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CHAPTER 1. General Introduction

1.1 Overview

The focus of my dissertation is in two areas: modeling recreation behavior with limited

information and the interaction between two greenhouse mitigation instruments in the power

market.

My first dissertation chapter, entitled “Modeling Recreation Demand when the Access Point

is Unknown”, seeks to use the aggregation technique to model Iowan’s riverine recreation

behavior without knowing their detailed access points. The task of modeling the recreation

demand for geographically large sites, such as rivers and beaches or large parks with multiple

entrances, is often challenged by incomplete information regarding the access point used by the

individual. Traditionally, analysts have relied upon convenient approximations, defining travel

time and travel distances on the basis of the midpoint of a river or beach segment or on the

basis of the nearest access point to the site for each individual. In this paper, we instead treat

the problem as one of aggregation, drawing upon and generalizing results from the aggregation

literature. The resulting model yields a consistent framework for incorporating information on

site characteristics and travel costs gathered at a finer level than that used to obtain trip counts.

We use a series of Monte Carlo experiments to illustrate the performance of the traditional

mid-point and nearest access point approximations. Our results suggest that, while the nearest

access point approach provides a relatively good approximation to underlying preferences for a

wide range of parameter specifications, use of the midpoint approach to calculating travel cost

can lead to significant bias in the travel cost parameter and corresponding welfare calculations.

Finally, we use our approach in modeling recreation demand for the major river systems in

Iowa using data from the 2009 Iowa Rivers and River Corridors Survey.



2

The second paper in my dissertation, entitled “Modeling Recreation with Partial Trip Infor-

mation”, tries to use the same aggregation technique in another set of situations with partial

information about residents’ visitation patterns. Full information about visitation pattern to

all the related recreational sites is unavailable with surveys yielding trip information to a subset

of possible sites. Conventional methods tend to focus on the sites with trip information and

discard the sites with partial trip information. In this paper, we treat the partial information

as an aggregation choice for this group of sites. In doing so, a similar aggregation modeling

technique is proposed then, under some circumstances, allows one to recover preference pa-

rameters and avoid the possible bias caused by the conventional methods. A series of Monte

Carlo simulations are conducted to study the possible bias caused by conventional methods

and the performance of the aggregation model when the application is possible. The results

show that the aggregation model performs quite well in recovery of preference and subsequent

welfare analysis. Both methods are applied to data from 2009 Iowa lake and river projects. The

results show that both methods give qualitatively similar preference parameters but produce

significant differences in terms of the welfare measures.

The third paper in my dissertation, entitled “Carbon Tax, Wind Energy and GHG reduction-

ERCOT as an Example”, seeks to evaluate the performance of two greenhouse gas intervention

policies in the Texas ERCOT, power market.In the battle to control the greenhouse gas (GHG)

emission, a prominent component contributing to the climate change, there are several schemes

already taken by governments. Direct targeted policies, such as cap-and-trade program or a

potential carbon tax, and indirect policies, such as promotion of renewable energies are receiving

governments endorsements worldwide. With data from the Texas ERCOT power market, we

develop a simple electricity generation dispatch model to analyze the relative performance in

emission reduction when a carbon tax and significant amount of wind generation co-exist in

the power grid. The simulation results show that during the research period, both policies have

significant effects on reduction of carbon dioxide emission under hypothetical policy scenarios.

The combination of a carbon tax policy and the promotion of wind energy seems more effective

to achieve big reduction targets in the short run.
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1.2 Dissertation Organization

The overall structure of the dissertation is ordered as follows. The next three chapters

present the essays described above. Each of these chapters is considered as a stand-alone

paper. All the supplement tables and figures are included in the appendices.
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CHAPTER 2. Modeling Recreation Demand when the Access Point is

Unknown

2.1 Introduction

Recreation demand (or travel cost) models provide one of the primary tools for valuing

environmental amenities, inferring value by observing the full costs incurred by the individual

or household in reaching sites in a choice set. While there are a myriad of conceptual issues in

defining travel costs themselves (see, e.g., (9) and (23)), practitioners are typically content with

computing these costs as the sum of out-pocket costs (usually a fixed mileage rate times round-

trip travel distance) and an opportunity cost for the individual’s travel time (often valued

at a fixed fraction of the individual’s wage rate times round-trip travel time). However, in

applications where the specific access point used to visit the “site” is unknown, the appropriate

way to compute the cost of access can be unclear. A prime example is river based recreation.

Surveys can elicit information on the number of trips to one or more river segments during the

course of a season, but typically do not acquire information on the precise access point used by

the individual on each choice occasion. This makes the computation of travel costs problematic

in that the analyst cannot precisely compute either the travel distance or travel time. At best,

in these cases travel costs can be bounded by considering the nearest and furthest access points

along the river segment. Similar problems emerge in the context of beaches (e.g., (14)) and

wetlands (e.g., (24)) recreation, or, more generally, any large geographic regions.

A number of solutions to this problem are employed in the literature, including computing

travel costs based upon the nearest access point for each individual or using the midpoint

along the river segment as the assumed point of entry for everyone. The issue with these ad

hoc approaches is that they implicitly make assumptions regarding the role of travel costs (the
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marginal utility of income) in the individual’s decision making that are inherently inconsistent

with the broader models used to represent the choice among river segments. For example,

using the nearest access point along a river segment to compute travel cost implicitly assumes

that travel cost is the determining factor in choosing where along a river segment to recreate

(essentially assuming that the marginal utility of income is infinite), whereas in the broader

models of the choice among river segments (say a RUM model) travel cost is but one of the

factors in site selection (implying a finite marginal utility of income) (e.g., (14) and (24)).

In this paper, we consider an alternative approach, treating segment level trip data as the

aggregation of underlying access-point level trip information. A logit structure is used to con-

struct the choice probabilities for this aggregated data and to consistently recover preference

parameters. A series of Monte Carlo exercises are used to compare and contrast the perfor-

mance of this approach versus both the mid-point and nearest access point (or shortest distance)

approximations used in the literature. The simulation results suggest that our model success-

fully recovers the underlying preference parameters, while the two traditional approaches vary

in their estimation of the key travel cost parameter and subsequent welfare estimates. The

shortest distance model generally provides a good approximation over a wide range of model

parameterizations. In contrast, the commonly used midpoint model generates bias in both

the travel cost parameter and subsequent welfare estimates that increases substantially as the

number of river segments increases and travel costs become a more important determinant of

behavior. In addition, we apply our approach, along with the midpoint and nearest access

point approaches, using data from the 2009 Iowa River Survey. The survey was conducted in

late 2009, eliciting information on the visitation patterns of 10000 randomly chosen Iowans to

73 identified river segments in the state.

The remainder of this paper is organized as follows. Section 2 provides a brief review of the

literature. Our modeling approach to handling the missing access point data is then described

in section 3. Section 4 describes a Monte Carlo exercise used to illustrate the scope of the bias

from using either the midpoint or nearest access point approximations to travel cost. Finally,

section 5 describes the 2009 Iowa Rivers project application, including both a description of

the data and the resulting parameter estimates. Section 6 concludes the paper.
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2.2 Related Literature

The problem of missing access point data is directly related to the issue of site aggregation

encountered in recreation demand analysis (See, e.g., (4), (23) and (19)). Whereas missing

access point data essentially forces the aggregation of possible “sites,” practitioners have often

intentionally aggregated elementary sites for computational convenience. In this literature, a

wide variety of aggregation schemes have been considered, including county level aggregation,

activity based aggregation, aggregation of familiar or unfamiliar sites and distance-based ag-

gregation (See, e.g., (14), (23), and (22)). The potential bias associated with aggregation is the

major concern in this context. The magnitude of bias depends on the degree of the aggregation

and the heterogeneity across the aggregated elementary sites. Unfortunately, the nonlinearity

of the RUM model makes the direction of bias generally ambiguous with respect to both pref-

erence parameter estimates and in terms of the welfare change induced by site loss or a change

in site characteristics.

Kaoru and Smith (15) were the first to analyze the effects of aggregation on preference

parameter estimation and welfare measurement in the context of recreation demand. Their

work suggested that models with only a mild degree of site aggregation (i.e., 35 sites aggregated

to 23 or 11 composite sites) performed relatively well in characterizing recreation behavior.

The results, however, were not as promising in terms of subsequent welfare calculations. For

example, the welfare impact from the closure of an aggregate site was understated by more

than a factor of two using either site aggregations. The estimated welfare gain from site quality

improvements faired even worse, being understated by a factor of five when 11 composite sites

were used (See Kaoru et al. (10)).

Parson and Needelman’s (23) subsequent paper identified two distinct sources of bias stem-

ming from site aggregation, one linked to the number of sites being aggregated (the so-called

size effect) and the other tied to the degree of heterogeneity among the sites being combined.

Specifically, drawing on earlier work in the transportation literature by Ben-Akiva and Lerman

(2), Parsons and Needleman note that, if the utility received by individual i from choosing an
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elementary site j is given by

Uij = Vij + εij j = 1, . . . , J, (2.1)

where the εij ’s are distributed i.i.d. Gumbel with mode 0 and scale parameter µ, then the

utility associated with choosing the aggregate site s (s = 1, . . . , S) is given by:1

Uis = max
j∈As

Uij (2.2)

= V̄is + µlnJs + µlnBis + εis, (2.3)

where As denotes the set of elementary sites associated with the aggregate site s,

V̄is =
1

Js

∑
j∈As

Vij , (2.4)

Js denotes the number of sites associated with aggregate site s,

Bis =
1

Js

∑
j∈As

exp[µ−1(Vij − V̄is)], (2.5)

and the ε′iss are again distributed i.i.d. Gumbel with mode 0 and scale parameter µ. Estimating

a model of aggregate site choice using only average site characteristics (including travel cost)

corresponds to specifying that the utility from visiting aggregate site s is given by:

Uis = V̄is + εis (2.6)

Comparing equations (2.3) and (2.6), it is clear that the latter specification suffers potential

bias due to two omitted variables: (a) a size variable reflecting the number of sites in the

aggregate alternative s (i.e., lnJs in (2.3)) and (b) a measure of the heterogeneity of the sites

being combined (reflected by lnBis in (2.3)).2 The general nature of the problem does not

change if, in lieu of V̄is, an alternative proxy (V p
is) is used to characterize the aggregate site

utility (e.g., by using the nearest access point or site midpoint to determine travel cost). In

this case, equation (2.3) simply becomes

Uis = V p
is + µlnJs + µlnBp

is + εis, (2.7)

1The standard deviation of the εij ’s is given by µπ/
√

6. Note that the scale parameter referred to in Parsons
and Needleman corresponds to our µ−1.

2Note that while the impact of these omitted variables can be mitigate by making the aggregates similar in
size and minimizing the degree of heterogeneity across sites in terms of site attributes, site heterogeneity will
necessarily persist in the form of heterogeneous travel costs to the elemental sites.
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where

Bp
is =

1

Js

∑
j∈As

exp[µ−1(Vij − V p
is)]. (2.8)

Modeling aggregate site utility using Uis = V p
is+εis would again be subject to omitted variables

bias.

Parsons and Needleman provide empirical evidence as to the scope of aggregation bias.

Specifically, using data on fishing trips to 1133 lakes in Wisconsin, they estimate three models:

one using the full choice set as in (2.1), a second using site aggregates with only average site

characteristics as in (2.6), and a third using site aggregates with both average site characteristics

and a size correction (but no heterogeneity correction). Two levels of aggregation are considered

(9 regions and 61 counties). The results suggest that ignoring both heterogeneity and size

factors leads to significant bias in parameter estimates (except for the price coefficient) and that,

while the size correction alone works well with limited aggregation, the size corrected model

performs poorly when large numbers of sites are aggregated. The authors suggest minimizing

heterogeneity of sites within aggregates and controlling for the number of sites in the aggregate

groups. A series of subsequent papers have largely confirmed the findings in Parsons and

Needleman (23) (including Kaoru, Smith, and Liu (10), Feather (4), Feather and Lupi (14) and

Parson, Plantinga and Boyle (22)).

In a more recent paper, Haener et al. (7) suggest that, while analysts may choose not to

model detailed site visitation data, they often have access to detailed site characteristics data,

including travel costs. As such, they should be able to form both the size and heterogeneity

correction terms in equation (2.3) and obtain consistent parameter estimates. Their empirical

analysis, however, suggests that the size correction alone mitigates much of the aggregation

bias. For their application, site heterogeneity appears to not play a significant role.

2.3 Methodology

The approach followed in the aggregation literature is based on the underlying structure

of the logit model, yielding the specific size and heterogeneity correction terms identified in

equation (2.3). The problem, however, is more general and the solution need not rely on the
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logistic structure. Rather than observing the elemental site visitation data, we observe only

whether one of a series of sites is visited. Specifically, in the case of a single choice, let yisj

equal 1 when individual i visits elemental site j in aggregate site s (and equals 0 otherwise).

Observing visitation data for the aggregate site s corresponds to observing yis•, where

yis• =
∑
j∈As

yisj . (2.9)

The corresponding choice probability for the aggregate site is then simply the sum of the

individual choice probabilities; i.e.,

Pis• = Pr[yis• = 1] (2.10)

=
∑
j∈As

Pr[yisj = 1] =
∑
j∈As

Pisj . (2.11)

In this section, we begin by laying out the implications of this aggregation in the context of a

simple repeated logit model of riverine recreation, linking it to the existing literature on site

aggregation. We then extend to model to the nested and mixed logit settings and to the case

in which site attributes are available at the elemental site level.

The Repeated Logit Model

Following Morey, Rowe and Watson (15), we model an individual’s riverine recreation using

a repeated random utility maximization (RUM) framework. In particular, we assume that

there are T choice occasions in each year. On each choice occasion, the individual decides

either to visit one of the river segments or to stay at home. There are S river segments and Js

access points along the segment. The conditional utility that household i receives from visiting

river segment s (s = 1, . . . , S) via access point j (j ∈ As) on choice occasion t (t = 1, . . . , T ) is

assumed to take the form

Uisjt = αs + βCisj + εisjt, (2.12)

where αs is a segment specific constant reflecting all segment attributes and Cisj is the travel

cost of reaching access point j along river segment s for household i.3 The error term εisjt

3The assumption that there is single segment specific constant, rather than an alternative specific constant
for each access point (i.e., an αsj), implicitly assumes that there is no heterogeneity in site attributes along the
river segment, an assumption that will be relaxed below. Given this assumption, the only source of heterogeneity
across access points is in terms of the travel cost Cisj .
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captures unobserved factors influencing the choice made by the household. Letting s = j =

0 denotes the option of choosing to stay at home on a given choice occasion, the relevant

conditional utilities can be summarized as

Uisjt =


εisjt if s = j = 0

Visj + εisjt otherwise

(2.13)

where Visj = αs+βCisj , and Vi00 has been normalized to zero for the stay-at-home option. As-

suming that the εisjt’s are i.i.d. type I extreme value random variables, individual i will choose

to visit the segment-access point combination sj, denoted by yisjt = 1, with the probability of

Pisjt = Pr(yisjt = 1) =
exp(Visj)

1 +
∑S

r=1

∑
k∈Ar exp(Virk)

= Pisj ∀t. (2.14)

If the elementary choices made by households (i.e., the yisjt’s) were observed, we could form

the appropriate likelihood function on the basis of equation (2.14) and estimate the parameters

of the model. Instead, information is only provided at the segment level; i.e.,

yis•t =

Js∑
j=1

yisjt. (2.15)

However, we can still use equation (2.14) to construct the relevant choice probabilities. In

particular, we have

Pis•t = Pr(yis•t = 1) =

∑
j∈As exp(Visj)

1 +
∑S

r=1

∑
k∈Ar exp(Virk)

= Pis• ∀t (2.16)

where yis•t equals 1 if the individual chooses to visit the segment s at some unknown access point

along this segment.4 These aggregate probabilities provide the basis for estimating a repeated

logit model using the aggregated data and maximum likelihood estimation. In particular, the

contribution of individual i to the log-likelihood function is given by:

Li(ni) =

S∑
s=0

nis•ln

∑
j∈As

Pisj

 (2.17)

=

S∑
s=0

nis•ln(Pis•)

=


S∑
s=1

nis•ln

∑
j∈As

exp(Visj)

− T · ln
1 +

S∑
r=1

∑
k∈Ar

exp(Virk)

 , (2.18)

4A similar approach was suggested and applied by Kurkalova and Rabotyagov (13) in a binary model when
county level, rather than farm level, data was available in an agricultural technology adoption setting.
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where ni = (ni0•, . . . , niS•) and nis• =
∑T

t=1 yis•t denotes the total number of times aggregate

alternative s is chosen across the T choice occasions. Note that the specification of the log-

likelihood function in (A.3) holds in general when only aggregate data are available, but that

(A.4) holds specifically for the logit formulation of the choice probabilities. From a program-

ming point of view, (A.4) provides all that is needed in terms of estimation.5 It is not necessary

to reduce the expression further. However, it is instructive to do so. Specifically, note that we

can rewrite equation (2.16) as

Pis• =
exp(Vis•)

1 +
∑S

n=1 exp(Vin•)
(2.19)

where

Vis• = ln

∑
j∈As

exp(Visj)

 (2.20)

= ln

∑
j∈As

exp(αs)exp(βCisj)


= αs + ln

∑
j∈As

exp(βCisj)

 (2.21)

= αs + βCis• (2.22)

with

Cis• ≡
1

β
ln[
∑
j∈As

exp(βCisj)]. (2.23)

The term Cis• can be thought of as the aggregate price for segment s. Indeed, viewing (A.28)

as a function of the access point travel costs (i.e., the Cisj ’s), a first order Taylor-series approx-

imation of Cis around the mean segment travel cost yields

Cis• ≈
∑
j∈As

Pisj|sCisj (2.24)

where Pisj|s ≡ Pisj/Pis• denotes the probability that access point j is chosen, given segment s

has been selected. The segment level travel cost is just a probability weighted average of the

access point travel costs. However, because Cis involves the unknown preference parameter

5This assumes, of course, that the model remains identified, an issue that is returned to below.
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β, there is no promising way to construct it ex ante for use in estimation. Consequently, the

conditional indirect utility function for the aggregate site s (i.e., Vis•) is no longer linear in the

parameter β, as can be seen in (2.21), making estimation potentially more difficult.6

The alternative approach typically used in the literature is to replace Cis• in equation

(2.22) with a proxy (Cpis), computing travel cost of the basis of either the nearest access point

(p = min) or the midpoint (p = mid) of the segment. The advantage of doing so is that the

corresponding conditional indirect utility function is once again linear in its parameters, with

V p
is• = αs + βCpis. The problem, as noted above, is that the subsequent parameter estimates

will be subject to omitted variable bias, since:

Vis• = αs + ln

∑
j∈As

exp(βCisj)


= αs + βCpis + ln

∑
j∈As

exp(β[Cisj − Cpis])


= αs + βCpis + ln(Js) + ln

 1

Js

∑
j∈As

exp(β[Cisj − Cpis])


= V p

is• + ln(Js) + ln

 1

Js

∑
j∈As

exp(β[Cisj − Cpis])

 , (2.25)

where the last two terms are the size and heterogeneity corrections identified in the aggregation

literature.7 The minimum distance proxy, Cminis = minj∈As{Cisj}, has the intuitively appealing

property that the omitted variable bias disappears as the marginal utility of income increases

(i.e., V min
is• → Vis• as β → −∞).

Finally, the analysis above assumes that the conditional utilities (Visjt) derived from the

elemental access sites differ only terms of travel cost, sharing a common segment specific con-

stant. As argued in the Appendix A below, a general structure allowing for access point specific

constants (i.e., with Visj = αsj + βCisj) could be weakly identified.8

6It is, however, the case that Vis• is still linear in the segment specific constants αs. As a result, the model
will still be mean fitting (i.e., the actual segment shares will precisely equal the mean fitted shares) and the
contraction mapping algorithm outlined in Murdock (1) can still be used in estimation.

7Here we have normalized the scale parameter µ = 1.
8By weak identification, we mean the identification relies on the logistic choice structure we assumed in the

first place. For example, if we assume a linear probability model for the access point level choice, the identification
goes away.
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The model can, however, be generalized to control for observable site qualities, with

Visj = αs + βCisj + γXsj , (2.26)

where Xsj denotes an attribute of access point j along segment s. The segment level choice

probabilities in (A.26) would apply, except that equation (2.21) would now be replaced with:

Vis• = αs + ln

∑
j∈As

exp(βCisj + γXsj)

 (2.27)

There are, however, several problems with this approach. While such a model is identified, it is

only structurally identified (See Appendix A), relying heavily on the logit structure to identify

γ.9 This weakness is potentially exacerbated by limited variation in site attributes within a

segment. In the extreme, if there is no variation in access point attributes, their impact would

be captured by the segment specific constant αs.

The Nested Logit Model

While the focus of our Monte Carlo and empirical analysis below is on the mixed logit gen-

eralization of the logit model, in this section we touch briefly on the implications of aggregated

data for the more traditional nested logit models. We consider two nested logit specifications.

Specification 1: Trip Nest

In the first specification, all of the segments (and their associated access points) are grouped

together in a single nest. In this case, the choice probability for access point j becomes:

Pisj = exp(Ṽisj)

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ−1
1 +

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ
 . (2.28)

where

Ṽisj =
Visj
θ

=
αs
θ

+
βCisj
θ

= α̃s + β̃Cisj . (2.29)

As shown in Appendix A, the choice probability for aggregate site s retain the general nested

logit structure, with

Pis• = exp(Ṽis•)

 S∑
r=1

∑
k∈Ar

exp(Ṽir•)

θ−1
1 +

 S∑
r=1

∑
k∈Ar

exp(Ṽir•)

θ
 (2.30)

9One need only consider the alternative linear probability model to see this. In the case of the linear
probability model, the segment level probability becomes a function of the sum of the access point attributes,
which is perfectly collinear with the segment level alternative specific constant.
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where

Ṽis• = α̃s + β̃C̃is (2.31)

with

C̃is =
1

β̃
ln

∑
j∈As

exp(β̃Cisj)

 . (2.32)

All of the underlying parameters of the model (i.e., αs, β, and θ) remain identified.

Specification 2: Segment Nests

In the second specification, the access points within each segment form distinct nests. In this

case, (A.29) is replaced with

Pisj = exp(V̆isj)

∑
k∈As

exp(V̆isk)

θs−1
1 +

S∑
r=1

∑
k∈Ar

exp(V̆irk)

θr
 , (2.33)

where

V̆isj =
Visj
θs

=
αs
θs

+
βCisj
θs

= ᾰs + β̆sCisj . (2.34)

Now (as shown in Appendix A), the choice probability for segment s becomes

Pis• = exp(V̆is•)

{
1 +

S∑
r=1

exp(V̆ir•)

}−1

(2.35)

where

V̆is• = αs + βC̆is (2.36)

with

C̆is =
1

β̆s
ln

∑
j∈As

exp(β̆sCisj)

 . (2.37)

Again, all of the underlying parameters of the model (i.e., αs, β, and θs) remain identified with

aggregate data. However, unlike in the previous case, the segment choice probabilities look like

a standard logit model. Identification of θs (which is equivalent to identification of β̆s) hinges

on the structure of the nonlinear relationship in (A.38). One observation regarding (A.38) is

that as θs → 0, the travel cost index C̆is → Cminis , which reduces the variability needed to

identify θs.
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Normal Error Component Logit Mixture Models

Normal Error Component Logit Mixture(NECLM) models have become a popular alter-

native to nested logit model as a means of inducing correlation patterns among alternatives

in the choice set (See, e.g., Herriges and Phaneuf (8) and Walker et al. (25)). Unobservable

factors, shared by one or more of the alternatives, are introduced into the conditional utility

functions in the form of normally distributed error components. One of the advantages the

approach provides is the ability to create more complex and overlapping nests, rather than

relying on the usual tree structure assumed by nested logit. At the same time, as Walker et

al. (25) note, model identification can be more difficult to establish and spurious results can

be obtained for models that are not identified if care is not taken in simulating the requisite

choice probabilities. In this section, we discuss the identification of several NECLM model in

the context of aggregate choice data. Though aggregate choice probabilities analogous to (2.16)

hold, the identification of parameters in the model becomes difficult to establish. The requisite

conditions for identification developed in Walker et al. (25) are employed.

Specification 1: Trip Nest

An error component structure similar to specification 1 of the nested logit model in the

previous section would replace (A.2) with

Ũisjt =


εisjt if s = j = 0

Visj + τit + εisjt otherwise

(2.38)

where τit ∼ N(0, σ2) and εisjt is distributed i.i.d. Gumbel with mode zero and scale parameter

µ. In this case, the corresponding utility for the aggregate segment level alternative becomes:

Ũis•t = max
j∈As

Ũisjt

= max
j∈As

(Visjt + τit + εisjt)

=

(
max
j∈As

Visjt + εisjt

)
+ τit

= Vis• + τit + εis•t (2.39)

where εisjt is distributed iid Gumbel with mode zero and scale parameter µ. The unconditional
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choice probabilities have the same form as those for the disaggregate data, except that the

aggregate cost variable becomes Cis in equation (2.32); i.e.,

Pis• =

∫
exp(Vis• + τ)

1 +
∑S

n=1 exp(Vin• + τ)
f(τ)dτ (2.40)

where f(τ) denotes the pdf for τit. Appendix A provides the proof that the parameters of

this model (i.e., αs, β and σ) are identified.10

Specification 2: Segment Nests

An error component structure similar to specification 2 of the nested logit model in the

previous section would replace (A.2) with

Ũisjt =


εisjt if s = j = 0

Visj + τist + εisjt otherwise

(2.41)

where τist ∼ N(0, σ2
s) and εisjt is distributed i.i.d. Gumbel with mode zero and scale parameter

µ. In this case, the corresponding utility for the aggregate segment level alternative becomes:

Ũis•t = max
j∈As

Ũisjt

= max
j∈As

(Visjt + τist + εisjt)

= Vis• + τist + εis•t

= αs + βCis + τist + εis•t (2.42)

where εis•t is distributed i.i.d. Gumbel with mode zero and scale parameter µ. The model in

equation (2.42) is analogous to the alternative-specific variance model considered by Walker

et al. (25), except that Cis is a nonlinear function of the model parameter β. Appendix A

provides the proof that the parameters of this model (i.e., αs, β and σs) are identified.

2.4 Monte Carlo Simulation

The goal of this section is to evaluate the performance of the two standard travel cost proxies

(i.e., the midpoint and shortest distance measures), relative to using the aggregated travel cost

10Similar results apply if it is assumed that τit is constant over time with τit = τi ∼ N(0, σ2).
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index Cis, in recovering preference parameters and calculating welfare change associated with

the loss of a river segment. The simulation scenarios vary the river and parameter configurations

along four dimensions:

• Price responsiveness: As noted above, the shortest distance proxy becomes more appro-

priate as travel cost becomes the dominant consideration in site selection. Thus we would

expect the use of this proxy to create less bias as β increases. We consider the three levels

of β shown in Table 1.1.

• Number of river segments: We consider three levels for the number of aggregate river

segments S (S=5,10 and 20).

• River/Population configurations: Ferguson and Kanaroglou (5) note that the shape of

the spatial object (river segments in this paper) and the spatial distribution of households

will affect the heterogeneity among the aggregated sites, though they did not examine it’s

specific impact on estimation results. We consider four possible configurations for river

segments and population centers. In two of the configurations, the rivers are assumed

to be straight segments, 50 miles in length, whereas in the other two configurations the

rivers are 50 miles long, but kinked at the midpoint. Population is either uniformly

distributed or centers around the first two segments. Thus we have four possibilities

along this dimension:

– B: The base scenario with straight river segments and no population centers

– K: Kinked river segments, with no population centers

– P: Straight river segments, with population centers

– C: The combination of kinked river segments and population centers

• Water quality: We consider two types of conditional utility functions. The first consists

of segment specific constants along with travel cost (i.e., as depicted in equation 2.12).

The second includes an additional term, representing say water quality, along the lines of

(2.26).
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A total of 72 (2 × 4 × 3 × 3) Monte Carlo scenarios were considered, with 100 replications

for each scenario. In each case, a simple logit structure is employed, though similar results

are obtained when nesting among sites is allowed. Details of the data generation process are

provided in Appendix B.

For each scenario, three models are used to recover the underlying preference parameters:

two based on standard proxies for the aggregate site travel cost (i.e., the midpoint and shortest

distance proxies) and one based on the aggregated choice probabilities. In addition, we consider

the performance of the models in estimating the welfare costs associated with the closure of

river segment 1 using the standard log-sum formula. In the context of the simple logit structure,

this reduces to

CV1 =
1

β
ln(1− Pi1•) ≈

−Pi1•
β

(2.43)

Since all three models have the basic logit structure with segment level alternative specific

constants, they are mean fitting (i.e., the fitted choice probabilities will equal the average

observed choice shares). Any bias in CV1 will be driven by bias in the travel cost parameter.

2.4.1 Simulation Results

Table 1.2 summarizes the results for the first 36 of the Monte Carlo experiments; i.e., those

without access-point level attributes (labeled here as water quality). We focus our attention on

the travel cost parameter β, as it is the main determinant of subsequent welfare measures, with

the alternative specific constants (the αj ’s) changing to insure that the model is mean-fitting.

The first half of Table 2 provides the mean absolute percentage error in the estimated travel cost

parameter, β. Several results emerge here. First, the aggregated choice probabilities approach

successfully recovers the underlying travel cost parameter, with a mean absolute percentage

error of 0.3 percent or less. This should not be surprising, since it represents the true data

generating process in this case. The aggregation of choice data to the segment level represents a

loss of information, and hence efficiency, but does not alter the underlying model. Second, the

shortest distance proxy also performs quite well, with a mean absolute percentage error that

is typically less than 5 percent. However, the midpoint proxy does not do as well, particularly
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when both the number of segments and the travel cost parameters are large. When S = 20

and β = −0.1, the mean absolute percentage error ranges between 15.8 and 19.6 percent.

As we would expect, bias in the travel cost parameter translates directly into bias for the

corresponding welfare measures. Table 1.2b compares the mean absolute percentage error for

CV1 across the same 36 Monte Carlo experiments. Again, the aggregated choice probabilities

approach successfully recovers the true compensating variation associated with the loss of site

1, and shortest distance proxy works reasonably well. However, the midpoint proxy results in

mean absolute percentage errors exceeding twenty-five percent.

Table 1.3’s reports similar summary statistics for the cases in which water quality is included

in households’ recreational utility function at the access point level. Before proceeding with

describing the results in Table 1.3’s, two facts should be noted. First, there are two versions

of the shortest distance model. In version 1, the water quality associated with the nearest site

for each individual is used as their water quality measure, whereas in version 2 the average

water quality over the entire segment is used. Second, for two of the specifications (i.e., the

midpoint model and the shortest distance model, version 2), the water quality does not vary by

individual and, hence, βw is not identified (being collinear with the alternative specific constant

for that site).

Starting with the results in Table 1.3a for the travel cost coefficient, the findings are similar

to those in Table 1.2a. The aggregated choice probability model does a good job in recovering

the underlying price coefficient, with the nearest distance proxy performing reasonably well.

The midpoint proxy again suffers from the largest bias, with the mean absolute percentage

error being higher when the price coefficient is larger and when there are more segments in

the choice set. In Table 1.3b, we see that the aggregated choice probability model recovers

the water quality parameter reasonably well, with a mean absolute percentage error that is

typically less than five percent, though it reaches as high as 9.8 percent. Interestingly, the

error rate appears to be highest when the price coefficient is small, perhaps because in that

situation the water quality factor becomes a more dominant determinant of the individual’s

choice. The shortest distance proxy, in contrast, does a poor job in recovering βw, with the mean

percentage error typically exceeding fifty percent. Finally, as Table 1.3c indicates, the inclusion
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of access point water quality attributes does not change the basic conclusions in terms of the

estimated compensating variation associated with losing a site (CV1). This is not surprising, as

CV1 is largely driven by the travel cost coefficient. Again, we find that the aggregated choice

probability approach has the lowest mean absolute percentage error, followed by the shortest

distance proxy and then the midpoint proxy approach.

2.5 An Application to Iowa Rivers

This section of the paper provides an application of the aggregated choice probability ap-

proach to the study of recreational river usage in Iowa. The primary data source for our

analysis is the 2009 Iowa River Survey, funded by the Iowa Department of Natural Resources

and the USEPA. The purpose of the survey was to gather baseline information about riverine

recreation along 73 key river and stream segments in the state, depicted in Figure 1. The

survey, conducted by mail, elicited data from each respondent regarding their total number of

trips in 2009 to each of the river segments, as well as information regarding the individual’s

socio-demographic characteristics. However, information is not available regarding the specific

point used by recreationists to access a given river or stream segment. With the segments

ranging in length from 26 to 121 miles, considerable uncertainty exists in the imputed travel

costs to the segment. We use the aggregated choice probability model to implicitly construct a

travel cost index for each segment. The results are compared to models estimated using both

the shortest distance and midpoint specifications commonly employed in the literature.11

2.5.1 Models

A total of three models are estimated using the Iowa Rivers data. All of the models are based

on repeated logit version of the normal error component logit mixture (NECLM). Specifically,

we employ a structure similar to (2.38), but with τit = τi ∼ N (0, σ2
τ ). This creates a nesting

of all trip alternatives and a common error term inducing correlation across choice occasions.

11A copy of the survey instrument is included in the appendix.
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The models start from the same basic structure for access-point level utility, with

Ũisjt =


γSi + εisjt if s = j = 0

αs + βCisj + τi + εisjt otherwise

(2.44)

where Si denotes socio-demographic characteristics of individual i, potentially influencing their

propensity to take trips. The three models differ in terms of how they handle aggregation,

with one employing aggregated choice probabilities, while the other two employ the shortest

distance and midpoint travel cost proxies, respectively. Following Murdock (1), a second stage

regression of the alternative specific constants on segment characteristics is used to examine

the role of site characteristics on recreation demand. Specifically, we run the second stage

regression:

α̂s = α0 + δZs + ξs (2.45)

where Zs denotes a vector of observable site characteristics for segment s.

