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ABSTRACT 

 

This dissertation combines remote sensing and applied economics tools to study land 

use conversions in North Dakota and South Dakota that are tied to this region’s overall socio-

economic welfare. Specifically, the region’s corn and soybeans cultivation expanded 

significantly over the past decade replacing the region’s grasslands and grain crops. In paper 

I, we estimate the localized impacts of the advent of corn-based ethanol plants on the 

Dakotas’ corn acreage. We implement a Difference-in-Difference framework through more 

flexible assumptions as the Parallel Paths assumption of the standard model fails to hold. We 

find strong trends in the Dakotas’ corn acreage over the past decade, but surprisingly some 

ethanol plants were found to have a negative impact on local corn acreage. In paper II, we 

evaluate crop competitiveness due to heterogeneous weather impacts on crop yields, and then 

test whether annual weather fluctuations explain land allocations among the Dakotas’ major 

land uses. Our integrated framework suggests that annual weather variability is an important 

determinant of regional land use decisions. Under the A1B emissions scenario of climate 

change, we find that the yields of all of the Dakotas’ major crops will decline by 2031-2060 

relative to 1981-2010, leading to lower (higher) spring wheat (alfalfa) acres in Eastern 

(Western) Dakotas. In paper III, we develop and implement a satellite image-processing 

algorithm to estimate historical land use acres using raw Landsat sensor data, thereby 

extending the existing Cropland Data Layers back to 1984 in eastern Dakotas. We 

demonstrate that the availability of a longer time-series is useful as the rate of land use 

change may differ among different time-spans. In paper IV, we evaluate the cost-

effectiveness of grassland conservation easements when spatial spillovers are present among 
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private landowners. We first develop a conceptual model to incorporate social spillovers in 

evaluating the role of easements in inhibiting grassland conversions. We empirically test 

whether social spillovers are present by estimating hazard rates of conversion as a function of 

neighborhood density of grasslands and easements. Our findings suggest that easements are 

strategic complements to existing grasslands in preventing grassland conversions in the 

Dakotas.
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CHAPTER 1 

GENERAL SUMMARY 

 

Recent evidence suggests a significant shift in the agro-ecosystems of North and South 

Dakota. The region’s grasslands are subject to intensive cropping, especially for corn and 

soybean cultivation. The Dakotas are rural states and these grasslands are a valuable ecological, 

agronomic and economic resource to this region. Grasslands generate ecosystem services by 

sustaining the region’s wetlands that provide for a waterfowl breeding habitat. The grasslands 

have also supported livestock production on the region’s drought-prone and marginal lands. 

Although the Dakotas’ grasslands are an important natural resource these are largely 

under private ownership, and so the regional land use changes can be viewed as an aggregate of 

the private land use decisions. These decisions are impacted by higher commodity prices, 

technological advancements, climate change, infrastructure, and agri-environmental policies. The 

spatial and temporal extent of Dakotas’ grassland conversions is well characterized in the 

literature but formal analyses that establish causal relationships that identify factors of these 

conversions are lacking. Identifying factors that affect land use changes in this region is 

important for this region’s socio-economic well-being as grassland conversions reduce 

ecological output and intensive cropping on these marginal croplands can lead to more frequent 

crop failures. 

This dissertation combines applied economics methods and remote sensing tools to 

identify the factors of large-scale land use conversions in the Dakotas. Emphasis is placed on the 

impact of ethanol plants, crop competitiveness due to technological advancements and climate 

change, strategic land use decisions and conservation easements acquisition. In addition, we 
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design and implement an image processing algorithm that characterizes historical land use using 

satellite sensor data back to 1984. The outcomes should be of interest to the policy-makers 

concerned with enhancing the Dakotas’ ecological output. The findings are relevant to the 

region’s biofuels, food crops and livestock production, and grassland conservation efforts.  

In the first paper, we study the role that ethanol plants play in the grassland conversions 

of North and South Dakota. Since all of the Dakotas’ ethanol plants are corn-based facilities we 

conjecture that higher accessibility to these demand terminals would lower transportation costs 

and incentivize higher corn production in their locality. We implement a quasi-experimental 

setting and utilize the spatial locations of ethanol plants to evaluate their impact on local corn 

acreage. In particular, we utilize the Difference-in-Difference (DID) estimation strategy in 

conjugation with Propensity Score Matching to control for the endogeneity due to the plants’ 

location. We extend the standard DID model to incorporate flexible trends since the fundamental 

identifying assumption of the standard DID fails to hold. I find that although evaluating localized 

treatment effects is plausible but identifying them is challenging for this study. 

In the second paper, we present a new integrated framework to analyze climate change 

impacts on regional agricultural productivity and private land use decisions. We implement our 

framework to demonstrate the agricultural impacts of climate change on recent land use 

transitions in the Northern Great Plains. We first estimate a yield-weather relationship for all of 

the region’s major crops, while incorporating novel extensions to the commonly implemented 

yield-weather model. Specifically, we incorporate trend-weather and soil-weather interaction 

terms, and differentiate between the detrimental impacts of isolated and consecutive heat events 

on yields. We further estimate yield-weather elasticities to evaluate asymmetric productivity 

impacts of weather across crop types. We then utilize a non-linear system of multinomial logistic 
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models to identify the role of weather-driven crop yields on observed land use shares, including 

the grass shares. We find evidence that weather-driven returns determine regional land use 

allocations. We finally evaluate the medium-term land use implications of the A1B climate 

change scenario by 2031-’60, relative to 1981-2010. 

In the third paper, we design and implement a robust satellite image processing algorithm 

to identify historical land uses in South Dakota and North Dakota since 1984. We identify 

historical land allocations to five major land uses in the region: corn, soybeans, wheat, alfalfa, 

and grass. We contribute by extending the narrow time-window of publicly-available Dakotas’ 

Cropland Data Layer (CDL) imagery that would facilitate a longer time-series to better 

document regional land use changes. We also summarize land use trends for this region and find 

that the restricted data availability due to CDL tends to exaggerate the rate of land use change 

across crop and non-crop categories. 

In the fourth paper, we analyze the cost-effectiveness of a conservation policy for 

grassland protection when localized spillovers are present in grassland conversion decisions. We 

focus on the permanent grassland conversions in eastern North Dakota during 1997-2015. Our 

spatio-temporal analysis suggests that the region’s existing croplands and grasslands occur as 

large, contiguous tracts where permanent grass conversions occurred in proximity of the crop-

intensive areas. We conjecture that localized spillovers exist in this region’s land use decisions 

and present a game-theoretic framework of binary choices to evaluate easement allocations when 

strategic complementarities exist among private landowners. Our analytical findings suggest that 

easements acquired as contiguous tracts and on lands that provide weak cropping incentives, e.g. 

poor soils, are relatively more cost-effective. We empirically validate our conjecture of localized 

spillovers by employing a duration modelling framework. We find that higher grass density 
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inhibits the risk of conversion in its locality, and that easements are strategic complements to 

higher grass acres with regards to inhibiting conversion risks. 
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CHAPTER 2 

ROLE OF ETHANOL PLANTS IN DAKOTAS LAND USE CHANGE: INCORPORATING 

FLEXIBLE TRENDS IN THE DIFFERENCE-IN-DIFFERENCE FRAMEWORK WITH 

REMOTELY-SENSED DATA  

(PAPER I) 
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ABSTRACT 

The focus of this study is the Dakotas’ recent land use transitions from grass to corn and 

soybean cultivation. Recent literature has extensively characterized these land use changes and 

related concerns. However, formal analyses to understand the factors underlying these 

conversions are lacking. We study the role of Dakotas’ ethanol plants in these land use changes. 

We construct a spatially delineated dataset and implement a Difference-in-Difference (DID) 

model in conjunction with Propensity Score Matching to estimate the impact of a corn-based 

ethanol plant on nearby corn-acres. We hold the advent of an ethanol plant to be the treatment 

and estimate the treatment effects for each ethanol plant based on the parallel paths assumption 

that is standard for the DID methods. We find that effects vary by ethanol plants and so we view 

as inappropriate the single point estimates for all ethanol plants in a region that are usually 

provided in the literature. Surprisingly, we find insignificant positive, and significant but 

negative ethanol plant impacts on local corn-acres. Negative estimates are hard to reconcile with 

the economic incentives due to ethanol plants. We also find intensified corn production and 

reduced corn-soy rotations due to the ethanol plants. Furthermore, based on placebo tests and 

pre-treatment trends in corn acres, we find that the identifying parallel paths assumption of the 

standard DID model does not hold. We incorporate differentiated trends into the DID framework 

through more flexible assumptions. To validate the flexible assumptions due to differentiated 

trends, we implement a spatial placebo and find that estimating identified localized treatment 

effects in this study is challenging. The estimated treatment effects are identified for only two out 

of the four ethanol plants in North Dakota. The identified treatment effects on local corn acreage 

are found to be positive for one plant and negative for the other. In light of economic incentives 

provided by the establishment of an ethanol plant, the negative treatment effect is puzzling.
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Introduction and Motivation 

Recent research suggests significant land use transitions in North and South Dakota, 

where grasslands have been lost to corn and soybean cultivation. We analyze the role of ethanol 

plants in the growth of the Dakotas’ corn/soy acreage over the past decade. The U.S. ethanol 

industry boomed after the introduction of the Renewable Fuels Standard in the Energy Policy 

Act of 2005. In 2015, about 215 ethanol plants were operational in the country. Existing 

economic analyses have established regional impacts of ethanol plants on farmland values, local 

corn prices and land use. We investigate localized impacts of ethanol plants on the Dakotas’ land 

use changes. Our view is that these plants would acquire corn locally to reduce transportation 

costs towards ethanol production, and would encourage local corn production by offering higher 

per bushel prices to nearby growers. 

The eastern Dakotas contain a major portion of the U.S. Prairie Pothole Region (PPR), 

which encompasses most of the country’s remaining native grasslands. The prairies support the 

region’s wetlands that provide nesting habitat for waterfowl and other avian species. The 

grasslands also store excess atmospheric carbon and reduce soil erosion. Dakotas’ soils are dry, 

erosive, and prone to highly variable biomass outputs. Historically, brasses have sustained 

livestock production on these marginal soils. Traditionally, wheat has been the predominant crop 

due to its tolerance towards these marginal soils. The recent land use changes in the Dakotas 

towards intensified crop production raise many ecological, environmental, agronomic, and 

economic concerns.  

The ecological concerns arise due to loss of native prairie and drying up of regional 

wetlands that threaten the local waterfowl population. Intensified cropping raises agronomic 

concerns of reduced soil quality due to increased erosion, reduced water holding capacity of the 



8 

 

 

soils and lower productivity. Erosion due to intensified row cropping practices, especially corn, 

also pollutes regional water streams. Loss of stored carbon from uprooting native grasses adds to 

environmental impacts of these conversions. The economic concerns are tied to the reduced 

ecosystem services through loss of native prairie and game species, and frequent crop failures 

due to the region’s erosive soils. Further, fewer opportunities for livestock production remain as 

row cropping intensifies on more productive soils. Also, higher corn and soybean cultivation 

would tailor the socio-economic structure of the region towards more crop-based infrastructure, 

thereby making crops even more attractive to farmers.  

Many studies have analyzed the spatial and temporal extent of cropland expansions that 

displaced grasslands, including the Dakotas’ native prairies (discussed hereinafter). The Dakotas 

have added the most new cultivated land in the United States after 2006 with significant 

grassland conversions. Relevant studies also point towards the potential role of various physical 

and market-related conversion factors, along with the potential role of agricultural and 

environmental policy. Although the Dakotas’ land use changes are well characterized, a formal 

causal analysis to understand what drives these changes is absent. We extend this literature by 

formally establishing the causal impacts of ethanol plants on local land use changes in these 

states. All of the Dakotas’ ethanol plants are corn-based. Hence, we ask how the advent of an 

ethanol plant affects corn plantings in its proximity.  

Understanding the role of ethanol plants towards grassland conversion is relevant since 

these grasslands are a public resource largely under private ownership. Therefore, the observed 

land use changes are essentially an aggregate outcome of the localized private decisions by 

individual landowners. The private land use decisions are potentially driven by the changing 

climate, evolving technology, the local business environment, infrastructure, commodity prices, 
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and government payments towards conservation and crop insurance. For example, Claassen et al. 

(2011) suggest that federal crop insurance subsidies have intensified cropping practices by 

reducing related financial risks. Ethanol plants, the focus of this study, also reduce production 

risks as they enhance corn demand in their locality that potentially incentivizes grassland 

conversions towards corn cultivation.  

There are 19 ethanol plants in the Dakotas (four in ND and fifteen in SD) with a 

combined capacity of 1,386 million gallons per year (mgy, 363 mgy in ND and 1,023 mgy in 

SD), accounting for about 9% of the total U.S. ethanol production capacity. Most of the Dakotas’ 

ethanol plants started operations during 2006–08, which coincides with the observed rapid land 

use conversions outlined in the pertinent literature. We expect the ethanol plants to influence 

localized land use changes and hence modelling those rather than aggregate, regional-level 

decisions is more relevant. We present a unique research design that utilizes spatially-delineated 

data and implements a quasi-experimental setting to evaluate the impact of ethanol plants on 

local corn acreage. We now provide a brief summary of the many land use change studies that 

have characterized the recent grassland conversion in this region. 

Wright and Wimberly (2013) used the U.S. Department of Agriculture (USDA) Cropland 

Data Layer (CDL) database to summarize spatial conversions from grass to corn and soybean 

between 2006 and 2011 in the U.S. Western Corn Belt (WCB), spanning North and South 

Dakota, Nebraska, Iowa, and Minnesota. The Dakotas experienced the most grassland 

conversions with 271,000 hectares lost to cropping out of the 528,000 hectares in all of WCB. 

Higher commodity prices and increased biofuels production were attributed as potential drivers 

for such land use changes. The spatial characterization of land use changes in these two states 

revealed a westward expansion of the Corn Belt toward the Missouri River. Lark et al. (2015) 
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asserted that the Dakotas added the most new cultivated land in the United States during 2008–

12, predominantly east of the Missouri River. However, northwestern and southeastern North 

Dakota experienced contraction of croplands during this period. Lark et al. present a long-term 

trend analysis using the U.S. Geological Survey (1972–2002) to evaluate conversions on native 

grasslands. The Dakotas stood out with the highest conversion rates on lands previously 

attributed to native grasses. In addition, soybeans (wheat) was found to be the first crop planted 

upon conversion east (west) of the Missouri River. 

Johnston (2014) provided a longer-term perspective on cropland expansion in the 

Dakotas, utilizing USDA National Agricultural Statistical Service (NASS)’s state-level crop 

acreage data (1980–2011) and the CDL data (2006–12). The corn/soy acreage almost tripled 

between 1980 and 2011, where these crops accounted for only 5% of the Dakotas’ agricultural 

acreage in 1980. The probability of corn/soy being re-planted to corn/soy increased from 68% in 

2006–07 to 80% in 2011–12. The corresponding probability for grasslands decreased from 81% 

in 2006–07 to 74% in 2011–12. Corn and soybeans were also found to replace wheat and small 

grain crops that were historically dominant due to their tolerance for the local climate. Johnston 

attributed technological advancements (i.e., drought/cold-resistant corn and soybean varieties) as 

potential drivers of such land use transitions. 

A study by Stephens et al. (2008) estimated the probability of grassland conversion 

conditional on amounts of surrounding grasslands, slope, and soil productivity. The annualized 

grassland loss in the Dakotas’ Missouri Coteau region was estimated to be 0.4%, which amounts 

to 36,450 hectares during 1989–2003. However, they found that the probability of conversion 

varied across the lands of high biological value (amenable to waterfowl breeding). Stephens et al. 
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recommended that conservation policies should be targeted specifically to the lands with higher 

conversion probability, conditional on their location and soil quality attributes.  

This paper is subdivided into several sections. We first motivate the economic incentives 

that theoretical considerations suggest should motivate land use conversion in the proximity of 

ethanol plants. A literature review of the relevant findings on the impacts of ethanol plants from 

earlier studies is then discussed. Our data section discusses how we constructed a spatially 

delineated dataset for this analysis and provides a detailed explanation of the relevant variables. 

The methodology section presents our research design, the Differences-in-Difference (DID) 

model in conjunction with Propensity Score Matching and an extension of the DID to include 

flexible trends. Section 4 provides estimation results for each ethanol plant and lastly we 

conclude with some discussions. 

Economic Motivation 

Consider a representative farmer’s dual profit function, ( ( ))p t x  , that depends on the 

difference between the market price of corn and its transportation cost ( )t x . The transportation 

cost is a function of the distance between a representative farmer and the demand terminal for 

corn ( x ). To motivate the economic incentives due to proximity of these ethanol plants, we 

compare the pre- and post-ethanol plant trends in corn basis for counties that house these plants 

in North and South Dakota (see figure 1). Basis is the difference between the local price and the 

futures price of a commodity. Basis accounts for the transportation costs, and thus a higher corn 

basis in the post-ethanol plant years should be tied to the reduced transportation costs in the 

plant’s proximity. Figure 1 shows a steeper basis trend after 2008 when compared to before 2006 

(i.e., corn basis was higher in the post-plant years in those counties that housed ethanol plants). 



12 

 

 

Therefore, we conjecture a positive and statistically significant impact of ethanol plants on local 

corn acreage.  

Literature Review 

Earlier attempts to assess the impacts of ethanol plants involved an indirect evaluation of 

land use change by way of analyzing impacts on local corn prices and farmland values. In more 

recent years, studies have considered the direct impact of ethanol plants on corn acres as a 

measure of land use change. We provide a brief review of analyses involving grain prices and 

farmland values, followed by a detailed review of the analyses of impacts on land acreage 

because these are of direct relevance to our inquiry. 

Miao (2013) has evaluated the proportion of corn acreage for the Iowa counties in response 

to the location, capacity, and ownership of ethanol plants. He utilized a county-level panel data 

set from 1997 through 2009, and applied the Arellano-Bond generalized method-of-moments 

estimator to estimate the effect of ethanol plants on land use shares in the region. The specialized 

estimator attempts to control for the endogeneity of ethanol plants and for corn-soybean rotations 

by including a lagged dependent variable (that is, proportion of corn acreage). He found a 

positive and significant impact of ethanol plants on intensity of corn production in Iowa. He also 

found that, all else equal, locally owned ethanol plants have twice as strong an effect on local 

corn acreage as their non-locally owned counterparts.  

Motamed et al. (2016) used a grid-level spatially-delineated dataset to estimate a non-

linear response of the refining capacity of ethanol plants in each grid-cell’s neighborhood on its 

corn acreage in the U.S. Midwestern states: ND, SD, NE, MN, WI, IA, KS, OK, MI, IL, IN, OH. 

They utilized a panel regression model where the dependent variable is corn acreage on 10km X 

10km land parcels during 2006–10. They corrected for the endogenous ethanol plant locations 
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and neighboring land use by utilizing the length of railroads within each grid cell as an 

instrument for refining capacity. They found a significant increase in corn acres in grid cells with 

higher ethanol refining capacity in their neighborhood, but the effect dampened over the years. 

Motamed et al. (2016) built upon an earlier study by Motamed and McPhail (2011) that models 

regional corn acreage on the proximity to nearest ethanol plants. In the 2011 study, the covariates 

were distance to the nearest grain elevators and ethanol plant, the plant’s capacity, cash bids at 

the nearest grain elevator and a soil productivity index. The instruments for each parcel’s 

distance from the nearest ethanol plant were the distance from the nearest interstate ramp, 

primary/secondary roads and water ports. This analysis estimated that upon moving one percent 

closer to an ethanol plant corn acreage increased by 0.64% within their region of study.  

Turnquist et al. (2008) measured the impact of ethanol plants on farmland acreage for the 

state of Wisconsin between 2000 and 2006. Although Wisconsin was reported to be losing 

farmland to other uses during this period, fallow or undeveloped acres were found to increase. 

The authors investigated the possibility that the fallow lands were reverted as croplands in 

proximity of the ethanol plants. The authors used municipality-level land use data and allocated 

2-mile, 10-mile and 50-mile zones around the four operational ethanol plants during 2000–06. 

The differences between percentage changes in agricultural acreage (2000–06) across these 

zones evaluated the ethanol plant impacts in Wisconsin. The impact of ethanol plants on each of 

three zones’ agricultural acreage was found to be statistically insignificant.  

Mueller and Copenhaver (2009) analyzed the impact of two Illinois ethanol plants 

(Illinois River Energy Center (IRE) and Patriot Renewable Fuels (PRF)) on surrounding land 

use, as part of a larger study to deduce the impact of these plants on greenhouse gas emissions. 

They used satellite imagery and observed land use in corn supply regions for each plant in 2006, 
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2007, and 2008 to evaluate its impact. Defining these corn supply regions involved corn 

growers’ surveys and inquiries from ethanol plants to judge the spatial extent of their corn 

suppliers. A 43-mile and a 23-mile circle was placed around IRE & PRF, respectively. The study 

concluded that ethanol plants had a weak influence on direct land use change in their vicinity, 

and inferred that higher yields supported increased exports and increased ethanol production.  

Brown et al. (2014) utilized a spatial econometric regression framework to assess the land 

use decisions of farmers due to proximity to ethanol plants in Kansas. Using satellite imagery, 

they separately evaluated conversions from other cropland and non-cropland uses in 2007 to corn 

production in 2008 and 2009 on 5-acre parcels. The authors found that reducing parcel’s distance 

to the nearest refinery by 1% significantly increased non-cropland (other cropland) conversion to 

corn acres by 5% (4%) in a county 25 miles away from the refinery and by 15% (11%) in a 

county 75 miles from it. However, their estimates may be biased due to likely endogeneity of 

ethanol plant locations. Stevens (2015) also utilized a spatially-explicit field-level dataset for IA, 

IN, IL and NE to estimate the change in probability of planting corn with proximity of the 

nearest ethanol plant between 2002 and 2014. He found a positive impact of the presence of an 

ethanol refinery only within its 30-mile radius, although not controlling for the endogeneity of 

plants’ locations.  

The literature lacks a consensus regarding impacts of ethanol plants on local grain prices and 

agricultural land values (Miao 2013), which can provide indirect evidence of ethanol plants on 

land use change. Examples in the context of farmland values are Zhang et al. (2012), Henderson 

and Gloy (2008) and Du et al. (2007). Zhang et al. (2012) used disaggregated parcel-level data 

for Western Ohio to evaluate the impact of increased biofuels demand. They conducted DID 

estimation on matched parcels to find increased farmland values in the vicinity of the ethanol 
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plants at a time that witnessed a sharp dip in residential values. The study by Henderson and 

Gloy (2008) used a hedonic framework to find a positive impact of ethanol plants on agricultural 

land values in 2007. Zhang et al. (2012) have, however, criticized the hedonic framework due to 

its inability to correct for selection bias in plant locations. Du et al. (2007), on the other hand, 

rejected the hypothesis that ethanol plants significantly affect Iowa farmland cash rental rates. In 

the context of local grain prices, Katchova (2009), O’Brien (2009), and McNew and Griffith 

(2005) found a positive and significant impact of ethanol plants on local grain prices, whereas 

Lewis (2010) found that these positive impacts vary spatially. The author found significant 

impacts for MI and KS, and an insignificant impacts for IA and IN. 

The above review suggests disagreement in the literature on the direct and indirect 

impacts of ethanol plants on local land uses. Moreover, most studies utilize aggregated county-

level datasets. An issue with such aggregated datasets for a location-based analysis is worth 

considering. Including an indicator (or dummy) variable for the existence of ethanol plants as a 

regressor assumes its location to be central to its home county when this variable equals 1. It 

thereby assumes that the corresponding ethanol plant will not impact the counties neighboring its 

home county. However, as in the Dakotas, an ethanol plant is often located near the shared 

boundaries of two or three counties. Consequently, it is appropriate to use spatially delineated 

data as some studies do. However, the endogeneity due the ethanol plant’s location was ignored 

by most of the earlier studies and may provide biased estimates of the impacts of ethanol plants.  

We extensively utilize remote sensing tools that generate spatially delineated data with 

micro-resolutions of the researcher’s choice. This article presents estimates of impact of ethanol 
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plants using 500-acre plots as representative decision-making units.1 This enables the evaluation 

of the effects of ethanol plants on a plant-by-plant basis, rather than by pooling county-level data 

for ethanol plants in an entire state or all of the Midwestern United States. Adopting a 

methodology that allows for analyzing impacts of individual plants enables fine-detail scrutiny of 

local conversion effects. This provides an alternative approach to validate the estimates of the 

impacts of ethanol plants on corn acreage arrived at from more aggregate methods. 

Data 

We use remotely sensed data for land use and soil quality in the Dakotas from two main 

sources: the ‘CropScape’ portal of the USDA-National Agricultural Statistical Service’s 

Cropland Data Layer (CDL) Program, and the Web Soil Systems portal of USDA-National 

Resource Conservation Service (NRCS).  

USDA-Cropland Data Layer 

CDL satellite imagery for South Dakota are available from 2006 to 2013 and for North Dakota 

from 1997 to 2013. CDL provides raster (pixelated) data for all contiguous U.S. states with 

different spatial resolutions, 56 m pixels for 2006–2009 and 30 m pixels for other years. To be 

able to compare land use statistics across different years we employ remote sensing tools, 

namely ERDAS Imagine and ArcGIS, and bring each year’s imagery to a uniform spatial 

resolution of 500 acres. To achieve this, each year’s raster image was first converted to vector 

form (pixels to polygons), and then overlaid onto a grid-plot with 500 acre-polygons. The grid 

                                                 
1 We conducted our initial analyses at a much finer resolution (up to 160-acre plots). Aggregating 

the data up to 500 acres did not change our results significantly. However, higher aggregations 

suppress measurement errors from satellite imagery. 
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polygons are designated as representative decision-making land parcels with a unique identifier 

that are observed every year. Overall, our study sample includes approximately 104,000 parcels 

for North Dakota and 99,000 parcels for South Dakota.  

USDA NRCS-Web Soil Systems 

We retrieve tabular data for Land Capability Classification (LCC) and representative 

slope from the Soil Data Viewer application developed by NRCS. Soil Data Viewer provides 

detailed definitions for both these variables. Briefly, LCC groups soils into eight broad classes 

each representing impediments for cropping, with higher class codes assigned to more serious 

impediments. LCC classes I and II are well-suited for cropping, whereas LCC classes III and IV 

require additional management practices to be suitable for cropping, often restricting their use to 

pasture, rangeland or forests. LCC level V and worse have severe limitations that make them 

impractical for crop cultivation. Representative slope simply measures the average rise per unit 

run. The tabular data combines these soil attributes to geographically delineated and uniquely 

identified soil map units. To attribute soil quality for each of our representative land parcels, we 

calculate area-weighted LCC (WLCC) and slope (WSLP) variables. The area-weights are 

calculated as the proportion of each soil map unit’s area within the 500-acre land parcels. See 

supplementary information for more information on data integration. 

Ethanol Plants’ Spatial Coordinates 

The spatial coordinates of ethanol plants, ultimately used to determine treatment and 

control groups, were acquired by using the Google Earth application in conjunction with online 

maps of these plants made available on Ethanol Producer Magazine’s website. We conduct our 

analysis on all four ethanol plants in North Dakota and four out of 15 ethanol plants in South 

Dakota, listed in table 1 with spatial locations in figure 2. Choice of ethanol plants is driven by 
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our methodology and land use data availability in South Dakota (2006-2013), to be discussed 

hereafter under ‘Estimation Results’. 

Methodology 

Our objective is to quantify how the emergence of an ethanol plant affects local land use 

change. The detailed micro-level panel dataset for the Dakotas allows us to implement a quasi-

experimental design to evaluate the impact of ethanol plants on land use patterns in their 

neighborhood. In this sense, we interpret the advent of an ethanol plant as the treatment where 

pre-and post-treatment year outcome levels are the observed land use patterns before and after it 

started operations, respectively. 

To implement a quasi-experimental setting with ethanol plant as treatment, we first need to 

define treatment and control groups. The argument that a plant’s location is potentially 

influenced by the opportunity for growing corn in its vicinity relates to minimizing costs of 

acquiring corn for ethanol production. An ethanol plant that procures most of its annually 

required corn from nearby areas saves on transportation and related logistical costs, and so is 

willing to compensate local suppliers. Therefore, in order to define our treatment and control 

groups, we assume that the related transportation costs are monotonic in the Euclidean distances 

between a land parcel and the ethanol plant, and that the grower bears at least some of these 

costs. In this scenario, a supplier/landowner located nearer to the ethanol plant has higher 

incentive to grow corn than one farther away, all else equal. Consequently, we choose to 

designate samples that lie closer to the ethanol plant as treatment samples and ones farther away 

as control (or untreated) samples. 
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Back-of-the-Envelope-Calculations: How Significant are Transportation Costs? 

We support transportation costs, and thus Euclidean distances, as sensible treatment and 

control parameters with some empirical evidence. Consider transport-trucks with the carrying 

capacity of 1 ton (=39.4 bushels2) corn and a mileage of 134 ton-miles per gallon. The annual 

average cost of diesel was $2.4–$4 after 2005 (U.S. Energy Information Administration). 

O’Brien (2009) estimated the total transportation cost to be approximately four times the fuel 

cost, which is 0.20–0.28 cents as the fuel cost of transporting one corn bushel for one mile was 

0.05–0.07 cents in the U.S. Hence, the maximum willingness to pay in order to incentivize a 

farmer located 50 miles closer to an ethanol plant would range between 10–14 cents per bushel 

of corn.  

On the other hand, cash rents for croplands ranged between $39–$46.5 in ND and $53–

$71.5 in SD from 2006–10 (USDA NASS Land Values Summary, 2006–10). Given the corn 

yields of 111–132 bushels/acre in ND and 97–151 bushels/acre in SD (USDA NASS Quick 

Stats, 2012), the average cropland rents for the Dakotas were between 30–73 cents per bushel of 

corn. Since the transportation costs are 14%–47% of the total cropland rental values, these 

should generate strong incentives for proximate landowners to engage in corn production. 

Designating Treatment and Control Groups 

An aspect of our research design that differentiates it from many other quasi-

experimental studies is that our treatment is not exogenous. We designate the advent of an 

ethanol plant as treatment, which itself is a market outcome. The implication of this endogenous 

intervention is that we do not have exogenous control groups. Rather, our treatment and control 

                                                 
2 Bushel/Ton Converter. www.agriculture.alberta.ca 
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groups follow the ‘rule of thumb’ that treated parcels are located nearer to the ethanol plant than 

their untreated counterpart.3 This admits innumerable possibilities for treatment and control 

groups near each ethanol plant’s location and practically inexhaustible combinations that can be 

included for this study. It is, therefore, important to conduct robustness checks to seek the 

sensitivity of our treatment effects’ estimates among different combinations of treatment and 

control groups. We accomplish that by designating two treatment groups and two control groups 

for each ethanol plant (see table 2 for the schematics). The control groups are kept apart to 

ensure independence in robustness checks for each treatment group (see figure 3).4  

Among the combinations of treatment and control groups, we conjecture that the 

treatment effects from the nearest treatment group and the farthest control group combination 

will be larger in size and more significant than the other comparisons. We present the regression 

results for this particular combination and compare it with others as a robustness strategy. 

DID in conjunction with PSM 

Given pre- and post-treatment periods, as well as treatment and control groups for each 

ethanol plant, we use the DID estimation strategy in conjunction with propensity score matching 

(PSM) to evaluate their role in land use conversion. Using the DID approach is reasonable since 

                                                 
3 In some cases, we have two or more ethanol plants competing for corn from common land 

parcels. To analyze treatment effects for an ethanol plant in such cases we exclude parcels that 

are closer to other ethanol plants, irrespective of the parcels’ designated group. 

4 Due to spatial constraints, it is infeasible for all of the treatment and control groups to be non-

overlapping. This is because having non-overlapping groups would require more space, which in 

turn would bring our groups closer to other nearby ethanol plants.  
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the location of an ethanol plant is endogenous to land use trends in its locality. The issue of 

endogeneity arises because Dakotas’ ethanol plants are corn-based facilities and their location 

decisions could place them in regions with high corn production in pre-plant years or with high 

potential for corn production in the post-plant years. DID is intended to control for such 

endogeneity by estimating causal impacts as the difference between average temporal trends of 

land use acres across treated and untreated groups, assuming that, in the absence of the ethanol 

plant, land use in both these groups would evolve equivalently. This assumption of parallel 

trends requires treated and untreated land parcels to be alike, except for their proximity to the 

ethanol plant. That is, estimated treatment effects are unbiased if these land parcels are randomly 

assigned to the treatment and control groups, and we control for any within-group or across-

group dissimilarity among them (other than the advent of an ethanol plant).  

We seek to ensure random assignment of land parcels to each group by utilizing the PSM 

strategy, thereby conditioning treatment selection on the observed the soil quality. Soil quality is 

central to the land use decisions, and would potentially influence ethanol plants’ location choice 

toward regions with land attributes favoring corn production. Local infrastructure such as road 

and rail connectivity also potentially affects ethanol plants’ location choice. We tend to choose, 

at least for some ethanol plants, our treatment and control groups along or parallel to an interstate 

highway so that the Euclidean distances from ethanol plants appropriately differentiate access to 

infrastructure across land parcels. It is noteworthy that while PSM controls for selection on 

observables, the DID estimation approach controls for selection on unobservables through 

individual and trend fixed-effects in the regression framework (List et al. 2003). 
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Identifying treatment effects from the DID model 

The Parallel Paths Assumption (PPA) is fundamental to identifying the treatment effects 

that are estimated in DID models. To illustrate this point briefly, consider a representative land 

parcel i  with ,i tC  as its corn acreage at time period t . We introduce binary variables id  and t  

to designate treatment/control groups and pre-/post-treatment periods respectively. So 1id   for 

treated parcels and equals 0 otherwise while 1t   for time periods after the advent of an ethanol 

plant and equals 0 otherwise. Further, denote ( )t t 
 as the set of pre-treatment (post-treatment) 

time periods with 0t  as the treatment year.5 Intuitively, to evaluate a treatment effect for treated 

parcel i ’s corn acreage we would compare the outcome levels with and without ethanol plant in 

the post-treatment era, that is ,i tC  with t t .6 Consequently, the average treatment effect for 

the treated (ATT) equals 
, ,

[ | 1]T U

ii t i t
E C C d   , where superscript T(U) denote presence 

(absence) of the plant. The issue, though, is that the outcome levels absent an ethanol plant (i.e., 

the treatment) in the post-treatment years are unobserved. The DID approach seeks to overcome 

this issue by assuming that treated and control parcels would follow parallel land use trends if 

the ethanol plant had not emerged at t . This PPA assumption is expressed as 

                                                 
5 For example, the Red Trail Energy ethanol plant that was established in 2007, so t 

{1997,1998,...,2006} and {2008,2009,...,2013}t  .  

6 We present the model for corn acreage. An extension for combined corn and soy acreage 

follows by changing the notation from ,i tC  to ,i tCS . 
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(1)          
, , , ,

[ | , 1] [ | , 0]U U U U

i ii t i t i t i t
E C C Z d E C C Z d        , 

In equation (1) superscript U  signifies no treatment (both groups stay untreated) and Z  is the 

set of observable covariates for each land parcel. If (1) holds then ATT is computed as 

(2)          
, , , ,

[ | , 1] [ | , 0]i i i ii t i t i t i t
ATT E C C Z d E C C Z d           

Thus, the PPA is key to identifying the estimates of treatment effects and in the event that this 

assumption fails the estimates of ATT are meaningless. In order to provide comparisons such 

that PPA is most likely to hold, we restrict our sample for estimating treatment effects to one 

where the conditional probability of treatment (or propensity score, PS) for each untreated parcel 

is close ‘enough’ to its treated counterpart. This method is usually known as PS matching.  

Propensity Score Matching 

To estimate a conditional probability of treatment for each land parcel in treatment and 

control groups of an ethanol plant, we utilize a logistic regression. The probability of treatment is 

regressed upon the area-weighted soil quality variables, WLCC and WSLP, in their quadratic 

form. That is,   

(3)          
2 2

0 1 2 3 4

2 2

0 1 2 3 4

exp( )
( 1)

1 exp( )
i

WLCC WLCC WSLP WSLP
P d

WLCC WLCC WSLP WSLP

    

    

   
 

    
, where 

0 1 2 3 4, , ,  and       are regression coefficients. The justification for a quadratic functional form 

lies in minimizing the Akaike Information Criterion (or maximizing the log-likelihood) relative 

to the linear and cubic forms. The estimated probability of treatment, ( 1| )a

i iP d X  with 
a

iX 

2 2{ , , , }WLCC WLCC WSLP WSLP , is then used for matching treatment and control groups. The PS 

estimation results are summarized in table 3. We find these soil quality based models to 

significantly explain the probability of treatment in each case.  
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The logistic regressions that estimate the PS find that land parcels in the vicinity of 

ethanol plants may have higher LCC and/or be steeply sloped, not particularly suitable for corn 

production. Both WLCC and WSLP exhibit decreasing marginal returns in all cases. Higher 

treatment probability for parcels with relatively poor soil quality suggests that the ethanol plants 

may consider factors like lower land values and/or access to infrastructure (near a highway or a 

rail line) towards their location decisions. However, we cannot differentiate land values and 

infrastructure across land parcels at the fine spatial resolution of this study. The spread of 

estimated PS between 0 and 1 (figures 4–9) can measure whether our model specification 

explains the treatment probability reasonably well. A massing of estimated probabilities at 

extreme values (e.g., panels A and C in figures 4–9) indicates more variables are needed to 

reasonably explain PS in those cases. A constrained availability of variables that estimate the PS 

recommends caution while interpreting our treatment estimates.    

We implement a one-to-one nearest-neighbor propensity score matching algorithm and 

include only those treated parcels for which there exists an untreated parcel whose PS lies within 

a pre-assigned radius (absolute difference between PSs) of each corresponding treated parcel’s 

score. The choice of this radius involves a trade-off between bias and efficiency of treatment 

effects. A smaller radius will yield more similar land parcels in both groups reducing bias in 

estimated treatment effects but at the same time a smaller sample that entails higher variance.7 

                                                 
7
 We implement the PSM algorithm developed by Fraeman (2010), which optimizes the sample 

size in two steps. First, it searches for all possible matches to each treated sample within the pre-

assigned radius and then, while assigning matches to these treated parcels, it prioritizes those 
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Post-matching heterogeneity in the distribution of soil quality variables among treated and 

untreated groups may potentially bias our treatment effects’ estimates (Heckman et al. 1997). We 

report treatment effects calculated using samples from a pre-assigned radius or caliper of range 

[0.0001, 0.01]. The assigned calipers vary by ethanol plants and are chosen such that the post-

matching samples are balanced while maximizing the number of observations in each case. The 

term “balanced” refers to ensuring a homogeneous distribution of these covariates across 

treatment and control groups. We find that reducing the pre-assigned radius yields higher balance 

across the two groups used for estimating treatment effects. 

We follow Caliendo and Kopeinig (2008) to examine whether or not post-matching 

samples are balanced and to assess the matching quality. We conduct t- and F-statistics to test for 

equivalence of WLCC and WSLP means and variances across matched treated and untreated 

samples for each ethanol plant (Rosenbaum and Rubin 1985). Further, we test the joint-

significance of WLCC and WSLP, in quadratic form, when estimating ( 1)iP d   on the matched 

samples. This test rejects the joint-significance of these covariates, indicating no systematic 

differences in their distribution across treatment and control groups that could explain underlying 

variations in propensity scores (Dehejia and Wahba, 1999). The matching performance based on 

the mean and variance of the soil quality parameters across matched treatment and control 

groups and their corresponding calipers is presented in Table 4.  

 

 

                                                 

with the least number of matches from the first step. The SAS code that implements this 

algorithm is published in Fraeman (2010). 
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Standard DID estimation summary and moving towards flexible trends in DID 

In the DID regression framework using matched samples, we further control for pre-treatment 

land use decisions as an opportunity to convert to corn. To illustrate, if a land plot was entirely in 

corn during pre-treatment years, it will not reveal any treatment effect due to the lack of scope 

for conversion. In addition, even if the land was predominantly under wheat (or grass) in the pre-

treatment year, the opportunity to convert comes with switching or conversion costs, 

respectively. Further, in recognition of the fact that farmers usually grow corn and soybean in 

rotation, we evaluate treatment effects for corn as well as the combined acreage of corn and soy 

as our dependent variables. See supplementary information for detailed estimation results of the 

standard DID model in conjunction with PSM. 

We find positive, negative as well as statistically insignificant treatment effects on corn 

acres due to ethanol plants. The negative treatment effects are both surprising as well as hard to 

reconcile with the empirical evidence of incentives for corn production on land parcels in the 

vicinity of these ethanol plants. To further investigate the validity of such treatment estimates, 

we designate temporal placebos, per Figure 10, and estimate ATT for these falsified treatments. 

Ideally, a false treatment should yield zero treatment effects but our estimates, shown in Table 5, 

show that the standard DID framework yields non-zero treatment effects even though there was 

no treatment. Such placebo tests point towards an imperfect matching strategy or an inability to 

control for all the factors that affect growth of corn acres in our regressions.  

An implication of imperfect matching is visualized in Figure 11, where we find non-

parallel pre-treatment trends for matched treatment and control groups in the case of North 

Dakota plants. This means that corn acres were not evolving equivalently among treatment and 

control groups even when the treatment was absent. Non-parallel trends during pre-treatment 
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periods contradict the PPA, and thus the ATT estimates of a standard DID model do not 

represent the treatment effects due to ethanol plants. We follow Mora and Reggio (2012) to 

incorporate these differentiated trends between treatment and control groups into a fully-flexible 

DID model. We also formally test and reject the PPA using this fully-flexible DID model below. 

Incorporating Flexible-Trends into the standard DID framework 

The differentiated or non-parallel pre-treatment trends across treatment and control 

groups in Figure 11 invalidate the PPA. We incorporate such trends into the standard DID 

framework through more flexible assumptions. To illustrate, we develop a special case of a fully-

flexible DID model in an appendix. This special case is based on the non-parallel trends in corn 

acreage across treatment and control groups in the pre-treatment years (see figure 12(a), in 

green).8 However, the corn acres could potentially vary for each pre-/post-treatment period as 

found earlier in Figure 11. A generalized version of the differentiated corn trends is visualized in 

Figure 12(b) and such trends are incorporated into a fully-flexible DID model.  

Reber (2005) assesses the impact of court-ordered desegregation plans for schools on school 

enrollments in the U.S. through a flexible DID framework. 

A fully-flexible DID model by Mora and Reggio (2012) is as follows: 

(4)          
( ) ( )

, 0 [ ] [ ] ,

( ) 1 ( ) 1

,

T l T l
d d

i t t i t i i t

T i T i

i t zC I d I d Z   
 

     

   

         , 

where ( )T i  is the first pre-treatment period and ( )T l  is the last post-treatment period. The model 

in equation (4) captures flexible time-trends for pre- and post-treatment periods and allows them 

                                                 
8 The special case is hoped to facilitate a smooth transition for readers from the standard DID 

model with failed PPA to a fully-flexible DID model. 
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to differ between treatment and control groups, thus capturing a fully-flexible situation, as in 

Figure 12(b). The model’s advantage is that it calculates time-varying treatment effects, which in 

turn can potentially allow for differentiating between short-run and long-run impacts of the 

advent of an ethanol plant on the near-by corn acreage. Note that, unlike Mora and Reggio 

(2012), we include a vector of controls ,i tZ  in our regression equation (4). ,i tZ  consists of 

lagged soybean ( , 1i tS  ), wheat ( , 1i tW  ), and grass ( , 1i tG  ) acreage at time t  for each parcel i . 

The variables are intended to control for the differentiated opportunity cost of growing corn on 

lands that were attributed towards soybean, wheat, and grass in the previous period. The 

treatment effects estimator from equation (4), denoted as ( , | )iATT s n Z , is given as 

(5)          
1 1

*( , | ) ( | )n n d

i i s t sATT s n Z ATT s Z  


      9 

The term s  refers to the ths  year after the last pre-treatment year *t  and the term n  refers 

to a parallel (nth-order)-differences assumption that identifies ( , | )iATT s n Z . ( , | )iATT s n Z  is 

defined as the nth-order treatment effect s  periods ahead of the last pre-treatment period ( *t ). It is 

evaluated by comparing the (n-1)th-order difference ( 1n ) in outcomes at period s  relative to its 

counterpart at *t  across treatment and control groups. As discussed in the appendix, the parallel 

(nth-order)-differences assumption can be written mathematically as: 

(6)          
1 1 *

, * , *[ | , 1] [ | , 0]  {1, ... , ( ) 1}.n U n U

s i t s i i s i t s i iE C Z d E C Z d s T l t 

              

For 1n   equation (6) reduces to a parallel paths assumption. For 2n   equation (6) reduces 

to a parallel (1st-order) differences or parallel growth assumption. Note that the parallel growth 

                                                 
9 See Theorem 3 in Mora and Reggio (2012) 
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assumption is specific to each ths  post-treatment year. The parallel growth requires that the 

difference between corn acres in 1s   and s  post-treatment years must be equal among treatment 

and control groups in the absence of a treatment. Also, ( ,2 | )iATT s Z  is similar to the 

Differences-in-Differences-in-Differences (DDD) estimator since we are comparing two-period 

differences in corn acres, rather than absolute acres, to compute treatment effects. For 2n  , we 

move on to higher order differences. For example, 3n   implies a 
2 2 (=(1 L) (L L ))     

operator on s -periods ahead outcome variable in equations (5) and (6). It is clear that we require 

at least three pre-treatment years to estimate ( ,3 | )iATT s Z . In this sense, parallel (nth-order) 

differences would require at least n pre-treatment periods, and hence the higher order 

generalizations ( 2n  ) could not be implemented for the South Dakota plants due to data 

inavailability. It is interesting to note that the treatment effects can differ in size, sign, and 

interpretation based on the choice of nth-order identifying assumption. However, these 

assumptions can be tested for equivalence using the coefficient estimates of the fully-flexible 

model. Testing the equivalence between parallel (nth-order) and parallel ( 1n  th-order) 

difference assumptions is similar to testing for the null hypothesis: 1

* 0n d

t
   such that 

*( )n T l t  .  

As mentioned earlier, the PPA can be formally tested using coefficient estimates of the 

fully-flexible DID model. This is because the standard DID is a special case of the fully-flexible 

model (n = 1) and so the PPA is also a special case of the family of identifying assumptions in 

equation (6). To test whether the PPA holds we can simply test the null Ho: 
*0  d

t t t    . This 

null hypothesis requires that the treatment effect in each pre-treatment year be zero. In the event 

that we have perfectly matched treatment and control groups, the PPA is equivalent to the above 
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null hypothesis in the pre-treatment years. The Ho is rejected for each North Dakota ethanol plant 

(see Table 6) as indicated by the non-parallel pre-treatment trends earlier.    

Multiple pre-treatment years are available for the four North Dakota ethanol plants. So 

the fully-flexible DID model can be implemented for these plants. However, an opportunity to 

implement multiple assumptions and estimating corresponding treatment effects for each case 

comes with the challenge of choosing among these estimates. We restrict our analysis to 2n   

as it is the least complex model that does not impose the PPA. That is, we compare difference in 

growth of corn acres between treatment and control groups rather than the difference in absolute 

acres, to assess treatment effects. We will conduct a spatial placebo to validate our treatment 

estimates, to be discussed later. 

