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ABSTRACT

Influenced by the recent, ongoing financial crisis spreading across the world’s economies, my

dissertation studies aspects of the connections between securitization - originating and selling

loans - in the banking sector and economic instability.

In the first chapter, “Bank Monitoring and Liquidity in the Secondary Market for Loans”,

I study transactional loans and traditional-relationship loans in a dynamic lending model. In

the model, since transactional loans are easier to resell, a bank’s benefit from transactional

lending over relationship lending is increasing in secondary market loan liquidity (investors’

willingness to pay). The relative payoff is also increasing in the proportion of banks that choose

transactional lending because lower quality borrowers prefer transactional lenders, who monitor

them less. When liquidity rises above a given threshold, all banks switch to transactional

lending. However, greater liquidity also increases the economy-wide default risk since banks

reduce their monitoring effort. If the latter effect is strong enough, securitization can lower

welfare.

The previous study suggests that the problems in securitization may come from information

asymmetry in both the primary and secondary loan markets. My second chapter, “Securitiza-

tion and Lending Competition” (with David Frankel), studies the effects of securitization on

interbank lending competition when banks see private signals of local applicants’ repayment

chances. We find that if banks cannot securitize, the outcome is efficient: they lend to their

most creditworthy local applicants. With securitization, banks lend also to remote applicants

with strong observables in order to lessen the lemons problem they face in selling their secu-

rities. This reliance on observables is inefficient and raises the conditional and unconditional

default risk.

Finally, Chapter 3, “Credit Termination and Technology Bubbles”, studies the financial

instability from a different angle. I consider a credit cycles model in which firms face technology
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shocks to the riskiness of different types of projects. The new project arriving is more attractive

to the firms but even riskier. The riskiness of the new project is not observed by banks as

occurred during the technology bubbles. After observing a higher default rate, banks deny

future loans to entrepreneurs more often in order to affect their choice of projects ex ante. The

model is used to explain the boom-and-bust of the dot-com bubble in the late 1990s.
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CHAPTER 1. BANK MONITORING AND LIQUIDITY IN THE

SECONDARY MARKET FOR LOANS

1.1 Introduction

Securitization of bank loans - originating and selling loans - is driven by the innovation of

structured finance products and the development of a secondary market for loans. What are the

consequences of the development of this secondary loan market? Since loans can be easily sold

to third parties, this innovative process of transactional lending may dilute a bank’s incentive to

monitor borrowers. In the recent financial crisis in the U.S., concerns about the credit quality

of transactional loans led to a “run” on banks: a drop in total demand of loan-backed securities

by creditors (Ivashina and Scharfstein [36]).

In this chapter, I propose a dynamic lending model to study the impact of securitization

on a bank’s incentive to monitor borrowers. In this model, a bank’s relative payoff from

transactional lending versus relationship lending depends on investors’ willingness to pay for

securitized loans, which depends on a random fundamental - liquidity.1 In addition, the relative

benefit of choosing a transactional technology is increasing in the proportion of banks that do

so, because each bank will face fewer low quality borrowers, which reduces the urgency to build

close relationships to monitor borrowers.

Consistent with the stylized fact observed, the model shows that the secondary loan market

will experience a boom after an improvement of liquidity. One heavily studied market is the

U.S. secondary market for syndicated loans. The U.S. secondary loan market grew a lot before

the fall of 2008 and the average annual growth rate was about 26% during 1991-2007 according

1Banks liquidate their loans and investors bid for the loan portfolios in the secondary market for loans. The
definition of liquidity follows Shleifer and Vishny [60] in which asset illiquidity is the difference between asset
price and value in the best use.
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to Thomson Reuters LPC Traders Survey. But after that, the secondary loan market crashed

followed by a fire sale - the sale at discounted prices - of transactional loans. There is no

convincing explanation of why.

In addition, the model shows that transactional loans, which can be traded in a secondary

market, may replace traditional bank loans when the costs of building relationships between

banks and borrowers are sufficiently high. The model thus points out a potential problem:

banks have less incentive to monitor borrowers when securitization passes bad loans to unsus-

pecting investors. Bad loans have been sold to final investors who have less information on

loans’ default risk. In turn, while a positive liquidity shock (for example, an investor may have

a surprise portfolio need) raises the proportion of loans sold in the secondary market, it may

also lower total output since banks monitor less. Hence, restrictions on securitization may raise

social welfare if the effect of defaulting is dominant.

In this model, bank loans are multi-period contracts which are designed to make borrowers

focus on long-term returns and thus mitigate moral hazard. More precisely, in Section 1.2, I

consider a benchmark model in which a borrower’s project occasionally fails. There are two

types of projects: good and bad. The former has a higher chance of success, but a lower private

benefit for the borrower. There are two monitoring technologies. A bank may exert a costly

effort to discover the type of project.2 I refer to this as the active technology. Alternatively,

the bank may decide whether or not to renew its loan based solely on the borrower’s output in

the first period. I call this the passive technology.

Unlike previous lending models, I introduce a secondary market for transactional loans in

which investors buy loan portfolios. Since the bank’s effort is unobservable, if the bank resells

a loan, it loses its incentive to monitor borrowers. The secondary loan market takes this into

account, and does not value the extra effort to build relationships between banks and firms.

Hence, relationship loans will not be traded in the secondary market. Transactional loans

can be traded easily because the bank only requires public observed output information and

punishes the borrower whenever her project fails in this case.3

2Similar credit-worthiness monitoring which provides information of borrowers is discussed in Nalebuff and
Scharfstein [51] and Broecker [8].

3Transactional loans share features of arm’s length lending (Boot and Thakor [7]). In this chapter, banks
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I then present, in Section 1.3, a model in which banks compete to attract borrowers with

good projects. Each borrower knows about the banks’ technology choices and searches for a

bank that uses her preferred technology. Therefore, banks’ technology choices affect the mix

of good and bad projects that each of them will get from a given technology. Due to this

coordination externality among banks, a bank’s optimal technology choice may depend on its

opponents’ behavior. There may be multiple equilibria, which may reduce the prediction power

of the model. Hence in Section 1.4, I extend the model to the case in which banks have slightly

noisy private signals of the state of liquidity. In this case, global games techniques are used

to show that there is a unique equilibrium: a bank will offer transactional lending if its signal

exceeds a common threshold, and relationship lending otherwise. In this unique equilibrium,

a small positive liquidity shock can lead to a large increase in transactional lending, with a

resulting increase in default risk.

Existing theories have studied carefully the cost and benefit of relationship lending compared

with transactional lending. To mitigate conflicts of interest between lenders and borrowers,

relationship loans provide the incentive effects of reputation (Diamond [21]) and promise to

make credit available in the future (Boot, Creenbaum, and Thakor [5]). But relationship

lenders have bargaining power over the borrowers’ profits (Rajan [56]; Sharpe [58]). Boot and

Thakor [7] further discuss whether or not relationship lenders survive competitive pressures

from transactional lenders, such as mutual funds and investment banks. However, existing

theories ignore the embedded instability problem when lenders can switch from relationship

lending to transactional lending. The contribution of this chapter is to emphasize how liquidity

shocks in the secondary loan market cause the financial instability.

A basic concern of the securitization process is whether or not it reduces the incentive to

conduct credit risk analysis or monitor borrowers (Gorton and Pennacchi [26]). Although it is

not conclusive, evidence from the current subprime mortgage crisis suggests that securitization

may adversely affect the screening incentive of lenders.

• Loan portfolio with greater ease of securitization defaults more. A recent empir-

offer long-term contracts to borrowers in transactional lending as well as relationship lending. The difference
lies on a bank’s effort to acquire borrower specific information.
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ical work by Keys et al. [38] suggests that, conditional on being securitized, the portfolio

with greater ease of securitization defaults more than a similar risk profile group with a

less ease of securitization.

• Securitized loans have higher foreclosure rates and lower cure rates. Piskorski et

al. [54] study securitized mortgages issued without a guarantee from GSEs. They compare

bank-held loans with securitized loans. Their evidence suggests that the foreclosure rate is

lower and the cure rate is higher for bank-held loans. In addition, delinquent securitized

loans that are taken back on the bank’s balance sheet foreclose at a rate lower than

delinquent securitized loans that continue to be securitized.

This chapter connects to these empirical results and shows a mechanism that liquidity shocks

in the secondary loan market change the monitoring incentive of banks.

1.2 A Dynamic Lending Model

The lending model lasts two periods, numbered t = 1, 2. Both borrowers and lenders are

risk neutral. First, I consider a benchmark case in which each borrower can raise funds from a

lender assigned randomly in a decentralized primary credit market. In this case, the borrower

distribution that each lender faces is independent of its opponents’ behavior. One unit of

capital costs lenders an amount D > 1 in each period.

In addition, I assume a fixed fraction `0 ∈ (0, 1) of lenders cannot monitor borrowers. The

existence of this type of arm’s length lending is potentially due to the cost to offer relationship

lending. The rest of them, `1 = 1 − `0, are lenders (banks hereafter) that can choose which

type of lending to offer. Focus on the behavior of banks indexed by i ∈ [0, `1].

In the primary credit market, banks originate loans in the first period. Initially, a bank

can take an action a ∈ {0, 1} (to choose the loan contract type): 0 is defined as relationship

loans and 1 as transactional loans, respectively. Relationship loans are similar to traditional

commercial bank loans. If a loan defaults, the bank exerts a costly effort to screen the loan

and renews it if and only if it is good. In the case of a transactional loan (or an arm’s length

lending), the bank denies the second-period loan whenever the borrower defaults on her first-
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period payment. One important difference from the traditional credit market is the existence

of a secondary market in which the lender has an option of selling loan portfolios. The timing

of the model is showed in Figure 1.1.

Each borrower needs one unit of capital in each period for an investment opportunity - a

project. There are two types of projects: good projects H and bad projects L. In each period,

a type τ ∈ {H,L} project yields either a positive output θ > 0 with probability pτ or zero

output with probability 1− pτ , where the probability pH of the good project is strictly larger

than the probability pL of the bad one.

There are two types of borrowers: h and l. Each type g ∈ {h, l} contains a mass µg > 0

of borrowers. Let the vector µ = (µh, µl) represent the measure of each type of borrowers. A

type-h borrower can invest in either project, while a type-l borrower only has access to a bad

project. Each borrower can choose one project only in period 1. Once the project is chosen, it

cannot be changed in the second period.

Each type-h borrower has a reservation utility vh = v0 > 0 each type-l borrower has a

zero reservation utility vl = 0. Each borrower receives a private benefit b > 0 from a type-

L project. Hence the type-l borrower’s participant constraint is trivially satisfied. I further

assume that the reservation utility v0 is less than p2
Hθ and the private benefit b is less than[(

p2
H − p2

L

)
/pH

]
v0. These two restrictions guarantee that the type-H project is preferred and

is feasible to banks.

