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GENERAL ABSTRACT

The general theme of this dissertation is investment in new technologies, with a focus on the impact

of policy, information, and learning. The first essay investigates the impacts of the waivable biofuel

mandates on investment in cellulosic biofuel refineries. This essay contributes to the understanding

of waivable mandates by specifying conditions under which even a waivable mandate can stimulate

investment in cellulosic biofuel refineries. Focusing on wheat markets, the second essay estimates (1)

growers’ willingness to pay for a new technology that can segregate wheat grain after measuring grain

protein concentration, (2) the new technology’s impacts on U.S. wheat markets, and (3) the technology’s

market prospect. The third essay studies optimal investments in two lines of research activities under

uncertainties of climate change and research outcomes. These two lines of research activities are (1)

research to mitigate the possible negative impact of climate change; and (2) research to investigate the

true impact of climate change.
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CHAPTER 1. OVERVIEW

The essays in this dissertation, though different in specific issues addressed, are linked through the

common theme of investing in new technologies. The new technologies discussed in this dissertation

are of interest because they are policy and market related. As of February 2012, climate change was

still a concern to the world and much resource had been directed to (1) research activities to reduce

the greenhouse gas (GHG) emission or to better adapt to climate change, and (2) research activities

to investigate the true state of climate change (i.e., its causes and impacts). Partly because of their

benefit of GHG emission reduction, cellulosic biofuels were mandated to be consumed in the United

State starting from 2010. However, due to the uncompetitive production cost, there was not enough

production to meet the mandate. Therefore, the U.S. Environmental Protection Agency had waived

the mandate at the third time in 2012. While corn cobs and stover were attracting increasing attention

because they can be feedstock for cellulosic biofuel, wheat growers were facing an opportunity to better

capture wheat protein premia by adopting a new technology that can segregate wheat grain according to

protein concentration. This dissertation consists of three essays that focus on cellulosic biofuels, wheat

grain segregation technology, and investment in R&D to mitigate climate change’s impact.

In the first essay, “Investment in Cellulosic Biofuel Refineries: Do Waivable Biofuel Mandates Mat-

ter,” we develop a conceptual model to study the impact of mandate policies on stimulating investment

in cellulosic biofuel refineries. In a two-period framework, we compare the first-period investment level

(FIL) under three scenarios: laissez-faire, non-waivable mandate (NWM) policy, and waivable mandate

(WM) policy. Results show that when plant-level marginal costs are increasing then both NWM policy

and WM policy may stimulate FIL. The WM policy has a smaller impact than does the NWM policy.

When the plant-level marginal costs are constants, however, WM policy does not increase FIL but does

increase the expected profit of more efficient investors.

The second essay, “Economic Value of Information: Segregating Wheat by Protein Concentration,”
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is focused on the wheat grain segregation technology. This new technology provides growers with

opportunities to identify grain that can be directed to premium markets. We study wheat growers’

willingness to pay (WTP) for the technology and the technology’s impact on wheat market values.

The market prospect of the new technology is analyzed as well. Depending on the technology’s market

structure and marginal costs, (1) the average WTP of adopters for the technology ranges between 14 and

22 cents per bushel, and (2) upon the adoption of this new technology, market value of Hard Red Winter

wheat will decrease by 0.2% to 2.3%, but market value of Hard Red Spring wheat will increase by 0.3%

to 3.3%. The aggregate wheat market value decreases by a slight amount (0.0002% to 0.004%). If the

technology is supplied by a monopoly firm, then demand from Hard Red Winter and Hard Red Spring

wheat growers in the United States for the technology will provide the firm with an annual operating

profit of between $5.9 million and $7.7 million.

In the first essay, “To Learn or To Change: Optimal R&D Investments under Uncertainties in the

Case of Climate Change,” we investigate the optimal investment in R&D to increase the society’s ability

to face challenges from climate change (termed as “research to change” or RTC). When studying RTC,

current literature overlooks the existence of purchased learning (termed as “research to learn” or RTL)

in which new information on climate change is acquired by investment in research activities. Since RTL

absorbs substantial research resources in climate change research, it cannot be ignored when seeking

to optimize resource allocation for addressing climate change problems. In this article we explore

the interactions between investments in RTC and RTL under uncertainties of climate change. Here

uncertainties include uncertainty about how serious climate change’s damage is, and uncertainty about

when the research activities succeed. We find that 1) if the success of RTL and RTC are statistically

independent, then it is almost never optimal to invest in RTL and RTC simultaneously; 2) if the success

of RTL accelerates the success of RTC, then RTC and RTL are substitutes; 3) if the success of RTL

accelerates the success of RTC and if the cost of RTL is small enough, then it is never optimal to invest

in RTC only. Factors that affect the optimal investment levels in RTC and RTL are studied as well.
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CHAPTER 2. INVESTMENT IN CELLULOSIC BIOFUEL REFINERIES: DO

WAIVABLE BIOFUEL MANDATES MATTER?

Abstract

We develop a conceptual model to study the impact of mandate policies on stimulating investment

in cellulosic biofuel refineries. In a two-period framework, we compare the first-period investment level

(FIL) under three scenarios: laissez-faire, non-waivable mandate (NWM) policy, and waivable mandate

(WM) policy. Results show that when plant-level marginal costs are increasing then both NWM policy

and WM policy may stimulate FIL. The WM policy has a smaller impact than does the NWM policy.

When the plant-level marginal costs are constants, however, WM policy does not increase FIL but does

increase the expected profit of more efficient investors.

Key words: cellulosic biofuels, investment, Renewable Identification Numbers, waivable mandate

JEL classification: D24, L52, Q48



4

Introduction

The U.S. Energy Independence and Security Act of 2007 (EISA) that was passed into law in De-

cember 2007 mandates U.S. consumption of 21 billion gallons of advanced biofuels by 2022. Of this,

16 billion gallons are to come from cellulosic feedstocks. Mandates for cellulosic biofuels begin at 0.1

billion gallons in 2010, increasing to 16 billion gallons in 2022. However, it is not yet clear as of 2011

which technology platform will prove to be the most efficient at producing cellulosic biofuels. It is also

unclear when, if ever, the market value of cellulosic biofuels will cover production costs. As of June

2011, cellulosic biofuel costs are not competitive with corn ethanol costs (D’Amico, 2011). As a result

of technology uncertainty and poor financial competitiveness, no commercial-scale cellulosic biofuel

refinery has been built as of June 2011. EISA’s Renewable Fuel Standard (RFS), along with biofuel tax

credits, aims to support investment in biofuel refineries.

The RFS mandates a floor on the amount of biofuels being consumed in every calendar year. Trade

in Renewable Identification Numbers (RINs) is the market mechanism by which the mandates are to be

met. Each batch, or gallon, of biofuel is assigned a RIN after it is produced or imported. As long as

biofuels are blended with gasoline and made ready for consumption, the RIN attached to the biofuels

can be separated and can then be traded on RIN markets. Obligated parties (i.e., producers or importers

of motor fuel) must give the Environmental Protection Agency (EPA) enough RINs to meet their RFS

mandate every year. They can obtain RINs either through the purchase of biofuels or by entering the

RIN market and buying RINs. Since the price of RINs will be reflected in the price of biofuels, the

RFS would seem to lower the risk of investing in cellulosic biofuel refineries. This is because when

cellulosic biofuel production is lower than the mandate, the RIN price will rise to reflect the scarcity of

biofuels.

However, EISA allows for waivers of mandates, as specified in Section 202 of EISA:

“(D) Cellulosic Biofuel. – (i) For any calendar year for which the projected volume of cel-

lulosic biofuel production is less than the minimum applicable volume established under

paragraph (2)(B), · · · , the Administrator shall reduce the applicable volume of cellulosic

biofuel required under paragraph (2)(B) to the projected volume available during that cal-

endar year.”
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Waivers have occurred for cellulosic biofuels. In March 2010 the EPA waived the 2010 cellulosic

biofuel mandate from 100 million gallons, as listed in EISA, to 6.5 million ethanol equivalent gallons

(EPA 2010a). Again, in November 2010 the EPA waived the 2011 cellulosic biofuel mandate from 250

million gallons to 6 million ethanol equivalent gallons (EPA 2010b). In June 2011, EPA proposed the

2012 cellulosic biofuel standard as 3.55-15.7 million ethanol equivalent gallons, which indicated that

a waiver for cellulosic biofuel will occur for the third time in 2012 (EPA 2011). The reason for these

waivers was that there was not enough production capacity to meet the mandates (EPA 2010a,b; EPA

2011; Yacobucci 2010).

The purpose of this study is to determine the impact of biofuel mandates established by RFS on

the incentive to invest in a cellulosic biofuel refinery when the mandates are waivable. The literature

on the effects of biofuel mandates has not yet addressed this question. Some studies (Gallagher et

al. 2003; McPhail and Babcock 2008a,b; and Lapan and Moschini 2009) modeled the mandate as a

floor on the ethanol consumption. However, Althoff, Ehmke, and Gray (2003) and de Gorter and Just

(2009) analyzed the mandate as an upward shift of the fuel supply curve because, they argued, the price

per gallon of fuel would be increased by mandating that biofuel be blended with gasoline. Roberts and

Schlenker (2010) studied the effects of U.S. biofuel mandates on world food prices by assuming that the

mandates would require 5 percent of world calories to be devoted to biofuel production. Gardner (2007)

modeled the mandate by adding the mandate quantity directly to the corn demand. Taheripour and Tyner

(2007) studied the impacts of the mandate on the distribution of ethanol subsidies by assuming that the

mandate, in addition to limited ethanol production capacity, made the short run supply curve for ethanol

vertical. All of these studies implicitly assumed that the mandate will be met and did not consider the

possibility that a mandate could be waived.

The contribution of this article is threefold. First, it emphasizes the waivability aspect of the man-

dates and studies this aspect’s investment effects. The results show that under certain conditions even

the waivable mandate can stimulate investments. Second, it discovers that mandate policies have the

effect of rewarding more efficient investors or refineries. Third, policy implications are derived from

the results of this article.

We first construct a two-period real option model in which an investor can either invest in the current

period or wait and decide whether to invest in the future. We then compare first-period investment levels
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in three scenarios: (1) laissez-faire, (2) non-waivable mandate (NWM) policy, and (3) waivable mandate

(WM) policy.

We find that the investment impact of biofuel mandates depends on investors’ marginal costs, and

also on the distribution of the cellulosic biofuel’s price in the second period. When the price distribution

is such that almost surely every realization is sufficiently high, then neither NWM policy nor WM

policy affect the first-period investment level. This is because under this price distribution condition

the expected net profit of investors who are break-even in the laissez-faire scenario is not affected by

mandates. If this condition on the price distribution does not hold and if marginal costs are increasing,

then both NWM policy and WM policy can stimulate the investment level in the first period. This is

because they increase the expected profit of investors who are break-even in the laissez-faire scenario.

Moreover, the WM policy has a smaller impact than the NWM policy does. However, if marginal costs

are constants then WM policy has no effect on the investment level no matter what the price distribution

is. But WM policy still can increase, at least weakly, the expected profit of more efficient investors.

In what follows, we first develop a conceptual model of a potential investor’s decision problem.

Then we discuss RIN prices under both NWM policy and WM policy. Based on RIN prices, we compare

period-one investment levels under scenarios of laissez-faire, NWM policy, and WM policy. The last

section provides concluding remarks.

Model

In this section we develop the conceptual model of investors’ investment decisions. In a two-period

world, there is a unit mass continuum of potential investors in the cellulosic biofuel industry. The

investors are risk-neutral. Each investor chooses whether to invest in period one, or in period two, or

not invest at all. The option to invest expires at the end of period two. We denote the action set for

each investor in period one as {I1,NI1}. Here I1 and NI1 mean investing and not investing in period

one, respectively. To invest is to build a biofuel refinery. Once the refinery is built, the cost of doing

so is sunk. Refineries that are built in period one can produce in both period one and period two. We

normalize each refinery’s capacity to one unit.

For simplicity, we assume that an investor’s cost function has a quadratic form. Specifically, if an
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investor invests and produces in period i = 1,2, then the cost function is

Ci(qi) =

 aiq2
i + sqi + fi if qi ∈ [0,1]

∞ if qi > 1,
(2.1)

where qi is the quantity of output in period i; ai and s are non-negative parameters; and fi > 0 is the

one-time sunk setup cost of a refinery. As the slope of marginal cost is likely to be small within the

range of capacity while the fixed costs of a cellulosic biofuel refinery are likely to be large, we assume

that ai ≤ fi. Assuming that ai ≤ fi also admits constant marginal costs as one can set ai = 0. Allowing

ai > fi extracts no extra insight from the article but requires a somewhat distended analysis that arrives

at essentially the same conclusions. To capture the fact that technology advances and learning-by-doing

may decrease production costs of cellulosic biofuels over time, we have x2 < x1, where x ∈ {a, f}. For

simplicity we assume that ai and fi are common across investors in period i. Parameter s, however,

is allowed to vary over investors to capture investor heterogeneities. Therefore, s also serves as an

index of investor efficiency. The higher the s is, the lower the investor’s efficiency. Let G(s) denote the

distribution function of s with support [0,∞). We assume that G(s) is continuous and dG(s)/ds > 0.We

could allow s to vary over periods. But since i) the decreasing costs over time have been captured by

decreasing a and f , and ii) the focus of this article regards the effects of mandates, instead of technology

advances, on investment in cellulosic biofuel, allowing s to vary will not add much insight. Moreover,

since s acts as an index of investors as well, allowing it to vary will require two distributions of investors

in our model, one for each period. And we need to make further assumptions about the relationship

between these two distributions so that the aggregate capacity built up in period one can be consistently

measured. To avoid such complications we let s be constant over time.

If a refinery that is set up in period one continues producing in period two, then in period two its cost

function has parameter a2 instead of a1, which means that in period two refineries that are built in period

one can benefit from technology advances and learning-by-doing to reduce their variable production

costs. This fits the cellulosic industry well because some major inputs into producing cellulosic biofuel,

such as enzymes, are expected to become less expensive in light of technology advances (Geddes,

Nieves, and Ingram 2011). Based on the cost function, an investor’s marginal cost in period i = 1,2 can
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be written as

C′i(qi) =

 2aiqi + s if qi ∈ [0,1]

∞ if qi > 1.
(2.2)

Hereafter, whenever we mention “an investor with s” or simply “investor s” without further explanation,

then we mean an investor with marginal cost as in equation (2.2). Naturally, “a refinery with s” means

the refinery built by investor s. We assume that each investor’s cost function is common knowledge and

all investors have rational expectations.

Since there is a continuum of investors, each investor’s production has no effect on total production.

So an investor will be a price taker after she enters the cellulosic biofuel industry.One may argue that,

since there is a biofuel blending mandate and a new refinery will take about two years to build, the

available refineries can charge an arbitrarily high price for their products. But if producers charge a

very high price, then the obligated party can petition the EPA to grant a waiver according to EISA.

Therefore an arbitrarily high price is unlikely. Therefore, if an investor with s is in the cellulosic biofuel

industry in period i, then her optimal production level will follow the schedule

q∗i = min
[
1,max[0,

vi− s
2ai

]
]
, (2.3)

where vi is the value of one unit of cellulosic biofuel in period i = 1,2. Specifically, v1 = p1 and

v2 = p2+ pRIN where p1 and p2 are the prices of cellulosic biofuel in periods one and two, respectively;

and pRIN is the price of RINs in period two. To save on notation, here we let p1 include the RIN value in

the first period. Since renewable biofuel is only a small part of the fuel market, it is reasonable to assume

that p1 and p2 are exogenously determined by the price of gasoline (Feng and Babcock, 2010). One

can view p2 as the value of energy in one unit of cellulosic biofuel that is exogenously determined by

gasoline price; and view pRIN as a price reflecting scarcity of cellulosic biofuel under mandate policies

in period two. The value of one unit of cellulosic biofuel in period two, v2, should include both p2 and

pRIN .
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If investor s has invested in period i = 1,2, then her maximum operating profit in period i is

πi(vi;s) = viq∗i −ai(q∗i )
2− sq∗i (2.4)

=


0 whenever vi ≤ s

(vi−s)2

4ai
whenever s≤ vi ≤ s+2ai

vi− s−ai whenever vi ≥ s+2ai.

For a refinery with s, by equation (2.4) we know that when vi ≥ s+ ai + fi then the fixed cost, fi,

can be covered by the operating profit in period i, which means that under this situation investment

is profitable. By equation (2.3) we can readily check that the same refinery will run at full capacity

whenever vi ≥ s+ 2ai and will shut down whenever vi ≤ s. Therefore, in period i for investor s, we

define investment price, full-capacity-running price, and shut down price as s+ ai + fi, s+ 2ai, and s,

respectively.

Let β ∈ [0,1] denote the discount factor. For investor s, the expected present value of profit from

investing in period one (i.e., from taking action I1) is

B(I1;s) = π1(p1;s)− f1 +β

∫
∞

0
π2(p2 + pRIN ;s)dJ(p2), (2.5)

where J(p2) is the distribution of stochastic period two price, p2, with support [0,∞). We assume that

J(p2) is continuous and dJ(p2)/d p2 > 0.

If an investor does not invest in period one then she receives nothing in period one but still has the

option to invest in period two. In period two, after observing p2 and pRIN , the investor makes a decision

that maximizes her profit. She will invest whenever π2− f2 ≥ 0. Therefore, for investor s the expected

present value of profit from not investing in period one (i.e., from taking action NI1) is

B(NI1;s) = β

∫
∞

0
max[π2(p2 + pRIN ;s)− f2,0]dJ(p2). (2.6)

In period one, investors choose I1 or NI1 to maximize their expected total present value of profit

from both periods. We define the profit difference between choosing I1 and NI1 for a potential investor

with s as

∆(s) ≡ B(I1;s)−B(NI1;s) (2.7)

= π1(p1;s)− f1 +β

∫
∞

0
min[π2(p2 + pRIN ;s), f2]dJ(p2).
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Here B(NI1;s) can be seen as the option value that is forgone by choosing action I1, so it should be part

of the opportunity cost of choosing I1 (p. 6, Dixit and Pindyck, 1994). An investor will invest in the first

period if ∆(s) ≥ 0. Investors with s such that ∆(s) = 0 are indifferent between I1 and NI1. We refer to

such investors as period-one break-even investors hereafter and assume that they invest in period one.

Let z(v2) ≡ min[π2(p2 + pRIN ;s), f2]. Since v2 ≡ p2 + pRIN ∈ [0,∞) and consequently π2 ∈ [0,∞),

we have z ∈ [0, f2]. The dark four-part curve in Figure 2.1 shows the value of z as a function of v2. So

for a fixed s, the upper bound of ∆(s) is π1(p1;s)− f1 +β f2. Formally, we define the upper bound of

∆(s) as

∆̄(s)≡ π1(p1;s)− f1 +β f2. (2.8)

We further define s̄ such that ∆̄(s̄) = 0. It is clear that when πi > 0 then πi is strictly decreasing in s,

which tells us that investors with s > s̄ will never invest in period one. Therefore, G(s̄) can be seen

as the upper bound of the capacity built in period one. In addition, ∆̄(s̄) = π1(p1; s̄)− f1 + β f2 = 0

together with f2 < f1 imply π1(p1; s̄)> 0. Therefore, we know that π1(p1;s)> 0 for all s≤ s̄. Together

with ∂π2/∂ s ≥ 0, we can conclude that for all s ∈ [0, s̄], ∆(s) is strictly decreasing in s. This says that

for investors who may invest in period one (i.e., investors with s≤ s̄), low efficiency investors have less

incentive to invest in period one. This is because the profit difference between choosing I1 and choosing

NI1 in both periods decreases as investors’ efficiency decreases.

If ∆̄(0)< 0, which means that even the most efficient investor will never invest in period one, then no

potential investor will invest in period one. This could be an appropriate approximation to the cellulosic

biofuel industry in 2010 and 2011 when waivers were granted: low prices and high investment costs

make commercial-scale cellulosic biofuel refineries unviable. Were s̄ = 0, which means that no investor

will invest in period one even if the expected market situation in period two is very good, then mandate

policies will have no effect on period one investment levels. Therefore, in the rest of this article we

assume

Assumption 2.1. The most efficient investor will invest in period one, i.e., ∆(0)> 0.

Assumption 1 implies s̄ > 0. This is because for any p1 ∈ [0,∞) there exist an s > 0 such that

π1(p1;s) = 0 and ∆̄(s) = − f1 +β f2 < 0. Since ∆̄(0) ≥ ∆(0) > 0, by applying the intermediate value
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theorem we know there must be a s̄ > 0 such that ∆̄(s̄) = 0. We summarize the conclusions so far as

Remark 1.

Remark 2.1. i) Investors with s greater than s̄ will never invest in period one. Therefore, ii) the upper

bound of period one investment level is G(s̄). iii) For all s ∈ [0, s̄], ∆(s) is strictly decreasing in s. That

is, the less efficient an investor is, the less likely she will invest in period one.

Suppose that J(s̄+ a2 + f2) = 0, i.e., almost surely the realization of p2 is higher than s̄+ a2 + f2.

Then by equation (2.4) and the definition of s̄ we know that ∆(s̄) = ∆̄(s̄) = 0. From Remark 2.1 we can

conclude that if J(s̄+ a2 + f2) = 0 then investors with s ≤ s̄ will invest in period one. The intuition is

as follows. If J(s̄+ a2 + f2) = 0, then investors with s ≤ s̄ that had not already invested in period one

will almost surely invest in period two anyway because p2 will be higher than the investment price of

investor s. Therefore, the benefit of deferring investment from period one to period two is just to save

one period of interest on the fixed cost, which is (1− β ) f1; and the decrease in the present value of

fixed cost as time moves into period two, which is β ( f1− f2). The opportunity cost of this benefit is π1.

For investors with s < s̄ the cost is greater than the benefit, so they will not delay investment into period

two. We then have Remark 2.2.

Remark 2.2. If J(s̄+a2+ f2) = 0 then the period one investment level will reach its upper bound, G(s̄).

Since trade in RINs is the market mechanism by which the mandates are to be met, the price of

RINs plays a key role in both NWM policy and WM policy. Therefore, before we study the effects

of mandate policies, we need to first discuss price of RINs. We assume that under NWM policy the

government’s commitment is credible. If the commitment is not credible, investors would expect that

waivers will occur whenever production capacity is less than the mandate level. Then a NWM policy

effectively becomes a WM policy.

RIN Price

The analysis in this section focuses on RIN price in period two because we assume that p1, which

includes period-one RIN price, is given at the very beginning of period one. Under NWM policy (WM

policy), the RIN price will start rising when p2 is not high enough to ensure that the mandate (waived
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mandate) is met. Therefore, pRIN in period two is determined by three factors. These are mandate

level, M; capacity built up in period one, X ; and the production level under p2. The mandate policies

essentially provide investors with a put option whose strike price ensures that the mandate (or waived

mandate under the WM policy) is met. Therefore, the mandate policies are valuable to investors only

if p2 is lower than the strike price. RIN prices perform differently under NWM policy and WM policy

because of the waivability feature that distinguishes these two policies. In this section we first study

RIN price under NWM policy and then RIN price under WM policy.

RIN price under NWM policy

Under NWM policy, the production level of cellulosic biofuel in period two must be no less than

the mandate level, M. Therefore, when X < M then v2 = p2 + pRIN will be high enough to induce new

investment in period two. When X ≥M, however, then new investment is not needed in order to meet

the mandate level. Therefore, the RIN price when X < M may differ from the RIN price when X ≥M.

So we discuss RIN price in two cases, based on whether or not X < M.

Case 1. RIN price under NWM policy when X < M

In this case, in order to meet the mandate investors with s ∈ (G−1(X),G−1(M)] will be driven to

invest in period two by the NWM policy. From equation (2.4) we know that to induce investment

from investors with G−1(M) requires that the cellulosic biofuel in period two, v2, should be such that

v2 ≥ G−1(M)+ a2 + f2. If p2 < G−1(M)+ a2 + f2, then the RIN price will rise to a level such that

p2 + pRIN = G−1(M)+ a2 + f2. If p2 ≥ G−1(M)+ a2 + f2, then the mandate will be met and hence

pRIN = 0. Therefore, when X < M then the RIN price under NWM policy is pRIN = max[G−1(M)+

a2 + f2− p2,0].

Case 2. RIN price under NWM policy when X ≥M

In this case, to meet the mandate no new investment in period two is necessary. Based on the

magnitude of X , there are two subcases to consider. To find the critical value of X that differentiates

the two subcases, we need one more piece of notation. Let function A(X) denote the production level

in period two when period one investment level is X and when v2 = G−1(X). Clearly when v2 =

G−1(X) then refineries with s ≥ G−1(X) will shut down; If v2 = G−1(X) ≥ 2a2 then refineries with

s ∈ [0,G−1(X)− 2a2] will run at full capacity and refineries with s ∈
(
G−1(X)− 2a2,G−1(X)

)
will
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run at partial capacity. If v2 = G−1(X) < 2a2 then refineries with s ∈
[
0,G−1(X)

)
will run at partial

capacity. Specifically, we have

A(X) = G
(

max[G−1(X)−2a2,0]
)
+
∫ G−1(X)

max[G−1(X)−2a2,0]

G−1(X)− s
2a2

dG(s), (2.9)

where the first (second) term on the right side of the equation stands for production from investors who

run their refineries at full (partial) capacity. Item A of the Appendix shows that A(0) = 0, A(1) = 1, and

A(X) is strictly increasing in X .

The two subcases are differentiated based on whether or not A(X) > M (i.e., X > A−1(M)). The

reason is as follows. Condition A(X)> M means that the period two production level is higher than the

mandate level when period one investment level is X and when the cellulosic biofuel value in period

two is v2 = G−1(X). This tells us that when period one investment level is X then to ensure the mandate

is just met requires a value of v2 lower than G−1(X), which implies that some refineries built in period

one will shut down in period two if the mandate is just met. However, when A(X) ≤M then to ensure

the mandate is just met requires a value of v2 higher than G−1(X). This means that all refineries built

in period one will run (at full or partial capacity) in period two if the mandate is just met. Since the

purpose of RIN price is to drive v2 to a level that the mandate can just be met whenever p2 is not high

enough, RIN prices differ based on whether or not A(X)> M (i.e., X > A−1(M)).

Sub-case 1. X ∈ (A−1(M),1]

To ease the exposition, hereafter we define vM
2 such that when v2 = vM

2 and when the period one

investment level is X ≥M then the mandate level, M, is just met. As we have discussed above, in this

sub-case we must have vM
2 < G−1(X) and some refineries from period one will shut down in period two

when v2 = vM
2 . So vM

2 is determined by

G
(

max[vM
2 −2a2,0]

)
+
∫ vM

2

max[vM
2 −2a2,0]

vM
2 − s
2a2

dG(s) = M, (2.10)

where the first (second) term on the left side of the equation stands for the production from investors who

run their refineries at full (partial) capacity. We define v̂M
2 as the solution to equation (2.10). Therefore,

in this sub-case pRIN = max[v̂M
2 − p2,0]. Item B of the Appendix shows that v̂M

2 = G−1
(
A−1(M)

)
. We

can see that v̂M
2 does not change with X . This is because when A−1(M) ≤ X ≤ 1 then to just meet

the mandate level refineries with s higher than a certain value will be shut down. For any X such that
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A−1(M)≤ X ≤ 1, an increase of X just means that more refineries with s higher than this certain value

are built in period one. These added refineries will be shut down anyway in this sub-case and will not

affect the value of v2 that is required to make the mandate level just be met.

Sub-case 2. X ∈ [M,A−1(M)]

This sub-case is relevant only if a2 > 0, i.e., investors’ marginal costs are strictly increasing. This

is because when a2 = 0 then, by the definition of A(X), we have A(X) = X and hence A−1(M) = M,

which means that the range of [M,A−1(M)] will shrink to a point, M. As we have discussed above, in

this sub-case we have vM
2 ≥ G−1(X). This means that if A(X) < M and if v2 = vM

2 , then no refinery is

shut down but some refineries do not run at full capacity. Hence vM
2 , the period two cellulosic biofuel

market value under which the mandate is just met, is determined by equation

G
(

max[vM
2 −2a2,0]

)
+
∫ G−1(X)

max[vM
2 −2a2,0]

vM
2 − s
2a2

dG(s) = M, (2.11)

where the first (second) term on the left side of the equation stands for the production from investors

who run their refineries at full (partial) capacity. Let ṽM
2 denote the solution of equation (2.11). Remark

2.3 summarizes the properties of ṽM
2 .

Remark 2.3. When X ∈ [M,A−1(M)] then ṽM
2 exists and is unique. Moreover, ṽM

2 is decreasing in the

period one investment level, X. When X = M then ṽM
2 reaches its maximum value, G−1(X)+2a2. When

X = A−1(M) then ṽM
2 reaches its minimum value, G−1(A−1(M)).

The derivation of Remark 2.3 can be found in Item C of the Appendix. The reason that ṽM
2 is

decreasing in X is because when M ≤ X < A−1(M) then to meet the mandate all refineries built in

period one will run. Therefore, if X is increasing then it means that more refineries are running and

hence a lower value of v2 is required to make the production level reach the mandate. We summarize

the analysis of RIN price under NWM policy as

Remark 2.4. Given mandate level, M, then the RIN price under NWM policy is

pRIN =


max[G−1(M)+a2 + f2− p2,0] whenever 0≤ X < M

max[ṽM
2 − p2,0] whenever M ≤ X ≤ A−1(M)

max[G−1(A−1(M))− p2,0] whenever A−1(M)< X ≤ 1.

(2.12)
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A visual presentation of these three branches of RIN price in equation (2.12) can be found in Figure

2.2. In Figure 2.2 we set p2 = 0 so that the patterns of the RIN prices can be better presented. Overall,

under the NWM policy, the RIN price schedule is decreasing, at least weakly, in the period one invest-

ment level, X . From Figure 2.2 we can see that a fall in the RIN price schedule under NWM policy

occurs at X = M. This fall results from the existence of fixed costs and the characteristics of NWM.

Under NWM policy, if X < M and if p2 is not high enough to ensure that the mandate is met, then in

order to meet the mandate the RIN price will rise to a level such that p2 + pRIN = G−1(M)+ a2 + f2,

the investment price of an investor with s = G−1(M). When X = M then there are enough refineries

available to ensure that mandate is met. Therefore, when X = M then the fixed costs have nothing to do

with the RIN price and the RIN price only needs to rise to a level such that p2 + pRIN = G−1(M)+2a2.

The magnitude of this fall is f2− a2. Clearly, when a2 = f2 there is no discontinuity at X = M. This

is because when a2 = f2 then an investor’ investment price is equal to the full-capacity-running price

so the fixed cost can be covered under the full-capacity-running price. The discontinuity caused by

the RIN price fall when a2 < f2 means that equilibrium X under the NWM policy may not exist. This

matter will be discussed in detail when we study the effects of mandate policies in the next section.

RIN price under WM policy

Under WM policy, we assume that when the second period production induced by p2 is lower

than the mandate level, then the mandate will be waived to the available production capacity under p2.

This assumption fits waivers well in reality as the EPA waived (or proposed to waive in the case of

2012) the mandates of 2010, 2011, and 2012 to the projected production capacity in these years (EPA

2010a,b; EPA 2011; Yacobucci 2010).If the mandate level is waived to the production level under p2,

then pRIN will always be zero since the waived mandate is met by the available production under p2.

Therefore, the WM policy has no effect on any investors. The basic conclusions in this article still hold

when the mandate is assumed to be waived to a level between available production under p2 and the

original mandate. We also assume that the waived mandate level must be met by the cellulosic biofuel

production in period two.EISA allows the obligated parties to use waiver credits as a substitute for RINs

whenever a waiver happens. For simplicity of exposition and to focus on the effects of mandates, we

assume this away in our model. If X ≥M then the mandate level will not be waived under WM policy.
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So there is no difference between RIN prices under NWM policy and WM policy whenever X ≥ M.

Therefore, in this subsection we only need to discuss the RIN price under WM policy when X < M. We

have Remark 2.5 as follows.

Remark 2.5. Under the WM policy, when the period one investment level is less than the mandate level

(i.e., X ∈ [0,M)), then the RIN price will place a floor on v2 at G−1(X)+ 2a2. That is, under the WM

policy when X ∈ [0,M) then pRIN = max[G−1(X)+2a2− p2,0].

The proof of Remark 2.5 is in Item D of the Appendix. By assumption a2 ≤ f2 we know that for an

investor with s the investment price (i.e., s+a2+ f2) is no less than the full-capacity-running price (i.e.,

s+2a2). This means that whenever an investor is induced to invest in period two, then her refinery will

run at full capacity after she invests. In other words, whenever there is some new investment in period

two, the production level in period two will be equal to the capacity. Therefore, under the WM policy,

when X < M and when there is some new investment under p2 (i.e., when p2 > G−1(X)+a2+ f2), then

the RIN price will be zero because either the mandate or the waived mandate (if a waiver occurs) can

be met by p2. When there is no new investment induced by p2 (i.e., when p2 ≤ G−1(X)+a2 + f2), the

mandate will be waived to X , the period one investment level. Under this situation the purpose of the

RIN price is to place a floor on v2 at G−1(X)+2a2 so that the production level in period two can reach

X to meet the waived mandate, which means that pRIN = max[G−1(X)+2a2− p2,0]. Then the whole

schedule of RIN price under the WM policy can be summarized as

Remark 2.6. Given mandate level, M, then the RIN price under WM policy is

pRIN =


max[G−1(X)+2a2− p2,0] whenever 0≤ X < M

max[ṽM
2 − p2,0] whenever M ≤ X ≤ A−1(M)

max[G−1(A−1(M))− p2,0] whenever A−1(M)< X ≤ 1.

