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 ABSTRACT 

 

This dissertation is devoted to the study of three different topics under the 

advice of three different mayor professors. The only thing these topics have in 

common is the interest and curiosity of the author to explain real life events, 

using applied econometric techniques. Chapter 2 applies financial tools to 

assess whether stock values reacted across world markets to the 

announcement of indexes that synthesize the environmental performance of 

the world’s largest publicly-traded companies. The environmental index 

selected for this purpose is the “Global 100 Ranking” (G100), a ranking of the 

100 largest public companies by market capitalization. The results show that 

the market reacted to the “Global 100 Ranking” by changing the relative price 

of the stocks, but not the value of the portfolio. We also find that investors in 

US-traded stocks are more interested in past environmental performance than 

on managerial quality, while the opposite is true for investors in non-US-

traded stocks. Chapter 3 estimates simultaneous equation models of barge and 

railroad rates for specific origin-destinations and grains (corn, wheat, and 

soybeans) in the US, using data from the Grain Transportation Report. 

Evidence of specific route competitiveness of various grains was found. 

Interestingly, it was possible to identify a railroad route with prices as 

complementary of barge rates, which may increase railroad market power. 

River levels affect barge rates, but there are differences for corn and wheat, 
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possibly due to production locations in the Mississippi basin. Ocean vessel 

rates affect barge rates directly and railroad rates indirectly. Real exchange 

rates affect barge rates more than railroad rates. Evidence suggests that 

distance between railroad origin and barge origin affects the impact of the 

later on the first one. Chapter 4 studies the effect on early education 

achievement of keeping the same classmates as in the previous year by 

utilizing the unique nature of the Tennessee Student Teacher Achievement 

Ratio (STAR). Results show that keeping all kindergarten classmates vs. 

losing all of them increases the probability of passing first grade by 7 to 10 

percent. In addition, noncognitive skills are improved when more kindergarten 

classmates are kept as first grade classmates. If all classmates are kept 

together vs. staying alone in a new class, motivation and selfconfidence may 

increase by 0.5 of a standard deviation, while the number of absences may 

decrease by 2 to 3 days. 
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CHAPTER 1. GENERAL INTRODUCTION 

Socially Responsible Investing has become a dynamic research area in recent years (Geczy et 

al. 2005; Kurtz 1997; Sauer 1997; Cummings 2000; Abramson and Chung 2000; Bauer et al. 

2002; Mill 2006; Lobe and Walkshausl 2011).  The popularity of Socially Responsible 

Investing has led to the development of indexes like the Dow Jones Sustainability Index 

(DJSI), in which environmental responsibility weights 9.2% (Fowler and Hope 2007). A 

specific environmental index created in 2009 targeting the Socially Responsible Investing 

audience is Newsweek’s “Green Rankings.” Its first edition included the “US 500 List,” 

which comprises the 500 largest publicly-traded US companies. Its second edition, released 

online on October 18th, 2010 at 8 a.m. US East coast time, added the “Global 100 List,” 

involving the 100 largest publicly traded companies worldwide.  

These Newsweek rankings mostly use existing information regarding hundreds of 

environmental indicators and models. Nevertheless, they provide new information by 

presenting a clear unique measure of environmental performance for each company. This 

publicly available measure may help coordinate expectations about how the market weights 

all of the environmental data available. It also gives small investors access to costly 

environmental information, and increases public awareness about the largest companies' 

environmental performance. The first essay (Chapter 2) applies financial tools to assess 

whether stock values reacted across world markets to the announcement of the “Global 100 

Ranking” (G100). 

Most US grain production is located in the Midwest. Demand, however, is dispersed 

across the US and abroad, creating areas with large surpluses and deficits of grains, and 

requiring the transportation of more than 400 million tons of corn, soybean, and wheat each 
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year  (Marathon and Denicoff, 2011). As a consequence, an efficient intermodal 

transportation system of trucks, railroads, barges and vessels is fundamental in determining 

better prices for farmers, lower food and biofuel costs for consumers and more competitive 

export prices. While domestic transportation is covered mostly by truck, railroads and barges 

are the most important modal transportations for exports. Because grains are often 

transported in more than one mode, competition and complementarity exist among these 

modes. The second essay (Chapter 3) analyzes the competitive interactions between grain 

railroad rates and barge rates in the Mississippi waterway system. 

The effect of peers on education and other social outcomes has attracted much 

attention in the economic literature. Effects have been documented on cognitive and non-

cognitive skills including drug use, criminal behavior, and academic performance from early 

childhood to college. In general these studies benefit from experiments where the exogenous 

formation of groups addresses the endogeneity of peer selection. Many policies have been 

based on peer effects: schools for gifted children, tracking/sorting of students within schools, 

and desegregation policies are among them. Some of these policies have created debate 

among policy makers and scientists for their impact on inequality. Surprisingly little is 

known about the impact of the time duration of these peer connections on social outcomes. In 

the third essay (Chapter 4), I analyze the effects of a common elementary school practice of 

breaking classes apart and joining students from different groups at the beginning of the 

school year. 

The first essay (Chapter 3) is titled “Investors’ Reaction to Environmental 

Performance: A Global Perspective of Newsweek’s “Green Rankings.””  Its contribution to 

the literature is twofold. First, it adds a world market dimension to environmental rankings 
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and the response of investors. This is true because the G100 includes stocks traded in nine 

different exchanges (NYSE, London, Paris, Frankfurt, Switzerland, Hong Kong, Shanghai, 

South Korea, and Tokyo) from companies based on most of the continents (e.g., the US and 

Brazil in America; the United Kingdom, France, Italy, Germany, Spain, and Russia in 

Europe; and China, South Korea, and Japan in Asia). Second, the study quantifies the 

marginal effects of the ranking on stock prices. By employing cross-sectional models of 

abnormal returns against rankings, we are able to determine marginal effects that cannot be 

computed from the cumulative abnormal return statistics typically used in event studies. 

Third, we investigate the impact of rankings on returns by industry sectors. Finally and most 

importantly, to our knowledge it provides the first evidence of the existence of heterogeneity 

among investors in regard to their interest in past performance and managerial quality as 

predictors of future environmental performance. 

The second essay (Chapter 3), “Competitive Interactions between Grain Railroad 

Rates and Barge Rates in the Mississippi Waterway System,” analyzes the competitive 

interactions between grain railroad rates and barge rates in the Mississippi waterway system. 

US grain exports require large distance transportation from the Midwest to the ports in the 

Gulf and Pacific Northwest (PNW). For this reason, barge and rail transportation are 

preferred to trucks. Barges are able to carry one ton of cargo 576 miles per gallon of fuel, 

compared to 413 miles by rail and only 155 miles for a truck (Maritime Administration, 

2010). Also, the capacity of a barge, 1,500 tons, is 15 times that of a rail car and 60 times that 

of a truck. Barge and rail transportation are also preferred from an environmental point of 

view. Trade transportation by barge releases 33 percent less pollutants than diesel trains and 

373 percent less than diesel trucks (Maritime Administration, 2010). 
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In this chapter 3, by means of simultaneous equations models of barge rates and 

railroad rates, within the period 2002-2012, price-price elasticities were estimated for the 

three major grain crops: corn, soybeans, and wheat. Results differ by railroad lines, some 

show complementarity behavior with barges while others show competitive behavior. Water 

levels, real exchange rates, ocean rates, and diesel prices affect barge rates. Ocean rates 

complement the inland transportation services that reach their respective export ports. This 

chapter expands the scarce literature on rail-barge competition by concentrating for the first 

time on the effect of barge rates on railroad rates and analyzing the effect of distance between 

origin and the Mississippi waterway system on their competitive interactions.    

The third essay (Chapter 4), “Oh, the More We Get Together: Peer effects in Early 

Elementary School,” considers the STAR program database to analyze the impact of keeping 

classmates (kindergarteners) on school performance. The Tennessee STAR (Student Teacher 

Achievement Ratio) program, a large scale class size experiment on elementary school, 

randomized the initial allocation of teachers and students in kindergarten within each school 

and randomly mixed up students of large classes at the beginning of first grade. The data 

collected in the STAR program has information on 4515 students that attended kindergarten 

and first grade in the 79 STAR participating schools. Measures of school performance 

include the probability of being recommended for grade promotion, cognitive and non-

cognitive skills. 

Regressions of recommendation for passing grade, and cognitive and noncognitive 

skills are estimated in this chapter for first, second and third grade. The cognitive variables 

include annual recommendation to pass a grade and test scores (math, reading, listening and 

word). Noncognitive skills include annual motivation scores, selfconfidence scores, and days 
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absent. The explanatory variables include characteristics of the student and their classmates 

(measured at kindergarten to prevent endogeneity), the teachers, and the school that was 

presented in the data section. Besides the estimation of fixed and random effects models, this 

study encompasses modern microeconometric techniques by  recognizing that individuals 

within schools come with a natural nesting and implements cluster sample techniques, like 

clustering errors and  generalized estimation equation (GEE) models (Wooldridge, 2010).  

This chapter is, to my knowledge the first to find evidence supporting the importance 

of time on peer effects. Specifically, the effect of peers does not depend only on their abilities 

and skills, but also on the time they have been peers. This is true even when there is not 

endogenous peer selection over time. These results have implications for educational policies 

like random mixing and sorting/tracking. For example, sorting/tracking policies may also 

affect students, not only by changing the level of the peers and allowing to adjust educational 

programs, but also by losing long time known peers. As a consequence, these policies may 

also have negative effects on the social capital of the student and the class that might be 

detrimental for child development. 
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CHAPTER 2. INVESTORS’ REACTION TO ENVIRONMENTAL PERFORMANCE: A 
GLOBAL PERSPECTIVE OF NEWSWEEK’S “GREEN RANKINGS” 

 
Juan M. Murguia1 and Sergio Lence 

 
Abstract 

We use event study analysis to determine whether the release of Newsweek’s “Global 

100 Ranking” is relevant for the market. We look at one- and two-day event windows to 

check two possible reactions of the market: changes in the value of an equal-weight portfolio, 

and changes in the relative price of the stocks. The results show that the market reacted to the 

“Global 100 Ranking” by changing the relative price of the stocks, but not the value of the 

portfolio. Specifically, getting one position closer to the top of Newsweek’s “Global 100 

Green Rankings” increases the value of an average firm in the list by eleven million dollars. 

There is also some evidence of a stronger reaction of non-US-traded stocks compared to US-

traded ones. Non-heavy sector stocks display a more robust reaction to than heavy sector 

stocks. We find that investors in US-traded stocks are more interested on past environmental 

performance than on managerial quality, while the opposite is true for investors in non-US-

traded stocks. Results are robust to alternative model specifications. 

 

Keywords: Environmental ranking, event study, Newsweek magazine. 

JEL Codes: M14, G02, G14, G24, Q51, Q56. 

1. Introduction 

Socially Responsible Investing, an investment strategy that favors corporate practices 

promoting environmental stewardship, consumer protection, human rights, and diversity, 

represents 12% of the $25.2 trillion in total world assets under professional management 
                                                 
1 Primary researcher and author. 
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(Social Investment Forum 2010). Socially Responsible Investing has become a dynamic 

research area in recent years (Geczy et al. 2003; Kurtz 1997; Sauer 1997; Cummings 2000; 

Abramson and Chung 2000; Bauer et al. 2002; Mill 2006; Lobe, Roithmeier and Walkshausl 

2009).2 The popularity of Socially Responsible Investing has led to the development of 

indexes like the Dow Jones Sustainability Index (DJSI), in which environmental 

responsibility weights 9.2% (Fowler and Hope 2007).  

A specific environmental index created in 2009 targeting the Socially Responsible 

Investing audience is Newsweek’s “Green Rankings.” Its first edition included the “US 500 

List,” which comprises the 500 largest publicly-traded US companies. Its second edition, 

released online on October 18th, 2010 at 8 a.m. US East coast time, added the “Global 100 

List,” involving the 100 largest publicly traded companies worldwide. These Newsweek’s 

rankings mostly use existing information about hundreds of environmental indicators and 

models. Nevertheless, they provide new information by presenting a clear unique measure of 

environmental performance for each company. This publicly available measure may help 

coordinate expectations about how the market weights all of the environmental data 

available. It also gives small investors access to costly environmental information, and 

increases public awareness about the largest companies' environmental performance.  

The present study applies financial tools to assess whether stock values reacted across 

world markets to the announcement of indexes that synthesize the environmental 

performance of the world’s largest publicly-traded companies. The environmental index 

selected for this purpose is the “Global 100 Ranking” (G100), a ranking of the 100 largest 

public companies by market capitalization. The G100 comprises stocks traded in nine 

                                                 
2 Kitzmueller and Shimshack (2012) provide an extensive review of this literature. 
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different exchanges across the world, which allows us to study whether there are differences 

in the reactions of investors operating within and outside the US stock market.3 Specifically, 

we analyze (a) whether there are changes in the value of an equal-weight portfolio of the 

companies on the ranking; (b) whether a company’s ranking position affects its stock value; 

(c) whether there are differences in the reactions to the ranking of US-traded companies 

compared to non-US-traded companies; and (d) whether the reactions to the ranking differ 

across industry sectors.  

The present study contributes to the literature in four aspects. First, it adds a world 

market dimension to environmental rankings and the response of investors. This is true 

because the G100 includes stocks traded in nine different exchanges (NYSE, London, Paris, 

Frankfurt, Switzerland, Hong Kong, Shanghai, South Korea, and Tokyo) from companies 

based in most of the continents (e.g., the US and Brazil in America; the United Kingdom, 

France, Italy, Germany, Spain, and Russia in Europe; and China, South Korea, and Japan in 

Asia). Second, the study quantifies the marginal effects of the ranking on stock prices. By 

employing cross-sectional models of abnormal returns against rankings, we are able to 

determine marginal effects that cannot be computed from the cumulative abnormal return 

statistics typically used in event studies. Third, we investigate the impact of rankings on 

returns by industry sectors. Finally and most importantly, to our knowledge it provides the 

first evidence of the existence of heterogeneity among investors in regard to their interest in 

past performance and managerial quality as predictors of future environmental performance. 

                                                 
3 We use the G100 because, unlike the “US 500 List” and other environmental indexes, it 
includes both US- and non-US-traded firms. The “US 500 List” has been analyzed by 
Anderson-Weir (2010), Murguia (2010), Blumenshine and Wunnava (2010), van Iwaardenl 
et al. (2010), and Lyon and Shimshack (2011). 
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Previous studies have analyzed the impact of environmental news and rankings on 

stock markets, with results showing positive correlation between economic and 

environmental performance (Murphy 2002). Environmental news studies have included the 

Toxic Release Inventory of US firms (Khana, Quimio, and Bojilova 1998), pollution 

information of S&P 500 companies (Konar and Cohen 2001), explosions on chemical plants 

worldwide (Capelle-Blancard and Laguna 2010), and carbon disclosure (see Busch and 

Hoffmann 2011 for an extended literature review). Some of these studies found significant 

effects (Capelle-Blancard and Laguna 2010; Konar and Cohen 2001), whereas other studies 

uncovered significant effects only when repeated information was released (Khana, Quimio, 

and Bojilova 1998). Busch and Hoffmann (2011) report that, for companies in the Global 

2500 Dow Jones, corporate environmental performance pays off when using carbon 

emissions as an outcome-based measurement. Margolis, Elfenbein and Walsh (2007) provide 

an extensive review of the literature linking corporate financial performance to corporate 

social performance. 

Studies involving environmental news and rankings have been performed for Japan 

(Nagayama and Takeda 2007, Yamaguchi 2008, and Takeda and Tomozawa 2008) and the 

US. For the US, some studies used the KLD ranking (Plumlee et al. 2010; Walter 2009; 

Dawkins and Fraas 2011),4 whereas others focused on Newsweek’s ranking (Anderson-Weir 

2010; Murguia 2010; Blumenshine and Wunnava 2010; van Iwaardenl et al. 2010; Lyon and 

Shimshack 2011). In the case of Newsweek’s ranking, Anderson-Weir (2010), Murguia 

(2010) and van Iwaardenl et al. (2010) found no significant effects of Newsweek’s “Green 

                                                 
4 In general, these papers find a positive relationship between environmental performance 
and voluntary climate change disclosure. 
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Ranking 2009” on the returns of S&P 500 stocks, whereas Lyon and Shimshack (2011) did.5 

Blumenshine and Wunnava (2010) found that companies with high environmental rankings 

have higher market capitalization values. They concluded that either investors include 

environmental factors when pricing stocks, or that a high environmental rank indicates other 

intangible variables that contribute to a company’s value. 

Succinctly, our results indicate that the market reacted to the G100 by changing the 

relative prices of the stocks included in it, but not the value of the equal-weight portfolio of 

such stocks. Specifically, increasing ten positions in the ranking improved the value of a 

stock by 0.1%, or 113 million dollars for the average company capitalization. There is also 

evidence of a stronger reaction for non-US-traded stocks compared to US-traded stocks, and 

a more robust one for stocks in the non-heavy sector compared to the ones in the heavy 

sector. Non-US- and US-traded stocks reacted different also with respect to past 

environmental performance and environmental managerial quality. In particular, US-traded 

stock returns appear to be affected only by past performance, whereas non-US-traded stock 

returns seem to respond only to managerial quality. 

 

2. Theoretical Framework  

Why should investors care about Corporate Social Responsability (CSR)? Chatterji, Levine, 

and Toffel (2009) propose four possible motivations for investors to desire transparency 

about both past social performance and current managerial decisions that influence future 

                                                 
5 The differences in results may be due to the event windows selected, and the methods 
employed for estimating abnormal returns. Murguia (2010) analyses one and two days (the 
event day and the next one), Anderson-Weir (2010) three days (the day previous to the event 
plus the event day and the day after), van Iwaardenl et al. (2010) one year, and Lyon and 
Shimshack (2011) three and four days (starting the day of the event). 
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social performance. The first motivation is based on the idea that socially responsible 

companies may perform better financially by attracting socially responsible consumers, 

reducing the thread of regulation, and reducing concerns from activists and non-

governmental organizations. The second motivation is the driving force underlying 

“deontological” investors, who do not want to profit from unethical behaviors. Deontological 

investors care about past performance because they want to ensure that current profits were 

not earned from previous unethical behavior, and they also care about current management to 

avoid future scandals which would taint future profits. The third motivation is associated 

with “consequentialist” investors, who are driven by a desire to reward good behavior and 

decrease the market share of environmental irresponsible firms. The fourth and final 

motivation corresponds to “expressive” investors, who want to show to themselves or others 

that they are socially responsible. 

Kitzmueller and Shimshack (2012) discuss extensively the existing CSR theories and 

the supporting evidence. Regardless of the motives behind CSR, 6 there are investors who 

seek transparency in social rankings, in the sense of combining an accurate summary of past 

performance, and a careful evaluation of current managerial actions likely to influence future 

environmental performance (Chatterji, Levine, and Toffel 2009). 

Chatterji, Levine, and Toffel (2009) suggest that future research should examine how 

the holding of socially responsible funds changes as stakeholders are provided with more 

transparency about corporate social performance; and argue that stakeholders might be 

                                                 
6 Ditlev-Simonsen and Midttun (2011) provide a partial answer in this regard. In a survey of 
corporate leaders they find that branding, stakeholders, and value maximization are assumed 
to be key motivators of CSR by senior managers of the 20 largest Norwegian corporations. 
They also report that corporate leaders believe sustainability and branding should be the key 
motivators of CSR by senior managers of the 20 largest Norwegian corporations. 
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heterogeneous in their responses to higher-quality information. To the best of our knowledge, 

the present study is the first one to provide evidence of the latter, in the form of US-traded 

stocks reacting differently to the G100 announcement compared to non-US-traded stocks. 

We also provide evidence about what investors look for in practice, which might be 

beneficial for the construction of environmental indexes. We find that investors in US-traded 

stocks are more interested on past environmental performance than on managerial quality, 

while the opposite is true for investors in non-US-traded stocks. Our results for US-traded 

firms are consistent with Chatterji, Levine, and Toffel (2009), who found that KLD pollution 

prevention scores predicted pollution or regulation violations for companies regulated by the 

US Environmental Protection Agency. 

According to Chatterji, Levine, and Toffel (2009), measures of (environmental) 

managerial quality are relevant when they contain little noise and have substantial 

incremental information about future environmental outcomes not contained in history alone. 

They present a theoretical model based on these ideas for the selection of the optimal weight 

in a social index. In our study, managerial quality is represented by its environmental policies 

and its reputation (the correlation between both is 0.51), which have a correlation with 

environmental performance of 0.35 and 0.03, respectively. It is possible then that managerial 

quality might be relevant for predicting future environmental performance, provided it is not 

too noisy. 

Errors in CSR measures, and particularly in environmental rankings, may cause 

market inefficiencies and explain different results regarding their impact on stock 

performance (Chatterji, Levine, and Toffel 2009). Noisy measures may be the reason why 

some studies find little correlation between CSR metrics and financial performance. 
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Alternatively, if consumers or investors are misled by the errors, studies finding a positive 

correlation may overestimate the true relationship between actual CSR and financial 

performance. These limitations must be taken into account when evaluating the results of the 

present study, because measurement errors are likely to affect the indexes employed for the 

analysis.  

 

3. Data 

Data in the present study include the G100, stock returns, nine stock exchange indexes, and 

Fama-French indexes. A detailed explanation follows. 

 

3.1 Newsweek’s “Global 100 Ranking”  

The G100 consists of a ranking of the world's 100 largest (by market capitalization) 

companies according to Newsweek’s “Green Score.” The Green Score is a weighted sum of 

three component scores that are designed to complement each other, namely, the 

“Environmental Impact Score” (EIS) with 45% weight, the “Green Policies Score” (GPS) 

with 45% weight, and the “Reputation Survey Score” (RSS) with 10% weight. The raw 

component scores were first converted to standardized values called Z scores, which reflect 

how individual companies performed relative to the average. The Green Score, as well as 

each component score, is published on a scale from 1 (worst performing) to 100 (best 

performing) (Newsweek 2010). 

The EIS is an index of past environmental performance based on data compiled by 

Trucost. It measures the total environmental impact of a corporation’s global operations (90 

%) and the disclosure of those impacts (10 %). The EIS incorporates more than 700 metrics, 
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including emissions of nine key greenhouse gases, water use, solid-waste disposal, and 

emissions that contribute to acid rain and smog. When publicly disclosed environmental data 

are available, they are used to evaluate a company performance for each impact metric. An 

economic input-output model is used to calculate direct-company and supply-chain impacts 

in cases where data are unavailable (Newsweek 2010). 

The companies are classified into 15 sectors according to the FTSE/Dow Jones 

Industry Classification Benchmark. Therefore, to fairly assess impacts for companies 

operating in more than one industry, a benchmarking system was used. To make it possible 

to compare companies of different size, this system calculates environmental impact in 

dollars per dollar of sales. This accounts for 90% of the raw EIS; the remaining 10 % 

measures the disclosure of usable data. In the case of investing firms, rankings are adjusted to 

take into account the impact of the equity under management (Newsweek 2010). 

The GPS is a managerial performance index based on models provided by MSCI, and 

assesses how a company manages its environmental footprint. To estimate the GPS, MSCI 

created a model that measures the quality of each company’s environmental reporting, 

policies, programs, and initiatives. More than 70 indicators are incorporated into the GPS, 

and categorized into five issues, namely, (a) climate-change policies and performance, (b) 

pollution policies and performance, (c) product impact, (d) environmental stewardship, and 

(e) management of environmental issues. They address, respectively, how well each 

company manages its carbon emissions; how well each company manages its non-carbon 

emissions to air, water, and land; the life-cycle impacts of each company’s products and 

services; how well each company manages and uses its local resources; and the quality of 

each company’s track record of managing environmental risks. Data on regulatory 
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compliance, lawsuits, controversies, and community impacts are also among the indicators 

taken into account within each category (Newsweek 2010). 

The RSS is another managerial index, but based on an opinion survey of CSR 

professionals, academics, and other environmental experts who subscribe to 

CorporateRegister.com. A total of 14,921 surveys were sent out asking each respondent to 

rate a random sample of 15 companies on a sliding scale (1 to 100) from “laggard” to 

“leader” in three key green areas: environmental performance, commitment, and 

communications. Of those surveyed, 2,480 were environmental sector specialists that were 

only asked to score companies in their sector of expertise. The survey’s response rate was 12 

%, twice the rate for the 2009 reputation survey. Chief-executive scores, sector specialists, 

and other participants were given a weight of three, two, and one, respectively. Each 

company’s performance, commitment, and communications scores were then averaged to 

produce its raw RSS (Newsweek 2010). 

Companies that appear on both the US and Global lists in the 2010 edition have 

different Green Scores and component scores because normalizations are different. 

Moreover, it is not possible to compare company scores over time due to the changes in the 

methods used to construct them (Newsweek 2010). 

 

3.2 Stock Returns and Indexes  

Values of stocks and market indexes adjusted by splits and dividends were obtained from 

Yahoo Finance.7 When a company’s stock data were not available for the period under study, 

the company’s web site was used as the source of information. In three instances (Nissan 

                                                 
7 Yahoo Finance web page for US and Asian stocks, and United Kingdom Yahoo Finance 
web pages for European stocks. 
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Motor, Toshiba, and Lukoil), pink-sheet data (i.e., over-the-counter transactions in the US) 

were used as a last resource. 

Seventy one of the companies in the G100 are traded in the US. Out of the remaining 

29 companies not traded in the US, 25 are traded in Europe and four are traded in Asia. For 

companies trading in more than one stock market and currency, the market selected was the 

one with the highest average daily volume. Since the companies in the ranking are traded in 

nine different stock markets, the indexes used include NYA (New York, 1,900 largest 

stocks), the SSE Composite Index (Shanghai, all stocks), the Hang Seng Index (Hong Kong, 

50 largest stocks), the Nikkei 225 (Japan, 225 largest stocks), the Kospi Composite Index 

(Korea, all stocks), the CAC 40-Paris (France, 40 largest stocks), DAX (Germany, 30 largest 

stocks), SMI (Switzerland, 20 largest stocks), and the FTSE 100 (United Kingdom, 100 

largest stocks). 

For each stock in the G100 and the nine market indexes, daily excess returns were 

calculated by subtracting the risk-free rate (measured as the interest rate on the one-month 

Treasury bill, downloaded from French’s web page (French 2011)) from the respective rate 

of return. Following the literature (Fama and French 1998; Griffin 2002; Hou, Karolyi, and 

Kho 2011; Fama and French 2012), rates of return for the 29 non-US-traded stocks and the 

market indexes other than NYA, were computed by first converting the values denominated 

in foreign currencies into US dollars.8 For this purpose, the corresponding daily exchange 

rates from Oanda (2012) were used. 

Fama-French factors for US-traded stocks were downloaded from French’s web page 

(French 2011). The Fama-French factors are the small-minus-big factor (SMB�), the high-

minus-low factor (HML��, and the factor consisting of the average return on the two high 

prior return portfolios minus the average return on the two low prior return portfolios at time 

                                                 
8 This procedure ignores exchange rate risk (Fama and French 1998; Griffin 2002; Hou, 
Karolyi, and Kho 2011; Fama and French 2012). It implies purchasing power parity, and that 
the stocks considered cannot be used to hedge exchange risk (Fama and French 2012). 
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t (MOM�). SMB	 is the difference between the return on a portfolio of small stocks and the 

return on a portfolio of large stocks at time t, whereas HML	 is the difference between the 

return on a portfolio of high-book-to-market stocks and the return on a portfolio of low-book-

to-market stocks at time t. Unfortunately, to the best of our knowledge, local analogs of the 

SMB�, HML	, and MOM� factors for non-US-traded stocks are not available on a daily basis 

(Ken French personal communication).9 
 

4. Methods  

Based on the previous discussion, it is hypothesized that the publication of the G100 may 

have impacted the listed firms in two ways, namely, (a) by affecting the overall value of the 

firms comprised in the G100 relative to firms not included in the index, and/or (b) by 

inducing changes in the relative prices of the G100 firms according to their respective 

rankings. A third testable hypothesis is whether investors were more interested in past 

environmental performance or present managerial skills. 

The first hypothesis is tested by analyzing the significance of the abnormal return of 

the equal-weight portfolio of firms in the G100 when the index was released. The second and 

third ones are tested by regressing the companies’ abnormal returns against their respective 

rankings (cross-section OLS models). Both methods are explained in detail in the following 

subsections. Finding out that the aforementioned cross-section OLS models are statistically 

significant would support the idea that the market reacted to the G100 announcement. These 

                                                 
9 Fama and French (2012) constructed monthly factors for 23 different countries to study 
their effect on international stock returns. Kubota and Takehara (1997) also constructed 
monthly factors for Japan. Exeter University has factors calculated with a monthly frequency 
for the United Kingdom 
(http://xfi.exeter.ac.uk/researchandpublications/portfoliosandfactors/index.php). For Canada 
there are daily factors, but the series has been updated only until 2009 
(http://expertise.hec.ca/professorship_information_financiere_strategique/fama-french-
canadian-factors/). 
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findings cannot explain how the market used the information released,10 but might provide 

evidence regarding whether investors care more about managerial practices or past 

performance, and whether there is homogeneity across stocks in this regard. In contrast, the 

statistical insignificance of these OLS models would indicate that there was no evidence of 

the G100 release affecting the market during the event window.  

In this paper event studies methods are applied to assess whether the release of the 

G100 had an impact on the values of the firms included in it.11 Event studies rely on the 

estimation of each firm's abnormal returns (
��,�) at date �, which are a measure of the 

unexpected change in security holders’ wealth associated with the event. Abnormal returns 

are calculated as 

 
 
��,� � ��,� � � ���,�| ���  (1) 

where ��,� denotes company �'s excess return at time �, and � ���,�| ��� is company �'s 

expected excess return at time � conditional on the value of the vector of variables ��. Here, 

the conditional expected return � ���,�| ��� is estimated by means of two alternative models, 

namely, the market model (2), and an extended version of the Fama-French Four Factor 

Model (FFFM) (3)12 

 
 ��,	 � α� �  β� MARKETRF	  � η�,	  (2) 

                                                 
10 Our tests do not distinguish among the possible theoretical motivations (presented earlier 
in section 2) underlying investors' reaction to the G100. For example, investors may react 
because the ranking contains new information. Alternatively, they may react because the 
release of the ranking helps coordinate how to interpret the large amount of information 
condensed in the G100, even though the basic information might not be new. 
11 Event studies in financial markets examine the behavior of firms’ stock prices around a 
specific event (see MacKinlay (1997) for a detailed explanation of event study methods). 
12 FFFM is the result of the work of Fama and French (1993) and Jegadeesh and Timman 
(1993). FFFM extends the traditional single factor market model to explain abnormal returns 
that the latter model was unable to account for. 
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 ��,	 � α� �  β� MARKETRF	  � s� USSMB	 �  h� USHML	 � m' USMOM	 �  (�,	  (3) 

where MARKETRF	 is a vector comprising the excess rates of return on the nine market 

indexes; USSMB	, USHML	, and USMOM	 are Fama-French factors for US-traded stocks; α�, 

β�, s', h�, and m� are regression coefficients; and η�,	 and (�,	 are regression residuals. 

The nine market returns comprised in MARKETRF	 are included as explanatory 

variables, because the existing literature on integrated international asset pricing indicates 

that it is more appropriate to use factors specific to the markets where stocks are listed than 

global factors (Karolyi and Stulz 2003, Griffin 2002, Fama and French 2012).13 The 

estimation using nine market factors improves identification. Although it would be desirable 

for the market returns in regressions (2) and (3) to exclude the companies in the ranking, 

such data were not available. The second best option is to use a portfolio for each stock 

market that includes the companies of interest, but whose performance is not strongly 

affected by such companies. This is achieved by employing market portfolios that comprise a 

large number of other companies, causing a dilution effect.14 

                                                 
13 We thank an anonymous referee for this suggestion. Fama and French (2012) examined 
local versions of the factor models in which the returns to be explained are from the same 
region, and found that global models perform poorly compared to local ones. Their results 
are in line with Griffin (2002), who found that country-specific factors explain returns better 
for portfolios and individual stocks in the cases of US, United Kingdom, Canada and Japan. 
Hybrid models including both local and global factors have been found to add no explanatory 
power compared to their purely local counterparts (Griffin 2002, Fama and French 2012). 
Interestingly, we find that local market factors from markets other than the one where the 
stock is traded are sometimes significant in explaining returns (e.g., asian markets affect 
Asian-based companies trading in the US). 
14 The dilution effect is important in all stock markets. For example, only 71 out of 1,900 
firms in the NYA are included in the G100, representing 34% of the market capitalization of 
the New York Stock Exchange. Stocks in other markets have even lower relative market 
capitalizations. 
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Ideally, the set of explanatory variables in regression (3) should also include local 

Fama-French factors for the non-US-traded stocks (Fama and French 2012). That is not 

possible, however, because daily SMB, HML and MOM local factors are available only for 

US-traded stocks. Hence, rather than omitting the US Fama-French factors, they are included 

because they may help explain non-US-traded stock returns. Proceeding in this manner 

creates no estimation problems; in fact, it greatly facilitates the estimation from a 

computational point of view, as for the case of the companies it reduces a 100-equation SUR 

to an OLS estimation problem.15 

Based on the length of the estimation periods typically employed in the previous 

literature (MacKinlay 1997), regressions (2) and (3) were estimated using data for dates ) = 

10/5/2009 through ) = 10/4/2010. This period excluded the 10 trading days before the release 

of the information, to avoid biases from potential information leaks close to the event 

(MacKinlay 1997). The selected interval resulted in 250 observations for US-traded 

companies and some non-US-traded firms. For other non-US-traded companies the number 

of observations was slightly different from 250, due to differences in holidays and other non-

trading days across countries over the fixed calendar period. Given the estimates of 

                                                 
15 It seems unlikely that including local SBM, HML, and MOM factors would change the 
general results of the present study. This is true because the cross section models for the 71 
US-traded stocks yield very similar results whether the Fama-French factors are included or 
not (see tables 8 and A4). The effect of not including local SMB, HML and MOM factors 
might be negligible especially due to the size of the firms. Fama and French (2012) find that 
SMB, HML and MOM vary with firm size, with the exception of Japan. While they do not 
find size premiums in any region studied, there are value premiums in all regions and 
momentum premiums in all but Japan. Previous studies have also reported the lack of 
momentum in Japan (Assness, Moskiwitz, and Pedersen 2009; Chui, Titman, and Wei 2010; 
Kubota and Takehara 1997). Interestingly, both value and momentum premiums are smaller 
for larger firms (Fama and French 2012). 
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regressions (2) and (3), abnormal returns for the date of interest � are respectively computed 

from equations (4) and (5), respectively: 

 

 
��,� � ��,� � � α*� � β+� MARKETRF� � �  η,�,� (4) 

 
��,� � ��,� � � α*� � β+� MARKETRF�  �  s,� USSMB� �  h+� USHML� �  m*  USMOM�� 

�  (,�,�. 

(5) 

Using abnormal returns 
��,� resolves the potential problem of reverse causality (i.e., the 

G100 may be correlated with financial performance simply because more profitable firms in 

the past were able to invest more in CSR). That is, here correlation can be interpreted as the 

G100 impacting abnormal returns, because we control for past performance when estimating 

expected returns. 

 

4.1 Equal-Weight Portfolio’s Abnormal Return Test Statistic 

To assess whether the release of the information increased the value of the entire set of 

companies on the list, the following test statistic was employed 

 

 -. / 
�0000�
12300004

~670,1� 
(6) 

where 
�0000� / ∑ 
��,��;.<<�;. 100⁄ , 12300004 is the corresponding standard deviation, 670,1� is the 

standard normal distribution, and � is the day of the online release of the G100, i.e., October 



24 

 

 

18th, 2010.16 That is, the test statistic -. is the equally-weighted portfolio's abnormal return 

normalized by its standard deviation. 

