 1) and the equal loadings model were compared to 

determine which model indicated better fit (smaller numbers indicate better fit).  The BIC and 

saBIC were chosen for comparison because they account for sample size and tend to be more 

effective in choosing the model that more accurately fits the parameters of the sample 

(Raffalovich, Glenn, Armstrong, & Hui-Shien, 2008).  

The model derived from the MCFA and Satorra-Bentler chi-square difference test using 

the September/October 2007 sample was then analyzed using the data from the 

September/October 2008 sample and the January/February 2010 sample.  In other words, the 

resulting model from the first MCFA was examined for goodness of fit at the remaining two time 

points.  MCFA procedures and decision-making criteria were the same as for the 

September/October 2007 sample.  Fit indices, factor structure, item loadings, and correlations 

among factors were compared across all three waves to determine the similarity of the factor 

structure across time (Research Question 3). 

The model that resulted from the aforementioned analyses was then applied for each year 

to address Research Question 5.  Specifically, the total score from the Tier I and II Critical 

Components Checklists was entered into the model at Level 2 to examine the relationship 
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between the factor scores from the Perceptions of Practices Survey and another measure of 

MTSS implementation fidelity.  Alpha was set at .05 for each wave of administration.  

Reliability.  Reliability analyses were conducted to address Research Question 4 for all 

three waves.  When analyzing reliability for multilevel nested data, it is necessary to account for 

the multilevel variability.  To get more accurate reliability estimates when conducting an MCFA, 

composite reliabilities are calculated from factor loadings (Geldhof, Preacher, & Zyphur, 2014).  

This method is considered more accurate than Cronbach’s alpha that is commonly used for 

single-level analyses.  Thus, composite reliabilities were calculated using Mplus Version 7.3 

(Muthén & Muthén, 1998-2012).   

 

Endnotes 

2Although Castillo et al., 2015 references the Beliefs on RtI Survey, the same EEVP procedures 
were used for the Perceptions of Practices Survey
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CHAPTER IV: Results 

Results related to the research questions are presented in this chapter.  First the 

descriptive statistics, assumptions, and response analyses (i.e., analyses of the Don’t Know 

responses) will be discussed followed by the results for each research question.  The initial 

multilevel exploratory factor analysis (MEFA) that examined both academic and behavior items 

from the Perceptions of Practices Survey did not converge.  Because all schools in the study 

focused on academics when implementing MTSS, it was decided that the academic items would 

be the focus of the current study.  Thus, an MEFA with only academic items was conducted, 

which resulted in convergence.  The results presented in this chapter will be related to academic 

items only.   

Preliminary Analyses 

Descriptive data.  Item means for the September/October 2007 sample ranged from 3.73 

(SD = 1.06 & 1.15) for items 14a (teacher receives staff support to implement intervention plan) 

and 16a (data were graphed routinely), respectively, to 4.45 (SD = 0.74) for item 4a (data were 

used to identify at-risk students in need of intervention).  Item means for the September/October 

2008 sample ranged from 3.81 (SD = 1.05 & 1.09) for items 14a and 16a, respectively, to 4.46 

(SD = 0.72) for item 4a.  Item means for the January/February 2010 sample ranged from 3.95 

(SD = 1.04) for item 14a to 4.52 (SD = 0.67) for item 4a.  See Tables 3-5 for all descriptive 

statistics for 2007, 2008, and 2010 samples. 
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Intraclass correlations (ICCs) for each of the items also were examined.  ICCs close to 

zero indicate that nearly all variation is at the educator level, whereas ICCs close to 1.00 indicate 

that nearly all variation is at the school level.  ICCs at or above .05 indicate that multi-level 

factor analysis is an appropriate method (Dedrick & Greenbaum, 2008; Dyer, Hanges, & Hall, 

2005).  ICCs for September/October 2007 ranged from .07 (item 3a, data used to make decisions 

about changes to core curriculum to increase student performance) to .14 (item 16a).  ICCs for 

September/October 2008 ranged from .04 (item 10c academics, quantifiable data used to identify 

peer performance) to .11 (item 14a).  ICCs for January/February 2010 ranged from .07 (item 2a, 

data used to identify students receiving core instruction that achieved benchmarks) to .15 (item 

14a).  See Tables 3-5 for all ICCs for 2007, 2008, and 2010 samples.  Overall, the ICCs indicated 

sufficient variability between schools to conduct multilevel analyses. 

Assumptions.  The assumption of normality was evaluated using skewness and kurtosis 

values.  Skewness and kurtosis values indicated that the data were approximately normally 

distributed for the majority of items.  Skewness values for all three years of data ranged from -

1.46 (SE  = 0.05) for item 4a of the September/October 2007 sample to -0.54 (SE  = 0.06) for 

item 14a of the September/October 2007 sample.  Kurtosis values for all three years of data 

ranged from -0.40 (SE = 0.12) for item 16a of the September/October 2007 sample to 2.56 (SE = 

0.11) for item 4a of the September/October 2007 sample; however, the majority of kurtosis 

values were below 2.00.  

For the September/October 2007 sample, the percentage of missing data likely is an 

overestimate whereas the percentage of Don’t Know responses likely is an underestimate due to a 

lack of differentiation between missing data and Don’t Know responses during data entry.  

During data entry, some of the Don’t Know responses were entered as missing data, which 
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skewed the percentage of missing data.  This error in data entry was corrected for the 2008 

sample.  Thus, the percentages for 2008 and 2010 are a more accurate representation of missing 

data and Don’t Know responses.  Overall, there was a small fraction of missing information and 

there was no pattern in the missing data indicating that the data were missing at random.  

Therefore, the assumption of randomly missing data did not appear to be violated.  

Don’t Know responses.  Significant correlations were found between items with Don’t 

Know responses indicating that respondents that selected Don’t Know on one item also selected 

Don’t Know on other items.  As mentioned previously, estimates for the September/October 

2007 sample are skewed because of data entry errors, so Don’t Know responses were not further 

analyzed.  In September/October 2008, item 4a (data were used to identify at-risk students in 

need of intervention) had the least number of Don’t Know responses (n = 100, 5.00%) while item 

11a (Problem-Solving Team routinely developed hypotheses regarding causes of student not 

meeting benchmarks) had the most Don’t Know responses (n = 431, 21.50%).  For the 

January/February 2010 sample, item 5a (at-risk students routinely received additional 

interventions) had the least number of Don’t Know responses (n = 69, 3.30%) and item 11a had 

the most Don’t Know responses (n = 302, 14.50%).  Overall, for the majority of items, the 

number of Don’t Know responses did not exceed 22% per item for a group of respondents.  

Furthermore, when responses were examined by educator job position, there was no relationship 

found between position and number of Don’t Know responses.  Therefore, the Don’t Know 

responses did not appear to be any substantial impact on the data.    
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Table 3 

Descriptive Data for 2007 Sample (Level-1 n = 2,109, Level-2 n = 62) 
 

Item Mean SD Skewness Kurtosis ICC % 
Missing 

% Don’t Know 
Responses 

2a 4.38 0.75 -1.33 2.47 0.07 7.90 1.00 
3a 4.16 0.87 -1.01 0.91 0.07 9.60 0.80 
4a 4.45 0.74 -1.46 2.56 0.10 4.30 0.50 
5a 4.31 0.79 -0.99 0.61 0.11 4.20 0.30 
6a 4.36 0.81 -1.27 1.41 0.11 8.10 0.50 
7a 4.30 0.83 -1.19 1.36 0.09 11.80 0.80 
8a 3.94 0.99 -0.80 0.17 0.09 21.20 1.40 
9a 4.14 0.89 -0.95 0.61 0.11 12.00 0.90 
10a-academics 4.35 0.79 -1.24 1.75 0.08 9.10 0.90 
10b-academics 4.35 0.77 -1.18 1.55 0.07 9.10 0.70 
10c-academics 4.15 0.89 -1.00 0.77 0.09 16.30 0.90 
11a 3.82 1.03 -0.65 -0.21 0.08 23.50 1.30 
12a 4.08 0.94 -0.95 0.50 0.08 13.00 1.60 
13a 4.13 0.92 -0.98 0.66 0.10 10.90 1.10 
14a 3.73 1.06 -0.54 -0.39 0.09 12.40 1.00 
15a 3.98 0.97 -0.76 0.04 0.09 13.50 1.20 
16a 3.73 1.15 -0.65 -0.40 0.14 21.70 1.70 
17a-academics 4.21 0.90 -1.13 1.15 0.12 10.40 0.80 
17b-academics 4.12 0.94 -0.97 0.55 0.10 14.20 1.30 
17c-academics 4.01 0.99 -0.91 0.40 0.11 18.70 1.70 
18a 3.85 1.08 -0.78 -0.07 0.10 20.70 1.60 
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Table 4 