(2.13)

The three branches of the RIN prices under the WM policy are depicted in Figure 2.2 as well. When

X < M then pRIN is increasing in X under the WM policy. This is because the larger the value of X , the

higher the value of v2 that is required to meet the waived mandate level, X . When X ≥M then the RIN

price schedule under the WM policy coincides with that under the NWM policy. From Figure 2.2 we

also can see that the RIN price schedule under the WM policy is continuous and the maximum value

of pRIN is obtained at X = M. Moreover, when X < M then the RIN price under the WM policy is
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lower than the RIN price under the NWM policy. This is intuitive because the non-waivability under

the NWM policy will drive RIN price to rise high enough to ensure the mandate level is met.

Effects of NWM and WM Policies

In this section we discuss mandate policies’ profit effects and period one investment effects on po-

tential investors. To do so we compare the expected profits and period one investment levels under three

scenarios: laissez-faire, NWM policy, and WM policy. In the laissez-faire scenario the government

does not impose a mandate. Hence a RIN market does not exist and pRIN can be set as 0. Intuition

would tell us that the NWM policy will increase expected profits and stimulate period one investment

level while the WM policy does not have such effects. This is because the WM policy basically is a

non-credible commitment by government. However, our analysis in this section shows that this intuition

is only partially true.

Several pieces of notation are needed for further analysis. Hereafter we let superscript l, n, and w de-

note variables or functions under scenarios of laissez-faire, NWM policy, and WM policy, respectively.

For example, we denote the equilibrium period one investment levels in the laissez-faire scenario, NWM

policy scenario, and WM policy scenario as X l , Xn, and Xw, respectively. We then define su ≡G−1(Xu)

where u ∈ {l,n,w}. That is, su indexes period one break even investors under the corresponding sce-

nario. We further define ∆u(·), u ∈ {l,n,w}, as the ∆(·) function described in equation (2.7) under the

corresponding scenario. Then by definition we have ∆u(su) = 0 for all u ∈ {l,n,w}. Since mandate

policies affect investors’ period one investment decisions by changing the expected present value of

profit, we first study the mandate policies’ profit effects before we study their period one investment

effects.

Profit Effects

RIN prices under NWM and WM policies effectively change the distribution of cellulosic biofuel’s

value in period two because RIN prices place a floor on the value of cellulosic biofuel in that period.

We define the distribution of v2 under laissez-faire, NWM policy, and WM policy as Jl(v2), Jn(v2),

and Jw(v2), respectively, which are depicted in Figure 3. Distribution function Jl(v2) is the same as
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J(p2) because under the laissez-faire scenario v2 = p2. Essentially, Jn(v2), and Jw(v2) are censored

distributions of Jl(v2) with censoring points at vn
2 and vw

2 , respectively. Here vw
2 and vn

2 denote the value

floors of v2 under the WM policy and the NWM policy, respectively. By equations (2.12) and (2.13) we

have vw
2 ≤ vn

2. In Figure 3, when v2 < vu
2 then Ju(v2) = 0; and when v2 ≥ vu

2 then the curves of Jl(v2)

and Ju(v2) coincide. Here the superscript u ∈ {n,w}.

From the RIN prices in equations (2.12) and (2.13) we know that Jl(v2) ≥ Jw(v2) ≥ Jn(v2) for

all v2 ∈ [0,∞). That is, Jn(v2) first order stochastically dominates Jw(v2); and Jw(v2) first order

stochastically dominates Jl(v2).We are indebted to an anonymous referee for comments that led to

this approach. Since π2 is a non-decreasing function of v2, we have Bn(I1) ≥ Bw(I1) ≥ Bl(I1) and

Bn(NI1) ≥ Bw(NI1) ≥ Bl(NI1), where Bu(·) is function B(·) as described in equations (2.5) and (2.6)

under scenarios u ∈ {l,n,w}. This means that the mandate policies can increase the expected present

value of profit from period two. Moreover, the increase is larger under the NWM policy than under the

WM policy.

The profit increase caused by mandate policies is not evenly distributed among investors in that only

efficient investors can benefit from the mandate policies. As we have defined above, su, u ∈ {l,n,w},

indexes period one break even investors under the corresponding scenario. Under the WM policy,

investors that are less efficient than investor sw will not benefit from the policy. This is because the

value floor fixed by the RIN price under the WM policy is always no higher than sw + 2a2, which is

lower than the investment prices (i.e., s+ a2 + f2) of investors with s > sw. In other words, whenever

the RIN market under the WM policy is working then investors with s > sw are not in the cellulosic

biofuel market. Therefore, they do not benefit from the WM policy. For the same reason we know that

under the NWM policy, when Xn < M then investors with s > G−1(M) will not benefit from the NWM

policy; however, when Xn ≥M then investors with s > sn will not benefit from the NWM policy. We

summarize the mandate policies’ profit effects as follows.

Proposition 2.1. The NWM and WM policies can increase efficient investors’ expected present value of

profit from period two. The increase is larger under the NWM policy. Under the WM policy, investors

who are less efficient than period one break even investors will not benefit from the policy. Under the

NWM policy, when Xn ≥M then investors who are less efficient than period one break even investors

will not benefit from the policy; and when Xn < M then investors with s > G−1(M) will not benefit from
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the policy.

Proposition 1 identifies a transfer implication of mandate policies. While a mandate is “revenue

neutral” as shown in Lapan and Moschini (2009), it is not “transfer neutral.” The more efficient an

investor is, the more likely it will benefit from mandate policies. This means that mandate policies

could encourage investors to adopt more cost-efficient production technologies, a matter that is beyond

the scope of this article and may require future research. Moreover, the profit increase under the mandate

policies may provide a “cash cushion” for these efficient investors and prevent them from shutting down

when the price of cellulosic ethanol is low. In 2009 we did observe that some grain-based ethanol plants

shut down because they hit cash flow problems (Wisner, 2009).

Although mandate policies can increase investors’ expected present value of profit from period two,

one cannot conclude that mandate policies will then stimulate investment levels in period one. This

is because the investment decision in period one is determined by the difference between B(I1;s) and

B(NI1;s) rather than their absolute values. This matter will be discussed next.

Period One Investment Effects

Since the aggregate potential capacity is normalized to 1, whenever the mandate level, M, is greater

than 1 then it will never be met. Moreover, if the mandate level is less than or equal to the period one

investment level under laissez-faire, X l , then it will never be waived. Therefore, we focus on M ∈ (X l,1].

By Remark 1 we know that the upper bound of period one investment level is G(s̄). Therefore, when

M ∈
(
G(s̄),1

]
then we always have X < M. However, when M ∈

(
X l,G(s̄)

]
then we may have either

X ≥ M or X < M. So we divide our discussion into two cases. In the first case M ∈
(
G(s̄),1

]
and in

the second case M ∈
(
X l,G(s̄)

]
. In each case we compare X l , Xn, and Xw, the equilibrium period one

ivestment levels under corresponding scenarios. However, the comparisons presuppose the existence of

X l , Xn, and Xw, which is addressed in Proposition 2.2.

Proposition 2.2. Regarding the existence of X l , Xn, and Xw, we have i) X l and Xw exist and are unique;

ii) when M ∈
(
G(s̄),1

]
then Xn exists and is unique; and iii) when M ∈

(
X l,G(s̄)

]
then Xn exists if and

only if ∆n
(
G−1(X)

)
≥ 0 at X = M; and whenever Xn exists it is unique.

Please see Item E of the Appendix for the proof. The results in i) and ii) of Proposition 2.2 are
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not surprising because the RIN price schedules in the two items are continuous.Under the laissez-faire

scenario pRIN is set as zero so the RIN price schedule is continuous. In item iii) when M ∈
(
X l,G(s̄)

]
then the RIN price schedule under the NWM policy is not continuous. This discontinuity of the RIN

price with respect to the period one investment level causes the non-existence of Xn in some cases.

If ∆n
(
G−1(X)

)
≥ 0 whenever X = M, which means that investors with s = G−1(M) invest in period

one when period one investment level equals the mandate level, then this discontinuity will not cause

non-existence of Xn. The reason is that when investors with s = G−1(M) invest in period one then by

Remark 2.1 we know that Xn ≥M. From Figure 2.2 we know that RIN price is continuous whenever

X ≥M. That is, if ∆n
(
G−1(M)

)
≥ 0 then the part of RIN price schedule that is discontinuous does not

determine the equilibrium period one investment level. Therefore, under this condition the discontinuity

does not cause nonexistence of Xn. If ∆n
(
G−1(M)

)
< 0, however, the part of the RIN price schedule

that is discontinuous becomes relevant and Xn does not exist. Now let us start comparing X l , Xn, and

Xw.

Case 1. M ∈
(
G(s̄),1

]
In this case we only need to focus on the RIN price schedules when X < M because here we have

X ≤ G(s̄)< M. By Proposition 2.2 we know that in this case X l , Xn, and Xw exist and are unique. The

comparisons between X l , Xn, and Xw are provided in Proposition 2.3.

Proposition 2.3. Suppose the mandate level is higher than the upper bound of period one investment

but not higher than the aggregate potential capacity, i.e., M ∈
(
G(s̄),1

]
. Then, i) both NWM and WM

policies have positive investment effects but the effect of the WM policy is not higher than that of the

NWM policy (i.e., Xn ≥ Xw ≥ X l); ii) the equilibrium period one investment level under the NWM

policy reaches the upper bound of period one investment level (i.e., Xn = G(s̄)); iii) Xw > X l if and

only if a) a2 ∈ (0, f2] and b) J(sw + 2a2) > 0; and iv) Xw < Xn if and only if a) a2 ∈ [0, f2) and b)

J(sw +a2 + f2)> 0.

The proof is in Item F of the Appendix. The result in item i) of Proposition 2.3 is intuitive because

the RIN price under the WM policy places a floor on the market value of cellulosic biofuel in period

two, but such a floor is lower than the one under the NWM policy. One reason to delay investment from
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period one to period two is to mitigate price uncertainties by learning p2 at the beginning of period

two. The value floors under the mandate policies reduce uncertainties about cellulosic biofuel values in

period two. Therefore, ceteris paribus, they reduce the incentive to delay investment from period one

to period two and increase, at least weakly, the period one investment levels under mandate policies.

Item ii) of Proposition 2.3 indicates that under the NWM policy, investors with s≤ s̄ will invest in

period one whenever M ∈
(
G(s̄),1

]
. Since the NWM policy fixes period two cellulosic biofuel value at

p2 + pRIN = max{sM +a2 + f2, p2}, by Remark 2.2 this result immediately follows.

Item iii) of Proposition 2.3 specifies the necessary and sufficient conditions under which the WM

policy can strictly stimulate period one investment level when compared with the laissez-faire scenario.

The conditions are a) the marginal cost of refineries are strictly increasing, and b) the distribution of p2 is

such that there is a positive probability that the realization of p2 is small enough (i.e., J(sw +2a2)> 0).

The intuition here is as follows. In the laissez-faire scenario, the refineries of investors with s = sw

will be shut down whenever p2 < sw because the operating profit is zero. However, in the WM policy

scenario, because the RIN price places a floor at sw + 2a2, the investor with s = sw can obtain an

operating profit, a2, even when p2 < sw in period two. However, if the marginal cost is constant (i.e.,

a2 = 0) then this operating profit is 0, so that the investor with s = sw is indifferent between continuing

to run her refinery and shutting it down. That is, when a2 = 0 then the WM policy has no effect on an

investor with s = sw. This is why a WM policy may stimulate more investment in period one when the

marginal cost is increasing but fails to achieve this when the marginal cost is constant.

One can also interpret this difference from the perspective of intensive and extensive margins. When

investors’ marginal costs are increasing, then the RIN price can improve the intensive margin and con-

sequently increase the profit of a running plant. That is, the incentive to invest is enhanced. Therefore,

more investors invest in period one and the extensive margin is enlarged as well. However, when

investors’ marginal costs are constant, the RIN price cannot improve the intensive margin of the break-

even investor. Therefore, it has no effect on the extensive margin either.

Under the WM policy if J(sw + 2a2) = 0 then the distribution of v2 is exactly the same as the

distribution of v2 under the laissez-faire scenario. This is because sw+2a2 is no less than the value floor

of v2 placed by the RIN price under the WM policy. Therefore, the RIN price has no effect on v2, or on

the profit and period one investment level.
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Item iv) of Proposition 2.3 identifies necessary and sufficient conditions under which the WM policy

has a smaller period one investment effect than does the NWM policy. Were a2 = f2 or were J(sw +

a2 + f2) = 0, then under WM policy the floor of v2 in period two will be so high that the fixed cost of

an investor with sw can be covered by the operating profit. Therefore, an investor with sw will certainly

invest in period two if she does not invest in period one. This means that under the WM policy we have

∆w(sw) = π1− f1 +β f2 = 0, which implies that sw = s̄ and hence sw = sn.

In this case Xn exists because M ∈
(
G(s̄),1

]
. But Xn may not always exist in the second case

where the mandate level is lower than or equal to the upper bound of period one investment level, or

more precisely, M ∈
(
X l,G(s̄)

]
. Our comparison between investment levels will be conditional on the

existence of Xn.

Case 2. M ∈
(
X l,G(s̄)

]
Clearly this case requires that the equilibrium period one investment level under the laissez-faire

scenario is less than the upper bound of period one investment level (i.e., X l < G(s̄)). From Remark 2.2

we know that X l < G(s̄) implies J(s̄+a2 + f2)> 0. So, in this case we assume that J(s̄+a2 + f2)> 0.

When M ∈
(
X l,G(s̄)

]
then either X < M or X ≥ M is possible. Therefore, in this case the RIN price

schedule under the NWM policy is not continuous in X (Figure 2.2). Proposition 2.4 presents the results

of this case.

Proposition 2.4. Suppose the mandate level is higher than the equilibrium period one investment level

under the laissez-faire scenario but not higher than the upper bound of period one investment level,

i.e., M ∈
(
X l,G(s̄)

]
. Then we have i) when the equilibrium period one investment level under the NWM

policy, Xn, exists then Xn ∈
[
M,A−1(M)

)
and Xn = Xw > X l; and ii) when Xn does not exist then

Xw ≥ X l; specifically, Xw > X l if and only if a) a2 ∈ (0, f2] and b) J(sw +2a2)> 0.

The proof is in Item G of the Appendix. Intuitively, in item i) of Proposition 2.4 the reason that the

period one investment level under the NWM policy is no less than the mandate level (i.e., Xn ≥M) is

as follows. Suppose Xn < M. Then the non-waivability of the NWM policy will place a floor for period

two cellulosic biofuel value at a level which is so high that investors with s = G−1(M) will invest in

period one. This means that the realized period one investment level will be no less than the mandate
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level, M, which contradicts the premise that Xn < M. The reason for Xn < A−1(M) in item i) is that

were Xn ≥ A−1(M) then the RIN price is so low (see Figure 2.2) that investors with s = G−1(Xn) will

not have incentive to invest in period one. Since the WM policy is exactly the same as the NWM policy

whenever the period one investment level is no less than the mandate level, the conclusion Xn =Xw >X l

follows naturally from the results that Xn ≥M > X l in this item. Item ii) of Proposition 2.4 compares

Xw and X l when Xn does not exist in this case. The intuition that we have discussed for item iii) of

Proposition 2.3 applies here too.

Concluding Remarks

In this article we study the impact of mandates on stimulating investment in cellulosic biofuel re-

fineries. In a two-period model, the first-period investment levels in three scenarios are compared.

These scenarios are (1) laissez-faire, (2) NWM policy, and (3) WM policy. We find that the investment

impact of mandates depends on investors’ marginal costs and the distribution of the price of cellulosic

biofuels in the second period. When the price distribution is such that almost surely every realization

is sufficiently high, then neither the NWM policy nor the WM policy affect the investment level in the

first period. If this condition on the price distribution does not hold and if marginal costs are increasing,

then both NWM policy and WM policy can stimulate the investment level in the first period. But the

WM policy has a smaller impact than does the NWM policy. If marginal costs are constant, then the

WM policy has no effect on the investment level. However, the policy still can increase, at least weakly,

the expected profit of more efficient investors.

We emphasize the waivability aspect of the mandates and study the effects of the waivable mandate.

There may be a political economy issue concerning what the waiver is and who determines it. Many

studies about the effects of U.S. biofuel mandates, such as the ones we reviewed in this paper, implicitly

assumed that a mandate is non-waivable. However, if a mandate can be waived (as did occur for cel-

lulosic biofuels in 2010 and 2011 and will occur again in 2012), then policymakers should re-evaluate

the conclusions of these studies when making further biofuel policies. Moreover, we show that WM

policy has the effect of rewarding more efficient investors or refineries, which will encourage the adop-

tion of cost-reducing technologies in the cellulosic biofuel industry. However, a tax credit policy may
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not have such an effect because it subsidizes refineries based on quantity of output (gallons of biofuels

produced). That is, two refineries producing equal quantities of biofuels will get the same amount of

tax credits, no matter how their production efficiencies differ. From this perspective, a mandate may be

preferable to a tax credit as an instrument to promote long-run growth in the biofuel industry.

Moreover, that a waivable mandate may or may not induce investment in biofuels refineries raises

the question of how the EISA objective of 36 billion gallons of biofuels by 2022 is going to be met. At

least some backers of EISA have likely believed that even a waivable mandate would induce investment

because if a plant comes on line, then the RIN price will increase enough to keep it running. But this

is true only if plant-level marginal costs are increasing. This article demonstrates that if the refineries’

marginal costs are constants, then a waivable mandate does not impact the marginal profit of break-even

investors. Thus, aggregate investment may not increase. Therefore, in order to quantify the magnitude

of the mandate policies’ impacts on investment, studies about the refinery-level marginal costs may be

in order.

This article contributes to the understanding of waivable mandates by specifying a condition (i.e.,

the increasing marginal cost) under which even the waivable mandate can stimulate the period one

investment level. However, the exploration in this article does not exhaust all possible conditions under

which a waivable mandate will matter. Such conditions could include, but may not be limited to, risk

aversion, learning-by-doing, uncertainties in production cost, and asymmetric information. Research

on the effects of waivable mandate under these conditions may further expand our understanding of

mandate policies.
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Appendix

Item A

In this item we show that the function A(X) defined in equation (2.9) has properties as follows: (i)

A(0) = 0 and A(1) = 1; and (ii) A(X) is strictly increasing in X . It is trivial to show that when a2 = 0

then A(X) = X and consequently (i) and (ii) are true. In what follows of this item we focus on a2 > 0.

Proof. Step 1. We prove (i). We first show that

A(X) =
∫ G−1(X)

max[G−1(X)−2a2,0]

G(s)
2a2

ds. (2.14)

When G−1(X)−2a2 ≥ 0, then by equation (2.9) and by integration by parts we have

A(X) = G(G−1(X)−2a2)+
∫ G−1(X)

G−1(X)−2a2

G−1(X)− s
2a2

dG(s) (2.15)

= G(G−1(X)−2a2)+
G−1(X)− s

2a2
G(s)

∣∣∣∣G−1(X)

G−1(X)−2a2

+

∫ G−1(X)

G−1(X)−2a2

G(s)
2a2

ds

= G(G−1(X)−2a2)+
G−1(X)−G−1(X)

2a2
X−

G(G−1(X)−2a2)+
∫ G−1(X)

G−1(X)−2a2

G(s)
2a2

ds

=
∫ G−1(X)

G−1(X)−2a2

G(s)
2a2

ds.

When G−1(X)−2a2 < 0, then by equation (2.9) and by integration by parts we have

A(X) =
∫ G−1(X)

0

G−1(X)− s
2a2

dG(s) (2.16)

=
G−1(X)− s

2a2
G(s)

∣∣∣∣G−1(X)

0
+
∫ G−1(X)

0

G(s)
2a2

ds

=
G−1(X)−G−1(X)

2a2
X− G−1(X)−0

2a2
G(0)+

∫ G−1(X)

0

G(s)
2a2

ds

=
∫ G−1(X)

0

G(s)
2a2

ds.

Therefore, by equations (2.15) and (2.16) we have equation (2.14). From equation (2.14) we know

that A(X) is continuous.
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When X = 0 then clearly G−1(0) = 0 and max[G−1(0)−2a2,0] = 0. So by equation (2.14) we have

A(0) = 0.

When X = 1 then G−1(X) = ∞ and max[G−1(X)− 2a2,0] = G−1(X)− 2a2. Define x = G−1(X),

here X ∈ [0,1]. Therefore, by equation (2.14) we have

A(1) =
∫ G−1(1)

G−1(1)−2a2

G(s)
2a2

ds (2.17)

≤
∫ G−1(1)

G−1(1)−2a2

1
2a2

ds

= 1.

Since G(s) is increasing with s and G(∞) = 1, we have

A(1) =
∫ G−1(1)

G−1(1)−2a2

G(s)
2a2

ds (2.18)

≥ lim
x→∞

∫ x

x−2a2

G(x−2a2)

2a2
ds

= lim
x→∞

G(x−2a2)

= 1.

Therefore, we have A(1) = 1. This finishes the proof of item (i).

Step 2. We prove (ii). Define g(X) as the density function of distribution G(X). When G−1(X)−

2a2 ≥ 0 then by equation (2.14) and by Leibniz’s formula we have

dA(X)

dX
=

X
2a2g(X)

−
G
(
G−1(X)−2a2

)
2a2g(X)

(2.19)

=
X−G

(
G−1(X)−2a2

)
2a2g(X)

> 0,

where the inequality holds because X = G
(
G−1(X)

)
> G

(
G−1(X)−2a2

)
. Similarly, when G−1(X)−

2a2 < 0 then we have

dA(X)

dX
=

X
2a2g(X)

> 0. (2.20)

Therefore, item (ii) is proved.
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Item B

In this item we show that when X ∈ (A−1(M),1] then the solution of equation (2.10) is v̂M
2 =

G−1
(
A−1(M)

)
.

Proof. By the similar procedure of showing equation (2.14) we can simplify equation (2.10) as

∫ vM
2

max[vM
2 −2a2,0]

G(s)
2a2

ds = M. (2.21)

We define V ≡ G(vM
2 ). Then clearly, from equation (2.14) we know that the left side of equation (2.21)

is function A(V ). By items (i) and (ii) in Item A and by applying intermediate value theorem we know

that for any M ∈ [0,1] there is a unique V such that A(V ) = M. Therefore, we have V = A−1(M). By

the definition of V we have v̂M
2 = G−1

(
A−1(M)

)
.

Item C

In this item we derive the results in Remark 2.3. That is, when X ∈ [M,A−1(M)] then (i) ṽM
2 , the

solution of equation (2.11), exists and is unique; (ii) ṽM
2 is decreasing with X ; (iii) when X = M then

ṽM
2 = G−1(X)+2a2; and (iv) when X = A−1(M) then ṽM

2 = G−1
(
A−1(M)

)
.

Proof. Step 1. We show that equation (2.11) can be equivalently written as

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

max[vM
2 −2a2,0]

G(s)
2a2

ds = M. (2.22)

When vM
2 −2a2 ≥ 0 then equation (2.11) becomes

G(vM
2 −2a2)+

∫ G−1(X)

vM
2 −2a2

vM
2 − s
2a2

dG(s) = M (2.23)

⇔ G(vM
2 −2a2)+

vM
2 − s
2a2

G(s)
∣∣∣∣G−1(X)

vM
2 −2a2

+
∫ G−1(X)

vM
2 −2a2

G(s)
2a2

ds = M

⇔ G(vM
2 −2a2)+

vM
2 −G−1(X)

2a2
X−G(vM

2 −2a2)+
∫ G−1(X)

vM
2 −2a2

G(s)
2a2

ds = M

⇔ vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

vM
2 −2a2

G(s)
2a2

ds = M.
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When vM
2 −2a2 < 0 then equation (2.11) becomes

G(0)+
∫ G−1(X)

0

vM
2 − s
2a2

dG(s) = M (2.24)

⇔ vM
2 − s
2a2

G(s)
∣∣∣∣G−1(X)

0
+
∫ G−1(X)

0

G(s)
2a2

ds = M

⇔ vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

0

G(s)
2a2

ds = M.

By equations (2.23) and (2.24) we can obtain equation (2.22).

Step 2. We show that G−1(X)≤ vM
2 ≤ G−1(X)+2a2. If vM

2 < G−1(X) then production level under

vM
2 will be less than M. This is because in this item we have assumed that A(X)≤M (see Remark 2.3).

If vM
2 > G−1(X)+ 2a2 then at least X amount of refineries will be running at full capacity. Therefore

the production level will be higher than M because X ≥M. This violates the definition of vM
2 that under

vM
2 the production level is exactly M. In sum, we have G−1(X)≤ vM

2 ≤ G−1(X)+2a2.

Step 3. We show that ṽM
2 exists and is unique. We let function H(vM

2 ) denote the left side of equation

(2.22). That is

H(vM
2 ) =

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

max[vM
2 −2a2,0]

G(s)
2a2

ds. (2.25)

Clearly H(vM
2 ) is a continuous function. So if we show that H

(
G−1(X)

)
≤M, H

(
G−1(X)+2a2

)
≥M,

and H(vM
2 ) is strictly increasing with vM

2 ∈ (G−1(X),G−1(X)+2a2), then by applying the intermediate

value theorem we can conclude that there is a unique solution to equation (2.22) on [G−1(X),G−1(X)+

2a2].

When vM
2 = G−1(X) then

H(vM
2 ) = H

(
G−1(X)

)
(2.26)

=
∫ G−1(X)

max[G−1(X)−2a2,0]

G(s)
2a2

ds

= A(X).

Since in this item we have X ≤ A−1(M) (i.e., A(X)≤M), we have H
(
G−1(X)

)
≤M.

When vM
2 = G−1(X)+2a2 then

H(vM
2 ) = H

(
G−1(X)+2a2

)
(2.27)

= X +
∫ G−1(X)

G−1(X)

G(s)
2a2

ds

= X .
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Since in this item X ≥M, we have H
(
G−1(X)+2a2

)
≥M.

Now let us show that H(vM
2 ) is strictly increasing with vM

2 ∈ (G−1(X),G−1(X)+2a2). When vM
2 −

2a2 ≥ 0 then by equation (2.25) and by Leibniz’s formula we have

dH(vM
2 )

dvM
2

=
X−G(vM

2 −2a2)

2a2
> 0, (2.28)

where the inequality holds because vM
2 < G−1(X)+2a2.

Similarly, when vM
2 −2a2 < 0 then we have

dH(vM
2 )

dvM
2

=
X

2a2
, (2.29)

which implies that dH(vM
2 )

dvM
2

> 0 as long as X > 0. Since we have assumed X ≥ M in this item, when

X = 0 then we must have M = 0 and hence ṽM
2 = 0. Here we assume this trivial case away.

Therefore, we can conclude that H(vM
2 ) is strictly increasing with vM

2 ∈ (G−1(X),G−1(X)+ 2a2).

This finishes the proof that ṽM
2 exists and is unique.

Step 4. We show that ṽM
2 is decreasing in X . From Step 3 we know that ṽM

2 is the unique solution

of equation H(vM
2 ) = M. The value of ṽM

2 can either be greater than or not greater than 2a2. We define

implicit function Y (vM
2 ,X) as

Y (vM
2 ,X) =

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

max[vM
2 −2a2,0]

G(s)
2a2

ds−M = 0. (2.30)

If we can show that for all X ∈
(
M,A−1(M)

)
, a) if vM

2 − 2a2 ≥ 0 then we have ∂vM
2

∂X < 0 and b) if

vM
2 −2a2 < 0 then we have ∂vM

2
∂X < 0 as well, then we can prove that ṽM

2 is decreasing in X ∈ [M,A−1(M)].

This is because by showing a) and b) we show that ṽM
2 is decreasing in X ∈ [M,A−1(M)] whether or not

ṽM
2 ≥ 2a2.

When vM
2 −2a2 ≥ 0 then

Y (vM
2 ,X) =

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

vM
2 −2a2

G(s)
2a2

ds−M = 0. (2.31)
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By the implicity function theorem we have

∂vM
2

∂X
= − ∂Y/∂X

∂Y/∂vM
2

(2.32)

= −
vM

2 −G−1(X)
2a2

+ X
2a2

dG−1(X)
dX − X

2a2

dG−1(X)
dX

X−G(vM
2 −2a2)

2a2

= −
vM

2 −G−1(X)
2a2

X−G(vM
2 −2a2)

2a2

< 0,

where the inequality holds because G−1(X)< vM
2 < G−1(X)+2a2 is implied by X ∈

(
M,A−1(M)

)
.

When vM
2 −2a2 < 0 then

Y (vM
2 ,X) =

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

0

G(s)
2a2

ds−M = 0. (2.33)

By the implicit function theorem we have

∂vM
2

∂X
= − ∂Y/∂X

∂Y/∂vM
2

(2.34)

= −
vM

2 −G−1(X)
2a2

+ X
2a2

dG−1(X)
dX − X

2a2

dG−1(X)
dX

X
2a2

= −
vM

2 −G−1(X)
2a2
X

2a2

< 0,

where the inequality holds because G−1(X) < vM
2 < G−1(X)+ 2a2 is implied by X ∈

(
M,A−1(M)

)
.

This finishes the proof that ṽM
2 is decreasing with X .

Step 5. We show that when X = M then ṽM
2 = G−1(X)+2a2. Plugging X = M and vM

2 = G−1(X)+

2a2 into equation (2.22) we easily check that the equation holds. That is,

vM
2 −G−1(X)

2a2
X +

∫ G−1(X)

max[vM
2 −2a2,0]

G(s)
2a2

ds (2.35)

=
G−1(M)+2a2−G−1(M)

2a2
M+

∫ G−1(M)

G−1(M)

G(s)
2a2

ds

= M.

Since we have shown that equation (2.22) has only one solution, we can conclude that X = M then

ṽM
2 = G−1(X)+2a2.

Step 6. We show that when X = A−1(M) then ṽM
2 = G−1

(
A−1(M)

)
. In Item B of the supple-

mental material we have shown that v̂M
2 = G−1

(
A−1(M)

)
. Therefore, if X = A−1(M), then G−1(X) =
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G−1
(
A−1(M)

)
= v̂M

2 . By plugging vM
2 = v̂M

2 and G−1(X) = v̂M
2 into equation (2.22) we have

∫ v̂M
2

max[v̂M
2 −2a2,0]

G(s)
2a2

ds = M, (2.36)

which has exactly the same form as equation (2.21). We know that v̂M
2 solves equation (2.21). Therefore

v̂M
2 solves equation (2.36). Because ṽM

2 is unique, then we conclude that when X = A−1(M) then ṽM
2 =

v̂M
2 = G−1

(
A−1(M)

)
.

Item D

In this item we prove the conclusions in Remark 2.5. That is, under the WM policy when X ∈ [0,M)

then pRIN = max[G−1(X)+2a2− p2,0].

Proof. Under the WM policy, the mandate level, M, will be waived to the available production capacity

under p2 in period two whenever this available production capacity is lower than M. According to the

magnitude of p2, we have three cases to consider.

Case 1. p2 ≥ G−1(M)+ a2 + f2. In this case p2 is greater than the investment price of investor

with s = G−1(M). That is, p2 is high enough to ensure that the mandate is met. Therefore, in this

case no waiver happens. In addition, refineries with s = G−1(M) in period two will run at full capacity.

This is because p2 is higher than the price needed for running at full capacity for such refineries, i.e.,

p2 ≥ G−1(M)+a2 + f2 ≥ G−1(M)+2a2. Therefore, the production level in period two is higher than

the mandate level as well. So in this case pRIN = 0.

Case 2. p2 ∈ [G−1(X) + a2 + f2,G−1(M) + a2 + f2). In this case some new investment will be

induced by p2. This is because p2 ≥ G−1(X) + a2 + f2. Let s̃ be the value of s for the break-even

investor under p2. Then G(s̃) = G(p2−a2− f2) ∈ [X ,M). This means that the new investment together

with the investment in period one cannot meet the mandate level. Therefore, the mandate will be waived

to the available production capacity, which is G(s̃). Here we have p2 = s̃+ a2 + f2 > s̃+ 2a2, which

implies that p2 can keep all available refineries running at full capacity. Therefore, in this case the RIN

price is zero as well.

Case 3. p2 ∈ [0,G−1(X)+ a2 + f2). In this case no new investment is induced under p2 in period

two. Therefore, the mandate will be waived to X , the available capacity in period two. To meet the
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waived mandate (i.e., X), RIN price will put a floor of v2 at G−1(X)+2a2, under which the production

level is exactly the waived mandate level, X . That is, when p2 ≥ G−1(X) + 2a2 then the floor of

v2 is surpassed and then the RIN market is dormant so pRIN = 0. When p2 < G−1(X) + 2a2 then

the RIN price needs to rise so that v2 can reach the floor. Therefore, in this case we have pRIN =

max[G−1(X)+2a2− p2,0].

By summarizing the RIN price in these three cases we conclude that when X < M then RIN price

under WM policy is pRIN = max[G−1(X)+2a2− p2,0].

Item E

In this item we prove Proposition 2.

Proof. Step 1. We show item i), X l and Xw exist and are unique. Here we only demonstrate the

existence and uniqueness of Xw. Proof of the existence and uniqueness of X l follows the same way but

is much simpler.