The long-term loan contracts offered by banks specify a gross interest rate Rt in each period

t = 1, 2, and the termination condition.4 The incentive effects of termination are first discussed

in Stiglitz and Weiss [63]. Due to limited liability, borrowers cannot pay more than the project

output 0 ≤ Rt ≤ θ. In each period, a borrower must pay either the gross interest rate or her

total output, whichever is lower. However, her private benefit is not pledgable to the payment.

Therefore, in each period t, the single-period bank payoff from a type τ ∈ {H,L} project is

vτ (Rt) = pτRt − D. Finally, I shall assume the type-H project is socially desirable but the

4The banks can terminate a defaulting borrower’s loan in dynamic contract. Denying a borrower’s loan has
two positive effects: the bank may terminate a type-l borrower with a bad project; at the same time, it can save
incentive rents by punishing a type-h borrower who defaults on the loan. These two effects, which depend on the
borrower’s distribution, will balance the negative effect of ruling out the type-h borrowers with good projects.
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Figure 1.1 The Time-Line of the Model. The model has two periods. (1) At the beginning

of the first period, the bank offers long-term loan contracts. Each borrower takes

the offer and chooses a project which requires investment in each period. The two

parties share the realized output. At the end of the first period, there are two

extensions to the basic model: (2) the bank can exert an effort to discover a bor-

rower’s chosen project (relationship lending); or (3) the bank can resell the loan

portfolio in a secondary market for loans (transactional lending). Observing the

new information, the bank can choose whether or not to terminate the second-pe-

riod loan. (4) If the bank continues the loan, there is a second-period investment

and the two parties share the realized second-period output. (5) Otherwise, there

is no investment in the second period.
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type-L project is not: pLθ < D < pHθ.

1.2.1 Relationship Lending

A bank can use relationship lending to alleviate the moral hazard problem. I will also

refer to relationship lending as the active technology. A bank that chooses this technology has

the option of paying an amount m > 0 to monitor one borrower at the end of period 1. If

it monitors, the bank learns the true type of the borrower.5 Let µ̃h = µhpH and µ̃l = µlpL

denote the measure of type-h and type-l borrowers whose projects succeed. Assume the cost m

is larger than the constant m̂ ≡ δ (µ̃h + µ̃l)
−1 µ̃lD. Under this condition, the bank will use the

active technology to monitor the borrower only when she defaults in period 1.

Let V 0
t be the bank’s payoff in period t = 1, 2 if relationship lending is used. The bank’s

payoff in period 1 is the sum of its project-specific payoffs weighted by the vector µ:

V 0
1 (R1;µ) = µhvH (R1) + µlvL (R1) . (1.1)

If the project succeeds in period 1, the investment continues without further investigation. If

the project fails in period 1, the bank goes to a monitoring stage. In this stage, the project

continues if it is proved to be a type-H project; and the project is terminated if it is proved

to be a type-L project. Therefore, the bank’s payoff in period 2 is adjusted by the type-l

borrower’s probability of succeeding pL:

V 0
2 (R2;µ) = µhvH (R2) + µ̃lvL (R2) . (1.2)

Finally, with the active technology, the total cost C is the sum of individual cost m to monitor

one borrower,

C (m,µ) = [µh (1− pH) + µl (1− pL)]m. (1.3)

Banks discount future cash flows at a fraction δ ∈ (0, 1). Expecting the vector µ of the

measure of borrowers, the bank maximizes its expected profit,

(RL) max
{R1,R2}

V 0
1 (R1;µ) + δV 0

2 (R2;µ)− C (m,µ) ,

5Relationship loans are similar to transactional loans except that whether or not to offer the second-period
loan is based on the result of evaluation from the active monitoring technology in addition to the first-period
outcome. For example, the bank may employ an enlisted loan officer to evaluate a borrower and its decision to
deny the investment depends on the loan officer’s investigation.
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subjects to the IR and IC constraints,

(IR) pH (θ −R1) + pH (θ −R2) ≥ v0, (1.4)

(IC) pH (θ −R1) + pH (θ −R2) ≥ pL (θ −R1) + p2
L (θ −R2) + b. (1.5)

The IR (1.4) and IC (1.5) conditions represent the borrower’s return requirement and invest-

ment choice, respectively. The type-h borrowers move to period 2 for sure instead of with

probability pH in the transactional lending case. The solution of the problem (RL) is summa-

rized in Lemma 1.1. All proofs in this section are in Appendix A.

Lemma 1.1 In the optimal relationship loan contract, given the monitoring cost m > m̂ the

bank monitors the borrowers only if their projects fail in the first period. Moreover, the optimal

relationship loan is as follows:

1. if the project fails, the gross interest rate in each period t = 1, 2 is R0∗
t (0) = 0;

2. if the project succeeds, the gross interest rates are R0∗
1 (θ) = θ and R0∗

2 (θ) = θ − v0/pH .

Similarly, define R0∗
1 ≡ R0∗

1 (θ) and R0∗
2 ≡ R0∗

2 (θ). The bank maximizes its expected profit by

offering the optimal financial contract
{
R0∗

1 , R
0∗
2

}
.

Why does the bank monitor the borrowers only if their projects fail in period 1? First,

since each borrower’s choice of project is private information and cannot be observed ex ante,

the bank must monitor the project only at the end of period 1 when the output is realized. In

addition, the bank will compare the cost of monitoring all projects with the cost of monitoring

the projects if they fail in period 1. The bank will do the latter when the individual monitoring

cost m is larger than the threshold m̂. It is possible that, when the cost is lower enough, the

optimal contract is to monitor projects no matter whether they succeed or fail in period 1. I

do not consider this case because we hardly observe such contract in practice. In addition, the

main result does not depend on whether or not the bank monitors after a high output.

The result is showed in Figure 1.2. Intuitively, the optimal contract must be in the set

satisfying the limited liability, IR and IC constraints. Also, since a bank maximizes its expected

profit, the IR constraint is binding. Thus the optimal contract lies on the line representing the
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Figure 1.2 The Optimal Relationship (RL) and Transactional Lending (TL), {Ra∗1 , Ra∗2 }. The

R1-axis and the R2-axis are gross interest rates in the first period and second

period, respectively. The bank’s isoprofit curves are U
′
RL < U

′′
RL, and U

′
TL < U

′′
TL

etc. A feasible interest rate in each period is less than or equal to θ due to limited

liabilities. The pair of interest rates is below the incentive compatibility constraint

ICRL or ICTL. And in equilibrium, the pair of interest rates lies on the individual

rationality constraint IRRL (v0) or IRTL (v0) given a promised utility v0. Finally,

the points
{
R1∗

1 , R
1∗
2

}
and

{
R1∗

1 , R
1∗
2

}
, which represent the optimal relationship

and transactional lending respectively, lie on the limited liability constraint R1 = θ

because borrowers are required to pay the interest rate as soon as possible. See

Appendix A for details of the parameters.
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binding IR constraint. Why is the optimal contract at the right end of this IR constraint? Or

why the bank’s isoprofit curve is steeper than the IR constraint? Recall that a type-l borrower

whose project succeeds in period 1 will continue her project in period 2. But she only has

access to a type-L project, which has a negative payoff in period 2. Therefore, the bank can

benefit from increasing the period one interest rate R1 and correspondingly reducing the period

two interest rate R2 given that the type-l borrower whose project succeeds is able to pay in

period 1. That is, the bank wants to be paid back as soon as possible when there are type-l

borrowers in the primary credit market.

1.2.2 The Secondary Market for Loans

In the secondary market, a bank can sell a loan portfolio backed by its assets. After investors

buy the loan portfolios, they implement the same loan contracts offered by banks. Banks want

to sell their loans which will generate cash flows in period 2. Their discount fraction δ is lower

than the market discount fraction, which is normalized to one.

I further assume that only transactional loans can be traded in the secondary market.6

Investors thus buy homogeneous loan portfolios in this market. Hence, knowing the vector µ

of the measure of borrowers, investors can correctly predict the credit quality of one share of

the loan portfolio. Let Vµ denote the true value of a loan portfolio.

Moreover, assume that the investors are willing to pay ρ (γ)Vµ when the portfolio’s value

is Vµ, where

ρ (γ) = min {max {γ, δ} , 1} . (1.6)

The price of a loan portfolio depends not only on its credit quality but also on the state of

liquidity γ, which is a random variable with support on R++. That is, if γ ≥ 1, the investors

have sufficient liquidity and the portfolio is sold at its true value Vµ; if γ ∈ (δ, 1), the investors

suffer from the liquidity shortage, and the portfolio is sold at a distressed value γVµ; and if

γ ≤ δ, there is no gain from selling the portfolio to investors. I initially assume that the state

of liquidity γ is publicly observed.

6This is because a bank’s effort is unobservable. In practice, institutions like rating agencies can only rate
a loan portfolio by observing the (historical) distribution of borrowers in the market, but not a bank’s effort to
monitor borrowers.
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1.2.3 Transactional Lending

Transactional lending uses a passive technology in which the only information required by

the bank is the publicly observed first-period outcome. In each period t = 1, 2, neither party

is obligated to pay anything whenever the project fails. The borrower pays an gross interest

rate Rt if the project succeeds. The financial contract is thus a pair of gross interest rates

{R1, R2}. Finally, the bank can make a commitment to deny the second-period loan whenever

the borrower defaults on the first-period loan.

Borrowers are allocated randomly to banks in the primary credit market. Thus a bank

expects the vector µ of the measure of borrowers in its loan portfolio since it cannot prevent

the type-l borrowers from borrowing.7 Moreover, since the type-l borrowers cannot choose the

type-H project, the bank just considers the incentive problem of the type-h borrowers. In this

setting, the optimal contract induces the type-h borrowers to choose the type-H project.

Let V 1
t be a bank’s payoff in period t = 1, 2 if transactional lending is used. In period 1,

the bank’s payoff is the same as in equation (1.1): V 1
1 (R1;µ) = V 0

1 (R1;µ). The bank’s payoff

in period 2 is

V 1
2 (R2;µ) = µ̃hvH (R2) + µ̃lvL (R2) . (1.7)

The period payoff from the type τ ∈ {H,L} project satisfies vL (Rt) < 0 < vH (Rt) by as-

sumption. But I shall restrict attention to equilibria in which the value of the loan portfolio is

positive: V a
t (Rt;µ) > 0.

