
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Essays on climate change and resource economics
Jae-Hoon Sung
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Economics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sung, Jae-Hoon, "Essays on climate change and resource economics" (2016). Graduate Theses and Dissertations. 16025.
https://lib.dr.iastate.edu/etd/16025

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16025?utm_source=lib.dr.iastate.edu%2Fetd%2F16025&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


  

 

 

Essays on climate change and resource economics 

 

 

by 

 

Jae-hoon Sung  

 

 

 

A dissertation submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

Major: Economics 

 

Program of Study Committee: 

John A. Miranowski, Co-Major Professor 

Sébastien Pouliot, Co-Major Professor 

Brent E. Kreider 

David A. Keiser  

Wendong Zhang  

 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2016 

 

 

Copyright © Jae-hoon Sung, 2016. All rights reserved.

http://www.econ.iastate.edu/people/sebastien-pouliot
http://www.econ.iastate.edu/people/brent-kreider
http://www.econ.iastate.edu/people/david-keiser
http://www.econ.iastate.edu/people/wendong-zhang


ii 

 

DEDICATION 

 

To my family 



iii 

 

TABLE OF CONTENTS 

                    

ACKNOWLEDGMENTS ......................................................................................... v 

ABSTRACT………………………………. .............................................................. vi 

CHAPTER 1  GENERAL INTRODUCTION ....................................................... 1 

CHAPTER 2 ADAPTIVE BEHAVIORS OF MIDWEST FARMERS TO 

CLIMATE AND RISK………………………………. ............................................. 3 

 Abstract………………………………. ............................................................... 3 

 2.1 Introduction .................................................................................................... 4 

 2.2 Literature review ............................................................................................ 7 

 2.3 Conceptual approach ...................................................................................... 9 

  2.3.1 The role of risk in cropping pattern changes ........................................ 9 

  2.3.2 The effects of subsidized crop insurance .............................................. 12 

 2.4 Empirical model and estimation .................................................................... 14 

 2.5 Model specification and data ......................................................................... 19 

  2.5.1 Model specification ............................................................................... 19 

  2.5.2 Identification ......................................................................................... 20 

  2.5.3 Data ....................................................................................................... 21 

 2.6 Results………………………………. ........................................................... 25 

  2.6.1 Estimation results .................................................................................. 25 

  2.6.2 Implications........................................................................................... 31 

 2.7 Conclusions………………………………. ................................................... 32 

 References………………………………. ........................................................... 34 

 Appendix A: proofs regarding the conceptual model…………………………. . 52 

 Appendix B: How to derive empirical model…………………………. ............. 55 

 Appendix C: Climate variables…………………………. ................................... 57 

 

CHAPTER 3 ECONOMIC AND ENVIRONMENTAL IMPLICATIONS OF 

BIOTECHNOLOGY AND INFORMATION TECHNOLOGY .............................. 58 

 Abstract………………………………. ............................................................... 58 

 3.1 Introduction .................................................................................................... 59 

 3.2 Literature review ............................................................................................ 62 

 3.3 Conceptual model .......................................................................................... 64 

 3.4 Empirical model and estimation .................................................................... 65 

  3.4.1 Decision regarding technology adoption .............................................. 66 

  3.4.2 Corn, nitrogen use, and NUE ................................................................ 67 

  3.4.3 Nonlinear regression with endogenous switching ................................ 68 

  3.4.4 Estimation ............................................................................................. 69 

  3.4.5 Identification ......................................................................................... 70 

 3.5 Data and model specification ......................................................................... 71 

  3.5.1 Determinants of corn yield, nitrogen use, and NUE ............................. 74 



iv 

 

 3.6 Empirical results ............................................................................................ 78 

  3.6.1 The effects of technology adoption....................................................... 78 

  3.6.2 Implications........................................................................................... 82 

 3.7 Conclusions .................................................................................................... 83 

 References………………………………. ........................................................... 84 

 Appendix A: Robust checks…………………………......................................... 96 

 Appendix B: Supplementary tables…………………………. ............................ 98 

CHAPTER 4 FORECASTING FUTURE LAND USE IN THE MIDWEST ...... 100 

 Abstract………………………………. ............................................................... 100 

 4.1 Introduction .................................................................................................... 101 

 4.2 Literature review ............................................................................................ 105 

 4.3 Conceptual model .......................................................................................... 106 

 4.4 Estimation ...................................................................................................... 107 

 4.5 Data and model specification………………………………. ........................ 111 

  4.5.1 Decadal land cover ................................................................................ 111 

  4.5.2 Environmental conditions ..................................................................... 113 

 4.6 Model evaluation and Selection ..................................................................... 115 

 4.7 Results ......................................................................................................... 116 

  4.7.1 Results of out-of-sample forecasting test and land use in 2030............ 116 

  4.7.2 Acreage response elasticity ................................................................... 119 

 4.8 Conclusion ..................................................................................................... 120 

 References………………………………. ........................................................... 122 

Appendix A: Generating crop type land use using county level crop 

statistics…………………………. ....................................................................... 144 

Appendix B: The forecasted land use for wheat, other crop, and 

grassland…………………………. ..................................................................... 146 

Appendix C: Summary statistics for climate measures…………………………. 149 

 

CHAPTER 5  GENERAL CONCLUSIONS ......................................................... 179 



v 

 

ACKNOWLEDGMENTS 

 

First of all, I am very grateful to my major professors, Dr. Miranowski who provided 

insightful comments regarding my research and writing. I would also like to thank my co-adviser 

Dr.Pouliot for valuable support. Thanks to my committee members, Dr. Keiser, Dr. Kreider, and 

Dr. Zhang for their thoughtful comments.  

I wish to thank my family, including my wife, Youngmin Shin for her love and support 

and my daughter Eunwoo Sung who motivated me with her smile. Lastly, I’d thank members of 

Ames Korean United Methodist and my friends for their consideration.    

 

http://www.econ.iastate.edu/people/david-keiser
http://www.econ.iastate.edu/people/brent-kreider
http://www.econ.iastate.edu/people/wendong-zhang


vi 

 

ABSTRACT 

 

This dissertation analyzes farmers’ behaviors in response to climate change and technology 

adoption. The first essay analyzes the adaptive responses of Midwestern farmers to regional 

climate conditions through land use change and crop insurance purchases. The results of this study 

can be summarized as follows. First, we find that climate conditions have a significant effect on 

farmers’ decisions regarding crops to grow, insurance purchases, and land allocation. Second, 

federal crop insurance mitigates farmers’ incentive to adapt to climate conditions such as intensive 

rainfall events. Third, federal crop insurance programs have induced Midwest farmers to allocate 

more acreage to corn and soybeans. 

The second essay studies economic and environmental implications of genetically 

modified (GM) corn and information technology adoption by analyzing Midwestern farmers’ corn 

yield and nutrient management. The findings can be summarized as follows. First, GM corn and 

its combination with pest scouting increase corn yield and nitrogen use. Second, the effects of GM 

corn and/or pest scouting adoption on corn yield and nitrogen use are greater for fields having low 

soil productivity. Third, yield monitor and its combination with pest scouting have positive effects 

on corn yield and nitrogen use.   

The third essay examines the effects of uncertainty regarding climate measures on 

forecasting future land use: variations in projected weather data sets and methods of forming 

farmers’ expectations regarding weather variables. We analyze decadal land use change over the 

Midwest based on five general circulation models (GCMs) and six assumptions regarding how to 

form expected weather conditions. From out-of-sample forecasting tests, we find that the 

predictive accuracy of models depends on the choice of GCM and methods of forming farmers’ 
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expectations regarding weather variables. However, we find that forecasting results based on 

models consisting of yearly agronomic variables are more stable and have better predictive 

accuracy than models consisting of monthly variables. In addition, we estimate forecast land use 

in 2030 based on the best model and verify that two uncertainties have a significant effect on the 

forecasting results. Last, the predicted land use over the Midwest in 2030 shows that corn and 

soybean acreage will expand to the northwest.
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CHAPTER 1 

GENERAL INTRODUCTION  

 

To assess and alleviate harmful climate change impacts, policy makers must understand 

farmers’ adaptive behaviors to local climate conditions. A farmer’s farm management decisions 

greatly depend on regional climate conditions. In particular, land use change has been a major 

adaptation strategy of farmers to optimize their profit based on given environmental and market 

conditions. Farmers also have incorporated federal crop insurance programs to deal with farm 

operating risk. However, in terms of strategies for adapting to climate conditions, land use change 

and crop insurance are less well known. In addition, recent agricultural literature has focused on 

unintended policy effects of federal crop insurance programs on farmers’ adaptive behaviors to 

climate conditions. Given limited conceptual and empirical evidence, one major purpose of this 

dissertation is to identify the causal relationship between climate conditions and land allocation 

and analyze the intertwined relationship between subsidized crop insurance and land allocations 

in terms of farmers’ adaptive behaviors to climate conditions (Chapter 2).  

In designing future plans for sustainable agriculture and resource management, policy 

developers and farm operators require credible estimates of climate change impacts on agricultural 

production. However, lack of knowledge about climate systems and farmers’ response to climate 

conditions creates uncertainty regarding the causal relationship between climate conditions and 

regional agricultural production as well as the economic impacts of climate change. In particular, 

no consensus exists regarding how to construct farmers’ expected weather conditions in previous 

land use literature. Also, projected weather data sets based on general circulation models (GCMs) 

generally differ from realized station-level weather outcomes and have large variations among 
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them. To examine the effects of these two uncertainties regarding climate measures on forecast 

land use in 2030 and farmers’ response, Chapter 4 analyzes decadal land use over the Midwest 

based on various scenarios and model specifications.   

Genetic improvements and advanced crop management practices have been major 

contributing factors to corn yield growth in the U.S. after the 1930s. During the last decade, 

adoption of GM corn, pest scouting, and yield monitor has increased significantly. However, 

insufficient empirical evidence regarding the effects of GM corn and information technologies on 

corn yield and nutrient management may be an obstacle to understanding the costs and benefits of 

adopting the technologies. Chapter 3 provides empirical evidence regarding the effects of GM corn 

and information technologies on corn yield and nitrogen use management.  

Chapters 2, 3, and 4 analyze farmers’ behaviors in response to given exogenous conditions, 

including climate conditions, government policies, and technology adoption. The results of our 

research show that changes in agricultural productivity or profitability resulting from changes in 

climate conditions, policies, and available technology are key factors in determining agricultural 

production. This research contributes to our understanding of the implications of recent climate 

changes, expansion of crop insurance programs, and high adoption of GM corn and information 

technologies for United States (US) agriculture. 

This dissertation is organized as follows: The next three chapters consist of the three essays 

introduced above. The dissertation closes with a general conclusion, including an overall summary 

and discussion of the findings.  
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CHAPTER 2.  

ADAPTIVE BEHAVIORS OF MIDWEST FARMERS TO CLIMATE AND RISK 

 

Jae-hoon Sung and John A. Miranowski 

Abstract 

To assess the effects of climate change on agricultural production, one must understand 

how farmers change their land use to accommodate climate conditions. Also pertinent is any 

unintended policy effect of subsidized crop insurance programs on farmers’ land use. We analyze 

Midwestern farmers’ decisions regarding cropping patterns and crop insurance purchases in 

response to regional climate conditions. We consider a simultaneous equation model accounting 

for farmers’ decisions regarding crops to grow, insurance purchases, and land allocation. The 

estimates are based on the Agricultural Resource Management Survey. The results show that 

climate conditions have significant effects on farmers’ decisions regarding crops to grow, 

insurance purchases, and land allocation among crops. Also, federal crop insurance programs 

mitigate farmers’ incentive to adapt to increases in intensive rainfall events or decreases in total 

precipitation by adjusting their land use. Last, the results show that federal crop insurance 

programs increase the acreage devoted to growing corn and soybeans.  
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2.1 Introduction 

Recent climate models predict that climate change in the Midwest over the next few 

decades will increase the frequency of extreme weather events such as intensive rainfall (see Figure 

2.1). These changes may reduce crop yields and decrease agriculture net returns. The Midwest 

region is an important component of agriculture in the United States. Farmland accounts for more 

than half of the land in the Midwest and constitutes roughly 33% of US cropland. The region also 

produced roughly 62% of US corn and soybeans in 2015. Projected climate change in the Midwest 

raises concerns about regional agricultural production and may have important national and 

international effects in commodity markets. 

Analyses that do not consider adaptive behaviors tend to overestimate the damage of 

climate change (Mendelsohn, Nordhaus, & Shaw 1994). Given that agricultural production 

depends on local climate conditions, farmers generally respond to harmful weather conditions and 

climate change in the long run. The government also provides indirect and short-term adaptation 

options for farmers through agricultural policies, such as income support programs, as well as 

long-term options through public research and development (Malcolm et al. 2012).  

This study analyzes the adaptive behaviors of Midwestern farmers to regional climate 

conditions based on their decisions regarding land allocation and crop insurance purchases. A 

change in cropping pattern is an important farm-level adaptation option. The regional distribution 

of agricultural production depends on farm-level cropland allocation. For example, Figure 2.2 

shows the changes in the proportion of soybean acreage to cropland. Soybean acreage has 

expanded to the north and northwest, and these changes in soybean acreage may be caused by 

changes in climate conditions (Reilly et al. 2003). Changes in cropland allocation also may affect 

environmental conditions. For example, intensification of row cropping may alter precipitation 
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patterns (Pielke et al. 2007; Anderson et al. 2013). Also, nitrogen-intensive crops may contribute 

to leaching and runoff, which degrade water quality and contribute to adverse environmental 

outcomes (Jones et al. 2016).  

How federal crop insurance programs are coupled with agricultural production has been an 

important issue. For example, Goodwin and Smith (2013) point out the production distortion 

caused by subsidized crop insurance, including changes in production pattern. This production 

distortion caused by crop insurance is an ongoing issue. After the Federal Crop Insurance Reform 

Act of 1994, subsidized crop insurance programs expanded tremendously. Approximately 90% of 

corn and soybean acreage was insured in 2014 (see Figure 2.3). More recently, after the 2014 Farm 

Bill was passed, federal crop insurance programs expanded coverage and became a primary tool 

for farmers in dealing with farm operation risk.  

Although crop insurance is a farm-level adaptation option, subsidized crop insurance 

programs may make farmers more vulnerable to extreme weather events and long-term climate 

changes (GAO 2014; Annan & Schlenker 2015). In particular, subsidized federal crop insurance 

programs may mitigate farmers’ incentive to adjust their land use to accommodate climate 

conditions for four reasons. First, if land allocation is one way to self-insure, demand for crop 

insurance and land allocation can substitute for each other (Ehrlich & Becker 1972).1 Second, crop 

insurance may encourage farmers to grow riskier high-value crops by guaranteeing a certain 

amount of revenue (Wu & Adams 2001; Goodwin & Smith 2012). Also, if the amount of subsidy 

is coupled with production risk, the premium subsidy structure may distort farmers’ land use 

change in response to production risk (Feng, Hennessy, & Miao 2013; Miao, Hennessy, & Feng 

                                                 
1 Ehrlich and Becker (1972) suggest “self-insurance” and “self-protection.” Self-insurance means decisions decreasing 

the amount of loss when the loss occurs. Self-protection means decisions decreasing the likelihood that the loss will 

occur.  



6 

 

2016). Last, the Government Accountability Office (GAO 2014) indicates that the Risk 

Management Agency (RMA) recommends RMA’s good farming practices, which focus on 

maintaining historical crop yields in the short term. However, certain practices, such as 

conventional tillage, may unintentionally make famers more vulnerable to climate change in the 

long run.  

We seek to answer four specific research questions. First, how do weather and climate 

conditions influence land allocation of farmers at planting time? Second, how does government-

subsidized crop insurance alter farmers’ cropland allocation? Third, does federal crop insurance 

change farmers’ incentive to adapt to extreme weather events and climate conditions? Finally, do 

farmers consider weather and climate conditions when they decide which crops to plant and 

whether to purchase crop insurance? To answer these four questions, we develop a simultaneous 

equation model consisting of decisions regarding crops to grow, land allocation, and insurance 

purchases. We use farm-level data based on the Agricultural Resource Management Survey 

(ARMS) for estimation. Our findings show that climate conditions have significant effects on 

farmers’ decisions to grow specific crops, purchase federal crop insurance, and allocate their land. 

Also, federal crop insurance programs change farmers’ adaptive behaviors to extreme weather 

events, such as heavy rainfalls. 

The remainder of the paper is organized as follows. The next section reviews relevant 

literature. Section 3 explains the effects of production risk and federal crop insurance by using a 

simple conceptual model. Section 4 outlines our empirical model, explains basic assumptions used 

for estimation, and describes how to estimate the model. Section 5 explains how we specify 

equations regarding farmers’ decisions to grow specific crops, purchase federal crop insurance, 

and allocate land. This section also shows how we construct farm-level data, county-level climate 
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and soil data, and state-level price data. Section 6 describes the results and economic implications, 

and Section 7 discusses conclusions and limitations of our study. Section 8 includes references, 

tables, and figures. Last, the Appendix shows the proof of analytic results in Section 3, how to 

derive final equations for estimation in Section 4, and climate variables in Section 5.  

2.2 Literature review 

Our paper is based on literature regarding land use change, crop insurance, and climate 

change. First, research on land use change has analyzed the effects of federal crop insurance on 

farmers’ land use and its unintended policy effects on regional environmental conditions (Wu 

1999; Wu and Adams 2001; Young, Vandeveer, & Schnepf 2001; Goodwin, Vandeveer, & Deal 

2004; Lubowski et al. 2006; Classen et al. 2011; Feng, Henessy, & Miao 2013; Walter et al. 2013; 

Miao, Hennessy, & Feng 2016).2  Wu (1999) analyzes the effects of corn crop insurance on land 

allocation and groundwater quality in the Central Nebraska Basin. He finds that corn crop 

insurance encourages farmers to shift their land from hay and pasture to corn, but the influence of 

crop insurance programs diminishes as farm size increases. Goodwin, Vandeveer, and Deal (2004) 

perform a comprehensive analysis, including cropping pattern and insurance participation. They 

find modest effects of crop insurance on cropland allocation in the Corn Belt and Upper Great 

Plains. Miao, Hennessy, and Feng (2016) analyze how crop insurance subsidies and the Sodsaver 

program affect farmers’ decisions regarding land conversion from grasslands to cropland.3 Their 

simulation results show that 3% of cropland in the US Prairie Pothole Region covered by crop 

insurance would have not been converted absent a crop insurance subsidy. Also, they predict that 

the Sodsaver program can reduce land conversion in that region by about 5%. However, previous 

                                                 
2 We focus on studies on US agricultural policies. 
3 The Sodsaver program makes land converted from grasslands to cropland ineligible for crop insurance during the 

first five years. 
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literature on land use and agricultural policies has been limited to small study areas and imperfect 

information about individual farms. Specifically, except for Wu (1999) and Walter et al. (2013), 

most studies are based on at least county-level data. Walter et al. (2013) analyze only the land 

allocation among insured crops. 

Recently, the literature on climate change has interpreted land use change as a strategy for 

adapting to regional environmental conditions (Malcolm et al. 2012; Hornbeck & Keskin 2014; 

Yang & Shumway 2015). For example, Hornbeck and Keskin (2014) show that farmers without 

groundwater have increased their planting of drought-tolerant crops in arid regions. However, 

farmers over the Ogallala Aquifer have increased their use of water-intensive and drought-

sensitive crops.  Although studies examining climate effects on land use have increased, empirical 

studies are insufficient to gain a full understanding of how government policies and the adaptive 

behaviors of farmers are correlated.  

Methodologically, our empirical model merges the corner solution model and the switching 

regression model to control for indecisive censoring and simultaneously measures the treatment 

effects of crop insurance. Cropland allocation by farmers is censored at zero, and this censoring is 

the result of optimization by individual farmers. Moreover, land allocation for insured crops is 

only observable when farmers buy crop insurance. Land use studies have controlled for corner 

solution responses by specifying crop selection equations (Sckokai & Moro 2006; Fezzi & 

Bateman 2011; Lacroix & Thomas 2011), but less effort has been exerted to measure treatment 

effects of farmers’ insurance purchases. Wu (1999) considers two features of data simultaneously, 

but his model is based on the self-selection model instead of the corner solution model and he 

assumes that decisions to grow crops and to purchase insurance are independent. 4  

                                                 
4 The difference between the corner solution model and the self-selection model is similar to the difference between 

censored data and truncated data (Wooldridge 2010, pp. 667). That is, the corner solution model does not have any 
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Our model is designed to measure the intertwined relationship between two adaptive 

options of farmers: changing cropping pattern and purchasing subsidized crop insurance. First, our 

analysis is expected to contribute to the empirical evidence for unintended effects of crop insurance 

programs on farmers’ adaptive behaviors to long-term climate change. Second, our results are 

based on farm-level data in eight Midwestern states. Since we control for detailed information on 

management of farmers’ decisions, our results are more consistent than studies based on aggregate 

data. Furthermore, by allowing the correlation between decisions to grow crops and to purchase 

insurance, our model is more general than previous models assuming independence between the 

two decisions.  

2.3 Conceptual approach 

2.3.1 The role of risk in cropping pattern changes 

The effects of risk and crop insurance on cropping pattern change can be analyzed by 

extending the analytic model of Miao, Hennessy, and Feng (2016). 5  Consider farmer i who has 

several land units and grows two crops: crop 1 and crop 2. All areas in a unit are identical, but land 

units are heterogeneous in production risk across units. We assume that decisions of farmer i on 

his land allocation are based on the unit. The yield function of crop j is assumed to be a simple 

linear form.  

j j jy           (1) 

                                                 
missing data problem. For example, we can observe zero acreage for hay when farmers decide not to grow hay. 

However, the self-selection model is used for selection bias caused by missing data. Moreover, applying a two-step 

procedure for the self-selection model (Heckman 1976) to the corner solution model would lead to inconsistent 

estimates (Shonkwiler & Yen 1999).      
5 They focus on land conversion based on yield risk. Land conversion from marginal land to cropland may not be a 

relevant issue in the Midwest because total cropland in the Midwest has decreased (NASS quick stat). However, 

cropland harvested in the Midwest was constant over time, which means that productive land has been used for crop 

production continuously. As a result, in the Midwest, the allocation of cropland would be more important issues for 

farmers.  
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where 𝜇𝑗 is the mean yield of crop j, 𝛿 ∈ [0,1] is a risk parameter varying over land units and 

follows 𝐻(𝛿) , and 𝜖𝑗 ∈ [−𝜇𝑗 , 𝜇𝑗] is a random variable representing yield loss (or gain) from 

unexpected weather events. We assume that 𝜖𝑗 has a zero mean and follows 𝐺(𝜖𝑗). With the yield 

function in Equation (1), we can specify the profit from growing crop j as follows.  

( )( )j j j j j jP c         (2) 

where 𝑃𝑗 is the expected output price of crop j, 𝜃𝑗 ∈ [−𝑃𝑗 , 𝑃𝑗] is a random price shock with a zero 

mean, and 𝑐𝑗 is the field operating cost. We assume independence between 𝜃𝑗  and 𝜖𝑗. Farmer i is 

assumed to have a utility function, 𝑈(𝜋), defined on profit with 𝑈𝜋 > 0 and 𝑈𝜋𝜋 < 0.  Then, 

farmer i’s decisions regarding how to use land unit k having risk level 𝛿 can be summarized as  

1 2) max{ ( ), ( ),( | | )( ]}U r EU EUV       

where 𝑟 is the deterministic return from non-cropping and    

( | [( )( ) ] ( ) ( ))

j j

j j

P

j j j j j j j j

P

P cEU U dG dF





     
 

     

Last, without the loss of generality, we assume that 𝐸𝑈(𝜋𝑗|𝛿 = 0) > 𝑈(𝑟) > 𝐸𝑈(𝜋𝑗|𝛿 = 1) and 

𝐸𝑈(𝜋1|𝛿 = 0) > 𝐸𝑈(𝜋2|𝛿 = 0). That is, the expected utility from growing crop j in the riskiest 

land unit is less than the expected utility from non-cropping, and the second equality means that 

crop 1 is more profitable than crop 2 without production risk. Since 𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿 < 0 and 

𝜕2𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿2 < 0, we know that there is 𝛿𝑗  where 𝐸𝑈(𝜋𝑗|𝛿 = 𝛿𝑗) = 𝑈(𝑟) for j=1, 2 (see 

Appendix A). This result implies that farmers allocate their land until 𝛿𝑢 = max{𝛿1, 𝛿2}, and 

farmers give up growing crops when the risk of land units is greater than 𝛿𝑢. 

Farmer i chooses a crop with the highest expected utility from land unit k. Cropping 

patterns in his fields depend on changes in the expected utility due to changes in the risk level. 
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Changes in expected utility can be represented by the size of the first and second derivative of 

expected utility with respect to 𝛿: 𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿 and 𝜕2𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿2. We cannot determine 

the relative sizes of 𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿  and 𝜕2𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿2  between crop 1 and crop 2 without 

further qualification. However, by using a Taylor series expansion, we can show that 

𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿 depends on the distributions of 𝜖𝑗  and 𝜃𝑗 , such as mean and variance, and the 

farmer’s attitude toward the risk, represented by the Arrow-Pratt measure of risk aversion (see 

Appendix A).    

 Figures 2.4, 2.5, and 2.6 depict three examples of land allocation between two crops. 

Figure 2.4 assumes 𝜕𝐸𝑈(𝜋1|𝛿)/𝜕𝛿 >  𝜕𝐸𝑈(𝜋2|𝛿)/𝜕𝛿  for all 𝛿, and we can verify that farmer i 

will grow only crop 1 because the expected utility from growing crop 1 is larger than the expected 

utility from growing crop 2 for all 𝛿  less than 𝛿1 . However, when 𝜕𝐸𝑈(𝜋1|𝛿)/𝜕𝛿 <

 𝜕𝐸𝑈(𝜋2|𝛿)/𝜕𝛿 for all 𝛿, then there is a 𝛿∗ where 𝐸𝑈(𝜋1|𝛿 = 𝛿∗) = 𝐸𝑈(𝜋2|𝛿 = 𝛿∗). Crop 1 is 

planted in land units having 𝛿 less than 𝛿∗, and crop 2 is planted in land units having 𝛿 in [𝛿∗, 𝛿2] 

(see Figure 2.5). Last, when  𝜕𝐸𝑈(𝜋1|𝛿)/𝜕𝛿 <  𝜕𝐸𝑈(𝜋2|𝛿)/𝜕𝛿  and  𝜕2𝐸𝑈(𝜋1|𝛿)/𝜕𝛿2 >

𝜕2𝐸𝑈(𝜋2|𝛿)/𝜕𝛿2, there are two values of 𝛿∗, and crops growing in land units with low risk also 

can be planted in land units having high risk, as in Figure 2.6. The results can be summarized by 

the following remark.  

Remark 1: Farmers allocate their land units to a crop achieving the highest expected utility given 

the risk level 𝛿 , and how to allocate land units to crops over all land units depends on the 

differences in the expected utility from growing crops at zero risk and the relative size of 

𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿 and its curvature among crops.  
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2.3.2 The effects of subsidized crop insurance 

 For simplicity, we only consider yield protection crop insurance and assume that the 

expected output prices are the same as the projected price established by the Risk Management 

Agency. 6 When farmer i decides to use federal crop insurance for crop j, then the profit function 

becomes   

( )( )

max{ ( ) ,0} (1 ) ( )

ins

j j j j

j j j j j j jj

j P

P c s vP

  

   





 

  

 


   (3) 

where 𝜆𝑗  means the coverage level chosen for crop j and s is the subsidy rate. 𝑣𝑗(𝛿)  is the 

unsubsidized actuarially fair premium without administration cost, calculated by 

( max{ ( ) ,0) } ( ) ( ) ] ( )[

j

j j

j

j j j j j j j j j j j j j jj P P P Pv dG dG



 



        
 

       (4) 

where φ𝑗 =
𝜆𝑗𝜇𝑗−𝜇𝑗

𝛿
. The indemnity is paid when ϵ𝑗 < φ𝑗 . Also, we know that 𝐸𝑈(𝜋𝑗

𝑖𝑛𝑠|𝛿) =

𝐸𝑈(𝜋𝑗|𝛿) at 𝛿 = 1 − 𝜆𝑗, and crop insurance is purchased for land units whose risk levels are larger 

than 1 − 𝜆𝑗  because φ𝑗  is smaller than −𝜇𝑗  when 𝛿  is less than 1 − 𝜆𝑗 . Since crop insurance 

increases the expected utility of growing insured crops, farmers replace land for uninsured crops 

with land for insured crops after purchasing federal crop insurance, as in Figure 2.7.7 

                                                 
6 The indemnity price for yield protection crop insurance is the average futures market price during the month before 

the sales closing. For example, the February price is used for corn and soybeans. Farmers can choose a price from 60 

to 100 percent of the indemnity price. However, most producers choose their coverage based on 100 percent of the 

projected price (Edward 2011). In addition, the difference between yield protection crop insurance and revenue 

protection crop insurance is when indemnity is paid. In the case of yield protection crop insurance, indemnity is paid 

when the average yield per acre is less than the yield guarantee. However, in the case of revenue protection crop 

insurance, indemnity is paid when farmers’ actual revenue is less than their revenue guarantee.     
7 Even though the expected profit after buying crop insurance equals the expected profit without crop insurance, the 

concavity assumption regarding farmers’ utility function makes the expected utility after buying crop insurance larger 

than the expected utility without crop insurance.   
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The sign of  𝜕𝐸𝑈(𝜋𝑗
𝑖𝑛𝑠|𝛿)/𝜕𝛿 depends on the subsidy rates and coverage levels. That is, it 

can be positive for given risk levels when the subsidy rate and the coverage level are high (see 

Appendix A).8 Also, we can easily show that 𝜕𝐸𝑈(𝜋𝑗
𝑖𝑛𝑠|𝛿)/𝜕𝑠 > 0, which means that increases 

in the subsidy rates may increase acreage of the insured crop by enhancing the expected utility 

from growing the insured crop at the given risk level (see Figure 2.7). From these results, we can 

imagine that the subsidy structure decreasing the incremental cost of coverage can distort farmers’ 

cropping pattern more than the subsidy structure decoupled from farmers’ choice of coverage. We 

can summarize the effects of crop insurance on farmers’ cropping pattern change as follows:  

Remark 2: Adopting yield protection crop insurance changes cropping patterns by increasing the 

expected utility from growing insured crops and changing the size of 𝜕𝐸𝑈(𝜋𝑗
𝑖𝑛𝑠|𝛿)/𝜕𝛿. Since high 

subsidy rates and coverage rates change the sign of 𝜕𝐸𝑈(𝜋𝑗
𝑖𝑛𝑠|𝛿)/𝜕𝛿, subsidy structures coupled 

with coverage levels bring about more distortions in farmers’ land allocation decisions.     

From the conceptual approach, we can answer our research questions with a simple 

theoretical model. The model shows that, without crop insurance, the production risk decreases 

farmers’ expected utility from growing crops. The decreasing rates of expected utility in response 

to increases in the risk level and their curvatures are heterogeneous among crops. Farmers’ 

cropping pattern thus depends on differences in the marginal expected utility with respect to risk 

level and its curvature among crops. It also shows that federal crop insurance programs can change 

farmers’ cropping pattern by altering the responsiveness of farmers’ expected utility to production 

risk. In the next section, we try to find empirical evidence regarding our research questions. In 

particular, we use extreme weather events such as intensive rainfalls and extreme heat degree days 

                                                 
8 Even though we need further qualification to derive necessary and sufficient conditions, we can show that there exist 

𝑠∗ and 𝜆𝑗
∗ such that 𝜕𝐸𝑈(𝜋𝑗

𝑖𝑛𝑠|𝛿)/𝜕𝛿 < 0 for 𝑠 > 𝑠∗ and 𝜆 > 𝜆𝑗
∗ (see Appendix A). 
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as proxy variables for production risk and measure the effects of federal crop insurance on farmers’ 

response to these extreme weather events. 

2.4 Empirical model and estimation 

Consider the problem of farmer i, who must decide whether to grow crop j or not, whether 

to buy crop insurance for crop j or not, and how much acreage to allocate to crop j if he chooses 

to grow it. The farmer’s decisions regarding crops to plant, insurance purchases, and acreage 

allocation can be correlated. For example, unobserved conditions of farmer i and his farm, such as 

his attitude toward the risk or heterogeneous soil quality in his fields, can affect his crop insurance 

purchase and land allocation decisions at the same time.  

To begin this analysis, we specify the linear acreage allocation equation in the context of 

the switching regression model to account for the effects of crop insurance on farmers’ land 

allocation (Wu 1999; Wooldridge 2010, pp. 948): 

 

*

0 1 1

0 0 1 1 0

)( ) ( )

( )

1

(

(

)

)

(ij ij ij j oij ij ij j ij

ij j ij ij j j oij ij ij ij

ij j ij ij j ij

I X I X

X I X I

X I X

A  

  

 

  



 

    

  

  (5) 

where 𝐴𝑖𝑗
∗  is the latent acreage for farmer i’s land allocation to crop j. 𝐼𝑖𝑗 is a crop insurance dummy 

for crop j. 𝑋𝑖𝑗  is the vector of explanatory variables for land allocation. 𝛼𝑗  and 𝛽𝑗  are the 

parameters. 𝛼𝑗 means changes in farmers’ behavior resulting from crop insurance purchases, and 

the effects of a climate condition on land allocation decisions of farmers having crop insurance 

can be measured by the sum of 𝛼𝑗 and 𝛽𝑗 corresponding to the climate measure and the interaction 

term between the climate measure and an insurance dummy for crop j. 𝜖1𝑖𝑗 and 𝜖0𝑖𝑗 are error terms 

corresponding to each decision: buying crop insurance for crop j or not. We assume that 𝜖1𝑖𝑗 =

𝜖0𝑖𝑗 = 𝜖𝑖𝑗 for simplicity.  
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Equation (5) has two limitations in identifying the effects of federal crop insurance 

programs on farmers’ land allocation decisions. First, we incorporate insurance dummies as a 

measure of insurance demand. Even though insurance dummies capture the effects of crop 

insurance participation, they do not reflect the intensity of crop insurance demand, such as high 

coverage or demand for revenue protection crop insurance.9 Second, crop insurance effects may 

depend on the combination of crops grown and crops covered by insurance. For example, assume 

that farmer i decides to grow corn and soybeans. The effects of corn insurance on corn acreage 

when farmer i buys only corn insurance will differ from the effects of corn insurance for corn on 

corn acreage when farmer i buys insurance for corn and soybeans at the same time. Likewise, the 

effects of corn insurance will vary when farmer i grows only corn. However, with our model 

specification, only the aggregate effects of crop insurance can be identified. 

Second, we construct a simultaneous equation model for farmer i’s decisions to grow crop 

j and purchase crop insurance for crop j: 

 

*

* *

*

( )

0

0 otherwi

;

   if 
,

se

0

0 othe

1      if 
, 1,.

r
..

i e
,

w s

ij ij j ij ij j ij

ij ij ij j ij
ij

ij ij j ij
ij

XA

A Z
A

S

I

e

I j

X

M

 



 





 



 



 

 


 






  (6) 

where 𝜏𝑖𝑗
∗ , and 𝜔𝑖𝑗

∗  are latent variables for farmer i’s decisions to grow crop j and purchase 

insurance for crop j, respectively. 𝐴𝑖𝑗 is the observed amount of land allocated to crop j. 𝑍𝑖𝑗 and 

                                                 
9  To account for the intensity of crop insurance demand, O’Donoghue (2014) suggests three measures of crop 

insurance demand: level of total premium, level of total premium per acre, and level of total liability per acre. Also, 

Goodwin (1993) and Goodwin and Smith (2012) use liability per planted acre. Last, Goodwin, Vandeveer, and Deal 

(2004) incorporate liability/maximum possible liability of each crop. Since premiums and liability are determined by 

coverage levels and insured acres, measures based on liability or premium can simultaneously capture the changes in 

intensity of use such as coverages and changes in enrollment.    
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𝑆𝑖𝑗  are the vectors of explanatory variables for the decision to grow crop j and purchase crop 

insurance for crop j. 𝛾𝑗 and 𝜂𝑗are the parameters. Last, 𝑒𝑖𝑗 and 𝜈𝑖𝑗  are error terms. We assume that 

𝜖𝑖𝑗, 𝑒𝑖𝑗, and 𝜈𝑖𝑗 follow a multivariate standard normal distribution, and 𝑒𝑖𝑗 ⊥ 𝑒𝑖𝑘,  𝜈𝑖𝑗 ⊥ 𝑣𝑖𝑘, and 

𝑒𝑖𝑗 ⊥ 𝑣𝑖𝑘 for 𝑗 ≠ 𝑘.10 

Third, Lacroix and Thomas (2011) suggest that the expected allocation for a crop is 

correlated with the probability of other crops being planted in the same year (Pr[𝜏𝑖𝑘
∗ > 0], 𝑘 =

1, … , 𝑀, 𝑗 ≠ 𝑘 ) and that the source of this correlation is crop rotation. Thus, we allow the 

correlation between 𝜖𝑖𝑗 and 𝑒𝑖𝑘 for 𝑗 ≠ 𝑘. Based on Equation (6), the unconditional expectation of 

farmer i’s land allocation to crop j becomes: 
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 From Fishe, Trost, and Lurie (1981), the conditional expectation of error terms in Equation 

(7) is as follows: 
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  (8) 

where 𝑆𝑖𝑗
∗ =

𝑆𝑖𝑗𝜂𝑗−𝜌𝑗𝑍𝑖𝑗𝛾𝑗

(1−𝜌𝑗
2)1/2 , and 𝑍𝑖𝑗

∗ =
𝑍𝑖𝑗𝛾𝑗−𝜌𝑗𝑆𝑖𝑗𝜂𝑗

(1−𝜌𝑗
2)1/2 . 𝑃1 = 𝑃(𝜏𝑖𝑗

∗ > 0, 𝜔𝑖𝑗
∗ > 0|𝑍𝑖𝑗, 𝑆𝑖𝑗) =

Φ2(𝑍𝑖𝑗𝛾𝑗, 𝑆𝑖𝑗𝜂𝑗; 𝜌𝑗) , 𝑃2 = 𝑃(𝜏𝑖𝑗
∗ > 0, 𝜔𝑖𝑗

∗ ≤ 0|𝑍𝑖𝑗, 𝑆𝑖𝑗) = Φ2(𝑍𝑖𝑗𝛾𝑗 , −𝑆𝑖𝑗𝜂𝑗; −𝜌𝑗) = Φ(𝑍𝑖𝑗𝛾𝑗) −

                                                 
10 If we allow general correlation among crop selection equations and crop insurance equations, it would be difficult 

to derive 𝐸(𝐴𝑖𝑗
∗ |𝑋𝑖𝑗 , 𝑆𝑖𝑗 , 𝑍𝑖𝑗)  analytically. Lacroix and Thomas (2011) use panel data structure and information 

regarding farmers’ previous land use to control for correlations among crop selection equations. However, since the 

ARMS data do not include information regarding farmers’ historical land use, we cannot control for dynamic 

agronomic constraints, such as crop rotation and pest management. This is a limitation of our approach.  
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Φ2(𝑍𝑖𝑗𝛾𝑗, 𝑆𝑖𝑗𝜂𝑗; 𝜌𝑗). 𝜙 and Φ represent a probability density function and a cumulative density 

function of standard normal distribution. Φ2  is a cumulative density function of the standard 

bivariate normal distribution. 𝜌𝑗  is the correlation coefficient between 𝑒𝑖𝑗 and 𝑣𝑖𝑗 . 𝜎𝑗𝑘
𝜏  is the 

covariance between 𝜀𝑖𝑗  and 𝑒𝑖𝑘 . 𝜎𝑗𝑗
𝜔  is the covariance between 𝜀𝑖𝑗  and 𝑣𝑖𝑗 . 𝜆𝑖,𝑘𝑗 = 𝜙(𝑍𝑖𝑘𝛾𝑗)/

Φ(𝑍𝑖𝑘𝛾𝑗), 𝑘 = 1, … , 𝑀, and it is the correction term from an equation regarding farmer i’s decision 

to grow crop k. As a result, the final acreage equation for crop j is as follows: 
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where 𝜉𝑖𝑗 = 𝜖𝑖𝑗 − 𝐸(𝐴𝑖𝑗
∗ |𝑋𝑖𝑗, 𝑆𝑖𝑗, 𝑍𝑖𝑗). 11  The estimation proceeds in two steps (Shonkwiler & Yen 

1999). In the first step, we estimate equations regarding decisions to grow crops and purchase crop 

insurance. In our data, we can observe a decision of farmer i on crop insurance for crop j only 

when farmer i decides to harvest crop j. 12 To control for missing observations, we use a probit 

model with sample selection, as in Van de ven and Van Praag (1981), instead of the bivariate probit 

model. In the second stage, linear regression is applied to Equation (9) based on the predicted 

probabilities of growing crop j and purchasing crop insurance for crop j.  