From equation (2.13) we know that under the WM policy for each period one investment level X ∈

[0,1] there is a corresponding distribution of v2 in period two. The equilibrium period one investment

level, Xw, should be such that when every investor expects Xw as the period one investment level during

their decision making process then the finally realized period one investment level is Xw as well. That

is, given the distribution of v2 determined by Xw, we have ∆w(sw) = 0. By Remark 2.1 we know that

under the distribution of v2 determined by Xw, for any s < sw we have ∆w(sw) > 0, which means that

investors who are more efficient than investor sw do invest in period one. Similarly, for any s ≥ sw we

have ∆w(sw)< 0, which means that investors who are less efficient than investor sw do not invest.

Given a period one investment level X ∈ [0,1], there are infinite combinations of investors who

form this investment level. For example, this investment level may be built up from investors with

s ∈ [0,G−1(X)]; or from investors with s ∈ [G−1(1−X),∞). From Remark 2.1 we know that ∆(s) is

strictly decreasing in s ∈ [0, s̄]. That is, investors who have smaller s have higher incentive to invest

in period one. Therefore, we only need to consider one combination of investors who build up X , i.e.,

investors with s ∈ [0,G−1(X)].

Let ∆w(G−1(X)) denote the value of the ∆(·) function in equation (2.7) under the WM policy where
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the pRIN is determined by X . By Assumption 1 we know that ∆w(0) > 0. If we can show that a)

∆w(G−1(X)) is decreasing in X over the range of [0,1]; and b) ∆w(G−1(X))< 0 whenever X ≥ A−1(M),

then we can conclude that Xw exists and is unique.

Sub-step 1-1. We first prove that ∆w(G−1(X)) is decreasing in X over the range of [0,1]. We know

that ∆w(G−1(X)) is continuous on [0,1] because the RIN price schedule is continuous under the WM

policy. Since there are two kinks on the RIN price schedule (Figure 2.2), the function ∆w(G−1(X)) may

not be differentiable on [0,1]. However, if we can show that
d∆w
(

G−1(X)
)

dX ≤ 0 on (0,M),
(
M,A−1(M)

)
,

and
(
A−1(M),1

]
, then we still can conclude that ∆w(G−1(X)) is decreasing with X on [0,1]. We define

j(p2) as the probability density function of p2.

When X ∈ (0,M), then v2 = p2 + pRIN = max[G−1(X)+2a2, p2]. Therefore, we have

∆
w(G−1(X)

)
(2.37)

= π1
(

p1;G−1(X)
)
− f1 +β

[∫ G−1(X)+2a2

0
π2
(
G−1(X)+2a2;G−1(X)

)
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+

∫
∞

G−1(X)+a2+ f2

f2dJ(p2)

]
= π1

(
p1;G−1(X)

)
− f1 +β

[∫ G−1(X)+2a2

0
a2dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+ f2

(
1− J(G−1(X)+a2 + f2)

)]
= π1

(
p1;G−1(X)

)
− f1 +β

[
a2J
(
G−1(X)+2a2

)
+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+ f2

(
1− J(G−1(X)+a2 + f2)

)]
.

For equation (2.37), by differentiating with respect to X we obtain

d∆w
(
G−1(X)

)
dX

(2.38)

=
∂π1
(

p1;G−1(X)
)

∂X
+β

dG−1(X)

dX

[
a2 j
(
G−1(X)+2a2

)
+

f2 j
(
G−1(X)+a2 + f2

)
−a2 j

(
G−1(X)+2a2

)
−
∫ G−1(X)+a2+ f2

G−1(X)+2a2

1dJ(p2)−

f2 j
(
G−1(X)+a2 + f2

)]
=

∂π1
(

p1;G−1(X)
)

∂X
−β

dG−1(X)

dX

∫ G−1(X)+a2+ f2

G−1(X)+2a2

dJ(p2)≤ 0,
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where the inequality holds because ∂π1
(

p1;G−1(X)
)
/∂X ≤ 0, dG−1(X)/dX ≥ 0, and

∫ G−1(X)+a2+ f2
G−1(X)+2a2

dJ(p2)≥

0.

When X ∈
(
M,A−1(M)

)
, then v2 = p2+ pRIN =max[Ṽ M

2 , p2]. Since G−1(X)≤ Ṽ M
2 ≤G−1(X)+2a2,

we have

∆
w(G−1(X)

)
(2.39)

= π1
(

p1;G−1(X)
)
− f1 +β

[∫ Ṽ M
2

0

(
Ṽ M

2 −G−1(X)
)2

4a2
dJ(p2)+

∫ G−1(X)+2a2

Ṽ M
2

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+

∫
∞

G−1(X)+a2+ f2

f2dJ(p2)

]
= π1

(
p1;G−1(X)

)
− f1 +β

[
J(Ṽ M

2 )

(
Ṽ M

2 −G−1(X)
)2

4a2
+

∫ G−1(X)+2a2

Ṽ M
2

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+ f2

(
1− J(G−1(X)+a2 + f2)

)]
.
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For equation (2.39), by differentiating with respect to X we obtain

d∆w
(
G−1(X)

)
dX

(2.40)

=
∂π1
(

p1|G−1(X)
)

∂X
+β

[
j(Ṽ M

2 )
∂Ṽ M

2
∂X

(
Ṽ M

2 −G−1(X)
)2

4a2
+

J(Ṽ M
2 )

Ṽ M
2 −G−1(X)

2a2

(∂Ṽ M
2

∂X
− dG−1(X)

dX

)
+

dG−1(X)

dX
a2 j(G−1(X)+2a2)− j(Ṽ M

2 )
∂Ṽ M

2
∂X

(
Ṽ M

2 −G−1(X)
)2

4a2
−

dG−1(X)

dX

∫ G−1(X)+2a2

Ṽ M
2

(
p2−G−1(X)

)
2a2

dJ(p2)+

dG−1(X)

dX
f2 j
(
G−1(X)+a2 + f2

)
−

dG−1(X)

dX
a2 j
(
G−1(X)+2a2

)
− dG−1(X)

dX

∫ G−1(X)+a2+ f2

G−1(X)+2a2

1dJ(p2)−

f2 j(G−1(X)+a2 + f2)
dG−1(X)

dX

]
=

∂π1
(

p1|G−1(X)
)

∂X
+β

[
J(Ṽ M

2 )
Ṽ M

2 −G−1(X)

2a2

(∂Ṽ M
2

∂X
− dG−1(X)

dX

)
−

dG−1(X)

dX

∫ G−1(X)+2a2

Ṽ M
2

(
p2−G−1(X)

)
2a2

dJ(p2)−

dG−1(X)

dX

∫ G−1(X)+a2+ f2

G−1(X)+2a2

dJ(p2)

]
≤ 0,

where the inequality holds because ∂π1
(

p1;G−1(X)
)
/∂X ≤ 0, ∂Ṽ M

2 /∂X ≤ 0, dG−1(X)/dX ≥ 0, and

G−1(X)≤ Ṽ M
2 ≤ G−1(X)+2a2.

When X ∈
(
A−1(M),1

)
, then v2 = p2+ pRIN =max[V̂ M

2 , p2]. Item B has shown that V̂ M
2 =G−1

(
A−1(M)

)
.

When X ∈
(
A−1(M),1

)
then we have G−1

(
A−1(M)

)
< G−1(X). Therefore, at the value floor of V̂ M

2 ,

investors with s = G−1(X) will be shut down, which indicates that this value floor has no effect on such
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investors. So we have

∆
w(G−1(X)

)
(2.41)

= π1
(

p1;G−1(X)
)
− f1 +β

[∫ G−1(X)

0
0dJ(p2)+

∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+

∫
∞

G−1(X)+a2+ f2

f2dJ(p2)

]
= π1

(
p1;G−1(X)

)
− f1 +β

[∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+ f2

(
1− J(G−1(X)+a2 + f2)

)]
.

For equation (2.41), by taking derivative with respect to X we obtain

d∆w
(
G−1(X)

)
dX

(2.42)

=
∂π1
(

p1;G−1(X)
)

∂X
+β

dG−1(X)

dX

[
a2 j
(
G−1(X)+2a2

)
−∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)
2a2

dJ(p2)+ f2 j
(
G−1(X)+a2 + f2

)
−

a2 j
(
G−1(X)+2a2

)
− f2 j

(
G−1(X)+a2 + f2

)
=

∂π1
(

p1;G−1(X)
)

∂X
−β

dG−1(X)

dX

∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)
2a2

dJ(p2)

≤ 0,

where the inequality holds because ∂π1
(

p1;G−1(X)
)
/∂X ≤ 0, dG−1(X)/dX ≥ 0, and∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)
2a2

dJ(p2)≥ 0.

Sub-step 1-2. Now let us prove that ∆w(G−1(X)) < 0 whenever X ∈ [A−1(M),1]. That is, if the

period one investment level is higher than A−1(M), then investors with G−1(X) will not invest in period

one. Under the Laissez-faire scenario, if X ∈ [A−1(M),1] then investors with s = G−1(X) will not invest
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in period one because G−1(X)≥ A−1(M)≥M > bl . That is,

∆
l(G−1(X)

)
(2.43)

= π1
(

p1;G−1(X)
)
− f1 +β

[∫ G−1(X)

0
0dJ(p2)+

∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+

∫
∞

G−1(X)+a2+ f2

f2dJ(p2)

]
= π1

(
p1;G−1(X)

)
− f1 +β

[∫ G−1(X)+2a2

G−1(X)

(
p2−G−1(X)

)2

4a2
dJ(p2)+∫ G−1(X)+a2+ f2

G−1(X)+2a2

(
p2−a2−G−1(X)

)
dJ(p2)+ f2

(
1− J(G−1(X)+a2 + f2)

)]
< 0.

By comparing equations (2.41) and (2.43) we find that they are the same, which implies that ∆w
(
G−1(X)

)
<

0 whenever X ∈ [A−1(M),1]. The reason they are the same is because when X ∈ [A−1(M),1] then the

value floor placed by RIN price is so low that investors with s = G−1(X) will shut down whether or

not a floor is in place. Therefore, the value floor under the WM policy does not have any effect on the

decision of investors with s = G−1(X). Since when X ≥M then RIN prices under the WM policy and

the NWM policy are the same, we also can conclude that ∆n
(
G−1(X)

)
< 0 whenever X ∈ [A−1(M),1].

Step 2. We show item ii), i.e., when M ∈
(
G(s̄),1

]
then Xn exists and is unique. Under NWM policy

the RIN price in period two guarantees the lowest market value of cellulosic biofuel at sM + a2 + f2.

Therefore, investors with s< sM will run their refineries at full capacity in period two, because s+2a2 <

sM +a2 + f2. Therefore, for investors with s < sM we have

∆
n(s) = π1(p1;s)− f1 +β

∫
∞

0
min[π2(v2;s), f2]dJ(p2) (2.44)

= π1(p1;s)− f1 +

β

[∫ sM+a2+ f2

0
min[sM +a2 + f2−a2− s, f2]dJ(p2)+∫

∞

sM+a2+ f2

min[p2−a2− s, f2]dJ(p2)
]

= π1(p1;s)− f1 +β f2.

By definition we have ∆n(sn) = 0. Since function ∆(s) is strictly decreasing in s (Remark 2.1) and we

have defined that π1(p1; s̄)− f1 +β f2 = 0, we have sn = s̄. This means that when M ∈
(
G(s̄),1

]
then
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Xn exists and is unique. In addition, Xn = G(s̄).

Step 3. We show item iii). That is, when M ∈
(
X l,G(s̄)

]
then Xn exists if and only if ∆n

(
G−1(X)

)
≥

0 at X = M; and whenever Xn exists it is unique.

We first show that when M ∈
(
X l,G(s̄)

]
then Xn cannot be less than M. Suppose that Xn < M.

Then by equation (2.12) we have pRIN = max[G−1(M)+a2 + f2− p2,0]. Plugging this RIN price into

equation (2.7) we have

∆
n(s) = π1(p1;s)− f1 +β

[∫ ∞

0
min[π2(v2;s), f2]dJ(p2)

]
(2.45)

= π1(p1;s)− f1 +β

[∫ G−1(M)+a2+ f2

0
f2dJ(p2)+∫

∞

G−1(M)+a2+ f2

f2dJ(p2)
]
,

= π1(p1;s)− f1 +β f2.

Because in this case we have M ≤ G(s̄), by Remark 2.1 we have ∆n
(
G−1(M)

)
≥ 0. This means that

when M ∈
(
X l,G(s̄)

]
and when Xn < M then the realized period one investment level will be no less

than M, which contradicts the premise that Xn < M. So we can conclude that when M ∈
(
X l,G(s̄)

]
and

when Xn exists, then we must have Xn ≥M.

In Sub-step 1-2 we have shown that ∆n
(
G−1(X)

)
< 0 whenever X ∈ [A−1(M),1]. Since ∆n

(
G−1(X)

)
is continuous in X , if we can show that ∆n

(
G−1(X)

)
is decreasing in X ∈ (M,1) then item iii) follows

by applying the intermediate value theorem. The reason is as follows. For necessity, we want to show

that when M ∈
(
X l,G(s̄)

]
and when Xn exists then we must have ∆n

(
G−1(M)

)
≥ 0. We have shown

that when M ∈
(
X l,G(s̄)

]
and when Xn exists then Xn ≥M. That is, by the definition of Xn, equilibrium

period one investment level under the NWM policy, there is an Xn ≥ M such that ∆n
(
G−1(Xn)

)
= 0.

If ∆n
(
G−1(X)

)
is decreasing in X ∈ (M,1), then we can conclude that ∆n

(
G−1(M)

)
≥ 0. Sufficiency

follows immediately by applying the intermediate value theorem and does not require that ∆n
(
G−1(X)

)
be decreasing in X ∈ (M,1).

Now let us show that ∆n
(
G−1(X)

)
is decreasing in X ∈ (M,1). In Sub-step 1-1 we have shown that

∆w
(
G−1(X)

)
is decreasing with X ∈ [M,1]. Since when X ∈ [M,1] then the RIN prices under the WM

policy and the NWM policy are the same, we have ∆n
(
G−1(X)

)
= ∆w

(
G−1(X)

)
whenever X ∈ [M,1].

Therefore, ∆w
(
G−1(X)

)
is decreasing with X ∈ [M,1]. This finishes the proof of item iii).
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Item F

In this item we prove Proposition 3.

Proof. Step 1. We prove item i) of Proposition 3, i.e., Xn ≥ Xw ≥ X l .

If we can show that ∆l(sw)≤ ∆w(sw)≤ ∆n(sw) then we know that ∆l(sw)≤ 0 and ∆n(sw)≥ 0. This

is because by definition we have ∆l(sl) = ∆w(sw) = ∆n(sn) = 0. From Remark 2.1 we know that for all

s ∈ [0, s̄], ∆(s) is strictly decreasing with s. Therefore, ∆l(sw) ≤ 0 and ∆n(sw) ≥ 0 imply sl ≤ sw ≤ sn.

Now let us show that ∆l(sw)≤ ∆w(sw)≤ ∆n(sw).

When M ∈
(
G(s̄),1

]
then we have X < M because X ≤ G(s̄). By equations (2.12) and (2.13) we

can obtain the market value of cellulosic biofuel in period two, v2, as

v2 = p2 + pRIN (2.46)

=


p2 laissez-faire scenario

max[G−1(M)+a2 + f2, p2] NWM policy scenario

max[G−1(X)+2a2, p2] WM policy scenario.

Then plugging v2 in equation (2.46) into equation (2.7) we can obtain ∆(sw) under the three scenarios.

They are

∆
l(sw) = π1(p1;sw)− f1 +β

[∫ ∞

0
min[π2(p2;sw), f2]dJ(p2)

]
(2.47)

= π1(p1;sw)− f1 +β

[∫ sw+2a2

0
π2(p2,sw)dJ(p2)+∫ sw+a2+ f2

sw+2a2

(p2−a2− sw)dJ(p2)+
∫

∞

sw+a2+ f2

f2dJ(p2)
]
,

∆
w(sw) = π1(p1;sw)− f1 +β

[∫ ∞

0
min[π2(v2;sw), f2]dJ(p2)

]
(2.48)

= π1(p1;sw)− f1 +β

[∫ sw+2a2

0
π2(sw +2a2;sw)dJ(p2)+∫ sw+a2+ f2

sw+2a2

(p2−a2− sw)dJ(p2)+
∫

∞

sw+a2+ f2

f2dJ(p2)
]
,

and

∆
n(sw) = π1(p1;sw)− f1 +β

[∫ ∞

0
min[π2(v2;sw), f2]dJ(p2)

]
(2.49)

= π1(p1;sw)− f1 +β

[∫ sw+2a2

0
f2dJ(p2)+∫ sw+a2+ f2

sw+2a2

f2dJ(p2)+
∫

∞

sw+a2+ f2

f2dJ(p2)
]
,
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where equation (2.49) holds because when v2 =G−1(M)+a2+ f2 and when G−1(M)> sw then π2(v2;sw)=

v2−a2− sw > f2.

By comparing equations (2.47) and (2.48) we can see that the only difference between these two

equations is the first term in the squared brackets. This is because when p2 ≥ sw + 2a2 then under the

WM policy pRIN = 0 and hence the profit of investor with sw under the WM policy is the same as that

under the Laissez-faire scenario. When p2 < sw + 2a2, however, under WM policy pRIN > 0 and v2 is

fixed at sw +2a2. So π2 under the WM policy scenario is higher than that under Laissez-faire scenario.

Therefore, we have

∫ sw+2a2

0
π2(p2,sw)dJ(p2)≤

∫ sw+2a2

0
π2(sw +2a2;sw)dJ(p2), (2.50)

which implies that ∆l(sw)≤ ∆s(sw).

Since min[π2, f2]≤ f2, we can readily obtain that ∆w(sw)≤ ∆n(sw). This finishes the proof of item

i).

Step 2. We show item ii), i.e., Xn = G(s̄).

The proof here is the same as the proof in Step 2 of Item E.

Step 3. We show item iii), i.e., Xw > X l if and only if a) a2 ∈ (0, f2] and b) J(sw +2a2)> 0.

First, we prove sufficiency. If a2 ∈ (0, f2] and if p2 < sw + 2a2, then we must have π2(p2;sw) <

π2(sw +2a2;sw). Then J(sw +2a2)> 0 implies that

∫ sw+2a2

0
π2(p2;sw)dJ(p2)<

∫ sw+2a2

0
π2(sw +2a2;sw)dJ(p2), (2.51)

where the left (right) side of the inequality is the first term in the squared brackets of equation (2.47)

(equation (2.48)). Therefore, inequality (2.51) implies that ∆l(sw)< ∆w(sw) and hence X l < Xw.

Second, we prove necessity. Here we employ the method of contrapositive proof.

If a2 = 0 then the left side of inequality (2.51) becomes
∫ sw

0 π2(p2;sw)dJ(p2) = 0. The right side

becomes
∫ sw

0 π2(sw +2a2;sw)dJ(p2) = 0. Clearly, when a2 = 0 then equality holds in inequality (2.51).

Therefore, we have ∆l(sw) = ∆w(sw) and hence X l = Xw.

If J(sw+2a2)= 0, then p2 has no mass in the range of [0,sw+2a2]. So we will have
∫ sw+2a2

0 π2|v2=p2dJ(p2)=∫ sw+2a2
0 π2|v2=sw+2a2dJ(p2) = 0. Therefore, we have ∆l(sw) = ∆w(sw) and hence Xw = X l as well.

Step 4. We show item iv), i.e., Xw < Xn if and only if a) a2 ∈ [0, f2) and b) J(sw +a2 + f2)> 0.
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First, we prove sufficiency. If a2 ∈ [0, f2) then we have sw + 2a2 < sw + a2 + f2. In addition, by

equation (2.4), we know that π2(sw +2a2;sw) = a2. Together with J(sw +a2 + f2)> 0 we have either

∫ sw+2a2

0
π2(sw +2a2;sw)dJ(p2) (2.52)

=
∫ sw+2a2

0
a2dJ(p2)

<
∫ sw+2a2

0
f2dJ(p2),

or ∫ sw+a2+ f2

sw+2a2

(p2−a2− sw)dJ(p2)<
∫ sw+a2+ f2

sw+2a2

f2dJ(p2), (2.53)

or both. The situation under which both inequalities (2.52) and (2.53) hold is when J(sw + a2 + f2) >

J(sw + 2a2) > 0. By equations (2.48) and (2.49) we know that inequalities (2.52) and (2.53) imply

∆w(sw)<∆n(sw). Therefore, we can conclude that if a2 ∈ [0, f2) and if J(sw+a2+ f2)> 0 then Xw <Xn.

Second, we prove necessity. Here we employ the method of contrapositive proof. If a2 = f2, then

the first term in the squared brackets of equation (2.48) becomes
∫ sw+2a2

0 f2dJ(p2) and the second term

becomes 0. Therefore, we have ∆w(sw) = ∆n(sw) and hence Xw = Xn. If J(sw + a2 + f2) = 0 then the

first two terms in the squared brackets of both equations (2.48) and (2.49) become 0, which implies

∆w(sw) = ∆n(sw) and hence Xw = Xn.

Item G

In this item we prove Proposition 4, which provides a comparison of period one investment levels

of the three scenarios in the case under which the mandate level is higher than the equilibrium period

one investment level under the laissez-faire scenario but not higher than the upper bound of period one

investment level, i.e., M ∈
(
G(sl),G(s̄)

]
.

Proof. Step 1. We show item i). That is, when M ∈
(
G(sl),G(s̄)

]
and when Xn exists then Xn ∈[

M,A−1(M)
)

and Xn =Xw >X l . In Step 1 of Item E we have shown that under the WM policy, investors

with s = G−1(X) will not invest in period one whenever X ∈ [A−1(M),1]. The same conclusion holds

under the NWM policy because the RIN prices under the NWM policy and the WM policy are the same

whenever X ∈ [A−1(M),1]. In Step 3 of Item E we have shown that when M ∈ (X l,G(s̄)] then Xn ≥M.

Therefore, we can conclude that Xn ∈
[
M,A−1(M)

)
whenever M ∈ (X l,G(s̄)] and Xn exists.
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Now let us prove that Xn = Xw when M ∈
(
G(sl),G(s̄)

]
and when Xn exists. This is equal to

prove that when M ∈
(
G(sl),G(s̄)

]
and when Xn exists then the equilibrium period one investment

under the WM policy, Xw, is such that Xw ∈
[
M,A−1(M)

)
. This is because a) the RIN prices under

the WM policy and the NWM policy are the same whenever X ≤ M; b) Xw is unique (item i) of

Proposition 2.2); and c) Xn is unique whenever it exists (item iii) of Proposition 2.2). By item iii) of

Proposition 2.2) we know that when M ∈
(
G(sl),G(s̄)

]
and when Xn exists then ∆n

(
G−1(M)

)
≥ 0. Since

∆w(G−1(X)) = ∆n(G−1(X)) whenever X ∈ [M,1], we have ∆w
(
G−1(M)

)
≥ 0. In Step 1 of Item E we

have shown that ∆w
(
G−1(X)

)
< 0 whenever X ∈ [A−1(M),1]. Therefore, by applying the intermediate

value theorem we have Xw ∈
[
M,A−1(M)

)
. Therefore, we have Xw = Xn and then Xw > X l follows

immediately because Xw = Xn ≥M > X l .

Step 2. We show item ii), i.e., when Xn does not exist then Xw≥X l; specifically, the strict inequality

(i.e., Xw > X l) holds if and only if a) a2 ∈ (0, f2] and b) J(sw + 2a2) > 0. The proof in this step is the

same as the proof of items i) and iii) of Proposition 3 demonstrated in Item F.
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CHAPTER 3. ECONOMIC VALUE OF INFORMATION: SEGREGATING WHEAT

BY PROTEIN CONCENTRATION

Abstract

A technology that can measure grain protein concentration and then segregate grain according to the

measurement is on the horizon. This new technology provides growers with opportunities to identify

grain that can be directed to premium markets. We study wheat growers’ willingness to pay (WTP) for

the technology and the technology’s impact on wheat market values. The market prospect of the new

technology is analyzed as well. Depending on the technology’s market structure and marginal costs,

(1) the average WTP of adopters for the technology ranges between 14 and 22 cents per bushel, and

(2) upon the adoption of this new technology, market value of Hard Red Winter wheat will decrease

by 0.2% to 2.3%, but market value of Hard Red Spring wheat will increase by 0.3% to 3.3%. The

aggregate wheat market value decreases by a slight amount (0.0002% to 0.004%). If the technology is

supplied by a monopoly firm, then demand from Hard Red Winter and Hard Red Spring wheat growers

in the United States for the technology will provide the firm with an annual operating profit of between

$5.9 million and $7.7 million.

Key words: economic value of information, market structure, protein, wheat

JEL classification: Q13, Q16, L63.
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Introduction

Product heterogeneity prevails among agricultural commodities. Wheat, the world’s second largest

crop by annual production between 1999 and 2009, is a typical example (Goodwin and Smith 2009).1

In the United States, wheat is divided into six classes based on genetic characteristics and in each class

there are multiple grades (U.S. Wheat Associates). Besides factors such as dockage and moisture,

protein concentration is one of the major factors that affect prices of wheat. Wheat with higher protein

concentration often receives protein premiums due to the favorable end-use properties added by the

higher protein level. A detailed description of how protein concentration affects wheat grading and

prices in major wheat producing countries can be found in Popper, Schäfer, and Freund (2007).

Wheat that is harvested from the same field can have different protein concentrations due to various

reasons, such as local soil quality and growing condition (Long, Engel, and Siemens 2008). Techno-

logical advances in near infrared (NIR) sensors make measuring grain protein, and hence segregating

grains according to the protein concentration, possible (Long, Engel, and Siemens 2008; Taylor et al.

2005). According to Long, Engel, and Siemens (2008), an on-combine NIR sensor can measure the

protein concentration at 0.5Hz measurement rate (i.e., once every two seconds) with standard error of

prediction lower than 5.0g/kg.2 Not only does this technology provide wheat growers with accurate

information about protein concentration distribution, it also provides them with an opportunity to seg-

regate their harvest into loads with different protein concentrations to better capture protein premium.3

For example, suppose wheat with 13% or higher protein receives a protein premium in the market and

other wheat receives the base price. Also suppose a wheat grower harvests 2,000 bushels of wheat from

his field in which 1,000 bushels are with protein concentration at 13% and the other 1,000 bushels are

with protein concentration at 11%. Without measuring and segregating, the grower can only receive

the base price because the average protein concentration level of his wheat is below 13%. However, if

1Data source: Food and Agricultural Organizations of the United Nations
(http://faostat.fao.org/site/567/default.aspx#ancor), accessed on October 19th, 2010.

2According to protein data from Crop Quality Report (U.S. Wheat Associates 1980-2010), the av-
erage protein concentration levels for Hard Red Winter wheat and Hard Red Spring wheat are 12.2%
and 14.3% over 1979-2009, respectively. Therefore, a standard error lower than 5.0g/kg means that the
magnitude of measurement error is smaller than 4% of the real protein concentration.

3The segregation can be achieved by letting a device control the direction of grain stream according
to the protein information provided by a NIR sensor (Long, Engel, and Siemens 2008).
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the grower measures and segregates his wheat, then half of his wheat can receive the protein premium

and the rest can still receive the base price. Therefore, if the protein premium obtained can justify

the measurement and segregation costs, then an individual wheat grower has the incentive to adopt the

measuring and segregating technology (M&S technology hereafter).

Were many wheat growers to adopt the technology, then the price of high protein wheat would be

expected to be affected. This is because the wide spread adoption of the new technology will boost

the supply of wheat with high protein concentration. Moreover, the prices of ordinary wheat may be

affected as well because when wheat growers segregate high quality wheat out from ordinary wheat

then the supply of ordinary wheat decreases. Therefore, the adoption of this new technology may

generate far-reaching impacts on wheat markets. Also, the impact will not be evenly distributed among

wheat growers. Those who typically produce high quality wheat do not have the incentive to adopt

the technology and hence their profit may decline due to the technology as the protein premium falls.

For wheat growers whose wheat quality is so poor that even the new technology does not help very

much (i.e., no high quality wheat can be segregated out), other growers’ adoption of the technology

may benefit them because the supply of ordinary wheat goes down due to wheat segregation. For

growers who adopt the new technology, their profit may or may not be higher than under the original

pre-technology situation. Therefore, the welfare impact of the new technology on wheat growers is

ambiguous without further information.

Since structure in the M&S technology market determines the technology’s price, it partly deter-

mines the extent of the technology’s adoption, and hence the technology’s impacts. For instance, if

growers’ welfare is decreasing (increasing) in the adoption rate, then an increase in the number of

technology’s suppliers (assuming Cournot competition) may increase (decrease) wheat growers’ wel-

fare. Therefore, when studying the value and impacts of the M&S technology, the effect of the market

structure should come under scrutiny.

The purpose of this article is threefold. First, we quantify wheat growers’ willingness to pay (WTP)

for the M&S technology, i.e., the value of the technology to an individual wheat grower. Second, we

study the welfare impact of the technology for the wheat industry. Third, we analyze the impact of the

M&S technology’s market structure on wheat growers’ welfare and the technology’s market prospects

under various market structures. In order to fulfill these three goals, we first develop a microeconomic



51

optimization model of an individual wheat grower’s segregating and blending decisions. Then we an-

alyze the changes in wheat market equilibrium due to the adoption of the M&S technology. In order

to do so, we utilize U.S. wheat prices and stocks to estimate a wheat demand system. This allows us

to establish the effects of changes in the protein profile of wheat stocks on protein premiums. Then

the simulation section combines the results from the microeconomic optimization model and from the

econometric estimations to simulate wheat growers’ WTP for the technology. For the M&S technology

market, a standard n-player Cournot competition model is applied to determine the equilibrium price

and quantity of the technology. The welfare impacts on the wheat industry are analyzed under various

technology market structures.

In this article we find that when the new technology’s market structure is more competitive (i.e.,

more producers in the market) then the adopters’ average WTP for the technology becomes lower.

For example, when the M&S technology’s market structure is monopoly (perfect competition) and

when the cost of measuring and segregating is 0.4 cents/bushel, then adopters’ average WTP for the

technology is about 22.2 (14.4) cents per bushel. Aggregate wheat market value is slightly decreased

by the adoption of this new technology, no matter what the market structure is. This decrease is larger

when the technology market is more competitive. However, the technology’s impact on wheat market

value varies over different wheat markets. Upon the adoption of this new technology, market value of

Hard Red Winter wheat will decrease by 0.2% to 2.3%, but market value of Hard Red Spring wheat

will increase by 0.3% to 3.3%. For the technology’s market prospect, when the market structure is

monopoly, then the aggregate operating profit related with the U.S. HRW and HRS wheat is about

$5.87 to $7.67 million per year, depending on how high the production cost is. When there are more

producers in the technology market, the aggregate operating profit becomes lower.

The contributions of this article lie in three aspects. First, to the authors’ best knowledge, this ar-

ticle is the first to attempt to quantify wheat growers’ WTP for M&S technology and to analyze the

technology’s welfare impact on wheat growers. Second, it shows that the advent of an information

technology may not improve the welfare of adopters. This finding is consistent with that in Lave (1963)

and Babcock (1990), who showed that farmers’ welfare would be decreased by better weather informa-

tion. Third, we develop a general microeconomic optimization models of an individual wheat grower’s

segregating and blending decisions under various price schedules and under any protein distributions.
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Previous studies about optimal segregating and blending decisions either utilized linear programming

to approximate (e.g., Vercammen 2011; Giannakas, Gray, and Lavoie 1999) or misspecified the optimal

decision model (e.g., Sivaraman, Lyford, and Brorsen 2002). The method developed in this article can

be readily transferred to other commodities such as barley, soybeans, or rice.

This article enriches three strands of literature in agricultural economics. First, this article compli-

ments the literature about the economic value of information in the line of Lave (1963) and Babcock

(1990) arguing that more information may hurt farmers’ welfare. In this article we find that the adop-

tion of the M&S technology will decrease the market values of wheat at the industry-level even though

some growers may benefit from the adoption. Intuitively, this is because non-cooperative activities

among farmers generate a price externality that lowers the value of wheat at the market-level.

The secon strand lies in quality control (through blending or segregation) in grain markets. Quality

control in grain market has been a focus of economic research for a long period. Vercammen (2011)

provides an overview of the economics of blending. Pirrong (1995) asserts that gains to elevators from

blending were so large as to impede a private market system of grain grading in 1860s. Hennessy (1996)

and Hennessy and Wahl (1997) discuss the optimal decisions on blending and cleaning commodities that

can be separated completely into high quality and low quality constituents. Giannakas, Gray, and Lavoie

(1999) study the impact of increasing the number of protein increments in a wheat grading system on

blending revenue in the Canadian wheat industry. Adam, Kenkel, and Anderson (1994) analyze the

benefits and costs of cleaning wheat utilizing an engineering/programming model. Yoon, Brorsen,

and Lyford (2002) compare the cost and benefit of increasing kernel uniformity for millers and find

that the benefit cannot justify the cost. Johnson and Wilson (1993) develop a non-linear programming

model on an elevator’s optimal cleaning and blending decisions. However, all of these articles focus on

elevator-level or industry-level grain processing decisions and do not consider the market equilibrium

effect of such decisions. Our article extends the quality control literature by focusing on the farm-level

grain processing decision and considering the market equilibrium effect of this decision. Moreover,

our exercise contributes to the technology adoption literature by providing an example of quantifying

the WTP for a new technology and of analyzing the impact of a technology’s market structure on the

adoption of the technology.