Estimation Results: The Fully Flexible DID Model 

Econometric Considerations 

The econometric considerations when estimating equation (4) are discussed here. First, 

we include lagged variables for the three major transitioning land use types other than corn (i.e., 

wheat ( , 1i tW  ), soy ( , 1i tS  ), and grass ( , 1i tG  )). Since the lagged variables may impact the 

evolution of corn acres alongside the ethanol plants, excluding them may confound the treatment 

estimates through omitted variable bias. The coefficient estimates to these variables would also 

capture differentiated costs of conversion to corn from three different land use types. 10 Second, 

we compute heteroscedasticity-consistent standard errors by stratifying our panel by designating 

                                                 
10 Although the lags primarily control for the opportunity to grow corn in these rural states, they 

also capture a negative correlation among ,i tC  and , 1i tC   since corn, soy, wheat and grass are 

the major land uses under transition.  
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each land parcel as an individual cluster. This transforms the variance-covariance matrix into a 

block-diagonal with each block corresponding to an individual land parcel.  

A point estimate of the average treatment effect on the treated, based on the parallel 

growths assumption (i.e., 2n  ), at each post-treatment period *t s  can be written as 

(7)          

* * 1

* * 1

* * 1 * * 1

( ,2 | ) ( | ) ( )

                                              (1 )( )

                                              ( ) ( ).

d d

i i s t s t s

s d d

t s t s

d d d d

t s t s t t
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And a sample estimate of the variance of this point estimate can be computed as: 

(8)          

* * 1 * * 1

* * 1 * * 1
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For each of the four ethanol plants in North Dakota we present the coefficient estimates from the 

regression equation (4) in Table 6 and ( ,2 | )iATT s Z  in Table 7.  

Estimation of Treatment Effects 

The fully-flexible DID model estimates year-specific treatment and time effects unlike 

the standard DID, which estimates a single treatment and trend effects between aggregated pre- 

and post-treatment years (see supplementary information). However, we find differentiated 

opportunities for growing corn on land parcels previously planted with wheat and grass, in line 

with the standard DID estimation. We also include lagged soy acres and find its coefficient in 

Table 6 to be always positive, although significant for TE and HRE, reflecting the usual cropping 

pattern of corn-soy rotations. The negative and significant coefficients for , 1i tG   in all cases 

likely reveal high initial costs of land preparation to convert from grass to corn. Lagged wheat 

acres, on the other hand, are found to be positive and insignificant for BF and RTE as well as 
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negative and significant for TE and HRE. The opportunity cost of converting from wheat to corn 

is lower than grass to corn, as reflected by the respective coefficients in all but one case. This is 

likely due to significant differences in cost of conversion. 

The year-specific time dummies are interestingly higher in the post-treatment years than 

the pre-treatment years. This implies that the role of trend-related effects alone in driving 

increased corn acres in the vicinity of the North Dakota ethanol plants has been significant, 

irrespective of the treatment or control groups. Finally, turning to the year-specific treatment 

estimates, through interaction between time dummies and the treatment dummy, we still find 

negative (but insignificant) coefficients for BF that are hard to reconcile with economic 

incentives arising from transportation costs and increased local corn basis. Since the assumption 

of parallel paths is formally rejected, i.e.,
*0  d

t t t    , the year-specific coefficients on our 

time dummies interacted with treatment do not identify the ATT. However, comparing the size, 

sign and significance of the time-specific coefficients, with and without interacting with the 

treatment dummy, across the four ethanol plants, it is clear from Table 6 that we are dealing with 

four different dynamic systems. Based on these findings, we infer that point estimates of impact 

across many ethanol plants in a region, as usually reported in the literature, is problematic.  

As discussed earlier, we estimate the impact of ethanol plants as ( ,2 | )iATT s Z , which 

compares the growth of corn acres among treatment control groups over time. While the PPA 

based treatment estimates (although not identified) found declining absolute corn acres for three 

out of four ND ethanol plants, the parallel-growths-assumption-based estimates find increased 

growth in corn acres for two ethanol plants: RTE and TE. Whereas HRE was found in earlier 

estimates to increase the level of absolute corn acres locally, its presence is found to significantly 

decrease growth in local corn acres. BF is found to decrease absolute corn acres as well as 
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growth in corn acres. Negative treatment effects, whether based on the PPA or the parallel 

growths assumption, are not supported by the economic incentives due to their presence. 

In order to contrast our results with the existing regional-level analyses we pool the data 

for all four cases in North Dakota. We designate 2006–08 as treatment period so that the last pre-

treatment year ( *t ) is 2005 and the post-treatment years are 2009–13. We cannot discern a 

significant uniform impact due to the North Dakota ethanol plants, as opposed to the positive 

impact for all of the U.S. Midwest ethanol plants by Motamed et al. (2016). Motamed et al. 

(2016) do recognize the potential differences due to plant-level impacts but estimate a uniform 

impact for the region. We disagree with this single, regional-level point estimate as our plant-by-

plant analysis suggests positive and negative impacts that are not reflected in the ‘pooled’ case.  

Placebo test 

We need to validate the parallel growths assumption so that the new ( ,2 | )iATT s Z  

estimates can be trusted. Unlike the PPA, the flexible parallel ( -order)thn -assumptions are specific 

to each post-treatment period, s . This feature allows these assumption to hold only for a subset 

of post-treatment periods. In this scenario, however, we can trust the treatment estimates only for 

the post-treatment periods where the corresponding assumption is valid. 

We utilize a spatial placebo instead of the temporal placebos to validate the parallel 

( -order)thn -assumption that is specific to every ths  year ahead of the *t . Since the temporal 

placebos are specified for a subset of years (utilized in case of standard DID, Figure 10) they 

cannot validate the new assumptions for all post-treatment years. In case of the standard DID, we 

aggregated pre- and post-treatment years and thus the PPA was not specific to any post-treatment 

year. This allowed allocating specific time periods as falsified treatment years (i.e., the temporal 
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placebos) before or after the advent of an ethanol plant. We designate a spatial placebo (S.P.) 

that is a dummy ethanol plant (a point coordinate) in north-eastern North Dakota. 

We locate our S.P. in north-eastern North Dakota (Figure 2) for three reasons. First, to 

avoid competition in demand for corn from other ethanol plants. The nearest to our S.P. is 

Tharaldson Ethanol which is approximately 300 km away. Second, we did not locate our placebo 

in north-western ND so as to avoid competition for rails/roads infrastructure by the region’s 

Bakken Shale industry. Third, we locate our S.P. such that it sits on ND State Highway 18, 

following the ethanol plants in our study that are usually situated on a major highway/railroad.  

We designate treatment and control groups for our S.P. with 735 land parcels in all. We 

then match these constituent land parcels by estimating a treatment probability for each of these 

from equation (3) and utilize the nearest-neighbor matching algorithm as discussed earlier. We 

find that area-weighted LCC and slope, in a quadratic functional form, are jointly significant in 

estimating the propensity of treatment from a logistic regression. Lower LCC and higher slopes 

are found to increase a representative parcel’s treatment probability. A matching caliper of 0.01 

is found to yield a balanced panel with 180 land parcels and 17 years (1997–2013). This 

balanced sample is then used to estimate equation (4) separately for years 2006, 2007, and 2008 

as treatment year designates. We run three separate regressions for each treatment year designate 

due to the time period-specific identifying assumptions of the fully-flexible model. So, placebo 

treatment estimates will correspond to TE for 2006; to RTE & BF for 2007; and to HRE for 

2008. Since a placebo is a false treatment, we expect a zero impact on corn acres due to S.P. 

Non-zero estimates will invalidate the identifying assumption of the new ATT. 

The estimation results for placebo regressions and corresponding ( ,2)ATT s  are 

presented in Tables 8 and 9, respectively. We find that ( ,2)ATT s  remains unidentified for 
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HRE and TE, but identified for RTE and BF (except for post-treatment years 2011 and 2013). 

This finding suggests that identifying localized treatment effects is challenging. Nevertheless, we 

can still infer upon the effects of ethanol plants on local land use using the regression estimates 

for RTE and BF. Note that even the placebo regressions find differentiated conversion 

opportunity costs from soy to corn, wheat to corn, and grass to corn. 

 Since the treatment effects remain unidentified for HRE and TE, we test the equivalence 

between the parallel (3rd-order) and (2nd-order) differences assumptions, and between the parallel 

(4th-order) and (3rd-order) differences assumptions. The results are presented in Table 10. We 

find that parallel (3rd-order) and (2nd-order) differences assumptions are not equivalent for HRE 

and TE. We evaluate ( ,3 | )iATT s Z  for these two ethanol plants and seek differences from 

( ,2 | )iATT s Z , if any (see table 11). ( ,3 | )iATT s Z  and its variance are expressed as under: 
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Observe that the sign of the higher-order treatment effects for TE and HRE is the same as 

earlier. These higher-order treatment effects (n = 3) are interpreted as change in rate of growth in 

corn acres due to the presence of an ethanol plant. However, the spatial placebo invalidates the 

identifying parallel (3rd-order) difference assumption. Hence, we now rely solely on HRE and BF 

to infer on the role of ethanol plants in North Dakota.  



36 

 

 

The treatment estimates for corn acres due to HRE and BF do indicate a potential shift in 

agricultural systems due to these ethanol plants, but are not conclusive on the direction of this 

shift. While HRE has caused a positive, insignificant growth in corn acres, BF is found to affect 

corn growth in a significantly negative manner. The negative growth in corn acres due to BF is 

not supported by the aforementioned economic incentives for corn production in its vicinity. We 

further investigate the negative treatment effects due to BF below. 

To investigate the negative impact of Blue Flint on growth of corn acres in its locality, we 

designate alternative treatment and control groups to the east of BF and on the east of the 

Missouri River. Conducting this analysis with these newly designated treatment & control 

groups will also gauge the sensitivity and robustness of our treatment estimates. The originally 

designated treatment & control groups lie south of BF, but on the other side of the river than BF. 

11The alternative treatment and control groups are designated to the east of BF because a new 

ethanol plant, Dakota Spirit AgEnergy (administered by the Midwest Ag Energy Group, also the 

owner of BF), was established in June, 2015.12 This new ethanol plant is located approx. 200 km 

east of BF and 100 km west of TE. A linear city model of supply would suggest existence of a 

supply-demand gap to the east of BF that led to the emergence of a new plant to bridge this gap. 

Out treatment effects will capture whether BF prompted an increase in corn acres among eastern 

                                                 
11 Both treated and control parcels to south of the BF need to cross a river bridge to reach the 

plant that leads Euclidean distance to be effectively much shorter than the actual distance (see 

table in Appendix). Therefore, the treatment effects from the alternative T & C groups should be 

weaker than their southern counterpart. 

12 See http://www.midwestagenergygroup.com/dakota-spirit-agenergy  

http://www.midwestagenergygroup.com/dakota-spirit-agenergy
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land parcels. We estimate ( ,2 | )iATT s Z  for the alternative groups and present the estimation 

results in Tables 12 and 13. 

The alternative treatment estimates for BF are in agreement with the treatment effects from 

original treatment and control groups. Although corn acreage to the east side of BF increased 

from 2008–2013 and accelerated in 2012 and 2013, BF seems to have played a counter-

productive role as far as corn acreage is concerned. 

Discussion and Conclusion 

The Dakotas’ grasslands are a valuable natural resource as they sustain livestock 

production and support a waterfowl breeding habitat on existing wetlands. However, the regional 

agricultural production significantly increased over the past decade and intensified cropping has 

displaced these grasslands. Alongside, most new corn-based ethanol plants started operations in 

the Dakotas between 2006 and 2008. This study seeks to understand the role of new ethanol 

plants on local corn acreage. We argue that the economic incentives due to ethanol plants are 

generated as reduced transportation costs and are more relevant at a local level. We utilize a 

unique research design to evaluate localized land use impacts for each ethanol plant rather than a 

uniform regional impact for all ethanol plants, as usually found in the literature.  

We implement a quasi-experimental setting and utilize the DID estimation strategy to 

evaluate an ethanol plant’s impact on local corn acreage, controlling for the endogeneity due to 

its location. The treated and untreated parcels are first matched on soil quality in order to ensure 

that the impact of soils on land use does not confound our DID treatment estimates. Use of DID 

and/or PSM for impact analyses of change/policy is rare in economic analyses of natural 

resources, primarily due to unavailability of spatially explicit datasets. On a plant-by-plant basis, 

we find that treatment effects vary across plants and are different from a single point estimate for 
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all ethanol plants in the region. The state-level ethanol plant impact is found to be negative, 

insignificant and is not consistent with the differentiated plant-level impacts.   

Further, the standard parallel paths assumption of the DID fails to hold in this study. We 

adapt the standard DID model to a more general framework that incorporates flexible trends 

differentiated across groups. The updated DID model requires multiple pre-treatment periods and 

so we restrict our analysis to the North Dakota plants. We estimate the new treatment effects by 

comparing growth of corn acres due to the presence of ethanol plants, rather than comparing 

absolute corn acres as in case of the standard DID. The updated framework finds both positive 

and negative ethanol plant impacts that may be insignificant. Negative treatment effects are 

surprising, and difficult to reconcile with the higher incentives to grow corn in treated parcels. A 

spatial placebo analysis indicates that the treatment effects are identified for only two out of four 

ethanol plants in North Dakota.  

We conclude that, although our research framework allows for a local level analysis, 

identifying the localized impacts is challenging. Even though we do not find definitive ethanol 

plant impacts, strong incremental trends in corn acres are evident across all land parcels after the 

2006–08 period. Therefore, failure to detect a local effect is not inconsistent with the existence of 

a national-level effect of ethanol policies resulting from higher national commodity prices.  

Our novel research design incorporates remotely sensed data into an applied economic 

analysis with quasi-experimental setting. We point towards the shortcomings of our approach. 

First, the Euclidean distances may not be a good representation of the ‘actual’ distances of land 

parcels from ethanol plants. Future analyses may consider a ‘Nearest Facility Analysis’- GIS tool 

to utilize an actual road network. Second, we use ad-hoc treatment and control groups with an 

imperfect matching strategy. In some cases the average pre-treatment trends in corn acres were 
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weaker for the treated parcels for than the controls, which further raises concerns on our 

understanding of the ethanol plants’ location decisions. Access to public infrastructure, grain 

elevators and/or other market terminals may better explain the plants’ location choice. We lack 

such data but these factors may impact the land use decisions along with the plant locations. 

Overall, our results warrant further investigation into the location decisions of ethanol plants and 

other potential drivers of land use.  
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TABLES 

Table 1. List of Ethanol Plants in North Dakota and South Dakota for our Analysis. 

S. No. Ethanol Plant 
Year 

Established 

Capacity 

 (Million gallons per year) 
Location 

North Dakota 

1 Red Trail Energy 2007 50 
Richardton, 

Stark County 

2 Blue Flint Ethanol 2007 65 
Underwood, 

McLean County 

3 Tharaldson Ethanol LLC 2006 153 
Casselton, 

Cass County 

4 Hankinson Renewable Energy 2008 145 
Hankinson, 

Richland County 

South Dakota 

1 POET Bio refinery (POET) 2008 110  
Chancellor, 

Turner County 

2 NuGen Energy (NuGen) 2008 100 
Marion, 

Turner County 

3 Advanced Bio Energy (ABE) 2008 53 
Aberdeen, 

Brown County 

4 Glacial Lakes Energy (GLE) 2008 100 
Mina, 

Edmunds County 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

 

Table 2. Schematics of the Treatment and Control Groups of Ethanol Plants Analyzed in this 

study. 

Ethanol Plant T1 T2 C1 C2 

RTE 5km-30km 

South 

15km-40km 

South 

50km-74km 

South 

76km-100km 

South 

BF 5km-30km 

South 

15km-40km 

South 

50km-74km 

South 

76km-100km 

South 

TE 5km-30km 

West 

15km-40km 

West 

50km-74km 

West 

76km-100km 

West 

HRE 5km-30km 

West 

15km-40km 

West 

50km-74km 

West 

76km-100km 

West 

POET & NuGen 5km-30km 

West of POET* 

30km-55km 

West of POET* 

70km-94km 

West of POET* 

96km-120km West 

of POET* 

ABE & GLE 5km-30km 

West of ABE* 

30km-55km 

West of ABE* 

70km-94km 

West of ABE* 

96km-120km West 

of ABE* 

Spatial 

Placebo 

5km-30km 

South 

15km-40km 

South 

50km-74km 

South 

76km-100km 

South 

* GLE lies ~30 km west of ABE – the location of T & C groups can be visualized accordingly. 

Notes on Planar Dimensions of our Treatment and Control Rectangles (Part of Table 2): 

 Red Trail Energy & Blue Flint Ethanol: 25 km N-S X 50 km E-W. 

 Tharaldson Ethanol: 25 km E-W X 50 km N-S. 

 Hankinson Renewable Energy: 25 km E-W X 40 km N-S. The North Dakota State 

boundary is located 15 km south of this plant and the N-S dimensions accommodate this.  

 Cluster (POET and NuGen): 25 km E-W X 40 km N-S. The rectangles excluded a circle 

of radius 2.5 km from NuGen, i.e. permanent development (township). 

 Cluster (ABE and GLE): 25 km E-W X 50 km N-S. The rectangles exclude a circle of 

radius 7 km from GLE to avoid a large water pond in land use characterization. 

 Spatial Placebo: 25 km N-S X 30 km E-W 
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Table 3. Propensity Score Estimation using Logit regressions. Dependent Variable: ( 1)iP d  . 

Variable RTE BF TE HRE ABGL PBNE S.P. 

Intercept 
24.42** 

(3.52) 

1.60** 

(0.48) 

14.48 

(9.64) 

9.99** 

(1.70) 

-59.32** 

(5.41) 

11.66** 

(1.09) 

56.41*** 

(10.51) 

WLCC  
-40.18** 

(3.10) 

0.63* 

(0.35) 

-12.25 

(7.76) 

-2.61** 

(1.05) 

11.65** 

(1.70) 

-5.33** 

(0.98) 

-44.23*** 

(8.44) 

2WLCC  
7.53** 

(0.61) 

-0.11** 

(0.04) 

2.38 

(1.60) 

0.33* 

(0.18) 

-2.01** 

(0.31) 

0.79** 

(0.23) 

-8.60*** 

(1.70) 

WSLP  
6.52** 

(0.48) 

-0.31** 

(0.10) 

6.20** 

(2.39) 

-2.77** 

(0.31) 

30.71** 

(4.23) 

-2.63** 

(0.44) 

2.26 

(3.00) 

2WSLP  
-0.40** 

(0.03) 

0.01** 

(0.005) 

-1.95** 

(0.43) 

2.88** 

(0.38) 

-5.29** 

(0.76) 

0.33** 

(0.05) 

-1.50* 

(0.80) 

AIC 946 1222 709 1211 991 977 582 

SC 972 1246 734 1235 1016 1002 605 

-2 Log L 936 1212 699 1201 981 967 572 

** means significant at 95% C.I. * means significant at 90% C.I. Standard error in parentheses. 

 

Table 4. Matching Performance. 

1

oH : Means of variable 
a

iX  are statistically equal across groups (t-test). 

2

oH : Variances of variable 
a

iX  are statistically equal across groups (F-test). 

Ethanol 

Plant 
Sample Size Caliper  

a

iX   Mean 

1

oH   

p-value 
Variance 

2

oH   

p-value 

 
Pre-

Match 

Post-

Match  
  T C  T C  

RTE 1224 130 0.0004 
WLCC 2.36 2.30 0.42 0.15 0.14 0.66 

WSLP 7.92 7.46 0.11 2.72 2.62 0.87 

BF 1012 548 0.01 
WLCC 3.77 3.68 0.57 2.82 3.20 0.28 

WSLP 9.77 9.73 0.93 16.97 18.84 0.42 

TE 1155 240 0.01 
WLCC 2.09 2.07 0.48 0.05 0.04 0.21 

WSLP 2.83 2.83 0.98 0.02 0.03 0.06 

HRE 980 322 0.005 
WLCC 2.97 2.88 0.34 0.69 0.72 0.77 

WSLP 3.03 3.14 0.39 1.21 1.32 0.54 

ABGL 1118 200 0.0005 
WLCC 2.04 2.06 0.57 0.12 0.08 0.09 

WSLP 3.17 3.24 0.20 0.18 0.14 0.28 

PBNE 971 314 0.005 
WLCC 2.04 2.06 0.57 0.12 0.08 0.10 

WSLP 3.17 3.24 0.20 0.18 0.14 0.27 

Spatial 

Placebo 
735 180 0.01 

WLCC 2.22 2.23 0.85 0.14 0.13 0.81 

WSLP 1.92 1.89 0.62 0.13 0.15 0.60 
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Table 5. Placebo Estimates with 'Logarithm of CS' as dependent variable 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Red Trail 

Energy 

Blue Flint 

Ethanol 

Tharaldson 

Ethanol 

Hankinson 

Renewable Energy 

F.T. – 1 (2000) -1.63** 1.09*** -1.27*** -0.29*** 

ACTUAL 

TREATMENT 
-0.28 -0.50** -0.54*** 0.09 

F.T. – 2 (2011) 0.21 0.32 -0.14***  -0.46** 
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Table 6. Estimates of the fully-flexible DID model. Dependent Variable: ,i tC  

Variable RTE BF TE HRE POOLED 

Intercept 
8.62 

(3.18)*** 

33.05 

(5.20)*** 

-24.60 

(5.86)*** 

77.38 

(10.48)*** 

61.60 

(5.33)*** 

, 1i tW   
0.003 

(0.01) 

-0.003 

(0.02) 

-0.02 

(0.02) 

-0.36 

(0.04)*** 

-0.20 

(0.02)*** 

, 1i tS   
0.41 

(0.26) 

0.09 

(0.06) 

0.17 

(0.02)*** 

0.25 

(0.04)*** 

0.17 

(0.02)*** 

, 1i tG   
-0.02 

(0.01)*** 

-0.07 

(0.01)*** 

-0.09 

(0.02)*** 

-0.27 

(0.03)*** 

-0.19 

(0.01)*** 

id  
-0.20 

(1.98) 

-7.14 

(1.56)*** 

11.84 

(4.42)*** 

-28.52 

(8.76)*** 

-9.45 

(3.17)*** 

[ 1998]t iI d   
-0.07 

(1.96) 

12.75 

(2.46)*** 

-9.48 

(5.72) 

10.50 

(10.57) 

17.54 

(4.16)*** 

[ 1999]t iI d   
1.65 

(2.15) 

12.77 

(2.32)*** 

-7.76 

(6.18) 

44.58 

(9.91)*** 

21.61 

(3.57)*** 

[ 2000]t iI d   
1.36 

(2.17) 

-0.88 

(1.70) 

-33.15 

(5.84)*** 

-26.55 

(9.63)*** 

-12.19 

(3.39)*** 

[ 2001]t iI d   
-2.42 

(1.90) 

12.40 

(2.21)*** 

-34.66 

(7.07)*** 

6.32 

(10.59) 

4.95 

(3.67) 

[ 2002]t iI d   
-4.32 

(2.01)*** 

3.13 

(2.05) 

-33.29 

(7.86)*** 

10.78 

(9.71) 

4.50 

(3.49) 

[ 2003]t iI d   
-0.58 

(1.97) 

8.67 

(1.80)*** 

-33.10 

(6.38)*** 

-29.81 

(11.72)*** 

-5.05 

(3.83) 

[ 2004]t iI d   
-5.38 

(3.86) 

4.23 

(1.70)*** 

38.58 

(8.60)*** 

30.58 

(11.21)*** 

18.39 

(3.92)*** 

[ 2005]t iI d   
-0.19 

(1.90) 

6.90 

(2.04)*** 

1.23 

(8.56) 

68.96 

(9.35)*** 

22.19 

(3.44)*** 

[ 2006]t iI d   
0.66 

(2.50) 

12.89 

(2.59)*** 
-- 

2.41 

(9.70) 
-- 

[ 2007]t iI d   -- -- 
24.26 

(11.18)** 

23.60 

(9.80)** 
-- 

[ 2008]t iI d   
-2.21 

(2.19) 

2.53 

(2.63) 

-1.42 

(11.95) 
-- -- 

[ 2009]t iI d   
0.54 

(4.29) 

3.78 

(2.64) 

29.33 

(10.22)*** 

41.69 

(9.93)*** 

19.29 

(3.82)*** 

[ 2010]t iI d   
3.64 

(4.18) 

1.71 

(2.72) 

22.71 

(12.06)* 

26.83 

(10.22)*** 

14.60 

(4.15)*** 

[ 2011]t iI d   
8.93 

(4.62)* 

-1.81 

(3.40) 

20.85 

(11.85)* 

14.32 

(10.53) 

9.90 

(4.24)** 

[ 2012]t iI d   
14.01 

(12.26) 

-1.80 

(4.55) 

46.06 

(14.65)*** 

22.11 

(11.06)** 

17.87 

(5.36)*** 

[ 2013]t iI d   
29.87 

(8.35)*** 

-5.93 

(4.57) 

56.18 

(12.84)*** 

27.10 

(11.52)*** 

19.09 

(5.29)*** 

[ 1998]tI   
-4.28 

(1.80)** 

-12.78 

(1.57)*** 

42.06 

(4.58)*** 

90.67 

(8.04)*** 

20.09 

(2.93)*** 



45 

 

 

[ 1999]tI   
-3.03 

(1.22)*** 

-10.55 

(1.54)*** 

37.40 

(4.44)*** 

37.48 

(7.30)*** 

10.76 

(2.43)*** 

[ 2000]tI   
0.80 

(1.17) 

-3.23 

(1.38)** 

49.31 

(5.21)*** 

81.09 

(7.65)*** 

27.77 

(2.63)*** 

[ 2001]tI   
-1.82 

(1.19) 

-11.34 

(1.44)*** 

51.44 

(5.10)*** 

43.44 

(8.36)*** 

15.12 

(2.72)*** 

[ 2002]tI   
-0.47 

(1.41) 

-3.70 

(1.49)*** 

44.04 

(5.25)*** 

24.51 

(7.04)*** 

11.27 

(2.46)*** 

[ 2003]tI   
-4.53 

(1.41)*** 

-18.59 

(2.09)*** 

40.26 

(4.38)*** 

53.81 

(9.40)*** 

6.76 

(3.10)** 

[ 2004]tI   
5.72 

(2.82)** 

-1.03 

(1.25) 

38.03 

(5.08)*** 

60.47 

(7.95)*** 

25.75 

(2.55)*** 

[ 2005]tI   
-2.86 

(1.15)*** 

-4.23 

(1.38)*** 

34.12 

(5.54)*** 

1.76 

(7.43) 

4.13 

(2.34)* 

[ 2006]tI   
3.33 

(1.62) 

-3.19 

(1.40)** 
-- 

51.65 

(7.59)*** 
-- 

[ 2007]tI   -- -- 
84.25 

(7.51)*** 

80.39 

(7.54)*** 
-- 

[ 2008]tI   
3.05 

(1.48)** 

8.45 

(2.01)*** 

98.26 

(7.88)*** 
-- -- 

[ 2009]tI   
6.45 

(2.81)** 

8.95 

(2.05)*** 

62.18 

(6.70)*** 

44.99 

(7.34)*** 

31.40 

(2.56)*** 

[ 2010]tI   
2.30 

(1.92) 

6.99 

(1.87)*** 

68.43 

(7.71)*** 

29.51 

(7.49)*** 

23.49 

(2.78)*** 

[ 2011]tI   
3.43 

(1.55)** 

16.93 

(2.35)*** 

55.92 

(6.91)*** 

84.62 

(8.33)*** 

41.53 

(2.83)*** 

[ 2012]tI   
20.43 

(6.28)*** 

27.17 

(2.87) 

113.28 

(8.93)*** 

80.72 

(8.20)*** 

56.33 

(3.38)*** 

[ 2013]tI   
6.11 

(3.49)* 

31.02 

(3.08) 

111.97 

(8.48)*** 

89.84 

(8.16)*** 

58.94 

(3.39)*** 

      2R   0.16 0.20 0.41 0.32 0.38 

* p<0.1; ** p<0.05; *** p<0.01; -- signifies advent of the ethanol plants. S.E.s in parentheses. 
 

 

Table 7. ( ,2 | )iATT s Z  for the Four ND Ethanol Plants. 

Ethanol Plant (Year 

Established) 

Red Trail 

E. (2007) 

Blue Flint  

(2007) 

Tharaldson E. 

(2006) 

Hankinson 

E. (2008) 

POOLED 

(2006-’08) 

2007 - - 60.38*** - - 

2008 -3.73 -16.35*** 11.67 - - 

2009 1.91 -4.74 68.10*** -3.09 -6.70 

2010 2.25 -8.06*** 30.73* -36.05*** -8.50 

2011 4.44 -9.51*** 35.50* -33.70*** -8.50 

2012 4.23 -5.97 62.56** -13.39 4.17 

2013 15.01 -10.12** 47.46** -16.19 -2.58 

* p<0.1; ** p<0.05; *** p<0.01 

Table 6 continued 
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Table 8. Estimation of the Fully-flexible DID Model for our Spatial Placebo. Dependent Var. ,i tC   

Variable 
TE  

‘2006’ 

RTE/BF 

‘2007’ 

HRE 

‘2008’ 

POOLED 

‘2006-’08’ 

Intercept 
10.57 

(4.50)** 

11.69 

(4.26)** 

10.33 

(4.33)** 

11.17 

(4.27)*** 

, 1i tW 
 -0.05 

(0.02)** 

-0.05 

(0.02)*** 

-0.04 

(0.02)** 

-0.04 

(0.02)*** 

, 1i tS   
0.11 

(0.03)*** 

0.09 

(0.03)*** 

0.10 

(0.03)*** 

0.09 

(0.03)*** 

, 1i tG 
 -0.10 

(0.02)*** 

-0.09 

(0.02)*** 

-0.09 

(0.02)*** 

-0.08 

(0.02)*** 

id  
-2.70 

(3.38) 

-3.07 

(3.30) 

-3.13 

(3.26) 

-3.47 

(3.19) 

[ 1998]t iI d   
7.88 

(5.70) 

7.35 

(5.64) 

7.72 

(5.71) 

7.41 

(5.68) 

[ 1999]t iI d   
1.40 

(5.07) 

0.07 

(4.88) 

0.81 

(4.85) 

-0.04 

(4.76) 

[ 2000]t iI d   
-1.10 

(4.23) 

-1.21 

(4.13) 

-1.17 

(4.19) 

-1.26 

(4.11) 

[ 2001]t iI d   
21.31 

(5.51)*** 

18.50 

(5.21)*** 

19.83 

(5.26)*** 

17.92 

(5.05)*** 

[ 2002]t iI d   
11.10 

(4.10)** 

10.56 

(4.01)** 

10.77 

(4.04)*** 

10.43 

(3.97)*** 

[ 2003]t iI d   
-9.03 

(5.28)* 

-9.34 

(5.02)* 

-8.41 

(5.07)* 

-8.70 

(5.01)* 

[ 2004]t iI d   
-46.05 

(8.10)*** 

-44.85 

(7.98)*** 

-44.05 

(7.88)*** 

-43.25 

(7.67)*** 

[ 2005]t iI d   
23.47 

(6.54)*** 

22.43 

(6.35)*** 

23.32 

(6.41)*** 

22.52 

(6.27)*** 

[ 2006]t iI d   -- 
-0.39 

(6.57) 

0.23 

(6.62) 
-- 

[ 2007]t iI d   
-48.70 

(10.59)*** 
-- 

-48.58 

(10.55)*** 
-- 

[ 2008]t iI d   
-36.38 

(10.69)*** 

-36.51 

(10.68)*** 
-- -- 

[ 2009]t iI d   
-46.32 

(9.71)*** 

-46.40 

(9.69)*** 

-46.27 

(9.73)*** 

-46.26 

(9.73)*** 

[ 2010]t iI d   
-59.14 

(9.74)*** 

-59.50 

(9.74)*** 

-59.45 

(9.76)*** 

-59.63 

(9.76)*** 

[ 2011]t iI d   
-42.83 

(10.09)*** 

-43.20 

(10.06)*** 

-43.11 

(10.10)*** 

-43.38 

(10.07)*** 

[ 2012]t iI d   
-81.92 

(12.37)*** 

-82.24 

(12.43)*** 

-81.78 

(12.35)*** 

-81.99 

(12.35)*** 
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[ 2013]t iI d   
-52.30 

(10.62)*** 

-52.52 

(10.53)*** 

-52.27 

(10.58)*** 

-52.46 

(10.53)*** 

[ 1998]tI   
20.53 

(4.61)*** 

19.89 

(4.55)*** 

19.54 

(4.61)*** 

19.02 

(4.49)*** 

[ 1999]tI   
11.12 

(4.87)** 

10.32 

(4.67)** 

9.87 

(4.56)** 

9.27 

(4.50)** 

[ 2000]tI   
13.91 

(4.58)*** 

12.25 

(4.44)** 

12.22 

(4.31)*** 

11.03 

(4.17)*** 

[ 2001]tI   
-4.54 

(5.16) 

-4.22 

(4.81) 

-5.31 

(4.91) 

-5.11 

(4.71) 

[ 2002]tI   
5.18 

(4.07) 

4.43 

(3.97) 

4.21 

(3.84) 

3.59 

(3.75) 

[ 2003]tI   
10.87 

(5.14)** 

10.36 

(4.92)** 

9.55 

(4.88)* 

9.16 

(4.81)* 

[ 2004]tI   
37.67 

(7.33)*** 

37.05 

(7.20)*** 

36.09 

(7.24)*** 

35.76 

(7.04)*** 

[ 2005]tI   
6.78 

(4.77) 

7.46 

(4.44)* 

6.32 

(4.57) 

6.88 

(4.41) 

[ 2006]tI   -- 
24.91 

(5.28)*** 

24.15 

(5.30)*** 
-- 

[ 2007]tI   
86.02 

(10.69)*** 
-- 

84.73 

(10.46)*** 
-- 

[ 2008]tI   
79.38 

(9.56)*** 

78.43 

(9.52)*** 
-- -- 

[ 2009]tI   
84.32 

(8.43)*** 

83.63 

(8.39)*** 

83.46 

(8.42)*** 

82.95 

(8.42)*** 

[ 2010]tI   
76.53 

(9.32)*** 

76.28 

(9.32)*** 

76.13 

(9.29)*** 

75.92 

(9.27)*** 

[ 2011]tI   
65.38 

(9.41)*** 

64.74 

(9.39)*** 

64.45 

(9.37)*** 

64.03 

(9.44)*** 

[ 2012]tI   
104.64 

(11.45)*** 

105.19 

(11.50)*** 

104.45 

(11.39)*** 

104.83 

(11.40)*** 

[ 2013]tI   
64.21 

(10.01)*** 

64.51 

(9.92)*** 

64.14 

(9.97)*** 

64.38 

(9.93)*** 
     2R   0.32 0.31 0.32 0.33 

* p<0.1; ** p<0.05; *** p<0.01; -- signifies advent of the ethanol plants. S.E.s in parentheses. 

 

 

 

 

 

 

Table 8 continued 
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Table 9. Estimate of ( ,2 | )iATT s Z  for our Spatial Placebo. 

Ethanol Plant 

 (Year Established) 

TE 

‘2006’ 

RTE/BF 

‘2007’ 

HRE  

‘2008’ 

POOLED 

‘2006-’08’  

2007 -141.69*** - - - 

2008 -57.21*** -13.31 - - 

2009 -79.46*** 12.93 51.12*** -134.54*** 

2010 -82.35*** 9.72 35.63** -79.14*** 

2011 -53.21*** 39.11*** 65.16*** -49.51*** 

2012 -108.62*** -16.22 10.14 -104.39*** 

2013 -39.90*** 52.54*** 78.32*** -36.22*** 

* p<0.1; ** p<0.05; *** p<0.01 

 

Table 10. T-statistic: Testing the Equivalence of -order and ( 1) -order assumptionsth thn n  . 

n   H0 
Red Trail E. 

(2007) 

Blue Flint 

(2007) 

Tharaldson E. 

(2006) 

Hankinson E. 

(2008) 

3 
2

* 0d

t    -4.35 3.32 -109.03*** 87.74*** 

4 
3

* 0d

t   -14 -3.79 -180.51*** 192.68*** 

5 
4

* 0d

t     -253.168*** 275.61*** 

* p<0.1; ** p<0.05; *** p<0.01 

  

Table 11. Estimate of ( ,3 | )iATT s Z  where Equivalence Assumptions Failed (Table 10). 

Ethanol Plant (Year 

Established) 
Tharaldson E. (2006) Hankinson E. (2008) 

2007 169.40*** - 

2008 60.32*** - 

2009 165.46*** -90.83*** 

2010 71.65*** -120.70*** 

2011 113.80*** -85.39*** 

2012 136.09*** -67.43*** 

2013 93.93*** -90.54*** 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 12. Estimation of the Fully-flexible DID Model for Eastern Treatment & Control Groups of 

the BF. Dependent Variable ,i tC  .T1: 15km-40km East & C2: 85km-110km East. 

Variable BF (2007) 

Intercept 
1.82 

(2.95) 

, 1i tW   
0.04 

(0.01)*** 

, 1i tS   
0.12 

(0.03)*** 

, 1i tG   
-0.03 

(0.01)*** 

id  1.00 

(1.60) 

[ 1998]t iI d   
2.62 

(2.00) 

[ 1999]t iI d   
-0.32 

(2.06) 

[ 2000]t iI d   
-2.63 

(1.72) 

[ 2001]t iI d   
-2.66 

(2.48) 

[ 2002]t iI d   
-3.49 

(2.32) 

[ 2003]t iI d   
-4.04 

(1.93)** 

[ 2004]t iI d   
4.10 

(2.35)* 

[ 2005]t iI d   
-6.73 

(3.61)* 

[ 2006]t iI d   
-0.17 

(2.79) 

[ 2007]t iI d   -- 

[ 2008]t iI d   
-8.97 

(4.69)* 

[ 2009]t iI d   
-11.92 

(4.64)*** 

[ 2010]t iI d   
-2.69 

(4.44) 

[ 2011]t iI d   
-3.85 

(4.87) 

[ 2012]t iI d   
-30.47 

(7.84)*** 

[ 2013]t iI d   
-9.99 

(7.34) 
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[ 1998]tI   
-0.96 

(1.69) 

[ 1999]tI   
3.05 

(1.79)* 

[ 2000]tI   
4.23 

(1.72)** 

[ 2001]tI   
4.45 

(2.40)* 

[ 2002]tI   
4.65 

(2.05)** 

[ 2003]tI   
1.81 

(1.96) 

[ 2004]tI   
1.76 

(1.75) 

[ 2005]tI   
9.07 

(3.62)** 

[ 2006]tI   
4.48 

(2.38)* 

[ 2007]tI   -- 

[ 2008]tI   
18.75 

(4.31)*** 

[ 2009]tI   
18.91 

(4.56)*** 

[ 2010]tI   
9.22 

(3.78)** 

[ 2011]tI   
12.89 

(4.48)*** 

[ 2012]tI   
43.01 

(7.42)*** 

[ 2013]tI   
32.19 

(5.94)*** 
  2R   0.20 

* p<0.1; ** p<0.05; *** p<0.01; -- signifies advent of the ethanol plant. S.E.s in parentheses. 

 

Table 13. Treatment Estimates for the Eastern Treatment & Control Groups of the BF. 

Ethanol Plant  

(Year Established) 
( ,2 | )iATT s Z  ( ,3 | )iATT s Z  

2008 -15.35*** -32.73*** 

2009 -9.51 -11.54 

2010 2.68 -5.20 

2011 -7.72 -27.78* 

2012 -33.17*** -42.83*** 

2013 13.92 29.71 

* p<0.1; ** p<0.05; *** p<0.01 

Table 12 continued 
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Data Source: Geo Grain 

Figure 1. Comparative corn basis trends for counties that house Dakota ethanol plants that 

started operations in the 2006–2008 period.  

Notes: The acronym ‘treat’ denotes the period when these ethanol plants started operations, ‘pre’ 

(‘post’) means years prior to (after) the 2006–2008 period.   

 

-100

-80

-60

-40

-20

0

20

40

60

80
1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1 1 3 5 7 9

1
1

A
ve

ra
ge

 M
o

n
th

ly
 B

as
is

 (
$

)

Year and Months

North Dakota Corn Basis Trends: Before and After the Advent of Ethanol Plants

ND Basis (Pre) ND Basis (Treat) ND Basis (Post)



52 

 

 

 

Figure 2. Spatial locations of the 8 ethanol plants included in this analysis. 

Image  

Source: Google Earth: “North and South Dakota.” 5122554.70 m N and 393724.99 m E. Google 

Earth. April 9, 2013. August 8, 2015.  
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Figure 3. Schematics of treatment and control group: an example. 

 

 

 

Red Trail Energy  
Ethanol Plant 

T 1 

T 2 

C 1 

C 2 

Treatment  
Groups 

Control  
Groups 

Source: “North Dakota” 33704.21m E, 5249274.59m N. Google Earth. 
April 9, 2014. October 20, 2014. 

*NOT TO SCALE 
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5: Blue Flint Ethanol 

 

 

Summary: 

No. Parcels: 417 

Mean: 0.50 

Lowest: 0.24 

Highest: 0.87 

 

Summary: 

No. Parcels: 595 

Mean: 0.65 

Lowest: 0.22 

Highest: 0.88 

 

6: Tharaldson Ethanol 

 

 

Summary: 

No. Parcels: 560 

Mean: 0.20 

Lowest: 0.00 

Highest: 0.98 

 

Summary: 

No. Parcels: 595 

Mean: 0.81 

Lowest: 0.04 

Highest: 0.99 

 

 

 

4: Red Trail Energy 

 

 

Summary: 

No. Parcels: 612 

Mean: 0.24 

Lowest: 0.00 

Highest: 0.89 

 

Summary: 

No. Parcels: 612 

Mean: 0.76 

Lowest: 0.00 

Highest: 1.00 
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Figures 4-9. Distribution of Treatment Probability across treatment and control groups.  

8: Aberdeen BioEnergy &  

Glacial Lakes Energy 

 

7: Hankinson Renewable Energy 

 

 

Summary: 

No. Parcels: 476 

Mean: 0.44 

Lowest: 0.13 

Highest: 0.91 

 

Summary: 

No. Parcels: 504 

Mean: 0.59 

Lowest: 0.13 

Highest: 0.99 

 

 

 

Summary: 

No. Parcels: 594 

Mean: 0.25 

Lowest: 0.00 

Highest: 0.90 

 

Summary: 
No. Parcels: 523 

Mean: 0.72 

Lowest: 0.00 

Highest: 0.88 

 

9: POET BioRefinergy &  

NuGen Energy 

Summary: 

No. Parcels: 476 

Mean: 0.34 

Lowest: 0.07 

Highest: 1.00 

 

Summary: 

No. Parcels: 495 

Mean: 0.67 

Lowest: 0.15 

Highest: 1.00 
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Figure 10. Temporal placebo schematics: validating the estimates from the standard DID model.  

Moving Away from the Parallel Paths Assumption 

  

 

 

 

   

ACTUAL TREATMENT FALSE TREATMENT-1 FALSE TREATMENT-2 

F.T.-1 POST F.T.-1 PRE F.T.-2 POST F.T.-2 PRE 

1997    1998       1999      2000      2001 2002    2003      2004      2005      2006 2007   2008     2009      2010       2011 2012 2013 
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Figure 11. Average corn acre-trends for treated & control groups of the North Dakota ethanol plants. Focus: Pre-treatment trends. 
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Figure 12 (a, b). The issue of non-parallel trends among treatment and control groups.
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APPENDIX [SUPPLEMENTARY INFORMATION] 

Modelling Differentiated Trends into Our DID Framework 

In this section we develop the DID framework to incorporate differentiated trends among 

treatment and control groups as well as between pre- and post-treatment periods. In this process, 

we will exploit the variations in corn acres in multiple periods before and after the advent of an 

ethanol plant. Capturing differentiated trends across groups alters the interpretation of regression 

coefficients that estimate treatment effects along with the identification strategies (Mora and 

Reggio, 2012). We will first explain the implications of a failed PPA for pre-treatment years 

(Figure 11) and then layout a ‘fully-flexible’ model, originally developed by Mora and Reggio, 

to capture trends that could vary between different years and among groups. We also discuss a 

family of identifying assumptions tied to estimating treatment effects under a fully-flexible 

model. As stated, this section is meant to enable a smooth transition from the standard DID to the 

fully-flexible DID model for our readers. 

The standard DID framework and the role of Parallel Paths assumption 

0 1 2 3 4, ,,
Reconsider our equation(1), that is ,  where the 

definitions of these variables and parameters are same as in the 'Methodology' section above.

Equation (2) implies th

t i i t t i i ti t
C d d Z            

, , , ,

0 1 2 3 4, | 1,

at [ | , 1] [ | , 0] and so 

mechanics of computing the treatment effects using regression equation (1) are as under:

1;  1 [ | ]  ,
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i i i ii t i t i t i t
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It is, however, critical to note that by definition the ATT equals 
, ,

[ | 1]T U

ii t i t
E C C d    

(where superscripts T (U) represent corn acres in the presence (absence) of ethanol plant in t t

) and the parallel paths assumption must hold for 3  to represent the impact of ethanol plants on 

corn acres. Figure 12 provides a visualization of the underlying implications when the parallel 

paths assumption fails. Basically, this assumption ensures that the treatment and control groups 

evolve in a parallel fashion (grey-dashed lines) and any difference in their post-treatment trends 

(orange- vs. grey-dashed lines) is purely due to the advent of the ethanol plant (or the treatment). 

This difference is 3 . However, the process depicted by green-solid lines in Figure 12 seems 

more realistic in the event that the parallel paths assumptions fails to hold. That is, we are 

potentially dealing with the group-specific pre- and post-treatment trends. We incorporate such 

differentiated trends into the standard DID model below. 

The DID framework with differentiated trends 

We motivate the implications of incorporating differentiated trends into the standard DID model 

through a specialized example here. We will discuss the mechanics involved in estimating the 

treatment effects within a new framework, including the underlying identifying assumptions, and 

show how these are different from the standard case. We will then move towards a generalized 

model proposed by Mora and Reggio’s (2012) and its applicability for our analysis.  

To incorporate the group-specific trends, consider the following econometric model. 

(A.1)          0 0 1 1 2 2 3 3 4, ,, t t i i i t i t t i i ti t
C t t d td d td Z                          , 

Where variable t  represents trends such that 1 for year =1997t   (2006) for North 

(South) Dakota ethanol plants, which increases by one for each subsequent year. While the 
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standard DID model in equation (1) allows distinct intercepts for treatment/control groups and 

pre-/post-treatment periods, the updated model in equation (A.1) allows for distinct linear trends 

(slopes), as well as intercepts, for these groups and periods.  Repeating our earlier exercise to 

compute treatment effects from equation (A.1), we get 

0 0 1 1 2 2 3 3 4, | 1,

0 0 2 2 4, | 1,

0 0 1 1 4, | 0,

0 0,

1;  1 [ | ]  ,

1;  0 [ | ] ,

0;  1 [ | ] ,

0;  0 [ | ]

i

i

i

i t i t i di t

i t i t i di t

i t i t i di t

i t ii t

d E C Z t t t t Z

d E C Z t t Z

d E C Z t t Z

d E C Z t

         

     

     

  















              

        

        

     4, | 0 |

3 3, , , ,

. And again, Z  is an unconditional mean.

So,  [ | , 1] [ | , 0] ,  which notably changes with .

i it i d i d

i i i ii t i t i t i t

Z

E C C Z d E C C Z d t t



    



      

 

However, we already know that the ATT (= 3 3t  , here) remains unidentified. Now, 

subtracting equation (A.1) from its one-period lagged counterpart, we have 

(A.2)          0 1 2 3 4, ,, t i i t t i i ti t
C d d Z                 , 

where , , , 1 4, 4, 4, 1 , , , 1,   and i t i t i t t t t i t i t i tC C C                 . 