We have to account for the sampling design of our farm-level data for inference (Dubman 

2000). To account for the survey design of the ARMS data, we generate 2,000 random bootstrap 

                                                 
11 How to derive Equation (8) and (9) is in the Appendix-B 
12 We assume that the decisions of farmers regarding crop insurance purchases and crops to grow are simultaneous, 

not sequential (Wu 1999). The criterion regarding this assumption is the likelihood that farmers do not plant insured 

crops. That is, if 𝑃(𝜏𝑖𝑗
∗ < 0, 𝜔𝑖𝑗

∗ > 0|𝑍𝑖𝑗 , 𝑆𝑖𝑗) ≠ 0, we consider the two choices as simultaneous. In reality, to use 

federal crop insurance, farmers have to apply their coverage and products prior to the “sales closing data” before 

planting. However, after the insurance application is accepted, they may fail to plant the insured crop due to 

unexpected events or unfavorable environmental conditions, such as residual salt in the soil, irrigation water supply, 

and hurricane and flood. “Prevented planting provisions” may apply in such cases, as long as the event occurred during 

the prevented planting period. As a result, even though we can only observe harvested acreage for insured crops from 

our data, this does not imply that farmers bought crop insurance only for crops harvested or planted.    
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samples using probability weights, estimate Equation (9) 2,000 times, and then use the mean and 

variance of the replicated estimates as estimates of parameters and their variances (Goodwin, 

Mishra, & Ortalo-Magné 2003; Goodwin & Mishra 2005). There are several practical reasons to 

use the bootstrapping method based on probability weights.13 First, even though the ARMS data 

provide replicate weights for delete-a-group jackknife estimators, the number of replicate weights 

was changed from 15 to 30 after 2008. Thus, incorporating only 15 replicate weights means using 

more samples in 2009 and 2010 AMRS data than for previous years during estimation. Second, 

Goodwin, Mishra, and Ortalo-Magné (2003) argue that the jackknife procedure may not be valid 

when using only a subset of the data. Third, the two-step estimation procedure does not account 

for variations in the first-stage estimates. Also, the error term in Equation (9) is heteroscedastic 

because it is a function of individual exogenous variables. Thus, if we use ordinary least squares 

(OLS), the estimated variance in Equation (9) is inconsistent.  

 The marginal effect of a continuous variable (𝑞𝑖𝑗) including the three equations in Equation 

(6) is calculated as follows (Chritofides, Stengos, & Swidinsky 1997):  
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Last, based on estimates in Equation (9), we calculate the marginal effects of crop insurance 

on acreage for crop j based on Wu (1999):  
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13 This approach assumes that the sampling scheme and population of the ARMS data are constant from 2003 to 2010. 
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Equation (11) represents the impact of crop insurance on acreage for crop j when we do not know 

famers’ decisions regarding crops to grow. The first term of Equation (11) means the expected 

acreage of crop j with crop insurance, and the latter term indicates the expected acreage of crop j 

without crop insurance. To calculate the expected change in acreage for crop j due to crop 

insurance purchases, we use the weighted average of ∆𝐸(𝐴𝑖𝑗
∗ ) for all farms, with sampling weights 

in our data.  

2.5 Model specification and data 

2.5.1 Model specification  

 We impose the following assumptions for our model specification: (1) Farmers are risk-

averse and their utility depends on the risk of profit and expected profit, (2) farmers seek to 

maximize their expected utility by allocating their land to crops and buying crop insurance, (3) 

farmers are price takers; that is, we assume that output prices and production (crop yield) are 

independent at the farm level (Hendricks, Smith, & Sumner 2014), (4) farmers have expectations 

regarding weather conditions during the growing season and these expectations are based on 

previous weather conditions, and (5) farmers’ expectations about profit after harvesting crops and 

variance of profit depend on output prices, variance of output prices, expected weather conditions 

including extreme weather events, and agricultural policies. In simple linear model specifications 

for farmer i’s acreage allocation to crop j (𝐴𝑖𝑗
∗ ), the corresponding crop selection equation (𝜏𝑖𝑗

∗ ) 

and an equation for his crop insurance purchase (𝜔𝑖𝑗
∗ ) are as follows: 
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where 𝑋𝑖,𝑝 = (𝒑, Ω𝑝)′. 𝒑 is a vector of output and input prices, and Ω𝑝  is a vector containing 

variances of output prices. 𝑋𝑖,𝑐  includes variables related to soil quality, expected weather 

conditions, state dummies, and year dummies.  

2.5.2 Identification  

 For identification, we impose at least one exclusion restriction on 𝑍𝑖𝑗,𝜏  and 𝑆𝑖𝑗,𝜔 

(Wooldridge 2010, pp. 698-699). One disadvantage of the two-step procedure for self-selection or 

the corner solution model is identification of parameters in the second step. That is, when 𝑍𝑖𝑗,𝜏 and 

𝑆𝑖𝑗,𝜔 only include 𝑋𝑖,𝑝 and 𝑋𝑖,𝑐, the parameters’ corresponding explanatory variables in acreage 

equations are poorly identified.  

𝑍𝑖𝑗,𝜏 includes off-farm income and age as well as 𝑋𝑖,𝑝 and 𝑋𝑖,𝑐. Off-farm income can be 

used as a proxy for off-farm activity. Since farmers allocate their time between on-farm and off-

farm activity, the extent of off-farm work can affect production decisions. For example, high off-

farm income requires a high commitment to the off-farm job and, therefore, off-farm income is 

negatively correlated to labor-intensive crop choices and farm management. Also, farmers prefer 

to grow the most profitable crops based on available technologies. Off-farm activity may give 

disincentive to farmers to adopt management-intensive technologies but motivate them to adopt 

management-saving technologies (Fernandez-Cornejo 2007). Thus, off-farm income can influence 

farmers’ decisions on crops to grow through available technologies.  

Age is positively correlated with landownership, and landownership can affect farmers’ 

decisions regarding crops to grow. In particular, Bigelow, Borchers, and Hubbs (2016) show that 

younger farmers rent a large portion of the land they operate, but older farmers are more likely to 

be full owners. Also, Varble, Secchi, and Druschke (2016) show that, in Iowa, renters are more 

likely to use crop rotation than full owners. Last, age is positively correlated with farming 



21 

 

experience (Khanna, Epouhe, & Hornbaker 1999), and greater experience can lead to better 

knowledge of the fields and more efficient land use.  

𝑆𝑖𝑗,𝜔  consists of variables regarding prices and climate conditions and variables 

representing farmer i’s financial status, such as debt ratio and equity. Equity means the difference 

between farms’ assets and debt and has been used as a proxy of farms’ wealth. Debt ratio means 

the debt-to-assets ratio and measures farms’ risk exposure and ability to overcome adverse 

financial events. Goodwin (1993) argues that farms’ debt is positively correlated to their demand 

for crop insurance because farms having a higher level of debt are more likely to be subject to 

borrower-imposed insurance purchases. However, the effect of debt on crop insurance choice is 

an empirical question. Specifically, large farms are more likely to have higher debt ratios than 

small farms (Ifft, Novini, & Patrick 2014; Ifft, Kuethe, & Morehart 2015), and small farms are 

more likely to buy crop insurance because they may not be able to survive a crop failure (Wu 

1999). Last, Farrin, Miranda, and O’Donoghue (2016) show that, when examining crop insurance 

demand over multiple years, demand for crop insurance is affected by farmers’ financial wealth 

more than their attitude toward risk. They also find that, except for low-income farmers, demand 

for crop insurance is negatively correlated with farms’ level of wealth.  

2.5.3 Data 

Farm-level data 

This study constructs a farm-level data set based on the Agricultural Resource Management 

Survey Phase III version 1. Aggregate land use change can mask farmers’ cropland allocation 

decisions, even though aggregate land use data are easily accessible and convenient for 

estimation.14 Farmers respond to local market and environmental conditions in different ways 

                                                 
14 Fezzi and Bateman (2011) summarize the advantages of using aggregated land use data. For example, since most 

land use in aggregated data are larger than zero, researchers do not take into account corner solution problems.   
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because of heterogeneous features of their farm. Capturing heterogeneity between farms is 

necessary in measuring weather and climate effects on farmers’ land allocation.  

Farm-level data include land allocation, crop insurance status, financial status, and 

socioeconomic characteristics. To include the relatively homogeneous group of farms, we select 

10,056 farms satisfying five conditions (Goodwin & Mishra 2005): (1) The farm’s largest sources 

of gross income are grains, oilseeds, dry beans, and dry peas,15 (2) the farm was operating in one 

of eight Midwestern states during 2003 – 2011,16 (3) the farm has more than 50 acres of total 

cropland, (4) the principal operator is not retired from farming or ranching, and (5) the insured 

crops of the farm are identifiable.17 Since the ARMS data only cover harvested land, we use 

harvested land as a proxy for planted land. The crops considered are corn, soybeans, winter wheat, 

and other. We consider acreage allocated to other crops as residual land use and assume that 

choices regarding other crops are independent of choices regarding corn, soybeans, and wheat 

conditional on explanatory variables in acreage equations. In the case of Minnesota, we include 

spring wheat instead of winter wheat. Table 2.1 summarizes the farm-level data and market 

variables.  

However, some disadvantages are associated with the ARMS Phase III data. First, since 

the ARMS data is repeated cross-sectional data, it may be difficult to control for unobserved 

characteristics of each farm. Also, the ARMS Phase III data do not include historical land use, 

                                                 
15 These farms correspond to Type I farms in the ARMS data. 
16 The eight states are Iowa, Illinois, Indiana, Michigan, Minnesota, Missouri, Ohio, and Wisconsin. We choose these 

states as our study area to control for irrigation status. Figure 2.8 shows the regional distribution of observations.   
17 Specifically, we include farms whose entire cropland is covered by crop insurance programs, as well as farms 

whose cropland is partially covered by crop insurance. For example, when a farmer plants four crops, and the sum of 

acreage allocated to three crops is less than the acreage covered by crop insurance, we assume that the remaining 

crop is also insured. Finally, when the sum of the acreage of any combination of crops is the same as the acreage 

covered by crop insurance, then we assume that farmers bought crop insurances for those crops. For example, if the 

sum of corn and wheat acreage is the same as the acreage covered by insurance, we assume that corn and wheat are 

covered by crop insurance, even though there may be other crops planted.    
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which means that we cannot explicitly control for the effects of crop rotation. Second, the ARMS 

Phase III data do not provide locational information, which means that farm-specific 

environmental conditions are uncontrolled. Last, to merge the multiple-year survey for estimation, 

we assume that the survey design and population density of the samples are constant during the 

study periods.18 

Market Variables 

For expected output prices, state-level futures prices are constructed by adjusting regional 

differences in farm-gate prices (Barr et al. 2011). For example, the expected price of corn (𝑝𝑐
𝑒) is 

calculated as follows:  

,e f d r

c c c cc cp F B B F p     

where 𝐹̅𝑐
𝑓
 is the average of daily February closing prices of December corn futures contracts. 𝐵𝑐 

is called the “basis” and is used to account for systematic differences between farm-gate prices 

and futures prices. 𝐹̅𝑐
𝑑 is the average of daily December closing prices of December corn futures 

contracts, and 𝑝̅𝑐
𝑟 is the state-level farm received price. For futures prices of soybean and winter 

wheat, we use daily February closing prices of November soybean futures contracts and daily 

February closing prices of July winter wheat futures contracts, respectively. Chicago Board of 

Trade (CBOT) futures prices are used for corn and soybeans, and Kansas City Board of Trade 

futures prices are used for wheat. To control for price support programs, we use the higher price 

between futures prices and national loan rates (Wu et al. 2004).  

 The expected variance of output prices is calculated as 𝑉𝑎𝑟(𝑝𝑗,𝑡) = ∑ 𝜔𝑘[𝑝𝑗,𝑡−𝑘 −3
𝑘=1

𝐸𝑡−𝑘−1(𝑝𝑗,𝑡−𝑘)]2 where 𝜔𝑘 are 0.5, 0.33, and 0.17, respectively (Chavas & Holt 1990; Sckokai & 

                                                 
18 Missing information and spurious information make a nontrivial proportion of observations useless. For example, 

to clear our final data, we exclude observations whose harvested land or acreage covered by crop insurance is larger 

than the total cropland. We also drop observations having negative land values or negative values of total production.  
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Moro 2006; Wu et al. 2004). 𝑝𝑗,𝑡−𝑘 is the state-level farm-received price of crop j in year t-k and 

𝐸𝑡−𝑘−1 is farmers’ expectation of harvest output price at planting time in year t-k. All economic 

variables are normalized by the planting year price index for the other inputs.19  

Climate and Soil Variables 

Table 2.1 also summarizes the statistics of environmental conditions. Daily Parameter-

elevation Regression on Independent Slope Model (PRISM) data are used to construct weather 

variables: growing degree days (GDD), extreme heat degree days (HDD), precipitation, and 

intensive rainfall. Based on daily maximum and minimum temperatures in the PRISM data, we 

use Snyder’s (1985) simple method to compute GDD and HDD during the growing season (see 

Appendix C). GDD and HDD measure the amount of exposure to beneficial heat and harmful heat, 

respectively. Precipitation is calculated as the sum of total precipitation during the growing season. 

Intensive rainfall means the number of daily rain events above 25.4 mm during the growing 

seasons (Groisman, Knight, & Karl 2012).  We assume that farmers’ expected weather conditions 

are the averages of weather conditions over the previous 20 years. State-level growing seasons for 

corn, soybeans, and wheat are applied (NASS quick stat, USDA 2010). Last, since high soil 

moisture caused by rainfall during the early spring has negative effects on corn root development, 

spring rainfall can prompt farmers to plant soybeans instead of corn. Thus, we include April-May 

precipitation in equations regarding corn and soybeans.   

In addition to spatial variations of expected weather variables, temporal variation in 

expected weather variables is useful in assessing the effects of climate on farmers’ land use 

decisions. Figures 2.9 and 2.10 show the changes in expected weather conditions between 2003 

                                                 
19 We construct the price index for the other inputs as 𝐼 = ∑ 𝜔𝑗𝐼𝑃𝑃𝐼

𝑗
𝑗 , where 𝜔𝑗 is the relative weight of the jth input 

and  𝐼𝑃𝑃𝐼
𝑗

 is the United States Department of Agriculture (USDA) published price paid index of the jth input. The other 

inputs include several production items, financial fees, and family living expenses (USDA 2011). 
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and 2010. From the figures, we can verify that the amount of intensive rainfall and precipitation 

increased more in western Iowa, eastern Illinois, and Missouri than in other parts of the Midwest. 

Also, HDD and GDD during the corn growing season decreased slightly in the Midwest.  

Soil data are based on the Soil Survey Geographic database (SSURGO). We include slope, 

saturated hydraulic conductivity (Ksat), available water capacity (AWC), K-factor, depth to water 

table, and percentage of organic matter as variables representing soil quality and land 

characteristics. Slope is the difference in elevation, expressed as a percentage. Ksat measures the 

permeability of soil, while AWC represents how much water the soil can store. K-factor indicates 

the susceptibility of soil to water erosion. Depth to water table is the minimum depth above a wet 

soil layer. Organic matter is the amount of decomposed plant and animal residue in the soil. Since 

the ARMS Phase III data contain only county-level location information, all climate and soil 

variables are aggregated to the county.  

2.6 Results 

2.6.1 Estimation results 

Table 2.2 shows that Midwest farmers’ decisions to grow crops are closely related to 

climate conditions. The estimates in Table 2.2 represent coefficients of a probit model with a 

sample selection model. First, spring precipitation has negative effects on the decision to grow 

corn but positive effects on the decision to grow soybeans. This result is because the high soil 

moisture during the early spring makes farmers delay planting corn and, in the end, may shift their 

cropping pattern from corn to soybeans. Second, GDD, the beneficial heat, has positive effects on 

the decision to grow corn, soybeans, and wheat. However, the coefficients on HDD, the harmful 

heat, in all equations regarding crops choices are negative. Last, an increase in total precipitation 

during the growing season increases the likelihood of growing corn. However, the results show 
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that an increase in total precipitation decreases the likelihood of growing wheat or soybeans, even 

though the effect of total precipitation on the probability of growing soybeans is insignificant. 

Since corn is a water-intensive crop, farmers are more likely to grow corn when precipitation is 

sufficient and corn is profitable.  

The results related to purchasing crop insurance are also shown in Table 2.2. First, the 

coefficients on intensive rainfall in equations regarding insurance purchases for corn and soybeans 

are positive, suggesting that farmers expecting frequent intensive rainfall during the growing 

season are more likely to purchase crop insurance for corn and soybeans. Since intensive rainfall 

reflects a potential risk of loss, farmers protect their revenue from such risk by purchasing federal 

crop insurance. Second, an increase in GDD decreases the likelihood of purchasing insurance for 

soybeans, but HDD positively affects the decision to purchase insurance for soybeans. However, 

the results show that the effects of GDD and HDD on purchasing federal crop insurance for corn 

are insignificant. Third, insurance purchases are more likely in areas having less precipitation. As 

a result, we interpret results regarding heat and precipitation as good weather conditions, including 

enough precipitation, adequate GDD, and fewer HDD, may give farmers incentive to grow the 

three crops. However, good weather conditions may also give farmers disincentive to purchase 

crop insurance because there is less risk of loss caused by harmful weather conditions.  

Table 2.3 shows the effects of climate conditions on acreage adjustment of farmers among 

three crops, given their decisions regarding crops to grow and crop insurance purchases.20 The 

results show that farmers’ response to intensive rainfall and total precipitation during the growing 

                                                 
20 In our data set, most insurance users purchased insurance for all crops that they planted at the same time. To be 

specific, among farmers growing corn and soybeans, about 73% purchased insurance for corn and soybeans at the 

same time, but 25% did not purchase any crop insurance. In the case of farmers growing corn, soybeans, and wheat, 

about 61% purchased insurance for corn, soybeans, and wheat at the same time. However, about 34% of farmers did 

not use any federal crop insurance program. As a result, the estimates regarding the insurance dummy for each crop 

can be interpreted as the effects of crop insurance generally instead of the effects of insurance for each crop.  
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seasons depends on their insurance status. Without crop insurance, corn (soybean) growers are 

more likely to decrease corn (soybean) acreage when the frequency of intensive rainfall events 

increases or total precipitation decreases during the growing season. However, the coefficients 

corresponding to intensive rainfall events (total precipitation) and the interaction term between 

intensive rainfall (total precipitation) and the crop insurance dummy have opposite directions. The 

coefficients of interaction terms between crop insurance dummies and climate measures can be 

interpreted as changes in farmers’ behaviors due to crop insurance purchases. The results, thus, 

indicate that crop insurance makes farmers less sensitive to increases in intensive rainfall events 

or decreases in total precipitation. Last, as we hypothesized, the results show that total precipitation 

during the early spring has positive effects on soybean acreage.  

However, the estimates in Table 2.3 do not consider the effects of climate measures on 

farmers’ decisions regarding crops to grow and crop insurance purchases. Also, the large size of 

the estimates and units of climate measure are less intuitive to understand the effects of climate 

conditions on farmers’ land allocation decisions. 21 To understand the total effects of climate 

conditions on farmers’ land allocation decisions more clearly, we calculate the average acreage 

response elasticities to climate conditions based on Equation (10) (see Table 2.4). These elasticities 

are weighted averages of each acreage response elasticity across our samples based on sampling 

weights of the ARMS (Arnade & Kelch 2007). 22  First, the results show that GDD has positive 

                                                 
21 The large sizes of coefficients corresponding to weather measures and variances of output prices in Table 2.3 result 

from two factors. First, explanatory variables in Equation (9) are multiplied by the probability of growing a specific 

crop or the probability of purchasing crop insurance for the crop. Second, changes in some explanatory variables by 

one unit implies the huge change in market or environmental conditions. For example, an increase in HDD or variances 

of output prices by one unit may be unrealistic changes: the average and the standard deviation of HDD are about one 

(see Table 2.1). Thus, to interpret the results more clearly, we need to account for two factors. In addition to these two 

factors, the correlation among output prices and state dummies would make the size of coefficient large.   
22 To reduce the effects of observations having extreme values on the average marginal effects and acreage response 

elasticities, we also calculate the trimmed weighted average. To be specific, after calculating marginal effects and 

acreage response elasticity of climate variables on land allocation of each observation, we exclude values larger than 

95% quantile and less than 5% quantile. Especially, in the case of the expected land allocation to wheat, some 
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effects on acreage for the three crops. To be specific, when GDD increases by 1%, corn, soybean, 

and wheat acreage increases by 1.7%, 3.6%, and 2.6%, respectively. This is intuitive because GDD 

can be interpreted as beneficial heat for crop development. Farmers who expect sufficient GDD 

have an incentive to increase acreage for crop production. Second, soybean acreage is negatively 

affected by HDD, but the effects of the extreme heat are modest: An increase in HDD of 1% 

decreases soybean acreage by 0.6%. Third, the results show that an increase in precipitation of 1% 

decreases soybean acreage by 2.9%. However, the results indicate that increases in HDD and 

precipitation have insignificant effects on corn and wheat acreage. Last, the effects of intensive 

rainfall events on acreage allocation are insignificant.  

From Figures 2.9 and 2.10, we can verify the spatial variations in GDD and HDD. Also, 

Table 2.6 shows differences in the two variables among states. To be specific, the table shows that 

Illinois has the highest GDD, and the difference in GDD between Illinois and Iowa is 

approximately 10% of the GDD of Iowa. Indiana has the lowest HDD, and the difference in HDD 

among three states is larger than 10% of the HDD of Indiana. Also, our data set shows that, in 

Iowa, variation in GDD among counties is about 5% of the average GDD over Iowa.  

Previous literature finds a nonlinear relationship between temperature and corn yield 

(Schlenker & Roberts 2006; Schlenker & Roberts 2009). In particular, Schlenker and Roberts 

(2009) show that corn yield growth increases gradually only within a certain range of temperature, 

but, beyond this range, corn yield decreases sharply. Also, the agronomic literature typically 

represents the effects of temperature on plant growth in terms of cumulative exposure to heat and 

postulates that plant growth is linear in temperature only within a certain range. GDD and HDD 

capture this agronomic relationship, and previous literature shows that GDD (HDD) has positive 

                                                 
observations have too large the marginal effects of crop insurance purchases to wheat acreage and make the mean and 

variance of the average acreage response elasticity too large (see Table 2.4).  



29 

 

(negative) effects on corn yield (Schlenker, Roberts, & Eyer 2013; Miao, Khanna, & Huang 2015). 

As a result, spatial variations in GDD and HDD may imply differences in productivity of land; our 

results in Table 2.4 reflect farmers’ responses to changes in productivity of land across the 

Midwest.  

However, the empirical evidence regarding the effects of GDD and HDD on land 

allocations is not sufficient and varies among studies. For example, Kaminski, Kan, and Fleischer 

(2013) show that increases in the annual sum of degree days increase the acreage for field crops 

by 0.5%. Also, Feng, Hennessy, and Miao (2013) show that increases in GDD (precipitation) of 

one unit of normalized GDD (precipitation) increase the share of corn acreage across the Dakotas 

by approximately 3%. However, these results do not consider the effects of climate variables on 

farmers’ decisions regarding crops to grow and insurance purchases. 

To identify the effects of crop insurance on farmers’ responses to climate conditions, we 

separate the acreage response elasticity in Table 2.4 into two parts (see Table 2.5). The first part is 

the acreage response elasticity to climate conditions without crop insurance (the upper part of 

Table 2.5). To calculate the estimates in the upper part of Table 2.5, we use the sum of the first 

two terms in Equation (10) as the marginal effects of climate conditions. The second part is 

changes in the acreage response elasticity to climate conditions due to crop insurance purchases 

(the lower part of Table 2.5). We use the sum of the last two terms in Equation (10) as the marginal 

effects of climate measures when calculating estimates in the lower part of Table 2.5. Last, the 

estimates in Table 2.5 are weighted averages for all observations based on sampling weights in our 

data.  

 The results show that, without crop insurance, increases in intensive rainfall events of 1% 

decrease corn and soybean acreage by 3.6% and 6.4%, respectively. In addition, the results indicate 
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that increases in total precipitation increase crop acreage, even though only the effects of total 

precipitation on soybean acreage are statistically significant. However, the results regarding the 

second part show that corn and soybean acreage response elasticity to intensive rainfall events 

increases by 4.0% and 6.3% due to crop insurance purchases. Also, corn and soybean acreage 

response elasticity to total precipitation decreases by 4.7% and 14.12%, respectively, after 

purchasing crop insurance. In sum, from the results in Table 2.4 and Table 2.5, we can verify that 

crop insurance distorts farmers’ incentive to adapt to climate conditions by adjusting their land 

allocation for crops. Also, less intuitive results regarding total precipitation and intensive rainfall 

events shown in Table 2.4 reflect the effects of crop insurance on farmers’ land allocation.  

Last, the total effects of federal crop insurance programs on crop acreage are summarized 

in the last row of Table 2.4. The estimates in Table 2.4 are the averages of percentage change in 

crop j acreage caused by insurance for crop j. However, since the majority of farmers purchased 

insurance for all crops they planted, we can consider the results as the acreage response elasticity 

of crop insurance. The estimates show the significant effects of federal crop insurance on farmers’ 

land allocation decisions: The results show that purchasing crop insurance increases corn and 

soybean acreage by about 5.1% and 10.7%, respectively.   

However, the estimates of insurance effects on farmers’ land allocation have large 

variations in the previous literature, and these variations depend on study areas, study periods, 

estimation methods, and measures of insurance demand.  For example, Wu (1999) shows that crop 

insurance participation changes the share of corn (soybeans) in the Central Nebraska basin from 

0.27 to 0.05 (from 0.04 to 0.05), and the size of insurance effects depends on farm size. The 

simulation results of Wu and Adams (2001) show that a 75% coverage level for revenue protection 

crop insurance for corn (soybeans) increases corn acreage in the Corn Belt by 9.8% (0.1%). The 
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results of simulation in Goodwin, Vandeveer, and Deal (2004) show that decreases in premium 

rates of 30% increase corn acreage over the Heartland region only by 0.20%.  

Compared to previous literature, our result regarding the insurance effect on corn acreage 

is located within the range of previous findings, but the insurance effect on soybean acreage is 

larger than results of previous studies. However, it may be difficult to compare our results directly 

with previous results. To begin with, most of the literature analyzes land use change before the 

Agricultural Risk Protection Act of 2000 (ARPA), which means that most previous studies do not 

account for the effects of changes in subsidy structures after 2000. For example, Goodwin and 

Smith (2013) find that the effects of insurance are larger for soybean acreage than corn acreage. 

Also, except for Wu (1999), most studies assume that farmers’ decisions regarding crops to grow 

and crop insurance purchases are independent of farmers’ land allocation among crops.     

2.6.2 Implications 

To deal with the risks caused by unexpected weather conditions, farmers have adopted crop 

insurance. The federal government introduced federal crop insurance programs to eliminate the 

need for ad hoc disaster assistance and has motivated farmers to use crop insurance by providing 

subsidies. In particular, ARPA has ensured that the subsidy rates fall more slowly than premium 

rates. The purpose of this change is to motivate farmers to increase coverage levels and insured 

crop acreage. In addition, based on the “shallow loss” programs introduced in the 2014 farm bill, 

farmers can use higher coverage levels. As a result, the cost of subsidies has increased as the 

program has expanded and, in 2014, the federal government paid $6.2 billion as premium 

subsidies.  
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However, the benefits of subsidized crop insurance are controversial (Paulson, Babcock, 

& Coppess 2014).23 Our results provide evidence regarding the distortions caused by subsidized 

crop insurance. The conceptual approach shows that crop insurance can weaken farmers’ 

responsiveness to production risk and increase land allocation to insured crops, even when farmers 

recognize the potential risks of growing insured crops. The analytic results also indicate that the 

expected utility from growing insured crops can increase as the level of risk increases when 

subsidy rates and coverage levels are high. These results imply that the subsidy structure after 

ARPA and higher coverage of “shallow loss” programs can increase the distortion of federal crop 

insurance. Our empirical results also show that federal crop insurance gives disincentive for 

farmers to adjust their land allocation for potential production risks such as an increase in intensive 

rainfall events. We thus imagine that subsidized crop insurance programs will make farmers more 

susceptible to an increase in extreme weather events in the future. An increased potential risk of 

yield loss from climate change may increase farmers’ premium rates and the government’s 

expenditure for crop insurance subsidies. 

2.7 Conclusions 

To assess and alleviate harmful climate change impacts, policy makers need to understand 

farmers’ adaptive behavior to local environmental conditions. This study identifies responses of 

Midwest farmers to climate conditions and federal crop insurance programs by analyzing their 

cropping patterns. The study has four key findings. First, sufficient precipitation, adequate GDD, 

and less HDD have positive effects on farmers’ decision to grow crops but negative effects on their 

decision to purchase crop insurance. Intensive rainfall has positive effects on insurance purchases 

for corn and soybeans. Second, we calculate the overall effects of climate variables on land 

                                                 
23 Paulson, Babcock, and Coppess (2014) summarize the debate regarding the justification of public support for crop 

insurance program: elimination of ad-hoc disaster payment, decreases in adverse selection, and market failure.  
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allocation decisions of Midwest farmers. These effects include climate effects on farmers’ decision 

to grow crops, purchase insurance, and allocate their land to crops at the same time. The results 

show that a 1% increase in GDD increases corn, soybean, and wheat acreage by 1.7%, 3.6%, and 

2.6%, respectively. When HDD increase by 1%, soybean acreage decreases by 0.6%. An increase 

in precipitation of 1% decreases soybean acreage by 2.9%. However, increases in HDD and 

precipitation have insignificant effects on corn and wheat acreage. Third, without crop insurance, 

farmers are more likely to increase corn and soybean acreage when intensive rainfall events 

decrease and total precipitation increases during the growing seasons. However, our results show 

that federal crop insurance mitigates farmers’ incentive to adopt increases in intensive rainfall 

events or decreases in total precipitation by adjusting their land use. Fourth, federal crop insurance 

programs induced Midwest farmers to allocate more acreage to corn and soybeans.  

The findings in this paper contribute broadly to our understanding of climate change, land 

allocation, and crop insurance. To be specific, by constructing a simultaneous equation model 

consisting of decisions to grow crops, purchase crop insurance, and allocate land, our results 

identify the effects of climate variables on the intensive margin, the extensive margin, and 

insurance purchases separately. Also, we identify the effects of crop insurance on cropping pattern, 

and the results can stand as empirical evidence of the unintended policy effects of subsidized crop 

insurance programs. Last, our results offer one answer to a controversial question: How does crop 

insurance alter farmers’ response to long-term climate risks?  

The results in this paper have some limitations. First, county-level climate and soil 

variables fail to capture farm-level spatial heterogeneity of climate and soil. Second, our model 

heavily depends on distributional assumptions, including independence among crop selections and 

normality assumptions on error terms. Third, because of the lack of information on historical land 
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use, we do not control for the effects of crop rotation even though we allow for the correlation 

between decisions on land allocation and crops to grow. Last, the merging of the multiple-year 

surveys without consideration of changes in sampling design and population may bias our 

estimates. 
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Note: (a) Average annual precipitation (mm) during the top 10 wettest days in a year for 1971-2000. (b) Trend in the 

sum of precipitation during the top 10 wettest days in a year for 1901-2000, expressed in a percent per decade; A red 

circle means the stations showed a significant increase through time; a blue circle indicates a statistically significant 

decrease. A plus symbol indicates that the trend was not significant. The source is NOAA Technical Report NESDIS 

142-3 (2013). 

Figure 2.1. Changes in precipitation in the Midwest 

 

 
Source: Arritt, R., J. Miranowski, A. Daniel, B. Gelder, J. McFadden, T. Sines and J.-H. Sung, 2015:  Attribution of 

changes in precipitation intensity over the central United States. Presented at "Third Annual Meeting of the NSF-

DOE-USDA Earth System Modeling (EaSM) activity", Bethesda, MD, 31 August - 2 September 2015. 

 

Figure 2.2. The Changes in Soybean Acreage from 1950 to 2010 

  

Proportion of Soybean acreage in 2010 Proportion of Soybean acreage in 1950 
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Source: NASS Quick stats and Risk Management Agency (RMA)  

 
Figure 2.3. Changes in Shares of acres covered by federal crop insurance (above) and crop 

insurance subsidies (below) 
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Figure 2.4. Land allocation when Crop 1 is more profitable and less sensitive to the risk   

 

 
Figure 2.5. Land allocation when Crop1 is beneficial only when the risk level is low 
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Figure 2.6. Land allocation when Crop2 has larger changes in its curvature than Crop 1  

 

 
Figure 2.7. Changes in land allocation after buying crop insurance for Crop 2  
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Figure 2.8. The regional distribution of observations (# per county) 

 

 
Figure 2.9. The Changes in Expected Weather conditions 

Expected Heavy Rainfall in 2003 (#/year) Expected Heavy Rainfall in 2010 (#/year) 

Expected HDD in 2003 Expected HDD in 2010 
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Figure 2.9. The Changes in Expected Weather conditions (Continue) 
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Table 2.1. Summary Statistics 

 

Variables Definition Mean Std.Dev 

Harvested Acreage 

Corn Corn grain (acres) 491.41 645.55 

Soy Soybean (acres) 411.14 495.51 

Wheat Wheat grain (acres) 25.84 137.66 

Land Total land (acres) 1065.56 1161.44 

Expected Price 

Pcorn Corn grain ($/bu) 3.99 1.35 

Psoy Soybeans ($/bu) 8.81 3.11 

Pwheat Wheat grain ($/bu) 4.80 2.05 

Variance of Output Price 

Var(corn) Variance of corn prices 1.00 0.93 

Var(soybeans) Variance of soybean prices 5.44 3.47 

Var(wheat) Variance of wheat prices 0.90 0.96 

Farm Characteristics 

Age Operator age 54.41 11.23 

Off-farm income Previous year off-farm income ($1,000) 52.29 84.98 

Equity Equity ($1,000) 1981.1 2659.1 

Debt-ratio debt-ratio 0.15 0.19 

Insc Insurance for corn  0.67 0.47 

Inss Insurance for soybeans 0.66 0.47 

Insw Insurance for wheat 0.10 0.30 

# of Observations 10056 
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Table 2.1 (Continued)  

 

Variables Definition Mean Std.Dev 

Soil and Land Characteristics 

OM Organic matter (%) 1.90 1.08 

Slope Slope (%) 2.57 2.15 

Ksat Hydraulic Conductivity (m/second) 6.29 6.11 

AWC Available Water Capacity (in./in.) 0.12 0.06 

K-factor K factor 0.19 0.10 

Dept Depth to water table (cm) 32.64 15.54 

Climate and Weather Events 

GDD GDD for corn 1978.43 185.35 
 GDD for soybeans 1796.66 166.35 
 GDD for wheat 371.00 301.93 

HDD HDD for corn 1.08 0.95 
 HDD for soybeans 1.08 0.95 
 HDD for wheat 0.06 0.20 

PRE Precipitation for corn 499.79 45.61 
 Precipitation for soybeans 420.65 41.06 
 Precipitation for wheat 138.78 79.56 

I_PRE Intensive Precipitation for corn 4.23 0.84 
 Intensive Precipitation for soybeans 3.58 0.77 
 Intensive Precipitation for wheat 1.11 0.70 

Early_PRE Precipitation during April and May 196.91 70.87 
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Table 2.2. Estimates of Crop Selection and Crop Insurance Selection 

 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 1% level. ( ) standard errors of estimates. For corn and corn insurance selection 

equations, 1934 iterations among 2000 iterations succeeded in converging the optimal. For soybean and soybean insurance selection equations 1981 iterations 

among 2000 iterations succeeded in converging the optimal. Lastly, for wheat and wheat insurance selection equations 1819 iterations among 2000 iterations 

succeeded in converging the optimal. 