2.5.2 The Iowa Rivers Data

After focus groups and pre-testing of the survey instrument, the 2009 Iowa Rivers Survey

was mailed to a total of 10,000 Iowa households, beginning in November of 2009. Multiple

mailings of the survey, as well as a postcard reminder and an incentive of $12 for completing

the survey, were used to increase survey response. Among all the surveys mailed, 4758 surveys

were returned, for an overall response rate of 49% among deliverable surveys. Of the returned

surveys, 4137 are employed in the analysis below.12 Table 1.4 provides a summary of the

demographic characteristics of the survey respondents.The demographic statistics show that,

on the average, a respondent to the survey tends to be an older, female Iowan with college level

or equivalent education.13

12A total of 176 returned surveys were unusable because the respondents did not provide their numbers of
visits to the river segments depicted in Figure 1. An additional 445 respondents reported taking more than 52
trips to individual river segments and were excluded from the sample. The focus of our analysis is on day-trips
to the river segments. Setting the maximum numbers of trips to 52 allows for one trip per week. While this
specific cut-off is arbitrary, the goal here is to focus on day trips and to exclude individuals who report large
numbers of trips simply because they live on or near a specific river segment. Similar cutoffs have been used in
other recreational studies (e.g., Egan et al. (2)) and were not found to significantly impact the results of the
analysis.

13According to US Census, approximately 32 percent of adult Iowans are over 60, whereas in the survey sample
this figure is somewhat higher at 36 percent. Likewise, among respondents the percentages of females (70 versus
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Table 1.5 provides an overall summary of the data on trips to each of the river segments,

both in terms of the percentage of the respondents who report visiting a given river segment

and in terms of total numbers of trips to the segments. As the data indicate, the segments

vary considerably in terms of popularity. River segment 71 (the Mississippi River between

Clinton and Muscatine, Iowa) is the most popular, visited a total of 1591 times by just under

six percent of the sample. At the other end of the spectrum, segment 37 (Big Cedar Creek, in

northwest Iowa) is the least popular, visited only 20 times by 0.24 percent of the sample. In

total, forty-eight percent of the sample visit at least one river segment during the course of the

year, with an average number of trips per year of over six.

The travel cost variables (Cisj , C
min
is , and Cmidis ) must be constructed for each access point

and river segment. There are several issues in doing so. First, a complete set of access points

are not available for the Iowa rivers and streams.14 In the current application, we divide each

of the river segments into approximately twenty-mile sub-segments, defining “access points”

in terms of the mid-point of each of these sub-segment. This process results in a total of 300

access-points. The numbers of sub-segments per segment ranges from one for River segment 1

(Rock River in northwest Iowa) to eight for River segment 56 (for portions of the Wapsipinicon

River in eastern Iowa). Second, given these access points, travel cost must be calculated.

PCMiler is used to compute both the round-trip distance (disj) and travel time (tisj) between

the individual’s home and the relevant access point. Travel costs are then computed as Cisj =

g · disj + (wi/3) · tisj , where g is per mile vehicle cost and wi denotes the individual wage

rate.15 As indicated at the top of Table 1.5, the average round trip travel cost is approximately

$162.85, ranging from close to zero to almost $500.

The final data category consists of river site characteristics (i.e., the Zs’s) summarized in

Table 1.6. The following river characteristics were constructed:

• LENGTH indicates the length of the river segment or sub-segment;

50.4) and those with college degrees (69 versus 24.9) are higher than in the general Iowa population. The average
family size of 2.4 is virtually the same in the sample as in the Iowa population as a whole.

14Indeed, for a number of activities, such as hunting, bird watching, etc., it is not clear what criteria to use in
defining access points.

15The value of g was set to 54 cents per mile based on the 2009 AAA annual driving cost for an average sedan
with 15,000 miles per year driving. The wage rate w was set at household income divide by 2000 times the
number of adults in the household.
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• CANOE indicates the percentage of the river segment or sub-segment that is considered

canoeable, as defined by the Iowa Department of Natural Resources (IDNR);

• OUTCROPPING is a count of the number of outcroppings along the river segment or

sub-segment, thought to contribute to the scenic nature of the river;

• WATERBODY, WETLAND FOREST, GRASS, CROP, and DEVELOPED indicate the

percentage of the river corridor (defined as 75 meters on either side of the center-line for

the river) that is water, wetland, forest, grassland, cropland and developed (industrial,

commercial or residential) land, respectively;

• IWQI denotes a water quality index developed by the IDNR;16

• MIWQI is a dummy variable equal to one for river segments or subsegments for which

the IWQI is not available;

• FISH denotes the number of fish species found along the river segment;17 and

• MFISH is a dummy variable that equals one for river segments or subsegments without

fish species data.

As Table 1.6 indicates, just over sixty percent of the Iowa river segments are canoeable.

Not surprisingly, cropland is the largest form of land cover along the river segments (close to

forty percent), with forested land being the second most common at under thirty percent. In

terms of our two primary water quality measures, there are several important factors to note.

First, both measures are available for only a fraction of the segments or sub-segments. Second,

water quality along river segments is particularly difficult to capture, as rivers quality levels are

only measured at selective sites. Even short distances from the monitoring site, water quality

can be substantially different, depending on the river currents. Finally, the trips included a

wide range of activities, from bird-watching to swimming, with the water quality measure being

more or less salient depending upon the specific activity engaged in. With these concerns in

16This water quality index differs from USEPA’s national water quality index. Details regarding its construc-
tion are available at Iowa Department of Natural Resources’s webstie. One drawback of the IWQI measure is
that it is available for less than 70 percent of the river segments and less than 30 percent of the river sub-segments.

17This information was provided directly by the IDNR.

http://www.iowadnr.gov/InsideDNR/RegulatoryWater/WaterQualityStandards.aspx
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mind, we consider below the use of turbidity as an alternative proxy for overall water quality.

Turbidity is a measure of the cloudiness of water and, as such, is readily visible to recreators.

As with IWQI, turbidity is only available for a fraction of river segments, so MTURBIDITY,

a dummy variable for segments missing turbidity data, is also included in the model.

2.5.3 Results

The models estimated using the Iowa Rivers data are summarized in Tables 1.7, 1.8a and

1.8b. As indicated in Section 2.5.1, all three of these models employ a normal error component

logit mixture (NECLM) structure and are estimated in two stages. The first stage involves

estimating the alternative specific constants (i.e., ASC’s αs), the travel cost coefficient (β),

and the parameters associated with the sociodemographic factors thought to influence the

individual’s propensity to stay at home (γ), as well as the variance of the trip error component

(i.e., σ2
τ ).

Given the large number of ASC’s (73), we refrain from reporting all of them here.18 However,

the ASC’s can be used as an indicator of the relative “appeal” of each site, controlling for travel

cost. That is, all else equal, a site with a larger ASC is preferred to a site with a lower ASC.

Table 1.7 illustrates the implied ranking of the river segments on the basis of the estimated

ASC’s from each model. The second column in Table 1.7 also provides the ranking of sites by

total visitation. Not surprisingly, all of the top river segments based on visitation rates are

near population centers. For example, segments 23 and 24 rank 6th and 3rd, respectively, in

terms of total visitation and are located near the state’s largest city, Des Moines. However, the

rankings of these segments drop substantially once travel cost is controlled for. Both segment

23 and 24’s rank fall out of the list of top ten sites altogether. For models 1, 2 and 3, the

relative “appeal” of the river segments do differ, though they share some common features.

Seven of the top ten segments and six of the bottom ten segments are the same across the three

models.

Table 1.8a provides the other stage 1 parameter estimates. As expected, the travel cost

coefficient is negative and statistically significant under all three specifications. Indeed, β varies

18These ASCs are reported in the appendix.
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relatively little across the three models. The three models also generally agree as to the impact

of age and boat ownership, with older individuals and those without a boat being more likely to

stay at home. On the other hand, differences do emerge in terms of other factors. For example

both females and college educated individuals are found to be more likely to take trips in models

2 and 3, whereas these factors are statistically insignificant in model 1. Also, larger households

are significantly less likely to take trips according to model 1. Perhaps most importantly, the

variance of the trip error component (i.e., σ2
τ ) is substantially larger in model 1 than in models

2 and 3, indicating a greater similarity across (and correlation among) the utilities received

from trip options.19 This is analogous to a greater degree of “nesting” among the trip options

in a nested logit setting. As will be seen below, this has implications for estimated welfare

effects.

The second stage associated with estimating models 1 through 3 involves regressing the

estimated segment level ASC’s on segment characteristics, as depicted in equation (2.45). The

results are reported in Table 1.8b. The parameter estimates again suggest some consistency

across the three specifications. In all three cases, river segments that are canoeable, relatively

wide (i.e., with a larger value for WATERBODY ), and contain a larger number of fish species

are more appealing (i.e., have a larger ASC). Not surprisingly, the segments associated with the

border rivers (i.e., the Mississippi and Missouri Rivers) are also more popular, as these rivers

provide opportunities for activities (such as power boating) not available for most other river

segments. Longer river segments are significantly less appealing according to Model 1, whereas

they are significantly more appealing according to Model 3. Finally, while the parameter on

Iowa’s water quality index (IWQI) has the expected sign, it is not statistically significant in

any of the models. This is not surprising. As suggested above, IWQI is likely to be a poor

measure of the perceived water quality along the river segments. First of all, it is measured

for only a portion of the river segments and then only at specific monitoring sites. Moreover,

given the wide range of activities associated with the trips being reported in the survey (from

hiking and bird watching, to swimming and fishing), the IWQI is likely to be salient only for

19The correlation coefficient could calculated through the formula, σ2
τ/(σ

2
τ +π2/6), where π2/6 is the variance

of a standard logistic distribution.
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a fraction of the reported trips.

At the bottom of Table 1.8b, we provide the predicted welfare implications associated with

closure of river segment 71 (the most visited site) and the closure of all 73 river segments. The

three models provide significantly different welfare estimates. The model based on aggregate

choice probabilities for the river segments (i.e., model 1) yields a substantially higher welfare

estimate under both scenarios. The compensating variation associated with closing site 71 is

over thirty percent higher in model 1 than in model 2 (which uses the shortest distance proxy

for travel cost), and nearly twenty percent high than in model 3. The former result is not

surprising, since model 2 is guaranteed to understate the travel cost associated with visiting a

river segment and, hence, undervalue the resulting lost trips. The differences are even larger

when closing all seventy-three river segments.

Given the limitations associated with the Iowa water quality index (IWQI), Table 1.9

provides results from an alternative specification for the Stage 2 model of the ASC’s (i.e., equa-

tion 2.45), in which IWQI is replaced with TURBIDITY . The qualitative findings for most

variables are similar to those from Table 1.8b. However, in the case of the aggregate choice

probability model, turbidity is found to be a negative and statistically significant factor. On the

hand, while fish stocks still have a positive coefficient, they are no longer a statistically signifi-

cant factor. These results highlight the importance of viewing all three water quality measures

(IWQI, TURBIDITY , and FISH) as proxies for water quality in the river segments, rather

than direct causal influences in determining the appeal of a given site.

2.6 Concluding Remarks

The task of modeling recreation demand is often complicated by incomplete information re-

garding specifically where an individual travels to in visiting a geographically large site. While

midpoint and shortest distance travel cost measures are often used as proxies for the unob-

served travel cost, the resulting parameter estimates are likely to suffer from omitted variables

bias. In this paper, we suggest that the problem be viewed instead as one of implicit site

aggregation. In general, the probability of any aggregate site being visited is simply the sum of

the probabilities that its component sites would be chosen. Using an underlying logit structure,
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the existing aggregation literature provides the specific functional form for the aggregated site

choice probabilities, as well as an explicit characterization of the omitted variables that arise

when using proxy variables for site attributes (including travel cost). We show that, in the con-

text of the RUM model with a full set of alternative specific constants, the appropriate travel

cost for an aggregate site is a probability weighted average of the travel cost to the component

sites. We also generalize the existing aggregation models to include Normal Error Component

Logit Mixture(NECLM) models that have become increasingly popular in the literature, paying

particular attention to concerns regarding model identification in these settings.

A Monte Carlo exercise illustrates that the use of travel cost proxies can potentially lead

to significant bias in characterizing recreation demand. In particular, while the nearest access

point approach provides a relatively good approximation to underlying preferences for a wide

range of parameter specifications, use of the midpoint approach to calculating travel cost can

lead to significant bias in the travel cost parameter and corresponding welfare calculations.

Finally, an application is provided drawing on data from the 2009 Iowa Rivers and Rivers

Corridors Survey. We find that the use of either the midpoint or shortest distance travel cost

proxies yields a substantially smaller estimate of the welfare impacts of site loss than what is

obtained using a model based on aggregated site probabilities.
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Table 1.1 Description of Monte Carlo Designs

Experiment Design Description Number of Variations

Price responsiveness (i.e., value of β)
β = {−0.01,−0.05,−0.09} w/o Water 3
β = {−0.02,−0.05,−0.1} w/ Water

Number of river segments s=5,10,20 3

Population and river characteristics Base (B) 4
Population Center (P)
Nonlinear (Kinked) Rivers (K)
Combined Population centers + Kinked Rivers (C)

Water Quality
Included (w/ Water) 2
Not included (w/o Water)

Total 72
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Table 1.2a Mean Absolute Percentage Error in Estimated β (w/o Water Quality)
Pop./River Number of Agg. Choice Prob. Midpoint Proxy Shortest Distance Proxy

Config. Segments β = -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10

5 0.1 0.1 0.1 1.2 5.9 8.5 0.3 0.1 0.0
B 10 0.1 0.1 0.1 1.2 6.5 13.7 1.2 1.0 1.0

20 0.1 0.1 0.0 1.4 6.8 15.8 0.2 1.5 1.6

5 0.2 0.1 0.1 1.8 5.4 13 0.3 0.3 0.3
K 10 0.3 0.1 0.1 1.6 8.2 17.9 0.6 0.5 1.8

20 0.1 0.1 0.2 1.3 8.2 17.3 0.5 0.7 0.6

5 0.1 0.1 0.1 1.4 7.0 13.6 0.7 4.0 5.1
P 10 0.2 0.1 0.2 1.9 7.4 14.9 0.5 2.4 4.1

20 0.1 0.1 0.1 1.2 9.0 19.6 1.5 3.0 3.5

5 0.1 0.1 0.1 0.4 6.1 8.6 0.6 2.4 2.7
C 10 0.1 0.1 0.2 0.9 8.1 15.4 1.0 0.5 2.6

20 0.1 0.1 0.1 1.5 9.4 18.1 0.6 1.0 1.2

Table 1.2b Mean Absolute Percentage Error in Estimated CV1 (w/o Water Quality)
Pop./River Number of Agg. Choice Prob. Midpoint Proxy Shortest Distance Proxy

Config. Segments β = -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10

5 0.1 0.1 0.1 1.3 6.5 10.9 0.3 0.3 1.0
B 10 0.1 0.1 0.1 1.5 7.2 16.1 1.5 1.1 1.0

20 0.2 0.1 0.1 1.1 7.9 20.8 0.1 1.7 2.5

5 0.2 0.0 0.1 1.8 7.5 12.4 0.3 0.8 0.5
K 10 0.1 0.3 0.4 1.4 9.1 16.9 0.4 0.1 1.1

20 0.1 0.1 0.2 1.3 8.2 17.3 0.5 0.7 0.6

5 0.1 0.2 0.1 1.6 8.3 15.5 0.9 4.7 5.4
P 10 0.2 0.2 0.3 2.0 8.5 17.7 0.5 3.0 5.0

20 0.4 0.1 0.2 0.9 10.5 25.4 1.2 3.3 4.4

5 0.5 0.2 0.1 0.5 4.7 7.0 1.0 2.7 2.7
C 10 0.2 0.1 0.1 1.0 10.0 19.6 0.9 0.6 3.2

20 0.3 0.1 0.3 1.3 10.8 23.9 0.4 0.7 1.4
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Table 1.3a Mean Absolute Percentage Error in Estimated β (w/ Water Quality)
Pop./River Number of Agg. Choice Prob. Midpoint Proxy Shortest Dist. Proxy ver.1 Shortest Dist. Proxy ver.2

Config. Segments β = -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10

5 0.1 0.1 0.1 1.6 4.2 9.3 1.0 1.7 1.8 0.7 0.4 0.5
B 10 0.0 0.1 0.1 1.9 5.4 10.7 0.1 2.6 4.7 0.6 2.1 4.6

20 0.1 0.1 0.1 2.5 6.8 15.1 1.3 2.4 3.9 0.9 1.8 3.2

5 0.1 0.1 0.1 1.3 4.7 13.3 0.6 0.6 1.9 0.4 0.3 1.8
K 10 0.2 0.1 0.1 2.6 6.2 14.7 0.2 0.2 1.5 0.2 0.1 1.5

20 0.1 0.1 0.1 3.1 9.0 18.9 0.2 0.5 1.2 0.2 0.3 0.9

5 0.2 0.2 0.1 1.7 6.0 13 0.3 0.8 3.1 1.8 0.2 3.8
P 10 0.1 0.1 0.1 2.2 6.4 16.8 0.7 0.6 3.8 1.1 0.3 3.1

20 0.1 0.1 0.1 2.3 8.0 19.4 1.9 3.3 4.8 1.4 2.5 4.0

5 0.0 0.3 0.2 2.5 7.0 14.1 0.1 2.5 3.5 0.3 1.8 3.6
C 10 0.2 0.1 0.1 3.7 5.5 10.5 0.3 0.5 1.7 0.1 0.7 2.0

20 0.1 0.1 0.1 3.9 9.3 22.6 0.4 0.8 2.3 0.4 0.8 2.3



34

Table 1.3b Mean Absolute Percentage Error in Estimated βw (w/ Water Quality)
Pop./River Number of Agg. Choice Prob. Midpoint Proxy Shortest Dist. Proxy ver.1 Shortest Dist. Proxy ver.2

Config. Segments β = -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10

5 5.4 3.2 1 - - - 66 23.8 28.5 - - -
B 10 0.2 0.5 0.1 - - - 90.4 81 82 - - -

20 4 0.6 0.1 - - - 142 200.7 233.1 - - -

5 0.3 0.1 0.6 - - - 84.4 52.8 24.2 - - -
K 10 1.2 1.1 0.6 - - - 98.7 91.3 80.8 - - -

20 6.2 0.2 0.8 - - - 123.2 136.7 157.3 - - -

5 9.8 0.2 0.2 - - - 62.5 28.8 5.2 - - -
P 10 0.8 0.7 0.2 - - - 89.5 63.6 38.2 - - -

20 6.8 1.3 0.7 - - - 151.4 204.8 220.3 - - -

5 2.9 0.2 1 - - - 75.8 48.5 34.7 - - -
C 10 3.2 0.3 0.2 - - - 95.2 82.4 76.1 - - -

20 1.5 0.2 0.4 - - - 109.6 119.1 126.3 - - -

Table 1.3c Mean Absolute Percentage Error in Estimated CV1 (w/ Water Quality)
Pop./River Number of Agg. Choice Prob. Midpoint Proxy Shortest Dist. Proxy ver.1 Shortest Dist. Proxy ver.2

Config. Segments β = -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10 -0.01 -0.05 -0.10

5 0.2 0.1 0.1 1.9 6.4 9.2 1 0.9 0.2 0.5 1.8 0.7
B 10 0.2 0.2 0.1 2.1 4.9 6.5 0.1 3.3 7.1 0.5 2.4 6.5

20 0.4 0.7 0.4 3 7.7 16.9 1.7 2.9 3.4 1.2 2.5 2.5

5 0.2 0.2 0.1 2.8 2.1 5.1 0.7 0.4 0.7 0.2 0.6 1.8
K 10 0.1 0.2 0.1 2.8 6.6 21.7 0.3 0.3 1.9 0.3 0.2 2.3

20 0.1 0.3 0.3 3 9.5 24.3 0.2 0.2 1.5 0.1 0.5 0.7

5 0.3 0.3 0.2 2.1 7.1 14.2 0.3 1 3.1 2.2 0.5 2.5
P 10 0.4 0.2 0.2 2.7 8.1 21.2 0.5 0.8 3.7 0.9 0.2 2.8

20 0.1 0.2 0.2 2.4 9.9 26.5 1.9 3.8 6.8 1.3 2.5 4.3

5 0.1 0.2 0.1 2.2 7.8 12.9 0.1 2.6 2.8 0.2 2.1 3.1
C 10 0.3 0.1 0.3 3.8 4.8 5.8 0.4 1.2 3.2 0.2 1.3 3.4

20 0.1 0.3 0.1 4.1 10.7 29.3 0.3 0.8 2.5 0.4 0.8 2.5
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Table 1.4 Summary Statistics Demographic Characteristics (N=4137)

Variable Description Mean Std.Dev

Age1 Dummy Variable for Age Group: 18-25 0.01 0.09

Age2 Dummy Variable for Age Group: 26-34) 0.06 0.24

Age3 Dummy Variable for Age Group: 35-49) 0.21 0.41

Age4 Dummy Variable for Age Group: 50-59) 0.25 0.43

Age5 Dummy Variable for Age Group: 60-75) 0.31 0.46

Age6 Dummy Variable for Age Group: 76- ) 0.15 0.36

Female Dummy Variable for Females 0.70 0.46

College Dummy Variable for College Degree 0.69 0.46

Size Number of Adults 1.88 0.65

Kids Number of Children 0.55 1.00

Employed Dummy Variable for Employed 0.59 0.49

Student Dummy Variable for Students 0.01 0.07

Retired Dummy Variable for Retirees 0.36 0.48

Boat Dummy Variable for owning a boat 0.23 0.42
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Table 1.5 Trip Summary Statistics (N=4137)
Segment # % Visitors Total Trips Segment # % Visitors Total Trips

1 1.93% 369 38 0.58% 116
2 1.21% 253 39 0.75% 68
3 0.94% 193 40 1.35% 293
4 0.29% 76 41 1.04% 232
5 1.57% 290 42 0.56% 113
6 1.16% 143 43 1.31% 303
7 0.31% 52 44 0.19% 31
8 0.12% 23 45 2.05% 533
9 0.29% 59 46 3.87% 800
10 0.34% 61 47 3.63% 737
11 0.56% 105 48 0.48% 76
12 0.22% 37 49 1.60% 462
13 0.75% 183 50 2.20% 381
14 0.65% 80 51 0.58% 116
15 0.58% 113 52 3.75% 1071
16 0.60% 154 53 3.92% 877
17 0.17% 25 54 3.05% 653
18 0.41% 60 55 1.76% 308
19 0.34% 59 56 3.60% 742
20 0.99% 171 57 0.56% 85
21 1.09% 314 58 3.41% 659
22 1.28% 194 59 0.73% 84
23 5.25% 979 60 1.55% 248
24 7.23% 1513 61 1.47% 142
25 3.02% 675 62 1.47% 232
26 1.69% 399 63 1.33% 111
27 0.46% 84 64 2.51% 314
28 0.60% 123 65 1.43% 208
29 0.77% 175 66 3.87% 884
30 0.58% 104 67 1.33% 245
31 0.24% 58 68 4.33% 676
32 0.58% 82 69 7.03% 1246
33 1.28% 193 70 6.24% 1578
34 2.30% 468 71 5.73% 1591
35 0.92% 234 72 2.34% 483
36 1.16% 272 73 2.34% 740
37 0.24% 20 Overall 47.76% 6.24
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Table 1.6 Summary Statistics of River Attributes

Variable Mean Std.Dev Min Max

Cisj 162.85 79.15 0.08 485.14

73 river segments

LENGTH 83.2 33.30 26.9 161.8

CANOE 62.82 27.13 0.00 99.00

OUTCROPPING 18.77 31.66 0.00 141.00

WATERBODY 0.22 0.30 0.00 1.00

WETLAND 0.01 0.01 0.00 0.05

FOREST 0.24 0.19 0.00 0.71

GRASS 0.11 0.09 0 0.40

CROP 0.39 0.29 0 0.92

DEVELOPED 0.02 0.04 0 0.24

IWQI 31.55 23.00 0 75

MIWQI 0.32 0.47 0 1

FISH 30.29 18.52 0 71

MFISH 0.12 0.33 0 1

Table 1.7 Ranking of River Segments

Model 1 Model 2 Model 3
Agg. Prob. Shortest Midpoint

Rank Visitation Distance Proxy

Top 10

1 71 68 68 70
2 70 69 69 69
3 24 73 70 68
4 69 70 73 71
5 52 71 71 73
6 23 2 64 66
7 66 65 52 52
8 53 25 65 72
9 46 64 66 65
10 56 72 25 64

Bottom 10

64 18 29 31 31
65 9 42 57 10
66 19 7 19 48
67 31 19 7 39
68 7 12 30 30
69 12 37 12 12
70 44 17 17 17
71 17 8 8 8
72 8 44 44 44
73 37 30 37 37

Note: 1 A list of river id and their names could be found in the survey sample.
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Table 1.8a Estimation Result of Nested Logit Specifications (Stage 1)

Variable
Agg. Choice Prob. Shortest Dist. Proxy Midpoint Proxy

Est. Std.Dev Est. Std.Dev Est. Std.Dev
Travel Cost Variable

TC -0.035∗∗∗ 0.001 -0.034∗∗∗ 0.001 -0.033∗∗∗ 0.001
Demographics

AGE 2 2.526∗∗∗ 0.365 2.827∗∗∗ 0.598 4.534∗∗∗ 0.449
AGE 3 2.904∗∗∗ 0.300 2.581∗∗∗ 0.576 4.460∗∗∗ 0.425
AGE 4 3.795∗∗∗ 0.288 3.077∗∗∗ 0.581 4.897∗∗∗ 0.426
AGE 5 4.679∗∗∗ 0.332 3.674∗∗∗ 0.589 5.400∗∗∗ 0.436
AGE 6 6.110∗∗∗ 0.422 4.712∗∗∗ 0.615 6.672∗∗∗ 0.458
FEMALE 0.284 0.157 −0.561∗∗∗ 0.116 −0.495∗∗∗ 0.101
COLLEGE −0.057 0.146 −0.514∗∗∗ 0.110 −0.625∗∗∗ 0.100
SIZE 0.589∗∗∗ 0.028 -0.055 0.090 0.050 0.078
KIDS 0.347∗∗∗ 0.080 -0.014 0.070 -0.057 0.063
EMPLOYED 6.941∗∗∗ 0.262 0.453 0.290 0.873∗∗∗ 0.275
STUDENT 0.880∗ 0.446 2.478∗∗∗ 0.835 3.902∗∗∗ 0.754
RETIRED 7.218∗∗∗ 0.337 0.439 0.321 0.745∗∗∗ 0.303
BOAT −1.899∗∗∗ 0.179 −1.913∗∗∗ 0.144 −1.840∗∗∗ 0.136

Nest Variable
στ 3.758∗∗∗ 0.105 2.920∗∗∗ 0.054 3.058∗∗∗ 0.051

1. *,**,*** represent significant levels at 10%, 5% and 1% respectively

Table 1.8b Estimation Result of Nested Logit Specifications (Stage 2)

Variable
Agg. Choice Prob. Shortest Dist. Proxy Midpoint Proxy
Est. Std.Dev Est. Std.Dev Est. Std.Dev

Site Attributes
LENGTH −0.008∗∗ 0.004 -0.001 0.004 0.009∗∗ 0.004
CANOE 0.010∗∗ 0.005 0.009∗ 0.005 0.008∗ 0.005
OUTCROPPING 0.003 0.004 0.004 0.004 0.001 0.004
WATERBODY 1.522∗∗ 0.782 1.688∗∗ 0.827 1.857∗∗ 0.746
WETLAND 13.338 12.324 13.887 12.643 19.386 11.902
GRASSLAND 1.257 1.572 1.619 1.549 0.974 1.387
CROPLAND -0.210 0.729 -0.041 0.740 -0.024 0.689
DEVELOPED -0.902 3.815 -0.289 3.877 -0.157 3.795
IWQI 0.006 0.014 0.007 0.013 0.005 0.013
MIWQI 0.078 0.677 0.180 0.641 0.231 0.677
FISH 0.014∗ 0.007 0.013∗ 0.008 0.012∗ 0.007
MFISH 0.578 0.360 0.562 0.362 0.356 0.354
BORDER 1.362∗∗∗ 0.479 1.253∗∗∗ 0.483 1.304∗∗∗ 0.452
CONSTANT 3.301∗∗∗ 1.130 −5.433∗∗∗ 1.218 −3.277∗∗∗ 1.119

Welfare Calculation ($/year/household)
Loss of River 71 17.03 12.92 14.30
Loss of All Rivers 668.94 361.37 420.23
1.Bootstrap is used to get standard deviations for the second stage estimation of river attributes.
2. *,**,*** represent significant levels at 10%, 5% and 1% respectively
3. The CV figures are coming from 1000 numerical simulations using equation 2.43
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Table 1.9 Estimation Results Using Turbidity as Water Quality Proxy

Variable
Agg. Choice Prob. Shortest Dist. Proxy Midpoint Proxy
Est. Std.Dev Est. Std.Dev Est. Std.Dev

Site Attributes
LENGTH -0.008∗∗ 0.004 -0.001 0.004 0.009∗∗∗ 0.003
CANOE 0.010∗∗ 0.004 0.009∗ 0.005 0.009∗∗ 0.004
OUTCROP 0.002 0.004 0.003 0.004 0.001 0.004
WATERBODY 1.510∗∗ 0.693 1.685∗∗ 0.810 1.817∗∗ 0.778
WETLAND 11.734 11.968 12.319 12.060 17.085 10.669
GRASSLAND 1.125 1.402 1.541 1.407 0.873 1.314
CROPLAND -0.105 0.644 0.013 0.712 0.097 0.690
DEVELOPED -1.543 3.795 -0.872 3.635 -0.800 3.637
TURBIDITY -0.004∗ 0.002 -0.003 0.002 -0.004 0.003
MTURBIDTY -0.553∗ 0.321 -0.444 0.325 -0.398 0.324
FISH 0.010 0.007 0.010 0.008 0.008 0.007
MFISH 0.622∗ 0.343 0.590 0.373 0.408 0.326
BORDER 1.457∗∗∗ 0.424 1.324∗∗∗ 0.446 1.408∗∗∗ 0.447
CONSTANT 3.876∗∗∗ 0.666 -4.827∗∗∗ 0.762 -2.736∗∗∗ 0.739
Observations 73 73 73
Adjusted R2 0.653 0.600 0.679
1.Bootstrap is used to get standard deviations for the second stage estimation of river attributes.
2. *,**,*** represent significant levels at 10%, 5% and 1% respectively
3. The CV figures are coming from 1000 numerical simulations using equation 2.43
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CHAPTER 3. Modeling Recreation with Partial Trip Information

3.1 Introduction

Recreation demand (or travel cost) models provide one of the primary tools for valuing

environmental amenities, inferring value by observing the full costs incurred by the individual

or household in reaching the site or sites of interest (see, e.g., (9)). Analysts, however, often have

information on the visitation patterns to only a subset of recreational sites that are available to

the individual. By focusing on only a subset of the available choice alternatives, the un-modeled

sites are implicitly imbedded into the outside option (i.e., the stay-at-home alternative). Doing

so ignores the substitution possibilities to these alternatives, exposing the resulting preference

parameters, and subsequent welfare estimates open to possible bias.

Relying on the site aggregation literature, we explore the possibility of consistently estimat-

ing the preference parameters under the random utility maximization framework. To employ

any of the procedures described below, the recreational data used should at least include infor-

mation on the characteristics for all the sites, specifically both for lakes and for rivers in this

paper. With the extra information on one set of sites for which we do not have households’

detailed visitation information, we can separate the stay-at-home option into two parts, one is

the standard “stay-at-home option” and the other is the aggregated choice for sites without

detailed trip information. Thus the probability of observing a household choosing not to visit

the set of sites for which we have the full information will be the sum of the probability of

staying at home and the probability of visiting any of the sites in the other set. By doing so,

we use aggregation techniques in the literature (see, e.g., (4),(23) and (10)) to estimate the

model even when we have only partial information. To mimic the possible nested structure

among sites, the aggregation is conducted under the framework of the normal error-component
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mixed logit models (NECLM).1 Identification of parameters in the model is a key concern when

we apply the aggregation technique. Walker et al. (2) gives the useful guidance to judge the

identification of the NECLMs. Due to the complication brought about by the aggregation over

several subsets of options, we are not able to formally prove the identification of the aggregation

model. However, a series of Monte Carlo simulations illustrate the subset of the models that

can be practically estimated.

We conduct two categories of simulations. In the first set of simulations, we specify the

conditional utility to be a linear function of site attributes and the travel cost. It fits into

situations where focused recreational sites are essentially the same, e.g. a recreational survey

about people’s visitation to local lakes, but only detailed trip information about famous lakes is

explicitly asked. In the second set of simulations, we assume the conditional utility depends on

the travel cost and alternative (site) specific constants (ASC). The key difference between these

two settings is the way those site related values, such as the amenities brought about by better

water quality, enter into conditional utilities. Technically, including ASCs in the maximum

likelihood estimation will absorb the effects of other site attributes and the coefficients of these

site attributes can only be recovered in the second stage regression. If there were concerns about

omitted variables, the possible bias could be controlled with ASCs in the utility function. With

the estimation strategy proposed in Murdock (1), the inclusion of ASCs in recreation models

has become the norm in the literature. In addition to these technical concerns, there are

some practical reasons for the second set of simulations. The recreation sites considered in

the application to the Iowa Lake and River project have significant differences in terms of

site attributes and data availability. For example, the site size, one of commonly used site

attributes in the literature, is not comparable for lakes and rivers. The area of water body

may be a good metric for lake sites, while the total length seems more appropriate for river

segments. To avoid the difficulty in the construction of site attributes, we will include ASCs

in the application work and recover the values of attributes in a second-stage analysis. To get

a sense of applicability and performance of the aggregation model, it is useful to have some

1The mixed logit model could mimic the substitution pattern among alternatives represented by the nest
structure by choosing appropriate group dummy variables (See, e.g., (27), (24)).
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counterpart simulations.2 For each simulated data set, we apply three modeling techniques

to fit the data: the full information model in which all visitation information is available to

researchers, the aggregation model in which we assume the visitation information to a subset

of sites is only aggregately observed by researchers and the partial model in which we assume

the unobserved sites are pooled with the outside stay-at-home option. The performance of each

modeling techniques is evaluated along three dimensions: the recovery of preference parameters,

the recovery of error structures and the welfare measure of site loss.