The rest of this article is structured as follows. In Section 2 we develop a conceptual model of a
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typical wheat grower’s optimal segregating and commingling decisions facing various protein premium

schedules. Section 3 contains a conceptual market equilibrium model of technology adoption. While

Section 4 estimates a wheat protein demand system, Section 5 studies field-level protein variations.

Section 6 combines the wheat demand system and the conceptual models to simulate the WTP for the

sorting technology and then discusses the results. Section 7 concludes.

The Value of the M&S Technology to a Single Wheat Grower

In this section we develop a microeconomic optimization model of a wheat grower’ segregating and

blending decisions according to wheat protein concentrations. The wheat grower’s goal is to maximize

profit from selling her wheat by optimally segregating and blending given a protein premium schedule

and a distribution of wheat grain’s protein concentrations. We assume that the wheat grower produces

one unit of wheat per year. Her decision problem can be divide into two stages: (1) deciding whether or

not to adopt the M&S technology; and (2) if she adopts the technology, then determing what the profit

maximizing segregation stragety is. By backward induction, we solve the stage two decision problem

first. For simplicity, we assume that once the technology is adopted, the marginal cost of measuring and

segregating is zero.4 Therefore, the profit maximizing goal is equal to maximizing the revenue from

selling wheat.

Processing wheat with various protein levels is different from processing wheat with various dock-

age rates. Since it is part of a wheat kernel, protein within one load of wheat does not have the perfect

separability that dockage has. For example, 1,000 bushels of grain with 10% average protein level can-

not be segregated into 900 bushels of zero percent protein wheat and 100 bushels of 100% protein wheat.

This means that the segregating results will be constrained by the distribution of protein concentration.

Terms

Before the M&S technology is adopted, the wheat grower sells her wheat as one load at a single

price. After adopting the technology, then she has the freedom to segregate her wheat according to

protein concentration to optimize her revenue. To facilitate exposition, a series of definitions about

4Assuming marginal processing cost to be a constant is common in the grain quality control literature
(e.g., Hennessy and Wahl 1997; and Giannakas, Gray, and Lavoie 1999).
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the wheat grower’s activities (i.e., measuring, blending, segregating, and processing) are necessary.

Measuring refers to obtaining the protein concentration information by applying the M&S technology.

Blending is the act of mixing loads so that any sample of the mix has the same protein concentration.

Segregating one load is the act of separating the load into two or more sub-loads with different protein

concentrations. Completely segregating one load refers to separating the load into as many as possible

sub-loads such that each sub-load only contains wheat with the same protein concentration where the

protein concentration of each sub-load differs. To Process one load of wheat is to measure the load of

wheat and then either blend or segregate.

Model Analysis

Suppose a wheat grower has one load of wheat with mean protein level µ . The mass of this load

is normalized to one. The protein concentration distribution in this load is F(l) with density function

f (l) and support [0, L̄]. Here L̄ ≤ 1 is the upper bound of grain protein concentration in the load. We

assume there are no atoms on the protein concentration distribution (i.e., no points of discontinuity on

F(l)). For simplicity we assume the grower knows the protein distribution before she adopts the M&S

technology. If she does not know the protein distribution until she utilizes the technology, then the

estimation of willingness to pay for the technology would require assumptions on the farmer’s belief

about protein distributions of her harvest. In the situation that farmers only have a belief about the

protein concentration distribution, our analysis in optimal processing decisions is still necessary. This

is because for any given protein concentration distribution under a belief our analysis can be used to

obtain the optimal processing decisions.

In light of their large number, in our model the grower is assumed to be a price taker. Let the non-

decreasing wheat price function facing the farmer be p(l), where l is the level of protein concentration

of one unit of wheat. The protein premium is imbedded in the price schedule because high protein

wheat receives high prices. In wheat markets the price schedules are often of the step function form.

Therefore, we study a grower’s optimal processing decisions when price schedules are in three-step

form. For optimal processing decisions under uniformly curved schedules and nonuniformly curved

schedules, please see Items A and B in Appendix 1, respectively. When the price schedule is an N-step

schedule (N > 3), unfortunately, we cannot obtain an elegant uniformly concave or convex effective
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price schedule by eliminating dominated discontinuous points on the step price schedule like Hennessy

and Wahl (1997) did. This is because wheat does not have perfect separability in the protein dimension.5

Suppose the three-step price schedule is

p(l) =


p1 if L≤ l < l1

p2 if l1 ≤ l < l2

p3 if l2 ≤ l ≤ L̄,

(3.1)

where l ∈ [L, L̄] is wheat protein concentration; p3 > p2 > p1 > 0 are prices; and l1 and l2 are constants

such that L≤ l1 < l2 ≤ L̄. Figure 3.1 depicts this three-step price schedule. In this subsection we further

assume that the mean protein concentration of one load, µ , is such that µ ∈ (0, l2). If µ ≥ l2, then it will

receive the highest price and hence its owner has no incentive to process further.

The grower’s problem is to maximize her revenue by optimally processing her wheat through seg-

regating and blending activities based on knowledge of the protein concentration distribution. Because

the price schedule has a three-step function form, the farmer’s problem is to optimally segregate her

wheat into three sub-loads, namely S1, S2, and S3, to maximize revenue. Let µi, pi, and qi be the

mean protein concentration, the price received, and the quantity of sub-loads Si, i ∈ {1,2,3}, respec-

tively. By construction we have µ1 ∈ [0, l1), µ2 ∈ [l1, l2), µ3 ∈ [l2, L̄], and ∑
3
i=1 qiµi = µ (please recall

that the total quantity is normalized to 1). Then the farmer’s problem is to maximize ∑
3
i=1 piqi sub-

ject to certain constraints. These constraints need to reflect the fact that wheat protein is imperfectly

separable, as discussed above. To find these constraints is the major task of specifying an appropriate

form for the grower’s programming problem. Many other studies (e.g., Adam, Kenkel and Anderson

1994; Johnson and Wilson 1993; and Vercammen 2011) use linear programming to characterize the

optimization problem when assuming a discrete protein distribution or to approximate the optimal so-

lution when assuming a continuous protein distribution. However, the linear programming approach

often involves solving many unknowns, which provides little insight on how the optimization mecha-

nism works. Below we provide a simple non-linear programming framework which directly generates

the optimal allocation under three-step price schedules for any continuous protein distribution without

atoms. For the next result, several definitions are necessary.

5However, we do solve out the optimal processing strategies under a four-step price schedule. The
results are available upon request from the authors.
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Definition 3.1. We define t1 and t2 as the least non-negative constants such that
∫ L̄

t1 f (l)ldl/(1−

F(t1))≥ l1 and
∫ L̄

t2 f (l)ldl/(1−F(t2)) = l2, respectively.

Definition 3.1 states that the average protein level of the mix of all wheat with protein level higher

than t1 is greater than or equal to l1; and the average protein level of the mix of all wheat with protein

level higher than t2 is equal to l2. Clearly we have t2 < l2 and t1 < l1. It is also readily checked that the

maximum amount of wheat with average protein level at l2 (or no lower than l1) that can be segregated

from the original load of wheat is 1−F(t2) (or 1−F(t1)). That is, the maximum values of q2 and q3

are 1−F(t1) and 1−F(t2), respectively. Furthermore, when t2 > l1, we have a definition as follows.

Definition 3.2. When t2 > l1, then l̂1 is defined as the minimum non-negative constant that satisfies∫ t2
l̂1

f (l)ldl/(F(t2)−F(l̂1))≥ l1.

Definition 3.2 states that l̂1 is the minimum non-negative constant such that the average protein level

of wheat distributed on [l̂1, t2] is no less than l1. Here l̂1 identifies the maximum value of q2 given that

q3 is maximized.

Let M ≡ {qi: qi ≥ 0, and ∑
3
i=1 qi = 1}, where i ∈ {1,2,3}. We present the following two non-linear

programming problems are as follows.

max
qi∈M

3

∑
i=1

piqi (3.2)

s.t.
∫ F−1(q1)

0
f (l)ldl +q2l1 +q3l2 = µ, F(t1)≤ q1 ≤ F(t2).

max
qi∈M

3

∑
i=1

piqi (3.3)

s.t.
∫ F−1(q1)

0
f (l)ldl +q2l1 +q3l2 = µ, F(t1)≤ q1 ≤ F(l̂1).

For the optimal processing outcomes under three-step price schedules, we have the following propo-

sition.

Proposition 3.1. Suppose one wheat load’s mean protein concentration, µ , is such that µ ∈ (0, l2).

Then for this load, (i) when t2 ≤ l1 then the optimal processing outcomes are the solutions of problem

(3.2); (ii) when both t2 > l1 and l̂1 > 0 then the optimal processing outcomes are the solutions of problem

(3.3); and (iii) when both t2 > l1 and l̂1 = 0 then q∗1 = 0, q∗2 = F(t2), and q∗3 = 1−F(t2).
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Proof. Please see Item C in Appendix 1.

Visual presentations of the three items in Proposition 3.1 are depicted in Figures 3.2 to 3.4, respec-

tively. The first constraints in problems (3.2) and (3.3) are the same. This constraint states that the

segregation should not change the load’s total protein quantity. It also states that sub-load S1 consists of

wheat distributed on a continuous section of the left tail of protein distribution. Without this constraint

the programming becomes a linear programming and the mean protein level in sub-load S1 will always

be driven down to zero. This is because if the protein concentration of sub-load S1 is zero then all the

protein will be directed to sub-loads S2 and S3 so that the quantities of S2 and S3, and hence the revenue,

can increase.

The second constraint in each of problems (3.2) and (3.3) concerns the range of q1. It is intuitive

that q1 ≥ F(t1) because if not then the average protein level of the blend from sub-loads S2 and S3 will

be less than l1, which cannot be true. When t2 ≤ l1, then it is not optimal to put wheat with protein level

higher than t2 into sub-load S1 because they can always be part of sub-loads S2 or S3 to receive a higher

price (Figure 3.2). When t2 > l1 and when l̂1 > 0, then it is not optimal to put wheat with protein level

higher than l̂1 into sub-load S1 (Figure 3.3). The reason is that wheat with protein level higher than l̂1

can be put into sub-load S2 to receive a protein premium. Moreover, the constraints of problems (3.2)

and (3.3) guarantee that the optimal solutions are achievable under wheat’s non-perfect separability in

the protein dimension. To better illustrate how the constraints in problems (3.2) and (3.3) work let us

see an example.

Example 1. Suppose the grain protein concentrations of one HRW wheat load are uniformly dis-

tributed on [0.06,0.15], i.e., l ∼ U(0.06,0.15). Then the average protein level of this wheat load is

0.105. The price schedule for HRW wheat market is assumed to be

p(l) =


3 if 0.06≤ l < 0.12

4 if 0.12≤ l < 0.13

7 if 0.13≤ l ≤ 0.15,

(3.4)

where the price unit is $/bushel. Then in this example we have l1 = 0.12 and l2 = 0.13. By Defini-

tion 3.1 we can calculate that t1 = 0.09 and t2 = 0.11. This means that the average protein level of

wheat grain with protein level on interval [0.09,0.15] (or [0.11,0.15]) is 0.12 (or 0.13). Since t2 < l1,
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there is no value of l̂1. Therefore, according to Proposition 3.1 we know that problem (3.2) should

be applied to this example. Let F(l) denote the distribution function of the protein concentrations.

Based on the assumption of protein concentration distribution, we have F(t1) = 1/3, F(t2) = 5/9, and∫ F−1(q1)
0.06 f (l)ldl = 0.06q1 +0.045q2

1. Then the optimization problem can be written as

max
qi∈M

3

∑
i=1

piqi (3.5)

s.t. 0.06q1 +0.045q2
1 +q2l1 +q3l2 = 0.105, 1/3≤ q1 ≤ 5/9.

Solving problem (3.5) gives us the optimal processing results (q∗1,q
∗
2,q
∗
3) = (5/9,0,4/9) and maximized

revenue at R∗ = 3q∗1 +4q∗2 +7q∗3 = 43/9.

Now let us study the implications of deleting the two constraints in problem (3.5). Since the mean

protein level in this load is 0.105, which is lower than l1 = 0.12, the threshold protein value of receiving

protein premium, we must have q1 > 0 in the optimal processing results. If not, i.e., if q1 = 0, then the

average of protein level of wheat in sub-loads S2 and S3 will be equal to 0.105, which contradicts the

requirement that mean protein level of wheat in sub-load S2 (or S3) should be no lower than l1 = 0.12

(or l2 = 0.13). If q1 > 0, then in the optimal processing results we must have the average protein levels

of sub-loads S2 and S3, i.e., µ1 and µ2, such that µ2 = 0.12 and µ3 = 0.13. Otherwise the revenue can

be increased by moving some wheat from sub-load S1 to sub-loads S2 or S3. Therefore, if we delete the

two constraints in problem (3.5), then the wheat grower’s optimization problem can be written as

max
qi∈M

3

∑
i=1

piqi (3.6)

s.t. q1µ1 +q2l1 +q3l2 = 0.105, µ1 ≥ 0.06,

where µ1 is the average protein level of sub-load S1. Solving problem (3.6) we have (q̂1, q̂2, q̂3) =

(5/14,0,9/14) and µ1 = 0.06. The corresponding revenue is R̂ = 3q̂1 +4q̂2 +7q̂3 = 78/14. It is clear

that R̂>R∗. But given the protein distribution in this example, the solution (q̂1, q̂2, q̂3) = (5/14,0,9/14)

cannot be achieved. This is because from this wheat load one cannot obtain a sub-load of wheat with

quantity at 5/14 and average protein level at 0.06. Therefore, we can see that the first constraint in

problem (3.5) is necessary to find out the real optimal solution for the grower’s segregation problem. �

After we obtain the optimal processing results, (q∗1,q
∗
2,q
∗
3), then a grower’s WTP for the M&S

technology can be computed as WTP = ∑
3
i=1 piq∗i − p(µ), where p(µ) is the price received without
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segregation. The grower will adopt the technology if and only if her WTP is greater than the cost of the

M&S technology. Now let us move on to study the value of the M&S technology to the wheat industry.

Value of M&S Technology to Wheat Industry

In the previous section we assumed that an individual grower is a price taker and her adoption de-

cision does not affect wheat prices. However, when all growers face the same decision problem then

the aggregate effect of these decisions may change prices. In this section we first define an adoption

equilibrium under which prices and quantities of wheat with different protein levels and growers’ adop-

tion decisions are determined. Then we provide a measure of the M&S technology’s value to wheat

industry.

Assume there are N wheat growers. Each grower produces one unit of wheat with protein distri-

bution d ∈ D, where d is density function and D is the set of density functions of all wheat growers.

Let Q(l), l ∈ [L, L̄], denote the wheat quantity distribution in the market before the M&S technology is

available. Let P(·) be a function system describing the inverse demand for wheat with different protein

levels. Then the wheat price schedule before the technology is available is p(l) = P[Q(l)]. We assume

the technology is adopted gradually, starting with the grower who has the highest WTP for the tech-

nology under prices p(l). Wheat prices are affected when growers adopt the technology, in a way to

be discussed in detail in Section 6.2. Let pn(l) denote wheat price schedule after the nth grower adopts

the technology. The adoption process stops whenever the WTP of growers who have not adopted the

technology under pn(l) is less than the price of the technology, w. Hence, for a given technology price,

w, we can identify the quantity of wheat segregated and a wheat price schedule at which the adoption

process stops. We say that the adoption process reaches the equilibrium when it stops. We then define

wheat price and quantity schedule in the adoption equilibrium as p∗(l) and Q∗(l), respectively.

Once we have price and quantity schedules in the adoption equilibrium, the value of the M&S

technology to the wheat industry can be readily written as
∫ L̄

L [p
∗(l)Q∗(l)− p(l)Q(l)]dl. Please note

that p∗(l), and hence the number of growers who adopt the technology, are determined by the price of

the technology. Therefore, a demand curve for the sorting technology can be obtained. We let D(·)

denote the inverse demand function for the M&S technology. Because an individual wheat grower’s
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adoption decision is also determined by the price of the new technology, w, we should expect that the

price of the new technology would affect the value of the M&S technology to the wheat market. The

M&S technology price is determined by the technology’s market structure and production cost. We

assume that there are I (I ≥ 1) identical firms producing the technology with constant marginal cost c.6

Denote zi as firm i’s production level and Z ≡ ∑
I
i=1 zi as aggregate production. Then standard analysis

in the Cournot competition model with identical firms will generate the optimal aggregate production

level, Z∗, that is implicitly determined by

D(Z∗)+
Z∗

I
D′(Z∗) = c. (3.7)

The effect of the M&S technology’s market structure can be analyzed by varying the number of firms,

I.

So far we have discussed the value of the M&S technology to an individual grower and to the wheat

industry. In order to quantify this value, we need to estimate a wheat demand system, which is the

content of the next section.

Wheat Demand System

In this article we focus on HRW wheat and HRS wheat where each class of wheat is broken down

to three types based on protein concentrations. Let vectors

p0 = (p0
1, p0

2, p0
3, p0

4, p0
5, p0

6) and Q0 = (Q0
1,Q

0
2,Q

0
3,Q

0
4,Q

0
5,Q

0
6)

contain prices and quantities of wheat of the six protein levels in HRW and HRS wheat market, re-

spectively. Here superscript 0 means prices and quantities before the M&S technology is available.

Subscripts 1, 2, and 3 mean HRW wheat with protein level lower than 12%, no lower than 12% but

lower than 13%, and no lower than 13%, respectively. We name these types of wheat as HRW low,

middle, and high protein wheat, respectively. Subscripts 4, 5, and 6 mean HRS wheat with protein level

lower than 13%, no lower than 13% but lower than 14%, and no lower than 15%, respectively. We name

these wheat as HRS low, middle, and high protein wheat, respectively.

6For simplicity and given that only a few major firms produce agricultural machinery in the U.S.,
here we assume that there is no free entry in the M&S technology industry.
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We apply the Inverse Almost Ideal Demand System (IAIDS) model to estimate the wheat demand

system. Compared with the Almost Ideal Demand System (AIDS) model under which prices are as-

sumed to be predetermined, the IAIDS model is more appropriate when analyzing demand for com-

modities whose prices adjust to clear markets (Eales and Unnevehr 1994; Eales, Durham, and Wessells

1997; Grant, Dayton, and Foster 2010). Wheat falls into this category because wheat protein concen-

tration is mainly determined by varieties and growing conditions (irrigation and precipitation). Wilson

(1983) shows that annual average protein concentration has not displayed any long term trend between

1961 and 1980. Data from the U.S. Wheat Associates between 1979 and 2009 also support this con-

clusion (Figure 3.5). Moreover, Goodwin and Smith (2009) showed that shocks in protein availability

significantly affect wheat prices.

A system of inverse demand functions of m types of wheat (m = 6 in this article) with different

protein levels can be specified as

ri,t = αi +∑
m
j=1 γi j ln(Q j,t)+βi ln(It)+ ei,t , (3.8)

where ri,t is type i wheat’s revenue share at time t; Q j,t is type j wheat’s quantity at time t, (i, j ∈

{1, ...,m} and t ∈ {1, ...,T}, where T is the length of the time series in the data). Here αi, βi, and γi j are

parameters; ei,t is an error term; and ln(It) is a quantity index defined as

ln(It) = α0 +∑
m
j=1 α j ln(Q j,t)+

1
2 ∑

m
i=1 ∑

m
j=1 γi j ln(Qi,t) ln(Q j,t). (3.9)

The homogeneity constraints, symmetry constraints, and adding-up across the share equations require

Σm
i=1αi = 1, Σm

i=1γi j = 0, Σm
i=1βi = 0, and γi j = γ ji.

Let εi j denote the percentage change of good i’s price caused by one percent change in the quantity

of good j, i.e., the cross-quantity elasticities. Once the IAIDS model is estimated, then according to

Eales and Unnevehr (1994) εi j can be calculated by

εi j =−δi j +
γi j +βi(r j−β j ln It)

ri
, (3.10)

where δi j is the Kronecker delta that equals one whenever i = j. When applying the IAIDS model,

it is common to replace the quantity index ln(It) with Stone’s quantity index defined as ln(I∗t ) =

∑
m
j=1 r j,t ln(Q j,t) (Moschini and Vissa 1994; Grant, Dayton, and Foster 2010), which gives us the linear-
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approximate IAIDS model (i.e., LA/IAIDS model)

ri,t = αi +∑
m
j=1 γi j ln(Q j,t)+βi ln(I∗t )+ ei,t , (3.11)

For the LA/IAIDS model, according to Moschini and Vissa (1994) the quantity elasticity is

εi j =−δi j +
γi j +βir j

ri
. (3.12)

Since the data utilized in our study are time-series data, ignoring auto-correlation in the error term

may render the standard errors and test statistics of estimates invalid. We allow the error term to be

first-order auto-correlated:

ei,t = ρei,t−1 +ξt , (3.13)

where ξt is assumed to be independent across time t. With the auto-correlation structure in equation

(3.13), the variables in model (3.11) can be transformed into:

x̃i,t = xi,t −ρxi,t−1, (3.14)

where xi,t denotes variables in model (3.11), including the dependent variable, independent variables,

and constants. For example, ˜ln(Q j,t) = ln(Q j,t)−ρ ln(Q j,t−1). Therefore, the transformed LA/IAIDS

model can be written as

r̃i,t = (1−ρ)αi +∑
m
j=1 γi j

˜ln(Q j,t)+βi l̃n(I∗t )+ξt , (3.15)

Instead of estimating model (3.11), we estimate model (3.15) and then apply equation (3.12) to obtain

the flexibilities.

Data

We focus on Hard Red Winter (HRW) wheat and Hard Red Spring (HRS) wheat because they

account for more than 60% of wheat production in the United States and their prices based on protein

concentrations are well documented (U.S. Wheat Associates). The daily cash price data based on protein

concentration of HRW wheat and HRS wheat in the Pacific Northwest (PNW) region are obtained from

Montana Wheat and Barley Committee (http://wbc.agr.mt.gov/). These prices are averages of daily

cash prices reported from elevators in the PNW region between 1980 and 2010. According to the
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Law of One Price, we believe that these cash prices are good approximations for transportation cost

adjusted wheat cash prices in the U.S. The prices in the data set follow a step-function schedule. To

facilitate exposition, we define HRW wheat with protein levels in ranges [11%,12%), [12%,13%), and

[13%,100%) as HRW low, middle, and high protein wheat, respectively. For HRS wheat, we define

HRS low, middle, and high protein wheat as HRS wheat with protein levels in ranges [13%,14%),

[14%,15%), and [15%,100%), respectively. We then define p1, p2, and p3 as prices of HRW low,

middle, and high protein wheat, respectively; and define p4, p5, and p6 as prices of HRS low, middle,

and high protein wheat, respectively.

Our analysis utilizes monthly averages of these daily price data. Since the time range is from

1980 to 2010, we expect to have 1,116 (i.e., 31 years times 12 months times 3 prices per month) price

observations for HRW wheat and another 1,116 price observations for HRS wheat. For HRW wheat,

there are 16 missing values out of these 1,116 price observations. The missing value ratio is about 0.01.

For HRS wheat prices, there are 24 missing values and the missing value ratio is about 0.02. Since the

missing value ratios are very low, for simplicity we apply cubic spline interpolation to fill the missing

values (Baltazar and Claridge, 2006). Table 3.1 shows summary statistics for the six price variables.

Protein premia are of interest because they are the driving force of segregating wheat according to

protein concentrations. We define p21 ≡ p2− p1, which stands for protein premium of HRW middle

protein wheat over HRW low protein wheat. Similarly, we define p31 ≡ p3− p1, p54 ≡ p5− p4, and

p64 ≡ p6− p4. Summary statistics for these protein premia are presented in Table 3.1 as well. The

means of p21 and p31 are 12.9 and 30.6 cents/bushel, respectively. This means that on average HRW

middle protein wheat (or HRW high protein wheat) receives 12.9 (or 30.6) cents more per bushel than

HRW low protein wheat. For HRS wheat, protein premia are even higher. The means of p54 and p64 are

30.6 and 51.1 cents per bushel, respectively. The variances of protein premia are large as well, which

means that protein premia are very volatile. From Figures 3.6 and 3.7 we can see this.7 Since prices of

HRW high protein wheat are always higher than prices of HRW middle protein wheat, in Figure 3.6 the

line for p31 is always above that for p21. The distance between the two lines measures the premium for

HRW high protein wheat over HRW middle protein wheat. The same interpretation follows for Figure

7In the figures monthly wheat prices start in August 1980 because the monthly wheat stock data starts
in August 1980.
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3.7. Figures 3.6 and 3.7 have similar patterns in terms of the changes of protein premia over time.

Quarterly stocks of all wheat between 1980 and 2010 are obtained from National Agricultural Statis-

tics Service (NASS) of the U.S. Department of Agriculture (USDA). Here “all wheat” means wheat in

all six wheat classes, not just HRW and HRS wheat.8 Monthly stocks of HRW wheat and HRS wheat

with different protein levels are calculated by the authors using a procedure that is similar to the one

in Goodwin and Smith (2009). The procedure is presented in Appendix 1. Let s1, s2, and s3 denote

the monthly stocks of HRW low, middle, and high protein wheat, respectively. Let s4, s5, and s6 de-

note the monthly stocks of HRS low, middle, and high protein wheat, respectively. Once we obtain the

monthly cash prices and stocks of the six types of HRW and HRS wheat, then the revenue share of each

type of wheat is readily to calculate by ri = pisi/∑
6
j=1 p js j, i ∈ {1, ...,6}. Figures 3.8 and 3.9 depict

the monthly HRW wheat and HRS wheat stocks at different protein levels. Summary statistics for the

monthly stocks are presented in Table 3.1 as well.

By studying Figures 3.6 and 3.8 we can find that protein premia decrease when stocks of high

protein wheat increase. For example, from August 1989 to August 1991, the protein premia were close

to zero (Figure 3.6). From Figure 3.8 we can see that in this period s3 was either higher than s2 and s1

or close to them. However, during the period of August 2007 to August 2010 when s3 is significantly

lower than s1 and s2, we observe premium spikes. For HRS wheat, the same pattern follows.

Estimation Results and Elasticities

The demand system in equation (3.15) is estimated by using seemingly unrelated regressions. Table

3.2 reports the parameter estimates for the transformed LA/IAIDS model presented in equation (3.15).

The coefficients of transformed logarithmic quantities are all statistically significant at 1% level. How-

ever, the coefficients of transformed Stone’s quantity index are not significant in the equations of HRW

low and middle protein wheat. Table 3.2 also contains the measure of fit for the equations and Durbin-

Watson (DW) statistics. Each equation in all the three models explains more than 80% of the variation

in revenue shares. The DW statistics are close to 2, which indicate the autocorrelation problem is largely

eliminated.
8According to the U.S. Wheat Associates, the six classes of wheat are: Hard Red Winter, Hard Red

Spring, Hard White, Soft White, Soft Red Winter, and Durum.
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Table 3.3 presents the quantity elasticities (or flexibilities) calculated from the estimates by using

equation (3.12). For example, the number −0.1748 (row “HRW Low” and column “HRW Middle” in

Table 3.3) means that when the stocks of HRW middle protein wheat increases by 1% then the price of

HRW low protein wheat will decreases by 0.1748%. From Table 3.3 we can see that all the own-quantity

and cross-quantity elasticities are negative. This is intuitive because different types of wheat are likely

to substitute for each other. We also find that all the own-quantity elasticities are much lower than one in

absolute value, which means that the demand for wheat is very inflexible (or elastic). Moreover, almost

all the cross-quantity elasticities are smaller than own-quantity elasticities, and in-class cross-quantity

elasticities are much higher than between-class cross-quantity elasticities. This is reasonable because

the quantity change of one type of wheat will mainly affect its own price. Since consumers (i.e., bakers

or millers) are more likely to look for substitutes within the same wheat class rather than in other wheat

classes, we expect that the quantity change of one type of HRW wheat has higher impacts on HRW

wheat prices than on HRS wheat prices.

We apply the bootstrap technique to approximate the standard errors of the flexibilities. We first

transform the variables by using equation (3.14) to obtain a transformed data set. Then we draw from

the transformed data set with replacement to form 500 samples of size that is equal to the size of the

transformed data during bootstrapping. Standard errors of the flexibilities, which are reported in Table

3.3 as well, are calculated from estimates based on these 500 samples.

Field-Level Protein Concentration Distribution

In order to estimate how much wheat with different protein levels can be sorted out from a given load

of wheat, we need to know the protein concentration distribution of this load of wheat. In this section

we estimate field-level protein concentration distributions. The Washington State University Extension

Cereal Variety Testing Program (http://variety.wsu.edu/) provides wheat variety test data that can be

traced back to 1997. The data report different varieties’ yield, test weight and protein concentrations.

Here we discuss the data and method to identify field-level protein concentration by using HRW wheat

as an example. For HRS wheat the sampling method and data structure are similar.

From 1997 to 2009, the Cereal Variety Testing Program tested 194 HRW varieties in 15 locations
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across the State of Washington. Even though many varieties were tested, only a few were widely

planted by wheat growers in the state. According to data from USDA NASS, in each crop year the top

ten varieties usually accounted for more than 90 percent of planted area for the same class of wheat in

the State of Washington.9 Therefore, in our analysis we only focused on the top 10 varieties in a crop

year. According to this standard, 16 HRW wheat varieties were chosen from 1997 to 2009. The names

of varieties and locations are listed in Table 3.A.1 in Appendix 1

Top varieties varied from year to year. One variety may be popular in some years but disappeared

from the list of top ten varieties in another year. In addition, not every variety was tested in every

location every year. We admit a variety’s performance observations into our data set whenever: a) it is

in the list of top varieties in some years between 1997 and 2009; and b) for at least one location it was

tested in some years between 1997 and 2009. Using this screen we collected 538 observations. These

538 observations include 16 varieties planted at 15 locations over the 13 years. For each observation,

we know the variety’s name, yield, test weight, protein level, trial location where it was tested, and year

when it was tested. Table 3.A.2 presents a sample of variety performance observations.

Table 3.4 presents summary statistics for the 538 observations on HRW wheat. For protein con-

centration, the sample mean is 11.87%. Its maximum and minimum values are 16.6% and 7.4%, re-

spectively. The sample standard deviation is 0.017. However, this sample standard deviation is not a

satisfactory estimator of the variability of HRW wheat protein concentration. This is because it includes

between-location variation, between-year variation and between-variety variation. But for wheat seg-

regation, what the grower encounters is field-level variation for a given variety in a given year. If we

accept the sample standard deviation as the estimator of protein variability, then we will over-estimate

protein variability. To obtain a better estimate, we need to control for the effect of varieties, locations

and years.

We applied regression analysis to estimate the protein variability given a location, variety, and

year. The idea is that once we control for location, variety, and year, then the variation that cannot

be explained by the control variables is an approximation of protein variation conditional on location,

9Data source: http://www.nass.usda.gov/Statistics by State/Washington/Historic Data/
smallgrains/whtvar.pdf (accessed on September 9, 2011).



67

variety, and year.10 The regression can be written as

y = c+∑
13
i=2 αiyri +∑

16
i=2 β jvar j +∑

15
i=2 γklock +u, (3.16)

where y denotes protein concentration; yri, var j, and lock stand for year i, variety j, and location k; αi,

β j, and γk are parameters to be estimated; and u is the error term. An unbiased estimator for the variance

of u is s2 = e′e/(n−K−1) where e is the least square residuals when estimating equation (3.16), n is

the number of observations, and K is the number of independent variables.

The results of regression (3.16) are listed in Table 3.A.3 of Appendix 1. The estimated standard

deviation (i.e., s) is 0.01. Figure 3.10 shows a histogram of the residuals, from which we can see that the

residuals have a normal-formed distribution. Therefore, in our simulation we assume that the field-level

protein concentration follows a normal distribution. Regarding HRS wheat, the data set includes variety

testing results of 13 years, 15 varieties, and 28 locations in the State of Washington. The estimates are

presented in Table 3.A.4 in Appendix 1. The estimated standard deviation for HRS wheat is 0.012.

Value of the M&S Technology: Simulation

So far we have had all necessary elements for simulating wheat growers’ WTP and a demand curve

for the M&S technology. These elements are 1) the optimal segregating algorithm for the individual

grower; 2) an equilibrium technology adoption at market-level; 3) a wheat demand system; and 4) field-

level protein distributions. In this section we first summarize our simulation procedures and then present

the simulation results, including the value of the M&S technology to wheat growers, wheat industry,

and potential producers of the M&S technology.

Optimal Segregating Algorithm for an Individual Wheat Grower

Since we focus on three-step price schedules, the optimal segregating strategies for an individual

wheat grower are presented in Proposition 3.1. In our simulations Proposition 3.1 is implemented as

follows. First, given a protein distribution, we calculate protein concentration thresholds t1, t2, and l̂1

that are defined in Definition 3.1 and Definition 3.2. Second, whenever t2 > l1 and l̂1 = 0, then we have
10Since trials in one location are very close to each other, we can see these trails as a reasonable

sample from an individual field. For example, in Connell Washington from year 2005 to 2009, the
shortest distance between two trials is only 200 feet; and the longest distance is 1.4 miles.
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q∗1 = 0, q∗2 = F(t2), and q∗3 = 1−F(t2). Third, whenever t2 ≤ l1, then we numerically solve problem

(3.2). Fourth, whenever t2 > l1 and l̂1 > 0, then we numerically solve problem (3.3).