Descriptive Data for 2008 Sample (Level-1 n = 1,940, Level-2 n = 61) 

Item Mean SD Skewness Kurtosis ICC % 
Missing 

% Don’t 
Know 

Responses 
2a 4.43 0.69 -1.14 1.76 0.08 0.70 8.40 
3a 4.18 0.84 -1.00 1.15 0.08 0.70 9.20 
4a 4.46 0.72 -1.35 2.15 0.07 0.20 5.00 
5a 4.29 0.81 -1.12 1.18 0.06 0.40 6.10 
6a 4.39 0.76 -1.18 1.36 0.10 1.50 8.00 
7a 4.34 0.79 -1.11 1.03 0.10 0.50 10.70 
8a 3.98 0.96 -0.91 0.62 0.09 0.60 19.10 
9a 4.24 0.80 -1.01 1.22 0.06 1.40 12.10 
10a-academics 4.40 0.72 -1.14 1.54 0.05 1.30 9.90 
10b-academics 4.39 0.72 -1.12 1.40 0.05 1.50 10.30 
10c-academics 4.27 0.80 -1.01 0.98 0.04 2.40 14.70 
11a 3.88 0.99 -0.79 0.24 0.07 1.40 21.50 
12a 4.08 0.94 -1.05 1.01 0.09 1.20 14.20 
13a 4.18 0.86 -1.06 1.24 0.07 1.50 12.30 
14a 3.81 1.05 -0.68 -0.11 0.11 1.10 13.20 
15a 4.03 0.92 -0.87 0.57 0.08 1.10 14.70 
16a 3.81 1.09 -0.78 0.02 0.04 1.10 20.40 
17a-academics 4.21 0.85 -1.06 1.19 0.08 1.00 11.90 
17b-academics 4.12 0.89 -0.94 0.75 0.08 1.10 14.60 
17c-academics 4.03 0.93 -0.88 0.55 0.08 1.70 18.10 
18a 3.89 1.02 -0.83 0.31 0.09 1.30 19.40 
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Table 5 

Descriptive Data for 2010 Sample (Level-1 n = 2,058, Level-2 n = 60) 

Item Mean SD Skewness Kurtosis ICC % 
Missing 

% Don’t 
Know 

Responses 
2a 4.48 0.69 -1.37 2.27 0.07 0.70 4.70 
3a 4.30 0.78 -1.08 1.28 0.10 0.70 5.50 
4a 4.52 0.67 -1.39 2.30 0.09 0.40 3.40 
5a 4.40 0.78 -1.38 2.30 0.10 0.40 3.30 
6a 4.47 0.74 -1.39 1.85 0.08 0.90 4.20 
7a 4.39 0.76 -1.15 1.10 0.09 0.60 6.90 
8a 4.14 0.95 -1.08 0.85 0.09 0.90 13.80 
9a 4.33 0.79 -1.04 0.75 0.06 1.80 8.20 
10a-academics 4.45 0.71 -1.28 1.75 0.07 1.70 6.30 
10b-academics 4.46 0.70 -1.26 1.70 0.09 2.00 6.20 
10c-academics 4.36 0.78 -1.23 1.60 0.09 2.90 9.30 
11a 4.09 0.92 -0.90 0.35 0.10 1.90 14.50 
12a 4.25 0.87 -1.15 1.07 0.11 1.80 8.20 
13a 4.27 0.84 -1.09 1.03 0.12 1.90 7.40 
14a 3.95 1.04 -0.80 -0.01 0.15 1.60 8.60 
15a 4.26 0.85 -0.99 0.49 0.13 1.70 8.00 
16a 4.14 0.96 -1.04 0.61 0.15 1.70 10.60 
17a-academics 4.38 0.76 -1.15 1.09 0.10 1.50 6.90 
17b-academics 4.32 0.79 -1.07 0.84 0.10 1.70 8.10 
17c-academics 4.27 0.84 -1.07 0.77 0.10 1.70 10.90 
18a 4.07 0.99 -0.97 0.42 0.14 1.60 13.40 
 

Research Question 1 

Is the factor structure (i.e., number of factors and factor loadings) underlying the 

Perceptions of Practices Survey at the educator level similar to or different from the 

structure at the school level? 

Multilevel exploratory factor analysis.  Multilevel exploratory factor analyses (MEFA) 

were conducted using the September/October 2007 sample data.  MEFAs were executed on all 

combinations of models with one to five factors on each level.  All 25 solutions were considered 
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and evaluated.  Overall, the ranges for the fit indices were as follows: AIC from 75,643.88 to 

79,451.40, BIC from 76,720.52 to 80,316.86, saBIC from 76,151.82 to 79,748.16, CFI from .82 

to .98, SRMR-within from .02 to .06, SRMR-between from .03 to .09.  All fit statistics for the 

models are presented in Table 6.  

Comparison of fit indices for the models from the MEFA led to the identification of the 

models with five and four within factors having the best fit.  These models were determined to 

have the best fit because the AIC, BIC, and saBIC were lower for these models than the others, 

CFI values were greater than .95, and SRMR and RMSEA values were less than or equal to .08 

(Hu & Bentler, 1999).  After these models were identified, factor loadings for each of the models 

were examined using a criterion of .30 to determine whether an item loaded on a given factor.  

Although the models with five within factors had the best fit indices, the factors did not make 

theoretical sense.  Therefore, the models with four within factors were examined for feasibility 

and interpretability.  For the September/October 2007 sample of educators (n = 2,109), four 

factors at the within level made the most conceptual sense.  The four factors resulting from the 

MEFA were labeled: (a) Tiers I & II Problem Solving (items 2a, 3a, 4a, 5a, 6a, 7a, 8a), (b) Tier 

III Problem Identification (items 9a, 10a academics, 10b academics, 10c academics), (c) Tier III 

Problem Analysis & Intervention Procedures (items 11a, 12a, 13a, 14a), and (d) Tier III 

Evaluation of Response to Intervention (items 15a, 16a, 17a academics, 17b academics, 17c 

academics, 18a).  The MEFA did not indicate that the items loaded similarly to these factors at 

the between level.  A review of other possible factor solutions at the between level and 

unrestricted models with zero factors at the within level revealed that four factors at the between 

level had the best fit.  However, the item loadings for the four factors at the between level did not 

make strong conceptual or theoretical sense.  Because the items that loaded on the four factors at 
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the within level made the most theoretical sense and were a good fit to the data, it was decided 

that the four factor solution found at the within level would be tested at the between level to 

determine if the factors fit the data at both levels.     