The simulation results confirm our speculation that the aggregation model can practically

recover the preference and error structure parameters. In both sets of simulations, the mean

absolute percentage error of preference parameters (MAPE), a metric used to evaluation the

quality of estimation result, is almost negligible, while the partial model generally produces

biased estimation of preference parameters. In terms of error structures, the aggregation model

performs quite well in terms of estimation in a subset of scenarios.3 Specifically, if the underlying

structure is simple, the bias measure by MAPE is small. Once the error structure becomes

more complex, the bias increases substantially.4 The welfare measure of site loss is also a good

metric to assess the performance of different recreational models. In the simulation, we also

calculate the compensating variation (CV) of losing an individual site.5 The comparison in the

welfare measure produces mixed results. In the first set of simulation without ASCs, the bias

in CV is significantly larger and in line with the finding in the literature. Once ASCs are added

into the model, the bias from the partial model almost disappears and the scale of bias is of

the same order of that from the aggregation model. The CV bias from the aggregation model

is negligible in both sets of simulations regardless as to whether ASCs are included or not.

The aggregation technique is also applied to the unique data set from 2009 Iowa Lake and

River Project. The Iowa River Project is a cross-sectional study of the 2009 visitation patterns

of state residents to the 73 major river segments in the Iowa. The 2009 Iowa Lake Project is the

2The details about the simulation setup are given in the simulation section.
3Since the partial model implicitly rearranges the underlying error structure, we do not explicitly compare

the performance of the partial model in this regard.
4The simple structure is referred to the case 1 and 2 in Figure 1, and the structures represented by case 3

and 4 in Figure 1 are more complex.
5This individual site is one of sites which have explicit visitation.
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continuation of a four-years (2002-2005) Iowa Lake Project of visitation information of state

residents to the 100+ instate lakes. Questionnaire including recreational visitation questions

and social economic questions were sent to 10,000 randomly selected Iowa households via mail

in 2010. Among the 10,000 households, there were 2,500 overlapping households who receives

both survey questionnaires. In total, the survey yielded around 5,000 completed surveys in

both projects. The randomness and the overlapping design features permit us to explicitly

model the non-overlapping samples with the aggregation technique and insure identification

given the existence of the overlapping samples.

The results show that the preference parameters estimated in different models agree in

direction but differ in magnitudes and significance levels. Judging from the welfare evaluation

results, the figures produced from the partial models are moderately different from the results

in the aggregation models.

The remained of this paper is organized as follows: Section 2 provides a brief literature

review. The modeling technique and identification issue is discussed in section 3. Section 4

contains the detailed data generation process and the results of Monte Carlo simulation. Data

description and estimation results of the application is given in section 5. Section 6 concludes

the paper.

3.2 Related Literature

3.2.1 RUM model in recreational literature

McFadden (16) established the random utility maximization (RUM) models to study the

discrete choices made by individuals from among a set of alternatives. In RUM framework,

individuals are assumed to have full information about the factors that affect their utilities and

make decisions based on that. Researchers do not have the full information about individuals

preference and treat the unobservable parts as random variables following an assumed distribu-

tion. Combined with the observed choices, researchers can derive the probabilities associated

with these choices and estimate preference parameters and conduct statistical inferences there-

after. Two popular models are logit models if the distribution of the unobserved factors is
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assumed to belong to the family of extreme value random variables and probit models if the

distribution belongs to normal distributions (See, e.g., (27)).

3.2.1.1 Multinomial logit and IIA

The central building block in RUM models is the conditional indirect utilities, Uij , that

individual i receives from choosing alternative j (sites in recreation literature). Uij is usually

assumed to be a sum of two additive parts, Vij and εij . Vij is the deterministic part of Uij and

usually is a linear function of factors (Xij) observed by researchers, including site attributes,

demographic information about individuals and the interaction of individual variables and site

variables. εij is known to individuals, but unobserved by researcher. The individual i will choose

alternative j denoted by yij = 1 if alternative j gives him the highest utility. Mathematically,

yij =


1 if Vij + εij ≥ Vik + εik for k = 1, . . . , J

0 otherwise

If εij is independent and identical (IID) distributed as type one extreme value random variables

with scale parameter µ, the model is a multinomial logit model.6 The probability of choosing

alternative j has the close form (See, e.g., (16)).

Pij =
exp(Xijβ/µ)∑J
k=1 exp(Xikβ/µ)

(3.1)

A well known limitation of the multinomial logit model is that it imposes the independent

of irrelevant alternative (IIA) property with the probability ratio of any two alternatives is

independent of other alternatives. IIA property limits the possible substitution pattern among

alternatives and is often rejected as a restriction on preferences in practice. For this reason, it

is more common in the literature to employ more flexible distributional assumptions, such as

nested logit or mixed logit (See, e.g., (27), (16)).

3.2.1.2 Nested Logit and Mixed logit

Based on the general extreme value distributions, nested logit models are proposed in the

literature to allow for more flexible substitution pattern among alternatives (See, e.g., (28)).

6µ is usually normalized to 1 to achieve the point identification of model parameters.
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Alternatives are grouped into nests according to some common attributes, which allows for

correlation (and great substitutability) among alternatives in the same nest while still yielding

relatively simple choice probability formulas (See, e.g., (14), (24) and (12) among others).

Although introduction of nested logit allows for more flexible substitution patterns, nested

logit suffers some shortcomings. One of them is that the preference parameters (β) and welfare

estimate can be very sensitive to the assumed nest structure (See, e.g., (14)). Although nested

logit models allow the induced substitution pattern to relax the IIA property, the ability to

allow heterogenous preference on site attributes is limited.

McFadden and Train ((20)) develops the mixed logit model by introducing another layer

of heterogenous and unobservable uncertainty on the preference parameters in the standard

multinomial logit model. The preference parameter vector β is assumed to be a random vector

from researchers’ perspective. Mathematically,

β ∼ f(β|θ) where θ is the set of distribution parameters to be estimated.

The conditional choice probability of choosing alternative j is then given by

P (yij = 1|β = βr) =
exp(Xijβr)∑J
k=1 exp(Xijβr)

and the unconditional probability then is

P (yij = 1|θ) =

∫
P (yij = 1|βr)f(βr|θ)dβ.

Mixed logit model can mimic any random utility models (See, e.g., (20),(27)). As the compu-

tation technologies advances and cost dramatically decreases, mixed logit model has become

more popular and a standard framework to study the discrete choice models.

Though the assumptions used in the nested logit model is different from the ones used in the

mixed logit model, the substitution pattern captured in a nested structure can be mimicked by

an error component mixed logit model by introducing a dummy to alternatives in the same nest

and imposing a random coefficient for this dummy (See, e.g., (27), (24)). The advantages of

using a mixed logit model instead of analog nested logit model based on certain general extreme

value (GEV) structure are two fold. First, statistical test on the possible correlation among
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alternatives is much easier in a mixed logit model than in nested models. In a mixed logit

model, identifying a possible nest among some alternatives can be achieved by simply adding

a dummy variable for those alternatives and testing whether the corresponding coefficient is

significantly different from zero. While in nested models, we must estimate several competing

nested structures and decide which one is the best one based on certain criteria (e.g., likelihood

dominance criteria suggested by Pollak and Wales (26)). The limitation of this approach is the

number of models need to be estimated increases as the number of possible structure supposed.

Another advantage is that mixed logit model is easy to be extended to incorporate more flexible

substitution patterns across alternatives and choice occasions (such as models with overlapping

nests).

A problem with using error component mixed logit model to replace a GEV based nested

model is that usually there is no closed form for unconditional probabilities and the identifi-

cation issue may become more complicated than in nested models. The identification in RUM

models is different from the ones caused by omitted variables or endogenous variables in OLS.

In RUM models, the preference will not change as we scale the utility levels of all the alterna-

tives. There are essentially infinite vectors of parameters could represent the same preference,

thus we usually normalize some parameters in the distribution of error term ε to a certain value

to pin down the unique combination of parameters, like assuming a standard type I extreme

value distribution for logit models. Although there are numerous applications of mixed logit

models in the literature, only Walker et al. (2) to our knowledge proposes conditions to check

the identification issue in a subset of mixed logit models called normal error component logit

mixture. Three conditions are proposed in the paper to check the identification issue before

estimation.7 We will follow the guidelines in that paper to check identification of our proposed

models.

7Checking the singularity of the hessian matrix of the log-likelihood functions after estimation is an empir-
ical method to check the identification. However the mixed logit model are usually estimated with numerical
simulations which makes this judgement less reliable. See (3)
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3.2.2 Aggregation models

Using aggregate probability model to conquer the partial information issue discussed in

this paper is closely related the aggregation problem addressed elsewhere in the literature.

Historically, aggregation was used in the literature to alleviate the computation burden when

researchers were faced with the problem of modeling model a large number of alternatives in

the choice set. Consider the standard RUM model in which the utility that individual i receives

from visiting site j is given by

Uij = Vij + ηij

where ηij is a IID type one extreme value random variable with scale parameter of µ. Grouping

together a subset of sites as group a, say sites j = 1, . . . , Ja, the utility for individual i to choose

this group will be

Uia = µln[

Ja∑
j=1

exp(
Vij
µ

)] + ηia

where ηia is distributed as a type one extreme value random variable with scale µ. The utility

can then be written as

Uia = Via + ηia

where Via = V̄ia + µln[
1

Ja
exp(

(Vij − V̄ia)
µ

)]︸ ︷︷ ︸
heterogeneity term

+ µlnJa︸ ︷︷ ︸
size term

+ηia

where V̄ia is the average utility of alternatives in the aggregate group a. A RUM model can be

used with the redefined aggregate site a.

Ben-Akiva and Lerman (2) and McFadden (17) both identified that there will be bias in

the aggregation model when the heterogeneous term and size term are not included. The size

term can be easily incorporated into the model, while the heterogeneity term is more difficult to

control for because it contains information about unknown preference parameters in Vij and V̄ia.

In addition, the heterogeneity term is usually nonlinear in parameters, the possible direction

and size of the bias cannot be determined a priori. There have been a number of studies in

the literature examining the possible ways to mitigate the bias or evaluate the bias caused by
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different aggregating schemes for specific data sets. The general conclusion is that aggregation

biases increases as heterogeneity within aggregate groups increases and tends to overstate the

welfare changes. Some form of heterogeneity control is suggested to be used whenever is possible

(See, e.g., (25)).

Aggregation is common in random utility models (RUM) of recreation in the literature for

the purpose of saving computational resources. Kaoru and Smith (15) were the first one to

analyze the effects of aggregation on preference parameter estimation and welfare measure.

Their pioneering work suggested the aggregation model performed relatively well in capturing

recreation behavior, though it was not promising in welfare calculation in an experiment with

mild aggregation, from 35 sites to 23 sites and 11 sites. Parsons and Needelman (23) conducted

more experiments in a large scale of aggregation with a fishing recreation data set in Wisconsin.

In this paper, the authors identify two sources of bias in the aggregation model, the degree

of aggregation measured by the number of elementary sites in one aggregate site and the

heterogeneity of elementary sites in the aggregation. Their results partly confirm the finding

in Kaoru and Smith (15) that some level of aggregation still did reasonably well in modeling

behavior, but extensive aggregation leads to inconsistent and unexplainable recreation behavior,

as well as the wrong sign of some coefficients of important variables in the econometric model.

In terms of welfare measure, even mild aggregation results in significant bias.

Feather and Lupi (14) proposes the partial aggregation approach in which the popular sites

and policy-related sites are treated as individual sites, while the remaining sites are aggregated

to some level. With an application to a data set on sport fishing at lakes in Minnesota, the

authors find their partial aggregation model outperform the full aggregation models and the

difference on preference parameter estimation between the partially aggregated model and the

full information model became smaller when the degree of aggregation decreased. Parson,

Plantinga and Boyle (22) suggests a similar partial aggregation approach by treating policy

interested sites and their close substitutes as individual sites and aggregating other sites to

some degree. Our aggregation model is similar to these partial aggregation models in the sense

that some sites are modeled individually and other sites are modeled as a group.

With improvements in computing technology, Ferguson and Kanaroglou (5) suggests to esti-
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mate the full version of the aggregation model explicitly including heterogenous terms and size

terms, which are usually estimated without the heterogeneity term in a simple nest structure.

Haener et al. (7) follows the suggestion and applies the method to model hunting behavior in

Canada and suggests to use area of the aggregate hunting zone to control the heterogeneity

in order to alleviate aggregation bias. Similar to these full version aggregation model, our

aggregate (probability) models implicitly includes heterogenous terms and size terms, and thus

will avoid the bias whenever the aggregation model is effective in the sense that it is identified

with the standard normalization.

The hypothesized fundamental models on which aggregation work are based in these papers

are either multinomial logit model or nested model. To our knowledge, aggregation models have

not been explored in the normal error component framework. In this paper, we will propose an

aggregate (probability) model to incorporate data sets with partial information to model the

individuals’ recreational choices whenever possible and practical.

3.3 Model Setup and Identification Issue

Walker et al. (2) points out the identification issue in the prevailing mixed logit models.

We follow the conditions provided in that paper to discuss the identification issues that arise

in our error-component mixed logit models.

We model individuals’s recreational sites choice problem in the RUM framework. Suppose

the utility individual i receives from visiting recreational site j is a linear function of explanatory

variables describing individual i and site j’s attributes (Xij) and the error terms (εij). That is

Uij =


Xijβ︸ ︷︷ ︸
Vij

+εij if j = 1, . . . , J

εi0 if j = 0

The error term (ε) here are not the independently and identically distributed (i.i.d.) type one

extreme random variables, but instead are the sum of a series of random variables representing

alternative nesting structures. In each choice occasion, individual i will choose to visit the site
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j if it gives the highest utility among all the sites. That is

yij =


1 if Uij ≥ Uik for k = 1, . . . , J

0 otherwise

Where yij = 1 means individual i chooses to visit site j.

In order to ease the discussion of identification, we employ a compact vector form:

Ui = Xiβ + εi

εi = Fξi + ηi (3.2)

Yi = [yi0, . . . , yiJ ]′

Where Xi is a ((J + 1) ×K) matrix, Ui, Yi and εi are ((J + 1) × 1) vectors, ξi is an (M × 1)

vector of M independent standard normally distributed variables, F is a ((J + 1)×M) matrix,

Fξi can be used to represent a wide variety of nesting structures. ηi is a ((J + 1) × 1) vector

of i.i.d. extreme type one random variables. ξi and ηi are independent from each other. The

followings are four nesting structures:

• Case 1: F = 0(J+1)×M , standard multinomial logit model (case 1 in Figure 1).

• Case 2: F = [0 σt . . . σt]
′
(J+1)×1 and ξi = τt, nested structure one (case 2 in Figure 1).

This case nests together our two types of sites, lakes and rivers, into a broad ”trip” nest.

• Case 3: F =

 0 (σl)(1×Jl) 01×Jr

0 01×Jl (σr)(1×Jr)


′

and ξi = [τl τr], nested structure two (case

3 in Figure 1). This case groups lake sites together in a single nest and groups river sites

together in a separate nest.

• Case 4: F =


0 (σt)(1×Jl) (σt)1×Jr

0 01×Jl (σr)(1×Jr)

0 (σl)(1×Jl) 01×Jr


′

and ξi = [τt τl τr], nested structure three

(case 4 in Figure 1). This case is combination of cases 2 and 3, with an overall ”trips”

nest and two sub-nests distinguishing lakes and rivers.
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The parameters σt, σl, σr are all positive real numbers, τt, τl, τr are independent standard normal

random variables and J = Jl + Jr. Written in the forms of conditional utilities, the four cases

will be

• Case 1

Uij = βXij + ηij ∀j ∈ group L

Uij = βXij + ηij ∀j ∈ group R

Ui0 = ηi0

• Case 2

Uij = βXij + σtτt + ηij ∀j ∈ group L

Uij = βXij + σtτt + ηij ∀j ∈ group R

Ui0 = ηi0

• Case 3

Uij = βXij + σlτl + ηij ∀j ∈ group L

Uij = βXij + σrτr + ηij ∀j ∈ group R

Ui0 = ηi0

• Case 4

Uij = βXij + σtτt + σlτl + ηij ∀j ∈ group L

Uij = βXij + σtτt + σrτr + ηij ∀j ∈ group R

Ui0 = ηi0

In these above four cases we assume there are three possible groups of sites in the model,

stay-at-home option, a group (L) consisting of Jl sites and a group (R) consisting of Jr sites.

This division is used in our Monto Carlo simulations reflects the two groups of sites, Lakes
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and Rivers, in our application to the 2009 Iowa Lake and River Data. However, the follow-

ing discussion of identification is not limited to the two groups setup and the argument for

identifiability of the model can be easily extended into other setups.

When the site level trip information is available, a full information likelihood function can

be constructed based on the probability of visiting site j by individual i,

Pr(yij = 1|ξi) =
exp((Xijβ + Fjξi)/µ)∑J
k=0 exp((Xikβ + Fkξi)/µ)

.

Because the error term of ξi is not known to researchers, the unconditional probability will be

Pr(yij = 1) =

∫
ξ
Pr(yij = 1|ξi)dξi

and the log-likelihood function will be

llk(i) =

J∑
j=0

Pr(yij = 1)yij

This likelihood function can be estimated with an unbiased, smooth simulator with a sequence

of R random draws or Halton sequences for the unknown variable, ξ (See, e.g., (18)).

When researchers only have the group trip information for a subset of sites, the full informa-

tion model cannot be used. In such situations, the aggregation model may allow us recover the

parameters in the model. For example, consider the case in which we do not have the individ-

uals’ trip information to sites in group R and instead we have only the group trip information

ya, defined as

ya = yi0 +

Jr∑
j=1

yij ∀j ∈ group R

i.e., we only have the aggregated choice information for sites in group R and staying-at-home

option. This partial trip information allows us to construct the probability of observation

ya = 1 which is the sum the probabilities of visiting each site j in this group.

Pr(yai = 1|ξi) =
∑

∀j∈(0, group R)

Pr(yij = 1|ξi)

=
∑

∀j∈(0, group R)

exp((Xijβ + Fjξi)/µ)∑J
k=0 exp((Xikβ + Fkξi)/µ)

=
1

1 +
∑
∀k∈ group L exp(

(Xijβ+Fjξi)
µVia

)
(3.3)
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where

Via =
∑

∀j∈(0, group R)

exp((Xijβ + Fjξi)/µ)

We could think this probability is the one associated with a redefined site a with the utility

Uia = max (Uij = Xijβ + Fjξj + ηij , j ∈ {0, group R}) (3.4)

Modifying the log-likelihood function accordingly seems profitable in the sense we still have

a well defined likelihood function. However, the aggregated nature of this model will limit its

potential applicability because of potential identification concerns. Some parameters originally

identified in the full information model may no longer be identified in the aggregation models

based on this partial trip information.

The conditional utility of visiting the new aggregate site a is complicated and the aggrega-

tion model is no longer a NECLM discussed in Walker et al.(2) even if the underlying model is

a NECLM. Though general conclusions about the identification is out of this paper’s scope, we

speculate that the identification of the aggregation model relies on the richness of the variation

embedded in the travel cost variable. The spirit of the conditions of Walker et al. (2) is to

make sure the variation in the covariance matrix of utility differences is rich enough to identify

the parameters in the error structures. In the examples used by Walker et al., the covariance

matrix solely depends on the structure of the error terms and there is no interaction with

preferences. While here in the aggregation model, the preference information directly enters

into the covariance matrix. The potential richness of the elements in the covariance matrix can

be larger, thus we speculate that the model could be practically identified if the variation of

preference variables is large.

The conventional modeling technique in this situation is to treat ya as the choice of staying-

at-home option, and to model the data accordingly. Mathematically,

Pr(ya = 1|ξi) = Pr(yi0 = 1|ξi) =
1

1 +
∑
∀k∈ group L exp((Xikβ + Fkξi)/µ)

(3.5)

the unconditional likelihood of individual i changes accordingly. Comparing this probability

with the one in the aggregation model (3.3), these two will be identical to each other if the
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conditional utility of the aggregate site a, Via, is constant for all the individuals. This condition

will not hold in general, thus the conventional model is not correctly specified, the estimation

is open to the possible bias.

3.4 Monte Carlo Simulation

In this section, we will conduct two sets of simulations which differ in terms of the structure

of the conditional utility function. In the first set of simulations called simulation without ASCs,

the conditional utility is a function of travel cost and the site attribute(s). This specification

fits to the situation in which sites with trip information and sites with partial trip information

are essentially the same set of alternatives whose value can be captured by the same set of

site attributes. In the second set of simulation, simulation with ASCs, the conditional utility

function depends on the travel cost and alternative specific constant (ASC). This setting mimics

the situation in which sites with trip information and sites with partial trip information belong

to two closely related choice alternatives, such as river segments and lakes. ASCs are used to

capture site specific values which could be a function of site attributes. A second stage regression

can be used to fully recover the contribution of these site attributes to the conditional utility.

In the next section, a similar structure of conditional utility is used.8

3.4.1 Data Generation Process

Data generation process are generally following the RUM structure discuss in the above

section. That is,

Step 1: Generation of the part of conditional utility denoted by Vij . Vij in each set of

simulations is generated as follows.

a. Simulation without ASCs

Vij = βTCij + βwWj

8Strictly speaking, there is a slight difference in the application that ASCs are also applied to sites with
partial trip information while in the simulation ASCs are only used for sites with trip information. The unique
structure of the application data set allows use to do this without any concern on the identification.
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b. Simulation with ASCs

Vij =


αj + βTCij if site j has individual visitation information.

βTCij otherwise.

The values of parameters used in the simulation are β = −0.05, βw = 1, TC is uniformly

distributed between 10 and 30, W is uniformly distributed within 0 and 1 and αs are

equally spaced between −2.5 and −0.5.

Step 2: Generation of utility part defined by εi. εij = σtτt + σlτl + σrτr + ηij , where

σt, σl, σr are positive numbers, τt, τl, τr are iid standard normal random variables and ηij

is a type one extreme value random variable. Group L and R have equal number of sites.

Step 3: Generation of the site choice for T = 52 choice occasions. For each individual at

a given occasion, yij = 1, j = 0, 1, . . . , J iff Uij = Vij + εij ≥ Uik, ∀k = 0, 1, . . . , J .

This process is repeated cross individuals and 52 times for each individual.

We anticipate that the number of sites (J) and substitution pattern implied by the com-

bination of σt, σl and σr will affect the performance of the conventional models. Thus we

estimate a total of 48 scenarios in the simulation by varying the value of J, J = 10, 20, 40 and

σs(s = t, l, r). In each scenario, three models are estimated, the full information model (Full),

the aggregation model (Aggregation) and the conventional partial model (Partial). Each sce-

nario will be replicated 100 times. Table 2.1 lists the value of the parameters in the error

structures. Each set of parameters defines a different nesting structure with different within

and cross nest correlation. For example, the scenario labeled as S0 implies that there are not

any correlations in the error structure. The implied choice model is a standard multinomial

logit model. The scenarios from S1 to S3 correspond to the nesting structure shown in case 2

of Figure 1 with equal within- and cross-nests correlation.

Since the increase of number of sites will increase the number of ASCs in the model and

thus greatly increase the computation time needed to get the maximum likelihood estimation,

we only consider a subset of scenarios, namely for the scenarios with J = 10 sites, in the second

set of simulations for four nesting specifications (labeled as S0, S1, S5 and S8).
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3.4.2 Simulation Results

Simulation without ASCs

Table 2.2a - 2.2d list the estimation results of preference parameters and nest parameters.

The preference parameters considered there are the estimated value of β and βw, the estimated

value of marginal willingness to pay (MWTP) for water quality, which is defined as MWTP =

βw
β . MWTP is a good indicator for the value of water quality change given other conditions are

fixed. A large deviation of estimated MWTP from the true value implies the CV calculation

will be largely different from the true CV. The metric used in the comparison is the mean

absolute percentage error (MAPE) between estimated parameters and the true value of these

parameters. For example, the MAPE of α in R simulations is defined as

MAPE(α) =
1

R

R∑
r=1

abs(
α̂r − α
α

) (3.6)

where α is the true value and α̂r is the estimated value of α in rth simulation.

There are several results that are worthy regarding the estimated parameters, β, βw and

MWTP(βw/β) in Tables 2.2a - 2.2c. Firstly, the estimated value of β and βw in the full

information model are consistently close to the true value cross all the simulated scenarios,

which is expected since the full information model is identified if we normalize µ = 1, the

value we used in the data generation process. Secondly, in the aggregation model, these two

parameters are also recovered well with only slightly larger percentage errors. The majority

of MAPEs are below 5% and the maximum percentage error is 13%. Also, as the number of

sites increase, the difference between estimated value and true value becomes smaller. The

correlation between groups of sites does appear not affect those findings substantially. Thirdly,

the estimated values from the partial model are systematically and substantially different from

the true values. As the correlations and the number of sites increase, the difference tends to

become smaller. The lowest difference can reach 9% in terms of MAPE in our simulations.

The comparisons of nest parameters between the full information model and the aggregation

model, σt, σl, σr, are showed in Table 2.2d. In general, the full model has the estimated values

close to the true values, though the inaccuracy is larger compared with the estimation of

preference parameters, such as β and βw. The aggregation model does not perform as well
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in recovering the nest parameters. The results on nest parameters are diverse. In the set of

scenarios in which the underlying nest structure is the case 2 in Figure 1, it seems the model

does reasonably well. However, in the most complicated structures (Case 3 and 4 in Figure 1),

the estimation is relatively poor.

Table 2.2e shows the welfare comparison between models, using the full information model as

the baseline. Recreational activities are modeled not only to recover the underlying preference,

but also to analyze the welfare change due to some changes in recreational sites’ accessability

and in sites’ attributes, such as water quality. In our simulation, we calculate the welfare

change due to site closure, i.e., we assume the first site is closed for residents in each scenario.

The first observation is that the aggregation model produces almost identical welfare estimation

despite its poor performance in recovering of the nest parameters, i.e., σt, σl and σr. The second

observation is that there are substantial bias found in CV from the partial model. The direction

of the bias varies depending on the number of sites in the simulation and correlation among

them. Generally, as the number of sites and the correlation increases the bias also increases.

The overestimation of welfare change partially confirms the finding in the aggregation literature

if we think the partial model poorly controls for aggregation.9

Simulation with ASCs

A model without ASCs implies a strong assumption that researcher observes all the site

specific information that affects the conditional utility of visiting any site. If we acknowledge

that there may be some site specific attributes not observed, a model with ASCs is preferred

to control the possible bias (i.e., Murdock (1)). We add the site specific values to individual

sites with observed trip information in the simulation and estimate the simulated data with

maximum likelihood estimation technique.

Table 2.3 shows the mean absolute percentage errors in estimated parameters. It is clear

that ASCs in the partial model were poorly estimated with quite large bias. The bias positively

correlates with site specific values. As in the simulations without ASCs, all three models

successfully recover the parameter of travel cost (β). We argued early that the variation

9The partial model can be thought as an aggregation model in which the observed part of utility is normalized
to zero.
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pattern of site attributes could affect the identification of the aggregation model. As shown in

the appendix, the aggregation substantially change the structure of the covariance matrix of

utility differences by introducing the part of conditional utility determined by site attributes

into the covariance matrix. Thus the variation needed to identify the model depends on the

richness of site attributes. By replacing water quality with ASCs, we lower the possible variation

in the covariance matrix brought about by the variation of water quality. Consequently, the

percentage errors of parameters of normal errors increases when compared with the counterpart

scenarios in simulations without ASCs. The large bias of ASCs in partial models implies the

possible large bias in welfare measure at the first glance, while the results show almost no

bias in welfare measure. The welfare change of the site loss depends on two things, the value

of parameter (β), and the estimated probability of visiting the site. There is no significant

bias in the parameter of β and the inclusion of ASCs in the model ensures that the estimated

probabilities will be close to the observed probability which is a fixed number, thus, it is not so

surprising to find no significant bias for both the aggregation model and the partial model.10

The results from both sets of simulation suggest that the aggregation model performs rela-

tively well in terms of recovering the preference parameters and welfare analysis. The partial

model performs substantially better in terms of welfare measure when ASCs were included in

the regression. The findings from the application in the next section are generally consistent

with these simulations.

3.5 Application to 2009 Iowa Lake and River Project

3.5.1 Iowa Lake and River Projects

The application provided below draws on a unique pair of data sets, providing information

on lake and river visitation pattern of Iowa residents in 2009.11 The unique feature of these

two data sets is that 2,500 households who receive both river survey and lake survey give full

10The inclusion of ASCs in a standard multinomial logit model guarantees the predicted probability of visiting
a site equals the observed probability. In mixed logit models, generally, the predicted probability will not equal
the observed probability when ASCs are included in the model, though Babatunde et al. (1) find they typically
do not differ substantially.

11The survey samples could be downloaded from Center for Agricultural and Rural Development at Iowa State
University’s websites: Lake Survey’s Link and River Survey’s Link

http://www.card.iastate.edu/environment/nonmarket_valuation/iowa_lakes
http://www.card.iastate.edu/environment/nonmarket_valuation/iowa_rivers
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information about their recreational trip information to all river sites and lake sites. Among

these overlap respondents, there are 1160 (46.4 %) respondents who returned both surveys.12

The co-existence feature allows us to identify the aggregation model constructed for samples

with only partial information by relying on the identification of the full model applied to these

overlap samples.

3.5.1.1 2009 Iowa River Project

The data set has two primary sources: the Iowa 2009 River Survey conducted by the

Department of Economics, Iowa State University and the location and attributes information

about 73 identified river segments and streams in Iowa provided by the Iowa Department of

Natural Resources (IDNR). The focus of the survey was on collecting the baseline information

on Iowa households’ riverine recreation activities in the year of 2009, along with demographic

information and attitudes regarding the factors affecting respondents’ recreation decisions. The

final survey was conducted by mail in November, 2009 sent to 10000 randomly selected Iowa

residents. The sampled residents were divided into two groups, 7500 households were selected

to receive only the river survey and another 2500 households were selected to receive both the

river survey and the lake survey. Among all the surveys mailed, 4758 surveys were returned,

for a raw return rate of around 48%.13 The IDNR provides us a series of shape files, a type

of files used in ArcGis software, on geographic information and site attributes. Based on these

shape files, we were able to calculate the distance and travel time for each household to each

river access point by PCMiler street version 24 . In the following model, we simplify the travel

distance calculation by setting the midpoint of each river as the access point for that river

segment.14

12Only 1084 respondents’ surveys are used in the estimation because of the data incompleteness issue.
13There are only 4084 qualified surveys for the analysis. Among those excluded surveys, some are uncompleted

due to missing some information on trip and demographic information.
14Once we have the one way travel distance d, the travel cost is calculated by the formula: C = 2gd+2/3w ∗ t,

where C is the travel cost, g is the per mile vehicle cost, w is the hourly wage rate and t is the travel time. Both d
and t are calculated by PCMiler. The value of g is set to be 54 cents per mile according to the 2009 AAA annual
driving cost for an average sedan with 15,000 miles per year driving. The wage rate w is calculated by dividing
household annual income imputing from the survey by the number of adults in the households and 2000, the
total working hours in a year. For the respondents who do not report income information, we assume the wage
rate is 19 dollars per hour calculated from 2009 Iowa wage survey conducted by Iowa Workforce Development,
Labor Force and Occupational Analysis Bureau.
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3.5.1.2 2009 Iowa Lake Project

2009 Iowa lake project is a continuation of the four-years long study (2002-2005) about

Iowans’ visitation patterns and preferences to 132 important lakes in the state. The goal of

the project is to combine the lake attributes, such as water quality, with Iowans’ visitation

information to assess the value of water quality improvement in those lakes. The 2009 surveys

were sent out to 10,000 households, among them 5400 households are selected from respondents

to the former 2005 lake survey and 4,600 new households are randomly selected from Iowa

households. There are also 2,500 households receiving both the lake survey and the river

survey. A total of 6,043 respondents returned their surveys, yielding a 61.43% response rate

among deliverable surveys.15

3.5.2 Data Description

Table 2.4 provides summary statistics for trip information of surveyed households. For the

pooled sample, the average number of trip to all the lakes is 6.12 per year and the number of

trip to river segments is 6.07 per year, varying with some respondents taking zero trips while

others took more than 52 per year.16 In total, 59 % of the lake sample of respondents receiving

the lake survey reports positive lake recreation trips with the average visitation at 10.36 per

year. Among the river respondents who receive the river survey, 47.6 % of the sample report

they had positive river trips in 2009 with the average visitation rate of 12.76 per year.

Table 2.5 shows summary statistics of demographics of different samples. For the pooled

sample, the returned surveys show that the sample covers a population leaning toward middle

age and senior people. On average, the respondent is more likely to be a female with college

degree and comes from a family with two adults and one kid under age 6. The respondent have

a 60% probability to be an employed worker and 36% chance to be a retired person. With small

chances, around 1% and 3%, respectively, the respondent will be a student and unemployed

person. There are around 36% respondents coming from a household owning a boat, such as

15There are some household not delivered due to reasons such as address change, deceased or refusal of receiving
the survey, which makes the total number of deliverable survey less than 10,000.