Evidently, the mechanics of computing the treatment effects for regression equation (A.2) are 

similar to those of equation (1), with pertinent differences in notations of the outcome variable 

and the parameters. So, our ‘new’ average treatment effect for the treated ( ATT ) is given as: 

(A.3)      

, , , , 3[ | , 1] [ | , 0]   ,  & .i t i t i i i t i t i iATT E C C Z d E C C Z d t t t t t t  

 
                 

Here, it is important to realize that the interpretation of ATT   is not the same as our 

standard ATT . Expanding the mathematical expression of ATT from equation (A.3) gives 
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(A.4) 
, , , ,

, 1 , 1 , 1 , 1

{ [ | , 1] [ | , 0]}

                 { [ | , 1] [ | , 0]}  ,  &

i t i t i i i t i t i i

i t i t i i i t i t i i

ATT E C C Z d E C C Z d

E C C Z d E C C Z d t t t t t t

 

 

    

       

         
 

We can re-write our ‘new’ average treatment effect for the treated as a function of ATT , 

( , | ) ( , | ) ( 1, 1| ) ( , | )  ,  &ATT t t Z ATT t t Z ATT t t Z ATT t t Z t t t t t t                 , which 

in turn suggests that ATT   measures the impact of treatment as a change in the standard 

treatment effects ( ATT ) between a specific post-treatment period and a specific pre-treatment 

period. In the context of ethanol plants, ATT   would measure a one-period change in corn acres 

from a post-treatment year relative to a one-period counterpart from a pre-treatment year. 

The identification of  ATT   is consistent with that of the standard DID. That is, by 

definition, ATT   equals , ,[ | 1, ]T U

i t i t i iE C C d Z   , where superscripts T (U) represent corn acres 

in presence (absence) of ethanol plant in t t . As with the standard DID, since ,

U

i tC  is not 

observed for the post-treatment years, we would need an identification assumption to be able to 

compute ATT   as 3   in equation (A.2). Hence, the identification assumption for ATT   is  

(A.5)          , , , ,[ | , 1] [ | , 0]  &  .U U U U

i t i t i i i t i t i iE C C Z d E C C Z d t t t t 

 
            

Note that the new identifying assumption compares first-differences in outcome levels 

among treatment and control groups, as opposed to the outcome levels as in the identifying 

assumption for the standard ATT (see equation (1)). The new estimator is termed as as a 

difference-in-first-difference estimator (following Mora and Reggio, 2012). 

An aspect of the updated model and its identifying assumption is that it allows estimating a 

(change in) treatment effects for each of the multiple post-treatment periods (i.e., for every t t

). Alongside, it also allows using multiple pre-treatment years (i.e., each t t  ). However, it 
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would suffice to estimate the impact of treatment from the last pre-treatment period, say *t . To 

see this, consider ( | )iATT s Z defined s  periods ahead of *t  such that that * and t t s t t    . 

Hence, the identifying assumption and ( | )iATT s Z  are given by equations (A.6) and (A.7) 

respectively. 

(A.6)          , * , * , * , *[ | , 1] [ | , 0] .U U U U

i t s i t i i i t s i t i iE C C Z d E C C Z d         

(A.7)          , * , * , * , *( | ) [ | , 1] [ | , 0]i i t s i t i i i t s i t i iATT s Z E C C Z d E C C Z d 
          

We can write ( | )iATT s Z  as a function of the original ATT : 

(A.8)  

, * , * , * , *

, * 1 , * 1 , * 1 , * 1

      ( | ) { [ | , 1] [ | , 0]}

                                { [ | , 1] [ | , 0]}

   ( | )  ( | ) ( 1 | )

i i t s i t i i i t s i t i i

i t s i t i i i t s i t i i

i i i

ATT s Z E C C Z d E C C Z d

E C C Z d E C C Z d

ATT s Z ATT s Z ATT s Z

 

     

       

    

   

  

Now, to evaluate the impact of ethanol plants our primary interest still lies in estimating 

ATT from the standard model. Since 3( | )iATT s Z    , independent of s , the ATT can be 

recursively calculated for each post-treatment year as s  increases by 1.  That is,

3( 1| )  ( | )i iATT s Z ATT s Z      for s  ≥ 2. For 1s  , first see that (0 | ) 0iATT Z    because 

, * , *[ | 1, ] 0T U

i t i t i iE C C d Z   13, which in turn yields that (1| )  (1| )i iATT Z ATT Z   . Since 

(1| )iATT Z  is identified by (12) and (1| )iATT Z  is not, we compute (1| )iATT Z  below.  

                                                 

13 
*

, , , ,[ | 1, ] [ | 1, ] 0  T U T U

i t i t i i i t i t i iE C C d Z E C C d Z t t   
         . This is one of the reasons why 

it would suffice to consider only the last pre-treatment period to evaluate the treatment effects. 
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We know that,             

, * 1 , * , * 1 , *

, * , * 1 , * , * 1

 (1 | ) { [ | , 1] [ | , 0]}

                                                               { [ | , 1] [ | , 0]}

i i t i t i i i t i t i i

i t i t i i i t i t i i

ATT Z E C C Z d E C C Z d

E C C Z d E C C Z d

 

 

       

    
 

We explicitly write-out the expressions for , * 1 , * , * 1,   and i t i t i tC C C   below because 

1 only for * 1.td t   

, * 1 0 0 1 1 2 2 3 3 4, * 1 , * 1

, * 0 0 2 2 4, * , *

, * 1 0 0 2 2 4, * 1 , * 1

( * 1) ( * 1) ( * 1). ( * 1).

( *) ( *).

( * 1) ( * 1).

i t i i i i t i i t

i t i i t i i t

i t i i t i i t

C t t d t d d t d Z

C t d t d Z

C t d t d Z

         

     

     

  

  

                

      

        

  

It can now easily be shown that  3 3(1| )  (1| ) ( * 1)i iATT Z ATT Z t       . The way 

(1| )iATT Z  depends on *t also justifies the use of last pre-treatment period as sufficient to 

compute ATTs  for all post-treatment periods. If we were to use the penultimate pre-treatments 

period instead of the last pre-treatment period, only *( 1)t   would be replaced by *( 2)t   in the 

expression for (1| )iATT Z  as the base period has changed. However, doing this would require at 

least three pre-treatment years which may not be practically available (as is the case of South 

Dakota for this article).  

Hence, the recursive solution to estimate treatment effects, using a DID framework that 

incorporates differentiated trends, by estimating equation (A.2) is given as: 

(A.9)          3 3( | ) ( * ) 1iATT s Z t s s       . 

                                                 

Given a recursive formulation to compute ATT  for each subsequent post-treatment period, the 

periods prior to *t  would not matter. 



69 

 

69 

 

Now that we have motivated the idea of incorporating trends into the standard DID framework, 

we address two further issues addressed by Mora and Reggio (2012). First, that the parallel first-

difference assumption that identifies our ‘new’ average treatment effects for the treated can be 

generalized into a family of parallel n-differences assumptions. The formulation and 

interpretation of the average treatment effects in those cases would, however, differ. Second, the 

authors provide a ‘fully-flexible DID model’ by incorporating trends through indicator variables 

for each time period. This model has two advantages, when compared to the linear-trends model: 

(a) it incorporates flexible trends visualized in Figure 12, and (b) it allows testing for equivalence 

between the parallel n-differences assumptions. The linear-trends DID model that we have 

developed in this sub-section is essentially a special case of the fully-flexible DID model’ 

presented hereafter. An alternative way to incorporate flexible trends into the standard DID 

model would be to introduce non-linear functional forms for trends (e.g., quadratic trends). Since 

the fully-flexible version includes a dummy variable for each time-period, different functional 

forms for the non-linear trends are only special cases. 

Before presenting the mechanics of a fully-flexible DID model we will motivate the 

specifics of the family of generalized parallel n-differences assumption using our updated DID 

model in equation (A.1). The parallel first-difference assumption of (A.6) that identifies

( | )iATT s Z is re-written as follows: 

(A.10)          , * , *[ | , 1] [ | , 0] U U

s i t s i i s i t s i iE C Z d E C Z d        , 

Where, U  represents the case of no treatment (or no ethanol plant) and (1 )s

s L   so 

that we compute the treatment effect s  periods ahead of *t  relative to the first difference in 

outcome levels at *t . A generalized parallel n-differences assumption including higher-order 
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differences of outcome levels to identify ATT   for all post-treatment periods similar to that in 

equation (A.10). A parallel n-differences assumption, notated as parallel (n-s) assumption by 

Mora and Reggio (2012) is given as: 

(A.11)          
1 1

, * , *[ | , 1] [ | , 0] n U n U

s i t s i i s i t s i iE C Z d E C Z d 

          

See that for 1n   equation (A.11) reduces to a parallel paths assumption and for 2n   it 

is the parallel first-difference assumption. For 2n  , however, we move towards higher order 

differences. For example, 3n   implies a 
2 2[ (1 L) (L L )]       operator on the s period ahead 

outcome variable. We will require at least three pre-treatment years in our dataset to exploit such 

an operator due to the parallel double-differences assumption. Thus, the generalizations 

introduced by 2n   cases are only applicable to the cases of North Dakota ethanol plants. The 

generalized average treatment effects from parallel n-differences assumption is given as14 

(A.12)       

1 1 1

, * , *( , | ) ( | ) [ | , 1] [ | , 0] n n U n U

i i s i t s i i s i t s i iATT s n Z ATT s Z E C Z d E C Z d  

 
              

For the  3n   case of our linear-trends model, 

2( ,3 | ) ( | ) ( | ) 2 ( 1| ) ( 2 | )i i i i iATT s Z ATT s Z ATT s Z ATT s Z ATT s Z         , which will 

recursively identify ( | ) ( ,3 | ) 2 ( 1| ) ( 2 | )i i i iATT s Z ATT s Z ATT s Z ATT s Z      . Similar to 

the 2n   case, for 1,  2 we will have ( | ) ( ,3 | )i is ATT s Z ATT s Z  . It is quite evident here that 

the treatment effects estimated under parallel double-differences assumption will not equal those 

under parallel first-difference or parallel paths assumptions. It is, however, interesting to note 

                                                 
14 See Theorem 1 in Mora and Reggio (2012). 
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that the treatment effects estimated using an exactly same model in equation (A.5) can be very 

different in magnitude, as well as interpretation, depending on the identifying assumption used. 

Note that these updated assumptions for incorporating trends into DID cannot be 

validated since they are defined as nth-order difference in outcome variable including the post-

treatment periods. However, these assumptions can be tested for equivalence using the fully-

flexible model discussed next. A parallel n-differences assumption is equivalent to a parallel (n-

1)-differences assumption (OR ( , | ) ( , 1| )  i iATT s n Z ATT s n Z s     ) if and only if 

1 1

, * , *[ | , 1] [ | , 0] n U n U

i t i i i t i iE C Z d E C Z d      15.    

Supplementary Information 

Data notes - soil quality 

USDA-NRCS’s soil surveys are conducted at pre-designated spatial units, known as map 

units (MUs), which represent common management requirements towards various land uses 

(Soil Data Viewer 6.0 User Guide, 2011 pp. 11). Although MUs are the finest spatial resolution 

in the soil surveys, they are composed of multiple map unit components that are horizontal strips 

of similar soil characteristics. The MUs may vary in size (2 acres to 2,000 acres) depending upon 

the variability among their respective map unit components. We aggregate LCC and slope up to 

the MUs using a ‘Soil Data Viewer’ application. The aggregation criteria are differ as LCC is a 

categorical variable and slope is a continuous variable.  

Representative slope was aggregated as a weighted-average of representative slope for all 

map unit components within each MU, where weights are the respective area-shares. Variable 

                                                 
15 See Theorem 2 in Mora and Reggio (2012). 
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LCC was aggregated by a ‘dominant condition’ criterion that assigned the LCC value of the map 

unit component that was designated the highest area-share among other components. Note that 

the ‘dominant condition’ aggregation criterion may assign the LCC value that represents as little 

as 25% area-share. Higher LCC value was assigned when different LCCs had equal area-shares. 

Although the tie-breaker was applicable to only 4 out of 156 MUs in North Dakota (0.7% of the 

state’s area), and only 2 out of 260 MUs in South Dakota (0.6% of the state’s area). 

The DID model in conjugation with PSM 

This section discusses the working of a standard Difference-in-Difference model (DID) 

in conjunction with Propensity Score Matching (PSM). We follow the DID model framework of 

Abadie (2005). Consider a representative land parcel i  with ,i tC  and ,i tCS   as its corn acreage 

and combined corn and soy acreage respectively at time period t . We introduce binary variables 

id  and t to designate treatment/control groups and pre-/post-treatment periods respectively. So, 

1id   for treated parcels and 0 otherwise, and 1t   for the years after an ethanol plant was 

established and 0 otherwise. Further, denote ( )t t 
 as the set of post-treatment (pre-treatment) 

time periods with 0t  as the treatment year.16 Intuitively, to evaluate a treatment effect for treated 

parcel i  we would compare its corn acreage with and without the ethanol plant in the post-

                                                 
16 For example, the Red Trail Energy ethanol plant that came up in 2007, 

{1997,1998,...,2006}t   and {2008,2009,...,2013}t  .  
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treatment era (i.e., ,i iC 17 with t t ). Consequently, an average treatment effect for the treated 

(ATT) equals 
, ,

[ | 1]T U

ii t i t
E C C d   , where T(U) denote presence (absence) of the plant.  

However, we do not observe the post-treatment outcome levels without the treatment. 

DID tackles this by assuming that treated and control parcels follow parallel land use changes if 

the ethanol plant had not emerged at (Abadie, 2005). This assumption is key to identify the 

estimates of treatment effects because in the event that this assumption fails our estimates could 

not be trusted. Also, observing individual land parcels allows controlling for soil quality and land 

use shares at time 0 1t   as covariates. That is, we estimate the ATT conditional on covariates 

other than the treatment dummy. The parallel land use changes assumption among both groups 

can be expressed as 

(SI.1)          
, , , ,

[ | , 1] [ | , 0]u u u u

i ii t i t i t i t
E C C Z d E C C Z d        , 

In equation (SI.1) the superscript u  signifies that both groups stay untreated and Z  is the set of 

covariates. If (1) holds true then the ATT is calculated as 

(SI.2)          
, , , ,

[ | , 1] [ | , 0]i i i ii t i t i t i t
ATT E C C Z d E C C Z d           

ATT, in equation (SI.2) can be estimated as 3  from the regression framework in equation (SI.3) 

below. 

(SI.3)          0 1 2 3 4 5 ,, t i i t i t i i ti t
C d d Z Z                  

                                                 
17 We present the model for corn acreage. An extension for combined corn and soy acreage 

follows by changing the notation from ,i tC  to ,i tCS . 
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In equation (SI.3) 0 1 2 3 4 5, , , ,  and        are regression coefficients. Note that 4 5 and    allow 

capturing mean difference in the effect of time-invariant covariates ( iZ ) on corn acres across 

pre- and post-treatment years (Abadie, 2005).  

To illustrate the extension of a standard DID model that incorporates PSM, consider the 

decomposition of the set of covariates { , }a b

i i iZ X X . Here, the set 
a

iX  contains the soil quality 

variables LCC and slope and set 
b

iX  represents the initial land use conditions for parcel i . We 

match the parcels based on their soil quality parameters. The justification for matching on soil 

quality is that we seek to ensure random placement of land parcels in their respective groups 

relative to the location of the ethanol plant. An ethanol plant’s location decision must be based 

on the potential for corn production based on land quality. But to say that the plant chooses to 

locate only by the land use status in the year before it was established is logistically infeasible. 

Miao (2013) acknowledges that the ethanol plant goes on-line as early as 3-years prior to starting 

operations. We use a logistic model with id as dependent variable and 
a

iX  as the set of 

regressors to estimate a propensity score (denoted by ( )a

iP X ) for each parcel in the treatment 

and control groups. Specifically, we use the weighted LCC index for land quality (denoted, 

WLCC) and weighted slope (denoted by WSLP) as regressors in the logit regression. The weights 

used are area of soil map units, contained in each land parcel, represented by their land quality 

attributes, LCC and slope. We match the parcels using a nearest-neighbor matching algorithm by 

Fraeman (2010). By matching, we seek to ensure that parcels’ propensity to be treated is alike 

across groups, conditional of the time-invariant intrinsic property of land – soil quality. Post-

matching, we use the DID regression framework as in equation (SI.3) with covariates reduced to 
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b

iX . A conceptual expression for the ATT from our extended model, denote as mATT , can be 

written as  

(SI.4)          
, , , ,

[ | ( ), , 1] [ | ( ), , 0]m a b a b

i i i i i ii t i t i t i t
ATT E C C P X X d E C C P X X d           

The estimation of mATT  follows from equation (SI.3) with iZ  replaced by 
b

iX  and the 

sample data used for this post-matching estimation will be a subset of its counterpart in (SI.3). 

Therefore, if 3

m  is the estimate of our new ATT, then it can be retrieved estimating the 

following regression equation 

(SI.5)          0 1 2 3 4 5 ,,

m m m m m b m b

t i i t i t i i ti t
C d d X X                .  

Note that we designate the advent of an ethanol plants as treatment, which itself is a 

market outcome. The implication of this endogenous intervention is that we do not have 

exogenous control groups. Rather, our treatment and control groups follow the ‘rule of thumb’ 

that treated parcels are located nearer to the ethanol plant than their untreated counterparts. This 

allows innumerable possibilities of treatment and control groups near each ethanol plant’s 

location and practically inexhaustible combinations. In order to conduct robustness checks we 

designate two treatment groups and two control groups for each ethanol plant. The control 

groups are kept apart to ensure independence in robustness checks for each treatment group (see 

Figure 3 – Main Text). We conjecture that treatment effects using the nearest treatment and the 

farthest control groups will be larger and more significant than other combinations and present 

full regression results for this particular combination. We include the other combinations as 

robustness checks. Specifically, we run 24 regressions for each ethanol plant (Tables A14 and 

A15 summarize these results, discussed later). In cases where we have sufficient pre-treatment 
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and post-treatment years we also estimate treatment effects for multiple combinations of pre-or 

post-treatment years (advocated by Meyer, 1995). Bertrand et al. (2004) found serial correlation 

in the treatment-effect indicator variable ( i td   ) over-reject the null hypothesis of no treatment-

effect. A remedy, as suggested by Bertrand et al. (2004) to overcome this issue is aggregating 

through pre- and post-treatment years by using mean outcome levels rather than for individual 

years’ is implemented here.  

The Placebo Treatment Effects 

Further, in recognition of the non-exogenous treatment we utilize placebo tests or 

falsified treatments to validate the robustness of our results. We conduct temporal placebos, 

meaning that we assume the advent of an ethanol plant in a year that predates the actual 

treatment. These temporal placebos are conducted for North Dakota plants since a longer time-

series data is available. We designate various falsified treatments and the pre- and post-treatment 

years for each of these (Figure 10 – Main Text). Placebo tests are important as they allow 

validating our identification strategy to estimate treatment effects.  

The farthest treated and control parcels are located at a maximum distance of 100 km (62 

miles) from each other in our empirical setup. We, therefore, anticipate that the physical 

characteristics of these parcels and their initial land use shares will play a major role in 

identifying treatment effects. Weather may be another variable of interest, which we assume to 

be uniform across our treated and control parcels. Since weather data points are collected at 

weather stations covering multiple counties and our analysis only spans 60 miles strips, we think 

that our assumption is reasonable.  By definition, distance from ethanol plants are the sole 

differentiator of treated and untreated land parcels. However, these end up contained within 



77 

 

77 

 

multiple boundaries. Although the markets and incentive structure may vary substantially across 

counties, we do not expect these to affect how much corn farmers grow due to advent of an 

ethanol plant in their vicinity. Even if we were to consider county-fixed effects for each of the 

parcels, they would cancel out due to the first difference operator inherent to the DID estimator, 

on pre- and post-treatment outcome levels of each parcel. Despite the fact that we have been 

careful in choosing the covariates for the above regression framework, there might still be factors 

that we fail to control. An example would be matching the parcels based on soil moisture, not 

done here due to incomplete data. However, a good or bad rainfall year could influence the 

impact the advent of an ethanol plant in our treatment and control groups even if we assume 

uniform rainfall measured across all parcels. The right amount of precipitation leading to higher 

soil moisture on a LCC II, flat sloped land could influence farmers’ decision to grow water-

thirsty corn, with or without an ethanol plant in the vicinity. To address our inability to capture 

such effects that may confound the estimated treatment effects, we include temporal placebos. If 

we successfully control for all relevant covariates and our matching strategy is perfect, we 

should get a zero or statistically insignificant placebo treatment effect. However, a significant 

(positive or negative) placebo treatment effect would point towards ambiguity in our 

identification strategy and allow statistical correction of our estimates of the actual treatment. 

Estimation results 

As mentioned earlier, there are 19 ethanol plants in North and South Dakota. We include 

all four North Dakota ethanol plants, but restrict our analysis for South Dakota to four out of 15 

ethanol plants that ensure at least two pre-treatment years. The CDL data for South Dakota only 

goes back until 2006.The four South Dakota ethanol plants, included here (see Table 1 in main 

text), started operations in 2008. This allows implementing the DID estimation strategy through 
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pre- and post-treatment years. We analyze the effects of POET and NuGen ethanol plants 

together as cluster 1 and ABE and GLE as cluster 2 due to their spatial proximity. A vector 

description (dimensions and directions) for the treatment and control groups of each of these 

ethanol plants is provided in Table 2 (main text). These rectangular-shaped groups can be 

visualized in Figure 3, as an example. Another factor that determined which land parcels entered 

treatment and control rectangles was the existence of ‘other’ ethanol plants nearby. We follow 

the linear city model and consider all ethanol plants as market terminals with designated 

capacity. So, while deciding which land parcels enter our rectangles we ensure that linear 

distance of a parcel is minimum to the ethanol plant under study. The linear distances are 

normalized by ethanol plants’ capacities. For instance, if two ethanol plants with annual 

capacities of 20 and 80 million gallons are 100 km apart, then market designated for the larger 

(smaller) ethanol plant is 80 (20) km from its location. Such details for ethanol plants considered 

for our analysis are added in Table 2 (see the ‘Remarks’ column, main text). 

Treatment effects’ estimates 

To estimate the treatment effects, we modify our regression framework (equation (SI.5)) 

to include the first differences of pre- and post-treatment outcomes as dependent variables. Our 

regression estimates, therefore, are to be viewed as regression coefficients of equation (SI.6) 

below. 

(SI.6)          1 3 5, , , ,
( )m m m b

i ii t i t i t i t
C C d X             18  

                                                 
7 Equation (SI.6) is retrieved by taking a difference on the pre- and post-treatment versions of 

equation (SI.5). That is 0 1 2 3 4 5, ,
{ } m m m m m b m b

i i i ii t i t
C d d X X                
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Where, 
,i t

C   is the average of corn acres in post-treatment years and 
,i t

C   is the average if corn 

acres in pre-treatment years. In addition, 1

m  captures the trend-effects of moving between pre- 

and post-treatment periods, 3

m  is the estimate of mATT  (defined earlier), and 5

m  is the 

differentiated role of the set of controls 
b

iX  on change in corn acreage through pre- and post-

treatment periods. We now present our estimation results for each ethanol plant included in 

Table 1 (main text). Our regression analysis also includes 
, ,

ln( ) ln( )
i t i t

C C   as a dependent 

variable to compare rate of change in outcomes pre- and post-treatment. This is especially useful 

when, in the pre-treatment period, outcome levels (corn acres in this case) between treatment and 

control groups differ significantly. Illustratively, say the conditional mean of corn acreage for 

control groups is a acres while it is 2a acres for the treatment group. If there were no treatment 

effect and both groups would grow by a factor of 2, then post-treatment corn acres for control 

and treatment groups will be 2a and 4a respectively. Our definition of ATT will yield a positive 

treatment effect, even though it was zero. Using log-linear regressions will compare the rate of 

change and would help avoid such confounding results.  

Red Trail Energy 

For the Red Trail Energy ethanol plant (RTE) that started operations in year 2007, we 

have {1997,...,2006}t   and {2008,...,2013}t  . Consequently, ,2006 ,2006{ , }b

i i iX W G , where ,2006iW  

                                                 

0 2 4, ,
{ }m m m b

i ii t i t
C d X        . Again, similar results follow for the combined corn and 

soybeans case by changing the notation ,i tC  to 
,i tCS . 
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is the 2006 wheat acreage on a representative parcel i  and  ,2006iG  is the 2006 grass cover on i . 

For RTE, the pre- and post-treatment summary statistics for both treatment and control groups 

are included in Table A2 and the corresponding estimation results are included in Table A3. 

Table A2 reveals that the unconditional change of mean corn acres is higher for the 

treatment group. However, the treatment effect estimate for RTE is negative and highly 

significant. This result is irreconcilable with the economic incentives, the aforementioned 

increase in corn basis and lower transportation costs, arising from this ethanol plant. The 

regression estimates for pre-treatment wheat and grass acres are negative, revealing that growing 

corn on wheat/grass acres is costly. However, switching from wheat to corn is relatively less 

expensive than converting from grass to corn, as the coefficient for pre-treatment wheat acres is 

less negative than the coefficient for pre-treatment grass. This is reasonable due to the land 

preparation costs towards converting grass for agricultural use, which can be avoided when 

switching wheat acres to corn. It is noteworthy that pre-treatment grass acres in control group are 

higher (while wheat acres are lower) as compared to the treatment group. A higher impediment 

for conversion in the form of relatively more grass (and less wheat) in control group seems to 

have neutralized the higher increase in unconditional change in corn acres for treatment group.  

The conditional rate of change of corn (and soy) are also negatively affected due to the ethanol 

plant, though the change is insignificantly different from zero at 95% level of confidence. It 

should be noted that the intercept, in absolute value, is larger than treatment effects’ estimate and 

other controls. Since the intercept captures trend-effects (discussed earlier), large intercepts 

relative to treatment effects suggest that ethanol plants are only responsible for a small fraction 

of overall difference in land use change among the groups. 
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Blue Flint 

For the Blue Flint ethanol plant (BF) that started operations in year 2007, we have 

{1997,...,2006}t   and {2008,...,2013}t  . Consequently, ,2006 ,2006{ , }b

i i iX W G , where 

,2006iW  is the 2006 wheat acreage on a representative parcel i  and  ,2006iG  is the 2006 grass cover 

on i . For BF, the pre- and post-treatment summary statistics for both treatment and control 

groups are included in Table A4 and corresponding estimation results are included in Table A5. 

Due to the ethanol plant, unconditional mean of corn acres grew almost equivalently for 

each of the two groups while the combined corn and soy acreage grew more for the treated. 

Again, grass acres are a significant impeding factor for conversion due a negative coefficient for 

their pre-treatment levels. Pre-treatment grass acres are also higher for the control group’s 

parcels, potentially neutralizing higher increase in unconditional corn acres in treated parcels as 

compared to the controls. However, while comparing the rate of change among parcels treatment 

effect is positive for corn acres and negative for combined corn and soy, although insignificant. 

A positive growth rate of corn acres and negative rate for corn and soy combined may have 

implications for crop rotation, suggests intensified corn cropping while declining combined corn 

and soy acreage. Also, for the log linear regressions coefficients on initial wheat acres (in 2006) 

are positive and significant revealing opportunity to switch to corn. At the same time, negative 

(insignificant) coefficients on initial wheat acres in the linear regressions suggest costs of 

switching to corn production that are lower than conversion costs from grass acres. Again, large 

intercepts relative to the treatment effects suggest that ethanol plants are not a major determinant 

of overall land use change for the groups. 
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Tharaldson Energy 

For the Tharaldson Energy ethanol plant (TE) that started operations in year 2006, we 

have {1997,...,2005}t   and {2007,...,2013}t  . Consequently, ,2005 ,2005{ , }b

i i iX W G , where 

,2005iW  is the 2005 wheat acreage on a representative parcel i  and  ,2005iG  is the 2005 grass cover 

on i . For TE, the pre- and post-treatment summary statistics for both treatment and control 

groups are included in Table A6 and corresponding estimation results are included in Table A7. 

A feature that distinctly distinguishes TE from RTE and BF is the higher pre-treatment 

acres of corn and soybeans for both treated and untreated groups. Also, with treated groups 

having more than twice as many corn acres and, also that many combined corn and soy acres 

comparing rates of change is more reasonable than the absolute changes. Specifically, log-linear 

regressions will provide more reasonable inferences as compared to their linear counterparts. The 

treatment effect here is found to be negative, although more negative for combined acres of corn 

and soy. This suggests intensifying corn cropping and forgone corn-soy rotations in the process. 

Trend-effects again dominate the treatment effects in this case. However, grass acres may serve 

as an opportunity to grow corn, despite higher conversion costs, due to lower grass cover prior to 

the ethanol plant. 

Hankinson Renewable Energy 

For the Hankinson Renewable Energy ethanol plant (HRE) that started operations in year 

2008, we have {1997,...,2007}t   and {2009,...,2013}t  . Consequently, 

,2007 ,2007{ , }b

i i iX W G , where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  

,2007iG  is the 2007 grass cover on i . Since there are too many pre-treatment years compared to 
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post-treatment years, we introduce 1 {2003,...,2007}t   as an alternative pre-treatment years to 

seek any difference in treatment estimates. For HRE, the pre- and post-treatment summary 

statistics for both treatment and control groups are included in Table A8 and corresponding 

estimation results are included in Table A9. 

The regression results for HRE suggest that this ethanol plant has had a positive impact 

on corn acres, and on the corn and soy acres combined. However, it is clear that impact on corn 

acreage has been greater than that on the combined corn and soy acreage. This may have 

implications for corn and soy rotation. Similar to our inferences above, corn acres seem to 

intensify, leading to lesser corn-soy rotations due to the advent of the ethanol plant.  This 

inference on rotations is especially quite strong if we compare the historical pre-treatment years 

(starting 1997), rather than the recent ones (starting 2003). Once again, higher wheat acres in the 

year before the ethanol plant lead to positive significant increase in corn acres (and combined 

corn/soy acres as well). Also, unlike the previous three ethanol plants trend-effects are 

dominated by HRE’s treatment effect for log-linear regressions while trend-effects dominate in 

the linear regressions case. This may be a result of model specification.  

Cluster 1: POET Bio refinery and NuGen Energy 

Cluster 1, which is a conglomerate of POET Bio refinery and NuGen Energy, (PBNE) 

started operations in 2008. So, we have {2006,2007}t  , {2009,...,2013}t   and 

,2007 ,2007{ , }b

i i iX W G , where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  

,2007iG  is the 2007 grass cover on i . We also include 1 {2009,2010}t   as an alternative post-

treatment years’ set to seek any difference in treatment estimates. For PBNE, the pre- and post-
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treatment summary statistics for both treatment and control groups are included in Table A10 

and corresponding estimation results are included in Table A11. 

The corn acres seem to be positively impacted by emergence of PBNE in later years 

(2011–2013), as the treatment effect is insignificant for the post-treatment years 1t


. The rate of 

growth in corn acres, however, was not significant due the plants. Given that initial corn acreage 

between treated and control parcels is significantly different, the inference on rate of growth is 

more reliable than absolute acres. But, the effect of these ethanol plants on the combined acreage 

of corn and soybeans is uniformly positive and significant. This implies that, unlike in North 

Dakota, these South Dakota ethanol plants have de-intensified corn cropping and encouraged 

corn-soy rotations. Another finding that differs here from the analysis of North Dakota plants is 

negative trend effects. It seems as if the higher corn acres are driven due to the advent of these 

ethanol plants, since treatment effects and intercept are comparable in size. Further, higher initial 

(2007) wheat and grass acres have positive and significant impact on both, corn acreage and 

combined acreage of corn and soy.   

Cluster 2: Aberdeen Bio energy and Glacial Lakes Energy 

Cluster 2, which is a conglomerate of Aberdeen Bio energy and Glacial Lakes Energy, 

(ABGL) started operations in 2008. So, we have {2006,2007}t  , {2009,...,2013}t   and 

,2007 ,2007{ , }b

i i iX W G , where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  

,2007iG  is the 2007 grass cover on i . We also include 1 {2009,2010}t   as an alternative post-

treatment years’ set to seek any difference in treatment estimates. For ABGL, the pre- and post-
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treatment summary statistics for both treatment and control groups are included in Table A12 

and corresponding estimation results are included in Table A13. 

The initial average corn (combined corn and soy) acreage for the treatment group is 

almost twice (thrice) when compared to the control group. Hence, we draw our inferences for 

this ethanol plant from rate of change equations. We find negative impacts of these ethanol 

plants on treated corn acreage, which is driven by the decreasing corn and combined corn and 

soy acreage for treatment groups coupled with corresponding increase for control group.  A more 

negative treatment effect for combined corn and soy acreage points out to intensified corn 

cropping relative to corn-soy rotations. Also, as in the other cluster in South Dakota, trend-

effects are negative and are dominated by the treatment effects here. Initial wheat and grass acres 

have positive significant effects on corn and soy production.  

Summarizing the Estimation Results 

The treatment effects are found to vary in size, sign, and significance by individual 

ethanol plants. This finding disagrees with the single point estimates for ethanol plants’ impacts 

reported for all of Iowa or, even, the U.S. Midwest by prior studies. However, the negative 

significant treatment effects are both surprising and irreconcilable due to earlier argued higher 

relative incentives near the ethanol plants. This was because transportation costs (that are 

monotonic in distance) are quite significant compared to cropland rentals values in the Dakotas. 

To understand and validate these negative treatment effects, we examine impact of ethanol plants 

on county-level corn basis and evaluate placebo treatment effects. The placebos and robustness 

checks from multiple treatment and control groups are discussed in the next section.  

We also find that intensity and type of impact of ethanol plants on local land use depends 

on its spatial location, rather than only its capacity as controlled for in previous literature. 
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Specifically, for ethanol plants that lie on the Corn Belt (HRE, PBNE and ABGL) we find 

treatment effects to dominate or be at least comparable to the trend-effects. Whereas, for RTE, 

BF (located west of the edge of the Corn Belt) and TE (located north of the Corn Belt) the 

treatment effects are dominated by the trend-effects. So, ethanol plants could be a major factor in 

determining the overall evolution of corn and soybean acres in their proximity when they operate 

among areas densely planted in corn/soy. We also find that the advent of ethanol plants could 

impact corn-soy rotations in an area. In 5 out of 6 cases considered in this analysis, we find corn 

intensification relative to combined corn and soy acreage. We also find initial wheat and grass 

acres to significantly affect the evolution of corn and soybean acres in post ethanol plants years. 

Controlling for these variables reveals that more wheat encourages corn relative to more grass, 

potentially due to higher conversion costs (of sod-busting) than switching costs among crops. 

Corn-Basis Analysis 

We had conjectured earlier that proximity to ethanol plants could offer strong incentives to grow 

more corn production. This conjecture was primarily based on our back of the envelope 

calculations and also, partially, on the existing literature. Our findings, in contrast to the 

conjecture, of insignificant or negative treatment effects are indeed surprising. To better 

understand and reconcile these findings we analyze the effects of ethanol plants on corn basis. If 

the advent of an ethanol plant were to incentivize corn production in its proximity, these 

incentives should be observable in a market setting as an increase in corn basis. So, the treated 

parcels should have a higher increase in basis post-treatment as compared to the untreated ones. 

This would ultimately feed into land use decisions and lead to higher corn acres in close vicinity 

of the ethanol plant. Our back of the envelope calculations focused on the maximum willingness 

to pay for an ethanol plant to incentivize corn production for a supplier unit closer to its location. 
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As opposed to the maximum willingness to pay calculated earlier, an increase in basis would 

provide increase in payments by ethanol plants as observed in their proximity. In case that the 

actual willingness to pay for the ethanol plants does not increase as expected, we can, at least, 

justify the insignificant treatment effects estimates found earlier.  

We retrieved a county-level dataset providing monthly corn basis from 2000 to 2013, for 

North and South Dakota19.  We present comparative basis trend-plots from 2000 to 2013 for the 

counties that contained the treatment and control groups for 4 out of six ethanol plants (or 

clusters) included here (Figures 4–7). In Figures 4-7, the county that contains the ethanol plant 

(its home-county) is plotted as a solid series while others are plotted as hashed series. If the 

ethanol plant were to significantly increase the compensation to farmers for supplying corn in its 

close vicinity, we should be able to visualize it through its home-county’s basis time-series plot. 

In an event of significant impact of the advent of an ethanol plant, we expect the basis series for 

it home-county to deviate upwards from its counterparts. Further, the home-counties for RTE 

and BF and their respective neighbors suffer with missing values and are inappropriate to deduce 

any impacts of these plants. 

Figures 4–7 show increased relative basis for Richland county (home to HRE) and Turner 

county (home to Cluster 1). This justifies the positive significant treatment effects for these two 

cases. However, corn basis for Cass county (home to TE) seems to have stagnated in the post-

treatment years. Also for cluster 2, stationed in two counties, corn basis for Brown had fallen 

relative to its neighbors, while there was a temporary rise in corn basis for Edmunds which was 

not sustained in later years. These observations provide some understanding of why the ethanol 

                                                 
19 Dataset Source: Geo Grain. 
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plants yielded non-positive treatment effects for TE and Cluster 2. Note that our claims are not 

founded here on robust statistical tools (like regressions), but only on some summary statistics. 

Our purpose here is to only garner some understanding and support the quasi-experimental 

design of this study. 

Discussion  

Our robustness checks using multiple treatment and control groups reveal that the 

treatment estimates are generally stable across these combinations. The size and sign of these are 

especially similar by control group. That is, combinations ‘T1 and C2’ and ‘T2 and C2’ will 

generally yield similar estimates. However, we find significant placebo treatment effects 

pointing out to the fact that either our matching strategy is not perfect or we are not able to 

control for all the factors that affect growth of corn acres in equation (6).  To reconcile the failed 

placebo tests, we first consider the pre-treatment trends for treatment and control groups for the 

North Dakota ethanol plants to validate the Parallel Paths assumption of DID estimation strategy 

(see equation SI.1). Figure 11 (in the Main Text) shows that the Parallel Paths assumption does 

not hold and thus the estimates of the standard DID model are not identified. Therefore, we 

incorporate differentiated trends between pre- and post-treatment periods and between treatment 

and control groups. We follow Mora and Reggio (2012) to incorporate flexible trends into the 

DID model. The model is developed and estimated in the main text of this text. 
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TABLES (APPENDIX) 

 

 

Table A1. Actual “Google Map” Distances of the Nearest Treatment Groups and the Farthest 

Control Groups from respective ethanol plants. 

 

Ethanol Plant 
Nearest Treated - T1  

(km) 

Farthest Control – C2  

(km) 

Difference  

(km) 

RTE (South) 18.8 91.4 72.6 

BF (South) 33.2 124.2 91.0 

BF (East) 53.3 129.9 76.6 

TE (West) 23.5 94.8 71.3 

HRE (West) 18.3 97.7 79.4 

POET (West) 17.2 111.2 94.0 

ABE (West) 17.7 111.7 94.0 

Notes: See Table 2 in the main text for schematics of the treatment and control groups. 
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Table A2. Summary Statistics for Red Trail Energy, C2 and T1 combination. Caliper = 0.0004. 

 Control Treatment 

 Mean Std. dev. N mean Std. dev. N 

,i t
C    1.69 2.65 65 2.46 3.30 65 

,i t
C    7.88 15.44 65 19.83 26.16 65 

,i t
CS    1.84 2.75 65 2.75 3.41 65 

,i t
CS    7.98 15.72 65 19.83 26.16 65 

,2006iW   106.53 101.12 65 221.52 116.91 65 

,2006iG   347.85 115.62 65 207.73 115.35 65 

  

 

 

Table A3. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
, ,i t i t

C C    
, ,i t i t

CS CS    
, ,

ln( ) ln( )
i t i t

C C    
, ,

ln( ) ln( )
i t i t

CS CS    

Treatment 2.58 2.38 -0.24 -0.28 

 (-0.63) (0.58) (-0.36) (-0.43) 

,2006iW   -0.09 

(-1.76)* 

            -0.09 

(-1.71)* 

-0.007 

(-1.33) 

           -0.006 

(-1.25)  

,2006iG   -0.14 

(-2.69)*** 

            -0.14 

(-2.63)*** 

-0.02 

(-3.34)*** 

           -0.02 

(-3.34)***  

Constant 63.82 63.68 5.65 5.40 

 (2.69)*** (2.63)*** (2.64)*** (2.55)*** 

R2 0.20 0.19 0.14 0.15 
* p<0.1; ** p<0.05; *** p<0.01 
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Table A4. Summary statistics for Blue Flint Ethanol: C2 and T1 combination. Caliper = 0.01 

 Control Treatment 

 mean Std. dev. N mean Std. dev. N 

,i t
C    5.44 5.73 274 2.72 7.89 274 

,i t
C    24.97 26.23 274 18.98 31.52 274 

,i t
CS    6.40 6.43 274 4.99 9.73 274 

,i t
CS    26.28 27.38 274 23.04 36.47 274 

,2006iW   149.91 92.08 274 101.00 74.40 274 

,2006iG   288.13 103.59 274 277.64 100.59 274 

 

 

 

Table A5. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
, ,i t i t

C C    
, ,i t i t

CS CS    
, ,

ln( ) ln( )
i t i t

C C    
, ,

ln( ) ln( )
i t i t

CS CS    

Treatment -9.02 

(-3.97)*** 

           -7.59 

(-3.12)*** 

0.01 

(0.04) 

-0.50 

(-2.00)**  

,2006iW   -0.08 

(-2.76)*** 

           -0.08 

(-2.39)*** 

0.0005 

(0.29) 

0.0007 

(0.44) 
 

,2006iG   -0.16 

(-6.32)*** 

           -0.18 

(-6.01)*** 

-0.006 

(-4.14)*** 

-0.007 

(-4.71)*** 
 

Constant 80.53              83.53 2.71 2.63 

 (6.59)*** (6.13)*** (3.93)*** (4.25)*** 

R2 0.27 0.28 0.06 0.09 
* p<0.1; ** p<0.05; *** p<0.01 
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Table A6. Summary statistics for Tharaldson Ethanol: C2 and T1 combination. Caliper = 0.01 

 Control Treatment 

 mean Std. dev. N mean Std. dev. N 

,i t
C    15.97 14.32 120 36.49 25.69 120 

,i t
C    79.21 49.61 120 135.31 54.38 120 

,i t
CS    93.57 40.67 120 223.52 58.19 120 

,i t
CS    249.35 98.38 120 361.36 75.88 120 

,2005iW   115.47 100.74 120 120.74 98.62 120 

,2005iG   92.61 65.10 120 42.92 50.03 120 

 

 

 

 

Table A7. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
, ,i t i t

C C    
, ,i t i t

CS CS    
, ,

ln( ) ln( )
i t i t

C C    
, ,

ln( ) ln( )
i t i t

CS CS    

Treatment 18.86 -44.70 -0.31 -0.54 

 (3.19)*** (-5.51)*** (-2.55)*** (-13.43)*** 

,2005iW   -0.04 

(-1.45) 

0.06 

(1.66)* 

0.002 

(3.34)*** 

0.0004 

(1.95)*  

,2005iG   -0.34 

(-7.76)*** 

-0.53 

(-7.75)*** 

-0.002 

(-2.25)** 

-0.001 

(-2.37)**  

Constant 99.54 197.85 1.73 1.04 

 (13.00)*** (17.08)*** (10.87)*** (16.45)*** 

R2 0.28 0.28 0.08 0.40 
* p<0.1; ** p<0.05; *** p<0.01 
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Table A8. Summary statistics for Hankinson Renewable Energy: C2 and T1 combination. 

Caliper = 0.005. 

 Control Treatment 

 mean Std. dev. N mean Std. dev. N 

,i t
C    85.87 63.41 161 93.76 64.53 161 

1,i t
C    94.25 65.83 161 105.49 69.01 161 

,i t
C    112.40 76.24 161 145.20 79.58 161 

,i t
CS    155.78 94.86 161 228.39 106.76 161 

1,i t
CS    184.07 107.01 161 241.79 115.77 161 

,i t
CS    199.37 125.33 161 287.69 131.18 161 

,2007iW   13.40 36.21 161 25.62 43.51 161 

,2007iG   121.98 118.01 161 73.88 96.59 161 

 
 

Table A9. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 , ,i t i t
C C    

1, ,i t i t
C C    

, ,
ln( ) ln( )

i t i t
C C    

1, ,
ln( ) ln( )

i t i t
C C    

Treatment 19.47 

(4.36)*** 

17.46 

(3.84)*** 

0.28 

(3.69)*** 

0.24 

(2.85)***  

,2007iW   0.18 

(3.03)*** 

0.19 

(3.22)*** 

0.004 

(4.64)*** 

0.004 

(4.28)***  

,2007iG   -0.07 

(-3.73)*** 

-0.04 

(-1.93)* 

-0.001 

(-1.04) 

-0.0001 

(-0.65)  

Constant 32.16 20.07 0.21 0.08 

 (7.70)*** (4.39)*** (2.33)** (0.83) 

R2 0.17 0.12 0.11 0.06 

 
1, ,i t i t

CS CS   
1, ,i t i t

CS CS   
, ,

ln( ) ln( )
i t i t

CS CS   
1, ,

ln( ) ln( )
i t i t

CS CS   

Treatment 7.10 24.98 0.09 0.24 

 (1.33) (4.86)*** (1.28) (3.20)*** 

,2007iW   0.29 

(4.42)*** 

0.36 

(5.50)*** 

0.001 

(1.76)* 

0.001 

(2.34)** 
 

,2007iG   -0.11 

(-4.61)*** 

-0.03 

(-1.05) 

-0.002 

(-2.03)** 

-0.002 

(-1.79)* 
 

Constant 52.73 13.44 0.25 0.04 

 (10.13)*** (2.61)*** (2.79)*** (0.43) 

R2 0.15 0.19 0.09 0.10 

* p<0.1; ** p<0.05; *** p<0.01 
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Table A10. Summary statistics for PBNE, C2 and T1 combination. Caliper = 0.01 

 Control Treatment 

 mean Std. dev. N mean Std. dev. N 

,i t
C    118.09 49.32 157 189.13 76.98 157 

1,i t
C    120.76 50.59 157 197.52 76.25 157 

,i t
C    137.90 48.78 157 209.55 73.75 157 

,i t
CS    220.15 88.38 157 304.78 97.33 157 

1,i t
CS    249.53 88.27 157 331.62 92.58 157 

,i t
CS    273.46 87.18 157 346.95 89.41 157 

,2007iW   50.11 60.68 157 21.96 31.15 157 

,2007iG   158.55 92.52 157 108.42 78.68 157 

 

 

Table A11. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
1, ,i t i t

C C    
, ,i t i t

C C    
1, ,

ln( ) ln( )
i t i t

C C    
, ,

ln( ) ln( )
i t i t

C C    

Treatment 15.89 

(2.92)*** 

11.87 

(2.40)** 

0.16 

(3.23)*** 

0.08 

(2.00)**  

,2007iW   0.26 

(5.04)*** 

0.33 

(7.79)*** 

0.003 

(5.29)*** 

0.003 

(8.31)*** 
 

,2007iG   0.05 

(1.98)** 

0.04 

(1.54) 

0.001 

(2.07)** 

0.001 

(3.15)*** 
 

Constant -19.21 -3.03 -0.23 -0.12 

 (-2.79)*** (-0.48) (-3.45)*** (-2.09)* * 

R2 0.08 0.13 0.10 0.20 

 
1, ,i t i t

CS CS    
, ,i t i t

CS CS    
1, ,

ln( ) ln( )
i t i t

CS CS    
, ,

ln( ) ln( )
i t i t

CS CS    

Treatment 15.20 

(2.66)*** 

6.37 

(1.18) 

0.05 

(1.97)** 

0.02 

(0.72)  

,2007iW   0.44 

(7.17)*** 

0.46 

(7.37)*** 

0.002 

(7.05)*** 

0.002 

(7.22)***  

,2007iG   0.10 

(3.46)*** 

0.09 

(3.41)*** 

0.001 

(5.05)*** 

0.001 

(7.54)***  

Constant -9.44 15.71 -0.10 -0.04 

 (-1.24) (2.23)*** (-2.94)*** (-1.42) 

R2 0.20 0.23 0.24 0.35 

* p<0.1; ** p<0.05; *** p<0.01 
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Table A12. Summary statistics for ABGL, C2 and T1 combination. Caliper = 0.01. 