 

4.2 Cross Sectional Models 

The test statistic -. is not recommended to test whether the G100 release affected relative 

stock prices according to their ranking performance. There are at least two reasons why this 

is the case. First, there is a loss in estimation efficiency, because the sample must be split into 

company groups according to ranking positions (e.g., high-, medium-, and low-ranked firms) 

to assess the effect of the ranking position using -.. Second and more importantly, finding out 

statistically significantly different -.s would only allow us to sign the marginal effect of the 

rankings. For these reasons, we apply a cross-sectional approach to analyze whether the 

market reacted by changing the relative price of the stocks comprised in the G100. 

The advocated procedure consists of a cross-section OLS regression of each firm's 

abnormal returns (
��,�) based on equations (4) or (5), against the respective firm’s ranking 

(GREENRANKING�): 

 

 
�� � αA3,� �  βA3,� GREENRANKING � BA3,� (7) 

where BA3,� is a regression residual, and � is October 18th, 2010 (i.e., the day of the online 

release of the G100). To further investigate the firm-specific impact of the G100, cross-

sectional OLS regressions (8) through (10) were fitted, as well: 

                                                 
16 The independence assumption of individual firms’ abnormal returns is violated in the 
present application, because the event time is perfectly clustered due to the fact that 
information was released at the same time for all companies. A solution is to estimate the 
abnormal returns of a portfolio of companies (MacKinlay 1997). 
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�� � αAC,� � βAC,� GREENSCORE � BAC,� (8) 

 
�� � αEA3,� �  βEA3,� EIS � βEA3,� GPS � βEA3,� RSS � BEA3,� (9) 

 
�� � αE3,� �  βE3,� EISRSS � BE3,� (10) 

where GREENSCORE, EIS, GPS, and RSS are respectively the firm-specific Green Score, EIS, 

GPS, and RSS, and EISRSS = EIS − RSS. Robust standard errors were computed for all 

regressions.17 

To investigate the robustness of the findings, cross-sectional regressions analogous to 

(6)-(10) were also fit using each firm's cumulative abnormal returns over the two-day event 

window consisting of October 18th and 19th, 2010 (i.e., the day of the G100 release plus the 

following day, to account for time zone differences across countries). That is, the dependent 

variable in such regressions consists of 

 

 G
��,7�H:�J� / K 
��,�
�;�J

�;�H
 (11) 

where �. and �L are respectively October 18th and 19th, 2010. Further, cross-sectional 

regressions were also estimated separately for eight different sets of companies, namely, (a) 

all of the companies, (b) G100 top 50 companies, (c) G100 bottom 50 companies, (d) heavy 

sector companies,18 (e) non-heavy sector companies, (f) US-traded companies, (g) non-US-

                                                 
17 Regression (10) corrects EIS by RSS, to control for previously available information. 
18 Industries are classified as belonging to the heavy sector if they are potentially highly 
pollutant. The heavy sector includes basic materials; consumer products and cars; general 
industrials, industrial goods, oil and gas; transport and aerospace; and utilities. The non-
heavy sector consists of banks and insurance; food and beverage; media, travel, and leisure; 
pharmaceuticals; retail; and technology. 
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traded companies, and (h) non-heavy sector US-traded companies. A total of 128 cross-

sectional models were estimated, 64 with 
��,� as the explanatory variable, and the other 64 

with G
��,7�H:�J� instead. 

 

5. Results and Discussion  

The next two subsections discuss the findings regarding the impact of the G100 on both the 

general and the relative value of the firms included in it. 

5.1 The Impact of the G100 on the General Value of the Listed Firms 

Result 1. The release of the ranking did not increase the price of the equal-weight portfolio of 

companies in the G100. 

The test statistic -. is statistically non-significant for the equal-weight portfolio. Thus, the 

release of the ranking did not affect the price of the portfolio of companies in the G100, 

provided that there are no other confounding effects. One may argue that there is no reason 

for an improvement on the value of the portfolio, because the new information allows only 

for a comparison among the companies on the list. A change in the value of the portfolio 

would have implied that a comparison with companies not included in the G100 was 

possible.  

Event studies analyzing one firm or a small number of firms often check for 

confounding effects, especially when testing the significance of the test statistic -.. It may 

happen that other “new information” affects the performance of the company on the day the 

information of interest is released, leading to incorrect conclusions. On the day the G100 was 

released, the major news were related to higher-than-expected earnings from Citigroup, and 

an improvement in the housing sector that pushed prices up (cnn.money.com a). Companies 
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in the banking sector were among that day’s top performers, with average abnormal returns 

of 0.0081%, or 1.23 standard deviations higher than the average of all companies in the 

ranking (Table 1). This may have caused the price of the portfolio to go up, creating a 

positive bias on the estimation of the effect of being in the G100. 

In some cross-sectional models the next-day information is also used. The stock 

market declined the day after the release of the G100, due to reports that a group of 

bondholders were trying to force Bank of America to repurchase bad mortgages. There was 

also a surprise rate hike by the Chinese government, and mixed data on the housing market 

and corporate results (cnn.money.com b).19 Not analyzing these confounding effects might 

bias the estimates of the marginal effect of the G100 if the “new information” is correlated 

with the ranking. However, it is difficult to find plausible reasons for such kind of correlation 

to exist. 

Confounding effects can be ignored for the remainder of the study, because of the use 

of cross-sectional models and the methodology used to construct the G100. If on the day of 

the G100 release another event(s) affected returns across all firms, its impact would be 

controlled for by the constant in the cross-sectional models.20 This would also be true for any 

event affecting a group of companies, provided the distribution of such group in the G100 is 

similar to the distribution of all the companies in the list. In particular, since the G100 is 

                                                 
19 In particular, Bank of America reported a third-quarter net loss of $7.3 billion, Goldman 
Sachs disclosed a 40% plunge in profit for the third quarter, J&J stated a dip in sales, Yahoo 
reported less than expected sales, and Intel announced an up to $8 billion investment. 
20 For example, the news about improvement in the housing sector might have pushed prices 
up in general, which would affect the constant, but not the slope, of the cross sectional 
models. 
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constructed to make the ranking comparable across industries, any event affecting firms in a 

specific industry should only affect the constant of the estimated cross-sectional models.21 

 
5.2 The Impact of the G100 Release on the Relative Prices of the Listed Firms 

Key statistics for the cross-sectional models’ first estimation step are presented in Table 2. 

Out of the 100 estimated FFFMs, the F-test indicates that 97 of them are statistically 

significant at the 95% confidence level, with a median explanatory power of 56%. For the 97 

significant models, the market index in which the stock is traded is typically is significantly 

different from zero, whereas indexes for other markets are not. The coefficient corresponding 

to the NYA market index is significantly different from zero in 68 of the models (66 US-

traded stocks and two European-traded stocks), and has a median value of 0.7975, a 95th 

percentile of 1.4525 and a 5th percentile of -0.1652. 

Asian stock exchange indexes affected mostly Asian companies, independently of 

whether the stocks were traded in Asian or American markets. Some American and European 

stocks were also affected by Asian market indexes. The coefficients corresponding to 

Shanghai’s SSE Composite Index and Hong Kong’s Hang Seng Index are respectively 

significant in twelve and ten of the models.22 Japanese and Korean stock exchange indexes 

affected US stocks. The coefficient corresponding to Japan’s Nikkei 225 Index is significant 

                                                 
21 In the case of banks and insurance (the industry involving most of the news on the day of 
the G100 release), the ranking of the companies ranges from 9 to 89, covering almost all of 
the ranking range. 
22 The SSE Composite Index coefficient is significant for all three of the Chinese company 
stocks traded in Hong Kong, eight US-traded stocks, and one European stock. It has a median 
value of 0.0130, a 95th percentile of 0.2057, and a 5th percentile of -0.1183. The Hang Seng 
Index coefficient is significant for six US-traded companies, four European, and surprisingly 
none of the four Chinese companies traded in Hong Kong. It has a median value of -0.0117, a 
95th percentile of 0.1153 and a 5th percentile of -0.1293. 
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in 22 of the models,23 and the one corresponding to South Korea’s Kospi Composite Index is 

significant at the 95% confidence level in 13 of the models, but significant only at the 10% 

level for the South Korean-traded stock of Samsung.24 

European indexes are mostly significant in models of European stocks traded in the 

respective exchanges represented by the indexes. They are also significant, albeit at a lower 

level, in models of European stocks traded in other European exchanges, and US-traded 

stocks of European companies. The coefficient for France’s CAC 40-Paris is significant in 29 

of the models,25 for Germany’s DAX in 26,26 for Switzerland’s SMI in 22,27 and for the 

United Kingdom’s FTSE 100 Index coefficient in 17 of the models.28 

The Fama-French factors SMB, HML and UMD are significantly different from zero 

in a considerable proportion of the US-traded stock models, whereas they are non-significant 

for most of non-US-traded stocks. SMB is significantly different from zero for 21 companies 

                                                 
23 The Nikkei 225 Index coefficient is significant for 14 US-traded stocks: eight of which are 
of Japanese companies (Hitachi, Honda Motor, Toyota Motor, Mitsubishi UFJ Financial 
Group, Sony, Toshiba, Panasonic, and Canon) and one of a Chinese company (China 
Mobile)–, five European, and three Hong Kong stocks of Chinese companies. It has a median 
value of 0.0132, a 95th percentile of 0.2831 and a 5th percentile of -0.1398. 
24 The Kospi Composite Index coefficient is significant for three stocks of Chinese 
companies traded in Hong Kong; seven US-traded stocks, and three European, and has a 
median value of 0.0221, a 95th percentile of 0.3636 and a 5th percentile of -0.1837. 
25 The CAC 40-Paris Index coefficient is significant for 14 European-traded stocks, 13 US-
traded stocks –10 of European companies– and one Hong Kong stock of a Chinese company. 
It has a median value of 0.0433, a 95th percentile of 2.0105 and a 5th percentile of -0.3902. 
26 The DAX Index coefficient is significant for 14 European traded stocks, 10 US-traded 
stocks –seven of European companies– and two Hong Kong stocks of Chinese companies. It 
has a median value of 0.0093, a 95th percentile of 0.9366 and a 5th percentile of -0.7999. 
27 SMI Index coefficient is significant for 7 European traded stocks, and 15 US-traded stocks 
–eight of European companies. It has a median value of -0.0321, a 95th percentile of 0.4120, 
and a 5th percentile of -0.6274. 
28 The FTSE 100 Index coefficient is significant for four Europe-traded stocks, three of 
which correspond to companies based in the United Kingdom with stocks traded in London; 
11 US-traded stocks, eight of which consist of European companies and one of a Taiwanese 
company; and two stocks of Chinese companies traded in Hong Kong. It has a median value 
of -0.0557, a 95th percentile of 0.8305, and a 5th percentile of -0.4678. 
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(20 US-traded, and one Europe-traded), HML is significant for 33 companies (30 US-traded, 

and three Europe-traded), and UMD is significant for 17 companies (13 US-traded, and four 

Europe-traded). The likely explanation for the lack of significance of the SMB, HML, and 

UMD daily factors in the models for non-US-traded stocks is that such factors are US-based. 

Ideally, the models should include exchange-specific SMB, HML, and UMD factors, but as 

explained earlier they were not available at a daily frequency for the period and stock 

exchanges of interest. 

Given the similarity of the results obtained from the 128 cross-sectional models fitted 

in the second step, only the 64 models estimated using the FFFM abnormal returns are 

reported here. The other models are presented as Table 11 through Table 15 in the 

Appendix.29 All tables in the paper have the same structure. Models numbered 1 to 4 have as 

independent variable the Green Score, Green ranking, green components (EIS, GPS, and 

RSS), and EIS minus RSS (EISRSS), respectively. Version (a) of the models denotes the 

case where abnormal returns are measured only on the day of the information release, 

whereas version (b) corresponds to the case where abnormal returns are evaluated over both 

the day of release and the next day. 

 

Result 2: An eleven million dollar step: Getting one position closer to the top of Newsweek’s 

G100 increases the value of an average firm in the list by 11.3 million dollars.30  

                                                 
29 The table for non-heavy sector US-traded companies is not included in the appendix to 
save space. 
30 The average capitalization of a firm in the list was 115 billion dollars as of September 
2010. As a consequence, moving up one position in the ranking, which increases the value of 
a stock by 0.00984%, represents 11.3 million dollars. 
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Ranking position and the Green Score affected stock prices on the day the information was 

released in the expected direction: negative for the ranking position, and positive for the 

Green Score (see Figure 1). Table 3 shows that at least 6.6% of the abnormal returns on the 

event day were explained in three different models by the Green Score (model 1-a), ranking 

position (model 2-a), and Green Score components (model 3-a), respectively. According to 

these results, moving ten positions closer to the top of the ranking increases the value of a 

company by 0.0984% with a 99% confidence level (model 2-a). By comparison, the absolute 

value of the daily return of the companies in the G100 during the estimation period (i.e., 

10/5/2009 through 10/4/2010) was 0.014% on average. 

 

Result 3: G100’s top 50 performers reacted more strongly to the ranking than the bottom 50 

performers. 

We tested for the presence of non-linearities, and found that the top 50 performers reacted 

more strongly than the bottom 50 performers to the Green Score, the ranking position, and 

the components in both event windows.  

Table 4 and Table 5 show respectively the results of the models for the top and bottom 

performers. There is a proportionally larger participation of heavy sector stocks in the bottom 

50 performers (22 companies), which reacted more weakly to the ranking. To test for this 

confounding effect, we estimated regressions of the bottom 50 performers by sector. Results 

are omitted to save space, but they show that bottom 50 heavy sector stocks were not affected 

by being in the ranking (none of the models are significant). In contrast, non-heavy sector 

stocks in the bottom 50 did react to the EIS on the day the information was released (the 

coefficient estimate equals 1.731 and is significantly different from zero at the 5% level). The 
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difference between the top and bottom companies may be explained in part by the weaker 

reaction of heavy sector stocks, presented later in the paper. 

 

Result 4: Green Score components explain better the market reaction than the Green Score 

itself: EIS has a positive effect on stock prices, whereas RSS does not have a 

significant effect. 

The explanatory power is higher using the components of the Green Score than employing 

the Green Score itself (model 3-a versus model 1-a). Out of the three components, the only 

one significantly different from zero is the EIS. The RSS coefficient is non-significant in 

either event window, which may be reasonable because it reflects the market expectations 

regarding the environmental performance of the firms. The non-significance may be 

explained by the efficient market hypothesis: the release provided information that had 

already been incorporated into the prices. The GPS is not significantly different from zero 

either, suggesting that neither the companies’ reputation nor their policies were relevant new 

market information. Adding two non-significant components to the EIS to calculate the 

Green Score seems to distort the EIS signal, reducing the explanatory power of the Green 

Score model compared to the components’ model. 

Stocks in the non-heavy sector reacted fast to the G100, and took into account only 

the EIS (Table 6). In contrast, stocks in the heavy sector reacted in a slower and slightly, but 

non significantly, larger way with respect to the G100 ranking (|-1.764| > |-1.056|) and the 

Green Score (2.966 vs. 1.879). However, they were not significantly affected by any of the 

individual scores (Table 7). Ranking position and the Green Score impacted non-heavy stock 

prices on the day of the information release in the expected direction: negative for the 
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ranking position and positive for the Green Score. According to the results, moving up ten 

positions in the ranking and improving the Green Score by ten points increased the expected 

value of a non-heavy sector company by 0.11% and 0.19%, respectively (Table 6, models 1-a 

and 2-a). Increasing the EIS by ten points raised a company’s abnormal returns by 0.122%.  

 

Result 5: Non-US traded stocks exhibit a stronger and “more prolonged” reaction compared 

to US-traded stocks. 

The reaction to the release of G100 of non-US traded stocks in the two-day event window 

was significantly different from zero, and larger than the one- and two-day reactions of US-

traded stocks (Table 8 and Table 9). The reaction of US-traded stocks was in most cases 

slightly smaller than, but not significantly different from, the reaction of non-US stocks for 

the one-day event window. According to these results, moving ten positions closer to the top 

of the ranking increases the expected value of a US traded company by 0.1007% with a 99% 

confidence level (model 2-a Table 8), for the one event window. For non-US traded 

companies, the corresponding expected increase is 0.33% (model 2-b Table 9, 90% 

confidence level), for the two-day event window. The apparently slower and more prolonged 

reaction for non-US traded stocks may be explained by differences in time zones, as 8am US 

Eastern Time Zone corresponds to 2pm in Europe and afterhours trading in Asian exchanges. 

In particular, US-traded stocks of non-heavy sector companies were the ones that reacted the 

most to the G100 (Table 10); moving ten positions closer to the top of the ranking increased 

the value of a US-traded company in the non-heavy sector by 0.133%. 
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One possible explanation for the different behavior of US- vs. non-US traded 

companies is the well-documented home bias puzzle.31 European and Asian investors trade 

more non-US stocks due to the equity home bias (Sercu and Vanpee 2007). Also, European 

(French and German) consumers are more willing to support CSR than Americans (Maignan 

2001). Another possible explanation for the higher reaction of non-US traded stocks is that 

more of the released information was relevant for the market, which is plausible because 

some of the US-traded companies had been assessed the previous year in the “US 500 List” 

(Table 9). 

The Green Score components explain 25% and 41% of the non-US traded stocks 

abnormal returns in the one- and two-day event window models, respectively (models 3-a 

and 3-b in Table 8). Results are robust regarding the sign of the significant coefficients in 

both models. Interestingly, the RSS coefficient is negative, a sign of investors’ adjusting for 

existing information.32 Significant cross-sectional models using FFFM abnormal returns had 

lower explanatory power than the ones excluding the US Fama-French factors, e.g., 7.7% vs. 

9.3% in model 1-a, and 6.6% vs. 8.4% in model 2-a in Table 3 and Table 11, respectively. 

The sign and magnitude of the coefficients of cross-sectional models based on the market 

factor model abnormal returns are consistent with the significant cross-sectional models 

                                                 
31 The equity home bias is the difference between the relative weight of domestic equity in 
the portfolio of country j and the relative weight of country j in the total world market. The 
equity home bias of the market portfolio in 2004 was 0.81 for the US, 0.77 for EMU 
members, and 0.79 non-EMU EU members (Schoenmaker and Bosch 2008); and in 2005 
was 0.78 for Hong Kong, 0.79 for Japan, and 0.96 for Korea (Sercu and Vanpee 2007). An 
extended literature review of home bias puzzle is available in Karolyi and Stulz (2003), and a 
list of home bias by country is available in table 1 of Sercu and Vanpee (2007). 
32 The reaction of non-US traded stocks in the two-day window EISRSS model (model 4-b in 
Table 9) is also significant and positive as expected. For each ten point difference in EISRSS,  
the expected abnormal returns of a foreign traded company in the two-day event window 
increases by 0.2634%. 
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based on the FFFM abnormal returns. In this sense, the results presented here are the most 

conservative ones. 

Why did the estimated market factor model abnormal returns outperform the FFFM 

ones in the cross-sectional models? We expected the opposite because the FFFMs have 

higher explanatory power, as they include the US Fama-French factors in addition to the 

market returns. However, in most instances the additional factors in the FFFM were non-

significant (Table 2), and including them added noise to our estimation of expected returns. 

Therefore, the FFFM model is likely to incorporate unwarranted noise. This may end up 

being reflected in the predicted abnormal returns for the day of the event, thereby making the 

FFFM-based cross-sectional models lose explanatory power and even turn non-significant, 

especially in the two-day event window case. 

Previous results support the idea that a new “green” process which affects a 

company's relative G100 performance will impact the firm's stock price. Consequently, the 

G100 becomes a tournament that (provided its information is correct) enhances the efficiency 

of investments in environmental performance by creating an extra incentive to improve 

environmental performance.33 This occurs because firms that are able to improve their 

position in the G100 ranking at the lowest cost are the ones most likely to end up doing so. 

This result is independent of which mechanism is behind the investors’ reaction. 

 

6. Conclusions 

The present study adds a world market dimension to environmental rankings and the 

response of investors, quantifies the marginal effects of the G100 on stock prices, and 

                                                 
33 It must be noted that the methodology framework applied in this paper cannot account for 
the dynamic dimension of green investments. 
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investigates the impact of rankings on returns by industry sectors. Further, to the best of our 

knowledge it is the first study providing evidence of the existence of heterogeneity among 

investors regarding their interest in past performance and managerial quality as predictors of 

future environmental performance, which has implications for the construction of optimal 

environmental indexes (Chatterji, Levine, and Toffel 2009).  

Our results indicate that the market reacted to the G100 by changing the relative 

prices of the stocks included in it, but not the value of the equal-weight portfolio of such 

stocks. The magnitude of the effect was sizeable: moving one position closer to the top of 

Newsweek’s G100 raised the value of an average firm in the list by 11.3 million dollars. This 

represents an increase in the stock price of 0.0984%, or seven times the average of the 

absolute daily rate of return of the companies in the G100 during the estimation period (i.e., 

10/5/2009 through 10/4/2010). There is also evidence of a stronger reaction to the ranking 

position for top 50 companies in the G100 compared to bottom 50, for non-US-traded stocks 

compared to US-traded stocks, and of a more robust reaction for stocks in the non-heavy 

sector compared to the ones in the heavy sector. 

The finding that the equal-weight portfolio return was not affected by the G100 

release was expected, because the presence of the companies on the G100 list was only 

defined by their size. The use of a two-step procedure allowed us to identify a market effect 

that the standard event study method using only statistics of cumulative abnormal returns for 

the entire set might have ignored. The new information for the market was the performance 

of each company relative to the other ones in the set, and that is why the cross section in the 

second step was able to identify that effect in the firms’ stock prices. The cross section also 

allowed us to estimate marginal effects. 
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The G100’s top 50 performers reacted more strongly to the ranking release than the 

bottom 50 ones. The existence of this nonlinearity may be explained in part by a larger 

presence of heavy sector companies (which reacted less to the ranking) in the bottom 50. 

Stocks of companies in the non-heavy sector had a faster and more robust reaction to 

the G100 release than their heavy sector counterparts. Unlike heavy sector stocks, non-heavy 

sector stocks reacted significantly across all model specifications. One possible reason for 

this finding is that firms in the non-heavy sector might be closer to final consumers, and 

consequently pay more attention to consumers’ reactions to environmental performance. 

Another plausible explanation is that heavy sector firms have an input matrix of raw 

materials and energy that has low elasticity of substitution, whereas companies in the non-

heavy sector might have better more opportunities to improve their environmental 

performance at lower cost. For example, it might be easier to reduce energy consumption per 

unit of sales for a retail company (by replacing electric appliances with efficient ones, buying 

more locally, etc.) than for an iron company that basically consumes energy. 

Across all model specifications, US-traded stocks had a stronger reaction for a one-

day event window than non-US-traded stocks. However, in the case of a two-day event 

window, US-traded stocks had no significant reaction, whereas non-US-traded stocks 

exhibited a stronger reaction than with a one-day window. There are at least three possible 

explanations for this result. One explanation is that US-traded companies reacted as expected 

according to the efficient market hypothesis, and extending the event window only dilutes the 

effect making it non-significant. A second possible reason is that non-US-traded companies 

were included in a public environmental ranking for the first time, whereas some US-traded 

companies had already been in the “US 500 List” published in 2009. A third explanation is 
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that most of the non-US-traded companies are European, for which GPS and RSS might 

provide better predictions about future performance. Given the different regulatory history 

and environment in Europe, expectations about future regulation might motivate investors' 

hedging behavior.  

The use of stocks traded in international markets allowed us to find evidence of 

heterogeneity among investors with regard to their interest in past performance and 

managerial quality as predictors of future environmental performance. In particular, US-

traded stock returns were affected only by past performance (EIS), contrasting with non-US-

traded stock returns which responded only to managerial quality (GPS and RSS). These 

results have implications for the construction of optimal environmental rankings (Chatterji, 

Levine, and Toffel 2009), suggesting that the weight on past performance and managerial 

quality used to construct indexes environmental performance should differ across stock 

markets. 

Provided the measurement errors in the G100 are relatively small, the robustness of 

the findings not only implies that the G100 had relevant information for the market, but also 

supports the idea that companies should account for the effect on stock prices when making 

decisions about environmental policies that might their position in the G100. Whether the 

reason for such reaction is branding (to build a positive reputation and brand image), 

stakeholding (to satisfy different stakeholders), sustainability (to contribute to long-term 

sustainable development), or ethics/morals (to do the ‘right thing’), among other possible 

theoretical explanations, is an issue to be addressed in future research. 
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Figures 

 

Figure 1. One-day window regressions for the 100 companies. 

(Left: equation (8), Right equation (7)).  
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Tables 

Table 1. Event day abnormal returns statistics for different company groups 

 average median max min Std. dev. 

All -0.0056 -0.0002 0.0443 -0.0298 0.0111 

US 0.0007 0.0006 0.0295 -0.0298 0.0095 

Non-US 0.0047 0.0026 0.0426 -0.0213 0.0138 

Heavy -0.0013 0.0003 0.0117 -0.0298 0.0088 

Non-Heavy -0.0034 0.0025 0.0426 -0.0264 0.0117 

 
 



 

 

4
1 

 

Table 2. Summary statistics of the hundred estimated FFFMs by regression (3). 

  R2 NYA 000001_ss His n225 ks11 fchi gdaxi Ssmi ftse SMB HML UMD constant 

95 percentile 0.8012 1.4525 0.2057 0.1153 0.2831 0.3636 2.0105 0.9366 0.4120 0.8305 0.0036 0.0088 0.0051 0.0011 

75 percentile 0.7012 1.0399 0.0568 0.0518 0.1092 0.1063 0.3813 0.2083 0.1004 0.1713 0.0005 0.0015 0.0014 0.0004 

median 0.5656 0.7975 0.0130 -0.0117 0.0132 0.0221 0.0433 0.0093 -0.0321 -0.0557 -0.0006 -0.0011 -0.0003 -0.0001 

mean 0.5479 0.6715 0.0150 -0.0160 0.0312 0.0622 0.2532 0.0468 -0.0708 0.0257 -0.0007 -0.0005 0.0000 0.0001 

25 percentile 0.4578 0.1205 -0.0377 -0.0501 -0.0525 -0.0648 -0.1316 -0.1812 -0.2963 -0.1788 -0.0020 -0.0034 -0.0020 -0.0004 

5 percentile 0.2189 -0.1652 -0.1183 -0.1293 -0.1398 -0.1837 -0.3902 -0.7999 -0.6274 -0.4678 -0.0046 -0.0066 -0.0059 -0.0011 

Percentage of models 95% significant 97 68 12 10 22 13 29 26 22 17 21 33 17 2 
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Table 3. Robust OLS regressions using estimated abnormal returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.557 7.275             

(0.442)*** (4.362)** 
      

Ranking   
-0.984 -5.223 

    

  
(0.309)*** (3.53) 

    

Environmental 
impact score 

    
0.959 -2.48 

  

    
(0.375)** (4.523) 

  

Green policies 
and 
performance 
score 

    
0.689 11.07 

  

    
(0.586) (9.796) 

  

Reputation 
survey score 

    
-0.137 -1 

  

    
(0.581) (1.443) 

  

Env. Impact – 
Rep Survey 

      
0.692 -1.373 

      
(0.311)** (3.075) 

Intercept 
-84.386 -536.185 67.999 207.228 -62.971 -527.838 22.757 -65.422 

(29.469)*** (362.396) (19.934)*** (106.374)** (29.142)** (409.286) (11.43)** (97.889) 

R2 0.0769 0.0338 0.066 0.0374 0.0966 0.0609 0.047 0.0037 

Significance 0.0007*** 0.0986** 0.0019*** 0.1421 0.0062*** 0.0417** 0.0286** 0.6562 

(Prob >F) 
        

AIC -621.031 -225.8551 -619.8557 -226.2301 -619.1871 -224.7086 -617.8489 -222.7955 

Observations 100 100 100 100 100 100 100 100 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 25 of the bottom 50 companies are in the heavy sector. 
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Table 4. Robust OLS regressions for top 50 performers in the G100 using estimated 
abnormal returns from FFFM for top 50 performers in the G100 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
3.409 1.895             

(1.571)** (2.313) 
      

Ranking   
-1.91 -0.907 

    

  
(0.998)** (1.383) 

    

Environmental 
impact score 

    
1.567 2.17 

  

    
(0.763)** (0.898)** 

  

Green policies 
and 
performance 
score 

    
2.04 1.302 

  

    
(1.026)** (1.603) 

  

Reputation 
survey score 

    
-0.339 -1.741 

  

    
(0.973) (1.531) 

  

Env. Impact – 
Rep Survey 

      
1.072 1.979 

      
(0.553)** (0.775)** 

Intercept 
-238.883 -93.967 87.072 83.257 -194.404 -68.538 35.684 55.167 

(132.379)** (187.965) (27.143)*** (42.635)** (122.771) (170.954) (14.966)** (19.441)*** 

R2 0.0698 0.0116 0.0638 0.0077 0.1501 0.1634 0.0822 0.1509 

Significance 0.035** 0.4167 0.0617** 0.515 0.0972** 0.07** 0.0586** 0.0139** 

(Prob >F) 
        

AIC -309.4838 -275.5085 -309.1616 -275.3135 -309.9966 -279.8427 -310.157 -283.1033 

Observations 50 50 50 50 50 50 50 50 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 25 of the bottom 50 companies are in the heavy sector. 
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Table 5. Robust OLS regressions for bottom 50 in the G100 using estimated abnormal 
returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.504 8.324             

(1.107) (4.826)** 
      

Ranking   
-1.146 -12.878 

    

  
(1.311) (10.048) 

    

Environmental 
impact score 

    
0.812 -6.681 

  

    
(0.535) (8.917) 

  

Green policies 
and 
performance 
score 

    
-0.158 19.898 

  

    
(1.273) (18.757) 

  

Reputation 
survey score 

    
0.455 -4.595 

  

    
(0.788) (5.531) 

  

Env. Impact – 
Rep Survey 

      
0.28 -5.083 

      
(0.394) (6.135) 

Intercept 
-77.771 -593.861 84.71 799.081 -44.822 -607.645 2.532 -251.668 

(51.127) (387.772) (107.698) (611.053) (38.814) (487.355) (17.572) (245.682) 

R2 0.0443 0.0137 0.0232 0.0296 0.035 0.0786 0.0093 0.0309 

Significance 0.1806 0.091** 0.3865 0.2061 0.3651 0.6899 0.4798 0.4114 

(Prob >F) 
        

AIC -308.7799 -77.31148 -307.6929 -78.12518 -304.2997 -76.71407 -306.9846 -78.19054 

Observations 50 50 50 50 50 50 50 50 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000.  
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Table 6. Robust OLS regressions for non-heavy sector using estimated abnormal 
returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.879 14.933             

(0.701)*** (12.774) 
      

Ranking   
-1.056 -8.745 

    

  
(0.461)** (7.51) 

    

Environmental 
impact score 

    
1.22 -2.015 

  

    
(0.441)*** (3.972) 

  

Green policies 
and 
performance 
score 

    
0.833 19.183 

  

    
(0.773) (17.383) 

  

Reputation 
survey score 

    
0.0302 -1.318 

  

    
(0.739) (2.553) 

  

Env. Impact – 
Rep Survey 

      
0.755 -1.956 

      
(0.352)** (3.688) 

Intercept 
-99.462 -1127.892 80.337 316.589 -94.343 -1085.326 32.747 -60.068 

(51.332)** (1021.203) (24.744)*** (218.415) (61.939) (983.658) (14.147)** (111.324) 

R2 0.0619 0.0593 0.0553 0.0575 0.105 0.1025 0.0515 0.0052 

Significance 0.0094*** 0.2467 0.0252** 0.2486 0.0316** 0.1966 0.0357** 0.5976 

(Prob >F) 
        

AIC -399.5811 -122.9094 -399.117 -122.7802 -398.6834 -122.0101 -398.852 -119.2195 

Observations 66 66 66 66 66 66 66 66 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 7. Robust OLS regressions for heavy sector using estimated abnormal returns 
from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
0.8 2.966             

(0.705) (1.236)** 
      

Ranking   
-0.44 -1.764 

    

  
(0.466) (0.922)** 

    

Environmental 
impact score 

    
-0.366 1.365 

  

    
(0.962) (1.426) 

  

Green policies 
and 
performance 
score 

    
0.597 1.269 

  

    
(0.885) (1.499) 

  

Reputation 
survey score 

    
0.00273 0.0477 

  

    
(0.963) (1.865) 

  

Env. Impact – 
Rep Survey 

      
-0.236 0.353 

      
(0.741) (1.472) 

Intercept 
-57.388 -206.757 15.269 71.227 -31.691 -149.761 -18.325 -33.527 

(41.76) (75.856)** (34.407) (59.673) (30.919) (59.88)** (18.613) (36.633) 

R2 0.0422 0.1974 0.0211 0.1157 0.0184 0.0986 0.005 0.0038 

Significance 0.2649 0.0224** 0.3518 0.0648** 0.8672 0.2236 0.7526 0.8121 

(Prob >F) 
        

AIC -222.7725 -192.1439 -222.0343 -188.8477 -217.9388 -184.1958 -221.4791 -184.7981 

Observations 34 34 34 34 34 34 34 34 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 8. Robust OLS regressions for US traded stocks using estimated abnormal 
returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.532 10.342             

(0.424)*** (7.787) 
      

Ranking   
-1.007 -7.086 

    

  
(0.278)*** (5.389) 

    

Environmental 
impact score 

    
1.013 -6.742 

  

    
(0.455)** (7.707) 

  

Green policies 
and 
performance 
score 

    
0.2 15.552 

  

    
(0.639) (13.751) 

  

Reputation 
survey score 

    
0.446 0.357 

  

    
(0.588) (1.988) 

  

Env. Impact – 
Rep Survey 

      
0.506 -4.562 

      
(0.338) (5.36) 

Intercept 
-98.681 -820.029 53.484 220.386 -81.073 -751.101 10.523 -144.462 

(29.152)*** (640.143) (18.261)*** (148.521) (26.189)*** (576.917) (12.044) (148.853) 

R2 0.0888 0.0439 0.094 0.0505 0.1242 0.1067 0.0276 0.0244 

Significance 0.0006*** 0.1885 0.0006*** 0.1929 0.0071*** 0.4837 0.1388 0.3977 

(Prob >F) 
        

AIC -462.4159 -137.8231 -462.8158 -138.3101 -461.2295 -138.6489 -457.7982 -136.3876 

Observations 71 71 71 71 71 71 71 71 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 9. Robust OLS regressions for non-US traded stocks using estimated abnormal 

returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
2.47 5.355             

(1.108)** (1.723)*** 
      

Ranking   
-1.669 -3.3 

    

  
(0.995) (1.537)** 

    

Environmental 
impact score 

    
-0.505 1.276 

  

    
(0.817) (1.137) 

  

Green policies 
and 
performance 
score 

    
4.891 5.61 

  

    
(1.873)** (2.584)** 

  

Reputation 
survey score 

    
-3.985 -5.645 

  

    
(1.515)** (2.261)** 

  

Env. Impact – 
Rep Survey 

      
0.879 2.634 

      
(0.602) (0.915)*** 

Intercept 
-99.126 -243.903 147.404 271.336 38.482 25.033 49.838 81.475 

(62.112) (100.853)** (70.219)** (99.933)** (110.899) (136.904) (25.91)** (32.275)** 

R2 0.1404 0.3107 0.1021 0.188 0.253 0.4135 0.0714 0.3018 

Significance 0.0343** 0.0044*** 0.1051 0.0409** 0.0237** 0.0128** 0.1557 0.0077*** 

(Prob >F) 
        

AIC -166.5924 -151.1669 -165.3288 -146.4154 -166.6638 -151.8474 -164.353 -150.7929 

Observations 29 29 29 29 29 29 29 29 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 10. Robust OLS regressions for US traded stocks in non-Heady sectors using 

estimated abnormal returns from FFFM 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
2.421 27.427             

(0.743)*** (22.799) 
      

Ranking   
-1.333 -15.226 

    

  
(0.456)*** (12.669) 

    

Environmental 
impact score 

    
1.595 -6.648 

  

    
(0.442)*** (7.532) 

  

Green policies 
and 
performance 
score 

    
0.289 34.735 

  

    
(0.784) (27.622) 

  

Reputation 
survey score 

    
0.694 0.73 

  

    
(0.777) (4.467) 

  