 To determine whether the four factors at the within level derived from the MEFA were 

also feasible at the between level, a multilevel confirmatory factor analysis (MCFA) was 

conducted using the September/October 2007 sample data.  For the first MCFA model (Model 1), 

the four within factors from the MEFA were replicated and specified at both the between and 

within levels.  The first model was a four-factor model with loadings freely estimated across the 

educator and school levels.  This relaxed model indicated reasonable fit (CFI = .93, RMSEA 

= .04, SRMR-within = .04, SRMR-between = .07).  A second four-factor model (Model 2) was 

examined to test the equality of factor loadings across levels.  Loadings across Level 1 and Level 

2 were constrained to be equal by imposing cross-level invariance.  The equal loadings model 

also indicated reasonable fit (CFI = .93, RMSEA = .04, SRMR-within = .04, SRMR-between 

= .07).  See Table 7 for fit indices for each of the models and see Tables 8-9 for the 

unstandardized factor loadings for each model.  
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Table 6 

Two-Level Exploratory Factor Analyses Fit Statistics for 2007 Sample (Level-1 n = 2,109, Level-2 n = 62) 

Within 
Level 
Factors 

Between 
Level 
Factors 

AIC BIC saBIC χ 2 (df) CFI RMSEA SRMR-
(within) 

SRMR-
(between) 

5 5 75,648.38 77,078.83 76,275.02 711.25 (230) .98 .03 .02 .03 
5 4 75,643.88 76,978.22 76,228.42 740.76 (247) .98 .03 .02 .05 
5 3 75,653.39 76,885.96 76,193.35 786.27 (265) .98 .03 .02 .06 
5 2 75,673.34 76,798.48 76,166.23 844.21 (284) .98 .03 .02 .08 
5 1 75,708.46 76,720.52 76,151.82 919.33 (304) .98 .03 .02 .09 
4 5 76,023.78 77,358.12 76,608.32 1,120.66 (247) .96 .04 .03 .03 
4 4 76,017.88 77,256.10 76,560.31 1,148.75 (264) .96 .04 .03 .05 
4 3 76,032.35 77,168.80 76,530.20 1,199.23 (282) .96 .04 .03 .05 
4 2 76,061.04 77,090.07 76,511.83 1,265.92 (301) .96 .04 .03 .07 
4 1 76,095.86 77,011.80 76,497.11 1,340.73 (321) .96 .04 .03 .08 
3 5 76,719.65 77,952.21 77,259.61 1,852.53 (265) .94 .05 .03 .03 
3 4 76,719.38 77,855.83 77,217.23 1,886.26 (282) .93 .05 .03 .05 
3 3 76,729.85 77,764.53 77,183.12 1,932.73 (300) .93 .05 .03 .05 
3 2 76,759.43 77,686.68 77,165.64 2,000.31 (319) .93 .05 .03 .06 
3 1 76,801.58 77,615.75 77,158.25 2,082.46 (339) .93 .05 .03 .08 
2 5 77,606.93 78,732.07 78,099.82 2,777.81 (284) .90 .06 .05 .03 
2 4 77,621.27 78,650.30 78,072.06 2,826.15 (301) .90 .06 .05 .04 
2 3 77,624.65 78,551.90 78,030.85 2,865.52 (319) .90 .06 .04 .04 
2 2 77,645.99 78,465.82 78,005.14 2,924.87 (338) .89 .06 .04 .06 
2 1 77,708.13 78,414.88 78,017.74 3,027.01 (358) .89 .06 .05 .07 
1 5 79,304.80 80,316.86 79,748.16 4,515.68 (304) .83 .08 .06 .03 
1 4 79,313.50 80,229.45 79,714.75 4,558.38 (321) .83 .08 .06 .03 
1 3 79,331.46 80,145.63 79,688.13 4,612.34 (339) .82 .08 .06 .05 
1 2 79,380.74 80,087.48 79,690.35 4,699.62 (358) .82 .08 .06 .06 
1 1 79,451.40 80,045.07 79,711.47 4,810.28 (378) .82 .08 .06 .07 
Note.  AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; saBIC = Sample-size Adjusted BIC; CFI = Comparative Fit Index; RMSEA 
= Root Mean Square Error of Approximation; SRMR = Standardized Root Mean Square Residual. 
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Table 7 

Multilevel Confirmatory Factor Analysis Fit Indices  

Model AIC BIC saBIC CFI RMSEA SRMR-
within 

SRMR-
between 

1: Four factors 
at Levels 1 & 2: 
Loadings freely 
estimated  
(Relaxed model) 

76,578.20 77,239.71 76,867.99 .93 .04 .04 .07 

2: Four factors 
at Levels 1 & 2: 
Cross-level 
invariance 
imposed 
(Constrained 
model) 

76,584.26 77,149.66 76,831.95 .93 .04 .04 .07 

Note. Level-1 n = 2,109, Level-2 n = 62. 
 
Research Question 2 

Are the factor loadings underlying the Perceptions of Practices Survey significantly 

different between and within schools?  

The Satorra-Bentler chi-square difference test was used to determine whether the null 

hypothesis of equal factor loadings could be rejected.  The ∆χ2 was 33.78 (∆df = 17, p < .01) 

indicating that loadings significantly differed across levels.  The statistically significant 

difference in chi-square indicated that the baseline (loadings freely estimated) model fit the data 

better than the constrained comparison model (loadings fixed to be equal).  However, the overall 

BIC and sample adjusted BIC were smaller for the constrained model (BIC = 77,149.66 & saBIC 

= 76,831.95) indicating a better fit for the equal loadings model.  Because the constrained model 

indicated better fit according to the BIC and saBIC, the decision was made that the factor 

loadings were not significantly different across levels.   
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Table 8 

Unstandardized Parameter Estimates for Model 1: Four Factors at Levels 1 & 2 with Loadings Freely Estimated (2007 Sample; 
Level-1 n = 2,109, Level-2 n = 62) 
 
 Level 1: Educator  Level 2: School  

Item TI & II PS TIII PI TIII PA & 
IX TIII Eval Residual 

Variance TI & II PS TIII PI TIII PA & 
IX TIII Eval Residual 

Variance 
2a 1.00a (—)    0.34 (0.03) 1.00a (—)    0.00 (0.00) 
3a 1.34 (0.07)    0.38 (0.03) 1.16 (0.17)    0.01 (0.00) 
4a 1.14 (0.06)    0.26 (0.03) 1.17 (0.18)    0.02 (0.01) 
5a 1.23 (0.08)    0.28 (0.02) 1.34 (0.26)    0.01 (0.01) 
6a 1.34 (0.09)    0.25 (0.02) 1.44 (0.33)    0.01 (0.00) 
7a 1.49 (0.10)    0.22 (0.02) 1.41 (0.23)    0.00 (0.00) 
8a 1.17 (0.09)    0.64 (0.04) 1.51 (0.32)    0.03 (0.01) 
9a  1.00a (—)   0.47 (0.03)  1.00a (—)   0.03 (0.01) 
10a academics  1.21 (0.07)   0.21 (0.02)  1.10 (0.27)   0.00 (0.00) 
10b academics  1.26 (0.09)   0.16 (0.02)  0.93 (0.18)   0.00(0.00) 
10c academics  1.32 (0.08)   0.30 (0.02)  1.21 (0.27)   0.01 (0.00) 
11a   1.00a (—)  0.45 (0.03)   1.00a (—)  0.02 (0.01) 
12a   1.08 (0.04)  0.24 (0.02)   1.01 (0.12)  0.00 (0.00) 
13a   1.01 (0.04)  0.24 (0.02)   1.28 (0.23)  0.00 (0.00) 
14a   0.86 (0.04)  0.64 (0.04)   1.28 (0.42)  0.03 (0.01) 
15a    1.00a (—) 0.38 (0.02)    1.00a (—) 0.00 (0.00) 
16a    1.02 (0.04) 0.61 (0.04)    1.05 (0.20) 0.10 (0.02) 
17a academics    1.07 (0.04) 0.18 (0.02)    1.02 (0.09) 0.00 (0.00) 
17b academics    1.19 (0.04) 0.12 (0.01)    0.96 (0.09) 0.00 (0.00) 
17c academics    1.20 (0.05) 0.19 (0.02)    1.05 (0.11) 0.00 (0.00) 
18a    1.08 (0.04) 0.47 (0.04)    1.11 (0.11) 0.00 (0.01) 
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX = Tier III Problem Analysis & Intervention Procedures, 
TIII Eval = Tier III Evaluation of Response to Intervention. aFactor loading fixed to 1.00. 
Standard errors are in parentheses. 
All items loaded at the .05 level. 
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Table 9 

