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CHAPTER 1. GENERAL INTRODUCTION

1.1 Overview

This dissertation is a collection of three studies that investigate welfare measurement, cau-

sation of addition emission, and effectiveness of policy in environmental economics. The first

study focuses on the discrepancy from different data sources in nonmarket valuation. This study

suggests a new valuation method to solve one common problem shown frequently in combining

RP and SP data. The second study examines the significance of the relation between two

critical concerns, obesity and vehicle emission. This study shows, even though the impact of

obesity on gasoline consumption seems to be significantly large in either one side or aggregate

data level, the significance is ambiguous or the magnitude of impact is not sufficiently large

study after removing unobserved household characteristics using household-level data. The

third study investigates the rebound effect in vehicle use, a critical parameter in cost-benefit

analyses of increases in the corporate average fuel economy (CAFE) standards. The following

illustrates the ideas and findings of three chapters contained within this dissertation.

The first study, “Combining Revealed and Stated Preference Data: A Latent Class Ap-

proach,” proposes a new framework to combine revealed and stated preference data when the

convergent validity assumption is not hold.

A substantial literature exists combining data from revealed preference (RP) and stated

preference (SP) sources, aimed either at testing for the convergent validity of the two approaches

used in nonmarket valuation or as a means of drawing on their relative strengths to improve the

ultimate estimates of value. In doing so, it is assumed that convergence of the two elicitation

approaches is an “all or nothing” proposition; i.e., the RP and SP data are either consistent with

each other or they are not. The purpose of this paper is to propose an alternative framework
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that allows for possible divergence among individuals in terms of the consistency between their

RP and SP responses. In particular, we suggest the use of the latent class approach to segment

the population into two groups. The first group has RP and SP responses that are internally

consistent, while the remaining group exhibits some form of inconsistent preferences. An EM

algorithm is employed in an empirical application that draws on the moose hunting data set

used in earlier combined RP and SP exercises. The empirical results suggest that somewhat less

than half the sample exhibits inconsistent preferences. We also examine differences in welfare

estimates drawn from the two classes.

The second study, “Does Obesity Matter for the Environment? Evidence from Vehicle

Choices and Usage” studies the interesting link between obesity and vehicle emission, using

unique household-level data.

The rising rate of obesity has become a prominent social concern in the U.S. and through-

out the world. Several recent studies examine how obesity influences households’ driving or

vehicle choice behavior. While the results in prior studies are compelling, the studies suffer

from two shortcomings. First, prior studies rely on aggregate data (national or county level),

rather than individual or household level observations, potentially masking important factors

determining individual choices for vehicles and driving. Second, while previous works able to

establish a link between obesity and vehicle choice or driving, linking vehicle choice, in turn,

to overall emissions requires information regarding vehicle miles driven. The objective of this

study is to address these two limitations, using household observations from the Panel Study

of Income Dynamics (PSID), jointly modeling the impact of obesity on the vehicle choice and

vehicle miles traveled (VMT). In particular, we investigate the impact of obesity and overweight

by employing both reduced-form (linear panel model) and structural model (joint discrete and

continuous choice model). Our study shows that the prevalence of obesity in 2005 has remained

at the 1981 level, and gasoline consumption would be 3% saved in the reduced-form approach.

While the rate of overweight people in 2005 has remained at the 1981 level, only 1.6% less

gasoline would be demanded using the structural-approach. Our empirical findings suggest

that the comprehensive impact of obesity and overweight on gasoline consumptions is little

or ambiguous in contrast to the results of prior studies considering either driving or vehicle
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choices.

The third study, “Vehicle Fuel Efficiency and the Rebound Effect: Evidence from U.S. Panel

Data” examines the rebound effect of vehicle usage. This study revisits one of the classical

issues in energy economics using U.S. panel data which have never used in this area.

The Corporate Average Fuel Economy (CAFE) standards are a centerpiece of the United

States’ efforts to control mobile source air pollution. In addition to being politically expedient

relative to a more direct gasoline or carbon tax, they may also be more effective as a pol-

icy instrument, if, as the literature suggests, consumers are subject to the so-called “energy

paradox,” undervaluing the fuel cost savings from more fuel efficient vehicles. However, at the

same time, there are also risks associated with CAFE standards. In particular, to the extent

that individuals respond to increased fuel efficiency by driving more, a response known as the

“rebound effect,” the impact of the standards may be significantly diminished. A number of

papers have sought to quantify the rebound effect, but the results have varied substantially. A

key concern with this literature is that it is largely based on cross-sectional data sources, mak-

ing it more difficult to control for the endogeneity of fuel economy. The purpose of this paper

is to address these endogeneity concerns through the use of panel data techniques, drawing on

data from the Panel Study of Income Dynamics (PSID). In contrast to prior studies using only

cross-sectional data, we find the elasticity of vehicle miles traveled (VMT) with respect to both

fuel economy and fuel price to be statistically significant. Our results show that a 1% increase

in fuel prices or fuel economy (MPG) leads to a 0.41 to 0.67% increase in driving miles. We

also examine heterogeneity of these elasticities across the income deciles. We find evidence that

low income households are more responsive to changes in gasoline prices, but less sensitive to

changes in fuel economy.

1.1.1 Dissertation Organization

The structure of the dissertation is organized as follows. The next three chapters consist

of three independent papers regarding non-market valuation and energy economics, overall

environmental economics. The dissertation closes with an overall summary of our findings and

a general discussion of possible extensions.



4

CHAPTER 2. COMBINING REVEALED AND STATED PREFERENCE

DATA: A LATENT CLASS APPROACH

2.1 Introduction

A substantial literature has emerged in the nonmarket valuation arena aimed at combin-

ing data from revealed preference (RP) and stated preference (SP) sources. The goal of such

efforts vary. In some cases, the objective is to test the convergent validity of the RP and SP

approaches [e.g., Azevedo et al. (2003), Huang et al. (1997), and Whitehead et al. (2010)]. In

other instances, the two data sources are viewed as complementary, with RP data providing

values grounded in individual behavior (rather than intentions), while SP data both expands

on the range of variation in environmental amenities from what is observed in RP data and

introduces experimental control over the impact of unobservable factors [e.g., von Haefen and

Phaneuf (2008)]. To the extent that the RP and SP data are generated by the same underlying

preferences, this approach argues that combining the two provides more accurate measures of

value. Early examples along these lines include Cameron (1992) and Adamowicz et al. (1994),

while more recent applications include Dosman and Adamowicz (2006) and Eom and Larson

(2006). In either case, it is typically assumed that convergence between the RP and SP data

sources is an “all or nothing” proposition; i.e., the RP and SP data are either consistent with

each other or they are not. The purpose of this paper is to propose an alternative framework

that allows for possible divergence among individuals in terms the consistency between their

RP and SP responses. In particular, we suggest the use of latent class approach to segment

the population into two groups. The first group has RP and SP responses that are internally

consistent, while the remaining group exhibits some form of inconsistent preferences. Examin-

ing differences between the preferences of the two groups provides additional insights into the
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wedge between RP and SP responses. The framework also opens up the possibility of modeling

class membership, along the lines employed by Boxall and Adamowicz (2002), with the goal of

mitigating the behavior of those in the “inconsistent” class in subsequent RP/SP exercises.

The remainder of the paper is organized as follows. Section 2 provides a brief overview of

the literature combining stated and revealed preference data. We then describe the proposed

latent class model in Section 3, along with a description of the EM algorithm used in estimation.

Section 4 presents a generated data experiment to illustrate the performance and characteristics

of the model under different parameterizations, with particular attention paid to the size of the

“inconsistent” class as a share of the population. These Monte Carlo exercises illustrate the

impact, both in terms of parameter and welfare estimates, of ignoring discrepancies between

the underlying RP and SP data generating processes, particularly when the “consistent” class is

only a small share of the target population. We illustrate our framework in Section 5 using the

Moose Hunting data first introduced by Adamowicz et al. (1997) in their RP/SP exercise, and

subsequently employed by von Haefen and Phaneuf (2008). Our results indicate that nearly

a half of the sample provided responses that suggest different RP and SP data generating

processes and that welfare predictions are sensitive to the choice of which subgroup is used in

valuing changes to the environment. The paper wraps up in Section 6 with a summary and

conclusions.

2.2 The Literature on Combining RP/SP Data Sources

The idea of combining information from revealed preference and stated preference sources

is by no means a new one, with papers appearing in the marketing, transportation, health and

environmental economics literatures. In their recent review, Whitehead et al. (2008) note that

the earliest efforts along these lines appeared in the transportation and marketing literatures

nearly twenty-five years ago, with papers by Ben-Akiva and Morikawa (1990) and Ben-Akiva

et al. (1994). Comparisons between RP- and SP- based welfare measures have, of course,

been around for years in the environmental arena, including the pioneering goose hunting

permit study by Bishop and Heberlein (1979). However, the objective of such comparisons was

typically a convergent validity test, with the usual, though not universal, presumption being
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that the RP results were more reliable as they were based on actual behavior.1

The earliest efforts to explicitly combine the two sources in the environmental literature

appeared somewhat later, with papers by Cameron (1992) and Adamowicz et al. (1994). These

authors argued that RP and SP data should be viewed as complementary, rather than com-

peting, sources of information. In particular, two key limitations of the revealed preference

data are (a) insufficient variation in environmental amenities of interest and (b) the potential

for the environmental amenities to be confounded with other observed or unobserved factors.

Proposed environmental policy scenarios often involve changes that are outside of the range

of historical environmental conditions, making extrapolation of preferences for such changes

tenuous and dependent on strong assumptions regarding the form of individual preferences.

More fundamentally, there may simply not be sufficient historical variation in the environmen-

tal attribute of interest to identify its impact on preferences. A related problem is that what

variation is observed for an environmental amenity may be correlated with other observed or

unobserved factors impacting consumer preferences, making it difficult to disentangle its causal

effect on consumer behavior. Stated preference data, on the other hand, provides the researcher

with greater control over the variation in environmental conditions presented to survey partic-

ipants. In many cases, orthogonal treatments can be employed, though such treatments may

be limited by the need to present realistic choice scenarios. von Haefen and Phaneuf (2008)

highlight the fact that the experimental control associated with stated preference surveys can

be used to isolate the causal impact of an environmental amenity on individual behavioral,

avoiding problems of omitted variables bias encountered in stand-alone RP exercises. Eom and

Larson (2006) illustrate the use of SP data, in combination with RP data, to identify non-use

(or passive use) values that simply cannot be identified with RP data alone.

The major concern with stated preference data sources is that they might be susceptible to

hypothetical bias. Revealed preference data can be used to “discipline” the stated preference

responses with information on choices observed in the marketplace. One strategy is to rely

primarily upon RP data to estimate the key preference parameters, such as the marginal utility

1See Randall (1994) and Azevedo et al. (2003) for alternative perspectives on the presumed reliability of RP
results.
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of income, leaving SP with the role of “filling-out” the marginal impacts of environmental

amenities on individual preferences [e.g., von Haefen and Phaneuf (2003)]. Alternatively, if

both sources are viewed as suspect, combining the two data sources may provide the best

overall picture of consumer preferences.

The evidence regarding combining RP and SP data sources is mixed. Adamowicz et al.

(1994) and Adamowicz et al. (1997), for example, find “. . . RP-SP parameter equality, once

variance heterogeneity is accounted for, and . . . that joint RP-SP models are superior to RP

models alone.” In contrast, von Haefen and Phaneuf (2008), using the same data as Adamowicz

et al. (1997), reject consistency between the RP and SP responses, as do Azevedo et al. (2003)

in a different setting. Both Jeon and Herriges (2010) and Whitehead et al. (2008) reject

consistency between RP and SP responses in their respective studies, though the differences

between the welfare measures derived from the RP and SP sources are not substantial. In

all these studies, the tests for consistency are for the sample as a whole. In the next section,

we outline a latent class model which estimates the proportion of the sample that exhibits

inconsistent RP and SP preferences.

2.3 Model

This section begins by describing a single class joint model of RP and SP data in a repeated

discrete choice setting. The structure of the model is similar to the one employed by von Haefen

and Phaneuf (2008). The model is then extended using a latent class framework, allowing for

some portion of the sample (s) to exhibit consistent RP and SP preferences, while the RP and

SP parameters diverge for the remainder of the sample. As is typical of the recent literature

on latent class models [e.g., Breffle et al. (2011); Evans and Herriges (2010); Kuriyama et al.

(2010)], we propose estimating the parameters of the model using of an EM algorithm so as to

avoid numerical difficulties often encounter with standard maximum likelihood estimation of

latent class models [see, e.g., Train (2009)].
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2.3.1 Combining RP and SP data

There are two common issues encountered when combining RP and SP recreation demand

data. First, the relevant site attributes are generally different for the two data sources. Of

particular concern in the context of the modeling RP choices is the fact that the analyst may

observe only a subset of the choice attributes impacting an individual’s decision. To the extent

that there are unobserved choice attributes that are correlated with the attributes available to

the researcher, steps must be taken to control for potential omitted variables bias. In contrast,

stated preference choices can be thought of as providing the analyst with complete information

on the relevant choice attributes, assuming of course that the SP study is well-designed and the

respondents fully understand the instructions. To the extent that there are unobservable indi-

vidual or site attributes impacting an individual’s choices, the random assignment of observable

treatment affects should avoid potential omitted variables bias. Second, given the differences

in the decision making processes underlying the RP and SP data sources, there are likely to be

differences in the unobservable factors impacting the corresponding decisions. These differences

manifest themselves in differences between the scale parameters associated with the RP and

SP portions of the model. Control for changes in the scale parameters of the two models is

important in testing for consistency between the two data sources [see, e.g., Adamowicz et al.

(1994) and Adamowicz et al. (1997)].

Starting with the revealed preference portion on the model, the data provide information

on the number of times (nRPij ) individual i chose to visit each of j sites over the course of Ti

trips.2 The utility (URPijt ) that individual i receives from choosing site j on trip t is assumed to

be a linear function of observed (XRP
j ) and unobserved (X̃RP

j ) site specific attributes, travel

costs to the site (pij), and an idiosyncratic error components (µRP εijt), where εijt is an iid

2The model specified here is a site selection model, rather than a model that also characterizes the partici-
pation decision, as in the repeated logit framework of Morey et al. (1993). We focus on the site selection aspect
of the individual’s decision to be consistent with the earlier analysis of this same database by Adamowicz et al.
(1997) and von Haefen and Phaneuf (2008).
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Type I extreme value error term and µRP is the associated scale factor.3 Formally,

URPijt = XRP
j βRP + X̃RP

j β̃RP + pRPij γRP + µRP εijt

= XRP
j βRP + ξRPj + pRPij γRP + µRP εijt (2.1)

= αRPj + pRPij γRP + µRP εijt (2.2)

= V RP
ij + µRP εijt

where Vij = αRPj + pRPij γRP , ξRPj ≡ X̃RP
j β̃RP and

αRPj ≡ XRP
j βRP + ξRPj . (2.3)

Absent any outside information, the impact of the observable factors XRP
ij on individual choices

cannot be directly disentangle from the impact of the unobservable factors summarized by

ξRPj in equation (2.1). Instead, only the parameters in (2.2) can be estimated, including the

alternatives specific constants (ASC’s) αRPj .4 However, as suggested by Murdock (2006), a

second stage regression can be use to identify βRP by estimating equation (2.3) using fitted

values for the alternative specific constants (i.e., the αRPj ’s) and properly instrumenting for the

XRP
ij .

Turning to the stated preference data, the individuals are presented with a series of H

choice scenarios, with each choice scenario involving K alternatives (K = 3 in the Moose

Hunting data set). The utility USPikh that individual i associates with alternative k from choice

scenario c is assumed to be a linear function of the designed characteristics for each of the

choice alternatives (XSP
ikh), the cost of the presented alternative (pikh), and an idiosyncratic

error components (µSP εikh), where εikh is an iid Type I extreme value error term and µSP is

the associated scale factor. Formally

USPikh = XSP
kh β

SP + pSPikhγ
SP + µSP εikh. (2.4)

There are several features of (2.4) worth noting. First, there are no unobservable factors

associated with the SP choice utilities, except of course those imbedded in the idiosyncratic

3Individual specific characteristics such as age, gender and education can also impact the site utilities, typically
through interactions between individual and site characteristics. For now, we ignore these interaction effects for
the sake of notational simplicity, but incorporate them later in both the Monte Carlo analysis and subsequent
application.

4Of course, only J − 1 ASC’s can be estimated, with one site’s ASC normalized to zero.
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error term. The random assignment of choice characteristics breaks the potential correlation

between the observable treatments and any unobserved factors influencing the individual’s

decision. This is one of the key strengths of the stated preference approach. Second, while URPijt

is constant over the choice alternatives (with, of course, the exception of the idiosyncratic error

term), the utilities associated with the SP choices can vary substantially over the alternative

choice occasions. This is a second key strength of the SP data.

Without further restrictions on the two sources of preference information, neither of the

scale parameters µRP and µSP are identified and must be normalized to 1. The corresponding

contribution of an individual to the likelihood function is then given by:

LICi
(
θIC
)

=


J∏
j=1

[
exp(αRPj + pRPij γRP )∑J
m=1 exp(αRPm + pRPim γRP )

]nRPij  (2.5)

·
H∏
h=1

 K∏
k=1

{
exp(XSP

ikhβ
SP + pSPikhγ

SP )∑K
r=1 exp(XSP

irhβ
SP + pSPirhγ

SP )

}1SPikh
 ,

where 1SPikh = 1 if individual i chose alternative k in SP choice scenario h and equals zero

otherwise and θIC ≡ (αRP• , γRP , βSP , γSP ) denotes the parameter of the model, with αRP• ≡

(αRP1 , . . . , αRPJ−1) denoting the complete vector of ASC’s. The IC subscript (i.e., “inconsistent”)

on the likelihood function is used to indicate that this specification does not impose consistency

between preferences underlying the RP and SP responses.

The insight of von Haefen and Phaneuf (2008) is that, by combining the two data sources

and imposing consistency in the underlying data generating processes, portions of the RP

preferences parameters can now be identified. Specifically, assuming that βRP = βSP = βC

and γRP = γSP = γC , the corresponding likelihood function becomes:

LCi
(
θC
)

=


J∏
j=1

[
exp(XRP

j βC + ξCj + pRPij γC)∑J
m=1 exp(XRP

j βC + ξCj + pRPim γC)

]nRPij  (2.6)

·
H∏
h=1

 K∏
k=1

{
exp

[
ω(XSP

ikhβ
C + pSPikhγ

C)
]∑K

r=1 exp
[
ω(XSP

irhβ
C + pSPirhγ

C)
]}1SPikh

 .
where ω ≡ µRP /µSP is the ratio of RP and SP scale parameters and θC ≡ (ξC• , γ

C , βC , ω)

and ξC• ≡ (ξC1 , . . . , ξ
C
J−1). Note that, unlike in the case when consistency was not imposed, we

can now estimate the composite impact of the unobservable factors (i.e., the ξCj ’s). Also note
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that in imposing consistency we are not requiring that the scale parameter be the same across

the two data sources.