Env. Impact – 
Rep Survey 

      
0.849 -5.306 

      
(0.382)** (6.677) 

Intercept 
-160.801 -2194.733 70.222 427.6 -137.916 -2133.17 19.006 -157.523 

(56.67)*** (1851.957) (23.114)*** (330.821) (52.73)** (1647.713) (14.711) (175.49) 

R2 0.1263 0.1208 0.1159 0.1127 0.2122 0.2259 0.0785 0.0228 

Significance 0.0022*** 0.2357 0.0056*** 0.2362 0.0027*** 0.5766 0.0316** 0.4313 

(Prob >F) 
        

AIC -282.9292 -67.07242 -282.4062 -66.6691 -283.4821 -68.67437 -280.5866 -62.42387 

Observations 44 44 44 44 44 44 44 44 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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7. Appendix 

Table 11. Robust OLS regressions using estimated abnormal returns from market 

model 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.848 7.263 

      

(0.528)*** (4.473) 
      

Ranking   
-1.195 -5.329 

    

  
(0.369)*** (3.61) 

    

Environmental 
impact score 

  
  1.149 -1.785 

  

    
(0.441)** (4.637) 

  

Green policies 
and 
performance 
score 

    
0.952 10.94 

  

    
(0.628) (10.034) 

  

Reputation 
survey score 

    
-0.558 -1.936 

  

    
(0.55) (1.459) 

  

Env. Impact – 
Rep Survey 

      
0.955 -0.599 

      
(0.361)*** (3.134) 

Intercept 
-107.248 -540.395 74.968 207.596 -67.778 -506.906 20.774 -65.399 

(-33.243)*** (-370.213) (24.782)*** (111.103)** (30.024)** (419.635) (12.598) (100.179) 

R2 0.0929 0.0322 0.0835 0.0373 0.1246 0.0531 0.077 0.0007 

Significance 
(Prob >F) 

0.0007 0.1076 0.0017*** 0.1431 0.0108** 0.0148** 0.0095*** 0.8488 

AIC 
 

-221.4357 -606.4744 -221.9573 -607.0615 -219.6173 -605.7722 -218.2269 

Observations 100 100 100 100 100 100 100 100 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 12. Robust OLS regressions for non-heavy sectors using estimated abnormal 

returns from market model 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
2.581 15.981 

 
    

   

(0.771)*** (12.974) 
      

Ranking   
-1.511 -9.413 

    

  
(0.504)*** (7.624) 

    

Environmental 
impact score 

    
1.723 -0.667 

  

    
(0.528)*** (4.065) 

  

Green policies 
and 
performance 
score 

    
1.185 19.4 

  

    
(0.815) (17.765) 

  

Reputation 
survey score 

    
-0.0476 -1.841 

  

    
(0.703) (2.647) 

  

Env. Impact – 
Rep Survey 

      
1.096 -0.897 

      
(0.4)*** (3.757) 

Intercept 
-159.08 -1216.445 90.559 331.807 -152.251 -1164.054 22.431 -76.185 

(51.363)*** (1035.692) (30.995)*** (224.222) (59.241)** (1004.636) (15.251) (114.002) 

R2 0.0939 0.0651 0.091 0.0638 0.1685 0.0995 0.0872 0.0011 

Significance 
(Prob >F) 

0.0014*** 0.2225 0.0039*** 0.2215 0.0071*** 0.0313** 0.008*** 0.8121 

AIC -387.4357 -120.4593 -387.2226 -120.3683 -389.1057 -118.9383 -386.9454 -116.0877 

Observations 66 66 66 66 66 66 66 66 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 13. Robust OLS regressions for heavy sectors using estimated abnormal returns 

from market model 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.153 2.503 

      
(0.84) (1.408)** 

      

Ranking   
-0.614 -1.44 

    

  
(0.572) (1.048) 

    
Environmental 

impact score 
    

0.0464 1.798 
  

    
(0.876) (1.24) 

  
Green policies 

and 

performance 

score 

    
1.061 1.327 

  

    
(0.931) (1.525) 

  

Reputation 

survey score 
    

-0.786 -1.145 
  

    
(0.992) (1.656) 

  
Env. Impact – 

Rep Survey 
      

0.334 1.226 

      
(0.782) (1.314) 

Intercept 
-69.266 -168.667 34.192 62.782 -17.344 -89.502 2.614 -1.054 

(49.593) (84.578)** (40.35) (69.233) (32.15) (64.335) (18.602) (34.536) 

R2 0.0846 0.1495 0.0397 0.082 0.0497 0.111 0.0097 0.0492 

Significance 

(Prob >F) 
0.1794 0.0849** 0.2912 0.179 0.7218 0.3947 0.6722 0.3581 

AIC -223.108 -192.2746 -221.4825 -189.679 -217.8389 -186.7695 -220.4362 -188.4837 

Observations 34 34 34 34 34 34 34 34 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 

95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 

and standard deviations are multiplied by 10,000.  
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Table 14. Robust OLS regressions for US-traded stocks using estimated abnormal 

returns from market model 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
1.625 10.134 

 
    

 
    

(0.523)*** (7.982) 
      

Ranking   
-1.105 -7.081 

    

  
(0.348)*** (5.508) 

    

Environmental 
impact score 

    
1.188 -5.775 

  

    
(0.599)** (7.932) 

  

Green policies 
and 
performance 
score 

    
0.513 15.455 

  

    
(0.682) (14.136) 

  

Reputation 
survey score 

    
-0.177 -1.101 

  

    
(0.558) (2.071) 

  

Env. Impact – 
Rep Survey 

      
0.836 -3.424 

      
(0.455)** (5.489) 

Intercept 
-103.501 -809.33 59.578 216.549 -71.758 -713.26 14.627 -139.261 

(33.958)*** (654.78) (23.897)** (154.02) (29.85)** (592.969) (15.312) (152.866) 

R2 0.0706 0.0404 0.0798 0.0483 0.1083 0.0893 0.0533 0.0132 

Significance 
(Prob >F) 

0.0028*** 0.2085 0.0022*** 0.2029 0.0446** 0.3592 0.0704** 0.5348 

AIC -436.3171 -134.5703 -437.0272 -135.1545 -435.2558 -134.2833 -435.006 -132.5817 

Observations 71 71 71 71 71 71 71 71 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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Table 15. Robust OLS regressions for non-US traded stocks using estimated abnormal 

returns from market model 

  Model 1-a Model 1-b Model 2-a Model 2-b Model 3-a Model 3-b Model 4-a Model 4-b 

Green Score 
2.9 5.641             

(1.225)** (1.805)*** 
      

Ranking   
-2.001 -3.686 

    

  
(1.143)** (1.692)** 

    

Environmental 
impact score 

    
0.233 2.173 

  

    
(0.73) (1.174)** 

  

Green policies 
and 
performance 
score 

    
4.059 4.636 

  

    
(1.904)** (2.897) 

  

Reputation 
survey score 

    
-2.955 -4.533 

  

    
(1.306)** (2.184)** 

  

Env. Impact – 
Rep Survey 

      
1.087 2.927 

      
(0.619)** (0.889)*** 

Intercept 
-141.069 -269.202 150.855 286.174 -31.251 -42.074 34.01 74.064 

(66.938)** (100.767)** (80.015)** (114.568)** (107.469) (147.389) (24.332) (33.967)** 

R2 0.209 0.3069 0.1585 0.2088 0.2549 0.4066 0.1178 0.3318 

Significance 
(Prob >F) 

0.0253** 0.0042*** 0.0915** 0.0383** 0.0629** 0.0117** 0.0906** 0.0028*** 

AIC -171.2456 -147.6287 -169.4491 -143.7891 -168.977 -148.1316 -168.0797 -148.6895 

Observations 29 29 29 29 29 29 29 29 

Note: "a" and "b" denote models estimated using one- and two-day windows, respectively. ** and *** represent 
95 and 99% significance. Standard deviations are shown between parentheses for each coefficient. Coefficients 
and standard deviations are multiplied by 10,000. 
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CHAPTER 3. COMPETITIVE INTERACTIONS BETWEEN GRAIN R AILROAD 

RATES AND BARGE RATES IN THE MISSISSIPPI WATERWAY S YSTEM 

Juan M. Murguia 
 

Abstract 
 

US grain is produced mostly in the Midwest and exported via the Pacific 

Northwest and the Gulf of Mexico. Barges on the Mississippi River and 

railroads play fundamental roles in export competitiveness. Railroads 

historically have caused concern about market power while barges have 

always been perceived as a competitive market because new transportation 

companies can share the river. Despite research on grain rail rates, little is 

known about the impact of barges on their market power. Using data from the 

Grain Transportation Report, this paper estimates simultaneous equation 

models of barge and railroad rates for specific origin-destinations and grains 

(corn, wheat, and soybeans). This study benefits from instrumental variables 

such as river levels and railroad cost indexes. Evidence of specific route 

competitiveness of various grains was found. Interestingly, it was possible to 

identify a railroad route with prices as complementary of barge rates, which 

may increase railroad market power. River levels affect barge rates, but there 

are differences for corn and wheat, possibly due to production locations in the 

Mississippi basin. Ocean vessel rates affect barge rates directly and railroad 

rates indirectly. Real exchange rates affect barge rates more than railroad 

rates. Evidence suggests that distance between railroad origin and barge origin 

affects the impact of the later on the first one. This study expands the 
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literature on the effect of barge rates on railroad rates by analyzing the effect 

of distance between origins and adding evidence of possible 

complementarities.  

 

Keywords: transportation, barge rates, rail rates 

JEL Codes: L9, L92, Q10, Q13, Q19, R41, L11, D22. 

1. Introduction 

Most of the US grain production is located in the Midwest. The states of Iowa, Illinois, 

Nebraska, Minnesota, and Indiana harvested 60% of the US corn and soybeans in 2007 

(USDA NASS). Wheat production is also concentrated in the Midwest and some Western 

states34. Demand, however, is dispersed across the US and abroad creating areas with large 

surpluses and deficits of grains (Figure 2, Figure 3 and Figure 4), and requiring the 

transportation of more than 400 million tons of corn, soybean, and wheat each year 

(Marathon and Denicoff, 2011). As a consequence, an efficient intermodal transportation 

system of trucks, railroads (maps for BNSF and UP are presented in Figure 6 and Figure 7 

respectively), barges and vessels is fundamental in determining better prices for farmers, 

lower food and biofuel costs for consumers and more competitive export prices. While 

domestic transportation is covered mostly by truck35, railroads and barges are the most 

important modal transportations for exports. Rail and barge transportation represented 

                                                 
34

 The top 10 state producers of wheat in 2007 accumulated 83 percent of the grain. All are in 
the western part of the Midwest: North Dakota, Kansas, Montana, South Dakota, Texas, 
Washington, Oklahoma, Colorado, Nebraska, and Idaho. (USDA NASS) 
35

 In the period 2003-2007, of the total volume of corn, soybeans and wheat transported for 
the domestic market, 69% was by truck, 29% by rail, and only 2% by barge (Marathon and 
Denicoff 2011) (Table 1). 
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respectively 48 and 45% of the total volume of corn, soybeans and wheat exported in the 

period 2003-2007 (Marathon and Denicoff, 2011). Because grains are often transported in 

more than one mode, competition and complementarity exist among these modes. This paper 

analyzes the competitive interactions between grain railroad rates and barge rates in the 

Mississippi waterway system. 

 The total amount of grain transported almost doubled in the period 1978-2008 mostly 

due to an increase on corn production. Most of the increase in corn production was destined 

for the domestic market, causing exports rates to decrease over time. While in the early 80s 

almost 50% of US grains were exported, by 2007 exports were only 30%. Despite this, in 

absolute terms the exported volume has remained stable at between 50 and 60 million tons of 

corn, and 25 and 35 million tons of soybeans and wheat. The industrial use of corn, mostly 

by ethanol plants, explains this behavior36. Industrial use increased from 18% in 1990 to 34% 

in 2007. Given that most of the ethanol plants are located in the Midwest, truck 

transportation of corn increased its participation from 45 to 59% in the period 1995-2007 

(Marathon and Denicoff, 2011).   

 US grain exports require large distance transportation from the Midwest to the ports 

in the Gulf and Pacific Northwest (PNW). For this reason, barge and rail transportation are 

preferred to trucks. Barges are able to carry one ton of cargo 576 miles per gallon of fuel 

compared to 413 miles by rail and only 155 miles for a truck (Maritime Administration. 

2010). Also, the capacity of a barge, 1,500 tons, is 15 times that of a rail car and 60 times that 

                                                 
36

 More than 90 percent of ethanol production capacity is located within a 50-mile radius of 
the corn producing areas (Marathon and Denicoff, 2011).  Nevertheless, larger biofuel plans 
are capable of investing in railroad infrastructure and as a consequence the use of truck 
transportation may decline over time. 
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of a truck. Barge and rail transportation are also preferred from an environmental point of 

view. Trade transportation by barge releases 33 percent less pollutants than diesel trains and 

373 percent less than diesel trucks (Maritime Administration. 2010). These advantages are, 

of course, limited because barges are available only in the Mississippi River system (figure 

4) and the Columbia River. As a consequence, it is possible to send grains from the Midwest 

by barge or rail to the Gulf but only rail is available to the PNW. 

Corn, soybeans, and wheat are produced in different areas with respect to the 

Mississippi waterway system.  While corn (Figure 2) and soybeans (Figure 3) are produced 

close to the Mississippi waterway system (Figure 5) in the corn belt (north of Missouri and 

Ohio rivers), wheat production (Figure 4) is way west in the upper and lower plains. This 

situation affects the selected modal transportation of these grains for export. In the case of 

corn, the main mode of transportation for export is barge (55 to 58% in the period 1995-

2007), followed by rail (33 to 35% in the same period). As a consequence of the high barge 

rate transportation, 63% of corn exports were through the Mississippi Gulf, 4% through 

Texas Gulf, and only 17% though the PNW in 2007 (Figure 2). Soybeans share a similar 

pattern with corn. Barge is the main mode of transportation for exports (46 to 69% in the 

period 1995-1997), followed by rail (23 to 46%). The Mississippi Gulf received 52% of the 

soybeans for export, while PNW received only 27%. Almost 45% of wheat is exported; 

however, since the main production areas are far away from the Mississippi river system, rail 

is the dominant mode of transportation (56 to 71% in the period 1995-2007). Barge 

transportation represents only 26 to 38% for the same period. Therefore the PNW is the main 

export port destination (37%), followed by Texas Gulf (27%) and Mississippi Gulf (19%) 

(Figure 4).  
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In recent years PNW has increased market participation as a grain export port. Until 

2002 the Mississippi Gulf (composed of four major deep-draft ports: South Louisiana, New 

Orleans, Baton Rouge, and Plaquemines) was the leading port for grain exports, reaching 

more than 50% market share in the period 1995-2002. Starting in 2002, the PNW has gained 

market share (from an average of 20% in the 1990s to 25% in the period 2005-2009) at the 

expense of the Mississippi Gulf. Due to the complementarity of barges with Mississippi Gulf 

(while rail complements both export port regions), when the Mississippi Gulf share declines 

so does the barge share; and when the PNW or Texas Gulf share increases so does the rail 

share. Among the reasons for the recent PNW share increase are higher demand from Asia, 

lower ocean rates in PNW than in the Gulf, and lower rail rates compared to barges37 due to 

the introduction of shuttle services at lower prices by the railroad companies and the 

reduction of the barge fleet since 2004. In this scenario, barge competition is relevant for the 

reduction of rail market power.  

Improving understanding of various modal grain transportation rates is relevant for 

the determination of grain prices. Yu, Bessler and Fuller (2007) studied the spatial price 

linkages in US grain and transportation markets, and found that transportation rates (barge, 

rail, and ocean) explain a considerable proportion of the variation in corn prices in the long 

run (42–64%).  Despite the extensive body of research analyzing grain rates in the railroad 

and barge sector, little is known about the extent to which they are complementary or 

                                                 
37

 While in the 1990’s there was an ample supply of barges, starting in fall 2004, a decrease in 
the  barge fleet size and an increase in the demand to transport non-grain commodities on the  
waterways occurred, created the beginning of the upward swing in barge rates. Since New 
Orleans receives about 90 percent of corn and soybeans by barge and, with the remaining 10 
percent arriving by rail and truck, the increase in barge rate prices made the port less 
competitive compared to PNW (AMS-USDA Study of Rural Transportation Issues). 
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substitutive means of transportation.  The aim of this paper is to determine the relationship 

between rail and barge transportation grain rates in the United States 

Much effort has been made on the study of grain railroad prices and railroad market 

power. The Staggers Rail Act of 1980, which granted railroads greater freedom in setting 

shipping rates, caused a decrease in the rates (MacDonald 1987, Wilson, Wilson and Koo. 

1988; Wilson and Wilson, 2001). Some evidence shows an increase in grain railroad rates 

after 2004, with increments even beyond cost inflation creating new concerns about railroad 

market power (Sparger and Pratter, 2012). Other studies have analyzed Ocean Freight Rates 

for Grain Shipments and found price changes by season and commodity (Park and Koo, 

2004).  

A few studies have jointly addressed the barge and railroad grain rates (Sorenson, 

1973; Fuller and Shanmugbam, 1981; MacDonald, 1986; Hauser and Grove, 1986; Yu, 

Zhang, and Fuller, 2006; Yu, Bessler and Fuller, 2007).  MacDonald (1986) found that barge 

competition measured as the mileage from the origin point to the nearest location of water 

transport, positively affecting railroad rates. More recently, Vachal et al. (2006) found price 

elasticity between barge and railroad of 0.0212 for the year 1981, which decreased during the 

period 1981 to 2000. Yu, Zhang, and Fuller (2006) estimated that short- and long-run grain 

barge transport demands were price inelastic in the upper Mississippi and Illinois Rivers for 

the period 1992 to 2001. Miljkovic et al. (2000) regressed a 3SLS railroad and barge supply 

and demand system for transportation of grain from Illinois to the Gulf for the period 1981-

1995. They found that the barge rates responded positively to rail rates more than rail rates to 

barge rate, with the elasticity of 1.3544 and 0.114, respectively. 
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This paper estimates, within the period 2002-2012, simultaneous equations models of 

the barge rate and railroad rates for the three major grain crops: corn, soybeans, and wheat. 

Results differ by railroad lines. Some show complementarity behavior with barges while 

others show competitive behavior. Price-Price elasticities were estimated and various model 

specifications were regressed for robustness. The paper continues with some background on 

rail and barge markets, followed by the data and methodology section, and it ends with the 

results and conclusions section. 

 

2. Background 

The railroad industry has evolved since the Staggers Rail Act of 1980. Previously cars were 

priced individually and a complete train was assembled with cars form other origins (Sparger 

and Pratter, 2012). Unit trains (25 to 52 cars) were introduced at lower per-car rates 

(Sarmiento and Wilson, 2005), and later shuttle trains (75 to 120 cars) were able to order an 

entire train for one shipper (Sparger and Pratter, 2012). Shuttle trains, introduced in the 

market in the early 1990s, use the same engines and crew from source to origin; the train 

service is contracted over a long period of time (six to nine moths) with a specific origin-

destination, and has time incentives to load and unload the cargo (Sarmiento and Wilson, 

2005).  To be able to use shuttle rates, elevators must make important investments38 of 5 to 

10 million dollars (Sarmiento and Wilson, 2005), to be able to load a large number of cars in 

a short period of time39. For these reasons shuttle rates are expected to be lower than unit 

rates. 

                                                 
38

 Only 6% of the elevators were capable of shuttle train shipping in 2001 (Sarmiento and 
Wilson 2005).   
39

 Loading/Unloading of the entire unit train must not exceed 15 hours (BNSF 2012) 
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Railroad costs paid by shippers are composed of rates, fuel surcharges, and secondary 

market prices (in the case of purchasing in that market). Rail rates are determined in what is 

called a primary market, where shippers are able to secure rail cars for future shipments by 

auctioning to the railroad companies these contracts for single cars, unit, and shuttle trains. 

This practice was a consequence of the beginning of the Certificates of Transportation in 

1988 (Wilson and Dahl, 2010). Before this cars were assigned on a first come first served 

system. The resulting rates are required by law to be published 20 days in advance, not 

allowing variation on a more frequent basis. To provide more flexibility, a secondary market 

was developed for shippers to exchange contracts40.  The secondary market allows adjusting 

the rail rates on a weekly basis, with the difference between the published tariff and the 

second market price being collected by the shippers rather than by the railroads (Sparger and 

Pratter, 2012). In practice, most of the time there is no difference. In the period 2004-2010 

90% of the primary actions were at nil premium (Wilson and Dahl, 2010). Fuel surcharges 

are part of the contracts and are charged per car by mile, while the tariff is fixed for a specific 

origin destination. The same fuel surcharge is applied for all the tariffs of a railroad 

company.  

Barges are a slow mean of transportation compared to railroads and their rates are not 

regulated. To arrive to Baton Rouge, LA, a barge from Minneapolis takes 11 days, from 

Quad cities 9 days, and from St. Louis 5 days.  The US Inland Waterway System uses a 

percent of tariff system to establish barge freight rates.  Each city on the river has its own 

benchmark, with the northern most cities having the highest benchmarks since all have as 

destination Baton Rouge, NO. The tariffs were originally from the Bulk Grain and Grain 

                                                 
40

 No evidence of the participation of railroads in this market exists  (Sparger and Pratter 
2012). 
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Products Freight Tariff No. 7 issued by the Waterways Freight Bureau (WFB) of the 

Interstate Commerce Commission (ICC).  In 1976, the United States Department of Justice 

entered into an agreement with the ICC: Tariff No. 7 became no longer applicable. Today, 

the WFB no longer exists and the ICC has become the Surface Transportation Board of the 

United States Department of Transportation.  However, the barge industry continues to use 

the tariffs as benchmarks as rate units. (AMS-USDA). 

 

3. Data and Methodology 

 

3.1 Data 

Two main sources of railroad and barge rate data exist: the Carload Waybill Sample of the 

Surface Transportation Board of the DOT, and the USDA’S Grain Transportation Report. 

The Carload Waybill Sample is a stratified sample of carload waybills for all U.S. rail traffic 

submitted by those rail carriers terminating 4,500 or more revenue carloads annually. 

Because the Waybill Sample contains sensitive shipping and revenue information, access to 

this information is restricted to federal institutions. The public version of this sample, the 

Public Use Waybill File, provides railroad monthly prices by commodity and origin-

destination (Surface Transportation Board).  This database has been used in previous papers; 

however, the reported rates of contracts are not the original ones, but are altered to prevent 

the identification of the companies’ price strategies. Since approximately 60% of the 

transactions are under contract41 the same proportion of the data has this problem.  

                                                 
41

 Personal Communication from the Surface Transportation Board. 
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The USDA’s Grain Transportation Report (GTR) collects data from the railroad 

companies, the Carload Waybill Sample, the secondary market and information about the 

fuel surcharge. Since 2000, the GTR reports the secondary market unit grain train and shuttle 

grain train indexes (Figure 8) (2000=100%), which capture more than 20% of the total 

movements of wheat, corn, and soybeans across the country for both unit trains and shuttles 

in 38 major grain routes42 (Sparger and Pratter, 2012).  Three major events created abnormal 

picks in the indexes during 2002-2012 (Figure 8): the aftermath of Hurricane Katrina 

(August 2005 through January 2006), a record US export of corn, wheat, and soybeans 

(August through October 2007) and the Russian grain export ban (July through October 

2010) (Sparger and Pratter, 2012). By adding each week’s secondary railcar market average 

bid to the current month’s average tariff rate with fuel surcharge, the AMS-USDA 

constructed the comprehensive rail rate indices using weekly data (AMS-USDA b).  

The GTR database started in 2010 to include monthly rail tariffs for the most 

important grain corridors. These include rates for corn (Figure 9) in the corridors MN-OR, 

IL-LA, IN-TN, NE-TX, and Des Moines-Davenport; for soybeans (Figure 10) in the 

corridors ND-WA, SD-WA, MN-OR; and for wheat (Figure 11) in the corridors ND-OR, 

ND-TX, KS-TX. The graphs are quite flat in comparison to the unit and shuttle indexes 

because they include the tariff rates and fuel surcharges but not secondary market prices. 

These corridors have their own rates but they share the same fuel surcharge if they belong to 

                                                 
42

 These 38 origin-destination pairs include seven wheat, seven corn, and five soybean unit 
train routes and six wheat, seven corn, and six soybean shuttle routes. An unweight average 
of the 19 unit train tariff rates with accompanying fuel surcharges was calculated for each 
month to derive a monthly series of the average per car rate. The same procedure was applied 
to the 19 shuttle rates and fuel surcharges. The weekly frequency was obtaining by adding 
the secondary market data (Sparger and Pratter, 2012). 
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the same railroad company. The amount of money received by the railroad is the sum of the 

rate and the fuel surcharge (Figure 9 to Figure 11).  

Whether or not to add the secondary market to the rate plus fuel surcharge is not a 

minor detail. The secondary market reflects changes in demand in the railroad system and 

adds the same variability to all grains and routes combinations. As a consequence, it may 

increase the amount of information in each series but may also introduce noise. Another 

point to take into account is that barges are slow to move, may take more than a week to be 

delivered, and their rates may not react to high frequency changes in the railroad prices but to 

their averages over a longer period of time. For this reason we estimated models using only 

the sum of rates and fuel surcharges and the sum of those plus the secondary market price. 

The GTR is preferred to the Public Use Waybill File. The advantage of the GTR over 

the Public Use Waybill File is that it is constructed directly from the rail companies and from 

the private version of the Carload Waybill Sample43, thus it contains true rates. It also has 

weekly data, Unit grain train, and shuttle train indexes (Figure 8) that take into account the 

secondary market. The GTR also reports secondary railcar market auction bids covering non-

shuttle service (including unit trains) since 1997 and shuttle train service since 2006, which 

can be used to create new weekly indexes for specific grains and corridors.  

Barge and vessel rates have also been reported in the GTR since 2000. The barge 

rates are for grains in general and for specific origin ports (Figure 12). All reported barge 

rates have the same destination, Baton Rouge, NO, since 95% of the grain transported by 

barge is for export. The origin ports are Minneapolis-St. Paul (Minneapolis, St. Paul, Red 

Wing, Shakopee, and Winona, MN), Mid-Mississippi (Albany, Keithsburg, New Boston, and 

                                                 
43

 The DOT informed the author that the Private version of the Carload Waybill Sample was 
available only to Federal institutions, and that it was not released for research purposes.  
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Rock Island, IL, Clinton; Davenport, and Muscatine, IA), Illinois River (Beardstown, 

Florence, Hardin, Havana, and Meredosia, IL), Upper Ohio (Cincinnati), Lower Ohio  

(Louisville, KY), and Cairo -Memphis (Birds Point, Linda, New Madrid, MO, Hickman, KY, 

and Cairo, IL).  

Weekly Grain barge rates, measured as percent of 1976 tariff benchmark index 

(1976=100%), are reported for Illinois (Figure 13), Twin Cities, Lower Ohio (Figure 14), 

Middle Mississippi (Figure 15), St. Louis (Figure 16), Cincinnati (Figure 17), and Cairo-

Memphis. All rates follow a similar pattern, with peak prices during the fall season and a 

tendency to increase over time similar to the one presented by unit and shuttle trains (for the 

period 2002-2012 the barge and railroad rates double their price). The big variability of barge 

rates compared to rail rates (Figure 18) may be reflecting the existing free market and 

competition in the industry. Figure 18 also shows that after 2004 barge rates became 

relatively more expensive than shuttle rates.  The vessel rates are from the Gulf and from the 

Pacific Northwest to Japan (Figure 19) and present a similar pick in 2007 and abrupt decline 

in rates in 2009 as the diesel rate index (Figure 20) caused respectively by the oil pick of 

2007 and US recession of 2009. Table 18 to Table 20 show high correlation among routes of 

the same transportation mode and less between modes. For the reasons previously exposed, 

the main data source in this paper is the GTR rather than the Public Use Waybill File.  

The American Railroad Association (ARR) is the source of railroad costs. The ARR 

produces cost indexes for the railroad industry on a quarterly basis to construct the Railroad 

Cost Recovery Index (RCR). The RCR, available from 1977 to the present, is based on data 

from all Class I railroads in the United States, and is published for the Eastern District and 

the Western District railroads, as well as for the entire United States. The indexes include 
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wage rates, wage supplements, fuel, materials and supplies, equipment rents, purchased 

services, depreciation, interest, taxes (other than income and payroll), and all other operating 

expenses. The fuel index represents the change in the average price per gallon of No. 2 diesel 

fuel paid by the four largest railroads Composite indexes are constructed from the basic ones, 

like the total excluding fuel (Figure 21) and the RCR. The weights used to calculate the RCR 

are based on freight operating expenses plus fixed charges for all Class I railroads. The base 

period of the RCR is 2003. (ARRb) 44  

Demand and supply shifters of grain transportation other than RCR components were 

also included in the data. The selected shifters are real exchange rates, diesel prices, 

Mississippi River levels, crop specific agricultural year dummy variables, and seasonal 

dummies. Monthly real exchange rates for corn, soybeans, and wheat (Figure 22) (from the 

US wrt the weighted average destinations45) were obtained from ERS-USDA. These real 

exchange rates behave in similar form and decrease over the available period indicating an 

improvement in the competitiveness of the US. Weekly Diesel price is reported by the GTR 

as Truck index (Figure 20). Mississippi river levels at Carlington, NO were obtained from the 

US Army Corps of Engineers (Figure 23) and other places along the river (Table 16 and 

Table 17). While in the upper sections of the Mississippi River there are docks and levies 

(Figure 24) that facilitate navigability by controlling water levels, in the lower sections water 

runs free. For this reason water level variation at Carlington, NO is more pronounced than in 

                                                 
44 The RCR and its components have private information. We are grateful to the ARR for the 
release of this information for research purposes. 
45 Indexes are constructed so that an upward movement indicates a rise in the U.S. dollar's 
value (an appreciation) and a subsequent loss of price competitiveness for U.S. exports or a 
relative reduction in import prices. 
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any of the available points of the upper Mississippi River (Table 17)46. As a consequence, 

and also because the destination of all export barges is NO, the river level included in the 

models is the one at Carlington, NO. 

Crop specific agricultural year dummies were included in the models to account for 

unobserved annual shifters like yearly grain production, export and ethanol demand changes. 

Corn and soybean agricultural year was defined as from October to October and wheat 

agricultural year was defined as August to August. The inclusion of these agricultural year 

dummies prevents joint movements of demand for transportation, which may move barge 

and railroad rates in the same direction, from creating any bias of the estimates.  Due to the 

crop seasonality and the seasonal effect on water level, seasonal dummies were also 

included. 

3.2 Stationarity 

Unit root tests and stationarity tests were performed on the variables. The ADF tests (Table 

21) rejected for most of the variables the presence of a unit root against a stationary process, 

and a stationary process with drift or trend in some cases. KPPS stationarity tests were also 

performed on all variables (Table 21). In all cases stationarity was rejected against a unitary 

root. Given the results of the tests, the type of data we are working on47, and evidence of 

stationarity found in previous papers (Yu, Zhang, and Fuller, 2006; Yu, Bessler, and Fuller, 

2007) we decided to treat the variables as stationary. In fact, no paper in the barge and 

                                                 
46

 Water levels at Carlington, NO varied for the available period from 1.24 to 17.04 feet. 

47
 For example the unit root test reject Mississippi River levels to have a unit root but the 

KPSS test reject to be stationary. It seems unreasonable to consider that river levels are not 
stationary. 
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railroad literature has found railroad rates, barge rates, fuel prices and river levels to have 

unit roots. 

3.3 Reduced form model 

Following Wilson (1980), a reduced form model for grain transportation prices is as follows: 

  

 MN � MN7M, M	O., PQ, RS, PT0000, RT0000, UVN� (12) 

Where M refers to the price of grain at the farm, MN to the price of transportation to the 

destination, RS and PQ to vectors of exogenous shifters, PT0000 to exogenous demand shifters for 

transportation, RT0000 to exogenous supply shifters for transportation, and UVN to an error term.  

In the short run, if the determinants of equation 12 are exogenous, an OLS would 

provide unbiased estimations, given that the variables included in the model are stationary. 

Due to the existence of some competition between railroad and barges, the price of railroad 

grain rates might depend on barge rates and vice versa. A simultaneous equation model 

seems an appropriate approach to solve the possible bias estimates of an OLS. The proposed 

model is the following one:  

 MWXYZ[ � MWXYZ[ �M, M	O., PQ, RS, PT0000WXZ[ , RT0000WXYZ[ , UV\]^_ � (13) 

 MYX�` � MYX�`aM, M	O., PQ, RS, PT0000YX�` , RT0000YX�` , UVb]cde (14) 

Where MYX�`  and MWXYZ[ are specific rail tariff and barge rates for grains.  
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3.4 3SLS identification 

A Durbin–Wu–Hausman test was performed and exogeneity of  MWXYZ[ and  MYX�` in 

equations (13) and (14) respectively was rejected. This justifies the estimation of a three 

stage least square model. The presence of total-excluding-fuel, the rail cost index of all costs 

but fuel, only on equation (14) and a measure of water level in the river only on equation (14) 

allows the identification of the structural parameters in the 3-SLS. Equations (13) and (14) 

are estimated for different combination of barge and railroad rates.  

 

3.5 Logs vs. levels 

We estimate the model of equations (13) and (14) in levels and in logs. Previous studies have 

preferred log-log models for estimating grain rail demand and supply.  MacDonald (1987) 

estimated a reduced form model of grain rail rates in logarithmic form to test the effect of the 

Staggers Rail Act of 1980. Fuller, Ruppel, and Bessler (1990) regressed a reduced form 

model of grain rail rates in logarithmic form to test the effect of contract disclosure on 

railroad grain rates. Miljkovic et al. (2000) used a log-log 3SLS to model the supply demand 

system for grain movement from the Midwest to the Mexican Gulf.  Miljkovic (2001) 

estimated a log-log 3SLS for a system of demand and supply of grain railroad services for 

four states and two destinations. Yu and Fuller (2005) regressed a log-log 2SLS for the 

demand of grain barge transportation in the upper Mississippi River. Yu, Zahang and Fuller 

(2006) computed an SUR model in logs for the barge demand in the upper Mississippi and 

Illinois rivers.  
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4. Results and discussion 

All models were estimated for railroad rates plus fuel surcharges, and for railroad rates plus 

fuel surcharges and secondary market. Results presented in this paper are the ones not 

including the secondary market48, rather only railroad rates and fuel surcharges. The models 

were omitted from the paper because, with a few exceptions later mentioned, they were non 

significant. This may support the idea that the secondary market is adding more noise than 

information to each specific railroad route. Thus, the following results refer only to railroad 

rates plus fuel surcharges. Almost all models estimated in logs had better BICs than the 

corresponding level ones and consistent coefficient signs. Thus, results refer to models in 

logs while the models in levels are presented as tables in the annex of this paper.  

 

4.1 Shuttle and unit rail rate indexes 

To analyze the general relationship between barge and railroad rates for grains, 3SLS were 

estimated for a barge rate index (barge_illinois), a railroad shuttle rate index (Table 22), and 

unit rate index (Table 23). Table 22 shows six model specifications: the first table with 

variables in levels and the second in logs. Starting by including the rate of the other 

transportation mode and a specific explanatory variable (1); the models add seasonal and 

agricultural year dummy variables (2); real exchange rate of corn (3); ocean rates for the Gulf 

(ocean_gulf) and PNW (ocean_pnw) (4); a ratio of Gulf and PNW ocean rates (5); and fuel 

prices for barges (diesel) and railroads (fuel) (6). All other regression tables in this study 

have the same structure as Table 22.  

                                                 
48

 The exceptions are the shuttle and unit rate indexes.  
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Overall the unit models (Table 23) have more significant and robust results across the 

various model specifications than do the shuttle models (Table 22). A possible explanation is 

that since shuttle contracts are negotiated over a long period of time, they might be less 

reactive to short-term barge rates than unit rates. The shuttle and the unit rail indexes have a 

significant positive effect on the barge rate index (log_barge_illinois) in all models (Table 22 

for shuttle and Table 23 for unit rail indexes), while barge rates have non-significant effects 

on shuttle and unit rates in most of the models.  Barge rates have an elastic reaction to shuttle 

rates (1.2 to 1.6) and an inelastic reaction to unit rates (0.5 to 0.7). The higher elasticity of 

barge rate to shuttle compared to unit rates is logical given shuttles are more export oriented 

than are unit trains. What is surprising is how elastic the barge rate response is to shuttle 

rates, showing that the barge market may have more market power than previously expected. 