Unstandardized Parameter Estimates for Model 2: Four Factors at Levels 1 & 2 with Loadings 
Constrained to be Equal (2007 Sample; Level-1 n = 2,109, Level-2 n = 62) 
 
 Levels 1 & 2: Educator & School  

Item TI & II PS TIII PI TIII PA & IX TIII Eval 
Level 1 
Residual 
Variance 

Level 2 
Residual 
Variance 

2a 1.00a (—)    0.34 (0.03) 0.00 (0.00) 
3a 1.33 (0.07)    0.38 (0.03) 0.01 (0.00) 
4a 1.14 (0.06)    0.25 (0.03) 0.02 (0.01) 
5a 1.24 (0.08)    0.28 (0.02) 0.01 (0.00) 
6a 1.35 (0.09)    0.25 (0.02) 0.01 (0.00) 
7a 1.48 (0.10)    0.22 (0.02) 0.00 (0.00) 
8a 1.20 (0.09)    0.63 (0.05) 0.03 (0.01) 
9a  1.00a (—)   0.47 (0.03) 0.03 (0.01) 
10a 
academics  1.20 (0.08)   0.21 (0.02) 0.00  (0.00) 

10b 
academics  1.23 (0.09)   0.16 (0.02) 0.00 (0.00) 

10c 
academics  1.31 (0.09)   0.30 (0.02) 0.01 (0.00) 

11a   1.00a (—)  0.45 (0.03) 0.02 (0.01) 
12a   1.07 (0.04)  0.24 (0.02) 0.01 (0.00) 
13a   1.02 (0.04)  0.24 (0.02) 0.00  (0.00) 
14a   0.88 (0.04)  0.64 (0.04) 0.04 (0.02) 
15a    1.00a (—) 0.37 (0.02) 0.01 (0.00) 
16a    1.02 (0.04) 0.61 (0.04) 0.11 (0.02) 
17a 
academics    1.06 (0.03) 0.18 (0.02) 0.00 (0.00) 

17b 
academics    1.16 (0.03) 0.13 (0.01) 0.00 (0.00) 

17c 
academics    1.19 (0.04) 0.19 (0.02) 0.00 (0.00) 

18a    1.09 (0.04) 0.47 (0.04) 0.01 (0.01) 
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX = Tier III 
Problem Analysis & Intervention Procedures, TIII Eval = Tier III Evaluation of Response to Intervention. Standard 
errors are in parentheses. All items loaded at the .05 level. 
aFactor loading fixed at 1.00.  
 

Research Question 3 
 

To what extent are the factor structure, factor loadings, and correlations of factors 

different across multiple time points for the Perceptions of Practices Survey? 

The constrained model demonstrated good fit for the 2007 (educator-level n = 2,109; 

school-level n = 62), 2008 (educator-level n = 1,940; school-level  n = 61), and 2010 (educator-

level n = 2,058; school-level  n = 60) samples (CFI ranged from .92 to.93, RMSEA ranged 
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from .04 to .05, SRMR-within ranged from .04 to .05, SRMR-between ranged from .06 to .11).  

See Table 10 for fit indices across time points.  Unstandardized item loadings for 2007 ranged 

from 0.88 (SE = 0.04) to 1.48 (SE = 0.10).  For 2008, item loadings ranged from 0.95 (SE = 0.02) 

to 1.51 (SE = 0.08).  Item loadings for 2010 ranged from 0.85 (SE = 0.04) to 1.33 (SE  = 0.06).  

All items significantly loaded on the respective factors.  See Tables 9, 11, and 12 for 

unstandardized parameter estimates for 2007, 2008, and 2010, respectively.  The correlations 

among factors were large across years.  Correlations ranged from r = .65 (Tier III Evaluation 

with Tier III Problem Identification at the educator level) to r = 1.00 (Tier III Problem 

Identification with Tier III Problem Analysis and Intervention Procedures at the school level).  

The majority of correlations fell between r = .65 and r = .98.  See Tables 13, 14, and 15 for 

factor correlations for 2007, 2008, and 2010 respectively.  

Due to the high correlations among factors found at the between-level, it was decided to 

test alternative models with one between-level factor and three between-level factors.  The model 

with three between-level factors combined the two highest correlated factors: Tier III Problem 

Identification and Tier III Problem Analysis & Intervention Procedures.  Because the model with 

one between-level factor (CFI = .93, RMSEA = .04, SRMR-within = .04, SRMR-between = .08) 

and the model with three between-level factors (CFI = .93, RMSEA = .04, SRMR-within = .04, 

SRMR-between = .08) adequately fit the data, the two alternative models were compared with 

the four between-level factor model using the Satorra-Bentler chi-square difference test.  The 

∆χ2 indicated that both the one-factor (∆χ2 = 37.86, ∆df = 6, p < .01) and four-factor models (∆χ2 

= 15.23, ∆df = 3, p < .01) were significantly different from the three-factor model.  However, the 

overall BIC (four-between = 77,149.66, three-between = 77,152.68, one-between = 77,149.49) 
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and saBIC (four-between = 76,831.95, three-between = 76,844.50, one-between = 76,850.84) 

indicated that the four between-level factor model fit the data better than the alternative models.  

Table 10 

Model Fit Indices Across Time Points 

Sample AIC BIC saBIC CFI RMSEA SRMR-
within 

SRMR-
between 

September/
October 
2007 

76,584.26 77,149.66 76,831.95 .93 .04 .04 .07 

September/
October 
2008 

66,485.23 67,042.28 66,724.58 .92 .05 .05 .11 

January/ 
February 
2010 

64,293.38 64,856.33 64,538.62 .93 .05 .04 .06 

Note. 2007: Level-1 n = 2,109, Level-2 n = 62. 2008: Level-1 n = 1,940, Level-2 n = 61. 2010: Level-1 n 
= 2,058, Level-2 n = 60. 
 
Research Question 4 

What is the reliability of the scores from the Perceptions of Practices Survey at the 

educator and school levels across multiple time points? 

Composite reliability estimates were used to examine reliability at the educator and 

school levels.  Reliability estimates at the educator level for the factors of Tiers I & II Problem 

Solving and Intervention, Tier III Problem Identification, Tier III Problem Analysis & 

Intervention Procedures, and Tier III Evaluation of Response to Intervention for the 

September/October 2007 sample were .86, .84, .84, and .92, respectively.  At the school-level, 

estimates for 2007 were .97, .94, .95, and .97, respectively.  For the September/October 2008 

sample, internal consistency estimates were .86, .89, .86, and .91, respectively.  For the 2008 

sample, composite reliability estimates at the school-level were .98, .98, .94, and .96, 

respectively.  Finally, for the January/February 2010 sample, internal consistency estimates 

were .89, .90, .85, and .92, respectively.  At the school-level, estimates for 2010 
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were .98, .98, .98, and .99.  Thus, all factors across three years exceeded the .70 estimate 

typically considered acceptable for internal consistency reliability (Nunnally, 1978).  

Research Question 5 

To what extent are the factor scores derived from the Perceptions of Practices Survey 

related to the Tiers I and II Critical Components Checklist? 

Level 2 (school) covariates were added to the constrained four-factor model to examine 

the relationship between school-level perceptions of practices and school-level implementation 

fidelity.  Relationships between the total implementation score derived from the Tiers I and II 

Critical Components Checklist and perceptions of practices scores were investigated across 

multiple time points.  From 2007-2010, the average Total Problem Solving score increased from 

0.55 to 0.95.  A higher score indicates higher levels of implementation.  See Table 16 for 

descriptive statistics for this score across years.  For the 2007 sample, parameter estimates 

between factors on the Perceptions of Practices Survey and the Total Problem Solving score on 

the Tiers I and II Critical Components Checklist ranged from -0.04 (p = 0.77) to 0.00 (p = 0.98).  