 Corn Corn Insurance Soybeans Soybean Insurance Wheat Wheat Insurance 

Pcorn 0.550** (0.265) -0.342   (0.207) -0.130 (0.258) 0.170 (0.197) -0.318 (0.240) 2.255*** (0.589) 

Psoy -0.108 (0.137) 0.385*** (0.091) -0.178 (0.113) 0.313*** (0.094) 0.236 (0.146) 0.727** (0.325) 

Pwheat -0.088 (0.063) 0.024 (0.056) -0.064 (0.064) -0.001 (0.055) -0.598*** (0.091) -0.316 (0.347) 

Var(Pcorn) 1.017 (4.185) 7.146** (3.072) -7.129* (3.814) 10.194*** (3.123) -5.535 (4.312) 38.321*** (10.534) 

Var(Psoy) -0.113 (1.050) -1.779** (0.768) 1.727* (0.954) -2.499*** (0.782) 1.549 (1.086) -9.463*** (2.631) 

Var(Pwheat) -0.482*** (0.165) -0.066 (0.151) 0.286 (0.194) -0.207 (0.152) -0.855*** (0.191) -0.381 (0.567) 

Early_PRE -0.002*** (0.000) -0.001* (0.000) 0.001*** (0.000) -0.001*** (0.000) -  - - 

I_PRE 0.090 (0.058) 0.236*** (0.047) -0.040 (0.063) 0.250*** (0.051) -0.092 (0.123) 0.004 (0.248) 

GDD 0.001*** (0.000) 0.000 (0.000) 0.002*** (0.000) -0.001** (0.000) 0.002 (0.001) -0.003 (0.002) 

HDD -0.130*** (0.054) -0.065 (0.042) -0.246*** (0.054) 0.074* (0.042) -1.405*** (0.337) 0.040 (0.732) 

PRE 0.002** (0.001) -0.004*** (0.001) -0.001 (0.001) -0.004*** (0.001) -0.015*** (0.002) -0.001 (0.007) 

OM -0.020 (0.051) 0.235*** (0.040) 0.065 (0.053) 0.173*** (0.038) -0.120** (0.047) 0.095 (0.097) 

Slope 0.004 (0.013) -0.043*** (0.010) -0.070*** (0.011) -0.005 (0.011) -0.014 (0.012) -0.027 (0.026) 

Ksat -0.003 (0.004) -0.006* (0.003) -0.015*** (0.003) -0.003 (0.003) -0.004*** (0.004) -0.004 (0.007) 

AWC 7.611*** (2.220) -8.431*** (1.698) 4.484** (2.273) -6.499*** (1.618) -3.904 (2.000) -6.488 (4.364) 

Kffact -4.803*** (0.912) 3.251*** (0.688) -1.737* (0.910) 2.317*** (0.658) 3.057*** (0.760) 2.244 (1.943) 

Depth -0.001 (0.001) 0.003** (0.001) -0.0003 (0.001) 0.003** (0.001) -0.001 (0.001) -0.001 (0.003) 

Age -0.011*** (0.002) - - 0.0002 (0.002) - - 0.005*** (0.002) - - 

Off income -0.001*** (0.000) - - -0.001*** (0.000) - - -0.001*** (0.000) - - 

Constant -1.930** (0.897) 1.298* (0.726) -2.019** (0.833) 2.129*** (0.731) 0.755 (0.722) -0.701 (1.529) 

Debt Ratio - - 1.341*** (0.129) - - 1.413*** (0.126) - - 1.733*** (0.324) 

Equity - - 0.086*** (0.017) - - 0.066*** (0.014) - - 0.076** (0.031) 

𝜌 - - -0.570*** (0.206) - - -0.557** (0.249) - - -0.245 (0.422) 

Year dummies and  state dummies Yes Yes Yes 

McFaddens’ Pseudo R-squared 0.1253 0.1021 0.2423 

Wald Statistic 383.33***  421.97***  135.11*** 



48 

 

Table 2.3. Estimates of Acreage Equations 

 

 
Corn Acreage Soybeans Acreage Wheat Acreage 

Estimates (Std. Error) Estimates (Std. Error) Estimates (Std. Error) 

Pcorn 294.36 (306.44) 47.05 (284.63) 138.64 (565.35) 

Psoy 58.68 (162.13) -80.24 (157.25) -89.84 (221.80) 

Pwheat -99.84 (119.85) -103.61 (148.18) 456.81*** (140.42) 

Var(Pcorn) 3501.80 (4730.29) -3728.23 (5111.83) 3337.82 (10085.27) 

Var(Psoy) -905.31 (1203.30) 842.63 (1312.53) -888.52 (2670.61) 

Var(Pwheat) -90.71 (331.72) 421.50 (587.61) 557.85 (1202.55) 

Early_PRE 0.20 (0.49) 0.89** (0.45) - - 

I_PRE -201.29*** (0.004) -343.87*** (78.66) -142.34 (221.62) 

GDD -0.27 (0.28) 0.77 (0.48) 2.68** (1.35) 

HDD 115.50 (71.87) -46.84 (82.50) 565.68 (1107.38) 

PRE 2.52* (1.41) 5.95*** (1.50) 4.15 (4.35) 

OM -278.34*** (61.63) -211.58*** (53.05) 21.51 (42.05) 

Slope 64.69*** (14.50) 43.69*** (16.85) -28.48 (33.19) 

Ksat 4.18 (3.74) 5.88 (4.09) 4.18 (3.81) 

AWC 7393.19*** (2342.15) 7828.45**** (2234.80) 1770.45 (2115.88) 

Kffact -3066.77*** (991.47) -3233.46*** (977.76) -1170.12 (977.47) 

Depth -0.50 (1.42) -1.45 (1.44) 0.41 (1.43) 

𝜆𝑐𝑜𝑟𝑛 -136.62 (163.38) -229.07* (121.46) 42.53 (95.16) 

𝜆𝑠𝑜𝑦 -448.44** (222.46) 103.81 (225.54) -104.76 (190.59) 

𝜆𝑤ℎ𝑒𝑎𝑡 -32.32 (41.83) -124.00*** (34.90) 118.38 (190.59) 

Constant -106.03 (592.64) -3721.90*** (1434.45) -2766.28*** (1009.20) 

Year and State 

dummies 
Yes Yes Yes 

Note: Standard errors are from about 1,891 bootstrap runs. *** significant at 1% level. ** significant at 5% level. * 

significant at 1% level. ( ) standard errors of estimates.  
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Table 2.3 (Continued) 

 

 
Corn Acreage Soybeans Acreage Wheat Acreage 

Estimates (Std. Error) Estimates (Std. Error) Estimates (Std. Error) 

Ins×Pcorn -440.90 (515.65) -340.70 (440.75) -1212.34 (1660.85) 

Ins×Psoy -211.73 (249.21) -106.79 (219.24) 29.45 (612.16) 

Ins×Pwheat 204.66 (156.01) 242.45 (169.17) -837.24*** (286.16) 

Ins×Var(Pcorn) -7576.23 (7426.96) -1729.54 (6900.96) -19191.9 (27811.3) 

Ins×Var(Psoy) 1921.18 (1875.71) 477.89 (1761.41) 4887.43 (7141.12) 

Ins×Var(Pwheat) -47.28 (405.94) -260.60 (662.29) - - 

Ins×Early_PRE 0.20 (0.63) 0.17 (0.51) - - 

Ins×I_PRE 176.45* (92.43) 292.98*** (89.84) 242.37 (542.91) 

Ins×GDD -0.09 (0.24) -0.66 (0.72) -4.76 (3.10) 

Ins×HDD -68.56 (37.57) 54.54 (121.44) -1021.28 (1501.40) 

Ins×PRE -1.70 (0.94) -5.20*** (1.72) -11.72 (11.02) 

Ins×OM 237.25*** (86.13) 181.92*** (69.38) -39.77 (87.73) 

Ins×Slope -86.52*** (9.11) -72.14*** (24.89) 74.78 (96.52) 

Ins×Ksat 4.61 (7.37) -5.33 (4.90) -6.81 (9.78) 

Ins×AWC -4566.24 (3506.71) -6191.58** (2938.64) -4200.57 (4715.45) 

Ins×Kffact 2101.03 (1561.42) 2930.75** (1360.35) 3018.29 (1858.51) 

Ins×Depth -1.70 (1.97) -0.79 (1.74) -1.39 (3.85) 

Ins 1169.86 (1584.32) 4694.94*** (1810.46) 6304.20*** (2274.48) 

Year and State 

dummies 
Yes Yes Yes 

Adjusted R-

squared 
0.3617 0.3998 0.1725 

Wald Statistics 91.43*** 107.30*** 37.13*** 

Note: Standard errors are from about 1,891 bootstrap runs. *** significant at 1% level. ** significant at 5% level. * 

significant at 1% level. ( ) standard errors of estimates. The interaction term between crop insurance dummies and 

variance of wheat prices in an equation for wheat acreage is dropped because of collinearity.  
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Table 2.4. The Average Acreage Response Elasticity of Climate Variables 

 
Corn Soybeans Wheat 

GDD 1.710 (0.925)* 3.554*** (1.201) 2.634** (1.164) 

HDD -0.118 (0.925) -0.591*** (0.213) -0.001 (0.001) 

Precipitation -0.791 (1.033) -2.937*** (0.861) -2.198 (1.413) 

Intensive rainfall 0.245 (0.290) -0.048 (0.289) -0.612 (0.433) 

Insurance 5.158*** (0.607) 10.770*** (1.359) 80.595 (-)  

Note: Standard errors are from about 1,891 bootstrap runs. *** significant at 1% level. ** significant at 5% level. * 

significant at 1% level. ( ) standard errors of estimates. Since outliers in each iteration, the variance of the elasticity 

becomes large. To exclude the effects of outliers, the values which are higher than 95% quantile and lower than 5% 

quantile are thrown out. (-) means variance estimates based on the bootstrapping method based on probability weights 

are unreasonable large because of outliers. 

 

Table 2.5. The Effects of Crop Insurance on Average Acreage Response Elasticity 

 

 
Corn Soybeans Wheat 

Without crop insurance 

GDD -0.550 (2.126) 5.755 (4.776) 8.298* (4.234) 

HDD 0.211 (0.303) -0.624 (0.412) -0.0001 (0.001) 

Precipitation 3.817 (3.082) 11.061*** (3.867) 5.053 (5.272) 

Intensive rainfall -3.623*** (1.202) -6.478*** (1.606) -1.349 (1.998) 

After purchasing crop insurance 

GDD 2.279 (2.173) -2.118 (4.956) -5.495 (3.744) 

HDD -0.324 (0.244) -0.043 (0.387) -0.0003 (0.001) 

Precipitation -4.733* (2.657)  -14.125*** (3.582) -6.984 (4.416) 

Intensive rainfall 3.966*** (1.185) 6.309*** (1.601) -0.706 (1.732) 

Note: Standard errors are from about 1,891 bootstrap runs. *** significant at 1% level. ** significant at 5% level. * 

significant at 1% level. ( ) standard errors of estimates. Since outliers in each iteration, the variance of the elasticity 

becomes large. To exclude the effects of outliers, the values which are higher than 95% quantile and lower than 5% 

quantile are thrown out.  
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Table 2.6. Summary Statistics: Iowa, Illinois, and Indiana in 2010 

 

Variables Definition Iowa Illinois Indiana 

 Harvested Acreage 

Corn Corn grain (acres) 455.31 571.06 516.21 

Soy Soybean (acres) 345.87 370.16 468.97 

Wheat Wheat grain (acres) 0.28 3.995 10.76 

 Climate and Weather Events 

GDD GDD for corn 1916.33 2113.03 2064.81 
 GDD for soybeans 1722.63 1874.73 1796.95 
 GDD for wheat 237.87 276.23 284.73 

HDD HDD for corn 0.45 0.94 0.38 
 HDD for soybeans 0.45 0.94 0.38 
 HDD for wheat 0.00 0.00 0.00 

PRE Precipitation for corn 575.07 503.62 530.61 
 Precipitation for soybeans 477.23 408.24 410.56 
 Precipitation for wheat 115.33 121.55 120.11 

I_PRE Intensive Precipitation for corn 5.33 4.38 4.56 
 Intensive Precipitation for soybeans 4.51 3.54 3.49 
 Intensive Precipitation for wheat 1.00 0.96 1.07 

Early_PRE Precipitation during April and May 179.16 219.32 212.75 
Note: The estimates mean the simple average among observations in each state.    
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Appendix A: proofs regarding the conceptual model  

 

1. WTS: 𝝏𝑬𝑼(𝝅𝒋|𝜹)/𝝏𝜹 < 𝟎 and 𝝏𝟐𝑬𝑼(𝝅𝒋|𝜹)/𝝏𝜹𝟐 < 𝟎 

Proof. 
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The inequality holds because 𝑈𝜋(𝜋(𝜖, 𝜃)|𝛿) < 𝑈𝜋(𝜋(0, 𝜃)|𝛿) when 𝜖 > 0, and 𝑈𝜋(𝜋(𝜖, 𝜃)|𝛿) >
𝑈𝜋(𝜋(0, 𝜃)|𝛿) when 𝜖 < 0. Also 𝑈𝜋𝜋 < 0, we can show that 
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2. Taylor expansion of 𝝏𝑬𝑼(𝝅𝒋|𝜹)/𝝏𝜹 

Based on Isik (2002), we can derive the below equation.  
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where  𝜋̅ = 𝜇𝑃  and 𝜙 = −𝑈𝜋𝜋(𝜋̅)/𝑈𝜋(𝜋̅)  means the Arrow-Pratt measure of absolute risk 

aversion. If we assume 𝜋̅ is same between Crop 1 and Crop 2, the relative sizes of   𝜕𝐸𝑈(𝜋𝑗|𝛿)/𝜕𝛿 

are determined by the variances of 𝜀 and 𝜃 of each crop.   

 

3. WTS: 𝝏𝑬𝑼(𝝅𝒋
𝒊𝒏𝒔|𝜹)/𝝏𝜹 can be positive.  

Proof. Before proving the hypothesis, we have to show some properties regarding expected 

indemnity. 
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Claim 1:  
𝝏𝒗(𝜹)

𝝏𝜹
> 𝟎 

Let 𝜑 =
𝜆𝜇−𝜇

𝛿
, then we know that only where 𝜖 <  𝜑 < 0, the indemnity is paid.   
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Claim 2: 𝜕𝐸𝑈(𝜋𝑖𝑛𝑠|𝛿) 𝜕𝛿⁄ |𝑠=1𝑜𝑟 0,λ=0 > 0.  

When s = 1 or 0 and λ = 0, 𝜑 = −𝜇, 𝑣(𝛿) = 0. Then, 
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Claim 3: 𝜕𝐸𝑈(𝜋𝑖𝑛𝑠|𝛿) 𝜕𝛿⁄ |𝑠=1,λ=1 > 0. When s = 1 and λ = 1, 𝜑 = 0. Firstly, we can easily 

show the below inequality. 
0

0 0

0

( ( ) (

[ ( ( ( ( ] ( ) 0

( , ) | ) )

( , ) | ) ) ( , ) | ) )

lower

l

P

ower lowe

P

P

P
r

U dG dF

U dF U dF dG




 


    

         

 

 



 

 

  
 

Based on the upper inequality, we can prove that  
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Claim 4:𝜕𝐸𝑈(𝜋𝑖𝑛𝑠|𝛿) 𝜕𝛿⁄ |𝑠=0 < 0.  

Let ϵ̂ = ∫ −𝜖
𝜑

−𝜇
> 0, 𝜀̃ =

𝑃

𝑃+𝜃
∫ −𝜖

𝜑

−𝜇
> 0, then we can know that 𝜖 < ϵ̂ ↔ 𝑝𝜖 −

𝜕𝑣(𝛿)

𝜕𝛿
< 0, 𝜖 <

𝜀̃ ↔ (𝑃 + 𝜃)𝜖 −
𝜕𝑣(𝛿)

𝜕𝛿
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The first inequality is holds because 𝜃𝜖 −
𝜕𝑣(𝛿)

𝜕𝛿
< 0 when 𝜖 < 0 < ϵ̂ for all 𝜃. Also, we show 
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The last equality is based on the fact that  ( ) ( )
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Since 𝜕𝐸𝑈(𝜋𝑖𝑛𝑠|𝛿)/𝜕𝛿  is a continuous function of λ, by intermediate theorem, we can know that 

there exists a unique λ∗ such that 𝜕𝐸𝑈(𝜋𝑖𝑛𝑠|𝛿)/𝜕𝛿 > 0 when s = 1 and λ > λ∗. Also, because  

𝜕𝐸𝑈(𝜋𝑖𝑛𝑠
|𝛿)

𝜕𝛿
|𝑠=0 < 0  and 

𝜕𝐸𝑈(𝜋𝑖𝑛𝑠
|𝛿)

𝜕𝛿
 is continuous function of s, there exists ( λ̂, ŝ)  such that 

𝜕𝐸𝑈(𝜋𝑖𝑛𝑠
|𝛿)

𝜕𝛿
|λ>λ̂,s> ŝ > 0 by the intermediate value theorem (Miao, Hennessy, & Feng 2016). 
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Appendix B: How to derive empirical model  

 

Fishe, Trost, and Lurie (1981) shows that  
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where 𝑀𝑙𝑘 = (1 − 𝜌2)−1[𝑃𝑙 − 𝜌𝑃𝑘] for 𝑙, 𝑘 ∈ [1, … ,4], and  
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Based on normality assumptions,  
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The second equality holds because  
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Also, we can verify that the last term of the above equation is 𝜌𝑃2. The first term becomes 
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With the similar way, we can derive below relationships between 𝑃𝑙 for 𝑙 ∈ [1, … ,4].  
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When we enter Equation (14) into Equation (13), then we can get Equation (8). Lastly, since we 

assume 𝑒𝑖𝑗 ⊥ 𝑒𝑖𝑘,  𝜈𝑖𝑗 ⊥ 𝑣𝑖𝑘, and 𝑒𝑖𝑗 ⊥ 𝑣𝑖𝑘 for 𝑗 ≠ 𝑘, we can control for the correlation between  

𝑒𝑖𝑗 and 𝜀𝑖𝑘 by adding correction terms in Equation (7) (Lacroix and Thomas 2011).  To derive 

the Equation (9), put Equation (8) into Equation (7) as follows.   
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The second equality holds because Φ(−𝑆𝑖𝑗
∗ ) = 1 − Φ(𝑆𝑖𝑗

∗ ). Also, the last quality is based on the 

fact that 𝑃1 + 𝑃2 = 𝑃(𝜏𝑖𝑗
∗ > 0, 𝜔𝑖𝑗

∗ > 0|𝑍𝑖𝑗, 𝑆𝑖𝑗) + 𝑃(𝜏𝑖𝑗
∗ > 0, 𝜔𝑖𝑗

∗ ≤ 0|𝑍𝑖𝑗, 𝑆𝑖𝑗) = 𝑃(𝜏𝑖𝑗
∗ > 0|𝑍𝑖𝑗).   
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Appendix C: Climate Variables 

 

To calculate GDD and HDD, we consider below four cases, and HDD is only calculated at case 

3 and case 4. 
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where “upper” and “lower” mean the upper threshold and the lower threshold, respectively. The 

upper threshold is 34℃, and the lower threshold is 8℃ (Ritchie & NeSmith, 1991). “tmax” is a 

daily maximum temperature, and “tmin” is a daily minimum temperature. Lastly, M = (tmax+ 

tmin)/2 and W=(tmax-tmin)/2.  

 

 

 

 

 



58 

 

 

CHAPTER 3 

ECONOMIC AND ENVIRONMENTAL IMPLICATIONS OF BIOTECHNOLOGY AND 

INFORMATION TECHNOLOGY 

 

Jae-hoon Sung and John A. Miranowski 

Abstract 

Technology adoption has significant effects on corn yield and nutrient management for 

corn production. Over the last decade, the adoption of genetically modified (GM) corn and 

information technologies has increased. We analyze the effects of GM corn, pest scouting, and 

yield monitoring on corn yield and nutrient management of Midwest farmers. We incorporate a 

nonlinear endogenous regression approach to control for self-selection bias, and the Agricultural 

Resource Management Survey is used for estimation. We find that GM corn and its combination 

with pest scouting increase corn yield and nitrogen use. Also, the effects of GM corn and/or pest 

scouting depend on soil productivity. Last, the relationship between yield monitoring and pest 

scouting is complementary in increasing corn yield and nitrogen use.  
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3.1 Introduction 

Identifying the effects of technology adoption on corn yield and nutrient management is 

important to understand the economic and environmental implications of technology adoption. 

Gains in corn yield as a result of technology adoption can increase profitability by increasing corn 

yield (revenue) and further exceeding production costs or by maintaining corn yield (revenue) and 

further reducing production costs. If profitability improves through the adoption of technology that 

reduces nitrogen use per bushel of corn ‒ that is, improved nitrogen use efficiency (NUE) ‒ 

nitrogen pollution from runoff, leaching, and volatilization in corn fields can be reduced.1  

This study investigates the economic and environmental implications of the adoption of 

genetically modified (GM) corn and information technologies in the context of corn yield and 

nutrient management. The adoption of GM corn and information technologies has increased over 

time and the adoption of GM corn increased fairly rapidly after the introduction of commercial 

GM corn in 1996. In 2013, the proportion of GM corn to total corn acreage reached 88% 

(Fernandez-Cornejo et al. 2014). The adoption of information and precision agricultural 

technologies progressed at a slower pace. Pest scouting, for example, is the most widely adopted 

information technology. In 2014, weed scouting and insect scouting were used on 94% and 90% 

of Iowa corn acreage, respectively (NASS quick stat). The adoption of yield monitor, which is the 

first stage in the adoption of precision agriculture, increased to roughly 70% of Midwest corn 

acreage in 2010 (see Figure 3.1).  

The increased adoption of GM corn and information technologies reflects the profitability 

of adopting these technologies, as shown by gains in corn yield and NUE (Schimmelpfennig & 

Ebel 2011; Fernandez-Cornejo et al. 2014). GM corn adopters can increase corn yield by 

                                                 
1 We define NUE as nitrogen applied per bushel of corn yield (pound of nitrogen per one bushel of corn). 
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decreasing yield loss from pests. GM corn enables adopters to suppress pest populations more 

efficiently than farmers who use conventional varieties. Herbicide-tolerant (HT) corn also allows 

farmers to rely heavily on glyphosate, thereby reducing the use of more environmentally 

detrimental herbicides. Insect-resistant (Bt) corn produces a toxic protein that targets insects 

damaging the plant above and below ground. In addition, the Bt trait facilitates efficient water and 

nutrient uptake of the plant through an improved corn root system (Miranowski, Rosburg, & 

Aukayanagul 2011) and the HT trait reduces weed competition for water and nutrients for the 

plant. 

Information technologies may have positive effects on corn yield and NUE. Pest scouting 

provides information on pest infestation, pesticide performance, and pest resistance during the 

growing season. Farmers who adopt pest scouting can more effectively control pest infestation in 

their fields and minimize damage to corn yield. Furthermore, we can consider pest scouting as an 

indicator of general crop management. High adoption of weed scouting, insect scouting, and 

scouting for diseases suggests that most of the pest scouting adopters adopt the three technologies 

at the same time (NASS quick stat). Also, pest scouting is closely related to nutrient, soil, and 

water management.2  

Yield monitor generates field-level information regarding corn yield distribution, soil 

conditions, and results of crop management practices during the previous year.  Farmers may use 

this information when determining the most profitable crop management system for each corn 

field prior to planting season. In addition, yield monitor may encourage farmers to apply nitrogen 

based on corn yield distribution within and among fields and potentially improve NUE. Thus, 

                                                 
2 For example, our data show that more than 82% of soil testing adopters also adopted pest scouting and irrigated 

farms are more likely to use soil testing and pest scouting at the same time. In addition, nitrogen use and tillage systems 

are important factors of integrated pest management (Evans et al. 2003a; Evans et al. 2003b; Horowitz, Ebel, & Ueda 

2010).   
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farmers may have an incentive to increase nitrogen use on certain areas of fields or fields with 

higher yield potential but reduce applications on more marginal areas.  

This study also investigates the relationship among GM corn, pest scouting, and yield 

monitoring in improving corn yield and nutrient management. It is desirable to analyze the effects 

of adopting these technologies jointly to correctly measure the effects of GM corn and information 

technologies on crop management. Technology adoption decisions are made simultaneously, and 

the effects of one technology depend on its combination with another. For example, suppose 

farmers who adopt GM corn are more likely to adopt pest scouting. If pest scouting is not 

considered, comparing corn yield across fields will overestimate the yield effects of GM corn when 

pest scouting has positive effects on corn yield. 

In this study, we seek to answer the following specific three research questions: (1) Does 

the adoption of GM corn and pest scouting increase corn yield, nitrogen use, and NUE? (2) Is the 

relationship between GM corn and pest scouting complementary in improving corn yield and 

nutrient management? (3) How does information from yield monitor alter corn yield and nutrient 

management of farmers who adopt GM corn and/or pest scouting? To answer these questions, we 

construct and estimate equations for corn yield, nitrogen use, and NUE based on the technology 

adoption status of individual farmers. An endogenous switching regression approach is applied to 

control for the effects of unobserved factors in technology adoption. We use extensive field-level 

information based on Agricultural Resource Management Survey (ARMS) data for our estimation. 

Results show that adopting GM corn and information technologies increases corn yield and 

nitrogen use but has insignificant effects on NUE. We also find that the effects of adopting GM 

corn and/or pest scouting on corn yield and nitrogen use are larger for fields having low soil 

productivity. 
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The study is organized as follows. Section 2 reviews relevant literature. Section 3 explains 

the effects of technology adoption on corn yield and nutrient management by using a simple 

conceptual model.  Section 4 provides the model specifications and related assumptions. Section 

5 explains the implications of selected variables and the construction of field-level data. Section 6 

discusses the results and economic implications. Section 7 provides the conclusions. References, 

summary statistics, and estimation results are shown at the end of the paper. The last section is the 

Appendix, which includes results of robustness checks and supplementary tables.   

3.2 Literature review 

An extensive body of agricultural economics literature has analyzed the relationship 

between GM crops and agricultural production.3 Fernandez et al. (2014) summarize extensive 

empirical studies on implications of adopting GM crops with respect to yield, pesticide use, and 

net return. Bt and stacked trait seeds are shown to increase crop yields and net return while 

simultaneously decreasing insecticide use. HT corn is a cost-reducing technology. Farmers receive 

monetary and non-monetary benefits, such as reduced time and cost of weed management, by 

adopting HT corn. However, the effects of HT seeds on crop yields and herbicide use have not yet 

been addressed (Nolan & Santos 2012).  

Compared with the yield effects of GM corn, the effects of GM corn adoption on nutrient 

management are less well known. In addition, scouting has been examined to measure its effects 

only on pest management (Carson 1970; Miranowski, Ernst, & Cummings 1974; Yee & Ferguson 

1996; Mishra, Nimon, & El-Osta 2005). Literature on yield monitor has focused on general 

information about precision agriculture, including yield monitor, yield and soil maps, and variable-

rate technology and their adoption rates (Griffin & Lowenberg-DeBoer 2005; Schimmelpfennig 

                                                 
3 Fernandez-Cornejo et al. (2014), Bennet et al. (2013), and Qaim (2009) summarize the effects of GM corn adoption 

on agricultural production, adopters’ welfare, regional environment conditions, and consumer demand.  
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& Ebel 2011). Only Miranowski, Rosburg, & Aukayangul (2011) discuss the implications of GM 

crop development on NUE. They argue that increased corn yield will decrease the amount of land 

and nitrogen required to produce the same amount of corn in 2009 by 17 to 27 million acres and 

by 0.6 to 1.4 million metric tons of nitrogen in 2030. 

Previous literature has emphasized the self-selection problem in measuring the effects of 

adopting agricultural technologies. Qaim (2009) and Nolan & Santos (2012) argue that the lack of 

field-level or farm-level information can cause selectivity bias. Shi et al. (2013) explain that the 

quality of germplasm between conventional corn and GM corn is systematically different and show 

that this unobserved difference can be a source of selectivity bias. To overcome this problem, an 

endogenous switching regression has been used to analyze the effects of agricultural technology 

adoption on economic outcomes of crop management practices (Fuglie & Bosch 1995; Wu & 

Babcock 1998; Khanna 2001). In particular, Lee (1983) suggests an approach to formulating a 

polychotomous choice problem with mixed continuous and discrete dependent variables. Based 

on this approach, endogenous switching regression models can be incorporated to evaluate the 

effects of alternative combinations of technologies (Wu & Babcock 1998). However, previous 

literature does not always consider nonnegative corn yield and nitrogen use despite nitrogen use 

and corn yield always being greater than or equal to zero. Terza (1998) shows how to extend an 

endogenous switching regression approach to models having an exponential functional form. In 

this study, we merge Lee (1983) and Terza (1998) to construct a polychotomous choice selectivity 

model with an exponential functional form. The advantages of our approach are its consideration 

of selectivity bias in technology adoption and its guarantee of nonnegative outcome variables. 

Moreover, this approach allows us to evaluate the effects of adopting alternative combinations of 

technologies and the effects of adoption of an individual technology at the same time. 
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Insufficient empirical evidence regarding the effects of GM corn, information technologies 

on corn yield, and nutrient management may be an obstacle to understanding the costs and benefits 

of adopting the technologies. We expect that our empirical study will contribute to filling this gap. 

In addition, our results are based on extensive field-level data covering the 13 major corn-

producing states. Moreover, by using weights in field-level data, we can generalize our results in 

a statistically reliable manner. Thus, our results should be more general and credible than those of 

previous studies.  

3.3 Conceptual model 

Consider a risk-neutral farmer who uses nitrogen (𝑥𝑛𝑖𝑡) and a vector of other agricultural 

inputs (𝒙) to grow corn. We assume that nitrogen is essential in corn production, and the effect of 

technology adoption on corn production can be captured by incorporating a function ℎ(𝒛) in the 

production function. Also, we assume that the effects of technology adoption depend on given 

environmental conditions and characteristics of the farmer (𝒛), such as soil productivity and human 

capital. We thus define the production function as  𝑦 = 𝑓(𝑥𝑛𝑖𝑡, 𝒙 , ε , ℎ(𝒛)), where y is corn yield 

and ε  is a random variable (Koundouri, Nauges, & Tzouvelekas 2006). Assume that 𝑓′ >

0 and  𝑓′′ < 0  for all elements. If we assume only production uncertainty, then the farmer’s 

expected utility maximization problem can be represented as follows: 

, ,max { } max , ,{ ( ' }, ( ))
nit nitx x x x nit nit nitxE E p h r xf   x z x r      (1) 

where 𝑝 means a corn price. 𝑟𝑛𝑖𝑡 and 𝑟 mean a nitrogen price and a vector of other input prices, 

respectively. Then, we can derive the first-order condition for nitrogen use as Equation (2). 
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To illustrate the effects of technology adoption on nitrogen use, assume that the farmer’s decisions 

on technology adoption can be modeled by a binary choice: adopting new technology (ℎ1(𝒛)) and 

using conventional technology (ℎ0(𝒛)), Also, assume that the equality in Equation (2) holds at 

𝑥𝑛𝑖𝑡 = 𝑥0,𝑛𝑖𝑡 before adopting new technology.  

From Equation (2), we can show that, when adopting new technology increases the 

marginal productivity of nitrogen use, 
∂𝑓(𝑥𝑛𝑖𝑡,𝒙 ,ε ,ℎ1(𝒛))

𝜕𝑥𝑛𝑖𝑡
|𝑥𝑛𝑖𝑡=𝑥0,𝑛𝑖𝑡

>
∂𝑓(𝑥𝑛𝑖𝑡,𝒙 ,ε ,ℎ0(𝒛))

𝜕𝑥𝑛𝑖𝑡
|𝑥𝑛𝑖𝑡=𝑥0,𝑛𝑖𝑡

, the 

farmer will increase nitrogen use up to 𝑥1,𝑛𝑖𝑡  satisfying 
∂𝑓(𝑥𝑛𝑖𝑡,𝒙 ,ε ,ℎ1(𝒛))

𝜕𝑥𝑛𝑖𝑡
|𝑥𝑛𝑖𝑡=𝑥1,𝑛𝑖𝑡

=

∂𝑓(𝑥𝑛𝑖𝑡,𝒙 ,ε ,ℎ0(𝒛))

𝜕𝑥𝑛𝑖𝑡
|𝑥𝑛𝑖𝑡=𝑥0,𝑛𝑖𝑡

=
𝑟𝑛𝑖𝑡

𝑝
. Also, when technology adoption changes the marginal 

productivity of agricultural inputs, the optimal input use is changed, and this change may affect 

corn yield indirectly. Thus, we can express yield gains resulting from technology adoption as 

Δ𝑦 (ε, 𝒛) = 𝑓 (𝑥1,𝑛𝑖𝑡, 𝒙𝟏 , ε , ℎ1(𝒛)) − 𝑓 (𝑥0,𝑛𝑖𝑡,  𝒙𝟎  , ε , ℎ0(𝒛)) . Last, Equation (2) shows that 

changes in the marginal productivity of nitrogen (or agricultural inputs) resulting from technology 

adoption may depend on given conditions. Thus, we can infer that yield gains resulting from 

technology adoption depend on 𝒛, and Δ𝑦 (ε, 𝒛𝟏) differs from Δ𝑦 (ε, 𝒛𝟎) when 𝒛𝟏 ≠ 𝒛𝟎.   

From the conceptual approach, we can answer our research questions with a simple 

optimization problem. The model shows that technology adoption can increase nitrogen use and 

corn yield simultaneously when technology adoption increases the marginal productivity of 

nitrogen use. In the next section, we attempt to find empirical evidence to test our research 

hypotheses.  

3.4 Empirical model and estimation 

To evaluate the effect of technology adoption, we must account for two features of corn 

yield and nutrient management. First, we cannot observe the extent to which technology adopters 
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use nitrogen or increase corn yield without adopting technology. Second, decisions regarding 

technology adoption are voluntary. Unobserved individual conditions may simultaneously affect 

corn yield (nutrient management) and farmers’ decisions regarding technology adoption. For 

instance, pest scouting is more beneficial in high pest pressure environments. Thus, comparison 

between corn yield of pest scouting adopters in high pest pressure environments and corn yield of 

non-adopters in low pest pressure environments leads a downward bias in the effects of pest 

scouting on corn yield. Technology adoption, thus, can be non-random, and corn yield and nutrient 

management of farmers who adopt technology differs systematically from corn yield and nutrient 

management of randomly selected farmers with the same individual characteristics. 

 To account for these features, we apply a polychotomous choice selectivity model (Lee 

1983) to conceptualize farmers’ incentives regarding technology adoption and simultaneously 

control for the self-selection problem. A polychotomous choice selectivity model of technology 

adoption consists of two parts. The first part analyzes farmers’ decisions on technology adoption. 

The second part estimates the effects of technology adoption on corn yield and nutrient 

management, conditional on technology adoption status.    

3.4.1 Decision regarding technology adoption  

Suppose farmer i can choose from M possible combinations of GM corn and information 

technologies. Let 𝑈𝑖,𝑗 represent farmer i’s expected utility from adopting combination j, and 𝐼𝑖,𝑗 be 

an index representing farmer i’s decision on adopting combination j. Then, the farmer’s observable 

choice among M combinations can be represented by 𝐼𝑖,𝑗 = 1 if 𝑈𝑖,𝑗 = max {𝑈𝑖,1, … , 𝑈𝑖,𝑀}. We 

assume that 𝑈𝑖,𝑗 is a linear function of observed explanatory variables (Zi):  

'

,, i jj ii j ZU         (3) 
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where γj is the vector of parameters, and ε𝑖,j is independent and identically distributed according 

to the type I extreme value distribution.4   

3.4.2 Corn yield, nitrogen use, and NUE 

Since technology adoption can alter the productivity of agricultural inputs and farmers’ 

knowledge of their field conditions, farmers’ responses to given exogenous conditions may depend 

on their technology adoption status (Kaminski, Kan, & Fleischer 2012). We thus specify equations 

representing farmer i’s corn yield, nitrogen use, and NUE based on his technology adoption status. 

Based on this approach, the differences in size and direction of coefficients corresponding to each 

explanatory variable among the equations can be interpreted as slope changes caused by 

technology adoption.5  

To control for non-negativity of our outcome variables (Y), we use a log transformation 

and apply ordinary least squares (OLS) for estimation. However, a log transformation does not 

account for observations whose outcome variables equal zero.6 In addition, when the error term is 

heteroscedastic, the estimate of the expected outcome variables, E(Y|X), based on a log 

transformation can be biased (Manning & Mullahy 2001; Wooldridge 2010, pp. 740). To 

overcome these disadvantages, this study incorporates the exponential functional form as Equation 

(4).  

   
'

,, , ) if 1 for 1,exp ...( ,i j i j i j i jIY X e j M      (4) 

where 𝑌𝑖.  is one of the outcome variables conditional on farmer i’s technology adoption. The 

expected values of Equation (5) are as follow: 

                                                 
4 We assume no dependency among ε𝑖,j for simplicity. We can generalize this assumption by using a multinomial 

probit model. However, a mutinomal probit model is more difficult to estimate than a multinomial logit model.   
5 Another way to capture slope changes resulting from technology adoption is to include interaction terms between 

technology adoption and explanatory variables. However, this approach makes the model too large and would generate 

problems regarding multicollineality. 
6 In our data set, 4% of observations did not apply nitrogen for corn production.  
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'

, , , ,( |  1) exp( (e) )xp( |  1) for 1,..,i j i j i i jj i jE Y I X E e I j M      (5) 

3.4.3 Nonlinear regression with endogenous switching 

To account for the correlation between Equation (3) and Equation (4) caused by omitted 

variables, we transform ε𝑖,j as 𝜀𝑖,𝑗
∗ = Φ−1(𝐹(ε𝑖,j)) where Φ is a cumulative density function of the 

standard normal distribution and F is the marginal distribution of ε𝑖,j  (Lee 1983). This 

transformation makes 𝜀𝑖,𝑗
∗  follow the independent standard normal distribution. Based on this 

transformation, we assume that (𝜀𝑖,𝑗
∗ , 𝑒𝑖,𝑗) follows bivariate normal distribution with a mean of zero 

and the following covariance matrix:  
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where 𝑉𝑎𝑟(𝑒𝑖,𝑗) = 𝜎𝑗
2,  𝐶𝑜𝑣(εi,j

∗ , 𝑒i,j) = 𝜎ε𝑒
𝑗

 for j=1, …, M. Also, the independence assumption 

regarding ε𝑖,j  implies that 𝐶𝑜𝑣(εi,j
∗ , 𝑒i,M) = 𝜎ε𝑒

𝑀  for  j=1,…, M. With the covariance matrix in 

Equation (6), Terza (1998) shows that the conditional expectation of 𝑒i,j is as follows: 
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As a result, the following equation is estimated for all combinations separately: 
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where ξ𝑖,𝑗 = Y𝑖,𝑗 − 𝐸(Y𝑖,𝑗) for j=1, …, M. The latter term in Equation (8) is a correction term 

accounting for self-selection. Selectivity bias is tested for 𝜎ε𝑒
𝑗

= 0 for j=1, …, M. If 𝜎ε𝑒
𝑗

= 0 is 

rejected, there is self-selection bias in adopting combination j. 

One advantage of this approach is that we can examine the average treatment effect of 

combination j on farmers who adopt combination j (Wu & Babcock 1998). Suppose at least one 
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technology is included in combination 𝑗 < 𝑀, and no technology is contained in combination M. 

For farmer i with characteristics (X, Z) who has used combination 𝑗 < 𝑀, the expected change in 

Y for farmer i due to the adoption of combination j can be calculated by Equation (9).  
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The first term of Equation (9) means the expected value of Y for farmer i, and the latter term 

indicates the expected value of Y when farmer i does not adopt any technology (combination M). 