16As a conventional assumption in the literature, the maximum allowed visits per year is set at 52. Those
respondents who report more than 52 trips per year are excluded from the analysis.
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fishing boats, canoes and so on. The summary statistics of demographics of lake sample, river

sample and overlap sample are also shown in Table 2.5. There is no substantial difference

among these samples since the respondents are randomly selected to represent typical Iowa

residents by design.

The summary statistics of lake attributes are shown in Table 2.6. We include six lake at-

tributes. Secchi depth is used in this paper to represent water quality, which is a measure of

water transparency. Iowa’s lakes presents great variation in this measure, with Secchi depth

ranging from 0.2m in Lake Darling, Washington county to 7.8m in West Okoboji Lake, Dick-

inson County. The average Secchi depth in the sample lakes is 1.25m.17 Iowa lakes varies

substantially in terms of area (Size), with the smallest lake, Moorhead Lake in Ida county,

covering only 10 acres, while the biggest lake, Red Rock lake in Marion county, covers 19,000

acres. There are also four dummy variables to measure the attractiveness of a lake. The first

one is ramp which equals one if there is a cement boat-ramp at that site and equals zero oth-

erwise. The second one is state park which equals one if there is a state park adjacent to the

site. The third one is wake which equals one if motorized vessels are allowed to travel fast

enough to create wakes in the lake and equals zero otherwise. The last one is Handicap facility

which equals one if there are handicap facilities for disabled people at the site and equals zero

otherwise.

We list the summary statistics of river attributes in Table 2.7. From the ArcGis shape

files provided by Iowa DNR, we construct 11 river attributes. The length of 73 river segments,

Length, varies from 26.9 miles to 161.8 miles. Canoe is a percentage variable measuring how

much of the river segment is canoeable as identified by the IDNR. On average, more than 60%

of the river segment is canoeable. The specific percentage of each river segment varies from

zero percent to almost 100%. Outcrop measures the number of outcrops along the river banks,

and varies from 0 outcrops along the bank to more than 100 outcrops. Using the built-in

functions in Arcgis 10.1 and the shape file of Iowa Land Cover 2002, we also construct several

17Egan et al. ((11)) use more water quality measures based on a similar data set. Since the major purpose
of this paper is not focused on how to choose water quality measures to best estimate household recreational
behavior, only Secchi depth is included in the model at this stage and more water quality measures could be
included in the future working if necessary.
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surface-type variables: Waterbody for the share of water body within the corridor of 75 meters

width on each side from the middle line of the river segments, Wetland for the share of wetland,

Forest for the share of forest land, Grass for the share of grass land, Crop for the share of crop

land, and Developed for the share of developed land. Within this wide rive corridor, the top

three land cover types are crop land (39%), forest land (24%) and grass land (11%). Iowa

water quality index (IWQI ), adjusted from the national water quality index to incorporate

Iowa specific situations, is used to represent the water quality status of river segments. The

scale of this index is from 0 to 100 with higher values indicating better water quality. The river

water quality is not monitored as frequently as lake sites. Also the coverage of monitoring sites

is very poor in the sense that a significant number of river segments are not monitored, 23 river

segments or 31.5% of 73 river segments in this sample. To capture this missing variable issue,

MIWQI, a dummy variable, which equals one if the river segment is not monitored, is used.

Within the monitored river segments, the mean value of IWQI is 31.55. This means in general

the water quality of Iowa rivers is poor.18 We also construct a variable, FISH, to measure the

abundance of fish species. The Iowa DNR identifies more than 100 fish species in instate rivers

and compiles the presence information at the segment levels delimited by dams on rivers. The

average number of fish species is a little more than 30 and there are 3 river segments which

do not have identified fish species and 9 river segments for which we do not have information

regarding fish species. The dummy, MFISH, is used to indicate segments with missing fish

species.

3.5.3 Model Setup and Results

The unique design of the Iowa lake project and river project distinguishes the respondents

into three categories, the lake-only group (respondents who only receive the lake survey ques-

tionnaire), the river-only group (respondents who only receive the river survey questionnaire)

and the overlap group (respondents who receive both river survey questionnaire and lake survey

questionnaire). Based on these three groups, we estimate four models:

18Iowa DNR classifies five water quality categories based on the value of IWQI: very poor (0-25), poor(25-50),
fair(50-70), good(70-90) and excellent(90-100). Other issues with river water quality are the poor coverage for
the monitored river segment and unfrequent monitoring activities.
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• Model 1 - pooled model

• Model 2 - overlap model

• Model 3 - lake partial model

• Model 4 - river partial model

In pooled model, the inclusion of the overlap group allows us to build an aggregate probability

for the outside option, specifically separate the aggregate probability into the one for visiting a

river (or lake) site and the one for staying-at-home option. In overlap model, the probability of

visiting each site is specifically modeled for the overlap group. While in lake partial model and

river partial model, we treat the outside options as if it is really a staying-at-home option and

neglect it is an aggregated option for the lake-only group and the river-only group, respectively.

Nest structures are all assumed in all the four models and estimated by the error component

mixed logit models. In pooled model, three normal distributed random variables are assumed

to mimic the nest structure. One is used to introduce the cross river sites and lake sites

correlation. The other two are introduced to allow for the correlation within lake sites or river

sites. These three random variables are also assumed in overlap model. In lake partial model

and river partial model, only one random variable is used to mimic the correlation among lake

(river) sites. Test on the presence of nest structures can be performed after estimation by

testing whether the parameters of the standard deviation for these normal distributions are

significantly different from zero.

The estimation results of these four models are listed in Table 2.8. The travel cost coefficient

in the three models are quiet similar and stable, ranging from 0.0305 to 0.0334. Comparing with

young people, elder people tend to stay at home more often. Female respondents choose more

visits when compared with male respondents.19 A person with college degree is more likely to

stay at home, though the effect is not significant in the lake partial model. Persons coming from

big families are also more likely to choose water based recreational activities, though the effect

is not significant in the river partial model. The number of kids in the household seems not

19In the questionnaire, we specifically ask the individual visits to lake sites or river sites, while whether the
respondent will answer from the family perspective is out of our control. Thus we suggest readers do not take
too much emphasis on this gender difference.
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a significant factor when making the visitation decision, although the effects in pooled model

and overlap model are marginally significant but opposite directions. For employment status

variables, there are no significant effects found in these models. For students, the effects are all

significantly negative on visits to river or lake sites except in overlap model. For retired people,

we find a significant positive effect on visits only in pooled model. In other models, this effect is

not significant. The ownership of a boat is found universally positively affect residents’ either

lake recreation or river recreation. Purchasing a boat has already show the strong preference

on the water-based recreation activities, it is very natural to find the positive effects.

One of the advantages to estimate an error-component version of nested logit model is that

it is straightforward and easy to test the possible structures. In the overlap model and pooled

model, we estimate three error terms associating with trip error, lake-related error and river-

related error. A joint restriction of the standard deviation of these three normal error terms to

being zero is equivalent to reducing the model to the multinomial logit specification. The test

is carried out with the Wald test ((8)). The joint test and individual tests all suggest that we

rejected restricting the model from the two-level nesting structure depicted in Figure 1. The

implied correlation cross and within lake (river) sites are showed in Table 2.9.20 In the lake

partial model and river partial model, the tests also suggest there is a nest structure among lake

sites or river sites, respectively. If the pooled model is the true model, the two partial models

capture the within correlation quite well and the river partial model performs relatively better.

The coefficients of certain lake and river attributes are reported in Table 2.10 respectively,

these results are from the second stage regression suggested in Murdock ((1)). For lake at-

tributes, most of the coefficients agree in terms of sign and significance except the Wake dummy.

We found the Secchi is an appealing water quality measure.21 The results also show that Iowan

like to visit lakes with a larger water area. For other attributes, only the coefficient of wake

20If the three normal errors are characterized by zero mean and σt, σl and σr as standard deviations re-

spectively, the correlation cross lake (river) sites is calculated as

√
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σ2
t+π

2/6
, the correlation within lake sites is√
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and the correlation within river sites is
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21There are some other water quality for lakes, such as total suspended particles and water quality index. We
only include Secchi here is because it has been used in other studies and found to be a good proxy for water
quality.
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dummy is found to be positively significant in the lake partial model. This coefficient is positive

in the pooled model and negative in the overlap model, but not significant. We found all the

coefficient of other attributes are significant in both models. Slight difference in the magnitude

of values are found between the full model and lake partial models. In both models, water

quality represented by the Secchi depth, is found to positively and significantly affect people’s

recreation decisions. The lakes with more recreational amenities, indicated by the dummy

variables, Ramp, Handicap facilities and State Park, attract more visitation.

The estimation results of river attributes are also in Table 2.10. The coefficients in all the

three models mostly agree with each other although sometimes they differ in the statistical

significance. For example, a longer river segment attracts more visits implied in all three model

and the effect is found not to be significant only in the overlap model. Using the forest land

share along the river bank as the default land cover type, the more share of water body area

and wetland area usually means the river is more attractive, though this appealing effect is only

significant in the overlap model. Neither of these three model finds the water quality measure,

Iowa water quality index, imply Iowan prefer to visit the river segment with a high IWQI. We

think the lack of significance in our models reflects the current situation about water quality

monitoring work for rivers. Taking Iowa as example, there are roughly 100 monitoring sites for

all the rivers in Iowa. Based on our sample, the total length of 73 identified river segments is

around 6000 miles. That means there are less than 2 monitoring sites for every 100 miles of

river. At the same time, the frequency of monitoring is very low. The water quality file passed

by the Iowa DNR shows that for most of the monitor sites, there are only 2 observations each

year. Thus it is very likely the water quality measure do not reflect the relevant ones which

really affect Iowa households’ decisions.

Recreation models are often used to calculate welfare effect due to changes of site closing or

programs targeting to improve water qualities of certain sites. We consider two type of welfare

measure, the loss of site and changed site attributes. In the loss of site scenario, one lake site

(Lake Saylorville) and one rive site (Mississippi-the part from Clinton County to Muscatine

County) are assumed to be closed. The reason of choosing these two sites is they receive the

most visits in the survey year. In terms of water quality change, we only consider the change
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of Secchi depth for lake sites because the coefficient of water quality variable, IWQI, is not

significant in our models. The specific scenario is that the Secchi depth of all the lakes are

improved to the level of lake West Okoboji which has the Secchi depth of 7.8 meters. The

welfare results are showed in Table 2.11.

The results show the welfare measure (CV) calculated from the pooled model and the

overlap model for the site loss are similarly, and there is a highly overlap between their 90%

quantiles. While the partial models produce significant smaller values. In terms of Secchi depth

change, the results from three models do not agree with each other. The overlap model gives

the highest value and is followed by the pooled model and lake partial model. If the pooled

model was the model we can trust, the partial models do produce the statistically significant

but quite moderate deviation in welfare analysis.

3.6 Conclusion

Households’ recreational data are extensively used to connect individuals’ visitation behav-

ior with recreational facilities and attributes and to evaluate their economic values. Many of

these studies are built on survey data which may only have partial information about individ-

uals’ recreational site choices. In this paper we propose a modeling technique based on the

site aggregation literature to tackle this problem. Though the complex structure induced by

the aggregation technique sheds shadows in the identification of the model, two sets of Monte

Carlo simulations shows the aggregation model works quite well in some circumstances. Com-

pared with the conventional modeling techniques, the aggregation model have relatively better

performance in recovering preference parameters and welfare calculation. With alternative spe-

cific constants in the model, the conventional model can produce reasonable welfare measure

as good as the aggregation model.

The application to the unique data from Iowa 2009 Lake and River projects shows the

difference between a variety of modeling techniques may not be as significant as the ones found

in the simulations. We applied the pooled model with the aggregation technique along with

other two models, the conventional partial model on partial samples and the full information

model based on the overlap samples. Though the partial model is open to bias in theory, we
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find slight differences in preference parameters in terms of magnitude of values of coefficients

and significance levels. With regards to welfare evaluation, the full model and partial models

do produce statistically significant but moderate difference.

The underlying structures could make it difficult, if not possible, to find the identification

conditions for the aggregation model, thus in some situations, the conventional partial model

will be the one possible way to model the recreation data available to researches. On the other

hand, our simulation work shows that the potential bias in doing so could be quite large. The

nonlinearity of RUM models make it difficult to tell the possible direction and the extent of

this bias. How to mitigate this bias deserves more future attentions.
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Figure 2.1 Nest Structures



72

Table 2.1 Specification of Error Terms in Simulation
σt σl σr Correlation in Lake Correlation in River Cross Correlation

Case 1 S0* 0 0 0 0.00 0.00 0.00

Case 2

S1* 0.5 0 0 0.13 0.13 0.13

S2 1 0 0 0.38 0.38 0.38

S3 1.5 0 0 0.58 0.58 0.58

Case 3

S4 0 0.1 0.1 0.01 0.01 0.00

S5* 0 0.5 0.5 0.13 0.13 0.00

S6 0 1 1 0.38 0.38 0.00

Case 4

S7 0.5 0.1 0.1 0.14 0.14 0.13

S8* 0.5 0.5 0.5 0.23 0.23 0.12

S9 0.5 1 1 0.43 0.43 0.09

S10 1 0.1 0.1 0.38 0.38 0.38

S11 1 0.5 0.5 0.43 0.43 0.35

S12 1 1 1 0.55 0.55 0.27

S13 1.5 0.1 0.1 0.58 0.58 0.58

S14 1.5 0.5 0.5 0.60 0.60 0.54

S15 1.5 1 1 0.66 0.66 0.46

S0, ..., S15 are used to label different scenarios.

The scenarios with “*” appear in the simulation with ASCs.
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Table 2.2e Welfare Change (CV) in Simulation

Aggregation Model Partial Model

σt = 0 0.5 1.0 1.5 0 0.5 1.0 1.5

J = 10

σl = σr

0 1.00 1.00 1.00 1.00 0.56 0.70 0.85 1.02
0.1 1.00 1.00 0.99 0.98 0.72 0.73 0.87 1.03
0.5 1.00 1.00 1.00 1.01 1.03 1.07 1.10 1.16
1.0 1.01 1.00 1.01 1.01 1.22 1.23 1.27 1.30

J = 20

σl = σr

0 1.00 1.00 1.00 1.00 0.48 1.25 1.29 1.34
0.1 1.00 1.00 1.00 1.00 1.24 1.25 1.28 1.34
0.5 1.00 1.00 1.00 1.00 1.28 1.30 1.32 1.36
1.0 1.01 1.00 1.00 1.01 1.34 1.34 1.38 1.40

J = 40

σl = σr

0 1.00 1.00 1.00 1.00 0.41 1.39 1.41 1.44
0.1 1.00 1.00 1.00 1.00 1.39 1.40 1.42 1.43
0.5 1.00 1.00 1.00 1.00 1.39 1.40 1.42 1.45
1.0 1.00 1.00 1.00 1.00 1.41 1.41 1.43 1.45

1. The figures in this tables are average ratios of CV from each of these two
models over CV from the corresponding Full model.
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Table 2.3 Mean Absolute Percentage Error in Estimated Parameters with ASCs (J=10)

σt σl σr α1 α2 α3 α4 α5 β σt σl σr CV

Full Model

S0 0 0 0 1 1 1 1 2 1 - - - 0
S1 0.5 0 0 1 1 1 1 2 1 2 - - 0
S5 0 0.5 0.5 1 1 1 2 3 1 - 3 2 0
S8 0.5 0.5 0.5 1 1 1 2 4 1 4 4 3 0

Aggregation Model

S0 0 0 0 1 1 1 2 2 2 - - - 2
S1 0.5 0 0 1 1 1 1 2 2 7 - - 2
S5 0 0.5 0.5 1 2 2 3 5 3 - 18 80 2
S8 0.5 0.5 0.5 2 2 3 5 9 2 66 23 82 2

Partial Model

S0 0 0 0 43 53 71 107 213 2 - - - 2
S1 0.5 0 0 44 55 73 109 219 2 - - - 2
S5 0 0.5 0.5 44 55 73 109 218 3 - - - 2
S8 0.5 0.5 0.5 45 56 75 112 224 2 - - - 2

Table 2.4 2009 Iowa Lakes and Rivers Survey Statistics

Survey Type Variable Mean Std. Dev. Min Max

Pooled Sample
Lake trips 6.12 9.27 0 52
River trips 6.07 10.01 0 52

Overlap Sample
Single Day Trips 9.97 12.42 0 52
Lake Trips 4.53 7.52 0 52
River Trips 5.44 8.44 0 52

Lake Sample (+) Lake Trips 10.36 10.08 1 52
River Sample (+) River Trips 12.76 11.19 1 52

+:Respondents who report positive recreational trips in 2009.
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Table 2.5 Summary Statistics of Demographics

Variable Description
Pooled Sample Overlap Sample Lake Sample River Sample

Mean Mean Mean Mean

Age1 1(Age: 18-25) 0.01 0.01 0.01 0.01
Age2 1(Age: 26-34) 0.05 0.08 0.05 0.06
Age3 1(Age: 35-49) 0.25 0.23 0.23 0.21
Age4 1(Age: 50-59) 0.26 0.25 0.27 0.25
Age5 1(Age: 60-75) 0.31 0.30 0.31 0.31
Age6 1(Age: 76- ) 0.15 0.13 0.14 0.15
Female 1, 0 0.69 0.71 0.68 0.70
College 1, 0 0.70 0.67 0.70 0.69
Size # of adults 1.89 1.91 1.91 1.88
Kids # of kids 0.55 0.65 0.56 0.55
Employed 1, 0 0.60 0.62 0.61 0.59
Student 1, 0 0.01 0.01 0.01 0.01
Retired 1, 0 0.36 0.35 0.35 0.37
Boat 1(Owning a boat) 0.16 0.22 0.13 0.22

1. The corresponding observations are 8316, 1084, 5352 and 4084, respectively.
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Table 2.6 Summary Statistics for Lake Attributes

Variable Unit Mean Std. Dev. Min Max

SECCHI Meters 1.25 1.07 0.2 7.8
SIZE Acres 662.41 2105.41 10 19000
RAMP 0, 1 0.85 0.36 0 1
WAKE 0, 1 0.66 0.48 0 1
HANDICAP FACILITY 0, 1 0.38 0.49 0 1
STATE PARK 0, 1 0.39 0.49 0 1

Table 2.7 Summary Statistics of River Attributes

Variable Unit Mean Std.Dev Min Max

LENGTH Miles 83.20 33.30 26.90 161.8
CANOE % 62.82 27.13 0.00 99.00
OUTCROPPING counts 18.77 31.66 0.00 141.00
WATERBODY % 0.22 0.30 0.00 1.00
WETLAND % 0.01 0.01 0.00 0.05
FOREST % 0.24 0.19 0.00 0.71
GRASS % 0.11 0.09 0 0.40
CROP % 0.39 0.29 0 0.92
DEVELOPED % 0.02 0.04 0 0.24
IWQI (0-100) 31.55 23.00 0 75
MIWQI 0, 1 0.32 0.47 0 1
FISH counts 30.29 18.52 0 71
MFISH 0, 1 0.12 0.33 0 1
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Table 2.8 Estimation Results of Iowa Lake and River Project Data

Pooled Model Overlap Model Lake Partial Model River Partial Model
Est. Std.Dev Est. Std.Dev Est. Std.Dev Est. Std.Dev

Travel Cost Variables

TC 0.0316*** 0.0001 0.0335*** 0.0003 0.0325*** 0.0002 0.0305*** 0.0002

Demographics

Age2 1.5313*** 0.2355 1.8464*** 0.3745 1.5775*** 0.4374 1.9472*** 0.4816
Age3 1.7391*** 0.2258 2.1564*** 0.3764 1.2755*** 0.4210 1.7743*** 0.5114
Age4 1.9749*** 0.2138 2.1225*** 0.3861 1.3919*** 0.4213 2.1924*** 0.5033
Age5 2.3142*** 0.2279 2.7223*** 0.4272 1.6494*** 0.4262 2.8404*** 0.4956
Age6 3.0515*** 0.2673 2.8843*** 0.4321 2.5493*** 0.4403 3.8351*** 0.5246
Female -0.7814*** 0.0754 -0.6312*** 0.0969 -0.4547*** 0.0749 -0.4042*** 0.1387
College -0.5792*** 0.0860 -0.2422*** 0.0919 -0.0364 0.0759 -0.5869*** 0.1218
Size -0.1309*** 0.0445 -0.4276*** 0.0674 -0.1843*** 0.0560 -0.1227 0.1013
Kids -0.1009** 0.0514 -0.0406 0.0562 -0.0104 0.0418 -0.0558 0.0567
Worker -0.1409 0.1400 0.1573 0.2065 0.0723 0.1723 0.1214 0.3881
Student 1.5572*** 0.3351 -1.1944*** 0.3600 0.8660* 0.5121 1.7610*** 0.5050
Retired -0.4794** 0.2124 0.3052 0.2820 -0.0846 0.1952 -0.0869 0.3780
Boat -1.4682*** 0.0804 -1.5613*** 0.1097 -0.9248*** 0.1000 -1.8401*** 0.1367

Nest Parameters

Trip 2.7563*** 0.0450 2.5782*** 0.0647 2.2360*** 0.0315 2.9631*** 0.0528
Lake 0.9417*** 0.0611 1.1318*** 0.0426 - -
River 1.8848*** 0.0422 1.6734*** 0.0560 - -

Table 2.9 Implied Nest Correlations

Model Cross Correlation Within Lakes Within Rivers

Pooled Model 0.91 0.92 0.93
Overlap Model 0.91 0.91 0.93
Lake Partial Model 0.87
River Partial Model 0.92
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Table 2.10 Estimation of Site Attributes (Stage 2)

Variable Pooled Model Overlap Model Partial Model

Lake Attributes

Secchi 0.21*** 0.25*** 0.21***
(4.37) (2.87) (4.15)

ln(Size) 0.49*** 0.48*** 0.50***
(11.70) (8.29) (11.57)

Ramp -0.13 0.04 -0.14
(-0.70) (0.13) (-0.75)

Wake 0.19 -0.09 0.22*
(1.57) (-0.44) (1.80)

Handicap Facilities 0.02 0.18 0.01
(0.18) (0.87) (0.09)

State Park 0.17 0.27 0.16
(1.29) (1.35) (1.23)

Constant -6.62*** -6.94*** -6.80***
(-28.48) (-18.11) (-28.87)

Observations 130.0 130.0 130.0
Adj. R-sq 0.64 0.47 0.64

River Attributes

Length 0.0073* 0.0069 0.0073*
(1.80) (1.37) (1.88)

Canoe 0.0089* -0.0010 0.0083
(1.72) (-0.12) (1.59)

Outcropping 0.0016 0.0059 0.0017
(0.37) (1.20) (0.37)

Waterbody 1.4379 2.0981** 1.4804
(1.60) (2.03) (1.63)

Wetland 18.4493 29.3198* 19.3430
(1.49) (1.84) (1.44)

Grass 0.6152 1.5130 0.5567
(0.36) (0.63) (0.32)

Crop -0.3843 -0.5286 -0.4043
(-0.47) (-0.52) (-0.49)

Developed 0.2113 0.7292 0.3161
(0.05) (0.13) (0.07)

IWQI 0.0061 -0.0186 0.0061
(0.43) (-0.87) (0.42)

MIWQI 0.2996 -0.7824 0.3067
(0.42) (-0.77) (0.42)

Fish 0.0098 0.0136 0.0107
(1.20) (1.35) (1.33)

MFISH 0.4738 0.1461 0.4692
(1.27) (0.25) (1.23)

Border 1.2020** 1.6624*** 1.2014**
(2.57) (2.80) (2.55)

Constant -6.7099*** -5.1286*** -6.6469***
(-5.26) (-3.37) (-5.39)

Observations 73. 73. 73.
R2 0.668 0.589 0.681

t statistics in parentheses
* p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01
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Table 2.11 Welfare Measures
Model Mean 5% 95%

Loss of Lake 103 (Lake Saylorville)

Pooled Model 19.31 18.37 20.23
Overlap Model 19.42 17.41 21.50
Lake Partial Model 16.98 16.09 17.80
River Partial Model -

Loss of River 71 (Mississippi(Clinton to Muscatine))

Pooled Model 17.42 16.50 18.33
Overlap Model 17.35 15.82 19.05
Lake Partial Model -
River Partial Model 14.73 13.79 15.68

Secchi Depth Change

Pooled Model 235.76 206.94 264.95
Overlap Model 287.31 149.43 444.35
Lake Partial Model 218.08 190.54 244.39

1. The unit here is dollars per year per household.

2. The quantiles are from 1,000 simulations.

3. The figures in Secchi depth scenario is the absolute value of original CV.
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CHAPTER 4. Carbon Tax, Wind Energy and GHG reduction- ERCOT as

an Example

4.1 Introduction

The promotion of renewable energy and imposition of carbon tax are the two favored govern-

ment policies for combating the climate change induced by the more anthropic GHG emission.

Unlike the EU, the United States (US) does not have a national level cap-and-trade program

for GHG emissions. The California Air Resources Board launched a regional program in 2013,

and the northeastern RGGI market has operated since 2008. Although there is no national cli-

mate policy, the pressure faced by fossil fuel generators in the US is increasing in recent years.

For example, the US Environmental Protection Agency (EPA) announced new point-source

requirements for future fossil generators in a proposal of carbon standard for new power plants.

New coal generators must have emission rate of carbon dioxide (CO2) of less than 1,000 pounds

of CO2 per megawatt-hour (MWH), almost less than half of current levels.1 Under these pro-

grams, the relative cost of fossil fuel generators, i.e., coal versus. gas, would be affected. As

more pressures or high charges are imposed on carbon dioxide emission, the less generation

from coal units would be predicted and thus lower CO2 emissions.

Using the data from Electric Reliability Council of Texas (ERCOT), we construct the

cumulative marginal cost curves of fossil fuel generators, i.e. the supply curve of fossil fuel

generation, at different carbon tax scenarios in Figure ??. It is clear that when a carbon tax

first imposed at the hypothetical level of 25 dollars per ton of carbon dioxide, the shape of this

curve changes significantly (From Blue Curve to Brown Curve). Though we have difficulties

1 On March 27th, US EPA announced the proposal of “Standards of Performance for
Greenhouse Gas Emission for New Stationary Sources: Electric Utility Generation Units”.
http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2011-0660-0001
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to show the composition of the generation by highlighting which part of the generation is from

gas units or coal units, the structural change of this marginal cost curve obviously implies

there must be significant changes in the generation composition, such as some gas units will

move forward in the supply curve due to their lower emission of CO2. Given the specifications

of generators, the resulted reshuffle of supply curve is becoming much smaller as carbon tax

increases further from 50 dollars per ton of CO2 to 75 dollars per ton of CO2 (from green curve

to red curve).

Table 3.1-1 lists the generation composition in the 4-quartiles under different carbon taxes

scenarios. Confirmed with the findings in Figure ??, the carbon tax on carbon dioxide changes

the structure of the marginal cost curve. The coal units were pushed backward in the ladder

in serving the system demand according to their marginal cost. In two extreme cases, no

carbon tax versus the tax rate at 75$/CO2 ton, the coal units are almost eliminated from the

generation fleet when the system demand was below 30kMWH (within the first 2 quartiles).2

At the same time, the fast expansion of renewable energy, such as wind farms and solar

panels, increases the share in the energy production by substituting the fossil fuel energy in

the electricity market. The expansion eventually lost momentum due to several factors. The

current financial crisis constrained government budgets and thus the expenditure on subsidies to

renewable energies. The incentive created by the energy act and state level renewable portfolio

standards (RPS) have induced the expansion of wind farms faster than the anticipation. For

example, the installed capacity in ERCOT has passed the target of 2025 set by the state RPS

in 2009.3 It has been a non-negligible generation source in ERCOT for several years due to

this fast increase.

The intermittency of the wind power has brought about researchers’ interests on the actual

environment benefits of wind power and the affecting factors. Unlike fossil fuel generators, wind

farms only can produce electricity as wind blows and cannot increase the production when the

2 The total installed capacity of coal and gas units in ERCOT is larger than 60,000MWHs. In Figure ?? and
Table 3.1-1, we limit the maximum system demand at 60,000MWHs. Analysis of the full spectrum of fossil fuel
generation fleet with almost 70,000 MWHs capacity could be constructed similarly.

3 The Texas legislature set a goal of 10,000 MW of renewable capacity in 2025, the ca-
pacity has been reached in 2009 with a total of 10,069 MW installed renewable capacity.
http://www.ercot.com/news/press releases/show/517.
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demand increases as those fossil fuel generator do. The induced replacement of “dirtier” energy

by wind power therefore also depends on the correlation between wind and the demand. If in

the peak demand hours there is little wind, as is common in several markets, the ability of

wind to replace coal or gas generation will be greatly limited.

The penetration of renewable energy, such as wind or solar panels, complicates the effective-

ness of carbon tax or cap-and-trade programs. The introduction of volatile renewable energy

adds another layer of uncertainties into the system in addition to the volatility of system de-

mand. As Table 3.1-2 showed below, the extensive wind power in ERCOT significantly change

the order of coal and gas generators in the aggregate supply curve in a typical day in the

summer/winter.4

Though the above calculation is very primitive, it is still quite clear that the penetration of

wind power in the system could affect the final generation allocation between coal generators

and gas generators. Given the level of wind generation, the impacts are likely to correlate

with the carbon tax rates. In this paper, we assess the impacts of the interaction between

the penetration of wind power and the carbon tax in a relatively more realistic way, including

consideration of transmission constraints, with the data from ERCOT in the period of Jun,

2009 to Jun, 2010. Specifically, we solve a supply “dispatch” model for a target research period

under a variety of scenarios defined by the hypothetical carbon tax rate (dollars per ton of

CO2) and the penetration of wind powers (the installed capacity of wind turbines).

The simulation shows that both policies are effective in terms of adjusting the generation

portfolio and reducing the CO2 emission. Given the technical configuration of the current fossil

fuel generator fleet in ERCOT, it is not surprised to find out that the effects of carbon tax on

generation reallocation are nonlinear with the tax rates. In the simulation, a carbon rate of 25

dollars per ton of CO2 would lead the share of gas generation to increase by more than 20%

from currently 55% to almost 80% given the state quo of wind capacity. The percentage of gas

generation in the total fossil fuel generation will eventually increase to more than 95% at a slower

4We set the input price at the average level in the research period. Namely, the price of coal is 1.86$/mmBTU
and the price of natural gas is 4.09$/mmBTU. We pool together all the hourly observations from Jun – Aug
and Dec – Feb respectively. Then the average demand and average wind generation are used to find out the
generation mix from the marginal curves shown in Figure ??. Clearly, these results will differ from the simulation
results in section 5.
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pace if the carbon tax further increases to as high as 70 dollars per ton of CO2. Consequently,

the pattern of induced reduction of CO2 emission also shows this similar nonlinearity in the

carbon tax. Compared with the current emission level, the CO2 will be reduced by roughly

23.4% at a carbon tax rate of 25$ per ton of CO2. The pace of emission reduction has not been

slowed too much until a tax rate of 40$ per ton of CO2. This nonlinear relation suggests that

there are some ‘’sweet” range in which the reduction role of a carbon tax will not be curtailed

and beyond this range we may see almost negligible effects of the tax increase. Depending

on the composition of the generation fleet, there are slightly zonal variations in terms of the

adjustment pace of gas generation. Eventually, the gas generation will dominate the fossil fuel

generation in each zone when the carbon tax is relative high.

If more wind turbines were installed, say doubling the current capacity, the environmental

benefit in terms of CO2 emission reduction, suggested by our model, will be around 4% in a

no carbon tax world. This reduction effect is slightly smaller than the reduction achieved in

the change from a zero wind world to status quo, which is roughly 5.4% implied in our model.

When the wind capacity was doubled, the reduction effect of wind energy varies from 4.1% to

4.9% depending on the carbon tax imposed. The results also show some spatial differences.

Relative to the current zonal emission, the effect in west zone is no surprisingly largest since

the majority of wind turbines were installed in this zone. However, if measured in physical

terms, the largest emission reduction happens in the south zone.

We also construct a contour graph of emission reduction in the carbon-wind plane. 5 The

isocline in the graph shows the trade-off between carbon taxes and wind energy for a certain

goal of emission reduction. Based on the isoclines, if we want to achieve a 10% reduction of

CO2 in ERCOT, we could use a single carbon tax at 15$ per ton of CO2 or use a combination

of carbon tax at around 10$ per ton of CO2 and doubling the current wind capacity. If the

targeted reduction is 35%, we need a single carbon tax beyond the highest rate of 70$ per ton

of CO2 considered in our simulation or we could achieve the goal at a lower carbon tax rate

5 Since our simulation only can generation scattered points in the wind expansion and carbon tax space, we
use linear interpolating methods to fill other cells of wind-carbon pairs. In doing so, we could have a reduction
matrix for all the pairs of carbon tax and wind expansion. The increments are 1$/ton of CO2 and 1% wind
expansion.
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(45$ per ton of CO2) with the doubled wind capacity.

The remaining of this paper is organized as follows: a brief summary of related literature

is provided in the section 2. In section 5, we introduce the dispatch model used in this paper.

We discuss the data sources in the section 4. Calibration and simulation results are presented

in the section 5. We conclude this paper in the section 6.

4.2 Related Literature

Unlike fossil fuel generators, the ability of wind turbines to generate electricity is limited by

the local weather conditions, such as wind speed. The availability of wind power is therefore

stochastic and tends to show a different pattern from the demand of power. In many markets,

the wind power is usually negatively correlated with the demand. When the electricity demand

is highest in the daytime, wind power is at its lowest. Conversely wind power is often most

abundant, when demand tends to be lowest. The implications of the intermittency of wind

power and the mismatch between the demand and wind power have been received extensive

interest from researchers.