 Control Treatment 

 mean Std. dev. N mean Std. dev. N 

,i t
C    41.28 39.96 100 135.03 79.73 100 

1,i t
C    38.22 41.17 100 71.11 50.36 100 

,i t
C    50.29 45.17 100 115.41 57.23 100 

,i t
CS    66.33 61.75 100 231.55 115.23 100 

1,i t
CS    71.70 68.38 100 146.84 88.64 100 

,i t
CS    88.48 74.49 100 225.20 100.27 100 

,2007iW   49.06 59.91 100 29.47 44.03 100 

,2007iG   357.29 107.09 100 171.85 118.09 100 

 

Table A13. Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
1, ,i t i t

C C    
, ,i t i t

C C    
1, ,

ln( ) ln( )
i t i t

C C    
, ,

ln( ) ln( )
i t i t

C C    

Treatment -21.01 

(-2.44)** 

-1.36 

(-0.18) 

-0.23 

(-2.73)*** 

0.08 

(0.42)  

,2007iW   0.27 

(3.57)*** 

0.25 

(4.57)*** 

0.001 

(0.63) 

0.002 

(1.51) 
 

,2007iG   0.19 

(5.15)*** 

0.12 

(3.99)*** 

0.003 

(3.00)*** 

0.004 

(4.62)*** 
 

Constant -82.85 -46.40 -0.98 -0.82 

 (-5.01)*** (-3.47)*** (-2.73)*** (-3.12)*** 

R2 0.40 0.23 0.14 0.16 

 
1, ,i t i t

CS CS    
, ,i t i t

CS CS    
1, ,

ln( ) ln( )
i t i t

CS CS    
, ,

ln( ) ln( )
i t i t

CS CS    

Treatment -38.58 1.02 -0.40 -0.06 

 (-3.28)*** (0.10) (-2.26)** (-0.37) 

,2007iW   0.38 

(4.14)*** 

0.34 

(5.45)*** 

0.002 

(1.69)* 

0.0001 

(0.09) 
 

,2007iG   0.24 

(5.09)*** 

0.12 

(3.48)*** 

0.001 

(1.99)** 

0.003 

(4.04)*** 
 

Constant -98.11 -38.56 -0.39 -0.45 

 (-4.55)*** (-2.45)** (-1.51) (-2.15)** 

R2 0.50 0.23 0.17 0.15 

* p<0.1; ** p<0.05; *** p<0.01 
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Table A14. Robustness Checks for treatment effects on Corn Acres. All combinations of 

multiple treatment and control groups. 

Ethanol Plant Combinations 
, ,

ln( ) ln( )
i t i t

C C   
1, ,

ln( ) ln( )
i t i t

C C   
1, ,

ln( ) ln( )
i t i t

C C   

Red Trail 

Energy 

T1 and C2 -0.64* n/a n/a 

T2 and C2 -0.87*** n/a n/a 

T1 and C1 -0.80*** n/a n/a 

T2 and C1 -1.11*** n/a n/a 

Blue Flint  T1 and C2 0.50 n/a n/a 

T2 and C2 0.05 n/a n/a 

T1 and C1 0.47** n/a n/a 

T2 and C1 0.33 n/a n/a 

Tharaldson 

Ethanol 

T1 and C2 -0.21** n/a n/a 

T2 and C2 -0.18*** n/a n/a 

T1 and C1 -0.18*** n/a n/a 

T2 and C1 -0.12** n/a n/a 

Hankinson 

Renewable 

Energy 

T1 and C2 0.28** 0.22** n/a 

T2 and C2 0.34*** 0.30*** n/a 

T1 and C1 0.17*** 0.12*** n/a 

T2 and C1 0.18*** 0.15*** n/a 

Cluster 1: 

POET Bio 

Refinery and 

NuGen 

Energy 

T1 and C2 0.09** n/a 0.12** 

T2 and C2 0.09*** n/a 0.12*** 

T1 and C1 0.02 n/a 0.02 

T2 and C1 0.03* n/a 0.03 

Cluster 2: 

Advanced 

Bio Energy 

and Glacial 

Lakes 

Energy 

T1 and C2 0.37** n/a -0.58** 

T2 and C2 -0.25* n/a -0.74*** 

T1 and C1 0.42** n/a -0.38*** 

T2 and C1 -0.07 n/a -0.64*** 

* p<0.1; ** p<0.05; *** p<0.01; N/A means ‘not applicable’ for the case. 
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Table A15. Robustness Checks for treatment effects on Corn&Soy Acres. All combinations of 

multiple treatment and control groups. 

Ethanol Plant Combinati

ons 
, ,

ln( ) ln( )
i t i t

CS CS   
1, ,

ln( ) ln( )
i t i t

CS CS   
1, ,

ln( ) ln( )
i t i t

CS CS   

Red Trail 

Energy 

T1 and C2 -0.61* n/a n/a 

T2 and C2 -0.88*** n/a n/a 

T1 and C1 -0.83*** n/a n/a 

T2 and C1 -1.11*** n/a n/a 

Blue Flint  

T1 and C2 -0.22 n/a n/a 

T2 and C2 -0.65** n/a n/a 

T1 and C1 -0.12 n/a n/a 

T2 and C1 -0.22 n/a n/a 

Tharaldson 

Ethanol 

T1 and C2 -0.44*** n/a n/a 

T2 and C2 -0.43*** n/a n/a 

T1 and C1 -0.28*** n/a n/a 

T2 and C1 -0.26*** n/a n/a 

Hankinson 

Renewable 

Energy 

T1 and C2 0.06* 0.19*** n/a 

T2 and C2 0.04 0.16*** n/a 

T1 and C1 0.02 0.09*** n/a 

T2 and C1 0.01 0.09*** n/a 

Cluster 1: 

POET Bio 

Refinery and 

NuGen 

Energy 

T1 and C2 0.04*** n/a 0.05*** 

T2 and C2 0.04*** n/a 0.07*** 

T1 and C1 0.04*** n/a 0.05*** 

T2 and C1 0.04*** n/a 0.06*** 

Cluster 2: 

Advanced Bio 

Energy and 

Glacial Lakes 

Energy 

T1 and C2 -0.005 n/a -0.72*** 

T2 and C2 -0.31*** n/a -0.69*** 

T1 and C1 0.08 n/a -0.46*** 

T2 and C1 -0.25*** n/a -0.63*** 

* p<0.1; ** p<0.05; *** p<0.01; N/A means such case is ‘not available’ here.  
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ABSTRACT 

 

Land use changes are tied to the socio-economic well-being of agricultural production 

systems. Weather variations are central to agricultural productivity of croplands. Amidst 

evolving weather patterns, land use change is one way for private landowners to adapt to sustain 

or enhance farm profits. Many studies have analyzed the national or global scale impacts of 

climate change on agricultural profits, farmland values and crop yields. We present a new 

integrated framework to analyze climate change impacts on regional agricultural productivity 

and private land use decisions. We implement our framework to demonstrate the agricultural 

impacts of climate change on recent land use transitions in the Northern Great Plains. We first 

estimate a yield-weather relationship for all of a region’s major crops and incorporate several 

extensions that are novel to a commonly implemented yield-weather model. We incorporate 

trend-weather and soil-weather interaction terms, and differentiate between the detrimental 

impacts of isolated and consecutive heat events on yields. We further estimate yield-weather 

elasticities to evaluate asymmetric productivity impacts of weather across crop types. We then 

utilize a non-linear system of logistic models to identify the role of weather-driven crop yields on 

observed land use shares, including grassland shares among the crop types. We find evidence 

that weather-driven returns determine regional land use allocations. We finally evaluate the 

medium-term land use implications of the A1B climate change scenario by 2031-’60, relative to 

1981-2010. 
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Introduction 

Agricultural land use transitions are central to the economic and ecological output of 

agroecosystems. Private landowners derive marketable agricultural produce and ecosystem 

services from their lands. The ecological components provide habitat for diverse species, and 

help reduce the soil’s nutrient run-off thereby sustaining regional agricultural productivity. 

Private land use allocations are driven by multiple factors like market prices of production inputs 

and outputs, local infrastructure, technology, seeds, fertilizers, soil quality, climate, and agri-

environmental policy. Among these, soil quality and climate are natural endowments that 

determine the land’s productivity towards cropping, grazing, or other uses. Unlike soils, weather 

varies from year-to-year, and is ex-ante unknown to the private landowners when deciding upon 

their land use allocations. Economists have utilized the exogenous spatial and annual variability 

in weather to identify the climate change impacts on agriculture. 

Growing season weather interacts with the region’s soils to support crop growth. The 

length and timing of a region’s growing seasons differ across crops due to their distinct 

phenology. Similar heat and moisture levels in a growing season may have different 

developmental implications for different crops. For example, favorable weather conditions would 

enhance the overall agricultural yields but this effect may be stronger for some crops. Such 

asymmetric yield impacts of weather fluctuation can encourage private landowners to allocate 

higher acreage to more productive crops to enhance their profitability. Therefore, weather-driven 

productivity impacts not only drive a region’s economic returns from agricultural land use but 

could also alter its land use profile overtime affecting the social, ecological and environmental 

well-being of the region. Such implications are especially relevant when arable land is limited 

and so, the annual variations in weather may lead to intensive and extensive land use transitions 
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among crops, pasturelands, grasslands and/or forestlands. An understanding of the past impacts 

of weather on yields and land use changes can also shed light on the climate change implications 

on the future agricultural productivity, land use and overall welfare for agroecosystems. 

Economic analyses have largely analyzed the national and global-level climate change 

impacts on farmland values, agricultural profits and crop yields. Early studies implemented the 

Ricardian framework to evaluate U.S. farmland values as a function of growing-season 

temperature and precipitation (Mendelsohn et al. 1994; Schlenker et al 2005; Schlenker et al. 

2006). Deschenes and Greenstone (2007) found this approach to be sensitive to model 

specifications that provided a wide range of negative and positive climate change impacts. The 

authors suggested modelling per-acre farm profits instead to derive stable estimates of climate 

change impacts. Although land values are closely related to farm productivity and crop prices, 

they may be impacted by macroeconomic factors like inflation and interest rates as well. Infact 

apart from the fundamental economic forces, idiosyncratic factors like fads and overreactions too 

play an important role in determining the short-run farmland values (Falk and Lee, 1998) found 

that,). Crop yields, on the other hand, are directly related to the plant’s biological growth cycle 

that interacts with weather that leads to agricultural productivity. Recent economics literature has 

shifted focus on estimating the impact of warming on agricultural yields.  

Schlenker and Roberts (2009) identified a non-linear yield-temperature relationship for 

county-level corn, soybeans and cotton yields in the U.S. during 1950-2005. Their modeling 

strategy was similar to that of Thompson (1975) where marginally higher temperatures enhanced 

yields up to a threshold, and beyond that higher temperatures were detrimental to crop yields. 

This literature has since advanced to account for spatial adaptation to warming (Butler and 

Huybers 2012), the benefits of adopting genetically-engineered seeds (Xu et al. 2013), and 
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studying the impacts of extreme weather events such as heat waves, hail and tornadoes (Massetti 

and Mandelson 2016). Corn has attracted most attention among researchers who have studied the 

economic impacts of climate change on U.S. agriculture. Understanding the productivity 

dynamics of corn due to changed weather conditions is critical to U.S. agricultural exports, food 

and biofuel production. Recently, Tack et al. (2015) analyzed field-trials of 264 seed varieties to 

estimate the effects of warming on the U.S. wheat yields. They found that extreme spring-time 

temperatures reduced wheat yields and that newer wheat varieties are relatively less heat-

resistant than their older counterparts.  

Here we study how weather fluctuations affect agricultural land allocations for a region 

where fixed or limited land area is available for several viable land use options. The underlying 

conceptual framework is presented in figure 1. We first estimate a yield-weather relationship for 

all of a region’s major crops and incorporate several extensions that are novel to the commonly 

implemented yield-weather model. We analyze the impact of severe dry and wet conditions by 

using a Palmer’s Z index that measures moisture deficiency by controlling for evapotranspiration 

and soil run-off (Karl 1986). Flexible trends are included as a proxy for technological 

innovations and land management practices. We introduce soil-weather interactions to 

differentiate yield-weather outcomes by soil quality, and we include trend-weather interactions to 

evaluate how the detrimental impacts of weather stressor evolved in the past. We also 

differentiate yield impacts due to isolated, single-day heat event from those due to consecutive 

two-or-more-day events. To our knowledge, this is the first study to analyze all of a region’s 

major crops, besides incorporating the trend-weather and soil-weather interaction terms, and 

identifying the differentiated impacts of isolated and consecutive heat events. 
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We then estimate yield-weather elasticities to infer relative competitiveness among the 

region’s commodities due to the crop productivity impacts of past weather realizations. We 

extend the idea of crop competitiveness and estimate a formal land use shares model where we 

identify how relative profitability of several crops attributable to short-term weather variability 

impacted the region’s observed land use allocations. Our model for regional land use transitions 

as a function of weather outcomes is also new to the literature. We implement this integrated 

framework to study the role of weather on recent land use transitions in North Dakota and South 

Dakota. The Dakotas are part of the Northern Great Plains with substantial regional variability in 

soils and climate, away from any mountain or coastal effects. Wang et al. (2016) argued that this 

region’s privately owned grasslands are at economic margin and land conversions to agricultural 

production are subject to various market forces and physical factors such as soils and climate.  

We finally evaluate the medium-term climate change implications for regional 

agricultural productivity and land use changes. We use seven climate models to account for the 

underlying variability in future climate projections, where Burke et al. (2015) found that climate 

model selection can have large implications on climate-related policy recommendations.  

This paper is subdivided into several sections. We first discuss our methodology 

including various data sources and variable specification. The methodology section presents our 

yields model with various considerations. We then describe crop competitiveness due to yield-

soil-weather interactions and present a framework that models land use switching by using the 

yield estimates. We then briefly discuss our results and close with remarks on possible future 

steps.  
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Methodology 

Study area 

We analyze the land use impacts of climate change for two rain-fed states of the U.S. 

Northern Great Plains: North Dakota and South Dakota. The Dakotas are an appropriate region 

for this study by virtue of their location and the observed land use transitions. The eastern 

Dakotas are part of the Prairie Pothole Region, which includes a grassland-cropland frontier 

along the western edge of the Corn Belt. This region added most corn/soy acreage in the 

Northern Great Plains during 1995-2015 (figure 2). The increased corn/soy acreage displaced 

regional grasslands (Wright and Wimberley 2013), and traditionally grown crops like wheat and 

small grains (Johnston 2014). Grasslands are a natural resource that support Dakotas’ 

biodiversity and sustain its semi-arid soils that are vulnerable to erosion, and thus are central to 

the region’s socio-economic welfare. However, the grasslands are largely under private 

ownership and the observed land use switching is driven by economic, agronomic, and climate-

related factors.  

Weather is a determinant of a region’s agricultural productivity. To see the correlation in 

weather and regional yields, see figure 3, where in the past the most prominent dips across all of 

the Dakotas’ major commodities were either due to drought (1977, 1988, 2002, and 2012) or 

floods (1979, 1993, and 2006). The National Climate Assessment of 2014 predicted longer 

growing seasons by 2050 for the Northern Great Plains, relative to 1971-2000, as well as more 

frequent droughts and floods (Shafer et al. 2014). Therefore, the medium-term climate change 

impacts on this region’s agricultural production are relevant. 
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Estimating crop-specific yields-weather relationship 

Data and explanatory variables 

We estimate a non-linear yield-weather relationship using annual county-level yields of 

all major crops in the 119 counties of North and South Dakota during 1950 to 2013.20 The 

weather data, available from the Global Historical Climatological Network, are recorded daily 

across 306 weather stations in North Dakota and 397 stations in South Dakota. County-level 

weather variables, i.e. minimum/maximum temperature and precipitation, are constructed as an 

average of the values for stations located within county boundaries. Figure 4 shows the county-

level weather station frequency in the Dakotas. Monthly Palmer Z (denoted Z hereafter) data for 

the Dakotas’ 18 climate divisions, each containing multiple counties, are obtained from the 

National Oceanic and Atmospheric Administration. We calculate area-weighted Z values for all 

counties for every month during 1950-2013.  

County-level time-invariant soil quality data are constructed from a survey-based point-

level longitudinal National Resource Inventory (NRI) database. We utilize the Land Capability 

subclasses categorize soils based on their deficiencies, namely ‘dry and shallow’ soils, ‘poor 

drainage/wet’ soils, ‘erosive’ soils, and soil types that have ‘climatic limitations’. These 

subclasses are appended to the commonly used Land Capability classes that classify soils in 

categories I-VIII based on their incremental constraints towards cropping. Category I are the best 

soils that do not suffer from any deficiency, whereas categories II-VIII may have multiple 

deficiencies. A detailed discussion of the NRI’s nomenclature of these subclasses is provided in 

                                                 
20 Survey based expected crop yields data are downloaded from National Agricultural Statistical 

Service’s (NASS) QuickStats 2.0 portal. Expected yields are the weighted ratio of total 

production divided by total planted acreage in each county, and the weights represent respondent 

density in an agricultural statistical district (Statistical Methods Branch, USDA-NASS, 2012). 
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the Supplementary Material (SM). We constrain our analysis to categories II-IV since they 

provide for 85-90% of the Dakotas’ crop acreage. Category V-VIII soils are considered 

inappropriate for cropping. 

Table 1 describes the explanatory variables used to estimate our yield-weather model. 

Here, we provide the mathematical representation of these variables and the related specifics on 

their interpretation. We aggregate the daily temperature levels into threshold-based seasonal heat 

exposure variables called degree-days. The beneficial temperature levels are aggregated into 

growing degree days or GDs, and harmful temperature levels into stress degree-days or SDs. 

Following Xu et al. (2013), the mathematical representation of GDs and SDs for county i in 

month m of year t is provided in equation (1 a-b). 
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                     (1) 

Here, , ,i m tGD  is the heat accumulated within temperature-levels lT and hT  such that 

h lT T , and , ,i m tSD  is the heat accumulated above temperatures kT  with k hT T . ,

max

i dT  and 

min

dT  are the maximum and minimum temperature (in degree centigrade) on day d in county i for 

month m and year t. , hlT T  and kT  are identified for each crop separately, discussed hereafter. 

We prefer Z to precipitation to account for the actual moisture available for plant growth. 

Z measures short-term soil moisture deficiency and accounts for precipitation, evapotranspiration 

and soil’s water storage capacity. Evapotranspiration is a function of monthly and annual average 
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temperature, and so Z may be correlated with GD/SD.21 Table 2 summarizes various categories 

of Z. A representative month where 1.24Z    is designated droughty and when 1Z   the month 

is designated as wetter than normal. We transform this index to capture a non-linear yield 

response to the degree of moisture-stress from severe-to-extreme dryness/wetness. We define our 

regressors in equation (2 a-b).  

, , , ,

, , , ,

a) min( 1.99,0)

b) max( 2.49,0)

i m t i m t

i m t i m t

DRYZ Z

WETZ Z

  

 
                                                                                              (2)                                    

Here, DRYZi,m,t and WETZi,m,t are defined as a function of 
, ,i m tZ  such that higher DRYZ 

(WETZ) means higher degree of dryness (wetness) in county i for month m of year t. This 

specification will allow us to test whether droughts are the most harmful weather stressor 

towards crop yields as asserted by Massetti and Mandelsohn (2016). We also include an 

interaction term of WETZ with the SDs to evaluate the impact of humidity on agricultural yields. 

To evaluate the role of soils on how weather stressors impact crop yields, we construct 

county-level time-invariant soil deficiency measures 
dry

iQ  and 
wet

iQ  from the land capability 

subclasses. 
dry

iQ (
wet

iQ ) is defined as the percentage acreage in county i with ‘dry and shallow’ 

(‘poor drainage/wet’) soils. Including only 
dry

iQ  and 
wet

iQ  in our regressions means that their 

coefficients capture a relative impact from excluded soils with other deficiencies.  

 

                                                 
21 Palmer Drought Severity Index (PDSI) is an alternative index that is often used to account 

for moisture deficiency (e.g. Massetti and Mandelsohn, 2016). We rely on Karl’s (1986) 

recommendation that Z is a more stable measure of short-term moisture deficiencies than PDSI. 
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The yield-weather model 

We implement a two-step strategy for identifying crop-specific GD and SD thresholds. 

We first estimate a step-function by regressing crop yields onto each 1-degree Celsius bins 

having controlled for quadratic trends and precipitation. The estimated step-functions, presented 

in figures S1-S4 in the SM, provide an initial guide to the thresholds. We then refine the 

preliminary thresholds by implementing regression loops with the objective to maximizing our 

‘full’ yield-weather model’s fit (equation (3) below). Table 3 presents the crop-specific GD & 

SD thresholds along with the designated growing seasons. The decadal variable summaries are 

provided in table 4. 

, 0 , , ,

,

,

, ,

1 ,

,       

( - )i t W i t WETSD i t i t DRYS

n

n

i

D i t i tn

dry wet

Qd i i t Qw i i t tW i t t

Y W WETZ SD DRYZ SD

Q W Q W tW

D t n   

  





      

  


                         (3) 

Here, ,i tY  represents crop-specific yields in county i for year t. Variable   1  n iD f t n   and 

0  otherwise interacted with t specifies a continuous, linear spline with knots, n , at 1965, 1980 

and 1995 to capture differentiated trend impacts every fifteen years. Weather outcomes vector, 

, , , , ,[ , , , ]i t i t i t i t i tW GD SD DRYZ WETZ   captures the concave yield response to heat and moisture 

deficiency. Variables 
dry

iQ  and 
wet

iQ  that represent percent dry/shallow and poorly drained soils 

in a county respectively are interacted with ,i tW  to infer whether soil deficiencies aggravate the 

yield impacts of weather stressors.22 Our spline specification is intended to control for evolving 

                                                 

22 County-level 
dry

iQ  and 
wet

iQ  do not vary by the crops grown on these soil types. So, we will be 

able to provide only a general inference on the impact of soil quality on agricultural yields when 

the coefficient estimates to each soil variable are of same sign across the region’s major crops.  
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technology and land management practices that may enhance yields, and to capture potential 

shifts in yield trends from exogenous policy changes, e.g. 1996 Freedom-to-Farm Act, or lower 

commodity prices in mid-80s.23 Thompson (1969) utilized a similar specification to capture shift 

in yield trends after 1960 from higher fertilizer adoption in the Corn Belt. 

We also include trend-weather interactions to control how yield responses to weather 

stressors have evolved through time. The standalone trends are a surrogate for temporal 

adaptations as they likely reflect the impact of new technology or management practices on crop 

yields. Therefore, the trend-weather interactions may provide useful insights on how such 

innovations may have modified the impacts of weather on crop yields in the past. Finally, we 

include WETZ SD  to estimate the impact of humidity on agricultural yields. We include 

multiple interaction terms in model (3) and adopt a centered regression approach to ensure 

proper interpretation of the coefficients to these interacted variables.   

We extend model (3) to understand differentiated yield impacts by the intensity of heat 

stress. In particular, we disaggregate total growing season SDs into isolated or single-day event 

(SD1), two-to-three-consecutive-day (SD23) and four-or-more-consecutive days (SD4+). We 

divide these regressors, SD1, SD23, and SD4+, by a normalizing factor such that the coefficient 

estimates across these variables are comparable. The details on the normalization procedure and 

why it is important are provided in the SM. 

                                                 
23 We ruled out decadal knots because an F-test revealed that the degrees of freedom adjusted 

goodness-of-fit is higher for fifteen-year knots. 
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Weather may not have a uniform impact on crop’s growth through the growing season. In 

order to control for any seasonally differentiated effects of weather, we also include weather 

variables from 1st and 2nd halves of the growing season separately in equation (3). 

Weather realizations, crop competitiveness and land use change 

A profit maximizing land use allocation is achieved when an extra unit of land generates 

equal marginal returns from all competing land use types. Marginal returns from cropping 

depend upon exogenous inputs like weather and soils, endogenous inputs like seeds and 

fertilizers, and the input & output prices. Given market prices, good (bad) weather will increase 

(decrease) a crop’s yields, thereby making it more (less) profitable. If such weather impacts are 

heterogeneous across a region’s commodities, landowners may allocate higher acreage towards 

more profitable crop(s). To infer upon crop competitiveness in a region, we calculate yield 

elasticities to weather. The yield-weather elasticity is defined as the percent change in yields due 

to a one percent change in each weather variable, measuring yields’ sensitivity to change in that 

variable. Since elasticity is a unit-less measure, it is comparable across crops.  

We extend the crop competitiveness idea to analyze acreage allocation among the 

Dakotas’ five major land use types: corn (c), soy (s), spring wheat (w), alfalfa (a) and grass (g) 
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during 1996-2013.24, 25 The share of land allocated to use u in county i in year t, ,

u

i ts , is defined as 

the ratio of its acreage to the total county acreage, and we find , (0,1) ,u

i ts i t   in the Dakotas. 

Similar to Wu and Segerson (1995) and Miller and Plantinga (1999), we posit individual land use 

shares to be related to the per-acre returns from the competing land use types in set U  { , , ,c s w

, }a g . That is, , ,( ; )u u

i t i ts f X   with , , ,{( ) ,( ) }u u

i t i t u U i t u UX G   . ,

u

i t  denotes per-acre profits 

generated, and ,

u

i tG  denotes government payments received from land use u in county i in year t. 

We express each land use category’s allocated shares as a multinomial logistic function such that 

the shares sum to one for every county in each year, and the estimate of each share lies between 

zero and one. That is, we need to estimate the following system of crop-share equations 

, ,

, ,

, ,

exp[ ]
( ; ) ;  

exp

u u

i t i tu u

i t i t v v

i t i tv U

X
s X u U

X

 


 



 

  
                                                                            (4) 

The system of equation in (4) is then transformed into a log-linear form by dividing 

grass-acreage shares from the remaining four land use share equations and taking a log on both 

sides of each equation in the resulting system. So, we estimate the following system of four 

equations. 

                                                 
24 Land allocated among these five land use categories was more than 90% (80%) of the total 

county acreage for 92 (111) out of 119 counties during 1996-2013. 

25 Each year’s county-level grass acres are calculated as total county acreage minus the area 

under developed land, water, and cropland, including corn, soybeans, spring wheat, alfalfa, 

winter wheat, barley, dry beans, canola, oats, peas, rye, sorghum, sugarbeets and sunflower. 
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, , , , ,log( / ) ( ) ;  \ { , , , }u g u g u g

i t i t i t i t i ts s X u U g c s w a                                                              

(5) 

Our objective is to calculate the marginal effects of land use shares with respect to each 

exogenous variable , ,i t i tx X , i.e., , , ,( ; ) /u u

i t i t i ts X x  . To derive these marginal effects we first 

denote 
u g u    , , , ,

u g u

i t i t i t    , and \U g U  and re-write the system of equations (4) as 

follows 

, ,

,

, ,

,

, ,

exp[ ]
;   

1 exp

and

1

1 exp

u u

i t i tu

i t v v

i t i tv U

g

i t v v

i t i tv U

X
s u U

X

s
X

 

 

 






 

   


   





                                                                                     

(6) 

In order to calculate the marginal effects we differentiate the equations in (6) by 

exogenous variables ,i tx  (see SM for details). That is,  

, , , , , ,

, , , , , ,

(i)   ( , ) / = ;   

(ii) ( , ) /

u u u u v v

i t i t i t i t i t x x i tv U

g g g v v

i t i t i t i t i t x i tv U

M s x s x s s u U

M s x s x s s

 







      

    




                                                        (7) 

Equation (7) represents the land allocation solution for a profit-maximizing agent upon a 

unit increase in exogenous variable ,i tx . To visualize the economic interpretation of (7), consider 

the case when u c  and substitute , , , , ,1 c c w a g

i t i t i t i t i ts s s s s     . So, we have  
1

, , ,( ) /c c

i t i t i ts s x     

,\
( )c v v

i tv U c
s 


  where \ { , , , }U c s w a g . Hence, a unit increase in ,i tx  leads to a percent 

change in corn’s acreage share that is equal to the increase in net per-acre returns associated with 
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,i tx  upon allocating the land under other competing land use types to corn. We now discuss our 

strategy to isolate the impact of annual weather fluctuations on land use allocation decisions and 

the relevant estimation considerations for our land use shares model.  

Linking the annual weather fluctuations to land use allocations 

To identify the impact of weather variability on regional land use, we first define each crop’s 

per-acre profit as a function of its yields and then utilize our yield-weather model in equation (3) 

to decompose total profits into trend-driven and weather-soil driven profit components. 

Specifically, we re-write the expression ,

u u

i t   for all u U  in equation (4) as follows:   

   

, ,

, | , | ,

, | , |

2

,

, ,

( ) 

. .    1,  ( , ) [0,1] ;  

u u u u u u

i t t i t t

u u u u u u

i t t i t W Q

u u u u u u u u u u

t i t t t t i t W Q t

u u

u u

i t

u u

i

u

t

u

P Y C

P Y C P Y C

s t u U

 

 

 





  

     

   

 

 

   

 

 

   

   

                                                                     (8)  

Equation (8) formally presents the decomposition of total profits, ,

u

i t , as the sum of a 

trends-driven component, , | , |

u u u u

i t t t i t t tP Y C   , and a weather-soil driven component, 

, | , , | ,

u u u

i t W Q t i t W QP Y 
u

tC , where , | 10 ( - )n

nni t tY D t n    and , | , , , |

u u

i t W Q i t i t tY Y Y   from equation 

(3).26 Here, 
u

tP  and 
u

tC  represent the per-bushel price and per-acre cost of production for land use 

u, discussed later. We introduce parameters 
u  and 

u  as weights attached to each profit 

                                                 
26 We assume the 0tW   to allow for yields decomposition, potentially biasing other estimates. 

We re-estimate equation (3) with 0tW   in this section and find other coefficients to be largely 

similar, see table S10 in the SM.    
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component to test whether the impacts of trend-driven and weather-driven profits respectively 

are significantly different from the corresponding impact of total crop profits on land use 

changes. We constrain 1u u    to ensure , , |

u u

i t i t t   , | ,

u

i t W Q , and we require 
2( , ) [0,1]u u    to 

ensure that the absolute value of the impact of each profit component is restricted to be only as 

large as, and of same sign as, that of total profits. 

Notice that at the time farmers make land allocation decisions (generating the left-hand-

side of equation (4)), growing-season weather and post-harvest-time market prices are not yet 

realized. Thus, we incorporate landowner expectations of post-harvest prices by using pre-

planting settlement in February of each years for December Futures contracts of corn (Chicago 

Board of Traders or CBOT) and spring wheat (Minneapolis Grain Exchange), and November 

contracts of soybeans (CBOT).27 We acquire the per-acre cost of production for corn, soybeans 

and spring wheat from the ‘Commodity Costs and Returns 2016’ dataset made available by the 

USDA Economic Research Service. Since alfalfa futures are not traded, we utilize alfalfa prices 

and costs for the Dakotas made available by the FINBIN database hosted by the University of 

Minnesota (https://finbin.umn.edu).28 To account for the net returns from grass-based production 

we include price and cost information for the Dakotas CRP lands, fallow lands and cattle 

production from FINBIN database. Government payments data are acquired from the 

Environmental Working Group’s Farm Subsidy Database. 

                                                 
27 Futures prices for agricultural commodities were downloaded from Quandl.com.  

28 We find regional-level prices to be highly correlated with the pre-planting Futures prices in 

this region, see figure S5 in the SM. 

https://finbin.umn.edu/
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We further incorporate landowner expectation for each year’s growing-season weather 

based on the predicted weather, ,

u

i tW , from an AR(4) process described in equation (9).  

, ,,

u uu u u

i t i t lo t W ll
W t W   



   
  


4

1
1 1 1                                                                                            (9) 

where, 
, , , , ,, , ,

u u u u u

W l GD l SD l DRYZ l WETZ l     
  

, 1 [1,1,1,1]  and ,i tW  is as defined earlier.29  

To control for government payments we include insurance subsidies for corn, soy and 

wheat; disaster payments and other farming subsidies to account for government payments.30 

Insurance subsidies are important for land use allocations as they mitigate crop failure risks 

(Claassen et al. 2011b, Miao et al. 2014), which is relevant for the Dakotas’ marginal soils and 

weather. Land use allocations are endogenous to insurance subsidies and other forms of 

government payments. This is because the decision to buy insurance is likely to be simultaneous 

to the farmer’s land use allocation decision prior to the growing season. In this sense, cropping 

would be incentivized against staying out of cultivation (or staying in grass) when the 

government subsidizes insurance premiums.  

We therefore implement an IV estimation approach and instrument government payments 

as a function of expected prices and weather, as demonstrated in equation (10) below. As for the 

choice of instruments, we needed variables that are correlated with landowners’ land use share 

                                                 
29 Non-stationarity tests for each weather variable are presented in tables S10-S15 in the SM.  

30 ‘Other farming subsidy’ payments include Direct and Counter-Cyclical Payments, Average 

Crop Revenue Election Program, production flexibility contracts, market loss assistance, Loan 

Deficiency Payments (LDP), commodity certificates, LDP like-grazing payments, marketing 

loan gains, dairy program, livestock indemnity program, agricultural trade adjustment assistance 

program, hard winter wheat incentive program, and miscellaneous subsidies.  



116 

 

116 

 

allocation decisions and uncorrelated with the residuals in (6). We use the futures prices of crops 

to instrument government payments because these would determine farmer’s expectation of post-

harvest market-driven profitability of crops (which is also why we used futures prices to 

calculate per-acre profits above). We also use landowners’ expectation of weather from equation 

(9) to control for the farmers’ expectation of crop’s post-harvest weather-driven profitability, 

which we also utilize to define weather-driven profits earlier.  

, 0 ,

uu u u u
u

i t P W i ttG P W     ,                                                                                                          (10) 

where 
u

W =[ , , ,
u u u u

GD SD DRYZ WETZ    ]. Our proposed instruments are the pre-planting landowner 

expectations and are assumed to be uncorrelated with the error from estimating equation (10). 

Finally, in order for the constraint that 1u u    in equation (5) to be satisfied we set 

1u u   u  and to ensure that [0,1]u   we set exp( ) / (1 exp( ))u u ua a   u  where ua  is 

unrestricted.  

Hence, the non-linear system of equations to be estimated that corresponds to (6) and 

identifies the impact of short-run weather fluctuations on Dakotas’ observed land use shares 

during 1996-2013 is given as 

 ,, , , | ,, | ,
log( / ) (1 ) ;  

. .    exp( ) / (1 exp( ));  ,

v
u g v v v v v v v u

i ti t i t i t t G i ti t W Qv U

v v v

s s G u U

s t a a u v U

        




     

  


                                  (11) 

We utilize the non-linear seemingly-unrelated regressions framework to estimate (11) as 

common regressors may lead to contemporaneous correlation among residuals, ,

u

i t , across crops-

share equations, which is the second-step after the IV regressions for government payments in 
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(10). We also present the elasticity of land use shares to weather-driven own- and cross-profits, 

which is calculated below using the marginal effects formula in (7).  

Land use share elasticity with respect to the total and weather-driven profits is given as   

, ,

, , , ,

, ,

, ,

, , , ,

, ,

, , | , , | ,

( , )

( , ) ,  

and with respect to weather-driven profits as

( , )
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(12) 

Land use elasticity in equation (12) represents the the % change in crop u’s share as a result of 

1% change in u’s per-acre profit, which is proportional to net per-acre returns from allocating a 

unit acreage u from each of its competing land use types. 

Although our modeling strategy would identify the role of annual weather fluctuations in 

regional land use switches, some caveats remain. First, each crop’s growing season and 

temperature thresholds for GDs/SDs overlap, see table 3, implying high multicollinearity among 

weather-driven profits. Second, crop yield-trends after 1996 are also highly correlated (figure 5) 

leading to multicollinearity among trend-driven profits as well. Therefore, weather effects may 

not be separable across crops. Third, crop rotations are not explicitly captured in our model but 

in the county-level context crop rotations may not be as relevant as with fine-scale data.  

Regional climate change implications on yields and land use change 

We consider the Intergovernmental Panel on Climate Change’s (IPCC) A1B emission 

scenario (IPCC, 2012, p.4) to study the implications of climate change for this study. The A1B 
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scenario assumes rapid global economic growth until the end of this century with a balanced use 

of fossil and non-fossil energy sources. Under this scenario, global temperatures are expected to 

rise by [1.7oC, 4.4oC] in 2090-’99, relative to the 1980-’99 levels (Collins et al. 2013, figure 

12.39). We utilize daily climate projections from seven distinct climate models: CNRM, PCM, 

ECHAM5, HadCM3, ECHO, CGCM3/T47, and CGCM3/T63 for the Dakotas’ 18 climate 

divisions. Multiple climate model outputs are included since a definitive model has not emerged 

from the climate science literature, and the variance among different model-based outputs can be 

significant (Burke et al. 2015). 

To study regional-level change in weather and its implications, we construct future 

weather projections by superimposing a change-vector from daily climate projections onto the 

historical stations-level weather data, discussed hereafter. We do not use climate model-based 

projections directly for two reasons. First, the identification of weather variable coefficients in 

equation (3) relies on weather being a random phenomenon. The model-based climate 

projections are derived from simulated systems of interactions among the atmosphere, oceans, 

land surface, and ice, and are therefore not random. Further, the statistically downscaled climate 

projections under-represent heat-stress, see figures S5 a-c in the SM.  

To construct weather projections, we impose a 50-year mean-shift from the climate 

projections data onto daily historical weather realizations to obtain weather projections for 2031-

’60 period relative to 1981-2010. Let , , ,k y m dF  represent the historical realizations of temperature 

and precipitation in climate division k on day d of month m in year t, and , , ,k y m dF  represent 

climate model-based projections of weather. Define , ', , , , ', , , , ,k y y m d k y m d k y m dF F F    as the daily-

shift in projected weather in k to the same date 50-years apart or ' 50y y  . A potential 
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candidate for future weather variables is , ', , ,, ', , , , , k y y m dk y m d k y m dF F F  . However, we find that 

such shifts lead to nonsensical , 'k tF  like negative precipitation. We further find average daily-

shifts or mean-shifts to reduce such nonsensical projections, and so decide to use them. 

For robustness, we calculate the average-shifts in three distinct forms: a) 31-day moving 

average (MA); b) monthly average; c) annual average over months within the growing season, 

i.e. April-August. We present the results based on the daily projections derived using the 31-day 

MA mean-shifts. The alternative shifts provide similar inference for climate change and are 

included in the SM. The mathematical representation of 31-day daily mean-shifts and projected 

weather are provided in equation 9 (a-b). 

15

, ', , ,(31) 15
, ', , ,

(31)(31)
, ', , ,, ' ,
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31
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k y y m dMA
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                                                                                           (13)  

Recall that we utilize seven distinct sets of climate projections. Therefore, each equation 

in (13 a-b) is evaluated for all seven sets of climate model outputs. To draw a comparison 

between historical weather realizations (1981-2010) and the weather projections (2031-’60), we 

utilize median values from the output of seven climate models. Briefly, average temperature and 

total precipitation is projected increase for all months in the growing season. The highest 

increase in average temperature is projected in April (33%) and May (18%), and least increase in 

July (12%). August precipitation will increase the most (15%). Monthly Z will become more 
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negative in future, primarily driven by higher future temperatures.31 Detailed climate change 

implications for our weather regressors are discussed in the SM and presented in table S22.  

We utilize the projected weather to predict individual crop yields during 2031-’60 

relative to 1981-2010 conditional on regional soil quality and trends. To obtain future yield 

projections, we multiply the historical weather’s coefficient estimates in equation (3) by weather 

projections. We use static trends at 2010 levels when comparing yields during 2031-’60 vs. 

1981-2010.32 Burke et al. (2015) identified two types of errors in yield forecasts: climate model 

uncertainty and regression uncertainty. Climate model uncertainty arises from yield predictions 

based on seven climate model outputs. The regression uncertainty is the out-of-sample forecast 

error when using the coefficient estimates of a historical regression. We compute bootstrapped 

errors in yield forecasts during 1950-2013. We randomly exclude 10% of the years, re-estimate 

equation (3), and evaluate the difference between observed and predicted yields for the excluded 

years as forecast errors.33 We incorporate 500 iterations to deduce the distribution of forecast 

errors, and hence the variance for the yield forecasts. Finally, we feed our yield forecasts in 

equation (8) to infer upon the impact of climate change on future land use. 

Estimation Results 

Our yield-weather model reveals that the marginal yield trends were positive for all of the 

Dakotas’ major crops, the strongest for corn and the weakest for alfalfa, during 1950-2013 

                                                 
31 We model historical Z with monthly weather, prior to its projections. See SM for details. 

32 It is hard to predict any technological breakouts or how trends would evolve by 2060. Static 

trends (e.g. at 2010 level) allow temporal comparisons in yields in a consistent manner. 

33 Bootstrapping errors across years is appropriate as weather may be spatially correlated, hence 

non-random, across counties (Schlenker and Roberts, 2009). 
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(figure 5). Yield trends were positive for all crop types post-1995, and negative for all crops 

during 1980-’95. The post-1995 trends might be attributed to the 1996 Freedom-to-Farm Act. 

The Act gave farmers the flexibility to align their cropping choices with market valuations, 

which might have encouraged adoption of better farming practices potentially enhancing yields. 

It is interesting that spring wheat yields initially grew more rapidly, but were overtaken by the 

corn yields around 1970. Corn has sustained the strongest since then, which is correlated with the 

higher investment and adoption of corn’s hybrid, genetically engineered seed varieties in the 

Dakotas since 1948 (Griliches 1960).  

Our coefficient estimates for historical weather outcomes, i.e. GD, SD, DRYZ and WETZ, 

reveal a non-linear, concave yield-weather relationship (see table 5). The rate of decline in yields 

due to an extra unit of SD is found to be greater than the rate of increase in yields due to an extra 

unit of GD. This finding is consistent with Roberts and Schlenker (2009), and we extend it to 

two more commodities-spring wheat and alfalfa. Similarly, we find drought, as measured by 

DRYZ, to be the most harmful among weather stressors, consistent with Massetti and Mandelson 

(2016) and extended to spring wheat and alfalfa. Alfalfa is particularly interesting as it is a 

legume crop, often grown for forage or rotated with row crops for nitrogen-fixation in soils. We 

find severe wetness to be harmful towards wheat yields, beneficial towards soybean and alfalfa 

yields and insignificant towards corn yields. The non-decreasing impact of WETZ on corn and 

soybeans could be due to these crops’ high water demand for growth. We find humidity (WETZ

SD) to be beneficial towards crop yields. We cannot reconcile the positive and significant 

coefficient for DRYZSD, which might be due to collinearity among its components. High 

values of DRYZ and SD both reflect high temperature levels. 



122 

 

122 

 

The coefficient estimates on the trend-weather interaction terms are positive for GD, and 

negative for the weather stressors across crop-types, except for soybeans where the tDRYZ 

coefficient is negative but insignificant.34 So, the detrimental impact of SD and DRYZ has 

worsened over time. We find evidence above that positive trends for corn are correlated with 

technological advancements. Therefore, we expected the trend-weather interactions to exhibit 

higher yield tolerance to weather stressors over time. Our finding here is at variance with Yu and 

Babcock (2010) who found that corn beacme more drought tolerant in Indiana, Illinois and Iowa, 

and soybeans had constant drought-related through time. Lastly, our soil-weather interactions 

reveal that dry, shallow soils aggravate the negative impacts of DRYZ, and poorly drained, wet 

soils aggravate the impact of WETZ. As discussed earlier, we only provide a qualitative inference 

since soil quality varies at the county-level, and we do not information of soils by crop types.  

Our disaggregation of total SDs reveals that the higher intensity of heat-stress due to its 

incidence in continuum causes more damage to crop yields than from isolated events, see table 6. 

In addition, the isolated heat events enhanced soybean and spring wheat yields, which is akin to 

the conept of ‘hormesis’ in toxicology. Hormesis occurs when low-doses of an agent are 

stimulating while the higher-doses may be toxic or lethal. We also find seasonally differentiated 

impacts on crop yields, where early season SDs also enhance soybean and spring wheat yields 

Differentiated weather impacts on crop yields 

Table 7 reveals that during 1950-2013 an extra unit of GDs enhanced soybean yields the 

most (elasticity = 0.12), followed by alfalfa (0.06), spring wheat (0.06) and corn (0.04). On the 

                                                 
34 This result could be due to positive trends in the weather variables. We do not find GD, SD, 

and DRYZ to exhibit such trends historically. See tables S14-S17 in the SM.  



123 

 

123 

 

other hand, an extra unit of SDs was most harmful to spring wheat yields (-0.09), followed by 

alfalfa (-0.08), corn (-0.08) and soy (-0.04). An extra unit of DRYZ was most harmful to alfalfa (-

0.06), followed by spring wheat (-0.05), corn (-0.04) and soybeans (-0.04). As presented earlier 

in table 4, the Dakotas have experienced increased incidence of GDs, SDs and DRYZ since the 

1950s, although these trends were relatively moderate in the more recent decades. Our yield-

weather elasticities suggest that amidst the observed trends in historical weather outcomes 

soybeans and corn have become more productive than spring wheat overtime. This productivity 

difference across the region’s crops is consistent with the observed shift of production systems 

away from wheat, and towards corn and soybeans. 

Land allocation among competing uses 

Our land use shares estimation is a two-step process. First, the IV-regressions estimate 

government payments, which are endogenous to contemporary land use allocations, as a function 

of expected weather and regional prices (equation (7), table 8). We find that higher commodity 

prices lead to lower per-acre farm-level subsidies including direct and counter-cyclical payments, 

but higher insurance subsidies. High commodity prices could drive insurance premiums upward 

as the market value of the farm’s output increases, which explains why higher prices predict 

higher insurance subsidies. The crop insurance subsidies and disaster payments have similar 

weather dependence as in our yield-weather models. That is, more GDs imply lower payments, 

whereas higher SDs, DRYZs or WETZs imply higher payments. 

Most soybeans production occurred on east of the Missouri River, and so soybean yields 

data are only available for counties in the eastern Dakotas. We incorporate this inconsistency in 

data by estimating model (8) in two sets: (i) east of Missouri River including soy shares, and ii) 

west of the river excluding soy shares. Tables 9 (11) presents the estimation results for set (i) 
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((ii)) regressions and table 10 (12) present corresponding acreage share elasticities with respect 

to crop-specific total and weather-driven profits.35 

Our modeling framework posited the five major land use types competing for fixed 

county acreage. We expected that an increase in profits of a particular crop would imply higher 

acreage allocation towards that crop and lower acreage allocation towards its substitutes. In 

eastern Dakotas, we find that higher corn profits to enhance its share allocation and reduce 

acreage allocated towards alfalfa and grass. However, higher corn profits favor the acreage 

shares of soybeans and wheat, even though higher wheat profits imply fewer corn acres. We 

attribute such spurious estimates to high multicollinearity across crops’ profits, discussed earlier. 

Our estimation framework identifies the overall impact of weather-driven profits, but land 

allocation impacts from crop-specific profits remain undifferentiated. We also find that higher 

insurance subsidies enhance the crop’s acreage allocation, while disaster payments and farm 

subsidies are associated with lower crop acreage except for spring wheat. 