To calculate the expected change in Y for adopters of combination j, we use the weighted average 

of ∆𝑌𝑗,𝑀
𝑖  for fields whose operators adopted combination j, with sampling weights in our data.  

3.4.4 Estimation 

Terza (2009) and Wooldridge (2010, pp. 724-748, 2014) suggest a two-step method for 

estimating a nonlinear endogenous switching regression model. The first step is to estimate 

Equation (3) by using a multinomial logit model to obtain consistent estimates of 𝛾𝑗. Second, we 

estimate Equation (8) with a Poisson quasi-maximum likelihood estimator (QMLE). Gourieroux, 

Monfort, and Trognon (1984) show that a QMLE based on a linear exponential family (LEF) 

generates consistent estimates when the conditional mean function is correctly specified and its 

range is identical to the range of the chosen LEF density. The conditional mean function based on 

an exponential functional form such as Equation (5) is nonnegative and has no upper bound, which 

coincides with the range of Poisson distribution. Thus, we can estimate Equation (5) consistently 

by using the Poisson QMLE provided the conditional expectation in Equation (5) is correctly 

specified. In particular, since the consistency of the Poisson QMLE does not depend on the Poisson 
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distributional assumption, we can apply the Poisson QMLE even when dependent variables are 

not count variables (Wooldridge 2010, pp. 727-728).   

Variance estimates from the two-step method are not consistent because variance estimates 

generated from the second-step do not take into account the variation of first-step estimates. Also, 

our data set is non-random, which indicates that sampling design should be taken into account for 

inference (Dubman 2000). Although the United States Department of Agriculture (USDA) 

provides replicate weights for delete-a-group jackknife estimators, the number of replicate weights 

has changed since 2008. Goodwin, Mishra, and Ortalo-Magné (2003) suggest that a jackknife 

procedure may not be appropriate when using only a subset of the data. We adopt a bootstrapping 

method based on probability weights (Goodwin & Mishra 2005). That is, we generate 1,000 

bootstrap samples based on probability weights and estimate Equations (3), (8), and (9) 1,000 

times. The mean and variance of the replicated estimates are used as estimates of parameters and 

their variances (Goodwin, Mishra, & Ortalo-Magné 2003; Goodwin & Mishra 2005).7 

3.4.5 Identification  

 One disadvantage of the two-step approach is identification of parameters in the second 

step. When variables affecting technology adoption and outcomes variables (Y) are identical, 

problems regarding multicollinearity can arise during the estimation. For identification, we impose 

at least one exclusion restriction on Z (Terza, Basu, & Rathouz 2008; Terza 2009; Wooldridge 

2014). That is, we include variables which are not included in X and satisfy conditions of 

instrument variables in Z, in addition to X. To follow the restriction, we use the multi-state GM 

corn prices, off-farm work hours per year of an operator and his or her spouse, and farmers’ 

                                                 
7 This approach is based on the assumption that the sampling scheme of the data and population of samples are constant 

for 2001, 2005, and 2010 ARMS data.  
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financial status.8 Since GM corn can lower labor requirements for chemical management, a high 

degree of commitment to off-farm work increases farmers’ incentive to adopt GM corn (Gould, 

Saupe, & Klemme 1989; Fernandez-Cornejo 2007; Fernandez-Cornejo et al. 2014). We include 

farmers’ total debt and equity to control for their financial status. Credit constraints impede 

technology adoption (Feder et al. 1985; Fernandez-Cornejo 2007); however, the effects of farmers’ 

financial status are not determined. Large farms are more likely to have high levels of debt and 

equity (Ifft, Novini, & Patrick 2014; Ifft, Kuethe, & Morehart 2015). Since large farms can spread 

the cost of technology adoption, they are more likely to adopt new technologies (Schimmelpfennig 

& Ebel 2011).9 Last, we assume that GM corn prices, farmers’ off-farm work, and financial status 

influence farmers’ technology adoption but not necessarily corn yield and nutrient management.  

3.5 Data and model specification 

We use ARMS Phase II and Phase III version 2 (2001, 2005, and 2010) data for this study. 

The ARMS Phase II and Phase III version 2 data contain different but complementary information 

regarding farmers’ corn-growing operations. The ARMS Phase II data include information about 

one specific cornfield, such as corn yield and crop management practices for the field. The ARMS 

Phase III version 2 data contain farmers’ financial status and socioeconomic characteristics. We 

                                                 
8 For the multi-state GM corn prices, we calculate the average values of ratios between field-level total cost per unit 

of purchased GM corn and that of conventional corn varieties over multiple states. Also, we only use the total cost of 

GM herbicide-resistant seed variety because of lack of observations having information about the cost of Bt corn. We 

separate the 13 states into three regions based on USDA farm production regions. Region 1 (Corn Belt) is Iowa, 

Illinois, Indiana, Missouri, and Ohio. Region 2 (Lake States) is Michigan, Minnesota, and Wisconsin. Region 3 

(Northern Plains) is Colorado, Kansas, Nebraska, North Dakota, and South Dakota. However, we do not take into 

account the cost of pest scouting for our analysis due to lack of observations having cost information regarding pest 

scouting. 
9 From Table 2.2, we can verify that total debt, equity, and off-farm work hours vary among groups. Adopters of GM 

corn and/or pest scouting have higher total debt and equity than other groups. Specifically, total debt and equity of 

GM corn and pest scouting adopters are more than two times higher than those of non-adopters. Table 2.2 also shows 

that off-work hours of non-adopters are much higher (by 150 hours per year) than off-farm work hours of other groups. 

This result is opposite to our expectation. However, Table 2.2 also shows that the field size of non-adopters is smaller 

than that of technology adopters on average. Thus, we can imagine that the difference in off-work hours between non-

adopters and adopters is correlated with the difference in field size between the two groups. 
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merge two data sets and link production practices of farmers to their individual characteristics. In 

addition to the rich information in the ARMS data, we incorporate sampling weights accounting 

for sampling design to generalize our results (Dubman 2000). However, since the ARMS data are 

repeated cross-sectional data, it may be difficult to control for the unobserved heterogeneity of 

each field even though we use field-level information in the data.10 Also, to merge multiple-year 

surveys, we assume that the sampling design and population density of samples are invariant across 

survey years.    

We select 2,062 fields of corn grain harvested in 13 states in 2001, 2005, and 2010 based 

on three criteria.11 We exclude fields for organic corn and fields operated by retired farmers and 

only include fields operated by mainstream farms (Goodwin & Mishra 2005). In addition, we 

exclude fields in which manure was applied because the heterogeneous nitrogen content in manure 

makes it difficult to measure actual nitrogen use for corn production. Last, about 4% of 

observations did not apply nitrogen for corn production, and we exclude them when we estimate 

equations for NUE.  

Summary Statistics 

Table 3.1 reports definitions and summary statistics of the variables used in the analysis. 

About 73% of famers adopted pest scouting, but less than 40% adopted yield monitor.12 Less than 

50% of farmers planted GM corn. Figure 3.1 shows changes in the proportion of corn acreage in 

                                                 
10 In addition, missing information and spurious information make a nontrivial proportion of observations useless. For 

example, to clear our final data, we exclude observations whose corn acreage is larger than the total cropland. We also 

drop observations having negative land values or negative values of total production.   
11  States included in this study are Colorado, Illinois, Iowa, Indiana, Kansas, Michigan, Minnesota, Missouri, 

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. 
12 In the category of GM corn, we include HT corn, Bt corn, and GM corn stacked traits at the same time. However, 

this approach does not account for the effects of GM corn stacked traits such as Bt and HT. Also, aggregating the 

various effects of GM corn may render the effects of GM corn on corn yield and nitrogen management statistically 

insignificant. To test the effects of the aggregation among GM traits, we only use Bt corn and check the robustness of 

our results (see Appendix A).  
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which farmers adopted a corresponding technology over three survey years. All estimates in Figure 

3.1 are weighted by ARMS weights in calculating proportions; hence, the estimates can be 

considered as representative proportions of the study area. Figure 3.1 indicates that the adoption 

of GM corn, pest scouting, and yield monitor have increased over time. In particular, the adoption 

of GM corn and yield monitor increased considerably in 2005 and 2010.  

For estimation, we categorize the technologies as GM corn, yield monitor, and pest 

scouting. However, we assume that adopting yield monitor is a given condition when farmers make 

decisions regarding nutrient management practices and adoptions of GM corn and/or pest scouting. 

Yield monitor has become standard equipment on recent models of farm machinery, especially 

combines (Schimmelpfennig & Ebel 2011). We can imagine that farmers’ decisions on yield 

monitor adoption are less likely to be related to their decisions on nutrient management practices 

during the growing season. In addition, yield monitor is a durable good. The status of yield monitor 

adoption is not affected by other factors when farmers have already adopted yield monitor for 

harvesting corn during previous years. We thus specify our empirical model based on farmers’ 

decisions regarding GM corn and pest scouting adoption. In the case of yield monitor, we include 

a dummy variable representing adoptions of yield monitor in all equations.  

Table 3.2 reports summary statistics based on the technology adoption status of farmers.13 

To begin with, the table indicates that corn yield and nitrogen use of adopters of GM corn and pest 

scouting are higher than corn yield and nitrogen use of non-adopters: The differences in corn yield 

and nitrogen use between the two groups are approximately 24 bushels/acre and 17 pounds/acre, 

                                                 
13  We include tables in the Appendix showing corn yield, nitrogen use, NUE, and number of observations 

corresponding to combinations of two technologies in 2001, 2005, and 2010 (see Table A-3.3). From the table, we 

can verify that variations exist in corn yield, nitrogen use, and compositions of technology adopters over the three 

survey years However, we do not check the robustness of our results based on each survey year because of lack of 

non-adopters in 2005 and 2010. 
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respectively. Also, the table shows that corn yield and nitrogen use of GM corn adopters are larger 

than corn yield and nitrogen use of non-adopters by approximately 15 bushels/acre and 14 

pounds/acre, respectively. However, from Table 3.2, we can verify that there is no difference in 

corn yield, nitrogen use, and NUE between pest scouting adopters and non-adopters. Also, NUE 

among the four groups are almost identical. This implies that farmers adopting GM corn (and pest 

scouting) use nitrogen more intensively to increase corn yield.  

However, differences in outcome variables can be attributed to many factors. To be 

specific, Table 3.2 indicates that the proportion of irrigated fields among fields of GM corn and 

pest scouting adopters is about 21%, which is the largest proportion among the four groups. In 

addition, from the table, we can verify that adopters of GM corn and pest scouting are more likely 

to apply nitrogen during the previous fall and grow corn continuously than other groups. Last, the 

field size of adopters of GM corn and pest scouting is larger than the field size of non-adopters by 

about 26 acres on average. In sum, a simple comparison among the average values of outcome 

variables may mislead about the economic and environmental implications of technology 

adoption. In this study, we control for farmers’ crop management practices, characteristics of 

farmers, and environmental conditions during the growing season to identify the effects of 

technology adoption on corn yield and nutrient management. 

3.5.1 Determinants of corn yield, nitrogen use, and NUE 

Crop management practices and characteristics of farms or fields 

We include farmers’ management practices in equations for corn yield, nitrogen use, and 

NUE: nitrogen application timing, continuous corn production, and irrigation. We include a 

dummy variable for nitrogen application during the previous fall in equations for nitrogen use and 

NUE. Fall nitrogen applications have a risk of nitrogen loss from the soil during the winter; thus, 
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farmers applying nitrogen in the fall may try to compensate for nitrogen loss by applying more 

nitrogen. Continuous corn production increases nitrogen use but decreases corn yield. Continuous 

corn production requires more nitrogen use than corn production following soybeans because the 

available soil nutrient is reduced after corn production. In addition, continuous corn production 

results in a yield reduction compared to corn production following soybeans, referred to as the 

continuous corn yield penalty (Gentry, Ruffo, & Below 2013). Irrigation can reduce yield loss 

from drought, and irrigated corn fields generally have higher seeding rates than dryland corn fields. 

Also, irrigation can facilitate efficient uptake of corn for chemical inputs. For example, irrigation 

systems can be used to apply agricultural chemicals with water, called chemigation. Irrigated farms 

thus may have higher corn yield and more incentive to increase nitrogen use to optimize corn yield 

than non-irrigated farms.  

As characteristics of fields or farmers, we include field size and variables representing 

farmers’ human capital. Field size is used to control for scale effects on corn yield and nutrient 

management. The existence of farm machinery, such as center-pivot irrigation systems, can lead 

to economies of scale. However, the empirical evidence regarding the scale effects on input 

productivity remain inconsistent (Khanna 2001).  For example, increasing the scale of production 

may make field management difficult and increase the uncertainty regarding productivity within a 

field and among fields. Human capital is a key factor determining farmers’ ability to use the 

technologies appropriately. In this study, years of farming experience and a dummy variable 

representing college education are incorporated to control for the effects of human capital on corn 

yield and nutrient management (Stefanou & Saxena 1988).  
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To control for policies supporting conservation plans, we include a dummy with a value of 

one for fields under an existing conservation program contract.14 If conservation plans decrease 

soil and nutrient loss from corn fields to water bodies, participation in a conservation program may 

increase the productivity of corn fields. However, participation in a conservation program contract 

may also indicate that fields are highly erodible.  

Last, we use year dummies and regional dummies to control for unobserved year-specific 

events and systematic regional differences. One source of yearly variation is biofuel policies. The 

Energy Policy Act of 2005 introduced the Renewable Fuel Standard (RFS) and established 

quantitative mandates for the minimum amount of biofuel to be included in US transportation fuel. 

Also, the Energy Independence and Security Act (EISA) of 2007 expanded these quantitative 

mandates considerably. Quantitative mandates of biofuel policies affect changes in demand for 

agricultural outputs and composition of agricultural production (Moschini, Cui, & Lapan 2012). 

In addition, we also use year dummies to control for changes in corn prices and nitrogen prices. 

Our data set has little spatial variation in output and input prices.15 Specifically, our study includes 

three USDA farm production regions which are used to construct multistate-level nitrogen prices 

in NASS. Thus, in each year, only three values of nitrogen prices are available for estimation. 

Also, since expected corn prices are less than national loan rates in 2005, expected corn prices for 

that year are almost identical across states.   

Environmental variables 

                                                 
14 The programs include the Environmental Quality Incentive Program (EQIP), Conservation Security or Conservation 

Stewardship Program (CSP), Conservation Reserve Program (CRP), and other federal, state, local, and non-

government sources.  
15 To test the effects of omitting corn prices on our results, we include corn prices and check the robustness of our 

results (see Appendix A). For expected output prices, state-level futures prices are constructed by adjusting regional 

differences in farm-gate prices (Barr et al. 2011) and national loan rates. Chicago Board of Trade (CBOT) corn futures 

prices are used. 
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To control for time invariant soil quality, the National Commodity Crop Productivity Index 

- Corn and Soybeans (NCCPI-CS), representative slope, sand percentage, silt percentage, available 

water storage within crop root zone depths (RZAWS), T factor, and soil organic carbon (SOC) are 

included. The NCCPI-CS is used for physical and chemical properties of soil, landscape, and 

climate conditions to construct a national-level common soil quality index. The NCCPI-CS is only 

for dryland agriculture and represents time-inherent soil productivity (Dobos, Sinclair, & 

Robotham 2012). We use percentage of silt and percentage of sand to account for soil texture. 

RZAWS is the total amount of water stored in the soil within crops’ root zones for crop 

development. Thus, we can say that the region having insufficient RZAWS is vulnerable to 

drought. T factor is a measure of the maximum amount of soil erosion which is sustainable without 

significant loss of soil productivity. SOC represents the carbon component of soil organic matter. 

SOC is positively correlated to nutrient holding capacity and stability of soil by providing a food 

source for micro-organisms in soil. Except for RZAWS, SOC, and NCCPI, soil data contain 

multiple values according to soil zone; hence, we calculate the weighted averages over the zones 

located within 30cm depth. The Gridded Soil Survey Geographic (gSSURGO) database is used to 

construct soil variables. 16  

To account for weather conditions during the growing season, we include growing degree 

days (GDD), extreme heat degree days (HDD), and total precipitation during the growing season. 

GDD measures accumulated exposure to heat over the growing season and can be interpreted as 

beneficial heat. GDD is defined by the area under the temperature curve within a day that falls 

between two temperature thresholds (8ºC and 34ºC). HDD can be interpreted as harmful heat for 

crop development. HDD is defined by the area under the temperature curve within a day that is 

                                                 
16 gSSURGO data use a depth of 150cm to approximate the root zone depth. 30cm is the depth corresponding to 

topsoil that has been plowed or cultivated. 
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higher than 34ºC. Snyder (1985) is used to calculate GDD and HDD, and the growing season is 

assumed to be from May to September. To calculate weather variables, daily Parameter-elevation 

Regression on Independent Slope Model (PRISM) data are used. Last, we construct field-level 

environmental variables based on the longitude and latitude information of each field in the ARMS 

Phase II data. To be specific, based on locational information, we create a 300m buffer around 

each geocode and calculate the average values of environmental conditions within the buffer.17  

3.6 Empirical results18 

 

3.6.1 The effects of technology adoption 

Table 3.3 shows empirical evidence of the effects of adopting GM corn and/or pest scouting 

on corn yield and nutrient management. The estimates indicate the differences between outcome 

variables of farmers adopting one of the combinations of the two technologies and what these 

values would have been if adopters had not adopted any technology. First, the results show that 

adopting GM corn and/or pest scouting increases corn yield, even though the effects of pest 

scouting on corn yield are statistically insignificant. Specifically, the results show that GM corn 

increases corn yield by approximately 13.0 bushels/acre on average. Moreover, the results show 

that GM corn and pest scouting are complementary in increasing corn yield: Adopting GM corn 

and pest scouting increases corn yield by approximately 26.8 bushels/acre on average. Our results 

are consistent with studies documenting the yield effects of GM corn (Brookes & Barfoot 2012; 

Aldana et al. 2012; Nolan & Santos 2012; Fernandez-Cornejo et al. 2014). For example, Aldana 

et al. (2012) show that Bt corn increases corn yield by 5 bushels/acre-12 bushels/acre. Nolan and 

Santos (2012) find that the yield effects of Bt corn and stacked-trait Bt corn vary between 6 

                                                 
17 We use the minimum size of fields in our data and polygons in gSSRUGO data as a radius of buffers. Also, we find 

little variation in soil variables when the size of buffers changes from 100m to 300m. Last, since the spatial resolution 

of PRISM is 4km by 4km, the size of buffers less than 1km has ignorable effects on variations in climate variables.     
18 The results regarding determinants of corn yield, nitrogen use, and NUE are in Tables 3.7, 3.8, and 3.9. 
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bushels/acre and 21 bushels/acre, and the size of the yield effects depends on model specifications 

and GM traits. Finally, Brookes and Barfoot (2012) report that HT corn increases corn yield in 

Argentina, Brazil, and the Philippines by 1%-15%. 

 Second, the results show that adopting GM corn and/or pest scouting increases nitrogen 

use, even though only the effects of GM corn adoption on nitrogen use are statistically significant. 

An intuitive explanation is based on our conceptual model. That is, our conceptual model indicates 

that adopting new technology can increase nitrogen use when it increases marginal productivity of 

nitrogen use. Thus, increases in nitrogen use as a result of adopting GM corn may reflect increases 

in the marginal productivity of nitrogen use due to adopting GM corn.19  

Third, we find that adopters of GM corn and/or pest scouting do not achieve gains in 

nitrogen use efficiency. Moreover, Table 3.4 indicates that increases in nitrogen use caused by pest 

scouting adoption are larger than the yield effects, and thus pest scouting increases NUE by 0.3 

pounds/one bushel of corn. This result may reflect the interaction between nutrient management 

and weed management. To be specific, the improvement in early season corn growth with 

additional nitrogen use results in greater leaf area, biomass, and height, which enhances the 

competitive ability of corn against weeds (Evans et al. 2003b). Thus, if pest scouting weeds is 

adopted for weed management, farmers may have an incentive to increase nitrogen use to decrease 

yield loss due to weed competition.  

Table 3.4 shows the effects of adopting GM corn and/or pest scouting on corn yield and 

nutrient management conditional on soil productivity. The effects of GM corn and/or pest scouting 

adoption on corn yield and nutrient management  depend on soil productivity (Fuglie & Bosch 

                                                 
19 We explain how GM corn can increase marginal productivity of nitrogen use in Section 1: HT corn and pest scouting 

can reduce weed competition for water and nutrients for the plant. Also, the Bt traits ensure efficient water and nutrient 

uptake (Miranowski, Rosburg, & Aukayanagul 2011). Finally, Shi et al. (2013) argue that patented GM traits are 

inserted into the superior germplasm. 
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1995; Khanna 2001). 20  To identify the effects of adopting GM corn and/or pest scouting 

conditional on soil productivity, we separate fields into two groups: fields having NCCPI-CS 

higher than 0.5 and fields having NCCPI-CS lower than 0.5. Considering that NCCPI-CS is only 

for dryland fields, we exclude irrigated fields when we estimate our model and calculate Equation 

(9) for Table 3.4.21 From Table 3.4, we find that the yield effects of GM corn and/or pest scouting 

for fields having low soil productivity are statistically significant and larger than those for 

productive fields. Adopters of GM corn (pest scouting) achieve yield gains of approximately 16.6 

bushels/acre (18.6 bushels/acre) by incorporating the technology for fields having NCCPI-CS less 

than 0.5. Also, the results indicate that adopting GM corn and pest scouting increase corn yield for 

less productive fields by approximately 31.4 bushels/acre. However, for fields having high 

NCCPI-CS, the yield effects of pest scouting and its combination with GM corn are insignificant, 

except for GM corn adoption.  

In the case of nutrient management, the results indicate that the effects of adopting GM 

corn and/or pest scouting on nitrogen use for fields having low soil quality are statistically 

significant and larger than those for productive fields. However, the results show that the effects 

of adopting GM corn and/or pest scouting on nitrogen use for productive fields are statistically 

insignificant. These result may reflect that the effects of adopting GM corn and/or pest scouting 

on the marginal productivity of nitrogen use in fields having low soil productivity are positive and 

larger than those in fields having high soil productivity. Thus, farmers may be more likely to 

increase nitrogen use for fields having low soil productivity.  

                                                 
20 For example, when corn yield is an increasing and concave function of soil productivity, the yield effects of 

technology adoption on productive fields may be smaller than the effects of technology adoption on fields having low 

soil productivity. Conversely, field-level information increases the productivity of nitrogen by decreasing nitrogen use 

on marginal areas. 
21 To control for the effects of continuous corn production, we also calculate the estimates in Table 3.4 after excluding 

fields producing corn continuously (see Appendix B). The results show that excluding fields producing corn 

continuously has modest effects on the results.  
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Yield monitor generates information regarding corn yield distribution, soil conditions, and 

results of crop management practices during the previous year. Farmers have used this information 

to improve the profitability of their crop management systems by comparing corn yield depending 

on corn variety, agricultural technology, and chemical use. However, the effectiveness of 

information generated from yield monitor may vary according to its combination with other 

technology. For example, assume that the variation in corn yield in fields in which GM corn is 

planted is smaller than the variation in corn yield in fields in which conventional varieties are 

planted. Then, information on corn yield distribution over the fields may be less useful for farmers 

planting GM corn than farmers planting conventional varieties.22  

We measure the effect of yield monitor on corn yield and nutrient management and test the 

relationship between yield monitoring and other technologies. The estimates in Table 3.5 indicate 

the marginal effects of yield monitor on corn yield, nitrogen use, and NUE conditional on GM 

corn and/or pest scouting adoption. From the table, we can verify that adopting yield monitor has 

positive effects on corn yield and nitrogen use, even though the effects of yield monitor adoption 

on corn yield and nitrogen use are statistically insignificant when it is used with GM corn. The 

results show that yield monitor increases corn yield when it is used alone by 8.2 bushels/acre. 

When yield monitor is incorporated with GM corn and pest scouting, it increases corn yield by 8.9 

bushels per acre. Also, we find that the effects of yield monitor combined with pest scouting are 

larger than those of any other combination of yield monitor and other technology. Yield monitor 

adoption increases corn yield and nitrogen use of pest scouting adopters by 16.8 bushels/acre and 

                                                 
22  Previous literature also argues that the value of information increases when the uncertainty regarding farm 

management increases (Feder 1979; Babcock & Blackmer 1992; Fuglie & Bosch 1995; Koundouri, Nauges, & 

Tzouvelekas 2006).  
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14.6 pounds/acre, respectively. This result implies that the effects of adopting yield monitor on 

corn yield and nutrient management are positively correlated to adopting pest scouting.23  

3.6.2 Implications 

 

We find that GM corn and its combination with pest scouting have larger effects on corn 

yield and nitrogen use when these technologies are adopted in fields having low soil productivity. 

This result indicates that GM corn and information technologies may enable farmers to obtain 

economic gains from increasing their land use at the extensive margin. This result also shows the 

importance of GM corn and/or pest scouting adoption in reducing the likelihood of low corn yield 

that farmers are likely to have in fields having low soil productivity. It is highly likely that fields 

having low soil productivity have low corn yield. For example, Egli and Hatfield (2014) show the 

positive relationship between county-level corn yield and NCCPI. Our results indicate that 

adopting GM corn and/or pest scouting increases corn yield at the lower tail of the yield 

distribution and decreases the probability of low corn yield.  

Our conceptual model indicates that technology adoption may increase nitrogen use when 

technology adoption increases the marginal productivity of nitrogen use. Given that adopting GM 

corn and information technologies can increase the marginal productivity of nitrogen use, as 

explained in Section 1, farmers have an incentive to increase nitrogen use to optimize their input 

use when they adopt these technologies. The empirical results indicate that GM corn and 

information technologies increase nitrogen use. Increased nitrogen use can result in increases in 

nutrient loss to surface and groundwater from corn production (Sawyer 2015). In this sense, 

                                                 
23 Table 3.6 shows the marginal effects of adopting yield monitor on corn yield and nutrient management depending 

on soil productivity. The table shows that the differences in estimates between fields having high soil productivity and 

fields having low soil productivity are ignorable.  
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benefits from adopting GM corn and information technologies may be limited considering the 

adverse effects of corn production on regional environmental conditions.  

3.7 Conclusion 

Genetic improvement and advanced crop management practices have been major 

contributing factors to corn yield growth in the U.S. after the 1930s (Duvick 2005). During the last 

decade, adoption of GM corn, pest scouting, and yield monitor increased significantly. However, 

only a limited number of studies have investigated the economic and environmental implications 

of adopting these technologies.    

This study identifies the effects of adopting GM corn, pest scouting, and yield monitor on 

corn yield and nutrient management of Midwest farmers. Our findings can be summarized as 

follows. First, adopting GM corn increases corn yield and nitrogen use by 13 bushels/acre and 16 

pounds/acre, respectively. Adopting the combination of GM corn and pest scouting has larger 

effects on corn yield and nitrogen use than adopting only one technology. Second, the effects of 

adopting GM corn and/or pest scouting on corn yield and nitrogen use are larger for fields having 

low soil productivity. Third, the effects of adopting yield monitor on corn yield and nitrogen use 

are significant when farmers adopt yield monitor and pest scouting at the same time.  

A major limitation of this study is based on the structure of the ARMS data. Our data are 

repeated cross-sectional data and include only three survey years. Thus, we may not be controlling 

for unobserved characteristics, even though we use field-level information and the endogenous 

switching regression model. Also, spatial variations in price variables are too small to identify 

price effects on corn yield and nutrient management. Finally, our results are based on short time 

periods, and they may be very sensitive to year specific events. However, we do not check the 
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robustness of our results based on each survey year because of the lack of information regarding 

non-adopters in 2005 and 2010. 
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Note: Estimates on the percentages of acres are based on weighted sum. The weights are calibrated so that the sum 

of planted acres for corn based on the survey data matches the NASS published estimates of planted corn acreage for 

each survey year. 

 

Figure 3.1. Corn acreage adopting GM corn or information technologies 
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Table 3.1. Summary statistics 

Variable Mean St.dev Definition 

Dependent Variables 

Nlb 134.13 65.41 Nitrogen application rate (pounds/acre) 

Yield 143.12 43.59 Corn yield (bushel/acre) 

NUE 1.01 0.69 Nitrogen use efficiency (lb/bushel) 

Technology adoption 

Pest scouting 0.73 0.45 Scouting for pests adopted in field (1=yes, 0=no) 

Yield monitor 0.40 0.49 Yield monitoring adopted in field (1=yes, 0=no) 

GM 0.54 0.50 GM corn used (1=yes, 0=no) 

Practices 

Irrigation 0.12 0.33 Field irrigated (1=yes, 0=no) 

Fall_Nit 0.30 0.46 Nitrogen applied during the previous fall (1=yes, 0=no) 

CC rotation 0.17 0.37 Continuous corn production (1=yes, 0=no) 

Characteristics of corn fields and operators 

Off-work 455.8 853.3 Off-work hours per year (operator and operators' spouse) 

Total debt 290.8 528.3 Total debt ($1,000) 

Equity 73.48 490.0 Equity ($1,000) 

Tenure 28.89 12.63 Number of years farmer has operated the field 

College 0.24 0.43 Farm operator graduated college (1=yes, 0=no) 

Conservation 0.07 0.25 Conservation program contract (1=yes, 0=no) 

Field area 0.62  0.55 The size of corn field (100 acre) 

Prices and environmental conditions 

𝑃𝐺𝑀 1.20 0.07 
Total cost of HT corn seeds/ total cost of conventional seeds 

($/approximately 80,000 Kernel Bag) 

NCCPI 0.55 0.21 NCCPI-Corn and Soybeans 

RZAWS 2.34 0.57 Available water storage within the root-zone depth (100 mm) 

T-factor 4.52 0.65 Soil loss tolerance (in tons per acre). 

SOC 6.64 3.38 Soil organic carbon (1000 g C/m2) 

Slope 2.79 4.17 Representative slope (%) 

% silt 50.86 15.71 Percent silt 

% sand 24.57 19.05 Percent sand 

GDD 18.88 2.95 Growing degree days during growing seasons (100 GDD) 

HDD 2.67 5.64 Extreme heat degree days during growing seasons 

Precipitation 4.81 1.83 Total precipitation days during growing seasons (100 mm) 

Number of observations 2062 
Note: Soil variables are the weighted averages over soil zones within 30cm depth.  
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Table 3.2. Summary Statistics depending on technology adoption status 

Variable 
GM corn and 

pest scouting 
Pest scouting GM corn Non-adopter 

 Mean  (St.dev) Mean  (St.dev) Mean  (St.dev) Mean  (St.dev) 

Nlb 143.7 (60.75) 122.0 (69.79) 140.2 (62.40) 126.6 (66.95) 

Yield 154.2 (42.08) 133.0 (44.00) 145.6 (39.44) 130.3 (41.67) 

NUE 1.03 (0.69) 0.98 (0.73) 1.01 (0.48) 1.03 (0.65) 

Yield monitor 0.51 (0.50) 0.35 (0.48) 0.32 (0.47) 0.27 (0.44) 

Irrigation 0.15 (0.36) 0.12 (0.33) 0.08 (0.27) 0.08 (0.27) 

Fall_Nit  0.35 (0.48) 0.27 (0.45) 0.24 (0.43) 0.24 (0.43) 

CC rotation 0.21 (0.41) 0.15 (0.36) 0.11 (0.32) 0.12 (0.33) 

Off-work 424.4 (830.9) 431.5 (837.1) 425.2 (831.2) 594.2 (935.1) 

Total debt 375.2 (633.5) 250.3 (468.2) 249.2 (391.5) 168.0 (325.1) 

Equity 97.24 (597.3) 78.45 (418.3) 65.21 (418.0) 9.56 (292.8) 

Tenure 29.45 (12.24) 28.32 (12.84) 30.65 (12.46) 27.33 (13.16) 

College 0.27 (0.44) 0.25 (0.43) 0.22 (0.41) 0.15 (0.36) 

Conservation 0.09 (0.28) 0.07 (0.25) 0.06 (0.23) 0.03 (0.17) 

Field area 0.72 (0.57) 0.61 (0.58) 0.52 (0.49) 0.46 (0.41) 

𝑃𝐺𝑀 1.22 (0.07)  1.20 (0.07) 1.20 (0.06) 1.17 (0.05) 

NCCPI 0.57 (0.21) 0.52 (0.22) 0.57 (0.18) 0.54 (0.19) 

RZAWS 2.39 (0.57) 2.31 (0.58) 2.35 (0.51) 2.24 (0.61) 

T-factor 4.56 (0.65) 4.53 (0.66) 4.57 (0.56) 4.39 (0.70) 

SOC 6.92 (3.84) 6.34 (2.78) 6.66 (2.71) 6.39 (3.35) 

Slope 3.51 (3.68) 4.01 (4.39) 3.31 (3.42) 4.40 (5.15) 

% silt 51.05 (15.81) 50.62 (16.35) 49.37 (14.59) 51.62 (15.03) 

% sand 24.12 (19.09) 25.54 (20.23) 26.42 (18.17) 23.07 (17.28) 

GDD 19.31 (2.71) 18.60 (3.06) 19.00 (2.69) 18.15 (3.26) 

HDD 2.78 (5.82) 3.14 (6.44) 2.10 (4.80) 1.94 (3.85) 

Precipitation 5.14 (1.85) 4.70 (1.88) 4.70 (1.76) 4.18 (1.51) 

# of 

observations 
905 595 206 356 

Note: Soil variables are the weighted averages over soil zones within 30cm depth. 
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Table 3.3. The effects of GM corn and/or pest scouting adoption 

  
Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and pest 

scouting 
26.87 (15.95)* 52.26 (44.60) 0.39 (0.28) 

Pest scouting 8.52 (9.75) 32.63 (21.06) 0.26 (0.14)* 

GM corn 13.01 (5.68)** 16.43 (9.11)* -0.04 (0.10) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. 

 

Table 3.4. The effects of technology adoption based on soil quality: non-irrigated  

 Soil 

productivity 

Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and  

pest scouting 

Low 31.39 (14.26)** 67.14 (25.52)*** 0.50 (0.23)** 

High  27.81 (19.55) 46.98 (48.51) 0.37 (0.33) 

Pest scouting 

Low 18.55 (8.00)** 33.30 (11.47)*** 0.16 (0.13) 

High  6.54 (12.35) 32.03 (24.22) 0.32 (0.16)* 

GM corn 

Low 16.58 (7.20)** 31.42 (12.15)*** 0.04 (0.17) 

High 11.20 (6.35)* 12.01 (10.25) -0.07 (0.11) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. NCCPI-CS is used as the measure of soil productivity. Fields having 

low soil productivity mean fields having NCCPI-CS less than 0.5. Fields having high soil productivity mean fields having NCCPI-

CS larger than 0.5.  
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Table 3.5. Marginal effects of yield monitor adoption 

 Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and pest 

scouting 
8.86 (2.25)*** 3.73 (3.63) -0.06 (0.04) 

Pest scouting 16.78 (4.61)*** 14.60 (6.81)** -0.13 (0.09) 

GM corn 9.88 (7.20) 11.31 (11.28) -0.01 (0.11) 

Non-adopter 8.22 (4.45)* 2.79 (9.34) -0.04 (0.08) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. 