2.3.2 Latent Class Model

The standard approach in the literature is to estimate both the consistent and inconsistent

models (i.e., using the likelihood functions in equations (2.6) and (2.5), respectively) and to

choose between the two specifications based standard tests. The model being proposed in this

paper is to consider an in-between approach, allowing for the possibility that individuals differ

in terms of the consistency of their RP and SP responses. In particular, we adopt latent class

model with two distinct groups: Class C in which individual exhibit consistent preference

parameters across their RP and SP data sources as in depicted in (2.6) and Class IC in which

individuals have disparate RP and SP parameters as depicted in (2.5). Class membership is

not known to the analysts. Therefore, the overall likelihood function (i.e., unconditional on

class membership) for individual i can be formulated as

Li(θ) = sLCi
(
θC
)

+ (1− s)LICi
(
θIC
)

(2.7)

where s ∈ [0, 1] is the probability of being in the consistent class and θ ≡ (θC , θIC , s)

denotes the full set of parameters to be estimated. The class membership probability can be

modeled as a function of individual characteristics, including the individuals socio-demographic

or attitudinal characteristics [see, e.g., Boxall and Adamowicz (2002)]. The advantage of this

approach is that, by understanding the factors that influence membership in the inconsistent

class, researchers may be able target corrective measures to avoid the inconsistencies themselves.

For now, however, we focus on the simpler case is which the probability of class membership is

a constant.

Equation (2.7) can used directly to estimate all of the model’s parameters, including the

class membership probability s, by standard maximum likelihood techniques. However, latent

class models are notoriously difficult to estimate directly. Instead, following the current practice

in the latent class literature [e.g., Morey et al. (2006), Evans and Herriges (2010)], we employ
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an Expectation-Maximization (EM) algorithm. The next subsection briefly describes steps

involved in the EM algorithm used in our applications.

2.3.3 EM algorithm

EM algorithms can be useful for maximizing a likelihood function when standard optimiza-

tion procedures can be numerically challenging, which is often the case in the presence of latent

variables and particularly the case in latent class models. In our framework, the latent variable

is class membership ci, which equals C if the individual belongs to the consistent class and

equals IC if the individual belongs to the inconsistent class, with Pr(ci = C) = s.

The EM algorithm is an iterative procedure, alternating between two steps: 1) Calculating

an expectation as a function of the current iteration’s parameter values and 2) maximizing that

expectation with respect to the parameters of the model. Specifically, following the general

notation in chapter 14 of Train (2009), let θt denote the value of the parameters at iteration t.

To maximize (2.7) using the EM algorithm, we define a new function evaluated at θt that can

be used to obtain the parameter vector’s next iteration; i.e., θt+1. Specifically, let

E(θ|θt) ≡
N∑
i=1

{
hCit log

[
sLCi (θC)

]
+ hICit log

[
(1− s)LICi (θIC)

]}
=

N∑
i=1

[
hCit log(s) + hICit log(1− s)

]
+

N∑
i=1

hCit log
[
(LCi (θC)

]
+

N∑
i=1

hICit log
[
LICi (θIC)

]
(2.8)

where s is the share of the population in class C and hcit denotes the probability of membership

in class c (c = C, IC) conditional on the individual’s observed choices. Using Bayes rule:

hcit = h(ci = c|y•, st) =
stLci (θc)

stLCi (θC) + (1− st)LICi (θIC)
(2.9)

where y• denotes the full set of choices (i.e., the nRPij ’s and 1SPikh’s). Forming this expectation

represents the first step in the EM algorithm.

The second step involves maximizing E(θ|θt) with respect to θ. Conveniently, as can be seen

in equation (2.8), E(θ|θt) is separable into three distinct components that can be independently
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maximized. In particular, maximizing E(θ|θt) with respect to s corresponds to maximizing

E(s|θt) =

N∑
i=1

[
hCit log(s) + hICit log(1− s)

]
, (2.10)

yielding

st+1 =

∑N
i=1 h

C
it∑N

i=1(h
C
it + hICit )

. (2.11)

Maximizing E(θ|θt) with respect to θc (c = C, IC) corresponds to maximizing

E(θc|θt) =
N∑
i=1

hcit log [(Lci (θc)] , (2.12)

which is just class-specific maximum likelihood estimation using hcit as weights. The updated

parameters (i.e., θct+1) are the corresponding solutions to these maximizations; i.e.,

θct+1 = argmax
θc

N∑
i=1

hcit log [(Lci (θc)] . (2.13)

Thus, the steps for estimation of the latent class model using the EM algorithm are

1. Specify initial values for the share and coefficients in each class. We set s0 = 0.5 and

obtain θc0 for class using unweighted maximum likelihood for that class.

2. Calculate the probability of being in each class conditional on the observed choices using

(2.9).

3. Update the share of class C using (2.11).

4. Update the parameters of each class by estimating weighted MLE using (2.13)

5. Repeat steps 2-4 until convergence.

2.4 Generated Data Experiments

In this section, we describe a series of generated data experiments designed to illustrate

the latent class model introduced in Section 3. Particular attention is paid to the performance

of the model given different sample sizes and the proportion of the population belonging to

the consistent class, as well as the impact of erroneously assuming that this class proportion is



14

either zero or 1. Throughout, the pseudo-data sets were structured so as to mimic the general

structure of the data set used in the application in Section 5.

As described in previous section, each individual is assumed to belong to either the con-

sistent class (ci = C) or inconsistent class (ci = IC), with Pr(ci = C) = s. Using a slight

generalization of the model from the previous section (i.e., incorporating interactions between

site and individual characteristics), the RP and SP conditional utilities for individuals belonging

to the consistent class are assumed to take the form:

URPijt = XRP
j βC + ZiX

RP
j ρC + pRPij γC + ξj + µRP εijt (2.14)

USPikh = XSP
k βC + ZiX

SP
k ρC + pSPik γ

C + µSP εikh

where Zi denotes an individual characteristics such as age, gender or education. On the other

hand, for individuals belongs to the inconsistent class, these conditional utilities are assumed

to take the form:

URPijt = XRP
j βRP + ZiX

RP
j ρRP + pRPij γRP + ξj + µRP εijt (2.15)

USPikh = XSP
k βSP + ZiX

SP
k ρSP + pSPik γ

SP + µSP εikh

In the generated data experiments, we consider a total of 15 scenarios varying the scenarios

along two dimensions:

1. The probability of membership in the consistent class, with s ∈ {0.1, 0.25, 0.5, 0.75, 0.9};

and

2. The number of observations, with N ∈ {200, 500, 1000}.

In all of the scenarios, the number of alternatives available on each choice occasion is fixed in

the RP and SP settings, with J = 20 and K = 3, respectively. The corresponding total number

of choice occasions are likewise fixed for the RP and SP settings, with T = 10 and H = 15,

respectively. Finally, for each scenario, 100 generated data sets were constructed.

The specific steps used to generate data sets are as follows:
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1. The vector of individual characteristics (Zi), site characteristics (Xj), and travel costs

(pij) were drawn from the following distribution:

Zi ∼ N(0, 1)

XRP
j ∼ N(0, 1)

XSP
k ∼ N(0, 2)

pRPij ∼ logN(0, 1)

pSPik ∼ logN(0, 2)

ξj ∼ N(−2, 0.05)

2. Each individual in the sample was then randomly assigned to either the consistent class

(i.e., ci = C) or the inconsistent class (i.e., ci = IC), with Pr(ci = C) = s.

3. Depending upon the class to which they were assigned, either equations (2.14) or equa-

tions (2.15) were then used to generate the conditional utilities URPijt and USPikh for each

choice occasion and alternative employing the following parameters:

• βC = −2.0;

• ρC = −3.0;

• γC = −0.8; and

• ω = 0.4

for the consistent class and

• βRP = −1.2;

• ρRP = −0.7;

• γRP = −1.8;

• βSP = −0.6;

• ρSP = −0.5; and

• γSP = −0.4.
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for the inconsistent class. For both classes, the error terms (i.e., εijt’s and εikh’s) were

drawn from the Type I extreme value distribution.

4. Given the conditional utilities URPijt and USPikh for each choice occasion, the individual’s

choices (i.e., 1RPijt and 1SPikh) were then determined by the alternative yielding the highest

utility.

For each generated sample, we estimate three different models:

• Model 1 : The latent class model described in Section 4 and based on the likehood function

in equation (2.7);

• Model 2 : The fully inconsistent model based on the likelihood function in equation (2.5);

and

• Model 3 : The fully consistent model based on the likelihood function in equation (2.6).

We then compare and contrast the three models in terms of the implied welfare impact from

closing the most popular site in the sample.

Table 2.1 summarizes the resulting parameter estimates for Model 1.5 In particular, for

each scenario (i.e., combination of s and N), the table reports the mean parameter estimates

across the 100 replications, as well as the corresponding 5th and 95th percentile values. Since

Model 1 is consistent with the underlying data generating process, it is not surprising that

the mean parameter estimates are generally quite close to the true parameters. However, the

estimates are less stable when the share of individuals in the consistent class (i.e., s) is quite

small. This is to be expected since the estimation then relies on relatively few individuals to

identify the parameters for the consistent class. Somewhat unexpected is the fact that the

parameter estimates are not as varied at the other extreme (i.e., when s = 0.9).

Parameter estimates using the other two models (i.e., Models 2 and 3), are provided in

Appendix Tables A.1 and A.2, respectively. Since these models are not consistent with the

5Estimates for the alternative specific constants αRPj and ξCj are not reported in Table 2.1 for the sake of
space, but are available from the authors upon request. Also, estimates for the parameters βRP are obtained
through a second stage regression based on the fitted alternative specific constants from the first stage and using
the relationship in (2.3).
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underlying data generating process, it is not surprising that they tend to yield greater depar-

tures from the underlying parameters of the model. In general, Model 2 performs relatively

well when most of the population is drawn from the inconsistent class (e.g. s = 0.1), whereas

Model 3 performs relatively well when most of the population is drawn from the consistent

class (e.g., s = 0.9).

Perhaps more important than the performance of a model in terms of individual parameter

estimates is its performance in estimating the welfare impacts of a proposed policy scenario.

Table 2 summarizes the performance of the three models in terms of estimating the average

welfare impact of two policy scenarios:

• Scenario A: Closure of site 1.

• Scenario B : Improvement in site quality for alternative 1. This corresponds to a fifty

percent reduction in XRP
1 .

For the latent class model (i.e., Model 1), the appropriate welfare measure is a weighted average

of the compensating variation from the consistent and inconsistent class models, with the

weights being the corresponding class probabilities; i.e.,

CV = s× CV C + (1− s)CV RP (2.16)

where s is the probability of being in the consistent class, with CV C and CV RP denote the

standard log-sum calculations based on the consistent class and inconsistent class RP parameter

estimates, respectively.

In contrast, the standard approaches in the literature are to either not impose consistency

across the RP and SP data source (as in Model 2), computing compensating variation based

on the RP parameter estimates, or to impose consistency for all individuals (as in Model 3),

computing compensating variation based on the constrained parameter estimates derived from

the two data sources.

Table 2.2 summarizes the mean absolute percentage errors (MAPE) associated with these

three approaches, i.e.

MAPE =
1

N

N∑
i=1

∣∣∣∣True Welfare Lossi −Welfare Loss Estimatesi
True Welfare Lossi

∣∣∣∣ (2.17)
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For all six experiments, the MAPEs are generally lowest for the latent class model (i.e.,

Model 1), which should be the case since it is in accord with the underlying data generating

process. For Scenario A (the closure of site 1), the MAPE’s from the latent class model lie

between 5% and 12%, with the errors diminishing as the available sample size increases. The

errors are larger for both single class specifications.

The MAPE’s are substantially larger for Scenario B, ranging from approximately 10 percent

when N = 1000 and s = 0.5 to over 70 percent when N = 200 and s = 0.10. This pattern is

not surprising. The larger errors for Scenario B are expected, since welfare calculation in this

case depends crucially on estimates of βRP , which are obtained from a second stage regression

of only J = 20 site alternative specific constants on site attributes XRP
j . The MAPE’s are

uniformly smallest for the latent class model when s = 0.5, with the population evenly divided

between the inconsistent and consistent classes, effectively providing a more balanced bases

for estimating the underlying class parameters. In contrast, when s = 0.1, only 10 percent of

the sample is assumed to be from the consistent class, providing little information for gleaning

the parameters of that class. As was the case for Scenario A, Scenario B generally yields

higher MAPE’s for the single class specifications. The consistent class model performs best

as the proportion of individuals in the consistent class is largest (i.e., s = 0.9), whereas the

inconsistent class model performs best as the portion of individuals in the inconsistent class is

largest (i.e., s = 0.1).

2.5 Application

2.5.1 Data

To illustrate our proposed latent class model, we reconsider the Moose Hunting data used by

both Adamowicz et al. (1994) and von Haefen and Phaneuf (2008) to examine the potential for

combining RP and SP data sources. The data for this study was collected from a sample of 422

individuals drawn from moose hunting license holders living in the Canadian towns of Drayton

Valley, Edson, Hinton, Edmonton, and Whitecourt. Individuals were initially contacted by

mail, with a follow-up phone call inviting them to attend a meeting. Of the 422 hunters
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initially contacted, 312 individuals (74%) agreed to attend the meeting. Of the 312 hunters

who confirmed attendance, 271 (87%) actually attended the meeting.6

The study provides both revealed preference (RP) and stated preference (SP) data. The

RP data consists of reported moose hunting trips to 14 wildlife management units (WMUs)

during 1992, as well as respondent socio-demographic characteristics. SP data takes the form of

a choice experiment in which each respondent was presented with a series of 16 choice scenarios

(i.e., H = 16) each including three alternatives (i.e., K = 3), with two of the alternatives in-

volving hypothetical sites while the third alternative was an opt-out (i.e., not hunting) option.7

Table 4.2 reports summary statistics for both individual and site characteristics.The mean

age of hunters in the sample was just under forty years, and they had an average of about 20

years of general hunting experience and about 16 years of experience hunting moose. More

than half of hunters completed high school and most of them reported incomes in the ranges

of $20,000 to $60,000. For both real (RP) and hypothetical (SP) sites, the alternatives are

defined in terms of six attributes: travel cost, moose population, level of congestion, access

within hunting area (no trail, cutlines or seismic lines), quality of road and the presence of

forest activity (logging).

2.5.2 Results

A total of four models were estimated using the Moose Hunting data:

1. SC-Consistent : A single class (SC) model imposing consistency across the RP and SP

data sources;

2. SC-RP : A single class model of preferences based only on the RP data;

3. SC-SP : A single class model of preferences based only on the SP data;

4. LC : A latent class model with a portion s belonging to the consistent class (denoted

LC-Consistent) and a portion (1−s) belong to the inconsistent class (denoted by LC-RP

and LC-SP for the revealed and stated preference components, respectively).

6See McLeod et al. (1993) for additional details regarding the sampling and data collecting procedures.
7In empirical setting, we include dummy variable for ‘not hunting’ (SP dummy) to capture impact of the

opt-out option.
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Tables 2.4 and 2.5 provide the resulting parameter estimates. Table 4 focuses on the core

parameters; i.e., the class share s in the case of the latent class model, the relative RP/SP

scale parameter ω identified only when consistency is imposed for a class, and the travel cost

parameters (i.e., the γ’s). Table 2.5 reports the main effect of site characteristics (i.e, the β’s)

and interactions between site characteristics and individual attributes (i.e., the ρ’s).8

Starting with Table 2.4, the latent class model indicates that the population is roughly

evenly divided between the consistent and inconsistent classes, with s = 0.53. Both the single

and latent class models indicate a significant difference in scales between the RP and SP

responses, with ω in the range of 0.18 to 0.22. This indicates that there is greater variability

in the unobservable components of individual preferences in the case of SP data relative to RP

data (i.e.; µRP < µSP ). Finally, while all of the specifications yield negative and statistically

significant travel cost coefficient, the γ’s vary substantially. Cross-model comparisons of the

estimated γ’s is difficult, since the scale parameter differences between the RP and SP models

cannot be estimated when consistency is not imposed. However, it does appear as though the

latent class structure highlights the gap between consistent and inconsistent preferences. In

particular, the marginal utility of income (−γ) is largest when it is imposed for only a portion

of the population, rather than for the population as a whole. Or, to put it another way, the

consistent class appears to consist of individuals whose choices are substantially influenced by

price.

Turning to Table 2.5, note that there are two sets of parameters being presented. The first

column of parameters are the main effects associated with the site characteristics; i.e., the β’s

in equation (1). For those models involving only the RP data, the β’s can generally only be

recovered in a second stage regression using the estimated ASC’s (i.e., the αj ’s) and equation

(3).9 However, with J = 20, the main effects for the eleven site characteristics used by von

Haefen and Phaneuf (2008) cannot be reasonably estimated and are not reported here. The

second set of parameters are the ρ’s in equation (14), reflecting interactions between individual

8The parameter estimates reported here for the single class models have the same signs and are similar in
magnitude to those reported in von Haefen and Phaneuf (2008), though the specifications differ in that von
Haefen and Phaneuf incorporate a mixed logit structure.

9One exception is the main effect for the “unpaved” site access, since this characteristic varies across sites
and individuals because individuals choose different roads to assess the sites.
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and site characteristics. In general, these parameters vary substantially across the various RP

and SP specifications, often changing signs and significance. The pattern of these parameters

for the single class models are similar to those reported in von Haefen and Phaneuf (2008).

Interpreting the individual parameters in Table 5 is difficult. In order to illustrate the dif-

ferences across the various models, we consider their implications in terms of welfare estimates

for three specific scenarios employed by von Haefen and Phaneuf (2008) :

• Case 1: Closer site WMU #344.

• Case 2: Decrease moose population from more than 4 per day to 3-4 per day at WMU

#348.

• Case 3: Increase moose population from less than 1 per day to 1-2 moose per day at

WMU #344.

We assume fixed coefficients within a class we can use standard log-sum term for computing

welfare change. Formally, we can write the deterministic component of utility as following;

Vijt = V (Xj , Qj ; θ)

= (β0 + Ziβ1)Xj +Qjβq + pijγ (2.18)

where Qj denotes moose population at site j, and pij denotes travel costs from household’s

residence to site j, and Xj and Zi represent the other site attributes and sociodemographic vari-

ables respectively. Compensating variation (CV) associated with a change of moose population

from Q0
j to Q1

j is

CVh(βh) =
1

βp

log

 J∑
j=1

exp
[
V (Xj , Q

1
j ; θ

h)
]− log

 J∑
j=1

exp
[
V (Xj , Q

0
j ; θ

h)
] for h = C, ICRP, ICSP

(2.19)

From (2.19), we can estimate three values of CV for latent class model, i.e. CV using

estimates of consistent class, estimates of RP of inconsistent class, and SP of inconsistent

class. Therefore, we consider two alternative strategies for construction welfare measure. The
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first strategy is to use CV of only consistent class. In this case, we consider individuals who

responded same way between RP and SP as the respondents who said truthful preference. The

second is to adopt weighted average of two values shown in (2.16).

Table 2.6 shows the results of welfare analysis. Although the estimates for case 1 are not

qualitatively quite different, the estimate of combined model is slightly larger (in absolute sense)

than only consistent class, however, smaller than weighted estimated with both RP and SP.

Welfare results for case 2 and case 3 also have similar patterns to case 1.10

2.6 Conclusion

Revealed preference data (RP) are based on actual choices of respondents while stated

preference data (SP) are collected in experimental or survey situations. Therefore, both have

obvious advantages and limitations. The advantage of RP data is that they are the collection of

real choices, which reflect their budget constraint and other variables. However, since they rely

on historical data, variation of alternative attributes is limited and it makes difficult to analyze

new policy beyond currently existing status. While SP data have much variation relying on

experimental design, they obviously have hypothetical bias. To mitigate the limitations and

get advantages from both data, combining revealed and stated preference data is common in

recent environmental economics, marketing and transportation literature. Moreover, the data

make it easy to estimate models with unobserved attributes without depending on additional

econometric technique such as Murdock’s two-stage estimation.