It is possible that the reduction of barges after 2004 made this possible. The elastic reaction 

of barges might be the cause of the amplified picks of barge rate compared to shuttle rate 

observed in Figure 18.  

Water levels, real exchange rates, ocean rates, and diesel prices affect barge rates. 

The level in the Mississippi River (levelcarlington_no) has a negative impact on the barge 

rate index in all but one models independent of whether the rail rate index used is the shuttle 

or the unit one (Table 22 and Table 23). A lower level in the river may affect navigability, 

reducing the speed of transportation and the maximum cargo per barge. A one-foot decrease 

in the water level at Carlington, New Orleans increases the barge rates by 5-7% (Table 22 

and Table 23). The real exchange rate of corn may be seen as a proxy for exports; when the 

real exchange rate increases the US becomes less competitive. The real exchange rate of 

corn, when significant, negatively affects shuttle and unit rates (Table 22 and Table 23).  
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Although unit rates may be slightly more related to domestic transportation than shuttle rates, 

both rates are for the use of the same limited amount of grain cars. This competition for cars 

may push the unit index up, despite an increase in the amount of grain destined for the 

domestic market. Another reason may be that unit trains may be used for transporting grain 

for export from elevators not invested in the facilities to charge a shuttle. In the case of barge 

rates, the real exchange rate of corn is significant only in the unit rate models49 (Table 23) 

with an elasticity of 0.2 to 0.3.   

Ocean rates are expected to complement the inland transportation services that reach 

their respective export ports. In the case of barge rates, the complementary service is the 

ocean rate from the Gulf (ocean_gulf), while the ocean rate from PNW (ocean_pnw) is a 

substitute. Given the fact that rail has no barge competition to PNW, an opposite reaction 

(compared to the barge rate one to ocean rates) is expected.  Results confirm this assumption; 

the elasticity of barge rates to ocean rates from Gulf is -0.4 to -0.5; and 0.2 to 0.3 to ocean 

rates from PNW  (model (4) in Table 22 and Table 23). The difference in the absolute 

magnitude of the elasticities (larger for the Gulf) may be partially explained by the more 

costly inland transportation to reach the PNW. As expected, rail rates reactions are in an 

opposite situation than barge rates with respect to ocean rates. Shuttle and unit rates are 

negatively affected by increments of ocean rates in the PNW (elasticities of -0.08 and -0.17 

for shuttle and unit respectively) and positively by increments of ocean rates in the Gulf (0.20 

for both). The lower reaction of unit rates to PNW(-0.08) compared to shuttle rates may be a 

reflection of shuttles being more oriented towards the long distance destination. Results using 

                                                 
49

 The different results in this case may be explained by the characteristic of long- term 
agreement of shuttle contracts. 
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the ratio of ocean Gulf to ocean PNW rates as repressor (model (5) in Table 22 and Table 23) 

also confirm the previous results. 

Cost indexes have significant effects on barge and rail rate indexes.  Diesel and 

railroad fuel prices (fuel) respectively increase the price of barge and shuttle and unit rate 

indexes as expected (model (6) Table 22 and Table 23). Barge rates have a stronger reaction 

to fuel prices (0.5-0.78) than rail rates (0.12 for shuttle and unit). The pricing system in both 

transportation modes may be a cause for that difference. The long term transportation 

contracts that rail companies offer to shippers may require them to manage fuel prices risk, 

allowing them to keep rates more stable to fuel price changes than barge companies.  All rail 

costs but fuel (totalexclfuel) also significantly affect shuttle and unit rates in the expected 

direction across various model specifications (Table 22 and Table 23).  The respective 

elasticities are in the order of 0.237 for shuttle rates and 0.4 to 0.9 for unit rates. 

Yearly dummy variables (not reported in the tables) are significant, which indicates 

the existence of omitted shifters on demand and supply for transportation. In the case of 

barge rates, fall and winter seasons have higher rates than spring and summer when most 

exports occur. Shuttle rates are not affected by seasonality, possibly because they are 

negotiated over a long period of time that may cover up to three seasons. 

 

4.2 Corn rail rates for specific origin-destinations 

Corn, wheat and soybean rates for a variety of origins and destinations were analyzed to 

further investigate the relationship between barge and railroad rates.  In the case of corn, the 

railroad routes include Des Moines, IA to Davenport, IA (Table 24 and Table 46); Urbana, IL 
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to New Orleans, LA (Table 25 and Table 47); Indiana, IN to Knoxville, TN (Table 26 and 

Table 48 for Cincinnati barge rates and Table 27 and Table 49 for Lower Ohio barge rates); 

Nebraska to Houston, TX (Table 28 and Table 50 for St Louis barge rates and Table 29 and 

Table 51 for barge rate index), Minneapolis to Oregon (Table 30 and Table 52 for Twin 

Cities barge rate and Table 31 and Table 53 for barge rate index). Overall the results are less 

robust than the previous ones with the exception of the Des Moines, IA to Davenport, IA 

(Table 9 and Table 46). 

Railroad rates from Des Moines, IA to Davenport, IA are expected to complement 

barge rates because the destination is an inland port on the Mississippi river. Results confirm 

that hypothesis (Table 24). Significant coefficients have the expected sign. The elasticity of 

railroad rates from Des Moines, IA to Davenport, IA with respect to the barge rate index is 

significant in different model specifications and at least equal to -0.093 (model (6) Table 24).  

However, rail rates from Des Moines to Davenport do not affect barge rates but in only one 

model (model (1) Table 24) where the sign is as expected.  The effects of water level, ocean 

rates, and diesel prices are in the same direction and magnitude as in the previous models, 

while the real exchange rate of corn is the exception (either non significant or negative 

effect).  

For the Urbana, IL to New Orleans, LA corn railroad rates results are less significant 

for most of the variables (Table 25), with signs in the expected direction with the exception 

of price-price elasticities that are negative for barge-rail and non significant for the inverse 

case. No clear explanation for this negative sign exists since it was expected that the two 

modal transports where competing with each other. It also is interesting to note that the 
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instruments (levelcarlington_no and log_totalexclfuel) appear not to be good for these 

models: they are non significant in the majority of models.   

In the case of transportation from Indiana to Tennessee, a destination area of big 

consumption of corn by the poultry industry, only model (4) has a significant positive effect 

of Cincinnati barge rates on railroad corn rates and vice versa (table 11). Table 12 presents 

results using the Lower Ohio River barge rates (loh) instead of Cincinnati barge rates. 

Results are almost identical to the previous ones. While the real exchange rate negatively 

affects barge rates (with an elasticity of -0.3 to -0.47 (Table 27 and Table 28 respectively)), it 

does not affect the railroad rate, probably because Tennessee is a domestic destination. An 

increase in the real exchange rate is expected to increase domestic consumption of corn 

creating a demand increment for transportation in this route, but the competition with export 

for grain railcars decrease pushes rail rates down. In this case the effects apparently offset 

each other. It appears that despite these barge rates not directly competing with rail rates to 

Tennessee they do affect them, possibly by changing the elevators’ decision from selling in 

the domestic market to exporting the corm. 

Corn railroad rates for Nebraska to Houston, TX models are presented in Table 28 

and 29. Table 28 has as the other dependent variable, the St Louis barge rate, while Table 29 

has the Illinois barge rate. Results are similar for both barge rates, with some significant 

effects of barge rates on railroad rates (positive as expected) and unexpected negative effects 

of barge rates on rail rates.  Nevertheless, another expected result was confirmed. Given that 

the destination is on the Gulf, it was expected that Gulf vessel rates and PNW vessel rates 

affected respectively in a negative and positive form the railroad rate from Nebraska to 



82 

 

 

 

Houston, TX. The results confirm this hypothesis; the price-price elasticities are -0.42 and 

0.21 respectively (Table 28 model (4)).  

To account for the effect of rail rates to PNW on barge rates, corn rail rate models 

were estimated for Minneapolis to Oregon (Table 30 and Table 31). Table 30 presents results 

including as second dependent variable the Twin Cities barge rate (TWC)50, while Table 31 

includes the Illinois barge rate index, which is available all year around.  Table 30 shows 

robust positive effects of barge rate on rail rates as expected51. It is interesting to note that 

when the barge_illinois rate is used (Table 31), instead of the TWC barge rate, the effect of 

barge rate on rail rate disappears. Considering that TWC is closer than the Illinois River to 

the origin (Minneapolis), this result provides supporting evidence that distance from the 

origin to the water system affects the completion between barges and railroads.  

 

4.3 Wheat rail rates for specific origin-destinations 

Wheat railroad rate models for the railroad routes of North Dakota to Oregon, North Dakota 

to Texas, and Kansas to Texas are presented on Table 32 to Table 37. For the route ND to 

Oregon, the effect of railroads on barge rate is significant and robust across various model 

specifications when using the TWC barge rate (Table 32). As in the case of corn transported 

to the PNW from Minneapolis, the effect disappears when using the Illinois instead of the 

TWC barge rate in the models (Table 33).  This result further supports the importance, for 

rail barge competition, of the distance between the origin and the river transportation system.   

                                                 
50

 These barge rates are not available from the beginning of December to mid-March since 
the river is frozen and there is no barge service. 

51
 The effect on the opposite direction has no robust results with coefficients changing signs 

across models. 
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Another similarity with corn transported from Minneapolis to the PNW (Table 30) is 

that the Mississippi water level has a positive effect on barge prices. This is the only origin 

where this happens. A possible explanation may be that even lower levels at New Orleans 

may affect barge navigability; higher levels may be even more problematic since they require 

closing levies to navigation. In other words, in the top upper part of the Mississippi River, 

high water levels are more problematic than lower levels.  The effect of railroads on barge 

rates is also positive as in the case of corn to the PNW.  The effect is significant in only two 

models (models (1) and (2) of Table 32), when the effect is positive as expected. 

For the routes North Dakota to Texas (Table 34 and Table 35) and Kansas to Texas, 

results are similar to previous models from Minneapolis and North Dakota to PNW. TWC 

barge rates have robust significant positive impact on rail rates (Table 34) with a price-price 

elasticity of 0.3 to 0.6.  On the contrary, Illinois barge rates (Table 35) do not have 

significant effects on rail rates from North Dakota to Texas.  In the case of wheat from 

Kansas transported to Texas, the mid-Mississippi barge rate (Table 36) has a robust 

significant positive impact on rail rates (elasticity of 0.332) while there is no impact when the 

Illinois barge rate is the other dependent variable (Table 37). Water level in New Orleans has 

also in this case a robust positive impact on barge rates (Table 36). 

4.4 Soybean rail rates for specific origin-destinations 

Soybean models show similar results for the routes North Dakota and South Dakota to 

Washington State, and Minnesota to Oregon (Table 23 to Table 43). In most of the models 

there are no significant effects of barge rates on railroad rates, independent of whether the 

barge rate corresponds to the closest water route. 
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5. Conclusions 

Every year more than 400 million tons of corn, soybeans and wheat are transported in the US 

from the Midwest to diverse destinations within the country (70%) and abroad (30%). 

Exports of corn, soybeans and wheat have been relatively stable over the last decade and 

account for an average of 55, 30, and 30 million tons respectively. The transportation of the 

grain is mostly intermodal by combining truck, train, barge and ocean-vessel. In some 

situations the modes of transportation compete and in others they complement each other. An 

efficient grain transportation system is fundamental in determining better prices for farmers, 

lower food and biofuel costs for consumers, and more competitive export prices.  Yu, Bessler 

and Fuller (2007) studied the spatial price linkages in US grain and transportation markets, 

and found that transportation rates (barge, rail, and ocean) explain 42–64% of the variation in 

corn prices in the long run.  Given the important role of competition on market efficiency (in 

this case between rail and barge) and the impact of transportation prices on grain price 

variation, this paper studies the competitive interactions between grain railroad rates and 

barge rates in the Mississippi Waterway System. 

Corn and soybeans are produced closer to the Mississippi Waterway System than is 

wheat. For this reason more than 55% of corn and soybeans exported are moved by barges 

vs. 33% by rail; while only 30% of the wheat is moved by barge vs. 65% by rail. This 

geographical situation has an impact in the selection of the export port, with corn and 

soybeans highly concentrated in the Mississippi Gulf and wheat more in the PNW and Texas 

Gulf.  Because the PNW cannot be reached by barge, grain rail rates may have more market 

power those farther from the Mississippi river. This study expands the scarce literature on 

rail-barge competition by concentrating for the first time on the effect of barge rates on 
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railroad rates and analyzing the effect of distance between origin and the Mississippi 

waterway system on their competitive interactions.    

Despite the existing research on grain rail rates, little is known about the impact of 

barges on their market power. By using data from the Grain Transportation Report this paper, 

estimates simultaneous equation models of barge and railroad rates (in logs and levels) for 

specific origins-destinations and grains (corn, wheat and soybeans). This study benefits from 

instrumental variables as river levels and railroad cost indexes.   

Results show that barge rates have an elastic reaction to shuttle rates (1.2 to 1.6) and 

an inelastic reaction to unit rates (0.5 to 0.7) while they do not systematically respond to 

shuttle rates. The higher elasticity of barge rate to shuttle compared to unit rates is logical 

given shuttles are more export-oriented than are unit trains. What is surprising is how elastic 

the barge rate response is to shuttle rates, showing that the barge market might have more 

market power than previously expected.  The instruments for the 3SLS models (Water level 

in the Mississippi River in the area of New Orleans and railroad-all-costs-but-fuel AAR 

index) where significant in most of the models showing that they were a good choice, 

especially considering water levels.  

It was also possible to find results showing intermodal transportation that 

complement or compete with each other. Rails complement more than PNW barges do with 

the Gulf: the elasticity of barge rates to ocean rates from Gulf is -0.4 to -0.5, and 0.2 to 0.3 to 

ocean rates from PNW.  The lower reaction of unit rates to PNW(-0.08) compared to shuttle 

rates may be a reflection of shuttles being more oriented towards that long distance 

destination. The paper also presents results for corn, wheat and soybeans.  
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In the case of corn it was possible to identify for the first time in the literature the 

existence of complementarity between rail and barges in the rail line from Des Moines, IA to 

Davenport, IA. Other covariates had similar effects as in the case of grain shuttle and unit 

rate models. For the line Minneapolis to PNW, TWC barge rates where found to have robust 

positive effects on rail rates as expected due to their competitive nature. The same model 

estimated with Illinois barge rate rather than TWC barge rate shows no effect of this rate on 

rail rates to PNW. This result provides supporting evidence that distance from the origin to 

the water system affects the completion between barges and railroads. Similar situations were 

found in wheat, which is produced farther from the Mississippi water system. As a 

consequence, the impact of barge rates on railroad rates is reduced when the origin of the 

grain is distant from the waterway. 

The present study has some data limitations. In 2010, the USDA’s Grain 

Transportation Report (GTR) started reporting the secondary market unit grain train and 

shuttle grain train indexes. At the same time, it also started reporting rail rates for corn, 

wheat, and soybeans for specific rail routes.  Future research may provide extended data. One 

possible source used by the USDA to expand this data (over time and railroad routes) is the 

Private version of the Carload Waybill Sample, which is accessible only through federal 

institutions. Another limitation of the study is the use of only one water level at New Orleans. 

Given its effect for models of origin in Minnesota and Kansas that the sign is the opposite 

than expected, it might be beneficial to deeper study the effect of river levels at various 

points of the Mississippi River and its subsidiaries. 
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Figures 

 

Figure 2. Origin and destination of corn.  

Source: Figure 8 in Marathon and Denicoff (2011). Based on Census of Agriculture, 2007 

and Economic Research Service, USDA. Surplus-deficit estimate is based on county-level 

production, U.S. feed use, and county-level animal inventories (summed based on Grain 

Consuming Animal Unit factors). U.S. Waterborne Exports and Imports from the Port Import 

Export Reporting Service (PIERS). 
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Figure 3. Origin and destination of soybean.  

Source: Figure 14 in Marathon and Denicoff (2011). Based on Census of Agriculture, 2007 

and Economic Research Service, USDA. Surplus-defi cit estimate is based on county-level 

production, U.S. soybean meal use (soybean equivalent), and county-level animal inventories 

(summed based on High Protein Animal Unit factors). U.S. Waterborne Exports and Imports 

from the Port Import Export Reporting Service (PIERS). 
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Figure 4. Origin and destination of wheat.  

Source: Figure 11 in Marathon and Denicoff (2011). Based on Census of Agriculture, 2007 

and Economic Research Service, USDA. Surplus-deficit estimate is based on county-level 

production and consumption (based on population and per capita fl our consumption). U.S. 

Waterborne 

Exports and Imports from the Port Import Export Reporting Service (PIERS). 

 



 

 

Figure 5. Inland navigation system 

Source: Corps of Engineers.  
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Figure 6. BNSF railroad map 

Source: BNSF. 

  



 

 

Figure 7. UP railroad map 

Source: UP. 

 

92 

 

 

 

 



 

 

Figure 8. Unit and Shuttle grain railroad index rates
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. Unit and Shuttle grain railroad index rates 

 

 

 



 

 

Figure 9. Railroad rate indexes for corn. 
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. Railroad rate indexes for corn.  

 

 

  



 

 

Figure 10. Railroad rate indexes for 
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. Railroad rate indexes for soybeans.  

 

 

  



 

 

Figure 11. Railroad rate indexes for wheat. 
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. Railroad rate indexes for wheat.  
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Figure 12. Barge routes and Barge rate origin locations.  

Source: GTR.  

  



 

 

Figure 13. Barge Illinois river  grain 
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. Barge Illinois river  grain rates index. 

 

 

 



 

 

 

Figure 14. Barge Lower Ohio  grain rates index.
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. Barge Lower Ohio  grain rates index. 

 

 

 



 

 

 

Figure 15. Barge Middle Mississippi grain rates index.
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. Barge Middle Mississippi grain rates index. 

 

 

 



 

 

 

 

Figure 16. Barge St Louis  grain rates index.
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. Barge St Louis  grain rates index. 

 

 



 

 

Figure 17. Barge Cincinatti grain rates index.
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. Barge Cincinatti grain rates index. 

 

 

 



 

 

Figure 18. Barge Illinois and Shuttle train grain rates index.
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. Barge Illinois and Shuttle train grain rates index. 

 

 



 

 

Figure 19. Ocean rate indexes.
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. Ocean rate indexes. 

 

 

 



 

 

Figure 20. Diesel rate index.
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. Diesel rate index. 

 

 

 



 

 

Figure 21. Railroad fuel and Total excluding fuel cost indexes. 
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. Railroad fuel and Total excluding fuel cost indexes.  

 

 

 



 

 

Figure 22. Real exchange rates of corn, soybeans, and wheat.
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. Real exchange rates of corn, soybeans, and wheat. 

 

 

  



 

 

Figure 23. Level of the Mississipi river in Carlington, NO in feet. 
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. Level of the Mississipi river in Carlington, NO in feet.  
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Figure 24. Map of upper Mississippi and Illinois Rivers with locks and dams.  

Source: Figure 1 in Yu, Bessler and Fuller (2006) 
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Tables 

Table 16. Variables description. 

Frequency Variable Start End Description 
weekly Level_Lock_15 8/21/2002 4/16/2013 Mississippi river level (ft) at Lock 15  

Level_Dub_IA 8/21/2002 4/16/2013 Mississippi river level (ft) at Dubuque, IA 

Level_NO 8/21/2002 4/16/2013 Mississippi river level (ft) at New Orleans, LA 

Level_Minn_MN 8/21/2002 4/16/2013 Mississippi river level (ft) at Minneapolis, MN 

Level_Lock_1 8/21/2002 4/16/2013 Mississippi river level (ft) at Lock 1, MN 

Level_Quincy 8/21/2002 4/16/2013 Mississippi river level (ft) at Quincy, IL 

diesel 8/21/2002 4/16/2013 Diesel rate index 

unit 8/21/2002 4/16/2013 Railroad unit grain index 

shuttle 8/21/2002 4/16/2013 Railroad shuttle grain index 

barge_illinois 8/21/2002 4/16/2013  Grain rate index in the Illinois river 

ocean_gulf 8/21/2002 4/16/2013 Ocean grain rate Gulf to Japan index 

ocean_pnw 8/21/2002 4/16/2013 Ocean grain rate PNW to Japan index 

twc 4/2/2003 4/16/2013 Grain rate index for Twin Cities 

mm 4/2/2003 4/16/2013 Grain rate index for Middle Mississipi 

ill 1/1/2003 4/16/2013 Grain rate index for Illinois river 

stlouis 1/1/2003 4/16/2013 Grain rate index for St. Louis 

cinc 1/1/2003 4/16/2013 Grain rate index for Cincinatti 

loh 1/1/2003 4/16/2013 Grain rate index for Lower Ohio 

carmem 1/1/2003 4/16/2013 Grain rate index for Cairo-Memphis 

memso 1/1/2003 4/16/2013  Grain rate index for Memphis-SO 
monthly rexch_corn Jan-02 Mar-13 Real Exchange rate of Corn 

rexch_soybeans Jan-02 Mar-13 Real Exchange rate of Soybeans 

rexch_wheat Jan-02 Mar-13 Real Exchange rate of Wheat 

rrs_ndwa Jan-09 Dec-12 Railroad soybean unit tariff from ND to WA 

rrs_mnor Jan-09 Dec-12 Railroad soybean unit tariff from MN  to OR 

rrw_kstx Jan-09 Dec-12 Railroad wheat unit tariff from KS  to TX 

rrw_ndor Jan-09 Dec-12 Railroad wheat unit tariff from ND to OR 

rrw_ndtx Jan-09 Dec-12 Railroad wheat unit tariff from ND to TX 

rrc_mnor Jan-09 Dec-12 Railroad corn unit tariff from MN to OR 

rrs_sdwa Jan-09 Dec-12 Railroad soybean unit tariff from SD to WA 

rrc_ilno Jul-10 Apr-13 Railroad corn unit tariff from IL to NO 

rrc_dsmdvp Jun-10 Apr-13 Railroad corn unit tariff from DSM to Davenport 

rrc_intn Jun-10 Apr-13 Railroad corn unit tariff from IN  to TN 

rrc_netx Jun-10 Apr-13 Railroad corn unit tariff from NE  to TX 
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Table 16. continued. 

quarterly fuel Jan-02 Dec-12 American Railroad Association (ARR) Fuel index 

totalexclfuel Jan-02 Dec-12 ARR Cost index of al inputs but fuel 

railroadcost Jan-02 Dec-12 ARR Cost index of al inputs  

summer Summer dummy variable 

fall   Fall dummy variable 
 winter   Winter dummy variable 
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Table 17. Variable statistics 

Frequency Variable Obs Mean Std. Dev Min Max 

weekly 

hoil 
752 1.653965 .9099338 .2984 3.9435 

Level_Lock_15 
750 7.338973 3.257307 2.67 22.29 

Level_Dub_IA 
691 9.43741 2.633392 6.43 24.61 

Level_NO 
740 6.530216 3.906012 1.24 17.04 

Level_Minn_MN 
79 726.0089 1.382943 724.47 731.94 

Level_Lock_1 
471 690.5071 3.620918 686.92 707.14 

Level_Quincy 
748 12.66529 2.534144 8.71 29.76 

illrivr 751 316.6658 149.8966 115 1050 

diesel 558 189.5271 60.0172 89.46309 333.557 

unit 556 160.3496 43.35998 95.19223 234.2963 

shuttle 558 152.9056 34.99616 99.26523 240.342 

barge_illinois 556 203.529 78.97038 70 583.3333 

ocean_gulf 552 251.4452 105.2353 90.02683 630.5903 

ocean_pnw 552 244.4282 106.267 78.22695 659.5745 

twc 340 415.337 139.896 162 731.25 

mm 398 382.2276 141.9197 139 831 

ill 538 372.5618 140.1202 126 1050 

stlouis 539 316.1824 148.003 85 1150 

cinc 538 335.3301 152.7546 111 937.5 

loh 538 335.8902 153.3276 111 937.5 

carmem 537 288.8858 150.6934 88 1108.333 

memso 531 388.7893 197.6353 135 1422.526 
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Table 17. continued. 

monthly 

rexch_corn 519 94.28728 8.260909 76.2 113.3 

rexch_soybeans 519 85.34162 14.31317 56.2 106.8 

rexch_wheat 519 81.44644 15.98211 53 111.3 

rrs_ndwa 48 5009.438 463.4085 4201.5 5847.9 

rrs_mnor 48 5178.894 515.6183 4277.2 6088.9 

rrw_kstx 48 3261.585 338.786 2755.7 3914.9 

rrw_ndor 48 4910.538 434.8975 4193.4 5586.2 

rrw_ndtx 48 5889.296 481.1475 5121.3 6633 

rrc_mnor 48 4951.394 477.0677 4127.2 5558.9 

rrs_sdwa 48 5156.073 492.7511 4292.9 6035 

rrc_ilno 34 3117.433 169.6743 2848.02 3341.46 

rrc_dsmdvp 35 1983.576 71.1392 1879.21 2093.33 

rrc_intn 35 3159.319 331.4269 2652.91 3579.18 

rrc_netx 35 3534.253 185.906 3107.24 3715.08 

quarterly 
fuel 145 307.171 230.2819 95.1 1115 

totalexclfuel 144 259.7618 95.48318 96.8 456.8 

railroadcost 144 270.8882 113.8756 96.5 537.5 
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Table 18. Correlation between modal transportations 

diesel shuttle unit barge_illinois ocean_gulf ocean_pnw 

diesel 1 

shuttle 0.7781 1 

unit 0.8576 0.9362 1 

barge_illinois 0.6282 0.6026 0.5913 1 

ocean_gulf 0.4706 0.2343 0.1926 0.2882 1 

ocean_pnw 0.3326 0.0876 0.0288 0.2541 0.9435 1 
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Table 19. Correlation between different barge rates 

barge_illinois twc mm ill stlouis cinc loh carmem 

barge_illinois 1 

twc 0.9338 1 

mm 0.9848 0.9702 1 

ill 0.9999 0.9342 0.985 1 

stlouis 0.9617 0.8558 0.9347 0.9619 1 

cinc 0.9634 0.8807 0.9467 0.9637 0.9638 1 

loh 0.9628 0.879 0.9458 0.963 0.9647 0.9998 1 

carmem 0.9206 0.8015 0.888 0.9206 0.977 0.9526 0.9539 1 



 

 

1
1

6 

Table 20. Railroad rates correlation 

  
rrs_ndwa rrs_mnor rrw_kstx rrw_ndor rrw_ndtx rrc_mnor rrs_sdwa rrc_ilno rrc_dsmdvp rrc_intn rrc_netx 

rrs_ndwa 1  

rrs_mnor 1.00 1  

rrw_kstx 0.84 0.83 1  

rrw_ndor 0.96 0.97 0.87 1  

rrw_ndtx 0.97 0.97 0.86 1.00 1  

rrc_mnor 0.94 0.95 0.75 0.96 0.96 1  

rrs_sdwa 1.00 1.00 0.83 0.96 0.97 0.95 1  

rrc_ilno 0.92 0.92 0.78 0.90 0.93 0.91 0.92 1  

rrc_dsmdvp 0.85 0.84 0.79 0.77 0.80 0.70 0.85 0.86 1  

rrc_intn 0.84 0.83 0.89 0.86 0.86 0.76 0.83 0.84 0.80 1  

rrc_netx 0.96 0.97 0.77 0.96 0.97 0.99 0.96 0.94 0.76 0.80 1 
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Table 21. ADF and KPPS tests 
  ADF KPSS 

Frequency Variable drift trend lags P value P value 

weekly 

hoil Yes  4 0.0842 <0.01 

Level_Lock_15   0 0.0000 <0.01 
Level_Dub_IA   0 0.0000 <0.01 
Level_NO   0 0.0000 <0.01 
Level_Minn_MN   0 0.0439 <0.01 
Level_Lock_1   0 0.0000 <0.01 
Level_Quincy   0 0.0000 <0.01 