For 2008, estimates ranged from 0.15 (p = 0.31) to 0.22 (p = 0.11).  Finally, for 2010, estimates 

ranged from 0.35 (p < 0.05) to 0.39 (p < 0.05).  Only estimates for the 2010 sample significantly 

contributed to the model.  See Table 17 for standardized parameter estimates between the factors 

on Perceptions of Practices Survey and the Total Problem Solving score from the Tiers I & II 

Critical Components Checklist across the three years. 
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Table 11 
 
Unstandardized Parameter Estimates for 2008 (Level-1 n = 1,940, Level-2 n = 61) 
 
 Levels 1 & 2: Educator & School  

Item TI & II PS TIII PI TIII PA & 
IX TIII Eval 

Level 1 
Residual 
Variance 

Level 2 
Residual 
Variance 

2a 1.00a (—)    0.26 (0.02) 0.00 (0.00) 
3a 1.26 (0.05)    0.30 (0.02) 0.01 (0.00) 
4a 1.21 (0.05)    0.17 (0.02) 0.00 (0.00) 
5a 1.34 (0.06)    0.22 (0.02) 0.00 (0.00) 
6a 1.35 (0.07)    0.19 (0.01) 0.01 (0.00) 
7a 1.51 (0.08)    0.16 (0.02) 0.00 (0.00) 
8a 1.23 (0.07)    0.48 (0.04) 0.02 (0.01) 
9a  1.00a (—)   0.34 (0.03) 0.00 ((0.00) 
10a 
academics  1.24 (0.05)   0.08 (0.01) 0.00 (0.00) 

10b 
academics  1.24 (0.05)   0.07 (0.01) 0.00 (0.00) 

10c 
academics  1.26 (0.04)   0.17 (0.02) 0.00 (0.00) 

11a   1.00a (—)  0.32 (0.02) 0.02 (0.01) 
12a   0.99 (0.03)  0.25 (0.02) 0.00 (0.00) 
13a   0.98 (0.03)  0.21 (0.02) 0.00 (0.00) 
14a   0.97 (0.03)  0.51 (0.04) 0.03 (0.01) 
15a    1.00a (—) 0.21 (0.03) 0.00 (0.01) 
16a    1.03 (0.03) 0.33 (0.03) 0.02 (0.01) 
17a 
academics    0.95 (0.02) 0.13 (0.01) 0.00 (0.00) 

17b 
academics    0.98 (0.03) 0.14 (0.01) 0.00 (0.00) 

17c 
academics    1.05 (0.03) 0.16 (0.02) 0.00 (0.00) 

18a    1.07 (0.04) 0.41 (0.04) 0.00 (0.01) 
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX 
= Tier III Problem Analysis & Intervention Procedures, TIII Eval = Tier III Evaluation of Response to 
Intervention. Standard errors are in parentheses. All items loaded at the .05 level. aFactor loading fixed to 
1.00.
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Table 12 
 
Unstandardized Parameter Estimates for 2010 (Level-1 n = 2,058, Level-2 n = 60) 

 Levels 1 & 2: Educator & School  

Item TI & II PS TIII PI TIII PA & 
IX TIII Eval 

Level 1 
Residual 
Variance 

Level 2 
Residual 
Variance 

2a 1.00a (—)    0.27 (.02) 0.00 (0.00) 
3a 1.16 (0.04)    0.38 (0.03) 0.01 (0.01) 
4a 1.09 (0.04)    0.22 (0.02) 0.00 (0.00) 
5a 1.27 (0.05)    0.31 (0.02) 0.00 (0.00) 
6a 1.22 (0.06)    0.21 (0.02) 0.01 (0.00) 
7a 1.33 (0.06)    0.17 (0.01) 0.00 (0.00) 
8a 1.30 (0.07)    0.60 (0.04) 0.02 (0.01) 
9a  1.00a (—)   0.35 (0.02) 0.01 (0.00) 
10a 
academics  1.22 (0.05)   0.11 (0.01) 0.00 (0.00) 

10b 
academics  1.28 (0.05)   0.08 (0.01) 0.00 (0.00) 

10c 
academics  1.27 (0.05)   0.19 (0.02) 0.01 (0.00) 

11a   1.00a (—)  0.36 (0.03) 0.02 (0.01) 
12a   1.03 (0.03)  0.22 (0.03) 0.01 (0.00) 
13a   0.96 (0.03)  0.19 (0.02) 0.00 (0.00) 
14a   0.85 (0.04)  0.60 (0.05) 0.05 (0.01) 
15a    1.00a (—) 0.37 (0.04) 0.01 (0.01) 
16a    1.07 (0.04) 0.63 (0.05) 0.07 (0.02) 
17a 
academics    1.10 (0.04) 0.17 (0.02) 0.00 (0.00) 

17b 
academics    1.24 (0.04) 0.10 (0.01) 0.00 (0.00) 

17c 
academics    1.24 (0.04) 0.16 (0.02) 0.00 (0.00) 

18a    1.07 (0.03) 0.46 (0.04) 0.02 (0.01) 
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX 
= Tier III Problem Analysis & Intervention Procedures, TIII Eval = Tier III Evaluation of Response to 
Intervention. Standard errors are in parentheses. All items loaded at the .05 level. 
aFactor loading fixed to 1.00.
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Table 13 
 
Standardized Factor Correlations for 2007 (Level-1 n = 2,109, Level-2 n = 62) 
 
  TI & II PS TIII PI TIII PA & IX TIII Eval 

TI & II PS     
TIII PI .79 (0.02)    
TIII PA & IX .73 (0.02) .75 (0.02)   

Le
ve

l 1
: 

Ed
uc

at
o

r 

TIII Eval .73 (0.02) .76 (0.02) .79 (0.02)  
      

TI & II PS     
TIII PI .98 (0.03)    
TIII PA & IX .94 (0.04) 1.00 (0.03)   

Le
ve

l 2
: 

Sc
ho

ol
 

TIII Eval .96 (0.03) .93 (0.04) .95 (0.04)  
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX = Tier III Problem Analysis & 
Intervention Procedures, TIII Eval = Tier III Evaluation of Response to Intervention. Standard errors are in parentheses. All correlations 
significant at .05 level.  
 
Table 14 

Standardized Factor Correlations for 2008 (Level-1 n = 1,940, Level-2 n = 61) 

  TI & II PS TIII PI TIII PA & IX TIII Eval 
TI & II PS     
TIII PI .78 (0.03)    
TIII PA & IX .71 (0.02) .71 (0.03)   

Le
ve

l 1
: 

Ed
uc

at
o

r 

TIII Eval .68 (0.02) .65 (0.03) .75 (0.02)  
      

TI & II PS     
TIII PI .94 (0.05)    
TIII PA & IX .92 (0.09) .79 (0.14)   

Le
ve

l 2
: 

Sc
ho

ol
 

TIII Eval .96 (0.04) .92 (0.06) .90 (0.08)  
Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX = Tier III Problem Analysis & 
Intervention Procedures, TIII Eval = Tier III Evaluation of Response to Intervention. Standard errors are in parentheses. All correlations 
significant at .05 level.  
 