It, however, relies on underlying assumption that both data have common data-generating

process. In other words, both data must have same coefficients. However, the assumption was

often rejected in previous studies [Jeon and Herriges (2010), von Haefen and Phaneuf (2008)].

Combined RP/SP strategy is still used to compute welfare analysis in some prior studies due to

strong points relative to either RP or SP data model even when the assumption is not satisfied.

Although previous literature proposed to selectively use the parameter estimates from several

different models using single data, it is ad hoc or implicitly rely on cross-equation restriction.

10For case 2 and 3, welfare estimates cannot be recovered since there is no variable estimates for the site
attributes, i.e. no mean effect.
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The purpose of this paper has been to introduce an alternative framework for combining

revealed and stated preference data. The literature typically considers only two possible sce-

narios: either respondent’s behaviors in RP and SP are consistent for everyone or they are

consistent for no one. In this paper, we suggest a middle ground, using latent class approach

to segment the population into two groups. The first group has RP and SP responses that are

internally consistent, while the remaining group exhibits some form of inconsistent preferences.

Moreover, as usual latent class model, we propose EM algorithm which is an iterative procedure

to converge maximum likelihood estimation due to the numerical difficulty in empirical study.

We illustrated in our generated data experiments that ignoring discrepancy between real and

hypothetical choices makes huge biases in estimating parameters and welfare analysis while our

method shows much small bias. It implies that our method takes advantages from combining

two data and controls convergent validity assumption as well.

Our empirical application, using moose hunting data in Alberta, Canada, provides evidences

of heterogeneity from the individual’s propensity to show differences between RP and SP data.

As previous study [von Haefen and Phaneuf (2008)] using same data we used in current study

pointed out explicitly that the convergent validity assumption are not satisfied, our proposed

model also shows almost half of individuals responds different ways between RP and SP data.

This difference makes different parameter estimates between two classes. Obviously, our model

results in different welfare estimates to combined single class RP/SP model for several different

welfare loss or gain scenarios. Our results imply that ignoring heterogeneous responses in two

data source can mislead welfare analysis.

There is an unresolvable question which one of two latent class model estimates is better

than the other. Even though weighted averages with RP show small error in our experiments,

we suggest that researchers and policy makers choose either one based on empirical data. As

mentioned in von Haefen and Phaneuf (2008), RP data usually have not enough variations

which make a difficulty in estimation specially in the presence of unobservable. On the other

hand, SP data has the limitations that they may behave differently in real trips. Therefore,

in case that RP data have abundant variations and there is no identification problems, we

recommend to use weighted RP estimates, otherwise weighted SP estimates.
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Table 2.1 Generated Data Experiments - Model 1 Parameter Estimates

TRUE TRUE N=200 N=500 N=1000

Class Parameter s values Mean 5% 95% Mean 5% 95% Mean 5% 95%

s

0.10 0.10 0.24 0.06 0.89 0.19 0.07 0.89 0.21 0.07 0.90

0.25 0.25 0.31 0.19 0.75 0.30 0.20 0.72 0.28 0.23 0.61

0.50 0.50 0.50 0.43 0.58 0.50 0.45 0.54 0.50 0.47 0.54

0.75 0.75 0.75 0.68 0.82 0.75 0.71 0.78 0.75 0.73 0.78

0.90 0.90 0.90 0.85 0.94 0.90 0.88 0.93 0.90 0.88 0.92

ω

0.10 0.40 0.38 0.22 0.56 0.38 0.24 0.49 0.38 0.24 0.45

0.25 0.40 0.39 0.26 0.49 0.39 0.24 0.45 0.39 0.35 0.43

0.50 0.40 0.40 0.36 0.45 0.40 0.37 0.43 0.40 0.38 0.42

0.75 0.40 0.40 0.36 0.45 0.40 0.37 0.42 0.40 0.39 0.41

0.90 0.40 0.40 0.37 0.44 0.40 0.37 0.42 0.40 0.39 0.41

Consistent βC

0.10 -2.00 -2.24 -3.35 -1.43 -2.16 -2.74 -1.58 -2.10 -2.74 -1.69

0.25 -2.00 -2.05 -2.61 -1.59 -2.05 -2.61 -1.73 -2.02 -2.24 -1.83

0.50 -2.00 -2.01 -2.32 -1.75 -2.01 -2.18 -1.82 -1.99 -2.12 -1.87

0.75 -2.00 -2.01 -2.25 -1.77 -2.01 -2.15 -1.86 -2.00 -2.09 -1.91

0.90 -2.00 -2.01 -2.24 -1.81 -2.00 -2.14 -1.88 -2.01 -2.10 -1.92

Inconsistent

βRP

0.10 -1.20 -1.29 -2.06 -1.03 -1.24 -1.90 -1.05 -1.30 -1.99 -1.10

0.25 -1.20 -1.23 -1.76 -0.90 -1.21 -1.98 -0.79 -1.22 -1.39 -1.06

0.50 -1.20 -1.21 -1.47 -1.04 -1.19 -1.34 -1.08 -1.21 -1.33 -1.09

0.75 -1.20 -1.33 -2.27 -1.10 -1.21 -1.36 -1.08 -1.22 -1.36 -1.11

0.90 -1.20 -1.82 -3.48 -1.00 -1.32 -1.98 -1.00 -1.24 -1.45 -1.05

βSP

0.10 -0.60 -0.62 -0.89 -0.53 -0.62 -0.81 -0.57 -0.62 -0.80 -0.57

0.25 -0.60 -0.61 -0.78 -0.53 -0.61 -0.74 -0.53 -0.61 -0.66 -0.56

0.50 -0.60 -0.60 -0.70 -0.53 -0.60 -0.65 -0.57 -0.60 -0.63 -0.57

0.75 -0.60 -0.61 -0.75 -0.50 -0.61 -0.69 -0.55 -0.60 -0.66 -0.56

0.90 -0.60 -0.64 -0.91 -0.44 -0.61 -0.73 -0.48 -0.61 -0.69 -0.54

Consistent γC

0.10 -3.00 -2.48 -4.19 -0.70 -2.64 -3.58 -0.77 -2.64 -3.30 -0.75

0.25 -3.00 -2.71 -3.47 -0.80 -2.73 -3.24 -0.89 -2.85 -3.15 -1.32

0.50 -3.00 -2.94 -3.32 -2.61 -2.95 -3.19 -2.81 -2.98 -3.11 -2.87

0.75 -3.00 -3.01 -3.21 -2.76 -3.01 -3.17 -2.88 -2.99 -3.09 -2.90

0.90 -3.00 -3.02 -3.20 -2.82 -3.01 -3.16 -2.89 -3.00 -3.10 -2.92

Inconsistent

γRP

0.10 -0.70 -1.00 -3.29 -0.64 -0.93 -2.94 -0.66 -1.02 -3.02 -0.67

0.25 -0.70 -0.88 -2.80 -0.62 -0.88 -3.03 -0.65 -0.80 -1.26 -0.67

0.50 -0.70 -0.73 -1.25 -0.61 -0.73 -0.80 -0.64 -0.71 -0.76 -0.66

0.75 -0.70 -0.71 -0.88 -0.54 -0.69 -0.78 -0.61 -0.71 -0.78 -0.65

0.90 -0.70 -0.73 -1.12 -0.35 -0.72 -0.89 -0.59 -0.72 -0.84 -0.61

γSP

0.10 -0.50 -0.64 -1.27 -0.46 -0.59 -1.22 -0.47 -0.60 -1.27 -0.48

0.25 -0.50 -0.59 -1.25 -0.46 -0.57 -1.18 -0.47 -0.54 -0.92 -0.48

0.50 -0.50 -0.53 -0.80 -0.43 -0.52 -0.58 -0.46 -0.51 -0.54 -0.47

0.75 -0.50 -0.50 -0.63 -0.36 -0.50 -0.57 -0.44 -0.50 -0.54 -0.45

0.90 -0.50 -0.52 -0.72 -0.33 -0.51 -0.61 -0.40 -0.50 -0.57 -0.45
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Table 2.1: Generated Data Experiments - Model 1 Parameter Estimates (cont’d)

TRUE TRUE N=200 N=500 N=1000

Class Parameter s values Mean 5% 95% Mean 5% 95% Mean 5% 95%

Consistent ρC

0.10 -0.80 -1.05 -1.86 -0.63 -0.94 -1.77 -0.66 -0.94 -1.77 -0.73

0.25 -0.80 -0.90 -1.73 -0.70 -0.89 -1.76 -0.72 -0.85 -1.23 -0.76

0.50 -0.80 -0.81 -0.95 -0.73 -0.81 -0.86 -0.75 -0.80 -0.84 -0.77

0.75 -0.80 -0.80 -0.88 -0.74 -0.80 -0.84 -0.77 -0.80 -0.83 -0.77

0.90 -0.80 -0.80 -0.86 -0.75 -0.80 -0.83 -0.77 -0.80 -0.83 -0.77

Inconsistent

ρRP

0.10 -1.80 -1.67 -1.92 -0.92 -1.69 -1.86 -0.83 -1.66 -1.84 -0.78

0.25 -1.80 -1.73 -1.94 -0.89 -1.72 -1.86 -0.89 -1.75 -1.85 -1.57

0.50 -1.80 -1.79 -1.98 -1.62 -1.79 -1.90 -1.70 -1.80 -1.86 -1.74

0.75 -1.80 -1.83 -2.08 -1.63 -1.80 -1.93 -1.69 -1.81 -1.92 -1.71

0.90 -1.80 -1.79 -2.20 -1.29 -1.83 -2.05 -1.67 -1.83 -2.05 -1.67

ρSP

0.10 -0.40 -0.39 -0.44 -0.31 -0.39 -0.42 -0.34 -0.39 -0.42 -0.32

0.25 -0.40 -0.39 -0.43 -0.33 -0.39 -0.43 -0.34 -0.39 -0.42 -0.36

0.50 -0.40 -0.40 -0.45 -0.35 -0.40 -0.43 -0.36 -0.40 -0.42 -0.38

0.75 -0.40 -0.40 -0.48 -0.33 -0.40 -0.45 -0.36 -0.40 -0.43 -0.37

0.90 -0.40 -0.42 -0.53 -0.28 -0.40 -0.48 -0.33 -0.40 -0.46 -0.35
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Table 2.2 Generated Data Experiments: Welfare Performance of Model

Class Ratio Latent Class Single Class

Scenario N (s) Weighted Consistant Inconsistent

A

200 0.10 10.11 21.64 44.49

0.25 11.82 29.99 38.46

0.50 11.69 35.88 32.42

0.75 11.14 28.12 30.61

0.90 11.79 17.23 32.56

500 0.10 7.07 19.90 45.04

0.25 7.50 28.42 39.31

0.50 6.68 34.56 33.84

0.75 7.75 29.47 30.93

0.90 7.63 16.26 32.34

1000 0.10 4.90 19.20 46.44

0.25 4.94 26.57 40.44

0.50 5.35 32.81 34.70

0.75 5.45 25.90 32.69

0.90 5.28 13.99 34.00

B

200 0.10 70.37 128.93 56.16

0.25 65.26 401.35 68.26

0.50 21.37 60.02 75.25

0.75 24.30 54.80 96.97

0.90 29.00 32.91 109.65

500 0.10 36.24 118.71 56.37

0.25 35.74 92.42 65.99

0.50 14.03 141.91 78.15

0.75 27.42 274.40 190.96

0.90 14.60 27.67 109.58

1000 0.10 30.72 110.55 56.81

0.25 13.08 81.49 66.47

0.50 9.50 88.28 74.95

0.75 10.11 67.33 123.67

0.90 12.78 24.34 248.24
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Table 2.3 Summary Statistics
Variables Mean Std. Dev Minimum Maximum
Socioeconomic Age (year) 39.63 10.71 18 70
Attributes Income ($) 51,722 22,809 10,000 110,000

Total number of trip 3.62 5.68 0 41
General hunting experience (year) 20.19 10.24 2 51
Moose hunting experience (year) 16.88 9.87 1 49
Edmonton resident dummya 0.45 0.48 0 1
High school diploma dummy 0.91 0.27 0 1

Site Attributes Travel cost ($) 219.71 101.69 88.64 558.92
Moose population(effects coded)b

less than 1 moose per day 0.14 0.52 -1 1
1-2 moose per day 0.5 0.63 -1 1
3-4 moose per day 0.07 0.46 -1 1

a Edmonton is unique urban region in this data set, which is relatively far from hunting area.
b Seeing or hearing moose or seeing fresh sign such as tracks browse or droppings. McLeod et al. (1993)

Table 2.4 Core Parameter Estimates
Parameter Model Est. t-stat

Class Share (s) Latent Class (LC) 0.53 11.6

RP/SP Scale (µ) Single Class (SC) - Consistent 0.22 6.68

LC-Consistent 0.18 10.57

Travel Cost SC-Consistent -1.65 -6.97

SC-RP -1.51 -22.24

SC-SP -0.42 -28.59

LC-Consistent -3.57 -14.1

LC-RP -1.02 -6.73

LC-SP -0.34 -9.00
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Table 2.5 Parameter Estimates for Site Characteristics
Main Interaction Effect

Gen Hunt Exp Edmonton HS diploma

Parameter Model Est. t-stat Est. t-stat Est. t-stat Est. t-stat

Unpaveda SC-Consistent 0.41 0.70 -1.19 -0.71 0.51 1.98 -0.45 -0.97

SC-RP 0.79 2.14 -1.05 -2.26 0.00 0.00 -0.83 -2.37

SC-SP -0.02 -0.08 -0.33 -0.84 0.11 1.70 0.04 0.20

LC-Consistent -0.35 -0.11 -2.34 -1.52 0.83 1.28 0.50 0.15

LC-RP 2.13 0.20 0.76 0.25 -0.01 0.00 -3.61 -0.34

LC-SP -0.19 -0.14 0.37 0.31 0.08 0.54 0.10 0.08

No Trail SC-Consistent -1.73 -0.89 0.44 0.16 -1.93 -3.17 1.44 0.75

SC-RP - - 0.02 0.00 0.31 0.00 0.21 0.00

SC-SP -0.38 -1.28 0.02 0.05 -0.45 -5.52 0.33 1.22

LC-Consistent 0.49 0.05 -0.93 -0.20 -4.28 -4.54 0.19 0.02

LC-RP - - -0.77 0.00 0.35 0.00 1.87 0.00

LC-SP -1.03 -0.52 1.04 0.70 -0.25 -1.00 0.53 0.28

Old Trail SC-Consistent 1.12 0.96 -1.95 -1.12 1.89 4.26 0.01 0.01

SC-RP -2.00 0.00 1.28 0.00 0.40 0.00

SC-SP 0.17 0.57 0.12 0.20 0.15 1.65 0.12 0.55

LC-Consistent 0.70 0.17 -5.40 -2.45 4.41 9.00 0.05 0.01

LC-RP - - 3.22 2.00 0.03 0.09 -5.49 -5.20

LC-SP 0.50 0.27 -0.49 -0.33 -0.24 -1.12 0.27 0.15

4WD Trail SC-Consistent 0.65 0.88 1.76 0.94 0.20 0.54 -0.50 -0.85

SC-RP - - 2.06 0.00 -0.35 0.00 0.23 0.00

SC-SP 0.32 1.21 0.07 0.13 0.20 2.38 -0.30 -1.30

LC-Consistent -0.84 -0.16 6.89 2.99 -0.32 -0.53 0.36 -0.53

LC-RP - - -5.53 0.00 1.02 0.00 11.09 0.00

LC-SP 0.83 0.53 -0.84 -0.66 0.24 1.28 -0.60 -0.41

No Hunters SC-Consistent 2.61 2.29 -3.57 -1.55 -0.12 -0.27 1.10 1.31

SC-RP - - -0.75 0.00 0.52 0.00 -0.10 0.00

SC-SP 0.56 2.37 -0.79 -1.36 0.04 0.40 0.24 1.18

LC-Consistent 1.19 0.12 -1.07 -0.20 -0.22 -0.22 2.95 0.31

LC-RP - - -2.49 0.00 0.39 0.00 3.18 0.00

LC-SP 1.09 0.59 -1.69 -1.04 0.02 0.11 -0.04 -0.02

On ATV SC-Consistent -0.93 -1.31 0.39 0.22 0.91 2.76 -0.73 -1.25

SC-RP - - -1.49 0.00 1.05 0.00 -0.19 0.00

SC-SP -0.38 -1.34 0.22 0.36 0.09 0.99 0.05 0.18

LC-Consistent -0.19 -0.03 2.07 0.62 1.61 2.58 -2.04 -0.36

LC-RP - - -4.97 0.00 0.78 0.00 6.34 0.00

LC-SP -1.15 -0.54 1.51 0.85 0.11 0.52 0.47 0.22

No logging SC-Consistent -0.21 -0.61 1.57 1.13 0.10 0.39 0.03 0.13

SC-RP - - 1.81 3.22 -0.41 -2.52 0.00 0.01

SC-SP 0.05 0.29 0.31 1.09 0.01 0.17 -0.09 -0.48

LC-Consistent -0.08 -0.02 3.55 3.84 -0.05 -0.16 -0.53 -0.12

LC-RP - - -7.78 -1.76 -1.50 -2.37 10.90 2.14

LC-SP 0.27 0.16 -0.45 -0.49 0.00 0.01 -0.12 -0.07
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Table 2.5: Parameter Estimates for Site Characteristics (cont’d)

Main Interaction Effect

Gen Hunt Exp Edmonton HS diploma

Parameter Model Est. t-stat Est. t-stat Est. t-stat Est. t-stat

< 1 Moose SC-Consistent -5.94 -5.41 1.64 1.08 -0.04 -0.10 0.13 0.32

SC-RP - - 1.68 2.45 0.26 1.29 0.46 1.05

SC-SP -1.00 -2.97 -0.24 -0.45 -0.03 -0.34 -0.19 -0.62

LC-Consistent -7.37 -2.29 2.97 1.20 -2.10 -2.05 -0.77 -0.24

LC-RP - - 1.49 0.56 6.10 0.00 3.95 0.47

LC-SP -1.03 -0.55 -0.65 -0.44 -0.09 -0.39 0.01 0.00

1-2 Moose SC-Consistent -0.49 -0.87 -2.72 -1.71 1.64 4.87 0.19 0.50

SC-RP - - -3.37 -4.83 2.50 13.91 0.31 0.74

SC-SP -0.04 -0.09 -0.04 -0.07 -0.09 -0.91 0.05 0.13

LC-Consistent -0.57 -0.27 0.99 0.86 2.15 4.53 -0.06 -0.03

LC-RP - - -5.90 -2.55 8.25 0.00 2.62 0.37

LC-SP 0.01 0.01 -0.44 -0.26 -0.26 -1.08 0.07 0.03

3-4 Moose SC-Consistent 1.67 2.37 1.03 0.70 -0.29 -0.82 0.31 0.53

SC-RP - - 0.70 0.98 0.32 1.80 0.30 0.99

SC-SP 0.31 0.84 0.31 0.56 0.01 0.08 0.08 0.23

LC-Consistent 3.32 1.38 1.24 0.94 0.01 0.02 -0.39 -0.16

LC-RP - - -2.25 -0.93 4.31 0.00 5.71 2.55

LC-SP 0.13 0.06 0.69 0.39 0.08 0.27 0.09 0.04

SP SC-Consistent -5.99 -2.93 -3.65 -0.82 -1.35 -1.40 -0.49 -0.31

outside dummy SC-RP - - - - - - - -

SC-SP -1.45 -11.14 -0.81 -2.57 -0.31 -6.31 -0.12 -1.20

LC-Consistent -9.76 -5.81 10.46 3.09 0.91 1.62 -1.10 -0.72

LC-RP - - - - - - - -

LC-SP -0.82 -0.18 -9.60 -4.75 -0.73 -3.01 -0.12 -0.03

Boldface indicated statistical significance at the 5% level. We exclude one site attribute, ‘On foot’ (Encounters

with other hunters on foot), which is used in von Haefen and Phaneuf (2008) since ‘On foot’ has perfectly same

value as ‘No Hunter’, which make perfect multicolliearity problem.

a Unpaved site characteristics varies across sites and individual because individuals choose different roads to

assess the sites.