Given the state of liquidity γ of the secondary market, the bank maximizes its expected

profit,

(TL) max
{R1,R2}

V 1
1 (R1;µ) + ρ (γ)V 1

2 (R2;µ) ,

subjects to the individual rationality (IR) and incentive compatibility (IC) constraints,

(IR) pH (θ −R1) + p2
H (θ −R2) ≥ v0, (1.8)

(IC) pH (θ −R1) + p2
H (θ −R2) ≥ pL (θ −R1) + p2

L (θ −R2) + b. (1.9)

7Recall that a type-l borrower has a positive private benefit B > v0, so she will always apply for a loan
regardless of the contract. The bank cannot screen out type-l borrowers. Why? Assume not. Thus there exists
a menu of contracts which can separate the two groups of borrowers. But the bank will stop lending to those
type-l borrowers who have negative payoff vL (R) = pLR −D < pLθ −D < 0. Then the type-l borrowers will
not choose the contract which reveals their type. See Hellwig [31] for a formal argument.
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By the IR constraint (1.8), the bank promises at least the reservation utility v0 to the type-h

borrowers. In addition, by the IC constraint (1.9), the type-h borrowers who borrow money

from the bank will choose the type-H project given the contract offered. The solution to this

problem is presented in Lemma 1.2.

Lemma 1.2 The optimal transactional loan is as follows:

1. if the project fails, the gross interest rate in each period t = 1, 2 is R1∗
t (0) = 0;

2. if the project succeeds, the gross interest rates are R1∗
1 (θ) = θ and R1∗

2 (θ) = θ − v0/p
2
H .

To simplify the notation, define R1∗
1 ≡ R1∗

1 (θ) and R1∗
2 ≡ R1∗

2 (θ). The bank maximizes its

expected profit by offering the optimal financial contract
{
R1∗

1 , R
1∗
2

}
.

To conclude this section, I compare the results of the problems (TL) and (RL) in Figure 1.3.

The following results hold for the optimal loan contracts: (1) the interest rates in period 1 are

the same R1∗
1 = R0∗

1 = θ; and (2) in period 2, the interest rate of relationship loans is larger

than that of transactional loans R0∗
2 > R1∗

2 . The first result is due to the fact that the bank

wants to be paid back as soon as possible. The second one comes from the IR constraints:

the bank that offers a relationship loan gives the same reservation utility in equilibrium to a

type-h borrower. The bank requires a higher interest rate in relationship lending because the

type-h borrower has a better chance of continuing her project in relationship lending. The

information of the project type has a cost of monitoring the borrower. But this information

also relaxes the IC constraint (1.5) in a relationship loan comparing with the IC constraint

(1.9) in a transactional loan. Therefore, the bank can increase the second-period interest rate

in relationship lending to compensate its cost without violate the IC constraint.

1.3 Decentralized Credit Market

In this section, I relax the assumption that borrowers are assigned to banks randomly in

the primary credit market. Now, in the decentralized primary credit market, there exists a

continuum of lenders with measure one. Recall that a bank can take an action a ∈ {0, 1},

where the actions a = 0 and a = 1 denote relationship lending and transactional lending,



13

Figure 1.3 Comparing the Optimal Relationship Lending
{
R0∗

1 , R
0∗
2

}
with the Optimal Trans-

actional Lending
{
R1∗

1 , R
1∗
2

}
. The R1-axis and the R2-axis are gross interest rates

in the first period and second period, respectively. The pair of optimal relation-

ship lending interest rates
{
R0∗

1 , R
0∗
2

}
is below the incentive compatibility con-

straint ICRL and lies on the intersecting point of the individual rationality con-

straint IRRL the limited liability constraint R1 = θ. Also the pair of optimal

transactional lending interest rates
{
R1∗

1 , R
1∗
2

}
is below the incentive compatibil-

ity constraint ICTL and lies on the intersecting point of the individual rationality

constraint IRTL and the limited liability constraint R1 = θ. The interest rate R0∗
2

is higher then R1∗
2 to compensate the cost to monitor borrowers. See Appendix A

for details of the parameters.
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respectively. I consider the case in which banks simultaneously and publicly announce their loan

technologies. Borrowers then simultaneously choose which technology they prefer. A borrower

is then assigned to a random bank that has chosen her preferred technology. If no such bank

exists, the borrower does not borrow. I shall prove that the borrowers’ searching efforts may

change the distribution of borrowers in banks’ loan portfolios.

I assume that the fraction of banks that can choose which loans to offer is less than the

threshold `1 < ̂̀, where

̂̀≡ (1− δ)V 1
2

(
R1∗

2 ;µ
)

(1− δ)V 1
2

(
R1∗

2 ;µ
)
−
[
µlvL

(
R1∗

1

)
+ µ̃lvL

(
R1∗

2

)] ∈ (0, 1) . (1.10)

Intuitively, for banks that offer transactional loans, the value (1− δ)V 1
2

(
R1∗

2 ;µ
)

is the highest

potential gain from selling the loan portfolio in the secondary market, and the value µlvL
(
R1∗

1

)
+

µ̃lvL
(
R1∗

2

)
is the loss caused by the borrowers’ searching efforts. This condition requires that

the loss is shared among a sufficiently large mass (at least 1 − ̂̀) of lenders that offer loans

without monitoring. This gives the remaining banks a sufficient incentive to offer transactional

loans.

Given the optimal contracts in Lemma 1.2 and Lemma 1.1, type-h borrowers will choose

the type-H project, and thus their expected payoff, equal to v0, is fixed. In turn, they are

indifferent between transactional lending and relationship lending as claimed in the second

part of the following Lemma 1.3. It also shows that no type-l borrowers choose banks that offer

relationship loans.

Lemma 1.3 Type-l borrowers strictly prefer to borrow from banks with transactional lending

over those with relationship lending, while type-h borrowers are indifferent between the two

technologies.

Proof of Lemma 1.3: The monitoring technology changes the type-l borrower’s expected

payoff. The amount of private benefit b from a type-L project is exogenously given. Hence,

this private benefit of type-l borrowers can be ignored since the technology does not change

the probability to receive their loans in period 2. In addition, from the optimal contracts{
R0∗

1 , R
0∗
2

}
and

{
R1∗

1 , R
1∗
2

}
, we know that R0∗

2 > R1∗
2 and R1∗

1 = R0∗
1 = θ. Therefore, the
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following inequality holds,

pL
(
θ −R1∗

1

)
+ p2

L

(
θ −R1∗

2

)
+ b > pL

(
θ −R0∗

1

)
+ p2

L

(
θ −R0∗

2

)
+ b.

The left hand side is a type-l borrower’s gain from the type-L project if transactional lending

is offered; and the right hand side is her gain if relationship lending is offered. This proves the

first part of the lemma: in order to have a higher payoff in period 2, the type-l borrowers will

look for banks with transactional lending. Q.E.D.

Suppose a proportion λ ∈ [0, 1] of them offer transactional loans. In this case, the measure

of lenders that offer loans without monitoring is λ`1 + `0. Let πag (λ) represent the mass of

type g ∈ {l, h} borrowers in the portfolio of a bank that chooses an action a ∈ {0, 1}. Let a

vector πa (λ) = (πah (λ) , πal (λ)) represent the mass of borrowers. By Lemma 1.3, the type-h

borrowers are indifferent between the two loan contracts. Hence the measure is the same as

in the representative bank case: π1
h (λ) = π0

h (λ) = µh. But since the type-l borrowers strictly

prefer the banks with transactional lending, the measure π1
l (λ) is equal to the measure of the

type-l borrowers µl divided by the measure of banks that offer transactional loans λ`1 + `0,

and the measure π0
l (λ) is equal to 0. Summarily, the vectors of the measure of borrowers are

π1 (λ) =
(
µh, (λ`1 + `0)−1 µl

)
and π0 (λ) = π0 = (µh, 0) for banks that offer transactional

lending and relationship lending, respectively. Finally, let π̃1
l (λ) = π1

l (λ) pL be the mass of

borrowers whose projects succeed.

1.3.1 Interbank Relationships

Apply the vectors of the measure of borrowers πa (λ) for a ∈ {0, 1} and the results from the

optimization problems (TL) and (RL) to compute a bank’s profit. Each bank i ∈ [0, `1] has a

same profit function U : {0, 1} × [0, 1]×R++ → R+, where U (a, λ, γ) is the bank’s profit if it

chooses an action a, a proportion λ of banks offer transactional loans, and the state of liquidity

is γ. Specifically, if the bank chooses transactional lending, the profit is

U (1, λ, γ) = V 1
1

(
R1∗

1 ;π1 (λ)
)

+ ρ (γ)V 1
2

(
R1∗

2 ;π1 (λ)
)
, (1.11)
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the period 1 payoff with interest rate R1∗
1 , plus ρ (γ) times the period 2 payoff with interest

rate R1∗
2 ; and if the bank chooses relationship lending, the profit is

U (0, λ, γ) = V 0
1

(
R0∗

1 ;π0
)
− C

(
m,π0

)
+ δV 0

2

(
R0∗

2 ;π0
)
, (1.12)

the period 1 payoff with interest rate R0∗
1 , less the monitoring cost, plus the discount rate δ

times the period 2 payoff with interest rate R0∗
2 . Noticing in the latter case the bank’s profit

depends on neither the proportion λ nor the state of liquidity γ, let us denote U (0, λ, γ) ≡ U0.

To analyze a bank’s best response, it is enough to know the profit gain from choosing

one action rather than the other. The profit gain from choosing transactional lending over

relationship lending is parameterized by a function ω : [0, 1] × R++ → R with ω (λ, γ) =

U (1, λ, γ)− U0. From equations (1.11) and (1.12), the profit gain is given by

ω (λ, γ) = V 1
1

(
R1∗

1 ;π1 (λ)
)

+ ρ (γ)V 1
2

(
R1∗

2 ;π1 (λ)
)
− U0. (1.13)

At the heart of this model is a set of properties (B1-B3) on the profit gain ω (λ, γ). I discuss

the intuition of these properties in this section and the proves are in Appendix A.

B1. State Monotonicity. The profit gain ω (λ, γ) is non-decreasing in the state of liquidity γ.

B2. Strategic Complementarities. The profit gain ω (λ, γ) is non-decreasing in the proportion

λ of banks that offer transactional loans.

B3. Dominance Regions. There exist the upper and lower bounds γ, γ ∈ (δ, 1) such that: (1)

the profit gain is negative ω (λ, γ) < 0 for all the proportion λ and the state of liquidity

γ < γ; and (2) the profit gain is positive ω (λ, γ) > 0 for all the proportion λ and the

state of liquidity γ > γ.

I assume that there are regions of extremely good and bad states of liquidity in which a

bank’s best response is independent of its belief concerning the responses of others. That is,

when the state of liquidity is extremely bad γ ≤ γ, the expected profit from transactional

lending is always lower than relationship lending. A bank’s best response is to offer relationship

lending. Similarly, when the state of liquidity is extremely good γ ≥ γ, the expected profit
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from transactional lending is always higher than relationship lending. A bank’s best response

is to use transactional lending.