illrivr   0 0.0003 <0.01 

diesel Yes  4 0.0354 <0.01 

unit  Yes 4 0.0005 <0.01 

shuttle Yes  0 0.0116 <0.01 

barge_illinois   0 0.0001 <0.01 

ocean_gulf Yes  4 0.0054 <0.01 

ocean_pnw Yes  4 0.0045 <0.01 

Twc   0 0.0274 <0.01 

Mm   0 0.0068 <0.01 

Ill   0 0.0001 <0.01 

Stlouis   0 0.0000 <0.01 

Cinc   0 0.0028 <0.01 

Loh   0 0.0023 <0.01 

Carmem   0 0.0000 <0.01 

Memso   0 0.0000 <0.01 

monthly 

Rer_corn  Yes  0 0.0076 <0.01 

Rer_soybeans Yes  3 0.1093 <0.01 

Rer_wheat Yes  3 0.1021 <0.01 

rrs_ndwa  Yes 0 0.0030 <0.01 

rrs_mnor  Yes 0 0.0018 <0.01 

rrw_kstx  Yes 0 0.062 <0.01 

rrw_ndor  Yes 0 0.0001 <0.01 

rrw_ndtx  Yes 0 0.0001 <0.01 

rrc_mnor  Yes 0 0.0144 <0.01 

rrs_sdwa  Yes 0 0.0020 <0.01 

rr_c_urbana_no Yes  3 0.1060 <0.01 

rr_c_dsm_davenport  Yes 3 0.0014 <0.01 

rr_c_indi_tn Yes  3 0.1174 <0.01 

rr_c_neb_ht Yes  3 0.0456 <0.01 

quarterly 
Fuel Yes  0 0.1807 <0.01 

Totalexclfuel Yes  1 0.1190 <0.01 

Railroadcost  Yes 1 0.9966 <0.01 
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Table 22. 3SLS for Logs of Shuttle Railroad and Barge Rate Indexes of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_shuttle 0.660***  1.428***  1.325**  1.684***  1.634***  1.271***  
levelcarlington_no -0.232***  -0.053**  -0.058**  -0.037 -0.059**  -0.097***  
summer  0.046 0.049 0.033 0.032 0.015 
fall  0.296***  0.303***  0.259***  0.261***  0.296***  
winter  0.130***  0.128***  0.089**  0.109***  0.197***  
log_realexchangeratecorn   -0.138 -0.131 -0.080 -0.036 
log_ocean_gulf    -0.492***    
log_ocean_pnw    0.234**    
log_gulf_pnw_ratio     -0.103***  -0.127***  
log_diesel      0.788***  
log_shuttle       
log_barge_illinois 0.167***  -0.009 0.102 0.239 0.099 -0.107 
log_totalexclfuel 0.843***  0.493**  0.357**  0.228 0.325* 0.273**  
summer  0.050 0.035 0.019 0.036 0.051***  
fall  0.117 0.061 0.002 0.065 0.150***  
winter  0.072 0.035 0.016 0.036 0.064***  
log_realexchangeratecorn   -0.162* -0.077 -0.163* -0.237***  
log_ocean_gulf    0.202***    
log_ocean_pnw    -0.086*   
log_gulf_pnw_ratio     0.032* 0.024 
log_fuel      0.115**  
bic -1240.717 -1673.649 -1855.698 -2235.897 -1858.832 -1646.586 
N 541 541 541 535 535 535 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 23. 3SLS for Log of Unit  Railroad and Barge Rate Indexes of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_unit 0.648***  0.681***  0.569***  0.724***  0.714***  0.743***  
levelcarlington_no -0.215***  -0.057**  -0.068***  -0.061***  -0.071***  -0.059***  
summer  0.064**  0.069**  0.056* 0.055* 0.040 
fall  0.362***  0.367***  0.338***  0.338***  0.357***  
winter  0.162***  0.153***  0.126***  0.135***  0.195***  
log_realexchangeratecorn   -0.315***  -0.333***  -0.306***  -0.194**  
log_ocean_gulf    -0.385***    
log_ocean_pnw    0.269***    
log_gulf_pnw_ratio     -0.103***  -0.130***  
log_diesel      0.537***  
log_unit       
log_barge_illinois 0.265***  -0.158 -0.038 -0.002 -0.027 0.310***  
log_totalexclfuel 0.800***  1.130***  0.985***  0.886***  0.903***  0.413***  
summer  0.097**  0.080***  0.077***  0.080***  0.023* 
fall  0.214 0.153* 0.141 0.152* -0.028 
winter  0.138**  0.099**  0.097**  0.101**  0.002 
log_realexchangeratecorn   -0.170**  -0.138 -0.153* -0.029 
log_ocean_gulf    0.190***    
log_ocean_pnw    -0.173***    
log_gulf_pnw_ratio     0.060***  0.086***  
log_fuel      0.127***  
bic -1362.746 -1580.448 -1673.549 -1696.510 -1679.716 -2119.094 
N 539 539 539 533 533 533 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 24. 3SLS for Log of Des Moines, IA to Davenport, IA  Railroad and Barge Rates 
of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rr_c_dsm_davenport -0.354***  1.138 1.315 2.399 1.294 -0.058 
levelcarlington_no -0.371***  -0.286* -0.322**  -0.452**  -0.332**  -0.327***  
summer  -0.315* -0.361**  -0.456**  -0.368**  -0.254**  
fall  0.370***  0.252***  0.183* 0.244**  0.251***  
winter  0.121 0.038 0.072 0.042 0.041 
log_realexchangeratecorn   -0.390***  -0.399***  -0.390***  -0.405***  
log_ocean_gulf    0.291   
log_ocean_pnw    -0.119   
log_gulf_pnw_ratio     0.010 0.003 
log_diesel      0.245 
log_rr_c_dsm_davenport       
log_barge_illinois -0.055 -0.487**  -0.425***  -0.418***  -0.423***  -0.093***  
log_totalexclfuel 0.852***  0.170 0.173* 0.193**  0.186**  0.056***  
summer  -0.048 -0.053 -0.038 -0.039 -0.082***  
fall  0.211* 0.123 0.128* 0.132* 0.006 
winter  0.025 -0.028 -0.004 -0.004 -0.052***  
log_realexchangeratecorn   -0.215***  -0.206***  -0.206***  -0.070***  
log_ocean_gulf    -0.060   
log_ocean_pnw    0.084   
log_gulf_pnw_ratio     -0.037 0.013 
log_fuel      0.232***  
bic -793.969 -1084.961 -1107.534 -1017.152 -1096.425 -1364.230 
N 142 142 142 141 141 141 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 25. 10 3SLS for Log of Urbana, IL to New Orleans, LA  Railroad and Barge 
Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rr_c_urbana_no -0.412***  0.629 0.857 2.077 0.811 -0.008 
levelcarlington_no -0.278***  -0.284 -0.372 -0.671 -0.377 -0.339***  
Summer  -0.294 -0.383* -0.607 -0.391* -0.253***  
Fall  0.381***  0.245**  0.079 0.234**  0.257***  
winter  0.106 0.014 0.004 0.010 0.043 
log_realexchangeratecorn   -0.361***  -0.432***  -0.364***  -0.333***  
log_ocean_gulf    0.497   
log_ocean_pnw    -0.257   
log_gulf_pnw_ratio     0.024 0.007 
log_diesel      0.217 
log_rr_c_urbana_no       
log_barge_illinois -0.430***  -1.339**  -1.076***  -1.033***  -1.075***  -0.241***  
log_totalexclfuel 0.754***  0.283 0.292 0.418* 0.325 0.044 
summer  -0.119 -0.121 -0.076 -0.090 -0.174***  
fall  0.606 0.375* 0.359* 0.397* 0.053 
winter  0.135 0.015 0.088 0.074 -0.056**  
log_realexchangeratecorn   -0.356**  -0.338**  -0.338**  -0.082***  
log_ocean_gulf    -0.008   
log_ocean_pnw    0.178   
log_gulf_pnw_ratio     -0.088 0.029 
log_fuel      0.493***  
bic -744.703 -686.822 -685.983 -537.022 -684.065 -1026.079 
N 137 137 137 136 136 136 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 26. 3SLS for log of Indiana, IL  to New Orleans, LA Railroad and Cincinnati 
Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_cinc       
log_rr_c_indi_tn -0.430***  0.345 0.381 0.836**  0.394 0.033 
levelcarlington_no -0.400***  -0.112 -0.134* -0.145* -0.137* -0.308***  
summer  -0.096 -0.132 -0.074 -0.124 -0.144* 
fall  0.615***  0.485***  0.500***  0.491***  0.409***  
winter  0.114 0.017 0.141 0.037 0.014 
log_realexchangeratecorn   -0.462***  -0.470***  -0.453***  -0.473***  
log_ocean_gulf    0.399*   
log_ocean_pnw    0.005   
log_gulf_pnw_ratio     -0.024 0.017 
log_diesel      0.348***  
log_rr_c_indi_tn       
log_cinc 0.064 0.508 0.469 0.317* 0.457 -0.119 
log_totalexclfuel 0.968***  0.520***  0.523***  0.399***  0.521***  0.744***  
summer  -0.043 -0.040 -0.067 -0.045 -0.038 
fall  -0.446* -0.395**  -0.289***  -0.392**  -0.089* 
winter  -0.161**  -0.137**  -0.168***  -0.145**  -0.109***  
log_realexchangeratecorn   0.098 0.063 0.089 -0.198***  
log_ocean_gulf    -0.232**    
log_ocean_pnw    0.008   
log_gulf_pnw_ratio     0.012 -0.032* 
log_fuel      -0.156***  
bic -538.381 -698.869 -808.116 -825.008 -791.695 -729.643 
N 142 142 142 141 141 141 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 27. 3SLS for Log of Indiana, IL  to New Orleans, LA Railroad and Lower Ohio 
Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_loh       
log_rr_c_indi_tn -0.431***  0.348 0.383 0.837**  0.396 0.035 
levelcarlington_no -0.400***  -0.112 -0.135* -0.146* -0.138* -0.309***  
summer  -0.098 -0.134 -0.077 -0.126 -0.147* 
fall  0.613***  0.484***  0.498***  0.489***  0.406***  
winter  0.113 0.015 0.139 0.034 0.011 
log_realexchangeratecorn   -0.462***  -0.470***  -0.453***  -0.474***  
log_ocean_gulf    0.399*   
log_ocean_pnw    0.004   
log_gulf_pnw_ratio     -0.024 0.018 
log_diesel      0.348***  
log_rr_c_indi_tn       
log_loh 0.064 0.505 0.467 0.316* 0.455 -0.118 
log_totalexclfuel 0.968***  0.519***  0.523***  0.400***  0.521***  0.744***  
summer  -0.042 -0.039 -0.066 -0.045 -0.038 
fall  -0.443* -0.393**  -0.288***  -0.390**  -0.089* 
winter  -0.160**  -0.136**  -0.167***  -0.144**  -0.109***  
log_realexchangeratecorn   0.097 0.062 0.088 -0.197***  
log_ocean_gulf    -0.232**    
log_ocean_pnw    0.009   
log_gulf_pnw_ratio     0.012 -0.032* 
log_fuel      -0.157***  
bic -538.347 -699.130 -808.897 -825.434 -792.380 -730.239 
N 142 142 142 141 141 141 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 28. 3SLS for Log of Nebraska  to Houston,TX Railroad and St Louis  Barge 
Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_stlouis       
log_rr_c_neb_ht -0.187**  2.159 2.224 0.704***  2.120 -0.622 
levelcarlington_no -0.486***  -0.699**  -0.729**  -0.511***  -0.732***  -0.390***  
summer  -0.697 -0.744 -0.304***  -0.753* 0.118 
fall  0.172 0.067 0.096 0.053 0.419***  
winter  -0.021 -0.098 -0.090 -0.114 0.136 
log_realexchangeratecorn   -0.317* -0.450***  -0.337**  -0.405***  
log_ocean_gulf    0.345   
log_ocean_pnw    -0.100   
log_gulf_pnw_ratio     0.082 0.002 
log_diesel      0.493**  
log_rr_c_neb_ht       
log_stlouis -0.188* -0.755***  -0.684***  -0.741***  -0.687***  -0.053 
log_totalexclfuel 0.806***  0.626***  0.607***  0.364* 0.633***  -0.029 
summer  0.191**  0.167***  0.202***  0.192***  -0.003 
fall  0.574***  0.432***  0.493***  0.450***  0.060 
winter  0.236**  0.145* 0.141 0.188**  -0.015 
log_realexchangeratecorn   -0.350***  -0.308***  -0.334***  -0.076 
log_ocean_gulf    -0.425***    
log_ocean_pnw    0.210*   
log_gulf_pnw_ratio     -0.078 0.039 
log_fuel      0.515***  
bic -562.110 -369.215 -408.290 -548.936 -406.048 -696.104 
N 143 143 143 142 142 142 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 29. 3SLS for Log of Nebraska  to Houston,TX Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rr_c_neb_ht -0.368***  0.513 0.595 8.948 0.583 -0.299 
levelcarlington_no -0.343***  -0.290 -0.328**  -2.453 -0.339**  -0.295***  
summer  -0.384 -0.443* -3.096 -0.450* -0.134 
fall  0.298**  0.166 -2.094 0.158 0.351**  
winter  0.041 -0.057 -0.875 -0.051 0.130 
log_realexchangeratecorn   -0.400***  -0.700 -0.401***  -0.396***  
log_ocean_gulf    4.675   
log_ocean_pnw    -1.758   
log_gulf_pnw_ratio     0.013 0.001 
log_diesel      0.426 
log_rr_c_neb_ht       
log_barge_illinois -0.251* -1.128**  -0.989***  -1.104***  -0.995***  -0.116 
log_totalexclfuel 0.758***  0.383 0.390* 0.281 0.422**  0.097 
summer  0.016 0.007 0.014 0.038 -0.029 
fall  0.626**  0.431**  0.531***  0.455**  0.109 
winter  0.217 0.097 0.137 0.151 0.026 
log_realexchangeratecorn   -0.480***  -0.464***  -0.463***  -0.103 
log_ocean_gulf    -0.433**    
log_ocean_pnw    0.246   
log_gulf_pnw_ratio     -0.089 0.026 
log_fuel      0.510***  
bic -646.151 -591.644 -613.130 -68.959 -602.602 -776.865 
N 142 142 142 141 141 141 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 30. 3SLS for Log of Minneapolis to Oregon Railroad and Twin Cities Barge 
Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_twc       
log_rrc_mnor 0.487***  -0.292 -0.655**  -0.778**  -0.733**  -0.166 
levelcarlington_no -0.077 0.177***  0.265***  0.298***  0.297***  0.274***  
summer  0.171***  0.127**  0.140**  0.132**  0.102* 
fall  0.517***  0.419***  0.438***  0.431***  0.386***  
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratecorn   -0.764***  -0.845***  -0.798***  -0.873***  
log_ocean_gulf    0.092   
log_ocean_pnw    -0.182   
log_gulf_pnw_ratio     0.082* 0.043 
log_diesel      -0.522**  
log_rrc_mnor       
log_twc -0.827 0.655* 0.614**  0.530**  0.534**  -0.048 
log_totalexclfuel 1.331* 0.642***  0.658***  0.651***  0.657***  -0.117* 
summer  -0.017 -0.003 0.006 0.004 -0.076***  
fall  -0.227 -0.192**  -0.164**  -0.167**  -0.029 
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratecorn   0.088 0.040 0.049 -0.096 
log_ocean_gulf    -0.140   
log_ocean_pnw    0.159   
log_gulf_pnw_ratio     -0.053 0.016 
log_fuel      0.805***  
bic -458.286 -681.858 -661.079 -644.671 -657.307 -886.386 
N 131 131 131 131 131 131 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 31. 3SLS for Logs of Minneapolis  to Oregon Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrc_mnor 0.279***  0.243 -0.061 -0.204 -0.043 0.548**  
levelcarlington_no -0.270***  -0.072 -0.068 -0.049 -0.076 -0.077 
summer  -0.009 -0.015 0.028 -0.018 -0.070 
fall  0.462***  0.412***  0.452***  0.408***  0.464***  
winter  0.289***  0.250***  0.229***  0.254***  0.305***  
log_realexchangeratecorn   -0.358***  -0.426***  -0.351***  -0.140 
log_ocean_gulf    -0.379**    
log_ocean_pnw    0.130   
log_gulf_pnw_ratio     -0.004 -0.001 
log_diesel      0.264 
log_rrc_mnor       
log_barge_illinois -0.100 -2.450 -1.434 -1.525 -1.296 -0.022 
log_totalexclfuel 0.943***  0.799 0.434* 0.305 0.453**  0.081 
summer  0.195 0.096 0.140* 0.098 0.027 
fall  1.371 0.713 0.790 0.656 0.029 
winter  0.977 0.497 0.439 0.472* -0.005 
log_realexchangeratecorn   -0.566 -0.711 -0.510 -0.106 
log_ocean_gulf    -0.703   
log_ocean_pnw    0.242   
log_gulf_pnw_ratio     -0.008 0.021 
log_fuel      0.421***  
bic -731.306 -793.062 -1019.095 -1135.610 -982.656 -1036.710 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 32. 3SLS for Logs of North Dakota to Oregon Railroad and TWC Barge Rates of 
Wheat 

 (1) (2) (3) (4) (5) (6) 
log_twc       
log_rrw_ndor 0.480***  0.620**  0.200 0.199 0.187 -0.259 
levelcarlington_no -0.063 0.215***  0.244***  0.243***  0.254***  0.185**  
summer  0.131**  0.108* 0.114**  0.109* 0.115**  
fall  0.656***  0.556***  0.564***  0.560***  0.579***  
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratewheat   -0.531***  -0.558***  -0.544***  -0.386***  
log_ocean_gulf    -0.038   
log_ocean_pnw    0.000   
log_gulf_pnw_ratio     0.015 0.046 
log_truck      0.652***  
log_rrw_ndor       
log_twc -0.314 0.505***  0.584***  0.573***  0.619***  0.301***  
log_totalexclfuel 1.107***  0.296***  0.393***  0.395***  0.382***  0.225***  
summer  -0.027 -0.009 0.002 -0.012 -0.049**  
fall  -0.325***  -0.310***  -0.292***  -0.325***  -0.191***  
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratewheat   0.344***  0.297**  0.345***  0.214***  
log_ocean_gulf    -0.074   
log_ocean_pnw    0.012   
log_gulf_pnw_ratio     0.019 0.017 
log_fuel      0.372***  
bic -598.312 -950.751 -890.594 -890.078 -883.734 -909.922 
N 131 131 131 131 131 131 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 33. 3SLS for Logs of North Dakota to Oregon Railroad and Barge Rates of 
Wheat 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrw_ndor 0.274***  -0.363 -0.452 -0.323 -0.321 0.722***  
levelcarlington_no -0.262***  0.070 0.069 0.064 0.028 -0.095* 
summer  0.016 0.015 0.078 0.034 -0.021 
fall  0.447***  0.433***  0.487***  0.444***  0.517***  
winter  0.324***  0.308***  0.305***  0.335***  0.338***  
log_realexchangeratewheat   -0.111 -0.079 -0.017 -0.035 
log_ocean_gulf    -0.833***    
log_ocean_pnw    0.615***    
log_gulf_pnw_ratio     -0.132***  -0.141***  
log_diesel      -0.064 
log_rrw_ndor       
log_barge_illinois 0.012 3.616 8.061 6.831 0.362 -0.332 
log_totalexclfuel 0.929***  0.994 2.147 1.505 0.526 0.153 
summer  0.141 0.305 -0.137 0.061 -0.003 
fall  -1.527 -3.238 -3.057 -0.157 0.125 
winter  -0.962 -1.964 -1.785 -0.026 0.067 
log_realexchangeratewheat   1.343 0.744 0.084 -0.041 
log_ocean_gulf    4.628   
log_ocean_pnw    -3.713   
log_gulf_pnw_ratio     0.025 -0.020 
log_fuel      0.476***  
bic -849.114 -752.618 -465.096 -667.440 -1016.286 -1041.978 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  



130 

 

 

 

Table 34. 3SLS for Logs of North Dakota to Texas Railroad and TWC Barge Rates of 
Wheat 

 (1) (2) (3) (4) (5) (6) 
log_twc       
log_rrw_ndtx 0.483***  0.608* 0.189 0.188 0.176 -0.224 
levelcarlington_no -0.055 0.220***  0.246***  0.246***  0.257***  0.178**  
summer  0.134**  0.108* 0.115**  0.110* 0.114**  
fall  0.646***  0.551***  0.560***  0.556***  0.586***  
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratewheat   -0.540***  -0.569***  -0.554***  -0.372***  
log_ocean_gulf    -0.038   
log_ocean_pnw    -0.003   
log_gulf_pnw_ratio     0.017 0.043 
log_diesel      0.647***  
log_rrw_ndtx       
log_twc -0.012 0.490***  0.579***  0.558***  0.600***  0.292***  
log_totalexclfuel 0.963***  0.309***  0.418***  0.423***  0.412***  0.260***  
summer  -0.028 -0.008 0.003 -0.010 -0.046**  
fall  -0.298***  -0.281***  -0.260***  -0.290***  -0.160***  
o.winter  0.000 0.000 0.000 0.000 0.000 
log_realexchangeratewheat   0.388***  0.345***  0.389***  0.261***  
log_ocean_gulf    -0.082   
log_ocean_pnw    0.030   
log_gulf_pnw_ratio     0.011 0.009 
log_fuel      0.358***  
bic -654.418 -968.665 -915.024 -910.596 -905.801 -936.296 
N 131 131 131 131 131 131 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 35. 3SLS for Log of North Dakota to Texas Railroad and Barge Rates of Wheat  

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrw_ndtx 0.275***  -0.359 -0.438 -0.313 -0.311 0.704***  
levelcarlington_no -0.260***  0.071 0.069 0.064 0.028 -0.104* 
summer  0.013 0.013 0.075 0.032 -0.024 
fall  0.453***  0.441***  0.492***  0.450***  0.486***  
winter  0.326***  0.312***  0.309***  0.338***  0.319***  
log_realexchangeratewheat   -0.100 -0.069 -0.010 -0.069 
log_ocean_gulf    -0.823***    
log_ocean_pnw    0.610***    
log_gulf_pnw_ratio     -0.132***  -0.146***  
log_diesel      -0.124 
log_rrw_ndtx       
log_barge_illinois 0.038 3.677 8.376 6.980 0.467 -0.406 
log_totalexclfuel 0.920***  1.009 2.228 1.543 0.557 0.197 
summer  0.137 0.311 -0.148 0.056 -0.002 
fall  -1.536 -3.346 -3.106 -0.183 0.185 
winter  -0.972 -2.032 -1.812 -0.046 0.113* 
log_realexchangeratewheat   1.420 0.791 0.116 -0.008 
log_ocean_gulf    4.761   
log_ocean_pnw    -3.806   
log_gulf_pnw_ratio     0.037 -0.032 
log_fuel      0.461***  
bic -879.490 -803.852 -518.173 -721.387 -1057.815 -1076.718 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 36. 3SLS for Logs of Kansas to Texas Railroad and MM Barge Rates of Wheat 

 (1) (2) (3) (4) (5) (6) 
log_mm       
log_rrw_kstx 0.408***  -0.075 -0.149 -0.136 -0.139 -0.201 
levelcarlington_no -0.091 0.255***  0.237***  0.220***  0.227***  0.175***  
summer  0.082 0.076 0.082 0.075 0.097* 
fall  0.630***  0.600***  0.601***  0.596***  0.651***  
winter  0.094**  0.088**  0.087**  0.086**  0.104***  
log_realexchangeratewheat   -0.192* -0.197 -0.175 -0.060 
log_ocean_gulf    -0.132   
log_ocean_pnw    0.108   
log_gulf_pnw_ratio     -0.021 -0.002 
log_diesel      0.366***  
log_rrw_kstx       
log_mm 0.661 0.135 0.235**  0.274**  0.323**  0.332**  
log_totalexclfuel 0.684***  0.836***  0.916***  0.908***  0.909***  1.003***  
summer  0.180***  0.198***  0.205***  0.191***  0.209***  
fall  0.045 0.032 0.024 -0.014 -0.014 
winter  0.055***  0.059***  0.058***  0.053***  0.075***  
log_realexchangeratewheat   0.233***  0.168**  0.213***  0.218***  
log_ocean_gulf    -0.044   
log_ocean_pnw    -0.039   
log_gulf_pnw_ratio     0.042* 0.039* 
log_fuel      -0.140* 
bic -762.423 -931.519 -933.211 -934.924 -925.580 -928.306 
N 148 148 148 148 148 148 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 37. 3SLS for Logs of Kansas  to Texas  Railroad and Barge Rates of Wheat 

All models have agricultural year dummy variables. Standardized beta coefficients * p < 
0.10, ** p < 0.05, *** p < 0.01 
 

  

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrw_kstx 0.278***  -0.212 -0.274 -0.195 -0.194 -0.151 
levelcarlington_no -0.237***  0.034 0.021 0.026 -0.004**  -0.064 
summer  0.023 0.024 0.079 0.041 0.055 
fall  0.452***  0.437***  0.484***  0.447***  0.525***  
winter  0.320***  0.299***  0.302***  0.329***  0.386***  
log_realexchangeratewheat   -0.132 -0.086 -0.032 0.037 
log_ocean_gulf    -0.774***    
log_ocean_pnw    0.591***    
log_gulf_pnw_ratio     -0.131***  -0.102**  
log_diesel      0.441***  
log_rrw_kstx       
log_barge_illinois 0.357***  0.479 1.536 1.562 -0.918 0.389 
log_totalexclfuel 0.827***  0.811***  1.085 1.013 0.639**  0.747***  
summer  0.187***  0.226 0.148 0.190 0.166***  
fall  -0.115 -0.522 -0.591 0.495 -0.084 
winter  -0.005 -0.243 -0.289 0.427 0.003 
log_realexchangeratewheat   0.319 0.223 0.045 0.084 
log_ocean_gulf    0.887   
log_ocean_pnw    -0.754   
log_gulf_pnw_ratio     -0.135 0.040 
log_fuel      0.073 
bic -901.667 -1090.884 -983.384 -1054.118 -1198.685 -1108.055 
N 203 203 203 201 201 201 
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Table 38. 3SLS for Logs of North Dakota to Washington State Railroad and Barge 
Rates of Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrs_ndwa 0.279***  0.266 0.135 -0.000 0.148 0.731**  
levelcarlington_no -0.259***  -0.069 -0.105**  -0.099**  -0.110**  -0.102* 
summer  -0.007 -0.032 0.000 -0.034 -0.065 
fall  0.452***  0.414***  0.452***  0.411***  0.425***  
winter  0.289***  0.267***  0.249***  0.271***  0.296***  
log_realexchangeratesoybeans   -0.404* -0.526**  -0.390* -0.048 
log_ocean_gulf    -0.333**    
log_ocean_pnw    0.102   
log_gulf_pnw_ratio     -0.004 -0.024 
log_diesel      0.131 
log_rrs_ndwa       
log_barge_illinois 0.052 -2.000 -0.521 -0.520* -0.480 -0.117 
log_totalexclfuel 0.903***  0.701 0.435***  0.369***  0.421***  0.161***  
summer  0.163 0.069**  0.084***  0.064**  0.015 
fall  1.170 0.346* 0.361**  0.322* 0.122 
winter  0.814 0.265**  0.222**  0.247**  0.051 
log_realexchangeratesoybeans   -0.575***  -0.657***  -0.563***  -0.329***  
log_ocean_gulf    -0.239*   
log_ocean_pnw    0.016   
log_gulf_pnw_ratio     0.023 0.037**  
log_fuel      0.326***  
bic -813.254 -895.029 -1068.225 -1105.497 -1046.231 -1111.822 
N 203 203 203 201 201 201 
 All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p 
< 0.01 
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Table 39. 3SLS for Logs of South Dakota to Washington State Railroad and Barge 
Rates of Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrs_sdwa 0.279***  0.248 0.126 -0.000 0.139 0.684**  
levelcarlington_no -0.259***  -0.068 -0.104**  -0.099**  -0.110**  -0.102* 
summer  -0.006 -0.032 0.000 -0.033 -0.064 
fall  0.452***  0.414***  0.452***  0.411***  0.423***  
winter  0.290***  0.267***  0.249***  0.272***  0.297***  
log_realexchangeratesoybeans   -0.403* -0.526**  -0.389* -0.046 
log_ocean_gulf    -0.333**    
log_ocean_pnw    0.102   
log_gulf_pnw_ratio     -0.004 -0.025 
log_diesel      0.126 
log_rrs_sdwa       
log_barge_illinois 0.051 -2.069 -0.513 -0.514 -0.472 -0.123 
log_totalexclfuel 0.902***  0.744 0.464***  0.394***  0.448***  0.182***  
summer  0.170 0.072**  0.087***  0.065**  0.014 
fall  1.219 0.352* 0.368**  0.327* 0.134 
winter  0.846 0.268**  0.223**  0.248**  0.055 
log_realexchangeratesoybeans   -0.605***  -0.693***  -0.594***  -0.360***  
log_ocean_gulf    -0.245*   
log_ocean_pnw    0.009   
log_gulf_pnw_ratio     0.026 0.041**  
log_fuel      0.342***  
bic -794.692 -868.869 -1041.502 -1080.498 -1019.998 -1085.741 
N 203 203 203 201 201 201 
 All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p 
< 0.01  
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Table 40. 3SLS for Logs of Minnesota to Oregon Railroad and Barge Rates of Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_barge_illinois       
log_rrs_mnor 0.279***  0.260 0.132 -0.000 0.145 0.705**  
levelcarlington_no -0.261***  -0.070 -0.105**  -0.099**  -0.111**  -0.107* 
summer  -0.009 -0.033 0.000 -0.035 -0.072 
fall  0.453***  0.414***  0.452***  0.411***  0.423***  
winter  0.289***  0.267***  0.249***  0.271***  0.291***  
log_realexchangeratesoybeans   -0.404* -0.526**  -0.390* -0.067 
log_ocean_gulf    -0.333**    
log_ocean_pnw    0.102   
log_gulf_pnw_ratio     -0.004 -0.024 
log_diesel      0.112 
log_rrs_mnor       
log_barge_illinois 0.033 -2.112 -0.563 -0.563* -0.518 -0.145 
log_totalexclfuel 0.906***  0.726 0.447***  0.375***  0.433***  0.155**  
summer  0.177 0.079**  0.096***  0.073**  0.020 
fall  1.228 0.365* 0.383**  0.339* 0.133 
winter  0.857 0.281**  0.236**  0.263**  0.057 
log_realexchangeratesoybeans   -0.603***  -0.695***  -0.589***  -0.340***  
log_ocean_gulf    -0.275*   
log_ocean_pnw    0.026   
log_gulf_pnw_ratio     0.023 0.039**  
log_fuel      0.358***  
bic -767.533 -832.092 -1005.714 -1048.164 -984.111 -1046.715 
N 203 203 203 201 201 201 
 Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 0.01 
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Table 41. 3SLS for Logs of Minnesota to Oregon Railroad and TWC Barge Rates of 
Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_twc       
log_rrs_ndwa 0.492***  0.334***  1.224 1.082 1.170 -0.452 
levelcarlington_no -0.049 0.201 0.219**  0.249***  0.231**  0.155**  
q1  -0.209**  -0.260***  -0.245**  -0.261***  -0.088 
q2  -0.625***  -0.772***  -0.759***  -0.776***  -0.327***  
q3  -0.321**  -0.471**  -0.448**  -0.479***  -0.118 
log_realexchangeratesoybeans   0.236 0.186 0.182 -0.907***  
log_ocean_gulf    0.252   
log_ocean_pnw    -0.223   
log_gulf_pnw_ratio     0.055 0.056 
log_diesel      -0.564***  
log_rrs_ndwa       
log_twc 0.235 0.043 -0.101 -0.024 -0.072 -0.240* 
log_totalexclfuel 0.831***  -0.072 0.443***  0.381**  0.420***  0.122 
q1  0.054* -0.001 0.024 0.005 -0.031 
q2  0.198**  -0.054 0.009 -0.035 -0.129 
q3  0.246***  -0.079 -0.025 -0.067 -0.140* 
log_realexchangeratesoybeans   -0.561***  -0.514***  -0.560***  -0.401***  
log_ocean_gulf    0.107   
log_ocean_pnw    -0.088   
log_gulf_pnw_ratio     0.024 0.042**  
log_fuel      0.429***  
bic -654.020 -785.185 -772.423 -783.951 -775.641 -917.825 
N 131 131 131 131 131 131 
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Table 42. 3SLS for Logs of South Dakota to WA  Railroad and St Louis Barge Rates of 
Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_stlouis       
log_rrs_sdwa 0.249***  1.106 1.269 1.250 1.547 0.247 
levelcarlington_no -0.382***  -0.144**  -0.135 -0.144 -0.134 -0.173**  
q1  -0.213***  -0.219* -0.231***  -0.218 -0.171***  
q2  -0.571***  -0.595 -0.595 -0.628 -0.450***  
q3  -0.238 -0.255 -0.257 -0.286 -0.122 
log_realexchangeratesoybeans   0.091 0.070 0.214 -0.295 
log_ocean_gulf    -0.192   
log_ocean_pnw    0.134   
log_gulf_pnw_ratio     -0.037 0.011 
log_diesel      0.001 
log_rrs_sdwa       
log_stlouis 0.035 -0.093 0.174 0.170 0.168 0.193 
log_totalexclfuel 0.908***  -0.252***  -0.070 -0.039 -0.065 -0.088 
q1  0.046 0.073* 0.047 0.074* 0.026 
q2  0.161* 0.233***  0.213**  0.228***  0.197***  
q3  0.271***  0.176***  0.148***  0.167***  0.103**  
log_realexchangeratesoybeans   -0.280***  -0.340***  -0.305***  -0.233***  
log_ocean_gulf    -0.016   
log_ocean_pnw    -0.070   
log_gulf_pnw_ratio     0.033 0.031 
log_fuel      0.279***  
bic -698.640 -861.733 -1011.883 -1009.188 -1012.803 -965.317 
N 204 204 204 202 202 202 
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Table 43. 3SLS for Logs of Minnesota  to Oregon  Railroad and TWC Barge Rates of 
Soybeans 

 (1) (2) (3) (4) (5) (6) 
log_twc       
log_rrs_mnor 0.490***  -1.520 1.497 1.340 1.435 -0.468 
levelcarlington_no -0.054 0.235* 0.224**  0.251***  0.235**  0.155**  
q1  -0.136 -0.287**  -0.271**  -0.287**  -0.084 
q2  -0.338 -0.842***  -0.823***  -0.843***  -0.315***  
q3  0.085 -0.534**  -0.507* -0.539**  -0.108 
log_realexchangeratesoybeans   0.359 0.299 0.303 -0.919***  
log_ocean_gulf    0.228   
log_ocean_pnw    -0.205   
log_gulf_pnw_ratio     0.051 0.056 
log_diesel      -0.568***  
log_rrs_mnor       
log_twc 0.048 0.050 -0.101 -0.025 -0.072 -0.243* 
log_totalexclfuel 0.921***  -0.106 0.371**  0.310**  0.349**  0.047 
q1  0.065**  0.013 0.037 0.019 -0.019 
q2  0.231***  -0.011 0.052 0.008 -0.092 
q3  0.278***  -0.032 0.022 -0.020 -0.099 
log_realexchangeratesoybeans   -0.547***  -0.501***  -0.547***  -0.381***  
log_ocean_gulf    0.106   
log_ocean_pnw    -0.086   
log_gulf_pnw_ratio     0.023 0.042**  
log_fuel      0.450***  
bic -602.564 -734.248 -740.313 -756.172 -744.932 -901.729 
N 131 131 131 131 131 131 
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6. Appendix 

Table 44. 3SLS for Shuttle Railroad and Barge Rate Indexes of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
shuttle 0.733***  -17.789 -1.909 -2.009 -1.890 2.894**  
levelcarlington_no -0.274***  -0.157 -0.104* -0.125 -0.108* -0.143***  
summer  1.081 0.213 0.213 0.210 -0.083 
fall  2.195 0.630***  0.650**  0.628**  0.160 
winter  0.884 0.194**  0.220* 0.196**  0.152***  
realexchangeratecorn   -0.982 -0.890 -0.974 0.468 
ocean_gulf    0.389   
ocean_pnw    -0.157   
gulf_pnw_ratio     0.024 -0.161**  
diesel      0.953***  
shuttle       
barge_illinois -0.110 0.088 0.190 0.278 0.180 -0.141* 
totalexclfuel 0.615***  -0.013 -0.033 -0.036* -0.033 0.012 
summer  0.043 0.027 0.016 0.029 0.054***  
fall  0.056 0.005 -0.029 0.015 0.161***  
winter  0.026 0.001 -0.003 0.006 0.048**  
realexchangeratecorn   -0.181* -0.093 -0.183* -0.283***  
ocean_gulf    0.166***    
ocean_pnw    -0.055   
gulf_pnw_ratio     0.038**  0.029 
fuel      0.119**  
bic 11382.567 10929.817 10176.254 10224.813 10060.379 9980.149 
N 548 548 545 539 539 539 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01 
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Table 45. 3SLS for Unit  Railroad and Barge Rate Indexes of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
unit 0.730***  0.652* -5.137 -5.230 -5.062 1.635***  
levelcarlington_no -0.250***  -0.062 -0.116 -0.149 -0.117 -0.033 
summer  0.083 0.538 0.542 0.530 -0.005 
fall  0.420 0.896 0.976 0.924 0.334***  
winter  0.163 0.213 0.301 0.266 0.146***  
realexchangeratecorn   -1.796 -1.440 -1.679 -0.015 
ocean_gulf    1.340   
ocean_pnw    -1.170   
gulf_pnw_ratio     0.332 -0.159***  
diesel      0.249 
unit       
barge_illinois 0.011 -0.023 0.104 0.165 0.090 0.389***  
totalexclfuel 0.568***  -0.004 -0.015 -0.018 -0.014 -0.002 
summer  0.089**  0.069***  0.062***  0.071***  0.017 
fall  0.102 0.039 0.024 0.053 -0.103***  
winter  0.030 -0.001 0.005 0.012 -0.042***  
realexchangeratecorn   -0.212***  -0.117 -0.199***  -0.048 
ocean_gulf    0.242***    
ocean_pnw    -0.211***    
gulf_pnw_ratio     0.075***  0.085***  
fuel      0.055 
bic 11501.209 9838.987 10219.257 10306.356 10031.371 8340.641 
N 546 546 543 537 537 537 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01 
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Table 46. 3SLS for Des Moines, IA to Davenport, IA  Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rr_c_dsm_davenport -1.178 6.610**  5.022 7.096 5.607 -0.079 
levelcarlington_no -0.516***  -0.707***  -0.601**  -0.846* -0.664**  -0.331***  
summer  -0.705**  -0.609**  -0.814* -0.704**  -0.220**  
fall  0.395***  0.305**  0.133 0.286**  0.260***  
winter  0.360**  0.227 0.228 0.220 0.059 
realexchangeratecorn   -0.269 -0.327* -0.273 -0.445***  
ocean_gulf    0.849   
ocean_pnw    -0.476   
gulf_pnw_ratio     0.111 0.007 
diesel      0.198 
rr_c_dsm_davenport       
barge_illinois 0.485 -0.349***  -0.313***  -0.322***  -0.303***  -0.057* 
totalexclfuel -0.220* 0.105***  0.066***  0.062**  0.062***  0.018**  
summer  -0.009 -0.012 -0.009 -0.004 -0.071***  
fall  0.109 0.050 0.064 0.049 -0.023 
winter  -0.031 -0.068**  -0.054* -0.058**  -0.068***  
realexchangeratecorn   -0.164***  -0.158***  -0.156***  -0.060***  
ocean_gulf    -0.070   
ocean_pnw    0.050   
gulf_pnw_ratio     -0.015 0.014* 
fuel      0.213***  
bic 3338.844 2913.903 2821.578 2881.282 2823.720 2404.819 
N 146 146 146 145 145 145 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 47. 3SLS for Urbana, IL to New Orleans, LA  Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rr_c_urbana_no -2.506 22.017 9.177 -147.224 17.562 -0.107 
levelcarlington_no -0.335* -4.270 -1.953 29.590 -3.627 -0.341***  
summer  -3.642 -1.709 25.647 -3.416 -0.210**  
fall  0.141 0.063 8.921 -0.293 0.259***  
winter  0.977 0.285 -0.667 0.213 0.058 
realexchangeratecorn   -0.605 6.201 -1.021 -0.392***  
ocean_gulf    -27.204   
ocean_pnw    20.074   
gulf_pnw_ratio     0.822 0.011 
diesel      0.191 
rr_c_urbana_no       
barge_illinois 0.058 -0.981**  -0.832***  -0.800***  -0.804***  -0.206***  
totalexclfuel -0.080 0.223**  0.133**  0.122* 0.122* -0.002 
summer  -0.042 -0.045 -0.020 -0.026 -0.162***  
fall  0.360* 0.215* 0.204* 0.210* 0.019 
winter  0.014 -0.065 -0.037 -0.039 -0.071***  
realexchangeratecorn   -0.273**  -0.254**  -0.254**  -0.083***  
ocean_gulf    -0.058   
ocean_pnw    0.095   
gulf_pnw_ratio     -0.035 0.030* 
fuel      0.456***  
bic 3374.103 3805.317 3524.909 4238.654 3663.122 2736.282 
N 141 141 141 140 140 140 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  



144 

 

 

 

Table 48. 3SLS for Indiana, IN  to New Orleans, LA Railroad and Cincinnati Barge 
Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
cinc       
rr_c_indi_tn -2.391 1.594**  1.049 1.411 1.033 0.904 
levelcarlington_no -0.821* 0.051 -0.031 -0.071 -0.040 -0.185 
summer  -0.032 -0.087 -0.039 -0.091 -0.113 
fall  1.033***  0.760***  0.695**  0.750***  0.703***  
winter  0.475**  0.244 0.312 0.243 0.252 
realexchangeratecorn   -0.332**  -0.389**  -0.333**  -0.331**  
ocean_gulf    0.590*   
ocean_pnw    -0.082   
gulf_pnw_ratio     0.001 0.027 
diesel      0.230 
rr_c_indi_tn       
cinc 0.701* 0.850* 0.774**  0.459**  0.744**  0.391**  
totalexclfuel -0.235 -0.040 0.016 0.027 0.021 0.053 
summer  0.048 0.054 -0.014 0.049 0.058 
fall  -0.762**  -0.657***  -0.418***  -0.645***  -0.478***  
winter  -0.300***  -0.249***  -0.251***  -0.258***  -0.271***  
realexchangeratecorn   0.230 0.145 0.213 0.046 
ocean_gulf    -0.351***    
ocean_pnw    0.033   
gulf_pnw_ratio     0.007 0.004 
fuel      -0.085* 
bic 4145.336 3198.228 2964.459 3117.983 3013.027 3310.100 
N 146 146 146 145 145 145 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 49. 3SLS for Indiana, IL  to New Orleans, LA Railroad and Lower Ohio Barge 
Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
loh       
rr_c_indi_tn -2.391 1.600**  1.056 1.419 1.040 0.912 
levelcarlington_no -0.821* 0.051 -0.031 -0.071 -0.040 -0.185 
summer  -0.034 -0.089 -0.041 -0.093 -0.115 
fall  1.032***  0.760***  0.695**  0.750***  0.703***  
winter  0.474**  0.243 0.312 0.243 0.252 
realexchangeratecorn   -0.331**  -0.388**  -0.332**  -0.330**  
ocean_gulf    0.592*   
ocean_pnw    -0.083   
gulf_pnw_ratio     0.001 0.027 
diesel      0.230 
rr_c_indi_tn       
loh 0.702* 0.847* 0.772**  0.458**  0.742**  0.390**  
totalexclfuel -0.236 -0.041 0.016 0.026 0.021 0.053 
summer  0.050 0.056 -0.012 0.050 0.059 
fall  -0.759**  -0.655***  -0.417***  -0.642***  -0.476***  
winter  -0.297***  -0.248***  -0.250***  -0.256***  -0.270***  
realexchangeratecorn   0.229 0.144 0.212 0.046 
ocean_gulf    -0.351***    
ocean_pnw    0.033   
gulf_pnw_ratio     0.006 0.004 
fuel      -0.085* 
bic 4145.784 3198.647 2959.253 3115.606 3008.522 3308.915 
N 146 146 146 145 145 145 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 50. 3SLS for Nebraska  to Houston, TX Railroad and St Louis  Barge Rates of 
Corn 