Since the generation of electricity by wind farms is almost carbonless when compared with

traditional fossil fuel units based on coal and natural gas, wind power is promoted as a means

to mitigate carbon dioxide emissions in the power industry. The intermittency of wind power

puts some restrictions on this substitution. Campbell (2008) builds up a theoretical model to

show that in some circumstances, the extra intermittent renewable resources, such as wind,

introduced to the power market may not mitigate the carbon dioxide emissions if much dirtier

generation resources are used to replace the substituted, relative cleaner base load generation

resources. Though this paper points out a theoretical possibility of a scenario in which more

wind brings about more carbon dioxide emissions, the empirical papers based on real generation

data do not support its realization in practice.

The lack of empirical examples in which more intermittent renewable energy can lead to

higher emissions is partly because coal-fired generators are the usual “base-load” resources –

resources that run whenever available - and it is unlikely to see a much dirtier resource to

replace the coal generation. Bushnell (2010) uses several power markets in west United States



89

to analyze the induced equilibrium generation mix caused by increasing wind penetration. With

more intermittent wind power introduced into the grid, the equilibrium coal-fired generation

capacity declines and the more flexible combustion turbine generators, usually using natural gas

as heat input, increases to serve as quickly adjustable marginal generation that compliments

the intermittent wind supply. Fell and Linn (2012) uses a long-run investment model to study

the investment decision on different energy resources, such as coal, natural gas, wind and solar

panel and market outcomes under different policy scenarios. Though the correlation between

wind and load will have some effects on final investment decisions, the changes happen mostly

on the investment of gas generators. When wind is positively correlated with the load, less

investment on gas generators is needed. Otherwise, more gas generators are needed. The key

assumption in Campbell (2008) to have dirtier generation resources to replace the cleaner base

load generation may not be realistic in the real world.

Another possibility of increasing pollution through more wind power is related to operations

of specific plants. Volatile wind power will increase the uncertainty of the load if wind and

system load are negatively correlated. In turn, more cycling and start-up of fossil fuel generators

is needed to maintain the reliability of the system. Noting this fact, Valentino et al. (2012) uses

Illinois data to model the impacts on the emission from fossil fuel generators under different

wind penetration levels with unit commitment assumption. The results show that by replacing

fossil fuel generation with wind power, the system wide emission from fossil fuel generators

decrease as wind penetration increases. While the more wind power is incorporated into the

system, the average emission rate of fossil fuel may increase as the result of cycling and start-

ups. The study finds that the latter emission-increasing effect is minimal and dominated by

the direct effect of replacing more fossil fuel generation.

Alongside the research based on economic dispatch models mentioned above, there is a

line of empirical studies using reduced-form econometric models to analyze the environmental

effects of renewable resources, mostly of wind power. These studies, such as (Cullen 2010;

Kaffine, McBee, and Lieskovsky 2011; Novan 2010) among others, focus on the marginal effects

of wind power on the emission reduction.

Cullen (2010) is among the first to use reduced-from regressions to study the emission
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reduction effect of wind power in the power grids. He uses the generation data at individual

fossil fuel unit level in ERCOT, in which there is the highest installed capacity of wind farms,

to construct a unit level replacement of generation by wind power in the system. The relevant

variables in the unit’s information set are controlled in the multivariate regression models by

assuming the wind power is exogenous. With the replacement of generation at unit level, the

author then aggregate to the system emission reduction using the average observed emission

rates of units. The results show that one extra MWH of wind power will, on average, reduce

CO2 emissions by more than half ton. The average emission rates used by the author may

not be the best one to evaluate the emission reduction since the emission rates depend on

the efficiency of heat input. J. B. Bushnell and Wolfram (2005) shows that there usually

exists a maximally efficient “sweet spot” in the generator’s heat rate profile and the correlation

between generation and heat rate is generally nonlinear. If the generator were forced to adjust

its production to meet the power demand or to incorporate the wind power in the grid as found

in (Cullen 2010), the average emission rates may misrepresent the true reduction of pollutants.

The EPA continuous emissions monitoring system (CEMS) reports the gross generation

and pollutants emission data at hourly base for all the fossil fuel units with the installed

capacity bigger than 25MW. These reports give researchers abundant high frequency data to

directly analyze the effects on emission reduction. Kaffine, McBee, and Lieskovsky (2011)

use similar reduced-form econometrical models based on CEMS data in several regional power

markets, California, Midwest and ERCOT, to evaluate the marginal effects on emission of wind

power. Another difference from Cullen (2010) is that the authors aggregate the emission to

the system level instead of looking at the emission reduction from individual generation units.

Their results show that the marginal reduction in emission varies among three markets studied

and the variation depends on the existing generation mix in the system. Specifically, if the

generation mix is much dirtier, the resulted emission reduction of extra one MWH wind power

is lower.

Though the wind is exogenous, the direct use of wind generation may suffer endogenous

problems due to the fact that the existing transmission capacity between wind-abundant regions

and high demand regions is limited. The realized wind power in the system may have some
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system information which directly correlates with the generation arrangement of individual

generators and thus emissions. Novan (2010) uses the wind speed data in west zone of ERCOT,

a region with the majority of installed wind capacity in Texas, to instrument the troubled

wind generation variables in the unit generation regression models.6 The instrumented models

show that the marginal effect of emission reduction depends nonlinearly on the system load,

the demand of electricity. And the location of wind farm is also important in determining the

emission reduction. It is not surprising since the replaced marginal generation varies depending

on the system load. If the load is high, the most likely marginal resource will be gas units. The

avoided emission is lower than the case when the coal units are the marginal resources in low

load scenario.

The marginal analysis based on reduced-from approach is useful when the major interest is

on the marginal effects of wind power. While if we want to evaluate the changes caused by the

expansion of wind power in large scale, an economic dispatch model of electricity generation,

similar to the one used in Bushnell and Chen (2009), is more appropriate. In this study, the

possible carbon tax and wind expansion scenarios will be evaluated with a simple dispatch

model.

6 The instruments test does suggest there are substantial problems caused by the endogenous variable.
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4.3 Methodology

The goal of this analysis is to simulate outcomes under different scenarios in which a mixture

of policies are introduced into the power market to reduce emissions from fossil fuel generation

and to compare their relative performance using a simple dispatch model. The two specific

policies considered in the simulation are the carbon tax and the continuing support for the

expansion of wind capacities.

The simple dispatch model is set up as a cost minimization problem. The system operator

needs to arrange the generation portfolio of all the generation units in its territory to meet

the exogenous demand and at the same to maintain the reliability of the system with the

transmission limits obeyed at the lowest possible cost.

Mathematicallythe cost minimization problem could be described as

min

4,Ji,T∑
i,j,t

C(qijt)

s.t.

Ji∑
j=1

qijt + wrate ∗ windit + yit ≥ dit ∀i = 1, 2, 3, 4; t = 1, . . . , T (4.1)

−T̄kt ≤
4∑
i=1

PTDFiktyit ≤ T̄kt (4.2)

C(qijt) = (aij + pijthij)qijt + taxceijtqijt ∀i = 1, 2, 3, 4; j = 1, . . . , Ji; t = 1, . . . , T (4.3)

Where

• dijt and windit are exogenous ∀i, jandt.

• C(qijt) is the cost function of unit j in zone i at time t.

• qijt is the generation of unit j in zone i at time t.

• dit is the hourly demand of electricity at zone i at time t.

• wrate is the expansion rate of wind capacity in zone i at time t. wrate = 1 stands for

the status quo.
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• windit is the wind generation in zone i at time t, we do not have direct measure of this

variable and the construction of this variable is described in the appendix.

• yit is the net injection of power in zone i at time t. A positive value means the energy

export and the negative value means the import of energy.

• T̄kt is the transmission limit on transmission interface k at time t.

• PTDFikt is the power transfer distributing factor. It measures the flow on transmission

k at time t when you inject the energy at zone i.

• aij is the non-fuel cost for producing 1 MWH from unit j in zone i.

• pijt is the fuel price used by unit j in zone i at time t.

• hij is the heat rate of unit j in zone i, defined as mmBTU per MWH.

• taxc is the assumed carbon tax measured at dollars per metric ton of CO2.

• eij is the emission rate of CO2 of unit j in zone i, defined as metric ton of CO2 emitted

per MWH power.

The details about how to construct these variables is provided in the appendix7. The numerical

model is written with AMPL software, and solved with the Minos solver.

The different scenarios are defined by the combination of carbon tax rate (taxc) and the

expansion rate the wind capacity (wrate). For example, the pair of (taxc = 0, wrate = 1) is

the status quo and the pair of (taxc = 25, wrate = 1.2) represents a hypothetical situation in

which a carbon rate of 25$ per ton of CO2 is imposed and the wind capacity in the network

increases by 20 percent. The carbon tax rates are set from 20 dollars per ton of CO2 to 70

dollars per ton of CO2 at the increment rate of 5 dollars, in addition to the status quo without

any carbon tax.8 The wind scenarios are set from 0 percent of current capacity to 200 percent

7 mmBTU is a unit of thermal energy, read as million British Thermal Units. 1 BTU equals 1055 joules.
MWH is a unit of electricity energy, 1 MWH = 1,000 KWH, 1 KWH = 3.6 million joules.

8Nordhaus (2010) estimated the carbon price associated with the fulfillment of a 2 Celsius increase by the
end of this century is 59 dollar per ton (at 2005 price). The Department of Energy newly released update on
the energy-efficiency of microwave ovens implied the potential social cost of carbon (SCC) was around 33 dollars
per ton at 2010 under a moderate assumption about the social discount rate (3%). The SCC could be larger
with smaller discount rates.
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of current capacity at the increment rate of 20% each.

In each scenario, we hold other conditions fixed. That is to say the cost minimization

algorithm will find the optional zonal generation arrangements with the hypothetical carbon

tax and wind penetration. The other conditions, such as the zonal demand, zonal generation

from non-thermal energy sources (such as nuclear), fuel prices and transmission capacity, will

be unchanged across different scenarios.9 Since the demand is uncertain, this method implicitly

makes very a strong assumption about the realization of these important variables.10By taking

this assumption, we implicitly limit our research question to ask what the performance of

ERCOT market will be in the hypothetical scenarios during the research period.

Once those cost minimization problems are solved. The model reports the zonal generation

arrangements at generator level along with the corresponding CO2 emission. With this infor-

mation in hand, we could construct outcome matrices to compare the relative performance in

terms of total emission reduction of CO2 and the distribution of generation among coal plants

and gas plants at ERCO-wide or each zone.

The availability of data forces us to focus on the research period from Jun, 2009 to Jun,

2010. The limiting factor for data is the information about the monthly average weighted

shift factors in ERCOT. In the research period, ERCOT runs a simplified four-zone electricity

network, which facilitates our modeling work to mimic the market of ERCOT. With this

framework, it is important to get the average zonal shift factor information that is used to

capture the energy flow between transmission interfaces and plays key roles in determining

the congestion status on transmission interfaces. Unfortunately, these shift factors have been

collected from public sources from Jun, 2009 to Jun, 2010, which limits our ability to expend

the model to other periods.11

With significant penetration of renewable energy, especially wind energy, ERCOT is an

9 The annual growth rate of ERCOT, the example power market, is 3.75% from 2009 to 2010. If necessary,
the growth rate could be added into the model.

10 The loads and wind generation are random such that if we want to see the robustness of results under
uncertainty, some simulation work showing the randomness of these variables is needed. For example, we could
draw from the empirical distribution of load to construct the possible realization of zonal loads. And using the
wind forecast models to simulate the possible wind generation in the near future. GE Energy (2008) has the
details to construct such a scenario.

11 The extension of our model to a later period will faces another challenge. ERCOT zonal market ends at
Dec 1st, 2010 and switched to a nodal market after that.
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ideal power market to serve our purpose to evaluate the interaction impact of carbon tax

and substantial renewable energy. On their website, ERCOT provides several sets of useful

information about the power market. However, we still have some data issues in building our

model, which will be discussed with more detail in next sections.

4.4 Data Sources

We have several primary data sources for this analysis. Electric Reliability Council of Texas

(ERCOT) has the information on zonal demand, generation and inter-zonal transmission. The

U.S. EPA Continuous Emission Monitoring System (CEMS) provides hourly output for all fossil

fuel power plants with a capacity bigger than 25 megawatt per hour (MWH). The U.S. Energy

Information Administration (EIA) has the monthly and yearly information on net generation

of power plants aggregated by fuel type and types of prime movers, such as stream turbine,

combined cycle and combustion turbine, etc. It also has the monthly price of coal delivered to

power generation facilities. The daily natural price is from Natural Gas Intelligence’s daily gas

price index.

4.4.1 Market Demand

ERCOT is one of the eight independent system operators in US and serves 85 percent

of electricity demand in Texas. Unlike other power networks, ERCOT is quite isolated from

neighboring power grids. There is limited power exchanged between ERCOT and surrounding

grids, e.g., the exchanged load account for less 1 percent of daily load Cullen (2010). During

our research period, the inter-grid net import energy accounts for 0.6 percent of the total load

in 2009, 0.7 percent of the total load in 2010 (FERC (2009, 2010)).

Before December 1st, 2010, ERCOT operated a power network market based upon four

price zones (Zonal market). The whole of ERCOT territory was divided into four congestion

zones, North, South, West, and Houston. Five commercial significant controls (CSC) are used

to represent the inter-zonal power flow.12 On the wholesale market, most of the transactions are

12 After December 1st, 2010, ERCOT moved to a more complex nodal market to increase the system dispatch
efficiency.
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arranged through long term bilateral contracts. Any residual electricity, capturing deviations

from the bilateral positions, is settled in the real-time energy balancing market. The balancing

market price is determined by ERCOT by choosing the lowest price to clear the market when

there is no zonal congestion. If there is congestion, the different zones will settle at different

prices reflecting the congestion costs for each zone. These congestion costs are based upon

the “re-dispatch” costs necessary to adjust generation production between zones to solve the

congestion.13

A summary of zonal hourly electricity demand is presented in Table 3.4-1. The average

hourly demand of the whole ERCOT area is around 36 GWH. It ranges from around 21 GWH

to 63 GWH during the sample period. There is significant spatial variation among four zones.

The North zone has the highest hourly demand of electricity and accounts for 38% of the total

demand. Hourly demand of electricity is lowest in the West zone and the share is less than

10% of the total demand. The demand of the South Zone is in pair with that of the Houston

Zone, both accounts for roughly 25% of the total load.

4.4.2 Zonal Production

EPA CEMS reports include the hourly generation information on all the fossil fuel power

units with at least 25 MW capacities in Texas. To conduct a zonal analysis, the units first

should be assigned to one of the four zones. Though CEMS reports have the location and other

attributes of the unit, there are no fields in the reports directly related to ERCOT zones. To

match the units to four zones, we combine the information from several sources and papers to

completely match units to each zone.14

Table 3.4-2 summaries the generation portfolio in ERCOT. Among the units covered in

the CEMS reports, ERCOT have a fleet of fossil fuel power generation with a total capacity

of 77 GW. Gas units dominate coal units by a margin of 46% (73% of gas and 27% of coal

generation capacity). In line with the zonal demands, North zone has the biggest fossil fuel

13 In the zonal market design, local (or intra-zonal) congestion is inevitable and ERCOT resolves these con-
gestions by using special generation sources. Local congestion will not be reflected in the zonal price if there are
no co-existed inter-zonal congestions.

14 Details about the matching procedure are in the appendix.
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power generation fleet, followed by the Houston zone and the South zone. The West zone has

the smallest generation fleet. Among the gas units, more than half of the capacities are from

the combined cycle units, followed by the steam turbine gas units.

Table 3.4-3 gives average hourly generation by coal and gas units. On average, coal plants

produce 46% of the electricity among the total fossil generation while the capacity share of

coal units is only 27%. This is because the cost of producing 1MWH power is lower for coal

units and thus coal units are served as base load generation source. At the zonal level, the coal

generation shares vary from 29% in Houston zone to 55% in North zone. The spatial variation

of the share of coal generation suggest that if the imposed carbon tax is high enough, the switch

trigged by the carbon tax will also present spatial variations.

Before using this generation information in the model, the capacity of the each unit needs

to be adjusted since the generation information from EPA CEMS is the gross generation from

each unit. In other words, EPA gross load includes the electricity consumed at the facility, such

as the electricity consumed by the pollutant control devices, and the amount of load delivered

to the grid network is smaller. In addition, CEMS seems not having a universal standard on

how to report the gross generation for combined circle units that uses the residual heat from

the first stage of combustion turbine to generate more electricity. For some units, EIA reports

more net generation than gross generation reported by CEMS.15 Another issue with CEMS

gross generation is that it does not separate the generation from combined heat and power

units. In Houston zone, the majority of gas generation comes from this type of power plants,

which imposes difficulties on how to incorporate these units in the model. We will discuss the

impacts of these units on outputs of baseline simulations in next section. At the same time, the

zonal demand information from ERCOT does not contain this part of in-facility consumption

and we need to account for this issue in the production model.

In terms of net generation, EIA has reports on both monthly and yearly net generation from

each power plant. The information is summarized and grouped by fuel and “prime-mover”

15 There are several power plants with gross generation reported in CEMS much smaller than the net generation
reported by EIA. For example, CEMS reports the power plant with ORISPL code of 55215 has a gross generation
of around 1.9 million MWHs in 2010. However, the net generation reported by EIA is much larger and around
2.9 million MWHs. The plant has combined cycle units and the net generation from the first stage of a combined
cycle, combustion turbine part, is around 1.8 million MWHs.
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(technology) type. Compared with the gross load from CEMS reports, a rough adjustment

gross load to net generation can be done. Specifically, we construct a yearly gross-to-net ratio

for each fuel type and each prime mover at the plant level. We assume this ratio is the same

for all units within a plant if their fuel sources are the same and the prime mover types are

the same.16 We deflate the capacity of each unit according to this ratio in the simulation

models. The emission ratios, defined as the amount of emissions (SO2, CO2 and NOX) of each

generation unit, are also adjusted accordingly.

The capacity of each unit used in the model is also discounted to reflect the probability of

forced outage. The available capacity of each unit is calculated to be (1− fofi) ∗ Capi, where

fofiis the factor of forced outage of unit i and Capi is the already deflated capacity of unit

i. This formula is similar to the ones used in (Fowlie (2009); Bushnell (2010)). The difference

is that we specifically consider the net-to-gross generation adjustment. The fofi information

comes from the generator availability data system (GADS) data collected and maintained by

the North American Electricity Reliability Council.

The heat efficiency (or heat rate), which represents the generator’s efficiency to turn fuel

input into electricity, is very critical in our production model. With the fuel prices held constant

in our model, the heat rate solely determines the order of the generator in the supply curve.

With the adjusted gross generation and the heat input reported in CEMS, we could construct

the annual heat rates for all the units in CEMS. The heat rates calculated this way represent

the efficiency of each unit to turn the heat content in coal or gas to net generation. There are

also other methods to construct heat rates with similar meanings. One possibility is to use

the net generation and fuel consumption information reported by EIA. The problem with this

method is that the accuracy of fuel consumption for combined heat and power plants. Plant

operators have flexibilities to decide the share of their total fuel consumption used by heating

purpose or power-generation purpose. If the fuel consumption for power-generation is reported

to be lower than the actual use, the calculated heat rate of net generation will be lower than the

actual heat rate. Thus, the generation unit will be more favored in the model to be deployed

16 These ratios are not always within the 0 to 1 interval because of underestimation of some combined cycle
gas units
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more frequently.

We calculate heat rates in both ways: combining information from CEMS and EIA or using

EIA information alone. They are labeled as “EPA-EIA” and “EIA”, respectively. Table 3.4-4

lists summary statistics about capacity, heat rates and emission rates of fossil fuel generators

in ERCOT. On average, coal units are larger than natural gas units. The heat input needed

to produce one MWH of electricity is almost the same for two types of units, while coal units

usually are dirtier than natural gas units. Generally, the average coal unit emits around 1

metric ton of CO2 for every 1 MWH electricity generated, and the Co2 emission from an

average gas unit is around 30% lower. The average gas unit produces negligible SO2 when

compared with coal units. The emission rate of Nox from both types of units is almost the

same. On average, more electricity is used in the facility by coal units than by gas units. This

could be seen by comparing the adjusted capacity for both types of units. A drop from around

600 MW to around 500 MW happens for coal units, while the change for gas units is moderate.

4.4.3 Transmission Network

In the zonal market design, ERCOT’s power network is modeled as four zones connected

by five commercially significant constraints (CSC): West-to-North, North-to-West, South-to-

North, North-to-South and North-to-Houston. ERCOT utilizes the dispatch software to ar-

range the production of the generation units in the network to meet the demand and manage

the congestion on those five interfaces.

Table 3.4-5 shows the hourly power flow in these five CSCs during the research period. The

largest energy flow happens between the Houston zone and the North zone. On average, the

Houston zone receives an amount of 1.6 GWH of net flow of power from the North zone. The

electricity exchange between West zone and North zone varies between the first half of year

and the second half of year. In the period from Jan 2010 to Jun 2010, there are net flows

of 561 MWHs hourly from West zone to North Zone, while from Jun 2009 to Dec 2009, the

hourly exchange of power is only around 40 MWH on average. One possible reason may be the

hourly wind generation is larger in the first half of the year. The distribution of monthly wind

generation is summarized in the next subsection.
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As more wind farms, mostly in the West Zone, were added to the system, the transfer of wind

generation from the West to North Zones put great pressure on the congestion management for

the two CSCs connecting these two zones. In 2010, there were a large number of involuntary

curtailments of wind generation in the West Zone due to the system reliability and congestion

requirements.

Figure 3.4-1 shows the wind generation curtailment in West zone in 2009 and 2010 (Figure

28 in Potomac Inc., 2010). The frequent curtailment of wind generation puts a restriction on

our analysis. In our analysis, we simulation the expansion of wind capacity by inflating the

implied wind generation we observed from the ERCOT reports. If the wind generation from

the West Zone was frequently curtailed, the observed wind generation understates the available

generation in that timeframe and thus all the related variables based on this variable will also

be affected.17

4.4.4 Wind Expansion

Wind capacity in Texas has grown rapidly in recent years, along with several other states in

US. Currently, Texas has the largest wind fleet among US states with total capacity of 12,212

MW at the end of 2012, followed by California (5,549 MW) and Iowa (5,137 MWH) (AWEA,

2013). The extent of wind penetration, measured by energy, in the Texas grid is also the

highest among all the power grids in US. The annual share of wind generation in ERCOT is

2.9% in 2007, 4.9% in 2008, 6.2% in 2009, 7.8% in 2010 and 8.5% in 2011 (ERCOT, 2007-2011).

Though the annual wind generation continues to increase in US, the share of wind among all

the electricity generated was still less than 3% in 2011 (EIA, 2012). Clearly, ERCOT leads the

nation both in terms of total installed capacity and the penetration rate in the power grids.

Figure 3.4-2 shows the expansion of wind capacity in ERCOT in recent years. ECROT

started with a negligible amount of wind capacity at the beginning of last decades and has

experienced a rapid expansion of wind capacity even since, especially after 2005. The newly

installed wind capacity topped at 2008 with 2,760 MWH capacity installed in the single year.

The newly installed capacity number flatted since 2010 and only 686 MWH (around one quarter

17 When we read the simulation results, this issue should be kept in mind.
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of the peaked installment) capacity was added in that year.

With the wind resources concentrating on the west and coastal area of the state, the spatial

distribution of wind farms, at 2012, is that 7,531 MW has been installed in the west zone, 2,075

MW is located in the south zone and a smaller establishment of 232MW exists in the north

zone.

The change in the pace of expansion is most likely driven by the evolution of government

policies and programs, such as Energy Policy Act of 2002, 2005 and state level programs, such

as Renewable Portfolio Standards (RPS). These programs provide several kinds of production

based subsidy to the wind farms, i.e. the equivalent subsidies induced by RPS are estimated

to range from $5 per MWH to $50 per MWH in US (Wiser 2008). And the federal Production

Tax Credit initiated by Energy Policy Act is to grant 2.2 cents per KWH ($22 per MWH) as

tax credit to renewable energy producers for the first 10 years of operation. Cullen estimates

that the PTC alone accounts for almost 40% of the wholesale price of electricity in ERCOT

during his research period (Cullen,2010). In more recent years, the market price of electricity in

ERCOT has been brought down further by the lower price of natural gas. PTC alone accounts

for an even share of the electricity price.18 The other factors include the construction cost

for the wind farm decreases dramatically due to the technology advances (Bolinger and Wiser,

2009).

As a type of intermittent energy, the substitution ability of wind energy is limited by the

wind flow patterns, especially the correlation between electricity demand and wind flow. Figure

3.4-3 shows the pattern of hourly electricity demand and wind generation in ERCOT. Clearly,

the correlation is negative. When the demand peaks around noon, the wind generation is the

lowest of the day. This negative correlation between demand and wind generation extensively

exists in other power market as well. This pattern suggests that wind generation could sub-

stitute the generation from different generators depending on what type of generators are the

marginal units in a given hour. If coal generators are the marginal suppliers in most of the time,

one unit of wind generation will have a larger emission reduction effect than when relatively

18 The average electricity price in ERCOT reported in Potomac (2010) is $34.03 per MWH in 2009 and $39.40
per MWH in 2010.
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cleaner natural gas generators serve as the marginal suppliers in the most of the day.
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4.5 Results and Discussion

4.5.1 Baseline Comparison

Since we use a simplified dispatch model to model the possible outcomes in different sce-

narios, we first need to compare the simulation results with the observed data. As discussed

before, we have difficulties to construct heat rates for each unit, especially for combined cycle

units and combined heat and power units. CEMS does not separate the fuel input used for the

heat purpose or electricity-generation purpose, thus the heat rate constructed by dividing the

heat input by the gross generation (net generation) will overestimate the heat rate for combined

heat and power input. At the same time, the fuel consumption reported also its own problem

due to possible under reporting the fuel input. The direct consequences of using these two

heat rates are that the production of gas generation will be overestimated in the region with

substantial existence of combined heat and power units if the lower “EIA” heat rates are used.

On the other hand, the gas generation in those areas will be underestimated if “EPA-EIA”

heat rates are used in the model.

Before we discuss the simulation results from the baseline in which there is no carbon tax

and the wind penetration is at current level, several challenges should be pointed out. First, we

do not have a real time net load for each unit in CEMS reports. Though we have supplemented

CEMS observations with information from EIA, the potential problems still could be large

with the reasons discussed above. Secondly, the detailed, hourly data on wind generation at

zonal level during our research period are not available in this research. The way we used here,

disaggregating ERCOT wide hourly wind generation to zonal generation according to the share

of installed capacity, is a crude estimation of the real hourly zone wind generation. Third, the

transmission flows simulated in this simple model may significantly differ from the real inter-

zonal energy flows. One source of bias is the unavoidable difference between the dispatch model

used here and the real dispatch model used by ERCOT. The other source of bias is how to

deal with the zonal congestion. ERCOT will use the dispatch model to solve the allocation

of generation before the generation resources are deployed. If any congestion detected by the

model a priori, ERCOT will choose different zonal clear prices to solve the congestion before
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it is realized. In this way, the occurrence of zonal congestion could be maximally avoided.

However, the real electricity flow in the transmission interface may be significantly lower than

the physical transmission limit. Thus no congestion happens in the pre-defined congestion

intervals.19 In our model, there are no pre-designed zonal congestion costs to eliminate the

possible congestion in any hour. If a region imports more electricity from other regions, the

congestion management will increase the receiving price of generators within in this region to

avoid the transmission congestion and thus increase the production of electricity in this region.

Without these measures, the production would be less in this rejoin. As a result, our model

tends to have more generation from the imported zone if everything else is equal.

These factors could interact with each other. For example, it is more likely for our model

to have more generation from an imported region. This problem becomes more troublesome if

the imported zone, Houston zone in ERCOT, happens to have dozens of combined heat and

power units whose heat rates are constructed with limitations. If heat rates of these units are

overestimated, the consequence will be less generation from Houston zone. Compounding with

the congestion issue, the overall impact could still be less generation from Houston zone if the

effect of overestimated heat rates dominates the impact of congestion management. On the

other hand, if heat rates for combined heat and power units are underestimated, the combining

effect will cause more generation from Houston Zone.

Table 3.5-1 reports the output from baseline simulations with different heat rate calcula-

tions. The results confirm our speculation about the potential effect of poorly measured heat

rates. In the scenario with “EPA-EIA” heat rates, our simulation model produces a profile of

zonal generation different from the observed profile. The most obvious difference is that the gas

generation from Houston zone is much less than the observed gas generation in Houston zone.

As argued before, “EPA-EIA” heat rates tend to overestimate the heat rates for combined heat

and power units. The resulting lower gas generation forces the other two surrounding zones,

north zone and south zone, to produce more gas generation to fill the gap. With “EIA” heat

rates, the effects are completely opposite. The gas generation in Houston zone is more than the

observed generation due to the underestimation of the heat rates of combined heat and power

19 ERCOT dispatches generation resources at 15-minutes interval.
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units. As a result, the gas generation in North zone and West zone decreases.

There are no significant ERCOT wide differences in terms of the allocation between coal

generation and gas generation in both cases. The coal generation is generally in line with the

observed coal generation at both zonal level and ERCOT wide. The possible reason is that

the coal units are more likely to be the base load generators. Even if the heat rates of some

gas units are underestimated, coal units will still be base load producer without carbon tax.

Though the zonal profile of gas generation differs from the observed profile, this difference is

not large from the ERCOT perspective.

From the perspective of CO2 emission, the story is slightly different. In general, the profile

of generation determines the profile of CO2 emission. While in some case, it is difficult to

rationalize the results. For example, the gas generation from South zone in “EIA” heat rate

scenario is close to the observed generation in South zone. While CO2 emission from the model

is significantly less than the observed emission. It suggests that the CO2 emission reported

in CEMS may be a poor measure about the real emission. At this stage, we do not have a

better way to measure CO2 emission. Fortunately, at the system level, the bias of CO2 is not

as severe as the zonal emission.

The results from baseline simulations reveal the impacts caused by the data limitations.

Both methods fail in giving us a reasonable approximation to the real power market of ERCOT

in the research period. If we accept these limitations associated with the availability of the

public data set, the simulation with “EIA” heat rates has relative merits over the simulation

with “EPA-EIA” heat rates because they both do well to capture the coal generation and the

former model has the overall better estimation about CO2 emission, which is the key focus

of this study. The other reason is that the focus of this paper is how the carbon tax and

wind penetration affect the allocation of generation and resulted CO2 emission. The most

important re-allocation of generation will happen between coal units and gas units, not within

gas units. The statistics of CO2 emission rate reported in Table 3.4-4 show that the gas units,

on average, has less CO2 emission and the standard deviation of CO2 emission rate is also

smaller than that of coal units. With the current model, we may get the zonal allocation of

gas generation different from the real allocation in the similar scenarios. The likelihood to a
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dramatic difference at the system level may not be as large as that.

4.5.2 Simulation Results

The baseline comparison shows some difference between model outcomes and the observed

data. At this stage, we do not have more appealing ways to eliminate the difference and proceed

to apply the models to different policy scenarios with the existing limitation.20 We separate

all the simulations into two sets. In one set of simulations, we use heat rates calculated from

the combined information from CEMS and EIA, so called “EPA-EIA” simulation. In other

set of simulations, we use heat rates calculated with the information only from EIA, so called

“EIA” simulation. We will focus more on the results from the “EIA” simulations, and leave

some results from “EPA-EIA” simulations in the appendix.

Figure 3.5-1 shows the share of gas generation among the total fossil fuel generation. The

x axis shows the simulated percentage of wind power serving the system relative to the current

actual level. For example, the 20% label in the axis does not mean the wind penetration rate

is 20% of the total generation capacity in ERCOT. Instead, it means the wind capacity was at

20% level of current wind capacity. Thus, 200% means in the simulation we assume the total

capacity of wind turbines was doubled. As discussed in the introduction, the carbon dioxide tax

decreases the relative gap of the marginal cost between the coal units and gas units. Although

the fuel cost of gas generators are much higher than that of coal generators, gas units produce

only around 70% of carbon dioxide emission relative to coal units. Also, the fuel cost of both

types of generators varies substantially within each category, depending on the vintage of the

generators and the turbine technologies. As the carbon tax increases, the dirtiest coal units will

be replaced, first with the cleanest gas units. Then the cleaner gas units replace the average

coal units and eventually all the coal units will be pushed backward in the ladder of supply

curve.

Given the fossil fuel units covered in the dispatch model, the share of electricity from gas

units will decrease from around 55% to around 52% when wind capacity increases to 2 times of

20 We also tried to use gross load instead of net load in the dispatch model. In both cases, we still find
significant difference between the model and reality.
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current level if there is no carbon tax. Once the carbon tax was introduced, the baseline share

of gas generation increases about another 25% to around 80% given the current wind capacity.

The expansion of wind capacity does not cause the same significant change as the case of no

carbon tax. The share of gas generation is quite stable and even slightly increases when the

carbon tax is high enough. This suggests that in present the wind power tends to replace the

gas generation even the mismatched pace between system load and wind power. As carbon tax

increases, the structure of marginal cost curve as showed in the introduction changes as well

in the direction to move gas generation forward and push the coal generation backward in the

supply curve. This shift tends to allow wind power to replace more coal generation than it did

currently and thus it tends to raise the share of gas generation. The rough calculation in Table

3.1-2 also confirms this reasoning.

Since the structure of the fossil fuel generation fleet varies among four zones, we also show

the zonal share of gas generation in Figure 3.5-2.