First, I want to verify the state monotonicity property. Intuitively, if the state of liquidity

γ is in the interval [δ, 1), once there is a small positive liquidity shock, the investors will pay

more for the loan portfolios with value V 1
2

(
R1∗

2 ;π1 (λ)
)
. Banks using transactional lending

benefit since they can sell their loan portfolios at this higher price. Note that banks will retain

their loans if the state of liquidity is in (0, δ). In addition, investors have sufficient liquidity

for loan portfolios if the state of liquidity is in [1,∞). In turn, if the state of liquidity γ is

not in [δ, 1) then a small positive liquidity shock will not change the profit of banks that offer

transactional lending. Moreover, banks using relationship lending are not affected by any shock

since they retain their loans. Therefore, a bank’s relative profit from choosing the transactional

technology is non-decreasing in the state of liquidity γ.

As for strategic complementarities, when more banks offer transactional lending, the profit

of each such bank rises because the measure of the type-L projects π1
l (λ) in the portfolio

decreases. But there is no effect on the profit of a bank that chooses the relational technology

since the vector of the measure of borrowers π0 of each group stays the same. Hence, the profit

gain ω (λ, γ) from choosing transactional lending over relationship lending is increasing in the

proportion λ.

Finally, the assumption of dominance regions requires a modest individual monitoring cost.

Specifically, define the lower bound m and the upper bound m of the individual monitoring

cost

m ≡
δµhvH

(
R0∗

2

)
− `−1

0 µlvL
(
R1∗

1

)
− V 1

2

(
R1∗

2 ;π1 (0)
)

µh (1− pH)
, (1.14)

m ≡
δµhvH

(
R0∗

2

)
− µlvL

(
R1∗

1

)
− δV 1

2

(
R1∗

2 ;µ
)

µh (1− pH)
. (1.15)

When the individual cost m is less than the upper bound m, the total cost µh (1− pH)m

is small enough that an individual bank has an incentive to offer relationship lending even

no other banks do the same λ = 1 once the state of liquidity γ is in [0, δ]. Similarly, when

the individual cost m is larger than the lower bound m, the total cost µh (1− pH)m is large

enough that an individual bank has an incentive to offer transactional lending even no other
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banks indexed by i ∈ [0, `1] do the same λ = 0 once the state of liquidity is in [1,∞). In order

to ensure the existence of dominance regions, I assume the monitoring cost m is in the interval

(m,m).8

1.3.2 Multiple Equilibria

Initially, assume that the liquidity parameter λ is commonly observed. Let us restrict

attention to pure strategy symmetric Nash equilibria. Formally, a (pure) strategy of all banks

i ∈ [0, `1] is a function s : R++ → {0, 1}, where s (γ) is the chosen action when the state of

liquidity is γ. The strategy consists of a decision to offer relationship loans or transactional

loans.

The optimal loan contract is exogenously given once the banks choose which technology

to use. The proportion λ of banks that offer transactional lending is in the set {0, 1} due

to symmetry. In addition, this proportion is perfectly predicted by the banks in equilibrium.

Therefore, the vectors of the measure of borrowers πa (λ) for a ∈ {0, 1} are known by the banks.

Given a sufficiently large mass of banks that always offer transactional loans, and given

the individual monitoring cost m ∈ (m,m), the model has multiple equilibria. Define a lower

bound γ and an upper bound γ of the state of liquidity:

γ ≡
δµhvH

(
R0∗

2

)
− µlvL

(
R1∗

1

)
− µh (1− pH)m

V 1
2

(
R1∗

2 ;µ
) , (1.16)

γ ≡
δµhvH

(
R0∗

2

)
− `−1

0 µlvL
(
R1∗

1

)
− µh (1− pH)m

V 1
2

(
R1∗

2 ;π (1, 0)
) . (1.17)

It is easy to see that δ < γ < γ < 1 from the property B3. Thus I have ρ (γ) = γ by (1.6).

Theorem 1.4 When γ ≤ γ ≤ γ, there exist two (pure strategy symmetric) equilibria: (1) all

banks offer transactional lending, or (2) all banks i ∈ [0, `1] offer relationship lending.

Proof of Theorem 1.4: First, assume all other banks offer transactional lending, λ = 1.

When the state of of liquidity γ = γ, the profit gain is non-negative, ω
(
1, γ
)
≥ 0. By the state

monotonicity (B1), I have ω (1, γ) ≥ 0 for all states of liquidity γ ≥ γ. That is, no individual

bank has an incentive to offer relationship lending. Hence, there is an equilibrium in which

8It is easy to check that m < m when `1 ≤ ̂̀. See Appendix A.
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all banks offer transactional lending. Now, assume all other banks i ∈ [0, `1] offer relationship

lending, λ = 0. When γ = γ, the profit gain is non-positive ω (0, γ) ≤ 0. Again, by state

monotonicity, I have ω (0, γ) ≤ 0 for all γ ≤ γ. That is, no individual bank i ∈ [0, `1] has

an incentive to offer transactional lending. There is a second equilibrium in which all banks

i ∈ [0, `1] offer relationship lending. Q.E.D.

1.4 Private Signals: Unique Equilibrium

In the previous section, I have shown that when the state of liquidity is publicly observed,

there exist multiple equilibria. However, when the model has multiple equilibria, it is hard

to predict which equilibrium will occur. The global game approach (see Carlsson and van

Damme [12]; Morris and Shin [47]) provides a natural way to address the problem. To use

this approach, I modify the model. The state of liquidity of the secondary market is no longer

publicly observed. Instead, each bank receives a slight noisy private signal regarding the state

of liquidity in period 1. The signals can be thought of as private information or private opinion

regarding the investors’ state of liquidity. The introduction of private signals changes the results

considerably.

Suppose that the state of liquidity γ has a log-normal distribution F (density f). Each

bank i ∈ [0, `1] observes its private signal xi = γ exp (σηi), where σ > 0 is a scale factor and

ηi (the noises) are independent random variables, each with a standard normal distribution Φ

(density φ). The signals are used to coordinate the banks’ actions.

I denote by Γ (σ) this incomplete information game and consider a pure strategy Perfect

Bayesian Equilibrium. Similar to the public signal case, a (pure) strategy of bank i in this

private signal case is a function si : R++ → {0, 1}, where si (x) is the action chosen if the bank

observes its private signal x. A strategy profile is s= (si)i∈[0,`1].

1.4.1 Solving the Model

In a general model, Frankel, Morris, and Pauzner [24] proved, as the signal noise vanishes, a

unique strategy profile survives iterative dominance. This model fits their setting: a continuum

of players and two actions.
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Consider a bank that has observed a signal x and knows that all other banks indexed by

i ∈ [0, `1] will offer relationship lending if they observe signals less than y. Let ωσ (x, y) denote

the bank’s expected profit gain from choosing transactional lending over relationship lending.

The main result predicts a unique equilibrium. The proof is in Appendix A.

Theorem 1.5 The game Γ (σ) essentially has a unique equilibrium in which banks indexed

by i ∈ [0, `1] offer transactional lending if they observe a signal above the threshold x∗ (i.e.,

si (x) = 1 for all x > x∗) and relationship lending if below (i.e., si (x) = 0 for all x < x∗),

where the threshold x∗ ∈
(
γ, γ

)
is determined by the equation

ω∗σ (x, x) =

∫ 1

λ=0
ω (λ, x) dλ = 0. (1.18)

It is well known that the equilibrium strategies and beliefs of the two action model do

not depend on the structure of the noise as the noise vanishes. Morris and Shin [47] offer an

explanation based on the contagion argument. The banks’ actions are determined by their

signals: they uses transactional lending if and only if their signals are below the threshold x∗

determined by the equation (1.18). Theorem 1.5 thus provides the method to compute the

threshold x∗. From the equation (1.18) and the definition (1.13), the equality ω∗σ (x, x) = 0

implies ρ (x∗)X1 +X2 = 0, where

X1 = µ̃hvH
(
R1∗

2

)
+
(
`−1
1 ln `−1

0

)
µ̃lvL

(
R1∗

2

)
> 0, and

X2 =
(
`−1
1 ln `−1

0

)
µlvL

(
R1∗

1

)
+ µh

[
(1− pH)m− δvH

(
R0∗

2

)]
< 0.

Since the threshold x∗ is in the interval
(
γ, γ

)
, I have ρ (x∗) = x∗ by the definition (1.6). Hence,

the threshold is

x∗ = −X2/X1. (1.19)

To conclude this section, I compare banks’ behavior in this full model with that in the

benchmark case. The gain from choosing transactional lending over relationship lending in the

benchmark case is

ω (γ) = µlvL
(
R1∗

1

)
+ ρ (γ)

[
µ̃hvH

(
R1∗

2

)
+ µlpLvL

(
R1∗

2

)]
+µh

[
(1− pH)m− δvH

(
R0∗

2

)]
.
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Hence, the bank will choose transactional lending if ω∗ (γ) > 0. By Theorem 1.4 the threshold

γ∗ is in the interval
(
γ, γ

)
and ρ (γ∗) = γ∗. Therefore, I have the threshold

γ∗ = −
µlvL

(
R1∗

1

)
+ µh

[
(1− pH)m− δvH

(
R0∗

2

)]
µ̃hvH

(
R1∗

2

)
+ µ̃lvL

(
R1∗

2

) .

It is easy to check that γ∗ < x∗.9

Intuitively, when the bank is uncertain which type of loans its opponents will offer, it will

take a more cautious action - offering transactional lending when the observed state of liquidity

is higher. This may increase the monitoring cost of banks. However, if monitoring reduces the

proprotion of lower quality borrowers and hence the economy-wide default risk, the uncertainty

may increase the wefare.

1.4.2 The Loan Market Analysis

In this section, I analyze the secondary market for loans. The threshold x∗ is determined by

equation (1.19). Assume the realized state of liquidity of the secondary market is γ̂. Knowing

the realization of the state of liquidity, I can calculate exactly the proportion of banks that

offer transactional lending. Given a small scale σ > 0,10 the noises are σηi with ηi independent

and standard normal for all i ∈ [0, `1]. By the law of large numbers, the fraction λ̂ of banks

that offer transactional lending is determined by

λ̂ = 1− Φ

(
1

σ
ln (x∗/γ̂)

)
, (1.20)

and the rest of banks will offer relationship lending.

The effect of an increasing in the individual monitoring cost to the fraction of banks in the

secondary market is summarized below.

Proposition 1.6 When the individual monitoring cost m increases, the fraction λ̂ of banks

that offer transactional lending increases. In addition, when the realized state of liquidity γ̂

increases, the fraction λ̂ of banks that offer transactional lending increases.

9When `1 ∈ (0, 1), the following inequality holds `−1
1 ln `−1

0 > 1.
10See Morris and Shin [48] for formal treatment that, when the scale σ is small related to the distribution of

the fundamentals, the threshold x∗ is also determined by (1.18).
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Proof of Proposition 1.6: Let us only consider the individual monitoring cost m in the

interior of the interval (m,m), and the proof is intuitive. Taking a derivative of the equation

(1.20), I have

∂λ̂

∂m
=

∂λ̂

∂x∗
∂x∗

∂m
= −µh (1− pH)

σX2
φ

(
1

σ
ln (x∗/γ̂)

)
> 0.