 (1) (2) (3) (4) (5) (6) 
stlouis       
rr_c_neb_ht -17.919 13.015 -5.274 -3.024 -4.264 -1.518***  
levelcarlington_no -1.855 -1.763 0.250 0.050 0.159 -0.290***  
q1  0.607 -0.563 -0.549 -0.525 -0.400***  
q2  -3.809 1.310 0.525 1.017 0.044 
q3  -4.059 1.541 0.701 1.250 0.199 
realexchangeratecorn   -1.071 -0.719***  -0.909 -0.585***  
ocean_gulf    -0.745   
ocean_pnw    0.483   
gulf_pnw_ratio     -0.211 -0.039 
diesel      0.482***  
rr_c_neb_ht       
stlouis 0.164 -0.430***  -0.346***  -0.380***  -0.353***  -0.110 
totalexclfuel -0.031 0.099**  0.013 0.005 0.010 -0.055**  
q1  -0.200**  -0.148**  -0.190***  -0.152***  -0.114***  
q2  0.081 0.205***  0.165***  0.207***  0.203***  
q3  0.253***  0.278***  0.233***  0.283***  0.120**  
realexchangeratecorn   -0.270***  -0.260***  -0.263***  -0.199***  
ocean_gulf    -0.237**    
ocean_pnw    0.164**    
gulf_pnw_ratio     -0.056* -0.022 
fuel      0.309***  
bic 4123.846 3975.571 3335.820 2818.800 3177.900 3268.144 
N 147 147 147 146 146 146 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 51. 3SLS for Nebraska to Houston, TX Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rr_c_neb_ht -17.036 9.139 10.999 -7.353 29.307 -0.532 
levelcarlington_no -1.633 -1.892 -2.223 1.483 -5.704 -0.291***  
summer  -2.950 -3.487 1.965 -9.500 -0.030 
fall  -0.678 -0.820 1.876 -2.883 0.393***  
winter  -0.261 -0.274 0.519 -1.196 0.179 
realexchangeratecorn   0.228 -0.298 1.006 -0.428***  
ocean_gulf    -3.404   
ocean_pnw    1.254   
gulf_pnw_ratio     1.408 0.004 
diesel      0.472**  
rr_c_neb_ht       
barge_illinois 0.233 -0.859***  -0.774***  -0.918***  -0.757***  -0.058 
totalexclfuel -0.048 0.202**  0.112* 0.105 0.102 -0.014 
summer  0.098 0.091 0.059 0.111 -0.024 
fall  0.401**  0.262**  0.394***  0.262**  0.044 
winter  0.074 -0.014 0.034 0.010 -0.020 
realexchangeratecorn   -0.389***  -0.386***  -0.371***  -0.097 
ocean_gulf    -0.378**    
ocean_pnw    0.142   
gulf_pnw_ratio     -0.039 0.028 
fuel      0.496***  
bic 3968.268 3861.770 3863.717 3686.251 4104.239 3146.429 
N 146 146 146 145 145 145 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 52. 3SLS for Minneapolis  to Oregon Railroad and Twin Cities Barge Rates of 
Corn 

 (1) (2) (3) (4) (5) (6) 
twc       
rrc_mnor 0.428***  -0.431 -0.769**  -0.880**  -0.893**  -0.383 
levelcarlington_no -0.091 0.177***  0.258***  0.298***  0.303***  0.292***  
summer  0.154**  0.114* 0.117* 0.121**  0.085 
fall  0.500***  0.405***  0.422***  0.417***  0.384***  
o.winter  0.000 0.000 0.000 0.000 0.000 
realexchangeratecorn   -0.680***  -0.721***  -0.738***  -0.772***  
ocean_gulf    0.192   
ocean_pnw    -0.271*   
gulf_pnw_ratio     0.105**  0.080* 
diesel      -0.421* 
rrc_mnor       
twc -0.735 0.751 0.711* 0.567* 0.592**  -0.026 
totalexclfuel 1.247**  0.669***  0.680***  0.637***  0.676***  -0.036 
summer  -0.014 -0.002 0.017 0.006 -0.099***  
fall  -0.274 -0.243**  -0.193**  -0.202**  -0.044 
o.winter  0.000 0.000 0.000 0.000 0.000 
realexchangeratecorn   0.076 -0.028 0.036 -0.133**  
ocean_gulf    -0.258*   
ocean_pnw    0.251*   
gulf_pnw_ratio     -0.069 0.016 
fuel      0.716***  
bic 3373.178 3188.125 3211.495 3215.501 3212.627 2967.703 
N 131 131 131 131 131 131 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 

0.01  
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Table 53. 3SLS for Minneapolis  to Oregon Railroad and Barge Rates of Corn 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rrc_mnor 0.250***  0.327 0.090 -0.097 0.091 0.537* 
levelcarlington_no -0.290***  -0.091 -0.085 -0.065 -0.091 -0.115**  
summer  -0.043 -0.048 -0.011 -0.051 -0.105 
fall  0.440***  0.400***  0.432***  0.396***  0.374***  
winter  0.257***  0.225***  0.216***  0.230***  0.206***  
realexchangeratecorn   -0.275**  -0.349**  -0.273**  -0.247* 
ocean_gulf    -0.279*   
ocean_pnw    0.063   
gulf_pnw_ratio     0.005 -0.010 
diesel      -0.118 
rrc_mnor       
barge_illinois -0.110 -2.222 -1.512 -1.492 -1.362 -0.250 
totalexclfuel 0.944***  0.822 0.514* 0.348 0.512* 0.131* 
summer  0.141 0.075 0.103 0.076 -0.006 
fall  1.219 0.746 0.757 0.679 0.136 
winter  0.837 0.499 0.422 0.469 0.060 
realexchangeratecorn   -0.484 -0.603 -0.438 -0.162**  
ocean_gulf    -0.578*   
ocean_pnw    0.151   
gulf_pnw_ratio     0.005 0.025 
fuel      0.481***  
bic 4926.892 4897.905 4732.699 4564.491 4693.923 4610.742 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 54. 3SLS for  North Dakota to Oregon Railroad and Barge Rates of Wheat 

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rrw_ndor 0.246***  -0.222 -0.340 -0.221 -0.197 0.769***  
levelcarlington_no -0.282***  0.039 0.037 0.023 -0.021 -0.074 
summer  -0.012 -0.013 0.044 -0.004 -0.069 
fall  0.448***  0.429***  0.477***  0.432***  0.464***  
winter  0.296***  0.274***  0.293***  0.297***  0.271***  
realexchangeratewheat   -0.152 -0.115 -0.067 -0.107 
ocean_gulf    -0.663***    
ocean_pnw    0.519***    
gulf_pnw_ratio     -0.117***  -0.140***  
diesel      -0.321**  
rrw_ndor       
barge_illinois 0.001 8.089 -25.078 -18.371 -0.322 -0.879* 
totalexclfuel 0.934***  1.205 -3.476 -1.442 0.483 0.264 
summer  0.333 -1.022 0.440 0.062 -0.033 
fall  -3.524 10.364 8.512 0.150 0.427**  
winter  -2.164 6.098 5.102 0.180 0.250**  
realexchangeratewheat   -4.555 -2.298 0.071 -0.079 
ocean_gulf    -11.176   
ocean_pnw    9.077   
gulf_pnw_ratio     -0.059 -0.076 
fuel      0.594***  
bic 4806.308 4991.221 5396.519 4941.314 4527.302 4675.784 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 55. 3SLS for North Dakota to Texas Railroad and Barge Rates of Wheat  

 (1) (2) (3) (4) (5) (6) 
barge_illinois       
rrw_ndtx 0.247***  -0.218 -0.327 -0.213 -0.190 0.718***  
levelcarlington_no -0.280***  0.039 0.037 0.023 -0.021 -0.073 
summer  -0.014 -0.016 0.042 -0.005 -0.066 
fall  0.452***  0.436***  0.481***  0.436***  0.443***  
winter  0.298***  0.278***  0.296***  0.299***  0.260***  
realexchangeratewheat   -0.144 -0.108 -0.062 -0.129 
ocean_gulf    -0.655***    
ocean_pnw    0.516***    
gulf_pnw_ratio     -0.117***  -0.140***  
diesel      -0.332**  
rrw_ndtx       
barge_illinois 0.027 8.132 -25.810 -18.630 -0.352 -1.007**  
totalexclfuel 0.926***  1.217 -3.574 -1.451 0.499 0.309 
summer  0.329 -1.057 0.439 0.058 -0.032 
fall  -3.524 10.687 8.651 0.185 0.514**  
winter  -2.167 6.288 5.188 0.203 0.313***  
realexchangeratewheat   -4.661 -2.297 0.098 -0.050 
ocean_gulf    -11.302   
ocean_pnw    9.192   
gulf_pnw_ratio     -0.063 -0.094* 
fuel      0.575**  
bic 4849.333 5007.736 5409.570 4949.477 4546.222 4705.856 
N 203 203 203 201 201 201 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 56. 3SLS for North Dakota to Texas Railroad and TWC Barge Rates of Wheat 

 (1) (2) (3) (4) (5) (6) 
twc       
rrw_ndtx 0.424***  0.597* 0.162 0.153 0.132 -0.294 
levelcarlington_no -0.070 0.194**  0.218***  0.226**  0.239***  0.125 
summer  0.108* 0.076 0.081 0.080 0.098 
fall  0.642***  0.540***  0.552***  0.549***  0.585***  
o.winter  0.000 0.000 0.000 0.000 0.000 
realexchangeratewheat   -0.576***  -0.621***  -0.605***  -0.440***  
ocean_gulf    -0.012   
ocean_pnw    -0.043   
gulf_pnw_ratio     0.033 0.047 
diesel      0.705***  
rrw_ndtx       
twc -0.051 0.543***  0.669***  0.633***  0.671***  0.314***  
totalexclfuel 0.978***  0.299***  0.423***  0.432***  0.422***  0.315***  
summer  -0.024 0.002 0.011 0.002 -0.050**  
fall  -0.332***  -0.322***  -0.296***  -0.323***  -0.161***  
o.winter  0.000 0.000 0.000 0.000 0.000 
realexchangeratewheat   0.470***  0.421**  0.470***  0.289***  
ocean_gulf    -0.091   
ocean_pnw    0.041   
gulf_pnw_ratio     0.001 0.001 
fuel      0.355***  
bic 3242.332 2926.886 2990.467 2993.370 3003.720 2955.204 
N 131 131 131 131 131 131 
All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p < 
0.01  
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Table 57. 3SLS for Kansas to Texas Railroad and MM Barge Rates of Wheat 

 (1) (2) (3) (4) (5) (6) 
mm       
rrw_kstx 0.362***  -0.027 -0.110 -0.109 -0.109 -0.123 
levelcarlington_no -0.114 0.234***  0.209***  0.207***  0.208***  0.178**  
summer  0.064 0.054 0.056 0.054 0.079 
fall  0.648***  0.611***  0.613***  0.611***  0.666***  
winter  0.081**  0.074* 0.075* 0.074* 0.088**  
realexchangeratewheat   -0.231* -0.241* -0.230* -0.160 
ocean_gulf    -0.030   
ocean_pnw    0.015   
gulf_pnw_ratio     -0.002 0.009 
diesel      0.256**  
rrw_kstx       
mm 0.607* 0.107 0.240* 0.266* 0.325**  0.269* 
totalexclfuel 0.725***  0.865***  0.952***  0.946***  0.943***  0.982***  
summer  0.184***  0.206***  0.213***  0.201***  0.212***  
fall  0.067 0.038 0.037 -0.009 0.016 
winter  0.061***  0.065***  0.068***  0.060***  0.074***  
realexchangeratewheat   0.269***  0.194***  0.254***  0.240***  
ocean_gulf    -0.077   
ocean_pnw    -0.021   
gulf_pnw_ratio     0.037 0.032 
fuel      -0.088 
bic 3464.085 3298.003 3293.127 3288.900 3301.077 3302.638 
N 148 148 148 148 148 148 
 All models have agricultural year dummy variables. Standardized beta coefficients * p < 0.10, **  p < 0.05, ***  p 
< 0.01 
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CHAPTER 4. OH, THE MORE WE GET TOGETHER: PEER EFFEC TS IN EARLY 

ELEMENTARY SCHOOL 

Juan M. Murguia  
 

Abstract 
 
I study the effect on early educational achievement of keeping the same classmates as in the 

previous year by utilizing the unique nature of the Tennessee Student Teacher Achievement 

Ratio (STAR). I benefit from the randomized mixing up policy of the STAR program in the 

identification of effects of long time peers, peers that have been together for a long period of 

time, and estimate value-added models with and without school fixed and random effects. A 

novel microeconometric approach is also used:  clustering errors by pooled models and by 

GEE. Specifically, I analyze the relationship between the chance of passing first grade and 

the proportion of kindergarten classmates kept as first grade classmates. I also study the 

relationship between noncognitive skills and the the proportion of kindergarten classmates 

kept as first grade classmates. Results show that keeping all kindergarten classmates vs. 

losing all of them increases the probability of passing first grade by 7 to 10 percent. In 

addition, noncognitive skills are improved when more kindergarten classmates are kept as 

first grade classmates. If all classmates are kept together vs. alone, motivation and 

selfconfidence may increase by 0.5 of a standard deviations while the number of days absent 

may decrease by 2 to 3. Interestingly, males show a stronger effect of long time peers than 

females on motivation and number of days absent. This paper presents evidence supporting 

the idea that the duration of peer connections is relevant in the estimation of peer effects, and 
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that mixing up classes in early education might be detrimental to the development of 

cognitive and noncognitive skills. 

Key words: peer effects, noncognitive skills, early education, Social Capital, Education 

Policy. 

JEL Codes: I210, I240, I250, Z13, O15. 

1. Introduction 

The effect of peers on education and other social outcomes has attracted much attention in 

the economic literature. Effects have been documented on cognitive and non-cognitive skills 

including drug use, criminal behavior, and academic performance from early childhood to 

college52. In general, these studies benefit from experiments where the exogenous formation 

of groups addresses the endogeneity of peer selection. Many policies have been based on 

peer effects: schools for gifted children, tracking/sorting of students within schools, and 

desegregation policies are among them. Some of these policies have created debate among 

policy makers and scientists for their impact on inequality. Surprisingly little is known about 

the impact of the time duration of these peer connections on social outcomes.  

In this paper, I analyze the effects of a common elementary school practice of 

breaking classes apart and joining students from different groups at the beginning of the 

school year. This mixing up policy varies the time length students have been classmates, and 

                                                 
52 There are documented peer effects on job search (Granovetter 1973 and 1995), youth 
criminal behavior and drug use (Case and Katz 1991), alcohol consumption and 
undergraduate academic performance (Kremer and Levy 2008), undergraduate academic 
performance (Betts and Morell 1999, Carrell, Fullerton and West 2008, Foster 2006), 
secondary school performance (Ding and Lehrer 2007, Lavy, Silva and Weinhardt 2009) and 
elementary school (Ammermuller and Pischke 2009, Iberman, Kugler and Sacerdote 2012, 
Fiesen and Krauth 2007, Lefgren 2004, Hanushek et al. 2003, McEwan 2003, Dills 2005, 
Neidell and Waldfogel 2010, Krueger 1999, Krueger and Whitmore 2001, Boozer and 
Cacciola 2001, Graham 2008). 
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as a consequence its impact on education and other social outcomes can be analyzed. 

Previous literature has ignored the impact of the length duration of the connections, and in 

particular the mixing up policies. One possible reason for the study of mixing up policies has 

been neglected is the difficulty to implement a large scale experiment that, at the beginning 

of the school year, randomly mixes up classes in different proportions. The Tennessee STAR 

(Student Teacher Achievement Ratio) program, a large scale class size experiment on 

elementary school, randomized the initial allocation of teachers and students in kindergarten 

within each school and randomly mixed up students of large classes at the beginning of first 

grade. 

Schools cite many reasons for mixing up students. Among the reasons are to balance 

gender, ability levels and ethnicity ratios of a class, split cliques, encourage children to 

interact with others, learn to adapt to changes and facilitate/ease middle school transition 

(Mumsnet 2011). While meeting new classmates provides access to the benefits mentioned 

by schools it also exposes students to losing long time peers which can be detrimental to 

child development (Ladd 1990, Richardson and Schwartz 1998).   

While there is little evidence regarding the impact of randomly mixing students, 

recent studies show that tracking/sorting may have positive benefits for high-scoring 

students, while benefits may be ambiguous for those who score low. Early tracking (tracking 

students into differing-ability classes) may increase educational inequality, according to a 

study that compared different countries (Hanushek and Wöbmann 2006). Sorting by home 

language and parental education may have an impact on the variance of test scores in schools 

in Canada (Frisen and Krauth 2007). Introducing schools for high ability students in a school 

district may have lowered the performance of low-scoring students in the same district (Dills 
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2005). Despite the previous evidence of the negative impact of sorting in low-scoring 

students, there is also evidence pointing toward a lack of harm in the case of secondary 

schools (Kim, Lee and Lee 2008). Even more so, evidence for elementary schools in Kenya 

shows that if sorting is combined with adjusting a teacher's program all students may benefit 

(Duflo, Dupas and Kremer 2008). Within the existing literature, Krueger (1999) is the only 

one who acknowledges the importance of mantaining classmates from previous year. When 

analyzing the effect of class size on academic test scores in the STAR program, in his paper 

he controlled for the proportion of actual classmates that were also classmates the previous 

year and found no significant effects. 

Many studies have focused on elementary schools and the STAR program in 

particular. In the case of Europe, Ammermuller and Pischke (2009) using a sample of 

European countries found that a one-standard-deviation change in the background measure of 

peer composition leads to a 0.17-standard-deviation change in reading test scores of fourth 

graders. These studies found short and long term effects of peer characteristics on cognitive 

and noncognitive skills. In the US Iberman, Kugler and Sacerdote (2012) examined the 

effects of the absorption of evacuees from Hurricanes Katrina in Texas, and found evidence 

for monotonicity in peer effects: all students benefit from high-achieving peers. In the STAR 

program, peer effects on cognitive and non-cognitive skills during elementary school have 

been documented in the short and long term (Krueger 1999, Krueger and Whitmore 2001, 

Boozer and Cacciola 2001, Graham 2008). Class size and quality in the STAR program had a 

long term effect on test scores that fade out by grade eight; and a longer term effect on non-

cognitive skills like: student's effort, initiative, non-participatory behavior, and value of the 

class (Krueger and Whitmore 2001). Even the effect of early education fades out on test 
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scores it re-emerges in the job market, affecting earnings and college attendance (Chetty et 

al., 2010). The authors argue that this result might be explained by non-cognitive skills 

(Chetty et al., 2010). In the particular case of kindergarten students in the STAR program, 

Graham (2008) found that social interactions substantively contributed to the learning 

process in math and reading. As the previous studies show, the role of peers in developing 

skills, and in particular non-cognitive skills, has been extensively documented. 

Gender differences in the creation and use of social networks have been documented 

during childhood. Evidence suggests that girls have smaller networks, enjoy fewer 

interactions with same sex peers than boys (Benenson, Morganstein, and Roy 1998) and are 

generally more cooperative in their peer relationships than are boys (Cole et al. 1990). 

Evolutionary psychology studies hypothesize that females should be less invested in peer 

relations than males because of more engagement in the raising of offspring during the 

evolution of the species (Krasnegor and Bridges 1990). Thus, I believe that it is possible that 

boys benefit more from girls' help in the learning process in the classroom than from other 

boys. Another important gender difference is the role that the social network plays for boys 

and girls. While the social network has been found to be important for boys’ development of 

academic and social skills (Belle, 1989; Belle et al. 1987, Feiring and Coates 1987), girls are 

reported to be important in regard to self-evaluation (Riley and Cochran 1987, Bryant 1985). 

I expect that keeping classmates might have different effects on self-esteem according to 

gender. 

Non-cognitive skill formation has become an extremely active research topic because 

of its impact on labor markets. In particular a series of papers by Heckman and coauthors 

have greatly contributed to the field (Cunha and Heckman 2008; Cunha and Heckman 2007; 
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Cunha, Heckman, Lochner, and Masterov 2006; and Cunha, Heckman and Schennach 2010). 

Cunha and Heckman (2007) define non-cognitive skills as perseverance, motivation, time 

preference, risk aversion, self-esteem, self-control, and preference for leisure. They also point 

out the existence of evidence of the direct effects of non-cognitive skill on wages, schooling, 

crime, smoking, and test score performance, among others (a list of the existing literature 

supporting this evidence is presented in Cunha and Heckman (2007)). Surprisingly, non-

cognitive skills are as important as cognitive skills in explaining a variety of aspects of social 

and economic life, including income (Heckman, Stixrud, and Urzua 2006). 

I use the STAR program database to analyze the impact of keeping classmates 

(kindergarten ones) on school performance. Measures of school performance include the 

probability of being recommended for grade promotion, and cognitive and non-cognitive 

skills. I estimate a reduced form model of an education production function following Neidell 

and Waldfogel (2010). A probit model is regressed for the probability of being recommended 

to pass grade and robust standard error OLS models are estimated to explain cognitive and 

non-cognitive skills. There are two major findings in this paper. Keeping all kindergarten 

classmates vs. losing all of them may increase the probability of passing first grade by 7 to 

10% in the students participating in the STAR program. The second most important finding 

is that non-cognitive skills might be improved when more kindergarten classmates are kept 

into first grade. If all classmates are kept together vs. staying alone in a new class, motivation 

may increase by 0.57 standard deviations and self-confidence by 0.47. The results found 

imply that if only short term benefits are considered, kindergarten students should not be 

randomly mixed when passing to first grade. These results may also apply for initial 

elementary school grades. 
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The rest of the paper is organized as follows. Section 2 presents information about the 

data and the methodological approach. It continues with the results in section 3 and 

concludes in section 4. 

  

2. The STAR program 

The STAR program was a large scale class size experiment initiated in the 1985-86 academic 

year, which targeted one cohort of students from kindergarten to third grade53. A total of 79 

Tennessee schools, and 11,571 students participated in it54. Students entered the program 

when they joined a participating school and left it because of retention or transfer to a non-

participating school. Given that kindergarten was not mandatory at that time in Tennessee, 

some students did not attend kindergarten. As a result of non-mandatory kindergarten and 

attrition, only 4,515 students attended kindergarten and first grade in a STAR participating 

school, and 4333 had data for all the variables used in this paper. The total number of classes 

was 325 in kindergarten (127 small, 99 regular without aid, and 99 regular with aid), and 339 

in first grade (124 small, 115 regular without aid, and 100 regular with aid). 

The experimental treatments consisted of two class sizes: small (13-17 students) and 

regular (22-26 students). In half of the regular classes there was a second teacher to help the 

principal one, a full time aide. Each participating school was required to have at least one 

class per type, and students and teachers were randomly assigned to initial classes within the 

school. In practice, the range of small classes was from 12 to 17 students, of regular classes 

                                                 
53 For a more detailed description of the program, see Krueger (1999) and Nye, Hedges, and 
Konstantopoulos (2000) 
54 To span the State of Tennessee geographically, 79 schools in 42 districts were selected to 
participate. This included 17 inner-city schools and 16 suburban schools from metropolitan 
areas, plus 8 urban and 38 rural schools. (STAR user guide 2007) 
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with no aide 16 to 27, and regular classes with an aide was 15 to 28, as shown in Table 58. A 

battery of standardized tests at the end of the school year was administered from kindergarten 

to third grade. In addition, follow up tests were given in grade four and eight. 

After the initial allocation to class size, students were expected to remain in the same 

class type until third grade. Parents with kids in kindergarten regular classes complained that 

their children were not assigned to smaller classes. Because there was no difference in 

kindergarten performance between the two types of regular classes55, in response to the 

parents' complaints at the beginning of first grade large classes were randomly mixed up 

within their school. On the contrary, small classes were not mixed up. The STAR program’s 

random design and random mixing of students between kindergarten and first grade is 

unique. These characteristics make it almost perfect to test peer effects and their evolution 

over time, given the duration is randomly interrupted. Random mixing provides an 

exogenous formation and breakup of groups which addresses the endogeneity of peer 

selection. Although random mixing is done only within schools and between large classes, it 

is possible to control for class treatment and school effects.  

The random assignment was centralized at the STAR program, rather than being performed 

by the principals and teachers of the respective schools56. There is documented evidence that 

random assignment of students and teachers was followed in practice in the STAR program. 

                                                 
55 This result was probably caused because the large classes without full time aides had 
partial time aid. 
56   The randomization was conducted by members of the STAR Consortium and monitored 
at the school level by graduate students from the University of Tennessee, Tennessee State 
University, Vanderbilt University, and the University of Memphis. The samples were 
compared on gender, race, and free-lunch composition to look for any systematic bias that 
may have arisen; none was found. Teachers were assigned at random to the classes. Other 
than class size and teacher aides, no other experimental changes were implemented; the 
intent of the project was to maintain normal school policies and practices so that the effects 
of reduced class sizes could be shown clearly. (STAR user guide 2007) 
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Krueger (1999) found that 99.7% of students attended the kindergarten class that they were 

randomly assigned to. Krueger and Withmore (2001) modeled class-type assignment of 

students and teachers as a function of demographic characteristics and school of entry fixed 

effects, and found that these characteristics were not correlated to the class-type they were 

included. In addition, from kindergarten to first grade, 92% of small classes’ students, 48.3% 

of regular and 44% of regular with aide stayed in their same type of class (Table 59), a sign 

that assignment of students to first grade treatments was close to the expected. These results 

imply that mixing up was also randomly made. 

I concentrate this study on the early years of elementary school because the random 

mixing up took place at the beginning of first grade and sample attrition was high in the 

experiment (28.6% in kindergarten and 26.1% in first grade (Nye, Hedges, and 

Konstantopoulos, 2000)). There are two problems with sample attrition. It reduces the sample 

size and if it is non-random it may cause sample selection bias. Random attrition examples in 

the STAR program include families moving to another area (for a reason not related to the 

experiment) where the school was not participating in the program. Non-random attrition 

cases include retention and moving to another school after knowing the class type assignment 

(Krueger 1999). While it is not possible to know the reasons why parents moved at the 

beginning of the school year, there is evidence that grade retention was important, i.e. it 

reached 10% at first grade57, which might cause attenuation bias. 

                                                 
57 Retention in kindergarten was not registered in the STAR program. Nevertheless, whether 
a student in the first year of STAR (1985-1986) had also attended kindergarten the previous 
year was recorded, and only 4.12% were retained in kindergarten the previous year. (STAR 
user guide 2007) 
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3. Data 

The data analyzed in this paper was obtained from the STAR program. In this study I focus 

on the 4,515 students that attended kindergarten and first grade in the 79 STAR participating 

schools. The total number of classes was 325 in kindergarten (127 small, 99 regular without 

aid, and 99 regular with aid) and 339 in first grade (124 small, 115 regular without aid, and 

100 regular with aid). Table 58 shows the class size distribution according to class size type. 

The average class size in a small kindergarten class was 14.96, in a regular class was 22.16, 

and in a regular with aid class was, 22.54 students. The corresponding averages for first 

grade are 15.52, 22.47, and 23.2 students. Despite the differences in averages there was 

variation in the number of children, with overlapping of the distribution of the size treatments 

(Table 58). 

School, class, teacher, classmates and student characteristics where measured during 

the STAR program. The variables used in this paper are the original STAR variables or 

variables constructed from them. The program had identification numbers for schools, 

teachers and students, allowing tracking students, class composition and school composition.  

 

3.1 Student data 

Student demographic characteristics (Table 60)58  include gender (male), race (black), and 

the receipt of free lunch (gkfreelunch10 and g1freelunch10). Other student variables include 

days absent at kindergarten (gkabsent) and first grade (g1absent), SAT59  tests on reading, 

math, listening, and word skills (respectively gktreadss, gktmathss, gktlistss, and 

                                                 
58 When corresponding, the first two letters of the student variables indicate whether they 
were measured in kindergarten (gk) or first grade (g1). 
59 The SATs’ (Stanford Achievement Tests) are norm-referenced achievement tests 
developed by the Psychological Corporation. 
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gkwordskillss_stddev), SCAMIN60  motivation and selfconfidence measures (respectively 

gkmotivraw, and gkselfconcraw). Table 60 presents statistics for these variables. 

Most of the students in the experiment were either white (69%) or black (29%) (Table 

60). Close to half of the students (45%) were receiving free lunch in kindergarten and first 

grade (46%). More than 11% of the students failed to pass first grade. Students had an 

average of 10 absent days in kindergarten and 7 in first grade. SAT, and motivation and 

selfconfidence scores have large variability.  

 

3.2 Classmates data 

Classmates’ characteristics are represented by the mean of the classmates’ individual 

characteristics. Because of the randomized allocation of students in large classes (and large 

classes with an aide) at the beginning of first grade, the classmates variables have large 

random variation (Table 61).They were constructed by the author using the student 

characteristics and the student and teacher identification system of the STAR program, which 

helped to determine not only the class and teacher a student was placed in each academic 

year, but also who their classmates where. Table 61 presents the variables and summary 

statistics.  Variable names start with either meangkclassmates, when referring to the average 

of classmates the student had in kindergarten (excluding himself), or meang1classmates, 

when referring to all classmates the student had in first grade followed by the name of the 

                                                 
60 “The SCAMIN (Milchus, Farrah, and Reitz 1968) asks students to indicate pictorially their 
response to 24 situations. For example, what ‘face’ (happy, sad, indifferent) would the 
student wear if s/he “had to tell his/her parents they lost their coat?” The SCAMIN is group 
administered, with one form for prekindergarten and kindergarten students, and another for 
students in grades 1—3. The database contains total self-concept and motivation scores for 
each student in each grade.” (STAR guideline 2007) 
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student level variable. All classmates’ variables are measured at the time the students where 

in kindergarten to prevent endogeneity.   

There are a set of variables that measure changes in the class network from 

kindergarten to first grade. The “long time peer” effect, the effect of peers that have been 

together for a long period of time, was measured by the variable propGKmateskept, the 

proportion of classmates in kindergarten that stayed with the student in first grade (Table 61). 

This also represents the proportion of direct connections of a complete social network 

maintained and the average time that peers have been together. A complete network assumes 

that all classmates are peers, which is not necessarily the case as Richardson and Schartz 

(1998) argue. Nevertheless, the proportion of classmates kept is an unbiased proxy for the 

expected proportion of peers kept, given randomization of the mixing up was followed in 

practice in the STAR program. 

Students’ performance may be affected by interactions among other students within 

the classroom. For example, when one student explains something to another student, a third 

one listen to what happens. Similarly, when one student disrupts a second student, this may 

affect a third one.  This idea of important interactions occurring inside the classroom is a 

common assumption in the peer effect on early education literature. For that reason, a second 

measure of “long time peer” effect, and the proportion of all kindergarten connections that 

were kept in first grade – propGKnetworkkept – is calculated to account for the non-linearity 

of social networks (Table 61). The variable is constructed as the product of the number of 

classmates times the number of classmates minus one.  

Another network variable was also included in this paper. The variable 

propg1matesnoattendedgk (Table 61) measures the proportion of classmates in first grade 
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that either did not attend kindergarten, or attended but have no achievement data available in 

kindergarten. As later explained in the identification section, this variable is required to 

obtain unbiased estimates.  

3.3 Teacher data 

Demographic and experience variables for teachers in kindergarten and first grade are 

included in the data, together with class type and class size (Table 62). Among the teacher 

variables are gender (gktmale and g1tmale), race (gktblack and g1tblack), postgraduate 

education (gktpostgrade and g1tpostgrade), and years of teaching experience (gktyears and 

g1tyears). The class type variables refer to the class size in the STAR experimental design 

(gklarge_noaid,  gklarge_aid in kindergarten and g1large_noaid,g1large_aid for first grade). 

Statistics show that due to the experimental design approximately one third of the classes in 

the sample are in each class size treatment. The class sizes vary in kindergarten from 12 to 28 

students (gkclasssize) and in first grade from 12 to 30 (g1classsize). 

3.4 School data 

School data (Table 63) includes information regarding the type of neighborhood where the 

school is located: inner city (19%), urban (9%), suburban (19%) and rural (52%)61. The 

dummy variables gkInner_city, gksuburban, gkrural and g1Inner_city, g1suburban, and 

g1rural represent the respective neighborhood type the student attended in kindergarten and 

first grade respectively. School average variables were also constructed (these variables start 

                                                 
61 Inner-city and suburban schools were all located in metropolitan areas (Nashville, 
Memphis, Knoxville, or Chattanooga). Schools with more than half of their students on free 
or reduced price lunch were defined as inner-city. Schools in the outlying areas of 
metropolitan cities were classified as suburban. Schools in non-metropolitan areas were 
classified as urban or rural depending on location. Urban schools were located in towns of 
over 2,500 persons, serving primarily an urban population according to the definition 
provided by the U.S. Census. All other schools were classified as rural. (STAR’s user guide 
2007) 
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their names with sch_av followed by the variable name averaged at the school level) from all 

student, teacher, class type, and classmates’ variables. For dummy variables, the averages 

represent the proportion of students with that characteristic in the school (Table 63) 

  There is large variation between school averages. The average number of absent days 

varies between 5 and 21 in kindergarten, and 4 and 11 in first grade. The variation on the 

proportion of students in a school who received free lunch is extreme, from o to 1. A similar 

situation occurs with race, where some schools are comprised of all black students and some 

are all-white students.   

 

4. Methodology 

Regressions of recommendation for passing grade, and cognitive and noncognitive skills are 

estimated in this research for first, second and third grade. The cognitive variables include 

annual recommendation to pass a grade and test scores (math, reading, listening and word). 

Noncognitive skills include annual motivation scores, selfconfidence scores, and days absent. 

The explanatory variables include characteristics of the student and their classmates 

(measured at kindergarten to prevent endogeneity), the teachers, and the school that was 

presented in the data section. For robustness clustering errors, random effects and fixed 

effects models where estimated and Hausman tests performed in this study.  

Clarke et al. (2010), discuss the decision to use fixed effect (FE) or random effect 

(RE) specifically in the context of Educational Research. They conclude that an FE approach 

will be preferable in scenarios where the primary interest is in policy-relevant inference of 

the effects of individual characteristics, but the process through which pupils are selected into 

schools is poorly understood or the data are too limited to adjust for the effects of selection. 
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In the case of well understood selection mechanism and the existence of rich data, they 

recommend that the use of RE should be preferred because: (1) it can produce policy-relevant 

estimates; and (2) RE estimators of regression coefficients and shrinkage estimators of school 

effects are more statistically efficient than those for fixed effects. 

The rest of this section covers peer effects identification, and different estimation 

approaches for linear and nonlinear models. These estimation approaches deal with the issue 

of nested sampling, which arises from students being assigned to a specific school according 

to their place of residency, rather than a random assignment. The next subsections present 

three different approaches: Clustering errors (CE), Random Effects (RE) (a more restrictive 

case of clustering errors) and the commonly used Fixed Effects (FE) models. These 

subsections (4.2 to 4.7) follow Wooldridge (2010), section 20.30.1, “Inference with large 

number of clusters and small cluster sizes,” Wooldridge (2006) and Wooldrige (2003).   