 

Table 3.6. Marginal effects of yield monitor adoption: non-irrigated 

 Soil 

productivity 

Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and pest 

scouting 

Low 8.26 (2.09)*** 3.69 (3.59) -0.08 (0.05) 

High  8.79 (2.24)*** 3.70 (3.60) -0.07 (0.05) 

Pest scouting 
Low 14.89 (4.19)*** 13.15 (6.24)** -0.11 (0.09) 

High  17.69 (4.86)*** 15.12 (7.03)** -0.11 (0.10) 

GM corn 
Low 8.45 (6.21) 10.82 (10.78) -0.05 (0.15) 

High 10.00 (7.32) 11.36 (11.31) -0.04 (0.13) 

Non-adopter 
Low 7.30 (4.01)* 2.81 (9.13) -0.02 (0.10) 

High 8.76 (4.78)* 2.92 (9.66) -0.02 (0.09) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. NCCPI-CS is used as the measure of soil productivity. Fields having 

low soil productivity mean fields having NCCPI-CS less than 0.5. Fields having high soil productivity mean fields having NCCPI-

CS larger than 0.5.  
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Table 3.7. Estimates regarding corn yield 

Technologies Non-adopters GM corn Pest scouting Both technologies 

Yield monitor 0.060 (0.032)* 0.072 (0.053) 0.112 (0.029)*** 0.059 (0.016)*** 

Continuous corn -0.046 (0.066) -0.105 (0.078) -0.065 (0.042) -0.064 (0.020)*** 

Irrigation 0.443 (0.086)*** 0.445 (0.098)*** 0.557 (0.075)*** 0.435 (0.035)*** 

Field area 0.121 (0.059)** 0.053 (0.047) 0.052 (0.035) 0.025 (0.016) 

College -0.029 (0.044) -0.053 (0.046) -0.070 (0.034)** -0.008 (0.017) 

Experience -0.001 (0.001) -0.002 (0.001) 0.001 (0.001) -0.001 (0.001)* 

Conservation 0.038 (0.104) -0.144 (0.085)* -0.008 (0.054) 0.008 (0.027) 

GDD 0.005 (0.011) -0.029 (0.013)** -0.005 (0.009) -0.017 (0.005)*** 

HDD -0.040 (0.013)*** -0.006 (0.007) -0.010 (0.006)* -0.015 (0.005)*** 

Precipitation 0.062 (0.014)*** -0.016 (0.018) 0.001 (0.011) 0.004 (0.006) 

NCCPI 0.432 (0.140)*** -0.279 (0.198) 0.184 (0.118) 0.143 (0.064)** 

% sand 0.003 (0.003) 0.005 (0.004) -0.001 (0.003) 0.001 (0.002) 

% silt 0.007 (0.003)** 0.005 (0.004) 0.001 (0.003) 0.002 (0.002) 

SOC 0.013 (0.008) 0.007 (0.010) 0.011 (0.007) -0.008 (0.004)* 

Slope 0.007 (0.003)* -0.003 (0.008) 0.004 (0.003) -0.001 (0.002) 

RZAWS -0.849 (0.349)** 0.860 (0.703) -0.227 (0.361) 0.341 (0.211) 

T-factor 0.057 (0.033)* 0.011 (0.055) 0.025 (0.028) 0.023 (0.015) 

Constant 3.588 (0.340)*** 4.433 (0.464)*** 4.920 (0.372)*** 5.007 (0.210)*** 

𝜎𝜀𝑒
𝑗

 -0.094 (0.086) -0.150 (0.190)* 0.200 (0.078)** 0.078 (0.054) 

Year and regional dummies Yes  Yes  Yes  Yes 

Wald Statistics  211.62***  194.47***  218.95***  341.31*** 

R-squared  0.358  0.413  0.295  0.315 

# of convergence  987  987  987  987 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates and 

their standard errors are from about 1,000 bootstrap runs. R-squared is the squared correlation coefficients between actual corn 

yield and predicted corn yield (Wooldridge 2010, pp 731~732). R-squared and Wald Statistics are based on whole samples and 

ARMS weights. Units of environmental variables are in Table 3.1. 
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Table 3.8. Estimates regarding nitrogen use 

 
Technologies Non-adopters GM corn Pest scouting Both technologies 

Yield monitor 0.020 (0.075) 0.088 (0.086) 0.094 (0.042)** 0.027 (0.026) 

Continuous corn -0.028 (0.116) -0.013 (0.130) 0.000 (0.072) 0.031 (0.031) 

Irrigation 0.486 (0.147)*** 0.563 (0.183)*** 0.313 (0.107)*** 0.262 (0.056)*** 

Field area -0.147 (0.142) 0.018 (0.093) -0.021 (0.052) 0.064 (0.026)** 

Fall_Nit 0.053 (0.085) 0.150 (0.113) 0.037 (0.037) 0.007 (0.029) 

College -0.009 (0.092) 0.097 (0.084) -0.118 (0.048)** -0.001 (0.029) 

Experience 0.001 (0.002) 0.000 (0.002) -0.001 (0.002) -0.002 (0.001)** 

Conservation 0.014 (0.132) -0.111 (0.133) 0.013 (0.061) 0.011 (0.035) 

GDD 0.042 (0.020)*** 0.027 (0.024) 0.020 (0.014) 0.033 (0.009)*** 

HDD -0.047 (0.017)*** -0.014 (0.010) -0.002 (0.007) -0.010 (0.006)* 

Precipitation 0.004 (0.026) -0.027 (0.028) -0.008 (0.563) -0.015 (0.008)* 

NCCPI 0.312 (4.959) 0.181 (2.490) 0.515 (8.486) -0.292 (6.008) 

% sand -0.004 (0.065) 0.020 (0.254) -0.003 (0.066) -0.005 (0.112) 

% silt -0.001 (0.025) 0.029 (0.353) -0.001 (0.017) -0.009 (0.154) 

SOC 0.011 (0.375) 0.033 (0.516) 0.001 (0.170) -0.000 (0.022) 

Slope -0.014 (0.201) -0.004 (0.117) -0.001 (0.031) 0.004 (0.002) 

RZAWS -1.178 (0.656)*** -2.771 (0.046)*** -1.262 (0.488)*** 0.169 (0.385) 

T-factor -0.009 (0.059) 0.084 (0.080) 0.033 (0.035) -0.027 (0.024) 

Constant 4.140 (0.573) *** 4.284 (0.859)*** 4.820 (0.556)*** 4.882 (0.356)*** 

𝜎𝜀𝑒
𝑗

 -0.237 (0.250) 0.089 (0.179) 0.122 (0.112) 0.097 (0.082) 

Year and regional dummies Yes  Yes  Yes  Yes 

Wald Statistics  138.58***  110.78***  68.79***  76.41*** 

R-squared  0.144  0.331  0.188  0.078 

# of convergence  991  991  991  991 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. R-squared is the squared correlation coefficients between actual 

nitrogen use and predicted nitrogen use (Wooldridge 2010, pp 731~732). R-squared and Wald Statistics are based on whole 

samples. Units of environmental variables are in Table 3.1. 
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Table 3.9. Estimates regarding NUE 

 
Technologies Non-adopters GM corn Pest scouting Both technologies 

Yield monitor 0.040 (0.083) -0.001 (0.112) -0.126 (0.091) -0.055 (0.041) 

Continuous corn -0.067 (0.149) 0.097 (0.164) 0.083 (0.113) 0.033 (0.050) 

Irrigation 0.030 (0.164) 0.140 (0.185) -0.330 (0.154)** -0.351 (0.111)*** 

Field area -0.478 (0.175)*** -0.357 (0.122)*** -0.053 (0.079) -0.028 (0.046) 

Fall_Nit 0.015 (0.115) 0.067 (0.125) 0.016 (0.082) -0.058 (0.044) 

College -0.108 (0.112) 0.209 (0.092)** 0.026 (0.114) -0.052 (0.046) 

Experience 0.001 (0.003) 0.000 (0.003) -0.003 (0.003) 0.000 (0.002) 

Conservation 0.023 (0.217) -0.572 (0.234)** 0.148 (0.224) 0.070 (0.063) 

GDD 0.048 (0.023)** 0.086 (0.023)*** 0.014 (0.021) 0.028 (0.013)** 

HDD -0.011 (0.022) -0.013 (0.012) 0.014 (0.012) 0.015 (0.009) 

Precipitation -0.067 (0.032)** -0.005 (0.031) -0.009 (0.022) -0.010 (0.013) 

NCCPI -0.082 (0.359) -0.330 (0.320) 0.002 (0.214) -0.509 (0.150)*** 

% sand -0.006 (0.005) -0.002 (0.006) 0.000 (0.007) -0.004 (0.004) 

% silt -0.015 (0.006)** -0.000 (0.008) 0.002 (0.008) -0.008 (0.005)* 

SOC -0.020 (0.018) -0.003 (0.022) -0.007 (0.014) -0.011 (0.011) 

Slope -0.011 (0.010) -0.002 (0.012) -0.013 (0.008) -0.004 (0.004) 

RZAWS 0.069 (0.832) -3.699 (1.088) -1.099 (0.785) 0.201 (0.447) 

T-factor -0.120 (0.060)** -0.020 (0.038) 0.006 (0.054) -0.020 (0.038) 

Constant 1.097 (0.653)* -0.915 (0.883) -0.145 (0.912) 0.680 (0.498) 

𝜎𝜀𝑒
𝑗

 -0.371 (0.311) -0.050 (0.229) -0.267 (0.185) 0.214 (0.126)* 

Year and regional dummies Yes  Yes  Yes  Yes 

Wald Statistics  53.25***  104.31***  48.86***  121.02*** 

R-squared  0.085  0.248  0.056  0.086 

# of convergence  1000  1000  1000  1000 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. R-squared is the squared correlation coefficients between actual NUE 

and predicted NUE (Wooldridge 2010, pp 731~732). R-squared and Wald Statistics are based on whole samples. Units of 

environmental variables are in Table 3.1. 
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Appendix A: Robustness checks 

 

To check the robustness of our results, we test the effects of three assumptions on our 

estimation results. Firstly, to examine the effects of the aggregation among GM traits, we only 

consider Bt corn and Stacked-trait Bt corn as GM corn and exclude HT corn adopters when 

estimating models. Second, we include corn prices in our model specification to check the effects 

of excluding price variables. 24  Third, since irrigation could change farmers’ responses to 

environmental conditions and crop management practices, we estimate our model without irrigated 

fields to control for the effects of irrigation (Deschênes and Greenstone 2007; Hornbeck and 

Keskin 2014).  Table A-3.1 represents the effects of adopting GM corn and/or pest scouting on 

corn yield and nutrient management of adopters. Table A-3.2 shows the marginal effects of 

adopting yield monitor depending on technology adoption status. From two tables, we can verify 

that the estimates based on the three assumptions are almost identical to estimates in Table 3.3 and 

Table 3.5.  

 

Table A-3.1. The effects of GM corn and/or pest scouting 

  
Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre) 

NUE 

(lb/bushel) 

Including only Bt corn 

GM corn and pest 

scouting 
30.99 (14.45)** 62.99 (15.59)*** 0.33 (0.30) 

Pest scouting 12.55 (9.59) 41.41 (11.69)*** 0.27 (0.16) 

GM corn 9.47 (4.76)** 6.41 (10.33) -0.06 (0.12) 

# of convergence 983 984 1000 

Including price variables 

GM corn and pest 

scouting 
26.32 (18.15) 63.61 (20.68)*** 0.42 (0.23)* 

Pest scouting 7.11 (10.64) 35.01 (13.12)*** 0.27 (0.13) 

GM corn 12.20 (5.96)* 16.22 (8.46)* -0.05 (0.10) 

# of convergence 990 989 1000 

Excluding irrigated fields 

GM corn and pest 

scouting 
26.32 (20.99) 61.26 (28.50)** 0.40 (0.31) 

Pest scouting 7.77 (12.73) 39.28 (16.54)** 0.29 (0.15)** 

GM corn 12.38 (6.18)* 16.70 (8.79)* -0.05 (0.11) 

# of convergence 990 994 1000 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. 

 

  

                                                 
24 Chicago Board of Trade (CBOT) futures prices are used for expected corn prices, and these prices are adjusted to 

take into account regional differences in farm-gate prices (Barr et al. 2011).  
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Table A-3.2. Marginal effects of yield monitor adoption 

 

 Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

Using Bt corn    

GM corn and pest 

scouting 
4.81 (2.69)* 7.34 (4.46) 0.04 (0.05) 

Pest scouting 15.40 (4.32)*** 8.29 (7.27) -0.09 (0.09) 

GM corn 3.23 (7.84) 14.04 (11.87) -0.01 (0.10) 

Non-adopter 9.15 (4.53)** 5.26 (9.18) -0.03 (0.08) 

Including price variables    

GM corn and pest 

scouting 
8.25 (2.17)*** 2.93 (3.97) -0.07 (0.05) 

Pest scouting 14.63 (4.60) *** 13.38 (6.74)** -0.13 (0.09) 

GM corn 8.73 (7.55) 11.64 (12.21) 0.00 (0.12) 

Non-adopter 8.46 (4.62)* 5.38 (8.75) -0.02 (0.09) 

Excluding irrigated fields    

GM corn and pest 

scouting 
8.26 (2.12)*** 1.99 (3.74) -0.07 (0.47) 

Pest scouting 16.54 (4.74)*** 16.02 (6.96)** -0.11 (0.10) 

GM corn 9.02 (8.14) 7.64 (12.89) -0.04 (0.13) 

Non-adopter 9.09 (5.11)* 6.87 (10.13) -0.02 (0.09) 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. 

  



98 

 

Appendix B: Supplementary tables 

 

Table A-3.3. Corn yield and nitrogen use in 2001, 2005 and 2010 

 
 

 
Yield 

(bushels/acre) 

(St.dev) 

Nitrogen use 

(pounds/acre) 

(St.dev) 

# of observations (%) 

2010 

GM corn and pest scouting 160.57 (40.01) 140.56 (65.35) 400 (58.82) 

Pest scouting 126.55 (44.02) 90.72 (76.98) 179 (26.32) 

GM corn 153.50 (35.75) 147.03 (56.59) 63 (9.26) 

Non-adopter 140.27 (44.42) 103.72 (78.71) 38 (5.59) 

2005 

GM corn and pest scouting 150.44 (43.91) 146.99 (57.79) 403 (66.50) 

Pest scouting 128.18 (43.25) 124.69 (63.15) 134 (22.11) 

GM corn 147.09 (44.65) 123.53 (58.61) 53 (8.75) 

Non-adopter 143.13 (48.04) 123.19 (44.67) 16 (2.64) 

2001 

GM corn and pest scouting 144.94 (38.95) 143.45 (53.08) 102 (13.14) 

Pest scouting 139.38 (43.72) 140.54 (60.66) 282 (36.34) 

GM corn 139.07 (37.71) 145.23 (67.14) 90 (11.60) 

Non-adopter 128.42 (40.81) 129.60 (65.95) 302 (38.92) 

 

Table A-3.4. The effects of technology adoption based on soil quality: non-irrigated and 

rotation 

 

 Soil 

productivity 

Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and pest 

scouting 

Low 34.07 (13.91) ** 65.03 (25.33)** 0.47 (0.22)** 

High  27.89 (18.06) 43.36 (44.51) 0.34 (0.28) 

Pest scouting 
Low 18.80 (8.12) ** 33.16 (11.53)*** 0.13 (0.12) 

High  5.54 (12.43) 31.25 (24.17) 0.28 (0.15)** 

GM corn 
Low 18.63 (7.45) ** 33.95 (12.04)*** 0.10 (0.15) 

High 11.97 (6.44) * 12.41 (10.55) -0.08 (0.11) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. NCCPI-CS is used as the measure of soil productivity. Fields having 

low soil productivity means fields having NCCPI-CS less than 0.5. Fields having high soil productivity means fields having NCCPI-

CS larger than 0.5.  
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Table A-3.5. Marginal effects of yield monitor adoption: non-irrigated and rotation 

 Soil 

productivity 

Yield 

(bushel/acre) 

Nitrogen use 

(pounds/acre ) 

NUE 

(lb/bushel) 

GM corn and pest 

scouting 

Low 8.41 (2.16)*** 3.74 (3.65) -0.06 (0.05) 

High  8.69 (2.22)*** 3.65 (3.56) -0.06 (0.05) 

Pest scouting 

Low 15.09 (4.25)*** 13.26 (6.29)** -0.12 (0.08) 

High  17.96 (4.94)*** 15.23 (7.09)** -0.13 (0.09) 

GM corn 

Low 8.49 (6.24) 10.71 (10.70) -0.01 (0.13) 

High 10.02 (7.34) 11.58 (11.32) -0.01 (0.11) 

Non-adopter 

Low 7.55 (4.15)* 2.94 (9.44) -0.04 (0.09) 

High 8.75 (4.78)* 2.91 (9.60) -0.03 (0.08) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. Estimates 

and their standard errors are from about 1,000 bootstrap runs. NCCPI-CS is used as the measure of soil productivity. Fields having 

low soil productivity means fields having NCCPI-CS less than 0.5. Fields having high soil productivity means fields having NCCPI-

CS larger than 0.5.  
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CHAPTER 4 

FORECASTING FUTURE LAND USE IN THE MIDWEST 

 

 

Jae-hoon Sung and John A. Miranowski 

Abstract 

To forecast future land use, researchers need to consider heterogeneous features of 

projected weather data sets. Also, the land use literature has used different assumptions to construct 

farmers’ expected weather conditions. This study examines the effects of these two uncertainties 

regarding climate measures on forecasting future land use. Using an out-of-sample forecasting test, 

we compare the predictive accuracy of 13 linear models depending on five general circulation 

models (GCMs) and six assumptions regarding expected weather conditions. Our analysis is based 

on decadal land use data over the Corn Belt, Lake States, and Northern Plains during the last three 

decades. We find that the forecast land use over three regions and predictive accuracy of models 

depend on the choice of GCMs and methods of constructing expected weather conditions. 

However, models consisting of yearly agronomic variables are more stable and have better 

predictive accuracy than models using monthly climate variables. Last, the best model predicts 

that the proportion of corn and soybean acreage over the Corn Belt (Lake States) in 2030 will 

decrease (increase) from 0.43 to 0.41 (0.20 to 0.25). 

 

 

  



101 

 

4.1 Introduction 

 

In designing plans for sustainable agriculture and resource management, accurate estimates 

of land use change based on various climate scenarios are necessary for decision makers, such as 

policy developers and farm operators. The typical method of quantifying the potential economic 

impacts of climate change consists of two steps: Estimate the causal relationship between 

economic outcomes and climate variables based on historical weather or climate data, and then 

forecast future impacts by multiplying these estimates by projected changes in climate variables 

over time. However, in reality, lack of knowledge about climate systems and farmers’ response to 

climate conditions creates uncertainty in forecasting future land use.   

This study analyzes the effects of two uncertainties regarding climate measures on 

forecasting future land use: uncertainty regarding projected weather data sets and uncertainty 

regarding methods of constructing expected weather conditions. Economists can incorporate 

various projected weather data sets in forecasting climate impacts on economic outcomes. These 

data sets are based on general circulation models (GCMs) and emission scenarios. GCMs are 

numerical models which approximate the fundamental laws of motion for fluids. GCMs also 

incorporate current scientific and empirical knowledge regarding climate conditions such as sea 

ice, land surface, and cloud process to improve their representation of climate conditions and their 

future changes, called parametrizations (Auffhammer, Hsiang, & Schlenker, 2013; Flato et al., 

2013, Section 9.1). However, the methods of parametrization vary among GCMs, and the 

differences in parameterizations are the important reason for the heterogeneous results of GCMs. 

For example, MIROC-ESM incorporates information on ocean chemistry to account for salinity 

effects on sea ice formation, but CCSM4 does not include it for its parameterization. 1  

                                                 
1 Flato et al. (2013) include a concise summary of components of GCMs included in a Fifth Assessment Report (AR5).  
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These methods of projecting future weather conditions can also be applied retrospectively 

to construct historical weather data sets. The advantage of this method is that researchers can use 

weather data sets with the same GCMs in estimating the causal relationship between economic 

outcomes and climate and in forecasting climate change impacts. However, the historical weather 

data sets based on GCMs generally differ from realized station-level weather outcomes, even with 

the use of bias-correction algorithms to address this problem.  

Figures 4.1, 4.2, and 4.3 show differences in three measures representing intensive rainfall 

events among four GCMs. As the figures show, compared to MIROC-ESM, CCSM4 has more 

intensive rainfall events and larger variations in the first two measures. However, the literature on 

climate change argues that GCMs are based on imperfect knowledge of climate systems, and little 

evidence suggests that any particular GCMs outperform others in describing historical weather 

outcomes (Gleckler, Taylor, & Doutriaux, 2008; Reichler & Kim, 2008; Pierce et al., 2009). Burke 

et al. (2015) refer to this limitation of GCMs as climate uncertainty or model uncertainty. They 

show that estimated climate impacts on economic outcomes such as crop yields, land values, and 

gross domestic product (GDP) vary widely among GCMs. As a result, estimates of future land use 

are likely to be affected by the choice of weather data set(s). 

The proper derivation of expected weather conditions is worth noting. Weather conditions 

are considered as stochastic and exogenous input variables in agricultural production from the 

farmer’s point of view. Farmers’ decisions on farm management are thus based on their 

expectations about weather conditions during the growing season. Land use studies have used the 

average values of observed weather conditions as their climate measures, and the results regarding 

these climate measures have been interpreted as farmers’ responses to expected weather conditions 

during the growing seasons. However, there is no consensus on how to construct expected weather 
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conditions and which climate measures are more appropriate for inclusion in analysis. For 

example, in land use studies, the number of years assumed to affect farmers’ formulation of 

expected weather conditions varies from 3 to 30 years. The climate change literature has used 30-

year averages, called climate normal, to describe current and future climate conditions. However, 

the justification for climate normal is controversial. Arguez and Vose (2011) summarize practical 

issues regarding the definition of climate normal. The main issue is that the definition may not 

convey accurate information about current and future climate conditions. In particular, Arguez and 

Vose indicate that climate series have serial autocorrelation, which means that providing greater 

weights to more recent data is more reliable.  

Differences in methods of forming farmers’ expectations regarding weather variables also 

influence the identification of climate effects as well as the interpretation of estimates regarding 

climate measures. If farmers’ decisions are based on long-run averages of weather conditions, then 

temporal variations in climate measures are smoothed out by the long-run average. Thus, the 

identification of climate impacts on land use depends more on spatial variations of climate 

measures. Conversely, if we assume that farmers formulate their expectations in response to short-

run weather fluctuations, more temporal variations of climate measures are available to identify 

climate effects on land use change. However, the meanings of coefficients regarding climate 

measures are closer to farmers’ responses to short-run weather conditions, not to climate. Of 

course, incorrect assumptions regarding farmers’ expectations can misconstrue the actual 

relationship between climate conditions and farmers’ response to them.    

In this study, we test two research hypotheses: (i) According to GCMs, forecast land use 

will change and (ii) the estimated climate change effects on future land use depend on how farmers 

construct expected weather conditions during the growing season. To test these two hypotheses, 
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we analyze the effects of climate conditions on land use change based on decadal land use data 

consisting of 25 km × 25 km grids across three regions: Corn Belt, Lake States, and Northern 

Plains. Specifically, we derive an empirical model representing farmers’ land allocation based on 

climate measures, soil quality, irrigation status, and total cropland, and construct 13 models 

consisting of different climate measures. Also, we generate 30 scenarios consisting of five GCMs 

and six assumptions about forming farmers’ expectations regarding weather variables. An out-of-

sample forecasting test is performed to measure the predictive accuracy of the 13 models for each 

scenario and each region. We compare the predictive accuracy of the models and their estimates 

to identify the effects of climate uncertainty and assumptions about forming farmers’ expectations 

regarding weather variables. We forecast land use in 2030 based on the best model of each GCM. 

The results show that the significance and size of climate effects on land use change depend on 

the choice of GCMs and methods of forming farmers’ expectations regarding weather variables. 

In addition, the forecast land use in 2030 and predictive accuracy of models vary among the 30 

scenarios. However, we find that forecasting results based on models consisting of yearly 

agronomic variables are more stable and have better predictive accuracy than models consisting 

of monthly variables. Last, the predicted land use in 2030 shows that corn and soybean acreage 

will expand to the northwest. 

The rest of this paper is organized as follows. In Section 2, we review the previous literature 

and describe the contributions of this study. Section 3 introduces a simple conceptual model. 

Section 4 and Section 5 describe the estimation method and our data. Section 6 explains the process 

of evaluating the empirical model and choosing the best model for prediction. The results and their 

implications are presented in Section 7. Section 8 discusses conclusions and limitations of this 

study. The final section contains references, tables, and figures related to the data and estimation 
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results. Last, the Appendix includes the description of decadal land use data, supplementary tables, 

and figures regarding forecasting results.    

4.2 Literature review 

In recent years, an increasing number of studies has forecast land use change in response 

to changes in climate and policies to measure their potential economic effects (Fezzi & Bateman, 

2010; Kaminski, Kan, & Fleischer, 2012; Jianhong, McCarl, & Wein, 2013; Miao, Khanna, & 

Huang, 2016).  Fezzi and Bateman (2011) forecast land use change in the United Kingdom 

resulting from nitrogen tax and zoning to identify the policy effects of new regulations on nitrogen 

soil balance. Kaminski, Kan, and Fleischer (2012) assume that changes in farmers’ land use are 

affected by climate conditions through the use of available production technologies. Thus, by 

identifying commodities sensitive to expected climate changes, they derive potentially useful 

directions for research and development (R&D) to alleviate harmful climate effects more 

effectively. Mu, McCarl, and Wein (2013) forecast changes in cropland and pastureland based on 

climate change scenarios. They calculate the economic losses or gains resulting from climate 

change by multiplying changes in cropland and pastureland by the current value of cropland and 

pastureland. Miao, Khanna, and Huang (2015) measure the effects of omitting price variables on 

estimates of climate change effects. To be specific, they estimate the effects of climate change on 

corn and soybean acreage over counties located east of the 100th meridian with and without input 

and output prices. They find that omitting price variables results in an overestimation of climate 

change effects.   

However, some common limitations make these forecast land use changes less credible. 

First, even though recent land use studies employ several GCMs to forecast future land use, they 

usually incorporate only one weather data set to estimate their empirical models. If the weather 
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data sets used for estimation differ from those used for forecasting, bias is introduced into projected 

changes in climate variables. In addition, the model having the best predictive accuracy may differ 

for different GCMs because of climate uncertainty. However, even though one purpose of these 

studies is to evaluate potential climate change effects, most of them do not perform statistical tests 

related to forecasting to choose the best models in terms of predictive accuracy.  

Reliable estimates regarding the potential impacts of climate change on agricultural 

production can be used to guide policy makers. For several reasons, we expect our results to 

contribute to more credible estimates of future land use. First, our study chooses the best model 

by comparing predictive accuracy over several models. Second, our approach accounts for climate 

uncertainty and uncertainty related to calculating expected weather conditions in estimating 

models and forecasting future land use. Last, our study conveys useful information about the 

effects of uncertainty regarding climate conditions on estimates of future land use.   

4.3 Conceptual model 

Our conceptual model is drawn from a classical profit maximization problem of risk-

neutral farms with land (Chambers & Just, 1989; Fezzi & Bateman, 2011). Fezzi and Bateman 

(2011) show that the optimal land allocation problem can be represented as: 
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( , , ) max{ ( , ,...,, , ) : 1}
M

iM
s

i
s

M
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      (1) 

where p means a price vector, z is the vector of given environmental conditions, L is total land, 

and s𝑖 , 𝑖 = 1, … , 𝑀 is the land share allocated to crop i, M denotes the number of crops, and 

𝜋(𝑝, 𝑧, 𝐿, 𝑠1, … , 𝑠𝑀) means the maximum profit conditional on given land shares (𝑠1, … , 𝑠𝑀). From 

Equation (1), the optimal land allocation 𝑠𝑖
∗(𝑝, 𝑧, 𝐿) is determined at the point where the marginal 

rent or shadow price of each land use is identical among all crops.  
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Previous land use literature uses a dual approach to derive land share equations from 

Equation (2) and estimate welfare effects of agricultural policies. Since the purpose of this study 

is to identify the relationship between land use change and climate conditions, we use a simple 

linear approximation of 𝑠𝑖
∗(𝑝, 𝑧, 𝐿) to construct our empirical model. Consider a farmer who 

allocates his field j to crop i at time t. His land allocation problem can be specified as Equation (3)  

1 2 3
90

jt i jt i ji ii jt ijtijt i tP W L cs y               (3) 

where 𝑃𝑗𝑡  is the vector of output prices, 𝑊𝑗𝑡  is the vector of given environmental conditions 

including expected weather measures, variables representing soil quality, and irrigation status. 𝐿𝑗𝑡 

is total cropland, and 𝑐𝑗 is unobserved heterogeneity of field j. Last, we include a dummy variable 

having 0 in years earlier than 1996 and 1 after 1996 to control for changes in US farm policy: 

Federal Agriculture Improvement and Reform (Miao, Khanna, & Huang, 2016).   

4.4 Estimation 

For estimation, we must account for two features of Equation (3). First, our dependent 

variables represent mutually exclusive and exhaustive shares of each land use. In addition, the 

optimal solutions of Equation (2) can be corner solutions, which means the nontrivial proportion 

of optimal solutions can be 0 or 1. Let  X𝑗𝑡 be the vector of explanatory variables in Equation (3), 

X𝑗 = {X𝑗1, … , X𝑗𝑇}, except for the unobserved heterogeneity (𝑐𝑗). Then, the features of our model 

can be described as: 
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If we assume the strict exogeneity of {X𝑗𝑡|𝑡 = 1, … 𝑇} conditional on c𝑗, we can conceptualize the 

above problem as Equation (4) based on Mullahy (2015).2 
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In addition, Mullahy (2015) assumes that the conditional mean of each outcome has a 

multinomial logit functional form preventing the possibility of predicted shares which are less 

than 0 or greater than 1.  
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After normalization based on crop M, that is, β𝑀 = α𝑀 = 𝟎, Equation (5) can be rewritten as 

Equation (6).  
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To control for unobserved heterogeneity, we assume that 𝐷(𝑐𝑗|𝑋𝑗 , 𝑤𝑗) = 𝐷(𝑐𝑗|𝑤𝑗) 

where  𝐷(𝑐𝑗|. )  means the conditional distribution of c𝑗 , and 𝑤𝑗  is a vector of redundant and 

                                                 
2 This assumption rules out including previous land use in our model and the situation in which X.𝑡  influences 

idiosyncratic events affecting future land use. Also, we assume that farmers do not consider the feedback effects of 

their land use on regional weather conditions during the growing season when they allocate their land.  
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ignorable variables, but a vector of good proxy variables for c𝑗. Then, from Wooldridge (2010, pp. 

22-24), we derive Equation (7). 
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where 𝐸𝑐 and 𝐸𝑤 denote the expectation with respect to c𝑗 and 𝑤𝑗. X𝑗𝑡
𝑜  is a fixed value of X𝑗𝑡, and 

X𝑗𝑡,𝑞 is one of covariates in X𝑗𝑡. Equation (7) means that we can calculate the average partial effects 

(APE) of each explanatory variable on land use for crop i at time t without integration with respect 

to c𝑗.3 We use dummies representing major land resource areas (MLRAs) as 𝑤𝑗 (Hendricks, Smith, 

& Sumner, 2014).4 After controlling for 𝑤𝑗, we deal with our panel data as repeated cross-sectional 

data when estimating our model.5  

For estimation, we incorporate the quasi maximum likelihood estimation (QMLE) method 

based on likelihood functions of a multinomial logit model to estimate coefficients consistently 

(Mullahy, 2105).6   

                                                 
3
 To control for the effects of unobserved heterogeneity in probit models, Mundlak (1978) and Chamberlain (1980) 

assume that c𝑗 follows the normal distribution. Their estimated coefficients of probit models are scaled by the variance 

of c𝑗. Thus, the estimates cannot be used directly to calculate the partial effects of each explanatory variable. Our 

approach has the same disadvantage – that is, even though we do not assume a specific distribution of c𝑗 and use w𝑗 

instead, the estimated coefficient could be affected by the distribution of c𝑗. However, APE is the intuitive way of 

summarizing partial effects of explanatory variables for nonlinear models. To be specific, in the case of nonlinear 

models, the partial effects of each explanatory variable depend on the specific value of X𝑗𝑡, which means APEs are 

different from individual partial effects, and their directions and sizes are not determined by estimated coefficients 

alone. Thus, even though we only identify scaled estimates, we can analyze the effects of climate on farmers’ land use 

based on APEs of explanatory variables.     
4 Papke and Wooldridge (2008) and Wooldridge (2010, pp 653-654) recommend using the average values of time 

variant variables in X𝑗𝑡 (𝑤̅𝑗) as 𝑤𝑗  to control for the effect of c𝑗. However, in our study, since climate variables are 

highly correlated with their averages, we use dummies representing MLRAs instead of 𝑤̅𝑗. MLRAs are determined by 

regional water use, land use, and environmental conditions of specific areas. Thus, even though one MLRA covers a 

larger area than our observations, its use would alleviate the effects on unobserved heterogeneity (Hendricks, Smith, 

& Sumner 2014).   
5
 Wooldridge (2010, pp 620 and pp 654) recommends this approach to analyze the multinomial or binary logit model 

for panel data.  
6

Buis (2008) writes a STATA® module for Equation (6), and we use his module for estimation (see 

http://maartenbuis.nl/software/fmlogit.html).  

http://maartenbuis.nl/software/fmlogit.html
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To calculate the APE on land use for crop i based on Equation (7), we use the average 

structural function (ASF) approach (Papke & Wooldridge, 2008). To be specific, given consistent 

estimates θ̂𝑖 = (β̂𝑖, α̂𝑖), 𝑖 = 1, … , 𝑀, the APE on land use for crop i at time t can be calculated by 

taking the derivative or change of Equation (9) with respect to one element of X𝑗𝑡 .  
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Thus, if X𝑗𝑡,𝑞 is a continuous variable, then its APE becomes 
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  (10) 

Also, if X𝑗𝑡,𝑞 is a discrete variable, then the APE can be represented as 
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   (11) 

where 𝛽̂𝑖,−𝑞  and 𝑋𝑗𝑡,−𝑞  are coefficients and covariates, except for 𝛽̂𝑖,𝑞  and 𝑋𝑗𝑡,𝑞  for i= 1, … , 𝑀 . 

Due to the adding-up restriction in Equation (4), we know that  ∑ 𝐴𝑃𝐸𝑚𝑡,𝑞
𝑀
𝑚=1 = 0, which means 

the APE on land use for crop M equals  − ∑ 𝐴𝑃𝐸𝑚𝑡,𝑞
𝑀−1
𝑚=1 . Finally, we average Equation (10) and 

Equation (11) across t to calculate the effects averaged across time and cross-sectional units.  
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 For inference, we cluster observations by MLRA and year and use a cluster bootstrap with 

a run of 1,000 for three reasons. First, the variance estimates based on Equation (6) are inconsistent 

(Mullay, 2015). Second, since some part of unobserved heterogeneity is omitted, arbitrary 

dependence may exist among the dependent variables, which means that variance estimates should 

be robust for this correlation (Wooldridge, 2010, pp. 654). Clustering by MLRA and year allows 

spatial dependence between all areas in the same MLRA and year but assumes independence 

among MLRAs and years. Finally, to calculate variances for the APEs, the iterative method is also 

used without specific distributional assumptions.  

4.5 Data and model specification 

4.5.1 Decadal land cover   

The decadal land cover data consist of 25 km × 25 km cells and contain information 

regarding the irrigation status of each cell and proportion of each of 21 land use classes in each 

cell. The data include land use change over 21 states in the central United States from the 1940s 

through the 2000s. Among these land use classes, our study assumes that only five are related to 

land use change for crop production: corn, soybeans, wheat, other crops, and grassland. We assume 

that the other land use classes are/will be invariant until 2030. Based on these assumptions, we 

calculate the area of each of these five land use classes. The dependent variables are the proportion 

of each of the land use classes to the sum of their areas. Finally, we drop all cells which have not 

been used for any of these five land use classes during the 2000s and all cells whose area is less 

than 50% of the area of regular cells. About 200 cells are dropped because of natural boundaries 

such as seas and lakes. Among 21 states, we analyze land use change over major corn-producing 

regions: Corn Belt, Lake States, and Northern Plains. Last, we use decadal land use from the 1980s 

through the 2000s. Total number of cells per decade is about 3,232 and total number of cells overall 
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is 9,696. Tables 4.1, 4.2, and 4.3 show summary statistics regarding land use in the Corn Belt, 

Lake States, and Northern Plains. The average fractions of three major crops (corn, soybeans, and 

wheat) differ among the three regions: Corn and soybean acreage account for approximately 43% 

over the Corn Belt and three decades on average, but the sum of average fractions of corn and 

soybean acreage in the Lake States and Northern Plains is less than 20%. However, the averages 

of these three major crops over regions and years may mask heterogeneous historical and regional 

land use. For example, Figures 4.4 and 4.5 show corn and soybean acreage in the 1950s and 2000s. 

As is evident, corn and soybean acreage has expanded to the northwest.   

4.5.2 Environmental conditions7 

This study uses the National Aeronautics and Space Administration (NASA) Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) to construct expected weather 

conditions (Thrasher et al. 2012). This data set comprises 42 climate projections based on 21 

Coupled Model Intercomparison Project 5 General Circulation Model (CMIP5 GCM) simulations 

and two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5). It includes 

daily maximum temperature, daily minimum temperature, and precipitation for each projection. 

The spatial resolution of the data is 0.25 degrees × 0.25 degrees, and the temporal extent is from 

1950 through 2100.8 We incorporate daily weather information based on four GCMs and their 

average for our estimation and prediction: CCSM4, MIROC-5, GDFL-CM3, and MIROC-ESM. 

                                                 
7 Previous studies include price variables to capture yearly price effects on acreage allocation. However, for decadal 

land use data, the effects of prices may be meaningless. After globalization, the productivity of crop production may 

be more relevant than output prices to determine decadal land use change. In addition, Hendricks, Smith, and Sumner 

(2014) show that long-term acreage response elasticity to output prices is much lower than short-term acreage response 

elasticity to output prices. Lastly, after 1975 the average soybean-corn ratio is 2.52, and there is no trend in this ratio 

(Zulauf 2013).   
8  More information about the NASA-GDDP data is available on the website of the NASA-GDDP project at 

http://cds.nccs.nasa.gov/nex-gddp/.  

https://cds.nccs.nasa.gov/nex-gddp/
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However, we use only one emission scenario (RCP 4.5) because climate change during the next 

25 years is predicted to be the same regardless of the emission scenario (McCarl, 2015).    

To test the influence of the method for constructing expected weather conditions on 

forecasting results, we construct expected weather variables based on six scenarios. The first three 

scenarios assume that information regarding weather conditions can decay at three different rates, 

0.925, 0.95, and 0.975, and expected weather conditions are the weighted averages of weather 

conditions over the previous 30 years.9 Figure 4.6 shows the weights used to construct the expected 

weather conditions based on different decay rates. From the figure, we can verify that as the decay 

rates decrease the years closer to a specific study year have larger weights. The remaining three 

scenarios assume that farmers’ expected weather conditions are the simple average values of 

weather conditions over the previous 10, 20, and 30 years.  

In addition, we set 13 models having different specifications based on five popular weather 

variables: average temperature, precipitation, growing degree days (GDD), extreme heat degree 

days (HDD), and intensive rainfall (see Table 4.2). 10 In the case of intensive rainfall, we include 

three measures: the number of daily rain events above 25.4 mm and above 76.2 mm per year (or 

month) and the fraction of precipitation (mm) during the 10 wettest days per year (Groisman, 

Knight, & Karl, 2012; Kunkel et al., 2013). As a result, we construct 30 scenarios based on five 

GCMs and six ways of constructing farmers’ expected weather conditions. Also, we evaluate 13 

models per each scenario based on their predictive accuracy. Finally, we choose the best model 

                                                 
9 We assume that information at time t-1 (𝐼𝑡−1) is less valuable than information (𝐼𝑡) at time t. To be specific, we 

assume that 𝐼𝑡 = 𝛿𝑡I𝑡−1, where 𝛿𝑡 is a decaying rate. Based on this assumption, we construct of farmers’ expected 

weather condition (𝑤𝑗𝑡) as 𝑤𝑗𝑡 = ∑
𝛿𝑡−𝑖+1

∑ 𝛿𝑡−𝑘+1
30
𝑘=1

30
𝑖=1 𝑤𝑗𝑡−𝑖.  

10 Snyder (1985) is used to construct GDD and HDD with an upper bound of 34 ºC and lower bound of 8 ºC. 
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per each GCM and use it for forecasting. For monthly weather conditions, we include March 

through September.11   

Last, to control for soil quality, we include the National Commodity Crop Productivity 

Index – Overall (NCCPI-all), silt percentage, sand percentage, representative slope, available 

water storage within crop root zone depths (RZAWS), and soil organic carbon (SOC). The NCCPI-

all is used to control for time-invariant and average soil productivity of each cell (Dobos, Sinclair, 

& Robotham, 2012). Representative slope is the difference in elevation between two points 

expressed as a percentage of the distance between those points. SOC is the carbon stored in soil 

organic matter and the main source of energy for soil microorganisms. Soil texture is categorized 

by sand, silt, and clay based on the size of soil particles. In this study, we include silt percentage 

and sand percentage to account for soil texture. RZAWS is the maximum amount of available 

water in the soil within crops’ root zones for crop development. Soil variables are based on the 

Gridded Soil Survey Geographic (gSSURGO) Database. We construct environmental variables 

corresponding to each cell by averaging soil and climate conditions within each cell.  

4.6 Model evaluation and selection 

To assess the predictive accuracy of the candidate forecasting models, we must clarify what 

we want to forecast and which error measures are appropriate for our model selection problem. 

First, our model specification is designed to estimate conditional means of dependent variables. In 

addition, single-value point forecasts are useful to identify the effects of uncertainties regarding 

                                                 
11 Summary statistics for climate measures are given in the Appendix-C. Since the decadal land use data are based on 

the land use over the last three years of each decade, we construct climate variables based on the 9 th year of each 

decade. For example, for climate variables in 2000s, we use weather conditions before 2009.  
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climate measures through comparison. We thus focus only on farmers’ expected land allocation in 

2030 conditional on expected weather conditions, not the distribution of future land use.12  

Second, we have to choose an appropriate measure of predictive accuracy, called the 

scoring function. Gneiting (2011) points out the importance of consistency between the scoring 

function and the distributional feature of a forecaster which researchers want to estimate; he 

suggests that a scoring function having Bregram form is a consistent measure for mean forecasting 

(see Equation (12)). 