Therefore, the fraction λ̂ is an increasing function of the individual cost m.

The fraction λ̂ of banks that offer transactional lending is an increasing function of the

realized state of liquidity γ̂:

∂λ̂

∂γ̂
=

1

σγ̂
φ

(
1

σ
ln (x∗/γ̂)

)
> 0.

Therefore, when the investors have a relaxed liquidity constraint, the secondary market will

experience a boom. Q.E.D.

Figure 1.4 simulates the function (1.20) and also shows the effects of liquidity shocks and

changes in the individual monitoring cost. In this model, the monitoring cost is a cost to learn

the true type of project. In practice, the technological innovation reduces the cost of infor-

mation storage or the cost of transportation. However, the development of the multinational

corporations and the appearance of internet companies (e-business) have made it harder to

build relationships to monitor the firms closely (see Petersen and Rajan [53]; Degryse and On-

gena [14]). The recent fast growth of the secondary market for transactional loans may reflect

such a cost increasing in the primary credit market (from A to A′ in Figure 1.4).

Proposition 1.7 With a change in the realized state of liquidity γ̂, the model has two predic-

tions on the secondary market for loans:

1. the quality of individual loan portfolio of each bank increases (decreases) when the state

of liquidity becomes better (or worse, respectively); and

2. the fraction of the type-l borrowers in the credit market increases (decreases) when the

state of liquidity becomes better (or worse, respectively).

Proof of Proposition 1.7: First, in the secondary market, for each bank that offers trans-

actional lending, it faces the mass
(
λ̂`1 + `0

)−1
µ̃l of the type-l borrowers with the type-L
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Figure 1.4 The Fraction of Banks Offering Transactional Loans. The horizontal axis γ̂ is

the state of liquidity and the vertical axis λ̂ is the fraction of banks who offer

transactional loans. When the signals are precise (or the noises are small), the

liquidity shock has a very sharp effect on the fraction around the threshold. For

example, in the figure, the threshold is x∗1 = 0.8 and the scale of noise is σ = 0.02,

a small drop of the realized state of liquidity will reduce the fraction of banks off

transactional loans significantly.
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project. But the measure of the type-h borrowers with the type-H project in each bank is µ̃h,

which is independent of the fraction λ̂. By the equation (1.20), after an increasing in the state

of liquidity γ̂, the proportion of the type-l borrowers decrease in each loan portfolio. In other

words, the quality of loan portfolios increases when the state of liquidity becomes better.

To see the second prediction, notice that the total measure of the type-l borrowers in the

credit market is fixed. The banks offer relationship loans find out the true types of projects

and continue the loans to the good projects. On the other hand, from the discussion in Section

1.2, banks offering transactional loans exert less efforts to monitor borrowers. Therefore, in

period 2, the type-h borrowers with good projects are driven out of the primary credit market

more often when the banks offer transactional loans. Q.E.D.

Hence, when the state of liquidity γ̂ becomes better, the default risk of the economy could

increase sharply, which may reduce the social welfare. Inefficiency may be imbedded in the

development of the secondary market since “hot potatoes” (bad loans) sit in the financial

system. When the state of liquidity γ̂ becomes worse, banks will switch back to the safe but

costly relationship lending (from A′ to B′ in Figure 1.4).

1.5 Conclusion

In this chapter, I study a lending model and consider the endogeneity of lenders’ information

structures. I assume that each bank can decide whether or not to discover the quality of a

borrower’s project to use the active or passive technology. Information acquisition (the active

technology) is productive because it can find out the good borrowers with a given cost.

In addition, I study the case in which liquidity shocks in the secondary market for trans-

actional loans change the relative payoff to different loan technologies and thus the exogenous

shocks may alter a bank’s incentive to acquire information. Given that banks have slightly

noisy private signals of the liquidity shocks, the model has a unique equilibrium.

In this two-period model, borrowers belong to different types and they choose the types of

their projects in the first period. The types of the borrowers and the types of the projects are

private information of borrowers and are perfectly correlated in the first and second period.
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So this model is a false dynamic model (Laffont and Martimort [41], p.269). The structure is

simplified in order to have an explicit solution when I add endogenous information acquisition

and liquidity shocks. But it might be interesting to study the effects of adding repeated periods.

The secondary loan market is important source of financial instability. In this model, the

strategic complementarities come from the borrowers’ search efforts. In addition, I introduce the

liquidity shocks to investors’ willingness to pay in the secondary market. When the investors’

willingness to pay decreases, the payoff of the banks that offer transactional lending decreases.

The aggregate value traded in the secondary market drops even faster because fewer banks

are going to offer transactional loans, which worsens the distribution of borrowers in the loan

portfolios of the transactional lenders.
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CHAPTER 2. SECURITIZATION AND LENDING COMPETITION

by David M. Frankel and Yu Jin

2.1 Introduction

Securitization of conventional home mortgages began in 1970 with the founding of the

Federal Home Loan Mortgage Corporation.1 The proportion of mortgages held in market-

based instruments rose steadily from 20% in 1980 to 68% in 2008.2 Earlier evidence indicates

that securitization has been growing at least since 1975 (Jaffee and Rosen [37, Table 2]).

Remote lending has also grown. Petersen and Rajan [53, Figures I and II] find an upwards

trend in distances between small firms and their lenders that began in about 1978 or 1979

and continued through the end of their data in 1992. The mean borrower-lender distance in a

sample of small business loans studied by De Young, Glennon, and Nigro [19, pp. 125-6] rose

from 5.9 miles in 1984 to 21.5 miles in 2001. Remote lending of residential mortgages also rose

from 1992 to 2007 (Loutskina and Strahan [43, p. 1477], discussed below).

We present a tractable theoretical model that links securitization and remote lending. We

assume that banks have hard information about all loan applicants but soft information about

only local applicants. Without securitization, banks lend only to local applicants because of a

winner’s curse. With securitization, in contrast, ignorance is bliss: the less a bank knows about

its loans, the less of a lemons problem it faces in selling them.3 This enables banks to compete

successfully for some remote applicants.

Our model yields many predictions that are consistent with prior empirical findings (section

1A detailed history of securitization appears in Hill [33].
2The source is unpublished data underlying Figure 3 in Shin [59].
3In a prior empirical paper, Loutskina and Strahan [43] point out that banks may have an incentive to lend

remotely in order to avoid private information at the time of securitization.
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2.5.1):

1. Securitization Stimulates Lending. As in Shin [59], securitization leads to expanded

lending by connecting liquid investors with loan applicants. There is considerable evidence

that the securitization boom in the 2000s led to expanded lending (Demyanyk and Van

Hemert [18]; Krainer and Laderman [40]; Mian and Sufi [44]).

2. Securitization Favors Remote Lending. In our model, banks lend remotely only if

they can securitize their loans. Moreover, a bank securitizes all of its remote loans but

only some of its local loans. Loutskina and Strahan [43] find that as securitization rose,

the market share of concentrated lenders - those which originate at least 75% of their

mortgages in one MSA - fell from 20% to 4% from 1992 to 2007. Moreover, concentrated

lenders retain a higher proportion of their loans. Finally, when they expand to new

MSA’s, these lenders are more likely to sell their remote loans than those made in their

core MSA’s.

3. Remote Borrowers have Strong Observables but High Conditional Default

Rates. While a bank might lend to a local applicant who has a low credit score in our

model, it will not do so for a remote one whose credit score is all it sees. Hence, remote

borrowers tend to have stronger observables than local borrowers. (We use “borrower”

to refer to an applicant who gets a loan.) On the other hand, since banks lack soft

information for remote applicants, they make worse lending decisions: conditional on

observables, distant borrowers are more likely to default.4 Loutskina and Strahan [43, p.

1456] find that concentrated lenders (defined above) have lower loan losses despite lending

to applicants who are riskier in terms of loan to value ratios. Agarwal and Hauswald [1]

find that applicants with strong observables tend to apply online for loans, while in-person

applicants tend to be those with weaker observables but positive estimates of the bank’s

soft information about them. Moreover, online loans default more than observationally

equivalent in-person loans. De Young, Glennon, and Nigro [19] find that banks that lend

4This empirical implication is also present in the prior theoretical model of Hauswald and Marquez [30], which
we discuss in section 2.6.3.
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remotely have higher default rates.

4. Securitization Lets Borrowers with Strong Observables Get Cheap Remote

Loans. In our model, securitization encourages banks to lend to remote applicants with

strong observables. They must offer low interest rates to these applicants in order to

prevent cream skimming by the applicants’ local banks. In contrast, banks can demand

high interest rates from quality local applicants whose observables are weak since these

applicants cannot get remote loans. This has two empirical implications. First, the se-

curitization boom in the 2000s should have strengthened the (negative) relation between

borrower observables and interest rates. Rajan, Seru, and Vig [57] find that borrower

credit scores and LTV ratios explain just 9% of interest rate variation among loans orig-

inated in 1997-2000 but 46% of this variation among loans originated in 2006. A second

implication is that remote borrowers pay lower rates.5 Agarwal and Hauswald [1] find

that internet loans carry lower interest rates than in-person loans. Degryse and Ongena

[14] find that interest rates decrease with the distance between small firms and their

lenders in Belgium. Mistrulli and Casolaro [46] find the same relation among business

lines of credit in Italy.

5. Securitization Raises Conditional and Unconditional Default Rates. Securitiza-

tion encourages more remote lending in our model. This raises default rates conditional on

borrower observables. Securitization also makes lending more profitable in general, which

encourages banks to lower lending standards as in Shin [59]. For both reasons, the un-

conditional default rate also rises. These predictions are confirmed by empirical research.

Rajan, Seru, and Vig [57] find that conditional default rates rose between 1997-2000 and

2001-6.6 Demyanyk and Van Hemert [18] find that conditional and unconditional default

rates rose from 2001 to 2007.7

5The comment in footnote 4 applies here as well.
6They control for the loan interest rate, credit score, loan to value ratio, and dummy variables for adjustable

rates, prepayment penalties, and whether the lender lacked documentation of the borrower’s income or assets.
7Their controls include the loan interest rate, borrower credit score, loan to value ratio, debt to income

ratio, local changes in house prices and unemployment since origination, and dummies for prepayment penalties,
owner-occupier status, and low documentation.
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6. Securitized Loans Have Higher Conditional Default Rates than Retained

Loans. In our model, local banks adopt lower lending standards in local areas that

are more profitable to securitize. Hence, securitized loans have higher default rates than

retained loans conditional on observables. Krainer and Laderman [40] find that control-

ling for observables, privately securitized loans default at a higher rate than retained

loans. Elul [23] finds that securitized loans perform worse than observationally similar

unsecuritized loans, and that the effect is strongest in the prime market.

In our model, securitization has mixed effects on social welfare. It raises the supply of

funding for worthwhile projects by connecting liquid investors with deserving loan applicants.