Since the majority of wind farms were added in the west zone, the increase to current

wind capacity leads to the biggest change in the share of gas generation in the west zone. An

increase of wind capacity beyond the current level has less effect on the gas share. Outside the

western zone, zonal changes patterns generally follow the system-wide pattern. The carbon tax

leads to significantly higher shares of gas generation, and that increase eventually diminishes

due to the fact that when the carbon tax is high, enough (such as 70$ per ton of CO2), coal

units have been already pushed to the far end of the supply order. At that point there is only

a small opportunity for extra wind to substitute for the marginal coal units. Currently, gas

units are more likely to serve as the marginal generation resource. The impact of wind capacity

expansion is not as unambiguous as the role of carbon tax. The increase of wind power decrease

the demand for fossil fuel generation, while the relative replacement of coal generation versus

gas generation depends on the marginal cost structure and the pattern of wind generation and

system load. If the wind tends to blow when coal units are the marginal generation source,

then the wind power will replace more coal generation, and vice versa. As shown in the table

3.1-1, the majority of generation capacity in the first quartile of 60 GWH changes from coal

units to gas units as carbon tax increases.
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The results in terms of reduction of carbon dioxide emissions in different scenarios are shown

in Figure 3.5-3. The Y axis is the percentage reduction relative to the baseline emission, e.g. the

current level of carbon dioxide emissions. As shown in the Figure 3.5-1, the carbon tax causes

production to migrate to cleaner gas units. Consequently, emissions of carbon dioxide decrease

as the carbon tax increases. Given the structure of present generation fleet, emissions reduce

nonlinearly as the carbon tax rate increases. The first two increases of 25$ per ton of Co2 lead

to an almost 15% of reduction in emission. The further increase of 20$ to 70$ per ton of Co2

only leads the emission to reduce by less than 5%. This nonlinear relationship between a carbon

tax and emissions is likely shared by other power markets given the heterogeneous marginal

costs of fossil fuel units, and the key opportunity to switch from higher costs coal generation

from lower cost, but dirtier coal production. Once a threshold carbon cost is reached, large

scale substitution between coal and gas becomes economic. Beyond that threshold, additional

carbon charges produce less dramatic reductions as most of the benefit from fuel switching

has already been realized at that point. The specific threshold of this nonlinearity will depend

upon the specific composition of the fossil fuel generation fleet.

The central purpose of this Chapter is to explore the interaction of these two policy in-

struments when applied simultaneously. Table 3.1-2 shows the heterogeneous impacts of wind

generation at several carbon tax rates for two typical days. Similarly, Table 3.5-2 shows the

reduction matrix of CO2 emission among a subset of simulated scenarios. There are several

findings to highlight. First, the expansion of wind capacity always leads to a lower emission

of CO2 at all carbon tax rates. We only present three possible wind capacity scenarios here

(No wind, Status Quo wind capacity and Double Current wind capacity).21 The increase from

zero wind to status quo and the increase from status quo to double wind capacity both cause

the carbon dioxide emission decreases at all simulated carbon tax rates. Second, the emission

reduction effects of wind capacity expansion are heterogeneous. At the lower carbon tax rates,

the wind expansion enhances the emission reduction effect of carbon tax. Comparing the con-

sequence of carbon tax at the no wind and status quo scenarios, the simulated CO2 emission

will decrease by 11.2% at the carbon tax rate of 25$ per ton of CO2 relative to the no carbon

21 The full matrix is listed in the appendix.
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tax case. The corresponding reduction is around 18.4% in the scenario with status quo wind

capacity, the current wind farms help to reduce 7.2% more of carbon dioxide from the fossil fuel

generators. This enhancing effect tops out at 7.4% when the carbon tax rates are in the range

of 30$ - 40$ per ton of CO2 at the status quo wind capacity. If the wind capacity doubles,

similarly, this enhancing effect is maximized at 4.9%, using status quo as the baseline, with the

tax rates in the range of 20$ - 25$ per ton of CO2.

These findings reflect the change in the utilization of fossil fuel generators, i.e. the share

of gas generation in different scenarios discussed earlier. When the carbon tax is moderate,

only a subset of gas generators can serve as the base load units and some of coal units would

be pushed to work as marginal generating units and not be completely pushed to the very end

of the supply curve and almost have no change to be used in any demand levels. Thus when

wind blows, more coal generation will be substituted and more reduction will be seen. When

the carbon tax is very high, those coal units might be completely useless at almost all system

demands. More wind generation solely substitutes gas generation and the emission reduction

becomes smaller consequently.

Because of the transmission constraints, it is useful to look at the emission reduction effects

in different zones. Table 3.5-3 shows the similar comparison as Table 3.5-2 for the four zones

in ERCOT. Since the majority of installed wind capacity is located in west zone and the fossil

generation fleet there is also the smallest among four zones in ERCOT, it is not surprising to

see the impact of wind energy is felt most in the west zone. The relative reduction of carbon

dioxide emission between the status quo wind installation and the no wind scenario is on the

order of 25% at all hypothetical carbon tax rates. The impact on emission reduction becomes

slightly larger when the wind capacity was further doubled. Unlike the system-wide pattern, the

effect fluctuates as the carbon tax increases without a maximum. The most significant impacts

of carbon tax are found in the north zone. About half of the coal generators (measured

by the installed capacity) are located in the north zone, thus if the structure of the supply

curve is reshuffled by the imposed carbon tax, it is natural to see the biggest reconstruction

in the north zone. It is somewhat surprising to see the relative reduction of carbon dioxide

emission in the Houston zone is as similar as that in the south zone, though the coal generation
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resource in the Houston zone is almost three times of that in the south zone. Recall that in the

calibration section, our model produces the significantly different generation portfolio from the

actual production plan because of the combination effect of transmission constraints and the

measurement of heat rates. In our model, the fossil fuel generation, especially gas generation,

in the Houston zone has been over-used. This limits the possibility that in scenarios with a

carbon tax the over-used gas units in the Houston zone cannot grasp the chance to substitute

more generation from the replacement of coal generation.

The extra emissions reduction brought about by wind energy in the three non-western

zones are relatively moderate in terms of percentage reduction. These effects peak at the south

zone and north zone within the hypothetical carbon tax scenarios. In the Houston zone, it

seems that doubling wind capacity could bring more reduction if higher carbon tax rates were

imposed. Table 3.5-4 shows the carbon emission matrix in physical units (10ˆ6 tons of CO2).

The majority of reduction of carbon dioxide comes in the north zone and south zone if carbon

tax were imposed. In our hypothetical scenario with a 70$/ton of CO2 tax, our model predicts

there will be 41.7 million tons of carbon dioxide avoided in the north zone alone, followed by

the reduction of 19.4 million tons in the south zone and 16.9 million tons in the Houston zone,

contrasted with just over 1 million tons in the west. This variation of emission reduction could

be partly explained by the portfolio of generation resources. Remember that the north zone

has the largest fossil fuel generation fleet and the highest power demand among all four zones.

The Houston zone and south zone have smaller generation fleets with the capacity only slightly

more than half of that in the north zone. The west zone has the smallest generation fleet with

less than one tenth of that of the north zone.

Although other pollutants, such as SO2 and Nox, have not been explicitly modeled in the

simulation, the output from the dispatch model still allows us to calculate their emission in

different scenarios. Table 3.5-5 and Table 3.5-6 show the counterpart results for SO2 and Nox

emission reduction in physical units, respectively. Since the sulfur content in natural gas is far

less than that in the coal, SO2 emission is closely correlated with the coal generation. North

zone has the largest coal generation fleet within ERCOT, thus it is natural to see the reduction

of SO2 is biggest in the north zone. The additional reduction brought about by the expansion
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of wind energy does not follow the same pattern. At any given carbon tax rate, the effect of

wind expansion is biggest in the south zone though the generation fleet in the south zone is

not the largest.

The relative reduction of Nox emission is showed in the Table 3.5-6. The Nox emission rates

of both types of generator are similar with gas units having slightly smaller weighted average

emission rates. Thus, the scale of reduction in Nox emission is significantly smaller than the

reduction of SO2 emission. North zone still have been the most affected zone since it has the

biggest coal generation fleet. Wind expansion will lead to the largest extra reduction of Nox in

the south zone.

For these three typical pollutants, we find that the extra reduction of emission with wind

expansion is largest in the south zone. This is not a coincidence because of two reasons.

Firstly, there is a substantial existence of wind farms, roughly 20% of the whole wind capacity

in ERCOT. When we hypothetically increase the wind penetration in the market, we will

see an equivalent amount of fossil fuel generation will be replaced in the south zone. Secondly,

though the extra wind from the west zone could be imported to the north zone, the substitution

potential is limited by the transmission capacity between these two zones.

Figure 3.5-4 shows a contour graph of CO2 emission on the plane of carbon tax and wind

expansion. To construct this graph, we need interpolate CO2 emission reduction at higher

resolution beyond the hundred plus simulations in our model. The method we use to interpolate

using a linear weighting scheme.22 With the interpolation, we could draw several iso-reduction

lines in terms of the extent of emission reduction as in Figure 3.5-4. There are several interesting

results to highlight. First, there is obvious trade-off between carbon tax and wind expansion,

reflected in the negative slope of the iso-reduction lines. For example, if the policy target

of CO2 emission reduction is to cut a 10% from the current level, the iso-reduction line of

10% reduction implies that a sole carbon tax of 15$ per ton of CO2 could be imposed or

a combination of carbon tax at around 7.5$ per ton of CO2 and doubling the fleet of wind

turbines is also effective. Second, the iso-reduction line at a low level of emission reduction is

22 For a policy scenario defined by the pair of (taxc, wrate), we first find out the cell defined by four pairs
in our simulations, which covers this specific scenario. Then we use a linear weighting scheme to find out the
possible reduction of CO2 emission in this scenario.
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almost linear, but eventually becomes highly nonlinear at higher reduction levels. This can be

seen in this graph with the isocline of 35% emission reduction. In contrast with the target of

10% emission reduction, if a carbon tax would be used to achieve a 35% reduction, the possible

tax rate is beyond the range of carbon tax considered in our simulation, which is 70$ per ton

of CO2. However, if the wind capacity was doubled, the carbon tax needed to imposed is less

than 45$ per ton of CO2. This nonlinearity can also be explained by the supply curve of fossil

fuel generators in the introduction section. At a higher carbon tax, the dirty units have been

completely pushed backward such that dirty generators seldom have the chance to serve the

load. In those situations, a direct substitution away from fossil fuel generation, which is caused

by more wind energy, is more effective.

Though the contour graph shows some combinational values of both instruments, we need

to point out here that our study is a short-run analysis. In reality, if a cap-and-trade program or

a carbon tax is launched, it will change incentives for investment. Cleaner gas power plants will

be added into the generation fleet, thus the replacement of gas generation to wind generation

will not have the same effect as that of substituting dirty coal generation. At the same time, the

carbon tax could push up the market price received by wind producers. That will increase the

economic prospects of wind farms independent of the benefits offered by government programs,

such as PTC and RSP.

Figure 3.5-5 shows the distribution of hourly market price in four scenarios, no carbon tax,

25$/ton of CO2, 50$/ton of CO2 and 70$/ton of CO2. If a PTC and RSP payment are not

included, the market price could be thought as the price received by owners of wind farms

absent these subsidies. The EIA (2013) estimates that the levelized cost of new wind turbine

entering into service at 2018 is at 86.6$ (8600 Cents) per MWH, which does not include possible

tax credits provided by various government programs.23 Figure 3.5-5 shows that at the status

quo, the hypothetical carbon tax should be high enough, such as a rate around 70$/ton of

CO2, to free wind investment from government subsidiary programs. The similar distribution

of market price when the wind capacity is doubled is shown in Figure 3.5-6. Compared with

the distributions in Figure 3.5-5, it is clear that the larger the existing installed wind capacity

23 The link to the summary of the report is http://www.eia.gov/forecasts/aeo/electricity generation.cfm.
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is, the higher carbon tax is needed to support the independent investment on wind turbines.

Several summary statistics about the operation of representative coal and gas unit are listed

in Table 3.5-7.24 The statistics we considered are the total working hours of the unit in each

scenario and the corresponding share of hours in which the unit is operated. Two economic

statistics are also summarized: the average market price when the unit is running and the

average operational profit calculated by subtracting the fuel cost and CO2 emission cost from

the received the market price.25 It is clear that as carbon tax increases, the representative coal

unit eventually becomes the marginal generator, which is suggested by the share of running

time decreases and the average market price required to be profitable increases. In this process,

the operational profit in running hours also decreases despite the price received by the unit

increases dramatically due to the increasing CO2 emission cost. The representative combined

cycle gas unit moves in the opposite direction. As carbon tax increases, the unit is almost

running at full time, while it is running at a little more than 30% of the time in the base line

without any carbon tax. The average operational profit also increases as carbon tax increases.

Though the correlation between wind generation and electricity demand in ERCOT is

negative, the extra wind generation introduced into the market always has a pressure on the

market clear price. However, the likely decrease in the price is moderate as showed in Table

3.5-7.26 For both types of generation units, the impacts of doubling the current wind capacity

seems quite mild for the representative units. These findings suggest that a program like a

carbon tax or cap-and-trade program will have more impacts on determining the economic

prospects of fossil fuel generation technologies than the expansion of wind energy in ERCOT.

24 We define a representative generation in each fuel type as the unit with median “EIA” heat rate. For the
gas unit, we limit it to be a combined cycle gas unit.

25 If the gross revenue is negative in a given hour, it means this unit is not running. This hour will not be
included in the calculation of average gross revenue.

26 CEMS units may not cover the price – setting small gas generators because only relatively big generators
are included in the program.
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4.6 Conclusion

As the atmospheric concentrations of carbon dioxide passed 400ppm in May 9th, 2013,

it becomes more urgent to tackle the climate change issue. Though there is no universal

consensus on the best policy measures to curb the greenhouse gas emission, the promotion of

renewable energy and the application of market-based instruments, such as carbon tax or cap-

and-trade program, have been adopted in several countries and regions to achieve individually-

set reduction goals. Both types of policies reduce greenhouse gas emission via different channels.

In this paper, we use an economic dispatch model to evaluate the interaction of these two

policies, a carbon tax and wind energy expansion, in terms of CO2 emission reduction with

the observational data from Texas ERCOT, a power market with sufficient renewable energy

penetration, especially wind energy.

After the careful calibration of the model, the simulations carried out show that both

policies lead to significant changes in the composition of fossil fuel generation. The imposed

carbon tax will greatly change the favorability of gas generators and increase the share of

gas generation, thus reduce CO2 emission accordingly. Depending on the composition and

technical specification of the current fleet of fossil fuel generators in each zone, there are zonal

spatial variations. As the carbon tax increases, the marginal effect on emission reductions is

eventually diminished. Expansion of the fleet of wind turbines in ERCOT also has the similar

effect on emission reductions. Since the wind energy will still account for a small share in

the generation mix, even doubling the capacity will only achieve 5% or so reduction of CO2

emission. Depending on the rate of carbon tax imposed, the effect of wind capacity expansion

ranges from 4.1% to around 4.9%, a 20% variation. A closer look at the contour graph implied

by the results from our simulation reveals that the single carbon tax may be more effective

when the reduction target is moderate and the combination of carbon tax and renewable energy

promotion may achieve an ambitious reduction goal with lower costs.

There are several caveats about this paper. First, the gross-to-net generation adjustment in

this paper is not ideal. The calculated residual demand (net of fossil generation) in this paper

suggests our approximations may represent the real adjustment extremely poorly under some
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circumstances. Poor adjustment could potentially put the certain generators in wrong places

in the supply order and consequently bias the results. Secondly, this simple cost-minimization

dispatch model without demand response poorly represents the real market. The implicit

assumption behind the cost minimization is that the market is perfectly competitive and this

may not be true in the real world Borenstein et al. (2002) found that the market power of the

large producers substantially causes the equilibrium price deviates from the prices in the perfect

competition case in California power market. The startup cost of wind turbine is not significant

compared with the startup cost of a coal generation, if some producer has a generation fleet

consisting of fossil fuel units and wind turbines, the company may intentionally cut off the

wind generation to boost the market clear price for his production from fossil fuel units. The

inelasticity assumed in this paper may not cause substantial bias in the short run analysis like

this paper. It is critically important in the long run analysis such as investment decisions and

then can affect the long-run performance of either the carbon tax or the renewable energy.
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Table 3.1-1 Composition of Generation by Quartile (%)

No Carbon Tax 25$/CO2 ton 50$/CO2 ton 75$/CO2 ton

Coal Gas Coal Gas Coal Gas Coal Gas

1st Quartile 100 0 23 77 0 100 0 100

2nd Quartile 11 89 30 70 14 86 4 96

3rd Quartile 5 95 56 44 73 27 38 62

4th Quartile 0 100 0 100 21 79 57 43

Table 3.1-2 Carbon Dioxide Reduction in Typical Summer/Winter Day (1,000 tons)

Present 25 $/Co2 ton 50 $/Co2 ton 75 $/Co2 ton

No Wind Wind Diff No Wind Wind Diff No Wind Wind Diff No Wind Wind Diff

A typical day in Jun - Aug

Coal 458 454 -4 383 357 -26 296 266 -30 156 129 -27
Gas 319 290 -29 348 325 -23 388 375 -13 471 453 -18
Total 776 743 -33 728 682 -46 685 637 -48 633 583 -50

A typical day in Dec - Feb

Coal 432 432 0 297 247 -50 143 97 -46 47 27 -20
Gas 199 174 -25 257 247 -10 327 320 -7 385 362 -23
Total 633 608 -25 552 497 -55 474 420 -54 433 389 -44
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Table 3.4-1 Hourly Demand in ERCOT (2009.6-2010.6)

Zone Mean Std. Dev. Min Max

2009.6 - 2009.12

West 2188 333 1591 3138

North 14382 3917 7533 25871

South 10810 2872 5642 17929

Houston 10445 2666 5914 17630

ERCOT 37825 9577 21390 63400

2010.1 - 2010.6

West 2407 363 1734 3591

North 13344 3318 7430 24018

South 9721 2316 5806 16613

Houston 9606 2108 5968 17152

ERCOT 35078 7863 21770 60789

2009.6 - 2010.6

West 2288 364 1591 3591

North 13907 3691 7430 25871

South 10311 2687 5642 17929

Houston 10060 2462 5914 17630

ERCOT 36566 8938 21390 63400

Table 3.4-2 Fossil Fuel Generation Portfolio in ERCOT from CEMS (Unit: MW)

Zone
Coal Gas

Gas (%)Stream Total Stream Combined Cycle Combustion

West
1 23 2 10 11

702 3262 675 1628 959 82

North
15 83 35 37 11

10543 21035 9361 10503 1171 67

Houston
4 75 11 43 21

2685 15691 4005 9629 2057 85

South
12 79 15 41 23

6791 16224 4288 10883 1053 70

ERCOT
32 260 63 131 66

20721 56212 18329 32643 5240 73
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Table 3.4-3 ERCOT zonal fossil fuel generations (in MWH)

Variable Mean Std. Dev. Min Max

Coal

ERCOT 13302 1849 6698 17737

West 400 235 0 654

North 6877 845 3427 8650

Houston 2049 435 578 2485

South 3976 811 1231 6061

Gas

ERCOT 15821 7295 4205 39956

West 549 533 0 2482

North 5556 3084 159 16197

Houston 5138 1602 2813 11264

South 4577 2380 801 10745

Fossil Fuel

ERCOT 29122 8452 12341 54153

West 949 659 0 3127

North 12433 3547 4956 23678

Houston 7187 1820 3741 13700

South 8553 2801 2618 15755

Table 3.4-4 Summary Statistics of Fossil Fuel Generators
CEMS EPA-EIA EIA

Unit Coal Gas Coal Gas Coal Gas
Number of Units # 32 260 32 255 32 255

Capacity MWH 596(179) 216(153) 488(153) 202(147) 488(153) 202(147)
Heat Input mmBTU/MWH 9.81(0.51) 10.99(3.68) 11.17(2.66) 12.88(15.16) 12.14(153) 10.96(5.58)

Co2 Emission Rate tons/MWH 1.04(0.04) 0.69(0.76) 1.19(2.66) 0.74(0.81) 1.19(2.66) 0.74(0.81)
So2 Emission Rate lbs/MWH 2.68(1.82) 0.01(0.01) 2.90(1.91) 0.01(0.02) 2.90(1.91) 0.01(0.02)
Nox Emission Rate lbs/MWH 1.27(0.63) 1.25 (1.90) 1.41(0.66) 1.53(2.57) 1.41(0.66) 1.53(2.57)
1. The statistics are in the format of “mean(standard deviation)”
2. There are 5 gas units which report almost zero net generation and thus they are excluded from the sample used in our model.
3. The only difference between EPA-EIA and EIA is the way to construct the heat rates. We do not change other variables.
4. These averages are arithmetic averages. If using unit capacity as weights, the weighted average of Nox emission rate for
gas units is still lower than that for coal units.
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Table 3.4-5 Transmission Flow and Physical Limits

Energy Flow Transmission Limit

Line Mean Std.Dev Min Max Mean Std.Dev Min Max

2009.6 - 2009.12 2009.6 - 2009.12

W N 39 309 -797 982 1019 262 499 2506

N W -39 309 -982 797 790 150 46 2314

S N -437 326 -1313 732 711 231 130 1238

N S 437 326 -732 1313 1284 132 771 1528

N H 1792 652 -619 3266 3248 135 2186 3589

2010.1 - 2010.6 2010.1 - 2010.6

W N 561 1001 -1532 2374 2347 275 602 6944

N W -561 1001 -2374 1532 1610 585 0 7170

S N -152 358 -1264 760 992 164 0 1352

N S 152 358 -760 1264 1376 128 184 1610

N H 1445 686 -730 2984 3176 265 1824 5577

2009.6 - 2010.6 2009.6 - 2010.6

W N 278 761 -1532 2374 1628 714 499 6944

N W -278 761 -2374 1532 1166 579 0 7170

S N -306 369 -1313 760 840 247 0 1352

N S 307 369 -760 1313 1326 138 184 1610

N H 1633 690 -730 3266 3215 208 1824 5577
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Table 3.5-2 Percentage Co2 Emission Reduction (partial) Matrix in ERCOT

Wind Capacity

CO2 Price 0% 100% chg in 1st 100% 200% chg. in 2nd 100%

$0 5.4 0 -5.4 -4.1 -4.1

$20 -11.2 -18.4 -7.2 -23.3 -4.9

$25 -16.2 -23.4 -7.2 -28.3 -4.9

$30 -19.8 -27.2 -7.4 -32 -4.8

$35 -23.1 -30.5 -7.4 -35.3 -4.8

$40 -25.7 -33 -7.3 -37.7 -4.7

$45 -27.5 -34.6 -7.1 -39.3 -4.7

$50 -28.8 -35.8 -7 -40.4 -4.6

$55 -29.7 -36.6 -6.9 -41.1 -4.5

$60 -30.4 -37.2 -6.8 -41.7 -4.5

$65 -30.9 -37.7 -6.8 -42.1 -4.4

$70 -31.4 -38.1 -6.7 -42.5 -4.4

Table 3.5-3 Zonal Carbon Dioxide Emission Reduction (in %)

Wind Capacity

CO2 Price 0% 100% chg. in
1st
100%

200% chg. in
2nd
100%

0% 100% chg.
in 1st
100%

200% chg.
in 2nd
100%

West Houston

$0 28.6 0 -28.6 -32.6 -32.6 3.2 0 -3.2 -2.6 -2.6
$20 15.1 -12.5 -27.6 -42.5 -30 -6 -11.8 -5.8 -15.2 -3.4
$25 15.5 -12.5 -28 -42.1 -29.6 -11.1 -17 -5.9 -20.4 -3.4
$30 13 -14.3 -27.3 -43.4 -29.1 -13.8 -19.9 -6.1 -23.2 -3.3
$35 10.3 -17.3 -27.6 -45.8 -28.5 -15.1 -21.4 -6.3 -25 -3.6
$40 7.3 -18.5 -25.8 -46.8 -28.3 -16 -22.9 -6.9 -26.7 -3.8
$45 7 -18.8 -25.8 -47.1 -28.3 -17.4 -24.8 -7.4 -29.1 -4.3
$50 7.4 -18.3 -25.7 -46.8 -28.5 -19 -26.8 -7.8 -31.3 -4.5
$55 7.9 -17.8 -25.7 -46.4 -28.6 -20.4 -28.6 -8.2 -33.2 -4.6
$60 8.4 -17.3 -25.7 -46.1 -28.8 -21.8 -30.3 -8.5 -35.1 -4.8
$65 9.1 -16.8 -25.9 -45.8 -29 -23.2 -32 -8.8 -37 -5
$70 9.6 -16.4 -26 -45.4 -29 -24.5 -33.6 -9.1 -38.7 -5.1

North South

$0 3.6 0 -3.6 -1.7 -1.7 6.6 0 -6.6 -5.1 -5.1
$20 -22 -27.1 -5.1 -28 -0.9 -2.9 -11.6 -8.7 -20.4 -8.8
$25 -26.5 -31.7 -5.2 -32.8 -1.1 -9.3 -17.8 -8.5 -26 -8.2
$30 -30.5 -36.2 -5.7 -37.4 -1.2 -13.1 -21.4 -8.3 -29.5 -8.1
$35 -35.1 -40.9 -5.8 -42 -1.1 -16.1 -24.2 -8.1 -32.2 -8
$40 -38.5 -43.8 -5.3 -45 -1.2 -19 -27.1 -8.1 -34.7 -7.6
$45 -39.9 -44.7 -4.8 -45.9 -1.2 -22 -29.9 -7.9 -36.8 -6.9
$50 -40.6 -45.2 -4.6 -46.4 -1.2 -24 -31.5 -7.5 -38 -6.5
$55 -41.3 -45.7 -4.4 -46.7 -1 -25.1 -32.3 -7.2 -38.5 -6.2
$60 -41.7 -45.9 -4.2 -46.9 -1 -25.8 -32.8 -7 -38.7 -5.9
$65 -41.9 -45.9 -4 -46.8 -0.9 -26.4 -33 -6.6 -38.7 -5.7
$70 -41.9 -45.8 -3.9 -46.7 -0.9 -26.8 -33.2 -6.4 -38.7 -5.5
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Table 3.5-4 Zonal Co2 Emission Reduction (in million tons)

CO2 Price

Wind Capacity

0% 100% chg in
1st 100%

200% chg in
2nd
100%

0% 100% chg in
1st 100%

200% chg in
2nd
100%

West Houston
$0 2.39 0 -2.39 -2.73 -2.73 1.63 0 -1.63 -1.29 -1.29
$20 1.26 -1.05 -2.31 -3.56 -2.51 -3.02 -5.92 -2.9 -7.65 -1.73
$25 1.3 -1.05 -2.35 -3.52 -2.47 -5.59 -8.56 -2.97 -10.25 -1.69
$30 1.09 -1.2 -2.29 -3.63 -2.43 -6.94 -9.98 -3.04 -11.67 -1.69
$35 0.86 -1.45 -2.31 -3.83 -2.38 -7.57 -10.77 -3.2 -12.58 -1.81
$40 0.61 -1.55 -2.16 -3.92 -2.37 -8.06 -11.52 -3.46 -13.44 -1.92
$45 0.59 -1.57 -2.16 -3.94 -2.37 -8.75 -12.48 -3.73 -14.63 -2.15
$50 0.62 -1.53 -2.15 -3.92 -2.39 -9.53 -13.46 -3.93 -15.74 -2.28
$55 0.66 -1.49 -2.15 -3.88 -2.39 -10.27 -14.37 -4.1 -16.71 -2.34
$60 0.7 -1.45 -2.15 -3.86 -2.41 -10.97 -15.21 -4.24 -17.66 -2.45
$65 0.76 -1.41 -2.17 -3.83 -2.42 -11.66 -16.08 -4.42 -18.61 -2.53
$70 0.8 -1.37 -2.17 -3.8 -2.43 -12.33 -16.89 -4.56 -19.45 -2.56

North South
$0 3.28 0 -3.28 -1.58 -1.58 3.96 0 -3.96 -3.07 -3.07
$20 -20.05 -24.68 -4.63 -25.53 -0.85 -1.74 -6.98 -5.24 -12.23 -5.25
$25 -24.13 -28.91 -4.78 -29.93 -1.02 -5.58 -10.66 -5.08 -15.61 -4.95
$30 -27.79 -33.01 -5.22 -34.13 -1.12 -7.87 -12.83 -4.96 -17.71 -4.88
$35 -31.98 -37.24 -5.26 -38.24 -1 -9.69 -14.52 -4.83 -19.36 -4.84
$40 -35.08 -39.88 -4.8 -40.99 -1.11 -11.4 -16.28 -4.88 -20.84 -4.56
$45 -36.34 -40.71 -4.37 -41.8 -1.09 -13.22 -17.93 -4.71 -22.08 -4.15
$50 -37.05 -41.23 -4.18 -42.25 -1.02 -14.39 -18.91 -4.52 -22.8 -3.89
$55 -37.63 -41.62 -3.99 -42.6 -0.98 -15.05 -19.39 -4.34 -23.11 -3.72
$60 -37.99 -41.8 -3.81 -42.71 -0.91 -15.49 -19.67 -4.18 -23.23 -3.56
$65 -38.15 -41.8 -3.65 -42.67 -0.87 -15.84 -19.82 -3.98 -23.26 -3.44
$70 -38.23 -41.71 -3.48 -42.59 -0.88 -16.11 -19.93 -3.82 -23.26 -3.33
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Table 3.5-5 Zonal So2 Emission Reduction (in million lbs.)