Table 15 

Standardized Factor Correlations for 2010 (Level-1 n = 2,058, Level-2 n = 60) 

  TI & II PS TIII PI TIII PA & IX TIII Eval 
TI & II PS     
TIII PI .80 (0.02)    
TIII PA & IX .78 (0.02) .77 (0.02)   

Le
ve

l 1
: 

Ed
uc

at
o

r 

TIII Eval .77 (0.02) .77 (0.02) .80 (0.02)  
      

TI & II PS     
TIII PI .98 (0.02)    
TIII PA & IX .92 (0.03) .94 (0.03)   

Le
ve

l 2
: 

Sc
ho

ol
 

TIII Eval .94 (0.03) .95 (0.03) .97 (0.03)  
Note.  TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX = Tier III Problem Analysis & 
Intervention Procedures, TIII Eval = Tier III Evaluation of Response to Intervention.  Standard errors are in parentheses. All correlations 
significant at .05 level.  
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Table 16 
 
Descriptive Data for Total Problem Solving Scores Across Years 

Year N M SD Minimum Maximum Skewness Kurtosis 
2007 2,130 0.55 0.47 0.00 1.50 0.62 -0.87 
2008 2,001 0.64 0.50 0.00 1.73 0.44 -0.85 
2010 2,088 0.95 0.61 0.00 1.94 0.06 -1.24 

Note.  Average implementation scores for educators nested within schools. 

Table 17  

Standardized Parameter Estimates Between Factors on Perceptions of Practices Survey with 
Tiers I & II Critical Components Checklist 
 
Year TI & II PS 

with TotPS 
Tier III PI with 
TotPS 

Tier III PA & IX 
with TotPS 

Tier III Eval with 
TotPS 

2007  
(Level-1 n = 2,109,  
Level-2 n = 62) 

0.00 (0.13)  -0.02 (0.14) -0.02 (0.14) -0.04 (0.13) 

2008 
(Level-1 n = 1,940, 
Level-2 n = 61) 

0.21 (0.12)  0.15 (0.14) 0.22 (0.13) 0.21 (0.14) 

2010 
(Level-1 n = 2,058, 
Level-2 n = 60) 

0.35* (0.14) 0.36* (0.15) 0.39* ( 0.13) 0.35* ( 0.13) 

Note. TI & II PS = Tiers I & II Problem Solving, TIII PI = Tier III Problem Identification, TIII PA & IX 
= Tier III Problem Analysis & Intervention Procedures, TIII Eval = Tier III Evaluation of Response to 
Intervention, TotPS = Total Problem Solving. Standard errors are in parentheses. 
*p < .05.
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CHAPTER V: Discussion 

The purpose of this study was to examine the reliability and validity of the Perceptions of 

Practices Survey for use in measuring educators’ self-reported MTSS implementation within 

schools.  This chapter presents a discussion of the findings, limitations of the current study, and 

implications for research and practice.  

Discussion of Findings 

As the adoption of MTSS has been increasing, researchers have been developing tools to 

measure the fidelity of implementation and to evaluate the effectiveness of MTSS.  One of these 

tools is the Perceptions of Practices Survey, a self-report survey that can be completed by school 

staff to measure their perceptions of MTSS practices within a school.  A prior study examined 

the factor structure of the tool using single-level EFA procedures (Castillo et al., 2010); however, 

the current study extended the literature by using multilevel statistical analyses that accounted 

for the nested data structure (i.e., educators nested within schools).  Results of the MEFA and 

MCFAs examining academic items only across multiple years supported a four-factor structure 

at both the educator and school levels.  The four factors were labeled: (a) Tiers I & II Problem 

Solving (items 2a, 3a, 4a, 5a, 6a, 7a, 8a), (b) Tier III Problem Identification (items 9a, 10a 

academics, 10b academics, 10c academics), (c) Tier III Problem Analysis & Intervention 

Procedures (items 11a, 12a, 13a, 14a), and (d) Tier III Evaluation of Response to Intervention 

(items 15a, 16a, 17a academics, 17b academics, 17c academics, 18a).   
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The four-factor solution found in the current study is consistent with the literature on 

MTSS and problem-solving.  An MTSS commonly is organized around three levels of student 

support and the problem-solving process often is used to make decisions about instruction and 

intervention (Batsche et al., 2007; Burns & VanDerHeyden, 2006; Fletcher & Vaughn, 2009; 

Stoiber, 2014).  A common problem-solving framework includes four steps: (1) Problem 

Identification (i.e., well-defined problem that includes the discrepancy between what is occurring 

and what is expected); (2) Problem Analysis (i.e., hypotheses regarding why the problem is 

occurring that are either confirmed or rejected based on data); (3) Intervention Plan Development 

and Implementation (i.e., a plan is developed and implemented that includes evidence-based 

strategies that are matched to needs determined by validated hypotheses); and (4) Evaluation of 

the response to intervention (i.e., a decision regarding how much progress was made based on 

frequently collected data; Bergan & Kratochwill, 1990; Gutkin & Curtis, 2009).   

The resulting factor structure from the current study aligns with the practices of applying 

the problem-solving framework across multiple tiers (Batsche et al., 2007; Brown-Chidsey & 

Steege, 2010; Burns & VanDerHeyden, 2006; Fletcher & Vaughn, 2009; Pluymert, 2014; Stoiber, 

2014).  The first seven items on the Perceptions of Practices Survey require educators to indicate 

how often problem-solving practices occur at Tiers I & II (see Table 18), resulting in the labeling 

of that factor as Tiers I & II Problem-Solving.  The goal of problem-solving at Tier I is to 

determine how students are progressing within the core curriculum and what adjustments need to 

be made to improve student performance.  School problem-solving teams gather universal 

screening data (e.g., Curriculum-Based Measures, state assessments) to determine the percentage 

of students not making progress in the core curriculum and then the team analyzes the data to 

determine the changes or interventions that are needed to improve student performance (Batsche 
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et al., 2005; Pluymert, 2014; Stoiber, 2014; Tilly, 2008).  The application of these problem-

solving steps at Tier I are reflected in questions 2a and 3a on the survey.  At the next tier, Tier II, 

the problem-solving team uses school-wide data to determine which students are at-risk and what 

interventions these students need based on their presenting problems.  These procedures at Tier 

II are reflected by items 4a and 5a on the survey.  Next, the team continues to collect data to 

monitor the at-risk students’ progress and to determine the percentage of students who received 

the supplemental interventions and achieved grade-level benchmarks.  These steps are measured 

by items 6a and 7a.  Item 8a on the survey asks educators if a “standard protocol intervention 

(i.e., the same type of intervention used for similar problems” [Castillo, Hines, Batsche, & Curtis, 

2011; p. 2]) was used for all at-risk students.  The use of a standard protocol is a common 

procedure for Tier II interventions in a school (Hughes & Dexter, 2011), thus making it a 

reasonable addition to the factor Tiers I & II Problem-Solving.   

The remaining items on the survey focus on the problem-solving steps applied to Tier III 

(see Table 18).  Items 9a through 10c academics on the survey loaded onto the factor labeled 

Tier III Problem Identification.  This label was given to these items because they outline specific 

steps the problem-solving team should follow to define a student’s target behavior including 

defining the problem in terms of the desired behavior and using quantifiable data to determine 

the student’s current performance level, desired performance level, and his/her performance in 

comparison to same-age peers (Batsche et al., 2005; Pluymert, 2014; Stoiber, 2014; Tilly, 2008).   

Items 11a through 14a loaded on the factor labeled Tier III Problem Analysis and 

Intervention Procedures.  These items are believed to have loaded on the same factor because the 

steps that are required for intervention procedures are dependent on the steps for problem 

analysis (Batsche et al., 2005; Pluymert, 2014; Stoiber, 2014; Tilly, 2008).  For instance, during 
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problem analysis, the team develops hypotheses to explain why the student is not meeting 

expectations and gathers data to confirm or reject the hypotheses (reflected by items 11a and 12a 

on the survey).  Then, for intervention development, the team develops interventions based on 

the confirmed hypotheses (item 13a).  As part of the intervention development, it is best practice 

for the team to also plan for intervention support for the teacher implementing the intervention 

(reflected in item 14a).   