Table 2.6 The results of Welfare analysis

Model Case1 Case2 Case3

Single Class: Consistent -3.46 -9.48 99.76

Single Class: RP -3.76 - -

Latent Class: Only consistent Class -3.18 -3.90 72.27

Latent Class : weighted with RP -4.31 - -
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CHAPTER 3. DOES OBESITY MATTER FOR THE ENVIRONMENT?

EVIDENCE FROM VEHICLE CHOICES AND DRIVING

3.1 Introduction

The rising rate of obesity has become a prominent social concern in the U.S. and throughout

the world. A recent report of the National Coalition on Health Care (NCHC) shows that 35.7

% of U.S. adults are obese in 2009-2010 (NCHS Data Brief 2012). It is a well-known fact that

obesity causes public health problems, such as high blood pressure, heart disease, and a number

of other adverse health conditions. These health problems increase medical costs to society as

well. Cawley and Meyerhoefer (2012), for example, argue that obesity is associated with $2,741

(in 2005 dollars) per person higher annual medical health care costs in the U.S.

A number of recent studies suggest the societal impacts of obesity also extend to the en-

vironmental arena. The studies show that obesity can be an additional indirect factor leading

to increased gasoline consumption through several different channels. Broadly, the literature

focuses on the positive relation between obesity, vehicle miles traveled (VMT), and the share of

light trucks among noncommercial vehicles.1 Specifically, the literature analyzing how obesity

influences households’ driving or vehicle choice behavior can be classified into three categories:

(1) An engineering approach, (2) A focus on the relationship between VMT and obesity, and

(3) A focus on the relationship between vehicle choices and obesity.

The first group of studies examine the mechanical relationship between weight and vehicle

fuel efficiency. Jacobson and McLay (2006) show that obesity and overweight people increase

fuel consumption of noncommercial vehicles by 0.8 % due to the resulting additional weight in

vehicles. This corresponds to approximately one billion gallons of additional gasoline consumed

1Figure 3.1 shows the trend and relation between variables.
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in the U.S. on an annual basis. Similarly, Dannenberg (2004) indicate that the weight increase

of U.S. passengers account for up to a 2.4 % increase in fuel consumption by the U.S. airline

industry.

The second group of studies examine how obesity and overweight affect vehicle use and

vice versa. Courtemanche (2011) examines the sequential relation that lower fuel prices cause

people to use their vehicles more frequently, in turn, causing individuals to become more obese.

Using cross-sectional individual level data from the Behavioral Risk Factor Surveillance System

(BRFSS), he found that a 1% increase in gasoline price would lead to a 10% reduction in the rate

of obesity and overweight. Jacobson et al. (2011) argue a positive relationship exists between

the number of miles driven by each licensed driver (VMT/LD) and adult obesity with a six-year

time lag. They estimate a one-mile increase in driving by all licensed drivers would result in

a 2.2% increase in the adult obesity rate six years later. However, it is likely to be a spurious

correlation because they do not control for other factors such as income, which may affect this

relationship and the corresponding time trend. For example, the video game market has been

growing tremendously over the last few decades. Nowadays, many adults and children enjoy

playing video games rather than participating in physical exercise. This would also cause an

increase in overweight and obesity. Without controlling for such factors, the causal relationship

between driving patterns and obesity can be difficult to discern.

Finally, Li et al. (2011) take this argument a step further by suggesting that obese and

overweight individuals also contribute to emissions through their vehicle choices. They estimate

the impact of obesity on vehicle choice by adopting the BLP-type aggregate data logit model

with county-level annual sales data. They find that new vehicles purchased by individuals, who

are obese or overweight, are, on average, less fuel efficient than those selected by others in the

general population. Their simulation results show that, had the U.S. rates for overweight and

obesity in 2005 had remained instead at their 1981 levels, there would have been a fuel savings

of 8.6%. However, in calculating these fuel savings, they implicitly assume that the VMT of

overweight and obesity people is equal to the VMT of the other individuals in the population.

While the results in earlier works are compelling, the analysis suffers from two shortcom-
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ings.2 First, researchers rely upon aggregate data (national level time series or county level

cross section data), rather than household level observations, which potentially mask impor-

tant factors determining vehicle choices and VMT. Second, while prior studies investigate a

relationship between obesity and either vehicle choices or vehicle miles traveled (VMT), linking

vehicle choices to overall gasoline consumption (or emissions) requires information regarding

vehicle use. In other words, the analysis implicitly assumes that obese individuals drive as

much as other individuals in the population. However, obesity may lead to a more sedentary

lifestyle, which could offset the individual’s choice for a less fuel efficient vehicle, resulting in

no net increase in transportation-related emissions. On the other hand, if obese individuals use

their vehicle more frequently, rather than say biking or walking, the overall impact of obesity

on overall emissions could be further exacerbated. In either case, ignoring the impact of weight

on vehicle use would provide an incomplete picture. As West (2004) points out, “. . . an unob-

served household characteristic that affects the utility of miles driven in a particular vehicle

bundle is likely to affect both its probability of selection and its intensity of use” (p. 740).

The corresponding demand equations for vehicle purchases or VMT are likely to yields biased

estimates.

The goal for this study is to address the two limitations of the existing literature by drawing

on the unique household level panel data set provided by the Panel Study of Income Dynamics

(PSID). To the best of our knowledge, the PSID is unique in providing vehicle ownership,

vehicle usage, and BMI information in a panel data setting. Using these data, we employ

two different empirical strategies: (1) a reduced-form fixed effects model and (2) a structural

discrete and continuous model of vehicle choice and VMT.

First, we employ the linear panel fixed effects model. In contrast to the data used in prior

studies, the PSID is a panel data set that can be used to ameliorate omitted variable bias by

removing time invariant unobserved variables through the use fixed effects. In the reduced-form

approach, we estimate the effect of obesity and overweight on VMT, fuel economy, and gasoline

consumption, providing a more comprehensive analysis of the relationship between obesity

2We leave the first category of prior studies, i.e., mechanical relationship between fuel efficiency and weight
of passengers, as an area for engineers, focusing instead on the remaining relationships.



36

and either VMT or fuel economy than previous studies. OLS estimates suggest that obesity

and overweight have significant impacts on VMT, fuel economy, and gasoline consumption.

Specifically, the OLS results suggest that overweight (BMI > 25) households drive 8.2% more,

own 2.3% less fuel efficient vehicles, and consume 9.4% more gasoline than non-overweight

households. However, fixed effects model leads to substantially different conclusions, namely

that the overweight households do not have a significant difference with normal households in

terms of either VMT or gasoline consumption, and they own just 0.7% less fuel efficient vehicles.

At the same time, obesity (BMI > 30) remains a significant factor in the fixed effects model.

Obese households drive 8.4% more and consume 6.3% more gasoline than non-obese (including

overweight and normal) households. Based on our fixed effect model results, we implement very

simple simulations with similar conditions with Li et al. (2011). Our simulation suggests that if

the rate of obesity (BMI >30) in 2005 (35.1 %) had remained at the 1981 level (15.0 %), gasoline

consumption in 2005 is 26,484 trillion btu instead of 27,309 trillion btu, i.e., approximately 3.0

% savings in gasoline consumption. Our findings suggest that obesity has an effect to reduce

gasoline consumption, but the magnitude of savings is not as large as prior studies predict.

Finally, in addition to the basic fixed effects model, we also estimate difference-in-difference

(DID) and instrumental variable models as other methods to control endogeneity of obesity

and overweight people.

As a structural approach, we adopt a joint discrete and continuous econometric model.

There are two types of discrete and continuous models used in prior studies. One set of

studies adopts a two-stage estimator developed by Dubin and McFadden (1984). Train (1986)

and West (2004) estimate the consumer’s behavior on vehicle purchases and their utilization

by adopting DM’s two-stage method. One main advantage of the DM method is relatively

easy to implement. However, the DM approach is inefficient because the two portions of the

discrete and continuous model are estimated separately, despite being driven by a common,

underlying behavioral model. The other approach used in the literature is a single-step (i.e.,

simultaneously) estimated model of vehicle choice and usage. For example, Bento et al. (2009)

estimate the distributional impact of gasoline tax on both vehicle purchases and VMT, while

Roth (2012) examines the equivalence between a simple fuel economy standard and a feebate.
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Spiller (2012) has recently extended this general modeling approach to better accommodate a

households choice of not only individual vehicles, but the portfolio of vehicles the individuals

choose to hold. The advantage of the single-step approach in estimation is it better reflects

the obvious joint nature of the vehicle purchased by a household and the vehicle miles traveled

by the household. However, estimation can be challenging when there are a large number of

alternatives and a nonlinear indirect utility function. Bento et al. (2009) employ the repeated

discrete-continuous choice model and the Bayesian estimation technique to accommodate the

large number of vehicle choices available to consumers. Based on the results of the structural

model, we investigate the impact of overweight (BMI > 25) on gasoline demand. If the rate

of overweight (BMI > 25) has remained at the 1981 level (47.1%) rather than 67.3%, the

gasoline consumption in 2005 is 26,870 trillon btu, a 1.6% savings which is even smaller than

our reduced-form results.

The remainder of the paper is organized as follows. In Section 2 we describe the PSID data

used in our empirical analysis, including key summary statistics. Section 3 details the empirical

model and estimation strategy, and Section 4 presents the empirical results. In Section 5, we

present our conclusion.

3.2 Data

To assess the impact of obesity on gasoline demand through both vehicle choices and uti-

lization using household level, we collect the data from several sources. As a main source of

data, we use the Panel Study of Income Dynamics (PSID). In addition, vehicle characteris-

tics (e.g., fuel economy, wheelbase, etc.), come from Ward’s Automotive Yearbooks, EPA fuel

economy, American Chamber of Commerce Researcher’s Association(ACCRA) Cost Of Living

Index (COLI), National Automobile Dealers Association (NADA) used car price data, and

other web sources.

Our data for household characteristics, including vehicle ownership, gasoline expenditure,

and the Body Mass Index (BMI) for both the head and spouse come from the PSID.3 The PSID

3Since the PSID does not provide BMI directly, we computed it using information on height and weight and
the formula, weight(lb)

height(in)2
× 703.
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began in 1968 with a nationally representative sample of U.S. households and is the longest

running national panel study in the world. The PSID collects information on employment,

income, wealth, health, education, and numerous other socio-demographic characteristics. Until

1997, these data were collected on an annual basis, but has subsequently been conducted on

a biannual basis. Of particular interest to the current study is the fact, starting in 1999, the

PSID has collected details on vehicle-ownership, including manufacturer, model, and model

year, as well as gasoline expenditure.4 Therefore, our sample periods are the recent 6-surveys,

1999, 2001, 2003, 2005, 2007, and 2009. The reason we use the PSID is, to the best of our

knowledge, it is unique in providing household-level panel data for both vehicle ownership and

BMI.5

To construct vehicle attributes, we use Ward’s Automotive Yearbook (1982-2009), which

includes a wide range of vehicle characteristics, such as fuel economy, wheelbase, length, width,

and horsepower by make, model, and model year. For most vehicles, we use EPA’s fuel economy

data set. However, the EPA data only covers vehicles built in 1984 onwards. Ward’s Automotive

Yearbook was used to construct fuel economy data for vehicle models older than 1984.

There are two main costs that affect vehicle choices and driving miles-vehicle purchase costs

and driving costs. Even though several different concepts have been used in prior studies, we

adopt the rental rate and per-mile operating cost suggested by Bento et al. (2009). The rental

rate is calculated as rij = Dj +ρPj +0.85IAij , where (Dj , Pj , I
A
ij , ρ) denote the depreciation rate,

vehicle prices, annual insurance cost, and real interest rate, respectively. The depreciation and

vehicle price are calculated using NADA Used Car Guide data.6 Insurance costs vary with

vehicle manufacturer, model, prices, age, region, and other factors. However, there does not

exist data to reflect all factors. Therefore, we use state-level average insurance premiums from

4The PSID includes the number of vehicles each household owns or leases, and detailed model information
on up to three vehicles.

5The PSID data is open for public use and has been widely employed for a variety of studies in labor and
environmental economics. The PSID provides manufacturer, model year, and types (car, utility, pickup, and van)
related to information on vehicle and current state related to address. However, for more precise information, we
obtained the data for restricted use, which the PSID distributes confidentially through special contracts. Among
confidential data, for this study, we have acquired information on specific vehicle model (e.g., Toyota Camry)
and geospatial data regarding the individual household’s place of residence.

6Depreciation is calculated as difference of current and next year real used car prices. We use MSRP a vehicle
price.
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the National Association of Insurance Commissioners (NAIC) and proportion by vehicle make

and model computed from Insurance.com to obtain insurance premiums varying by region and

model.7

We use yearly average of Daily Treasury Real Long-Term Rates for the interest rate.

To calculate per-mile operating cost, pMij = (pgasi /MPGj) + 0.15IMij , we use CBSA level

gasoline prices from the American Chamber of Commerce Researchers Association (ACCRA)

data. Since the ACCRA data cover around 300 regions, these provide precise variations by

regions. Figure 3.2 shows the distribution of gasoline price by regions and years. Addi-

tionally, in contrast to the National Household Travel Survey (NHTS) widely used in prior

studies [Bento et al. (2009); Spiller (2012); Roth (2012)], the PSID does not provide vehi-

cle miles traveled. Instead, the PSID provides each household’s gasoline expenditures, as

compledted in the Consumer Expenditure Survey (CES) used in other studies [Feng et al.

(2005); West (2004)]. Using the MPG of a household’s vehicles, we compute driving miles

as VMT = (Gasoline Expenditure/Gasoline Price) × MPG. In this case, using an accurate

measure of gasoline prices is important.8

Table 3.1 presents summary statistics by number of vehicles each household owns after

cleaning the data. The households which own one or two vehicles account for around 71.3%

of the PSID sample. As one might expect, many zero- and one-vehicle households belong to

low income households, while multi-vehicle households typically have higher incomes. The

rate of obesity and overweight is around 70%, very close to the national level for obesity and

overweight in 2009 (73%, according to the Centers for Disease Control and Prevention). The

rate of obesity does not differ substantially across the number of vehicles owned, multi-vehicle

households do exhibit a relatively large percentage of overweight people.

7As Bento et al. (2009) reported, assigning 85% for rental price and 15% to operating cost is followed by
insurance company’s suggestion.

8The NHTS is the authoritative source for national data on travel behaviors. Recently, NHTS released
data for 2001 and 2009. The NHTS VMT estimates (BESTMILE) are based on odometer reading, self-report
annual miles, and model year. Household’s average monthly VMT in 2001 and 2009 is 1765.6 and 1654.2 miles,
respectively. Even though our estimates in 2001 and 2009 are slightly lower than the NHTS estimates, they are
close and share the same trends to our estimates.
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3.3 Empirical Model

Our goal is to identify the causal effects that obesity affects on gasoline consumption through

vehicle choices and driving. To assess the impact of obesity, we investigate both reduced and

structural-form approaches.

3.3.1 Reduced-Form Approach

There are several issues that arise to establish a causal linkage between obesity (and over-

weight), and both vehicle purchases and usage. One of the key concerns is the confounding

effect of unobserved time-invariant factors on vehicle choices, such as individual education levels

or possibly commuting distance to work. Instrumental variable method is widely used to con-

trol these unobserved individual characteristics. However, as Angrist and Pischke (2009) note,

it is often difficult to find good instruments. In the current paper, we start with a fixed effects

panel data model to control for time invariant unobserved variables which may lead to omitted

variable bias. In our application, vehicle choices are correlated with miles traveled because

both discrete and continuous choices share common characteristics [West (2004)]. For exam-

ple, consumers who purchase vehicles with high fuel efficiency generally drive more because

the per-mile operating cost is low.9 This model is then expanded to control for the possible

endogeneity of obesity and overweight through the use of instrumental variables. Specifically,

we use as instruments sibling’s average BMI, participation in the food stamp program, and the

proportion of eating-out costs. In addition, we also implement standard difference-in-difference

by dealing with obesity and overweight as a treatment.

First, we describe a standard fixed effects model to assess the impact of obesity that controls

for unobserved individual time-invariant heterogeneity through the inclusion of individual fixed

effects and time fixed effects.10 Starting with the specification for fuel economy, we have

ln(MPGit) = α0 + αDit + β1 ln(GasPriceit−hi) + β2 ln(yit − rit) + Xitγ + ϕi + δt + εit (3.1)

9This behavioral response is called ‘rebound effect’ or ‘take-back effect’ and is studied further in the next
chapter.

10In estimation of all reduced-form models, we drop households, which do not own any vehicle because the
reduced-form model cannot control zero VMT and zero MPG appropriately. In other words, it can distort
estimates. However, the structural-form model, which will be discussed, includes zero-vehicle households because
the discrete choice model basically incorporates the option to “not own”.
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where Dit is an indicator variable that equals one, if the head of household i is obese or

overweight at time t, and GasPriceit−hi denotes the price of gasoline when the household’s

vehicle was purchased,11 yit denotes household income, rit denotes the vehicle rental rate, Xit

is a vector of household i’s characteristics at time t,12 ϕi is a household specific fixed effects, δt

denotes year fixed effects, and εit is an error term. The parameter α captures the causal effect

of interest, i.e., obesity and overweight, fuel efficiency.

The basic specification for VMT and Gasoline Demand is similar, with

ln(Yit) = α0 + αDit + β1 ln(OperatingCostit) + β2 ln(yit − rit) + Xitγ + ϕi + δt + εit (3.2)

where Yit is the outcome of interest (i.e., VMT and gasoline consumption) for household i at

time t, and OperatingCostit ≡ GasPriceit/MPGit).

A basic problem with the models in (3.1) and (3.2) is the obesity and overweight dummy

variables may be endogenous. We consider four approaches to handling this issue. First, we

estimate a difference-in-difference (DID) model utilizing the longitudinal nature of our PSID

data. The treatment group in our DID framework is the set of households not overweight in the

pre-treatment period but obese or overweight in the post-treatment periods, and the control

group is not obese or overweight households in both pre and post treatment period. The DID

estimation is basically the same as the fixed effects model [Angrist and Pischke (2009)]. The

only difference between fixed effects model and DID in our application is how to define control

and treatment groups. In the fixed effects model, we simply define obese or overweight people

as treatment, others are the control group. However, in DID framework, we restrict people,

who are non-obese and non-overweight, in both pre- and post-periods into the control group,

but assign people who are non-obese or non-overweight in the pre-treatment period and obese

or overweight in the post-treatment into the treatment group.

Second, we estimate instrumental variable versions of our models. The natural instrument

for obesity and overweight for each household is sibling’s BMI, which can be constructed using

using the PSID data. Additionally, we also employ the ratio for eating-out costs over food

11In the case of households with more than one vehicle, we use an average value of two or three gasoline prices
at the time of purchase.

12Specifically, Xit includes number of family, number of adults, number of vehicles, and age of vehicles.
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consumption, and the participation in food stamp program similar to Li et al. (2011).13 Using

these instruments, we estimate the impact of obesity, α, by classical 2SLS using instruments.