ˆ ˆ ˆ ˆ( , ) ( ) ( ) '( )( )S y y y y y y y          (12) 

where 𝑦̂ is the point forecast, and y means the verifying observation. 𝜙 is the convex function with 

gradient 𝜙′. When we assume that 𝜙(𝑦̂) = 𝑦̂2, then Equation (12) becomes the squared error. 

However, from Equation (12), we can verify that scoring functions commonly used in the literature 

such as the absolute error and the relative error are not consistent in forecasting the mean of the 

predictive distribution. We can then extend Equation (12) to the multivariate case (Gneiting, 2011). 

That is, we can use the squared Euclidean norm as 𝜙 and estimate the predictive accuracy of our 

models.  

We use the out-of-sample forecasting test (the holdout or validation estimator) to measure 

prediction errors and avoid the risk of selecting an over-fitted model specification. The validation 

estimator is a straightforward measure to estimate out-of-sample prediction errors and assesses 

forecasting models based on an appropriate scoring function. The advantage of this approach is 

that it can be applied to a wider range of model selection problems with few assumptions regarding 

the true underlying model: The training samples and the validation samples follow an identical 

                                                 
12 Forecasting can be categorized as probability forecasting or point forecasting. The result of probabilistic forecasting 

is a predictive probability distribution over future quantities, but the result of point forecasting is one feature of a 

predictive probability distribution (Gneiting & Raftery 2008).  



116 

 

distribution and the training samples are independent of the validation samples (Arlot & Celisse, 

2010). To use this approach, we assume that land use in the 2000s is independent of land use in 

the 1980s and 1990s, but land use in the 1980s, 1990s, and 2000s is identically distributed after 

controlling for the effects of the explanatory variables we use. We separate observations based on 

decades and use observations in the 2000s as a validation set. Last, we access forecasting models 

based on the following scoring function.  

2
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where N is the total number of observations in a test set, and M is the number of crops. 𝐴𝑖𝑗𝑡 is 

acreage for crop i in cell j at time t, and 𝐴̂𝑖𝑗𝑡 is its predicted value.  

4.7 Results 

4.7.1 Results of out-of-sample forecasting test and land use in 2030 

We incorporate the out-of-sample forecasting test to find the model having the most stable 

and best predictive accuracy for each GCM. Figures 4.7, 4.8, and 4.9 summarize the test results. 

From the figures, we find that climate uncertainty and methods of forming expected weather 

conditions have a significant effect on the predictive accuracy of the models. In particular, the 

results show that, when we use monthly climate variables (from Model M4 to Model M13), the 

values of the scoring function have large variations within and among GCMs. This result implies 

that forecasting results based on models having monthly climate measures are sensitive to the 

choice of GCM and the method of forming expected weather conditions. However, we also find 

that the simplest models consisting of yearly agronomic climate measures (Model M1 to Model 

M3) have more stable and better performance in forecasting than models based on  monthly climate 
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variables. This result implies that models incorporating yearly agronomic measures generate more 

robust forecasting results than models based on monthly climate variables.   

To show the effects of the choice of GCM and measures of expected weather conditions 

on forecast future land use, we estimate Model M3 based on 30 scenarios and forecast future land 

use in the Corn Belt, Lake States, and Northern Plains. Model M3 consists of GDD, HDD, total 

precipitation during the growing seasons, the fraction of precipitation (mm) during the 10 wettest 

days per year, irrigation status, and variables representing soil quality. We use Model M3 for three 

reasons. As we discussed, models based on the simplest specifications have more stable and better 

performance in prediction. Since future climate conditions are surrounded by lots of uncertainty, 

using stable models can generate reliable forecasting results. Also, the results of the out-of-sample 

forecasting test show that Model M3 has better predictive accuracy than Model M1 and Model 

M2. However, we use different assumptions regarding how to form expected weather conditions 

among GCMs to increase the predictive accuracy.13 Last, we maintain consistency in the method 

of forming expected weather conditions between estimation and forecasting.  

Table 4.5 shows the forecast land use over the three regions in 2030 based on different 

GCMs and assumptions regarding how to form expected weather conditions. To begin with, we 

verify that variations in forecast land use resulting from changes in GCMs are larger than variations 

in forecast land use resulting from changes in assumptions regarding how to form expected 

weather conditions: The standard deviation within a GCM is smaller than the variations of 

estimates among GCMs in Table 4.5. However, we also find that the standard deviation within a 

GCM depends on model specifications. Specifically, when Model M7 consisting of monthly 

                                                 
13 When forecasting results have large variations within a GCM, our approach may be considered as “cherry picking”. 

However, Table 4.11 shows that forecasting results within a GCM is small when we use Model M3 for estimation and 

prediction. Also, we find that there is no significant difference in forecasting results based on Model M3 when we use 

only one assumption on expected weather conditions, such as climate normal, for forecasting among GCMs.  
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climate variables is incorporated to forecast land use in 2030, we find that the standard deviation 

within a GCM becomes larger than the standard deviation within a GCM based on Model M3 (see 

Table 4.6). These results imply that the effects of uncertainty regarding farmers’ expected weather 

conditions may depend on model specifications. Also, from the results, we can infer that climate 

uncertainty and uncertainty regarding farmers’ expected weather conditions should be considered 

at the same time to make forecasting results more credible, especially when we use models based 

on monthly climate conditions.  

From Table 4.5, we also verify that the direction of land use change among GCMs is 

identical. The table indicates that Model M3 predicts that corn acreage in the Corn Belt will 

decrease from 23% to 20% on average, but the model predicts that soybean acreage in the Corn 

Belt will increase from 20% to 21% on average. In the case of the Lake States, the model predicts 

large increases in corn and soybean acreage: Model M3 predicts that corn acreage in the Lake 

States will increase from 11% to 17% on average, and it forecasts an increase in soybean acreage 

in the Lake States from 8% to 9%.  

Figure 4.10 shows the regional distribution of corn and soybean acreage in 2030. The figure 

indicates that the predicted intensity of corn acreage over Illinois and Indiana in 2030 is less than 

the intensity of corn acreage over the two states in the 2000s. However, the predicted proportion 

of corn acreage over Minnesota in 2030 is larger than the proportion of corn acreage over 

Minnesota in the 2000s. Specifically, MIROC-ESM, MIROC5, and averages among GCMs 

predict large increases in corn acreage in areas close to the border between Iowa and Minnesota. 

These results reflect the trend in Figure 4.2: Corn and soybean production has expanded to the 

northwest.14 

                                                 
14  The forecasted land use for wheat, other crop, and grassland are in the Appendix-B. 
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4.7.2 Acreage response elasticity 

To test the effects of uncertainty regarding climate measures on the causal relationship 

between climate conditions and land use change, we estimate Model M3 and calculate acreage 

response elasticity based on Equations (10) and (11). Tables 4.7, 4.9, and 4.11 show changes in 

acreage response elasticity depending on six different assumptions regarding how to construct 

expected weather conditions. First, from the results, we can verify that the direction of acreage 

response elasticities to expected weather conditions is consistent over the six assumptions. The 

results also show that the effects of changes in methods of forming farmers’ expectations regarding 

weather variables on acreage response elasticity are modest. For example, Table 4.7 shows that an 

increase in HDD of 1% would decrease corn acreage in the Corn Belt by 0.01% regardless of 

methods of forming farmers’ expectations regarding weather variables. Also, the effects of 

variables representing soil quality and total cropland are robust to methods of forming farmers’ 

expectations regarding weather variables. 

Second, the results indicate that the effects of changes in climate and soil quality on corn 

acreage vary among the three regions. An increase in HDD of 1% increases corn acreage over the 

Lake States by 0.02% but decreases corn acreage over the Northern Plains by 0.03%. In addition, 

an increase in the fraction of precipitation during the 10 wettest days per year has negative effects 

on corn acreage in the Lake States and Northern Plains but positive effects on corn acreage in the 

Corn Belt.15 In the case of soil quality, the results indicate that an increase in sand percentage has 

a positive effect on corn acreage in the Lake States and Northern Plains but a negative effect on 

corn acreage in the Corn Belt. When RZAWS increases by 1%, then corn acreage in the Lake 

States decreases by 0.09% but corn acreage in the Northern Plains increases by 0.16%.  

                                                 
15 The less intuitive results regarding precipitation patterns in the Corn Belt may reflect the effects of farmers’ 

adaptation efforts or agricultural technology development.  
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Tables 4.8, 4.10, and 4.12 contain acreage response elasticity depending on five GCMs. 

For estimation, we use 30-year averages when we construct expected weather conditions. From 

the results, we can verify that the variations in estimates in these tables are larger than the variations 

in estimates in Tables 4.7, 4.9, and 4.11. In particular, we find that the direction and size of acreage 

response elasticity based on MIROC-ESM are quite different from those based on another GCM. 

For example, the effects of intensive rainfall result in different directions with MIROC-ESM and 

another GCM.  

4.8 Conclusion 

To measure the effects of climate change or regulations, previous studies have forecast 

future land use, but most of them have not considered the effects of climate uncertainty and 

uncertainty regarding farmers’ expected weather conditions on estimating and forecasting future 

land use. However, agricultural production carries great uncertainty regarding environmental 

conditions during the growing season, and farmers make management decisions based on their 

expectations about environmental conditions during the growing season. In addition, climate data 

based on GCMs have large variation in their estimates regarding historical and future climate 

conditions.  

This study analyzes decadal land use change over the Midwest regions to identify the 

effects of uncertainty regarding climate measures on forecasting future land use. First, we find that 

climate uncertainty has large effects on acreage response elasticity to expected weather conditions 

and forecasting results. We also find that forecast land use and acreage response elasticity depend 

on methods of forming farmers’ expectations regarding weather variables, even though the effects 

of changes in methods of forming farmers’ expectations regarding weather variables are smaller 

than the effects of climate uncertainty. Second, the results show that models including monthly 
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climate variables are sensitive to the choice of GCM and the choice of how to form expected 

weather conditions. However, the predictive accuracy of models having yearly agronomic 

variables is more robust to changes in methods of forming farmers’ expectations regarding weather 

variables. Third, our results show heterogeneous responses to climate changes among the three 

regions and changes in regional distribution of crop production. We find that acreage response 

elasticity to environmental variables differs among the three regions. Also, forecasting results 

show that corn and soybean acreage will expand to the northwest. Specifically, the forecasting 

results based on the best model show that corn and soybean acreage in the Corn Belt will decrease 

from about 43% to 41% on average. However, the model predicts that corn and soybean acreage 

in the Lake States will increase from 20% to 25%. Last, we find that corn acreage in areas close to 

the border between Iowa and Minnesota will increase, even though the intensity of corn acreage 

in the Corn Belt will decrease slightly. 

 Our results have certain limitations. The first limitation of our forecasting results is not 

accounting for the effects of farmers’ adaptation and technology development in agriculture. That 

is, farmers have many adaptation options from self-insurance to adopting biotechnologies, and we 

can expect that damage from climate change can be partially mitigated through their adaptation 

efforts (Mendelsohn, Nordhaus, & Shaw, 1994). Also, technology innovation, such as drought-

tolerant corn and precision agriculture, can reduce farmers’ susceptibility to climate change. 

Second, the dynamic relationship between regional land use and climate conditions is important 

in forecasting land use. The interactions between land use and climate conditions are well 

recognized in climatology (Pielke et al., 2007; Mendelsohn & Dinar, 2009; Groisman, Knight, & 

Karl, 2012; Anderson et al., 2013). The land surface of the central US is a key factor in determining 

its climate conditions. Changes in agricultural land use over large areas feed back into the water 
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cycle through changes in transpiration, evaporation, and runoff. These changes, in turn, affect 

surface energy balances and provide the atmosphere with additional water vapor for precipitation. 

Conversely, farmers alter their land use in response to changes in climate conditions to maximize 

their farm operating profit.  
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Source: NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) data set. 

Figure 4.1. Average number of daily rain events above 25.4 mm per year in the central US 

 
Source: NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) data set. 

 

Figure 4.2. Average number of daily rain events above 76.2 mm per year in the central US 
 

 

Source: NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) data set.  

Figure 4.3.  Average proportion of precipitation (mm) during the 10 wettest days per year in the central US 
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Source: NASS county data down-sampled to 25km grid cells using an area weighting algorithm.  

Figure 4.4.  Proportions of areas growing corn in 1950s (left) and 2000s (right) 

 

Source: NASS county data down-sampled to 25km grid cells using an area weighting algorithm  

 

Figure 4.5.  Proportions of areas growing soybeans in 1950s (left) and 2000s (right)  
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Table 4.1. Summary statistics regarding land use, prices, and soil quality - Corn Belts 

Item Description Mean SD Min Max 

Corn Corn acreage/total cropland 0.21 0.15 0.00 0.59 

Soybeans Soybean acreage/total cropland 0.20 0.13 0.00 0.48 

Wheat Wheat acreage/total cropland 0.04 0.04 0.00 0.23 

Other crop Other crops  acreage/total cropland 0.01 0.03 0.00 0.46 

grassland Grassland/total cropland 0.39 0.20 0.00 0.94 

Total cropland 
The sum of acreage allocated to crops and 

grassland (km2) 
572.05 184.84 0.71 728.88 

P𝑠𝑐 soybean price/corn price 2.67 0.30 2.29 3.17 

NCCPI NCCPI-all 0.56 0.16 0.01 0.89 

Sand % of sand  19.28 10.48 4.51 77.44 

Silt % of silt 56.23 9.99 12.84 74.78 

Slope Representative slope (%) 7.29 5.87 0.33 36.93 

RZNAWS 
available water storages within crop root zone 

depths (100 mm) 
2.05 0.56 0.05 3.20 

Soc30 Soil organic carbon (1,000 g C/m2) 5.56 2.32 1.17 11.90 

# of observations  3,282    

 

Table 4.2. Summary statistics regarding land use, prices, and soil quality - Lake states  

Item Description Mean SD Min Max 

Corn Corn acreage/total cropland 0.10 0.12 0.00 0.50 

Soybeans Soybean acreage/total cropland 0.07 0.10 0.00 0.42 

Wheat Wheat acreage/total cropland 0.04 0.08 0.00 0.51 

Other crop Other crops  acreage/total cropland 0.01 0.04 0.00 0.48 

grassland Grassland/total cropland 0.41 0.27 0.00 0.93 

Total cropland 
The sum of acreage allocated to crops and 

grassland (km2) 
420.84 254.81 0.61 709.07 

NCCPI NCCPI-all 0.36 0.18 0.00 0.82 

Sand % of sand  47.66 19.38 7.65 90.00 

Silt % of silt 35.31 15.56 3.95 87.23 

Slope Representative slope (%) 4.96 3.74 0.29 21.87 

RZNAWS 
available water storages within crop root zone 

depths (100 mm) 
1.93 0.77 0.00 6.48 

Soc30 Soil organic carbon (1,000 g C/m2) 8.78 3.02 3.15 28.24 

# of observations   2541   
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Table 4.3. Summary statistics regarding land use, prices, and soil quality - Northern Plains  

Item Description Mean SD Min Max 

Corn Corn acreage/total cropland 0.08 0.11 0.00 0.67 

Soybeans Soybean acreage/total cropland 0.06 0.09 0.00 0.43 

Wheat Wheat acreage/total cropland 0.15 0.14 0.00 0.75 

Other crop Other crops  acreage/total cropland 0.05 0.06 0.00 0.32 

grassland Grassland/total cropland 0.62 0.24 0.00 1.00 

Total cropland 
The sum of acreage allocated to crops and 

grassland (km2) 
607.53 69.49 6.22 661.29 

Irrigation 
% of irrigated area for crop production in each 

cell.  
0.01 0.06 0.00 0.73 

NCCPI NCCPI-all 0.31 0.14 0.07 0.69 

Sand % of sand  33.83 21.82 5.76 94.14 

Silt % of silt 41.65 14.95 2.61 66.24 

Slope Representative slope (%) 6.66 4.78 0.18 32.33 

RZNAWS 
available water storages within crop root zone 

depths (100 mm) 
2.06 0.62 0.48 3.20 

Soc30 Soil organic carbon (1,000 g C/m2) 5.13 1.94 1.75 10.17 

Irrigation 
% of irrigated area for crop production in each 

cell.  
0.04 0.10 0.00 0.73 

# of observations  3,873    

 

 
Figure 4.6.  Weights used to construct farmers’ expected weather conditions 
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Table 4.4. Explanatory Variables in Each Model Specification 

Model 

Average 

temperature 
GDD, HDD Precipitation Intensive rainfall1 

monthly yearly monthly yearly monthly yearly monthly yearly 

M1    O  O  O(1) 

M2    O  O  O(2) 

M3    O  O  O(3) 

M4 O    O  O(1)  

M5 O    O  O(2)  

M6 O    O   O (1) 

M7 O    O   O (2) 

M8 O    O   O (3) 

M9   O  O  O (1)  

M10   O  O  O (2)  

M11   O  O   O (1) 

M12   O  O   O (2) 

M13   O  O   O (3) 
Note: ( ) is the measure of intensive rainfalls. (1) is the number of daily rain events above 25.4 mm per year, (2) is 

the number of daily rain events above 76.2 mm per year, and (3) is the fraction of precipitation (mm) during the ten 

wettest days per year. 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.7. Results of out-of-sample forecasting test for Corn Belt 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.7 (Continued) 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.8. Results of out-of-sample forecasting test for Lake States 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.8 (Continued) 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.9. Results of out-of-sample forecasting test for Northern Plains 
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Note: The horizontal axis corresponds to models in Table 4. The vertical axis means values of score function in 

Equation (13). Each line represents one way of constructing farmers’ expected weather conditions, and its variation 

shows how predictive accuracy varies depending on thirteen models. 

 

Figure 4.9 (Continued) 
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Table 4.5. Predicted land use in 2030 based on M3 

 AVE CCSM4 GFDL-CM3 MIROC-ESM MIROC5 2000s 

Corn Belt 

Corn 0.200 (0.001) 0.207 (0.002) 0.188 (0.006) 0.188 (0.006) 0.214 (0.005) 0.229 

Soybeans 0.212 (0.003) 0.213 (0.004) 0.213 (0.006) 0.218 (0.002) 0.207 (0.007) 0.196 

Wheat 0.037 (0.002) 0.034 (0.002) 0.064 (0.009) 0.035 (0.003) 0.030 (0.003) 0.021 

Other crops 0.009 (0.002) 0.006 (0.000) 0.006 (0.002) 0.009 (0.001) 0.005 (0.002) 0.004 

Grass lands 0.382 (0.003) 0.379 (0.004) 0.372 (0.012) 0.390 (0.004) 0.384 (0.007) 0.389 

Lake States 

Corn 0.177 (0.023) 0.137 (0.012) 0.178 (0.010) 0.225 (0.005) 0.161 (0.004) 0.114 

Soybeans 0.086 (0.006) 0.091 (0.005) 0.086 (0.015) 0.085 (0.004) 0.095 (0.006) 0.081 

Wheat 0.022 (0.001) 0.025 (0.004) 0.019 (0.001) 0.013 (0.000) 0.024 (0.001) 0.026 

Other crops 0.007 (0.001) 0.008 (0.004) 0.004 (0.002) 0.007 (0.000) 0.007 (0.001) 0.009 

Grass lands 0.350 (0.017) 0.381 (0.008) 0.356 (0.023) 0.312 (0.002) 0.355 (0.006) 0.412 

Northern Plains 

Corn 0.095 (0.002) 0.093 (0.003) 0.094 (0.003) 0.089 (0.008) 0.094 (0.003) 0.100 

Soybeans 0.070 (0.003) 0.069 (0.002) 0.070 (0.002) 0.077 (0.004) 0.075 (0.006) 0.077 

Wheat 0.138 (0.005) 0.139 (0.004) 0.149 (0.010) 0.133 (0.013) 0.137 (0.005) 0.126 

Other crops 0.036 (0.001) 0.038 (0.001) 0.038 (0.001) 0.038 (0.001) 0.036 (0.002) 0.038 

Grass lands 0.624 (0.002) 0.625 (0.002) 0.612 (0.006) 0.627 (0.004) 0.623 (0.005) 0.624 

Note: Within a GCM, there are six predicted proportions of acreage for each crop to total land depending on six way 

to construct farmers’ expected weather conditions. The estimates indicate the average of the six predicted proportions 

of acreage for each crop. Also ( ) means the standard deviation among these six predicted proportions of acreage for 

each crop. 
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Table 4.6. Predicted land use in 2030 based on M7 

 AVE CCSM4 GFDL-CM3 MIROC-ESM MIROC5 2000s 

Corn Belt 

Corn 0.196 (0.028) 0.204 (0.010) 0.107 (0.031) 0.177 (0.024) 0.168 (0.023) 0.229 

Soybeans 0.185 (0.015) 0.225 (0.022) 0.126 (0.040) 0.209 (0.017) 0.184 (0.023) 0.196 

Wheat 0.024 (0.011) 0.069 (0.031) 0.022 (0.022) 0.045 (0.017) 0.023 (0.012) 0.021 

Other crops 0.020 (0.013) 0.005 (0.006) 0.031 (0.010) 0.027 (0.022) 0.024 (0.013) 0.004 

Grass lands 0.415 (0.032) 0.337 (0.031) 0.554 (0.085) 0.382 (0.044) 0.441 (0.043) 0.389 

Lake States 

Corn 0.133 (0.017) 0.170 (0.024) 0.114 (0.018) 0.153 (0.025) 0.136 (0.025) 0.114 

Soybeans 0.115 (0.019) 0.085 (0.005) 0.081 (0.038) 0.124 (0.016) 0.106 (0.008) 0.081 

Wheat 0.017 (0.009) 0.009 (0.002) 0.017 (0.006) 0.033 (0.013) 0.015 (0.005) 0.026 

Other crops 0.006 (0.006) 0.007 (0.005) 0.009 (0.002) 0.006 (0.006) 0.017 (0.006) 0.009 

Grass lands 0.372 (0.037)  0.371 (0.029) 0.420 (0.059) 0.326 (0.007) 0.368 (0.026) 0.412 

Northern Plains 

Corn 0.077 (0.045) 0.065 (0.012) 0.138 (0.057) 0.050 (0.024) 0.049 (0.011)  0.100 

Soybeans 0.062 (0.007) 0.047 (0.016) 0.043 (0.026) 0.038 (0.021) 0.065 (0.008) 0.077 

Wheat 0.171 (0.031) 0.143 (0.007) 0.140 (0.042) 0.235 (0.041) 0.182 (0.027) 0.126 

Other crops 0.029 (0.012) 0.034 (0.011) 0.040 (0.037) 0.050 (0.017) 0.051 (0.016) 0.038 

Grass lands 0.624 (0.028) 0.676 (0.024) 0.603 (0.022) 0.591 (0.025) 0.617 (0.035) 0.624 

Note: Within a GCM, there are six predicted proportions of acreage for each crop to total land depending on six way 

to construct farmers’ expected weather conditions. The estimates indicate the average of the six predicted proportions 

of acreage for each crop. Also ( ) means the standard deviation among these six predicted proportions of acreage for 

each crop. 
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Table 4.7. Corn acreage response elasticity: Expected weather conditions - Corn Belt 

 
10-year 

average 

20-year 

average 

30-year 

average 

Decay 

rate:0.925 

Decay 

rate:0.95 

Decay 

rate:0.975 

GDD 0.070 0.089 0.111 0.094 0.098 0.105 

HDD -0.009* -0.008* -0.013** -0.009* -0.009* -0.009* 

Precipitation -0.277*** -0.315*** -0.278*** -0.305*** -0.306*** -0.298*** 

Intensive rainfall 0.717*** 0.624** 0.726*** 0.699*** 0.694*** 0.697*** 

NCCPI-all 0.092*** 0.091*** 0.088*** 0.095*** 0.096*** 0.095*** 

Percent sand 0.352*** 0.356*** 0.349*** 0.352*** 0.352*** 0.350*** 

Percent silt 0.477 0.475 0.476 0.474 0.473 0.471 

Slope -0.047 -0.033 -0.077 -0.036 -0.034 -0.041 

RZAWS 0.037 0.041 0.038 0.037 0.037 0.037 

Organic Carbon 0.148*** 0.152*** 0.147*** 0.149*** 0.149*** 0.149*** 

Total land 0.047** 0.047** 0.046** 0.046** 0.046** 0.046** 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the averages of climate measures among GCMs are used for estimation. Inferences are 

based on 1,000 cluster bootstrap runs. 

 

Table 4.8. Corn acreage response elasticity: GCMs - Corn Belt (Climate normal) 

 CCSM4  
GFDL-

CM3 

MIROC-

ESM  
MIROC5 Averages 

GDD 0.094 0.031 0.154* 0.090 0.111 

HDD -0.013** -0.009* -0.013*** -0.014*** -0.013** 

Precipitation -0.279*** -0.122* -0.332*** -0.142* -0.278*** 

Intensive rainfall 0.402*** 0.490** 0.073 0.384*** 0.726*** 

NCCPI-all 0.073** 0.069** 0.060* 0.085** 0.088*** 

Percent sand 0.347*** 0.334*** 0.359*** 0.354*** 0.349*** 

Percent silt 0.468*** 0.459*** 0.468*** 0.489*** 0.476*** 

Slope -0.083 -0.137 -0.063 -0.137 -0.077 

RZAWS 0.059* 0.054 0.064** 0.039 0.038 

Organic Carbon 0.156*** 0.155*** 0.164*** 0.157*** 0.147*** 

Total land 0.048** 0.047** 0.053*** 0.045** 0.046** 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the average of weather conditions over previous 30 year are used for estimation. 

Inferences are based on 1,000 cluster bootstrap runs. 
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Table 4.9. Corn acreage response elasticity: Expected weather conditions – Lake States 

 
10-year 

average 

20-year 

average 

30-year 

average 

Decay 

rate:0.925 

Decay 

rate:0.95 

Decay 

rate:0.975 

GDD 0.093** 0.049 0.092* 0.053 0.064 0.070 

HDD 0.019*** 0.021*** 0.019*** 0.021*** 0.019*** 0.018*** 

Precipitation 0.170*** 0.229*** 0.183*** 0.209*** 0.211*** 0.217*** 

Intensive rainfall -0.254 -0.222 -0.271* -0.267 -0.280* -0.291* 

NCCPI-all 0.060*** 0.057*** 0.057*** 0.057*** 0.058*** 0.058*** 

Percent sand -0.099*** -0.109*** -0.111*** -0.106*** -0.106*** -0.107*** 

Percent silt 0.009 -0.005 -0.007 -0.001 -0.001 -0.002 

Slope 0.027 -0.014 -0.022 -0.007 -0.012 -0.016 

RZAWS -0.090*** -0.089*** -0.087*** -0.089*** -0.089*** -0.089*** 

Organic Carbon 0.038*** 0.037*** 0.036*** 0.037*** 0.038*** 0.038*** 

Total land 0.036*** 0.038*** 0.034*** 0.038*** 0.037*** 0.037*** 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the averages of climate measures among GCMs are used for estimation. Inferences are 

based on 1,000 cluster bootstrap runs. 

 

Table 4.10. Corn acreage response elasticity: GCMs – Lake States (Climate normal) 

 CCSM4  
GFDL-

CM3 

MIROC-

ESM  
MIROC5 Averages 

GDD 0.092* 0.135*** 0.092* 0.098* 0.092* 

HDD 0.019*** 0.009** 0.012** 0.017** 0.019*** 

Precipitation 0.183*** 0.183*** 0.223*** 0.145*** 0.183*** 

Intensive rainfall -0.287** -0.373** 0.261 -0.290** -0.271* 

NCCPI-all 0.057*** 0.057*** 0.057*** 0.070*** 0.057*** 

Percent sand -0.100*** -0.117*** -0.098*** -0.116*** -0.111*** 

Percent silt 0.007 -0.007 -0.006 -0.006 -0.007 

Slope -0.016 -0.023 -0.052 0.065 -0.022 

RZAWS -0.087*** -0.081*** -0.084*** -0.093*** -0.087*** 

Organic Carbon 0.036*** 0.033*** 0.032*** 0.039*** 0.036*** 

Total land 0.034*** 0.038*** 0.034*** 0.031*** 0.034*** 
Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the average of weather conditions over previous 30 year are used for estimation. 

Inferences are based on 1,000 cluster bootstrap runs. 
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Table 4.11. Corn acreage response elasticity: Expected weather conditions – Northern 

Plains 

 
10-year 

average 

20-year 

average 

30-year 

average 

Decay 

rate:0.925 

Decay 

rate:0.95 

Decay 

rate:0.975 

GDD 0.217*
 0.221**

 0.255** 0.227** 0.205*
 0.198*

 

HDD -0.033***
 -0.033***

 -0.038*** -0.032*** -0.029***
 -0.028***

 

Precipitation -0.120**
 -0.122*

 -0.129* -0.135** -0.129**
 -0.127*

 

Intensive rainfall -0.715*** -0.828*** -0.850*** -0.885*** -0.932*** -0.950*** 
NCCPI-all 0.113***

 0.105***
 0.098** 0.110*** 0.110***

 0.108***
 

Percent sand 0.291*** 0.308*** 0.313*** 0.309*** 0.308*** 0.308*** 

Percent silt 0.156 0.170 0.170 0.173 0.168 0.166 

Slope -0.362** -0.374** -0.384** -0.364** -0.374** -0.378** 

RZAWS 0.157***
 0.163***

 0.166*** 0.158*** 0.161***
 0.163***

 

Organic Carbon -0.021 -0.020 -0.018 -0.018 -0.021 -0.022 

Total land 0.037 0.031 0.027 0.031 0.029 0.028 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the averages of climate measures among GCMs are used for estimation. Inferences are 

based on 1,000 cluster bootstrap runs. 

 

Table 4.12. Corn acreage response elasticity: GCMs – Northern Plains (Climate normal) 

 CCSM4  GFDL-CM3 MIROC-ESM  MIROC5 Averages 

GDD 0.162 0.178 0.351*** 0.279*** 0.255** 
HDD -0.029*** -0.036*** -0.047*** -0.048*** -0.038*** 

Precipitation -0.133** -0.048 -0.162*** -0.087 -0.129* 
Intensive rainfall -0.752*** -0.389** 0.519** -0.393** -0.850*** 

NCCPI-all 0.104*** 0.086** 0.143*** 0.096** 0.098** 

Percent sand 0.312*** 0.267** 0.217** 0.282** 0.313*** 

Percent silt 0.188 0.126 0.022 0.108 0.170 

Slope -0.439** -0.416** -0.246 -0.373** -0.384** 

RZAWS 0.156*** 0.192*** 0.150*** 0.177*** 0.166*** 

Organic Carbon -0.016 -0.037 -0.004 -0.027 -0.018 
Total land 0.023 0.056 0.046 0.024 0.027 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. Results are based on Equation 

(10) and (11). Model M3 and the average of weather conditions over previous 30 year are used for estimation. 

Inferences are based on 1,000 cluster bootstrap runs. 
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Figure 4.10.  The forecasted land use for corn in 2030 based on M3 
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Figure 4.11.  The forecasted land use for soybeans in 2030 based on M3
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Appendix-A: Generating crop type land use using county level crop statistics 

1. Summary  

 

1) Spatial Coverage: AR, CO, IA, IL, IN, KS, KY, LA, MI, MN, MS, MO, NE, ND, OH, OK, 

SD, TN, TX, WI, WY 

 

2) Temporal Coverage: 1940s~2000s 

 

3) Data resolution:  

Latitude Resolution: 0.25 degrees (25 km) 

Longitude Resolution: 0.25 degrees (25 km) 

Temporal Resolution: decadal 

4) Land Use Classes 

 Description 

1 Evergreen Needleleaf Forest 

2 Evergreen Broadleaf Forest 

3 Deciduous Needleleaf Forest 

4 Deciduous Broadleaf Forest 

5 Mixed Forests 

6 Closed Shrublands + Barren or Sparse Veg + Wooded Tundra + Mixed Tundra 

7 Open Shrublands 

8 Woody Savannas 

9 Savannas 

10 Grasslands 

11 Permanent Wetlands 

12 Water + Snow and Ice 

13 Urban and Built-Up 

14 Cropland/Natural Vegetation Mosaic 

15 

Other C3 Crops (Canola, Cotton (all), Beans, Dry Edible (all), Flaxseed, Lentils, Peanuts, Dry Edible 

Peas, Rice, Sugarbeets, Sunflower (all)) 

16 Other C4 Crops (Sorghum) 

17 Corn 

18 Spring Wheat (Spring Wheat, Durum Wheat, Oats, Rye, Barley) 

19 Winter Wheat 

20 Soybeans 

21 Unused 
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2. Method 

Input datasets 

Base Land Use/Land Cover map, County boundaries containing land and water area, county-level 

statistics on planted and harvested acreage as well as irrigated acres for crops. 

Data processing  

USDA NASS county statistics for each states are processed into planted and harvested summary 

tables for all counties for analysis. To identify each item during processing, two additional fields 

are included: 5 digit FIPS code (Federal Information Processing System code) and identifier 

merging 5 digit FIPS code, planting year, and item identifier. Planting and harvest data is first 

filtered to non-null FIPS entries to remove crop reporting district data and only data in the period 

of analysis. 

 

NASS data is not recorded with the same attributes everywhere; in some states they break crop 

acreage into ‘Irrigated’ and ‘Non-Irrigated’ categories and some crops (corn and sorghum) are 

broken into ‘Silage’ and ‘Grain’ categories. For consistent calculations, all data are assigned into 

Irrigated and Non-Irrigated categories and total crop acreage. If data are classified into ‘Grain’ or 

‘Silage’ categories, the data is placed into the corresponding category. However, if no distinguisher 

is given, it is placed into the ‘Grain’ category as that is the majority of acres of each crop. Also, if 

‘Irrigated’ or ‘Non-Irrigated’ categories are present, the data is placed into the appropriate 

category. But if no identifier is found, the acres are placed into the ‘Non-Irrigated’ category. 

 

Planted acreage still transpires, even if the crop is not harvested. Planted acreage is the preferred 

method of estimating crop coverage in a county. We primarily want to work with planted acreage 

data but this is not available for all years and all crops. Thus harvested acreage is only used to 

estimate planted acreage when data is not available. The data at which planted acreage is available 

varies by crop and state, but generally starts being available in the 1950s to 1970s. An average 

Planted/Harvested acreage fraction is computed by year for the period of record. This is not broken 

out by crop because small acreage crops can easily skew the numbers. 