 

4.1 Peer effects identification and the random mixing within school problem  

Identification of peer effects has been solved using different strategies depending on whether 

the assignment of peers is random. All of the strategies are based on variation within schools 

(Ammermueller and Pischke 2009), i.e.  FE models. In the case of random assignment of 

peers, the background characteristics are uncorrelated (Sacerdote 2001). In the STAR 

program random assignment was done within schools, so it is possible that there is 

correlation within schools that reflect neighborhood characteristics. Also in the STAR 

program, students were randomly mixed within schools. If random mixing would have done 

across all schools instead of only within, then the experiment would have been non stratified 

and pooled regression models would have been adequate.  The proportion of kindergarten 
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classmates kept as first grade classmates cannot be correlated with unobserved school level 

characteristics due to the fact that students are randomly assigned to specific classes within 

the school. Nevertheless, it it is possible that some control variables might be correlated with 

unobserved school level characteristics. For example, the average number of days a student is 

absent in a school may be correlated with the amount of support parents direct towards their 

child’s education and the value of education that they teach to their kids.   

 

4.2 Clustering errors for linear models  

The STAR program samples individuals within schools, making a cluster sampling approach 

relevant since observations come with a natural nesting. Wooldridge (2010) addresses the 

issue of cluster sampling, where individual units are sampled in groups or clusters.  The 

problem with cluster sampling is similar to that of panel data, where instead of having a time 

and individual dimension, there is respectively an individual (of students within the school) 

and a school dimension. The similarity is strong in this paper since there is a large number of 

cluster (79 schools), each relatively small, drawn from a large population of clusters 

(Wooldridge 2010 p. 863).  

  For each group or cluster f (school in this case), let gahZi, jZ, kZi: l � 1, . . , nZeo 

be the observable data, where nZis the number of students (units) in school (cluster) f, hZi 

is a scalar response, jZ is a vector of explanatory variables that vary only at the cluster level 

(e.g. school neighborhood type, school size), and kZi is a vector of covariates that vary 

within and across schools (clusters) (i.e. student variables and classmates variables).  It is 

assumed that the sampling scheme used in the STAR program generated observations that 

are independent across f.   
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The theory with  p q ∞ and the group sizes (the number of students in the school), 

nZ, fixed is well developed, for example White (1984) and Arellano (1987). In this study, 

given that it is possible to keep increasing the number of schools sampled while the number 

of students in a school stay fixed, the asymptotic theory is suitable for this framework.  

Assume the following standard linear model with additive error (Wooldridge 2003): 

 hZi � s � jZt � kZiu � vZi, l � 1, . . , nZ; f � 1, . . , p. (15) 

 The estimation approach may be driven by several factors. Among these factors are 

whether we are interested in the effect of aggregate variables (t) or individual specific 

variables (u), and how much we care about efficiency vs. bias. Assumptions about the error 

term are necessary. One of these assumptions is whether vZi has an additive unobserved 

cluster (group) effect and an idiosyncratic error: 

   vZi � xZ � yZi, l � 1, … nZ.  (16) 

 If the explanatory variables are assumed to be exogenous (for this reason student and 

classmates characteristics are measured at the time of kindergarten) and they satisfy: 

   �avZi|jZ, kZie � 0, l � 1, … , n; f � 1, … , p,   (17) 

or even a zero correlation version, the pooled OLS (POLS) estimator is consistent as p q ∞ 

with nZ fixed, and the pooled OLS estimator is √p-asymptotically normal. A robust 

variance matrix is needed to account for correlation within clusters and/or heteroskedasticity 

in |}~avZi|jZ, kZie. Otherwise, OLS standard errors can be misleading.  The following 

sandwich variance matrix estimator is computed in this paper where the cluster unit is the 

school, �� is the matrix of all regressors on group g, and �,� is the vector of POLS residuals 

for group g: 
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v}~� a�+V��Ce � a∑ ���AZ;. ��eO.a∑ ���AZ;. �,��,����ea∑ ���AZ;. ��eO.
.   (18) 

 

4.3 Random effects for linear models  

With further assumptions about the within cluster correlation of vZi, which is not exploited 

in the POLS estimation, it is possible to obtain more efficient estimates by Generalized Least 

Squares (GLS).  The extra assumption is that: 

 
   �avZi|jZ, kZe � 0, l � 1, … , n; f � 1, … , p.    (19) 

This assumption rules out covariates from one student (member) of the school (cluster) 

affecting the outcomes of another, holding own covariates fixed. These assumption also 

appears to rule out “peer effects”, which is the aim of this paper. These effects can be 

allowed by including measures of peers in kZi.  

 The standard random effects approach adds extra assumptions such that the variance 

covariance matrix has the form: 

 |}~avZie � 1�L���^��^ � 1�L��^, (20) 

where ���^ is a vector of ones, and ��^ is an identity matrix. Another assumption is the 

following homoscedasticity one (which does not restrict |}~7vZi�): 

 |}~avZ|jZ, kZe � |}~avZie.  (21) 

Under the previous two assumptions the resulting GLS estimator is the common 

random effect estimator (RE).  The random effect estimator, �+3E, is asymptotically more 

efficient than POLS (Pooled OLS), under assumptions (19), (20), and (21) as p q ∞ with the 

nZ fixed.  
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Inference in RE should be made completely robust to an unknown form of 

|}~avZ|jZ, kZe, by using a fully robust variance matrix. Even if |}~avZ|jZ, kZe has not the 

RE form, the estimators are still consistent, asymptotically normal and likely to be more 

efficient than POLS estimators. Even there is not the problem of serial correlation as in panel 

data that invalidate assumption (20), heteroskedasticity in |}~axZ|jZ, kZe or 

|}~ayZi|jZ, kZe is possible and justifies robust inference.  

4.4 Fixed effects for linear models  

If the interest of the researcher is u, like in this paper, the fixed effect (FE) or within 

estimator is an interesting and commonly used option. The within transformation subtracts 

within-group averages (school averages) from the dependent variable and explanatory 

variables: 

 hZi�h0Z � akZi � k0Zeu � yZi � y0Z, l � 1, . . , nZ; f � 1, . . , p,   (22) 

 
and the equation (22) is estimated by pooled OLS. As in the panel data case, FE assumptions 

allow arbitrary correlation between xZ and kZi. Nevertheless, as in the RE case it is 

advisable to allow |}~ayZ| kZe to have an arbitrary form which may include within-group 

correlation and heteroskedasticity. A fully robust variance matrix estimator is: 

 
v}~� 7�,�E� � a∑ �� ��AZ;. �� �eO.a∑ �� ��AZ;. �� ���� ����� �ea∑ �� ��AZ;. �� �eO.
,   (23) 

where �� �is the matrix of within-group deviations from means and �� �� is the vector of FE 

residuals.  
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4.5 Alternative to FE 

Woodridge (2010) proposes a model that adds group averages to the RE estimator. This 

model also leads to a simple Hausman test to compare FE and RE. The model is: 

 hZi � s � jZt � kZiu � k0Z� � }Z � vZi, l � 1, . . , nZ; f � 1, . . , p,    (24) 

where xZ � k0Z� � }Z. The RE estimation of (24) allows to test �<: � � 0 in a fully robust 

way, which tests the null that the RE estimator is consistent. Even if the panel is not 

balanced, the estimate of u is the FE estimate (POLS also delivers the FE estimate of u). 

4.6 Clustering errors and Random effects for non linear models 

Many of the issues for nonlinear models are the same as for linear models (Wooldridge 

2006). In the case of binary response models, a probit model can be defined as: 

 hZi � 1�s � jZt � kZiu � xZ � yZi � 0�, l � 1, . . , nZ; f � 1, . . , p     (25) 

 yZi|jZ, �Z, xZ~670,1�;     (26) 

implying: 

 MahZi � 1|jZ, kZi, xZe � MahZi � 1|jZ, �Z , xZe 

                                             � Φas � jZt � kZiu � xZ � yZie,     

(27) 

where Φ7. � is the standard normal distribution. If yZi follows a logistic distribution, then 

Φ7. � is replaced by Λ7. �. The presence of xZin (27) makes the marginal effects depend on it. 

If the first element of jZ is continuous,  

 �Va�^�;.|j^,k^�,�^e
�j^H

� �.�as � jZt � kZiu � xZ � yZie,  (28) 
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where �7. � is the standard normal density function. 

To obtain the change in the response probability given a change in a regressor as in 

(28), the following assumption is required:  

 xZ|jZ, �Z~670, 1�L�.    (29) 

To account for the presence of xZ in (28), two possible estimation methods are 

proposed by Wooldridge (2012), a pooled probit and a generalized estimation equation 

(GEE) approach. The GEE approach is a multivariate weighted nonlinear least squares 

estimator that accounts for misspecified variance matrix (see Wooldridge 2006 for an 

extended explanation), requiring a “sandwich” estimator to be used for inference. The GEE 

exploits the within-group correlation to obtain a more efficient estimator than the pooled 

probit. Both methods are simple and do not require specification of a joint distribution within 

clusters. As in the case of linear models, it is possible, with large number of clusters, to make 

the standard errors robust to arbitrary within group correlation.  If an extra assumption is 

imposed (independence of idiosyncratic errors within a school (cluster)): 

 �yZ., . . , yZ�^    are independent conditional on ajZ, �Z, xZe (30) 

the RE probit model is obtained. The assumption of independence of individual outcomes 

after conditioning on a common cluster (school) is more believable than in the case of panel 

data. It is challenging to model correlation between the unobserved heterogeneity xZ and kZi 

when the clusters have different sizes. Wooldrige (2012) proposes several approaches to deal 

with it, some requiring strong assumptions and others requiring a reduction on the cluster 

size of all clusters to the smallest cluster by sampling within each cluster. This last approach 

requires the assumption that the cluster sizes are exogenous. In this paper, when estimating 
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the RE probit model,the limitation is acknowledged that no correction for cluster size is 

made. 

 

4.7 Fixed effects for non linear models 

Fixed effects probit procedure treats xZ as parameters to estimate: 

 MahZi � 1|, �Z, xZe � MahZi � 1|kZi, xZe � ΦakZiu � xZ � yZie.    (31) 

Due to the incidental parameters problem, with small group sizes nZ, the estimator of u can 

be severely biased. For this reason a logit response function for FE is preferred, since under 

(29) the conditional maximum likelihood eliminates xZ, leading to consistent estimation of u.  

To prevent this problem, we control for school characteristics like school attrition, proportion 

of students with free lunch, type of neighborhood (inner city, suburban, rural), average 

school SAT and non cognitive scores, and other characteristics like number of days absent 

and school fixed effects. 

 

4.8 The model 

I use a reduced education production function following the Clustering error, FE, and RE 

models previously presented. In this paper hZi represents the variable of interest to be 

explained (the probability of passing grade, the academic scores of math, reading, and word 

skills, motivation, selfconfidence and days absent in first grade); h0Z represents the mean in 

the school for that variable, kZi represents the student, classmates, class and teacher 

characteristics; k0Zis the average of the variables in the school; and jZ is a vector of school 
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characteristics presented in the data section. As previously explained, kZi is measured at the 

time the students where in kindergarten to avoid endogeneity. Since contemporaneous 

performances are omitted from these equations, the estimate reflects the reduced form of peer 

effects: the direct effect of students’ performance plus the indirect effect on performance 

through its impact on class performance (Neidell and Waldfogel (2010)). 

 

4.9 Identification strategy under sample selection 

Ideally, a reduced form specification of an education production function should be estimated 

using all the classmates. This is not possible in this case because not all students attended 

kindergarten, and in such cases there is no information about ability tests. Neidell and 

Waldfogel(2010) studied the impact of the proportion of classmates that attended preschool 

on cognitive and noncognitive skills at the end of kindergarten in the Early STAR program. 

They controlled for entrance skill levels and found that the mean enrollment of the class in 

prekindergarten has significant effects on math and reading on kindergarten and latter grades. 

Given the students took a battery of tests at the beginning of kindergarten, they were able to 

estimate peer effects driven by the mean of the classmates on these test scores, independent 

of whether or not students attended prekindergarten.  

In the STAR program, tests were only performed at the end of the school year, so 

students who did not attend kindergarten lack test score data previous to the exposition to 

first grade peers. In this paper, we are able to identify peer effects by regressing against the 

mean of the classmates that attended kindergarten (and have recorded data for all the 

variables included in the model); and the proportion of classmates that entered into the school 

in first grade (or in kindergarten but have some variables missing). The identification 
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approach is the following: let kZi., the first variable of kZi, representing the classmates 

average variables during kindergarten, be in the proposed model: 

 u.kZi..    (32) 

The variable kZi. can be expressed as the weighted average of the students that have 

this variable in their kindergarten data (defined as ¡Zi.¢£¤¥¦§), and the ones that do not have 

it (¡Zi.¤¨_¢£¤¥¦§):  

 u.kZi.= u.a 71 � ªZi�¡Zi.¢£¤¥¦§ � ªZi¡Zi.¤¨_¢£¤¥¦§e.    (33) 

Where ªZi is the proportion of classmates that did not attend kindergarten. From (33) the 

following result is obtained: 

 u.kZi. � u.¡Zi.¢£¤¥¦§ � u.ªZi a¡Zi.¤¨_¢£¤¥¦§ � ¡Zi.¢£¤¥¦§e �                �

u.¡Zi.¢£¤¥¦§ � u.<ªZi ,    
(34) 

 

where u.< � u.a¡Zi.¤¨_¢£¤¥¦§ � ¡Zi.¢£¤¥¦§e. The inclusion of ªZi is critical, otherwise 

the “old peer effect” would be account for having more classmates in later grades that 

attended kindergarten: the “kindergarten peer effect” (the effect of peers that attended 

kindergarten).  Even it is not possible to estimate in this case the “kindergarten peer effect,” it 

is possible to estimate the existence of difference in average abilities at the age of 

kindergarten between these two types of classmates. The null hypothesis for no difference in 

ability between students that attended kindergarten and the ones who did not is, �<: u.< � 0.  
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5. Results 

5.1 Probability of passing first grade 

To address the effect of keeping kindergarten classmates on the probability of being 

recommended to pass first grade, I estimate probit models. To test the robustness of the 

estimates eight different model specifications are regressed in each table: Probit, FE, RE, RE 

with school means, GEE, GEE with school means, Pooled (with clustering errors), and 

Pooled with school means (with clustering errors). The key dependent variables are the 

proportion of kindergarten classmates kept in first grade (propGKmateskept) (Table 64) and 

the proportion of all connections kept (propGKnetworkkept) (Table 66). Both dependent 

variables are presented in Table 65.  

Other dependent variables include the proportion of classmates that did not attended 

kindergarten(propg1matesnoattendedgk) -or that there is no data from them at the time of 

kindergarten- student characteristics, class size treatment (in kindergarten and first grade), 

teacher characteristics (in kindergarten and first grade), classmate characteristics (measured 

at kindergarten), and school average characteristics (average of all the previous 

characteristics at the school level: proportion of classmates that did not attended kindergarten 

(schdelta), student (schstudent), class size treatments (schclasstreatment), teacher 

characteristics (schteacher), and classmate characteristics (schclassmates)). Tables present for 

each model average marginal effects and their respective p values for the network variables 

(propGKmateskept, propGKnetworkkept) and for the proportion of classmates that did not 

attended kindergarten (propg1matesnoattendedgk), they also indicate which of the control 

variable groups have been used in the regression (Yes ,if that group of variables was used in 

the regression). For the models that include the school means, the p values of the F test of 
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these variables is also included (schmeans F test pvalue). No fully robust (traditional) 

Hausman test p value is also presented for the RE model, and the joint F test for both 

network variables is at the end of the table (F network test p value). All estimations have 

robust standard errors.  

There is evidence of a significant positive effect for keeping kindergarten classmates 

together on the probability of being recommended to pass first grade. Keeping all 

kindergarten classmates vs. losing all of them increases the probability of passing first grade 

by 7 to 10%. Table 66 shows that effect clearly. All models show coefficients in the range of 

7% to 10% and 6 out of 8 models have their standard errors small enough to make the 

coefficients significant. The exceptions are the FE (p value 0.15) and the RE with school 

means (0.15 p value). The Hausman test shows no benefit for using FE (p value 0.30), while 

the RE with school means shows that the school means are significant.  

Given the Pooled Probit imposes fewer restrictions than the RE model, it provides 

robustness to the results that both the Pooled and the Pooled with schmeans are also 

significant. Table 65 also includes the proportion of kindergarten classmates kept (a linear 

approach to networks) together with the proportion of the network kept. Again, results are 

similar to the ones in Table 66. Because both variables are not independent of each other, the 

marginal effect of keeping all classmates is the sum of both estimates. Most of the estimates 

of propGKnetworkkept are between 0.21 and 0.23, and the ones for propGKmateskept 

between -0.8 and -0.1. According to their differences, keeping all kindergarten classmates, 

vs. losing all of them, increases the probability of passing first grade by 9 to 13%. When only 

linear measures for a network are used in the regressions, results are less significant and 

around 5% (Table 64). This result gives support to the main hypothesis of the paper: long 



184 

 

 

 

lasting connections may be more influential than short term connections, even when there is 

no endogenous selection by the quality of the connections over time.  

There is a limitation in the interpretation of the results because it is not possible to 

differenciate between the effect of keeping previous year classmates and the effect of average 

time as peers. Both are represented by the variable propgkkept. The identification would be 

possible if I had at least one more academic year (second grade) in which students were again 

randomly assigned to classes. Then it would be possible to have two different variables in the 

models; one being the average time classmates have been together and another the proportion 

of previous years classmates that are togheter that academic year.  It is possible that the effect 

of time might be nonlinear, and present a threshold of time (maybe a year) after which 

connections are strong enough that the effect of average time being peers stops increasing. 

5.2 Probability of passing later grades 

The effect of losing previous classmates fades out after one year (Table 67 and Table 68). 

Table 67 shows that the proportion of the kindergarten network kept in first grade has no 

effect on the probability of being recommended to pass second grade. Results are robust for 

all model specifications. Similar results are obtained for third grade (Table 68). These results 

imply that even it takes time to build new peer relations, the strength that is required to affect 

academic success may take no longer than one year. 

 

5.3 Cognitive and noncognitive skills in first grade 

Cognitive skills are mostly not affected by keeping previous year classmates, while on the 

contrary noncognitive skills are. Motivation, selfconfidence and days absent are affected by 

keeping kindergarten classmate together, while listening skills are not (Table 72). Motivation 
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is increased by two raw points on average –0.4 to 0.5 standard deviations– if all kindergarten 

classmates are kept (Table 73).  Results are highly significant and robust across different 

model specifications. Selfconfidence is also increased by 2 to 3 raw points –0.4 to 0.6 

standard deviations– if all kindergarten classmates are kept (Table 74).  A student that keeps 

all his classmates will have, on average, 2 to 3 fewer days absent in the school year. Models 

are robust to different model specifications. The effects on motivation, self-confidence and 

days absent reflect the idea that there is an important role for maintaining peer relationships 

on the continuation of social skill development (Richardson and Schwartz 1998 pp. 68-69). 

Math skills are not affected in all models.  Reading skills in first grade results are not 

robust, either negative (Table 69), not significant (Table 77) or positive (Table 76). Word 

skill results are not robust, they appear to increase when only propGKmateskept is measuring 

network effects (Table 78), not to have an effect when only propGKnetworkkept is used 

(Table 79); and to be significant when both measures are used together (Table 71), but with 

magnitudes that make the overall effect no different from zero.  

 

5.4 Gender differences 

The impact of kindergarten classmates kept in first grade on noncognitivive skills differs by 

gender.  While the number of days absent among females are not affected by the proportion 

of classmates kept, males may have 3.4 to 5.2 more absent days (0.51 to 0.78 standard 

deviations) during the school year, if they keep all their classmates, vs. losing all of them. 

Results are robust across all model specifications (Table 82 and Table 83).  Boys’ motivation 

is more greately affected than girls’ (Table 84 and Table 85). While marginal effects for 

females are in the range of 1.3 to 2.0 for the raw motivation index (0.35 to 0.53 standard 
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deviations), the effects for males are from 2.21 to 2.5 (0.59 to 0.66 standard deviations). The 

difference in the marginal effect is almost constant at 1.4 raw points for each model 

specification, which is close to 0.37 standard deviations.  There is no clear evidence of 

gender differences in the case of selfconfidence (Table 68 and Table 69). Despite results 

which are significant across more model specifications in the case of females (Table 69), the 

magnitude of the marginal effects is not larger than in the significant models for males (Table 

68). Marginal results for females vary between 1.9 and 3.5 selfconfidence raw points (0.36 to 

0.66 standard deviations), and for males between 3.17 and 3.26 (0.59 to 0.61 standard 

deviations) (Table 68). Listening skills are not significantly affected in both genders by the 

proportion of kindergarten classmates (Table 88 and Table 89).   

Cognitive skill results are less robust. Results on the probability of passing first grade by 

gender are not as robust as results for the entire population. In the case of significant models, 

marginal impacts appear not to be different by gender (between 9 and 13%) (Table 80 and 

Table 81). Reading skills results are negative when both network variables are included in 

the model (Table 90  and Table 93), and no significant when only one of both are included in 

the models (Table 91 and Table 92 for boys and Table 94 and Table 95 for girls). The 

negative reaction is stronger in girls than boys: 7 raw points -0.12 standard deviations- (Table 

90) vs.  7 to 18 raw points -0.12 to 0.32 standard deviations- (Table 93). In the case of boys, 

math skills are not affected by keeping classmates (Table 96),while they are negatively 

affected in the case of girls by 14 raw points -0.32 standard deviations- (Table 97).  Boys’ 

and girls’ word skills are negatively affected when both network variables are included 

(Table 98 and Table 99), but not affected when only one is (Table 99-Table 100 and Table 

102-Table 103 respectively). When both network variables are included, girls are more 
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negatively affected than boys:  6 to 14 raw points, -0.11 to 0.27 standard deviations- (Table 

101) vs. 6 raw points, -0.11 standard deviations- (Table 98). 

 

6. Discussion and conclusions 

Despite the extensive amount of literature on peer effects, little is known about the effect of 

time on peer relationships. This paper explores the idea that peer effects depend on the 

strength of peer connections which may increase over time. I use the STAR program to study 

this idea in the context of early education. My decision to work on early education is 

motivated by a desire to facilitate the identification of time effect, rather than peer selection 

effect over time which increases later in life. The STAR program has some special 

characteristics that facilitate the identification of time on peer effects: the andom assignment 

of students to classrooms and teachers (preventing the endogenous selection of peers, and the 

correlation of background characteristics of students within schools), and the random mixing 

of students between kindergarten and first grade. 

I estimated value-added models that controlled for peer, teacher, class and school 

characteristics. The effect of time on peer relationships was estimated as the proportion of 

kindergarten classmates (a linear network measure) and kindergarten network connections 

(an almost quadratic network measure) that were kept in the same class in first grade. By 

including the proportion of all possible kindergarten network connections that where kept at 

first grade, the models where able also to capture the effect of indirect connections. Indirect 

connections matter because the interaction between two students in a classroom is observed 

by other students that may be affected.  This paper is the first to present evidence supporting 

the idea that indirect connections matter in a classroom environment. In fact, the omission of 
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the nonlinearity of the network makes the effect of time non-significant, which may partialy 

explain the results found in Krueger (1999)62. The importance of indirect connections points 

towards the uniqueness of classroom peer effects, and the significance of this variable in the 

estimated models is consistent with network theory. 

The results show that the average amount of time that classmates have been peers (up 

to an academic year) may have a significant effect on academic success and noncognitive 

skills. Whether this effect continues to exist beyond a year is not possible to be answered 

with the existing data. It might be the case that only the proportion of previous year 

classmates kept matters and not the average amount of time classmates have been together. 

Fade out effects on second and third grade provide some evidence supporting that the effect 

of time might not be linear, but rather present a threshold (maybe a year) after which 

connections are strong enough that the effect of average time being peers stops increasing.  

There are robust, significant effects for the proportion of the kindergarten classmates 

kept as classmates in first grade on the probability of passing that grade and on motivation, 

days absent, and selfconfidence. Cognitive test scores are not robustly affected. This is a 

surprising result, given that Graham (2008) found that social interactions substantively 

contributed to the learning process in math and reading in the STAR program. A possible 

reason for this difference is that we focus only on first grade impacts. 

The impact of retaining all previous classmates is large: it increases the probability of 

passing first grade by 7 to 13% compared to having all new classmates. This result gives 

support to the main hypothesis of the paper: long lasting connections may be more influential 

                                                 
62 There is another possible reason for the results of Krueger (1999). He used the proportion 
of first grade classmates that where classmates in kindergarten as the effect of time on peers. 
This variable is also affected by the proportion of students who did not attend kindergarten, 
which causes a measurement error and possible attenuation bias. 
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than short term connections, even when there is no endogenous selection by the quality of the 

connections over time. The effect on motivation, days absent and selfconfidence reflect the 

idea that peer relationships play an important role in the continuation of social skill 

development (Richardson and Schwartz 1998 pp. 68-69, Howes 1988, Feiring and Lewis 

1989, Ladd 1990). Results on peer effects are similar to previous studies (Krueger 1999, 

Whitmore and Krueger 2001, Boozer and Cacciola 2001, Graham 2008): average classmates 

skills’ in math and reading increase the chances of passing first grade and fade out by second 

grade63. 

The findings of this article add to the gender differences literature on child 

development. Previous studies found gender differences in network sizes (Benenson, 

Morganstein, and Roy 1998), uses (Belle 1989, Belle et al. 1987, Feiring and Coates 1987, 

Riley and Cochran 1987, Bryant 1985), cooperation (Benenson, Morganstein, and Roy 

1998), and predisposition to search for help (Benenson, Morganstein, and Roy 1998, Cole et 

al. 1990). In this study, boys appear to be more affected by the loss of classmates on their 

days absent and motivation. These results are supported by the existing evidence on boys 

which suggest that may have larger networksand are more dependent on them; that they have 

more problems searching for help from teacher, and that they have grater enjoyment than 

girls interacting in their networks (Belle 1989, Belle et al. 1987, Feiring and Coates 1987, 

Riley and Cochran 1987, Bryant 1985, Benenson, Morganstein, and Roy 1998, Cole et al. 

1990). 

The findings also provide evidence for the mechanism by which time affects peer 

effects. The effect on academic performance is via noncognitive skills, like motivation and 

                                                 
63 Results are not resported. 
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selfconfidence, rather than cognitive skills like math and reading. There is not enough 

evidence in the literature to explain why this might be the case. An explanation is required 

for why keeping more classmates affects chances for passing first grade, while it does not 

affect cognitive skills. Nevertheless, it may be reasonable that even the effect is only on 

noncognitive skills, and these skills may affect the probability of passing first grade. When a 

child is on the edge of failing to pass first grade, teachers may evaluate other skills, which 

might be noncognitive, to make their final decision. 

This study is, to my knowledge the first to find evidence that may support the 

importance of time on peer effects. Specifically, the effect of peers does not depend only on 

their abilities and skills, but also on the time length they have been peers. Despite this initial 

finding, more research is required to confirm this result with data that has the maximum 

average time of being peers larger than a year. The findings of this paper also support that the 

time length they have been peers affects the magnitude of peer effects, even when there is not 

endogenous peer selection over time. These results have implications for educational policies 

like random mixing and sorting/tracking. For example, sorting/tracking policies may also 

affect students, not only by changing the level of the peers and allowing adjustments in 

educational programs, but also by losing long time known peers. As a consequence these 

policies may also have negative effects on the social capital of the student and the class, 

which might be detrimental for child development. 
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Tables 

Table 58. Distribution of Actual Class Sizes among Classes Assigned to Each Type 

 Kindergarten  Fist Grade 

Actual 
class size 

Type of class  Type of class 
Small Regular Regular/aide  Small Regular Regular/aide 

12 8    2   
13 19    14   
14 22    18   
15 23  1  31   
16 31 1 1  16 1  
17 24 4 2  33 1  
18  1 6  6 2  
19  7 6  3 4 3 
20  6 12  1 10 6 
21  14 20   18 18 
22  20 21   27 15 
23  16 14   19 20 
24  19 6   16 11 
25  60 3   7 9 
26  4 6   5 9 
27  1 1   2 4 
28      1 2 
29      1 2 
30      1 1 

Total 127 99 99  124 115 100 

Average 14.96 22.16 22.54  15.52 22.47 23.2 

Notes: This table presents information from Nye, Hedges, and Konstantopoulos (2000) Table 
1, pg 128. 

 
 
 
 
 
 
 
 
 

  



192 

 

 

 

Table 59. Transition matrix 

  
Type of first grade class 

Type of Kindergarten class N Small class Regular class Regular/aid 

Small 1400 92.30% 4.30% 3.40% 

Regular 1526 8.30% 48.30% 43.40% 

Regular/aid 1589 7.70% 47.90% 44.40% 

Total 4515 
   

Notes: Percentages are of the students that attended both, kindergarten and first grade in the 
STAR program. Small refers to reduced size classes, Regular to regular size classes, and 
Regular/aid to regular size classes with a teacher aid (a second teacher helping in the class). 
This table presents information from Nye, Hedges, and Konstantopoulos (2000) Table 4, pg 
133 
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Table 60. Student characteristics. 

Variable Obs Mean Std. Dev. Min Max 

gender 4333 0.497 0.500 0 1 

black 4333 0.301 0.459 0 1 

gkfreelunch 4315 0.444 0.496 0 1 

gkabsent 4311 9.911 9.088 0 93 

gktreadss 4032 440.7981 31.572 358 627 

gktmathss 4075 492.146 46.027 354 626 

gktlistss 4053 541.292 32.001 427 671 

gkwordskillss 4056 438.525 37.268 331 593 

gkmotivraw 3578 25.699 2.330 0 36 

gkselfconcraw 3578 56.182 4.779 0 72 

g1promote10 4253 0.901 0.297 0 1 

g2promote 3234 0.963 0.186 0 1 

g3promote10 2909 0.968 0.174 0 1 

g1absent 4253 7.398 6.586 0 63 

g1treadss 4161 528.158 56.130 412 651 

g1tmathss 4250 535.661 43.523 404 676 

g1tlistss 4229 571.153 34.363 477 708 

g1wordskillss 3653 521.082 52.866 317 601 

g1motivraw 3831 50.244 3.746 27 60 

g1selfconcraw 3831 45.496 5.294 20 60 
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Table 61.  Classmates’ characteristics. 

Variable Obs Mean Std. Dev. Min Max 

meangkclassmatestreadss 4331 440.750 18.715 384 500.5 

meankgclassmatesgmathss 4331 492.016 28.924 384 590.7 

meankgclassmatestlistss 4331 541.220 18.327 474 607.5 

meankgclassmateswordskillss 4331 438.576 21.146 391 506.7 

meankgclassmatesmotivraw 4016 25.694 0.907 21.8 30.7 

meankgclassmatesselfconcraw 4016 56.172 2.055 48.8 64.2 

meang1classmatestreadss 4261 528.107 33.526 440.5 623.9 

meang1classmatesgmathss 4332 535.636 27.407 461.8 620.6 

meang1classmatestlistss 4332 571.095 19.990 519.7 642 

meang1classmateswordskillss 4324 520.555 30.664 425.3 601 

meang1classmatesmotivraw 4332 27.278 2.774 15.1 32 

meang1classmatesselfconcraw 4332 39.685 2.868 27.6 44 

propGKmateskept 4333 0.259 0.172 0 0.882 

propGKnetworkkept 4333 0.088 0.126 0 0.772 

propg1matesnoattendedgk 3238 0.052 0.108 0 1 

Note: in this table gk and g1 refers to when the students where classmates, in kindergarten or 
in first grade. All variables are measured at the time the respective students where in 
kindergarten. 
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Table 62. Teacher and class characteristics 

Variable Obs Mean Std. Dev. Min Max 

gklargenoaid 4333 0.334 0.471 0 1 

gklargeaid 4333 0.354 0.478 0 1 

g1largenoaid 4333 0.343 0.475 0 1 

g1largeaid 4333 0.313 0.464 0 1 

gktrace_black 4333 0.852 0.354 0 1 

kgtandch_same_race 4333 0.208 0.406 0 1 

gktpostgrade 4313 0.351 0.477 0 1 

gktyears 4313 9.343 5.804 0 27 

g1tgen_male 4320 0.005 0.074 0 1 

g1trace_black 4320 0.162 0.369 0 1 

g1tandch_same_race 4320 0.807 0.394 0 1 

g1tpostgrade 4320 0.345 0.475 0 1 

g1tyears 4320 11.748 8.826 0 42 
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Table 63. School characteristics 

Variable Obs Mean Std. Dev. Min Max 

gkInner_city 4515 0.191 0.393 0 1 

gksuburban 4515 0.192 0.394 0 1 

gkrural 4515 0.522 0.499 0 1 

g1Inner_city 4515 0.189 0.392 0 1 

g1suburban 4515 0.194 0.395 0 1 

g1rural 4515 0.523 0.499 0 1 

sch_av_propGKmateskept 4333 0.088 0.070 0.019 0.333 

sch_av_propGKnetworkkept 3757 0.063 0.154 0 1 

sch_av_propg1matesnoattendedgk 4333 0.497 0.060 0.318 0.682 

sch_av_black 4333 0.301 0.400 0 1 

sch_av_gkfreelunch 4333 0.444 0.280 0 0.985 

sch_av_gkabsent 4333 9.913 2.701 4.969 21.666 

sch_av_gktreadss 4333 440.731 14.401 409.034 482.931 

sch_av_gktmathss 4333 492.045 22.051 441.240 555.581 

sch_av_gktlistss 4333 541.169 14.286 511.727 575.950 

sch_av_gkwordskillss 4333 438.524 16.474 404.965 485.550 

sch_av_gkmotivraw 4110 25.712 0.455 24.656 28.074 

sch_av_gkselfconcraw 4110 56.228 1.142 53.114 59.333 

sch_av_g1freelunch 4333 0.460 0.280 0.023 1 

sch_av_gklargenoaid 4333 0.334 0.091 0 0.554 

sch_av_gklargeaid 4333 0.354 0.080 0.212 0.727 

sch_av_g1largenoaid 4333 0.343 0.107 0.142 0.714 

sch_av_g1largeaid 4333 0.313 0.105 0 0.557 

sch_av_gktrace_black 4333 0.852 0.254 0 1 

sch_av_kgtandch_same_race 4333 0.208 0.257 0 1 

sch_av_gktpostgrade 4333 0.351 0.263 0 1 

sch_av_gktyears 4333 9.359 2.711 3.328 15 

sch_av_g1tgen_male 4333 0.005 0.031 0 0.243 

sch_av_g1trace_black 4333 0.162 0.254 0 0.890 

sch_av_g1tandch_same_race 4333 0.808 0.213 0.236 1 

sch_av_g1tpostgrade 4333 0.345 0.251 0 1 

sch_av_g1tyears 4333 11.744 4.394 0.682 27.551 

sch_av_meang1classmatestreadss 4262 528.112 27.46 467.433 578.165 

sch_av_meang1classmatesgmathss 4333 535.640 21.301 491.00 577.868 

sch_av_meang1classmatestlistss 4333 571.098 15.577 535.750 604.887 

sch_av_meang1classmateswordskill 4333 520.592 23.058 461.924 561.561 

sch_av_meang1classmatesmotivraw 4333 27.279 1.863 22.681 30.580 

sch_av_meang1classmatesselfconcr 4333 39.685 1.972 35.074 42.723 

sch_av_meangkclassmatestreadss 4333 440.751 14.433 409.025 482.514 

sch_av_meankgclassmatesgmathss 4333 492.007 22.058 440.578 555.813 
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Table 63. continued. 

sch_av_meankgclassmatestlistss 4333 541.216 14.207 510.827 574.822 

sch_av_meankgclassmateswordskill 4333 438.568 16.320 404.925 484.341 

sch_av_meankgclassmatesmotivraw 4110 25.713 0.455 24.584 28.065 

sch_av_meankgclassmatesselfconcr 4110 56.236 1.182 53.185 60.153 
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Table 64. Probability of passing first grade models 

 

 
 
  

g1promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 0.05 0.09 0.02 0.52 0.46 0.18 0.13 0.74 0.05 0.06 0.01 0.76 0.05 0.07 0.01 0.69 

propGKnetworkkept 
                propg1matesnoattendedgk 0.15 0.03 0.16 0.20 1.49 0.07 0.81 0.45 0.15 0.02 0.06 0.49 0.15 0.02 0.08 0.36 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.02 