However, it also leads to an inefficient loan allocation by giving banks an incentive to favor

remote applicants with strong observables. For instance, consider two applicants in the same

location. One has a high credit score but a negative NPV project. The other has a low

credit score but a positive NPV project. A remote bank would favor the first applicant since

evaluating a project’s NPV requires soft information, which it lacks. A local bank may prefer

not to fund either applicant because it knows too much about them, which makes their loans

difficult to sell. Hence, funds go to the negative-NPV project, which is clearly inefficient.

We treat securitization as an exogenous innovation that encourages remote lending. If in-

stead securitization were initially possible and an exogenous barrier to remote lending were then

lifted, our model would also predict a simultaneous increase in both remote lending and secu-

ritization.8 In practice, legal barriers to interstate banking fell gradually starting in Maine in

1978 and ending with the federal government’s passage of the Interstate Banking and Branching

Efficiency Act of 1994, which abolished all remaining restrictions (Loutskina and Strahan [43,

pp. 1451-2]). Since securitization was invented earlier, these barriers may have fallen partly in

response to pressure from large banks who were eager to increase their securitization profits.

Alternatively, their fall may have been due to an exogenous change in regulatory philosophy.

This is an interesting topic for future empirical research.

The rest of the chapter is as follows. The model is presented in section 2.2. Section 2.3

8Since we assume banks lack private information about their remote loans and have a lower discount factor
than investors, banks securitize all of their remote loans. Since - in our model - they securitize only some of
their local loans, removing a barrier to remote lending would raise the proportion of loans that are securitized.
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analyzes a base case without securitization, while the full model is studied in section 2.4. The

model’s predictions are discussed and illustrated in section 2.5. Section 2.6 reviews related

theoretical literature, while conclusions appear in section 2.7.

2.2 The Model

A country consist of two ex ante identical regions, A and B, each containing a single bank.

We will refer to the bank in region A (B) as bank a (respectively, b). Each region R ∈ {A,B}

consists of a continuum of locations ` ∈ [0, 1]. In each location ` there is a continuum of agents.

All participants are risk-neutral.

Each agent has a project that requires one unit of capital and pays a fixed gross return

of ρ > 1 if it succeeds and zero otherwise. The project’s success probability is the product

of the agent’s unknown type θ ∈ (0, 1) and a macroeconomic shock LR` ∈ (0, 1) to the agent’s

location ` in the region R in which she lives. Project outcomes, conditional on these success

probabilities, are independent.9

There are four periods, t = 1, 2, 3, 4. Period 1 is the lending stage. The banks see signals of

each agent’s type θ and then make competing loan offers to the agents. This stage determines

which agents borrow from which banks, and at what interest rates. Period 2 is the security

design stage. Each bank decides which loans to securitize and what liquidating dividend to

pay as a function of the returns of these loans. Period 3 is the signalling stage. The bank in

each region R first sees signals of its local macroeconomic shocks LR` . Each bank then chooses

how many shares of its security to sell to investors. Period 4 is the settlement stage: project

returns are realized, successful borrowers repay their loans, and each bank pays a liquidating

dividend to holders of its security.

The local shock LR` has the form

LR` =

K∑
k=1

αRk`ζ
R
k . (2.1)

For each k, ζRk ∈ (0, 1) is a random variable that is realized after the security is sold and

αRk` ∈ [0, 1] is a constant satisfying
∑K

k=1 α
R
k` ≤ 1.10 We refer to ζRk as the kth local factor

9That is, a project’s success probability is θSR` regardless of the outcomes of other projects.
10One can include a constant term in equation (2.1) by assuming that one of the factors is a constant.
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in region R and to αRk` as location `’s loading on this factor. For instance, each factor may

represent an industry and the factor loading may be the share of a location’s workforce that

is employed in the industry.11 In each region R, the distribution of the factor loading vector(
αRk`
)K
k=1

across locations ` ∈ [0, 1] has no atoms.12

At the beginning of period 1, both banks see a public signal spub ∈ (0, 1) of type θ of each

agent. Simultaneously, the agent’s local bank also sees a private signal spriv ∈ (0, 1) of θ.13 The

joint population distribution of the type θ, signals spub and spriv, and location ` is given by

a known distribution function F and associated continuous density function f on the domain

(0, 1)3 × [0, 1].

The assumption that F is region-independent is purely for notational convenience. It could

be replaced by region-specific distribution functions FA and FB with no change in the re-

sults, except for the proliferation of region superscripts throughout the chapter. The same

is true of all distributions derived from F . In particular, we will also use F to denote the

marginal and conditional distribution functions of these variables or subsets of them; for in-

stance, F (θ|spriv, spub, `) denotes the conditional distribution of θ given spriv, spub, and `. The

corresponding densities are written with “f” in place of “F”, and we assume that all such

densities are continuous.

We assume that an increase in the public signal - or in the private signal conditional on

the public signal - raises the conditional distribution of θ in a first-order stochastic dominance

sense. This is formalized in the following two assumptions. The first says that an increase in

the public signal weakly lowers the probability of observing a type θ below any given threshold,

and strictly lowers the average of these probabilities across thresholds. Moreover, this effect

is bounded above. The second property is like the first but relates to the effect of the private

signal on the distribution of types conditional on the public signal. (In both cases, we also

condition this distribution on the location `.)

Public Signal Monotonicity For any signal spub ∈ (0, 1) and location ` ∈ [0, 1], there are

11Factor dependence within and across regions is permitted, as detailed below in section 2.2.1.3.
12That is, there is no factor loading vector that receives a strictly positive probability weight.
13The outcome of the model will not depend on what the applicant knows about her own type, as the applicant

simply borrows from the bank that offers her the lower interest rate.
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integrable functions λ ≤ λ : (0, 1) → <+, such that the integral
∫ 1
θ=0 λ (θ) dθ is strictly

positive and for each θ ∈ (0, 1), the derivative
∂F(θ|spub,`)

∂spub
exists and lies between −λ (θ)

and −λ (θ), inclusive.

Private Signal Monotonicity For any signals spub, spriv ∈ (0, 1) and location ` ∈ [0, 1], there

are integrable functions µ ≤ µ : (0, 1)→ <+ such that the integral
∫ 1
θ=0 µ (θ) dθ is strictly

positive and for each θ ∈ (0, 1), the derivative
∂F(θ|spriv,spub,`)

∂spriv
exists and lies between

−µ (θ) and −µ (θ), inclusive.

Let η = E [θ|spub, `]
d
= η (spub|`) denote an agent’s expected type given her public signal

and location; let ν = η−1E [θ|spub, spriv, `]
d
= ν (spriv|spub, `) denote the proportional change in

this expectation that results from learning her local bank’s private signal.14 By the Law of

Iterated Expectations, E (ν|η, `) is identically equal to one.

Henceforth, we will work directly with η and ν, which we refer to respectively as the agent’s

credit score and private type. The following result states that (a) the credit score is strictly

increasing in the public signal and (b) conditional on the public signal, the private type is

strictly increasing in the private signal. Moreover, both rates of increase are bounded.

Lemma 2.1 The functions η (spub|`) and ν (spriv|spub, `) have slopes (with respect to spub and

spriv, respectively) that are strictly positive and finite.

Lemma 2.1 has the following useful implication. Let us say the pair (η, `) is feasible if

the location ` is in [0, 1] and the credit score η lies strictly between supspub η (spub|`) and

infspub η (spub|`). All feasible pairs have a finite, strictly positive probability density:

Lemma 2.2 The pair (η, `) is distributed according to a finite density g which is strictly positive

on the set of feasible pairs (η, `).

Let the distribution function of (η, `) be denoted G (η, ν). Let the conditional distribution

function of the private type ν given the credit score η and location ` be denoted H (ν|η, `).

14The symbol “
d
=” denotes a definition.
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With probability one, the support of H (·|η, `) has a finite supremum νη`.
15 We assume that

H is not too concave, and its concavity is nondecreasing in ν:

No Cream Skimming LetH ′ andH ′′ denote the first and second derivatives ofH (ν|η, `)with

respect to ν. For all feasible pairs (η, `) and for all ν in the interior of the support of

H (·|η, `), (a) these derivatives exist and (b) H ′′ν/H ′ is greater than −1 and is weakly

increasing in ν.

This property will imply that if bank a (for instance) lends to some agents with credit score

η in location ` in region B, then bank a prefers to charge an interest rate that is low enough

to deter bank b from lending to any agents in this group. Hence, in equilibrium bank b does

not “cream skim”: lend to agents with high private types ν but not to all agents. This fact

allows us to solve analytically for the interest rates that the banks charge for every credit score,

location, and region. It is consistent with the observation of Agarwal and Hauswald [1] that

internet lenders charge low rates partly in order to prevent cream skimming:

Arm’s-length debt is less readily available but carries lower rates because com-

petition among symmetrically informed banks, which rely on public information,

not only drive down its price but also restrict access to credit to minimize adverse

selection. (Agarwal and Hauswald [1, p. 2])

The following result shows that No Cream Skimming is equivalent to a particular assumption

on the primitives of the model.

Lemma 2.3 Let F ′ and F ′′ denote the first and second derivatives of F (spriv|spub, `) with

respect to spriv. Let ν ′ and ν ′′ denote the first and second derivatives of ν = ν (spriv|spub, `) with

respect to spriv. Assume these derivatives exist. Then No Cream Skimming holds if and only

if, for all spriv, spub, and `, F ′′

F ′ν′ −
ν′′ν
[ν′]2

is greater than −1 and is weakly increasing in spriv.

The following property states that for any given public signal, one can find private signals

that are strong enough that make an agent at least as appealing as any other agent. For

15Since θ ≤ 1, νη` is no greater than 1/η. Since θ > 0, η = E (θ|spub, `) is strictly positive for any spub that
occurs with positive probability. Hence, 1/η is finite with probability one, so νη` is as well.



34

instance, if an agent with several loan delinquencies (the public signal) has just inherited a

large enough sum of money (the private signal), a bank can ignore her weak credit history.

Limit Irrelevance For any public signal spub, location `, and ε > 0, there exists a private

signal spriv for which E [θ|spub, spriv, `] > 1− ε.

This will imply that a remote bank lends to applicants whose credit scores exceed a location-

dependent threshold.16 Indeed, Agarwal and Hauswald [1] find that the chance that a bank

will approve an online loan is increasing in both the applicant’s public credit quality and the

bank’s internal assessment, but the latter’s effect is very small. Limit Irrelevance permits the

depiction of our results using simple two-dimensional diagrams. We also consider what happens

in the absence of this assumption.