The way to numerically solve problems (3.2) and (3.3) is as follows. Here we use problem (3.2)

as an example to illustrate the procedure but the same approach applies when solving problem (3.3).

The idea is a straightforward application of grid search. Step 1). Since the second constraint in prob-

lem (3.2) states that q1 ∈ [F(t1),F(t2)], we choose 1,000 values of q1 that are evenly distributed on

interval [F(t1),F(t2)]. Step 2). Given each q1, solve out q2 and q3 such that q1 + q2 + q3 = 1 and∫ F−1(q1)
0 f (l)ldl+q2l1+q3l2 = µ . Step 3). For each (q1,q2,q3) from Step 2) we calculate ∑

3
i=1 piqi and

then choose (q1,q2,q3) that maximizes ∑
3
i=1 piqi.

Simulate the Demand Curve for the M&S Technology

In this sub-section we summarize the simulation procedure to obtain a demand curve for the M&S

technology. That is, for a given price of the M&S technology, we simulate the equilibrium quantity

demanded for the technology. Since we do not know the processing capacity per device of the M&S

technology, we utilize the quantity of wheat that is produced by wheat growers who adopt the technol-

ogy as the measure for the technology’s quantity demanded.

Based on HRW (HRS) protein data obtained from Washington State University Extension Cereal

Variety Testing Program that have been described in Section 5, we estimate an empirical distribution

of mean protein levels of HRW (HRS) wheat by using kernel density estimation performed by Matlab

function “ksdensity” setting bandwidth at 0.5. Then we draw M (M = 2,000 in our simulation) protein

means from the estimated HRW protein mean distribution. For HRS wheat growers, we draw δM

protein means from the estimated HRS protein mean distribution, where δ = 0.62 is the ratio of HRS

stock over HRW stock evaluated at the sample mean. The reason that we multiply M by δ for HRS

wheat is to reflect the fact that the stock quantity of HRS wheat is smaller than that of HRW wheat. We

let each draw stand for the average protein level of the wheat produced by a wheat grower. Therefore, in

our simulation we have 2,000 HRW wheat growers and 1,240 HRS wheat growers. We further assume

each of them produce the same amount of wheat. For HRW (HRS) wheat the standard deviation of

protein concentration is 0.01 (0.012) according to the results we present in Section 5.

Since growers who produce HRW (HRS) high protein wheat do not have any incentive to segregate
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their wheat, we only need to focus on wheat growers who produce middle or low protein wheat. The

simulation procedure is as follows.

Step 1): we calculate each wheat grower’s WTP under the initial wheat prices and sort all WTP

values in descending order. Let W max denote the maximum among these WTP values. Then the effective

range of the technology’s price is [0,W max]. This is because whenever the technology’s price is higher

than W max then no wheat grower will adopt the technology.

Step 2): for a technology price, w ∈ [0,W max], we let the grower with the highest WTP in Step

1) adopt and segregate. A quantity shock, ∆Q1, is generated by her adoption and segregation. Given

∆Q1, a new vector of wheat prices can be calculated by using p1 = E ×∆Q1× p0 + p0, where E is

the flexibility matrix estimated in Section 4 and p0 is the initial wheat prices. A new vector of wheat

quantities can be calculated by using Q1 = Q0+∆Q1. We then update the flexibility matrix to E1 under

the new prices and quantities by using equation (3.12).

Step 3): under prices p1, calculate the WTPs of growers who have not adopt the M&S technology.

If none of these WTPs is no less than the technology price, w, then the technology adoption process

stops and an adoption equilibrium is reached. If the maximum of these WTPs is greater than w, then we

let the grower who has the maximum WTP adopt the technology. Therefore, as in Step 2), this adoption

generate a quantity shock, ∆Q2, a new vector of prices, p2, a new vector of quantities, Q2, and a new

flexibility matrix, E2.

Step 4): repeat Step 3) (replace p1 with the newest prices) until the technology adoption process

stops under technology price, w.

In the simulation we use mean stocks and mean prices over the period 1980-2010 as the initial wheat

stocks and prices (Table 3.1). Under the initial prices, the maximum WTP by the wheat growers is $321

for segregating one thousand bushels of wheat. To simulate the demand curve for the M&S technology,

we select 100 prices that are evenly distributed on the range of [0,321]. Then for each of these technol-

ogy prices we simulate equilibrium adoption rate based on the procedure we just have discussed in this

sub-section. Therefore, the simulation procedure generates 100 simulated price-quantity data points

of the technology demand curve. In order to utilize equation (3.7) to identify the optimal production

level for each firm, we first utilize the locally weighted regression approach to obtain smoothed data

points for the demand curve. Then we apply the shape-preserving piecewise cubic Hermite interpolating
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method onto the smoothed data points to fit the demand curve. This interpolating method is performed

by Matlab command “fit.” We refer readers to Moler (2008) for a detailed discussion on this interpo-

lating method. Figure 3.11 depicts the simulated data points and the fitted demand curve. Based on the

fitted demand curve, we analyze the value of the M&S technology to wheat growers, wheat industry,

and M&S technology producers in the next section.

Value of the M&S Technology: Simulation Results

Since the technology is at the beginning of commercialization, there are no production cost data

available yet. Therefore, we can only assume a range for the marginal cost of a M&S technology

device. In our calculation we assume that the marginal cost for an additional M&S technology device, c,

takes values between $2,000 and $20,000. We further assume that each device can process a maximum

amount of 500,000 bushels of wheat.11 Therefore, if we define one unit of the M&S technology as the

amount of the technology that can process 1,000 bushels of wheat, then the marginal cost for one unit

of M&S technology is between $4 and $40. Given the marginal cost per unit, we numerically solve the

first order condition of a firm’s production problem presented in equation (3.7).

Table 3.5 presents the optimal quantity supplied of the M&S technology under various marginal cost

and market structure combinations. From this table we can see that, intuitively, the equilibrium quantity

(price) of the M&S technology decreases (increases) when the marginal cost becomes higher or when

the number of producers becomes smaller. Specifically, when the technology market is monopoly and

when the marginal cost of the technology is $4 per unit, then the equilibrium technology price is $149.3

for segregating 1,000 bushels of wheat and there are 52.8 million bushels of wheat to be segregated.

When the marginal cost increases to $40 per unit then the monopolistic technology price increases to

$164.1 and the quantity demanded for the technology decreases to segregating 47.3 million bushels of

wheat. For the monopolistic producer, the annual operating profit is $7.7 ($ 5.9) million when marginal

cost is $4 ($40) per unit. Suppose the interest rate is 5% and assume that the equilibrium prices and

quantities are constants over time. When marginal cost is $4 and when market structure is monopoly,

the net present value of the aggregate operating profit over time is $153.5 million. However, if the

11Suppose an on-combine M&S device’s lifespan is 5 years. Further assume a combine can harvest
2,500 acres per year and the yield is 40 bushels per acre. Then we can obtain the M&S device’s
processing capacity by 5×2,500×40 = 500,000 bushels.
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market structure is duopoly while the marginal cost is $4 per unit, then the net present value of an

individual producer’s aggregate operating profit over time becomes $60 million. If the fixed cost can be

justified by the net present value of the aggregate operating profit, then the M&S technology is a viable

investment choice for potential producers.

Table 3.6 shows adopters’ average WTP for the M&S technology and wheat market values upon

the technology adoption. Both the average WTP and the wheat market values are evaluated under var-

ious marginal cost and market structure combinations. The upper-left panel in Table 3.6 shows that

adopters’ average WTP ranges from $144 to $222, where the lower bound (i.e., $144) is obtained when

the technology market is perfectly competitive and when the marginal cost for the M&S technology is

$4 per unit; and the upper bound (i.e., $222) is obtained when the technology market is monopolistic

and when the technology’s marginal cost is $40 per unit. The upper-right panel in Table 3.6 shows

the aggregate U.S. HRW and HRS wheat stock values under various marginal cost and market struc-

ture combinations. The technology adoption slightly decreases the wheat stock values by 0.0002% to

0.004%. This is because the technology adoption has opposite impacts on HRW and HRS wheat stock

values. Specifically, upon the adoption of this new technology, market value of Hard Red Winter wheat

will decrease by 0.2% to 2.3%, but market value of Hard Red Spring wheat will increase by 0.3% to

3.3%.

The reason for why the impacts of technology adoption on HRW wheat value and HRS wheat value

are opposite should be traced back to the elasticity matrixes, the quantity shock when a grower adopts

the technology, and the initial wheat stocks. However, since we have a six-dimension demand system

and the elasticity matrix changes whenever one more grower adopts the technology, it is difficult to

identify the complete reason. Here, we provide an intuitive explanation focusing on the initial wheat

stocks and the starting elasticity matrix in Table 3.3. The initial low, middle, and high protein HRW

wheat stocks are 207, 193, and 179 million bushels, respectively. The initial low, middle, and high

protein HRS wheat stocks are 100, 126, 133 million bushels, respectively. Please notice that for HRW

wheat, the higher the protein level, the smaller the wheat stock. The opposite is true for HRS wheat.

Therefore, for instance, when 1.93 million bushels of wheat is directed from HRW middle protein

wheat stock to high protein wheat stock by segregation, then the decrease of HRW middle protein

wheat stock is 1% but the increase of high protein wheat stock is higher than 1%. For HRS wheat,
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when 1.26 million bushels of wheat is directed from middle protein wheat stock to high protein wheat

stock, then the decrease of middle protein wheat stock is 1% but the increase of high protein wheat

stock is lower than 1%. Everything else equal, this difference between HRW and HRS wheat makes

that when moving 1% middle protein wheat stock to high protein wheat stock, then the percentage

increased of HRW middle protein wheat price is less than that of HRS middle protein wheat price but

the percentage decreased of HRW high protein wheat price is larger than that of HRS high protein wheat

price. Moreover, by comparing the own-flexibilities of HRW and HRS high protein wheat in Table 3.3

we find that the absolute value of HRS high protein wheat’s own-flexibility is much smaller than that

of HRW high protein wheat, which means that price of HRW high protein wheat is more sensitive to

quantity changes than the price of HRS high protein wheat is. That is, when stocks of high protein

wheat increases as segregation continues, then price of HRW high protein wheat decreases faster than

the price of HRS high protein wheat does. Therefore, the quantity relationship between wheat stocks

with different protein levels as well as the difference between flexibility values can partly explain why

the technology adoption’s impacts on HRW and HRS wheat market values are opposite.

Table 3.7 presents equilibrium protein premia under various technology market structure and marginal

cost combinations. An overall pattern is that protein premia are increasing in the marginal cost of the

M&S technology but is decreasing in the number of producers. This is intuitive because higher marginal

cost of the technology or less producers in the technology market imply the technology price will be

high and the quantity of wheat segregated will be low. Therefore, the wheat stock shocks caused by

the M&S technology will be smaller. This means that the quantity of high protein wheat segregated out

from low or middle protein wheat will be lower and hence the decrease in protein premium caused by

the M&S technology will be smaller. From Table 3.7 we also observe some violations for this overal

protein premium pattern. For example, when technology market is monopolistic, then the protein pre-

mium of high protein HRW wheat over middle protein HRW wheat and the protein premium of middle

protein HRS wheat over low protein HRS wheat are decreasing in the marginal cost of the M&S tech-

nology. The reason for these violations is that protein premia keep changing as segregation continues

and the changing is determined by the types of wheat that are segregated, the flexibility matrix, and

wheat stocks. For example, when the technology price is very high, then only some growers of HRS

low protein wheat can afford the M&S technology. Therefore, we should expect that the protein pre-
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mium of HRS middle protein wheat over low protein wheat decreases as some HRS middle or high

protein wheat is segregated from low protein wheat. When the technology price becomes lower, how-

ever, then some growers of HRS middle protein wheat can afford the technology, which will increase

the protein premium of HRS middle protein wheat over low protein wheat because now the quantity

of HRS middle protein wheat stock is decreasing and the quantity of HRS low protein wheat stock is

increasing or unchanged.

Concluding Remarks

Two important and related trends in food markets are a) growth in demand for differentiated prod-

ucts, and b) capacity to distinguish between quality attributes at the commercial level. U.S. planted

wheat acres are declining in the face of stiff international competition in premium product markets and

demand for crop acres from biofuels (NASS 2011, p. 139). A segregating technology could allow

wheat growers to better identify grains that can be directed to premium markets while also increasing

consumer surplus. Our work provides a coherent methodology for evaluating the benefits of a farm-

level information technology. A microeconomic optimization model of wheat growers’ segregating and

blending decisions is developed. Then wheat growers’ WTP for the sorting technology is simulated

using U.S. HRW and HRS wheat prices and stocks based on an estimation of a wheat demand system.

The impact of the M&S technology’s market structure on wheat growers’ WTP for the technology and

on the value of the technology to the wheat industry is studied as well. We conclude that the adoption

of the M&S technology will decrease the market values of wheat at industry-level even though some

growers may benefit from the adoption. The profitability of the M&S technology to potential producers

is studied under various market structure and marginal cost combinations.

This article can be extended in several aspects. First, if wheat growers and elevators face the same

protein premium schedule, then once farmers adopt the technology to exploit arbitrage opportunities

there will be very little benefit for elevators to process wheat according to protein concentration levels.

Therefore, the technology will re-allocate the segregating and blending benefit from elevators to wheat

growers. The magnitude of this shift in rents may be of interest for future research. As discussed in

Pirrong (1995), in the 1860s the benefit of blending for elevators were so important as to impede a
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private market system of grain grading. Even nowadays protein concentration still has not been one of

the criteria that determine wheat grades in the United States. If the adoption of the M&S technology

transfers the blending benefit from elevators to farmers, then grain merchandisers may be motivated

to implement a more comprehensive grading system that includes protein concentration. Second, in

this article we confine our analysis to assessing wheat growers’ welfare, wheat market value, and the

M&S technology’s market prospects. What we omit is wheat consumers’ welfare change caused by

the technology. Therefore, analyzing the technology’s impacts on wheat consumers’ surplus could be

another direction of extension.
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Figure 3.10: The Histogram of Protein Concentration Residuals



94

quantity demanded for the technology (measured by 
equilibrium quantity of wheat to be segregated; unit: 
million bushels)

pr
ic

e 
of

 th
e 

te
ch

no
lo

gy
 (m

ea
su

re
d 

by
 

pr
ic

e 
of

 so
rti

ng
 1

,0
00

 b
us

he
ls

 o
f 

w
he

at
; u

ni
t: 

do
lla

r)

0

50

100

150

200

250

300

350

0 50 100 150 200

simulated data point

fitted demand curve

Figure 3.11: Demand Curve for the M&S Technology



95

Appendices

Appendix 1

Item A

In this item we discuss optimal processing decisions under uniformly curved price schedules. Incen-

tives to segregate and blend grain with different dockage when the price schedule is uniformly curved

(i.e., concave or convex) have been studied in Hennessy and Wahl (1997). Regarding wheat with dif-

ferent protein concentrations under uniformly curved price schedules, incentives to segregate and blend

is similar as what is in Hennessy and Wahl (1997). Therefore, we just demonstrate the results here and

refer readers to Hennessy and Wahl (1997) for the proof.

Proposition 3.2. If the price schedule is concave, then no segregating is needed to the load. That is,

this load of wheat will be sold as it is. If the price schedule is convex, then the load should be completely

segregated.

From Proposition 3.2 we have the following corollary.

Corollary 3.1. Blending any two loads increases (decreases) a wheat grower’s revenue when the price

schedule is concave (convex). Segregating one load into two or more sub-loads increases (decreases) a

wheat grower’s revenue when the price schedule is convex (concave).

Item B

In this item we discuss optimal processing decisions under non-uniformly curved price schedules.

Instead of being uniform curves, price schedules may have nonuniform curves (Hennessy and Wahl

1997). Figures 3.12 and 3.13 present two possibilities of these schedules. Figure 3.12 shows a price

schedule that is concave at low protein concentration levels and convex at high protein concentration

levels. Figure 3.13 shows a price schedule that is convex at low protein concentration levels and concave

at high protein concentration levels. Following Hennessy and Wahl (1997) we call schedules with the

curvature of Figure 3.12 as shape type I and schedules with the curvature of Figure 3.12 as shape type

II. Without loss of generality it is assumed that p(0) = 0, so the schedules pass through the origin. In

Figure 3.12 and Figure 3.13, points O and O′ are two ends of the respective price schedules. Point B is
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the inflexion point where the schedule changes from being concave (convex) to being convex (concave)

in Figure 3.12 (Figure 3.13).

In Figure 3.12, there are two tangent lines of price curve OO′ that are of critical interest. Line O′A

is the tangent of the price curve with tangency point at A. If there is no tangency point, then set point

A as origin O. Line CD is defined as in Definition 3.3. Let the coordinates of points A, B, C, and D be

[lA, p(lA)], [lB, p(lB)], [lC, p(lC)], and [lD, p(lD)], respectively.

Definition 3.3. Line CD in Figure 3.12 is defined as: (1) Line CD is a tangent of curve OB with tangency

point at C. (2) Line CD intersects curve O′B at point D. (3) The l-coordinates of points C and D is such

that lA < lC < lB and
∫ lD

0 f (l)ldl/
∫ lD

0 f (l)dl = lC.

Definition 3.3 indicates that the commingle of wheat with protein concentration no higher than lD

has mean protein concentration lC. Recall that µ is the mean protein concentration of the initial load of

wheat. Therefore, if µ ≤ lA, then line CD does not exist.

Similarly, in Figure 3.13, there are two critical tangent lines as well. Line OA is the tangent of the

price curve with tangency point at A. If there is no tangency point, then set point A as O′. Line CD in

Figure 3.13 is defined as in Definition 3.4.

Definition 3.4. Line CD in Figure 3.13 is defined as: (1) Line CD is a tangent of curve O′B with

tangency point at C. (2) Line CD intersects curve OB at point D. (3) The l-coordinates of points C and

D are such that lB < lC < lA and
∫ L̄

lD f (l)ldl/
∫ L̄

lD f (l)dl = lC.

Definition 3.4 indicates that the blending of wheat with protein concentration no less than lD has

mean protein concentration lC. Therefore, if µ ≥ lA, then line CD does not exist.

For schedules with shape type I and schedules with shape type II, the optimal processing arrange-

ments are presented in next the proposition.

Proposition 3.3. For shape type I schedules, (i) when µ ≤ lA, then no processing is needed in the

optimal arrangements; and (ii) when µ > lA, then in the optimal arrangements wheat in this load with

protein concentration higher than lD should be completely segregated and the remaining wheat should

be completely blended. Here lD is the l-coordinate of point D defined in Definition 3.3.

For shape type II schedules, (i) when µ ≥ lA, then no processing is needed in the optimal arrange-

ments; and (ii) when µ < lA, then in the optimal arrangements wheat in this load with protein level
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higher than lD should be completely blended and the remaining wheat should be completely segregated.

Here lD is the l-coordinate of point D defined in Definition 3.4.

Before we formally prove the Proposition 3.3, let us first discuss the intuition underlying it. Here we

focus on shape type I schedules. For type II schedules, similar intuition applies. Under type I schedule,

when the mean protein concentration of the load of wheat is no higher than lA (i.e., µ < lA), then the

effective price schedule is concave. If no wheat in this load has protein level higher than lA, then it

is trivial to show that the effective price schedule for this load is concave. Now suppose there is one

sub-load with protein concentration level higher than lA. More specifically, let us denote this sub-load’s

protein level as lx and lx > lA. Then from Figure 3.12 we can see that for point A, and an arbitrary

point on the left of point A, and another arbitrary point on the right of point A, these three points form

a concave schedule. Since µ ≤ lA, for wheat with protein level at lx, one can always find some wheat

with protein level lower than lA to blend with; otherwise the premise µ ≤ lA will be violated. Therefore,

according to Proposition 3.2 when µ < lA this load of wheat does not need any segregation. When

µ > lA, however, we can see that the effective price schedule for wheat with protein concentration higher

than lD is convex, which indicates segregating; for the remaining wheat the effective price schedule is

concave, which indicates blending. Now let us to prove Proposition 3.3.

We first introduce a lemma that will be used repeatedly in the proof. Suppose one unit of wheat

with protein concentration α is a commingle of wheat with α1 protein concentration and wheat with α2

protein concentration. And suppose this unit of wheat is segregated into two sub-loads, namely A and

B, with mean protein concentration lA and lB, respectively. Without loss of generality, we assume that

α1 < α2 and lA < lB. Then the following two items are true:

Lemma 3.1. (i) α1 ≤ lA < lB ≤ α2. (ii) lA (or lB) can be any value on the interval of [α1,α) (or (α,α2]).

The proof of Lemma 3.1 is trivial. Based on Lemma 3.1 we can prove Proposition 3.3. Here we

only prove the results for shape type I schedules. The same procedure applies when proving results

related with shape type II schedules.

Proof. Part A. In this part we prove that under shape type I schedules item (i) is true. Suppose µ ≤ lA.

And suppose in the optimal arrangement the load is segregated into n≥ 2 sub-loads with different pro-

tein concentrations. Then there must be at least one sub-load, say sub-load i, with protein concentration
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less than lA. If not, then µ would be greater than lA, which contradicts µ ≤ lA in item (i). Next we are

going to show that the wheat grower can increase her revenue by commingling sub-load i with any other

sub-load j 6= i.

Let li and l j be the protein concentration of sub-loads i and j, respectively. If l j ≤ lA, then sub-

load i and sub-load j are under the segment of the price schedule that is uniformly concave, therefore,

according to Corollary 3.1 the grower can always increase her revenue by commingling sub-load i and

sub-load j. If l j > lA, then from Figure 3.14 we see that points [li, p(li)] (i.e., point I), A, and [l j, p(l j)]

(i.e., point J) form a concave price schedule. It is easy to show that for any two points E and F on

the price curve, if point E (F) is on the left (right) of point A, then points E, A, and F form a concave

price schedule. Similarly, by Corollary 3.1 the grower can always increase her revenue by commingling

sub-load i and sub-load j. In sum, for shape type I schedules, when µ ≤ lA, then no sorting is needed in

the optimal arrangements.

Part B. Now let us show that for shape type I schedules item (ii) is true. In Step 1 we show that

when µ > lA, then the tangent line CD defined in Definition 3.3 exists and is unique. Step 2 shows that

in the optimal arrangement there is one and only one sub-load that has protein concentration lower than

lB. Let Z be the name of this sub-load. Step 3 shows that sub-load Z has protein concentration lC. Step

4 shows that in sub-load Z there is no wheat with protein concentration higher than lD. Step 5 concludes

the proof.

Step 1. In this step we show that when µ > lA, then line CD defined in Definition 3.3 exists and is

unique. Let us start from the tangent line AO′. Imagine that line AO′ is rotated in a clockwise direction

while the tangent point between the line and the curve OB moves rightward from point A. Let [l j, p(l j)]

denote the coordinates of the tangent point, J. And let [lk, p(lk)] denote the intersection point, K. During

the rotation the value of
∫ lk

0 f (l)ldl/
∫ lk

0 f (l)dl (i.e., the mean protein concentration of the commingle

of wheat with protein concentration no higher than lk) is decreasing and the value of l j is increasing. At

point B we have l j = lk and
∫ lk

0 f (l)ldl/
∫ lk

0 f (l)dl < l j.

When the coordinate of the tangency point is [l j, p(l j)], then the slope of the tangent is p′(l j).

Hence the equation of the tangent is p = p′(l j)l +[p(l j)− p′(l j)l j]. Then given l j, the l-coordinate of
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the intersection point, lk > l j, can be determined by an equation system as follows p = p(lk),

p = p′(l j)lk +[p(l j)− p′(l j)l j],
(3.17)

where lk > l j. From equation system (3.17) we can obtain that the relationship between l j and lk is

determined implicitly by

H(lk; l j)≡ p(lk)− p′(l j)lk− [p(l j)− p′(l j)l j] = 0. (3.18)

By the implicit function theorem we have

dlk
dl j

= −
∂H/∂ l j

∂H/∂ lk
(3.19)

= −
−p′′(l j)lk− p′(l j)+ p′(l j)+ p′′(l j)l j

p′(lk)− p′(l j)

= −
−p′′(l j)lk + p′′(l j)l j

p′(lk)− p′(l j)

=
p′′(l j)(lk− l j)

p′(lk)− p′(l j)

Since curve OB is concave, we have p′′(l j)< 0. Together with lk > l j we have p′′(l j)(lk− l j)< 0 in

equation (3.19). Because at point [lk, p(lk)] the slope of curve O′B is greater than the slope of the line

JK, it is true that p′(lk)− p′(l j)> 0. Therefore, we show dlk/dl j < 0.

When l j = lB, which means the tangency point is at point B, then we have lk = lB as well because

point B is the inflection point. This implies that when l j = lB then the tangency point and the interception

point coincide with point B.

Let us construct a function

M(l j) =
∫ lk(l j)

0
f (l)ldl/

∫ lk(l j)

0
f (l)dl− l j, (3.20)

where lk(·) is a function of l j implicitly determined in equation (3.18). When l j = lA, then M(l j) > 0,

which is because µ =
∫ O′

0 f (l)ldl/
∫ O′

0 f (l)dl > lA. When l j = lB, then M(l j) < 0, which is because∫ lB
0 f (l)ldl/

∫ lB
0 f (l)dl < lB. Therefore, according to the intermediate value theorem, there must be an

lC ∈ (lA, lB) such that M(lC) = 0. That is
∫ lk(lC)

0 f (l)ldl/
∫ lk(lC)

0 f (l)dl = lC. This shows that when µ > lA,

then line CD defined in Definition 3.3 exists.
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Now we show that the line defined in Definition 3.3 is unique. The uniqueness will be proved if we

show dM(l j)/dl j < 0.

dM(l j)

dl j
=

f (lk)lkl′k(l j)
∫ lk(l j)

0 f (l)dl− f (lk)l′k(l j)
∫ lk(l j)

0 f (l)ldl

(
∫ lk(l j)

0 f (l)dl)2
−1 (3.21)

=

f (lk)lkl′k(l j)(
∫ lk(l j)

0 f (l)dl)
(

1−
∫ lk(l j)

0 f (l)ldl

lk
∫ lk(l j)

0 f (l)dl

)
(
∫ lk(l j)

0 f (l)dl)2
−1

< 0.

The inequality in expression (3.21) holds because f (lk)lkl′k(l j)(
∫ lk(l j)

0 f (l)dl)< 0 and∫ lk(l j)
0 f (l)ldl

/
lk
∫ lk(l j)

0 f (l)dl < 1.

Step 2. In this step we show that in the optimal arrangement there is one and only one sub-load that

has mean protein concentration less than lB. We denote this unique sub-load as Z. Suppose there are two

or more sub-loads that have protein concentration less than lB. Since curve OB is concave, according to

Corollary 3.1 the grower can increase her revenue by commingling these sub-loads. Therefore, having

more than one sub-loads that are with protein concentration less than lB is not optimal.

If there is not any sub-load that has protein concentration lower than lB, then there must be one

sub-load, namely sub-load J, with protein concentration l j ≥ lB that is a commingle of wheat with

protein concentration li < lB and wheat with protein concentration lk > lB. If l j > lB, then since curve

O′B is convex, by Proposition 3.2 sub-load J should be completely segregated. If l j = lB, then for any

point, say point E, with l-coordinate lE such that lB < lE < lk, we can always find a point, say point

F with l-coordinate lF such that li < lF < lB, so that points E, B, and F form a convex price schedule

(Figure 3.15). By Lemma 3.1, the sub-load with protein concentration l j can be segregated into two

smaller sub-loads. One is with protein concentration at lE and the other one with protein concentration

lF . Again, by Proposition 3.2 sub-load J should be segregated. Therefore, having no sub-load whose

protein concentration is less than lB is not optimal either. In sum we know that in the optimal processing

result there is one and only one sub-load whose protein concentration is less than lB.

Step 3. In this step we show that the protein concentration of sub-load Z, lZ , is equal to lC. Here

lC is the l-coordinate of point C defined in Definition 3.3. Suppose in the optimal arrangement we have

lZ > lC. Then there are two types of configuration of this unique sub-load Z. The first one is that there

is some wheat with protein concentration l j > lD in sub-load Z; the second one is that some wheat with
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protein concentration lower than lZ is not included in sub-load Z. These two types of configuration exist

because
∫ lD

0 f (l)ldl/
∫ lD

0 f (l)dl = lC. Intuitively, since the mean protein concentration of wheat with

protein concentration lower than lD is lC, then to form a sub-load with protein concentration higher than

lC one needs either to include some wheat with protein concentration higher than lD in the sub-load or to

exclude some wheat with protein concentration lower than lZ , or both. The two types of configuration

are not mutual exclusive.

Now we show the first configuration is not optimal. Suppose sub-load Z has some wheat with

protein concentration l j > lD. Since the the mean protein concentration of this sub-load is equal to lZ ,

this sub-load must have some wheat with protein concentration lower than lZ . Draw a line that connects

points Z and D (see Figure 3.16). Then we can always find a point, say point E, that is very close to

point Z from the left side so that lE > lC, here lE is the l-coordinate of point E. Points E, Z, and D form

a convex price schedule. By Lemma 3.1, sub-load Z can be segregated into two smaller loads, one is

with protein concentration at lD; and the other one is with protein concentration lE . By Corollary 3.1,

segregating sub-load Z increases the grower’s revenue. Therefore, the first type of configuration is not

optimal.

Now we show the second one is not optimal either. If some wheat with protein concentration lower

than lZ is not included in sub-load Z, then this wheat must be blended with some wheat with protein

concentration higher than lB to form a sub-load with mean protein concentration no less than lB. If not,

then there are at least two sub-loads that have protein concentration lower than lB, which has been shown

not to be optimal in Step 2. Suppose that wheat with protein concentration equal to li < lZ is blended

with wheat with protein concentration equal to l j > lB to form a sub-load K with protein concentration

equal to lk ≥ lB. If lk > lB, then it is always beneficial to segregate sub-load K because curve O′B is

convex. If lk = lB, then (with the same argument we made in Step 2) we can always find a point, say

E, which is very close to point B from the left side, so that points E, B, and [l j, p(l j)] form a convex

price schedule (See Figure 3.17). According to Corollary 3.1, however, segregating this sub-load is

beneficial. Therefore, the second type is not optimal either.

Now we show the unique sub-load Z cannot have lZ < lC. If lZ < lC, then there must be some wheat

with protein concentration at l j such that lZ ≤ l j ≤ lD that is not in sub-load Z. Otherwise the mean

protein concentration of sub-load Z will be lC or higher. However, the three points, Z, C, and [l j, p(l j)],



102

form a concave price schedule (See Figure 3.18). According to Corollary 3.1 the grower can increase

her revenue by commingling wheat in sub-load Z with wheat that has protein concentration l j.

Step 4. This step shows that in sub-load Z there is no wheat with protein concentration higher than

lD. Here lD is the l-coordinate of point D defined in Definition 3.3. Suppose this is not true, then sub-load

Z contains some wheat with protein concentration lk > lD. Therefore, there must be some wheat with

protein concentration l j such that lC ≤ l j ≤ lD that is not in sub-load Z. This is because if all wheat with

protein concentration between lC and lD is in sub-load lZ , then together with some wheat with protein

concentration higher than lD being in sub-load lZ as well, the mean protein concentration of sub-load

Z must be higher than lC. Please recall that the mean protein concentration of wheat with protein

concentration less than lD is lC. We name the sub-load that contains wheat with protein concentration

l j as sub-load J. By the result in Step 2 we know the mean protein concentration of sub-load J is no

less than lB. We clam that sub-load J only contains wheat with protein concentration at l j. If sub-load

J is a commingle of wheat with different protein concentrations and if its mean protein concentration

is higher than lB, then according to Corollary 3.1 it is profitable to segregate sub-load J. If sub-load J

is a commingle of wheat with different protein concentrations and if its mean protein concentration is

equal to lB, then on the price curve we can always find two points, say E and F , such that (1) E is on the

left of point B and F is on the right of point B; and (2) points E, B, and F form a convex price shape.

According to Corollary 3.1, under this situation segregating sub-load J is profitable.

From sub-load Z we can separate out one unit of wheat with mean protein level l j that is a mix of

wheat with protein concentration lk and some wheat with mean protein concentration lC. Exchanging

this unit of mix separated from sub-load Z with one unit wheat from sub-load J does not affect the mean

protein concentrations of both sub-load Z and sub-load J. Therefore, the total revenue is not affected by

this exchange. However, the grower can increase her revenue by segregating the unit of mix originally

from sub-load Z but now in sub-load J. One way to do so is to segregate the mix into two groups, where

one group has mean protein concentration at lC and the other group has mean protein concentration at

lD. The three points, C, J, and D, form a convex price schedule (See Figure 3.19). Therefore, according

to Corollary 3.1 the grower can increase her revenue by segregating the unit of mix.

Step 5. We have shown in Step 1 that line CD defined in Definition 3.3 is unique and exists when

µ > lA. We also have shown that there is one and only one sub-load, namely sub-load Z, that has mean
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protein concentration less than lB but equal to lC in Step 2 and Step 3. In Step 4 we showed that there

is no wheat with protein concentration higher than lD in sub-load Z, which implied that sub-load Z

is a commingle of wheat with protein concentration no higher than lD. Because wheat with protein

concentration higher than lD is under a convex price schedule and there is no commingling opportunity

for such wheat, these wheat will be completely segregated according to Proposition 3.2. In sum, for

the type I price schedules, when µ > lA then in the optimal arrangements the grower should have wheat

with protein concentration higher than lD completely segregated and the the remaining wheat completely

blended. This finishes the proof.