However, since Dit has a binary nature, we can write the linear functional form by the

taking expected value conditional on exogenous variables

E(ln(Yit)|Wit,Zit) = αE(Dit|Wit,Zit) + Witτ + E(εit|Wit,Zit)

= αP(Dit = 1|Wit,Zit) + Witτ (3.3)

where Wit = {ln(OperatingCostit), ln(yit − rit), ln(GasPriceit−hi),Yeart,Xit}, i.e., all exoge-

nous variables, and P(Dit = 1|Wit,Zit) is a probability that household i become obese or

overweight conditional on exogenous variables because Dit is binary. There are two ways to

estimate equation (3.3), leading to our third and fourth variations on the model in our basic

models. First, we can use a simple two-step procedure, (i) estimate P(Dit = 1|Wit,Zit) by

probit and obtain the first-stage fitted probabilities, Φ̂it = Φ(π̂0 + Xitπ̂1 + Zitπ̂2), and (ii) run

OLS using Φ̂it in place of Dit. However, applying OLS directly with fitted probability cannot

guarantee consistency [Wooldridge (2010)]. Another way is to use the fitted probability as an

instrumental variable of Dit. In other words, as previous, (i) at the first stage, get the fitted

probabilities, Φ̂it by probit estimation, and (ii) run 2sls, i.e. instrumental variable estimation

using Φ̂it from the first stage as instrumental variable.

3.3.2 Structural-Form Approach

We next discuss our structural model approach based on each household’s utility maximiza-

tion. As discussed, since the vehicle choices and miles traveled are correlated by unobserved

household characteristics, the structural model should capture the relation to avoid bias in

estimation. There are several recent studies to analyze the consumer’s behavior on vehicles

and driving choices using joint estimation to control household unobserved characteristics [e.g.,

Bento et al. (2009); Feng et al. (2005); Roth (2012); Spiller (2012); and West (2004)]. We

adopt the model developed by Bento et al. (2009), which employs a full-information one-step

structural approach. The model assumes households face Ti choice occasions, i.e., in line with

13They use the ratio of average price of fast food over the average food price at home, and the participation
rate in the food stamp program as instruments for obesity rate in counties.
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mixed logit with repeated choices. The conditional indirect utility function is defined from the

log-linear VMT demand function as,

Uitj =


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(3.4)

where βi = − exp(β̃i)

λi = exp(λ̃i)

and where (pMij , rij , yi) are vehicle per-mile operating cost, rental rate of vehicle, and income

of household i’s for jth vehicle, respectively, Hα
i is household characteristics, Xj is vehicle

characteristics, and εitj is an error component capturing unobservable determinants of the

households decision, assumed an i.i.d. extreme value random variable.14

The other exogenous variables, except rental price and per-mile operating cost, that may

affect the household’s choices are included in αiH
α
i Xα

j . Above all, the key variable for this

study, obesity, and interaction with vehicle characteristics are included as

αiH
α
i Xα

j ≡ α1Di+
5∑

k=1

α2(k)i ·vintagejk +α3WBj +α4 · (WBj×Head Agei)+α5 · (# of Adults)

(3.5)

Following Hausman (1981), we derive the VMT demand equation by applying Roys identity.

VMTitj = exp

(
αiH

α
i Xα

j + βip
M
ij + λi

(
yi
Ti
− rij

))
+ ηitj , for j = 1, ..., J (3.6)

where ηitj represents an idiosyncratic error assumed independent across the J alternatives with

zero mean and standard deviation, σi = exp(σ∗i ), such that ηitj ∼ N(0, σi). Therefore, the

combined likelihood function is

Li =

Ti∏
t=1

 J∏
j=0

(
exp(Vij)∑
k exp(Vik)

)1itj J∏
j=1

log
(
Φ(VMTitj , σi|j)1itj

) (3.7)

14For the discrete choices model, we have to define choice sets, i.e., discrete choice alternatives following Bento
et al. (2009). We divide 10 vehicle classes (compact, luxury compact, midsize, fullsize, luxury mid/full size,
small SUV, large SUV, small truck, large truck, and mini van), 5 vintages (new, 1-2 years, 3-6 years, 7-11 years,
and 12-18 years), and 7 manufacturers (Ford, Chrysler, GM, Honda, Toyota, Other Asians, and European).
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where 1itj is an indicator function that equals 1 if household i chooses j at tth choice occa-

sion, and 0 otherwise. We adopt random parameters for all variables to reflect heterogeneous

taste and flexible specification. These random parameters and nonlinear specifications make

estimation via maximum simulated likelihood implausible. As Bento et al. (2009) suggested,

we employ Bayesian procedure using the Markov Chain Monte Carlo (MCMC) technique.15

3.4 Empirical Results

3.4.1 Reduced-Form Approach

The results of basic reduced-form model are presented in Tables 3.3, 3.2, and 3.4. Obser-

vations are weighted using the PSID survey weights. For comparisons, we report the results of

OLS estimation as well. It is well-known the OLS estimation can yield biased estimates due to

omitted variable, when the unobserved household time-invariant variables are correlated with

other variables. In our application, if the unobservable variables, such as diet, lifestyle, and

intensity of physical activity are correlated with the obesity and overweight variables, OLS

regression may result in inconsistent estimates. We report the results of a variety of additional

results that assess the overall robustness of the estimates using other alternative variables to

represent obesity and overweight, such as BMI, and height and weight as well.

Panels A and B of Table 3.2, show the estimates of core parameters of pooled OLS and fixed

effects model of the fuel economy equation. The parameters we are interested in are obesity

and overweight. Column (1) shows that overweight (BMI > 25) is a significant effect in both

OLS and fixed effects model. On the other hands, obesity does not have a statistically signif-

icant effect in fixed effects model while OLS estimate is a significant negative value. Column

(3) include both obesity and overweight, therefore, obesity parameter measure an additional

marginal effect over overweight. In both OLS and fixed effects model, there is no statistically

significant effect of obesity. Although obesity and overweight dummies give intuitively attrac-

tive measures, these variables lose some information by changing 0 or 1. Columns (4), (5), and

(6) present the result of the estimation with BMI, height, and weight. In particular, column

15The detailed estimation algorithm is described in appendix of Bento et al. (2009) and ch12 of Train (2009).
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(5) shows that ln(BMI) has a significant negative effect in both OLS and fixed effects model. In

addition, column (5) includes (BMI/100) and (BMI/100)2 to reflect non-linearity, the estimates

for these two variables are significant as well. Column (6) reports the result of estimation with

height and weight which are statistically significant in OLS but only weight is significant in fixed

effects model. Even though our results have the same direction with Li et al. (2011), the size of

the impact on fuel economy is relatively small. We will discuss and compare our results with Li

et al. (2011) below. Table 3.3 presents the estimation results of VMT regression. In contrast

to the results in fuel economy regression, overweight has a significant impact on VMT in OLS

but not in fixed effects model. On the other hand, a effect for obesity in column (2) shows

statistically significant estimates for both models. Moreover, the fixed effects model in column

(3) shows obesity has a significant marginal effect, whereas, only the overweight estimate is

statistically significant in OLS. Columns (4), (5), and (6) show any measures for obesity and

overweight, such as ln(BMI), (BMI/100)2, height, and weight, are not statistically significant

in fixed effects model. Above results for VMT and fuel economy imply obese household drive

8.4% more than non-obese households, and households with overweight head own 0.7% less fuel

efficient vehicles than non-overweight households.16 As a result of combining driving and fuel

efficiency, the estimation for gasoline consumption equation provides a final consequence. In

Table 3.4, panel A: OLS results show all measures, obesity (BMI > 30), overweight (BMI >

25), ln(BMI), (BMI/100), (BMI/100)2, and ln(height) have statistically significantly positive

effects on gasoline consumption. However, fixed effects model suggests households with obese

head consume gasoline more around 6 % than non-obese households.

To check robustness and compare results with the fixed effects model, we estimate the

impact of obesity and overweight through a variety of methods. First, by utilizing the nature of

the panel data, we implement difference-in-difference (DID). As discussed above, DID is widely

used in recent empirical works to measure treatment effects or policy impact. In our case,

treatment is obesity and overweight. The treatment group can be defined as people who were

not obese or overweight during the pre-treatment period, but become obese or overweight in the

16In log-linear model, the parameter of dummy variable can be interpreted as percent change because of
Y (D=1)−Y (D=0)

Y (D=0)
= exp(α) − 1 ≈ α at 0.
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post-treatment period. On the other hand, non-obese or non-overweight households in both pre

and post treatment period are assigned as a control group. In our application, households need

a time period to adjust their vehicles, i.e., fuel efficiency, (or sometimes driving) after treatment

since changing vehicles comes with a large number of costs. Therefore, we restrict treatment

group as households, which are non-obese or non-overweight in 1999, but obese or overweight

in 2003; while we compare the dependent variables between 1999 and 2009. That is to say,

we set 1999 as the pre-treatment period and 2009 as the post-treatment period. In Table 3.5,

DID results show that obesity and overweight are not statistically significant for all dependent

variables at the 5 % significance level. One ongoing concern in the literature on obesity is

endogeneity of obesity and overweight. A conventional way used in previous studies to overcome

is the instrumental variable approach [Cawley and Meyerhoefer (2012); Li et al. (2011)]. We

adopt sibling’s average BMI, proportion of eating-out cost to total food cost, and whether

a household receives food-stamps used in previous literature as instruments for obesity and

overweight. However, as indicated in the previous section, due to the binary nature of obesity

and overweight dummies, applying 2sls using instruments is possibly inefficient. Therefore, we

investigate the impact of obesity and overweight through several different approaches using

IV. Table 3.6 reports the estimates of IV regression. In all cases, obesity and overweight

have significant effects just on ln(MPG). However, IV estimates are much larger in magnitude

than fixed effects and OLS. In addition, several prior studies report the endogeneity of fuel

economy in estimation of the VMT [Linn (2013); Frondel and Vance (2013)]. This study

adopts two kind of instruments for fuel economy; (1) gasoline prices at the time the vehicle

was purchased and its interactions with household characteristics, (2) gasoline guzzler tax.

The results of IV regression with both instruments, i.e., for obesity and overweight, and fuel

economy, are presented in Table 3.7. There is no statistically significant estimates, which are

very large values. As Frondel and Vance (2013) noted, gasoline prices at the time of purchasing

vehicles for fuel economy suffer from weak instrumental problem. Further, although gas guzzler

tax is highly correlated with fuel economy, the variable is also possibly endogeneous because

it can be correlated with observed and unobserved variables, such as vehicle prices and the

comport of vehicle. On the other hand, our estimates cannot be matched with those for prior
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studies because they use different units of data (e.g., the rate of obesity and overweight) and

models. However, our results roughly compare with Li et al. (2011). They report that the MPG

elasticity to obesity and overweight rate is -0.289, i.e., 1 % increase in obesity and overweight

rate brings with 0.289 % decrease in fuel economy. Moreover, they show that if the rate of

obesity and overweight in 2005 (67 %), had remained at the 1981 level (47 %), the average

fuel economy for new vehicles demanded in 2005 would be increased from 22.99 to 24.98 miles

per gallon. However, based on our results that obese and overweight people own 0.7 % less

fuel efficient vehicle, we derive only a slightly increase in MPG, i.e., 23.02 instead of 22.99

from simple calculations. Li et al. (2011) also suggest that approximately 8.6% savings in

gasoline consumption can be obtained through the improvement of fuel efficiency by a decrease

in the rate of obesity and overweight.17 From the results in Table 3.4, overweight (BMI >25)

does not have a significant effect on gasoline consumption. With the same simple calculation

and if the rate of obesity (BMI >30) in 2005 (35.1 %) had remained at the 1981 level (15.0

%), the gasoline consumption in 2005 is 26,484 trillion btu instead of 27,309 trillion btu, i.e.,

approximately 3.0 % savings in gasoline consumption.18

3.4.2 Structural-Form Approach

We use each year’s data for estimation rather than pooled data from 1999 to 2009 because

the full sample includes too many observations to estimate the model with random parameters.

Decomposing the sample allows us to understand the change of preferences over time. The

parameters in the structural model cannot be interpreted directly because of non-linearity in

contrast to a reduced linear form model. Therefore, we compute marginal effects of obesity

and overweight by using the following simple equations. J∑
j=1

Pij(Di = 1) ·MPGj

−
 J∑
j=1

Pij(Di = 0) ·MPGj


[∑J

j=1 Pij(Di = 0) ·MPGj

] × 100 (3.8)

17Li et al. (2011) assume that annual VMT is 12,000 miles and constant for all households regardless of the
rate of obesity.

18Source: the rate of obesity http://www.cdc.gov/nchs/data/hestat/obesity adult 07 08/obesity adult 07 08.pdf,
and fuel consumption http://www.eia.gov/totalenergy/data/monthly/pdf/sec2 11.pdf

http://www.cdc.gov/nchs/data/hestat/obesity_adult_07_08/obesity_adult_07_08.pdf
http://www.eia.gov/totalenergy/data/monthly/pdf/sec2_11.pdf
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VMTij∗(Di = 1)−VMTij∗(Di = 0)

VMTij∗(Di = 0)
× 100 (3.9)

[∑J
j=1 Pij(Di = 1) · (VMTij(Di = 1)/MPGj)

]
−
[∑J

j=1 Pij(Di = 0) · (VMTij(Di = 0)/MPGj)
]

[∑J
j=1 Pij(Di = 0) · (VMTij(Di = 0)/MPGj)

] ×100

(3.10)

where Di represents dummy variable for obesity or overweight. Equations (3.8), (3.9), and

(3.10) are marginal effects of obesity or overweight on fuel economy, VMT, and gasoline con-

sumption, respectively. In particular, equation (3.10) for gasoline consumption reflects the

comprehensive impact of obesity or overweight through the change of both VMT and fuel

economy. Table 3.8 reports the average effects of overweight (BMI > 25) for the joint discrete

and continuous model. In comparison with the results of the reduced-form approaches, the

impact of overweight on fuel economy is relatively small, but it has larger effects on VMT.

To compare with the reduced-form approaches and Li et al. (2011), we implement the same

simulations as the reduced-form approaches. Even though our results provide different results

according to survey year, based on the results of 2003 year, we can compute the impact of

overweight (BMI > 25) on gasoline demand. If the rate of overweight (BMI > 25) remained

at the 1981 level (47.1%) rather than 67.3%, the gasoline consumption in 2005 is 26,870 trillon

btu, a 1.6% savings, which is even smaller than our reduced-form results.

3.5 Conclusions

The rising rate of obesity has contributed large social and economic problems over the

last several decades in the U.S. and throughout the world. It is well-known that the high

prevalence of obesity is accompanied by several negative health problems such as high blood

pressure, diabetes, or heart disease. Besides these common negative effects, recent studies

examine the impact of obesity and overweight on the environment through vehicle emissions.

There are two channels to increase gasoline consumption - low fuel economy and more vehicle

use. There are two main concerns in the previous research. First, employing aggregate types

of data, such as the national level time series or county level cross section data, makes difficult
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to control for unobserved individual or household characteristics. Second, prior studies focus

on one side of impacts, i.e VMT or fuel economy. Two channels on gasoline consumption may

cause conflicting or synergistic actions.

The objective of this study is to provide a complete picture for the impact of obesity

on gasoline consumption by adopting household level observations from the Panel Study of

Income Dynamics (PSID). We investigate the impact of obesity by employing both reduced-

form (linear panel model) and structural model (joint discrete and continuous choice model).

Based on our estimates, we implement simple simulations in line with Li et al. (2011). First,

for the reduced-form model, if the prevalence of obesity in 2005 has remained at the 1981 level,

gasoline consumption would be 3% saved. On the other hand, the structural model shows that

if the rate of overweight in 2005 has remained at the 1981 level, only 1.6% less gasoline would

be demanded. Our empirical findings suggest that the comprehensive impact of obesity and

overweight on gasoline consumptions are minimal or ambiguous in contrast to the results of

prior studies considering either driving or vehicle choices.
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Table 3.1 Summary Statistics
HH with 0 Vehicle HH with 1 Vehicle HH with 2 Vehicle HH with 3 Vehicle

Household Size 2.28 2.17 3.03 3.33
(1.59) (1.39) (1.31) (1.30)

Number of Adults 1.43 1.44 2.03 2.35
(0.69) (0.64) (0.52) (0.69)

VMT (1000 miles) - 12.94 20.65 26.42
- (10.89) (15.08) (22.15)

Average MPG - 20.64 19.60 19.47
- (4.10) (3.05) (2.57)

Rate of Obesity (BMI > 30) 0.31 0.29 0.28 0.28
(0.46) (0.45) (0.45) (0.45)

Rate of Overweight (BMI > 25) 0.63 0.65 0.74 0.75
(0.48) (0.48) (0.44) (0.44)

Age of Head 45.08 43.84 43.98 46.38
(19.17) (16.94) (14.03) (11.68)

Years of Education (years) 11.42 13.04 13.47 13.34
(2.79) (2.58) (2.56) (2.54)

Household Income < $30,000 0.73 0.37 0.09 0.05
(0.44) (0.48) (0.29) (0.22)

Household Income $30,000 - $60,000 0.19 0.39 0.27 0.20
(0.40) (0.49) (0.44) (0.40)

Household Income $60,000 - $75,000 0.08 0.24 0.64 0.75
(0.27) (0.43) (0.48) (0.44)

Household Income > $75,000 0.05 0.16 0.49 0.62
(0.21) (0.36) (0.50) (0.49)

Households (share) 6,257 (17.4%) 12,419 (34.5%) 13,279 (36.8 %) 4,085 (11.3 %)
Note: The standard deviations are reported in the parenthesis.
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Table 3.2 Average Effects of Obesity and Overweight on Fuel Economy

(1) (2) (3) (4) (5) (6)

PanelA: OLS

Obesity (BMI > 30) -0.013*** -0.004
(0.003) (0.005)

Overweight (BMI > 25) -0.023*** -0.021***
(0.003) (0.004)

ln(BMI) -0.029***
(0.005)

(BMI/100) -0.224***
(0.033)

(BMI/100)2 0.116***
(0.019)

ln(Height) -0.058***
(0.007)

ln(Weight) -0.394***
(0.027)

ln(GasPricet−h) 0.016** 0.016** 0.016* 0.016** 0.002 0.018**
(0.008) (0.008) (0.010) (0.008) (0.007) (0.008)

ln(Income - Rental Price) -0.023*** -0.024*** -0.023*** -0.024*** -0.024*** -0.019***
(0.002) (0.002) (0.003) (0.002) (0.002) (0.002)

Panel B: Fixed Effects Model

Obesity (BMI > 30) -0.006 -0.006
(0.004) (0.004)

Overweight (BMI > 25) -0.007** -0.007*
(0.004) (0.004)

ln(BMI) -0.011**
(0.005)

(BMI/100) -0.103**
(0.049)

(BMI/100)2 0.051**
(0.026)

ln(Weight) -0.034**
(0.016)

ln(Height) -0.031
(0.070)

ln(GasPricet−h) 0.006 0.006 0.006 0.006 0.002 0.006
(0.008) (0.008) (0.008) (0.008) (0.007) (0.008)

ln(Income - Rental Price) -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively.
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Table 3.3 Average Effects of Obesity and Overweight on VMT

(1) (2) (3) (4) (5) (6)

PanelA: OLS

Obesity (BMI > 30) 0.048** 0.015
(0.023) (0.028)

Overweight (BMI > 25) 0.082*** 0.076***
(0.021) (0.026)

ln(BMI) 0.094**
(0.042)

(BMI/100) 0.803***
(0.287)