We now produce an example that satisfies all of the above assumptions. Suppose that spriv,

spub, and ` are independent and each is uniformly distributed on the unit interval.17 This

implies that F (spriv|spub, `) = spriv, so F ′′ = 0. Let the conditional distribution of θ given the

two signals and location be F (θ|spriv, spub, `) = θ
m

1−m where m = 1−(1− spriv) (1− spub). The

mean of this distribution, E (θ|spriv, spub, `), equals m. Hence,

ν (spriv|spub, `) =
E (θ|spriv, spub, `)

E (θ|spub, `)
=

1− (1− spriv) (1− spub)

1− 1−spub
2

,

so ν ′′ = 0 as well. No Cream Skimming then follows from Lemma 2.3. Limit Irrelevance holds

since limspriv→1E (θ|spriv, spub, `) = 1. Since θ
m
m−1 is strictly increasing in m, which is strictly

increasing in spriv, Private Signal Monotonicity holds. Public Signal Monotonicity holds since

F (θ|spub, `) =
∫ 1
spriv=0 F (θ|spriv, spub, `) dspriv.

2.2.1 Timing

We now describe each period in greater detail.

16Without Limit Irrelevance, a bank may offer loans in a given remote location to applicants with credit score
η′ but not to those whose credit scores are η′′ > η′.

17This refers to the closed unit interval in the case of ` and the open interval in the case of spriv and spub.
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2.2.1.1 Period 1: Lending Stage

In period 1, the banks offer loans first to remote agents and then to local agents. That is,

banks a and b first make simultaneous and public loan offers to agents who live in regions B

and A, respectively. These offers can depend on an agent’s credit score η and location `, which

are all the banks know. The banks then make simultaneous and public counter-offers to agents

who live in regions A and B, respectively. These offers can depend not only on η and `, but

also on an applicant’s private type ν and her offer (if any) from her remote bank. Each agent

then chooses which, if any, offer to accept. As the banks are perfect substitutes from an agent’s

point of view, an agent will choose the bank that offers her the lowest gross interest rate as

long as it does not exceed the project return ρ.

Let xBη` equal one if bank a chooses to compete for agents with credit score η in location `

in region R and zero otherwise. Let rBη` be the gross interest rate that bank a offers if xBη` = 1.

We assume this rate does not exceed the gross project return ρ, since offering a rate above ρ is

equivalent to not making an offer. If the agent did not receive an offer from bank a, then she

is willing to pay bank b her gross project return ρ. Thus, with the convention that rBη` equals ρ

whenever bank a does not compete, rBη` equals the willingness to pay of any agent. We assume

there is an infinitesimal chance that the secondary loan market will be disrupted, forcing the

bank to hold all of its loans to maturity. Since only bank b observes an agent’s private type ν,

this implies that a threshold strategy is optimal: bank b will bid rBη` (and win) as long as an

agent’s private type ν exceeds a threshold νBη` of bank b’s choosing. Otherwise, bank b will not

bid.

The banks swap roles with respect to agents who live in region A. Let xAη` equal one if

bank b chooses to compete for agents in region A with credit score η and location `, and zero

otherwise. Let rAη` ≤ ρ equal bank b’s bid in period 1 if xη` = 1; set rAη` = ρ otherwise. In

period 2, bank a responds by choosing thresholds νAη` such that it will lend an agent in region

A at interest rate rAη` if and only if the agent’s private type ν exceeds νAη`.

Let CBa and XB
a be the capital cost and realized value, respectively, of bank a’s loans to
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region B:

CBa =

∫ 1

`=0

∫ 1

η=0
xBη`H

(
νBη`|η, `

)
dG (η, `)

XB
a =

∫ 1

`=0

∫ 1

η=0
xBη`r

B
η`

[
ηLB`

∫ νBη`

ν=0
νdH (ν|η, `)

]
dG (η, `)

Thus, CBa is the integral, over all credit scores η and locations ` in region B in which the bank

competes (i.e., for which xBη` = 1), of the measure H
(
νBη`|η, `

)
of borrowers to whom bank

a lends. Likewise, XB
a is the integral, over all credit scores η and locations ` in region B in

which bank a competes, of the interest rate rBη` charged to these borrowers times their mean

probability of repayment (the expression in square brackets).

Likewise, let CAa and XA
a be the capital cost and realized value, respectively, of bank a’s

loans to region A:

CAa =

∫ 1

`=0

∫ 1

η=0

(
1−H

(
νAη`|η, `

))
dG (η, `)

XA
a =

∫ 1

`=0

∫ 1

η=0
rAη`

[
ηLA`

∫ νη`

ν=νAη`

νdH (ν|η, `)

]
dG (η, `)

The difference between CAa and CBa reflects the fact that bank a lends to borrowers in region

A whose private types exceed bank a’s minimum threshold νAη`, while it lends to borrowers

in region B if and only if (1) it chooses to compete for them (i.e., only if xBη` = 1) and (2)

their private types are below bank b’s minimum threshold νBη`. This also explains the difference

between XA
a and XB

a .

2.2.1.2 Period 2: Security Design Stage

In period 2, each bank designs one security. The number of shares of each security is

normalized to one. We describe this process from the point of view of bank a; bank b’s problem

is analogous. First, bank a decides what portion of the loans of each identifiable group of

borrowers to securitize: to include in the pool of assets that underlie its security. Bank a does

not know the private types of its borrowers in region B. Hence, for any given credit score η and

location `, it must securitize the same proportion of loans to each type ν ∈
[
0, νBη`

]
of borrower

in region B. Let this proportion be pBη`.
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As for region A, since a borrower’s private type ν is observed by bank a but not by the

market, bank a will securitize a loan if and only if the borrower’s private type ν is less than some

threshold νAη`, which must be at least as high as the minimum private type νAη` of borrowers

in region A to whom the bank lends. The realized value of bank a’s securitized loans is

Ya = Y A
a + Y B

a where

Y A
a =

∫ 1

`=0

∫ 1

η=0
rAη`

[
ηLA`

∫ νAη`

ν=νAη`

νdH (ν|η, `)

]
dG (η, `) (2.2)

is the realized value of the bank’s securitized local loans and

Y B
a =

∫ 1

`=0

∫ 1

η=0
pBη`x

B
η`r

B
η`

[
ηLB`

∫ νBη`

ν=0
νdH (ν|η, `)

]
dG (η, `) (2.3)

is the realized value of the bank’s securitized remote loans. One obtains Y A
a from XA

a by

replacing the supremum νη` of private types ν in XA
a with the upper bound νAη` on private

types ν who are securitized. Similarly, one obtains Y B
a from XB

a by multiplying the integrand

of the outer double integral in XB
a by the proportion pBη` of loans that are securitized.

After choosing which loans to securitize, each bank i = a, b chooses a function ϕi which

determines the ultimate payment per share made by the bank to a holder of its security as a

function of the realized loan repayments Yi of bank i’s securitized borrowers. We call ϕi (Yi)

the payout of the security. As in DeMarzo and Duffie [16], we assume that ϕi is a nondecreasing

function and that both the bank and the market have limited liability: ϕi (y) ∈ [0, y] for all

y ≥ 0.

There is symmetric information at the security design stage. Why? Let R (i) denote the

region in which bank i ∈ {a, b} is located. While the thresholds ν
R(i)
η` and ν

R(i)
η` are the private

information of bank i = a, b, the market can infer the values Y A
i and Y B

i of bank i’s securitized

local and remote loans that result from each pair of factor vectors
(
ζA, ζB

)
in the following way.

First, we assume the market observes the measure 1−H
(
ν
R(i)
η` |η, `

)
of bank i’s local borrowers

for each credit score η and location `, as well as the proportion
H
(
ν
R(i)
η` |η,`

)
−H

(
ν
R(i)
η` |η,`

)
1−H

(
ν
R(i)
η` |η,`

) of these

borrowers whom bank i securitizes. From these quantities, the market can infer the values

H
(
ν
R(i)
η` |η, `

)
and H

(
ν
R(i)
η` |η, `

)
of the distribution function H at the two thresholds. We also

assume that for each region R, the market observes the interest rates rRη`, the lending choices
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xRη`, and the remote securitization proportions pRη`. The market can then use equations (2.2)

and (2.3), or the corresponding equations for bank b, to compute Y A
i and Y B

i for any factor

vectors ζA and ζB.

2.2.1.3 Period 3: Signalling Stage

In period 3, the banks and investors first see a common public signal σ ∈ <M , with un-

conditional distribution function Ω. Each bank i then sees a private signal ui ∈ <N+ of its

local factor vector ζR(i) ∈ (0, 1)K . The local factor vector ζR(i) and the local signal ui are

drawn from a joint density γ
(
ζR(i), ui|σ

)
, which can depend on the public signal σ as indicated

by the notation. However, conditional on the public information σ,
(
ζA, ua

)
and

(
ζB, ub

)
are

independent: the realization of
(
ζA, ua

)
adds no information about the distribution of

(
ζB, ub

)
and vice-versa. This is a flexible yet tractable way to permit common or correlated shocks to

the two regions.

Let the distribution function of the private signal ui conditional on the public signal σ be

Ψ
(
ui|σ

)
. We assume that for all public signals σ, private signals ui close to the zero vector are

observed with strictly positive probability:

inf
{
ui ∈ <N+ : Ψ

(
ui|σ

)
> 0
}

= 0.

Let Γ
(
ζR(i)|ui, σ

)
be the conditional distribution of the factor vector ζR(i) given the private

signal ui and the public signal σ. A higher private signal ui raises this distribution in the sense of

first order stochastic dominance: if u′ ≥ u′′, then for all ζ, Γ (ζ|u′, σ) ≤ Γ (ζ|u′′, σ). This implies

that for any public signal σ, the worst news bank i can get about its security payout ϕi (Yi)

occurs when its private signal ui is zero. Finally, we assume that the conditional distribution

Γ
(
ζR(i)|ui, σ

)
is mutually absolutely continuous with respect to the signals

(
ui, σ

)
.18

The assumption that the density γ and distributions Ψ and Γ are region-independent is

for notational convenience. They could be replaced by γR, ΨR, and ΓR with no change in the

results, except for the proliferation of regional superscripts throughout the chapter.

18This means that the set of realizations of the factor vector ζR(i) that can occur with positive probability is
independent of the signals ui and σ.
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After seeing their signals, the banks choose quantities of their securities to sell. Bank i’s

quantity is denoted qi ∈ [0, 1]. The market (which also sees the public signal σ) uses Bayes’s rule

to assign a price pi = E [ϕi (Yi) |qa, qb, σ] to the security of bank i = a, b. This is a nonstandard

signalling game since the market rationally uses information about bank i’s quantity qi to infer

information about bank i’s signal ui, which may be relevant to the value of bank j’s security

(as it may include some loans to borrowers in bank i’s region).

2.2.1.4 Period 4: Settlement Stage

In period 4, each borrower repays her loan if and only if her project succeeds. These

repayments determine the value Yi of bank i’s loan portfolio. Bank i then pays the liquidating

dividend ϕi (Yi) to its investors. While periods 1 through 3 occur at the same point of real

time, there is a unit of delay between periods 3 and 4.