The final factor, Tier III Evaluation of Response to Intervention, encompasses items 15a 

through 18a.  These items were thought to load on the same factor because they measure 

components of evaluation, the final step of the problem-solving process (Batsche et al., 2005; 

Pluymert, 2014; Stoiber, 2014; Tilly, 2008).  Item 15a measures the degree to which the fidelity 

of intervention implementation occurs while items 16a through 17c academics measure the 

extent to which educators graph student data and use the data to determine the student’s rate of 

progress as well as the change in the gap between his/her performance with expected 

performance and peer performance.  The last item, 18a, asks how often the student’s response to 

intervention data are used to determine whether or not s/he has a disability, which is consistent 

with requirements for and current application of response to intervention data within the school 

setting (IDEIA, 2004; Spectrum K12, 2011).  

The finding that the factor structure was similar at the educator- and school-levels also is 

consistent with the literature.  Scholars indicate that the steps of the problem-solving process are 

similar at both levels because it is a universal process employed to solve various problems in 

various contexts (e.g., Batsche et al., 2005; Bergan & Kratochwill, 1990, Brown-Chidsey & 

Steege, 2010; Pluymert, 2014; Stoiber, 2014).  Although there are factors that may influence the 

implementation of the problem-solving process at different levels (e.g., knowledge of educators 
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employing the process, data available, resources, etc.), there is no reason to suspect that the 

constructs would differ across levels.  The steps of the problem-solving process would be 

implemented similarly regardless of whether one educator or groups of educators within a school 

engaged in problem-solving.  For example, whether defining a problem (step one of the problem-

solving process) at the school (e.g., school teams examining student performance) or educator 

(e.g., individual teacher engaging in problem-solving for his/her students) level, the problem is 

clearly defined in terms of the desired behavior and the current and expected levels of 

performance are identified.  

Table 18 

Factors of Perceptions of Practices Survey and Focus of Practice Statements 

Perceptions of 
Practices Survey 
factors 

Focus of practice statements 

Tiers I & II Problem 
Solving (items 2a-8a) 

Use of data to evaluate core effectiveness; data-based decision 
making for core curriculum; use of data to identify at-risk students; 
supplemental interventions for at-risk students; progress monitoring 
of at-risk students and data used to determine student achievement; 
standard intervention protocol used for at-risk students  
 

Tier III Problem 
Identification (items 9a-
10c academics) 

Desired behavior used to define target behavior; quantifiable data 
used to identify target student’s and peer’s current and desired levels 
of performance 
 

Tier III Problem 
Analysis & Intervention 
Procedures (items 11a-
14a) 
 

Hypotheses routinely developed; data used to validate hypotheses; 
intervention plans developed based on hypotheses; intervention 
implementation support 

Tier III Evaluation of 
Response to 
Intervention (items 15a-
18a) 

Intervention fidelity data collected routinely; Data graphed routinely; 
progress monitoring data used to determine target student’s rate of 
progress, decrease in gap of performance between current and desired 
levels and peers’ performance 
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Of note is the fact that the model demonstrated good fit across the 2007, 2008, and 2010 

samples of educators.  Moreover, the factor loadings and correlations among factors were fairly 

similar across the three years, and the scores derived for the educator- and school-level factors 

provided reliable information.  It was expected that the model would fit across years because the 

problem-solving process is a stable construct that is unlikely to change over time.  Despite some 

variations to the steps included in the problem-solving process (e.g. specific procedures), the 

basic foundations of the process remain constant regardless of time (Bergan & Kratochwill, 

1990; Gutkin & Curtis, 2009).  Although the components of the problem-solving process (e.g., 

problem identification, problem analysis, intervention implementation, intervention evaluation) 

remain stable, it is expected that implementation levels of the various components would 

fluctuate based on professional development activities, leadership support, school climate, 

policies, procedures, and other system level factors (Fullan, 2010; Hall & Hord, 2015).       

Finally, the constructs found in the current study were related to another measure of 

implementation.  Implementation as measured by the Tiers I and II Critical Components 

Checklist was not significantly related to any of the factors on the Perceptions of Practices 

Survey for the 2007 and 2008 samples.  However, the Checklist was significantly related to all 

four factors on the Perceptions of Practices Survey in 2010.  This finding indicates that educators’ 

perceptions of practices after three years of implementation were significantly related to trained 

and experienced MTSS coaches’ ratings of problem-solving practices within a school, thereby 

providing evidence for the concurrent validity of the tool.  One potential explanation for the lack 

of a significant relationship for the first two waves of administration involves the amount of 

variability in implementation scores from the Checklist.  During the third year of the study, there 

was more variability in the Checklist scores, which likely increased the ability to detect 
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relationships between the measures.  Researchers argue that implementation of any innovation 

typically takes years before implementation with fidelity occurs (Batsche et al., 2005; Castillo & 

Curtis, 2014; Hall & Hord, 2015).  Thus, it is plausible that relationships between the 

Perceptions of Practices Survey and other measures of implementation may not be detected until 

sufficient levels of implementation have been reached.   

Another possible explanation for the absence of a significant relationship between the 

measures in 2007 and 2008 is that the average educator responses on the Perceptions of 

Practices Survey were high during those years (i.e., item response averages exceeded 4.0).  

These estimates were not commensurate implementation levels evidenced by the Checklist 

scores during 2007 and 2008.  Thus, the educators’ self-reported perceptions of practices in the 

first two years were potentially an upwardly biased estimate of practices (Desimone, 2009; Noell 

& Gansle, 2006).  Perhaps educators believed problem-solving practices were occurring 

frequently in the school and were attempting to engage in the steps, but the process was not 

being implemented with enough fidelity to be evident in the permanent products that were 

evaluated to complete the Checklists.  

Finally, when considering the relationships between the Perceptions of Practices Survey 

and the Checklist, it is important to consider the psychometric properties and limitations of the 

Checklist.  Although the Checklist had good internal consistency (estimates using Cronbach’s 

alpha exceeded .80) and evidence of high inter-rater agreement (91.16%), potential limitations 

inherent to permanent product reviews exist.  Because the Checklist is completed based on the 

availability and quality of permanent products, the validity and accuracy of the tool may be 

affected by factors such as variability in access to and the status of documentation.  For this 
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reason, it is recommended that both tools be used in conjunction with other measures (e.g., 

observation protocols) to ensure accuracy.  

Limitations and Future Research 

A few limitations of the current study must be considered when interpreting the findings.  

One limitation involves the limited sample.  Although the sample is representative of the 

population of educators from a large and diverse southeastern state, the number of schools was 

relatively small.  For multilevel research, it is recommended to have at least 30-50 level two 

units (i.e., schools; Muthén & Muthén, n.d.) in order to achieve adequate power (Snijders, 2005) 

to better determine sources of model misfit.  Although the current sample (Level-2 n ≈ 61) met 

the sample size criterion for multilevel research, the inclusion of more schools in the sample 

would have increased the chance of finding a model that best fit the data.   

Additionally, the state from which the samples were drawn had state requirements for the 

implementation of MTSS since 2007, which could have influenced the presence of MTSS 

practices.  Because states vary in their policies regarding requirements for the implementation of 

MTSS (Hauerwas et al., 2013) and because MTSS models can vary in terms of processes and 

procedures (Fletcher & Vaughn, 2009), future research should include educators from various 

states to examine the generalizability of these findings to other settings with different 

expectations for and resources available to support MTSS implementation.  Future research also 

should include a more geographically diverse sample to address how well the measure 

generalizes to other regions. 

Another limitation of this study is that the sample only included elementary schools.  

Additional research should examine the evidence for the reliability and validity of the 

Perceptions of Practices Survey at the secondary level.  Because of the differences between the 
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two settings (e.g., time for interventions, availability of assessments, composition of problem-

solving team), problem-solving processes may be perceived differently at the secondary level 

(Sansosti, Noltemeyer, & Goss, 2010).  Although it is hypothesized that the four-factor structure 

would fit the data at the secondary level because the problem-solving process is a universal 

process that does not tend to greatly fluctuate (Bergan & Kratochwill, 1990; Gutkin & Curtis, 

2009), future research is needed.   