CO2 Price

Wind Capacity

0% 100% chg in
1st 100%

200% chg in
2nd
100%

0% 100% chg in
1st 100%

200% chg in
2nd
100%

West Houston
$0 0.39 0 -0.39 -1.19 -1.19 0.19 0 -0.19 -0.19 -0.19
$20 -1.35 -1.88 -0.53 -2.64 -0.76 -9.18 -11.69 -2.51 -13.36 -1.67
$25 -1.69 -2.28 -0.59 -2.86 -0.58 -15.41 -18.31 -2.9 -20.08 -1.77
$30 -2.17 -2.7 -0.53 -3.14 -0.44 -20.19 -23.15 -2.96 -24.9 -1.75
$35 -2.72 -3.27 -0.55 -3.56 -0.29 -23.49 -26.56 -3.07 -28.4 -1.84
$40 -3.16 -3.59 -0.43 -3.79 -0.2 -26.63 -29.96 -3.33 -31.85 -1.89
$45 -3.36 -3.73 -0.37 -3.88 -0.15 -29.87 -33.17 -3.3 -35.02 -1.85
$50 -3.49 -3.81 -0.32 -3.93 -0.12 -32.59 -35.74 -3.15 -37.44 -1.7
$55 -3.59 -3.87 -0.28 -3.96 -0.09 -34.69 -37.63 -2.94 -39.22 -1.59
$60 -3.66 -3.91 -0.25 -3.99 -0.08 -36.44 -39.13 -2.69 -40.63 -1.5
$65 -3.71 -3.93 -0.22 -4 -0.07 -37.93 -40.39 -2.46 -41.72 -1.33
$70 -3.75 -3.95 -0.2 -4 -0.05 -39.2 -41.42 -2.22 -42.64 -1.22

North South
$0 1.02 0.00 -1.02 -0.45 -0.45 0.33 0 -0.33 -0.79 -0.79
$20 -109.56 -118.04 -8.48 -120.00 -1.96 -34.13 -39.62 -5.49 -44.74 -5.12
$25 -136.56 -145.30 -8.74 -147.51 -2.21 -47.86 -53.46 -5.6 -58.18 -4.72
$30 -158.34 -168.86 -10.52 -171.40 -2.54 -57.47 -62.97 -5.5 -67.43 -4.46
$35 -181.69 -192.41 -10.72 -194.41 -2.00 -64.65 -69.98 -5.33 -74.87 -4.89
$40 -199.44 -207.66 -8.22 -209.94 -2.28 -70.67 -76.42 -5.75 -81.06 -4.64
$45 -208.44 -215.30 -6.86 -217.20 -1.90 -77.66 -82.92 -5.26 -86.76 -3.84
$50 -214.40 -220.57 -6.17 -222.09 -1.52 -82.57 -87.32 -4.75 -90.67 -3.35
$55 -218.86 -224.38 -5.52 -225.63 -1.25 -86.2 -90.42 -4.22 -93.25 -2.83
$60 -222.09 -227.01 -4.92 -228.03 -1.02 -88.99 -92.71 -3.72 -95.18 -2.47
$65 -224.56 -228.93 -4.37 -229.87 -0.94 -91.33 -94.5 -3.17 -96.66 -2.16
$70 -226.67 -230.37 -3.70 -231.22 -0.85 -93.29 -95.94 -2.65 -97.92 -1.98
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Table 3.5-6 Zonal Nox Emission Reduction (in million tons)

CO2 Price

Wind Capacity

0% 100% chg in
1st 100%

200% chg in
2nd
100%

0% 100% chg in
1st 100%

200% chg in
2nd
100%

West Houston
$0 3.74 0 -3.74 -5.98 -5.98 0.93 0 -0.93 -0.75 -0.75
$20 -2.23 -6.33 -4.1 -10.86 -4.53 -1.03 -2.64 -1.61 -3.64 -1
$25 -3.02 -7.36 -4.34 -11.39 -4.03 -1.97 -3.72 -1.75 -4.69 -0.97
$30 -4.37 -8.5 -4.13 -12.17 -3.67 -2.25 -4.1 -1.85 -5.13 -1.03
$35 -5.85 -10.12 -4.27 -13.38 -3.26 -2.29 -4.26 -1.97 -5.3 -1.04
$40 -6.88 -10.71 -3.83 -13.87 -3.16 -2.04 -4.28 -2.24 -5.4 -1.12
$45 -6.94 -10.71 -3.77 -13.88 -3.17 -1.91 -4.35 -2.44 -5.6 -1.25
$50 -6.88 -10.55 -3.67 -13.8 -3.25 -1.83 -4.41 -2.58 -5.78 -1.37
$55 -6.72 -10.38 -3.66 -13.69 -3.31 -1.7 -4.44 -2.74 -5.88 -1.44
$60 -6.52 -10.21 -3.69 -13.57 -3.36 -1.68 -4.55 -2.87 -6.07 -1.52
$65 -6.25 -10.04 -3.79 -13.44 -3.4 -1.67 -4.75 -3.08 -6.34 -1.59
$70 -5.99 -9.84 -3.85 -13.32 -3.48 -1.65 -4.91 -3.26 -6.55 -1.64

North South
$0 2.18 0 -2.18 -1.03 -1.03 2.18 0 -2.18 -1.87 -1.87
$20 -40.8 -45.91 -5.11 -46.94 -1.03 -10.61 -14.99 -4.38 -19.28 -4.29
$25 -50.7 -55.93 -5.23 -57.15 -1.22 -16.57 -20.84 -4.27 -24.82 -3.98
$30 -58.74 -64.74 -6 -66.09 -1.35 -20.29 -24.41 -4.12 -28.33 -3.92
$35 -66.8 -72.95 -6.15 -74.18 -1.23 -23.12 -27.14 -4.02 -31.14 -4
$40 -73.18 -78.56 -5.38 -80.01 -1.45 -25.56 -29.65 -4.09 -33.37 -3.72
$45 -75.88 -80.76 -4.88 -82.2 -1.44 -27.69 -31.59 -3.9 -34.97 -3.38
$50 -77.21 -82 -4.79 -83.35 -1.35 -28.88 -32.6 -3.72 -35.78 -3.18
$55 -78.1 -82.81 -4.71 -84.15 -1.34 -29.45 -33.02 -3.57 -36.09 -3.07
$60 -78.52 -83.1 -4.58 -84.41 -1.31 -29.77 -33.25 -3.48 -36.2 -2.95
$65 -78.63 -83.07 -4.44 -84.39 -1.32 -29.94 -33.28 -3.34 -36.17 -2.89
$70 -78.66 -82.93 -4.27 -84.28 -1.35 -30.04 -33.3 -3.26 -36.14 -2.84
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Table 3.5-7 Summary Statistics about Operation of Representative Generation Units
Coal Unit Combined Cycle Gas Unit

Running Hrs % of Hrs Avg. Price Avg.Profit Running Hrs % of Hrs Avg. Price Avg.Profit
Carbon Tax # % $/MWH $/MWH # % $/MWH $/MWH

Status Quo Wind Capacity
0$ 9284 98 35.2 13.4 3139 33 36.3 4.4
20$ 7513 79 48.2 5.9 6347 67 45.2 4.5
25$ 6124 65 52.8 5.4 7384 78 48.7 4.9
30$ 5140 54 57.4 4.9 7982 84 52.3 5.6
35$ 4467 47 62.1 4.5 8548 90 56.1 6.3
40$ 3934 42 66.9 4.2 9077 96 59.8 7.1
45$ 3377 36 71.8 4 9214 97 63.1 8
50$ 2675 28 77.1 4.3 9269 98 66.4 9
55$ 2258 24 82.4 4.5 9295 98 69.6 9.9
60$ 1997 21 87.6 4.5 9326 98 72.8 10.8
65$ 1747 18 92.7 4.6 9346 99 75.9 11.6
70$ 1525 16 97.9 4.7 9369 99 79 12.4

60% Increase of Wind Capacity
0$ 9284 98 34.8 13.0 3006 32 36.1 4.3
20$ 7484 79 48.0 5.8 6429 68 44.9 4.2
25$ 6090 64 52.6 5.3 7479 79 48.4 4.6
30$ 5037 53 57.3 4.8 8088 85 52 5.3
35$ 4404 46 61.9 4.4 8647 91 55.8 6
40$ 3845 41 66.8 4.1 9189 97 59.4 6.7
45$ 3219 34 71.6 3.9 9289 98 62.7 7.6
50$ 2487 26 77.1 4.2 9346 99 65.9 8.4
55$ 2113 22 82.3 4.4 9381 99 69 9.3
60$ 1822 19 87.5 4.4 9399 99 72.1 10.1
65$ 1578 17 92.7 4.5 9407 99 75.2 10.9
70$ 1375 15 97.8 4.6 9415 99 78.3 11.6

Doubled Wind Capacity
0$ 9282 98 34.6 12.8 2969 31 35.9 4.2
20$ 7466 79 48 5.7 6416 68 44.8 4.1
25$ 6053 64 52.6 5.2 7480 79 48.3 4.5
30$ 5003 53 57.3 4.8 8102 85 51.9 5.2
35$ 4362 46 61.9 4.3 8680 92 55.7 5.8
40$ 3784 40 66.7 4.1 9178 97 59.3 6.5
45$ 3151 33 71.6 3.9 9295 98 62.5 7.4
50$ 2419 26 77 4.2 9360 99 65.7 8.3
55$ 2050 22 82.2 4.3 9384 99 68.8 9.1
60$ 1777 19 87.4 4.4 9409 99 71.9 9.9
65$ 1515 16 92.6 4.5 9425 99 74.9 10.6
70$ 1307 14 97.9 4.6 9431 100 78 11.3
1. The heat rate of the coal unit used in the calculation is 10.62mmBTU/MWH, the co2 emission rate is 1.02 tons/MWH.
2. The heat rate of the gas unit used in the calculation is 7.477mmBTU/MWH, the co2 emission rate is 0.458 tons/MWH.
3. The cost to emit other typical pollutants from fossil fuel generators, such as SO2 and Nox, are not included in the calculation.
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Figure 3.1-1 The Cumulative Marginal Cost Curve of Fossil Fuel Generation

Figure 3.4-1 The Curtailment of Wind Generation in West Zone

Source: Potomac Economics, 2010 state of market report of ERCOT wholesale electricity market, figure 28
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Figure 3.4-2 the Evolution of Wind Farms in ERCOT (2000-2011)

Figure 3.4-3 Average Hourly Electricity Demand and Wind Generation (MWH)
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Figure 3.5-1 Share of Generation from Gas Units in ERCOT

Figure 3.5-2 Zonal Share of Gas Generation in ERCOT
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Figure 3.5-3 Reduction of CO2 Emission in ERCOT

Figure 3.5-4 Contour Graph of Emission Reduction on Carbon-Wind Plane (%)
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Figure 3.5-5 Distribution of Market Price with Status Quo Wind Capacity

Figure 3.5-6 Distribution of Market Price with Doubled Wind Capacity
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APPENDIX A. Additional Material for Chapter 2

Appendix A

The purpose of this appendix is to discuss in greater detail the alternative aggregated logit

models described in the body the paper and the issues associated with parameter identification.

We start, however, by listing some basic properties of the Gumbel Distribution that are then

used in subsequent sections.

A.1 Properties about Gumbel Distribution

The logit model is based on the Extreme Type I (or Standard Gumbel) Distribution, used

to characterize the unobserved portion of the utility that an individual derives from choosing

an alternative. In addition to yielding a close form for the associated choice probabilities, the

Gumbel distribution has other useful properties, including the following three properties:

• Property 1: If X ∼ Gumbel(0, µ), then X/µ ∼ Gumbel(0, 1); i.e., the standard Gumbel

distribution.

• Property 2: If X ∼ Gumbel(0, µ), then X +A ∼ Gumbel(A,µ).

• Property 3: If Xj ∼ Gumbel(Aj , µ) for j = 1, . . . , J and Xj is independent of Xk ∀k 6= j,

then Y ≡ max(X1, X2, . . . , XJ) ∼ Gumbel(AY , µ), where AY ≡ µ · ln
[∑J

j=1 exp(Aj/µ)
]
.

Proof : The cdf for Xj is given by:

FXj (xj) = exp

(
−exp

[
−(xj −Aj)

µ

])
j = 1, . . . , J. (A.1)
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Therefore, the cdf for Y is given by

FY (y) =

J∏
j=1

FXj (y/µ)

=
J∏
j=1

exp

(
−exp

[
−(y −Aj)

µ

])

= exp

− J∑
j=1

exp

[
−(y −Aj)

µ

]
= exp

−exp(−y/µ)exp

ln


J∑
j=1

exp

[
Aj

µ

]


= exp

(
−exp(−y/µ)exp

[
AY
µ

])
= exp

(
−exp

[
−(y −AY )

µ

])
which is the Gumbel(AY , µ) distribution. A special case of Property 3 arises when Aj =

0 ∀j, in which case AY = µ · ln(J).

A.2 The Logit Model

Consider the simplest repeated logit model, where the utility that individual i receives from

choosing access point j along segment s on choice occasion t is given by.

Uisjt =


εisjt if s = j = 0

Visj + εisjt otherwise

(A.2)

where Visj = αsj +βCisj , Vi00 has been normalized to zero for the stay-at-home option, and the

εisjt are iid Type I Extreme Value random variables capturing unobserved attributes impacting

these conditional utilities.

The purpose of this section is twofold. First, we argue that, even when access-point trip

data has been aggregated to segment-level information, the parameters of the above model

are apparently identified. While a formal proof of identification is not provided, we are able

to show that the model satisfies necessary conditions for identification in the form of a rank

condition for the score function. Moreover, a series of Monte Carlo exercises substantiate the

claim of identification. Second, while the access-point level ASC’s (i.e., the αsj) are identified,
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they are only poorly identified, depending upon the assumed logistic structure of the model.

This makes the use of access-point level ASC’s tenuous and, to the extent that segments are

relatively uniform in their underly attributes, it may be preferable to allow for segment level

ASC’s only.

To examine identification in the repeated logit model, we derive the associated gradients and

Hessian. Using the model in (A.2), the contribution of individual i to the likelihood function

given by:

Li(ni) =
S∑
s=0

nis•ln

∑
j∈As

Pisj

 (A.3)

=
S∑
s=0

nis•ln(Pis•)

=

{
S∑
s=1

nis•Vis•

}
− T · ln

1 +

S∑
r=1

∑
k∈Ar

exp(Virk)

 , (A.4)

where ni = (ni0•, . . . , niS•) and nis• =
∑T

t=1 yis•t denotes the total number of times aggregate

alternative s is chosen across the T choice occasions, with

Vis• ≡ ln

∑
j∈As

exp(Visj)

 . (A.5)

The gradients for the ASC’s are given by:

∂Li
∂αsj

=

S∑
r=1

∑
k∈Ar

∂Li
∂Virk

∂Virk
∂αsj

. (A.6)

But

∂Li
∂Virk

= nir•
exp(Virk)[∑
j∈Ar exp(Virk)

] − T · exp(Virk)[
1 +

∑S
s=1

∑
j∈As exp(Visj)

] (A.7)

= (nir• − T · Pir•)Pirk|r

where

Pisj|s ≡
exp(Visj)[∑
j∈As exp(Visj)

] (A.8)

denotes the probability that access point j ∈ As is chosen, given that segment s has been

chosen and

Pis• ≡

[∑
j∈As exp(Visj)

]
[
1 +

∑S
r=1

∑
k∈Ar exp(Virk)

] (A.9)
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denotes the probability that segment s is chosen. Substituting (A.7) into (A.6) yields:

∂Li
∂αsj

= (nis• − T · Pis•)Pisj|s. (A.10)

The first order conditions for the ASC’s becomes:

0 =
∂L
∂αsj

=
N∑
i=1

∂Li
∂αsj

=
N∑
i=1

(nis• − T · Pis•)Pisj|s. (A.11)

Note that, in general, ∂L
∂αsj

6= ∂L
∂αsk

unless Pisj|s = Pisk|s ∀j, k ∈ As, which will not be the case

since Cisj will vary across access points. Also, if we let n̂isj ≡ nis•Pisj|s, then these first order

conditions can be rewritten as:

0 =

N∑
i=1

(n̂isj − T · Pisj) ,

which is identical to the standard first order conditions for the logit model without aggregation,

except that now the actual trips to access point j (i.e., nisj) is replaced by a fitted value derived

from the implicit logit model of the choice of access points along a segment. The corresponding

gradient for β is given by:

∂Li
∂β

=
S∑
r=1

∑
k∈Ar

∂Li
∂Virk

∂Virk
∂β

=
S∑
r=1

∑
k∈Ar

(nir• − T · Pir•)Pirk|rCirk

=

S∑
r=1

(nir• − T · Pir•)
∑
k∈Ar

Pirk|rCirk

≈
S∑
r=1

(nir• − T · Pir•)Cir• (A.12)

where the last approximation stems from equation (24) in the body of the paper. Equation

(A.12) highlights the fact that the influence of β on the log-likelihood function is driven in large

part by the variation in travel costs across segments. We can also write the gradient as:

∂Li
∂β

=
S∑
r=1

∑
k∈Ar

(n̂irk − T · Pirk)Cirk,
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which is the form the gradient would take without aggregation, except that, again, nirk is

replaced with the fitted value n̂irk. Using these results, the first order condition for β becomes:

0 =
∂L
∂β

=
N∑
i=1

∂Li
∂β

=

N∑
i=1

S∑
r=1

(nir• − T · Pir•)
∑
k∈Ar

Pirk|rCirk

≈
N∑
i=1

S∑
r=1

(nir• − T · Pir•)Cir•. (A.13)

It is clear from the above results that the score function for the aggregated logit model is

identical in form to its counterpart without aggregation except that the access point counts

(i.e., the nirk’s) are replaced with fitted value (i.e., the n̂irk’s). Moreover, the scores satisfy a

necessary condition for identification of the parameter vector φ ≡ (α••, β), where α•• is the

vector of access point level ASC’s; i.e., the score function is of full column rank.

Turning to the Hessian calculation, we have that:

∂2Li
∂αrk∂αsj

=
∂

∂αrk
(nis• − T · Pis•)Pisj|s

= nis•
∂Pisj|s

∂αrk
− T ∂Pisj

∂αrk
(A.14)

The partial derivative in the first term becomes:

∂Pisj|s

∂αrk
= δsr

δjk
[∑

l∈As exp(Visl)
]
exp(Visj)− exp(Visj)exp(Visk)[∑

l∈As exp(Visl)
]2

= δsr
(
δjkPisj|s − Pisj|sPisk|s

)
(A.15)

= δsr
(
δjk − Pisk|s

)
Pisj|s (A.16)

The partial derivative in the second term becomes:

∂Pisj
∂αrk

=
δjk

[∑S
m=1

∑
l∈Am exp(Viml)

]
exp(Visj)− exp(Visj)exp(Virk)[∑S

m=1

∑
l∈Am exp(Viml)

]2

= δjkPisj − PisjPirk (A.17)

= (δjk − Pirk)Pisj . (A.18)
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Combining terms we get:

∂2Li
∂αrk∂αsj

= nis•δsr
(
δjk − Pisk|s

)
Pisj|s − T (δjk − Pirk)Pisj

= δsr
(
δjk − Pirk|r

)
n̂isj − T (δjk − Pirk)Pisj . (A.19)

The change from the logit model without aggregation is the addition of the first term.

Finally, we have:

∂2Li
∂β∂αrk

=
∂2Li
∂αrk∂β

=
∂

∂αrk

S∑
s=1

∑
j∈As

(nis• − T · Pis•)Pisj|sCisj

=
S∑
s=1

∑
j∈As

(
nis•

∂Pisj|s

∂αrk
− T · ∂Pisj

∂αrk

)
Cisj

=
S∑
s=1

∑
j∈As

(
∂2Li

∂αrk∂αsj

)
Cisj

=

S∑
s=1

∑
j∈As

[
δsr
(
δjk − Pirk|r

)
n̂isj − T (δjk − Pirk)Pisj

]
Cisj . (A.20)

Verifying the identification of the parameter vector φ ≡ (α••, β) on the basis of the implied

Hessian matrix is difficult. However, there are several arguments that suggest identification

indeed holds. First, the column of the Hessian matrix associated with β is almost surely not

collinear with the other columns, as it is a travel cost weighted average of those other columns,

with the travel costs varying by individual and site. Moreover, the source of any identification

problem is likely to lie with columns associated with the ASC’s from the same segment. This is

because ∂2Li
∂αrk∂αsj

is unchanged from the disaggregated model when r 6= s. That is, the concern

would lie with the diagonal sub-matrices from the full Hessian, defined by:

Hs ≡
∂2Li

∂αs•∂α′s•

= As − Bs (A.21)

where the (j, k)th elements of As and Bs are given, respectively, by:

As,(j,k) = nis•
(
δjk − Pisk|s

)
Pisj|s (A.22)
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and

Bs,(j,k) = T (δjk − Pisk)Pisj . (A.23)

Note that As and Bs have the same structure, with the only difference being that As focuses

on trips with the segment, while Bs focuses on all trips. We know that Bs is nonsingular, since

it is a diagonal block of the Hessian matrix in the case of disaggregated data, suggesting that

As is also nonsingular. This, of course, does not rule out the possibility that the difference the

two matrices might be singular. Second, numerous Monte Carlo simulation exercises (available

from the authors upon request) demonstrate that the αsj can be recovered, despite aggregation

of trips to the segment level, when the true underlying data generating process is indeed a logit

model.

At the same time, it is also clear that the αsj ’s are only poorly identified, depending on the

structure of the model for identification. This can be seen if we consider a linear probability

model instead of the logit specification. In this case, the aggregated choice probabilities become

Pis• ≡
∑
j∈As

Visj

=
∑
j∈As

αsj + β
∑
j∈As

Cisj

= αs• + βCis (A.24)

where αs• ≡
∑

j∈As αsj and Cis ≡
∑

j∈As Cisj . The aggregated choice probabilities can be writ-

ten as functions of the aggregated access-point ASC’s (i.e., αs•) and β, precluding identification

of the individual access point ASC’s. Similar problems emerge if access point characteristics

are included in the model, as this corresponds to a restriction of the form αsj = αs + γXsj ,

where Xsj denotes a segment level attribute. In this case, gamma will only be identified via

the assumed structure of the logit model.

Given the fact that access-point ASC’s are only structurally identified, it would seem pru-

dent to incorporate ASC’s only at the level in which the data are available (i.e., the segment

level), particularly if the segments themselves are relatively uniform in quality. This would
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correspond to the restriction:

αsj = αs ∀j ∈ As. (A.25)

The first order conditions in this case become:

0 =
∂L
∂αs

=
∑
j∈As

∂L
∂αsj

=
N∑
i=1

(nis• − T · Pis•)

and

0 =
∂L
∂β

≈
N∑
i=1

S∑
r=1

(nir• − T · Pir•)Cir•,

where

Pis• =
exp(Vis•)

1 +
∑S

n=1 exp(Vin•)
(A.26)

and

Vis• = αs + βCis•, (A.27)

with

Cis• ≡
1

β
ln[
∑
j∈As

exp(βCisj)] ≈
∑
k∈As

Pisk|sCisk. (A.28)

As noted in the body of the text, the aggregated choice model has the same basic logit structure,

except that the travel cost is a probability weighted average of the access-point travel costs.

The first order conditions are, likewise, analogous. In particular, the first order conditions for

the ASC’s are such that, as is case in a standard logit setting, the model will be mean fitting

(i.e., the predicted number of trips to a given segment will precisely equal the actual number

of trips).

Nested Logit Models

We consider in the paper two nested logit specifications, where the conditional utility re-

ceived by individual i in visiting access point j along segment s on choice occasion t is given by
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(A.2), where now Visj = αs + βCisj ; i.e., there are segment level alternative specific constants.

The first specification allows for a nest for all of the trip alternatives, whereas the second model

treats each segment as a separate nest.

Specification 1: Trip Nest

In the first specification, all of the segments (and their associated access points) are grouped

together in a single nest. In this case, the choice probability for access point j becomes:

Pisj = exp(Ṽisj)

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ−1
1 +

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ
 . (A.29)

where

Ṽisj =
Visj
θ

=
αs
θ

+
βCisj
θ

= α̃s + β̃Cisj . (A.30)

The choice probability for aggregate site s becomes

Pis• =
∑
j∈As

exp(Ṽisj)

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ−1
1 +

 S∑
r=1

∑
k∈Ar

exp(Ṽirk)

θ


= exp(Ṽis•)

 S∑
r=1

∑
k∈Ar

exp(Ṽir•)

θ−1
1 +

 S∑
r=1

∑
k∈Ar

exp(Ṽir•)

θ
 (A.31)

where

Ṽis• = ln

∑
j∈As

exp(Ṽisj)


= α̃s + ln

∑
j∈As

exp(β̃Cisj)


= α̃s + β̃C̃is (A.32)

with

C̃is =
1

β̃
ln

∑
j∈As

exp(β̃Cisj)


≈
∑
j∈As

Pisj|sCisj . (A.33)

Note that the structure of the choice probability in (A.31) is identical to that for the access

point probabilities, except that the site cost is now a nonlinear function (index) of the access
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point level travel cost in (A.29). Note that, even if the travel cost are identical along aggregate

segment (i.e., Cisj = Cisk = Cis ∀j, k ∈ As), the travel cost parameter β will be identified by

variation in travel cost across sites. Indeed, in this case, Cis is no longer a function of β̃ and

the model reduces to a standard nested logit model.

Specification 2: Segment Nests

In the second specification, the access points within each segment form distinct nests. In this

case, (A.29) is replaced with

Pisj = exp(V̆isj)

∑
k∈As

exp(V̆isk)

θs−1
1 +

S∑
r=1

∑
k∈Ar

exp(V̆irk)

θr
 , (A.34)

where

V̆isj =
Visj
θs

=
αs
θs

+
βCisj
θs

= ᾰs + β̆sCisj . (A.35)

Now, (A.31) becomes

Pis• =
∑
j∈As

exp(V̆isj)

∑
k∈As

exp(V̆isk)

θs−1
1 +

S∑
r=1

∑
k∈Ar

exp(V̆irk)

θr


=

∑
k∈As

exp(V̆isk)

θs
1 +

S∑
r=1

∑
k∈Ar

exp(V̆irk)

θr


= exp(V̆is•)

{
1 +

S∑
r=1

exp(V̆ir•)

}
(A.36)

where

V̆is• = ln


∑
k∈As

exp(V̆isk)

θs


= θsln


∑
k∈As

exp(V̆isk)


= θsᾰs + θsln

∑
j∈As

exp(β̆sCisj)


= θsᾰs + θsβ̆sC̆is

= αs + βC̆is (A.37)
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with

C̆is =
1

β̆s
ln

∑
j∈As

exp(β̆sCisj)

 . (A.38)

Note that the segment choice probabilities look much like a standard logit model in this case,

except for the fact that the segment cost is a nonlinear function of the access point costs.

Identification of θs is equivalent to identification of βs and hence is tied to the nonlinear

relationship in (A.38).

Normal Error Component Mixed Logit Models The paper considers two aggregated

versions of the normal error component logit mixture models (NECLM). We draw on results

in Walker et al., (2) in examining issues of identification for these models. In both models, we

assume that Visj = αs + βCisj ; i.e., there are segment level alternative specific constants.

Specification 1: Trip Nest

In the first model, the error component τit ∼ N (0, σ2
τ ) is shared by all trip alternatives (i.e., all

access points and segments), so that:

Uisjt =


εisjt s = j = 0

Visj + τit + εisjt otherwise,

(A.39)

where the εisjt’s are distributed i.i.d. Gumbel(0, 1). The utility associated with segment s is

then given by

Uis•t = max
j∈As

(Visj + εisjt + τit)

= max
j∈As

(Visj + εisjt) + τit

= ln

∑
j∈As

exp(Visj)

+ εis•t + τit

= αs + βCis• + εis•t + τit (A.40)

where εis•t’s are distributed i.i.d. Gumbel(0, 1), with the third equality following from Property

3 of Gumbel distributions given the normalization of µ = 1.

The aggregated conditional utility functions define a new choice model with the similar

nest structure as the disaggregated model except that the choice now is correspondent to
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the segment level choice instead of access point level choice, and the new travel cost variable

becomes a weighted average of original travel cost variables. The disaggregated model is no

doubt identified, thus the new aggregated model is also identified.

Specification 2: Segment Nest

In specification 2, the error component τist ∼ N (0, σ2
τ ) is shared by all trip alternatives within

the same segment, so that:

Uisjt =


εisjt s = j = 0

Visj + τist + εisjt otherwise,

(A.41)

where the εisjt’s are distributed i.i.d. Gumbel(0, 1). The utility associated with segment s is

then given by

Uis•t = max
j∈As

(Visj + εisjt + τist)

= max
j∈As

(Visj + εisjt) + τist

= ln

∑
j∈As

exp(Visj)

+ εis•t + τist

= αs + βCis• + εis•t + τist (A.42)

where εis•t’s are distributed i.i.d. Gumbel(0, 1)

This is one of the alternative specific variance model discussed in page 1103 - 1107 of Walker

et al., (2). We follow their procedures to check the order and rank condition.

• Order Condition

If there are S (river) segments, the order condition tells that there are (S−1)S
2 parameters

in the error terms can be identified. For a model with S nests, one for each river segment,

the number of unknown parameters about error terms, i.e., normal error terms represent-

ing the nest structures (τs) and extreme Type I errors (εs), is S + 1. Thus, when S is

bigger enough, say s ≥ 4, the maximum number of estimable parameters ( (4−1)×4
2 = 6)

is larger than the total number of unknown parameters of error terms (4 + 1 = 5).

• Rank Condition
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Here, we assume S and for each segment s there are Js access points. Based on the above

derivation, the new choice model looks like

Ui1•t = α1 + βCi1• + σ1τi1 + εi1•t

Ui2•t = α2 + βCi2• + σ2τi2 + εi2•t

. . .

UiS•t = αS + βCiS• + σSτiS + εiS•t

Ui0t = εi0t

where the αs + βCis•, ∀s = 1, 2, . . . , S in the conditional utility function are the abbrevi-

ations for the terms ln
(∑

j∈As exp(Visjt)
)

, s = 1, 2, . . . , S.

The utility difference by subtracting Ui0t will be

α1 + βCi1• + σ1τi1 + εi1•t − εi0t

α2 + βCi2• + σ2τi2 + εi2•t − εi0t

. . .

αS + βCiS• + σSτiS + εiS•t − εi0t


The covariance matrix thereafter is

σ2
1 + 2µg µg . . . µg

µg σ2
2 + 2µg . . . µg

. . . . . . . . . . . .

µg µg . . . σ2
S + 2µg


S×S

where g is the variance of a standard Gumbel distribution, g = π2/6. The matrix has the

same off-diagonal element of µg and diagonal elements, (s, s), of σ2
s + 2µg, s = 1, 2, . . . , S.

There are S+1 unique elements in this matrix, (σ2
1 +2µg, . . . , σ2

S+2µg, µg). The Jacobian

matrix of this vector with respect to four unknown parameters, (σ2
1, . . . , σ

2
S , µ) is

1 0 . . . 2g

0 1 . . . 2g

. . . . . . . . . . . .

0 . . . 1 2g

0 . . . 0 g


([S+1]×[S+1])
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The rank of this matrix is clearly S + 1, which means, according to Walker et al., (2),

the model can only identify up to S unknown parameters of error terms and we need to

normalize µ = 1 to identify other S σs.

• Equity Condition

With the simply formal of the covariance matrix of utility differences, the equity condition

is satisfied easily with the normalization of µ = 1.
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Appendix B

Description of Pseudo Data Set

For a typical simulation, we generate the pseudo data set using the following steps.

1. Generating access points along each river segments

Locate all the river access points and household locations in a 400 by 400 surface to mimic

the territory of Iowa. For the S river segments, we first randomly generate S coordinate

pairs (xs, ys), s = 1, 2, . . . , S for the central point, also the middle access point of each

river segment.1 Those points are assumed to be uniformly distributed in the interval of

[50, 350].2

Once we have the coordinates of the midpoint of each segment, (xs, ys), s = 1, 2, . . . , S,

the direction vector for each segment will be generated with the following rules.

δxs ∼ U [0, 25]

δys =
√

252 − δ2
xs (A.43)

With these direction vectors and if there are J = 2k+ 1(k is a positive integer and equals

1 in this simulation.) access points along the straight river segment s, the access points

for this segment will be

xsj = xs +
(j − k)δxs

k
j = 1, 2, . . . , J

ysj = ys +
(j − k)δys

k
j = 1, 2, . . . , J (A.44)

We also consider the more realistic situations (K and C) when river segments are kinked,

this nonlinear river segments are achieved by generating 2k small direction vectors (δmxs, δ
m
ys),m =

1, 2, . . . , 2k.3 Then the access points for the segment s except for the middle point are,4

xsj = xs + sign(j − k)δjxs, j = 1, 2, . . . , 2k

ysj = ys + sign(j − k)δjys, j = 1, 2, . . . , 2k (A.45)

1For simplicity, we assume there are same odd number of access points along each river segment. Specifically,
Js = 3 in all the simulations

2This arrangement will easily restrict the river segment in the interior of the 400 by 400 surface.
3There will be some restrictions on the scale of these vectors to make sure those access points are still in the

400 by 400 surface
4sign(0) = −1
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In doing so, the points, (xsj , ysj), j = 1, . . . , Js, will not form a line by the randomness

of direction vectors,(δmxs, δ
m
ys),m = 1, 2, . . . , 2k. In this application, we assume there are

three access points along each river segment (k=1).

2. Generating the location of households

We distinguish two scenarios for the distribution of households. In the first scenario called

uniform scenario (U), let there are I households, the location of the ith household is given

by xhi , y
h
i , i = 1, 2, . . . , I, where

xhi ∼ U [0, 400]

yhi ∼ U [0, 400] (A.46)

In the scenario called population center scenario(C), 60 percent of the households are dis-

tributed around the first two river segments, while other households are uniformly located

in the other area of 400 by 400 surface.5 The objective of having population centers is to

check the possible effects of different population distributions on the estimation results.

3. Travel distances and travel costs.

The one-way travel distance for household i to the segment-entry point combination

sj, s = 1, 2, . . . , S and j = 1, 2, . . . , Js, is given by

disj =
√

(xsj − xhi )2 + (ysj − yhi )2. (A.47)

The travel cost for household i to the segment-entry point combination sj then is calcu-

lated by the formula:

Cisj = 2disj(f +
w

3m
). (A.48)

where f denote the cost per mile, w denotes the wage rate and m denotes the average

speed (i.e., miles per hour), which is used to convert distance into time.6 The similar

5Using S=5 as an example, we first randomly locate half of households in the whole 400 by 400 surface and
randomly locate the other half in two squares with the first two river segments’ middle points as the center and
a edge length of 50. By doing so, we approximately achieve the goal of having 60 percent of population around
the first two river segments. For the other number of river segments, similar procedure is taken.

6We set f = $0.25, w = $30 and m = 50MPH in the data generation process.
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formula is extensively used in recreation literature to calculate the travel cost (see, e.g.,

(2) and (14)).

4. Generating choice variable yisjt and observed choice variable nis.

The conditional utility for individual i to visit the river segment s through segment-entry

point combination sj is assumed to take the following form

Uisjt = Visj + εisjt = αs + βCisj + [βwwsj ] + εisjt. (A.49)

where αs is the segment specific constant, which is generated from a uniform distribution

of [a − τ, a + τ ], a is the mean and τ measures the spread. β measuring the marginal

utility of income. wsj is the water quality at the segment-entry point combination sj,

βw is the corresponding coefficient.7. εisjt are obtained from the type I extreme value

distribution. The baseline utility of staying-at-home is normalized to 0 (i.e., Vi00t = 0).

By varying the value of a and τ , the segment specific constants are chosen to maintain

the percentage of households choosing staying-at-home option in the certain range.8

Once having the values of Uisjt, we set yisjt to 1 if Uisjt happens to the highest realized

value and set other yiŝĵt, ŝ = 1, . . . , S and ĵ = 1, . . . , Jŝ and ŝ 6= s, ĵ 6= j to 0. We repeat

this process for all I households and T choice occasions.

In the real data we used, we only have the segment level information rather than the

subsegment level information. To mimic this situation,we aggregate households’ yisjt to

get the segment-household variable nis by the formula,

nis =

Js∑
j=1

T∑
t=1

yisjt (A.50)

7In our Monte Carlo experiment, the βw can not be fully recovered in some models because the perfectly
collinearity between the water quality term and the segment specific constant. The two stage method suggested
in Murdock (1) is not applicable here since we only have at most 20 observations about water quality, which
make the estimation in second stage unstable.