Item C

In this item we prove Proposition 3.1 where the optimization problem under three-step price sched-

ule is discussed. To prove the proposition, several lemmas are necessary.

Lemma 3.2. For a load of wheat with protein distribution F(l) and mean µ ∈ (0, l2), the maximized

amount of wheat with mean protein concentration no lower than l2 (or l1)that can be segregated out

from the initial load is 1−F(t2) (or 1−F(t1)).

Proof. The proof is quite straightforward according to Definition 3.1. Suppose now all wheat with

protein concentration that is no less than t2 is segregated into sub-load S3. By the definition of t2 we

know that the mean protein concentration of sub-load S3 is l2. In order to increase the weight of sub-

load S3, one must add some of the remaining wheat into sub-load S3. However, the remaining wheat

now has protein concentration lower than t2, which is lower than l2. Adding such wheat into sub-load

S3 will make the mean protein concentration in the sub-load lower than l2. Therefore, 1−F(t2) is the

largest amount of wheat with protein concentration at l2. The same argument applies when proving the

other part of this lemma.

Lemma 3.3. In the optimal arrangements, (i) if the quantity of sub-load S1 is strictly positive (i.e., q∗1 >

0), then the mean protein levels of sub-loads S2 and S3 are equal to l1 and l2, respectively; (ii) if the

quantity of sub-load S2 or S3 is strictly positive (i.e., if q∗2 > 0 or if q∗3 > 0), then the mean protein level

of sub-load S3 is l2.
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Proof. The proof is completed by simple arbitrage arguments. For item (i), if q∗1 > 0 but µ2 > l1, then

the grower can always increase her revenue by blending some wheat from sub-load S1 to sub-load S2

as long as µ2 ≥ l1. This is because the wheat that is moved from sub-load S1 to sub-load S2 now is

sold at price p2 instead of price p1 and the price of wheat initially in sub-load S2 is not affected. The

same argument applies for µ3 = l2 of item (i) and for the first part of item (ii). If q∗3 > 0, then q∗2 > 0 or

q∗1 > 0, or both. This is because by assumption we have µ < l2. By item (i) and the first part of item (ii)

we know that µ3 = l2.

Let lmax
S1

denote the protein concentration of wheat that has the highest protein in S1. Let lmin
S2

(or

lmin
S3

) denote the protein concentration of wheat that has the lowest protein in sub-load S2 (or S3). The

next lemma can be stated as

Lemma 3.4. In the optimal arrangements, we have lmax
S1
≤ min[lmin

S2
, lmin

S3
]. That is, any wheat with

protein concentration no higher than lmax
S1

is in sub-load S1 and hence q∗1 = F(lmax
S1

).

Proof. Suppose in the optimal arrangement we have lmax
S1

>min[lmin
S2

, lmin
S3

]. That is, protein concentration

of some wheat in sub-load S1 is higher than protein concentration of some wheat in sub-load S2 or in

sub-load S3. We first study the case in which min[lmin
S2

, lmin
S3

] = lmin
S2

. In this case the grower can increase

her revenue by doing: step (1), exchanging 1 unit of lmax
S1

wheat from sub-load S1 with 1 unit wheat with

protein concentration lower than lmax
S1

from sub-load S2; and step (2) moving δ amount of wheat with

protein concentration lower than l1 from sub-load S1 to sub-load S2 as long as µ2 is no less than l1. By

doing step (1), µ2 is increased and but the revenue is not affected; by doing step (2), q2 is increased by

δ and q1 is decreased by δ . So is the revenue is increased by δ (p2− p1).

When min[lmin
S2

, lmin
S3

] = lmin
S3

, then the grower can increase her revenue by doing: step (1), exchanging

1 unit of lmax
S1

wheat from sub-load S1 with 1 unit wheat with protein concentration lower than lmax
S1

from

sub-load S3; and step (2), moving δ amount of wheat with protein concentration lower than l1 from

sub-load S1 to sub-load S3 as long as µ3 is no less than l2. By doing step (1), µ3 is increased and but

the revenue is not affected; by doing step (2), q3 is increased by δ and q1 is decreased by δ . So is the

revenue is increased by δ (p3− p1).

Therefore, we have shown that if lmax
S1

> min[lmin
S2

, lmin
S3

] then the grower can increase her revenue

by rearranging wheat between the three sub-loads. So in the optimal arrangement we must have lS1 ≤
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min[lmin
S2

, lmin
S3

]. This finishes the proof.

Lemma 3.5. In the optimal arrangements, (i) if t2 ≤ l1, then the highest protein concentration of wheat

grain in sub-load S1 is in the interval [t1, t2] (i.e., lmax
S1
∈ [t1, t2]); (ii) if t2 > l1, then the highest protein

concentration of wheat grain in sub-load S1 is in the interval [t1, l̂1] (i.e., lmax
S1
∈ [t1, l̂1]).

Proof. First, we show that lmax
S1
≥ t1. If t1 = 0, then lmax

S1
≥ t1 is trivial. Now we consider the situation

where t1 > 0. If lmax
S1

< t1, then the mean protein concentration of the commingle of wheat in sub-load

S2 and wheat in S3 will be lower than l1, which is inconsistent with µ2 ∈ [l1, l2) and µ3 ≥ l2.

Second, we show that if t2≤ l1 then lmax
S1
≤ t2. Suppose we have lmax

S1
> t2. Then according to Lemma

3.4 the mean protein concentration of the commingle of wheat in sub-load S2 and wheat in S3 will be

higher than l2, which contradicts that in the optimal arrangements µ2 ∈ [l1, l2) and µ3 = l2 (Lemma 3.3).

Third, we show that if t2 > l1 then lmax
S1
≤ l̂1. Please note that l̂1 is defined when t2 > l1. Suppose

lmax
S1

> l̂1 when t2 > l1. Therefore we have q∗1 = F(lmax
S1

) > 0. Taking q∗1 as fixed, to maximize the

revenue is equal to maximize q3 under the constraint of µ2 ≥ l1. The maximized q3 is 1−F(t2). Since

t2 > l1 and lmax
S1

> l̂1, we must have µ2 > l1, which is not optimal (Lemma 3.3).

Lemma 3.6. In the optimal arrangements, if any one of the following two conditions holds, then we

have µ2 = l1. These two conditions are (i) t2 ≤ l1; and (ii) both t2 > l1 and l̂1 > 0.

Proof. If q∗1 > 0, then according to Lemma 3.3 we have µ2 = l1. Now we prove that the claim is true

when q∗1 = 0.

If q∗1 = 0, then we must have q∗2 > 0 and q∗3 ≥ 0 because we assume that the mean protein is

such that µ < l2. This implies that µ ≥ l1. If t2 ≤ l1, then the initial load of wheat can be seen as

a commingle of wheat with l2 protein concentration and wheat with l0 protein concentration, where

l0 ≡
∫ t2

0 f (l)ldl/
∫ t2

0 f (l)dl < l1. According to Lemma 3.1, the initial load of wheat can be segregated

into two sub-loads with one sub-load having protein concentration at l1 and the other sub-load having

protein concentration at l2. Given q∗1 = 0, this segregation is optimal. It is because that if q∗1 = 0, then

the optimal segregation should be to maximize q3 while keeping µ2 ≥ l1. Some algebra can show that

q3 is not maximized when µ2 > l1.
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If q∗1 = 0, then q∗2 and q∗3 should be such that q∗2 +q∗3 = 1

q∗2µ2 +q∗3l2 = µ.
(3.22)

Solving (3.22) we obtain q∗3 =
µ−µ2
l2−µ2

. Then we have

dq∗3
dµ2

=
µ− l2

(l2−µ2)2 < 0. (3.23)

Therefore, in the optimal arrangement µ2 must be equal to l1 if t2 ≤ l1. The same procedure follows

when proving condition (ii) implies µ2 = l1.

Now let us prove Proposition 3.1.

Proof. To optimally process one load of wheat is to explore the benefit of segregation based on the

information from measuring protein concentration. Since the grower’s goal is to find out the optimal

q1, q2, and q3 to maximize her revenue, the objective function is maxqi ∑
3
i=1 piqi. The major work of

specifying an appropriate form of programming problem for the grower is to correctly deal with the

non-linear segregating property imposed by protein concentration distribution. In this proof we show

that the constraints specified in problem (3.2) and problem (3.3) achieve this goal. We only need to

focus on q1 because q1 and q2 are determined by the quantity and protein sum-up constraints whenever

q1 is fixed.

Constraint
∫ F−1(q1)

0 f (l)ldl + q2l1 + q3l2 = µ says two things. First, it says that the total protein

quantity is not affected by segregation. Second, it says that sub-load S1 consists of wheat distributed on

a continuous section of protein distribution (Lemma 3.4). Without this constraint the program becomes a

linear program and the mean protein level in sub-load S1 will always be driven down to zero. Constraint

F(t1)≤ q1 ≤ F(t2) is determined by Lemma 3.5. At last, constraints qi ≥ 0 and Σiqi = 1 are needed for

clear reasons.

These four constraints define a space that the optimal solutions must be in. Next we show that

any point of (q1,q2,q3) satisfying these constraints is achievable given the wheat distribution F(l). If

F(t1) ≤ q1 ≤ F(t2) and if t2 ≤ l1 then the blend of wheat in sub-loads S2 and S3 is no less than l1 and

this blend can be viewed as a mix of wheat with mean protein at l2 and wheat with mean protein at level

that is lower than l1. Then by Lemma 3.1 we know that this mix can always be segregated into wheat
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with protein l2 and wheat with protein l1. That is, given any q1 ∈ [F(t1),F(t2)], the quantities q2 and q3

of sub-loads S2 and S3 solved out from Σiqi = 1 and
∫ F−1(q1)

0 f (l)ldl +q2l1 +q3l2 = µ are achievable.

A similar procedure is followed when proving item (ii). For item (iii), when t2 > l1 and l̂1 = 0, then

according to Lemma 3.5 we have q∗1 = 0. Then in the optimal arrangements q3 must be maximized

under the constraint µ2 ≥ l1. By the definition of l̂1 we have
∫ t2

l̂1
f (l)ldl/

∫ t2
l̂1

f (l)dl ≥ l1. By Lemma 3.2

we know that q∗3 = 1−F(t2). Therefore, q∗2 = F(t2). This concludes the proof.

Sivaraman et al. (2002) claim that their method applies to step premium schedules (page 157, Case

4). However, their claim is not correct. They assume that in the optimal outcomes the protein levels in

one bin are continuous, (i.e., Di = [di−1,di] in the last paragraph on page 156). But this may not be true.

Here is an example. Suppose the protein concentrations of one load of wheat is uniformly distributed on

[11.4%,13.6%]. Then the average protein level of this load is 12.5%. The price schedule has wheat with

protein level higher than or equal to 13% receiving a high price; wheat with protein level lower than

12% receiving a low price; and the remaining wheat receiving a middle price. Suppose wheat prices

encourage blending and the optimal solution is that q∗1 = 0, q∗2 > 0, and q∗3 > 0, here q∗1, q∗2, and q∗3 are

quantities of wheat that receive low, middle, and high price, respectively. Then q∗2 = 0.5 and q∗3 = 0.5

can be solved by  q∗2 +q∗3 = 1

0.12q∗2 +0.13q∗3 = 0.125.
(3.24)

Based on the uniform distribution, how should one achieve q∗2 = 1/2 and q∗3 = 1/2? Is it possible to

find d ∈ [11.4%,13.6%] such that (d− 11.4%)/(13.6%− 11.4%) = 1/2 and (d + 11.4%)/2 = 12%?

The answer is no. One procedure that can make q∗2 = 1/2 and q∗3 = 1/2 is as follows: Step 1. Put wheat

with protein levels between 12.4% and 13.6% into one bin, say bin A, and mix them completely; so the

average protein level in bin A is 13%; Step 2. Put wheat with protein level between 11.4% and 12.4%

into another bin, say bin B; so the average protein level in bin B is 11.9%. Step 3. Move some wheat

(with average protein level 13%) from bin A to bin B until the average protein level in bin B reaches

12%. Clearly protein levels of wheat in bin B is not continuous. For example, Bin B could includes

wheat with protein levels between 11.4% and 12.4% and wheat with protein levels at 13%.
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Table 3.A.3: Estimates of the Coefficients of Years, Varieties, and Locations for
HRW Wheat Protein

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variable coefficient t value variable coefficient t value 
constant 0.1153 22.6973 variety10 -0.0084 -1.8672

year2 -0.0165 -6.5310 variety11 -0.0033 -0.7456
year3 0.0038 1.3690 variety12 -0.0102 -1.9260
year4 -0.0042 -1.3678 variety13 -0.0082 -1.5482
year5 0.0137 5.4812 variety14 -0.0011 -0.2564
year6 0.0028 1.0606 variety15 -0.0058 -1.1062
year7 -0.0034 -1.2555 variety16 0.0016 0.3564 
year8 0.0080 2.9421 location2 -0.0184 -6.3658
year9 -0.0007 -0.2265 location3 0.0088 3.5184 
year10 0.0052 1.7054 location4 -0.0006 -0.1847
year11 0.0127 3.9615 location5 0.0004 0.1355 
year12 0.0145 4.6577 location6 0.0067 1.2968 
year13 0.0099 3.1529 location7 0.0119 3.0240 

variety2 -0.0095 -2.2997 location8 0.0209 8.8342 
variety3 -0.0079 -1.9563 location9 -0.0080 -2.4570
variety4 -0.0141 -3.2322 location10 0.0150 6.3996 
variety5 0.0002 0.0295 location11 0.0015 0.6535 
variety6 0.0007 0.1719 location12 0.0059 1.8062 
variety7 -0.0033 -0.8035 location13 0.0035 1.3373 
variety8 -0.0089 -1.9462 location14 -0.0105 -4.4670
variety9 -0.0067 -1.6678 location15 0.0056 2.0292 
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Table 3.A.4: Estimates of the Coefficients of Years, Varieties, and Locations for HRS Wheat Protein

 

 

 

 

 

 

 

 

variable coefficient t value variable coefficient t value 
constant 0.1185 43.57 location2 0.0067 1.82 
year2 0.0051 2.77 location3 0.0055 1.11 
year3 0.0148 7.72 location4 0.0039 1.79 
year4 0.0233 11.44 location5 0.0202 8.54 
year5 0.0318 15.41 location6 0.0031 1.48 
year6 0.0357 17.19 location7 0.0073 3.13 
year7 0.0321 15.43 location8 0.0084 2.67 
year8 0.0350 17.72 location9 -0.0135 -5.83 
year9 0.0400 19.79 location10 0.0006 0.27 
year10 0.0332 16.53 location11 0.0130 6.27 
year11 0.0344 16.34 location12 0.0033 1.59 
year12 0.0356 17.07 location13 0.0165 5.27 
year13 0.0381 18.37 location14 0.0234 7.25 
variety2 -0.0060 -2.72 location15 0.0090 3.34 
variety3 -0.0100 -2.93 location16 0.0259 9.24 
variety4 -0.0105 -3.86 location17 -0.0007 -0.32 
variety5 -0.0089 -5.28 location18 0.0083 3.19 
variety6 -0.0035 -1.97 location19 0.0107 3.56 
variety7 -0.0062 -2.39 location20 -0.0008 -0.37 
variety8 -0.0096 -5.79 location21 0.0058 1.21 
variety9 0.0040 1.54 location22 0.0061 2.93 
variety10 -0.0005 -0.13 location23 -0.0029 -1.31 
variety11 -0.0114 -6.85 location24 0.0158 6.13 
variety12 -0.0097 -4.09 location25 0.0144 5.04 
variety13 -0.0080 -4.44 location26 0.0010 0.50 
variety14 -0.0043 -2.48 location27 0.0059 1.54 
variety15 -0.0106 -2.77 location28 0.0030 1.36 
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Figure 3.12: Price Schedule which Turns from being Concave to Convex
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Figure 3.13: Price Schedule which Turns from being Convex to Concave
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Figure 3.14: Points I, A, and J Form a Concave Price Schedule



115

B

EF
N

Note: The slope of line BN is the same as the slope of price schedule curve at 
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Figure 3.15: Points E, B, and F Form a Convex Price Schedule
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Figure 3.16: Points E, Z, and D Form a Convex Price Schedule
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Figure 3.17: Points E, B, and [l j, p(l j)] Form a Convex Price Schedule



118

B

D

C

Z

, ([ ])j jl p l

Figure 3.18: Points Z, C, and [l j, p(l j)] Form a Concave Price Schedule
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Figure 3.19: Points C, J, and D Form a Convex Price Schedule
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Appendix 2

This appendix demonstrates the procedure to obtain monthly HRW and HRS wheat stocks at differ-

ent protein concentration levels. Here we use HRW wheat as an example. The same procedure applies

for HRS wheat. The procedure here is similar to the one on pages 239-240 of Goodwin and Smith

(2009), in which the authors constructed monthly protein availability by utilizing quarterly wheat stocks

data obtained from USDA NASS and protein content data obtained from the U.S. Wheat Associates.

Step 1): aggregate quarterly stocks for all wheat (1980-2010) are obtained from USDA NASS; here

“all wheat” means wheat in all six wheat classes, not just HRW and HRS wheat.

Step 2): calculate the percentage of HRW wheat stock among all wheat stock using data of “ending

stocks by class” from the annual Crop Quality Report published by U.S. Wheat Associates during 1980-

2010.

Step 3): all wheat quarterly stocks in step 1) are multiplied by the percentage in step 2) to get the

quarterly HRW wheat stock.

Step 4): use cubic spline interpolation to quarterly stocks obtained in step 3) to get monthly HRW

wheat stocks.

Step 5): the percentages of HRW wheat with different protein levels in every year from 1980 to

2010 are obtained from Crop Quality Report published by U.S. Wheat Associates during 1980-2010.

For HRW wheat the crop year is assumed to start on July 1st since most HRW wheat growing regions

finish harvest in July. We also assume that the percentages of HRW wheat with different protein levels

within one crop year do not change. For HRS wheat the crop year is assumed to start on August 1st

and the percentages of HRS wheat with different protein levels within one crop year do not change

either. Therefore, in our data set the time range from monthly wheat stocks is between August 1980

and December 2010.

Step 6): use data from Step 5) to calculate the percentages of the following three categories of

HRW wheat in total HRW wheat stock: HRW wheat with protein level less than 12%, HRW wheat with

protein level higher than or equal to 12% but less than 13%, HRW wheat with protein level higher than

or equal to 13%.

Step 7): monthly HRW wheat stocks from step 4) were multiplied by percentages in step 6) to get
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the monthly stocks of the three types of HRW described in step 6).
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CHAPTER 4. TO LEARN OR TO CHANGE: OPTIMAL R&D INVESTMENTS

UNDER UNCERTAINTIES IN THE CASE OF CLIMATE CHANGE

Abstract

When studying investment in R&D to increase the society’s ability to face challenges from climate

change (termed as “research to change” or RTC), current literature overlooks the existence of purchased

learning (termed as “research to learn” or RTL) in which new information on climate change is acquired

by investment in research activities. Since RTL absorbs substantial research resources in climate change

research, it cannot be ignored when seeking to optimize resource allocation for addressing climate

change problems. In this article we explore the interactions between investments in RTC and RTL

under uncertainties of climate change. Here uncertainties include uncertainty about how serious climate

change’s damage is, and uncertainty about when the research activities succeed. We find that 1) if the

success of RTL and RTC are statistically independent, then it is almost never optimal to invest in RTL

and RTC simultaneously; 2) if the success of RTL accelerates the success of RTC, then RTC and RTL

are substitutes; 3) if the success of RTL accelerates the success of RTC and if the cost of RTL is small

enough, then it is never optimal to invest in RTC only. Factors that affect the optimal investment levels

in RTC and RTL are studied as well.

Key words: climate change; R&D investments; uncertainties

JEL classification: Q28, D83.
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Introduction

Uncertainties often arise when faced with emerging problems whose possible impacts on human

welfare are not conclusively understood, such as climate change or an outbreak of certain animal dis-

eases. These uncertainties are on: (1) the magnitude of the problems’ human welfare impact, and (2)

the future date when this unknown impact becomes clear. Responding to these two dimensions of the

uncertainty surrounding a possible hazard is likely to require two distinct lines of research. Take cli-

mate change as an example. To mitigate possible negative impact on humans, much research has been

devoted to greenhouse gas (GHG) emission abatement technologies, energy efficient technologies, re-

newables, and adaptation technologies. We term this research category as“research to change” (RTC).

On the other hand, research is also devoted to studying the uncertain impact of climate change itself.

Will it be a manageable 2◦C or a 4◦C change? Or is climate change caused by greenhouse gas accumu-

lation or something else, such as solar activity (Svensmark and Calder, 2008)? We term this category

as “research to learn” (RTL). RTL can accelerate the resolution time of the uncertain impact so as to

improve decisions on extent of resources to be put into RTC. If in the future climate change is proved

to have only a mild effect, some of the RTC investment will have turned out to have been wasted. How-

ever, if climate change proves disastrous, we would have wanted more RTC. Or if it turns out that the

real reason for climate change is something else other than GHG accumulation, then the tremendous

effort to reduce GHG emission would be mis-targeted. RTL decreases the probability of making these

mistakes. Since RTL is costly as well, optimal decisions on RTC investment should take into account

the interaction between RTL and RTC.

Even though our analysis will focus on climate change, the message in this study can be applied

to many other cases. For instance, while lacking firm evidence, some scientists believe that Crohn’s

disease in humans can be caused by Johne’s disease in cattle (Uzoigwe et al., 2007). In this case,

RTC includes research into preventing or treating Johne’s disease or into technologies that can cut off

channels by which Johne’s disease affects humans. RTL may include research to find out the true

relationship between these two diseases. The interaction between RTC and RTL should be considered

when allocating resources to research regarding Johne’s disease. If Johne’s disease does cause Crohn’s

disease, then more RTC will be justified. But if it does not, then these research investments will turn
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out to be a waste. Therefore, RTL is favored in the sense that it can prevent this kind of waste.

Our model can also be applied in the decision process at the company level. When the concept of a

new product that has a potential to be profitable becomes available, a company in a related industry can

either invest into market analysis of this new product to find the true state of its profitability (i.e., RTL)

or invest into activities to study how to accommodate this new product into their existing production

lines or even invest into building a new production line (i.e., RTC). In this scenario the study of the

interaction between RTL and RTC is of especial interest since the study can help firms make the right

decision.

Research outcomes are also uncertain. For RTC, it could either end up with a failure or a break-

through. By breakthrough we mean hereafter that the RTC reaches its goals and potential problems are

solved. For instance, if we had a breakthrough in greenhouse emission abatement or alternative energy

technologies like biofuels, wind or solar, the possible welfare effect of climate change will be largely

eliminated. The outcome of RTL is also uncertain. If it is successful, it can accelerate the resolution

date of the welfare impact uncertainty of climate change. Under these uncertainties, what is the optimal

allocation of scarce research resources between RTL and RTC?

Moreover, RTL and RTC are not necessarily independent of each other. The reason is that research

is a such complex activity that the output of one research may have positive externalities for the success

of other research. Therefore it is reasonable to assume that the success of RTL can contribute to break-

through in RTC. For example, in the case of Johne’s disease and Crohn’s disease, during the process of

RTL (i.e., research to find out the true relationship between these two diseases), some knowledge may

be generated that can help the RTC (i.e., research to prevent or treat Johne’s disease). A breakthrough

of RTC may also accelerate the success in RTL. Again in the example of Johne’s disease and Crohn’s

disease, the success of research into treating Johne’s disease may help scientists better understand the

true relationship between these two diseases.

This article explores the interaction between RTL and RTC as well as the optimal allocation of

research resources in the face of uncertainties. The model we develop in this paper can be summarized

as follows. At time t = 0 a social planner has to make choices to respond to an emerging problem

whose effects are uncertain. She can either invest in RTL or RTC or both. But when these research will

be successful is uncertain. Let τ1 denote the time when the true impact of climate change is identified
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(either by RTL or only by the passage of time (i.e., autonomous learning)). Here τ1 is a random variable.

If at τ1 the RTC has not succeeded yet, the social planner will make the investment decision on RTC

again based on new information from RTL at that time. Moreover, in this case further RTC may benefit

from the success of RTL. If the success of RTC happens before τ1, the social planner will apply the

outcome of this research immediately after the success so that the possible negative welfare impact is

eliminated. In our model we assume there is no switch cost for applying the outcome of RTC. For the

discussion of the effects of switch cost on optimal decisions we refer readers to Hennessy and Moschini

(2006). In this setting we study the interactions between these two kinds of research and the factors that

affect the optimal allocation of resources devoted to them.

This article lies in the strand of literature that studies the effect of learning on an irreversible de-

cision. Research investment decisions fit into the theoretical framework developed by this literature

because the research cost cannot be redeemed later. Classic examples of early work in this literature

includes Weisbrod (1964), Arrow and Fisher (1974), Henry (1974) and Hanemann (1989). Their studies

show that the possibility of learning in the future that can mitigate the uncertainties will encourage more

preservation in the present decision. Later work in this literature argued that if there are two opposing

irreversibilities associated with the decision, the effect of uncertainty and learning on the irreversible

decision is ambiguous. Examples are Olson (1990), Kolstad (1996), and Marwah and Zhao (2007).

By applying the model in Hanemann (1989), Schimmelpfennig (1995) argues that in order to keep

the option of using energy efficient technologies open, learning in the future will encourage decision

makers to invest more on those technologies. Baker et al. (2006) study optimal decisions on investment

in R&D programs under climate uncertainty. But in that study Baker et al. assume the outcome of

R&D programs is certain. Baker and Adu-Bonnah (2008) study investment in risky R&D programs

under climate uncertainty. Baker and Shittu (2008) provide a comprehensive review of investment into

R&D in climate models under uncertainties.

The above literature implicitly assumes that uncertainties are only resolved by autonomous learning

(i.e., the passage of time) instead of by purchased learning (i.e., RTL).1 In reality, however, purchased

learning does consume a significant part of research resource.2 Hennessy and Moschini (2006) study the

1Kolstad (1996) discussed three types of learning related with climate change. (1) Active learning,
(2) Purchased learning (R&D), and (3) Autonomous learning.

2For example, the federal obligations for research in environmental sciences in FY 2006 was
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optimal scientific research (purchased learning) on the damage that a certain practice could cause when

a social planner is considering whether to ban this practice. We expand their model into a continuous

choice model that takes uncertainty about research outcomes into account. Utilizing this model we

explore interactions between RTC and RTL. Factors that affect the optimal allocation of resources to

RTC and RTL are studied as well.

The rest of this article is structured as follows. Section 2 outlines the basic optimization model

of a social planner. Section 3 analyzes the interaction between RTC and RTL when these two lines

of research are independent (i.e., the success of one line of research does not affect the success of the

other line of research). Section 4 studies the interaction between RTC and RTL when these two lines of

research are not independent. Section 5 conducts a comparative statics analysis of the optimal RTC and

RTL decisions. Section 6 concludes with a discussion of possible extensions of this research.

Model

A social planner seeks to minimize the expected negative welfare impact of climate change by

investing in RTC and RTL. At time t = 0, the climate change’s impact is uncertain to her. For simplicity

we assume there are only two future states of nature: a true state T with probability q ∈ [0,1] in which

climate change imposes an constant instantaneous damage D and a false state F with probability 1−q

in which it does not impose any damage. Uncertainty about this welfare impact will be resolved at time

t = τ1, which has an exponential distribution with density function f (τ1) = (l0 + l)e−(l0+l)τ1 , where

l0 > 0 and l ≥ 0 are distribution parameters. Here l0 is fixed but l is determined by the social planner’s

investment in RTL. The higher the investment is, the larger the value of l. If there is no investment in

RTL, then l = 0. Suppose that α amount of investment in RTL will increase l by one unit. At time t = 0

the social planner can also conduct RTC to respond to the potential damage of climate change. That

is, the social planner can take a precautionary action to respond to the possible damage from climate

change. We assume that the success of RTC will happen at time t = τ2, which is also exponentially

$3.4 billion (Data source: National Science Foundation (NSF)). Environmental sciences are de-
fined by NSF as, “Environmental sciences (terrestrial and extraterrestrial) are, with the excep-
tion of oceanography, concerned with the gross nonbiological properties of the areas of the so-
lar system that directly or indirectly affect human survival and welfare. ” Available at:
http://www.nsf.gov/statistics/nsf10303/tables/tab23.xls (accessed on 1/21/2012).



127

distributed with density function g(τ2) = ce−cτ2 . By choosing c, the social planner can govern the

expectation of the success time 1/c. In order to increase c by one, β units of investment in RTC is

needed. We also assume τ1 and τ2 are independently distributed. Figure 4.1 shows a visual presentation

of the social planner’s decision problem. From Figure 4.1 we can see the social planner’s decision

problem consists of four sub-problems, A) to D), which are studied next.

Sub-problem A) happens when a RTL breakthrough occurs before success in RTC and the true state

of the world is T . In this sub-problem, since the RTC has not been successful yet when the true state is

revealed, an acceleration of the success time of RTC may be desirable. Therefore at time τ1 the social

planner will choose c′ ≥ 0 to minimize the total costs (i.e., the damage of climate change plus research

costs). Here c′ is the added investment into RTC at time τ1. Since success in RTL may contribute to

a breakthrough in RTC, then at time τ1 the breakthrough time for RTC has a new probability density

function. For notational clarity we utilize τ3 to denote the breakthrough time of RTC when it happens

after τ1. Then the probability density function of τ3 is

g′(τ3) = (c+ c′+η)e−(c+c′+η)(τ3−τ1), (4.1)

where τ3 > τ1 and η ≥ 0.3 Here η measures the magnitude of the contribution of the success of RTL

to RTC. The smaller the η is, the less the contribution. If η = 0, then there is no such contribution. We

assume that η ≥ 0 and η is only defined when τ2 > τ1. This means that only the outcome (the success

of RTL), not the input, of RTL can affect the breakthrough time of RTC.

Mathematically, Sub-problem A) can be written as

V A(c, l) = βc+αl +min
c′≥0

{
βc′e−rτ1 +Eτ3 [

∫
τ3

0
De−rtdt]

}
, (4.2)

where V A(c, l) denotes the minimized total cost in sub-problem A) given the value of c and l. Here

r is the continuous time discount rate. We assume that η <
√

D/β − r. This assumption eliminates

the possibility that the contribution of RTL to RTC (i.e., η) is so high that the social planner will find

3This density function can be motivated in the following way. We let u1 denote the breakthrough
time for RTC governed by the newly added investment into RTC, c′; and let u2 denote the breakthrough
time for RTC governed by the outcome of RTL. Their density functions are h1(u1) = c′e−c′(u1−τ1) and
h2(u2) = ηe−η(u2−τ1), respectively. Here we have u1 > τ1 and u2 > τ1. The density of τ2 conditional on
τ2 > τ1 is f (τ2|τ2 > τ1) = ce−c(τ2−τ1). We assume u1, u2, and τ2 are independent. Then we define τ3 ≡
min{(τ2|τ2 > τ1),u1,u2}. It is easy to check that τ3 has density function (c+ c′+η)e−(c+c′+η)(τ3−τ1),
where τ3 > τ1.
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it is optimal to not invest into RTC at time τ1 even if the true state is proved as T . This assumption

implies that
√

D/β − r > 0, which means that were climate change harmful for sure (i.e., q = 1) then

the optimal c will be greater than 0. Justification for this assumption is provided in Item A of Appendix.

We formally state this assumption as

Assumption 4.1. The contribution of RTL’s success to RTC’s success will never be so high that the

social planner will find it optimal to not invest into RTC at time τ1 even if the true state is proved as T .

That is η <
√

D/β − r.

Assuming an interior solution for c′, we show that

V A(c, l) = βc+αl +
D
r
+(2

√
βD−β (c+ r+η)− D

r
)e−rτ1 . (4.3)

The algebra to obtain equation (4.3) is presented in Item B of Appendix.