(BMI/100)2 -0.420**
(0.170)

ln(Height) 0.174***
(0.061)

ln(Weight) -0.010
(0.230)

ln(GasPrice/MPG) -0.382*** -0.376*** -0.382*** -0.376*** -0.378*** -0.391***
(0.055) (0.055) (0.059) (0.055) (0.055) (0.056)

ln(Income - Rental Price) 0.114*** 0.116*** 0.114*** 0.116*** 0.116*** 0.113***
(0.017) (0.017) (0.020) (0.017) (0.017) (0.017)

Panel B: Fixed Effects Model

Obesity (BMI > 30) 0.084** 0.082**
(0.041) (0.041)

Overweight (BMI > 25) 0.020 0.014
(0.038) (0.038)

ln(BMI) 0.022
(0.050)

(BMI/100) 0.506
(0.468)

(BMI/100)2 -0.283
(0.242)

ln(Weight) 0.183
(0.182)

ln(Height) -0.200
(0.749)

ln(GasPrice/MPG) -0.420*** -0.421*** -0.421*** -0.420*** -0.421*** -0.421***
(0.080) (0.080) (0.080) (0.080) (0.080) (0.080)

ln(Income - Rental Price) 0.091*** 0.091*** 0.091*** 0.091*** 0.091*** 0.090***
(0.027) (0.027) (0.027) (0.027) (0.027) (0.027)

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively. Fixed effects model include # of family, # of adults, #
of vehicle, vehicle age fixed effects, and year fixed effects. Pooled OLS include all variables in fixed effects model
and head age, head education and city size by population fixed effects as well.
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Table 3.4 Average Effects of Obesity and Overweight on Gasoline Demand

(1) (2) (3) (4) (5) (6)

PanelA: OLS

Obesity (BMI > 30) 0.061*** 0.025
(0.018) (0.023)

Overweight (BMI > 25) 0.094*** 0.084***
(0.016) (0.020)

ln(BMI) 0.320*** 0.116***
(0.045) (0.031)

(BMI/100) 0.940***
(0.211)

(BMI/100)2 -0.485***
(0.124)

ln(Height) 0.212***
(0.045)

ln(Weight) 0.122
(0.173)

ln(GasPrice/MPG) 0.320*** 0.328*** 0.320*** 0.327*** 0.325*** 0.304***
(0.041) (0.041) (0.045) (0.041) (0.041) (0.042)

ln(Income - Rental Price) 0.114*** 0.116*** 0.114*** 0.116*** 0.116*** 0.111***
(0.013) (0.013) (0.015) (0.013) (0.013) (0.013)

Panel B: Fixed Effects Model

Obesity (BMI > 30) 0.063** 0.061*
(0.031) (0.031)

Overweight (BMI > 25) 0.022 0.017
(0.028) (0.028)

ln(BMI) 0.017
(0.039)

(BMI/100) 0.285
(0.355)

(BMI/100)2 -0.160
(0.183)

ln(Weight) 0.120
(0.135)

ln(Height) -0.079
(0.535)

ln(GasPrice/MPG) 0.164*** 0.163*** 0.163*** 0.164*** 0.164*** 0.163***
(0.059) (0.059) (0.059) (0.059) (0.059) (0.059)

ln(Income - Rental Price) 0.082*** 0.083*** 0.082*** 0.083*** 0.083*** 0.082***
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively.

Table 3.5 Average Effects of Obesity and Overweight: Difference-in-Difference
ln(MPG) ln(VMT) ln(Gas Demand)

Overweight (BMI > 25) -0.027* -0.006 0.010
(0.015) (0.110) (0.098)

Obesity (BMI > 30) 0.011 0.014 -0.012
(0.094) (0.019) (0.089)

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively.
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Table 3.6 Average Effects of Obesity and Overweight: Instrumental Variable Approach 1

IV Probit-2SLS Probit-OLS

Overweight (BMI > 25)

ln(VMT) 0.070 -0.250 -0.317
(0.045) (0.307) (0.394)

ln(MPG) -0.094** -0.088*** -0.049**
(0.039) (0.033) (0.022)

ln(Gas Demand) -0.142 -0.079 -0.103
(0.310) (0.228) (0.293)

Obesity (BMI > 30)

ln(VMT) 0.048 -0.386 -0.380
(0.051) (0.381) (0.382)

ln(MPG) -0.074** -0.067** -0.030*
(0.034) (0.034) (0.017)

ln(Gas Demand) -0.165 -0.197 -0.197
(0.270) (0.284) (0.284)

Instruments Sibling’s BMI Sibling’s BMI Sibling’s BMI
for Obesity or Overweight Food-Stamp Food-Stamp Food-Stamp

Eating-Out Cost Eating-Out Cost Eating-Out Cost

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively.

Table 3.7 Average Effects of Obesity and Overweight: Instrumental Variable Approach 2

IV1 IV2 Probit-IV1 Probit-IV2

Overweight (BMI > 25)

ln(VMT) -0.313 -0.376 -0.119 -0.160
(0.319) (0.419) (0.253) (0.294)

ln(Gas Demand) -0.127 -0.182 0.067 0.144
(0.244) (0.316) (0.190) (0.220)

Obesity (BMI > 30)

ln(VMT) -0.258 -0.370 -0.215 -0.271
(0.313) (0.364) (0.325) (0.364)

ln(Gas Demand) -0.104 -0.196 -0.051 0.075
(0.237) (0.275) (0.243) (0.277)

Instruments Sibling’s BMI Sibling’s BMI Sibling’s BMI Sibling’s BMI
for Obesity or Overweight Food-stamp Food-stamp Food-stamp Food-stamp

Eating-out Cost Eating-out Cost Eating-out Cost Eating-out Cost
for MPG P git−hi

Gas Guzzler Tax P git−hi
Gas Guzzler Tax

Interactions Interactions

Notes: Standard errors are reported in parentheses and clustered by household, and * denotes significance at
the 10%, ** at the 5%, and *** at the 1%, respectively.
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Table 3.8 Average Effects of Overweight: Structural-Form Model
1999 2001 2003 2005 2007 2009

MPG (%) -0.001 0.000 0.000 -0.002 -0.002 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

VMT (%) 13.740 14.479 15.591 23.109 10.097 15.924
(4.852) (3.467) (3.661) (3.014) (3.625) (3.808)

Gasoline (%) 8.118 8.404 8.999 13.554 5.773 9.244
(2.857) (2.012) (2.113) (1.769) (2.081) (2.207)
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CHAPTER 4. VEHICLE FUEL EFFICIENCY AND THE REBOUND

EFFECT: EVIDENCE FROM U.S. PANEL DATA

4.1 Introduction

Global warming represents a profound environmental threat to our planet and mobile

sources of air pollution represent a key contributor to this problem. Indeed, the transportation

sector as a whole ranks second as a source of global carbon emissions, accounting for roughly

28% of annual emission of carbon dioxide (EPA Inventory of U.S. Greenhouse Gases and Sinks

2014).1 U.S. efforts to reduce the carbon footprint of its transportation sector have centered

around the Corporate Average Fuel Economy (CAFE) standards. These standards require ve-

hicle manufacturers to meet a sales-weighted, fleet-wide, fuel economy benchmark. However, an

unintended consequence of CAFE standards is people may drive more as vehicle fuel efficiency

increases. This so-called ‘rebound effect’ potentially offsets much of the gains in the reduction

of energy consumption sought through the CAFE standards.

The rebound effect can be divided into two components: direct and indirect rebound ef-

fects. Specifically, the direct effect consists of total substitution and a ‘partial’ income effect

stemming from a change in fuel price or fuel efficiency. The ‘partial’ income effect captures the

increased or decreased usage of the vehicles owned by an individual in response to a price or

fuel efficiency change. The remaining indirect rebound effect corresponds to the changes of the

energy consumption on other energy using product, i.e. other transportation or appliances.

Ideally, both direct and indirect rebound effects should be considered to capture the entire

rebound effect. However, as it is difficult to estimate the indirect effect, most studies in the

literature focus only on quantifying the direct effect, an approached followed in this paper as

1Source: http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html

http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html .


61

well.

While there is already substantial literature on the rebound effect, there remains no consen-

sus regarding its magnitude. Estimates of the rebound vary substantially, changing with the

empirical methods employed, the types of or time periods covered by the available data, and

the specific definition used to characterize the rebound effect. Several different types of data

sets have been used in prior studies, including cross-sectional household level data, aggregate

panel data, and time-series data, with only a single German data set drawing on household

level panel data [Frondel et al. (2008, 2012); Frondel and Vance (2013)]. The reported VMT

elasticity estimates of the rebound effect from studies using household level data range from

0.1 to 0.9, while those from studies using aggregate data are in the range from 0.03 to 0.34.

One of the main concerns in estimating the rebound effect is the potential endogeneity of

the fuel economy variable, with fuel economy potentially correlated with unobserved household

and/or vehicle characteristics. Two approaches have dominated the literature in dealing with

this issue: (1) the use of instrumental variables for fuel economy and (2) a joint discrete

and continuous choice model along the lines of Dubin and McFadden (1984) that explicitly

accounts for the correlation between vehicle miles traveled and vehicle choices. The difficulty

with the instrumental variable approach is the availability of suitable instruments, while the

discrete-continuous choice model approach depends upon structural assumptions. This paper

addresses the endogeneity issue, instead, through the use of panel data techniques, controlling

for unobserved, but time invariant household factors with fixed effects. Data for the analysis

are provided by the Panel Study of Income Dynamics (PSID), yielding a household level panel

data base for 1999 through 2011. For comparison, we implement several different estimation

strategies, including pooled OLS, random and fixed effects models, and an instrumental variable

model.

Finally, although the rebound effect generally refers to the VMT response to the introduc-

tion of more efficient vehicles, i.e., the elasticity of VMT with respect to fuel economy, there

are other definitions of the rebound effect used in the literature. For example, studies measure

the rebound effect in terms of the elasticity of VMT with respect to gasoline price or per-mile

operating cost. An important assumption underlying these alternative definitions is consumers
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react the same way to a decrease in gasoline prices versus an improvement in fuel economy.

In other words, they do not care about where the reduction of costs come. Studies that have

tested this hypothesis do not provide a consistent conclusion [Gillingham (2012); Greene (2012);

Frondel et al. (2012); Small and Dender (2007)]. To examine this hypothesis, we estimate the

rebound effect based on various definitions. While our estimates of the rebound effect vary

somewhat with definition used, from 0.58 to 0.80, we cannot reject the hypothesis that the

response to fuel price and fuel economy are the same. Finally, we examine the heterogeneous

responses to the change of price or fuel efficiency across income deciles. We find a statistically

significant difference in the rebound effect for low and high income households.

The remainder of this paper is organized as follows. Section 2 presents a review of the recent

literature estimating the rebound effect. Section 3 details the data used in this study, while

Section 4 describes the empirical model specifications. Section 5 presents estimation results.

The paper summarizes in section 6 with conclusions.

4.2 Related Literature

A number of papers have appeared in the literature estimating the elasticity of vehicle miles

traveled (VMT) or fuel used with respect to fuel price or fuel economy. These elasticities are

broadly accepted as alternative measures of the ‘rebound effect.’ However, the magnitude of the

estimated rebound effect varies with the definition, empirical modeling techniques employed,

and the type of data used [EPA and DOT (2012); Gillingham et al. (2014); Sorrell et al.

(2009)]. This section begins with an overview of the competing definitions for the rebound

effect appearing in the literature, followed by a summary of results, methodologies, and types

of data used in the literature. Sorrell and Dimitropoulos (2008) provide a relatively recent and

more extensive summary of the rebound effect literature.

4.2.1 Defining the Rebound Effect

The definition for the rebound effect can be largely categorized into four types of elasticities,

(1) an elasticity of vehicle traveled miles (VMT) with respect to fuel economy, (2) an elasticity

of VMT with respect to per-mile operating cost, (3) an elasticity of fuel demand with respect
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to fuel economy, and (4) an elasticity of VMT with respect to fuel price. Formally, the first

definition of the rebound effect is based on the canonical relation, i.e., higher fuel economy

leads to more driving.

Definition 1 Elasticity of VMT with respect to fuel economy:

ηµ(VMT) =
∂ ln(VMT)

∂ ln(µ)
(4.1)

where µ is fuel economy (MPG).

Although definition 4.1 is the most natural, it assumes consumer’s choice of fuel economy is

exogenous.

A second definition is based on per-mile operating cost, capturing the impact of both fuel

efficiency and fuel price.2

Definition 2 Elasticity of VMT with respect to per-mile operating cost (pM ):

ηpM (VMT) = −∂ ln(VMT)

∂ ln(pM )
(4.2)

where per-mile operating cost is defined as fuel price divided by fuel economy (MPG), pgas/µ.

There are two key assumptions underlying definition 4.2. First, as was the case for definition

4.1, fuel economy is treated as exogenous. Second, the impact of the change in fuel economy

on VMT is the same as the impact of changing fuel prices, i.e., the reduction of per-mile

operating cost due to an increase in fuel economy is the same as those due to a decrease in

fuel prices. There is evidence in the literature suggesting this assumption does not always hold

[Linn (2013)].

The third and fourth definitions are as follows:

Definition 3 Elasticity of Gasoline Demand with respect to fuel prices:

ηpgas(Gasoline Demand) = −∂ ln(Gasoline Demand)

∂ ln(pgas)
(4.3)

2Note the rebound effect in this case is the negative of the elasticity of VMT with respect to fuel cost. The
sign change is standard in the literature, making the signs comparable across the various definitions of the
rebound effect.
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Definition 4 Elasticity of VMT with respect to fuel prices:

ηpgas(VMT) = −∂ ln(VMT)

∂ ln(pgas)
(4.4)

where pgas is fuel price.

Frondel et al. (2008) show that the four definitions are equivalent, if the following assumptions

hold: (1) fuel price are exogenous, (2) fuel efficiency does not depend on fuel price, i.e., µ is

not a function of pgas, and (3) individuals respond to a change in fuel prices and fuel economy

equivalently (i.e., measuring their impact solely in terms of the associated change in operating

costs).3 In our empirical analysis, we explicitly test this third assumption.

4.2.2 Evidence in the Literature

The techniques employed in recent literature on the rebound effect can be broadly divided

into two groups: (1) reduced-form linear models (employing pooled OLS, panel estimation, and

IV regression approaches) versus (2) structural (joint discrete and continuous choice) models.

The structural models capture the discrete choices made by individuals in terms of which (and

how many) vehicles to own and the continuous choice of how many vehicle miles to travel [Bento

et al. (2009); Roth (2012); Spiller (2012); West (2004)]. Joint modeling of these two decisions

accounts for the bias stemming from unobserved household characteristics that simultaneously

influence both vehicle choice and VMT. The joint models typically rely on household level

cross-sectional data (e.g., the National Household Travel Survey, NHTS, or the Consumer

Expenditure Survey, CEX). Examples of structural models include Bento et al. (2009), who

estimate the gasoline price or per-mile operating cost elasticity of VMT to be in the range from

0.34 to 0.74, and Spiller (2012) and Roth (2012), with rebound effect estimates of 0.45 and

0.62, respectively. These three studies use 2001 and 2009 NHTS data. West (2004), using 1997

CEX data, shows the largest value, 0.87.

Table 4.1 provides a summary of recent rebound effect estimates categorized by definition,

data sources and estimation methods. Reduced-form studies use a variety of techniques and

data sources. A series of studies [Frondel et al. (2008, 2012); Frondel and Vance (2013)] estimate

3Li et al.(forthcoming) show that gasoline prices are exogenous.
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the rebound effect using German household panel data (German Mobility Panel) through a

variety of estimation strategies, including random effects models, fixed effects models, and

quantile regression. The estimates of the rebound effect in their studies generally have larger

values than for other studies (ranging from 0.42 to 0.90), although this is attributed, in part, to

better public transportation and higher fuel price in Germany [Gillingham et al. (2014)]. Linn

(2013) estimates fuel efficiency elasticity with household cross-sectional data (NHTS) using

instrumental variables (IV) regression to control for the endogeneity of fuel economy. The best

estimate by Linn (2013) is 0.44, larger than the most OLS-based estimates.

Finally, estimates of the rebound effect in studies using aggregate data, such as Small

and Dender (2007) using aggregate panel data and Hughes et al. (2008) using aggregate time

series data, vary between 0.03 and 0.22, falling at the lower end of the estimates in Table 4.1.

This may stem, in part, from attenuation bias, due to ignored heterogeneity in the household

characteristics when relying on aggregate data.

4.3 Data

This study employs the Panel Study of Income Dynamics (PSID), a longitudinal survey of

a representative sample of U.S. households that began in 1968. Starting in 1999, the PSID

collected data biannually.4 The survey collects a wide range of economic, sociological, and

psychological variables. Perhaps most importantly for our purposes, beginning in 1999, the

PSID includes information on vehicles each household holds, with the specific make, model,

and year for each vehicle (e.g., Honda Civic 2010).5 For this reason, we use the biannual

samples beginning in 1999 continuing through 2011. After dropping observations with missing

information, the final data included 40,447 observations.6

Based on specific vehicle model information from the PSID, we constructed vehicle charac-

teristics, including fuel economy, for each vehicle in the database using combining information

4All observations are weighted using the PSID sampling weight.
5Although the PSID provides the information on vehicle year, make, and manufacturer publicly, the specific

models are provided only under a restricted use contract. Such a contract was acquired for the purpose of this
study.

6Appendix describe data sources and process to construct the final data set in detail.
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from the U.S. Environmental Protection Agency (EPA) and WARD’s Automotive Yearbook.7

Finally, the American Chamber of Commerce Researchers’ Association (ACCRA) data are used

to obtain gasoline prices varying with region (CMSA level) and month. The ACCRA provides

only quarterly average gasoline prices by CMSA. To construct monthly gasoline prices, we com-

pute monthly variations within each quarter from EIA monthly state average gasoline prices,

and then apply these values to the ACCRA data. Additionally, since the ACCRA does not

cover all CMSA shown in the PSID, we impute the gasoline prices using EIA gasoline prices at

the state level.

Table 4.2 lists summary statistics by years. Household characteristics do not vary much

across the sample years. Average family income in the PSID sample is somewhat higher than

the national median. This is due, in part, to the fact we have restricted our sample to households

that own at least one vehicle, thus excluding many households in the lower tail of the income

distribution. The reported income has large standard variations because the total family income

in the PSID includes actual loss, i.e., negative values.8

Related to vehicle variables, note the fuel economy was generally declining from 1999

through 2005, but subsequently has increased. National representative statistics by the Bureau

of Transportation Statistics also show the overall fuel economy of new light-duty vehicles in

same period did not improve much (0.7 MPG), while the fuel economy for new vehicles did

increase substantially (2 MPG). At the same time, gasoline prices vary significantly across

years, from a low in 1999 of $1.01 per gallon to $3.77. Gasoline prices did drop sharply in

2009, following the start of the Great Recession. VMT have generally declined over the sample

period, although there was an increase in 2009, perhaps reflecting an increase in driving relative

to flying in response to the Great Recession.

7The website, fueleconomy.org supported by EPA and Department of Energy(DOE) provides miles per gallon
(MPG) by make, model, and year for vehicles between 1985 to present. However, our sample includes models
older than 1985. For the vehicles 1982 to 1984, we obtained the MPG from WARD’s Yearbook.