 

Now that yearly crop planted acreages have been calculated for the counties, we can begin to 

apportion each crop’s acreage out to each county. We choose a target year each decade for which 

to make our estimate but calculate this yearly acreage as the average of the target, preceding, and 

following year to smooth out year to year crop acreage spikes. For this analysis the target year was 

X8, so from 1948 to 2008 we calculated three year averages (e.g. 1947, 1948, and 1949)
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Appendix-B: The forecasted land use for wheat, other crop, and grassland  

 

Figure A-1.  The forecasted land use for wheat in 2030 based on M3 
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Figure A-2.  The forecasted land use for other crops in 2030 based on M3 
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Figure A-3.  The forecasted grasslands in 2030 based on M3 
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Appendix-C: Summary statistics for climate measures 

<Table A-1> Summary statistics of climate variables based on MIROC-ESM: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 5.09 2.40 4.87 2.37 4.75 2.40 4.92 2.37 4.86 2.38 4.80 2.39 

Apr 11.86 1.95 11.71 1.90 11.53 1.90 11.75 1.90 11.68 1.90 11.60 1.90 

May 17.07 1.47 17.04 1.46 17.03 1.46 17.06 1.46 17.04 1.46 17.03 1.46 

Jun 22.18 1.19 22.01 1.17 21.94 1.18 22.04 1.18 22.00 1.18 21.97 1.18 

Jul 24.35 1.32 24.12 1.29 24.08 1.28 24.23 1.30 24.17 1.29 24.12 1.28 

Aug 23.51 1.46 23.24 1.40 23.12 1.42 23.30 1.44 23.24 1.43 23.18 1.42 

Sep 19.55 1.63 19.26 1.52 19.09 1.50 19.34 1.55 19.26 1.53 19.17 1.51 

Precipitati

on 

Mar 74.14 15.87 73.03 16.31 72.51 16.32 72.31 15.58 72.48 15.85 72.55 16.10 

Apr 91.67 15.90 92.02 11.75 91.67 10.51 92.17 10.91 92.08 10.64 91.91 10.48 

May 109.96 16.80 110.75 13.17 110.67 11.53 111.03 13.24 110.91 12.60 110.80 12.01 

Jun 102.20 14.74 103.45 10.69 105.28 10.16 103.47 10.19 103.96 9.88 104.57 9.86 

Jul 101.84 12.19 105.83 10.23 104.44 9.35 102.84 10.07 103.57 9.53 104.11 9.25 

Aug 85.64 13.56 90.27 10.14 91.86 9.37 90.03 10.35 90.54 9.86 91.16 9.52 

Sep 83.28 17.15 84.29 13.22 85.78 12.32 85.02 13.22 85.19 12.72 85.45 12.41 

Precipitation  648.74 54.71 659.64 45.73 662.21 42.60 653.96 46.27 655.88 44.68 657.74 43.34 

Heavy rainfall 1 2.18 0.82 2.28 0.72 2.29 0.68 2.23 0.70 2.25 0.69 2.26 0.68 

Heavy rainfall 2 0.02 0.05 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 

Heavy rainfall 3 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 

GDD 2233.23 274.27 2198.11 266.14 2180.74 265.13 2207.95 268.59 2198.46 267.21 2189.21 266.02 

HDD 1.35 2.32 0.96 1.49 0.94 1.35 1.16 1.82 1.07 1.63 1.00 1.47 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-2> Summary statistics of climate variables based on GFDL-CM3: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.99 2.37 5.08 2.29 5.13 2.31 5.04 2.31 5.05 2.30 5.06 2.29 

Apr 11.53 1.84 11.56 1.89 11.56 1.86 11.58 1.86 11.58 1.87 11.57 1.88 

May 17.41 1.48 17.11 1.46 17.28 1.46 17.27 1.48 17.21 1.47 17.16 1.46 

Jun 22.12 1.34 21.85 1.20 22.02 1.25 22.00 1.27 21.95 1.25 21.90 1.22 

Jul 24.18 1.32 23.98 1.25 24.09 1.26 24.10 1.27 24.06 1.26 24.02 1.25 

Aug 23.26 1.48 23.03 1.41 23.19 1.42 23.16 1.42 23.12 1.42 23.07 1.41 

Sep 19.28 1.57 18.95 1.43 19.06 1.47 19.08 1.49 19.04 1.46 18.99 1.44 

Precipitati

on 

Mar 73.22 22.29 72.87 19.49 72.63 20.20 73.02 20.84 72.83 20.28 72.78 19.82 

Apr 101.48 19.92 97.17 12.55 100.27 15.11 101.54 15.78 100.08 14.68 98.61 13.57 

May 116.68 13.27 117.47 12.12 114.76 11.50 116.76 11.39 116.87 11.43 117.12 11.68 

Jun 108.61 15.72 105.77 12.46 104.37 14.04 105.32 12.33 105.42 12.17 105.56 12.18 

Jul 99.83 13.59 100.96 9.72 98.91 9.82 101.62 10.13 101.38 9.82 101.16 9.67 

Aug 94.40 13.65 94.66 10.90 93.17 11.09 93.83 11.12 93.88 10.86 94.15 10.78 

Sep 82.62 13.36 77.34 12.47 81.08 12.76 79.44 11.92 78.90 11.97 78.18 12.16 

Precipitation  676.82 47.80 666.24 43.78 665.19 45.96 668.04 45.09 665.76 44.19 663.85 43.60 

Heavy rainfall 1 4.05 0.97 3.93 0.83 3.90 0.86 3.99 0.84 3.96 0.82 3.93 0.82 

Heavy rainfall 2 0.07 0.10 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 

Heavy rainfall 3 0.39 0.02 0.39 0.02 0.39 0.02 0.39 0.02 0.39 0.02 0.39 0.02 

GDD 2220.23 269.29 2182.97 262.08 2204.55 263.65 2203.58 265.60 2196.82 264.16 2189.82 262.98 

HDD 1.67 2.43 1.15 1.54 1.45 1.99 1.36 1.88 1.30 1.77 1.23 1.66 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-3> Summary statistics of climate variables based on MIROC5: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.98 2.48 4.85 2.44 4.81 2.47 4.97 2.46 5.35 2.54 5.82 2.59 

Apr 11.76 2.05 11.47 1.94 11.54 1.97 11.65 2.01 11.83 2.26 11.83 2.34 

May 17.38 1.58 17.13 1.48 17.17 1.50 17.35 1.53 17.69 1.67 17.81 1.69 

Jun 22.27 1.29 22.08 1.24 22.18 1.25 22.21 1.26 22.29 1.29 22.31 1.28 

Jul 24.15 1.42 23.94 1.31 23.99 1.34 24.03 1.34 24.04 1.38 23.99 1.36 

Aug 23.30 1.48 23.14 1.39 23.16 1.41 23.19 1.42 23.23 1.45 23.20 1.47 

Sep 19.32 1.63 18.97 1.45 19.09 1.52 19.15 1.52 19.30 1.60 19.38 1.65 

Precipitati

on 

Mar 75.44 20.97 75.60 18.30 75.12 18.73 74.18 18.60 74.64 18.43 75.11 18.32 

Apr 91.98 16.22 95.63 10.45 96.37 12.84 95.99 11.98 95.87 11.22 95.75 10.67 

May 114.02 21.65 116.53 10.91 118.29 12.77 116.11 13.99 116.36 12.61 116.51 11.54 

Jun 104.13 16.09 106.41 9.91 104.66 10.93 106.35 11.00 106.14 10.20 106.16 9.80 

Jul 101.89 18.14 103.55 10.41 104.16 13.29 104.64 12.47 104.18 11.43 103.82 10.71 

Aug 95.98 18.90 95.39 8.46 96.78 11.00 98.26 11.05 97.41 9.78 96.44 8.87 

Sep 87.74 19.36 81.31 12.93 82.14 15.04 83.40 15.79 82.55 14.50 81.83 13.50 

Precipitation  671.18 73.92 674.42 39.34 677.52 49.51 677.14 47.71 675.23 44.01 673.62 41.01 

Heavy rainfall 1 5.20 1.33 5.17 0.97 5.25 1.09 5.27 1.06 5.23 1.02 5.19 0.99 

Heavy rainfall 2 0.17 0.16 0.17 0.12 0.18 0.13 0.18 0.13 0.18 0.12 0.17 0.12 

Heavy rainfall 3 0.45 0.04 0.44 0.03 0.44 0.03 0.45 0.03 0.45 0.03 0.45 0.03 

GDD 2226.33 285.31 2183.67 269.76 2194.80 274.48 2208.71 277.35 2235.18 290.82 2243.85 295.44 

HDD 2.40 3.48 1.62 2.11 1.81 2.47 1.81 2.51 1.52 2.35 1.14 1.99 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   



 

 

1
5
2
 

<Table A-4> Summary statistics of climate variables based on CCSM4: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 5.24 2.40 5.02 2.38 5.14 2.37 5.14 2.39 5.10 2.39 5.07 2.38 

Apr 11.70 2.01 11.67 1.92 11.80 1.93 11.80 1.95 11.76 1.94 11.71 1.93 

May 17.65 1.54 17.24 1.51 17.46 1.54 17.41 1.52 17.36 1.52 17.30 1.51 

Jun 22.32 1.30 21.92 1.22 22.06 1.25 22.10 1.27 22.04 1.25 21.98 1.24 

Jul 24.43 1.33 24.03 1.29 24.21 1.31 24.22 1.30 24.16 1.30 24.10 1.30 

Aug 23.53 1.40 23.15 1.40 23.34 1.39 23.37 1.40 23.30 1.40 23.23 1.40 

Sep 19.72 1.42 19.31 1.42 19.55 1.41 19.51 1.43 19.45 1.43 19.38 1.42 

Precipitati

on 

Mar 72.61 17.34 72.31 15.20 71.86 14.87 72.46 14.92 72.41 14.86 72.35 14.94 

Apr 92.51 13.26 95.40 10.39 94.80 10.96 96.35 11.34 95.92 10.81 95.61 10.48 

May 114.91 18.07 115.96 12.84 116.58 15.19 115.72 13.18 115.83 12.75 115.92 12.60 

Jun 101.28 14.02 106.79 10.18 105.03 11.26 104.77 10.27 105.43 9.85 106.12 9.82 

Jul 104.23 15.10 107.64 9.89 107.00 12.12 107.66 11.19 107.68 10.43 107.68 9.96 

Aug 93.22 12.78 91.86 8.30 91.05 8.56 92.60 9.24 92.43 8.64 92.18 8.30 

Sep 77.62 17.88 78.89 11.69 76.38 13.07 77.81 12.73 78.09 11.87 78.45 11.50 

Precipitation  656.38 49.25 668.86 42.38 662.69 45.57 664.81 41.40 665.29 40.94 665.84 41.17 

Heavy rainfall 1 4.96 1.15 5.08 0.97 5.00 1.01 5.04 0.97 5.04 0.96 5.05 0.95 

Heavy rainfall 2 0.19 0.16 0.19 0.12 0.19 0.13 0.19 0.13 0.19 0.12 0.19 0.12 

Heavy rainfall 3 0.45 0.03 0.44 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 

GDD 2274.21 271.75 2211.54 267.60 2244.48 269.92 2244.72 270.99 2234.10 269.78 2222.86 268.64 

HDD 2.81 3.73 1.70 2.18 2.15 2.86 2.10 2.82 1.98 2.62 1.84 2.40 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-5> Summary statistics of climate variables based on averages among GCMs: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 5.08 2.39 4.93 2.37 4.99 2.37 5.02 2.38 5.09 2.38 5.19 2.37 

Apr 11.71 1.92 11.56 1.91 11.65 1.91 11.69 1.91 11.71 1.92 11.68 1.92 

May 17.38 1.49 17.13 1.47 17.24 1.48 17.27 1.49 17.33 1.51 17.32 1.51 

Jun 22.22 1.25 21.94 1.21 22.07 1.23 22.09 1.24 22.07 1.23 22.04 1.22 

Jul 24.27 1.33 24.01 1.28 24.10 1.30 24.14 1.30 24.11 1.30 24.06 1.28 

Aug 23.40 1.44 23.11 1.40 23.23 1.40 23.26 1.42 23.22 1.42 23.17 1.41 

Sep 19.47 1.54 19.08 1.45 19.24 1.47 19.27 1.49 19.26 1.49 19.23 1.49 

Precipitati

on 

Mar 73.85 17.49 73.32 17.07 73.16 16.99 72.99 16.94 73.09 16.97 73.20 17.01 

Apr 94.41 10.82 94.97 10.07 95.86 9.92 96.51 10.47 95.99 10.29 95.47 10.15 

May 113.89 11.30 115.16 10.50 115.10 10.65 114.90 10.63 114.99 10.57 115.09 10.52 

Jun 104.05 10.97 106.06 9.53 104.37 9.38 104.98 9.15 105.24 9.16 105.60 9.28 

Jul 101.95 10.27 104.15 8.64 103.98 9.69 104.19 9.27 104.20 8.91 104.19 8.69 

Aug 92.31 10.43 93.45 7.52 92.82 7.65 93.68 8.31 93.56 7.91 93.48 7.63 

Sep 82.81 11.34 80.83 10.71 80.97 11.03 81.42 10.77 81.18 10.71 80.98 10.69 

Precipitation  663.28 43.31 667.93 39.10 666.26 40.12 665.99 39.81 665.54 39.38 665.26 39.05 

Heavy rainfall 1 4.10 0.83 4.12 0.78 4.11 0.80 4.13 0.79 4.12 0.78 4.11 0.78 

Heavy rainfall 2 0.11 0.08 0.11 0.07 0.11 0.07 0.12 0.07 0.11 0.07 0.11 0.07 

Heavy rainfall 3 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 

GDD 2238.50 273.82 2189.73 265.76 2210.49 268.24 2216.24 270.20 2216.14 271.52 2211.44 270.99 

HDD 2.05 2.86 1.35 1.76 1.59 2.17 1.61 2.22 1.47 2.05 1.30 1.83 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-6> Summary statistics of climate variables in 2030 based on MIROC-ESM: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 6.23 2.25 6.14 2.23 6.59 2.14 6.28 2.21 6.25 2.21 6.20 2.22 

Apr 13.26 1.85 12.95 1.92 13.30 1.88 13.22 1.87 13.13 1.89 13.04 1.90 

May 18.74 1.40 18.06 1.45 18.30 1.45 18.38 1.43 18.28 1.44 18.18 1.45 

Jun 23.20 1.07 22.91 1.17 23.00 1.13 23.07 1.14 23.01 1.15 22.96 1.16 

Jul 25.42 0.94 25.27 1.08 25.37 0.98 25.35 1.00 25.33 1.02 25.31 1.05 

Aug 24.40 1.16 24.41 1.30 24.35 1.23 24.36 1.22 24.38 1.24 24.40 1.27 

Sep 21.08 1.30 20.76 1.48 20.77 1.42 20.88 1.39 20.84 1.42 20.80 1.45 

Precipitati

on 

Mar 80.54 17.78 77.25 14.70 81.73 15.90 81.05 16.33 79.92 15.73 78.62 15.18 

Apr 102.97 12.09 99.24 10.66 101.42 10.39 101.68 10.70 100.81 10.66 99.97 10.64 

May 126.40 12.43 116.79 10.53 124.52 11.70 121.36 10.57 120.18 10.39 118.63 10.35 

Jun 112.42 19.27 107.37 11.71 114.84 15.39 112.90 15.28 111.20 14.13 109.35 12.91 

Jul 126.72 16.18 111.39 11.23 118.44 13.34 120.00 13.48 117.08 12.66 114.14 11.89 

Aug 103.78 12.76 90.77 8.57 98.62 9.73 98.72 10.14 96.10 9.48 93.42 8.95 

Sep 85.27 13.56 78.76 9.65 83.26 11.18 85.00 11.26 82.84 10.67 80.73 10.11 

Precipitation  738.10 49.75 681.58 42.59 722.83 46.30 720.71 45.81 708.14 44.58 694.85 43.47 

Heavy rainfall 1 2.89 0.79 2.37 0.65 2.68 0.74 2.72 0.72 2.61 0.70 2.49 0.67 

Heavy rainfall 2 0.04 0.06 0.02 0.03 0.03 0.04 0.03 0.05 0.03 0.04 0.02 0.03 

Heavy rainfall 3 0.32 0.02 0.32 0.02 0.31 0.02 0.32 0.02 0.32 0.02 0.32 0.02 

GDD 2458.96 242.80 2410.06 261.69 2432.34 255.37 2435.16 252.68 2427.56 255.65 2419.06 258.72 

HDD 1.24 1.53 2.48 2.92 1.55 1.83 1.84 2.10 2.05 2.36 2.27 2.64 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-7> Summary statistics of climate variables in 2030 based on GFDL-CM3 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 5.74 2.32 5.00 2.39 5.25 2.31 5.45 2.30 5.30 2.33 5.15 2.36 

Apr 14.08 1.82 12.36 1.89 12.88 1.93 13.14 1.88 12.89 1.88 12.63 1.89 

May 18.70 1.45 18.22 1.38 18.35 1.41 18.52 1.41 18.43 1.40 18.33 1.39 

Jun 23.09 1.08 22.78 1.22 22.91 1.23 22.96 1.19 22.90 1.20 22.84 1.21 

Jul 26.31 1.36 25.51 1.30 25.89 1.35 25.92 1.32 25.80 1.32 25.66 1.31 

Aug 25.53 1.53 24.67 1.48 25.11 1.53 25.23 1.52 25.05 1.51 24.86 1.50 

Sep 21.36 1.28 20.82 1.37 21.28 1.40 21.17 1.36 21.08 1.36 20.96 1.36 

Precipitati

on 

Mar 78.71 22.80 75.05 19.88 74.13 21.14 75.49 20.52 75.48 20.35 75.33 20.13 

Apr 94.14 8.93 106.25 13.27 104.11 11.12 102.68 11.03 103.99 11.63 105.22 12.39 

May 132.61 16.09 129.27 15.19 137.19 17.65 129.28 15.25 130.02 15.31 130.03 15.30 

Jun 98.28 14.11 111.79 11.26 114.42 12.22 108.30 11.94 109.62 11.55 110.81 11.31 

Jul 129.36 12.76 120.95 8.54 126.47 9.02 124.81 9.38 123.57 8.95 122.26 8.66 

Aug 119.92 15.38 105.27 12.25 107.17 15.06 108.79 13.20 107.64 12.93 106.43 12.60 

Sep 76.29 12.23 82.34 12.85 83.67 14.56 79.11 12.51 80.04 12.64 81.14 12.75 

Precipitation  729.31 44.48 730.92 50.00 747.17 52.28 728.46 46.94 730.35 48.02 731.23 49.07 

Heavy rainfall 1 4.26 0.78 4.45 0.88 4.56 0.88 4.29 0.83 4.36 0.84 4.41 0.86 

Heavy rainfall 2 0.09 0.11 0.09 0.07 0.10 0.09 0.09 0.08 0.09 0.08 0.09 0.07 

Heavy rainfall 3 0.37 0.02 0.38 0.02 0.37 0.02 0.37 0.02 0.38 0.02 0.38 0.02 

GDD 2542.78 266.78 2412.19 265.04 2470.27 271.58 2486.05 268.28 2463.08 267.42 2438.08 266.32 

HDD 8.17 9.13 4.89 5.42 6.35 6.89 6.73 7.31 6.14 6.71 5.52 6.06 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    



 

 

1
5
6
 

<Table A-8> Summary statistics of climate variables in 2030 based on MIROC5: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 7.81 1.98 6.79 2.08 7.28 2.01 7.21 2.03 7.11 2.05 6.97 2.06 

Apr 14.68 1.67 13.79 1.72 14.20 1.67 14.28 1.68 14.12 1.69 13.96 1.71 

May 19.36 1.48 18.66 1.38 18.79 1.40 18.96 1.43 18.87 1.41 18.76 1.40 

Jun 23.57 1.19 22.92 1.13 23.19 1.10 23.28 1.14 23.16 1.14 23.04 1.13 

Jul 25.44 1.33 25.22 1.24 25.42 1.19 25.38 1.28 25.33 1.26 25.28 1.25 

Aug 24.66 1.42 24.31 1.38 24.59 1.32 24.48 1.37 24.43 1.37 24.37 1.37 

Sep 20.49 1.44 20.41 1.44 20.50 1.40 20.47 1.43 20.45 1.43 20.43 1.44 

Precipitati

on 

Mar 85.56 26.36 76.96 22.55 80.48 23.37 80.74 23.44 79.70 23.10 78.42 22.80 

Apr 105.44 10.22 96.34 8.07 105.44 9.40 101.02 9.10 99.91 8.69 98.34 8.35 

May 114.97 10.38 103.13 8.71 111.65 10.52 110.53 8.47 108.17 8.37 105.66 8.43 

Jun 96.84 16.82 101.98 13.63 106.06 14.69 100.34 14.66 101.43 14.24 102.00 13.90 

Jul 102.42 21.48 101.32 11.62 105.39 14.67 102.34 16.09 102.48 14.46 102.15 12.94 

Aug 75.47 13.36 79.20 10.98 77.36 11.44 79.36 11.49 79.42 11.23 79.36 11.06 

Sep 90.43 19.78 96.21 15.13 93.35 15.18 95.64 16.40 95.70 15.78 95.90 15.35 

Precipitation  671.14 48.88 655.13 48.33 679.73 51.10 669.96 47.69 666.81 47.81 661.83 48.04 

Heavy rainfall 1 5.38 0.99 5.14 0.93 5.46 0.96 5.34 0.94 5.30 0.93 5.23 0.93 

Heavy rainfall 2 0.26 0.19 0.22 0.14 0.26 0.16 0.25 0.16 0.24 0.15 0.23 0.14 

Heavy rainfall 3 0.47 0.03 0.46 0.03 0.46 0.03 0.46 0.03 0.46 0.03 0.46 0.03 

GDD 2539.38 273.00 2447.08 262.10 2490.70 258.09 2494.25 265.49 2479.31 264.16 2463.38 262.99 

HDD 4.87 5.75 4.09 4.37 3.95 4.30 4.41 4.97 4.25 4.71 4.14 4.51 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-9> Summary statistics of climate variables in 2030 based on CCSM4: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 6.59 2.36 5.74 2.43 6.01 2.39 6.11 2.37 5.99 2.39 5.86 2.41 

Apr 12.92 2.02 12.48 1.94 12.91 1.97 12.85 1.98 12.74 1.97 12.62 1.96 

May 18.03 1.51 18.24 1.46 18.30 1.50 18.15 1.49 18.18 1.48 18.22 1.47 

Jun 23.43 1.32 23.15 1.25 23.20 1.31 23.19 1.29 23.18 1.28 23.17 1.27 

Jul 25.50 1.27 25.16 1.24 25.12 1.29 25.33 1.26 25.26 1.25 25.20 1.25 

Aug 25.52 1.48 24.54 1.39 24.88 1.36 25.00 1.42 24.85 1.41 24.69 1.40 

Sep 20.54 1.50 20.46 1.53 20.69 1.54 20.52 1.53 20.51 1.54 20.50 1.54 

Precipitati

on 

Mar 78.22 20.20 83.21 17.86 83.84 20.03 81.39 18.87 82.04 18.61 82.67 18.27 

Apr 99.11 13.25 92.94 12.11 97.70 14.92 95.59 12.62 95.08 12.56 94.18 12.38 

May 116.25 17.41 109.79 12.37 107.00 14.28 108.86 13.87 109.13 13.24 109.42 12.72 

Jun 119.83 20.20 115.41 14.06 117.97 16.27 117.14 15.99 116.80 15.35 116.22 14.69 

Jul 95.52 17.80 105.81 13.83 111.99 16.69 104.59 15.19 105.61 14.67 106.03 14.21 

Aug 63.92 12.49 85.48 8.80 73.07 8.68 76.45 8.97 79.26 8.70 82.32 8.64 

Sep 75.38 14.06 86.29 10.13 80.69 10.49 80.22 10.69 82.10 10.31 84.16 10.12 

Precipitation  648.24 41.06 678.93 37.38 672.27 38.53 664.23 37.10 670.01 36.94 674.99 37.06 

Heavy rainfall 1 5.03 0.88 5.42 0.78 5.24 0.78 5.21 0.76 5.29 0.76 5.36 0.77 

Heavy rainfall 2 0.18 0.15 0.20 0.11 0.18 0.11 0.19 0.12 0.19 0.11 0.19 0.11 

Heavy rainfall 3 0.46 0.03 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 

GDD 2471.24 280.34 2410.63 271.97 2440.39 277.58 2439.87 276.73 2430.55 275.44 2420.70 273.84 

HDD 6.57 7.59 4.69 5.12 4.82 5.39 5.48 6.13 5.15 5.74 4.88 5.40 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-10> Summary statistics of climate variables in 2030 based on averages among GCMs: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 6.59 2.22 5.92 2.28 6.28 2.21 6.26 2.22 6.16 2.24 6.05 2.26 

Apr 13.74 1.83 12.90 1.87 13.32 1.86 13.37 1.85 13.22 1.85 13.06 1.86 

May 18.71 1.45 18.30 1.41 18.43 1.43 18.50 1.44 18.44 1.43 18.37 1.42 

Jun 23.32 1.16 22.94 1.19 23.08 1.19 23.13 1.18 23.06 1.18 23.00 1.19 

Jul 25.67 1.21 25.29 1.21 25.45 1.19 25.49 1.21 25.43 1.21 25.36 1.21 

Aug 25.02 1.38 24.48 1.38 24.73 1.35 24.77 1.37 24.68 1.37 24.58 1.38 

Sep 20.87 1.37 20.61 1.45 20.81 1.43 20.76 1.42 20.72 1.43 20.67 1.44 

Precipitati

on 

Mar 80.76 21.27 78.12 18.45 80.04 19.69 79.67 19.43 79.29 19.12 78.76 18.79 

Apr 100.41 8.58 98.69 9.56 102.17 9.41 100.24 9.03 99.95 9.19 99.43 9.37 

May 122.56 10.60 114.74 9.86 120.09 10.35 117.51 9.51 116.87 9.59 115.93 9.71 

Jun 106.84 13.16 109.14 10.19 113.32 11.20 109.67 11.46 109.76 10.98 109.59 10.55 

Jul 113.51 13.37 109.87 9.50 115.57 10.66 112.94 11.15 112.18 10.54 111.14 9.99 

Aug 90.77 9.31 90.18 8.52 89.06 8.74 90.83 8.79 90.60 8.70 90.38 8.61 

Sep 81.84 10.64 85.90 10.10 85.24 10.49 84.99 10.04 85.17 10.04 85.48 10.06 

Precipitation  696.70 39.01 686.64 41.47 705.50 42.38 695.84 40.24 693.83 40.66 690.72 41.08 

Heavy rainfall 1 4.39 0.65 4.35 0.72 4.49 0.71 4.39 0.69 4.39 0.70 4.37 0.71 

Heavy rainfall 2 0.14 0.08 0.13 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 

Heavy rainfall 3 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 

GDD 2503.09 265.30 2419.99 264.83 2458.43 265.12 2463.83 265.38 2450.12 265.27 2435.30 265.08 

HDD 5.21 5.92 4.04 4.43 4.17 4.55 4.61 5.09 4.40 4.85 4.20 4.63 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-11> Summary statistics of climate variables based on MIROC-ESM: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 1.25 0.52 1.28 0.46 1.27 0.43 1.24 0.43 1.25 0.43 1.25 0.42 

Apr 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 

May 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 

Jun -1.05 1.91 -1.38 1.94 -1.61 1.95 -1.30 1.93 -1.41 1.94 -1.52 1.95 

Jul 7.00 1.54 6.75 1.55 6.52 1.58 6.79 1.56 6.70 1.57 6.61 1.57 

Aug 13.09 1.37 13.05 1.37 13.02 1.38 13.07 1.38 13.05 1.38 13.03 1.38 

Sep 18.53 1.43 18.38 1.43 18.29 1.44 18.39 1.43 18.36 1.43 18.32 1.44 

Precipitati

on 

Mar 47.67 11.38 46.05 11.03 45.04 11.05 46.74 10.83 46.22 10.92 45.64 11.00 

Apr 62.92 14.18 61.77 12.16 62.20 11.35 63.08 12.18 62.74 11.80 62.45 11.52 

May 80.46 12.98 82.51 9.62 82.43 9.56 81.25 9.72 81.59 9.50 81.99 9.43 

Jun 98.93 13.56 98.83 12.58 98.36 12.67 97.26 11.77 97.61 11.97 97.98 12.28 

Jul 89.58 14.47 93.69 14.23 94.14 12.84 90.72 13.06 91.91 12.83 93.07 12.74 

Aug 88.76 14.51 90.73 11.89 91.13 10.04 90.56 11.80 90.77 11.08 90.97 10.48 

Sep 80.15 10.08 80.79 9.68 80.76 9.42 81.66 9.91 81.33 9.68 81.03 9.52 

Precipitation  548.46 53.42 554.38 53.11 554.07 52.41 548.32 52.48 549.21 52.19 550.13 52.06 

Heavy rainfall 1 1.25 0.52 1.28 0.46 1.27 0.43 1.24 0.43 1.25 0.43 1.25 0.42 

Heavy rainfall 2 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 

Heavy rainfall 3 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 

GDD 1551.24 219.47 1524.04 214.35 1508.20 211.90 1530.03 215.63 1522.65 214.39 1515.23 213.11 

HDD 0.03 0.06 0.02 0.04 0.02 0.03 0.02 0.05 0.02 0.04 0.02 0.04 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-12> Summary statistics of climate variables based on GFDL-CM3: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar -1.04 1.90 -0.85 1.85 -0.92 1.80 -0.98 1.81 -0.96 1.80 -0.94 1.80 

Apr 6.90 1.40 6.86 1.40 6.76 1.44 6.88 1.40 6.84 1.41 6.80 1.42 

May 13.44 1.41 13.32 1.39 13.15 1.38 13.28 1.43 13.23 1.41 13.19 1.39 

Jun 18.44 1.42 18.38 1.40 18.26 1.39 18.38 1.41 18.34 1.40 18.30 1.39 

Jul 20.87 1.30 20.77 1.27 20.65 1.27 20.74 1.30 20.71 1.28 20.68 1.27 

Aug 19.67 1.31 19.63 1.25 19.49 1.23 19.62 1.25 19.58 1.24 19.53 1.24 

Sep 15.30 1.53 15.06 1.40 14.97 1.36 15.07 1.42 15.03 1.39 15.00 1.38 

Precipitati

on 

Mar 41.45 11.99 40.80 10.57 41.24 10.75 41.24 10.75 41.15 10.62 41.15 10.62 

Apr 62.27 16.35 63.08 13.30 63.35 11.93 63.17 13.51 63.21 12.81 63.27 12.27 

May 92.09 13.39 88.78 13.02 87.36 11.58 91.13 11.19 89.87 11.20 88.60 11.32 

Jun 100.08 21.04 98.86 16.87 95.78 13.77 96.40 16.02 96.27 15.08 96.05 14.31 

Jul 92.84 14.73 91.85 12.91 93.33 12.31 94.57 13.63 94.11 13.05 93.70 12.61 

Aug 92.76 14.84 91.29 12.49 92.30 12.17 92.40 12.71 92.23 12.44 92.20 12.26 

Sep 77.91 12.33 76.78 11.95 76.10 11.50 77.24 11.49 76.91 11.48 76.52 11.48 

Precipitation  559.40 56.66 551.44 56.22 549.46 54.42 553.97 54.21 551.51 54.01 549.16 53.92 

Heavy rainfall 1 2.38 0.77 2.31 0.68 2.29 0.67 2.36 0.68 2.34 0.67 2.31 0.66 

Heavy rainfall 2 0.01 0.04 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.02 

Heavy rainfall 3 0.38 0.02 0.38 0.02 0.38 0.02 0.38 0.02 0.38 0.02 0.38 0.02 

GDD 1560.05 209.34 1545.32 205.15 1526.36 203.51 1543.34 207.70 1537.71 205.89 1531.95 204.50 

HDD 0.05 0.11 0.06 0.10 0.06 0.09 0.06 0.10 0.06 0.09 0.06 0.09 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-13> Summary statistics of climate variables based on MIROC5: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar -1.44 1.96 -1.60 1.89 -1.54 1.88 -1.46 1.94 -1.07 2.20 -0.58 2.34 

Apr 6.79 1.67 6.51 1.56 6.45 1.53 6.69 1.63 7.02 2.00 7.12 2.15 

May 13.42 1.59 13.12 1.47 13.06 1.42 13.29 1.53 13.57 1.70 13.64 1.75 

Jun 18.52 1.49 18.48 1.44 18.37 1.42 18.48 1.45 18.57 1.52 18.65 1.58 

Jul 20.75 1.41 20.54 1.38 20.45 1.31 20.64 1.37 20.86 1.43 20.99 1.43 

Aug 19.57 1.32 19.52 1.29 19.54 1.28 19.54 1.31 19.60 1.36 19.66 1.40 

Sep 15.21 1.50 14.99 1.46 14.88 1.39 15.07 1.44 15.22 1.44 15.27 1.43 

Precipitati

on 

Mar 42.55 14.43 42.72 12.54 43.00 11.86 42.03 11.45 42.35 11.50 42.68 11.63 

Apr 64.55 11.68 68.60 13.65 69.38 11.62 67.33 11.71 67.95 11.58 68.64 11.54 

May 85.06 16.58 88.06 14.06 87.33 12.20 89.10 13.60 88.48 12.98 87.89 12.49 

Jun 90.75 15.25 92.89 12.14 94.39 12.16 91.62 12.80 92.64 12.35 93.58 12.15 

Jul 94.76 15.54 97.27 14.35 97.57 12.27 95.67 13.03 96.34 12.72 96.97 12.44 

Aug 93.84 12.28 93.59 10.21 91.16 9.84 93.07 10.27 92.44 9.83 91.79 9.68 

Sep 86.98 16.36 83.67 13.61 82.17 11.71 83.63 13.74 83.19 12.95 82.69 12.27 

Precipitation  558.49 62.88 566.80 57.41 565.01 53.00 560.69 54.99 561.55 53.93 562.34 53.12 

Heavy rainfall 1 3.38 0.87 3.42 0.74 3.39 0.69 3.36 0.73 3.37 0.71 3.37 0.69 

Heavy rainfall 2 0.07 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

Heavy rainfall 3 0.44 0.03 0.44 0.03 0.44 0.03 0.44 0.03 0.44 0.03 0.44 0.03 

GDD 1544.34 226.57 1515.82 216.73 1506.21 209.57 1529.06 220.03 1555.92 233.42 1568.55 238.49 

HDD 0.13 0.17 0.10 0.14 0.09 0.12 0.10 0.13 0.07 0.11 0.05 0.09 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-14> Summary statistics of climate variables based on CCSM4: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar -0.91 1.86 -1.08 1.82 -1.22 1.84 -1.11 1.83 -1.13 1.83 -1.17 1.83 

Apr 6.71 1.58 6.80 1.49 6.65 1.51 6.79 1.50 6.75 1.50 6.70 1.50 

May 13.57 1.45 13.42 1.43 13.25 1.41 13.42 1.42 13.36 1.41 13.30 1.41 

Jun 18.71 1.47 18.44 1.45 18.30 1.44 18.50 1.45 18.43 1.44 18.36 1.44 

Jul 20.96 1.42 20.72 1.34 20.58 1.31 20.78 1.34 20.71 1.33 20.65 1.32 

Aug 19.97 1.27 19.82 1.28 19.62 1.29 19.83 1.26 19.76 1.27 19.69 1.28 

Sep 15.67 1.35 15.54 1.37 15.29 1.41 15.49 1.37 15.42 1.38 15.36 1.40 

Precipitati

on 

Mar 39.48 12.65 42.19 12.35 42.78 11.62 42.11 11.64 42.33 11.54 42.55 11.53 

Apr 67.86 14.06 69.90 12.22 68.61 12.20 69.43 12.27 69.13 12.09 68.85 12.06 

May 86.14 13.45 85.84 11.56 85.75 10.36 84.59 10.63 85.00 10.41 85.39 10.31 

Jun 91.21 14.54 93.61 13.30 95.41 12.68 92.76 12.64 93.69 12.49 94.59 12.51 

Jul 94.62 15.23 99.04 14.71 100.83 14.01 99.83 14.31 100.16 14.09 100.51 13.99 

Aug 92.42 18.40 89.70 11.95 90.47 10.75 92.81 13.49 92.08 12.33 91.29 11.38 

Sep 80.66 12.50 81.79 11.98 84.63 12.56 82.23 12.10 82.93 11.93 83.74 12.10 

Precipitation  552.39 56.91 562.08 56.71 568.48 56.14 561.59 56.46 563.16 55.96 564.76 55.75 

Heavy rainfall 1 3.78 0.83 3.86 0.78 3.92 0.79 3.85 0.78 3.87 0.77 3.89 0.78 

Heavy rainfall 2 0.10 0.10 0.10 0.08 0.10 0.07 0.10 0.08 0.10 0.07 0.10 0.07 

Heavy rainfall 3 0.47 0.04 0.46 0.03 0.46 0.03 0.46 0.03 0.46 0.03 0.46 0.03 

GDD 1597.11 214.83 1571.11 212.46 1543.10 210.56 1573.23 211.72 1563.36 211.36 1553.14 210.96 

HDD 0.15 0.23 0.13 0.19 0.09 0.14 0.12 0.18 0.11 0.17 0.10 0.15 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-15> Summary statistics of climate variables based on Average among GCMs: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar -1.11 1.84 -1.23 1.84 -1.32 1.85 -1.21 1.85 -1.14 1.88 -1.05 1.89 

Apr 6.85 1.49 6.73 1.49 6.59 1.50 6.79 1.50 6.83 1.55 6.80 1.56 

May 13.38 1.43 13.23 1.41 13.12 1.39 13.27 1.43 13.30 1.45 13.29 1.46 

Jun 18.55 1.44 18.42 1.43 18.31 1.42 18.44 1.43 18.42 1.44 18.41 1.45 

Jul 20.86 1.36 20.68 1.32 20.59 1.29 20.73 1.33 20.75 1.32 20.75 1.31 

Aug 19.78 1.30 19.66 1.28 19.55 1.27 19.67 1.29 19.65 1.30 19.62 1.30 

Sep 15.36 1.44 15.17 1.41 15.02 1.39 15.18 1.41 15.18 1.40 15.16 1.40 

Precipitati

on 

Mar 42.79 11.00 42.94 10.97 43.02 11.03 43.03 10.69 43.01 10.79 43.01 10.91 

Apr 64.40 10.89 65.84 11.45 65.89 11.34 65.76 11.47 65.76 11.37 65.80 11.32 

May 85.94 11.69 86.30 10.54 85.72 10.20 86.52 10.38 86.24 10.29 85.97 10.22 

Jun 95.24 13.23 96.05 11.79 95.99 11.66 94.51 11.62 95.05 11.60 95.55 11.61 

Jul 92.95 12.61 95.46 12.95 96.47 12.09 95.20 12.48 95.63 12.31 96.06 12.17 

Aug 91.94 11.79 91.33 10.19 91.27 9.82 92.21 10.57 91.88 10.27 91.56 10.01 

Sep 81.42 10.49 80.76 10.39 80.92 10.36 81.19 10.30 81.09 10.30 81.00 10.32 

Precipitation  554.68 52.65 558.67 52.81 559.26 52.54 556.14 52.43 556.35 52.30 556.60 52.23 

Heavy rainfall 1 2.70 0.58 2.72 0.56 2.72 0.56 2.70 0.56 2.71 0.56 2.71 0.56 

Heavy rainfall 2 0.05 0.04 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 

Heavy rainfall 3 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 

GDD 1563.19 216.70 1539.07 211.80 1520.97 208.53 1543.92 213.46 1544.91 215.31 1542.22 215.41 

HDD 0.09 0.13 0.08 0.11 0.07 0.09 0.08 0.11 0.07 0.10 0.06 0.08 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-16> Summary statistics of climate variables in 2030 based on MIROC-ESM: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 0.54 1.76 1.21 1.76 0.43 1.80 0.72 1.76 0.65 1.78 0.55 1.79 

Apr 9.00 1.13 8.91 1.18 8.35 1.27 8.82 1.19 8.67 1.22 8.51 1.24 

May 15.09 1.23 14.44 1.30 14.09 1.33 14.53 1.29 14.40 1.30 14.25 1.32 

Jun 20.09 1.24 19.70 1.29 19.44 1.32 19.70 1.29 19.63 1.30 19.54 1.31 

Jul 23.09 1.07 22.76 1.15 22.32 1.24 22.68 1.15 22.58 1.18 22.46 1.21 

Aug 21.53 1.24 21.12 1.31 20.92 1.35 21.20 1.29 21.11 1.31 21.01 1.33 

Sep 17.17 1.44 16.64 1.44 16.39 1.50 16.76 1.45 16.64 1.47 16.51 1.49 

Precipitati

on 

Mar 47.36 13.25 51.15 13.00 48.94 11.87 49.56 12.92 49.53 12.61 49.31 12.26 

Apr 67.93 15.02 67.86 15.09 68.39 14.37 67.67 14.44 67.89 14.42 68.13 14.39 

May 93.31 13.24 89.73 12.96 85.39 10.30 91.23 11.46 89.29 11.16 87.32 10.77 

Jun 102.35 21.69 106.60 19.03 102.48 16.46 104.33 17.82 104.01 17.52 103.38 17.06 

Jul 91.84 12.72 94.10 10.79 88.59 9.67 93.29 10.66 91.73 10.30 90.14 9.95 

Aug 90.34 10.71 82.56 8.42 81.48 7.61 85.15 9.13 83.75 8.49 82.51 7.97 

Sep 87.39 16.80 83.47 14.18 80.30 12.12 84.94 14.53 83.32 13.68 81.74 12.85 

Precipitation  580.53 55.97 575.46 54.24 555.58 49.76 576.16 54.28 569.52 52.82 562.54 51.28 

Heavy rainfall 1 1.64 0.50 1.51 0.49 1.32 0.40 1.55 0.46 1.47 0.44 1.39 0.42 

Heavy rainfall 2 0.01 0.03 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.02 

Heavy rainfall 3 0.33 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 0.32 0.02 

GDD 1854.66 198.60 1789.38 207.76 1735.86 214.62 1792.38 207.16 1774.96 209.49 1755.73 212.03 

HDD 0.34 0.31 0.26 0.25 0.19 0.19 0.26 0.24 0.24 0.22 0.22 0.21 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    



 

 

1
6
5
 

<Table A-17> Summary statistics of climate variables in 2030 based on GFDL-CM3: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar -0.02 1.70 -0.90 1.81 -1.26 1.78 -0.49 1.74 -0.74 1.75 -1.00 1.77 