We estimate the elasticity of each crop’s land use shares with respect to weather-driven 

profits. These elasticities are indicative of the impact of annual variability in weather on regional 

land use change.  In the eastern Dakotas, higher weather-driven profits for spring wheat imply 

                                                 
35 To formally test whether our profit-decompositions matter, we conduct an F-test to compare 

sum of standard errors (SSEs) from a full model (with decomposed profits) and a restricted 

model (with total profits) of land use shares. We find that SSEs were statistically smaller in case 

of the full model for all crops, except for alfalfa in the western counties where restricted model 

yielded a better fit (or lower SSE). Overall, we conclude that profit decomposition is important 

when data permits, to the extent that it likely generates a better fit for land use share models. 
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more wheat and soy acres and fewer acres for corn, alfalfa and grasses. An increase in the 

weather-driven alfalfa profits, however, enhances the acreage shares allocation for all crop types 

except for itself while implying fewer grass acres. In the western counties, similar results hold 

with the impact of weather-driven profits statistically significant in most cases. Overall, we find 

that weather-driven profits are an important determinant of acreage allocation among all land use 

types, but the shares’ elasticity is at times negative with respect to the own-profits and positive 

with respect to the cross-profits.  

Land use and Yield changes due to Climate Change 

We find soybeans yield losses to be modest (11%) relative to the other crops, followed by 

corn (34%), spring wheat (51%) and alfalfa (65%) by 2031-’60, relative to the 1981-2010 levels, 

see figures 6-9. These individual crop yield losses translate into lowered weather-driven profits 

of the region’s crops as a result of the projected weather during 2031-’60. These changes in 

weather-driven profits, at their means, are then fed into the estimated system of land share 

equations, holding other variables constant at their means, to evaluate regional implications of 

climate change on the land use allocations. We find that, in the eastern Dakotas’ counties, the 

percent change in average shares of corn (-3.2%) and soybeans (-3.6%), whereas spring wheat 

shares will decline by 21.2% by 2-31-’60 relative to 1996-2013. Alfalfa and grass shares are 

projected to remain about the same. A significant decline in spring wheat shares can be explained 

by lowered weather-driven profits of wheat and alfalfa, due to large yield shocks for these crops, 

which have positive, significant marginal effects on spring wheat shares. On the other hand, in 

the western Dakotas’ counties, percent change in average shares of corn, spring wheat and grass 

are projected to change modestly, whereas alfalfa share are projected to increase by 20.4% by 

2031-’60 relative to 1996-2013 (see table 13 for details). The marginal effects of weather-driven 
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profits of individual crop-types are largely insignificant in case of these western counties. 

Overall, a regional consequence of medium-term changes in climate is that the cropland acreage 

is likely to decline leading to higher allocation towards grass and alfalfa categories in the 

Dakotas. Our acreage share projections are driven solely by weather, not accounting for any 

potential technological/policy interventions, or any national or global-level adaptations in 

production systems in the future.  

Discussion 

Temperature and moisture are critical crop production inputs. Variations in weather influence 

agricultural yields, farm profits and farmland values. Many studies have analyzed the 

implications of climate change on agriculture, with an extensive focus on corn production in the 

U.S. This paper presents a new integrated framework to assess the regional impacts of climate 

change on agricultural productivity, and evaluates relevant implications for agricultural land use 

decisions. For this, we exploit the differentiated productivity impacts of weather fluctuations on 

a region’s viable cropping choices that compete for acreage given limited availability of arable 

land. We first estimate each crop’s yield-weather relationship, and then combine the model-

based yield predictions with annual price information to calculate the crop-specific per-acre 

profits due to the weather-driven component of yields. These per-acre profits are then utilized as 

explanatory variables in a land use shares model to identify and estimate the role of weather 

fluctuations on a region’s land use decisions.  

We demonstrate our framework by analyzing the agroecosystem along the western 

fringes of the Corn Belt in North and South Dakota, where corn/soy cultivation has displaced 

native grasses and traditionally grown small grains in the past decade. Land use changes are 

central to the socio-economic welfare of this region. Given its marginal soils that are susceptible 



127 

 

127 

 

to erosion, the region has limited availability of good quality cropland that is allocated among 

several viable land uses, and agricultural yields rely upon annual weather conditions. Our 

analysis reveals a consistent yield-weather relationship for all of the region’s major crops: corn, 

soy, wheat and alfalfa. Alfalfa is particularly interesting as it is primarily used for forage, and so 

are the region’s grasslands.  

We estimate yield-weather elasticities to compare the crop-specific weather impacts on 

yields. In our attempt to quantify crop competitiveness due to historical weather, we find 

soybeans to be the most responsive to benevolent heat and least responsive to harmful heat. 

Given past weather outcomes, this reveals favorable conditions towards soybeans yields relative 

to spring wheat and alfalfa. Such differentiated impacts are correlated with the region’s land use 

dynamics, where in recent years less land is allocated to spring wheat and alfalfa and more 

towards soybean production. Our land use shares model formally analyzes the role of weather-

driven crop returns towards the region’s within-cropland dynamics and grass acreage. We find 

that weather-driven productivity impacts play a significant role in determining land use decisions 

across the region’s croplands and grasslands. However, identifying crop-specific impacts is 

challenging due to high multicollinearity among the per-acre profits because there is substantial 

overlap in the crops’ growing seasons and their beneficial and harmful temperature levels.  

We apply our framework to evaluate the climate change implications for regional 

agricultural productivity and land use allocations during the 2031-’60 period, relative to 1981-

2010. We find yield losses across crop types, with least losses for soybean and highest losses for 

spring wheat and alfalfa. The climate change impacts on crop yields will reduce the per-acre 

profitability of each crop, which in turn will lead to lower acres allocated to crops and higher 

allocation to grass on the east of the Missouri River. Alfalfa acreage, which is a grass substitute, 
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is expected to be higher on the west of the Missouri River by 2060. These results indicate that 

weather projections due to the A1B scenario of IPCC support higher grass acres in the Dakotas. 

Notice, however, that the scope of our study’s implications is restricted to this region. A 

projected decline in yields and acreages do not account for national or global level adaptations of 

crop growing regions, nor do we account for any future technological innovations that may 

mitigate the impacts of climate change. Furthermore, our findings do not account for corn 

rotations. As such our finding that corn acres will increase and soybeans will vanish on the east 

of the Missouri River is unrealistic as corn-soy rotations would mean that soybeans will still be 

cultivated as we project higher corn acreage in future. 

Our findings have implications for crop-based and livestock-based agricultural systems. 

Addressing land use switches that involve regional grasses may garner interests among 

conservation enthusiasts and those interested in related ecosystem services from the Great Plains, 

as well among those interested in how climate change affects food production. Our framework 

can be further extended to analyze the climate change implications towards a region’s total 

agricultural output and future nutrient supply. 
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TABLES 

Table 3. List of explanatory variables for estimating the yield-weather model 

# Crop-specific growing seasons are presented in table 3. 

 

 

 

Table 2. Palmer Z’s characterization of wetness and droughts 

Category Palmer Z 

Extreme Wetness ≥ 3.50 

Severe Wetness [2.50, 3.49] 

Mild to Moderate Wetness [1.00, 2.49] 

Near Normal [-1.24, 0.99] 

Mild to Moderate Drought [-1.99, -1.25] 

Severe Drought [-2.74, -2.00] 

Extreme Drought ≤ -2.75 

 

 

 

Variable Definition 

,i tGD   Growing degree days, a cumulative measure of the incidence of benevolent 

degrees in county i during year t’s growing season#. 

,i tSD  Stress degree days, a cumulative measure of the incidence of harmful degrees in 

county i during year t’s growing season#. 

1

,i tSD  Stress degree days that occur as a single-day event in county i during year t’s 

growing season#. 

23

,i tSD  Stress degree days that occur as two-to-three-consecutive-day event in county i 

during year t’s growing season#. 

4

,i tSD 
 Stress degree days that occur as four-or-more-consecutive-day event in county i 

during year t’s growing season#. 

,i tDRYZ  Captures the total intensity of severe-to-extreme drought in county i during year 

t’s growing season#. 

WETZ  Captures the total intensity of severe-to-extreme wetness in county i during year 

t’s growing season#. 

dry

iQ  % soils in county i with land capability subclass ‘shallow’ or ‘dry’ under the 

capability classes II, III, or IV. 

wet

iQ  % soils in county i with land capability subclass ‘poor drainage’ or ‘wet’ under 

the capability classes II, III, or IV. 
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Table 3. Growing seasons and temperature thresholds for corn, soybean, spring wheat and alfalfa 
 

 

 

 

 

Table 4. Decadal summaries of monthly weather variables. 

 

Variable 1950-’60 1961-’70 1971-’80 1981-’90 1991-’00 2001-’10 

CORN       

GD 756.95 955.39 1004.25 1010.28 999.30 940.07 

SD 22.80 32.07 38.73 36.91 19.87 27.93 

DRYZ 0.60 0.35 1.02 1.09 0.18 0.65 

WETZ 0.84 1.51 0.79 0.77 2.46 1.61 

SOYBEANS       

GD 1094.79 1178.12 1193.75 1112.84 1100.46 1004.54 

SD 16.05 15.32 18.26 15.46 6.90 8.45 

DRYZ 0.44 0.29 1.04 1.12 0.12 0.45 

WETZ 0.66 1.50 0.76 0.74 2.14 1.87 

SPRING 

WHEAT 

      

GD 588.16 727.66 767.87 778.83 748.36 715.90 

SD 32.84 43.54 53.91 52.63 29.21 39.98 

DRYZ 0.64 0.24 1.06 1.30 0.16 0.68 

WETZ 0.63 1.55 0.87 1.07 2.44 1.40 

ALFALFA       

GD 629.36 773.23 784.41 762.82 783.07 773.17 

SD 33.77 43.54 44.85 35.22 29.06 42.91 

DRYZ 0.68 0.241 0.97 1.61 0.13 0.66 

WETZ 0.58 1.55 1.02 0.78 2.02 1.51 

 

 

 

 

 

 

 

Commodity Growing Season Temperature Thresholds 

CORN May-August [7 ,26 ]; 30o o oGD C C SD C    

SOYBEANS May-August [6 ,26 ]; 32o o oGD C C SD C   

SPRING WHEAT April-July [6 ,20 ]; 27o o oGD C C SD C   

ALFALFA April-July [6 ,22 ]; 27o o oGD C C SD C   
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Table 5. The (parsimonious) yields regression model. Dependent Variables: Yields (bu./ac.) 

 CORN SOYBEANS SPRING WHEAT ALFALFA 

Variable Estimate Estimate Estimate Estimate 

Intercept 24.145*** 23.848*** 24.696*** 25.872*** 

t 0.833*** 0.209*** 0.654*** -0.064 

t65 1.081*** 0.385*** -0.230*** 1.463*** 

t80 -0.858*** -0.230*** -0.292*** -1.322*** 

t95 1.370*** 0.133*** 0.654*** 0.565*** 

GD 0.003*** 0.002*** 0.002*** 0.004*** 

tGD 0.0002*** 0.000001 0.00002 0.0002*** 

SD -0.147*** -0.065*** -0.055*** -0.106*** 

tSD -0.005*** -0.001*** 0.0004* 0.00003 

DRYZ -3.638*** -1.351*** -2.015*** -5.384*** 

tDRYZ -0.120*** -0.006 -0.031*** -0.091*** 

DRYZ  SD 0.026*** 0.010*** 0.004*** 0.017*** 

WETZ -0.077 0.012 -0.292*** 2.112*** 

tWETZ -0.034*** -0.009*** -0.015*** -0.018*** 

WETZ  SD 0.024*** 0.028*** -0.001 0.013*** 

dry

iQ   SD -0.0002 0.002* 0.000 0.0001 
dry

iQ   DRYZ -0.0594*** 0.003 -0.010 -0.094*** 

wet

iQ WETZ -0.0100 -0.006 -0.034*** -0.021 

R2 0.7974 0.7805 0.7242 0.7374 

N 6,935 

 

2,911 

 

7,067 

 

6,123 

 ***p<0.01, **p<0.05, *p>0.1 

 

 

Table 6. Marginal impacts of isolated and consecutive incidence of the SDs (heat stress). Full 

regression in the SM, see table S7. 

 CORN SOYBEAN SPRING 

WHEAT 

ALFALFA 

Variable Estimate Estimate Estimate Estimate 

SD1 -0.071 0.194*** 0.053 -0.339*** 
SD23 -0.210 -0.176** 0.068 -0.331** 

SD4+ -1.964*** -0.507*** -1.469*** -2.729*** 

***p<0.01, **p<0.05, *p>0.1 
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Table 7. Yields-weather elasticities (Crop Competitiveness) 

Variable 
CORN  

(59 bu./ac.) 

SOYBEANS  

(22 bu./ac.) 

SPRING WHEAT 

(27 bu./ac.) 

ALFALFA  

(55 bu/ac) 

GD 0.043 0.119 0.055 0.055 

SD -0.076 -0.039 -0.089 -0.077 

DRYZ -0.042 -0.037 -0.053 -0.063 

WETZ 0.002 0.001 -0.015 0.051 

 

 

 

 

 

 

 

Table 8. IV Regressions for Government Payments Variables 

Regressors Crop Insurance Subsidy Disaster 

Payments 

Farm 

Subsidies  Corn Soybeans Wheat 

Intercept 5.89*** -19.30*** 11.68*** 2.15 14.997*** 

Trends    0.62***  

Corn Price 0.76***     

Soy Price  0.32***    

Wheat Price   0.35***   

Average Price    -1.09*** -0.17*** 

GD -0.001* -0.001 -0.001** -0.005**  

SD 0.01*** 0.05 0.001 0.14***  

DRYZ 0.58*** 0.73 0.44*** 2.49***  

WETZ 0.62*** 1.30*** 0.15*** 1.41***  

Fixed Effects Yes -0.001 -0.001 Yes Yes 

R2 0.73 0.82 0.89 0.14 0.86 

N 2,111 2,111 2,023 2,088 2,044 

***p<0.01, **p<0.05, *p>0.1 
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Table 9. Marginal effects of the change in exogenous variables on land use shares for Dakotas’ 

counties east of the Missouri River where soybean yields are reported, see equation (11). 

Standard errors (in parentheses) are calculated using the delta method. 

 CORN SOY SPRING WHEAT ALFALFA GRASS 

Coefficient Estimate Estimate Estimate Estimate Estimate 

c   
0.0004a 

(0.00008) 

0.0004 b 

(0.0002) 

0.0006a 

(0.00009) 

-0.0002a 

(0.00003) 

-0.001a 

(0.0002) 

| ,c W Q   
-9.63E-10a 

(2.42E-10) 

3.71E-09a 

(9.32E-10) 

-3.85E-10a 

(9.68E-11) 

-1.93E-10a 

(4.84E-11) 

-1.88E-09a 

(4.72E-10) 

s  
0.001a 

(0.00014) 

-0.0004 

(0.0002) 

-0.002a 

(0.0004) 

0.0002a 

(0.00004) 

0.001b 

(0.0003) 

| ,s W Q  
2.08E-04a 

(7.48E-05) 

2.4E-04a 

(8.61E-05) 

-0.001a 

(0.0003) 

0.00004a 

(0.000015) 

0.0004a 

(0.0002) 

w  
-0.001a 

(0.0001) 

0.00005 

(0.0002) 

0.003a 

(0.0002) 

-0.0002a 

(0.00003) 

-0.001a 

(0.0002) 

| ,w W Q  
-5.02E-04a 

(4.07E-05) 

-5.77E-04a 

(4.68E-05) 

0.002a 

(0.0002) 

-0.0001a 

(8.16E-06) 

-0.001a 

(0.0001) 

a  
0.002a 

(0.0002) 

0.003a 

(0.0004) 

0.001a 

(0.0003) 

-0.0001 

(0.0001) 

-0.005a 

(0.0005) 

| ,a W Q  
0.002a 

(0.0002) 

0.002a 

(0.0004) 

0.001a 

(0.0003) 

-0.0002b 

(0.00008) 

-0.004a 

(0.0005) 

cow  
0.001a 

(0.0003) 

0.004a 

(0.0005) 

0.002a 

(0.0003) 

-0.001a 

(0.0001) 

-0.006a 

(0.0006) 

fallow  
-0.001a 

(0.0005) 

-0.001 

(0.0009) 

-0.0005 

(0.0005) 

0.001a 

(0.0002) 

0.002b 

(0.0011) 

CRP  
-0.001b 

(0.0004) 

-0.0004 

(0.0008) 

-0.002a 

(0.0005) 

0.0003b 

(0.0001) 

0.002 

(0.0010) 

Crop Insurance Subsidy 

.

c

ins subsidyG   
0.085a 

(0.0035) 

-0.013 

(0.0066) 

-0.024a 

(0.0036) 

-0.001 

(0.0011) 

-0.041a 

(0.0076) 

.

s

ins subsidyG  
-0.028a 

(0.0047) 

0.089a 

(0.0088) 

0.006 

(0.0050) 

0.002 

(0.0015) 

-0.059a 

(0.0103) 

.

w

ins subsidyG  
-0.035a 

(0.0024) 

-0.044a 

(0.0045) 

0.063a 

(0.0025) 

-0.007a 

(0.0008) 

0.020a 

(0.0052) 

Other Government Payments 

-disaster paymentsG  
-0.007a 

(0.0011) 

0.001 

(0.0021) 

0.004a 

(0.0012) 

-0.002a 

(0.004) 

0.004 

(0.0025) 

.  oth farm subsidyG  
-0.022a 

(0.0031) 

-0.017a 

(0.0059) 

-0.022a 

(0.0033) 

0.001 

(0.0004) 

0.053a 

(0.0068) 

% 2LCCQ   
0.172a 

(0.0214) 

0.257a 

(0.0399) 

0.030 

(0.0220) 

-0.051a 

(0.0069) 

-0.354a 

(0.0464) 

R2 0.5947 0.8282 0.9910 0.4849 n/a 

N 651 651 651 651 651 
a p<0.01, b p<0.05 

Notes: These marginal effects were calculated using the expression in equation (7), see 

regression estimates in the supplementary material. 
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Table 10. Elasticity of land use shares with regards to own- and cross-profits, i.e. , , | ,( , )u v

i t i t W Qs  . 

Standard errors (in parentheses) are calculated using the delta method. 

Variable Corn Shares Soy Shares 
Spring Wheat 

Shares 
Alfalfa Shares Grass Shares 

c   
0.31a 

(0.06) 

0.31 b 

(0.15) 

0.46a 

(0.07) 

-0.15a 

(0.02) 

-0.77a 

(0.15) 

| ,c W Q   
-7.4E-7a 

(1.9E-7) 

2.9E-6a 

(7.2E-7) 

-3.0E-7a 

(7.4E-8) 

-1.5E-7a 

(3.7E-8) 

-1.4E-6 

(3.6E-7) 

s  
0.77a 

(0.11) 

-0.31b 

(0.15) 

-1.54a 

(0.31) 

0.15a 

(0.03) 

0.77a 

(0.23) 

| ,s W Q  
0.16a 

(0.06) 

0.18a 

(0.07) 

-0.77a 

(0.23) 

0.03a 

(0.01) 

0.31b 

(0.15) 

w  
-1.43a 

(0.14) 

0.07 

(0.29) 

4.28a 

(0.29) 

-0.29a 

(0.04) 

-1.43a 

(0.14) 

| ,w W Q  
-0.72a 

0.06 

-0.82a 

(0.07) 

2.85a 

(0.29) 

-0.14a 

(0.01) 

-1.43a 

(0.14) 

a  
3.70a 

(0.37) 

5.55a 

(0.74) 

1.85a 

(0.56) 

-0.19 

(0.19) 

-9.25a 

(0.93) 

| ,a W Q  
3.70a 

(0.37) 

3.70a 

(0.74) 

1.85a 

(0.56) 

-0.37a 

(0.15) 

-7.40 

(0.93) 
a p<0.01, b p<0.05 
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Table 11. Marginal effects of the change in exogenous variables on land use shares for Dakotas’ 

counties west of the Missouri River where soybean yields are not reported, see equation (11). 

Standard errors (in parentheses) are calculated using the delta method. 

 CORN SPRING WHEAT ALFALFA GRASS 

Variable Estimate Estimate Estimate Estimate 

c   
0.00006 

0.00005 

-0.0008a 

(0.0003) 

-0.0001a 

(0.00002) 

0.0008a 

(0.0002) 

| ,c W Q   
0.00004 

0.00005 

-0.0003 

(0.0003) 

0.00001 

(0.00001) 

0.0002 

(0.0002) 

w  
-0.0002a 

(0.00005) 

0.0011a 

(0.0003) 

0.0001 

(0.00008) 

-0.0009a 

(0.0003) 

| ,w W Q  
-0.0001b 

(0.00006) 

0.0004 

(0.0003) 

0.00001 

(0.00006) 

-0.0003 

(0.0003) 

a  
0.0002a 

(0.00007) 

0.0013a 

(0.0004) 

0.0001 

(0.00008) 

-0.0015a 

(0.0004) 

| ,a W Q  
0.00005 

(0.00007) 

0.0012a 

(0.0004) 

-5.31E-06  

(0.0001) 

-0.0011a 

(0.0004) 

cow  
0.0005a 

(6.3E-05) 

0.0018b 

(0.00009) 

0.0002b 

(6.2E-05) 

-0.0022a 

(0.0003) 

fallow  
0.0004a 

(0.0001) 

0.0011 

(0.0006) 

0.0007a 

(0.0002) 

-0.0019 

(0.0006) 

CRP  
-0.0006a 

(0.0001) 

-0.0014a 

(0.0005) 

-0.0004a 

(0.00015) 

0.0021a 

(0.0006) 

.

c

ins subsidyG   
0.0115a 

(0.0004) 

0.0076a 

(0.0021) 

0.0051a 

(0.0006) 

-0.0216a 

(0.0022) 

.

w

ins subsidyG  
0.0002 

(0.00014) 

0.0013 

(0.0008) 

-0.0002 

(0.0002) 

-0.0012a 

(0.0008) 

-disaster paymentsG  
-0.0017a 

(0.0002) 

0.0051a 

(0.0011) 

0.0006 

(0.0003) 

-0.0036a 

(0.0012) 

.  oth farm subsidyG  
-0.0088a 

(0.0005) 

-0.0151a 

(0.0029) 

-0.0066a 

(0.0008) 

0.0273a 

(0.0029) 

% 2LCCQ   
0.0449a 

(0.0036) 

0.4530a 

(0.0199) 

-0.0253a 

(0.006) 

-0.4225a 

(0.0206) 

R2 0.9711 0.8978 0.9572 n/a 

N 645 645 645  
a p<0.01, b p<0.05 

Notes: These marginal effects were calculated using the expression in equation (7), see 

regression estimates in the supplementary material.  
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Table 12. Elasticity of land use shares with regards to own- and cross-profits, i.e., , , | ,( , )u v

i t i t W Qs  , 

for Dakotas’ counties on west of the Missouri River. Standard errors (in parentheses) are 

calculated using the delta method. 

Variable Corn Shares Spring Wheat Shares Alfalfa Shares Grass Shares 

c   
0.46 

(0.39) 

-6.16a 

(2.31) 

-0.77a 

(0.15) 

6.16a 

(1.54) 

| ,c W Q   
0.0002a 

(0.00002) 

-2.31 

(2.31) 

-0.08 

(0.08) 

1.54 

(1.54) 

w  
-0.25a 

(0.06) 

1.39a 

(0.38) 

0.13a 

(0.10) 

-1.14a 

(0.38) 

| ,w W Q  
-0.13 

(0.08) 

0.51 

(0.38) 

0.01 

(0.08) 

-0.38 

(0.38) 

a  
0.37a 

(0.13) 

2.41a 

(0.74) 

0.19 

(0.15) 

-2.78a 

(0.74) 

| ,a W Q  
0.09a 

(0.13) 

2.22a 

(0.74) 

-0.01 

(0.19) 

-2.04 

(0.74) 
a p<0.01, b p<0.05 

 

 

 

Table 13. Projection of the evolution of the Dakotas’ production systems by 2031-’60 relative to 

the 1996-2013 levels under the A1B emissions scenario of the IPCC. 

 

 

 

 

 

 

 

 

 

 

 

 

Commodity 
% Change in Acreage Shares 

(Eastern Counties) 

% Change in Acreage Shares 

(Western Counties) 

CORN -3.2 1.0 

SOYBEANS -3.6 n/a 

SPRING WHEAT -21.2 1.4 

ALFALFA -0.4 20.4 

GRASS 0.8 -1.4 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual framework to assess the regional impact of weather outcomes on land use. 
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Figure 2. Change in corn and soybeans acreage in the U.S. Northern Great Plains states between 

1994-95 and 2014-15. No color signifies missing values in either years. 
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Figure 3. Historical Yields for the Dakotas’ major crops, i.e. corn, alfalfa, soy and spring wheat. 

 

 
Figure 4. Weather Station Frequency across 119 counties in North and South Dakota. 
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Figure 5. Marginal Trend Impacts on Crop Yields. The 1950 values are standardized to equal 1. 
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Figures 6-9. Predicted yields for individual crops during 2031-’60 relative to the historical yields 

during 1981-2010. 
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APPENDIX B  

[SUPPLEMENTARY MATERIAL] 

 

Crop-specific yields-weather relationship 

Data and Explanatory Variables 

Land Capability Subclasses: Definitions and the NRI’s nomenclature 

The land capability classification assigns progressively unsuitable soils into higher 

classes. Soils of higher land capability categories require more intense management practices to 

mitigate intrinsic limitations towards agricultural production. Typically, class I soils can be 

readily subject to cropping; class II, III & IV lands require some additional remedies before they 

can be cropped; and categories (V-VIII) are usually inappropriate for cropping. The extent and 

type of remedies required for class II, III & IV lands depends on the type of impediment(s). Land 

capability classes II-VIII are further sub-categorized by the soil’s dominant impediments. These 

sub-categories are vulnerability to erosion, excess wetness (or poor drainage), root-zoning 

limitations (dry, shallow soils) and climatic limitations. The NRI follows a hierarchical 

nomenclature in assigning these sub-categories if multiple impediments are present. Erosion [E] 

takes precedence over every other kind. Next, in this ordering are excess wetness [W] and 

dry/shallow soils [S]. Soils are assigned a climatic limitations category [C] only if temperature 

and/or moisture-deficiencies are the only impediments to cropping. This means that [W] might 

imply shallowness as well as poor drainage limitations but poor drainage is the dominant 

limitation. Similarly, [E] could imply shallowness and/or poor drainage along with erosion as 

impediments, where erosion is the dominant limitation towards cropping. The data does not 

differentiate between soils with single and multiple impediments.   
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We utilize the [S] and [W] sub-categories in our yield models, where [S] is not grouped 

with any other soil category. We constrain our analysis to land capability classes II-IV as they 

support about 85-90% of crop acreage in the Dakotas. In our yield models, we include soil-

weather interactions. In particular, we use percent land in a county under [S], denoted 
dry

iQ , and 

interact it with SD, GD, DRYZ and WETZ. These interactions are expected to reveal whether 

specific soil limitations could mitigate or aggravate heat/moisture impact on yields. We 

hypothesize that the yield impacts of SD will be aggravated due to shallow soils, while that of 

WETZ might be mitigated (relative to [W]). Further, the impacts of extreme wetness could be 

worsened on soils under [W] sub-category. 

Robustness (The yield-weather model) 

We conduct robustness tests on our corn yield model estimates. For this purpose, we 

either break that spatially into: north vs. south and east vs. west, or we utilize weighted 

regressions with average crop-acreage share for each county as weights. 

A. East of the 100th Meridian vs. West of the 100th Meridian (see Table S1-S2): 100th meridian 

cuts the U.S. mainland into two type of agricultural land, i.e. the eastern half is generally rain-fed 

and the west needs irrigation for growing crops. Now the 100th meridian cuts the Dakotas into 

halves and thus the western portion of the states is really at the non-irrigated/irrigated margin 

considering the total east-west expanse of the United States. However, if the western Dakotas are 

significantly irrigated then the impact of dry seasons and/or SDs may be undermined in our 

regressions. This is why these robustness test are important. We find discrepancies in the weather 

dependence patterns in eastern Dakotas from the west. While WETZ is found to be negative for 

eastern county corn yields, its impact is positive, significant towards the west. Also, the SD, GD 
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impact is insignificant for western Dakotas’ corn yields. This may be because a different 

thresholds may be more optimal to define these regressors in this portion of the states. 

B. North Dakota vs. South Dakota (see Table S3-S4): South Dakota is warmer than its northern 

counterpart and may be better for agriculture through richer spatio-temporal yields data driving 

the results. However, we find our model estimates to be robust, except for soil quality. 

C. Weighted Regressions (Table S5): Since the respondent density is affected by crop failures, 

county-level yield estimates reposted by NASS are also prone to measurement errors. This issue 

is dealt with using weighted least squares regressions where the weights are various functional 

variations of county-level crop acreage shares. Weights may be time-invariant in this study. Only 

trends and trend-weather interactions are problematic, rest are robust. The issue with trends 

arises due to the loss of monotonicity when multiplied by non-monotonic weights. 

D. Spatial Correlation among weather variables (Table S6): Auffhammer et al. (2013) pointed 

towards pitfalls of using climate data. The one relevant to our study is the potential spatial 

correlation among weather variables. We utilize Conley’s (1999) procedure to control for spatial 

autocorrelation in the errors. Specifically, we define a cutoff along the x-axis and the y-axis such 

that each county has at least one neighbor. Among the counties whose coordinates lie within 

these cutoffs are designated spatially connected. A sandwich variance-covariance matrix is 

estimated, that is the weighted sum of covariance among spatially-connected neighbors. The 

weight used is the inverse of the squared Euclidean distances among spatially connected 

counties. We find that inference will not change upon controlling for spatial autocorrelation in 

the errors. 
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SD categorization 

To differentiate yield impacts by the intensity of heat stress, we disaggregate the stress 

degree-days into isolated or single-day events (SD1), and continuous events of two-three-

consecutive-days (SD23) and four-or-more-consecutive days (SD4+) such that SD = SD1 + SD23 + 

SD4+.  

SD1 is constructed by multiplying the column of total SDs with an indicator variable that 

equals 1 on an isolated hot day or 0 otherwise. SD23 and SD4+ are constructed in the similar 

fashion. Now, heat may not accumulate proportionately within each SD category. In addition, 

SD1 may be a more frequent event than SD23, which in turn may be more frequent than SD4+. To 

compare coefficients across SD categories, we normalize them such that SD23 (or SD4+) 

represents a bundle of 2-or-3 (or 4-or-more) SD1s, in a consecutive sequence rather than in 

isolation. We describe our normalization factors and the underlying concept that ensures 

comparable coefficients across disaggregated SD categories. 

Consider a snapshot of a representative county i’s in year t. Our modelling approach 

asserts that the yields in i would increase given an additional GD and decrease given an 

additional SD. Our objective is to evaluate the impact of an additional SD when it occurs as a 

single-day event versus when it occurs for 2-or-more consecutive days. In other words, we divide 

the total quantum of heat accumulated in SDs into various categories and want to test whether an 

additional unit of SD in one category is more or less harmful than in the other category. 

For a mathematical representation of this hypothesis, we specify a hypothetical and 

simplified situation where 32oSD C and they accumulate either as isolated single-day events or 

as consecutive 2-day events during the year t’s growing season. If we let 1I and 2I be the total 
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frequency of single-day and 2-day SD events, then the total number of days when SD > 0 equals 

1 2  2I I . Further, if 1 2and m m  represent the average per day heat accumulated under the single-

day and consecutive 2-day categories respectively, so  
1

1

1 1 ( 32)dd I
m I T




  , and 

 
2

1

2 22 ( 32)dd I
m I T




  . So, 

1 2

1 2(1) and 2 (2)SD q I SD q I  . We can re-write our yields-

weather model as 

1 2

, 0 1 , 2 ,

0 1 1 2 2

 other controls..

             = (1) 2 (2)  ..

i t i t i tYields SD SD

q I q I

  

  

   

  
                                                                     (S1) 

Recall that the equation (S1) is essentially a cross-sectional regression specified for a 

snapshot of a representative county i in year t. The quantum of heat within SD1 and SD2 

categories may differ across three dimensions: 1) average per day heat ( 1 2 . q vs q ); 2) frequency 

of the event ( 1 2 . I vs I ); and 3) because two single-day events are essentially bundled up into one 

consecutive 2-day event. Now, if 2 1 2 1 and q Iq k q I k I   then we can re-write the regression 

equation (S1) as: 

 
, 0 1 1 1 2 1 1

1 1

0 1 , 2 ,

2  ..

             = 2  ..

i t q I

i t q I i t

Yields q I k k q I

SD k k SD

  

  

   

  
                                                                                    

(S2) 

Equation (6) is essentially a structural breakdown of SDs because it compares the impact 

of an additional unit of SD1 on yields in isolation and in two consecutive repetitions. Since SD1 is 

the common denominator of marginal response of yields, the coefficients 1  and 
22 q Ik k   are 

directly comparable. An alternative way to achieve this is to divide SD2 by a normalization factor



151 

 

151 

 

2 q Ik k . It is important to realize that the factor 2 q Ik k  captures disproportionate heat intensity 

across SD categories.  

Within the context of this study, we find continuous SDs to be much less frequent as 

compared to the isolated ones, and that they could accumulate higher or lower average heat per 

day (q). However, this is purely an empirical issue and fixed normalization factors, of say 2 for 

SD2 or 3 for SD3, may not correctly represent the differences across categories.  

Now, we only considered a simplified snapshot of a representative county in a given year. 

For conceptual illustration. However, in reality the normalization factors, i.e. 2 q Ik k  above, may 

vary spatially (across counties) as well as temporally (year-by-year). We designate the overall 

mean of SD1s, SD23s and SD4+s during 1950-2013 as a proxy for the normalization factors. We 

do so to keep the interpretation of the resulting variables simple, and thus posit the overall means 

to be a plausible candidate for the proposed normalization. 

Estimating seasonally differentiated yield-weather relationship 

The seasonality of yield-weather responses provide some useful insights (tables S7, S8). 

Early-season SDs are beneficial towards spring wheat and soybean yields, mainly because 

isolated SD events mostly occur in the mid-April to mid-June period.  For spring wheat, even 

late-season GDs are found to be damaging when early-season SDs are beneficial. This, with 

relatively low GD and SD thresholds for spring wheat (table 2), suggests seasonal temperature 

effects rather than the usual thresholds-based characterization. Further, Tack et al., 2015 found 

that higher spring-time wetness to mitigate the impact of heat-stress on spring wheat yields based 

on field-trials. We too find such an impact for county-level alfalfa yields from WETZSD in 

April-May, although it is positive but insignificant for spring wheat yields. Interestingly, we find 
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that droughty-conditions are relatively more detrimental to yields late in the growing season for 

all commodities. Further, the late-season humidity (WETZSD) is beneficial to corn and soybean 

yields but its impact is insignificant early in the growing season.  

Weather Realizations, Crop Competitiveness and Land Use Change 

Re-estimating the yield-weather model to allow for yield decomposition 

We assume 0tW  in equation (3) of the main text to allow for profits decomposition into a 

weather-driven component and a trends-driven component. However, this assumption can bias 

the estimates of other coefficients in model. We therefore re-estimate the model with the 

restriction 0tW   to calculate weather-driven and trends-driven profit components. We present 

the new estimation results in table S10. 

Weather Outcome Predictions: Econometric Considerations and Results 

Consider an AR(4) (panel) time-series process for the GDs with ,( )i t i tE GD t   : 

4 4

1 1

4

, , ,1
((1 ) 1 ) ,i t k t k i t ik k k i tkk

tD GDG        
                                                       (S3) 

where ,i t  is assumed to be a white noise process, i  represents county-level means (fixed-

effects). ,i tGD  must be stationary in order for the above process to be estimable. The counterpart 

of stationarity of an autoregressive process is its invertibility. So to test stationarity of our panel 

data series for weather we conduct unit-root tests for the AR process by following a procedure 

proposed by Breitung and Meyer (1994). The corresponding t-test relies upon transforming 

equation (S3) such that the test statistic for the null hypothesis of a unit root, i.e. 
4

1 kk


 =1, is 
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asymptotically normally distributed, also termed as the “unbiased test-statistic”.36 Specifically, 

Breitung and Meyer (1994) suggest the following transformation of (S3) using the first value of 

the process ,0iGD , 

, ,0 , ,0 , ,

4

0

4 4

1 1 1
( ( )1 ) )((1 )t k k ki t i k k i t k i i t k i it GD GGD GD D GD     

                     (S4) 

See that the impact of individual means vanishes under this transformation under the null, 

4

1 kk


 = 1, making regular t-test viable. We implement Breitung and Meyer’s (1994) test 

procedure for individual weather series ( , , , ,, , ,i t i t i t i tGD SD DRYZ WETZ ) in SAS’s panel model 

procedure – “Unbiased t-test”. Results are presented in tables S11-S14. We find , ,, ,i t i tGD SD  

,i tWETZ  and ,i tDRYZ  to be time and cross-section stationary for all the commodities. 

Annual Futures contract price versus regional crop prices 

We utilized the annual February prices for December/November futures contracts for 

corn and spring wheat/soybeans to control for landowner expectations of their harvest’s future 

market valuation. However, alfalfa is not traded with such contracts and we utilize regional-level 

prices for alfalfa instead. Here, compare the regional counterparts of corn, soybeans and spring 

wheat’s future contract prices to ascertain whether regional-level prices are a viable candidate for 

landowners’ expectations of actual market valuations of these commodities. We plot the annual 

soybean’s November futures prices, and corn and spring wheat’s December futures prices with 

                                                 
36 Data transformation is necessary since under the alternative hypothesis of stationarity the t-test 

is subject to loss of power due to individual means. Breitung and Meyer’s (1994) approach is 

similar to the Dickey-Fuller test of Fuller (1976), although the latter proposed a bias-corrected 

test-statistic with critical values differing from a normally distributed t-statistic. 
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the corresponding regional level prices made available by ERS’s ‘Commodity Costs and Returns 

2016 dataset’. See our plots in figure S5. We find that the futures prices for South and North 

Dakota to be highly correlated with the ERS prices. We thereby conclude that regional-level 

alfalfa prices are indeed viable to control for landowners’ pre-planting expectation of this crop’s 

actual market price after harvest.   

Calculating Marginal Effects for the multinomial logit model 

We have specified crop u’s shares as  , , , , ,exp[ ] / 1 expu u u v v

i t i t i t i t i tv U
s X X   


       

where 
u u g     and { , , , }u U c s w a   as defined earlier. We calculate the marginal effect of 

a variable , ,i t i tx X  using the division rule of differentiation below. 
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Predicting future Palmer’s Z 

Next, we turn to future projections for our Z index that we need to predict crop yields. 

Since this index’s future projections are unavailable, we specify a regression model for Z based 

on a physical relationship specified by Karl (1986). That is, monthly Zs depend upon monthly 

precipitation, evapotranspiration and soil’s water holding capacity. Thornthwaite’s potential 

evapotranspiration equation specifies monthly evapotranspiration as a highly non-linear function 

of monthly precipitation, monthly average temperature, average day-length in a month, and an 
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empirically generated constant (Thornthwaite, 1948). Based on this information, we specify the 

following model for predicting the Z index 

2

, , , ,, 0 , , 1 2 3 ,1,2,..,6

,

1 1 ,  

where :  Climate Division ,

:  date (Year*100+Month),

:  Lagged s (6-month lags),

:  Standardized monthly precipitation;

k t k t k t k tk t Z k t M k t M k kM k

t

k t

Z Z P P P T T

k k

t

Z Z

P

 



      



        

, ,

, , ,

 ( ) / ( ),

:  Standardized monthly temperature; / ( ),

1 :  Month-dummy, 

1 :  Climate divisional fixed-effects (dummy variables).

k t k t

k t k t k t

M

k

P P P P

T T T T T





 

 

       (S5) 

Here, (.)  is the standard deviation operator. Our primary objective in estimating 

equation (S5) is to maximize regression fit so that our projections for Z are trusted. The data used 

range from 1895-2014 for the 18 climate divisions in North and South Dakota. Climate 

divisional dummy variables are expected to control for soil’s water holding capacity. Monthly 

dummy variables, and their interaction with temperature are expected to control for the heat 

accumulated due to average days-length in a month. We observe high multicollinearity when 

higher order functions are used for monthly temperature and precipitation. We find that 

standardized temperature and precipitation modelled as lower order polynomials reduce 

multicollinearity (motivated from Kim and Dong-Ku, 1999). Specifically, we include quadratic 

precipitation and precipitation-temperature interaction term to control for the non-linear 

relationship to some extent. The R-squared achieved in the process is 0.91. Table S19 presents 

the estimation results. The future projections for Z are computed by multiplying coefficients in 

equation (S7) to our constructed weather projections  
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Acquiring climate projections 

The climate projections data are acquired from the U.S. Geological Survey’s Geo-Data 

Portal (GDP; Blodgett, 2013).37 The GDP provides spatially rescaled outputs from Global 

Climate Models’ (GCM) at the level of finer grids, referred to as statistical downscaling. We 

utilize “Eighth degree Contiguous US Statistical Asynchronous Regional Regression” algorithm 

to project the grid-level daily climate projections to area-weighted climate projections for the 

Dakotas’ 18 climate divisions.38,39 

Monthly-average and Annual Average Mean-shifts 

For a formal representation, see that each date t is composed of a year, y, month, m, and 

day, d. So, the corresponding t  is on the same day, d, of month, m, as t, but differs in year, say 

' 50y y  . Notation-wise, we can re-write the daily-shift as , ', , ,k y y m dF . Therefore, the monthly 

and annual mean-shifts are specified as 

, ', , ,

, ', ,

, ', , , ( [4,8]),
, ',

( [4,8]),

a) 
1

1
b) 

1

k y y m dmonthly
d m

k y y m

d m

k y y m dannual mm d y
k y y

mm d y

F
F

F
F










 


 







                                                                                      (S6) 

                                                 
37 http://cida.usgs.gov/gdp/ 
38 One-eighth degree grid is roughly 3 km along the latitude (Y-axis) and 5 km along the 

longitude (X-axis). 
39 Downloading projections is time-intensive with restrictions on the maximum size of vector 

polygon files that can be processed. Given the size restriction, we were able to process three 

climate divisions at a time.  

http://cida.usgs.gov/gdp/
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Clearly, in equations (S6 a-b), , ', ,

monthly

k y y mF  varies monthly and is constant for all days within a 

month, and , ',

annual

k y yF  varies annually and is constant for all days in a year.  Based on these, the 

future weather variables for a representative county i is given as 

  
, ', ,, ', , ,

, ',, ' ,

a) 

b) 

monthlymonthly
i y y mi y m i y m

annualannual
i y yi y i y

F F F

F F F

 

 
                                                                                                     (S7) 

In equation (S7 a-b), variables , ',

monthly

i y mF  and , '

annual

i yF  are the county-level projections that we use to 

describe climate change relative to past weather during the 1981-2010 period. Recall that we 

evaluated equations (S6) and (S7) for seven distinct sets of climate projections. 

We present comparative plots of historical and projected temperature distribution using two 

climate model-specific outputs in figure 5. 

Climate Change in the Dakotas – 2031-’60 vs. 1981-2010 

We compare the historical weather realizations (1981-2010) with our future projections 

during 2031-’60. We present comparisons monthly weather projections derived from seven 

climate model outputs in tables S20-S21. Average temperature and total precipitation will 

increase for all growing season months during this period. The highest increase in average 

temperature is projected in April (33%) and May (18%), and least increase in July (12%). August 

precipitation will increase the most (15%). Figure 6 a-b suggests the average monthly Z will 

become more negative in future, primarily driven by higher future temperatures. To gain an 

understanding of the projected changes in weather variables using in our regression analysis we 

tabulate the state-wise changes from 1981-2010 to 2031-’60 in our weather regressors, i.e. GD, 

SD, DRYZ, WETZ. Table S22 show a stark increase (decrease) in projected DRYZ (WETZ) in 
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both states. However, the droughty conditions, as measured by DRYZ, will be relatively more 

intense in South Dakota by 2060. Although GD and SD will increase, SD will almost double by 

2060 and GD will increase by 15%-18%. Note that the impact of projected weather will depend 

on individual crop yield responsiveness to weather stressors, as measured by yield-weather 

elasticities.  
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TABLES (SUPPLEMNTARY MATERIAL) 

Table S1. Variable Summaries for counties that are located east and west of the 100th Meridian. 

Variable East West 

GD 962.15 894 

SD 27.70 29.84 

DRYZ 0.59 0.75 

WETZ 1.30 1.36 

%lcc234[S] 10.15 6.77 

%lcc234[W] 9.48 1.44 

 

Table S2. Corn yield models for counties that are located east and west of the 100th Meridian. 

CORN EAST WEST 

Variable Estimate Estimate 

Intercept 66.30*** 28.10*** 
t 0.81*** 0.87*** 

t65 0.85*** 1.04*** 

t80 -0.15 -1.70 

t95 1.24*** 1.26*** 

GD 0.005*** 0.00004 
tGD 0.0001** 0.0001 

SD -0.17*** -0.03 

tSD -0.005*** -0.001* 

DRYZ -4.43*** -2.87*** 

tDRYZ -0.14*** -0.06*** 

DRYZSD 0.03*** 0.01*** 

WETZ -0.46*** 0.62*** 

tWETZ -0.05*** 0.02* 

WETZSD 0.03*** 0.02** 

%lcc234[S]SD -0.002* -0.001 
%lcc234[S]DRYZ -0.031 -0.02 

%lcc234[W]WETZ -0.012 -0.05 

R2 0.8634 0.6958 
N 3,899 2,251 

***p<0.01, **p<0.05, *p>0.1 
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Table S3. Variable Summaries for North and South Dakota counties. 

Variable North Dakota South Dakota 

GD 843.8 1005.79 

SD 14.09 39.83 

DRYZ 0.78 0.58 

WETZ 1.46 1.26 

%lcc234[S] 7.22 10.10 

%lcc234[W] 7.09 5.47 

 

 

 

 

 

 

Table S4. Corn yield models for North and South Dakota counties. 

CORN NORTH DAKOTA SOUTH DAKOTA 

Variable Estimate Estimate 
Intercept 37.84*** 24.18*** 
t 0.75*** 0.77*** 
t65 1.13*** 1.04*** 
t80 -1.12*** -0.67*** 
t95 1.49*** 1.28*** 

GD 0.002 0.002** 
tGD 0.0003*** 0.0001* 
SD -0.086*** -0.16*** 
tSD -0.002 -0.006*** 
DRYZ -3.05*** -5.23*** 
tDRYZ -0.09*** -0.11*** 
DRYZSD 0.02*** 0.04*** 
WETZ -0.19 -0.04 
tWETZ -0.01 -0.04*** 
WETZSD 0.05*** 0.02*** 

%lcc234[S] SD -0.003 -0.0003*** 
%lcc234[S] DRYZ -0.009 0.02 
%lcc234[W] WETZ -0.04*** 0.03* 

R2 0.7917 0.8106 
N 2,907 4,028 

***p<0.01, **p<0.05, *p>0.1 
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Table S5. Weighted Regressions.  

CORN WT SQWT SQMWT WTBAR 

Variable Estimate Estimate Estimate Estimate 
Intercept 4.26*** 7.59*** 39.09*** 2.20*** 
t 1.76*** 1.25*** 1.41*** 1.12*** 
t65 -0.51*** 0.10 -0.13 0.50*** 
t80 1.05*** 0.76*** 0.33** 0.26*** 
t95 0.57*** 0.71*** 0.75*** 1.16*** 

GD 0.01*** 0.01*** 0.01*** 0.002*** 
tGD 0.0005*** 0.0004*** -0.00001 0.001*** 
SD -0.07*** -0.12*** -0.23*** -0.13*** 
tSD -0.03*** -0.02*** -0.003*** -0.03*** 
DRYZ -6.85*** -5.39*** -3.90*** -5.07*** 
t DRYZ -0.21*** -0.17*** -0.03*** -0.41*** 
DRYZSD 0.19*** 0.08*** 0.02*** 0.14*** 
WETZ -1.97*** -1.17*** 0.02 -1.23*** 
tWETZ 0.06*** -0.004 -0.01*** -0.05*** 
WETZSD 0.10*** 0.05*** 0.01*** 0.11*** 

%lcc234[S] SD 0.02*** 0.001 -0.01*** -0.004 
%lcc234[S] DRYZ 0.04 -0.01 0.03 0.11 
%lcc234[W] 

WETZ 

0.04 0.01 0.02*** 0.04 

R2 0.9710 0.9591 0.9110 0.9707 
N 6,935 6,935 6,935 6,935 

***p<0.01, **p<0.05, *p>0.1 

Notes: WT signifies that the regression weight ,

corn

i ts  , which is acreage share of corn in county i 

and year t. Similarly, SQWT, SQMWT and WTBAR signify 
,

corn

i ts , 
, ,/ ( )corn corn

i t i ts s  and ,( )corn

i ts  

respectively where 
1

, ,( ) ( )corn corn

i t i ti t
s IT s   . 
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Table S6. OLS regression, no intercept. WHITE S.E (1st row) vs. S.E. corrected for spatial 

dependence (2nd row). 