An additional limitation is that the current study only examined the academic items and 

not the behavior items on the Perceptions of Practices Survey.  As mentioned earlier, the 

problem-solving process is a general practice that can be applied across content areas (e.g., 

Brown-Chidsey & Steege, 2010; Pluymert, 2014; Stoiber, 2014).  Even though MTSS is a 

system that is intended to encompass academic and behavior problems, distinctive differences 

may exist between practices for academics and behavior (e.g., data sources, intervention 

practices; Stoiber, 2014).  Therefore, future research is needed to examine the psychometric 

properties of the behavior items to confirm that the factor structure remains the same for these 

items.  

Significantly high correlations among the factors at the between level indicate that the 

four factors may not be distinguishably different.  Follow-up analyses in the current study 

revealed that the one and three between-level factor models adequately fit the data, and were 

significantly different from the four between-level factor model.  However, based on the BIC and 

saBIC, the four between-level factor model better fit the data.  The four-factor model also aligns 

with the problem-solving process found in the literature as well as training protocols for the 

problem-solving process.  Moreover, when evaluating MTSS implementation, it is common to 

find that problem identification is being implemented more often than problem analysis and 
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intervention procedures (Castillo, Hines, Batsche, & Curtis, 2011).  Thus, for professional 

learning purposes, it would be beneficial to have separate factors to monitor to inform what steps 

of the problem-solving process require additional training and support.  Nonetheless, future 

research should examine whether the four-factor model at the between level best explains the 

variance in school-level perceptions of practices.  

The lack of clarity regarding the amount of Don’t Know responses from the 2007 

administration represents another limitation.  Despite the uncertainty, Don’t Know responses did 

not seem to have a substantial impact on the data.  In general, the percentage of educators who 

responded with Don’t Know was did not exceed 21% and on average were 13% for 2008 and 8% 

for 2010.  When responses were examined by educator job position, there was no relationship 

found between position and number of Don’t Know responses.  Future research should include 

an analysis of Don’t Know responses to determine their impact on survey results, especially 

when investigating the relationships between educator characteristics (e.g., job position, years of 

experience) and problem-solving practices.  It is plausible that educators with different roles and 

responsibilities may have different understandings of the problem-solving practices occurring in 

their schools.  

Future research also should seek to investigate the relationship between MTSS 

implementation as measured by the Perceptions of Practices Survey and important student 

outcomes.  Researchers suggest that when MTSS is implemented with fidelity, schools and 

districts see improvements in reading and mathematics outcomes, academically related behaviors, 

general academic performance, and decreases in retention, referral and special education 

placement rates (Burns et al., 2005; Griffiths et al., 2007; Hughes & Dexter, 2011).  Thus, 

relationships between scores from the survey and identified student outcomes would provide 
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additional evidence for the validity of the tool by demonstrating associations found in studies 

using other implementation measures. 

Implications for Practice 

The current study extends the MTSS literature by providing evidence of reliability and 

validity for a self-report scale that measures educators’ perceptions of MTSS practices within 

their schools.  This is a noteworthy addition to the literature due to the limited availability of 

self-report tools that can be completed by multiple stakeholders within a school.  Many existing 

tools require a select few educators on a leadership team to complete items (e.g., TIC; Sugai, 

Horner, Lewis-Palmer, Rossetto, 2012; SET; Sugai, Lewis-Palmer, Todd, & Horner, 2001; BoQ; 

Kincaid, Childs, & George, 2010; EBS; Sugai, Horner, & Todd, 2003; Tier I and II Observation 

Checklist; Castillo et al., 2010; Tier I and II Critical Components Checklist, Tier III Critical 

Components Checklist; Castillo et al., 2010).  On the other hand, data from the Perceptions of 

Practices Survey can be efficiently gathered from multiple stakeholders to capture diverse 

perspectives regarding the problem-solving practices occurring within a school.  The ability to 

capture perspectives of all school staff across grade-levels, roles and responsibilities, and content 

areas is important because problem-solving occurs in many settings and leadership team 

members (i.e., administration, instructional coaches, support personnel) are not always present.  

Because leadership team members are not always present in every problem-solving situation in 

the school, their perspectives may not reflect all aspects of the problem-solving practices 

occurring.  

In addition to providing perspectives from stakeholders across a school, practitioners also 

may want to consider the potential utility of a self-report measure that can be used to monitor the 

fidelity of MTSS implementation within schools.  Fidelity is a critical component of 
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implementation to measure because if fidelity is not monitored, it is difficult to truly determine if 

improvements in student performance or a lack thereof are related to the implementation of 

MTSS or not (Carroll et al., 2007).  Self-report measures are more efficient in terms of use of 

resources than other methods such as direct observations, interviews, and permanent products 

(Desimone, 2009).  Because of concerns regarding the potential for upward bias in responses, 

researchers recommend that a combination of methods be used to measure fidelity (Desimone, 

2009; Noell & Gansle, 2006).  Thus, schools or districts can use information from the 

Perceptions of Practices Survey in conjunction with data gathered through other methods such as 

direct observations, interviews, or permanent product reviews to determine goals for professional 

development and evaluate growth in implementation fidelity (Schmoker, 2006).  Using a 

combination of methods may be particularly important given the lack of relationship between the 

survey and the Checklist during the first two waves analyzed and the notion that the lack of 

relationships may have been influenced by higher than expected scores from the Perceptions of 

Practices Survey.   

As part of a battery of tools, data from the Perceptions of Practices Survey can be used to 

determine the extent to which professional learning initiatives translate to practice.  Through 

assessment using the Survey, leaders facilitating professional learning can determine which 

aspects of the problem-solving process are perceived as occurring more or less in schools.  After 

establishing a baseline, schools and/or districts can adapt professional development plans to 

focus on specific steps of the problem-solving process that data indicate are a greater area of 

perceived need.  Then, after providing targeted professional development, trainers can assess the 

level to which the trainings are translating to perceived practices as measured by the Survey.  

Additionally, MTSS leadership teams could share the data with educators in their school to 
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increase educators’ awareness and knowledge of the components of problem-solving that are 

strongly implemented and those that are in need of improvement.  Recent literature on 

professional development indicates that learners should be actively involved in their learning and 

evaluate their personal growth to increase their ownership of the process (Haslam, 2010; 

Learning Forward, 2011).   

One mechanism to activity engage educators in the process is for MTSS leadership teams 

to create Professional Learning Communities (PLC; Learning Forward, 2011) where educators 

analyze and discuss their data from the survey.  In the PLC, educators can begin by examining 

their baseline data from the survey.  The analysis of the data could include looking at each factor 

to determine general areas of problem-solving where improvement is needed or analyzing 

individual item responses.  After exploring the data, the PLC could set goals they would like to 

achieve.  Throughout the year, the team could continuously collect survey data to monitor and 

evaluate their progress toward the established goals.  Through this process, educators may 

develop more buy-in and understanding of the components of problem-solving that are in need of 

improvement.  Moreover, the team’s on-going collection, analyzing, and use of data may 

encourage motivation, which researchers suggest will increase the likelihood of continuous 

improvement (Learning Forward, 2011).  

Conclusion 

MTSS implementation efforts are increasing in schools across the nation.  The 

Perceptions of Practices Survey is a self-report tool that measures educators’ perceptions of 

MTSS practices with a focus on problem-solving.  The current study provided evidence for the 

reliability and validity of the measure using multilevel statistical techniques that account for 

nested data.  Results of these analyses indicated a four-factor structure that provides data on 
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problem-solving at all three tiers.  In addition, significant relationships were found among the 

Perceptions of Practices Survey and the Tiers I & II Critical Components Checklist for the 2010 

sample providing some evidence of concurrent validity.  Thus, the Perceptions of Practices 

Survey is one available tool for educators to formatively evaluate and measure the fidelity of 

their MTSS implementation.  
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