Sub-problems B) and D) are straightforward. If at time τ1 it is proved that climate change is not

harmful (i.e., State F), then the social planner will not put more investment into RTC. Therefore the

total cost for the social planner in sub-problem B) or D) is only

V B(c, l) =V D(c, l) = βc+αl. (4.4)

When the RTC breakthrough happens not later than the RTL success (i.e., τ2 ≤ τ1), then the social

planner will adopt the outcome of RTC immediately even though at time τ2 the true state of the world

has not been realized yet.4 If the true state of the world is T , then the social planner faces sub-problem

C). In this case the total cost is

VC(c, l) = βc+αl +
∫

τ2

0
De−rtdt. (4.5)

Therefore, at time 0 the social planner’s problem is to choose c≥ 0 and l ≥ 0 to minimize the total

cost V (c, l), which is

V (c, l) =
∫

∞

0

∫
∞

τ1

[qV A(c, l)+(1−q)V B(c, l)]g(τ2) f (τ1)dτ2dτ1 (4.6)

+
∫

∞

0

∫
τ1

0
[qVC(c, l)+(1−q)V D(c, l)]g(τ2) f (τ1)dτ2dτ1,

4Please notice that we assume there is no switch cost. For a study of the role of switch cost in the
optimal decisions when facing uncertainty, we refer readers to Hennessy and Moschini (2006).
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where the first (second) term on the right-hand side of equation (4.6) is the expected cost when τ2 > τ1

(τ2 ≤ τ1). After some algebra, which is shown in Item C of Appendix, we can simplify problem (4.6)

as

V (c, l) = αl +βc+
q

r+ l0 + l + c

{
D+[2

√
Dβ −β (c+ r+η)](l0 + l)

}
. (4.7)

The first two terms on the right-hand side of equation (4.7) (i.e., αl and βc) are the research investments

into RTL and RTC, respectively. The third term is the expected damage due to climate change when

investment into RTC and RTL are c and l, respectively. It is easy to check that if q = 0 then the damage

would be 0. Suppose c = l = l0 = 0, then the third term becomes qD/r, which is the expected negative

welfare impact of the climate change when the social planner does nothing and when autonomous

learning will take an infinite amount of time to reveal the true state of climate change’s impact. An

observation is that the cost of RTL, α , has no effect on the third term given (c, l). This is because the

decision on RTL only happens at time 0. Unlike the decision on RTC, once the decision on RTL is made

then the social planner will no longer need to make further decisions on RTL. Therefore, given (c, l),

changing α does not affect the expected damage due to climate change. The social planner’s problem

can be written as

min
c,l≥0

V (c, l), (4.8)

where V (c, l) is described in equation (4.7). The first order conditions (FOCs) of problem (4.8) are:

∂V
∂c

= β −q
(
√

D+
√

β (l0 + l))2−βη(l0 + l)
(r+ l0 + l + c)2 ≥ 0 (4.9)

∂V
∂ l

= α−q
(
√

D−
√

β (c+ r))2 +βη(r+ c)
(r+ l0 + l + c)2 ≥ 0. (4.10)

Algebra to obtain the FOCs are shown in Item D of Appendix, in which we also show that under

Assumption 1 V (c, l) is convex. Therefore, the values (c∗, l∗) that satisfies FOCs (4.9) and (4.10) are

the optimal solutions to problem (4.6). In the following sections we first analyze the model by setting

η = 0 (i.e., RTC and RTL are independent). This baseline model has closed-form solutions and provides

a benchmark for later analysis. Then we analyze the model with η > 0, i.e., the success of RTL will

positively contribute to the breakthrough in RTC.
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Benchmark: RTC and RTL are independent

When RTC and RTL are independent (i.e., η = 0 ) then the FOCs from equations (4.9) and (4.10)

become

∂V
∂c

= β −q
{√

D+
√

β (l0 + l)
r+ l0 + l + c

}2

≥ 0 (4.11)

∂V
∂ l

= α−q
{√

D−
√

β (c+ r)
r+ l0 + l + c

}2

≥ 0. (4.12)

According to whether or not c∗ and l∗ are strictly positive, there are four possible cases. They are Case

1, c∗ = 0 and l∗ = 0; Case 2, c∗ = 0 and l∗ > 0; Case 3, c∗ > 0 and l∗ = 0; and Case 4, c∗ > 0 and l∗ > 0.

We discuss these four cases immediately.

Case 1. c∗ = 0 and l∗ = 0.

If c∗ = 0 and l∗ = 0, then from the FOCs (4.11) and (4.12) we have

q ≤ β

{
r+ l0√

D+
√

β l0

}2

≡ qc (4.13)

q ≤ α

{
r+ l0√

D−
√

β r

}2

≡ ql. (4.14)

Equations (4.13) and (4.14) tell us if q ≤ min{qc,ql}, then optimal c and l will be 0. That is,

when climate change is very unlikely to have a negative welfare impact, then there is no incentive

to do either RTL or RTC. Here min{qc,ql} can be viewed as a probability threshold to determine

whether or not a positive amount of investment in RTC or RTL is optimal. By Assumption 1, we have

qc = (r+ l0)2/(
√

D/β + l0)2 < 1. Intuitively, qc (or ql) is the probability at which the marginal cost of

increasing one unit of investment into RTC (or RTL) equals the marginal benefit (i.e., the deduction of

expected negative impact of climate change) of doing so when evaluated at (c, l) = (0,0).

From equations (4.13) and (4.14) we can see that increasing the cost of RTC, β , will increase both

qc and ql . However, increasing the cost of RTL, α , increases ql but will not affect qc. Here, that qc (or

ql) is increasing with β (or α) is quite intuitive because the higher the cost of RTC (or RTL), the higher

will be the probability thresholds for making an investment in RTC or RTL. But why ql is increasing

with β and why qc is not affect by α need some explanation. We know that one benefit of investing into

RTL is to accelerate the realization of the true state of the world, so that an accurate decision on RTC

can be made sooner to reduce the expected negative impact of climate change. But an increase in β will
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decrease the incentive to invest into RTC, and hence decrease the incentive to invest into RTL. In an

extreme case, if investment into RTC is impossible (say, β is extremely high), then there is no point to

invest into RTL at all to get more information about the state of the world. This is why ql is increasing

with β . The cost of RTL, α , does not affect qc in this case because the decision on RTL only happens

at time 0. Unlike the decision on RTC, once the decision on RTL is made, then the social planner will

no longer need to make further decisions on RTL. Therefore, given (c, l), changing α does not affect

the marginal benefit of increasing RTC. This is why qc is not affected by α .

Case 2. c∗ = 0 and l∗ > 0.

If c∗ = 0 and l∗ > 0, then the FOCs of equations (4.11) and (4.12) are:

β

q
≥

{√
D+

√
β (l0 + l∗)

r+ l0 + l∗

}2

; (4.15)

α

q
=

{√
D−

√
β r

r+ l0 + l∗

}2

. (4.16)

From equation (4.16) we have l∗ =
√

q/α(
√

D−
√

β r)− l0 − r = (
√

q/ql − 1)(r + l0). Since

l∗ > 0, then we must have q > ql . Plugging l∗ into inequality (4.15) brings us q≤ (1−
√

α/β )2 ≡ qlc.

Here qlc is the probability at which given the investment pair (0, l∗) on RTC and RTL, the marginal

cost of adding one more unit investment in RTC is equal to the marginal expected benefit of doing

so. Therefore, equations (4.15) and (4.16) tell us that if q ∈ (ql,qlc], then it is optimal to only invest

in RTL. The intuition here is that if the q is neither very high nor very low, i.e., the belief about the

welfare impact is “ambiguous,” then investing in RTL only is more favorable. This explains why a

much-debated issue usually attracts more research resources, but for establishing its significance and

not for solving it. We also find that an increase in the cost of RTL will shrink the range of q supporting

this case. This is because that when RTL becomes more expensive, the social planner may either switch

research resources from RTL to RTC or just invest nothing in these two activities.

Since the quantitative relationships between qc, ql , and qlc are important during the analysis of this

paper, here we provide a remark that shows these relationships.

Remark 4.1. If qlc > qc, then qc > ql and hence qlc > qc > ql; if qlc ≤ qc, then qc ≤ ql and hence

qlc ≤ qc ≤ ql .

The proof of Remark 4.1 is shown in Item E of Appendix. The intuition here is that if the cost of
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RTL is low enough when compared with the cost of RTC (i.e., α < β{
√

D−
√

β r√
D+β l0

}2), then the probability

required for investing into RTL will be lower than the probability required for investing into RTC. If the

cost of RTL is high enough, however, then the opposite holds.

Case 3. c∗ > 0 and l∗ = 0.

If c∗ > 0 and l∗ = 0, then the FOCs from equations (4.11) and (4.12) are

β

q
=

{√
D+

√
β l0

r+ l0 + c∗

}2

; (4.17)

α

q
≥

{√
D−

√
β (r+ c∗)

r+ l0 + c∗

}2

. (4.18)

From equation (4.17) we have c∗ = (
√

q/qc− 1)(r+ l0). Since c∗ > 0, then q > qc. Plugging c∗ into

inequality (4.18) we get

q≥
(

1−
√

α

β

)2

≡ qcl. (4.19)

Here qcl = (1−
√

α/β )2 is the probability at which given the investment pair (c∗,0) on RTC and

RTL, the marginal cost of adding one more unit of investment in RTL is equal to the marginal benefit

of doing so. Comparing with qlc in Case 2 we find that qcl = qlc. This means that at probability

qlc = qlc = (1−
√

α/β )2 the benefit of investing one dollar into RTC starting at (0, l∗) is equal to the

benefit of investing one dollar into RTL starting at (c∗,0).

We can see that when q > max{qc,qcl} then c∗ > 0 and l∗ = 0. This tells us that when q is big

enough, then there is no need to do RTL but only invest in RTC. In this case c∗ =
√

q(
√

D/β + l0)−

l0 − r is not affected by the cost of RTL, α . Here we have ∂c∗/∂ l0 < 0, which means that if the

resolution date is coming sooner, the investment on RTC will be less and hence “wait and see” will be

more preferable. This is consist with Result 1 in Hennessy and Moschini (2006).

Case 4. c∗ > 0 and l∗ > 0.

If c∗ > 0 and l∗ > 0, then the FOCs from equations (4.11) and (4.12) are:

β

q
=

{√
D+

√
β (l0 + l∗)

r+ l0 + l∗+ c∗

}2

; (4.20)

α

q
=

{√
D−

√
β (r+ c∗)

r+ l0 + l∗+ c∗

}2

. (4.21)

In this case equations (4.20) and (4.21) are identical if q = qlc. They are

c∗ =

√
qD
β
− (1−√q)(l0 + l∗)− r, (4.22)
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where q = qlc. From equation (4.22) we can see that RTL and RTC are perfect substitutes for each

other. Moreover, if l∗ = 0 then c∗ = (
√

q/qc−1)(r+ l0), which is the optimal RTC investment in Case

3. If c∗ = 0 then l∗ = (
√

q/ql−1)(r+ l0), which is the optimal RTL investment in Case 2.

By analyzing equations (4.20) and (4.21) we can obtain Remark 4.2 as follows:

Remark 4.2. The FOCs in equations (4.20) and (4.21) imply that q > max{qc,ql}. Moreover, the

existence of a solution (c∗, l∗) such that equations (4.20) and (4.21) requires q = qlc.

The proof of Remark 4.2 is shown in Item F of Appendix. By Remark 4.1, if both q > max{qc,ql}

and q = qlc hold, then we must have qlc ≥ qc. Remark 4.2 shows that Case 3 is a “knife-edge” situation

which happens only when the cost of RTL is sufficient low and the probability of the state T is equal

to qlc. This case tells us that when the success of RTL does not contribute to a RTC breakthrough

(i.e., η = 0), it is almost always not optimal to carry out RTC and RTL simultaneously. This can

explain why in the business world we rarely observe a company conducting market analysis (RTL) and

investment into production lines (RTC) for a potential product at the same time. Since the only benefit

from investing into RTL is to make better decisions on RTC so that statistical type I and II errors can be

prevented, the expected negative impact of climate change will not decrease just because of the success

in RTL. In the next section we will see that when the success of RTL can contribute to a breakthrough

in RTC (i.e., η > 0), then there will be a range of q in which the social planner carries out RTC and

RTL simultaneously.

We summarize the above analysis as Result 4.1.

Result 4.1. Suppose RTC and RTL are independent (i.e., η = 0). i) When climate change is very

unlikely to be harmful (i.e., q < min{qc,ql}), then the social planner invests in neither RTC nor RTL

(Case 1). ii) When the probability of a harmful climate change is moderate (i.e., q ∈ (ql,qlc)), then the

social planner invests in RTL only (Case 2). iii) When the probability of a harmful climate change is

big enough (i.e., q > max{qc,qcl}), then the social planner invests in RTC only (Case 3); and iv) the

social planner will almost never invest in both RTC and RTL.

The four cases in the benchmark setting can be summarized in Figure 4.2. Panel A in Figure 4.2

shows the possible cases when qlc > qc. We can see that when qlc > qc then every case is possible.

Resorting to simulation, Figure 4.3 shows an example of the four cases when qlc > qc. When α <
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β
(
(
√

D−
√

β r)/(
√

D+
√

β l0)
)2, then every case is possible. Increasing α will expand interval [0,ql]

and interval [qlc,1]. So an increase in the cost of RTL will make the social planner more likely do

nothing (Case 1) or only invest in RTC (Case 3). Consequently the interval (ql,qlc) which supports

Case 2 will shrink due to an increase in α . That is, the social planner will be less likely to conduct

RTL only when the cost of RTL increases. When the cost of RTC, β , increases, then interval [0,ql] will

expand and interval [qlc,1] will shrink. That means the social planner will be more likely to do nothing

(Case 1) and less likely to invest into RTC only (Case 3). The effect on the interval that supports Case

2 is ambiguous. Surprisingly, in this scenario an increase in D does no affect interval [qlc,1] but shrinks

interval [0,ql]. This means that an increased damage rate will make the social planner less likely to do

nothing and more likely to invest in RTL only. The likelihood of conducting RTC only is not affected.

This is because given (c∗,0), the marginal benefit of adding one more unit of RTL is not affected by

D (D canceled out when calculating the marginal benefit of one more unit of RTL at time 0). But the

optimal RTC, c∗, increases with D.

Interestingly, when qlc < qc only Case 1 and Case 3 are possible. This means that when the cost

of RTL is high enough, i.e., α > β
(
(
√

D−
√

β r)/(
√

D+
√

β l0)
)2, then l∗ > 0 will never be the case.

This implies that the decision problem with only autonomous learning could be a special case of our

model when the cost of RTL is high enough. Panel B in Figure 4.2 provides a visual presentation of this

scenario. An numerical example can be found in Figure 4.4.

Extension: The Success of RTL Accelerates the Breakthrough of RTC

In this section we extend the benchmark model to allow success in RTL to positively contribute to

a RTC breakthrough (i.e., η > 0). This extension admits the situation in which RTL and RTC could

happen simultaneously on a range of probabilities of the true state (i.e., values of q). Following Section

4 we first discuss the four cases according to the values of c∗ and l∗. Then we discuss these four cases

in different scenarios. For simplicity, but without losing generality, in this section we assume l0 = 0.

This implies that the true state will never be known if the social planner does not invest into RTL. Even

though we let l0 = 0, autonomous learning still can be viewed as a specific instance of our model when

we fix the investment level into RTL.
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Case 1. c∗ = 0 and l∗ = 0.

If c∗ = 0 and l∗ = 0 , then from the FOCs in (4.9) and (4.10) we can obtain

q ≤ β r2

D
≡ q̂c (4.23)

q ≤ αr2

(
√

D−
√

β r)2 +βηr
≡ q̂l (4.24)

The above two conditions tell us that whenever q ≤ min{q̂c, q̂l} then (c∗, l∗) = (0,0). By Assumption

1 we can check that q̂c < 1. Here q̂c (or q̂l) is the counterpart of qc (or ql) in Section 4. We find that

q̂l is decreasing in η . This is because a larger η will increase the marginal benefit of RTL given the

level of q. Therefore, if q̂c > q̂l then an increase in η will shrink the range of q that supports this case.

Therefore, if the success of RTL could contribute to RTC at a larger magnitude, then it is less likely for

the social planner to do nothing. However, if q̂c < q̂l , then an increase in η will not affect the range

of q that supports Case 1. The reason is as follows. When l∗ = 0 and l0 = 0, from the expression of

q̂c we can see that η does not affect q̂c, which implies that η does not affect the marginal benefit of

RTC. We know that η can affect the breakthrough of RTC only if success in RTL happens before RTC.

If l∗ = 0 and l0 = 0, then success in RTL will never happen. Therefore, increasing η will not affect

a breakthrough in RTC and hence the marginal benefit of RTC. If l0 > 0, then an increase in η will

increase the range of q that supports Case 1. The reason is as follows. When q̂c < q̂l , then the cost of

RTL must be relatively high. Since we have l0 > 0, which means the success of RTL will be expected

to happen at time 1/l0 even when there is no investment into RTL, then the increased impact of RTL on

RTC will decrease the incentive to invest into RTC. Therefore the range of q in which the social planner

does nothing is enlarged.

Case 2. c∗ = 0 and l∗ > 0.

When c∗ = 0 and l∗ > 0 then we must have

β −q
(
√

D+
√

β l∗)2−βη l∗

(r+ l∗)2 ≥ 0, (4.25)

α−q
(
√

D−
√

β r)2 +βηr
(r+ l∗)2 = 0. (4.26)

From equation (4.26) we can obtain

l∗ = (

√
q
q̂l
−1)r. (4.27)
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Since in this case l∗ > 0 then we must have q > q̂l . Plugging l∗ = (
√

q/q̂l−1)r into inequality (4.25)

we get q≤ q̂lc, where

q̂lc = q̂l

{
r+ 1

2β

[
(βη−2

√
Dβ )+

√
(2
√

Dβ −βη)2−4β (D−β r2/q̂l)
]}2

r2 . (4.28)

The algebra to show equation (4.28) is presented in Item G of Appendix, in which we also show that

the existence of q̂lc requires that α ≤ β

D((
√

D−
√

β r)2 +βηr) ≡ α3. It is readily checked that q̂lc =

(1−
√

α/β )2 when η = 0.

Case 3. c∗ > 0 and l∗ = 0.

If c∗ > 0 and l∗ = 0, then the FOCs in (4.9) and (4.10) are:

β −q
D

(r+ c∗)2 = 0 (4.29)

α−q
(
√

D−
√

β (r+ c∗))2 +βη(r+ c∗)
(r+ c∗)2 ≥ 0. (4.30)

From equation (4.29) we can obtain

c∗ =

(√
q
q̂c
−1
)

r. (4.31)

Since in this case c∗ > 0, then we must have q > q̂c. Plugging c∗ = (
√

q
q̂c
−1)r into inequality (4.30),

we obtain

q+(

√
β

D
η−2)

√
q+1− α

β
≤ 0. (4.32)

In order to make Case 3 occur, inequality (4.32) must be satisfied by some q. This requires that (
√

β

D η−

2)2−4(1− α

β
)≥ 0, i.e., α ≥ β (η

√
β/D−βη2/4D)≡ α1, from which we can see that Case 3 happens

only when α (i.e., the cost of RTL) is big enough.

If we put

q+(

√
β

D
η−2)

√
q+1− α

β
= 0, (4.33)

and let q1 and q2 denote the two solutions of equation (4.33), where q1 ≤ q2, then it is easy to check

that q1 = (1−
√

α/β )2 and q2 = (1+
√

α/β )2 > 1 when η = 0. The range of q that supports Case 3 is

[max{q̂c,q1},min{1,q2}]. We can show that when q1 and q2 exist, we always have q2 > q̂c. The proof

is in Item H of Appendix.
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According to the values of q1 and q2, the interval [max{q̂c,q1},min{1,q2}] can take one of the

following three possibilities.

Possibility 1: [q1,q2]. This possibility requires q1 ≥ q̂c and q2 ≤ 1. We can check that if q2 ≤ 1

then q1 ≥ q̂c. Furthermore, q1 ≥ q̂c and q2 ≤ 1 imply that α1 ≤ α ≤ βη
√

β/D ≡ α2. The algebra to

obtain this is shown in Item I, which also includes the algebra to get the ranges of α in Possibilities 2

and 3 below.

Possibility 2: [q1,1]. This possibility requires q1 ≥ q̂c and q2 > 1. Therefore α must be such that

α2 ≤ α ≤ β

D [(
√

D−
√

β r)2 + rηβ ]≡ α3.

Possibility 3: [qc,1]. This possibility requires q1 < q̂c and q2 > 1. Therefore α must be such that

α > α3.

Case 4. c∗ > 0 and l∗ > 0.

If c∗ > 0 and l∗ > 0, the FOCs in (4.9) and (4.10) are

β −q
(
√

D+
√

β l∗)2−βη l∗

(r+ l∗+ c∗)2 = 0 (4.34)

α−q
(
√

D−
√

β (r+ c∗))2 +βη(r+ c∗)
(r+ l∗+ c∗)2 = 0 (4.35)

By the same procedure in Item F of Appendix we can show that Case 4 requires q > max{q̂c, q̂l}. Due

to the complexity of equations (4.34) and (4.35) we cannot explicitly solve (c∗, l∗) out. But since Cases

1 to 4 are mutually exclusive and form a partition of all possible outcomes for (c∗, l∗), then the range of

q that supports Case 4 contains any q that does not support Case 1 to 3. Therefore, after we figure out

the intervals of q that supports Case 1 to 3, we can find out the range of q that supports Case 4 naturally

by subtracting the intervals of q supporting Case 1 to 3 from interval (0,1).

Scenario Analysis

In this sub-section we analyze the possibilities for Case 2 and Case 3 according to the values of

RTL cost (i.e., α). Since the quantitative relationships between q̂c, q̂l , q̂lc, and q1 are important to the

analysis that follows, here we summarize the relationships in a remark. The proof this remark is shown

in Item J of Appendix.

Remark 4.3. Whenever i) α ≤ α3, then q̂l ≤ q̂c ≤ q̂lc ≤ q1; 2) α ≥ α3, then q̂l ≥ q̂c ≥ q1, and the

equalities hold when α = α3.
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According to the values of α , we have four scenarios to analyze.

Scenario 1. α ∈ [0,α1). In this scenario Case 3 does not happen because there is no q satisfying

inequality (4.30). By Remark 4.3 we know that q̂l < q̂c < q̂lc. Then Case 1 will happen if q ∈ [0, q̂l];

Case 2 will happen if q ∈ (q̂l, q̂lc]; Case 4 will happen if q ∈ [q̂lc,1]. Figure 4.5 includes a visual

presentation of this scenario. Therefore, we can see that if 1) the cost of RTL is low enough, and 2)

the success of RTL can contribute to a breakthrough in RTC, then it is never optimal to only invest into

RTC. Figure 4.6 provides a numerical example of this scenario. One interesting observation is that in

Case 4 (c∗ > 0 and l∗ > 0) the optimal level of RTL is first decreasing in q and then increasing in q as

q increases from q̂lc to 1. One explanation is that when climate change is very likely harmful (i.e., q is

big) and when the cost of RTL is low enough, then the social planner may want to invest more in RTL

expecting that success in RTL could accelerate RTC’s success. The optimal level of RTC in Case 4,

however, is always increasing in q.

Scenario 2. α ∈ [α1,α2]. In this scenario every case is possible. A visual presentation is shown in

Figure 4.5. We can see that Case 1 happens if q ∈ [0, q̂l]; Case 2 happens if q ∈ (q̂l, q̂lc]; Case 3 happens

if q∈ [q1,q2]. One interesting thing is that Case 4 happens if q∈ [q̂lc,q1] or q∈ [q2,1). In range [q̂lc,q1],

c∗ is increasing with q but l∗ is decreasing with q. In the range of q ∈ [q2,1), however, both c∗ and l∗

are increasing with q. Figure 4.7 provides a numerical example of this scenario.

Scenario 3. α ∈ [α2,α3]. In this scenario every case is possible as well. A visual presentation of

this scenario is shown in Panel A of Figure 4.8. We can see that Case 1 happens if q ∈ [0, q̂l]; Case 2

happens if q ∈ (q̂l, q̂lc]; Case 3 happens if q ∈ [q1,1); and Case 4 happens if q ∈ [q̂lc,q1]. Figure 4.8

includes a visual presentation of this scenario. Figure 4.9 provides a numerical example.

Scenario 4. α > α3. In this scenario only Cases 1 and 3 are possible. Case 1 happens if q ∈ [0, q̂c]

and Case 3 happens if q ∈ (q̂c,1). Therefore, if α > α3 then l∗ > 0 will never be optimal. This because

if the cost of RTL is too high, then there is no point in conducting RTL. When the probability of state T

is lower than q̂c, the social planner needs to do nothing. When the probability of state T is higher than

q̂c, the social planner will only conduct RTC. Figure 4.8 includes a visual presentation of this scenario.

Figure 4.10 provides a numerical example.

We summarize the analysis in this section as Result 4.2.

Result 4.2. Suppose success in RTL can accelerate success in RTC. i) When the cost of RTL is low
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enough (i.e., α < α1), then it is never optimal to only invest in RTC. ii) When the cost of RTL is

moderate (i.e., α ∈ [α1,α2]) and when the probability of a harmful climate change is either very high

or moderate (i.e., q ∈ [q2,1] or q ∈ [q̂lc,q1]), then the social planner invests in both RTC and RTL. iii)

In Case 4 under both Scenarios 1 and 2, the optimal RTL investment level decreases and then increases

in q.

From Result 4.2 we can see that whether to follow the “precautionary rule” (favors investing in

RTC as early and as much as possible) or the “learn-then-act rule” (favors delaying the investment in

RTC) regarding investment into R&D of new technologies depends on the costs of research activities

and the probability distribution of climate change’s damage. Therefore, the model provides an explicit

resolution to the debate between the advocates for these two rules. We are also interested in how the

change in an exogenous parameter affects optimal RTC and RTL, which is studied in the next section

by utilizing numerical methods.

Comparative Statics of the Extension Model

The effect of the exogenous parameters (i.e., α , β , η , q, r, and D) on q̂c, q̂l , and c∗ in Case 1 and

Case 3 can be easily determined after some algebra. The results are shown in Table 4.1. However, the

parameters’ effects on q̂lc, q1, q2, c∗, and l∗ of Cases 2 and 4 of scenarios 1 to 3 are not so straightfor-

ward. For these effects we resort to numerical method to conduct the comparative statics. During the

numerical analysis, the initial values of these exogenous parameters are set as: β = 15,000, η = 0.08,

q = 0.23, r = 0.05, and D = 300. By these parameters we calculate the critical values of α: α1, α2,

and α3. We then specify the four scenarios according to the values of α1, α2, and α3. Since Cases 2

and 4 do not happen in Scenario 4, we conduct the numerical analysis only for Scenarios 1 to 3. The

corresponding results are show in Tables 4.2 to 4.4, respectively. We discuss these effects in detail next.

Effects on c∗ and l∗

From Tables 4.1 and 4.2 we can see that a marginal change on any parameters will not affect c∗ in

Cases 1 and 2 (or l∗ in Cases 1 and 3) because c∗ (or l∗) is zero in Cases 1 and 2 (or Cases 1 and 3).

In Case 3, an increase in α has no effect on c∗. This is because when c∗ > 0 and l∗ = 0, then RTL will
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never succeed and hence RTL has no effect on RTC. Therefore, changing the cost of RTL will not affect

the optimal level of RTC. For the same reason, increasing η , the contribution of the success of RTL to a

RTC breakthrough, has no effect on c∗ either. The policy implication here is that when Case 3 happens

then a program that subsidizes RTL will have no effect on either RTL or RTC. It is quite intuitive that

increasing the cost of RTC will decrease c∗ but increasing damage rate D or the probability that this

damage occur, q, will increase c∗.

From Tables 4.2 to 4.4 we see that an increase in α (or β ) decreases the optimal level of investment

in RTL (or RTC). We also find that in Case 4 of Scenarios 1 throughout 3, an increase in α (or β )

will always increase the optimal investment in RTC (or RTL), which means that in Case 4 the RTL

and RTC are substitutes. However, in Case 2 of Scenarios 1 to 3, the effect of β on l∗ is ambiguous.

The intuition is as follows. Suppose a success of RTL contributes to a breakthrough in RTC. Then on

the one hand, RTL complements RTC; on the other hand, RTL substitutes for RTC. The effect of β

on l∗ will depend on whether the substitute effect is bigger than the complement effect or not. In the

benchmark model, since the success of RTL does not contribute to a breakthrough of RTC, to minimize

the expected negative effects of climate change the social planner cannot resort to RTL only. To this

extent in the benchmark model RTL and RTC are complements. But in the extension model, the success

of RTL can contribute to a breakthrough of RTC. This means that to some extent RTL substitutes for

RTC. Therefore, in Case 2 of Scenarios 1 to 3 we observe the ambiguous effect of β on l∗.

Now let us study the effect of η , the magnitude of the contributions of the success of RTL to a RTC

breakthrough, on c∗ and l∗. In Case 1 and Case 3 through all four scenarios, η has no effect on l∗ and

c∗. This is because l∗ is zero in Cases 1 and 3. Since l∗ = 0, the success of RTL will almost surely never

happen. Therefore, an increase in η will not affect c∗. In Case 2 and Case 4 throughout Scenarios 1 to

3, η has a positive effect on l∗ and a negative effect on c∗. This is quite intuitive because an increased

η will make RTL more “valuable” hence the social planner is going to “purchase” more RTL and less

RTC.

The effect of q can be clearly seen in the numerical examples provided in Figures 4.3, 4.4, 4.6, 4.7,

4.9, and 4.10. From these figures and Tables 4.1 to 4.4 we can see an increase in q will always increase

(even though not necessarily strictly) the optimal investment level into RTC. This is intuitive because

when the damage is more likely to be true, the social planner wants to put more resources into RTC to
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respond to this possible damage. However, the effect of q on l∗ is more complicated. In Case 2 of all

Scenarios 1 to 3, l∗ is increasing with q. This is because when c∗ = 0, then an increase in the possibility

of the damage being true leads the social planner to put more resources into RTL in order to accelerate

the success of RTC at the second stage in case the true state of climate change is harmful. In Case 4 the

effect of q on l∗ is ambiguous. Therefore, 1) when q is relatively small then increasing q will decrease

l∗; 2) when q is large enough then increasing q will increase l∗. A tentative explanation is that when

the likelihood of the damage is small and when the cost of RTL is low enough (α ∈ [α1,α2]), then the

increasing c∗ substitutes l∗ out as q is increasing. However, if the likelihood of the damage is large and

the cost of RTL is still low enough (α ∈ [α1,α2]), then an increasing q will cause the social planner to

put more resources into both RTC and RTL. Under this situation the cost of RTL is reasonable and the

damage is so likely that the social planner can benefit from increasing both RTL and RTC.

The continuous time discount rate, r, always has a negative effect on c∗ and l∗. This is because

when the future welfare is less important, it is always better for the social planner to invest less into

RTL and RTC, whose benefit is only reaped in the future.

An increase in the damage rate, D, always increase c∗. This is easy to understand because when

the damage is bigger the social planner has more incentive to investigate the method to respond to this

damage. However, D has different effects on l∗ in different cases. In Case 2, an increase in D will bring

a higher l∗. This is because a bigger D means a higher marginal benefit from one more unit of RTL in

Case 2. In Case 4, however, an increase in D will always decrease l∗. The intuition here is that when

both RTL and RTC are conducted at the same time, an increase in D will put more “weight” on RTC

because RTC is a direct response to the negative welfare impact while RTL is not.

We summarize the above analysis as Result 4.3

Result 4.3. Regarding the exogenous parameters’ effects on the optimal RTC and RTL investment (i.e.,

c∗ and l∗, respectively), we have conclusions as follows. i). c∗ is increasing in RTL cost, α , the

probability of having a harmful climate change, q, and the damage rate, D, but is decreasing in RTC

cost, β , the impact magnitude of RTL’s success on RTC’s success, η , and the discount rate, r. ii). When

c∗ = 0 and l∗ > 0 (i.e., Case 2) then l∗ is decreasing in α (i.e., RTL cost) and r, but is increasing in η ,

q, and D. The impact of RTC cost (i.e., β ) on l∗ is ambiguous. iii). When c∗ > 0 and l∗ > 0 (i.e., Case

4) then l∗ is decreasing in α , r, and D, but is increasing in β and η . The impact of q on l∗ is ambiguous.
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Effects on q-Intervals Supporting Different Cases

In this subsection we study the exogenous parameters’ effects on q̂c, q̂l , q̂lc, q1, and q2, the critical

values of q that support different cases. This allows us to see how the ranges of q that supports different

cases change.

Case 1. c∗ = 0 and l∗ = 0.

Case 1 occurs when q≤min{q̂l, q̂c}. From Remark 4.3 we know that if α < α3 then q̂l < q̂c. From

Table 4.1 we see that a higher cost of RTL can increase q̂l but has no effect on q̂c. This means that if

α < α3 then a higher RTL cost will enlarge the range of q supporting Case 1; if α > α3, then a higher

RTL cost will not affect this range of q supporting Case 1. It is intuitive because in Case 1 when α

is small enough then an increase in α will expand the range of q in which the social planner conducts

neither RTL nor RTC. If α is high enough (i.e., α >α3), then only Case 1 and Case 3 are possible. Since

in Case 1 and Case 3 the optimal RTL is 0 and an increase in α does not affect q̂c, then an increase in α

will not affect the range of q that supports Case 1.

From Table 4.1 we can see that q̂l and q̂c is increasing with β , which means that an increase in β

will enlarge the interval of q that supports Case 1. The discount rate r has the same effect as β does.

But D has the opposite effect. All of these effects can be intuitively explained as follows. When the

damage is smaller (or the future is less important, or the cost of doing RTC is higher), the social planner

will have a higher incentive to do nothing. Therefore the range of q that supports Case 1 is enlarged.

By equation (4.24) we know that q̂l is decreasing in η . Therefore, if α < α3 then an increase in η

will shrink the range of q that supports Case 1. This is because when RTL is more valuable in the sense

that its success can contribute to a RTC breakthrough at a larger magnitude and when RTL is relatively

inexpensive, then the social planner will be more likely to conduct some RTL to respond to the possible

hazard. Consequently the range of Case 1 shrinks. However, if α ≥ α3 then an increase in η will not

affect the range of Case 1. Intuitively, this is because a small increase in η will not trigger the social

planner’s investment in RTL when the RTL cost is very high.
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Case 2. c∗ = 0 and l∗ > 0.

Case 2 happens if q ∈ [q̂l, q̂lc]. From Tables 4.1 to 4.4 we see that an increase in α (or a decrease

in η) will shrink this range. This is because when RTL is more costly (i.e., α increases) or RTL is less

helpful to RTC’s success then the social planner is less likely to conduct RTL only. Other parameters’

effects on this range are ambiguous.