Variable Transformation for F.E.: Demeaned Y & X variables w.r.t their county-level counterparts.   

 CORN SOYBEANS 
SPRING 

WHEAT 
ALFALFA 

Variable Estimate Estimate Estimate Estimate 

t 

0.831 

(0.072)*** 

(0.091)*** 

 

0.209 

(0.037)*** 

(0.031)*** 

0.654 

(0.026)*** 

(0.036)*** 

-0.064 

(0.065) 

(0.124) 

t65 

1.081 

(0.116)*** 

(0.159)*** 

 

 

0.385 

(0.058)*** 

(0.064)*** 

-0.230 

(0.041)*** 

(0.056)*** 

1.463 

(0.113)*** 

(0.166)*** 

t80 

-0.858  

(0.105)*** 

(0.242)*** 

-0.230 

(0.048)*** 

(0.070)*** 

-0.292 

(0.038)*** 

(0.050)*** 

-1.322 

(0.116)*** 

(0.152)*** 

t95 

1.370  

(0.104)*** 

(0.160)*** 

0.133 

(0.043)*** 

(0.066)*** 

0.654 

(0.039)*** 

(0.069)*** 

0.565 

(0.105)*** 

(0.156)*** 

GD 

0.0026 

(0.0009)*** 

(0.0017)* 

0.002 

(0.0003)*** 

(0.0003)*** 

0.002 

(0.0005)*** 

(0.0009)*** 

0.004 

(0.001)*** 

 (0.002)*** 

tGD 

0.0002 

(0.00003)*** 

(0.00008)*** 

-0.000001 

(0.00001) 

(0.00001) 

0.00002 

(0.00002) 

(0.00005) 

0.0002 

(0.00004)*** 

(0.00014)* 

SD 

-0.148 

(0.012)*** 

(0.026)*** 

-0.065 

(0.011)*** 

(0.014)*** 

-0.055 

(0.003)*** 

(0.006)*** 

-0.106 

(0.009)*** 

(0.013)*** 

tSD 

-0.005 

(0.0004)*** 

(0.001)*** 

-0.0014 

(0.0004)*** 

(0.0005)*** 

 

-0.0002 

(0.0001)* 

(0.0003) 

0.00003 

(0.0003) 

 (0.001) 

DRYZ 
-3.637 

(0.161)*** 

(0.277)*** 

-1.351 

(0.079)*** 

(0.098)*** 

 

-2.015 

(0.058)*** 

(0.084)*** 

-5.384 

(0.163)*** 

(0.259)*** 

tDRYZ 

-0.120 

(0.010)*** 

(0.019)*** 

-0.006 

(0.0054) 

(0.0051) 

 

-0.031 

(0.004)*** 

(0.005)*** 

-0.091 

(0.009)*** 

(0.015)*** 

DRYZSD 
0.026 

(0.003)*** 

(0.004)*** 

0.010 

(0.003)*** 

(0.002)*** 

 

0.004 

(0.001)*** 

(0.001)*** 

0.017 

(0.002)*** 

(0.004)*** 
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WETZ 
-0.078 

(0.114) 

(0.160) 

0.012 

(0.056) 

(0.038) 

-0.292 

(0.041)*** 

(0.064)*** 

2.112 

(0.106)*** 

(0.193)*** 

tWETZ 
-0.034 

(0.005)*** 

(0.007)*** 

-0.009 

(0.002)*** 

(0.002)*** 

-0.015 

(0.002)*** 

(0.003)*** 

-0.018 

(0.005)*** 

(0.008)*** 

WETZ SD 
0.024 

(0.004)*** 

(0.004)*** 

0.028 

(0.004)*** 

(0.004)*** 

-0.0008 

(0.0010) 

(0.0013) 

0.013 

(0.003)*** 

(0.003)*** 

%lcc234[S]SD 
0.0002 

(0.001) 

(0.003) 

0.002 

(0.0010)* 

(0.0009)*** 

 

-0.0003 

(0.0003) 

(0.001) 

0.0001 

(0.001) 

(0.002) 

%lcc234[S]DRYZ 
-0.059 

(0.021)*** 

(0.023)*** 

0.003 

(0.009) 

(0.009) 

-0.010 

(0.007) 

(0.009) 

-0.094 

(0.026)*** 

(0.044)*** 

%lcc234[W]WETZ 
-0.010 

(0.012) 

(0.015) 

-0.006 

(0.004) 

(0.005) 

-0.034 

(0.005)*** 

(0.007)*** 

-0.021 

(0.012)* 

(0.025) 
R2 0.761 

 

0.758 

 
0. 6728 0.555 

N 6935 

 

2911 

 

7067 

 

6123 

 ***p<0.01, **p<0.05, *p>0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S6 continued 



164 

 

164 

 

Table S7. Marginal impacts of isolated and consecutive incidence of the SDs (heat stress) 

 CORN SOYBEAN SPRING WHEAT ALFALFA 

Variable Estimate Estimate Estimate Estimate 

Intercept 24.182*** 23.193*** 24.916*** 25.747*** 

t 0.769*** 0.206*** 0.663*** -0.069 

t65 1.075*** 0.387*** -0.247*** 1.464*** 

t80 -0.855*** -0.223*** -0.280*** -1.314*** 

t95 1.370*** 0.116*** 0.642*** 0.564*** 

GD 0.002* 0.002*** 0.001* 0.005*** 

tGD 0.0001*** -0.00002 0.00001 0.0002*** 

SD1 -0.071 0.194*** 0.053 -0.339*** 

tSD1 -0.005 0.009*** 0.003 -0.007 

SD23 -0.210 -0.176** 0.068 -0.331** 

tSD23 -0.006 -0.002 0.001 0.017** 

SD4+ -1.964*** -0.507*** -1.469*** -2.729*** 

tSD4+ -0.063*** -0.012*** -0.009** -0.004 

DRYZ -3.654*** -1.375*** -2.004*** -5.363*** 

tDRYZ -0.121*** -0.006 -0.030*** -0.089*** 

DRYZSD 0.026*** 0.011*** 0.005*** 0.017*** 

WETZ -0.084 0.021 -0.296*** 2.108*** 

tWETZ -0.035*** -0.009*** -0.014*** -0.018*** 

WETZSD 0.023*** 0.027*** -0.001 0.013*** 

%lcc234[S]   SD -0.0004 0.001 -0.0004 0.00002 

%lcc234[S]   DRYZ -0.059*** 0.001 -0.009 -0.096*** 

%lcc234[W]   

WETZ 

-0.010 -0.005 -0.035*** -0.020 

     

R2 0.7978 0.7828 0.7260 0.7382 

N 6,935 

 

2,911 

 

7,067 

 

6,123 

 
***p<0.01, **p<0.05, *p>0.1 

 

 

 

 

 

 

 

 

 



165 

 

165 

 

Table S8. Within-season weather Impacts: Corn and Soybeans 

Growing Season: May-August CORN SOYBEAN 

Variable Estimate Estimate 

Intercept 24.458*** 22.729*** 
t 0.758*** 0.181*** 

t65 1.078*** 0.441*** 

t80 -0.901*** -0.295*** 

t95 1.672**** 0.248*** 

GD_MAY_JUN 0.016*** 0.007*** 
tGD_MAY_JUN 0.001*** 0.001*** 

GD_JUL_AUG -0.008*** -0.001 

tGD_JUL_AUG -0.001*** -0.0004*** 

SD_MAY_JUN 0.144*** 0.054 

tSD_MAY_JUN 0.008*** 0.003* 

SD_JUL_AUG -0.177*** -0.073*** 

tSD_JUL_AUG -0.007*** -0.002*** 

DRYZ_MAY_JUN -2.329*** -0.984*** 

tDRYZ_MAY_JUN -0.116*** 0.020 

DRYZSD_MAY_JUN 0.039** 0.009 

DRYZ_JUL_AUG -5.642*** -1.857*** 

tDRYZ_JUL_AUG -0.140*** -0.029*** 

DRYZSD_JUL_AUG 0.025*** 0.011** 

WETZ_MAY_JUN -0.182 -0.327*** 

tWETZ_MAY_JUN -0.032*** -0.003 

WETZSD_MAY_JUN 0.039 0.036 

WETZ_JUL_AUG 0.305* 0.445*** 

tWETZ_JUL_AUG -0.038*** -0.017*** 

WETZSD_JUL_AUG 0.056*** 0.069*** 

%lcc234[S]SD -0.0002 0.002 
%lcc234[S]DRYZ -0.046** 0.001 

%lcc234[W]WETZ -0.012 -0.004 

R2 0.8061 0.7930 

N 6,935 

 

2,911 

 
***p<0.01, **p<0.05, *p>0.1 
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Table S9. Seasonal Weather Impacts: Spring Wheat and Alfalfa 

Growing Season: April-July SPRING WHEAT ALFALFA 

Variable Estimate Estimate 

Intercept 26.117*** 27.763*** 
t 0.709*** 0.010 

t65 -0.349*** 1.265*** 

t80 -0.187*** -1.069*** 

t95 0.643*** 0.420*** 

GD_APR_MAY 0.021*** 0.005 

tGD_APR_MAY -0.00003 -0.0002 

GD_JUN_JUL -0.010*** 0.005** 

tGD_JUN_JUL 0.00003 0.0003*** 

SD_APR_MAY 0.038** -0.177*** 

tSD_APR_MAY 0.012*** 0.020*** 

SD_JUN_JUL -0.059*** -0.104*** 

tSD_JUN_JUL -0.001*** -0.002*** 

DRYZ_APR_MAY -1.625*** -3.961*** 

tDRYZ_APR_MAY -0.035*** -0.088*** 

DRYZSD_APR_MAY -0.024*** 0.048** 

DRYZ_JUN_JUL -2.417*** -6.137*** 

tDRYZ_JUN_JUL -0.019*** -0.074*** 

DRYZSD_JUN_JUL 0.007*** 0.021*** 

WETZ_APR_MAY 0.094 2.731*** 

tWETZ_APR_MAY -0.014*** -0.048*** 

WETZSD_APR_MAY 0.003 0.086** 

WETZ_JUN_JUL -0.407*** 1.605*** 

tWETZ_JUN_JUL -0.012*** 0.005 

WETZSD_JUN_JUL -0.001 0.012*** 

%lcc234[S]SD -0.0004 0.00001 

%lcc234[S]DRYZ -0.005 -0.086*** 

%lcc234[W]WETZ -0.034*** -0.021* 

R2 0.7438 0.7420 

N 7,067 

 

6,123 

 
***p<0.01, **p<0.05, *p>0.1 
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Table S10. The (parsimonious) yields regression model with 0tW  . 

 CORN SOYBEANS SPRING WHEAT ALFALFA 

Variable Estimate Estimate Estimate Estimate 

Intercept 25.265*** 24.200*** 24.623*** 24.774*** 

t 0.878*** 0.232*** 0.667*** -0.142** 

t65 0.943*** 0.354*** -0.234*** 1.564*** 

t80 -0.771*** -0.210*** -0.300*** -1.315*** 

t95 1.243*** 0.124*** 0.653*** 0.527*** 

GD 0.003*** 0.002*** 0.002*** 0.005*** 

SD -0.153*** -0.058*** -0.056*** -0.110*** 

DRYZ -3.880*** -1.383*** -2.077*** -5.550*** 

DRYZ  SD 0.016*** 0.007*** 0.003*** 0.013*** 

WETZ -0.325*** -0.046 -0.347*** 2.078*** 

WETZ  SD 0.016*** 0.025*** -0.001 0.015*** 
dry

iQ   SD 0.0004 0.002** -0.0003 -0.0001 
dry

iQ   DRYZ -0.043** 0.006 -0.008 -0.081*** 
wet

iQ WETZ -0.012 -0.006 -0.033*** -0.019 

R2 0.7870 0.7777 0.7204 0.7317 

N 6,935 

 

2,911 

 

7,067 

 

6,123 

 ***p<0.01, **p<0.05, *p>0.1 

 

 

 

Table S11. Unit Root Regressions for Corn’s seasonal Weather Outcomes. 
4

1
: 1ko k

H 


  

Regressors GD SD DRYZ WETZ 

Trend 
-0.20* 

 
-0.05*** -0.002* 0.02*** 

, 1i tW    0.69*** 0.38*** 0.04*** -0.01 

, 2i tW   0.06*** 0.05*** -0.06*** 0.11*** 

, 3i tW   0.07*** 0.08*** 0.04*** -0.04*** 

, 4i tW   0.03*** 0.12*** 0.07*** -0.06*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.86 0.63 0.02 0.06 

N 7,051 7,051 7,051 7,051 

Unbiased t-test -3.85*** -8.66*** -8.29*** -22.19*** 

***p<0.01, **p<0.05, *p>0.1 
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Table S12. Unit Root Regressions for Soybean’s seasonal Weather Outcomes. 
4

1
: 1ko k

H 


  

Regressors GD SD DRYZ WETZ 

Trend -0.24* -0.04*** -0.002* 0.02*** 

, 1i tW    0.69*** 0.34*** 0.04*** -0.01 

, 2i tW   0.06*** 0.02* -0.06*** 0.11*** 

, 3i tW   0.07*** 0.08*** 0.04*** -0.04*** 

, 4i tW   0.03*** 0.11*** 0.07*** -0.06*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.86 0.56 0.02 0.06 

N 7,055 7,055 7,055 7,055 

Unbiased t-test -3.88*** -9.55*** -8.31*** -22.24*** 

***p<0.01, **p<0.05, *p>0.1 

 

 

 

 

 

 

Table S13. Unit root regressions for Spring Wheat’s weather outcomes. 
4

1
: 1ko k

H 


  

Regressors GD SD DRYZ WETZ 

Trend -0.26*** -0.04* -0.001 0.02*** 

, 1i tW    0.66*** 0.41*** 0.12*** -0.05*** 

, 2i tW   0.04** 0.06*** -0.10*** 0.10*** 

, 3i tW   0.12*** 0.08*** 0.02** -0.07*** 

, 4i tW   0.03*** 0.11*** 0.06*** -0.07*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.84 0.65 0.04 0.05 

N 7,025 7,025 7,025 7,025 

Unbiased t-test -4.06*** -10.69*** -8.37*** -17.58*** 

***p<0.01, **p<0.05, *p>0.1 
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Table S14. Unit root regressions for Alfalfa’s weather outcomes. 
4

1
: 1ko k

H 


  

Regressors GD SD DRYZ WETZ 

Trend -0.28*** -0.04* -0.001 0.02*** 

, 1i tW    0.66*** 0.41*** 0.12*** -0.05*** 

, 2i tW   0.03** 0.06*** -0.10*** 0.10*** 

, 3i tW   0.12*** 0.08*** 0.02** -0.07*** 

, 4i tW   0.03*** 0.11*** 0.06*** -0.07*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.84 0.66 0.04 0.05 

N 7,029 7,029 7,029 7,029 

Unbiased t-test -4.19*** -10.96*** -10.44*** -19.78*** 

***p<0.01, **p<0.05, *p>0.1 

Notes: Regressors , ,  {1,2,3,4}i t kW k   denote lagged variables corresponding to only the 

dependent variable in each case. 
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Table S15. Models for Corn’s Seasonal Weather Outcomes  

Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  

Trend -0.30** -0.10*** 0.001 0.02*** 

, 1i tGD    0.70*** 0.02*** 0.0005*** -0.001*** 

, 2i tGD   0.07*** -0.01*** -0.001*** 0.001*** 

, 3i tGD   0.05*** -0.004* -0.0002 -0.0002 

, 4i tGD   0.03** 0.003 0.0003*** -0.0002 

, 1i tSD    -0.01 0.33*** 0.004*** -0.01*** 

, 2i tSD   0.06 0.08*** 0.001 0.003* 

, 3i tSD   0.16 0.05*** -0.003*** -0.002 

, 4i tSD   -0.03 0.10*** -0.001 0.004*** 

, 1i tDRYZ    -5.31*** -2.08*** -0.01 -0.02 

, 2i tDRYZ   -4.96*** -1.68*** -0.08*** -0.07*** 

, 3i tDRYZ   2.64* -0.14 0.03** -0.09*** 

, 4i tDRYZ   -0.87 -0.35 0.07*** 0.05** 

, 1i tWETZ    5.98*** 0.24* -0.03*** -0.04*** 

, 2i tWETZ   2.31** 0.22* -0.03*** 0.11*** 

, 3i tWETZ   -1.75* -0.60*** -0.08*** -0.05*** 

, 4i tWETZ 
 -0.44 0.63*** 0.01 -0.06*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.86 0.66 0.05 0.08 

N 7,051 7,051 7,051 7,051 

***p<0.01, **p<0.05, *p>0.1 
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Table S16. Models for Soybean’s Seasonal Weather Outcomes 

Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  

Trend -0.36*** -0.06*** 0.001 0.02*** 

, 1i tGD    0.69*** 0.01*** 0.0005*** -0.001*** 

, 2i tGD   0.08*** -0.003** -0.001*** 0.001*** 

, 3i tGD   0.05*** -0.003* -0.0002 -0.0001 

, 4i tGD   0.03** 0.002* 0.0003*** -0.0001 

, 1i tSD    0.01 0.30*** 0.01*** -0.02*** 

, 2i tSD   0.01 0.04*** 0.001 0.01*** 

, 3i tSD   0.32* 0.05*** -0.003** -0.01** 

, 4i tSD   -0.10 0.08*** -0.002 0.01*** 

, 1i tDRYZ    -5.76*** -1.23*** -0.01 -0.01 

, 2i tDRYZ   -5.10*** -1.08*** -0.08*** -0.07*** 

, 3i tDRYZ   2.59 -0.08 0.03** -0.08*** 

, 4i tDRYZ   -0.74 -0.14 0.07*** 0.05** 

, 1i tWETZ    6.36*** 0.03 -0.03*** -0.04*** 

, 2i tWETZ   2.49** 0.03 -0.03*** 0.11*** 

, 3i tWETZ   -1.85* -0.38*** -0.08*** -0.05*** 

, 4i tWETZ 
 -0.56 0.39*** 0.01 -0.06*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.86 0.59 0.05 0.08 

N 7,055 7,055 7,055 7,055 

***p<0.01, **p<0.05, *p>0.1 
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Table S17. Models for Spring Wheat’s Seasonal Weather Outcomes 

Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  

Trend -0.36*** -0.11*** 0.0002 0.02*** 

, 1i tGD    0.65*** 0.04*** 0.0001 -0.0002 

, 2i tGD   0.07*** -0.002 -0.001*** 0.001*** 

, 3i tGD   0.05*** -0.01*** 0.0005*** -0.00002 

, 4i tGD   0.05*** -0.001 -0.0001 -0.0004* 

, 1i tSD    0.18*** 0.34*** 0.004*** -0.01*** 

, 2i tSD   -0.09 0.09*** 0.001 -0.002 

, 3i tSD   0.35*** 0.08*** -0.001* -0.002** 

, 4i tSD   -0.20*** 0.10*** -0.001 0.004*** 

, 1i tDRYZ    -3.54*** -1.66*** 0.09*** -0.09*** 

, 2i tDRYZ   -7.73*** -2.46*** -0.08*** -0.06*** 

, 3i tDRYZ   1.16 -0.86*** 0.01 -0.10*** 

, 4i tDRYZ   0.24 -0.41 0.06*** -0.06*** 

, 1i tWETZ    7.54*** 1.28*** -0.00005 -0.10*** 

, 2i tWETZ   1.66** 1.18*** 0.04*** 0.07*** 

, 3i tWETZ   -3.56*** -0.95*** -0.07*** -0.08*** 

, 4i tWETZ 
 -0.27 0.73*** -0.03*** -0.08*** 

Fixed-Effects Yes Yes Yes Yes 

R2 0.83 0.68 0.06 0.08 

N 6,760 6,760 6,760 6,760 

***p<0.01, **p<0.05, *p>0.1 
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Table S18. Models for Alfalfa’s Seasonal Weather Outcomes 

Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  

Trend -0.36 -0.11 0.0002 0.02 

, 1i tGD    0.65 0.04 0.0001 -0.0002 

, 2i tGD   0.07 -0.002 -0.001 0.001 

, 3i tGD   0.05 -0.01 0.0005 -0.00002 

, 4i tGD   0.05 -0.001 -0.0001 -0.0004 

, 1i tSD    0.18 0.34 0.004 -0.01 

, 2i tSD   -0.09 0.09 0.001 -0.002 

, 3i tSD   0.35 0.08 -0.001 -0.002 

, 4i tSD   -0.20 0.10 -0.001 0.004 

, 1i tDRYZ    -3.54 -1.66 0.09 -0.09 

, 2i tDRYZ   -7.73 -2.46 -0.08 -0.06 

, 3i tDRYZ   1.16 -0.86 0.01 -0.10 

, 4i tDRYZ   0.24 -0.41 0.06 -0.06 

, 1i tWETZ    7.54 1.28 -0.0005 -0.10 

, 2i tWETZ   1.66 1.18 0.04 0.07 

, 3i tWETZ   -3.56 -0.95 -0.07 -0.08 

, 4i tWETZ 
 -0.27 0.73 -0.03 -0.08 

Fixed-Effects Yes Yes Yes Yes 

R2 0.83 0.68 0.06 0.08 

N 6,760 6,760 6,760 6,760 

***p<0.01, **p<0.05, *p>0.1 
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Table S19. Palmer Z model regressions 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 

                    ***p<0.01, **p<0.05, *p>0.1 

 

 

 

 

 

Variable Estimate Variance Inflation Factor 

Intercept 2.65*** 0 

P  2.91*** 4.5 

P 2 -0.11*** 3.0 

PT  -0.31*** 3.4 

1tZ   0.18*** 1.1 

2tZ   0.10*** 1.2 

3tZ   0.06*** 1.2 

4tZ   0.03*** 1.2 

5tZ   0.03*** 1.2 

6tZ   0.03*** 1.1 

1JANT   -0.01*** 1.3 

1FEBT   -0.01*** 1.4 

1MART   -0.05*** 1.7 

1APRT   -0.07*** 2.3 

1MAYT   -0.08*** 2.5 

1JUNT   -0.09*** 2.3 

1JULT   -0.06*** 2.1 

1AUGT   -0.05*** 2.1 

1SEPT   -0.05*** 2.3 

1OCTT   -0.04*** 2.1 

1NOVT   -0.03*** 1.6 

Fixed Effects YES  

R2 0.9122  

N 26,136  
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Table S20. Monthly changes in temperature: Historical realizations during 1981-2010 vs. 

Projected (31-day M.A.) weather during 2031-’60.  

Month 
Degree C (1981-

2010) 

Degree C (2031-

2060) 
%Change 

April 5.7 7.6 33 

May 11.0 13.0 18 

June 15.2 17.3 13 

July 17.9 20.1 12 

August 17.3 19.6 13 

Annual (Average) 13.4 15.5 15 

 

Table S21. Monthly changes in precipitation: Historical realizations during 1981-2010 vs. 

Projected (31-day M.A.) weather during 2031-’60.  

Month 
Hundreds of mm 

(1981-2010) 

Hundreds of mm  

(2031-2060) 
%Change 

April 53.4 59.2 11 

May 85.1 96.0 13 

June 103.4 116.8 13 

July 85.8 96.3 12 

August 66.7 76.8 15 

Annual (Total) 394.3 445.2 13 
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Table S22. Projected average change in growing-season weather: Historical realizations during 

1981-2010 vs. Projected (31-day M.A.) weather during 2031-’60.   

Crop Variable 1981-2010 (Realized) 2031-2060 (Projected) % Change 

NORTH DAKOTA    

  

CORN 

  

GD 902.10 1070.77 18.70 

SD 15.53 39.27 152.93 

DRZ 0.80 6.57 721.38 

WETZ 1.57 0.02 -98.82 

  

SOY 

  

GD 998.80 1175.16 17.66 

SD 6.69 21.27 217.94 

DRZ 0.64 6.57 926.56 

WETZ 1.84 0.02 -98.91 

  

SPW 

  

GD 692.46 816.94 17.98 

SD 18.96 41.07 116.61 

DRZ 0.79 7.10 798.73 

WETZ 1.52 0.02 -98.68 

  

ALFALFA 

  

GD 722.59 874.57 21.03 

KD 3.94 12.62 220.30 

DRZ 0.79 7.10 798.73 

WETZ 1.54 0.02 -98.70 

 SOUTH DAKOTA 

  

CORN 

  

GD 1076.15 1243.15 15.52 

SD 38.96 79.51 104.07 

DRZ 0.53 7.15 1249.23 

WETZ 1.64 0.02 -99.04 

  

SOY 

  

GD 1179.71 1352.89 14.68 

SD 19.74 48.57 146.05 

DRZ 0.47 7.15 1421.28 

WETZ 1.54 0.02 -98.70 

  

SPW 

  

GD 812.01 937.96 15.51 

SD 44.76 81.65 82.42 

DRZ 0.65 7.43 1043.08 

WETZ 1.75 0.04 -97.71 

  

ALFALFA 

  

GD 886.65 1048.21 18.22 

KD 12.80 31.81 148.52 

DRZ 0.50 7.43 1386.00 

WETZ 1.51 0.04 -97.35 

Notes: Median climate model outputs are used to represent weather projections during 2031-’60. 
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Table S23. Average price, yields, costs, profits and land use shares for each crop type during 

1996-2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CORN SOYBEANS SPRING WHEAT ALFALFA 

Av. Price ($/bushels) 3.52 7.92 5.34 1.81 

Av. Yields (bushels/acre) 97.66 33.71 35.33 82.80 

Av. Direct Cost ($/acre) 189.60 90.29 74.65 75.46 

Av. Profit ($/acre) 154.16 176.69 114.01 74.41 

Av. Land Share (West Counties) 0.02 - 0.09 0.04 

Av. Land Share (East Counties) 0.20 0.23 0.08 0.04 
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FIGURES (SUPPLEMENTARY MATERIAL) 

 

 

 
Figure S1. Corn Yields vs. Number of Days in Each Degree-Celsius Bin 

 
Figure S2. Spring Wheat Yields vs. Number of Days in Each Degree-Celsius Bin 
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Figure S3. Alfalfa Yields vs. Number of Days in Each Degree-Celsius Bin 

 
Figure S4. Soybean Yields vs. Number of Days in Each Degree-Celsius Bin 
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Figure S5. Comparative plots of ERS prices and futures prices for each crop type. All prices are in dollars. * denotes that Spring 

Wheat’s settlement prices were calculated as daily averages of ‘Open’ and ‘Last’ prices from the Minneapolis Grain Exchange. 
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Figures S6 a-c. Comparative histograms for temperature 

(oC) from projections data and actual station-level 

realizations during 1981-2010. The data in figure 8 a-b are 

climate projections from HadCM3 and CNRM climate 

models respectively. Figure 8c presents actual temperature 

realizations as observed at the weather stations.  
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure S7 a-b. Change in growing season (April-August) Z: 2030-’60 vs. 1981-2010. Panel (a) 

shows historical temperature distribution, 1981-2010; and panel (b) shows the distribution of 

median temperature projections based on the 31-day moving average mean-shifts from the seven 

climate models during 2030-’60.   
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ABSTRACT 

 

We design and implement a robust, phenology-based satellite image classification 

algorithm to identify historical cropland allocation within the eastern portions of South Dakota 

and North Dakota since 1984. We identify five major crops (corn, soybeans, wheat, alfalfa, and 

grass) using archived Landsat-5 surface reflectance data and achieve accuracy levels similar to 

those reported for the annual Cropland Data Layer (CDL) raster products.  We contribute by 

efficiently generating CDL-compatible raster products that predate the initial CDL availability 

by 13 and 22 years in ND and SD, respectively. We analyze both our pre-CDL image data in 

combination with existing CDL products and also CDL alone to better document and understand 

regional cropland use changes on the western edge of the U.S. Corn Belt. Summaries of land use 

trends calculated using pre-CDL + CDL and CDL alone for this region show that the restricted 

historical depth of the CDL tends to exaggerate the rate of land use change across crop and non-

crop categories. 
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Introduction 

In this study, we describe an intuitive, phenology-based approach for identifying and 

classifying dominant agricultural crop types (corn, soybeans, wheat, alfalfa, and native grass) 

using multi-temporal Landsat sensor data.  We apply these methodologies for the purpose of 

extending the temporal depth of the existing Cropland Data Layer (CDL) archive back to 1984 

for eastern portions of North Dakota and South Dakota.  The aim of the study is to provide 

spatially explicit raster products commensurate with CDL to enable a longer, more detailed 

analysis of land use change trends within the western edge of the U.S. Corn Belt. 

The Cropland Data Layer (CDL) effort provides annual geo-referenced information on 

U.S. crop cover based on analysis of multiple dates and seasons of satellite sensor data (primarily 

Landsat) that capture crop-specific phenology.  These raster CDL products are then made 

available for the continental United States via the U.S. Department of Agriculture (USDA) 

National Agricultural Statistical Service’s (NASS) ‘CropScape’ portal 

(https://nassgeodata.gmu.edu/CropScape/). The CDL raster products also include non-crop 

categories including developed/built-up areas, grasslands, wetlands, forests and water based on 

the 2001 and 2006 National Land Cover Data (NLCD: Homer et al. 2007, Homer et al. 2015) 

products. The main satellite sensors used in the production of CDL products (past and current) 

include the 30m Landsat sensors (Landsat-5 Thematic Mapper (TM), Landsat-7 Enhance TM 

Plus (ETM+), and Landsat-8 Operational Land Imager (OLI)) and the 56m Indian Remote 

Sensing RESOURCESAT-1 (IRS-P6) Advanced Wide Field Sensor (AWiFS) sensor.  The 

USDA implements a complex, decision tree image processing algorithm trained and validated 

via the use of Farm Service Agency’s aerial imagery during the agricultural growing seasons 

(Fry et al. 2009; Boryan et al. 2011) and a variety of other ancillary image products. The 

https://nassgeodata.gmu/
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prevailing spatial resolution of CDL data products is 30-m.  Exceptions in spatial resolution 

(56m) occurred for a period between 2006 and 2009 when AWiFS sensor data were the primary 

source of inputs for the program..   It should be noted that extraction and analysis of these CDL 

data across this time span has been known to confound or complicate quantification of precise 

land use transitions in some studies (Arora et al. 2016a).  

Nevertheless, the availability of CDL has allowed the study of fine-scale cropland 

dynamics that quantify the timing (when), area (how much), and location (where) of regional and 

national land use transitions (Wright and Wimberly 2013, Boryan et al 2012). Quantifying such 

metrics adds a rich spatial dimension to land use transitions analysis and the related policy-

making process that was unavailable with traditional county-level land use data. However, two 

major challenges emerge when using these data for multi-year analyses.  

First, the historical depth of these raster data is both limited and variable across the 48 

contiguous U.S. states. The earliest year when CDL data are available for all lower 48 states is 

2008.  . As a consequence, the earliest possible countrywide land use analysis based on CDL 

products is likely to commence on or following this common date to maintain temporal 

consistency; even though earlier dates of CDL are available for some states (Lark et al. 2015).  

For instance, the North Dakota and South Dakota CDL archive begins in 1997 and 2006, 

respectively.  This is a major restriction on evaluating the factors that may affect observed land 

use change trends, especially when such factors predate the CDL archive by years or decades and 

evolve gradually, such as climate change, infrastructure development, and agri-environmental 

policy (Arora et al. 2016b). 

Second, land use type classification errors among the different years of CDL in the 

archive are considerable (Arora et al. 2016a). The CDL program provides state-specific accuracy 
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levels for individual land cover types, which reveals regional discrepancy in the performance of 

their underlying land cover identification algorithm. Furthermore, Reitsma et al. (2016) 

identified within-state differences in cropland and grassland accuracy levels for the 2006 South 

Dakota image. Cropland and grassland accuracy levels were high in crop-dominant and grass-

dominant areas, respectively. Arora et al. (2016a) identified numerous areas of illogical, multi-

year, land use transitions for Iowa’s Loess Hills region (e.g., water-corn-forest-soy), and 

implemented a multi-year despeckling procedure as a corrective strategy. Pixel-level spatial 

aggregation strategies of these CDL have also been used  to mitigate such classification errors 

(Stephens et al. 2008, Arora et al. 2016b). 

If care is taken in the data preprocessing phase of CDL time series analyses to screen out 

such errors, then great potential exists to accurately illuminate multiple driving forces behind 

observed trends in land use land cover change, especially in agricultural regions (Arora et al. 

2016a).  For example, Wright and Wimberly (2013) analyzed grass to corn/soy and corn/soy to 

grass transitions in the Dakotas between 2006 –the first year of CDL for SD— and 2011 

following and concurrent with a period of sharp commodity price increases (Rashford et al. 

2011, USDA 2017).  They concluded that a net 271,000 ha of grassland were lost to corn/soy 

production within this five-year period.  The authors expressed concerns about  the apparent 

expansion of corn and soybean tillage replacing the region’s native mixed-grass prairies (Wright 

and Wimberly 2013) because grasslands provide substantial ecosystem services as well as 

conserving and foster regional biodiversity (Stephens et al. 2008; Wright and Wimberly, 2013; 

Johnston 2014).  

High commodity prices, agricultural risk management policies, technological 

innovations, and climate change have all been suggested as potential drivers of the recent land 
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use changes on these privately-owned grass and croplands (Rashford et al. 2011, Claassen et al. 

2011).  As the CDL archive grows in concert with factors known to modify land cover type or 

land use decisions, the fine grain size of CDL products will become a powerful diagnostic tool 

for policy makers and resource managers; beyond that which was possible among county-level 

studies (Claassen et al. 2011, Wallander et al. 2011).  However, due to CDL’s relatively limited 

historical depth, the potential diagnostic power that may be gleaned from trend analysis declines 

substantially if suspected driving factors predate the CDL archive by years or decades.  

Examples of such factor include past agricultural policies (Lauck 2000, Anderson et al. 2001), 

improved management practices (Karlen et al. 2006, Cardwell 1982), crop genetics (Cardwell 

1982), climate change (Phillips et al. 1996), and infrastructure (Baker and Zahniser, 2006). 

As initially stated above, we strive in this effort to facilitate a longer, more detailed time-

series analysis of regional cropland use change to better characterize trends related to various 

exogenous driving factors.  While we do not report on the trend effects of exogenous driving 

factors in this paper, we do conclude by providing a complete summary of the historical land use 

trends in this area for the period between 1984 and 2015. 

Materials and Methods 

The location of our study area in the eastern Dakotas is shown in Figure 1. . This region was 

selected for our study based on known Corn Belt expansions between 2006 and 2011 (Wright 

and Wimberley 2013).  Specifically, we focused on Worldwide Reference System (WRS) 

Landsat footprints path 31, rows 27-28 for North Dakota and path 30, rows 29-30 for South 

Dakota.  We acquire Landsat surface reflectance data from the U.S. Geological Survey’s (USGS) 

via their online archive (http://earthexplorer.usgs.gov/), which dates back to 1984 (as do our land 

http://earthexplorer.usgs.gov/
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use characterizations). Surface reflectance data are convenient as they have been corrected for 

reflectance variations due to terrain and atmospheric effects. 

Below we describe only the classification algorithm used for the South Dakota portion of 

the study are (path 30, rows 29-30), as the algorithm used for North Dakota (path 31, rows 27-

28) is nearly identical.  Our search of the Landsat archives centered on two seasonal periods 

(late-July to mid-August and mid-September) to capture specific phenology information related 

to agricultural crops in this region, as well as availability of imagery with little or no cloud cover.  

These time periods were targeted for use as tools to discriminate reflectance differences between 

1) corn and soybean fields and 2) between alfalfa, wheat, and native grass fields, respectively.  

The mid-growing season imagery, for instance, captures the green rows of mature corn plants, 

and their shadows, at a time when they completely cover the bare soil under the plants and 

between the rows. This is not the case for mature soybean fields in July/August, as sunlit soil 

between rows remains as a substantial component of the overall soybean signature at 30-m 

resolution.  Here, the first shortwave infrared band (SWIR-1, B5) of the Landsat sensors 

(Landsat-5 and -7, 1.55 – 1.75 µm; Landsat-8, 1.56 – 1.66 µm) was chosen to discriminate corn 

and soybean fields because this region of the electromagnetic spectrum is known to be sensitive 

to shading characteristics generated by plant structural differences (Wolter et al. 2012).   

Mid-September images were needed to capture reflectance differences between senescent 

corn/soy and other land cover types, such as alfalfa, wheat, and native grass.  In this capacity, 

mid-September Landsat imagery is effective because, for example, while corn and soy fields are 

completely senescent (i.e., chlorophyll absent) alfalfa fields remain strongly photosynthetic.  

Hence, a discriminant applied to a rescaled version of the widely used normalized difference 

vegetation index (NDVI, Rouse et al., 1974; scale = [NDVI + 1]*100) easily distinguished 
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vigorous, green alfalfa from all other crop types (NDVI > 175, Figure 4).  Scaled NDVI values 

for wheat fields (NDVI 126-140) were intermediate to corn/soy (NDVI < 100) and alfalfa (NDVI 

> 175, Figure 4) during this time window, which enabled their discrimination.  However, native 

grass fields were unique in this context because they were composed of a combination of green 

and dead/senescent grasses and forbs by mid-September.  Because SWIR-1 (B5) is known to be 

sensitive to vegetation moisture content (Hunt and Rock 1989), we used SWIR-1 to uniquely 

discriminate native grass fields (Figure 4).   

While we used September imagery to distinguish other green crops from senescent 

corn/soy fields, we should note that Landsat image dates extending into September were not 

considered optimal for the classifying corn from soybeans, and vice versa.  Two reasons for this 

are that 1) prohibitive difference occur in the timing of initial corn and soybean senescence 

within and between these respective crops and fields that produce highly variable SWIR-1 

signatures and 2) the onset of corn/soy harvesting (bare fields) precludes the use of NDVI or 

SWIR-based crop discrimination techniques. In this region, soybean harvest typically initiates ca. 

two weeks ahead of corn, but much variability exists (Table 2). 

As is the case in any long-term study involving Landsat data, cloud cover was sometimes 

problematic and precluded acquisition of useable imagery.  However, when cloud issues were 

limited to either the west or east sides of an image, we had an opportunity to substitute key 

imagery from neighboring Landsat paths --if it existed-- due the 70% total side lap at these 

latitudes (42.75o – 48.86o) between paths. However, in the event that neighboring, corrective 

imagery was not available in a particular year, we had to omit that year from our sample and 

designate the omitted year ‘unavailable.’ Consequently, out final multi-temporal land cover 
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output is restricted to an intermittent time-series with some missing years due to ‘unavailable’ 

imagery. 

As discussed above, our agricultural land use classification strategy utilizes each crop’s 

unique phenology to determine best times of year for identification and discrimination from 

other crop types. To help track crop-wise developmental stage, we utilize the most active 

planting and harvest dates for cultivated land use types in the Dakotas (Table 2). Further, to 

assess accuracy levels using our classification algorithm (Figure 4, 5), we relied on traditional 

accuracy assessment techniques (Congalton, 1991) and visual quality assessments against the 

concurrent year (2015) of CDL imagery. For the former, we visited 265 sites across the study 

area in September or 2015 to determine crop type and to record the sample’s location using 

Trimble Juno 3B GPS receiver (differentially corrected 2dRMS = 3 m).  These points were then 

used to extract classified values from our 2015 results to quantify the user’s (omission), 

producer’s (commission), and overall accuracy of our classification algorithm’s performance for 

2015.  We then qualitatively assessed (visual scans) our classified results against the CDL 

product for 2015 to check relative agreement and to check for obvious blunders.    

Accuracy Analysis 

As mentioned earlier, we designate the land cover identifying indices by cross-validation 

from CDL. An issue is that CDL’s accuracy levels vary by land cover category, with mediocre 

accuracy for winter wheat, alfalfa and grass categories. So we perform an accuracy test on our 

AI’s final output using ground-truth data from geo-coded field observations recorded on 

September 27th, 2015 in southeast South Dakota.  

An issue in comparing Landsat 5 results directly with Landsat 8 sensor (2015 data), 

which is an advanced version of Landsat 5, is that band designations and scales differ across 
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these two sensors. Figure 3 a-b presents a histogram for the range of intensity recorded from the 

‘Blue’ band of original 2015 and 2009 data from the Landsat archive respectively. Clearly, the 

range recorded by this band in 2015, i.e., [48, 6069] is much different than that in 2009, i.e., 

[142, 4152]. Such discrepancy will lead to a biased identification of the region’s land cover 

between 2009 and 2015, even though the data were acquired at the same time in both years. 

Therefore, we adjust each 2015 band to the respective scale of 2009 bands. As for our example 

for ‘Blue’ band above, 2015 image is rescaled to the intensity level of 2009 data by using the 

formula 
*

2015Blue 
20150.67(Blue 48) 142  . Here, * designates new (rescaled) 2015 band to 2009 

level. A histogram in figure 3c shows the consequence of this adjustment. The remaining spectral 

differences are adjusted in the similar manner. 

In order to document accuracy of our identification strategy we evaluate Type-I errors 

(false positives) and Type-II errors (false negatives) from our AI’s land cover characterizations. 

We present the results in Table 5 and find that our algorithm achieved 96% accuracy in 

identifying wheat acres, followed by the combined Corn/Soybeans category (89%), alfalfa (87%) 

and grass (76%). CDL also provides accuracy levels for its 2015 land cover classification in 

South Dakota: corn at 97%, soybeans at 98%, spring wheat at 88% and alfalfa at 78%. These 

accuracy levels were much lower in 2006: corn at 83%, soybeans at 81%, spring wheat at 72% 

and alfalfa at 52%, indicating that the CDL data in the recent years is based on a better, more 

evolved AI. Recently, Reitsma (2016) also evaluated the accuracy for cropland and grassland 

classification in the 2006 South Dakota CDL. Our AI seems to have outperformed CDL’s 

accuracy for grasses at 39% in southeast South Dakota as reported by Reitsma (2016). We 

achieved near-CDL accuracy for cropland in this region. Overall, these observations suggest that 

our identification strategy results in near-CDL accuracy but a longer time-series that dates back 
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up to 1984.  Further, harvested corn, soybean and wheat pixels are characterized as grass creating 

false positives for grass. 

Dakotas’ Historical Land Use Trends 

We present land use trends from our AI for eastern South Dakota in table 6 and for 

eastern North Dakota in table 7. We include land cover statistics during 2006-2015 for South 

Dakota and during 1997-2015 for North Dakota from the CDL archive. Our intent is to compare 

the land use change inferences drawn from a narrow, medium-term time window from CDL, as 

also documented by Wright and Wimberly (2013), and from a longer time-series made available 

due to our land cover identification algorithm. Comparative land use trends are also provided 

from USDA National Agricultural Statistical Service’s (NASS) and National Resource 

Conservation Service- National Resource Inventory’s (NRI) county-level data. While the NASS 

data contain harvested acres for corn, soy, wheat and alfalfa, we utilize the NRI dataset to 

construct a Hay/Pasture/CRP category to proxy grasses. The counties that overlap with Landsat 5 

swaths in North and South Dakota are identified using a map in Figure 6. Land use trends using 

NASS’s county-level statistics are listed in tables 8 and 9, and those from the NRI data are listed 

in tables 10 and 11. We also plot these historical trends for South Dakota in figures 7-10 and for 

North Dakota in figures 11-13. 

The land use trends for South Dakota imagery suggest a sustained increase in corn and 

soybean acreage, and decreasing wheat, alfalfa and grass acreage. These trends are consistent 

with the earlier findings of Wright and Wimberly (2013), although the inference on the rate of 

change will depend upon the choice of the change time-window. For example, combining our AI 

and  the CDL archive suggests that corn acreage in eastern South Dakota increased by net 

424,707 ha. between 1985 and 2011, by 199,247 ha. between 1997 and 2011, and by 223,120 ha. 
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between 2006 and 2011. Here, the long time series (1985-2011) suggests an average increase of 

16,335 ha. corn acreage annually, the shorter series suggests an increase of 14,232 ha. corn 

acreage annually , while the short time-series (2006-2011) suggests that corn acreage increased 

by average 37,187 ha. Clearly, during 2006-2011 the rate corn acreage expansion in the area was 

much higher when compared to the rate of change due to the long time-series 1985-2011, which 

is attributed to biofuel expansion in the U.S. (Wright and Wimberley, 2013).  

However, the average corn area in 1995-’97 (860,452 ha.) was even higher than in 2006 

(755,825 ha.). This difference could likely be a consequence of the 1996 farm bill that 

disassociated government payments from cropping history thereby incentivizing cultivation of 

program crops. The inavailability of a longer time-series data from CDL would hinder a 

comparative analysis of the impacts of the Renewable Fuel Standards policy and that of the 1996 

farm bill. 

Table 5 also reveals that the rate of decline of grassland acres may be exaggerated if 

considered solely based on the CDL’s narrow time-window. We find that grass acreage in 

eastern South Dakota declined by 786,730 ha. between 1987 and 2011, by 605,250 ha. between 

1997 and 2011, and by 507,270 ha. between 2006 and 2011. Hence, the rate of grass conversion 

during 1987-2011 is equal to 31,469 ha. annually. Whereas the rate of grass conversion would be 

43,232 ha. annually during 1997-2011 and 84,545 ha. annually during 2006-2011. Hence, the 

rate of conversion was close to three times when derived from 2006-2011 period rather than 

1987-2011 period. This means that the extent of grassland losses in the area varies substantially 

depending upon the period of study. Using a longer time-series would be a value-added in better 

understanding grassland losses and identifying factors that would explain these changes. For 
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example, in order to evaluate the impact of climate on the rate of grassland loss one would need 

several years of land use data primarily because climate change is a gradual phenomenon. 

Our findings project the importance of using a longer time series for land use change 

analyses, a limitation faced by studies that solely rely upon the narrow time-window made 

available as CDL. Overall, we conclude that our identification outputs are a value-added to the 

CDL’s narrow window of data availability to infer upon the extent of land use change and the 

factors that affect it.  

We would like to caution our readers that despite carefully controlling for spectral 

differences across years our land use estimates for various categories are possibly erroneous. 

Based on cross-validations from NASS’s county-level area, we find that our algorithm overstated 

corn (1993) and wheat (1987) and understated soybean (1987, 1993) for some years. We believe 

that these discrepancies in year-to-year identification are likely due to variability in crop 

phenology, an example of which would be adjustment in planting and harvesting dates by 

farmers from one year to the next.  

Concluding Remarks and Future Work 

We design and implement a robust satellite image processing algorithm based on each 

crop’s phenology in the Dakotas to characterize historical land use changes in the region. We 

correct for any spectral differences and cloud cover across years for the raw Landsat-5 imagery. 