 
0.00 

 
0.00 

Hausman test 
  

0.28 
     F network test p value 0.09 0.52 0.18 0.74 0.06 0.76 0.07 0.69 

n 2295 1971 2295 2295 2295 2295 2295 2295 
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Table 65. Probability of passing first grade models 

 

 
 
  

g1promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.08 0.25 -0.10 0.25 -0.84 0.29 -1.29 0.12 -0.08 0.23 -0.14 0.06 -0.08 0.23 -0.13 0.07 

propGKnetworkkept 0.21 0.03 0.21 0.10 2.07 0.07 2.21 0.06 0.22 0.01 0.23 0.01 0.21 0.01 0.22 0.01 

propg1matesnoattendedgk 0.15 0.02 0.15 0.22 1.53 0.06 0.81 0.45 0.15 0.02 0.05 0.53 0.15 0.02 0.08 0.38 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.02   0.00   0.00 

Hausman test     0.21           

F network test p value 0.02 0.15 0.09 0.18 0.00 0.04 0.00 0.03 

n 2295 1971 2295 2295 2295 2295 2295 2295 
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Table 66. Probability of passing first grade models  

 

 

 

 
  

g1promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept 0.11 0.01 0.09 0.15 1.00 0.04 0.70 0.15 1.02 0.00 0.08 0.06 0.11 0.00 0.07 0.08 

propg1matesnoattendedgk 0.15 0.03 0.16 0.21 1.50 0.07 0.82 0.45 1.46 0.03 0.06 0.49 0.16 0.02 0.08 0.37 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.017 

 
0.00 

 
0.00 

Hausman test       0.30           

F network test p value 0.01   0.15  0.04  0.15  0.00 0.06   0.08  

n 2295 1971 2295 2295 2295 2295 2295 2295 
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Table 67. Probability of passing second grade models  

 

 

 
 
  

g2promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.01 0.82 -0.12 0.35 -0.21 0.85 -1.40 0.36 -0.01 0.79 -0.07 0.27 -0.01 0.81 -0.07 0.23 

propGKnetworkkept 0.00 0.99 0.22 0.28 0.00 0.99 1.04 0.59 0.00 0.98 0.04 0.69 0.00 0.99 0.05 0.52 

propg1matesnoattendedgk 0.03 0.48 0.01 0.51 0.51 0.50 1.35 0.46 0.03 0.46 0.07 0.38 0.03 0.43 0.07 0.38 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.1113 

 
0.00 

 
0.00 

Hausman test 
  

0.96 
     F network test p value 0.87 0.44 0.91 0.57 0.85 0.38 0.87 0.38 

n 1803 1126 1817 1817 1817 1817 1803 1803 
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Table 68. Probability of passing third grade models  

 

 

 
  

g3promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 0.01 0.84 0.01 0.93 0.19 0.87 0.38 0.79 0.01 0.85 0.01 0.87 0.01 0.86 0.02 0.81 

propGKnetworkkept 0.03 0.66 0.07 0.67 0.80 0.62 0.73 0.71 0.03 0.71 0.03 0.73 0.03 0.71 0.03 0.74 

propg1matesnoattendedgk -0.00 0.87 -0.26 0.27 -0.02 0.97 -2.28 0.23 -0.00 0.96 -0.10 0.12 -0.00 0.90 -0.10 0.09 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.20   0.00   0.00 

Hausman test     0.94           

F network test p value 0.24 0.58 0.35 0.48 0.29 0.49 0.31 0.44 

n 1649 749 1663 1663 1663 1663 1649 1615 
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Table 69. Cognitive skills in first grade: reading  

 

 

 
 
  

g1treadss Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 43.97 0.00 49.50 0.00 43.97 0.00 42.10 0.00 46.29 0.00 41.61 0.00 43.97 0.00 42.10 0.00 

propGKnetworkkept -57.95 0.00 -59.30 0.00 -57.95 0.00 -48.83 0.00 -59.65 0.00 -48.31 0.00 -57.95 0.00 -48.83 0.00 

propg1matesnoattendedgk 0.26 0.97 25.73 0.12 0.265 0.97 25.24 0.13 0.930 0.86 25.09 0.02 0.26 0.96 25.24 0.03 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.01 

 
0.00 

 
0.00 

Hausman test 
 

0.00 
      F network test p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

n 2272 2272 2272 2272 2272 2272 2272 2272 
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Table 70. Cognitive skills in first grade: math 

 

 

 
  

g1tmathss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 6.79 0.40 9.17 0.33 6.79 0.43 5.25 0.56 6.15 0.40 2.58 0.76 6.79 0.38 5.25 0.55 

propGKnetworkkept -13.78 0.17 -16.99 0.16 -13.78 0.20 -12.92 0.27 -12.79 0.12 -10.17 0.23 -13.78 0.10 -12.92 0.16 

propg1matesnoattendedgk 1.23 0.76 28.02 0.02 1.23 0.81 25.44 0.03 0.95 0.84 23.75 0.01 1.23 0.80 25.44 0.01 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.20   0.00   0.00 

Hausman test     0.00           

F network test p value 0.26 0.34 0.32 0.43 0.11 0.16 0.09 0.17 

n 2274 2274 2274 2274 2274 2274 2274 2274 
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Table 71. Cognitive skills in first grade: word skills  

 

 

 
 
  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 48.80 0.00 56.99 0 48.80 0.00 51.32 0 52.35 0.00 47.30 0 48.80 0.00 51.32 0.00 

propGKnetworkkept -58.79 0.00 -65.69 0 -58.79 0.00 -57.12 0.01 -62.73 0.00 -53.62 0 -58.79 0.00 -57.12 0.00 

propg1matesnoattendedgk 0.69 0.93 -0.93 0.96 0.69 0.93 5.68 0.76 -0.05 0.99 5.57 0.70 0.69 0.90 5.68 0.70 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.11 

 
0.00 

 
0.00 

Hausman test 
  

0.15 
     F network test p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

n 1962 1962 1962 1962 1962 1962 1962 1962 
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Table 72. Cognitive skills in first grade: listening  

 

 

 
  

g1tlistss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 10.90 0.13 11.60 0.15 10.90 0.14 8.96 0.25 8.90 0.19 6.09 0.42 10.90 0.13 8.96 0.26 

propGKnetworkkept -11.65 0.18 -12.58 0.23 -11.65 0.21 -9.67 0.34 -10.39 0.21 -6.43 0.47 -11.65 0.17 -9.67 0.31 

propg1matesnoattendedgk 2.03 0.64 28.83 0.00 2.03 0.65 22.42 0.03 1.45 0.69 20.0 0.01 2.03 0.61 22.42 0.01 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.84   0.00   0.00 

Hausman test     0.00           

F network test p value 0.32 0.36 0.33 0.51 0.43 0.72 0.32 0.52 

n 2263 2263 2263 2263 2263 2263 2263 2263 
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Table 73. Noncognitive skills in first grade: motivation  

 

 

 
  

g1motivraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.91 0.46 -0.70 0.61 -0.87 0.50 -0.44 0.74 -0.84 0.52 -0.53 0.70 -0.91 0.49 -0.44 0.75 

propGKnetworkkept 3.18 0.03 2.62 0.14 3.15 0.05 2.68 0.12 3.10 0.07 2.71 0.13 3.18 0.07 2.68 0.14 

propg1matesnoattendedgk 1.05 0.07 4.06 0.02 1.20 0.14 4.04 0.02 1.29 0.03 4.07 0.01 1.05 0.06 4.04 0.02 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.27   0.00   0.00 

Hausman test     0.64           

F network test p value 0.00 0.10 0.00 0.04 0.01 0.10 0.01 0.11 

n 2093 2093 2093 2093 2093 2093 2093 2093 
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Table 74. Noncognitive skills in first grade: selfconfidence  

 

 

 

 
  

g1selfconcraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 2.29 0.19 1.53 0.42 2.12 0.24 2.99 0.10 2.07 0.28 2.94 0.15 2.29 0.24 2.99 0.16 

propGKnetworkkept -1.23 0.58 1.60 0.51 -0.38 0.86 -0.09 0.96 -0.15 0.95 -0.03 0.98 -1.23 0.64 -0.09 0.97 

propg1matesnoattendedgk -0.00 0.99 -3.00 0.22 -0.01 0.99 -4.07 0.10 -0.02 0.98 -4.05 0.25 -0.00 0.99 -4.07 0.26 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.00 

 
0.00 

 
0.00 

Hausman test 
  

0.23 
     F network test p value 0.14 0.02 0.06 0.00 0.11 0.01 0.30 0.01 

n 2093 2093 2093 2093 2093 2093 2093 2093 
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Table 75. Noncognitive skills in first grade: days absent  

 

 

 
  

g1absent OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 1.52 0.36 2.46 0.16 1.74 0.30 3.11 0.07 1.84 0.33 2.78 0.15 1.52 0.42 3.11 0.13 

propGKnetworkkept -3.68 0.08 -4.62 0.04 -4.09 0.06 -6.06 0.00 -4.21 0.13 -5.56 0.05 -3.68 0.21 -6.06 0.04 

propg1matesnoattendedgk -0.23 0.84 -1.21 0.60 -0.50 0.66 -1.14 0.62 -0.58 0.43 -1.16 0.62 -0.23 0.74 -1.14 0.63 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.07 0.10 0.06 0.01 0.23 0.12 0.41 0.10 

n 2298 2298 2298 2298 2298 2298 2298 2298 
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7. Appendix 

Table 76. Cognitive skills in first grade: reading 

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 2.66 0.58 9.93 0.13 2.66 0.60 9.86 0.13 4.30 0.46 9.61 0.08 2.66 0.60 9.86 0.08 

propGKnetworkkept 
                propg1matesnoattendedgk 2.36 0.75 29.47 0.08 2.36 0.74 28.39 0.09 3.39 0.50 27.85 0.01 2.36 0.61 28.39 0.01 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.00 

 
0.00 

 
0.00 

Hausman test 
  

0.00 
     F network test p value 0.58 0.13 0.60 0.13 0.46 0.08 0.60 0.08 

n 2272 2272 2272 2272 2272 2272 2272 2272 
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Table 77. Cognitive skills in first grade: reading  

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -7.44 0.20 -4.66 0.58 -7.44 0.25 -3.06 0.65 4.30 0.41 -3.57 0.57 -7.44 0.24 -3.06 0.65 

propg1matesnoattendedgk 2.38 0.75 29.28 0.08 2.38 0.74 28.18 0.09 3.39 0.5 27.55 0.01 2.38 0.61 28.18 0.02 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.20  0.58   0.25  0.65 0.41 0.57  0.24   0.65 

n 2272 2272 2272 2272 2272 2272 2272 2272 
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Table 78. Cognitive skills in first grade: word skills  

 

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 6.39 0.22 12.64 0.08 6.39 0.24 12.98 0.07 7.40 0.21 11.57 0.08 6.39 0.27 12.98 0.06 

propGKnetworkkept 
                propg1matesnoattendedgk 3.10 0.73 4.71 0.80 3.10 0.73 10.52 0.57 2.98 0.61 9.85 0.50 3.10 0.58 10.52 0.47 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.07 

 
0.00 

 
0.00 

Hausman test 
  

0.00 
     F network test p value 

        n 1962 1962 1962 1962 1962 1962 1962 1962 
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Table 79. Cognitive skills in first grade: word skills 

 

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -3.30 0.61 -3.95 0.67 -3.30 0.63 3.01 0.68 -3.72 0.62 2.38 0.71 -3.30 0.65 3.01 0.70 

propg1matesnoattendedgk 3.42 0.71 5.26 0.78 3.42 0.70 11.25 0.55 3.32 0.56 10.54 0.47 3.42 0.54 11.25 0.45 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.10 

 
0.00 

 
0.00 

Hausman test 
  

0.00 
     F network test p value 

        n 1962 1962 1962 1962 1962 1962 1962 1962 
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Table 80. Males probability of passing first grade 

 

 

 

  

g1promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.17 0.14 -0.09 0.5 -1.40 0.17 -1.59 0.17 -0.17 0.19 -0.20 0.17 -0.17 0.19 -0.18 0.185 

propGKnetworkkept 0.32 0.03 0.17 0.43 2.63 0.06 2.18 0.18 0.32 0.04 0.27 0.12 0.32 0.04 0.25 0.129 

propg1matesnoattendedgk 0.18 0.16 0.23 0.27 1.47 0.19 1.44 0.32 0.17 0.07 0.15 0.18 0.18 0.06 0.17 0.13 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes 
      schmeans F test pvalue 

   
0.38 

 
0.00 

 
0.00 

Hausman test 
  

0.96 
     F network test p value 0.06 0.72 0.14 0.37 0.02 0.31 0.03 0.3261 

n 1151 882 1151 1151 1151 1151 1151 1151 
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Table 81.Females probability of passing first grade 

 

 

 

  

g1promote10 Probit FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.01 0.85 -0.13 0.32 -0.19 0.88 -0.82 0.56 -0.00 0.95 -0.03 0.71 -0.01 0.85 -0.06 0.53  

propGKnetworkkept 0.11 0.35 0.29 0.17 1.37 0.48 2.05 0.33 0.09 0.42 0.11 0.40 0.11 0.32 0.15 0.26  

propg1matesnoattendedgk 0.13 0.06 -0.03 0.80 1.58 0.19 0.06 0.97 0.14 0.07 0.00 0.99 0.13 0.07 0.00 0.97  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies   Yes              

schmeans F test pvalue       0.23   0.00   0.00 

Hausman test     0.42           

F network test p value 0.23 0.08 0.43 0.56 0.11 0.57 0.08 0.38 

n 1137 864 1144 1144 1144 1144 1137 1113 
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Table 82.Males noncognitive skills: absent days  

 

  

g1absent OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 3.23 0.19 3.41 0.19 3.28 0.17 4.26 0.09 3.41 0.23 4.16 0.16 3.23 0.26 4.26 0.17  

propGKnetworkkept -6.62 0.02 -8.52 0.01 -6.76 0.02 -9.45 0.00 -7.28 0.06 -9.38 0.02 -6.62 0.09 -9.45 0.03  

propg1matesnoattendedgk 3.14 0.08 2.84 0.40 3.10 0.05 3.48 0.30 3.00 0.00 3.42 0.23 3.14 0.00 3.48 0.25  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies   Yes              

schmeans F test pvalue       0.01   0.00   0.00 

Hausman test     0.00           

F network test p value 0.02 0.00 0.02 0.00 0.10 0.03 0.18 0.04 

n 1156 1156 1156 1156 1156 1156 1156 1156 
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Table 83.Females noncognitive skills: absent days  

 

 

 

  

g1absent OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.25 0.91 2.17 0.37 0.10 0.96 2.28 0.33 0.34 0.88 2.27 0.38 -0.25 0.91 2.28 0.39  

propGKnetworkkept -0.36 0.90 -1.11 0.72 -0.56 0.85 -2.46 0.42 -0.68 0.83 -2.46 0.46 -0.36 0.91 -2.46 0.47  

propg1matesnoattendedgk -2.79 0.06 -5.23 0.10 -3.02 0.03 -5.38 0.09 -3.17 0 -5.38 0.07 -2.79 0.00 -5.38 0.08  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies 
 

Yes              

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.98           

F network test p value 0.87 0.49 0.94 0.62 0.97 0.67 0.91 0.69 

n 1142 1142 1142 1142 1142 1142 1142 1142 
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Table 84.Males noncognitive skills: motivation  

 

 

 

  

g1motivraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -3.92 0.04 -3.87 0.07 -3.92 0.04 -3.53 0.08 -3.95 0.01 -3.49 0.04 -3.92 0.01 -3.53 0.05  

propGKnetworkkept 6.41 0.00 6.08 0.02 6.41 0.00 5.97 0.02 6.43 0.00 5.86 0.00 6.41 0.00 5.97 0.00  

propg1matesnoattendedgk 1.81 0.03 4.72 0.08 1.81 0.13 4.58 0.09 1.77 0.00 4.62 0.02 1.81 0.01 4.58 0.02  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies   Yes              

schmeans F test pvalue       0.51   0.00   0.00 

Hausman test     0.10           

F network test p value 0.00 0.07 0.01 0.06 0.00 0.01 0.00 0.01 

n 1049 1049 1049 1049 1049 1049 1049 1049 
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Table 85.Females noncognitive skills: motivation  

 

 

  

g1motivraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 2.22 0.15 2.93 0.12 2.29 0.19 2.75 0.13 2.27 0.12 2.75 0.07 2.22 0.14 2.75 0.09  

propGKnetworkkept -0.36 0.85 -1.62 0.50 -0.38 0.86 -0.71 0.76 -0.36 0.85 -0.71 0.74 -0.36 0.85 -0.71 0.75  

propg1matesnoattendedgk 0.67 0.39 4.22 0.08 0.82 0.44 4.08 0.09 0.80 0.29 4.08 0.11 0.67 0.37 4.08 0.13  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies 
 

Yes              

schmeans F test pvalue       0.69   0.00   0.01 

Hausman test       0.77           

F network test p value 0.02 0.14 0.03 0.05 0.01 0.05 0.02 0.08 

n 1044 1044 1044 1044 1044 1044 1044 1044 
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Table 86.Males noncognitive skills: selfconfidence  

 

 

  

g1selfconcraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 1.81 0.49 1.03 0.72 1.74 0.51 2.63 0.34 1.79 0.52 3.23 0.28 1.81 0.53 2.63 0.38  

propGKnetworkkept -0.88 0.79 1.94 0.59 -0.27 0.93 0.53 0.87 -0.59 0.87 0.02 0.99 -0.88 0.82 0.53 0.88  

propg1matesnoattendedgk 0.02 0.98 -2.50 0.50 0.15 0.92 -5.07 0.17 0.09 0.94 -5.68 0.11 0.02 0.98 -5.07 0.17  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies   Yes              

schmeans F test pvalue       0.10   0.00   0.00 

Hausman test     0.49           

F network test p value 0.57 0.23 0.42 0.10 0.56 0.03 0.65 0.07 

n 1049 1049 1049 1049 1049 1049 1049 1049 
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Table 87.Females noncognitive skills: selfconfidence  

 

 

  

g1selfconcraw OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 3.32 0.15 1.99 0.45 3.32 0.16 3.811 0.13 3.21 0.11 4.83 0.02 3.32 0.11 3.81 0.08  

propGKnetworkkept -2.16 0.47 1.55 0.65 -2.16 0.48 -1.31 0.68 -1.89 0.47 -2.86 0.34 -2.16 0.42 -1.31 0.67  

propg1matesnoattendedgk 0.28 0.80 -1.62 0.64 0.28 0.83 -1.73 0.61 0.30 0.76 -1.81 0.69 0.28 0.77 -1.73 0.72  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
   

Yes  

Sschdummies 
 

Yes       
 

     

schmeans F test pvalue       0.15   0.00   0.00 

Hausman test     0.02 
 

        

F network test p value 0.13 0.08 0.16 0.08 0.11 0.01 0.14 0.03 

n 1044 1044 1044 1044 1044 1044 1044 1044 



 

 

2
2

2 

Table 88.Males noncognitive skills: listening  

 

 

  

g1tlistss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 10.03 0.35 7.80 0.51 10.03 0.35 6.36 0.57 10.75 0.39 3.26 0.77 10.03 0.42 6.36 0.61  

propGKnetworkkept -8.62 0.5 -5.33 0.72 -8.62 0.52 -5.30 0.71 -9.00 0.56 -1.88 0.90 -8.62 0.57 -5.30 0.76  

propg1matesnoattendedgk -2.09 0.73 34.93 0.02 -2.09 0.76 27.70 0.07 -1.52 0.86 26.82 0.05 -2.09 0.81 27.70 0.06  

student Yes Yes Yes Yes Yes Yes Yes Yes  

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes  

teacher Yes Yes Yes Yes Yes Yes Yes Yes  

classmates Yes Yes Yes Yes Yes Yes Yes Yes  

schnetwork 
   

Yes 
 

Yes 
 

Yes  

schdelta 
   

Yes 
 

Yes 
 

Yes  

schstudent 
   

Yes 
 

Yes 
 

Yes  

schclasstreatment 
   

Yes 
 

Yes 
 

Yes  

schteacher 
   

Yes 
 

Yes 
 

Yes  

schclassmates 
   

Yes 
 

Yes 
 

Yes  

Sschdummies   Yes              

schmeans F test pvalue       0.05   0.00   0.00 

Hausman test     0.00           

F network test p value 0.60 0.74 0.58 0.83 0.59 0.93 0.64 0.85 

n 1136 1136 1136 1136 1136 1136 1136 1136 



 

 

2
2

3 

Table 89.Females noncognitive skills: listening  

 

 

  

g1tlistss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 11.21 0.27 11.30 0.32 11.21 0.27 10.75 0.32 10.92 0.22 9.75 0.33 11.21 0.23 10.75 0.30 

propGKnetworkkept -15.64 0.22 -15.61 0.29 -15.64 0.24 -11.76 0.41 -15.45 0.11 -8.85 0.36 -15.64 0.12 -11.76 0.26 

propg1matesnoattendedgk 5.29 0.37 26.30 0.07 5.29 0.38 19.04 0.19 4.90 0.25 14.14 0.19 5.29 0.23 19.04 0.10 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.54   0.00   0.00 

Hausman test     0.12           

F network test p value 0.47 0.56 0.50 0.61 0.27 0.60 0.29 0.515 

n 1127 1127 1127 1127 1127 1127 1127 1127 



 

 

2
2

4 

Table 90.Males cognitive skills: reading  

 

 

 

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 50.83 0.00 41.63 0.02 50.83 0.00 41.01 0.02 50.45 0.00 40.74 0.01 50.83 0.00 41.02 0.02 

propGKnetworkkept -61.74 0.00 -48.11 0.04 -61.74 0.00 -48.73 0.03 -60.69 0.00 -48.55 0.02 -61.74 0.00 -48.73 0.04 

propg1matesnoattendedgk -2.38 0.84 37.42 0.11 -2.38 0.83 41.98 0.08 -1.65 0.88 42.06 0.04 -2.38 0.83 41.98 0.06 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.01   0.00   0.00 

Hausman test                 

F network test p value 0.00 0.08 0.01 0.07 0.01 0.04 0.02 0.06 

n 1139 1139 1139 1139 1139 1139 1139 1139 



 

 

2
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Table 91.Males cognitive skills: reading  

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 6.06 0.37 8.90 0.34 6.06 0.40 7.97 0.39 6.95 0.27 7.87 0.33 6.06 0.33 7.97 0.34 

propGKnetworkkept 
                propg1matesnoattendedgk 0.39 0.97 42.03 0.07 0.39 0.97 46.35 0.05 1.51 0.89 46.43 0.02 0.39 0.97 46.35 0.02 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.36 0.34 0.40 0.39 0.27 0.33 0.33 0.34 

n 1139 1139 1139 1139 1139 1139 1139 1139 
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Table 92.Males cognitive skills: reading  

 

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -4.17 0.62 -2.51 0.83 -4.17 0.64 -5.30 0.58 6.95 0.27 -5.86 0.43 -4.17 0.55 -5.30 0.50 

propg1matesnoattendedgk 0.429 0.97 41.84 0.08 0.42 0.96 45.60 0.05 1.51 0.89 45.62 0.02 0.42 0.96 45.60 0.03 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0           

F network test p value 0.62 0.83 0.64 0.58 0.27 0.43 0.55 0.50 

n 1139 1139 1139 1139 1139 1139 1139 1139 
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Table 93.Females cognitive skills: reading  

 

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 37.95 0.01 50.67 0.00 37.95 0.02 41.84 0.01 40.94 0.00 38.76 0.00 37.95 0.00 41.84 0.00 

propGKnetworkkept -55.03 0.00 -66.05 0.00 -55.03 0.01 -49.37 0.03 -58.12 0.00 -45.02 0.00 -55.03 0.00 -49.37 0.00 

propg1matesnoattendedgk 1.92 0.83 13.78 0.56 1.92 0.84 10.41 0.66 2.08 0.68 6.71 0.75 1.92 0.70 10.41 0.63 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.01 0.01 0.04 0.05 0.00 0.00 0.003 0.00 

n 1133 1133 1133 1133 1133 1133 1133 1133 
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Table 94.Females cognitive skills: reading  

 

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -0.75 0.91 7.41 0.44 -0.75 0.91 9.40 0.32 0.34 0.96 9.03 
 

-0.75 0.91 9.40 0.26 

propGKnetworkkept 
                propg1matesnoattendedgk 3.66 0.68 16.20 0.50 3.66 0.71 12.60 0.60 4.03 0.44 8.98 

 
3.66 0.48 12.60 0.58 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.91 0.44 0.91 0.32 0.96 0.27 0.91 0.26 

n 1133 1133 1133 1133 1133 1133 1133 1133 
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Table 95.Females cognitive skills: reading  

 

 

 

  

g1treadss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -10.91 0.18 -9.96 0.43 -10.91 0.24 -1.97 0.84 0.34 0.96 -0.32 0.96 -10.91 0.22 -1.97 0.81 

propg1matesnoattendedgk 3.62 0.69 16.01 0.50 3.62 0.71 12.57 0.60 4.03 0.44 8.99 0.68 3.62 0.48 12.57 0.58 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test   0.00             

F network test p value 0.18 0.43 0.24 0.84 0.96 0.96 0.22 0.81 

n 1133 1133 1133 1133 1133 1133 1133 1133 



 

 

2
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Table 96.Males cognitive skills: math  

 

 

 

  

g1tmathss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept -7.29 0.54 -8.75 0.53 -7.29 0.56 -10.21 0.45 -7.31 0.51 -11.18 0.32 -7.29 0.52 -10.21 0.39 

propGKnetworkkept 4.75 0.75 4.19 0.81 4.75 0.76 5.34 0.75 4.76 0.67 6.15 0.63 4.75 0.67 5.34 0.69 

propg1matesnoattendedgk 0.83 0.90 22.65 0.21 0.83 0.92 22.47 0.21 0.84 0.90 22.41 0.15 0.83 0.91 22.47 0.16 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.76   0.00   0.00 

Hausman test     0.16           

F network test p value 0.73 0.69 0.74 0.60 0.74 0.55 0.75 0.64 

n 1140 1140 1140 1140 1140 1140 1140 1140 
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Table 97.Females cognitive skills: math  

 

 

 

  

g1tmathss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 19.83 0.07 27.74 0.03 19.83 0.09 22.14 0.07 19.80 0.04 20.39 0.05 19.83 0.04 22.14 0.06 

propGKnetworkkept -34.16 0.01 -44.32 0.00 -34.16 0.02 -36.27 0.02 -34.10 0.00 -33.44 0.01 -34.16 0.00 -36.27 0.01 

propg1matesnoattendedgk -0.83 0.87 26.75 0.11 -0.83 0.90 23.611 0.16 -0.85 0.86 21.66 0.15 -0.83 0.86 23.61 0.13 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.10   0.00   0.00 

Hausman test     0.00           

F network test p value 0.02 0.03 0.05 0.07 0.00 0.03 0.01 0.03 

n 1134 1134 1134 1134 1134 1134 1134 1134 



 

 

2
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Table 98.Males cognitive skills: g1wordskillss 

 

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 52.48 0.00 44.21 0.02 52.48 0.00 48.09 0.01 53.29 0.00 46.33 0.00 52.48 0.00 48.09 0.00 

propGKnetworkkept -58.75 0.00 -53.04 0.03 -58.75 0.00 -56.86 0.02 -60.36 0.00 -54.97 0.00 -58.75 0.01 -56.86 0.00 

propg1matesnoattendedgk 9.95 0.41 18.79 0.48 9.95 0.47 22.57 0.39 10.30 0.27 23.12 0.27 9.95 0.31 22.57 0.31 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.09   0.00   0.00 

Hausman test     0.00           

F network test p value 0.00 0.08 0.01 0.04 0.01 0.01 0.02 0.0187 

n 981 981 981 981 981 981 981 981 



 

 

2
3

3 

 

Table 99.Males cognitive skills: word  

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 9.25 0.21 7.78 0.45 9.25 0.22 9.03 0.37 9.19 0.19 9.65 0.26 9.25 0.19 9.03 0.31 

propGKnetworkkept 
                propg1matesnoattendedgk 13.86 0.26 26.54 0.32 13.86 0.31 29.9 0.26 14.47 0.10 30.01 0.15 13.86 0.14 29.98 0.16 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.06    0.00   0.00 

Hausman test     0.00           

F network test p value 0.21 0.45 0.22 0.37 0.19 0.26 0.19 0.31 

n 981 981 981 981 981 981 981 981 



 

 

2
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Table 100.Males cognitive skills: word  

 

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -0.06 0.99 -5.46 0.67 -0.06 0.99 -1.27 0.90 -0.94 0.91 -3.08 0.68 -0.06 0.99 -1.28 0.88 

propg1matesnoattendedgk 14.21 0.25 26.45 0.32 14.21 0.30 30.06 0.25 14.86 0.09 30.04 0.15 14.21 0.12 30.06 0.17 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies   Yes             

schmeans F test pvalue       0.04   0.00   0.00 

Hausman test     0.88           

F network test p value 0.99 0.67 0.99 0.90 0.91 0.68 0.99 0.8849 

n 981 981 981 981 981 981 981 981 



 

 

2
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  Table 101.Females cognitive skills: word  

 

 

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 49.19 0.00 58.18 0.00 49.19 0.00 53.68 0.00 52.05 0.00 52.30 0.00 49.19 0.00 53.68 0.00 

propGKnetworkkept -63.60 0.00 -72.68 0.00 -63.60 0.00 -60.26 0.01 -66.71 0.00 -57.63 0.01 -63.60 0.00 -60.26 0.01 

propg1matesnoattendedgk -6.65 0.58 -20.33 0.45 -6.65 0.58 -16.95 0.53 -8.43 0.48 -18.55 0.44 -6.65 0.56 -16.95 0.50 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.03 

n 981 981  981  981  981  981  981   981   
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 Table 102.Females cognitive skills: word  

 

  

 

  

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 4.10 0.59 9.80 0.37 4.10 0.60 12.79 0.23 5.17 0.52 12.87 0.19 4.10 0.60 12.79 0.22 

propGKnetworkkept 
                propg1matesnoattendedgk -4.97 0.68 -17.45 0.52 -4.97 0.68 -13.95 0.60 -6.22 0.61 -15.35 0.53 -4.97 0.67 -13.95 0.58 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.59 0.37 0.60 0.22 0.52 0.19 0.60 0.22 

n 981 981 981 981 981 981 981 981 



 

 

2
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7 

Table 103.Females cognitive skills: word  

 

 

 

g1wordskillss OLS FE RE 
RE with  

schmeans GEE 
GEE with 
schmeans Pooled 

Pooled with 
schmeans 

 
dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z dy/dx P>z 

propGKmateskept 
                propGKnetworkkept -6.78 0.46 -9.59 0.49 -6.78 0.50 5.49 0.61 -7.21 0.45 8.55 0.29 -6.78 0.48 5.49 0.55 

propg1matesnoattendedgk -4.68 0.70 -17.43 0.52 -4.68 0.70 -13.18 0.62 -5.92 0.62 -14.21 0.56 -4.68 0.69 -13.18 0.60 

student Yes Yes Yes Yes Yes Yes Yes Yes 

classtreatment Yes Yes Yes Yes Yes Yes Yes Yes 

teacher Yes Yes Yes Yes Yes Yes Yes Yes 

classmates Yes Yes Yes Yes Yes Yes Yes Yes 

schnetwork 
   

Yes 
 

Yes 
 

Yes 

schdelta 
   

Yes 
 

Yes 
 

Yes 

schstudent 
   

Yes 
 

Yes 
 

Yes 

schclasstreatment 
   

Yes 
 

Yes 
 

Yes 

schteacher 
   

Yes 
 

Yes 
 

Yes 

schclassmates 
   

Yes 
 

Yes 
 

Yes 

Sschdummies 
 

Yes             

schmeans F test pvalue       0.00   0.00   0.00 

Hausman test     0.00           

F network test p value 0.46 0.49 0.50 0.61 0.45 0.29 0.48 0.55 

n 981 981 981 981 981 981 981 981 
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CHAPTER 5. GENERAL CONCLUSIONS 

This dissertation is devoted to the study of three different topics under the advice of three 

different major professors. The topics only have in common the interest and curiosity of the 

author to explain real life events using applied econometric techniques. Chapter 2 applies 

financial tools to assess whether stock values reacted across world markets to the 

announcement of indexes that synthesize the environmental performance of the world’s 

largest publicly-traded companies.  

Our results indicate that the market reacted to the G100 by changing the relative 

prices of the stocks included in it, but not the value of the equal-weight portfolio of such 

stocks. The magnitude of the effect was sizeable: moving one position closer to the top of 

Newsweek’s G100 raised the value of an average firm in the list by 11.3 million dollars. The 

use of stocks traded in international markets allowed us to find evidence of heterogeneity 

among investors. They have different interests in past performance and managerial quality as 

predictors of future environmental performance. In particular, US-traded stock returns were 

affected only by past performance (EIS), contrasting with non-US-traded stock returns which 

responded only to managerial quality (GPS and RSS). These results have implications for the 

construction of optimal environmental rankings (Chatterji, Levine, and Toffel 2009), 

suggesting that the weight on past performance and managerial quality that are used to 

construct environmental performance indexes, should differ across stock markets. 

In Chapter 3, we analyze the grain transportation market in the US. Every year more 

than 400 million tons of corn, soybeans and wheat are transported from the Midwest to 
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diverse destinations within the US (70%) and abroad (30%). The transportation of grain is 

mostly intermodal by combining truck, train, barge and ocean-vessel and its rates explain 42–

64% of the variation in corn prices in the long run. By using data from the Grain 

Transportation Report, this paper estimates simultaneous equation models of barge and 

railroad rates (in logs and levels) for specific origins-destinations and grains (corn, wheat and 

soybeans).  

Results show that barge rates have an elastic reaction to shuttle rates (1.2 to 1.6) and 

an inelastic reaction to unit rates (0.5 to 0.7), while they do not systematically respond to 

shuttle rates. It was also possible to find results showing intermodal transportation that 

complement or compete with each other: rails complement more with the PNW than barges 

do with the Gulf. In the case of corn, it was possible to identify for the first time in the 

literature the existence of complementarity between rail and barges in the rail line from Des 

Moines, IA to Davenport, IA. Results also support that the impact of barge rates on railroad 

rates is reduced when the origin of the grain is distant from the waterway. 

The forth chapter of the dissertation explores the idea that peer effects depend on the 

strength of peer connections, which may increase over time. It analyzes the effect on early 

education achievement of keeping the same classmates as in the previous year by utilizing 

the unique nature of the Tennessee Student Teacher Achievement Ratio (STAR). I study the 

relationship between the chance of passing first grade, as well as noncognitive skills and the 

proportion of kindergarten classmates that continue to be classmates in first grade. I benefit 

from the randomized mixing up policy of the STAR program in the identification of effects 

of long time peers, peers that have been together for a long period of time, and estimate 
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value-added models with and without school fixed and random effects. A novel 

microeconometric approach is also used:  clustering errors by pooled models and by GEE. 

There are two major findings in this paper. Keeping all kindergarten classmates, vs. 

losing all of them, may increase the probability of passing first grade by 7 to 10% among 

students participating in the STAR program. This result gives partial support to the main 

hypothesis of the paper: that long lasting connections may be more influential than short term 

connections, even when there is no endogenous selection by the quality of the connections 

over time. Future research is required to address the possibility of non linearities in the effect 

of average time that peers have been together. To address that issue the maximum average 

amount of time that classmates have been peers is required to be larger than a year, while 

students need to be randomly assigned to each class every academic year. The second most 

important finding is that non-cognitive skills might be improved when more kindergarten 

classmates are kept in first grade. If all classmates are kept together vs. staying alone in a 

new class, motivation and selfconfidence may increase by 0.5 of a standard deviations while 

the number of absent days may decrease by 2 to 3 days.  

This study is, to my knowledge, the first to find evidence partialy supporting the 

importance of time on peer effects. Specifically, the effect of peers does not depend only on 

their abilities and skills, but also on the time they have been peers. This is true even when 

there is not endogenous peer selection over time. These results have implications for 

educational policies like random mixing and sorting/tracking. 
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