8In Egan et al.(2009) about Iowa lake recreation, there were around 60% percent of people who did not have
any lake related recreation. In our simulation, we treat this figure as a simulation target.
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Appendix C

Table A.1 ASCs from the First Stage Estimation

Model 1 Model 2 Model 3
Agg. Prob. Shortest Midpoint

Variable Distance Proxy

ASC1 5.0168 -2.5803 0.6417
ASC2 6.4838 -2.2305 0.0695
ASC3 4.2019 -3.4634 -0.4817
ASC4 4.493 -3.7579 -1.4633
ASC5 4.545 -2.9166 0.1653
ASC6 4.2614 -3.4752 -0.4998
ASC7 3.1682 -4.5548 -1.5384
ASC8 2.9342 -5.0963 -2.3111
ASC9 3.6907 -4.4287 -1.6011
ASC10 4.0319 -4.2685 -1.9934
ASC11 4.0704 -3.9964 -1.1845
ASC12 3.1332 -4.8918 -2.2246
ASC13 4.0769 -3.7241 -0.6416
ASC14 3.6216 -4.3763 -1.6162
ASC15 4.9505 -3.3022 -1.1118
ASC16 4.3029 -3.591 -0.871
ASC17 2.9853 -4.957 -2.2786
ASC18 4.573 -3.6875 -1.486
ASC19 3.1382 -4.5025 -1.7223
ASC20 4.2786 -3.3988 -0.5855
ASC21 4.6964 -2.8534 0.348
ASC22 4.556 -3.2944 -0.1479
ASC23 5.1354 -2.7182 0.5686
ASC24 5.8183 -2.3012 0.5805
ASC25 6.272 -2.0915 0.1649
ASC26 5.4714 -2.4832 0.8248
ASC27 3.9506 -4.1008 -1.4409
ASC28 3.8002 -4.1785 -1.6687
ASC29 3.3551 -4.2817 -1.2639
ASC30 2.7924 -4.8721 -2.0278
ASC31 3.5914 -4.4605 -1.8268
ASC32 3.7831 -4.2534 -1.733
ASC33 4.1951 -3.696 -0.8774
ASC34 4.9502 -3.3018 -1.0835
ASC35 4.1013 -3.524 -0.2001
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Table A.1 ASCs from the First Stage Estimation (con’t)

Model 1 Model 2 Model 3
Agg. Prob. Shortest Midpoint

Variable Distance Proxy

ASC36 4.4308 -3.6547 -0.9388
ASC37 3.0409 -5.2913 -2.9776
ASC38 4.0977 -3.8005 -1.1647
ASC39 4.5527 -4.2716 -2.0123
ASC40 4.7399 -3.3317 -0.6854
ASC41 3.5073 -4.3099 -0.5902
ASC42 3.3274 -4.4224 -1.3207
ASC43 4.8567 -2.994 0.2139
ASC44 2.8565 -5.2535 -2.3306
ASC45 5.0799 -2.7595 0.2832
ASC46 4.8258 -2.832 0.5209
ASC47 5.5218 -2.552 0.4069
ASC48 3.9406 -4.3586 -2.0055
ASC49 5.5566 -2.3159 0.3292
ASC50 4.9957 -2.8903 0.3013
ASC51 4.1497 -3.9638 -1.1712
ASC52 5.991 -1.8865 1.1902
ASC53 5.373 -2.5519 0.1782
ASC54 4.8605 -3.0844 0.3977
ASC55 4.6052 -3.0453 0.2042
ASC56 4.7738 -2.7955 0.4751
ASC57 3.5038 -4.4903 -1.8154
ASC58 5.1499 -2.4113 0.7936
ASC59 3.3877 -4.2272 -1.4112
ASC60 5.1493 -2.462 0.2613
ASC61 5.5962 -2.7213 -0.5656
ASC62 5.0793 -2.7603 -0.2031
ASC63 5.3224 -2.6086 -0.1805
ASC64 6.2124 -1.6717 0.8552
ASC65 6.3197 -1.9378 0.9622
ASC66 5.8436 -2.0881 1.3979
ASC67 5.338 -2.8586 0.2896
ASC68 8.0218 -0.3075 1.8435
ASC69 7.6212 -0.5893 2.1892
ASC70 7.4072 -0.8687 2.2833
ASC71 6.8148 -1.3366 1.5669
ASC72 6.1517 -2.2009 1.1546
ASC73 7.4835 -0.9342 1.4901
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Appendix D

Iowa River Survey 2009 Sample

http://www.card.iastate.edu/environment/items/river_survey_2009.pdf
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APPENDIX B. Additional Material for Chapter 3

Some Properties about Gumbel Distribution

The backbone of logit model is based on the Extreme Type I distributional assumption

(Standard Gumbel Distribution) about the unobservable part of utility function, from re-

searchers’ perspective. In addition to having close form about choice probabilities, the standard

Gumbel distribution has other properties. In order to check the identification conditions later,

we list several relative properties here with brief derivation.

• Property 1: If X ∈ Gumbel(0,µ), then X/µ ∈ Gumbel(0,1).

• Property 2: If X ∈ Gumbel(0,µ), then X +A ∈ Gumbel(A,µ).

• Property 3: If x1, x2, . . . , xN ∈ IID Gumbel(0,µ), then

y = max(x1, x2, . . . , xN ) ∈ Gumbel(µln(N), µ).

Proof :

CDF:Fxi(X) = e−e
−X/µ ∈ Gumbel(0,µ), i = 1,2,. . . ,N

CDF:Fy(Y ) =

N∏
i=1

Fxi(Y/µ)

=

N∏
i=1

e−e
−Y/µ

= e−Ne
−Y/µ

= e−e
−(Y−µlnN)/µ ∈ Gumbel(µln(N),µ)

• Property 4: If x1, x2, . . . , xN ∈ Independent Gumbel(Ai, µ), then y = max(x1, x2, . . . , xN )

will belong to Gumbel(µln(
∑N

i=1 exp(Ai/µ)),1).
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Following the derivation in Property 3, the cumulative distribution function of y will be

Fy(Y ) = e−e
−(Y−µln(

∑N
i=1 exp(Ai/µ))/µ), which is Gumbel(µln(

∑N
i=1 exp(Ai/µ)), µ).

Identification conditions of Normal Error Component Logit Model (NECLM)

Walker et al. (2) proposes three conditions to check the identifiability of parameters in the

error terms. The three conditions are:

• Order condition

The number of estimable parameters in the error terms, S, subject to

S ≤ J(J − 1)

2
− 1

where J is the number of choice options.

• Rank condition

The number of estimable parameters in the error terms, S, adheres to

S = rank(Jocobian(vecu(Ω∆))))− 1

where Ω∆ is the covariance matrix of utility difference, ∆(Uj), which is obtained by

subtracting utility of Uj from each utility, Uk k = 1, . . . , J . ∆(Uj) will be a matrix with

rank J−1. vecu vecterizes the unique elements of Ω∆ into a column vector. The Jacobian

matrix is obtained by differentiating the vector with respect to the unknown parameters

in the error term.

• Equality condition

This condition requires there are at least one possible set of values for the unknown

parameters in the error term which gives the same covariance matrix as the normalized

covariance matrix.

Ω∆ = ΩNormalized
∆

As pointed out by the authors, the rank condition usually puts a tighter bound on the maxi-

mum number of estimable parameters and the equality condition could make the normalization

process very difficult because of the complicated structure of the covariance matrix. In the
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following part, we will put emphasis on the rank condition and bypass the discussion of the

equality condition due to the fact the aggregation model makes the covariance matrix extremely

complex.

Identification of the Aggregate Probability Model

In this part, we consider the situation in which there are J = 5 options in the choice set

and we assume the conditional utility function of choosing each option has the following forms:

Ui1 = Vi1 + [σtτt + σlτl] + ηi1

Ui2 = Vi2 + [σtτt + σlτl] + ηi2

Ui3 = Vi3 + [σtτt + σrτr] + ηi3 (B.1)

Ui4 = Vi4 + [σtτt + σrτr] + ηi4

Ui0 = Vi0 + ηi0

where Vi• stands for the observed part of conditional utility, τt, τl, τr are independent standard

normal errors with standard deviations of σt, σl, σr, respectively. ηi• are the iid Gumbel(0,µ)

errors. The presence of the terms in the brackets represents different nest structures: i) standard

multinomial logit model if none of normal errors show up, ii) a nest structure like case 2 in

Figure 1, iii) a nest structure like case 3 in Figure 1, iv) a two-layer nest structure like case 4

in Figure 1.

The partial observation of group choice on option j = 0, 3, 4 is equivalent to a new choice

model in which there are three options and the conditional utility functions are defined as

Ui1 = Vi1 + [σtτt + σlτl] + ηi1

Ui2 = Vi2 + [σtτt + σlτl] + ηi2

Ui0̃ = max{Ui0, Ui3, Ui4}

where Ui• is defined as above. According to the properties about standard Gumbel distribution,

the Ui0̃ could be written as

Ui0̃ = µln({
4∑
j=3

exp((Vij + [σtτt + σrτr])/µ)}+ 1) + ηi0̃
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where ηi0̃ is a Gumbel(0, µ) random variable. Right now, the normal error terms enter into

utility functions nonlinearly. The new model will not be a NECLM although it is based on a

NECLM. The three conditions can no longer be used here to check the identifiability, while

we will discuss the issue by following the spirit of the Walker et al. (2), that is, to discuss

whether the covariance matrix implied in the new model have enough variation to identify the

parameters in the error terms.

Case 1: Standard Multinomial Logit Model

In this case, there are error terms in the brackets and the new choice model becomes

Ui1 = Vi1 + ηi1

Ui2 = Vi2 + ηi2

Ui0̃ = ln(exp(Vi3) + exp(Vi4) + 1) + ηi0̃

Normalizing µ = 1, this is a standard multinomial logit model with a nonlinear utility part in

the newly defined group option j = 0̃. Another observation is that if there are ASCs in the

original utility parts, Vi•, the model can not identify all the ASCs in the original model. This

observation also holds in other cases.

Case 2: Model with the nest structure in case 2 of Figure 1

The model defined by (B.1) with full information is identified with the normalization of

µ = 1 via checking the order and rank conditions.

The new choice becomes

Ui1 = Vi1 + [σtτt] + ηi1

Ui2 = Vi2 + [σtτt] + ηi2

Ui0̃ = µln(exp(σt/µτt)[exp(Vi3/µ) + exp(Vi4/µ)] + 1)︸ ︷︷ ︸
νi0̃

+ηi0̃

= νi0̃ + ηi0̃

where ν is a random variable closely related to the exponential distribution family and inde-

pendent from η′s and correlated with τt. After some derivation, we could know the covariance
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matrix of the utility difference, ∆(Ui1), looks like 2gµ2 gµ2 + cov(τt, ν)

gµ2 + cov(τt, ν) var(ν) + σ2
t + 2g/µ2 + cov(τt, ν)


where g = π2/6. The number of unique element of this matrix is 3 and the rank of Jacobian matrix of

the vector of unique elements with respect to the two unknown parameters, σt and µ, generally will be

2. Thus the rank condition suggests we need to normalize µ to 1 to make the model identified in terms

of the two parameters in the error terms.

Case 3: Model with the nest structure in case 3 of Figure 1

The full information model (B.1) is also identified by checking the order and rank conditions.

The new model implied by the partial information has the form

Ui1 = Vi1 + [σlτl] + ηi1

Ui2 = Vi2 + [σlτl] + ηi2

Ui0̃ = µln(exp(σr/µτr)[exp(Vi3/µ) + exp(Vi4/µ)] + 1)︸ ︷︷ ︸
νi0̃

+ηi0̃

= νi0̃ + ηi0̃

where ν is a random variable defined by a nonlinear transformation of τr along with unknown and fixed

parameters, σr, Vi3 and Vi4. By assumption, ν is independent of η’s and τl. Similarly, we could get the

covariance matrix of the utility difference, ∆(Ui1) as 2gµ2 gµ2

gµ2 var(ν) + σ2
l + 2g/µ2 + cov(τl, ν)


where g = π2/6. The vector of unique elements of this matrix is a 3 × 1 vector, (2gµ2, gµ2, var(ν) +

σ2
l + 2g/µ2 + cov(τl, ν)), but 2gµ2 is perfectly linear to gµ2.

The rank of the Jacobian matrix of this vector with respect to σl, σr and µ2 is only 2 given other

variables, Vi3 and Vi4. Thus we need to normalize two of three unknown parameters, (σl, σr, µ) to

identify the model according the rank condition in Walker et al. (2). However, the aggregation model

makes the error term directly depend on other variables which have a large domain, thus the covariance

matrix has much more variations. If the richness of covariance matrix decides the identifiability of the

model, we argue that the aggregation model is still identified with the normalization of µ = 1.

Case 4: Model with the nest structure in case 4 of Figure 1

The full information model (B.1) is also identified by checking the order and rank conditions.
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The new model implied by the partial information has the form

Ui1 = Vi1 + [σtτt + σlτl] + ηi1

Ui2 = Vi2 + [σtτt + σlτl] + ηi2

Ui0̃ = µln(exp(σt/µτt + σr/µτr)[exp(Vi3/µ) + exp(Vi4/µ)] + 1)︸ ︷︷ ︸
νi0̃

+ηi0̃

= νi0̃ + ηi0̃

where ν is a random variable defined by a nonlinear transformation of τt andτr along with unknown

and fixed parameters, σt, σr, Vi3 and Vi4. By assumption, ν is independent of η’s and τl. Similarly, we

could get the covariance matrix of the utility difference, ∆(Ui1) as 2gµ2 gµ2 + cov(τt, ν)

gµ2 + cov(τt, ν) var(ν) + σ2
l + σ2

t + 2g/µ2 + cov(τl, ν)


where g = π2/6. The vector of unique elements of this matrix is a 3 × 1 vector, (2gµ2, gµ2 +

cov(τt, ν), var(ν) + σ2
t + σ2

l + 2g/µ2 + cov(τt, ν)). Conditional on other variables, the rank of Jacobian

matrix of this vector with respect to (σt, σl, σr, µ
2) will be three. Thus rank condition suggests we must

need two normalization. Again we argue that we may identify this model with only one normalization

of µ = 1 due to the complicated structure of ν.

Walker et al. (2) focuses on the identification of unknown parameters in the error terms, the

identification of other unknown parameters, such as alternative specific constants (ASCs), depends

on other conditions. Murdock (1) argues that ASCs could be consistently estimated with maximum

likelihood estimation technique, Babatunde et al. (1) also gives a Bayesian framework to estimate the

ASCs in RUM models. The identification of ASCs in an aggregation RUM model have not been discussed

in the literature yet and we have no intention to formally prove the identifiability of ASCs here. In the

simulation work, we estimate several sets of models with/without ASCs. The results show that ASCs

could be well estimated under certain circumstances and the bias of partial models with ASCs has been

greatly mitigated.
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APPENDIX C. Additional Material for Chapter 4

Matching Fossil Fuel Units

Since the locational information from the EPA CEMS only report the unit’s NERC region informa-

tion, to allocate the fossil fuel units into four ERCOT zones, we need cross check other public available

information from other sources. ERCOT websites (www.ercot.com and planning.ercot.com) give the

annual capacity, demand and reserve reports (CDR) which have the zonal information at the plant

level, which allow us to match the majority of the units into four zones. Also Cullen (2010) reports a list

of units with zonal information for his research based on the generation lists provided by the ERCOT.1

For the remaining undecided units, I assign them to a specific zone based on the county they are located

since we can find the county-zone pair appeared in the CDR reports. The following table (Table A1)

shows all the operating units in the research period along with their assigned zones and fuel used.2 The

locational information is also showed in the map of figure C.1.

Net Load Adjust

EPA CEMS measures the units’ gloss load and does not measure the power consumed by the power

plants for running the affiliated equipment, such as pollution control devices. At the same time, the

demand data from the ERCOT measures the electricity consumed by consumers which only includes the

electricity in the power grid. Depending on the type of boilers and type of fuels, the energy consumed

by generation facilities varies significantly. The following tables (Table ??) show the net load (EIA) and

gross load information for a subset of coal units in ERCOT. Another challenge is that CEMS does not

necessarily cover the output from the second stage of the combined cycle gas units. This could be seen

by cross checking the net load and gross load for combined cycle units in the sample.

For the coal units, the adjustment is straightforward if we impose the assumption that the ratio

defined by annual net load over annual gloss load is constant and does not vary as output level changes.

For the gas units, we still use this method to convert gloss load to net load and adjust the emission

1 There are some newly added units after the research period of Cullen’s paper, which cover the generation
information until 2007.

2 An operating unit is defined as having positive output, gross load, in CEMS reports during Jun 2009 to
Jun 2010.
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ratio defined as tons of pollutants per MWH output. The major pollutant considered in this paper

is the carbon dioxide and other pollutants, like sulfur dioxide and nitrogen oxides, are not directly

modeled. Compared with the coal unit, combined cycle gas units have more complex output structures.

The combined cycle configuration could include one gas turbine and one steam turbine or multiple gas

turbines and one steam turbine. Since obviously some gas units in CEMS report only cover the gross

output from the gas turbine, a single ratio for those units implicitly imposes the assumption that the

output from the second stage, the steam turbine, is always in the same proportion to the output from

the gas turbine(s). If we accept these assumptions, we could adjust the capacity, output and emission

rates accordingly.

Figure C.2 shows the total generation from coal units with/without adjustment in CEMS reports

compared with the total generation by coal units from ERCOT reports. The comparison of gas units is

showed in Figure C.3. It could be seen that after the adjustment the sequences of fossil fuel generation

match the sequences from ERCOT report quite well, especially for gas generation. Another observation is

that the difference between gross coal generation and net coal generation is larger. We also calculate the

correlation between sequences of hourly generation. The correlation between the sequences of adjusted

coal generation and that of ERCOT reports is 0.9809. The correlation for sequences of gas generation

is 0.9974.3

Zonal Wind Generation

In the sample period, the ERCOT 15-minutes generation reports did not report the zonal level wind

generation and instead only report the ERCOT wide wind generation. To construct the zonal level

wind generation, we must make some assumptions. The first assumption we make is that the zonal wind

generation can be properly approximate as the ERCOT wind generation times the installed capacity of

wind farms in that zone4. The second assumption we made is that the unmatched part between demand

and generation is exogenous and will not change in other scenarios. The unmatched part is defined as

follows:

εit = dit − genfossilfuelit − genhydroit − gennuclearit − ˆwindit − importit

where

• εit is the unmatched error in zone i at time t.

3 The correlations between gloss output in EPA CEMS and that in ERCOT reports are 0.9889 for coal
generation and 0.9977 for gas generation.

4 In GE (2008) report, they use the meteorology models to predict the wind speed in ERCOT and transform
the //wind speed into wind generation.
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• dit is the demand in zone i at time t.

• genfossilfuelit is the generation from fossil fuel generators in zone i at time t.

• genhydroit is the hydro generation in zone i at time t.

• gennuclearit is the nuclear generation in zone i at time t.

• ˆwindit is the wind generation calculated according to the installed capacity in zone i at time t.

• importit is the net imported electricity from other zones in zone i at time t.

Table C.3 summarized the zonal wind generation along with the zonal demand and unmatched errors.

The unmatched errors sometimes are very significant. The existence of big error is understandable given

the assumptions we make before. At the same time the facts that CEMS do not cover the entire fossil

fleet and the uncontrolled amount of generation from other sources are all contributed to the errors.

Results from “EPA-EIA” simulations

Table 3.5-1 shows that if “EPA-EIA” heat rates are used in the simulation, our dispatch model will

divert a significant amount of gas generation from the Houston zone to surrounding zones. On the

other hand, if “EIA” heat rates are used instead, the model dispatch more than observed amount of gas

generation in the Houston zone. The culprit behind these differences is a group of combined heat and

power gas units in the Houston zone.

Table C.4 shows their heat rates and generation information. Measured by the gross generation,

these co-generation units contribute almost 60% of the total fossil fuel generation in the Houston zone

and more than three quarters of the total gas generation. Another observation is that their heat

rates, “EPA-EIA” heat rates, calculated with combined information from EIA and EPA, CEMS are

substantially higher than the heat rates, “EIA” heat rates, calculated with information from EIA alone.

With these differences, it is highly possible that “EPA-EIA” heat rates will lead to lower gas generation

from these units and “EIA” heat rates tend to overestimate their generation. Checking the output

profile of these units in the baseline simulations confirms our speculation. The total generation from

these co-generation units in the baseline simulation with “EPA-EIA” heat rates is only 11 million MWH,

well below the counterpart from the baseline simulation with “EIA” heat rates, which is 44.5 million

MWH.

With the data from public sources, we are afraid that some compromise must be made to precede

our research questions. In this paper, we focus more on the simulation with “EIA” heat rates. It still

is better to check whether the other choice will lead to systematically different emission pattern. Table



164

C.5 shows the counterpart emission reduction matrix as in Table 3.5-2. The pattern shown in these two

tables are essentially similar, except some minor difference.
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Table C.1: EPA CEMS Units and Zonal Affiliation

EPA Plant ID Unitid Fuel Zone EPA Plant ID Unitid Fuel Zone

127 1 Coal West 3506 2 Natural Gas North

3492 CT1 Natural Gas West 3507 9 Natural Gas North

3492 CT2 Natural Gas West 3508 1 Natural Gas North

3492 CT3 Natural Gas West 3508 2 Natural Gas North

3492 CT4 Natural Gas West 3508 3 Natural Gas North

3492 CT5 Natural Gas West 3576 BW2 Natural Gas North

3492 CT6 Natural Gas West 3576 BW3 Natural Gas North

3494 5 Natural Gas West 3576 CE1 Natural Gas North

3494 6 Natural Gas West 3576 GE4 Natural Gas North

3494 CT1 Natural Gas West 3628 **4 Natural Gas North

3494 CT2 Natural Gas West 3628 **5 Natural Gas North

3494 CT3 Natural Gas West 3628 1 Natural Gas North

3494 CT4 Natural Gas West 3628 2 Natural Gas North

3494 CT5 Natural Gas West 3628 3 Natural Gas North

52176 1 Natural Gas West 4195 2 Natural Gas North

52176 2 Natural Gas West 4195 3 Natural Gas North

55215 GT1 Natural Gas West 4266 4 Natural Gas North

55215 GT2 Natural Gas West 4266 5 Natural Gas North

55215 GT3 Natural Gas West 6136 1 Coal North

55215 GT4 Natural Gas West 6146 1 Coal North

56349 CT1A Natural Gas West 6146 2 Coal North

56349 CT1B Natural Gas West 6146 3 Coal North

56349 CT2A Natural Gas West 6147 1 Coal North

56349 CT2B Natural Gas West 6147 2 Coal North

298 LIM1 Coal North 6147 3 Coal North

298 LIM2 Coal North 6180 1 Coal North

3452 1 Natural Gas North 6180 2 Coal North

3452 2 Natural Gas North 6243 1 Natural Gas North

3453 6 Natural Gas North 6243 2 Natural Gas North

3453 7 Natural Gas North 6243 3 Natural Gas North
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3453 8 Natural Gas North 7030 U1 Coal North

3476 2 Natural Gas North 7030 U2 Coal North

3476 3 Natural Gas North 8063 1 Natural Gas North

3476 4 Natural Gas North 8063 CT1 Natural Gas North

3476 5 Natural Gas North 8063 CT2 Natural Gas North

3490 1 Natural Gas North 8063 CT3 Natural Gas North

3490 2 Natural Gas North 8063 CT4 Natural Gas North

3491 3 Natural Gas North 50109 HRSG1 Natural Gas North

3491 4 Natural Gas North 50109 HRSG2 Natural Gas North

3491 5 Natural Gas North 54817 EAST Natural Gas North

3497 1 Coal North 55062 1 Natural Gas North

3497 2 Coal North 55062 2 Natural Gas North

3502 1 Natural Gas North 55062 3 Natural Gas North

3502 2 Natural Gas North 3469 THW31 Natural Gas Houston

3504 1 Natural Gas North 3469 THW32 Natural Gas Houston

3504 2 Natural Gas North 3469 THW33 Natural Gas Houston

55091 STK1 Natural Gas North 3469 THW34 Natural Gas Houston

55091 STK2 Natural Gas North 3469 THW41 Natural Gas Houston

55091 STK3 Natural Gas North 3469 THW42 Natural Gas Houston

55091 STK4 Natural Gas North 3469 THW43 Natural Gas Houston

55091 STK5 Natural Gas North 3469 THW44 Natural Gas Houston

55091 STK6 Natural Gas North 3470 WAP1 Natural Gas Houston

55097 1 Natural Gas North 3470 WAP2 Natural Gas Houston

55097 2 Natural Gas North 3470 WAP3 Natural Gas Houston

55097 3 Natural Gas North 3470 WAP4 Natural Gas Houston

55097 4 Natural Gas North 3470 WAP5 Coal Houston

55132 OGTDB1 Natural Gas North 3470 WAP6 Coal Houston

55132 OGTDB2 Natural Gas North 3470 WAP7 Coal Houston

55132 OGTDB3 Natural Gas North 3470 WAP8 Coal Houston

55139 CTG1 Natural Gas North 7325 SJS1 Natural Gas Houston

55139 CTG2 Natural Gas North 7325 SJS2 Natural Gas Houston

55172 GT-1 Natural Gas North 10298 CG801 Natural Gas Houston
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55172 GT-2 Natural Gas North 10298 CG802 Natural Gas Houston

55172 GT-3 Natural Gas North 10298 CG803 Natural Gas Houston

55223 GT-1 Natural Gas North 10298 CG804 Natural Gas Houston

55226 GT1 Natural Gas North 10741 G102 Natural Gas Houston

55226 GT2 Natural Gas North 10741 G103 Natural Gas Houston

55226 GT3 Natural Gas North 10741 G104 Natural Gas Houston

55226 GT4 Natural Gas North 50137 1 Natural Gas Houston

55230 CT-1 Natural Gas North 50815 ENG101 Natural Gas Houston

55230 CT-2 Natural Gas North 50815 ENG201 Natural Gas Houston

55320 GT-1 Natural Gas North 50815 ENG301 Natural Gas Houston

55320 GT-2 Natural Gas North 50815 ENG401 Natural Gas Houston

55480 U1 Natural Gas North 50815 ENG501 Natural Gas Houston

55480 U2 Natural Gas North 50815 ENG601 Natural Gas Houston

55480 U3 Natural Gas North 52088 GT-A Natural Gas Houston

55480 U4 Natural Gas North 52088 GT-B Natural Gas Houston

55480 U5 Natural Gas North 52088 GT-C Natural Gas Houston

55480 U6 Natural Gas North 55015 1 Natural Gas Houston

3460 CBY1 Natural Gas Houston 55015 2 Natural Gas Houston

3460 CBY2 Natural Gas Houston 55015 3 Natural Gas Houston

3464 GBY5 Natural Gas Houston 55015 4 Natural Gas Houston

3464 GBY73 Natural Gas Houston 55047 CG-1 Natural Gas Houston

3464 GBY74 Natural Gas Houston 55047 CG-2 Natural Gas Houston

3464 GBY81 Natural Gas Houston 55047 CG-3 Natural Gas Houston

3464 GBY82 Natural Gas Houston 55187 CHV1 Natural Gas Houston

3464 GBY83 Natural Gas Houston 55187 CHV2 Natural Gas Houston

3464 GBY84 Natural Gas Houston 55187 CHV3 Natural Gas Houston

3468 SRB1 Natural Gas Houston 55187 CHV4 Natural Gas Houston

3468 SRB2 Natural Gas Houston 3611 1 Natural Gas South

3468 SRB3 Natural Gas Houston 3611 2 Natural Gas South

3468 SRB4 Natural Gas Houston 3612 1 Natural Gas South

55299 CTG1 Natural Gas Houston 3612 2 Natural Gas South

55299 CTG2 Natural Gas Houston 3612 3 Natural Gas South
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55327 CTG-1 Natural Gas Houston 3612 CT01 Natural Gas South

55327 CTG-2 Natural Gas Houston 3612 CT02 Natural Gas South

55327 CTG-3 Natural Gas Houston 3613 3 Natural Gas South

55357 CTG1 Natural Gas Houston 3631 CT7 Natural Gas South

55357 CTG2 Natural Gas Houston 3631 CT8 Natural Gas South

55365 GT-1 Natural Gas Houston 3631 CT9 Natural Gas South

55365 GT-2 Natural Gas Houston 4937 1 Natural Gas South

55365 GT-3 Natural Gas Houston 4939 1 Natural Gas South

55365 GT-4 Natural Gas Houston 4939 3 Natural Gas South

55464 CTG1 Natural Gas Houston 4939 4 Natural Gas South

55464 CTG2 Natural Gas Houston 6178 1 Coal South

55464 CTG3 Natural Gas Houston 6179 1 Coal South

55464 CTG4 Natural Gas Houston 6179 2 Coal South

55470 EPN801 Natural Gas Houston 6179 3 Coal South

55470 EPN802 Natural Gas Houston 6181 1 Coal South

55470 EPN803 Natural Gas Houston 6181 2 Coal South

56806 CBY41 Natural Gas Houston 6183 SM-1 Coal South

56806 CBY42 Natural Gas Houston 6648 4 Coal South

3439 4 Natural Gas South 7097 **1 Coal South

3439 5 Natural Gas South 7097 **2 Coal South

3441 8 Natural Gas South 7762 HRSG1 Natural Gas South

3441 9 Natural Gas South 7762 HRSG2 Natural Gas South

3443 9 Natural Gas South 7900 SH1 Natural Gas South

3548 1 Natural Gas South 7900 SH2 Natural Gas South

3548 2 Natural Gas South 7900 SH3 Natural Gas South

3548 GT-1A Natural Gas South 7900 SH4 Natural Gas South

3548 GT-1B Natural Gas South 7900 SH5 Natural Gas South

3548 GT-2A Natural Gas South 52071 5A Coal South

3548 GT-2B Natural Gas South 52071 5B Coal South

3548 GT-3A Natural Gas South 55086 101 Natural Gas South

3548 GT-3B Natural Gas South 55086 102 Natural Gas South

3548 GT-4A Natural Gas South 55098 1 Natural Gas South
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3548 GT-4B Natural Gas South 55098 2 Natural Gas South

3559 10 Natural Gas South 55123 CTG-1 Natural Gas South

3559 9 Natural Gas South 55123 CTG-2 Natural Gas South

3601 1 Natural Gas South 55137 CTG-1 Natural Gas South

3601 2 Natural Gas South 55137 CTG-2 Natural Gas South

3601 3 Natural Gas South 55137 CTG-3 Natural Gas South

3609 3 Natural Gas South 55154 1 Natural Gas South

3609 4 Natural Gas South 55154 2 Natural Gas South

3609 CGT1 Natural Gas South 55168 CTG-1A Natural Gas South

3609 CGT2 Natural Gas South 55168 CTG-1B Natural Gas South

3609 CGT3 Natural Gas South 55206 CU1 Natural Gas South

3609 CGT4 Natural Gas South 55206 CU2 Natural Gas South

55144 STK1 Natural Gas South 56350 CT1A Natural Gas South

55144 STK2 Natural Gas South 56350 CT1B Natural Gas South

55144 STK3 Natural Gas South 56350 CT2A Natural Gas South

55144 STK4 Natural Gas South 56350 CT2B Natural Gas South

55153 CTG-1 Natural Gas South 56674 1 Natural Gas South

55153 CTG-2 Natural Gas South 56674 2 Natural Gas South

55153 CTG-3 Natural Gas South 56674 3 Natural Gas South

55153 CTG-4 Natural Gas South 56674 4 Natural Gas South
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Table C.2 Net Load and Gross Load of Coal Plants in ERCOT

Plant ID Fuel Gross Load Source Net Load Source Ratio(N/G)

127 Coal 3.9 EPA CEMS 3.6 EIA 0.92

298 Coal 14.0 EPA CEMS 13.0 EIA 0.93

3470 Coal 18.0 EPA CEMS 17.0 EIA 0.94

3497 Coal 9.9 EPA CEMS 9.3 EIA 0.94

6136 Coal 3.8 EPA CEMS 3.6 EIA 0.95

6139 Coal 11.0 EPA CEMS 11.0 EIA 1

6146 Coal 19.0 EPA CEMS 18.0 EIA 0.95

6147 Coal 14.0 EPA CEMS 13.0 EIA 0.93

6178 Coal 4.7 EPA CEMS 4.5 EIA 0.96

6179 Coal 12.0 EPA CEMS 11.0 EIA 0.92

6180 Coal 8.2 EPA CEMS 3.9 EIA 0.48

6181 Coal 5.8 EPA CEMS 5.6 EIA 0.97

6183 Coal 3.2 EPA CEMS 2.9 EIA 0.91

6193 Coal 7.0 EPA CEMS 6.5 EIA 0.93

6194 Coal 8.1 EPA CEMS 7.7 EIA 0.95

6648 Coal 3.3 EPA CEMS 3.0 EIA 0.91

7030 Coal 2.7 EPA CEMS 2.4 EIA 0.89

7097 Coal 7.0 EPA CEMS 6.6 EIA 0.94

7902 Coal 5.2 EPA CEMS 4.8 EIA 0.92

52071 Coal 3.7 EPA CEMS 3.3 EIA 0.89

Average 0.91

1. The gross load and net load information is based on the year 2010 data.

2. The unit for load is million MWHs.

3. The Net Generation is from EIA (“http://www.eia.gov/electricity/data/browser//topic/0?freq=A”)
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Table C.3 Calculated Zonal Wind, Demand and Errors

Variable Mean Std. Dev. Min Max

West

Wind 1969 1245 13 5070

Demand 2288 364 1591 3591

Error -364 575 -2851 2000

North

Wind 60 37 0 180

Demand 13907 3691 7430 25871

Error 832 704 -3103 4214

Houston

Wind 0 0 0 0

Demand 10060 2462 5914 17630

Error -1055 754 -3633 1989

South

Wind 443 331 2 1383

Demand 10311 2687 5642 17929

Error 942 700 -1653 3379

Table C.4 Some Attributes about Co-Gen and Non-Cogen Combined Cycle Gas Unit

Unit Non-cogen Units Co-gen Units

Sample # 12 31

”EIA” heat rate mmBTU/MWH 9.16(1.36) 6.58(2.22)

”EPA-EIA” Heat Rate mmBTU/MWH 8.80(1.02) 8.90(2.28)

Gross Generation million MWH 9.3 43

Percentage of Fossil Fuel Generation % 12.7 58.9
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Table C.5 Percentage CO2 Emission Reduction (partial) Matrix in ERCOT w/ EPA-EIA
Heat Rates

Wind Capacity

CO2 Price 0% 100% chg. in 1st 100% 200% chg. in 2nd 100%

$0 5.7 0 -5.7 -4.3 -4.3

$20 -7.1 -14.6 -7.5 -19.7 -5.1

$25 -11.5 -19.3 -7.8 -24.5 -5.2

$30 -15 -23 -8 -28.2 -5.2

$35 -18.4 -26.4 -8 -31.6 -5.2

$40 -21.3 -29.3 -8 -34.4 -5.1

$45 -23.4 -31.2 -7.8 -36.2 -5

$50 -24.8 -32.5 -7.7 -37.4 -4.9

$55 -25.9 -33.5 -7.6 -38.3 -4.8

$60 -26.8 -34.2 -7.4 -38.9 -4.7

$65 -27.5 -34.7 -7.2 -39.4 -4.7

$70 -28.1 -35.2 -7.1 -39.8 -4.6
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Figure C.1 Spatial Allocation and Annual Generation of CEMS Units in ERCOT
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Figure C.2 Monthly Generation from Coal Units in ERCOT

Figure C.3 Monthly Generation from Gas Units in ERCOT
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