We utilize visual cross-validations from the existing CDL years and a ground-truth data that we 

collected in September 2015 to evaluate the accuracy of our outputs. Our identification strategy 

leads to CDL-like accuracy, thereby allowing us to extend the CDL data back to 1984. We 

summarize land use trends using our longer time-series and find that studies that solely rely upon 

the CDL data may exaggerate the rate of land use changes across crop and non-crop categories.  
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We find various discrepancies when comparing the output from our identification 

strategy and the same year’s county-level land use statistics from NASS/NRI datasets. We 

attribute these differences to the varying phenology of crops across multiple years. In future, we 

will utilize the annual condition-of-crop reports from NASS, which document the state-wise 

progress of each crop’s growth cycle, to reconcile our misidentified pixels. 

In addition, we intend to utilize our new spatially-delineated data to identify land use 

transition zones in this region. Our longer time-series is hoped to provide an opportunity to better 

document the region’s historical land use trends along with the spatial characteristics of these 

trends. Consequently, we also hope to identify factors that affect land use transitions in a more 

robust manner, including the impacts of agri-environmental policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 



198 

 

 

TABLES 

Table 4. Landsat TM Sensor’s seven spectral bands and their wavelength ranges. B# means 

Band# of the TM’s multi-spectral sensor. 

Landsat 4-5 Name Wavelength 

(micrometers) B1 Blue 0.45-0.52 

B2 Green 0.52-0.60 

B3 Red 0.63-0.69 

B4 Near Infrared 0.76-0.90 

B5 Shortwave Infrared I 1.55-1.75 

B6 Thermal Infrared 10.40-12.50 

B7 Shortwave Infrared II 2.08-2.35 

 

 

 

 

 

Table 5. Most Active Planting and Harvesting Dates in South Dakota 

Crop Type Planting Dates Harvesting Dates 

South Dakota   

Corn (Grain) May 9 – May 25 Oct 10 – Nov 6 

Soybeans May 20 – Jun 6 Oct 1 – Oct 23 

Spring Wheat Apr 14 – May 2 Jul 27 – Aug 13 

Winter Wheat Sep 10 – Sep 23 Jul 15 – Jul 31 

Alfalfa Not Applicable Jul 13 – Aug 19 

North Dakota   

Corn (Grain) May 2 – May 28 Oct 8 – Nov 19 

Soybeans May 14 – June 3 Sep 24 – Oct 21 

Spring Wheat Apr 24 – May 25 Aug 8 – Sep 13 

Winter Wheat Sep 10 – Sep 25 July 20 – July 29 

Alfalfa Not Applicable June 10 – Sep 6 

Source: USDA National Agricultural Statistics Service- Agricultural Handbook Number 628. 

Available from http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf.  

 

 

 

 

 

 

 

 

 

 

http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf
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Table 6. Each spectral band’s mean intensity across years for the designated AOIs reflecting 

spectral variances. 

Imagery Date B1 B3 B4 B5 

 CONIFER AOI WATER AOI 

South Dakota (Path 30) 

9/27/2015 249.5 217.3 120.7 61.6 

9/26/2009 293.2 340.6 190.0 46.6 

9/29/2004 304.7 364.9 138.6 36.6 

9/25/1997 271.1 316.5 154.8 50.5 

9/17/1994 267.9 330.3 151.3 47.9 

9/30/1993 347.1 437.8 234.3 67.9 

9/25/1991 326.2 414.9 315.4 205.2 

9/30/1987 327.5 427.9 322.8 199.9 

9/22/1986 348.0 463.0 321.0 148.1 

North Dakota (Path 31) 

9/30/2008 341.2 493.2 167.9 47.6 

9/27/1995 404.5 597.0 133.1 50.6 

9/26/1989 410.0 581.1 190.5 69.1 

9/23/1988 463.3 657.0 139.7 47.8 

9/28/1984 499.8 802.6 262.1 91.3 

 

 

 

Table 4. Land-Use Indices. B# means Band# of the TM’s multi-spectral sensor. 

Land-Use Date Range Index Range 

South Dakota (Path 30) 

Corn 24th July-8th Aug B5/10 146-190 

Corn/Soybeans 17th-30th Sept 
I(C/S) = (B3/B3*90-40)+ 

(25,000/B5) 
90-300 

Wheat 17th-30th Sept NDVI 126-140 

Alfalfa 17th-30th Sept NDVI ≥176 

Grass 17th-30th Sept B5/10 ≥214 

North Dakota 

Corn 17th-30th Sept B5/10 115-190 

Soybeans 17th-30th Sept 
I(C/S) = (B3/B3*90-40)+ 

(25,000/B5) 
148-200 

Wheat 17th-30th Sept NDVI 115-135 

Alfalfa 17th-30th Sept NDVI ≥176 

Grass 17th-30th Sept B5/10 146-162 
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Table 5. Accuracy Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Ground-Reference Data   

  Corn Soybean Wheat Alfalfa Grass/Pasture Hay 
Other 

Crops 

Other 

 
Harvested Total 

User 

Acc. 

O
u

r 
A

I 

Corn/  

Soybean 

33       9         42 
0.89 

  43         43 

Wheat    31    1    32 0.97 

Alfalfa 2 1  26  1     30 0.87 

Grass   2 1 6 65 17 2  15 108 0.76 

Other   1 1 2 2  3 1   10 0.10 

Harvested                   0 N/A 

 Total 35 47 33 34 76 18 6 1 15   

 
Prod. 

Acc. 
0.93 0.94 0.76 0.87  1.00 0.00   

1
9
9
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Table 6. Landsat derived land use areas (in hectares) for eastern South Dakota swath (1984-

2005). CDL-derived areas for 2006 and 2011. 

Notes: Missing values signify inavailability of good raw imagery for land use characterization. 

The September imagery for 1987 and 1991 (in red) had oddly different spectral signatures 

compared to the other years. Year 2003 is omitted because the paths of multiple tornadoes on 

June 24, 2003 intersected with most of western half of our study area in South Dakota.  

 

 

 

Year Corn (ha.) Corn/Soybeans (ha.) Wheat (ha.) Alfalfa (ha.) Grass (ha.) 

Jul-Aug AI September AI 

1985 554,238 - - - - 

1986 - 806,799 429,855 573,108 1,920,440 

1987 418,452 349,943 1,528,380 126,564 1,874,820 

1988 304,748 - - - - 

1990 653,842 - - - - 

1991 464,596 455,587 1,862,610 56,893 1,551,890 

1993 1,173,850 500,406 857,720 135,156 2,414,760 

1994 - 935,253 668,784 418,590 2,587,240 

1995 840,758 - - - - 

1996 960,899 841,823 609,710 361,051 2,037,520 

1997 779,698 1,197,120 538,514 302,220 1,738,960 

1999 - - - - - 

2001 750,506 - - - - 

2004 - 878,462 725,861 337,299 1,963,740 

2006 755,825 1,544,657 371,264 109,555 1,640,980 

2007 911,920 1,565,274 407,469 111,230 1,987,960 

2008 781,000 1,552,735 370,826 96,009 2,087,100 

2009 810,956 1,621,313 293,356 73,732 1,881,870 

2010 816,249 1,680,358 238,794 95,889 1,734,390 

2011 978,945 1,869,083 249,599 88,591 1,133,710 

2012 1,137,950 2,095,204 166,729 87,343 1,054,860 

2013 1,113,050 2,053,398 153,651 102,139 1,171,460 

2014 1,076,650 2,136,950 161,358 107,532 1,037,170 

2015 992,688 2,048,858 180,508 123,150 1,521,970 
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Table 7. Landsat derived land use areas (in hectares) for eastern North Dakota swath (1984-

1995). CDL-derived areas 1997 onward. 

Year Corn (ha.) Soy (ha.) Wheat (ha.) Alfalfa (ha.) Grass (ha.) 

1984 71,681 207,527 1,194,965 6,369 845,531 

1988 59,671 61,290 1,619,473 6,528 778,271 

1989 54,721 90,803 1,665,513 29,529 1,013,801 

1995 57,034 328,311 1,436,609 9,863 987,526 

1997 98,860 117,615 1,048,384 0 1,186,050 

1998 90,331 149,764 862,631 0 1,371,080 

1999 84,778 115,275 876,094 0 1,719,940 

2000 143,330 294,755 1,125,420 0 1,458,350 

2001 111,466 277,264 722,843 0 1,253,470 

2002 114,546 465,612 979,456 153,452 1,111,690 

2003 158,077 818,619 681,985 114,968 1,472,470 

2004 207,606 730,026 829,613 132,218 1,008,510 

2005 241,657 650,836 769,395 86,092 1,396,700 

2006 240,340 805,751 753,980 55,019 1,696,220 

2007 414,292 599,091 623,274 34,848 1,575,080 

2008 386,240 772,236 647,306 27,399 1,749,160 

2009 316,754 799,215 637,284 31,553 1,578,320 

2010 304,141 818,842 599,260 40,449 1,808,720 

2011 385,640 929,556 649,681 62,856 1,270,030 

2012 606,859 967,938 435,557 45,529 1,332,380 

2013 637,966 1,052,520 372,592 43,951 1,256,890 

2014 466,092 1,198,340 472,466 55,425 1,188,740 

2015 448,223 1,091,880 544,222 53,201 1,229,480 
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Table 8. USDA NASS derives land use trends for South Dakota counties that approximately 

span the Landsat paths in figure 6 (red squares). 

 

 

 

 

 

 

 

 

Year Corn (ha.) Soy (ha.) Corn-Soy (ha.) Wheat (ha.) Alfalfa (ha.) 

1984 541,809 169,371 711,180 457,853 0 

1985 585,144 150,174 735,318 505,238 0 

1986 548,411 169,938 718,349 505,440 0 

1987 528,647 199,139 727,785 458,136 0 

1988 481,667 280,341 762,008 404,838 0 

1989 514,472 320,882 835,353 493,817 0 

1990 591,138 310,554 901,692 562,869 0 

1991 635,364 355,833 991,197 450,522 0 

1992 642,938 361,058 1,003,995 598,671 0 

1993 537,800 298,931 836,730 489,605 0 

1994 671,895 401,558 1,073,453 464,738 0 

1995 426,870 420,026 846,896 295,812 0 

1996 723,735 480,776 1,204,511 574,088 327,645 

1997 670,883 640,265 1,311,147 447,647 316,710 

1998 694,170 709,682 1,403,852 388,557 311,445 

1999 644,112 863,339 1,507,451 325,337 298,485 

2000 768,488 958,797 1,727,285 298,890 337,365 

2001 674,325 982,814 1,657,139 194,279 384,345 

2002 617,463 883,062 1,500,525 267,989 385,560 

2003 781,772 899,829 1,681,601 341,901 375,030 

2004 838,512 886,626 1,725,138 371,466 346,680 

2005 785,336 838,431 1,623,767 430,434 308,610 

2006 599,036 854,793 1,453,829 409,415 282,690 

2007 872,492 693,320 1,565,811 485,595 271,755 

2008 849,204 895,982 1,745,186 379,850 247,050 

2009 925,344 930,123 1,855,467 348,665 263,250 

2010 826,929 905,175 1,732,104 243,527 235,305 

2011 959,810 914,126 1,873,935 227,489 205,205 

2012 963,617 1,010,151 1,973,768 150,802 138,364 

2013 1,047,330 893,309 1,940,639 86,913 91,105 

2014 937,778 1,067,661 2,005,439 164,074 84,993 

2015 797,081 765,126 1,562,207 111,764 59,454 
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Table 9. USDA NASS derives land use trends for North Dakota counties that approximately 

span the Landsat paths in figure 6 (black squares). 

 

 

 

 

 

 

 

 

 

Year Corn (ha.) Soy (ha.) Wheat (ha.) Alfalfa (ha.) 

1984 80,069 62,127 847,625 178,889 

1985 56,417 30,780 879,255 191,160 

1986 66,258 24,300 1,005,453 176,378 

1987 61,196 33,332 939,479 178,403 

1988 38,678 65,489 704,255 118,463 

1989 54,594 49,289 1,084,955 170,910 

1990 52,448 27,216 1,206,536 165,645 

1991 69,944 38,759 1,075,356 158,031 

1992 67,028 45,846 1,382,225 155,723 

1993 40,136 30,294 1,320,584 193,955 

1994 57,794 31,023 1,320,786 161,555 

1995 52,610 29,120 1,248,939 156,978 

1996 69,255 50,706 1,428,435 183,060 

1997 69,903 99,144 1,266,476 192,780 

1998 113,076 177,512 926,235 150,255 

1999 75,857 132,840 735,440 155,723 

2000 136,688 265,680 876,339 142,965 

2001 103,194 348,705 912,830 162,000 

2002 165,038 505,076 780,273 168,075 

2003 202,743 632,975 780,840 157,140 

2004 184,559 806,598 738,072 161,190 

2005 217,850 641,034 844,628 165,645 

2006 268,070 878,040 719,442 153,293 

2007 473,931 685,301 742,082 165,645 

2008 459,068 869,697 759,254 170,910 

2009 327,483 870,062 695,993 172,125 

2010 375,354 940,127 698,706 155,925 

2011 417,393 927,936 673,313 128,385 

2012 691,295 1,004,319 382,413 79,664 

2013 596,282 995,612 157,667 57,470 

2014 355,914 1,131,489 420,593 42,606 

2015 421,646 1,136,754 416,016 93,907 
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Table 10. NRCS NRI derived land use trends for South Dakota counties that approximately span 

the Landsat paths in figure 6 (red squares). 

Notes: Corn-Soy (ha.) means corn hectares plus soybean hectares.  

 

 

 

 

 

 

 

 

 

 

 

 

Year Corn (ha.) Soy (ha.) Corn-Soy (ha.) Wheat (ha.) Hay/Pasture/CRP (ha.) 

1984 838,958 131,544 970,502 428,531 888,692 

1985 843,818 123,404 967,221 468,099 843,858 

1987 668,412 200,151 868,563 498,960 863,379 

1989 728,636 317,966 1,046,601 482,031 812,309 

1990 701,582 292,653 994,235 570,605 803,925 

1991 770,634 350,771 1,121,405 466,925 790,074 

1992 840,578 361,220 1,201,797 541,931 984,555 

1994 850,865 413,627 1,264,491 448,659 1,023,557 

1995 608,391 470,246 1,078,637 287,145 1,047,614 

1996 857,304 473,769 1,331,073 515,930 1,026,270 

1997 756,621 713,367 1,469,988 407,471 1,030,766 

1998 910,724 703,809 1,614,533 331,655 994,437 

1999 814,739 827,334 1,642,073 311,040 1,004,927 

2000 925,628 968,517 1,894,145 313,268 932,391 

2001 858,357 1,054,418 1,912,775 179,861 919,958 

2002 994,964 912,222 1,907,186 267,462 915,665 

2003 955,841 942,192 1,898,033 335,300 921,740 

2004 962,888 981,558 1,944,446 366,606 872,937 

2005 979,736 873,018 1,852,754 454,532 871,722 

2006 962,564 919,310 1,881,873 378,392 860,301 

2007 1,075,437 849,690 1,925,127 430,191 847,584 

2008 1,006,506 976,374 1,982,880 461,052 747,144 

2009 1,001,444 1,026,716 2,028,159 386,249 751,154 

2010 1,052,069 961,916 2,013,984 380,133 752,328 
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Table 11. NRCS NRI derived land use trends for South Dakota counties that approximately span 

the Landsat paths in figure 6 (black squares). 

Notes: Grass hectares were calculated from the sum of acreage under ‘Hay’, ‘Pasture’ and ‘CRP’ 

categories of the NRI dataset. 

  

 

 

 

 

 

 

 

Year Corn (ha.) Soy (ha.) Wheat (ha.) Hay/Pasture/CRP (ha.) 

1984 157,262 15,390 1,215,081 535,977 

1985 170,789 9,882 1,146,879 538,691 

1987 134,096 36,410 1,338,809 649,904 

1989 121,743 48,762 1,380,686 492,683 

1990 116,883 28,472 1,482,422 498,353 

1991 119,799 34,628 1,238,409 481,100 

1992 138,065 43,862 1,539,284 888,044 

1994 114,777 31,226 1,495,463 878,769 

1995 90,356 39,569 1,460,106 892,053 

1996 112,631 33,494 1,567,431 869,130 

1997 94,041 89,384 1,394,496 884,115 

1998 193,671 159,813 1,234,319 882,657 

1999 139,118 200,394 1,238,895 932,229 

2000 155,561 293,423 1,156,397 954,383 

2001 186,057 343,116 1,103,544 941,828 

2002 200,921 567,689 1,024,407 927,045 

2003 254,097 700,488 904,001 932,756 

2004 447,525 775,899 752,976 922,712 

2005 190,472 740,219 1,028,295 916,637 

2006 341,982 1,049,031 732,038 903,272 

2007 527,351 740,097 815,184 899,384 

2008 616,977 882,941 735,480 857,426 

2009 347,976 926,924 777,519 834,381 

2010 449,024 925,911 809,231 797,202 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: This image has been adapted from Wright and Wimberly (2013). The color gradient 

provides heat maps to visualize absolute change from grass to corn/soy categories. 

 

Figure 1. Focal areas of our study. 

We characterize land cover for 

areas with red and black color 

squares. The red color squares are 

Landsat-5’s scan paths four South 

Dakota and the black squares are 

Landsat-5’s scan paths for North 

Dakota. Hashed areas (grey bars) 

represent the regions that were 

excluded in this analysis. 



208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Near 276th Street, Lennox, SD on August 18, 2015. Photo Credits: Peter Wolter.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                         (b)                                           (c) 

Figure 3. Histograms of the recorded intensity by band B1 for: (a) raw Landsat-8 “9/27/2015” 

image; (b) raw Landsat-5 “9/26/2009” image; and (c) rescaled band intensity for Landsat-8 

“9/27/2015” image to Landsat-5 “9/26/2009”’s level.   
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(a)                                                                                                                     (b)                                                  

 

Figure 4. (a) SD September Algorithm to classify Corn-Soybeans, Wheat, Alfalfa and Grass’ (b) SD July-August Algorithm to 

classify Corn. We overlay developed lands, forest, wetlands, shrubs and surface water categories from NLCD 2006 to obtain the final 

product.   
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Figure 5. ND September Algorithm to classify Corn, Soybeans, Wheat, Alfalfa and Grass. We overlay developed lands, forest, 

wetlands, shrubs and surface water categories from NLCD 2006 to obtain the final product.   
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Figure 6. Dakotas’ counties that (approximately) span the Landsat paths. Hashed areas (green 

bars) represent the regions that were excluded in this analysis.  

 

 

 

 

 



212 

 

 

 

 

 
Figures 7-9. Land Use Trends for South Dakota 
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Figures 10-12. Land Use Trends for North Dakota 
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ABSTRACT 

We evaluate the efficiency of past conservation easement allocations in protecting the 

grasslands of the Prairie Pothole Region. We focus on the permanent grass conversions in 

eastern North Dakota during 1997-2015. Our spatio-temporal analysis suggests that the region’s 

existing croplands and grasslands occur as large, contiguous tracts where permanent grass 

conversions occurred in proximity of the crop-intensive areas. We conjecture that localized 

spillovers exist in this region’s land use decisions and present a game-theoretic framework of 

binary choices to evaluate easement allocations when strategic complementarities exist among 

private landowners. We find that that easement allocations are more cost-effective when 

acquired as contiguous tracts and on lands that provide weak cropping incentives, e.g. poor soils. 

We empirically validate our conjecture of localized spillovers by employing a duration 

modelling framework. We find that higher grass density inhibits the risk of conversion in its 

locality, and that easements are strategic complements to higher grass acres with regards to 

inhibiting conversion risks. The fact that past easements were acquired as relatively large tracts 

and on poorer quality soils is encouraging because our analytical findings would suggest that 

these easements were allocated in a cost-effective manner. 
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Introduction 

The U.S. Prairie Pothole Region (PPR) is a biodiversity-rich ecosystem sustained by its 

mixed-prairie grasslands and wetlands. The perennial grasses generate ecosystem services, 

provide nesting and breeding habitat for the local waterfowl species, and allow for livestock 

production. On the east of the Missouri River in North and South Dakota there exists a grass-

crop frontier along the western fringes of the Western Corn Belt (WCB, see figure 1). Grasslands 

enhance agricultural productivity of this region by sustaining its erosive soils. Dakota’s 

grasslands are a valuable natural resource largely under private ownership and subject to 

conversion when crop returns are high. Almost 670,000 acres of grasslands were converted to 

corn/soy cultivation in these states between 2006 and 2011 (Wright & Wimberley 2013). Past 

economic analyses suggest that several factors drive grassland conversions in the PPR including 

commodity prices, soil quality (Rashford et al. 2010; Wang et al. 2016), neighborhood cropping-

density (Stephens et al. 2008), technology and crop insurance policies (Wang et al. 2016). 

Incentive-based land retirement policies exist to motivate the PPR’s private landowners to 

conserve their grasslands.  

Acquiring conservation easements is a key policy tool of the U.S. Fish and Wildlife 

Service (FWS) and its partners to protect remaining grasslands in the PPR. Under this policy, 

landowners voluntarily enter a perpetual contract with the agency to give up their right to 

cultivate in lieu of a one-time payment, while still retaining ownership of the land. The FWS and 

its partner agencies raised Duck Stamp funds and acquired about 2.3 million acres of grassland 

easements since the 1950s (U.S. GAO, 2007), 80% of which lie in the Dakotas (FWS, 2011; 

Walker et al. 2013). The agencies plan to enroll additional 12 million acres in future in order to 

sustain the region’s grassland bird habitat. However, at the current acquisition rate and 



220 

 

 

insufficient funds could mean that the agency would not reach this goal for another 150 years 

(U.S. GAO, 2007). Such budget constraint impediments are even greater when land values are 

rising, as they have in the Dakotas where only 30% of lands could be eased during 2008-’12 

relative to 1998-2012 with similar fund allocation (Walker et al. 2013). U.S. GAO (2007) 

recommended acquiring low cost, high-priority habitat, whereby, for example, FWS could have 

conserved 50% more land in 2006. Rashford et al. (2010) and Stephens et al. (2008) too made 

similar recommendations. 

Various aspects of the incentive-based conservation policies, including the conservation 

easements, have been analyzed in the literature that are relevant for this study. Walker et al. 

(2013) recently reported that past easement acquisitions focused mainly on the abundance of 

waterfowl breeding pairs, visualized in figure 2, in the Dakotas’ PPR. The authors developed a 

spatially-delineated categorization of the remaining PPR’s grasslands based on the land’s 

ecological value, soils and acquisition costs.  They ranked parcels into categories I-III to 

prioritize acquisition, with ‘highest duck-pair density, highest conversion risk and least costly’ 

lands in category-I to be acquired first. However, acquisitions based on this scheme would 

conserve a fragmented ecological reserve if all category-I lands are acquired first (see pp. 275 

figure 7 in Walker et al. 2007). This is suboptimal for deriving ecological benefits as the 

conservation biology literature suggests that connected habitats are more beneficial to sustaining 

the supported species as compared to isolated habitats (Johnson et al. 2010; van Nouhuys, 2009).  

Miao et al. (2016) recently developed a two-period model to evaluate landowners’ 

willingness to accept towards easing their lands in a dynamic setting of their conversion 

decisions. Their findings suggested that acquiring easements when landowners are uncertain 
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about cropping/grazing returns should be avoided as their willingness to accept would be high in 

such a scenario even when their propensity to convert would be low.  

Johnson et al. (2010) have identified large, contiguous patches of remnant prairie that 

would allow conserving the PPR’s grassland bird population. The importance of conserving such 

contiguous spatial habitat arrangement for specie-protection has also been recognized in the 

economics literature. Economists have proposed agglomeration bonuses to promote voluntary 

conservation of contiguous parcels through land retirement policy. Drechsler et al. (2010) found 

that a policy that provides a premium towards newly retired lands that border previously 

conserved reserves generates efficiency gains relative to the spatially homogenous conservation 

payments. Parkhurst et al (2002) suggested that agglomeration bonus would enhance the chances 

of conserving contiguous habitat reserves, whereas a no-bonus scenario always lead to 

fragmented habitat reserves. 

In this paper, we study grassland conversions and the role of easements therein when land 

use related returns (costs and benefits) are spatially dependent in a locality. We conjecture that 

local spillovers exist from the advent of more cropped land in an area such that the spatially 

connected cropland will provide higher cropping incentives than the same amount of spatially 

separated land. When more cropland emerges in a locality the cropping costs may decline as 

more agricultural services and related infrastructure like tillage equipment, tillage entrepreneurs 

and input suppliers enter the area. Similarly, higher density grassland in the area may inhibit 

conversions as the cost of grass-based production would be lower than crop-based production. So 

the strategically placed easements could complement grass acres in an area and disrupt the 

network of croplands to inhibit further conversion. In that sense, we extend the conservation 
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targeting literature by examining the effectiveness of easement acquisitions when grassland 

conversions are dependent on the localized spillovers on a parcel’s cost of conversion.  

To the best of our knowledge, ours is the first study to consider the role of networks in 

conservation planning by easement acquisitions. We first develop a conceptual model with 

strategic complementarities among farmers who are deciding upon ‘convert to crop’ or ‘stay in 

grass’ options. We present analytical results as well as simulations of land use decisions when 

social spillovers are present in landowner payoff function. We compare the welfare effects of 

acquiring spatially connected easements from when the agency acquires easements in isolation. 

We then conduct an empirical analysis to test for the existence of social spillovers in the region’s 

land use dynamics. We employ remote sensing tools and implement a hazard modelling 

framework to estimate the risk of permanent grass conversion to crop. We evaluate how the risk 

of conversion varies local grass-density and the presence of easements.  

This paper is divided into several sections. We first discuss our empirical and economic 

basis for considering strategic complementarities in the Dakotas’ land use decisions. We then 

present a game-theoretic model of permanent grassland conversions and the related analytical 

results on the role of easements, followed by simulation results. We then underline our empirical 

strategy, present our estimation results, and conclude with a brief discussion. 

Spatial Spillovers in Grassland Conversions: Motivation 

Our conjecture that localized spillovers exist in Dakotas’ land use conversion decisions is 

based on an exploratory analysis of this region’s past land use changes. We utilize the spatially-

delineated pixel-level imagery from USDA’s Cropland Data Layers (CDL) that characterize land 

use in North Dakota during 1997-2015. We condense the land uses in the longer time-series in 

North Dakota into two categories: crop (c) and grass (g). We then characterize all possible 
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sequences of pixel-level transitions between c and g during 1997-2015. There are four possible 

land use switches between every consecutive year: c to c; c to g; g to c; and g to c, and so 219 

possible land use switching combinations for each 30m pixel during 1997-2015. To characterize 

long-term changes we focus on three specific combinations: always crop (C); always grass (G); 

and permanent grass to crop conversion (GC). The GC category represents pixels were g in 

1997, underwent a single transition to c, and remained in c thereafter.  

We map C, G, GC, and easement allocations during 1997-2015 in figure 3.40 There are 

759,043 permanent cropland acres located mostly on the east, 189,231 permanent grassland acres 

located mostly on the west of the study region. While C and G resemble large, contiguous tracts, 

GC switches occurred in proximity of permanent croplands. Moreover, easements seem to have 

been allocated near permanent grasslands, away from the observed conversions. This seems to 

suggest that easements were allocated in localities where lands did not convert anyway. These 

observations signify the scope in accounting for network effects in studying grassland 

conversions and evaluating the efficiency of existing easements. 

  The observed spatial conformity in landowner choices towards crops or grass and GC 

transitions being proximate to the existing croplands lead us to conjecture that these production 

systems exhibit strategic complementarity. That is, higher cropping density in an area seems to 

incentivize more cropping, and likewise higher grasses seem to have lowered the incentive to 

crop. The economic argument for such conformity is that strategic complementarity exists in the 

cost of production among neighboring landowners. To formally express cost complementarity 

we denote a price-taking farmer i’s profit from producing quantity iq  as ( , , )i i i jpq C q q w    

                                                 
40 See National Conservation Easement Database http://www.conservationeasement.us/projects 

http://www.conservationeasement.us/projects
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where p is price of output, and (.)C  is the cost of production that depends on iq , average local 

output jq , and input price w. Crop complementarity exists when i's marginal cost is decreasing 

in local output level, i.e. 
2 / 0i jC q q    . The plausible scenarios of cost complementarity are 

when cropping attracts grain elevators, ethanol plants better roads, insurance agents and 

entrepreneurs, which in turn attract more cropping since costs are lowered as access to demand 

terminals and supporting services increases. 

Model 

Our conceptual framework is motivated from Brock and Durlauf’s (2001) binary choice 

model with social interactions. The authors implemented a statistical mechanical structure to 

account for average group behavior in the utility maximization problem. This study drew a 

mathematical connection between the localized interactions among atoms on a lattice to produce 

a magnet and the interactions among decision-makers in a socioeconomic environment to 

determine their aggregate economic behavior (Durlauf, 1999).  Brock and Durlauf (2001) 

adapted a mean-field version of the Curie-Weiss model that accounts for mean group behavior to 

analytically derive equilibrium decision in an interconnected population. The Curie-Weiss model 

is an advanced version of a simple and the more popular statistical mechanical model, known as 

the Ising model (Ellis, 1985 Ch. IV). The Ising model accounts for pairwise interactions among 

neighbors as opposed to average behavior in the Curie-Weiss model, and yet both models 

provide qualitatively similar results (Ellis, 1985). The mean-field version was specifically 

designed to facilitate analytical solution in case of the many-body systems on four-or higher 

dimensional lattices. We choose to adapt the Ising model to study grassland conversions because 

ours is a two-dimension lattice with heterogeneous grasslands distributed across the eastern 
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Dakotas. This approach also offers the following advantages over the Brock and Durlauf’s 

(2001) framework. 

While Brock and Durlauf (2001) provided equilibrium results for a single neighborhood 

designated as population, our framework will accommodate multiple neighborhoods that may 

interact though nodal agents to generate equilibrium strategies. In particular, social spillovers 

from an agent’s actions are only localized and all of his/her designated neighbors may not be 

neighbors to each other. Furthermore, accounting for pairwise interactions will allow simulating 

the game’s Nash equilibria using a simple algorithm on a standard statistical package. Our model 

extensions to incorporate heterogeneous agents and analyze easement allocations are more 

tractable with pairwise interactions among agents.  

We model permanent grass conversions as a one-shot simultaneous move game among 

non-cooperative landowners to accommodate localized spillovers in grassland conversions. 

Formally, a representative agent i among I grassland owners chooses to either ‘stay in grass’ or 

‘convert to crop’. The binary choice set of each individual is denoted as { 1,1}ia   , where 1  

stay in grass and 1  convert to crop. We denote the game’s strategy set as ii I
a a


 , and the 

strategy set of all players other than i  as 1 2 1 1 1( , ,..., , ,..., , )i i i I Ia a a a a a a    . To study localized 

spillovers among neighbors we define set iN I  that contains i’s neighbors with # i iN n . Finally, 

we denote the game’s payoff function as 1( ) ( ( , ))I

i i i ia a a    , where  

,
( , ) ;  ,  ,  ,i ji

a aa

i i i i ij j i ij
a a a a j N i j I                                                                           (1) 

The total payoff for individual i from action ia  in equation (1) is assumed to be the sum 

of a private payoff component, ia

i , and a social payoff component from localized spillovers, 
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,i ja a

ij . The private payoff component is most likely driven by the tract-level soil quality, 

expected weather, access to the region’s transport infrastructure and demand-terminals. The 

social payoff component is derived from i's pairwise-interaction with his/her neighbors as 

specified in equation (1). For strategic complementarity to hold i's payoff function must satisfy 

the property of increasing differences in each neighbor’s choice, i.e. 
1,1 1,1 1, 1 1, 1

ij ij ij ij          

 ,ij N   ,i j I . That is, the option ‘convert to crop’ will generate higher payoff when each 

neighbor chooses to ‘convert to crop’ as well. Similarly, there will be a penalty from choosing to 

convert when neighbors choose to ‘stay in grass’.  

Agent i will choose 1ia   or ‘convert to crop’ only if (1, ) ( 1, )i i i ia a    , or  

1, 1,1 1 ( );  ,  ,j ja a

i i ij ij ij
j N i j I   

                                                                                   

(2) 

To facilitate further insights on the agent’s decision problem we define 
,

 ifi ja a

ij  1  

 or  if i j i ja a a a 
2 , where 1 2   satisfies the increasing differences property for strategic 

complementarity to hold. Hence, equation (2) becomes 
1 1

1 2( )i i in       . An alternative 

specification 
,i ja a

ij i jJa a   with 1 2( ) / 2 0J      leads to identical ramifications for equation (2), 

only now with a single parameter J that is proportional to the difference in payoffs from 

conforming to ( 1 ) and defecting from ( 2 ) each neighbor’s action. This alternative functional 

was proposed by Brock and Durlauf (2001) with J  as the strength of strategic complementarity 

to account for average group-behavior, i.e. 
, 1i j

i

a a

ij i i jj N
Ja n a 


  , in social payoffs. We too 

model social interactions with parameter J for notational simplicity. 
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We briefly discuss the existence and various properties of Nash equilibria. Generally for 

one-shot simultaneous move games pure N.E. exist when each player’s strategy set is complete, 

finite and compact, and ( , )i i ia a   is continuous in ( , )i ia a  and quasiconcave in ia  for all i I  

(MWG, 1995 Ch. 8 pp. 253). Vives (1990) analyzed the games with strategic complementarity 

using the lattice approach and reported that payoffs may not be quasiconcave for pure N.E. to 

exist. His analysis suggested that the set of pure N.E. is non-empty for such games when the 

payoff function is supermodular in the game’s strategy set (
ii I

a a


  for our study). The 

concept of supermodularity and increasing differences coincide when a  is a product of ordered 

sets (Topkis, 1978 Theorems 3.1-3.2; Vives, 1990). We designated our game’s payoff functions 

to have strictly increasing differences earlier and the sets ia  are too (trivially) ordered for all i. 

Hence, pure N.E. exist four our permanent conversion game. Note that we do not need ia

i  to be 

linear in ia  unlike Brock and Durlauf (2001) to ensure the existence equilibria. Vives (1990) 

also found that the set of pure N.E. consisted of the smallest and largest element from the game’s 

strategy set, see Theorem 4.2 (i). This means that in this study all farmers deciding to ‘stay in 

grass’ or ‘convert to crop’ will be candidate equilibria. Echenique (2003) showed that in the 

games of strategic complementarity when individual strategy spaces are one-dimensional mixed 

strategy equilibria exist. However, Echenique and Edlin (2003) found that mixed strategy 

equilibria are unstable and reduce to the game’s extremal equilibria when player’s beliefs about 

the opponents play are slightly wrong. We focus on pure strategy N.E. for our analysis.  

We now turn to characterizing Nash equilibria (N.E.) for this game. We present 

simulations to illustrate the analytical results for a special case of I = 6 players that are placed on 

a torus with three neighbors each (figure 4). Players i = 1, 2 and 3 are placed on the upper ring of 
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the torus and i = 4, 5 and 6 on the lower ring. A 3-D structure of interconnectedness among 

agents is hoped to provide richer illustrations of the game’s equilibria than a circle, especially 

among heterogeneous players. A simple algorithm to simulate the pure N.E. for this game using 

a statistical software package is provided in an appendix. 

We next analyze grassland conversions with spatial spillovers for players with same 

private payoff towards cropping and staying in grass, i.e. homogenous agents, followed by an 

extension to heterogeneous agents with differing private payoffs. We finally apply our 

framework to evaluate easement allocations amidst localized spillovers. 

Homogeneous Players 

Homogenous players are assumed to have same private costs towards each choice, i.e. 

‘convert to crop’ and ‘stay in grasses’. We know from equation (2) that agent i chooses action 

ia  if ( ) / 2 ;  ,  ,i ia a

i j ij
J a a j N i j I  

     . For notational convenience we will denote 

ia 
,i i ia a a  

  hereafter.  

A set of strategies are N.E. when none of the agents can improve their payoff by 

unilaterally updating their strategy. So here N.E. is the set of strategies 
*

1{ }I

i ia   that satisfy the 

following condition 

* *,
* *2

i ia a

i jj
a a

J

 


    , , ii j I j N                                                                                           (3) 

Equation (3) here is the equilibrium characterizing equation where the only unknown for 

each agent i is the neighbors’ choices. Hence, we have our first result for this case. 
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R1: When strategic complementarities exist among players with binary choices the N.E. is 

characterized by a ratio of the difference in the individual player’s private payoffs from the two 

choices to the strength of strategic complementarity between the player and his/her neighbors. 

 

An interesting implication of R1 is that higher 1, 1   will have a similar consequence for 

the game’s N.E. as would weaker spillover effects, i.e. lower J.  

The right-hand-side (R.H.S) of equation (3) is bounded, i.e. 2 [ 2 ,2 ]i j i ij
a a n n   . This 

means that if the left-hand-side (L.H.S.) 2 in  in equation (3), then i will choose 1ia  , and if  

L.H.S. 2 in   i  then 1ia    is i's unique payoff maximizing choice. An interpretation is that, 

given J, the landowners choose to crop (stay in grass) when the private payoffs towards cropping 

(grass-based land use) are strong enough to overcome any losses due to defecting neighbors. 

Since the bounds of R.H.S. in equation (3) are increasing in in , we need 
1, 1 max (2 )i in    for 

all agents to convert to crop. Similarly, we need 1, 1 min (2 )i in    for all agents to stay in grass.       

In addition, when private payoffs are relatively weak this game may generate multiple 

equilibria. To see this let’s consider a case where 
1, 10 2 in     for all i given J. Clearly, 

1 ia i   is still a N.E. as a unilateral deviation by any player would decrease his/her total payoff 

by choosing to ‘stay in grass’ due to losses from social spillovers as all neighbors convert and the 

private payoff from cropping is relatively higher.  However, 1ia    could maximize the total 

payoff when all of his/her neighbors choose to stay in grass. This is because in this scenario 

conforming to his/her neighbors would earn player i a total payoff 
1, 12 in    higher than 

from converting to crop. Since 
1, 12 0in    , to ‘stay in grass’ is as good or a better option that 
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‘convert to crop’ for earning a higher payoff. Consequently, if L.H.S.  [ 2 ,2 ] i in n i    then 

1 ia i    will also constitute an equilibrium where no player could deviate unilaterally to 

improve their payoffs. However, the equilibrium where 1 ia i   will generate higher total 

payoffs for all players compared to 1 ia i    due to the initial condition 1, 1 0   . So, our 

next result on permanent grassland conversions in presence of localized spillovers is as under. 

 

R2: The one-shot game of permanent grassland conversion supports multiple equilibria among 

neighbors when strategic complementarities are present. Whether a unique or multiple equilibria 

will emerge is characterized by a threshold, max ( )i iT n , and the landowner’s  private 

incentives from conversion. The threshold that characterizes the game’s equilibria depends on 

an agent’s degree of interconnectedness or the number of neighbors. That is, if 

(i) 
,

 
i ia a

T i
J

 


  , then there exists a unique equilibrium with * 1 ia i   if 0T   or 
* 1 ia i    

if 0T  . 

(ii) 
,

 
i ia a

T i
J

 


  , there exist multiple equilibria with 
* 1 ia i  , 

* 1 ia i   , and combinations 

of 
* 1ia   for some agents and 

* 1ia    for others. However, 
* 1( 1) ia i    is Pareto-superior or 

payoff-dominant for 
1, 1 ( )0    . 

 

Example: We now turn to illustrating the analytical results R1 and R2 by simulating the N.E. for 

a specialized case where we fix I = 6, 3 in i  , J = 1 and vary 1, 1  . The simulation results are 

presented in tables 1-7. Tables 1-6 present the cases when the game of strategic complementarity 
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with binary choices generate multiple N.E. This is in line with our result R2 (ii) that 

1, 1 / 2 iJ n    (= 6 here) generates multiple equilibria. Further, as soon as 
1, 1 / 2 ( 6)iJ n     is 

satisfied there is a unique N.E. such that all players convert, as we assert in R2 (i). Upon 

comparing tables 4 and 5 we find equilibrium choices to be identical given 1, 1 / J   remains 

the same, as asserted in R1. Although we present only one case where R1 holds we find this true 

for all other cases (results not shown to save space).  

We further observe that when 1, 1 / 2J    the game generates more than two N.E. In 

particular, when 
1, 1 / 2J    the game generates four N.E.: all players convert, none convert, 

and players on the upper (lower) ring convert and players on the lower (upper) ring do not 

convert. For 
1, 1 / 2J    the game generates three additional N.E., i.e. total seven N.E., 

where two out of three players on each ring convert and the remaining stays in grass. This 

observation of more than two N.E. for lower levels of 1, 1 / J   can be explained by the 

increased opportunity to stay in grass as private payoffs from conversion decrease while the 

extent of social spillovers remains fixed with constant J and in . These intermediate equilibria 

also exist due to the structure of a torus and the players’ placement on the upper/lower rings. In 

addition, for all the cases with multiple equilibria we find the equilibrium where all players 

convert to crop to be Pareto superior as each player earns a higher payoff relative to the other 

equilibria. 

Equilibrium Selection 

Milgrom and Shannon (1994) showed for the games with strategic complementarities that pure 

strategy N.E are supremum and infimum of the set of equilibria obtained from the method of 

iterated elimination of strictly dominated strategies (Kultti and Salonen, 1997). Kultti and 
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Salonen (1997) built upon this work and showed that these extremal equilibria are ‘undominated’ 

to other pure and mixed strategy N.E. The authors defined undominated equilibrium as one 

where no player’s strategy is weakly dominated by another pure strategy. For our study the 

undominated extremal equilibria are * 1 ia i  and * 1 ia i   . We now seek to understand whether 

the deductive equilibrium selection principles of payoff-dominance (PD) and risk-dominance 

(RD) would allow us to select the solution of this game.41  

The PD criterion selects the equilibrium where each player’s payoff is strictly higher. 

That is, among the undominated equilibrium strategies *,

1{ }pd I

i ia 
 is payoff-dominant if 

*, *, *, *,( , ) ( , ) pd pd pd pd

i i i i i ia a a a i                                                                                                  (4) 

Clearly, 
*, 1pd

ia   if 1, 1 / 0J    and *, 1pd

ia    if 
1, 1 / 0J   . 

However, a payoff-dominant best response offers strategic risk as a player’s expectation 

about neighbors’ choices may not be accurate. The RD criterion searches for an equilibrium that 

offers the highest payoff while exhibiting the least strategic risk. Harsanyi (1995) provided a 

theoretical basis for selecting among multiple equilibria and found that when PD and RD diverge 

on equilibrium selection, the selection criteria should be RD (or the N.E. with highest probability 

of emergence considering the strategic risk).  

We now formally present the idea of a risk-dominance in the context of this study and 

evaluate the scenarios when RD and PD diverge. For each player i, there are 2 in
M   possible 

                                                 
41 In our illustrative example we find more than two N.E. when 1, 1 / 2J   . Although 

additional N.E. exist other than 
* 1 or 1 ia i    when 1, 1 / 2J    but both strategies provide 

equal payoff on these additional equilibria. That is not the case when 1, 1 / 2J    but we find 

extremal equilibria to be strictly Pareto superior here. Moreover, these additional equilibria 

emerge due to the structure imposed by the torus and number of neighbors assigned to each 

player. These factors are subjective to the analyst and so we will consider only the two extremal 

equilibria for our analysis. 
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distinct strategy vectors for i's neighbors , ( ) 1(( ) )M

j m j N i ma   . Let 1m   be the case when 1ja  

 ij N  , and m M  when 1ja    ij N  . Further, let ,i mp  be the subjective probability that i 

places on the neighbors’ strategy vector m. We say ia  is risk-dominant strategy if ( , )i i i jE a a 

( , )i i i jE a a  . That is,  

,

, ,2 ; , 1,2,...,
i ia a

i
i j m i m im j

a a p j N m M
J

 


                                                                         (5) 

The strategy set that satisfies equation (5) for all i is the risk-dominant equilibrium. Now 

each player would assign , 0i mp   only for set m that generates either of the game’s 

undominated extremal N.E. So, we know that , 0i mp   for m = 2, 3,…, m – 1 and ,1 , 1i i Mp p   

with ,1 ,( , ) (0,0)i i Mp p  . Hence, 
* 1ia   is i's risk-dominant strategy if 

1, 1

,2 (2 1);  i
i i M in p j N

J

 
                                                                                                            (6) 

Equations (4) and (6) suggest that among risk-neutral players, i.e. when ,1 , 0.5i i Mp p   

for all i, 
1, 1 / 0i J    ( 0)  will imply 

* 1 ia i   
*( 1)ia    to be the game’s N.E. based on the PD 

and RD criterion.  

Heterogeneous Agents 

We posit agent heterogeneity as allowing for different payoffs for players from similar 

decisions.  Specifically, we allow variable private payoffs from conversion while keeping the 

strategic complementarity parameter J constant with cross-sectional invariance. Such a 

framework for analyzing heterogeneity is dual to varying parameter J while keeping the private 

payoffs same across players (as noted earlier in R1). We evaluate the impact of heterogeneous 
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private payoffs on each player’s profit maximization problem by examining its implications for 

equilibrium characterizing equation (3). For example, we know that 1ia   is i's unique payoff 

maximizing strategy if 1, 1 / 2i jj
J a     . Clearly, the condition for the strength of private 

conversion incentives towards ‘convert to crop’ uniquely maximizing i's total payoff is less 

stringent when more number of players in his/her neighborhood ‘convert to crop’, i.e. 1ja  . We 

now examine the implications of this intuition formally. 

Consider a scenario where a fraction of player i's neighbors ‘convert to crop’. That means 

that these neighbors have 
1, 1 / ;j iJ T j N     satisfied, see R2 (i). Such strong incentives to 

crop in a neighborhood may arise due to better soils, strong commodity basis and better access to 

demand-terminals, or due to idiosyncratic reasons like ability or willingness to crop. For the 

purpose of exposition we let iN  be the set of i’s neighbors who convert such that # iiN n 

(0, )in . Under this scenario, i will choose action 1ia   if 

 
1, 1

2 ;  \i
ij i ij

a n j N N
J

 
                                                                                                (7) 

Now, the R.H.S. in equation (7) is bounded in the range [ 2 ,2( 2 )]ii in n n  . Therefore, when in  

of i's neighbors are certain to choose to ‘convert to crop’, the threshold on 1, 1 /i J   that ensures 

1ia   is the payoff maximizing strategy is 4 in  units lesser than when 0in  . In other words, 

for every extra neighbor j who converts to crop with certainty, the threshold that 
1, 1 /i J   

asserts conversion is payoff-maximizing is reduced by 4 units. An implication for the Dakotas is 

that the social spillovers from the pre-existing croplands would increase the propensity to 

convert on existing grasslands. Our model specification exhibits social spillovers favorable 
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towards cropping to compensate for low private payoffs from conversion potentially leading to 

conversion on lands with moderate soil quality. The inference is symmetrically opposite for 

evaluating the ‘stay in grass’ option implying that higher grass density inhibits conversion on as 

the social payoffs lower the incentive towards conversion. 

See that in our static framework landowners who are projected to ‘convert to crop’ or 

‘stay in grass’ due to strong private incentives are similar to existing croplands or grasslands 

prior to those deciding upon conversion in a time-varying framework. This suggests that our 

analytical model in line with our earlier observation that recent permanent grassland conversions 

were ‘islands’ within large contiguous croplands in North Dakota. Hence, our next result. 

 

R3: Localized spillovers from existing or projected (with certainty) croplands or grasslands in a 

neighborhood encourage remaining decision-makers to ether ‘convert to crop’ or ‘stay in grass’  

respectively by compensating for potentially moderate private payoffs. That is, agent i with has 

higher incentives towards choosing 1  1i ia than a    when 0
i

jj N
a


 , and vice versa, 

irrespective of the relative private payoffs from two actions, 
1, 1

i
 . 