Apr 9.61 1.52 8.06 1.52 7.55 1.50 8.47 1.48 8.18 1.48 7.87 1.49 

May 14.92 1.32 14.53 1.35 14.38 1.37 14.71 1.34 14.61 1.35 14.49 1.36 

Jun 19.98 1.15 19.30 1.21 19.14 1.29 19.48 1.21 19.36 1.24 19.25 1.26 

Jul 23.00 1.10 22.60 1.09 22.21 1.16 22.65 1.10 22.51 1.12 22.37 1.14 

Aug 21.76 1.19 21.20 1.23 20.82 1.25 21.36 1.22 21.18 1.22 21.00 1.23 

Sep 17.54 1.32 17.10 1.40 16.70 1.40 17.09 1.39 16.98 1.39 16.84 1.40 

Precipitati

on 

Mar 40.07 9.80 41.92 9.37 42.89 10.47 42.32 9.68 42.57 9.91 42.75 10.18 

Apr 72.99 14.87 67.36 15.36 67.04 14.64 70.13 14.37 69.04 14.50 67.99 14.60 

May 105.62 15.86 97.77 12.80 96.17 11.25 101.43 13.29 99.73 12.56 97.95 11.87 

Jun 93.42 14.82 108.51 12.50 102.18 13.35 101.68 13.76 102.31 13.44 102.48 13.30 

Jul 121.27 16.13 115.64 17.10 110.97 15.53 114.63 15.45 113.52 15.53 112.27 15.56 

Aug 103.52 17.18 110.05 16.45 108.17 14.81 106.25 15.70 107.01 15.51 107.69 15.21 

Sep 69.66 11.83 83.09 13.62 81.56 11.69 79.00 13.10 79.83 12.65 80.73 12.17 

Precipitation  606.56 59.28 624.34 64.38 608.98 58.08 615.44 59.57 614.00 59.39 611.87 58.88 

Heavy rainfall 1 2.93 0.74 3.29 0.81 3.02 0.73 3.06 0.73 3.06 0.73 3.05 0.73 

Heavy rainfall 2 0.04 0.07 0.06 0.06 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 

Heavy rainfall 3 0.39 0.02 0.39 0.02 0.39 0.02 0.38 0.02 0.39 0.02 0.39 0.02 

GDD 1877.80 201.77 1782.40 201.97 1730.65 206.03 1804.91 203.03 1781.58 203.84 1756.40 204.86 

HDD 0.40 0.52 0.26 0.35 0.21 0.27 0.28 0.36 0.26 0.34 0.23 0.30 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-18> Summary statistics of climate variables in 2030 based on MIROC5: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 2.16 1.85 1.70 1.78 1.06 1.80 1.59 1.79 1.46 1.79 1.28 1.79 

Apr 10.41 1.59 10.08 1.55 9.39 1.54 10.03 1.56 9.83 1.55 9.62 1.54 

May 15.47 1.44 15.08 1.39 14.93 1.41 15.19 1.41 15.11 1.41 15.02 1.41 

Jun 19.65 1.48 19.51 1.52 19.26 1.49 19.51 1.49 19.43 1.49 19.34 1.49 

Jul 22.26 1.26 22.40 1.28 22.01 1.32 22.16 1.29 22.13 1.30 22.08 1.31 

Aug 21.04 1.40 21.18 1.39 20.74 1.40 20.93 1.39 20.88 1.39 20.82 1.39 

Sep 16.25 1.47 16.36 1.44 16.11 1.47 16.21 1.46 16.19 1.46 16.15 1.46 

Precipitati

on 

Mar 43.29 15.84 44.59 11.40 40.84 10.90 43.12 12.58 42.60 12.00 41.83 11.42 

Apr 92.26 15.17 80.64 14.19 75.82 12.23 83.25 13.31 80.78 13.07 78.28 12.72 

May 86.18 12.48 83.92 11.61 79.99 10.36 83.89 11.14 82.79 10.86 81.45 10.60 

Jun 105.11 18.08 98.98 12.37 91.37 12.40 99.94 15.33 96.99 14.10 94.08 13.11 

Jul 88.38 12.54 83.96 11.44 86.92 11.46 86.66 12.66 86.71 12.09 86.80 11.69 

Aug 79.26 15.09 79.41 12.58 81.27 11.62 80.36 12.67 80.66 12.30 80.97 11.94 

Sep 92.98 15.78 84.30 11.43 89.57 12.23 90.64 13.04 89.91 12.54 89.54 12.25 

Precipitation  587.44 50.95 555.81 46.08 545.79 45.96 567.85 48.60 560.43 47.50 552.95 46.60 

Heavy rainfall 1 3.56 0.77 3.44 0.69 3.32 0.63 3.48 0.69 3.43 0.67 3.37 0.65 

Heavy rainfall 2 0.13 0.12 0.11 0.09 0.09 0.07 0.11 0.10 0.10 0.09 0.10 0.08 

Heavy rainfall 3 0.44 0.03 0.45 0.02 0.45 0.02 0.44 0.02 0.45 0.02 0.45 0.02 

GDD 1820.83 240.60 1813.36 236.51 1757.34 235.51 1795.42 237.35 1784.44 236.86 1771.63 236.23 

HDD 0.48 0.60 0.45 0.46 0.36 0.38 0.37 0.41 0.37 0.40 0.37 0.39 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-19> Summary statistics of climate variables in 2030 based on CCSM4: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 0.72 1.96 0.16 1.89 -0.19 1.83 0.21 1.91 0.09 1.88 -0.05 1.86 

Apr 7.97 1.49 8.13 1.40 7.74 1.39 8.00 1.43 7.93 1.41 7.85 1.40 

May 14.16 1.39 14.46 1.36 14.36 1.39 14.29 1.38 14.32 1.39 14.34 1.39 

Jun 19.36 1.44 19.28 1.45 19.32 1.44 19.29 1.44 19.30 1.44 19.31 1.44 

Jul 22.20 1.24 21.89 1.33 21.94 1.31 22.10 1.29 22.03 1.29 21.98 1.30 

Aug 21.50 1.41 21.35 1.31 20.92 1.29 21.29 1.33 21.18 1.32 21.05 1.30 

Sep 16.02 1.45 16.04 1.50 15.94 1.44 15.96 1.46 15.95 1.45 15.95 1.45 

Precipitati

on 

Mar 44.65 9.80 46.33 11.31 45.66 11.43 46.40 10.66 46.05 10.89 45.80 11.16 

Apr 77.02 10.74 67.31 10.10 65.16 9.07 69.65 9.40 68.25 9.31 66.73 9.20 

May 83.92 12.11 82.37 10.38 82.15 8.97 82.92 9.47 82.85 9.34 82.57 9.16 

Jun 112.76 22.64 106.09 18.68 101.35 16.98 105.23 18.15 104.33 17.63 102.99 17.24 

Jul 100.16 14.71 93.38 13.31 90.91 12.33 95.03 13.63 93.70 13.12 92.29 12.68 

Aug 97.36 20.06 92.68 13.47 95.36 11.41 94.53 14.09 94.94 12.88 95.21 11.89 

Sep 67.67 13.61 82.76 13.63 84.94 13.09 77.53 13.38 80.26 13.26 82.78 13.17 

Precipitation  583.55 55.82 570.92 55.36 565.52 55.64 571.29 52.75 570.39 53.65 568.37 54.64 

Heavy rainfall 1 4.08 0.75 3.94 0.63 3.95 0.60 3.99 0.63 3.99 0.61 3.97 0.60 

Heavy rainfall 2 0.15 0.15 0.13 0.12 0.12 0.09 0.13 0.11 0.13 0.10 0.13 0.10 

Heavy rainfall 3 0.47 0.03 0.47 0.04 0.47 0.03 0.47 0.03 0.47 0.03 0.47 0.03 

GDD 1744.31 220.58 1738.06 219.12 1716.11 215.65 1733.44 217.86 1727.87 217.18 1722.11 216.42 

HDD 0.27 0.38 0.22 0.31 0.25 0.32 0.28 0.38 0.27 0.35 0.26 0.33 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-20> Summary statistics of climate variables in 2030 based on averages among GCMs: Lake States 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 0.85 1.80 0.54 1.80 0.01 1.80 0.51 1.79 0.36 1.79 0.20 1.79 

Apr 9.25 1.39 8.79 1.39 8.26 1.41 8.83 1.39 8.65 1.40 8.46 1.40 

May 14.91 1.33 14.63 1.34 14.44 1.37 14.68 1.35 14.61 1.35 14.53 1.36 

Jun 19.77 1.31 19.45 1.36 19.29 1.38 19.50 1.35 19.43 1.36 19.36 1.37 

Jul 22.64 1.16 22.41 1.20 22.12 1.25 22.40 1.20 22.31 1.21 22.22 1.23 

Aug 21.46 1.29 21.21 1.30 20.85 1.32 21.19 1.30 21.09 1.30 20.97 1.31 

Sep 16.74 1.41 16.53 1.44 16.28 1.45 16.51 1.44 16.44 1.44 16.36 1.45 

Precipitati

on 

Mar 43.84 11.50 46.00 10.83 44.58 10.78 45.35 10.97 45.19 10.92 44.92 10.85 

Apr 77.55 12.80 70.79 12.95 69.10 11.88 72.67 12.14 71.49 12.13 70.28 12.04 

May 92.26 10.88 88.45 10.63 85.93 9.30 89.87 9.76 88.66 9.69 87.32 9.53 

Jun 103.41 18.13 105.04 14.36 99.34 13.47 102.80 15.43 101.91 14.71 100.74 14.04 

Jul 100.41 10.91 96.77 10.59 94.35 10.36 97.40 10.51 96.42 10.44 95.38 10.39 

Aug 92.62 13.07 91.18 10.95 91.57 10.30 91.57 11.21 91.59 10.93 91.59 10.62 

Sep 79.43 12.19 83.41 11.43 84.09 10.94 83.03 11.86 83.33 11.52 83.70 11.21 

Precipitation  589.52 52.52 581.63 52.57 568.97 49.99 582.69 51.44 578.58 51.06 573.94 50.57 

Heavy rainfall 1 3.05 0.54 3.05 0.54 2.90 0.51 3.02 0.52 2.99 0.52 2.95 0.51 

Heavy rainfall 2 0.08 0.06 0.07 0.05 0.07 0.04 0.07 0.05 0.07 0.04 0.07 0.04 

Heavy rainfall 3 0.40 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.41 0.02 

GDD 1824.40 214.49 1780.80 215.59 1734.99 217.45 1781.54 215.60 1767.21 216.18 1751.47 216.81 

HDD 0.37 0.40 0.30 0.31 0.25 0.27 0.30 0.32 0.28 0.30 0.27 0.28 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   



 

 

1
6
9
 

<Table A-21> Summary statistics of climate variables based on MIROC-ESM: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 2.31 3.87 2.02 3.88 1.86 3.89 2.05 3.87 1.98 3.87 1.92 3.88 

Apr 9.52 2.86 9.33 2.91 9.11 2.94 9.35 2.90 9.28 2.92 9.19 2.93 

May 15.08 2.33 15.05 2.36 15.02 2.37 15.09 2.34 15.06 2.35 15.04 2.36 

Jun 20.67 2.38 20.51 2.37 20.43 2.37 20.55 2.35 20.51 2.36 20.47 2.37 

Jul 23.81 2.31 23.58 2.26 23.53 2.26 23.69 2.27 23.63 2.26 23.58 2.26 

Aug 22.90 2.26 22.66 2.24 22.54 2.24 22.70 2.24 22.65 2.24 22.59 2.24 

Sep 17.59 2.72 17.37 2.66 17.22 2.63 17.39 2.68 17.34 2.66 17.28 2.65 

Precipitati

on 

Mar 32.61 13.44 31.87 12.45 31.26 12.55 31.49 11.98 31.46 12.15 31.38 12.34 

Apr 53.00 19.41 51.75 16.82 51.01 14.89 52.02 16.60 51.75 16.05 51.41 15.47 

May 83.27 24.68 83.83 22.71 82.00 21.47 83.06 22.76 82.79 22.29 82.43 21.86 

Jun 86.71 18.20 88.77 16.50 89.98 16.49 87.87 16.87 88.54 16.62 89.27 16.49 

Jul 73.17 15.79 75.41 14.94 75.27 14.14 73.62 14.74 74.27 14.49 74.83 14.29 

Aug 61.77 18.59 63.19 18.05 64.43 18.05 63.49 18.58 63.79 18.30 64.11 18.12 

Sep 56.48 24.65 56.40 22.61 56.31 22.42 55.81 22.38 56.02 22.34 56.18 22.35 

Precipitation  447.00 116.97 451.21 113.90 450.26 111.62 445.55 113.73 446.78 112.85 447.73 111.99 

Heavy rainfall 1 1.19 0.98 1.21 0.92 1.19 0.88 1.18 0.91 1.18 0.90 1.18 0.89 

Heavy rainfall 2 0.02 0.05 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 

Heavy rainfall 3 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 

GDD 1999.56 424.14 1969.40 420.88 1952.40 419.56 1977.63 420.09 1969.04 419.82 1960.46 419.64 

HDD 3.50 5.16 2.90 4.10 2.80 3.86 3.15 4.40 3.02 4.19 2.90 4.00 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-22> Summary statistics of climate variables based on GFDL-CM3: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 2.39 3.69 2.47 3.61 2.39 3.62 2.39 3.64 2.39 3.63 2.39 3.62 

Apr 9.08 2.67 9.06 2.68 9.00 2.76 9.07 2.69 9.05 2.71 9.03 2.74 

May 15.35 2.44 15.30 2.38 15.13 2.36 15.24 2.41 15.20 2.39 15.16 2.37 

Jun 20.58 2.50 20.47 2.39 20.33 2.31 20.47 2.40 20.42 2.37 20.38 2.34 

Jul 23.44 2.33 23.38 2.25 23.29 2.20 23.37 2.27 23.35 2.24 23.32 2.22 

Aug 22.51 2.32 22.42 2.22 22.30 2.18 22.41 2.22 22.38 2.20 22.34 2.18 

Sep 17.29 2.67 17.10 2.56 17.10 2.49 17.17 2.56 17.15 2.53 17.12 2.51 

Precipitati

on 

Mar 31.93 15.01 31.58 15.18 31.25 14.80 31.29 14.62 31.23 14.66 31.22 14.72 

Apr 57.09 20.19 56.01 19.95 55.37 18.85 56.74 20.41 56.26 19.86 55.80 19.34 

May 84.35 20.42 83.02 18.07 83.34 18.76 83.86 18.25 83.58 18.32 83.40 18.49 

Jun 96.42 19.55 92.96 16.95 92.06 17.48 93.97 17.27 93.33 17.17 92.68 17.24 

Jul 76.64 19.20 77.33 16.31 78.95 15.18 77.83 15.29 78.12 15.15 78.50 15.10 

Aug 67.05 20.49 68.60 19.78 67.84 19.40 67.51 19.84 67.61 19.61 67.72 19.46 

Sep 2.39 3.69 2.47 3.61 2.39 3.62 2.39 3.64 2.39 3.63 2.39 3.62 

Precipitation  53.73 23.09 52.70 22.75 51.48 21.02 52.43 21.39 52.13 21.28 51.81 21.15 

Heavy rainfall 1 467.20 116.83 462.20 116.43 460.27 116.68 462.04 114.77 460.66 115.02 459.49 115.39 

Heavy rainfall 2 1.99 1.29 1.98 1.23 2.00 1.23 1.99 1.23 1.99 1.23 1.99 1.22 

Heavy rainfall 3 0.03 0.08 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 

GDD 0.42 0.02 0.42 0.02 0.43 0.02 0.42 0.02 0.43 0.02 0.43 0.02 

HDD 1969.79 422.07 1955.60 410.47 1940.26 404.51 1955.46 412.56 1950.64 409.55 1945.48 406.80 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-23> Summary statistics of climate variables based on MIROC5: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.98 2.48 4.85 2.44 4.81 2.47 4.97 2.46 5.35 2.54 5.82 2.59 

Apr 11.76 2.05 11.47 1.94 11.54 1.97 11.65 2.01 11.83 2.26 11.83 2.34 

May 17.38 1.58 17.13 1.48 17.17 1.50 17.35 1.53 17.69 1.67 17.81 1.69 

Jun 22.27 1.29 22.08 1.24 22.18 1.25 22.21 1.26 22.29 1.29 22.31 1.28 

Jul 24.15 1.42 23.94 1.31 23.99 1.34 24.03 1.34 24.04 1.38 23.99 1.36 

Aug 23.30 1.48 23.14 1.39 23.16 1.41 23.19 1.42 23.23 1.45 23.20 1.47 

Sep 19.32 1.63 18.97 1.45 19.09 1.52 19.15 1.52 19.30 1.60 19.38 1.65 

Precipitati

on 

Mar 75.44 20.97 75.60 18.30 75.12 18.73 74.18 18.60 74.64 18.43 75.11 18.32 

Apr 91.98 16.22 95.63 10.45 96.37 12.84 95.99 11.98 95.87 11.22 95.75 10.67 

May 114.02 21.65 116.53 10.91 118.29 12.77 116.11 13.99 116.36 12.61 116.51 11.54 

Jun 104.13 16.09 106.41 9.91 104.66 10.93 106.35 11.00 106.14 10.20 106.16 9.80 

Jul 101.89 18.14 103.55 10.41 104.16 13.29 104.64 12.47 104.18 11.43 103.82 10.71 

Aug 95.98 18.90 95.39 8.46 96.78 11.00 98.26 11.05 97.41 9.78 96.44 8.87 

Sep 87.74 19.36 81.31 12.93 82.14 15.04 83.40 15.79 82.55 14.50 81.83 13.50 

Precipitation  671.18 73.92 674.42 39.34 677.52 49.51 677.14 47.71 675.23 44.01 673.62 41.01 

Heavy rainfall 1 5.20 1.33 5.17 0.97 5.25 1.09 5.27 1.06 5.23 1.02 5.19 0.99 

Heavy rainfall 2 0.17 0.16 0.17 0.12 0.18 0.13 0.18 0.13 0.18 0.12 0.17 0.12 

Heavy rainfall 3 0.45 0.04 0.44 0.03 0.44 0.03 0.45 0.03 0.45 0.03 0.45 0.03 

GDD 2226.33 285.31 2183.67 269.76 2194.80 274.48 2208.71 277.35 2235.18 290.82 2243.85 295.44 

HDD 2.40 3.48 1.62 2.11 1.81 2.47 1.81 2.51 1.52 2.35 1.14 1.99 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, 

and Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-24> Summary statistics of climate variables based on CCSM4: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 2.44 3.77 2.34 3.79 2.23 3.80 2.31 3.83 2.29 3.82 2.26 3.81 

Apr 9.30 2.85 9.28 2.85 9.13 2.85 9.27 2.86 9.23 2.86 9.18 2.85 

May 15.61 2.39 15.43 2.39 15.23 2.37 15.38 2.37 15.34 2.37 15.28 2.37 

Jun 20.82 2.35 20.58 2.37 20.42 2.36 20.61 2.35 20.55 2.35 20.48 2.35 

Jul 23.81 2.25 23.54 2.23 23.37 2.19 23.58 2.22 23.51 2.21 23.44 2.20 

Aug 22.97 2.19 22.80 2.14 22.58 2.14 22.78 2.17 22.72 2.16 22.65 2.15 

Sep 18.02 2.51 17.79 2.52 17.48 2.56 17.75 2.53 17.67 2.54 17.58 2.55 

Precipitati

on 

Mar 33.47 15.26 32.66 15.15 32.33 15.12 32.71 15.07 32.58 15.06 32.44 15.08 

Apr 52.75 18.39 54.56 16.26 53.93 15.25 54.20 15.82 53.97 15.21 53.88 15.00 

May 84.49 19.11 85.28 21.02 85.06 21.14 84.16 20.29 84.49 20.48 84.79 20.77 

Jun 93.24 18.53 93.64 15.85 93.96 15.47 93.25 15.41 93.46 15.10 93.70 15.13 

Jul 72.11 21.23 77.68 20.67 79.69 18.67 77.10 18.98 78.06 18.80 78.94 18.68 

Aug 61.65 21.23 60.44 18.55 63.42 19.30 63.06 19.69 63.08 19.37 63.20 19.23 

Sep 53.57 20.77 53.74 20.68 53.60 20.88 53.40 20.66 53.47 20.61 53.54 20.69 

Precipitation  451.27 107.29 457.99 114.40 461.98 115.80 456.54 110.85 457.71 112.00 459.03 113.44 

Heavy rainfall 1 2.99 1.30 3.07 1.38 3.10 1.39 3.02 1.34 3.04 1.35 3.06 1.36 

Heavy rainfall 2 0.11 0.15 0.11 0.12 0.11 0.12 0.11 0.13 0.10 0.12 0.10 0.12 

Heavy rainfall 3 0.52 0.04 0.52 0.04 0.51 0.04 0.51 0.04 0.51 0.04 0.51 0.04 

GDD 2035.35 415.13 2003.17 414.04 1969.73 411.57 2002.37 413.51 1992.07 413.02 1981.00 412.37 

HDD 6.11 7.63 5.04 6.34 4.11 5.10 4.97 6.19 4.71 5.85 4.42 5.48 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-25> Summary statistics of climate variables based on averages among GCMs: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 2.30 3.76 2.17 3.78 2.10 3.79 2.20 3.79 2.30 3.79 2.42 3.79 

Apr 9.31 2.81 9.16 2.84 9.03 2.86 9.21 2.83 9.24 2.84 9.19 2.84 

May 15.34 2.40 15.21 2.40 15.09 2.40 15.24 2.40 15.29 2.40 15.29 2.41 

Jun 20.68 2.43 20.54 2.41 20.42 2.38 20.55 2.40 20.52 2.41 20.47 2.40 

Jul 23.65 2.30 23.45 2.27 23.35 2.24 23.50 2.26 23.47 2.22 23.43 2.18 

Aug 22.75 2.27 22.60 2.22 22.48 2.20 22.60 2.23 22.57 2.22 22.54 2.20 

Sep 17.57 2.63 17.38 2.59 17.24 2.57 17.39 2.59 17.36 2.59 17.32 2.59 

Precipitati

on 

Mar 32.32 13.67 31.75 13.59 31.37 13.71 31.69 13.42 31.57 13.51 31.46 13.61 

Apr 54.93 16.86 54.56 16.57 53.82 16.01 54.44 16.59 54.22 16.36 54.01 16.16 

May 83.77 19.29 83.89 19.37 83.28 19.35 83.47 19.14 83.42 19.21 83.36 19.28 

Jun 90.03 14.99 90.12 14.08 90.80 15.11 90.32 14.78 90.43 14.80 90.60 14.92 

Jul 74.91 17.69 77.20 16.86 78.12 15.63 76.87 16.43 77.32 16.11 77.75 15.83 

Aug 64.21 18.29 64.82 17.78 65.47 17.74 65.61 18.30 65.54 18.05 65.49 17.86 

Sep 54.83 21.67 53.87 21.33 53.59 20.91 53.92 20.96 53.80 20.94 53.69 20.92 

Precipitation  455.00 110.53 456.21 111.10 456.44 111.59 454.88 110.85 454.83 110.87 454.84 110.94 

Heavy rainfall 1 2.25 1.17 2.26 1.17 2.27 1.18 2.26 1.18 2.26 1.18 2.26 1.17 

Heavy rainfall 2 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.08 

Heavy rainfall 3 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 

GDD 1996.92 423.28 1969.85 419.07 1951.06 415.05 1974.35 418.87 1973.29 418.55 1968.86 417.16 

HDD 4.69 6.03 4.01 5.12 3.54 4.43 4.00 5.09 3.79 4.88 3.56 4.61 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-26> Summary statistics of climate variables in 2030 based on MIROC-ESM: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.33 3.52 4.43 3.41 3.90 3.55 4.16 3.48 4.09 3.49 4.00 3.52 

Apr 10.98 2.52 10.87 2.61 10.51 2.65 10.87 2.58 10.76 2.60 10.63 2.63 

May 16.60 2.24 16.28 2.31 15.99 2.31 16.27 2.31 16.20 2.31 16.10 2.31 

Jun 21.59 2.12 21.48 2.33 21.45 2.35 21.47 2.29 21.47 2.31 21.46 2.33 

Jul 24.86 1.71 24.81 1.95 24.79 2.08 24.82 1.93 24.82 1.98 24.81 2.03 

Aug 24.66 1.91 24.26 2.07 24.08 2.18 24.37 2.01 24.27 2.06 24.17 2.12 

Sep 19.15 2.56 18.86 2.65 18.72 2.80 18.91 2.66 18.85 2.70 18.78 2.75 

Precipitati

on 

Mar 37.11 10.87 38.56 12.92 36.17 12.52 37.51 11.96 37.10 12.15 36.64 12.34 

Apr 59.01 15.55 65.47 18.25 61.52 17.95 63.13 17.29 62.68 17.45 62.13 17.67 

May 91.64 23.22 87.24 21.74 82.18 18.41 87.01 19.84 85.50 19.51 83.85 19.02 

Jun 110.47 22.94 103.62 21.57 95.62 17.69 103.66 20.24 101.16 19.44 98.44 18.60 

Jul 86.68 20.54 79.47 18.17 74.06 17.24 79.37 18.67 77.71 18.16 75.89 17.67 

Aug 55.90 20.60 58.20 22.22 57.45 19.52 57.39 21.34 57.50 20.83 57.52 20.21 

Sep 54.89 23.97 52.08 21.14 50.85 20.21 53.30 22.26 52.31 21.49 51.47 20.78 

Precipitation  495.69 127.20 484.65 121.12 457.84 112.97 481.38 121.17 473.94 118.50 465.94 115.70 

Heavy rainfall 1 1.61 1.10 1.41 0.94 1.21 0.86 1.42 0.98 1.36 0.94 1.29 0.90 

Heavy rainfall 2 0.02 0.05 0.02 0.04 0.01 0.03 0.02 0.04 0.02 0.04 0.01 0.03 

Heavy rainfall 3 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 0.36 0.02 

GDD 2233.33 389.34 2197.93 412.68 2169.98 421.87 2201.18 407.66 2191.82 412.31 2181.21 417.16 

HDD 6.44 5.93 6.74 7.07 7.00 7.48 6.81 6.81 6.90 7.06 6.97 7.29 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-27> Summary statistics of climate variables in 2030 based on GFDL-CM3:Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 3.93 3.25 3.32 3.55 2.91 3.69 3.45 3.48 3.28 3.55 3.10 3.62 

Apr 11.99 2.46 10.83 2.57 10.23 2.60 10.98 2.56 10.75 2.56 10.50 2.58 

May 16.09 2.60 16.07 2.40 16.00 2.40 16.13 2.49 16.08 2.46 16.04 2.43 

Jun 21.97 2.34 21.46 2.52 21.34 2.54 21.59 2.47 21.51 2.49 21.42 2.52 

Jul 25.72 2.45 25.27 2.37 24.83 2.37 25.26 2.38 25.13 2.38 24.99 2.38 

Aug 24.52 2.49 24.11 2.49 23.78 2.47 24.22 2.51 24.08 2.49 23.93 2.48 

Sep 19.69 2.47 19.11 2.63 18.71 2.63 19.12 2.59 19.00 2.60 18.86 2.62 

Precipitati

on 

Mar 36.13 16.33 34.69 13.99 33.65 13.23 34.75 13.60 34.46 13.54 34.09 13.42 

Apr 56.31 15.19 59.30 18.27 60.63 19.18 60.46 18.16 60.59 18.50 60.66 18.87 

May 105.59 21.58 101.91 23.74 93.83 21.08 101.20 20.87 99.20 21.08 96.71 21.14 

Jun 94.09 15.62 103.30 18.59 100.45 18.23 99.40 16.12 99.87 16.72 100.23 17.44 

Jul 84.24 14.26 86.90 14.16 83.89 14.15 84.95 14.10 84.68 13.99 84.32 14.01 

Aug 78.85 22.98 78.45 19.21 74.49 18.00 77.12 19.08 76.49 18.76 75.60 18.38 

Sep 48.87 19.70 57.03 21.86 56.51 20.63 52.91 20.51 54.14 20.52 55.37 20.56 

Precipitation  504.07 108.11 521.58 118.94 503.46 115.19 510.78 111.46 509.43 112.94 506.99 114.20 

Heavy rainfall 1 2.26 1.09 2.36 1.29 2.23 1.23 2.27 1.18 2.27 1.20 2.25 1.21 

Heavy rainfall 2 0.03 0.07 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 

Heavy rainfall 3 0.41 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.41 0.02 

GDD 2284.52 437.05 2203.25 436.98 2152.21 435.45 2215.88 439.10 2196.10 437.92 2174.46 436.71 

HDD 13.24 16.33 10.30 13.21 8.56 10.87 10.72 13.63 10.04 12.77 9.31 11.83 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-28> Summary statistics of climate variables in 2030 based on MIROC5: Northern Plains 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.92 3.35 4.42 3.39 4.05 3.42 4.41 3.36 4.32 3.38 4.20 3.40 

Apr 12.12 2.70 11.73 2.56 11.30 2.65 11.76 2.64 11.61 2.63 11.46 2.64 

May 17.25 2.40 16.84 2.33 16.79 2.30 17.00 2.34 16.93 2.33 16.86 2.31 

Jun 21.84 2.56 21.53 2.45 21.30 2.44 21.58 2.51 21.48 2.49 21.39 2.46 

Jul 25.32 2.11 24.92 2.09 24.71 2.12 24.98 2.15 24.89 2.14 24.80 2.13 

Aug 24.35 2.15 24.28 2.08 23.92 2.16 24.17 2.14 24.09 2.15 24.01 2.15 

Sep 18.86 2.69 18.78 2.53 18.46 2.65 18.63 2.66 18.59 2.65 18.53 2.64 

Precipitati

on 

Mar 32.42 19.65 33.85 19.72 32.93 17.84 33.13 19.01 33.22 18.70 33.16 18.31 

Apr 55.14 19.31 53.34 16.23 54.70 13.65 55.11 16.44 54.76 15.41 54.63 14.46 

May 80.97 12.09 73.84 11.28 73.32 12.22 75.85 12.46 75.03 12.11 74.16 12.01 

Jun 90.34 19.01 86.65 15.58 84.05 14.95 87.37 15.50 86.28 15.29 85.17 15.11 

Jul 70.08 17.70 74.57 17.44 73.52 17.10 72.47 16.04 72.88 16.43 73.25 16.80 

Aug 60.68 26.80 58.39 24.38 57.56 20.89 59.06 22.94 58.63 22.51 58.13 21.82 

Sep 63.28 30.24 63.23 26.96 66.18 25.99 65.09 27.48 65.39 26.92 65.77 26.40 

Precipitation  452.91 123.37 443.88 118.45 442.25 113.55 448.07 116.78 446.21 116.04 444.26 114.93 

Heavy rainfall 1 2.97 1.70 2.82 1.60 2.78 1.49 2.88 1.58 2.85 1.55 2.81 1.52 

Heavy rainfall 2 0.13 0.20 0.11 0.15 0.10 0.13 0.11 0.15 0.11 0.15 0.10 0.14 

Heavy rainfall 3 0.51 0.03 0.50 0.03 0.50 0.03 0.51 0.03 0.50 0.03 0.50 0.03 

GDD 2288.89 436.00 2241.89 417.82 2195.99 422.01 2241.50 428.16 2227.40 425.79 2211.99 423.69 

HDD 12.50 11.14 10.05 9.39 9.25 9.01 10.70 10.24 10.19 9.78 9.70 9.36 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.    
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<Table A-29> Summary statistics of climate variables in 2030 based on CCSM4: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 3.41 3.61 2.80 3.55 2.60 3.59 2.89 3.55 2.81 3.56 2.71 3.57 

Apr 9.84 3.08 10.23 2.78 9.99 2.72 10.08 2.86 10.06 2.82 10.03 2.77 

May 16.59 2.27 16.71 2.23 16.50 2.22 16.55 2.23 16.54 2.23 16.53 2.22 

Jun 21.64 2.56 21.64 2.52 21.50 2.45 21.54 2.47 21.54 2.47 21.53 2.46 

Jul 24.98 1.96 24.84 1.90 24.85 1.96 24.95 1.93 24.91 1.93 24.87 1.94 

Aug 25.04 2.58 24.50 2.22 24.07 2.28 24.56 2.34 24.40 2.31 24.23 2.29 

Sep 18.79 2.64 18.61 2.78 18.51 2.72 18.65 2.70 18.60 2.71 18.56 2.72 

Precipitati

on 

Mar 41.02 15.69 43.47 19.23 42.12 18.56 43.35 17.71 42.92 18.01 42.50 18.30 

Apr 67.05 16.48 62.04 17.25 62.87 17.63 64.12 16.59 63.72 16.91 63.29 17.27 

May 74.65 22.65 72.78 16.02 76.90 13.61 75.33 16.38 75.54 15.41 76.06 14.46 

Jun 108.43 19.51 98.38 18.81 98.05 17.85 102.38 18.29 100.84 18.03 99.38 17.90 

Jul 67.99 10.67 71.22 14.89 66.99 12.42 65.67 11.98 66.43 12.20 66.88 12.36 

Aug 49.07 12.18 54.42 12.57 58.75 15.46 54.78 12.57 56.23 13.41 57.59 14.39 

Sep 41.29 17.02 53.49 17.81 55.82 18.87 49.05 17.45 51.46 17.86 53.77 18.34 

Precipitation  449.49 89.18 455.80 103.88 461.49 103.44 454.68 97.85 457.14 100.04 459.45 101.95 

Heavy rainfall 1 2.96 1.08 3.01 1.19 3.09 1.24 3.04 1.16 3.05 1.19 3.07 1.21 

Heavy rainfall 2 0.09 0.13 0.10 0.12 0.11 0.11 0.10 0.12 0.10 0.11 0.10 0.11 

Heavy rainfall 3 0.52 0.04 0.51 0.05 0.51 0.04 0.52 0.04 0.52 0.04 0.52 0.04 

GDD 2219.50 435.77 2197.93 419.06 2165.40 415.97 2192.61 420.58 2184.49 419.19 2175.32 417.57 

HDD 12.69 13.73 10.28 10.74 9.83 10.20 11.04 11.50 10.59 11.03 10.18 10.59 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.   
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<Table A-30> Summary statistics of climate variables in 2030 based on averages among GCMs: Corn Belt 

 

10 year  

averages 

20 year  

averages 

30 year  

averages 

Decaying 

rate: 0.925 

Decaying 

rate: 0.95 

Decaying 

rate: 0.975 

Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 

Average 

Temperatu

re 

Mar 4.15 3.42 3.74 3.47 3.36 3.56 3.73 3.46 3.63 3.49 3.50 3.52 

Apr 11.23 2.68 10.91 2.63 10.51 2.65 10.92 2.65 10.80 2.65 10.66 2.65 

May 16.63 2.37 16.48 2.32 16.32 2.31 16.49 2.34 16.44 2.33 16.38 2.32 

Jun 21.76 2.39 21.53 2.45 21.40 2.44 21.54 2.43 21.50 2.44 21.45 2.44 

Jul 25.22 2.05 24.96 2.07 24.79 2.13 25.00 2.09 24.94 2.10 24.87 2.11 

Aug 24.64 2.28 24.29 2.21 23.96 2.27 24.33 2.24 24.21 2.25 24.09 2.26 

Sep 19.12 2.59 18.84 2.64 18.60 2.70 18.83 2.65 18.76 2.66 18.68 2.68 

Precipitati

on 

Mar 36.67 15.03 37.64 16.04 36.22 15.22 37.18 15.14 36.92 15.23 36.60 15.26 

Apr 59.38 15.18 60.04 16.52 59.93 16.57 60.70 16.15 60.44 16.27 60.18 16.42 

May 88.21 18.39 83.94 17.24 81.56 15.63 84.85 16.61 83.82 16.32 82.69 15.99 

Jun 100.83 17.14 97.99 16.93 94.54 16.16 98.20 16.54 97.04 16.42 95.80 16.29 

Jul 77.24 12.94 78.04 14.04 74.62 14.03 75.61 13.53 75.42 13.72 75.09 13.90 

Aug 61.12 17.78 62.36 18.26 62.06 17.81 62.09 17.79 62.21 17.91 62.21 17.91 

Sep 52.08 21.97 56.46 21.50 57.34 21.10 55.09 21.55 55.83 21.36 56.60 21.21 

Precipitation  475.54 109.23 476.48 113.33 466.26 110.16 473.73 110.05 471.68 110.34 469.16 110.38 

Heavy rainfall 1 2.45 1.16 2.40 1.20 2.33 1.16 2.40 1.18 2.38 1.17 2.36 1.17 

Heavy rainfall 2 0.07 0.09 0.06 0.08 0.06 0.07 0.07 0.08 0.07 0.08 0.06 0.08 

Heavy rainfall 3 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 0.45 0.02 

GDD 2256.56 424.27 2210.25 421.29 2170.90 423.61 2212.79 423.65 2199.95 423.58 2185.74 423.57 

HDD 11.22 11.62 9.34 9.97 8.66 9.33 9.82 10.44 9.43 10.07 9.04 9.69 

Note:  Heavy rainfall 1 is the number of daily rain events above 25.4 mm per year, Heavy rainfall 2 is the number of daily rain events above 76.2 mm per year, and 

Heavy rainfall 3 is the fraction of precipitation (mm) during the ten wettest days per year.  



179 

 

 

CHAPTER 5 

GENERAL CONCLUSION 

 

  This dissertation analyzes changes in agricultural resource management of Midwestern 

farmers in response to three key factors of agricultural production: climate conditions, government 

policies, and available technologies. Climate conditions determine the productivity of land use, 

and farmers alter their crop mix to optimize their land use. The advent of biotechnology has 

improved crop yield and the marginal productivity of chemical inputs. During the last decade, 

information and precision technology have complemented biotechnology in improving corn yields 

and crop management practices. Last, government policies can alter farmers’ management 

decisions in response to changes in regional environmental conditions and available technologies.   

Our findings can be summarized as follows: First, climate conditions alter farmers’ 

decisions regarding land use and insurance purchases. Second, the coupled subsidy structure of 

federal crop insurance programs may make farmers more susceptible to climate change and 

increase the potential risk of yield loss from climate change. Third, GM corn and information 

technologies (pest scouting and yield monitor) have significant effects on corn yield and nitrogen 

use. Fourth, the effects of GM corn and information technologies depend on variable combinations 

among them and given soil productivity. Fifth, climate change has decreased corn and soybean 

acreage in the Corn Belt but increased it in the Lake States, especially in areas close to the border 

between Iowa and Minnesota. Sixth, the choice of GCMs and ways of determining expected 

weather conditions can result in large variation in forecast future land use and the causal 

relationship between climate conditions and farmers’ land use change.  
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This dissertation can be extended in several meaningful directions. First, analyzing the 

dynamic relationship between agricultural production and regional environmental conditions 

would be useful in understanding the environmental implications of climate change and 

technology adoption. For example, as discussed in Chapter 4, land use change greatly affects 

regional climate conditions, and changes in climate conditions alter agricultural productivity of 

land use. Second, accounting for the effect of asymmetric information on resource management 

may make our results more general. Our conceptual model in Chapter 2 does not assume 

information asymmetry, and a simple analytic model in Chapter 3 assumes risk-neutrality. 

However, farmers’ moral hazard and limited information regarding technology should affect farm 

management decisions. Finally, technology adoption is one way to mitigate adverse climate 

effects, and climate change effects depend on available technologies. By analyzing the relationship 

between climate conditions and technology adoption, we can measure the climate change effects 

and effects of technology adoption on farm management decisions more comprehensively. 
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