8In addition, the PSID includes a few extreme values which make a slightly large average household income.
However, the median values show our data are close to national values. The nominal median income for our
2011 sample is $58,000, slightly higher than the national median income, $50,046.
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4.4 Empirical Model

The empirical models adopted in this paper are based on a simple linear specification used

in prior studies. In particular, the basic linear regression takes the form,

ln(VMTit) = α+ β1 ln(MPGit) + β2 ln(pgasit ) + D′iγ + X′itδ + λZit + ε̃it (4.5)

where i and t are used to index household and time, respectively. The vector Di includes time-

invariant household characteristics, such as education or regional location, while the vector

Xit includes time-variant household characteristics, such as income. Finally, Zit is vehicle

class fixed effect to control for the correlation between fuel economy and other broad vehicle

characteristics.

One concern with estimating the model in (4.5) is any unobserved household characteristics

(say Du
i ) are implicitly included in the error term ε̃it. Formally, the error term in equation (4.5)

can be rewritten as ε̃it = Du′
iγ
u + εit where Du

i, denotes a vector of unobserved household

characteristics, and εit is the idiosyncratic error term. To the extent that these unobservables

are correlated with both vehicle choices, fuel efficiency and vehicle miles traveled, estimates of

the rebound effect (i.e., β1) will suffer from omitted variables bias. Dubin and McFadden (1984)

proposed a two-stage discrete-continuous model using the conditional expectation correction

method to control for such unobserved household characteristics in the context of household

appliance and energy usage.

In the current paper, we instead take advantage of the panel structure of the PSID data to

control for unobserved individual effects through the use of a fixed effects model. Specifically,

we can rewrite our simple linear model as follows:

ln(VMTit) = α+ β1 ln(MPGit) + β2 ln(pgasit ) + D′iγ + Du′
iγ
u +X′itδ + λZit + εit

= αi + β1 ln(MPGit) + β2 ln(pgasit ) +X′itδ + λZit + εit (4.6)

where the individual fixed effect, αi ≡ α+D′iγ+Du′
iγ
u, captures both observed and unobserved

time-invariant variables. Ignoring individual (or household) unobserved variables lead to bias

[Angrist and Pischke (2009)]. With this panel data structure, the omitted variable bias is



68

eliminated implicitly through demeaning of the regression equation; i.e.,9

ln(VMTit)− ln(VMTi) = β1[ln(MPGit)− ln(MPGi)] + β2(p
gas
it − p

gas
i ) + (Xit −Xi)

′δ

+λ(Zit − Zi) + (εit − εi)

4 ln(VMTit) = β14 ln(MPGit) + β24pgasit +4X′itδ + λ4Zit +4εit (4.7)

where 4 ln(VMTit) = ln(VMTit)− ln(VMTi) and so on. In the time-demeaned equation (4.7),

the unobserved time-invariant variables captured by αi are eliminated.

In summary, when estimating the rebound effect, there are two primary sources for omitted

variable bias identified in the literature, (1) unobserved household characteristics and (2) unob-

served vehicle characteristics, potentially correlated with fuel economy variable [Linn (2013)].

In our preferred model, we control these two sources by including vehicle class fixed effects

and adopting the individual fixed effect model in a panel data setting. We also allow for time-

period effects, i.e., year dummy variables to account for any aggregate individual-invariant time

variables.

4.5 Empirical Results

Table 4.3 provides estimates of the rebound effects, based on empirical models of definition

1. As noted above, our empirical models include several fixed effects, such as vehicle class, city

size, year, and vehicle age, to control for household and vehicle characteristics. Along with base

models from equations (4.5) and (4.6), i.e., pooled OLS, random effects (RE), and fixed effects

(FE) models, we also implement an IV regression, as well as random and fixed effects models

with IV. In particular, we adopt the instruments proposed by Linn (2013); i.e., fuel price at the

time the vehicle was purchased and interaction of this fuel price with household characteristics,

such as household size, number of adults, vehicle age, number of vehicle, income, and education

level fixed effects.

9Another way to correct omitted variable bias from unobserved variable is an instrumental variable (IV)
approach. Linn (2013) proposes to use the gasoline price when the vehicle was purchased and its interactions
with household characteristics as instrument variables. In the following section, we also report results based on
the IV method following Linn (2013).
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Columns 2 through 4 in Table 4.3 provide the baseline OLS, RE, and FE model estimates,

respectively, employing the full sample. The estimated rebound effect using definition 1 (cor-

responding to the coefficient β1 on ln(MPG) in equation (4.5) falls within a very narrow range

(0.53 to 0.56) and is statistically significant at a 1% level for all three models. Our estimates

are generally larger than the values in the recent literature, but lie well within the range found

in the literature.10

Instead, if definition 2 is used to characterize the rebound effect (corresponding to the

coefficient −β2 on ln(pgasit ) in equation (4.5), the estimated rebound effect for our three baseline

models lies between 0.61 and 0.64, and the estimates are statistically significant at a 1% level.

This falls well within the range (from -0.23 to -0.80) given by Graham and Glaister (2002)

from their extensive review of previous studies. As noted in our literature review section, the

use of definition 2 for the rebound effect is equivalent to the measure based on definition 1,

if the gasoline prices are exogenous and the consumer’s response to a 1% change in gasoline

prices are equivalent with 1% change in fuel economy. The evidence supporting the hypothesis

(H0 : β1 = −β2) is controversial in the literature. Some studies report no difference between the

two rebound measures [e.g., Frondel et al. (2012); Small and Dender (2007)]. However, other

studies find fuel economy has a large significant effect on VMT [Gillingham (2012)], while

gasoline prices do not have a statistically significant impact on VMT [Li et al.(forthcoming)

and Linn (2013)].11 We test the linear hypothesis that the elasticity of VMT with respect to

fuel economy is same as the the negative elasticity of VMT with respect to gasoline prices. The

test results are presented in the last row of Table 4.3. Our results show that the equivalence

of coefficients of logged fuel economy and logged gasoline prices. Additionally, the estimates

for IV, RE, and FE with IV are presented in columns 5 to 7 of Table 4.3. According to the

results of Linn (2013), the Angrist-Pischke first-stage F-test statistics (F = 7.25) reject the null

hypothesis as a weak instrument, overidentifying restriction test, Hansen’s J test (J statistics

10In our applications, a Hausman test rejects the hypothesis that the random effects model is valid. Therefore,
our preferred model is fixed effects model.

11Li et al.(forthcoming) and Linn (2013) use cross-sectional data, NHTS. One possible explanation for in-
significant estimates is that the cross-sectional data do not have sufficient variation, even though gasoline prices
vary by region and quarter. Figure C.1 shows the distribution for gasoline prices in 2010 and 1991 to 2010 at
state-level. The standard deviation of gasoline prices in 2010 is 0.16, while 1991 to 2010 is 0.66.
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= 114.96) shows the overidentifying restriction is not valid. Above all, the estimates for logged

MPG are not statistically significant. The results for regression show that the IV approach is

not valid in our study using PSID.

Results from other definitions of the rebound effect are shown in Table 4.4. The estimates

of the rebound effect lie in the range of 0.61 to 0.64 for definition 2, 0.61 to 0.73 for definition

3, and 0.67 to 0.76 for definition 4. All estimates are statistically significant at the 1% level.

For the results of the estimation based on definition 1, our estimates for other definitions are

generally larger than the estimates in prior studies even though these fall in the wide range of

the previous literature, except definition 4.12

Another issue in the estimation of the rebound effect is the different behaviors between the

households who own single vehicle and more than one vehicle. Tables 4.5 and 4.7 present the

estimates from samples including households with only one vehicle, and Tables 4.6 and 4.8 are

the results from the multi-vehicle holding household sample. Since households with more than

one vehicle can increase their use of their more efficient vehicle when the gasoline prices rise,

they can more easily maintain the VMT, even with higher gasoline prices. In other words, the

elasticity of VMT to gasoline price for households with multi-vehicles should be lower than

households with a single vehicle. Our results are consistent with this intuition and the results

from prior studies [Zia Wadud et al. (2010); Frondel et al. (2012)].

Finally, we include interaction terms by income decile in fuel economy or price variables

of equation 4.5 and 4.6 to investigate the heterogeneous responses to the changing prices or

fuel efficiency across the income distribution, as West (2004). Table 4.9 presents the results of

the heterogeneous rebound effect across income groups according to the definitions and models.

The last three rows show test statistics for the hypothesis that the response to the change of fuel

economy (definition 1), per-mile operating cost (definition 2), and gasoline prices (definitions 3

and 4) are the same between low (1st, 2nd, and 3rd decile) and high (8th, 9th, and 10th decile)

income household. Our test results reject the equivalence of the coefficient for low income

households with high income households in most cases. These results are consistent with prior

12As shown in Table 4.1, the estimates from other studies are 0.22 to 0.87 for definition 2, 0.03 to 0.90 for
definition 3, and 0.23 to 0.70 for definition 4.
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studies, which show the low income households respond more intensely to gasoline prices than

high income households [Zia Wadud et al. (2010); West (2004)]. The estimates for definition 3

and 4 show the same patterns, which low income households reveal a higher rebound effect than

high income households. On the other hand, the rebound effect in definitions 1 and 2 is lower

for low income households. The intuitive reason why elasticities of fuel economy (definition 1)

and per-mile operating cost (definition 2) show opposite patterns to gasoline price elasticities

(definitions 3 and 4) is, in the long-run, high income households can change their vehicles into

more efficient ones when they need to drive more. However, it is not easy for low income

households, due to budget limit.

4.6 Conclusion

The policy-makers in the United States have adopted Corporate Average Fuel Economy

(CAFE) standards to reduce greenhouse gas (GHG) rather than other policies, particulary

gasoline tax. The reason they adhere to CAFE standards may be more politically expedient.

Moreover, they argue the CAFE standards can be more effective than increasing gasoline prices

to reduce gasoline consumption because consumers undervalue the gasoline costs they will pay

later, relative to the vehicle prices they pay now, the so-called ‘energy paradox’. However,

people who oppose CAFE standards, many economists, assert increasing fuel efficiency raises

driving miles, known as the rebound effect, while higher gasoline prices work to reduce driving

for all vehicles. Although several studies investigate the rebound effect, the results are not

consistent. In other words, the rebound effect in the literature has a wide range.

To estimate the rebound effect, i.e., the elasticity of fuel economy to VMT, one concern

is to control the endogeneity of the fuel economy variable possibly correlated with household

and vehicle unobserved variables. This paper adopts panel estimation using the panel study

of income dynamics (PSID) to control unobserved household characteristics. Our preferred

estimate, fixed effects model, is 0.56 - larger than those of recent other studies even though

it lies within the range commonly accepted in the literature. Additionally, panel data have

more variations, time and spatial, in gasoline prices compared with cross-section data, which

have only spatial variations. Sufficient variations allow accurate estimation in gasoline price
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elasticity. While recent studies using cross-section data show that the gasoline price elasticity

is relatively small and not statistically significant, we find that the gasoline price elasticity

is statistically significant and larger than fuel economy elasticity. An additional reason the

estimates in the literature have a huge range is that several different empirical definitions are

used with an assumption the impact of gasoline prices on VMT are the same as fuel economy.

We estimate the rebound effect based on various definitions. The range of the rebound effect

across definitions in fixed effects model is from 0.41 to 0.67, which is not as wide as the estimates

in prior studies. Furthermore, our test cannot reject the hypothesis which both gasoline price

and fuel economy have same effects on VMT. Finally, we test the difference of response to the

change of gasoline price or fuel economy by income decile as well. We find evidence that low

income households are more reactive to a change in gasoline prices; whereas, less sensitive to

changes in fuel economy.
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Table 4.1 The Estimates of Rebound Effect in the Recent Literature
Type of elasticity Study Data Method Estimates

Definition 1 Frondel et al. (2012) Germany Household level RE 0.42
ηµ(VMT) Panel (1997-2009)

Linn (2013) U.S. Household level IV 0.44
Cross-sectional (2001)

Definition 2 Small and van Dender (2007) U.S. State-level 3SLS SR: 0.05
ηpM (VMT) Panel (1966-2001) LR: 0.22

Frondel et al. (2012) Germany Household level RE 0.46
Panel (1997-2009)

Bento et al. (2009) U.S. Household level Structural 0.74
Cross-sectional (2001)

West (2004) U.S. Household level Structural 0.87
Cross-sectional (1997)

Definition 3 Frondel et al. (2012) Germany Household level RE 0.90
ηµ(GasolineDemand) Panel (1997-2009)

Bento et al. (2009) U.S. Household level Structural 0.35
Cross-sectional (2001)

Hughes et al. (2008) U.S. Aggregate OLS 0.21-0.34
Time series (1975-1980)

Hughes et al. (2008) U.S. Aggregate OLS 0.03-0.08
Time series (2001-2006)

Definition 4 Frondel and Vance (2013) Germany Household level FE 0.46
ηpgas(VMT) Panel (1997-2009)

Frondel and Vance (2013) Germany Household level RE 0.70
Panel (1997-2009)

Bento et al. (2009) U.S. Household level Structural 0.34
Cross-sectional (2001)

Roth (2013) U.S. Household level Structural 0.45
Cross-sectional (2001, 2009)

Spiller (2013) U.S. Household level Structural 0.62
Cross-sectional (2001, 2009)

Gillingham (2013) Vehicle level IV 0.23
Cross-sectional (2001-2009)

Notes: RE=Random Effect Model, FE=Fixed Effect Model, IV=Instrumental Variable Regression, SR: Short-
Run, LR=Long-Run
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Table 4.2 Summary Statistics
1999 2001 2003 2005 2007 2009 2011

Family Size 2.80 2.75 2.70 2.69 2.69 2.67 2.67
(1.43) (1.43) (1.42) (1.40) (1.42) (1.43) (1.42)

Age of Head 43.12 43.80 44.02 44.19 44.28 44.83 46.40
(14.59) (14.98) (15.08) (15.37) (15.43) (15.46) (15.19)

Number of Adults 1.84 1.84 1.83 1.83 1.82 1.82 1.83
(0.67) (0.69) (0.71) (0.70) (0.69) (0.69) (0.69)

Income ($2010) 77,692 79,305 75,193 77,797 75,448 76,835 74,941
(90,872) (92,831) (105,891) (125,221) (74,474) (113,592) (82,400)

VMT (1000miles) 20.23 19.61 17.87 17.83 17.04 18.02 15.54
(16.46) (19.67) (14.91) (14.20) (13.48) (15.98) (12.18)

Fuel Economy(MPG) 20.28 20.17 19.98 19.92 19.93 20.08 20.26
(3.16) (3.42) (3.42) (3.56) (3.64) (3.78) (4.02)

Gasoline Price($/Gallon) 1.09 1.57 1.63 2.28 2.94 2.28 3.77
(0.17) (0.17) (0.18) (0.22) (0.26) (0.28) (0.32)

Number of Vehicle Per HH 1.71 1.73 1.74 1.71 1.74 1.73 1.69
(0.68) (0.69) (0.70) (0.68) (0.70) (0.70) (0.68)

Households with 1 Vehicle 42.1% 41.3% 40.9% 42.1% 40.7% 41.5% 43.0%
Households with 2 Vehicle 45.0% 44.5% 44.6% 45.0% 44.4% 43.8% 44.6%
Households with 3 Vehicle 12.9% 14.1% 14.5% 12.9% 15.0% 14.7% 12.4%

Observations 4,444 5,030 5,452 5,514 5,697 5,865 5,011
The standard deviations are reported in the parenthesis.



77

Table 4.3 The Estimates of Rebound Effect From Definition 1(Full Sample)
OLS RE FE IV RE with IV FE with IV

Dependent Var. ln(VMT)

ln(MPG) 0.543*** 0.527*** 0.556*** -0.429 -0.325 -1.049
(0.088) (0.060) (0.114) (0.641) (0.696) (0.807)

ln(Fuel Price) -0.782*** -0.714*** -0.671*** -0.721*** -0.700*** -0.599***
(0.093) (0.063) (0.106) (0.097) (0.069) (0.101)

ln(Income) 0.096*** 0.081*** 0.046** 0.092*** 0.079*** 0.050***
(0.019) (0.013) (0.020) (0.018) (0.014) (0.018)

Age of Head -0.011*** -0.011*** -0.010*** -0.012***
(0.001) (0.001) (0.001) (0.001)

Family Size 0.048*** 0.039*** 0.021 0.036*** 0.034*** 0.012
(0.009) (0.007) (0.014) (0.010) (0.009) (0.014)

Number of Adults 0.135*** 0.074*** 0.106*** 0.105*** 0.090*** 0.109***
(0.023) (0.015) (0.024) (0.023) (0.021) (0.025)

Number of Vehicles 0.814*** 0.710*** 0.593*** 0.566* 0.597** 0.224
(0.200) (0.158) (0.188) (0.292) (0.249) (0.278)

High School -0.035 0.004 0.025 0.002
(0.041) (0.030) (0.038) (0.032)

Some College 0.064 0.088*** 0.099** 0.090***
(0.041) (0.030) (0.040) (0.031)

Bachelor 0.047 0.057* 0.082* 0.068*
(0.045) (0.033) (0.043) (0.035)

Graduate 0.077* 0.090*** 0.137** 0.112***
(0.047) (0.035) (0.053) (0.040)

Female Head -0.014 -0.060** 0.018 -0.028
(0.034) (0.024) (0.036) (0.031)

Vehicle Class F.E. X X X X X X
CitySize F.E. X X X X
Year F.E. X X X X X X
Vehicle Age F.E. X X X X X X

H0 : β1 = −β2a 3.60* 4.57 0.55 3.53 2.30 4.16**
a The test statistics for the hypothesis are reported in the last row.
Standard errors are reported in parentheses and clustered by household, and * denotes significance at the 10%,
** at the 5%, and *** at the 1%, respectively.
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Table 4.5 The Estimates of Rebound Effect (Single Vehicle Household)
OLS RE FE IV RE with IV FE with IV

Dependent Var. ln(VMT)

ln(MPG) 0.547*** 0.483*** 0.711*** -0.343 -0.334 -2.736**
(0.135) (0.095) (0.221) (0.844) (0.876) (1.342)

ln(Fuel Price) -0.774*** -0.742*** -0.793*** -0.687*** -0.722*** -0.797***
(0.165) (0.120) (0.220) (0.165) (0.116) (0.218)

ln(Income) 0.090*** 0.073*** 0.068** 0.074*** 0.070*** 0.067**
(0.030) (0.019) (0.035) (0.027) (0.019) (0.034)

Age of Head -0.013*** -0.014*** -0.013*** -0.014***
(0.001) (0.001) (0.001) (0.001)

Family Size 0.075*** 0.048*** 0.048 0.065*** 0.041** 0.035
(0.019) (0.015) (0.040) (0.019) (0.017) (0.039)

Number of Adults 0.096** 0.062** 0.108* 0.092** 0.074** 0.067
(0.043) (0.030) (0.058) (0.039) (0.035) (0.059)

High School -0.030 -0.031 0.004 -0.030
(0.069) (0.049) (0.062) (0.048)

Some College 0.078 0.059 0.087 0.061
(0.072) (0.050) (0.066) (0.053)

Bachelor 0.062 0.027 0.101 0.043
(0.080) (0.055) (0.071) (0.057)

Graduate 0.154* 0.099* 0.186** 0.133*
(0.083) (0.059) (0.089) (0.072)

Female Head -0.016 -0.026 0.027 -0.001
(0.046) (0.033) (0.050) (0.041)

Vehicle Class F.E. X X X X X X
CitySize F.E. X X X X
Year F.E. X X X X X X
Vehicle Age F.E. X X X X X X

H0 : β1 = −β2a 1.22 2.91* 0.07 1.60 1.41 6.61**
a The test statistics for the hypothesis are reported in the last row.
Standard errors are reported in parentheses and clustered by household, and * denotes significance at the 10%,
** at the 5%, and *** at the 1%, respectively.
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Table 4.6 The Estimates of Rebound Effect (Multi-Vehicle Households)
OLS RE FE IV RE with IV FE with IV

Dependent Var. ln(VMT)

ln(MPG) 0.520*** 0.584*** 0.576*** 1.855*** 1.271* 1.083
(0.090) (0.066) (0.113) (0.709) (0.715) (0.831)

ln(Fuel Price) -0.809*** -0.666*** -0.572*** -0.770*** -0.710*** -0.538***
(0.091) (0.062) (0.092) (0.099) (0.074) (0.091)

ln(Income) 0.105*** 0.087*** 0.051*** 0.140*** 0.095*** 0.058***
(0.017) (0.015) (0.018) (0.018) (0.015) (0.017)

Age of Head -0.009*** -0.008*** -0.006*** -0.007***
(0.001) (0.001) (0.001) (0.001)

Family Size 0.047*** 0.040*** 0.012 0.048*** 0.046*** 0.022
(0.009) (0.008) (0.014) (0.010) (0.009) (0.013)

Number of Adults 0.140*** 0.077*** 0.079*** 0.049* 0.065*** 0.045**
(0.026) (0.015) (0.021) (0.027) (0.021) (0.022)

Number of Vehicles -0.001 -0.048 -0.095 0.620 0.191 0.057
(0.367) (0.245) (0.203) (0.514) (0.382) (0.294)

High School -0.021 0.007 -0.018 0.008
(0.040) (0.032) (0.041) (0.030)

Some College 0.063 0.085*** 0.056 0.080***
(0.038) (0.032) (0.040) (0.030)

Bachelor 0.038 0.050 0.017 0.036
(0.043) (0.036) (0.044) (0.035)

Graduate 0.025 0.071* -0.002 0.047
(0.046) (0.039) (0.052) (0.038)

Female Head -0.023 -0.048* -0.048 -0.058*
(0.038) (0.029) (0.040) (0.030)

Vehicle Class F.E. X X X X X X
CitySize F.E. X X X X
Year F.E. X X X X X X
Vehicle Age F.E. X X X X X X

H0 : β1 = −β2 4.8** 0.83 0.00 2.62 0.67 0.46

t statistics are reported in parentheses and * denotes significance at the 10%, ** at the 5%, and *** at the 1%,
respectively.
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CHAPTER 5. GENERAL CONCLUSIONS

This dissertation consists of three independent studies that focus on welfare measurement,

causation of addition emission, and effectiveness of policy in environmental economics. The

first study proposes a new framework to solve the failure of convergent validity assumption

in combining RP and SP. The second and third studies estimate the factor and magnitude of

interesting variables to influence the choice of vehicle and its usage using the panel study of

income dynamics (PSID) data.