 

Example: We present three specialized cases to understand the implications of agent 

heterogeneity on individual land use decisions and the game’s N.E.  

(i) Set 
1, 1 6.1i
   for {1,4}i  . Our earlier analysis suggests that 

* *

1 4 1a a   irrespective of 

their neighbors’ actions. Based on their pre-assigned positions all other players, say 

{2,3,5,6}k , have exactly one neighbor who is projected to ‘convert to crop’ with certainty 

(see figure 3). We find that whenever 
1, 1 2k
   the remaining players support a unique N.E. 
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where all players ‘convert to crop’. This is consistent with our analytical finding that for every 

neighbor who converts to crop the threshold for private payoffs that sustains conversion as the 

unique optimal strategy is reduced by 4 units. 

(ii) An alternative structure of agent heterogeneity is achieved by setting 
1, 1 6.1i
   for 

{1,6}i  . Now, each of the remaining players have two neighbors each who will convert with 

certainty. We find that 
1, 1 2k
    for {2,3,4,5}k  would sustain a unique equilibria where 

all players ‘convert to crop’, which is also consistent with our analytical exercise above. 

(iii) Conversion cascades: A specialized and more interesting example emerges from our 

simulations where heterogeneous payoffs generate conversion ‘cascades’, which are parallel to 

the concept of information cascades introduced by Bikhchandani et al. (1992). Information 

cascades occur as limited information from predecessors transcends to the successive generations 

as social norms leading to uniformity in social behavior. For our study, cross-sectional 

interdependence among players can generate similar results through spatial lags as shown by 

Bikhchandani et al. (1992) in presence of temporal interdependence.  

To visualize a conversion cascade for our illustrative example in figure 3, we divide the 

six player on the torus in four cohorts: {1,3},  {2},  {4,6},  and {5}s t u v    . We set 

1, 1 6s
   so that 

* 1sa s  . Hence, player 2 with two neighbors projected to convert to crop 

with certainty will convert as well if  
1, 1 2t
   . Next the system in figure 3 with 

1, 1 6s
   

and 
1, 1 2t
    will  

* 1ua u   if 
1, 1 2u
   , which in turn would mean 

* 1va   as long as 

1, 1 6t
   . So, this conversion cascade portrays a situation where two agents with very 

strong private incentives to crop lead cropping into the regions where grass-based land use was 

relatively more profitable. Although this case is only an interesting theoretical possibility, it is 



237 

 

 

relevant for our region of study where more cropland is added on relatively poor quality soils 

along the western fringes of the WCB characterizing its westward expansion in the past decade. 

Easement Allocations 

As discussed earlier, easements are perpetual contracts that landowners may enter 

voluntarily permanently giving up their right to cultivate in lieu of a payment and related tax 

incentives. Although it is the landowners who decide upon enrolling their lands to conservation 

easement contracts in the first place, the available grassland acreage from willing landowners is 

in excess of the budgetary capacity of concerned conservation agencies. Therefore, it is critical to 

analyze the efficiency of past allocations and seek to inform the future allocations to obtain 

higher cost effectiveness and ecological output. In this study, we evaluate the social welfare from 

easement acquisitions when strategic complementarities exist among landowners.  

Easements generate ecological benefits from conserved mixed-prairie in return of a cost 

of acquisition. The ecologists recommend conserving large, contiguous tracts to support higher 

biodiversity and the economists have proposed agglomeration bonuses for efficient voluntary 

conservation of contiguous lands. Here, we evaluate total social welfare derived from of 

acquiring easements. We set per-acre ecological benefits derived to be constant and focus on the 

per-acre cost of acquiring easements to emphasize strategic complementarities in private returns 

from landowners who enter the contract. It would be interesting to incorporate variable benefits 

from acquiring contiguous and isolated easements if the acquisition costs offered a trade-off. 

Instead, we find that similar to the benefits per-acre cost of easements are reduced when acquired 

in contiguity with other easements. By ignoring variable benefits from the structure of 

acquisition the level of social welfare generated may be under- or over-estimated but the 

underlying recommendations towards future easement acquisitions will hold.  
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Consider a scenario where all agents in a neighborhood have strong private incentives to 

crop such that 
* 1 ia i   in absence of any government intervention. Define the social welfare 

function as e eW Be C  , where eW is social welfare from acquiring e easements, B is the 

ecological benefit per acquired easement and eC  is the total cost of easement acquisition such 

that the each eased agent i can no longer cultivate crops or 1ia   . The easement acquisition 

costs have two components: (i) cost to FWS, which is i's minimum willingness to accept (WTA) 

upon ceding the right to cultivate, denote iC , (ii) spillover cost to the neighbors who would still 

crop and defecting from the eased player i, denote 
ij NC  . That is, 

1, 1(i)  2

(ii) 2 2
i

i i i

j N ij

C Jn

C J Jn

 



  

 
                                                                                                              (8) 

Hence, the total cost of acquiring i is 
1 1, 1 4i iC Jn     and 1 1, 1( 4 )i iW B Jn     . 

Equation (8) also reveals that acquiring easements is less costly when the relative private 

incentives to crop are low. Now consider a case when players i and k are eased such that 

* * 1i ka a   and ik N , ki N . These easements accrue benefits 2B and the two components of 

total costs are 

1, 1(i)  2 ;  { , }

(ii) 2 ( 1);  { , }
l

l l l

j N l

C Jn J l i k

C J n l i k

 



    

  
                                                                                               (9) 

Equation (9 (i)) reveals that the players’ WTA when eased alongside an immediate 

neighbors is lower by J units. That is because i and k conform to each other gaining extra payoff 

from the localized spillovers. Also, there is now one neighbor less whose payoffs are lower when 

i and k are eased. Therefore, the social cost is lower by J units from easing each neighbor, see 

equation (9 (ii)). So, 2 22W B C   and 2 1, 1 1, 1 4( ) 6i k i kC n n J        . Clearly, the per-
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unit cost of easing i and k  as immediate neighbors is lower when eased in isolation. Hence, our 

next result. 

 

R4: The per-unit cost of acquiring multiple easements in contiguity is lower than acquiring those 

easements in isolation. Consequently, the overall social welfare from easements providing equal 

ecological benefits is maximized under a contiguous arrangement rather than in isolation. 

 

Role of transfer payments: Federal tax deductions on easement payments 

Notice that our welfare analysis has ignored any transfer payments from enrolling under 

easement contracts. Federal tax deductions are offered on payments received by landowners to 

encourage higher enrolment under these easement contracts. We show in an appendix that 

transfer payments do not change the inference of efficient of easement allocations. However, 

ignoring transfer payments will lead to miscalculated value of overall social welfare.   

Can easement acquisitions trigger non-conversion in their neighborhood? 

We now evaluate whether easements can trigger non-conversion in their neighborhood 

and analyze the social welfare implications of such a scenario. Easements lock lands in grass 

thereby taking away the option to crop. An uneased player will only forgo conversion if the 

relative private payoffs from cropping are less than the penalty generated by defecting from 

his/her eased neighbors. Formally, if 
ie  denotes the number of i’s eased neighbors in set 

e

i iN N  

then 
* 1ia    is optimal when  

   1 1

1, 1

;  \

or 

;  \
2

e

i j i i i j i ij j

ei
i j i ij

J a e J e a j N N

e a j N N
J

 







     


  

 



                                                                (10) 
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Since 
\

max e
i i

j i ij N N
a n e


  , ie  easements lead to non-conversion by player i only if  

1, 1
1

2 2

i
i ie n

J

  
  

 
                                                                                                                     (11) 

Equation (11) suggests that the number of easements that would lead to non-conversion is 

specific to each player’s private incentive to crop and the degree of interconnectedness. So 

easements may trigger non-conversion when placed strategically such that in a population of I 

players each player has at least  1, 1max 0.5 / 2i i
i I

J n 


   neighbors who are eased.  

We now evaluate the total social welfare when easements indeed trigger non-conversion. 

Since all players are eased as grasslands the total benefit equals IB, which is obviously the 

highest achievable ecological benefit. Among the components of acquisition costs, only the loss 

of private payoff from staying in grass are relevant as social costs are equal to zero since all 

players conform to each other. Hence, the total acquisition cost equals the total WTA for all 

individuals, i.e. 
1, 1

ii
  . When easements do not trigger non-conversion at least one player 

converts to crop, say player j converts, and so the cost of acquiring j is greater than 
1, 1

j   due to 

social spillover effects. Therefore, the cost of acquisition is minimum when easements are 

strategically allocated to trigger non-conversion, also maximizing the social welfare. Hence, our 

next result. 

 

R5: When localized spillovers exist among landowners deciding between ‘convert to crop’ and 

‘stay in grass’ strategically placed easements can trigger non-conversion. Further, overall 

social welfare is maximized when easements trigger non-conversion.  
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Empirical Analysis 

The analytical results of this study are conditional on the fact that strategic 

complementarities exist among Dakotas landowners. To test this conjecture we employ an 

empirical strategy that utilizes a duration model to estimate the risk of permanent grassland 

conversion. Specifically, we track the dynamics of parcels that were classified as grass in 1997 

for eastern North Dakota and record the ‘duration-to-convert’ as number of years from 1997 each 

parcel stayed in grass before it was permanently converted to crop. We model this ‘duration-to-

convert’ as a function of the neighborhood grassland density. Notice that our empirical strategy 

is appropriate due to the availability of spatially-delineated land use data and an extensive 

application of remote-sensing techniques that provided us the G and GC sequences of land use 

conversions. We next provide the data used to estimate a duration model followed by a 

discussion on the workings of a duration model and our identification strategy. We then present 

estimation results. 

Data 

As mentioned above, our dependent variable is the duration to permanent conversion or 

years to conversion for parcels that were classified as grass in 1997. We designate 0.5 km, 1 km 

and 2 km outer rings that correspond to each parcel’s designated neighborhood, i.e. ni. We 

attribute percent grass from the CDL and percent easements from the National Conservation 

Easement database for the outer rings as spatial lags to capture the localized spillovers among 

landowners, see figure 5 for spatial schematics. We obtain parcel level and neighborhood soil 

quality data from the Web Soil Systems portal of USDA-National Resource Conservation 

Service (NRCS). We calculate weighted Land Capability Classification (WLCC) and slope 

(WSLP) as control variables for soil quality. Briefly, LCC groups soils into eight categories each 
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representing the degree of impediments towards cropping with higher categories meaning greater 

impediments. We also control for access to infrastructure for each parcel as its Euclidean 

distance to the nearest principal highway and town center, for which the data were acquired from 

U.S. Census Bureau’s TIGER portal. The variable summaries are listed in table 8 and will be 

discussed hereafter. 

Modelling Strategy 

We model the duration to convert T , which is assumed to be distributed with a 

differentiable c.d.f. ( )F T  and p.d.f. ( ) ( )f T F T . In this study ( )F T  represents the 

probability that a representative grassland parcel is permanently converted to crop in T  years 

post-1997, or 0T   in 1997. Further, the probability of surviving conversion until T  years is 

defined as survival probability or ( ) 1 ( )S T F T . The instantaneous risk of conversion at T , 

also known as the hazard rate, is defined as ( ) ( ) / ( )GC T f T S T  , where GC signifies permanent 

conversions.  We estimate this hazard rate or the risk of conversion as a function of 

neighborhood characteristics (and other controls) to identify localized spillover effects.  

We utilize a semi-parametric Cox-proportional hazard model to estimate the risk of 

permanent conversions due to a covariate vector Z . That is  

( | ; ) exp( )GC oT Z Z                                                                                                             (12) 

Here, o  is defined as the baseline hazard from cross-sectional heterogeneity among 

parcels (Greene, 2003, p. 799). The parameter coefficient,  , translates into a 

100(exp( ) 1)%    change in hazard rate due to unit increase in the corresponding explanatory 

variable. Notice that we have a panel dataset of the dependent and explanatory variables but the 

regression framework is still static because we only record these variables at the time of each 
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parcel’s conversion. A regression framework is achieved by specifying an indicator variable of 

whether or not each parcel converted every period, i.e. , 1i t TI    if the parcel was convert at t (or 

after duration T) or 0 otherwise. So our dependent variable is specified as ,i t TT I   leading to the 

following regression equation42 

, 1 , 2 , 3 , ,i ii t T o i T n T n T i TT I X Y                                                                                            (13)                                                                 

In equation (13), 1 2, ,o    and 3  are regression parameters. 3 J   in the conceptual 

model above. Vector ,i TX  contains explanatory variables for parcel i,  ,in TY  contains explanatory 

variables in the neighborhood of i, and we define ,in T  as the average neighborhood choice level. 

In other words, , 1
in T   if neighborhood grassland density at T is 0% (or cropping density is 

100%) and , 1
in T    if neighborhood grassland density at T is 100%. 

Our duration model and our game-theoretic conceptual model for conversions may be 

linked by assuming T to be linearly dependent but inversely proportional to the difference 

between total payoffs from the game’s choices: ‘covert to crop’ and ‘stay in grass’. This makes 

sense because the higher the returns from conversion the earlier the farmers are expected to 

‘convert to crop’. Based on this assumption the parameter 3  in equation (13) directly 

corresponds to the strength complementarities parameter J. Hence, estimating 3  is the primary 

interest of our empirical exercise. However, the neighborhood decision level, ,in T , is likely 

                                                 
42 Under the Cox-proportional specification the log-likelihood function is specified as 

,

,

: 1 ,

exp( )
( )

exp( )
i t

i T

i I i tt T

Z
L

Z




 








 where T is the duration of the event (time to convert here). 
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endogenous to variables in vector ,in TY  leaving 3  unidentified. This is the classic reflection 

problem introduced by Manski (1993) and addressed by Brock and Durlauf (2007) for the 

discrete choice problems. We briefly discuss this identification strategy in the context of our 

study below. 

Identification Strategy 

Manski (1993) pointed out that the social interactions parameter 3  is difficult to identify 

because 
,in T  is likely functionally dependent upon ,in TY . To see this, let us consider the following 

reduced form framework that models individual decision level to social interactions below. 

, 1 , 2 , 3 , ,i ii T o i T n T n T i Ta X Y                                                                                             (14) 

Under rational expectations we can write ,in T = ,( | , )i TE a X Y  (Brock and Durlauf, 2001 

pp. 240). Hence, 
1

, 1 , 2 ,(1 ) ( )
i in T o i T n TJ X Y        implies a linear dependence of ,in T  on ,i TX  

and ,in TY  leaving 3  unidentified. However, in this study we estimate equation (13) and not 

equation (14), which implies 

, , ,( ) Pr( 1) (1 Pr( 1))i T i T i TE a t T I t T I                                                                                 (15) 

For a duration model with Cox-propositional hazard specification we have  

,

exp( )
Pr( 1)

exp( )

T
i T

tt T

Z
t T I

Z







   


                                                                                           (16) 

which implies under rational expectations that 

,

, ,

exp( )
( ) 2 1 and 

exp( )

exp( )
2 1

exp( )i

T
i T
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Clearly in equation (17), ,in T  is not linearly dependent on ,i TX  and ,in TY  and hence the 

identification issue proposed by Manski (1993) does not hold here. Note that the fact that the 

coefficients in model (13) will be identified is hinged upon the fact that ,in T  is restricted 

between 1 and –1 whereas the explanatory variables in ,i TX  and ,in TY  are distributed over a 

relatively large space (Brock and Durlauf, 2007). 

Even though we use duration as dependent variable, which induces non-linearity between  

,in T  and the parcel-level characteristics, neighborhood decisions may still be co-determined. In 

order to ensure that the coefficient to neighborhood-level variables, i.e., ,in T , is identified we 

follow the instrumental variable regression approach. We require the instrumental variables to be 

correlated with the dependent variable, i.e. duration, but uncorrelated with the residuals in 

equation (13). Therefore, soil quality and access to infrastructure are valid instruments, in that 

they would determine the relative profitability towards crop-based and grass-based land uses for 

neighboring land parcels. In addition, we know that the FWS’s strategy for past easement 

acquisitions is likely to be determined by an area’s duck-pair density (Walker et al. 2013). Since 

wetlands are critical to sustain breeding of ducks, we introduce neighborhood-level wetlands 

density to instrument the presence of easements. Furthermore, wetlands also generate marketable 

ecosystem services, and so would serve as an appropriate instrument for the grasslands. 

Specifically, we instrument the neighborhood-level variables (grassland and easement density 

here) on (i) wetland density, (ii) soil quality, and (iii) distance to the nearest city/highway. 

Estimation Results 

We estimate equation (13) and denote our dependent variable ,i t TT I   as ‘duration’. Table 

8 summarizes the dependent and explanatory variables for the full sample containing land 
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parcels under GC and G sequences. Table 8 reveals that the unconverted parcels (sequence G) 

during 1997-2015 had higher slopes, poorer soils for cropping (or higher LCC), and were more 

distant to the highways and city centers as compared the ones that did convert during this period 

(sequence GC). Further, the neighborhood grass density of unconverted parcels is much higher 

than the ones that underwent permanent conversion. Notice that the standard deviation of soil 

quality variables is high, so we utilize a t-test to find the mean the soil quality is statistically 

different across sequences G and GC, see table 9. 

Next, we find parcel-level soil quality regressors to be highly correlated with 

neighborhood-level regressors, especially for the neighborhood designations as 0.5 km and 1 km 

outer-rings, see table 10. High correlation exists despite increasing the size of the outer-ring to 2 

km. A typical U.S. farm of 160 acres roughly translates into a square shaped plot with 0.8 km 

sides. This means that our designation of 0.5 km (1 km, 2km) outer ring roughly accounts for the 

average neighborhood decision level of one (two, three) adjoining farms on each side of the 

parcel. Since soil quality is highly correlated even to the extent of thirst-order neighbors, include 

parcel-level land quality for an amenable interpretation towards conversion decisions.  

It is a standard practice in case of duration analyses to present the estimated survival 

probabilities, ( )S T , in each period of the study. We estimate the non-parametric Kaplan-Meier 

survival probabilities based on the recorded duration to permanent conversion in our sample, see 

figure 6. We find that a large proportions of the regression sample (more than 90%) contains 

parcels in the sequence G. Among the ones that did convert, i.e. the GC sequence, more than 

85% converted in just one year. Table 8 shows that among the converted parcels average 

duration was about 2.6 years. A highly skewed sample is a caveat of this analysis and warrants 

more work to reconcile this issue. Since the number of observations in sequence G is much 
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greater than that in GC, we estimate two separate regressions for the full sample and only the GC 

category in order to document any relevant differences in estimation results. 

The hazard regression estimates for the ‘full’ sample are listed in Table 11 and the 

corresponding hazard rates are listed in Table 12. We find that a unit increase in the proportion 

of grasses within a representative parcel’s 0.5 km neighborhood would decreases the conversion 

risk by 99%. Correspondingly, higher grass density within larger neighborhoods of 1 km and 2 

km decrease the hazard rate by 97% and 94% respectively. This suggests a non-increasing 

strategic response to larger neighborhood. We find that the easements reduce hazard rates by a 

100% meaning that the advent of an easement completely halts conversion. These results are 

driven by the fact that permanent conversions are concentrated in areas that were historically 

cropped and past easements were allocated away from the converted parcels. Further, higher 

slopes, and more distant cities and highways also reduced the conversion risks. Finally, a higher 

percentage of land under LCC categories I and II reduced conversion risk while we had expected 

otherwise. For robustness we estimate hazard rates for only the GC sequence, results are 

presented in tables 13 and 14. Briefly, higher grass density as well as more eased acres are 

related to lower hazard rates, although the impact of easements is insignificant.  

In order to ensure that the coefficients to spatial lags are identified we first instrument 

grass density and easement density variables for the pre-designated outer rings on their proximity 

to near-by wetlands, their soil quality and access to infrastructure, see tables 15 and 16. Here, we 

find higher grass density as well as more eased acres are related to hazard rates. This means that 

easements were strategic complements to higher grass density towards inhibiting permanent 

conversions. However, it is interesting that the impact of an extra easement acre is stronger than 

that of a grass acre in reducing conversion risk. This result potentially suggests an educational 
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impact on the environmental conscience in neighborhoods with near-by easements. 

Long-term grasses: Filter for one-time permanent grassland conversions 

A concern with pooling the G and GC categories for our hazard model estimation is that 

the mean duration to convert is only 2.6 years, which is indicative of the fact that ‘grass’ in 1997 

could have been converted earlier and these parcels were possibly switching between grass and 

crop prior to 1997. This is problematic since GC parcels that were out of grass before 1997 do 

not represent one-time permanent grass conversions as currently incorporated in our hazard rate 

estimation framework.  

To ensure estimating the hazard rates for one-time conversions we utilize our findings 

from Chapter 3 to characterize long-term grasses. Specifically, we utilize the Landsat5 sensor 

data for North Dakota (path 31, rows 27-28, ch.3 p.202) for years 1984 and 1987 as ‘filters’ for 

determining parcels that were grass historically. We then exclude parcels that were grass in 1997 

but not grass in 1984/87 from our dataset, thereby designating the remaining parcels as long-term 

grasses. Rest of the components of the regression analysis are kept the same as earlier, including 

the IV regressions for the spatial lags. One issue with this strategy of characterizing long-term 

grasses is that since we only generate historical data for only a portion of eastern North Dakota 

(figure1-ch.3 p.202) this new filtered parcel-level data is truncated in an arbitrary manner.  

Upon filtering the original dataset, we are left with only 60 GC category parcels (out of 

972) and only 734 G category parcels (out of 12,420 compared to the original dataset). 

Consequently, the resulting mean duration is now double at 5.2 years, see figure 7. The 

coefficient estimates of the resulting hazard regressions for the three outer-rings are significant in 

only some cases indicating lost estimation power due to truncation. Higher density grasses are 

still found to inhibit conversions in all cases, whereas easements reduce conversion risk for 0.5 
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km and 1 km and not in case of the 2 km neighborhood. We caution the reader of the 

discrepancies in these results compared to the ones obtained from using the unfiltered dataset 

earlier. The loss of parameter significance may be associated with the noise introduced due to 

filtering, and so we designate these results preliminary. To that extent, this section warrants 

further investigation.    

Concluding Remarks 

We evaluate the role of localized spillovers on permanent grassland conversions and on 

the efficiency of past allocations of grassland conservation easements. We focus on the recent 

land use dynamics in the Prairie Pothole Region where extensive grassland losses have been 

reported in the literature. The grasslands are considered critical to the native and migratory birds 

habitat in North America, and so the FWS actively engages in buying perpetual easements to 

conserve these habitats. Past studies have investigated conservation targeting, including 

conservation easements, by contrasting scenarios that determine conversion probability as a 

function of the tract-level benefits and costs. We evaluate conservation targeting by 

incorporating network effects into the private landowners decision problem. We conjecture that 

strategic complementarities exist on land use decisions such that higher crop density encourages 

more cultivation in the neighborhood through better access to agricultural services, supporting 

infrastructure and demand terminals. 

We first present a game-theoretic binary choice model of strategic complementarities 

based on our conjecture that grassland owners derive a positive social payoff by conforming to 

their neighbors’ actions. We specify pairwise strategic interactions among players to incorporate 

agent heterogeneity, neighborhood-level interactions, and to evaluate easement allocations. We 

find that multiple equilibria are supported where all players ‘convert to crop’ or ‘stay in grass’. 
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Positive social spillovers can encourage landowners with weak cropping incentives to convert to 

crop following their neighbors’ choice. We evaluate easement allocations by calculating overall 

social welfare that accounts for spatial spillovers among neighbors. We find that easements can 

inhibit conversion more efficiently when the private incentives to convert are weak (poor soils) 

and when easements are acquired on neighboring plots of land.  

We support our conceptual model by empirically testing whether or not localized 

spillovers exist in permanent grassland conversion in the Dakotas. Our analysis suggests that 

localized spillovers do exist such that higher density grassland inhibits conversion in its 

neighborhood. We find easements to be strategic complements to existing grasses as they too 

inhibit conversion. Our empirical analysis has major caveats that warrant future work. We need 

to reconcile a highly skewed distribution as our sample has more than 90% parcels in permanent 

grassland category and that most parcels were converted in the first year. In order to evaluate 

long-term grasses we need to incorporate historical grass acreage that will be accomplished 

through a separate exercise of processing raw satellite imagery in future. 

Overall, our analysis is based on the fact that croplands and grasslands exist as large, 

nearly-contiguous tracts in the eastern North Dakota where permanent conversions have 

occurred as islands within the crop-intensive areas. Easements, on the other hand, were allocated 

near permanent grasslands as contagious tracts in proximity to the grasslands that did not convert 

anyway. However, the fact that existing easements are contiguous tracts on relatively poor soils 

is in agreement with our conceptual model’s recommendation for efficient easement allocations 

when network effects are present among private landowners. In that respect, past easement 

allocations were cost-effective.  
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TABLES 

Table 7. Simulated N.E. for the illustrative example. 1, 1  = 0, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 3 3 3 3 3 3 

-1 -1 -1 1 1 1 1 1 1 1 1 1 

1 1 1 -1 -1 -1 1 1 1 1 1 1 

1 1 1 1 1 1 3 3 3 3 3 3 

  

Table 2. Simulated N.E. for the illustrative example. 1, 1  = 1, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 3 3 3 3 3 3 

-1 -1 -1 1 1 1 1 1 1 2 2 2 

1 1 1 -1 -1 -1 2 2 2 1 1 1 

1 1 1 1 1 1 4 4 4 4 4 4 

 

Table 3. Simulated N.E. for the illustrative example. 1, 1  = 2, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 3 3 3 3 3 3 

-1 -1 -1 1 1 1 1 1 1 3 3 3 

-1 -1 1 -1 -1 1 1 1 1 1 1 1 

-1 1 -1 -1 1 -1 1 1 1 1 1 1 

1 -1 -1 1 -1 -1 1 1 1 1 1 1 

1 1 1 -1 -1 -1 3 3 3 1 1 1 

1 1 1 1 1 1 5 5 5 5 5 5 

 

Table 4. Simulated N.E. for the illustrative example. 1, 1  = 3, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 3 3 3 3 3 3 

1 1 1 1 1 1 6 6 6 6 6 6 

 

Table 5. Simulated N.E. for the illustrative example. 1, 1  = 9, J = 3.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 9 9 9 9 9 9 

1 1 1 1 1 1 18 18 18 18 18 18 

  

Table 6. Simulated N.E. for the illustrative example. 1, 1  = 6, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

-1 -1 -1 -1 -1 -1 3 3 3 3 3 3 

1 1 1 1 1 1 9 9 9 9 9 9 
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Table 7. Simulated N.E. for the illustrative example. 1, 1  = 6.1, J = 1.  
*

1a  
*

2a  
*

3a  
*

4a  
*

5a  
*

6a  
*

1  
*

2  
*

3  
*

4  
*

5  
*

6  

1 1 1 1 1 1 9.1 9.1 9.1 9.1 9.1 9.1 

 

Table 8. Variable Summaries 

Variable Mean Median Std Dev Minimum Maximum 

PERMANENT CONVERSIONS (i.e. sequence GC, N = 972) 

Parcel Characteristics 

Duration 2.59 1.00 3.99 0.00 18.00 

Acres 12.76 8.23 13.08 5.12 142.55 

WSLP 3.25 2.80 1.87 1.00 11.30 

WLCC 2.41 2.00 0.77 2.00 7.00 

%LCC ≤ 2 72 100 44 0.00 100 

Highway (km) 4.49 3.87 3.49 0.00 16.60 

City (km) 7.57 7.11 3.70 0.52 21.09 

Neighborhood-level Characteristics 

%Eased (0.5 km) 0.00 0.00 0.90 0.00 20.00 

%Eased (1 km) 0.10 0.00 2.30 0.00 46.00 

%Eased (2 km) 0.20 0.00 1.60 0.00 30.00 

%Grass (0.5 km) 31.00 28.00 17.00 0.00 94.00 

%Grass (1 km) 26.00 23.00 15.00 0.00 95.00 

%Grass (2 km) 24.00 21.00 14.00 0.00 97.00 

NEVER CONVERT (i.e. sequence G, N= 12,420) 

Parcel Characteristics 

Duration 19.00 19.00 0.00 19.00 19.00 

Acres 16.98 9.34 21.98 5.12 199.49 

WSLP 7.68 7.00 3.60 1.10 29.00 

WLCC 3.07 2.00 1.69 1.82 7.00 

%LCC ≤ 2 65 100 47 0.00 100 

Highway (km) 6.22 5.63 4.37 0.00 27.14 

City (km) 10.15 9.67 4.60 0.26 25.21 

Neighborhood-level Characteristics 

%Eased (0.5 km) 1.50 0.00 0.082 0.00 100 

%Eased (1 km) 1.40 0.00 0.063 0.00 87.30 

%Eased (2 km) 1.40 0.00 0.046 0.00 71.80 

%Grass (0.5 km) 67.00 69.00 24.00 0.00 100.00 

%Grass (1 km) 56.00 57.00 26.00 0.00 100.00 

%Grass (2 km) 49.00 48.00 26.00 0.00 100.00 
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Table 9. A t-test with unequal variance to compare mean of land quality variables among G- and 

GC-sequences. Null hypothesis is that this difference is zero. 

Variable Difference (MGC – MG)  t-value p-value 

WSLP -4.43 -64.87 <0.0001 

WLCC -0.66 -22.63 <0.0001 

%LCC ≤ 2 7.61 5.12 <0.0001 

 

 

 

 

Table 10. Person’s Correlation Coefficient among parcel-level land quality variables and their 

respective neighborhoods characterized as outer-rings.  

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

WSLP 0.97 0.93 0.86 

WLCC 0.97 0.93 0.86 

%LCC ≤ 2 0.97 0.94 0.88 

 

 

 

 

Table 11. Cox-Proportional Hazard Regression Estimates. Dependent Variable: Duration. 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion -4.31*** -3.56*** -2.83*** 

Eased Proportion -14.53*** -11.74*** -19.08*** 

WSLP -0.53*** -0.60*** -0.63*** 

%LCC ≤ 2 -0.37*** -0.38*** -0.33*** 

Highway (km) -0.03*** -0.04*** -0.05*** 

City (km) -0.02** -0.02** -0.02** 

    

-2LogL 15230.30 15538.45 15691.51 

AIC 15242.30 15550.45 15703.51 

*p < 0.1, **p < 0.05, ***p < 0.01 
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Table 12. Cox-proportional hazard rates. 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion (0.5km) 0.01 0.03 0.06 

Eased Proportion (0.5km) 0.00 0.00 0.00 

WSLP 0.53 0.55 0.53 

%LCC ≤ 2 0.69 0.68 0.72 

Highway (km) 0.97 0.96 0.96 

City (km) 0.98 0.98 0.98 

 

 

 

Table 13. Cox-Proportional Hazard Regression Estimates for the GC sequence. Dependent 

Variable: Duration 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  -1.33*** -1.27*** -1.34*** 

Eased Proportion  -0.30 -0.81 -0.54 

WSLP -0.10*** -0.11*** -0.09*** 

%LCC ≤ 2 -0.13* -0.12 -0.12 

Highway (km) -0.000 -0.003 -0.004 

City (km) -0.01 -0.004 -0.005 

    

-2LogL 12113.13 12126.56 12128.10 

AIC 12125.13 12138.56 12140.10 

*p < 0.1, **p < 0.05, ***p < 0.01 

 

 

 

Table 14. Cox-proportional hazard rates for the GC sequence. 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  0.26 0.28 0.26 

Eased Proportion 1.35 0.44 0.59 

WSLP 0.90 0.90 0.92 

%LCC ≤ 2 0.88 0.89 0.89 

Highway (km) 1.00 1.00 0.97 

City (km) 0.99 1.00 0.99 
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Table 15. Cox-Proportional Hazard Regression Estimates using instrumental variable approach 

for ‘Grass proportion’ and ‘Eased Proportion’ variables. Dependent Variable: Duration 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  -7.74*** -12.91*** -14.77*** 

Eased Proportion  -67.12*** -62.68*** -29.10*** 

WSLP -0.51*** -0.33*** -0.30*** 

%LCC ≤ 2 -0.08 -0.38*** -0.30*** 

Highway (km) -0.0004 0.02 -0.03*** 

City (km) 0.01 0.04** 0.01 

    

-2LogL 15,814.13 15,735.96 15,657.73 

AIC 15,826.13 15,747.96 15,669.73 

*p < 0.1, **p < 0.05, ***p < 0.01 

 

 

 

 

 

Table 16. Cox-proportional hazard rates using instrumental variable approach for ‘Grass 

proportion’ and ‘Eased Proportion’ variables. 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  0.00 0.00 0.00 

Eased Proportion 0.00 0.00 0.00 

WSLP 0.60 0.72 0.70 

%LCC ≤ 2 0.92 0.68 0.70 

Highway (km) 1.00 1.02 1.00 

City (km) 1.01 1.04 1.00 
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Table 17. Variable Summaries for the truncated sample that represents long-term grass. 

Variable Mean Median Std Dev Minimum Maximum 

PERMANENT CONVERSIONS (i.e. sequence GC, N = 60) 

Parcel Characteristics 

Duration 5.15 1.50 6.03 1.00 18.00 

Acres 11.58 8.45 9.50 5.12 55.15 

WSLP 3.91 3.60 1.90 1.70 10.94 

WLCC 2.40 2.00 0.95 2.00 6.00 

%LCC ≤ 2 0.80 1.00 0.39 0.00 1.00 

Highway (km) 5.63 4.92 4.33 0.00 15.29 

City (km) 8.35 8.23 4.14 1.74 17.35 

Neighborhood-level Characteristics 

%Eased (0.5 km) 0.00 0.00 0.00 0.00 0.00 

%Eased (1 km) 0.00002 0.00 0.0001 0.00 0.001 

%Eased (2 km) 0.001 0.000 0.01 0.00 0.04 

%Grass (0.5 km) 0.43 0.38 0.23 0.13 1.19 

%Grass (1 km) 0.36 0.34 0.19 0.11 1.12 

%Grass (2 km) 0.34 0.31 0.18 0.10 1.08 

NEVER CONVERT (i.e. sequence G, N= 674) 

Parcel Characteristics 

Duration 19.00 19.00 0.00 19.00 19.00 

Acres 13.23 8.45 13.82 5.12 119.43 

WSLP 7.10 7.00 2.90 2.30 11.30 

WLCC 3.03 2.00 1.58 2.00 7.00 

%LCC ≤ 2 0.64 1.00 0.47 0.00 1.00 

Highway (km) 6.70 6.40 4.18 0.00 19.10 

City (km) 9.98 9.28 4.49 0.86 22.63 

Neighborhood-level Characteristics 

%Eased (0.5 km) 0.01 0.00 0.04 0.00 0.34 

%Eased (1 km) 0.02 0.00 0.06 0.00 0.61 

%Eased (2 km) 0.03 0.00 0.07 0.00 0.38 

%Grass (0.5 km) 0.67 0.69 0.23 0.04 1.60 

%Grass (1 km) 0.57 0.56 0.25 0.00 1.59 

%Grass (2 km) 0.49 0.45 0.25 0.00 1.40 
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Table 18. Cox-Proportional Hazard Regression Estimates using instrumental variable approach 

for ‘Grass proportion’ and ‘Eased Proportion’ variables. Dependent Variable: Duration 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  -9.06 -8.70** -6.12* 

Eased Proportion  -21.44 -10.39 60.04 

WSLP -0.25* -0.25* -0.39*** 

%LCC ≤ 2 0.20 0.06 -0.10 

Highway (km) 0.05 0.05 0.04 

City (km) 0.02 0.02 -0.08 

    

-2LogL 702.86 706.71 706.85 

AIC 714.86 718.71 718.85 

*p < 0.1, **p < 0.05, ***p < 0.01 

 

Table 19. Cox-proportional hazard rates using instrumental variable approach for ‘Grass 

proportion’ and ‘Eased Proportion’ variables. 

Variable 0.5km Outer Ring 1km Outer Ring 2km Outer Ring 

Grass Proportion  0.00 0.00 0.002 

Eased Proportion 0.00 0.00 1.2E+26 

WSLP 0.78 0.78 0.68 

%LCC ≤ 2 1.22 1.06 0.90 

Highway (km) 1.06 1.05 1.04 

City (km) 1.02 1.02 0.92 
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FIGURES 

 
Figure 6. The U.S. Prairie Pothole Region, Western Corn Belt frontier and easement allocations 

in North and South Dakota. Not to scale. 

*Notes: The representation of the Western Corn Belt frontier is approximate and manually built 

with the 2010 county-level map of the United States Department of Agriculture-National 

Agricultural Statistics Service’s as a reference. Downloadable from: 

https://www.nass.usda.gov/Charts_and_Maps/Crops_County/. 

https://www.nass.usda.gov/Charts_and_Maps/Crops_County/
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Figure 7. Waterfowl breeding density and USFWS Priority Conservation Acres. The figure has 

been taken from USFWS Land Protection Plan, 2011 pp. 4. Source: 

https://www.fws.gov/mountain-prairie/planning/lpp/nd/dkg/documents/dkg_lpp_final_all.pdf 

 

 

  

https://www.fws.gov/mountain-prairie/planning/lpp/nd/dkg/documents/dkg_lpp_final_all.pdf
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Figure 8. Land use change combinations in eastern North Dakota and relative allocations of conservation easements.

2
6
0
 



261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

6 4 

1 3 

2 

Figure 4. An example of inter-connected agents 

Figure 5. Spatial schematics of the neighborhood designations as outer-rings and easement 

allocations coverage for this study. 
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(a) (b) 

Figure 6. Kaplan-Meijer Survival Probability Estimates. Panel (a) signifies that more than 90% of the sample is permanent grasslands. 

Panel (b) zooms into the converted parcels in our sample and presents corresponding estimates for survival probability. 
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(a)                                                                                                    (b) 

Figure 7. Kaplan-Meijer Survival Probability Estimates for ‘filtered’ parcels. Pane (a) is pooled data for G and GC categories; and 

Panel (b) zooms into the converted parcels or GC category in this filtered sample. The average mean survival time among the 

conversted parcels is now 5.2 years (almost double of what it was in the un-filtered sample in figure 6). 

2
6
3
 



264 

 

 

REFERENCES 

Bikhchandani, S., Hirshleifer, D., Welch, I. 1992. “ A theory of fads, fashions, custom and 

cultural change as informational cascade,” Journal of Political Economy, 100(5): 992-1026. 

Brock, W.A., Durlauf, S.N. 2001. “Discrete choice with social interactions,” Review of 

Economic Studies, 68(2): 235-360. 

Brock, W.A., Durlauf, S.N. 2007. “Identification of binary choice models with social 

interactions,” Journal of Econometrics, 140(1): 52-75. 

Drechsler, M., Watzold, F., Johst, K., Shogren, J.F. 2010. “An agglomeration payment for cost-

effective biodiversity conservation in spatially structured landscapes,” Resource and Energy 

Economics, 32(2): 261-275. 

Durlauf, S.N. 1999. “How can statistical mechanics contribute to social science,” Proceedings of 

the National Academy of Sciences of the U.S.A., 96: 10582-10584. 

Echenique, F. 2003. “Mixed equilibria in games of strategic complements,” Economic Theory, 

22(3): 33-44. 

Edlin, A, Echenique, F. 2004. “Mixed equilibria are unstable in games of strategic 

complements,” Journal of Economic Theory, 118(2004): 61-79. 

Ellis, R. 1985. Entropy, large deviations and statistical mechanics, New York: Springer-Verlag, 

Ch. 4. 

Greene W.H. 2003. Econometric analysis, 5th Ed., Ch. 22.5, pp. 791-801. 

Harsanyi, J.C. 1995. “A new theory of equilibrium selection for games with complete 

information,” Games and Economic Behavior, 10(2): 318-332.  

Johnson, R.R., Granfors, D.A., Niemuth, N.D., Estey, M.E. Reynolds, R.E. 2010. “Delineating 

grassland bird conservation areas in the U.S. Prairie Pothole Region,” Journal of Fish & 

Wildlife Mgmt., 1(1): 38-42. 

Kultti, K., Salonen, H. 1997. “Undominated equilibria in games with strategic 

complementarities,” Games and Economic Behavior, 18(1): 98-115.  

Manski, C.F. 1993. “Identification of endogenous social effects: the reflection problem,” Review 

of Economic Studies, 60:531-42. 

Mas-Collel, A., Whinston, M.D., Green, J. 1995. Microeconomic Theory. Oxford University 

Press, New York. Ch. 8.  

Miao, R., Hennessy, D.A., Feng, H. 2016. “Grassland easement evaluation and acquisition: an 

integrated framework,” Selected Paper for the Agricultural and Applied Economics 



265 

 

 

Association Annual Meetings, Boston, M.A. July 31-August 2, 2016. 

Milgrom, P., Shannon, C. 1994. “Monotone comparative statics,” Econometrica, 62(1): 157-180. 

Parkhurst, G.M., Shogren, J.F., Bastian, C., Kivi, P., Donner, J., Smith, R.B.W. 2002. 

“Agglomeration bonus: an incentive mechanism to reunite fragmented habitat for 

biodiversity conservation,” Ecological Economics, 41(2): 305-328. 

Rashford B. S., Walker J. A., Bastian C. T. 2011. “Economics of grassland conversion to 

cropland in the Prairie Pothole Region,” Conservation Biology, 25(2): 276-84. 

Stephens, S.E., Walker, J.A., Blunck, D.R., Jayaraman, A., Naugle, D.E., Ringelman, J.K., Smith 

A.J. 2008. “Predicting risk of habitat conversion in native temperate grasslands,” 

Conservation Biology 22(5):1320-30. 

U.S. Fish and Wildlife Service. 2011. “Land Protection Plan-Dakota grassland conservation area, 

Lakewood, Colorado,” Department of Interior, Fish and Wildlife Service, Mountain-Prairie 

Region, 169 p. Available at:https://www.fws.gov/mountain-

prairie/planning/lpp/nd/dkg/documents/dkg_lpp_final_all.pdf   

U.S. Government Accountability Office. 2007. “At current pace of acquisitions, U.S. Fish and 

Wildlife Service is unlikely to achieve its habitat protection goals for migratory birds,” 

Highlights of GAO-07-1093, a report to the Subcommittee on Interior, Environment, and 

Related Agencies, Committee on Appropriations, House of Representatives. 

Topkis, D.M. 1978. “Minimizing a submodular function on a lattice,” Operations Research, 

26(2): 305-321. 

Van Nouhuys, S. 2009. “Metapopulation ecology,” In Encyclopedia of Life Sciences, John 

Wiley & Sons.  

Vives, X. 1990. “Nash equilibrium with strategic complementarities,” Journal of Mathematical 

Economics 19(3): 305-321. 

Walker J, Rotella JJ, Loesch CR, Renner RW, Ringleman JK, Lindberg MS, Dell R, Doherty 

KE. 2013. “An integrated strategy for grassland easement acquisition in the Prairie Pothole 

Region, U.S.A.” Journal of Fish & Wildlife Mgmt., 4(2): 267-279. 

Wang, T., Luri, M., Janssen, L., Hennessy, D., Feng, H., Wimberly, M., Arora, G. 2016. 

“Farmers’ rankings of the determinants of land use decisions at the margins of the Corn 

Belt,” Selected Paper for the Agricultural and Applied Economics Association Annual 

Meetings, Boston, M.A. July 31-August 2, 2016. 

Wright CK, Wimberly MC. 2013. “Recent land use change in the Western Corn Belt threatens 

grasslands and wetlands.” Proceedings of the National Academy of Sciences of the U.S.A., 

110: 4134-4139. 

https://www.fws.gov/mountain-prairie/planning/lpp/nd/dkg/documents/dkg_lpp_final_all.pdf
https://www.fws.gov/mountain-prairie/planning/lpp/nd/dkg/documents/dkg_lpp_final_all.pdf
https://ideas.repec.org/p/ags/aaea16/235109.html
https://ideas.repec.org/p/ags/aaea16/235109.html


266 

 

 

APPENDIX 

A simple algorithm to find all of the game’s Nash Equilibria: 

Define the one-shot simultaneous move game as follows 

 i  I = {1, 2, 3, 4, 5, 6} players. 

 Individual action set, { 1, 1}ia     with 1  'stay in grass' and +1  'convert to crop'   . Hence, the 

overall strategy set of the game is 1 2 3 4 5 6( )a a a a a a a      .  

 Game’s payoff function: 
6

1( ) ( ( , ))i i i ia a a    , where the individual player’s payoff function is 

defined as 
( ),

( , ) ia

i i i i i jj N i j i
a a J a a   

   . 

Steps to find all Nash Equilibria of the game: 

1. Collect all unique strategy sets and compute their corresponding payoffs with neighbors as 

in figure 1. 

2. ID each strategy profile, 1,2,...,64s  , and designate the strategy profile and corresponding 

payoffs with a superscript:
6

1( )s s

i ia a  ;  ( ) ( ( , ))s s s

i i i ia a a    6

1
 

3.  Compare player 1’s payoffs due to his/her strategy profile 1 { 1, 1}sa     conditional on each 

unique strategy combination of players other than 1. Collect the strategy ID’s where player 1’s 

payoffs are maximized conditional on each unique 
1

sa
 and store them in set (1).s   

4.  Repeat Step 3 for all players. 

5. Collect the set of unique strategy IDs, 
{1,...,6}

( ) ( )
i

s I s i


 . 

The strategy sets 
( )s I

ia  have the property that 
( ) ( ) ( ) ( )( , ) ( , )  & \s I s I s I s I

i i i i i i i ia a a a i a a a     , which is 

the definition of N.E. 
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Welfare analysis of easement allocations with the federal tax incentives 

Consider a scenario where all agents in a neighborhood have strong private incentives to 

crop such that * 1 ia i   in absence of any government intervention. Given tax rate t, each player i 

earns a payoff that is net of taxes equal to 1(1 )( )i it Jn  . We define a social welfare function as 

e eW Be C  , where eW is social welfare from acquiring e easements, B is the ecological 

benefit per acquired easement and eC  is the total cost of easement acquisition. Upon enrolling 

their lands as easements, the landowners are liable for a tax rate   such that t  . Now i's net 

payoff after taxes upon eased is equal to 
1(1 )( )i iJn    . Hence, i's WTA or cost to FWS under 

federal tax incentives is equal to the difference between i's net payoffs under no intervention and 

when eased. The social costs are still spillover cost to the neighbors who would still crop and 

defecting from the eased player i. We can express each cost component under the given taxes as 

1, 1 1(i)  (1 )( 2 ) ( )( )

(ii) 2(1 )
i

i i i i i

j N i

C t Jn t Jn

C t Jn

   



      

 
                                                                       (A1) 

Hence, the total social cost of acquiring i under the given tax incentives is 

1 1, 1(1 )( iC t       14 ) ( )( )i i iJn t Jn     . Now consider a case when players i and k are 

eased such that * * 1i ka a   and 
ik N , 

ki N . These easements accrue benefits 2B and the two 

components of total costs are 

1, 1 1(i)  (1 )( 2 ) ( )( ) (1 ) ;  { , }

(ii) 2(1 ) 2(1 ) ;  { , }
l

l l l l l

j N l

C t Jn t Jn J l i k

C t Jn t J l i k

    



         

    
                                            (A2) 

Equation (A2 (i)) reveals that the players’ WTA when eased alongside an immediate 

neighbors is lower by (1 )J  units. That is because i and k conform to each other gaining extra 

payoff from the localized spillovers. Also, there is now one neighbor less whose payoffs are 
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lower when i and k are eased. Furthermore, a loss in income for the eased players’ neighbors also 

means slightly lower taxes because the taxable income is now lower. Therefore, the total social 

cost is lower by (1 )t J  units from easing each neighbor, see equation (A2 (ii)). Clearly, the per-

unit cost of easing i and k as immediate neighbors is lower when eased in isolation. Hence, our 

result in the main text still holds that acquiring easements among in contiguity is more efficient 

than in isolation. 
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