Case 3. c∗ > 0 and l∗ = 0.

Case 3 only occurs under Scenarios 2 to 4. In Scenarios 2 and 3, Case 3 occurs when q ∈ [q1,q2]

and when q ∈ [q1,1], respectively. From Table 4.3 and Table 4.4 we can see that 1) an increase in α

or D can expand this range; 2) an increase in either β or η can shrink this range; and 3) a change in

continuous time discount rate, r, has no effect on this range. Here item 1) is true because an increase in

the cost of RTL investment (i.e., α) or the damage from climate change (i.e., D) will lower the social

planner’s probability threshold for q over which the RTC investment occurs (i.e., q1). Item 2) is true

because when the cost of RTC becomes high and the positive impact of RTL’s success on RTC’s success

becomes larger, then the social planner wants to increase the threshold of q that triggers investment in

RTC. The reason for item 3) is as follows. Given the optimal RTC investment level (i.e., c∗), the benefit

of conducting RTL is not affected by the discount rate. This is because the optimal RTC has fully

responded to the discount rate.

In Scenario 4, Case 3 occurs when q ∈ [q̂c,1]. From equation (4.23) we can conclude that 1) an

increase in β or r can shrink this range; 2) an increase in D will expand this range; and 3) a change in

α or η will not affect this range. Here items 1) and 2) are intuitive but item 3) needs some explanation.

In Scenario 4, l∗ is always equal to 0. Moreover, the effect of α or η on c∗ works through RTL by

changing RTC’s marginal benefit. Therefore, if there is no RTL investment, then a change in α or η

will not affect the marginal benefit of RTC (see Table 4.1), and hence will not affect the range of q that

supports Case 3.
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Case 4. c∗ > 0 and l∗ > 0.

Case 4 only occurs under Scenarios 1 to 3. In Scenario 1, the range of q that supports Case 4 is

q ∈ [q̂lc,1]. From Table 4.2 we can see that q̂lc is decreasing in α and D but increasing in β , η , and r.

This means that under Scenario 1 an increase in α or D will expand the interval of q under which Case

4 occurs. However, an increase in β , η , or r will shrink this range. In Scenarios 2 and 3, Case 4 occurs

when q ∈ [q̂lc,q1]∪ [q2,1] and when q ∈ [q̂lc,q1], respectively. From Table 4.3 and Table 4.4 we can see

that only r has an unambiguous effect on these ranges. When r increases, then these ranges will shrink.

Other parameters’ effects are ambiguous.

We summarize the analysis in this sub-section as Result 4.4:

Result 4.4. Regarding the exogenous parameters’ effects on ranges of q that support Cases 1 to 4, we

conclude as follows. i). The range of q supporting Case 1 is enlarged (at least weakly) by an increase

in RTL cost, α , RTC cost, β , and discount rate, r, or by a decrease in the impact magnitude of RTL’s

success on RTC’s success, η , and the damage rate, D. ii). The range of q supporting Case 2 is shrunk

by an increase in RTL cost, α , but is enlarged by an increase in η . However, other parameters’ effects

on this range are ambiguous. iii). The range of q supporting Case 3 is enlarged (at least weakly) by an

increase in α and D, or by an decrease in β , η , and r. iv). Under Scenario 1, the range of q supporting

Case 4 is enlarged (at least weakly) by an increase in α and D, or by a decrease in β , η , and r. Under

Scenarios 2 and 3, however, the range of q supporting Case 4 is enlarged by a decrease in r but other

parameters’ effects are ambiguous.

Conclusions and Future Research

How to face the challenge of climate change will be the focus of international policies before the

world clearly understands the magnitude of the welfare impact of climate change or before the world

is confident that the technologies available could handle any possible effects of climate change. In

other words, the world will be concerned about climate change until one or two of the uncertainties

discussed in this article disappear. The two uncertainties are on the magnitude of the problems’ human

welfare impact and on the future date when this unknown impact becomes clear. This article investigate

the optimal investment decisions on mitigating these two uncertainties. The results show that RTC
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can complement with or substitute for RTL depending on the probability distribution of the damage

of climate change. If the outcomes of RTL and RTC are statistically independent, then it is almost

never optimal to conduct both RTL and RTC simultaneously. If the success of RTL increases the

probability of a RTC breakthrough and the cost of RTL is small enough, then it is never optimal to

conduct RTC only. We also show that whether to follow the “precautionary rule” or the “learn-then-act

rule” regarding investment into R&D about new technologies depends on the costs of research activities

and the probability distribution of damage due to climate change. Therefore, the article provides an

explicit resolution to the debate between the advocates for these two rules. It also provides a framework

about optimal R&D decisions facing the uncertainties of climate change.

There are at least two possibilities to extend this research. The first one is to generalize the analysis

into a formal Bayesian decision framework. The current analysis is an special case of a general Bayesian

decision framework. But we expect that the generalization would cause challenging technical problems.

The second possibility for extension, also a more interesting one, is to calibrate the current model

and simulate what the optimal RTL and RTC should be, which could provide policy implications on

optimally allocating the scarce research resources.
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Figure 4.2: Possible Cases when qlc < qc (Panel A) and when qlc < qc (Panel B)
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Figure 4.3: Values of c∗ and l∗ when η = 0 and qlc > qc
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Figure 4.4: Values of c∗ and l∗ when η = 0 and qlc ≤ qc
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Figure 4.5: Possible Cases in Scenario 1 (α ∈ [0,α1])



156

Figure 4.6: Values of c∗ and l∗ when η > 0 under Scenario 1
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Figure 4.7: Values of c∗ and l∗ when η > 0 under Scenario 2
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Figure 4.8: Possible Cases in Scenario 3 (α ∈ [α2,α3]) and in Scenario 4 (α > α3)
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Figure 4.9: Values of c∗ and l∗ when η > 0 under Scenario 3
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Figure 4.10: Values of c∗ and l∗ when η > 0 under Scenario 4
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Appendix

Item A

In this Item we are going to show the justification of
√

D/β − r−η > 0 and
√

D/β − r > 0 in

Assumption 1. Here we only need to justify
√

D/β − r−η > 0 because
√

D/β − r > 0 will naturally

follow when
√

D/β − r−η > 0 holds.

If at time 0 there is no investment into RTC and at time τ1 the true state is proved to be T , then at

time τ1 the social planner’s problem is to choose an investment level, c′ ≥ 0, on RTC so that the damage

from climate change plus research costs are minimized.

min
c′≥0

βc′e−rτ1 +
∫

τ1

0
De−rtdt +Eτ3

[∫
τ3

τ1

De−rtdt
]

(4.36)

Since the density function of τ3 is g′(τ3) = (c′+η)e−(c
′+η)(τ3−τ1), where τ3 > τ1, we have

Eτ3 [
∫

τ3

τ1

De−rtdt] =
∫

∞

τ1

D
r
(e−rτ1− e−rτ3)(c′+η)e−(c

′+η)(τ3−τ1)dτ3

=
D
r

[
e−rτ1−

∫
∞

τ1

e−rτ3(c′+η)e−(c
′+η)(τ3−τ1)

]
=

D
r

(
1− c′+η

r+ c′+η

)
e−rτ1

Then the social planner’s problem becomes

min
c′≥0

βc′e−rτ1 +
∫

τ1

0
De−rtdt +

D
r

(
1− c′+η

r+ c′+η

)
e−rτ1 , (4.37)

which is equivalent to

min
c′≥0

βc′e−rτ1 +
D
r

(
1− e−rτ1

c′+η

r+ c′+η

)
. (4.38)

The first order condition for an interior solution is

β − D
(c′∗+ r+η)2 = 0 (4.39)

So c′∗ =
√

D/β − r−η . The interior solution requires
√

D/β − r−η > 0. Naturally
√

D/β − r > 0

follows.
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Item B

If at time t = τ1 it is proved that climate change is harmful and the RTC has not been successful yet,

then the social planner will add more investment, c′ ≥ 0, in this research to accelerate the coming of the

breakthrough time. Therefore, at time t = τ1 the social planner’s problem is:

V A(c, l) = min
c′≥0

βc′e−rτ1 +Eτ3

[∫
τ3

0
De−rtdt

]
. (4.40)

We know that at time t = τ1 the random variable τ3 becomes possible. Its probability density function

is g′(τ3) = (c+ c′+η)e−(c+c′+η)(τ3−τ1), where τ3 ≥ τ1. Therefore

Eτ3 [
∫

τ3

0
De−rtdt] = Eτ3 [

D
r
(1− e−rτ3)]

=
∫

∞

τ1

D
r
(1− e−rτ3)(c+ c′+η)e−(c+c′+η)(τ3−τ1)dτ3

=
D
r
[1− e−rτ1

∫
∞

τ1

(c+ c′+η)e−(r+c+c′+η)(τ3−τ1)dτ3]

=
D
r
(1− c+ c′+η

r+ c+ c′+η
e−rτ1)

Then at time τ1 the social planner’s problem becomes

min
c′≥0

βc′e−rτ1 +
D
r

(
1− c+ c′+η

r+ c+ c′+η
e−rτ1

)
(4.41)

The first order condition is

β − D
(r+ c+ c′∗+η)2 ≥ 0 (4.42)

So the interior solution is

c′∗ =
√

D/β − c− r−η .

The interior solution requires
√

D/β −c− r−η > 0 and hence η <
√

D/β − r−c≤
√

D/β − r. Plug

the interior solution into the objective function (4.41), we get

V A(c, l) = β (
√

D/β − c− r−η)e−rτ1 +
D
r
(1−

√
D/β − r√

D/β
e−rτ1)

=
D
r
+[
√

βD−β (c+ r+η)− D
r

√
D/β − r√

D/β
]e−rτ1

=
D
r
+(2

√
βD−β (c+ r+η)− D

r
)e−rτ1
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Item C

In this Item we are going to show how to obtain equation (4.7).

Plugging equations (4.3), (4.4), and (4.5) into equation (4.6), we get

V (c, l) =
∫

∞

0

∫
∞

τ1

{q
[

D
r
+
(
2
√

βD−β (c+ r+η)− D
r

)
e−rτ1

]
+(1−q)(βc+αl)}g(τ2) f (τ1)dτ2dτ1

+
∫

∞

0

∫
τ1

0
{q[D

r
(1− e−rτ2)]+(1−q)(βc+αl)}g(τ2) f (τ1)dτ2dτ1

= βc+αl +q
∫

∞

0

∫
∞

τ1

[
D
r
+(2

√
βD−β (c+ r+η)− D

r
)e−rτ1 ]g(τ2) f (τ1)dτ2dτ1

+q
∫

∞

0

∫
τ1

0
[
D
r
(1− e−rτ2)]g(τ2) f (τ1)dτ2dτ1,

where f (τ1) = (l0 + l)e−(l0+l)τ1 , g(τ2) = ce−cτ2 .

Since

∫
∞

0

∫
∞

τ1

[
D
r
+(2

√
βD−β (c+ r+η)− D

r
)e−rτ1

]
g(τ2) f (τ1)dτ2dτ1

=
∫

∞

0
e−cτ1 [

D
r
+(2

√
βD−β (c+ r+η)− D

r
)e−rτ1 ](l0 + l)e−(l0+l)τ1dτ1

=
D
r

∫
∞

0
e−cτ1(l0 + l)e−(l0+l)τ1dτ1 +

∫
∞

0
[2
√

βD−β (c+ r+η)− D
r
]e−rτ1(l0 + l)e−(l0+l)τ1dτ1

=
D(l0 + l)

r(l0 + l + c)
+ [2

√
βD−β (c+ r+η)− D

r
]

l0 + l
r+ l0 + l + c

,
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and

∫
∞

0

∫
τ1

0
[
D
r
(1− e−rτ2)]g(τ2) f (τ1)dτ2dτ1

=
∫

∞

0

∫
τ1

0
[
D
r
(1− e−rτ2)]ce−cτ2(l0 + l)e−(l0+l)τ1dτ2dτ1

=
D
r

[∫
∞

0

∫
τ1

0
ce−cτ2(l0 + l)e−(l0+l)τ1dτ2dτ1−

∫
∞

0

∫
τ1

0
c(l0 + l)e−(l0+l)τ1e−(r+c)τ2dτ2dτ1

]
=

D
r

[
c

l0 + l + c
− c(l0 + l)

r+ c

∫
∞

0
e−(l0+l)τ1(1− e−(r+c)τ1)dτ1

]
=

D
r

[
c

l0 + l + c
− c(l0 + l)

r+ c
[
∫

∞

0
e−(l0+l)τ1dτ1−

∫
∞

0
e−(r+l0+l+c)τ1dτ1]

]
=

D
r

[
c

l0 + l + c
− c(l0 + l)

r+ c
[

1
l0 + l

− 1
r+ l0 + l + c

]

]
=

D
r

[
c

l0 + l + c
− c

r+ c
+

c(l0 + l)
(r+ c)(r+ l0 + l + c)

]
=

D
r

[
c

l0 + l + c
+

c(l0 + l)− c(r+ l0 + l + c)
(r+ c)(r+ l0 + l + c)

]
=

D
r

[
c

l0 + l + c
− c

r+ l0 + l + c

]
=

Dc
(l0 + l + c)(r+ l0 + l + c)

,

then

V (c, l) = βc+αl +q
{

D(l0 + l)
r(l0 + l + c)

+ [2
√

βD−β (c+ r+η)− D
r
]

l0 + l
r+ l0 + l + c

+
Dc

(l0 + l + c)(r+ l0 + l + c)

}
= βc+αl +q

{
D(l0 + l)

r
(

1
l0 + l + c

− 1
r+ l0 + l + c

)

+[2
√

βD−β (c+ r+η)]
l0 + l

r+ l0 + l + c
+

Dc
(l0 + l + c)(r+ l0 + l + c)

}
= βc+αl +q

{
D(l0 + l)+Dc

(l0 + l + c)(r+ l0 + l + c)
+ [2

√
βD−β (c+ r+η)]

l0 + l
r+ l0 + l + c

}
= βc+αl +q

{
D

r+ l0 + l + c
+[2

√
βD−β (c+ r+η)]

l0 + l
r+ l0 + l + c

}
= βc+αl +

q
r+ l0 + l + c

{
D+[2

√
βD−β (c+ r+η)](l0 + l)

}
This is equation (4.7).
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Item D

In this Item we derive the FOCs of problem (4.7) and show the function v(c, l) is convex if 0≤ η ≤√
D/β − r. FOCs are:

∂v(c, l)
∂c

= β −
qβ (l0 + l)(r+ l0 + l + c)+q

{
D+[2

√
Dβ −β (c+ r+η)](l0 + l)

}
(r+ l0 + l + c)2

= β −q
β (l0 + l)(r+ l0 + l + c)+D+2

√
Dβ (l0 + l)−β (c+ r+η)(l0 + l)

(r+ l0 + l + c)2

= β −q
β (l0 + l)2 +2

√
Dβ (l0 + l)+D−βη(l0 + l)

(r+ l0 + l + c)2

= β −q
(
√

D+
√

β (l0 + l))2−βη(l0 + l)
(r+ l0 + l + c)2 ≥ 0

and

∂v(c, l)
∂ l

= α +q
[2
√

Dβ −β (c+ r)](r+ l0 + l + c)−
{

D+[2
√

Dβ −β (c+ r+η)](l0 + l)
}

(r+ l0 + l + c)2

= α +q
[2
√

Dβ −β (c+ r+η)](r+ c)−D
(r+ l0 + l + c)2

= α−q
β (r+ c)2−2

√
Dβ (r+ c)+D+βη(c+ r)

(r+ l0 + l + c)2

= α−q
(
√

D−
√

β (c+ r))2 +βη(r+ c)
(r+ l0 + l + c)2 ≥ 0.

Next we are going to show v(c, l) is convex when 0≤ η ≤
√

D/β − r. To do this we need to show that

if 0≤ η ≤
√

D/β − r, then V ′′cc ≥ 0, V ′′ll ≥ 0, and V ′′ccV
′′
ll − (V ′′lc)

2 ≥ 0. We have

V ′′cc = 2q
(r+ l0 + l + c)[(

√
D+

√
β (l0 + l))2−βη(l0 + l)]

(r+ l0 + l + c)4

= 2q
(
√

D+
√

β (l0 + l))2−βη(l0 + l)
(r+ l0 + l + c)3

V ′′ll = 2q
(
√

D−
√

β (r+ c))2 +βη(r+ c)
(r+ l0 + l + c)3

V ′′lc = −q
(r+ l0 + l + c)[−2

√
β (
√

D−
√

β (r+ c))+βη ]−2[(
√

D−
√

β (r+ c))2 +βη(r+ c)]
(r+ l0 + l + c)3

= −q
−2[
√

D−
√

β (r+ c)][
√

D+
√

β (l0 + l)]+βη [(l0 + l)− (r+ c)]
(r+ l0 + l + c)3

= q
2[
√

D−
√

β (r+ c)][
√

D+
√

β (l0 + l)]+βη [(r+ c)− (l0 + l)]
(r+ l0 + l + c)3 .
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Define φ ≡ q2/(r+ l0 + l + c)6. Then we have

V ′′ccV
′′
ll − (V ′′lc)

2

= φ

{
4[(
√

D+
√

β (l0 + l))2−βη(l0 + l)][(
√

D−
√

β (r+ c))2 +βη(r+ c)]

−
{

2[
√

D−
√

β (r+ c)][
√

D+
√

β (l0 + l)]+βη [(r+ c)− (l0 + l)]
}2
}

= φβη

{
4(r+ c)(

√
D+

√
β (l0 + l))2−4(l0 + l)(

√
D−

√
β (r+ c))2

−4[(r+ c)− (l0 + l)][
√

D+
√

β (l0 + l)][
√

D−
√

β (r+ c)]

−βη [4(l0 + l)(r+ c)+((r+ c)− (l0 + l))2]

}
= φβη

{
4(r+ c)(

√
D+

√
β (l0 + l))[(

√
D+

√
β (l0 + l))− (

√
D−

√
β (r+ c))]

+4(l0 + l)(
√

D−
√

β (r+ c))[(
√

D+
√

β (l0 + l))− (
√

D−
√

β (r+ c))]

−βη(r+ l0 + l + c)2
}

= φβη

{
4(r+ c)(

√
D+

√
β (l0 + l))[

√
β (r+ l0 + l + c)]

+4(l0 + l)(
√

D−
√

β (r+ c))[
√

β (r+ l0 + l + c)]

−βη(r+ l0 + l + c)2
}

= φβη

{
4[
√

β (r+ l0 + l + c)]
[
(r+ c)(

√
D+

√
β (l0 + l))+(l0 + l)(

√
D−

√
β (r+ c))

]
−βη(r+ l0 + l + c)2

}
= φβη

{
4
√

Dβ (r+ l0 + l + c)2−βη(r+ l0 + l + c)2
}

= φβη

{
4
√

Dβ −βη

}
(r+ l0 + l + c)2

= φβ
2
η

{
4

√
D
β
−η

}
(r+ l0 + l + c)2

≥ 0 if 0≤ η ≤
√

D/β − r.



167

It is obvious that V ′′ll ≥ 0. Now we only need to check V ′′cc ≥ 0 when 0≤ η ≤
√

D/β − r. We have

V ′′cc = 2q
(
√

D+
√

β (l0 + l))2−βη(l0 + l)
(r+ l0 + l + c)3

≥ 2q
(
√

D+
√

β (l0 + l))2−β (
√

D/β − r)(l0 + l)
(r+ l0 + l + c)3

= 2q
D+2

√
Dβ (l0 + l)+β (l0 + l)2−

√
Dβ (l0 + l)+ rβ (l0 + l)

(r+ l0 + l + c)3

= 2q
D+(

√
Dβ + rβ )(l0 + l)+β (l0 + l)2

(r+ l0 + l + c)3

≥ 0.

Hence we have shown that V (c, l) is convex when 0≤ η ≤
√

D/β − r.

Item E

This Item proves Remark 4.1. Here we just prove that if qlc > qc, then qc > ql . The other part of

the remark can be proved by the same procedure.

Proof.

qlc > qc ⇒ 1−
√

α/β >
√

β
r+ l0√

D+
√

β l0

⇒ 1−
√

α/β > 1−
√

D−
√

β r
√

D+
√

β l0

⇒
√

α/β <

√
D−

√
β r

√
D+

√
β l0

⇒
√

α√
D−

√
β r

<

√
β

√
D+

√
β l0

⇒
√

α(r+ l0)√
D−

√
β r

<

√
β (r+ l0)√

D+
√

β l0
⇒ √

ql <
√

qc

⇒ ql < qc

Item F

In this Item we prove Remark 4.2.
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Proof. From FOC (4.20) we have

q = β

{
r+ l0 + c∗+ l∗√
D+

√
β (l0 + l∗)

}2

> β

{
r+ l0 + l∗√

D+
√

β (l0 + l∗)

}2

by c∗ > 0

=

{√
D+

√
β (l0 + l∗)− (

√
D−

√
β r)

√
D+

√
β (l0 + l∗)

}2

=

{
1−

√
D−

√
β r

√
D+

√
β (l0 + l∗)

}2

>

{
1−
√

D−
√

β r
√

D+
√

β l0

}2

by l∗ > 0

= qc.

From FOC (4.21) we have

q = α

{
r+ l0 + c∗+ l∗√
D−

√
β (r+ c∗)

}2

> α

{
r+ l0 + c∗√

D−
√

β (r+ c∗)

}2

by l∗ > 0

> α

{
r+ l0√

D−
√

β r

}2

by c∗ > 0 and
√

D−
√

β (r+ c∗)> 0

= ql.

Therefore we have q > max{qc,ql}. Next we show that the existence of a solution (c∗, l∗) such that

FOCs (4.20) and (4.21) in Case 3 requires q = qlc.

Define X ≡ l0 + l∗ and Y ≡ r+ c∗. The the FOCs 4.20) and (4.21) in Case 3 become√
β

q
=

√
D+

√
βX

X +Y
(4.43)√

α

q
=

√
D−

√
βY

X +Y
, (4.44)

where X > l0 and Y > r. Form equation (4.43) and (4.44) we have

Y =

√
qD
β
− (1−√q)X (4.45)

Y =

√
D√

α

q +
√

β

−
√

α/q√
α

q +
√

β

X , (4.46)
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where X > l0 and Y > r. When q = qlc, then

√
q = 1−

√
α/β

⇒ √
q+
√

α/β = 1

⇒
√

qβ +
√

α =
√

β

⇒
√

β +
√

α/q =
√

β/q.

Therefore, equation (4.46) becomes

Y =

√
D√

β/q
− α/q√

β/q
X

=

√
qD
β
−
√

α

β
X

=

√
qD
β
− (1−√q)X by

√
q = 1−

√
α/β .

We can see that if q = qlc then equations (4.43) and (4.44) are identical. So any solution (c∗, l∗) such

that equation (4.43) must be such that equation (4.44). Next we are going to show if q 6= qlc there is no

solution (c∗, l∗) such that the equation system consisting of equations (4.43) and (4.44).

First, we consider the scenario in which q > qlc. If q > qlc, then
√

β +
√

α/q >
√

β/q. Therefore
√

D√
α

q +
√

β
<
√

qD
β

. This means the Y-intercept of function (4.45) is smaller than the Y-intercept of

function (4.46). If we can show the absolute value of the slope of the curve of function (4.45) is

greater than the slope of the curve of function (4.46) then we can conclude that the two curves have no

intersection point in the first quadrant. The following algebra shows this is true.√
α/q√

α

q +
√

β

> 1−√q

⇔
√

α/q > (1−√q)(
√

α

q
+
√

β )

⇔
√

α/q >

√
α

q
+
√

β −
√

α−
√

qβ

⇔ 0 >
√

β −
√

α−
√

qβ

⇔ 0 > 1−
√

α/β −√q

⇔ √
q > 1−

√
α/β

⇔ q > qlc.
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By the same procedure we can show that if q > qlc then there is no solution (c∗, l∗) such that

the equation system consisting of equations (4.43) and (4.44) either. The following figure shows the

relationship between these two curves when q 6= qlc. In this figure a≡
√

D√
α

q +
√

β
and b≡

√
qD√
β

.

Item G

In this Item we show how to obtain q̂lc. Plugging l∗ = (
√

q
q̂l
−1)r into inequality (4.25) we get

β r2 ≥ q̂l[D+(2
√

Dβ −βη)l∗+β l∗2]

⇒ β (

√
q
q̂l

r− r)2 +(2
√

Dβ −βη)(

√
q
q̂l

r− r)+D− β r2

q̂l
≤ 0

⇒ βy2 +(2
√

Dβ −βη)y+D− β r2

q̂l
≤ 0, (4.47)

where y≡
√

q
q̂l

r− r. Then the solutions of equation

βy2 +(2
√

Dβ −βη)yD− β r2

q̂l
= 0

are

y1,2 =
−(2

√
Dβ −βη)±

√
(2
√

Dβ −βη)2−4β (D−β r2/q̂l)

2β
.

The existence of the solutions requires that

(2
√

Dβ −βη)2−4β (D−β r2/q̂l)≥ 0,

from which we can get

(2
√

Dβ −βη)2−4β (D−β r2/q̂l)≥ 0

⇒ (2
√

Dβ −βη)2−4βD+4
β 2

α
((
√

D−
√

β r)2 +βηr)≥ 0

⇒ 4
β 2

α
[(
√

D−
√

β r)2 +βηr]≥ 4βη
√

Dβ −β
2
η

2

⇒ α ≤
4β 2[(

√
D−

√
β r)2 +βηr]

4βη
√

Dβ −β 2η2

⇒ α ≤
β [(
√

D−
√

β r)2 +βηr]

D(η
√

β/D− 1
4 η2β/D)

⇒ α ≤
β [(
√

D−
√

β r)2 +βηr]
D( η√

D/β
)(1− 1

4
η√
D/β

)
≡ αl.
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Therefore the inequality (4.47) requires y ∈ [y2,y1]. By Assumption 1 we have −(2
√

Dβ −βη)/2β <

0. Due to q > q̂l , we must have y1,2 > 0. It is easy to check y2 < 0. Therefore y2 is not the solution we

want. To guarantee y1 > 0, we must have 4β (D−β r2/q̂l)< 0, that is α < β

D((
√

D−
√

β r)2 +βηr)≡

α3. By Assumption 1 we have α3 < αl . Hence the existence of a positive y1 requires α ≤ α3.

y≤ y1

⇒
√

q
q̂l

r− r ≤ y1

⇒ √
q≤
√

q̂l(r+ y1)

r

⇒ q≤ q̂l(
r+ y1

r
)2

⇒ q≤ q̂l

{
r+ 1

2β

[
(βη−2

√
Dβ )+

√
(2
√

Dβ −βη)2−4β (D−β r2/q̂l)
]}2

r2 ≡ q̂lc.

Item H

In this Item we show that when q1 and q2 exist and q2 ≥ q1, we always have q2 > q̂c. By equation

(4.33) we have

q2 =

{(2−η
√

β/D)+
√
(2−η

√
β/D)2−4(1−α/β )

2

}2

.

Then

√
q2 ≥

2−η
√

β/D
2

= 1− 1
2

η

√
β

D

≥ 1− 1
2

√
β

D
(

√
D
β
− r) by Assumption 1

= 1− 1
2
(1− r

√
β

D
)

=
1
2
+

1
2

r

√
β

D

≥ r

√
β

D
by r/

√
D/β < 1 from Assumption 1

=
√

q̂c.

Therefore q2 > q̂c.
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Item I

Possibility 1

First we show that q1 ≥ q̂c as long as q2 ≤ 1. Since

q1,2 =

{(2−η
√

β/D)∓
√

(2−η
√

β/D)2−4(1−α/β )

2

}2

,

then q2 ≤ 1 implies that

(2−η
√

β/D)+
√
(2−η

√
β/D)2−4(1−α/β )

2
≤ 1

⇒ −η
√

β/D+

√
(2−η

√
β/D)2−4(1−α/β )≤ 0

⇒
√

(2−η
√

β/D)2−4(1−α/β )≤ η
√

β/D.

Then

√
q1 =

(2−η
√

β/D)−
√

(2−η
√

β/D)2−4(1−α/β )

2

≥
(2−η

√
β/D)−η

√
β/D

2

= 1−η

√
β

D

=

√
β

D
(

√
β

D
−η)

≥
√

β

D
r by Assumption 1

=
√

q̂c.

Second we show that q2 ≤ 1 requires β (η
√

β/D− βη2/4D) ≤ α ≤ βη
√

β/D. Since the ex-

istence of q2 requires α ≥ β (η
√

β/D− βη2/4D), then we only need to show q2 ≤ 1 requires that
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α ≤ βη
√

β/D.

q2 ≤ 1

⇒
(2−η

√
β/D)+

√
(2−η

√
β/D)2−4(1−α/β )

2
≤ 1

⇒ −η
√

β/D+

√
(2−η

√
β/D)2−4(1−α/β )≤ 0

⇒
√

(2−η
√

β/D)2−4(1−α/β )≤ η
√

β/D

⇒ (2−η
√

β/D)2−4(1−α/β )≤ β

D
η

2

⇒ 4−4η
√

β/D+
β

D
η

2−4+4
α

β
≤ β

D
η

2

⇒ α

β
≤ η

√
β/D

⇒ α ≤ βη
√

β/D.

Possibility 2

Now we are going to show that q1 ≥ q̂c and q2 > 1 requires that βη
√

β/D ≤ α ≤ β

D [(
√

D−√
β r)2 + rηβ ]. By the algebra in Possibility 1 we know that q2 > 1 implies α ≥ βη

√
β/D. Now

we only need to show q1 ≥ q̂c implies α ≤ β

D [(
√

D−
√

β r)2 + rηβ ].

q1 ≥ q̂c

⇒
(2−η

√
β/D)−

√
(2−η

√
β/D)2−4(1−α/β )

2
≥ r
√

β/D

⇒
√

(2−η
√

β/D)2−4(1−α/β )≤ (2−η
√

β/D)−2r
√

β/D

⇒ (2−η
√

β/D)2−4(1−α/β )≤ (2−η
√

β/D)2−4r
√

β/D(2−η
√

β/D)+4r2 β

D

⇒ −4+4α/β ≤−4r
√

β/D(2−η
√

β/D)+4r2 β

D

⇒ α

β
≤ 1−2r

√
β/D+ r2

β/D+β rη/D

⇒ α ≤ β

D
[(
√

D−
√

β r)2 + rηβ ].

Item J

In this Item we prove Remark 4.3.
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First, we are going to show that if α ≤ α3 then q̂l ≤ q̂c.

q̂l ≤ q̂c

⇔ αr2

(
√

D−
√

β r)2 +βηr
≤ β r2

D

⇔ α ≤ β

D
[(
√

D−
√

β r)2 +βηr] = α3

It is easy to check that the equality holds when α = α3.

Then we are going to show that if α < α3 then q̂c ≤ q̂lc. To show this we first show when α = α3,

we have q̂c = q̂lc. Then we are going to show that if α < α3 then ∂ q̂lc
∂α

< 0. Since ∂ q̂c
∂α

= 0 then the result

follows.

We have shown that if α = α3, then q̂l = q̂c. Therefore, when α = α3 we will have

q̂lc

= q̂c

{
r+ 1

2β

[
(βη−2

√
Dβ )+

√
(2
√

Dβ −βη)2−4β (D−β r2/q̂c)
]}2

r2

= q̂c

{
r+ 1

2β

[
(βη−2

√
Dβ )+

√
(2
√

Dβ −βη)2−4β (D− β r2

β r2/D)
]}2

r2

= q̂c.

Plugging q̂l
αr2

(
√

D−
√

β r)2+βηr
into equation (4.28) we have

q̂lc

=
α

(
√

D−
√

β r)2 +βηr

{
r+

(βη−2
√

Dβ )+

√
β 2η2−4βη

√
Dβ + 4β 2

α
((
√

D−
√

β r)2 +βηr)

2β

}2

=
1

(
√

D−
√

β r)2 +βηr

{
(r+

η

2
−

√
D
β
)
√

α +
√

α

√√√√η2

4
−η

√
D
β
+

4
α
((
√

D−
√

β r)2 +βηr)
}2

=
1

(
√

D−
√

β r)2 +βηr

{
(r+

η

2
−

√
D
β
)
√

α +

√√√√(
η2

4
−η

√
D
β
)α +4((

√
D−

√
β r)2 +βηr)

}2
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Define Φ≡ (r+ η

2 −
√

D
β
)
√

α +

√
(η2

4 −η

√
D
β
)α +4((

√
D−

√
β r)2 +βηr). Therefore we have

∂ q̂lc

∂α
=

2Φ
∂Φ

∂α

(
√

D−
√

β r)2 +βηr
.

We can check that Φ≥ 0 when α ≤ α3. So sign( ∂ q̂lc
∂α

) = sign( ∂Φ

∂α
). Next we need to show ∂Φ/∂α < 0.

∂Φ

∂α
= (r+

η

2
−

√
D
β
)

1
2
√

α
+

η2

4 −η

√
D
β

2
√
(η2

4 −η

√
D
β
)α +4((

√
D−

√
β r)2 +βηr)

By Assumption 1 we have r +η/2−
√

D/β < 0 and η2/4−η
√

D/β < 0. Therefore ∂Φ/∂α < 0

when α < α3.

In Item I we show that q1 > q̂c is equivalent to α < α3. The part that “if α ≤ α3 then q̂lc ≤ q1” has

not been analytically proved yet. Numerical method was employed and no violation was found.
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