The first study examines the method to combine revealed preference (RP) and stated prefer-

ence (SP) data. Even though combining RP and SP data is recently very common in nonmarket

valuation literature, several studies have reported the critical assumption, convergent validity,

is often rejected. Therefore, prior studies have chosen using either combining two data sources

or one source, according to the result of the convergent validity assumption. The goal for this

study is to propose an alternative framework that allows for possible divergence among indi-

viduals in terms of the consistency between their RP and SP responses. The empirical results

suggest that somewhat less than half the sample exhibits inconsistent preferences. Welfare es-

timates in our proposed latent model are significantly different with a conventional combining

model and single class model.

The second study examine the interesting link between obesity and gasoline consumption.

Even though there are several studies to explore the relationship between obesity and gasoline

consumption, the literature relies on aggregate data or focuses on either the choice of fuel econ-

omy or usage. These approaches can lead to wrong conclusions, due to omitted variable bias

from unobserved household characteristics and partial effects in either fuel economy or VMT.

With unique household level data contained with the vehicle information, gasoline consump-

tion, body mass index (BMI), and other household characteristics, we estimate the impact of
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obesity through both reduced- and structural-form models. To solve omitted variable bias and

endogeneity problems, we adopt the fixed effects model and instrumental variable approaches

as the reduced-form approach, and joint discrete and continuous model as the structural-form

approach. Our findings show that the comprehensive impact of obesity and overweight on gaso-

line consumptions is little or ambiguous in contrast to the results of prior studies considering

either driving or vehicle choices.

The third study visits the very classical and controversial issue in energy economics. There

are numerous studies to estimate the rebound effect in vehicle usage or gasoline consumption.

The range of estimates of the rebound effect in the literature is very wide, 0.03 to 0.9. The

effectiveness of the Corporate Average Fuel Economy (CAFE) standards, a primary policy to

reduce gasoline consumption in the U.S., largely depends on the size of the rebound effect.

The difficulty of estimating the rebound effect is how to deal with the endogeneity of fuel

economy. There are several approaches to solve endogeneous variables such as instrumental

variable regression. However, even though good instruments are difficult to find and using

panel data is a possibly good strategy, there is no study using U.S. panel data. This study

adopts the Panel Study of Income Dynamics (PSID) - not used in the literature. Our results

show that 1% increase in fuel prices or fuel economy (MPG) leads to a 0.41% to 0.67% increase

in driving miles. Moreover, this study shows that the elasticity of vehicle miles traveled (VMT)

with respect to both fuel economy and fuel price to be statistically significant. In addition,

we find that low income households are more responsive to changes in gasoline prices, but less

sensitive to changes in fuel economy.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 2

Table A.1 Generated Data Experiments - Model 2 Parameter Estimates

TRUE TRUE N=200 N=500 N=1000

Parameter s values Mean 5% 95% Mean 5% 95% Mean 5% 95%

βRP

0.10 -1.20 -1.15 -1.30 -1.02 -1.14 -1.25 -1.04 -1.15 -1.26 -1.05

0.25 -1.20 -1.12 -1.25 -0.98 -1.11 -1.23 -0.99 -1.11 -1.27 -1.00

0.50 -1.20 -1.15 -1.37 -0.96 -1.14 -1.31 -1.02 -1.14 -1.32 -1.00

0.75 -1.20 -1.33 -1.60 -1.11 -1.32 -1.53 -1.17 -1.33 -1.52 -1.18

0.90 -1.20 -1.61 -1.91 -1.39 -1.61 -1.79 -1.44 -1.61 -1.79 -1.44

βSP

0.10 -0.60 -0.61 -0.66 -0.57 -0.61 -0.66 -0.58 -0.61 -0.64 -0.58

0.25 -0.60 -0.63 -0.71 -0.58 -0.63 -0.68 -0.59 -0.63 -0.66 -0.59

0.50 -0.60 -0.66 -0.73 -0.61 -0.66 -0.73 -0.61 -0.66 -0.71 -0.62

0.75 -0.60 -0.72 -0.80 -0.65 -0.72 -0.78 -0.67 -0.72 -0.77 -0.67

0.90 -0.60 -0.77 -0.83 -0.71 -0.76 -0.82 -0.73 -0.76 -0.80 -0.73

γRP

0.10 -0.70 -0.77 -0.86 -0.70 -0.77 -0.84 -0.72 -0.77 -0.83 -0.72

0.25 -0.70 -0.89 -1.06 -0.79 -0.89 -1.02 -0.80 -0.89 -0.97 -0.81

0.50 -0.70 -1.17 -1.37 -0.99 -1.17 -1.37 -1.01 -1.17 -1.32 -1.01

0.75 -0.70 -1.68 -2.02 -1.33 -1.65 -1.92 -1.41 -1.66 -1.88 -1.45

0.90 -0.70 -2.26 -2.70 -1.83 -2.26 -2.55 -1.99 -2.24 -2.46 -2.01

γSP

0.10 -0.50 -0.55 -0.63 -0.49 -0.55 -0.60 -0.51 -0.55 -0.58 -0.52

0.25 -0.50 -0.63 -0.72 -0.55 -0.63 -0.71 -0.58 -0.62 -0.67 -0.58

0.50 -0.50 -0.77 -0.91 -0.69 -0.77 -0.86 -0.69 -0.77 -0.84 -0.71

0.75 -0.50 -0.95 -1.09 -0.85 -0.95 -1.02 -0.86 -0.95 -1.03 -0.89

0.90 -0.50 -1.09 -1.19 -1.01 -1.09 -1.16 -1.03 -1.09 -1.13 -1.05

ρRP

0.10 -1.80 -1.61 -1.77 -1.47 -1.61 -1.73 -1.49 -1.61 -1.67 -1.52

0.25 -1.80 -1.38 -1.52 -1.22 -1.38 -1.48 -1.26 -1.37 -1.45 -1.28

0.50 -1.80 -1.10 -1.24 -0.93 -1.09 -1.19 -0.95 -1.08 -1.17 -0.99

0.75 -1.80 -0.91 -1.00 -0.79 -0.89 -0.98 -0.80 -0.89 -0.97 -0.82

0.90 -1.80 -0.83 -0.90 -0.74 -0.82 -0.88 -0.75 -0.82 -0.87 -0.78

ρSP

0.10 -0.40 -0.39 -0.43 -0.35 -0.39 -0.41 -0.37 -0.39 -0.40 -0.37

0.25 -0.40 -0.37 -0.41 -0.33 -0.37 -0.40 -0.34 -0.37 -0.39 -0.34

0.50 -0.40 -0.34 -0.39 -0.30 -0.34 -0.37 -0.31 -0.34 -0.36 -0.32

0.75 -0.40 -0.33 -0.38 -0.28 -0.33 -0.35 -0.30 -0.33 -0.35 -0.31

0.90 -0.40 -0.32 -0.36 -0.29 -0.32 -0.35 -0.30 -0.32 -0.34 -0.31
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Table A.2 Generated Data Experiments - Model 3 Parameter Estimates

TRUE TRUE N=200 N=500 N=1000

Parameter s values Mean 5% 95% Mean 5% 95% Mean 5% 95%

ω

0.10 0.40 0.33 0.24 0.42 0.33 0.26 0.39 0.33 0.25 0.39

0.25 0.40 0.38 0.28 0.46 0.38 0.29 0.46 0.38 0.30 0.44

0.50 0.40 0.45 0.36 0.52 0.45 0.38 0.53 0.45 0.38 0.51

0.75 0.40 0.47 0.40 0.55 0.48 0.43 0.55 0.48 0.43 0.53

0.90 0.40 0.45 0.39 0.53 0.45 0.41 0.49 0.45 0.42 0.49

β

0.10 -2.00 -1.81 -2.60 -1.36 -1.79 -2.46 -1.34 -1.79 -2.43 -1.36

0.25 -2.00 -1.61 -2.23 -1.23 -1.59 -2.20 -1.23 -1.58 -2.16 -1.25

0.50 -2.00 -1.44 -1.94 -1.14 -1.42 -1.80 -1.15 -1.42 -1.77 -1.14

0.75 -2.00 -1.50 -1.80 -1.19 -1.47 -1.69 -1.26 -1.48 -1.71 -1.28

0.90 -2.00 -1.71 -1.95 -1.41 -1.69 -1.86 -1.49 -1.69 -1.84 -1.53

γ

0.10 -3.00 -0.96 -1.13 -0.80 -0.97 -1.15 -0.80 -0.97 -1.14 -0.79

0.25 -3.00 -1.09 -1.27 -0.89 -1.09 -1.28 -0.91 -1.08 -1.29 -0.90

0.50 -3.00 -1.36 -1.57 -1.16 -1.36 -1.60 -1.14 -1.35 -1.59 -1.14

0.75 -3.00 -1.83 -2.22 -1.51 -1.81 -2.07 -1.55 -1.82 -2.05 -1.61

0.90 -3.00 -2.36 -2.77 -1.98 -2.36 -2.62 -2.08 -2.35 -2.54 -2.11

ρ

0.10 -0.80 -1.40 -1.68 -1.17 -1.40 -1.62 -1.22 -1.39 -1.61 -1.23

0.25 -0.80 -1.17 -1.38 -0.97 -1.16 -1.34 -1.00 -1.16 -1.33 -1.03

0.50 -0.80 -0.91 -1.05 -0.75 -0.90 -1.03 -0.78 -0.90 -1.01 -0.79

0.75 -0.80 -0.79 -0.89 -0.67 -0.78 -0.85 -0.68 -0.78 -0.84 -0.70

0.90 -0.80 -0.77 -0.85 -0.69 -0.77 -0.82 -0.70 -0.77 -0.82 -0.70
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 3
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Table B.1 Full Estimates of Structural Model
1999 2001 2003 2005 2007 2009

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

α parameter
Vehicle Age #1 2.24 0.02 2.16 0.03 2.20 0.03 2.23 0.03 1.95 0.04 1.92 0.04
Vehicle Age #2 2.28 0.02 2.18 0.03 2.23 0.04 2.20 0.02 1.95 0.04 1.93 0.04
Vehicle Age #3 2.27 0.02 2.18 0.02 2.22 0.03 2.21 0.02 1.97 0.04 1.96 0.04
Vehicle Age #4 2.25 0.02 2.16 0.02 2.21 0.04 2.21 0.02 1.95 0.04 1.95 0.03
Vehicle Age #5 2.22 0.02 2.13 0.02 2.19 0.04 2.19 0.03 1.94 0.04 1.95 0.04
Obesity 0.18 0.03 0.44 0.02 0.36 0.01 0.04 0.02 0.04 0.02 0.29 0.01
Obesity*(WB/100) -0.09 0.02 -0.32 0.01 -0.25 0.01 0.06 0.01 -0.03 0.01 -0.20 0.01
Overweight -0.23 0.02 -0.35 0.03 -0.28 0.03 -0.19 0.01 -0.26 0.02 -0.28 0.02
Overweight*(WB/100) 0.21 0.01 0.32 0.02 0.26 0.02 0.20 0.01 0.27 0.01 0.27 0.01
HP/WT 0.15 0.03 -0.20 0.02 0.41 0.03 -0.41 0.02 0.86 0.03 -0.09 0.03
(HP/WT)*(Head Age/100) 0.01 0.06 -0.31 0.02 -1.12 0.05 0.95 0.02 0.30 0.04 0.17 0.03
# of Adults 0.04 0.01 0.06 0.01 -0.01 0.02 0.01 0.01 0.07 0.02 0.12 0.02
β -0.62 0.06 -0.82 0.08 -0.78 0.06 -1.20 0.08 -1.19 0.06 -1.05 0.04
λ -7.29 0.13 -6.86 0.13 -7.01 0.08 -7.23 0.08 -6.60 0.06 -7.14 0.09
τ Parameter
Midsize -1.81 0.06 -0.49 0.02 -0.44 0.04 0.84 0.03 -0.55 0.04 0.38 0.03
Fullsize -0.16 0.04 -0.77 0.04 -0.39 0.03 -0.94 0.02 -0.79 0.04 0.23 0.02
Luxury Car -0.67 0.03 -0.81 0.03 -1.77 0.06 -1.21 0.02 -1.90 0.06 -0.85 0.02
Small SUV 0.24 0.04 0.43 0.03 -0.54 0.02 -0.90 0.05 0.37 0.03 -0.06 0.03
Large SUV 0.74 0.03 -0.23 0.03 -0.33 0.04 0.52 0.06 0.42 0.03 1.18 0.05
Small Truck -0.32 0.03 -0.81 0.07 -1.93 0.03 -0.37 0.03 -1.94 0.04 0.56 0.03
Large Truck -0.07 0.03 -0.60 0.06 -0.48 0.05 0.56 0.03 -0.21 0.02 1.13 0.03
Minivan -0.67 0.03 1.59 0.04 -0.25 0.03 -0.21 0.03 0.24 0.04 0.49 0.03
European -0.54 0.06 0.78 0.03 1.27 0.04 1.37 0.03 0.09 0.03 -0.37 0.05
Asian 0.08 0.04 -0.88 0.04 1.30 0.05 1.91 0.06 -0.11 0.03 -0.49 0.03
Vehicle Age #1 -1.23 0.03 0.63 0.05 0.76 0.06 0.29 0.03 0.05 0.03 -0.52 0.02
Vehicle Age #2 0.68 0.04 -0.62 0.02 0.48 0.07 -0.29 0.03 0.11 0.06 -1.16 0.05
Vehicle Age #3 -0.55 0.03 -0.31 0.02 -0.18 0.02 0.63 0.03 -0.59 0.05 -0.70 0.02
Vehicle Age #4 0.76 0.03 -0.72 0.02 0.29 0.03 -1.00 0.05 -0.26 0.02 0.03 0.03
WT/100 -2.91 0.03 -4.08 0.02 -4.11 0.03 -3.72 0.03 -3.88 0.05 -4.46 0.04
WB/100 0.74 0.08 -0.22 0.03 -0.87 0.03 0.20 0.05 0.04 0.03 -0.70 0.03
HP/WT -1.39 0.07 0.56 0.06 0.07 0.05 0.65 0.02 -1.00 0.02 -0.05 0.03
ϕ parameter
(Head Age/100) 0.12 0.03 -1.28 0.06 -1.75 0.07 0.04 0.02 -0.74 0.06 -1.22 0.07
College Degree of Head 0.50 0.03 -1.23 0.04 1.15 0.03 -0.38 0.03 1.06 0.03 -1.01 0.05
MSA < 250k -0.13 0.03 0.44 0.02 0.58 0.02 -0.58 0.03 0.59 0.02 0.10 0.03
250k ≤ MSA < 500k -0.74 0.05 -0.35 0.03 1.02 0.02 0.90 0.03 0.14 0.03 -0.76 0.03
500k ≤ MSA < 1m 0.08 0.04 -0.29 0.03 0.02 0.02 -0.77 0.03 0.10 0.03 1.30 0.05
1m ≤ MSA < 3m -0.52 0.03 -0.11 0.03 -1.22 0.05 0.63 0.02 -0.49 0.02 -0.69 0.04
MSA geq 3m -1.21 0.04 -1.39 0.03 0.75 0.03 0.28 0.03 0.37 0.03 -0.68 0.03
µ 7.83 0.10 7.85 0.12 7.72 0.07 7.97 0.09 7.60 0.10 7.91 0.08
σ -1.34 0.05 -1.58 0.08 -1.56 0.06 -1.65 0.07 -1.54 0.07 -1.45 0.07
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 4
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Data Sources

• Panel Study of Income Dynamics (PSID): http://psidonline.isr.umich.edu

– Household characteristics such as income, age of head, family size and others.

– The PSID publicly provides state-level address and manufacturer, make, broad type,

and model year on vehicle each household owns.

– In this paper, we use MSA-level address and specific vehicle models under conditions

of a restricted use contract.

• EPA fuel-economy: http://www.fueleconomy.gov/feg/download.shtml

• WARDS Automotive Year Book: http://wardsauto.com/subscriptions/auto-yearbook

• American Chamber of Commerce Researchers Association’s Regional Cost of Living Index

(ACCCRA) http://www.coli.org/

• EIA Unleaded Regular Gasoline Price, U.S. City Average Retail Prices

http://www.eia.gov/totalenergy/data/monthly/#prices

Data Construction

• Based on address reported in PSID data, we merge the household characteristics with

gasoline prices (unleaded regular prices including taxed) in ACCRA cost of living index.

• Unfortunately, ACCRA gasoline prices does not cover MSAs, for the missing observations,

we impute them using EIA state-level gasoline prices.

• Using the specific model shown in PSID, we merge MPG from EPA. However, EPA

fuel economy data include from 1984. For prior models, we apply WARDS Automotive

Yearbook.

• We impute missing observations by regression technique.

http://psidonline.isr.umich.edu/default.aspx
http://www.fueleconomy.gov/feg/download.shtml
http://wardsauto.com/subscriptions/auto-yearbook
http://www.coli.org/
http://www.eia.gov/totalenergy/data/monthly/#prices
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