2.2.2 Payoffs

A borrower who pays interest rate r gets ρ − r if her project succeeds and zero otherwise.

The banks are liquidity constrained: the discount factor of security buyers, which we normalize

to one, exceeds the discount factor of the banks, which is denoted δ ∈ (0, 1).19 The two banks

have the same cost of capital, which is normalized to one. In particular, suppose a bank lends

c1 units of capital in period 1 to borrowers who later repay the bank c4 in period 4. Assume,

moreover, that investors pay the bank c3 in period 3 in return for a security that obligates the

bank to pay the investors c′4 in period 4. Then the payoff of investors in the bank’s security is

c′4 − c3, while the bank’s payoff equals c3 − c1 + δ (c4 − c′4): its securitization proceeds c3, less

its capital cost c1, plus its discounted loan repayments δc4, less its discounted payment δc′4 to

holders of its security. We assume the investors have at least 2ρ in capital to invest.20

19This assumption, common in the prior literature, is thought to capture the typical reason cited for why
banks sell loans: the availability of attractive alternative investments together with the existence of regulatory
capital ratios (e.g., Gorton and Haubrich [27§III.B]).

20Since each region has a unit measure of loan applicants, each with a project that returns ρ if it succeeds,
the securities of the two banks cannot be worth more than 2ρ to the market.
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2.2.3 Summary

We now briefly summarize the key features of the model. We focus on region B; analogous

choices are made simultaneously in region A with the banks’ roles swapped. Consider the group

of agents with a given credit score η and location `. In period 1, bank a either offers each such

agent a loan at the common interest rate rBη` ∈ [0, ρ] or refrains from competing (whence we set

rBη` = ρ). Bank b then lends, at the interest rate rBη`, to those agents in the group whose private

types exceed a threshold νBη` of bank b’s choosing. Agents with lower private types accept a’s

offer, if any.

In period 2, bank a chooses a proportion pBη` ∈ [0, 1] of its loans to the group to securitize.

Bank b securitizes its loans to group members whose private types fall below a threshold νBη` of

bank b’s choosing Each bank i also specifies a payout function ϕi.

In period 3, each bank i = a, b sees a signal ui of its local factor vector and then chooses

a quantity qi ∈ [0, 1] of shares to sell. The market rationally assigns a price pi to bank i’s

security using Bayes’s rule. In period 4, project returns are realized and successful borrowers

repay their loans. Each bank i then pays ϕi (Yi) per share to its security holders, where Yi

equals the repayments of bank i’s securitized loans.

2.3 Base Model: No Securitization

We first analyze a base model without securitization: banks must hold all of their loans to

maturity. Bank a’s payoff in the base model is simply its discounted loan repayments less its

cost of lent capital: δE
(
XA
a +XB

a

)
−CAa −CBa . Bank b’s payoff is analogous. In particular, if

a bank lends, at a gross interest rate r, to a borrower with credit score η and private type ν

living in location ` in region R ∈ {A,B}, its expected profit is δrηνE
(
LR`
)
− 1: the discounted

interest payment δr times the probability ηνE
(
LR`
)

of project success, less the unitary cost of

capital.

In the base model, banks lend only to local agents and extract the full surplus. This is due

to the winner’s curse: the banks have the same expected payoff from lending to a given agent,

but the agent’s local bank has superior information about this payoff. Since, by assumption,
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the local bank makes the second offer, it will slightly underbid the remote bank on profitable

loans but refrain from bidding on unprofitable ones. Knowing this, a bank will not make any

offers to agents who are not in its region.

Lemma 2.4 Without the option of securitization, each bank lends only to agents who reside in

its own region. Moreover, each borrower’s payoff is zero: the gross interest rate on every loan

equals the gross project return ρ. An agent gets a loan if and only if her discounted expected

gross project return, δρηνE
(
LR`
)
, exceeds the bank’s unitary cost of capital.

Without securitization, an agent gets a loan if and only her expected project return exceeds

a common threshold. Hence, the allocation of capital to projects is efficient: one agent receives

a loan while another does not if and only if the first has a higher expected project return

than the second. This efficiency property will not hold with securitization, since a bank may

prefer not to lend to a creditworthy agent whom it knows well. Intuitively, the bank’s private

information about this borrower’s repayment probability worsens the lemons problem the bank

faces in selling its security.

Our conclusion that all lending is local and the loan allocation is efficient relies on our

assumption that the remote bank makes the first offer, followed by the local bank. However,

Sharpe [58] obtains the same result with the reverse timing. He assumes that the remote

bank sees not the local bank’s offer but rather its offer function: the function from the local

bank’s signal to its interest rate. If, in addition, the remote bank has no private information

about the applicant, then the local bank always posts an offer function that is low enough to

make it unprofitable for the remote bank to compete because of a winner’s curse (Sharpe [58,

Proposition 2, p. 1078]).

2.4 Full Model

We now turn to the full model, with securitization. We first show that the signalling

subgame has a unique separating equilibrium. We then derive formulas for a bank’s benefit of

securitizing a given loan and of lending to a given borrower when securitization is an option.
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Finally, we show that any equilibrium of the full model must have a certain intuitive form. We

then turn to several computed examples.

2.4.0.1 The Signalling Subgame

Let φi
(
ui, uj , σ

)
= E

[
ϕi (Yi) |ui, uj , σ

]
be the expected payout of the security of bank

i ∈ {a, b}, conditional on the signals. (“j” refers to the other bank.) Let pi (qi, qj , σ) be the price

offered by the market per unit of bank i’s security as a function of the quantities of shares sold

by the two banks and the public signal. Bank i’s expected securitization profits πi
(
ui, qi, σ

)
,

conditional on its signal ui and quantity qi and the public signal σ equal the expectation (over

all opposing signal vectors uj) of bank i’s gross revenue qipi
(
qi, qj

(
uj
)
, σ
)

from selling qi units

of the security less its discounted expected payment to the buyers, δqiφi
(
ui, uj , σ

)
:

πi
(
ui, qi, σ

)
=

∫
uj∈<N+

(
qi
[
pi
(
qi, qj

(
uj
)
, σ
)
− δφi

(
ui, uj , σ

)])
dΨ
(
uj
)
.

Definition 2.5 A Bayes-Nash equilibrium of this game is a pair (qa, qb) of measurable quantity

functions and a pair (pa, pb) of measurable price functions such that:

1. for i = a, b, qi
(
ui, σ

)
∈ arg maxq π

i
(
ui, q, σ

)
almost surely;

2. for i = a, b, pi
(
qi
(
ui
)
, qj
(
uj
)
, σ
)

= E
[
φi
(
ui, uj , σ

)
|qi
(
ui
)
, qj
(
uj
)
, σ
]

almost surely;

The equilibrium is separating if, in addition,

3. for i = a, b, pi
(
qi
(
ui
)
, qj
(
uj
)
, σ
)

= φi
(
ui, uj , σ

)
almost surely.

We restrict to separating equilibria, which satisfy conditions 1 and 3 above. This restriction

uniquely determines the banks’ behavior and profits. Let πi
(
ui, σ

)
= πi

(
ui, qi

(
ui, σ

)
, σ
)

and φ̂i
(
ui, σ

)
=
∫
uj∈<N+

φi
(
ui, uj , σ

)
dΨ
(
uj |σ

)
be bank i’s securitization profits and expected

security payout, both conditioned only on bank i’s signal ui and the public signal σ. (In general,

πi
(
ui, σ

)
may depend on the equilibrium.) The following characterization extends the result

of DeMarzo and Duffie [16, eq. (4), p. 79, and Prop. 10, p. 88], which assumes a single bank,

to the case of two banks.21

21It is easy to see that this result generalizes to any finite number of banks.
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Lemma 2.6 The above double signalling game has a unique separating equilibrium. In it,

bank i’s expected securitization profits conditional on its signal ui and the public signal σ are

πi
(
ui, σ

)
= (1− δ) φ̂i (0, σ)

1
1−δ φ̂i

(
ui, σ

)− δ
1−δ . Moreover, each bank i’s optimal security design

is debt: ϕi (Yi) = min {mi, Yi} for some mi ∈ <+.

2.4.0.2 The Benefits of Securitization

Consider either bank i ∈ {a, b}. By Lemma 2.6, the realized payout of the bank’s security is

min {mi, Yi} where Yi = Y A
i +Y B

i is the realized value of bank i’s securitized loans and mi is the

face value (promised repayment) of the security. Consequently, the expected payout φ̂i
(
ui, σ

)
of bank i’s security given its signal ui and the public signal σ is E

[
min {mi, Yi} |ui, σ

]
. Bank

i’s expected payoff Πi is the discounted expected return of its loans, less its cost of lending,

plus its net securitization profits. By Lemma 2.6,

Πi = δE
(
XA
i +XB

i

)
− CAi − CBi + (1− δ)E

(
φ̂i (0, σ)

1
1−δ

φ̂i (ui, σ)
δ

1−δ

)

In order to understand bank i’s incentives to lend to a given agent, one must first consider

its benefit from securitizing the agent’s loan. To study this, we hold fixed the bank’s loan

portfolio, and consider the effect of adding a single infinitesimal loan to the bank’s security.

Suppose the recipient of this loan has credit score η and private type ν, and lives in location `

in region R ∈ {A,B}.22 Let r be the gross interest rate that she must pay if her project succeeds,

which occurs with probability ηνLR` . By Lemma 2.6, and the law of iterated expectations,

bank i’s expected securitization profits are (1− δ)E
[
E
(
φ̂i (0, σ)

1
1−δ φ̂i

(
ui, σ

)− δ
1−δ
∣∣∣σ)], where

the outer expectation is taken with respect to the public signal σ and the inner conditional

expectation is taken with respect to the private signal ui. The effect, on the bank’s profits Πi,

of adding the borrower to the bank’s security is thus

∆Πi = (1− δ)E

[
E

(
φ̂i (0, σ)

1
1−δ

φ̂i (ui, σ)
δ

1−δ

(
∆φ̂i (0, σ)

φ̂i (0, σ)
− δ

∆φ̂i
(
ui, σ

)
φ̂i (ui, σ)

)∣∣∣∣∣σ
)]

. (2.4)

where for any quantity Q, ∆Q denotes the change in Q that results from adding the loan.

22We assume that the market knows the private type ν since it can infer the set of private types that each
bank securitizes (p. 37).
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The terms ∆φ̂i (0, σ) and ∆φ̂i
(
ui, σ

)
measure the loan’s effect on the expected gross return

φ̂i
(
ui, σ

)
= E

[
min {mi, Yi} |ui, σ

]
of the security in two cases: when the bank’s private signal

is zero, and when it takes a generic value ui. In particular, by Lemma 2.6, adding the loan is

beneficial insofar as it raises the gross return of the security in the worst case, or lowers it in

the generic case. Since higher signals ui entail higher values of Yi in a first order stochastic

dominance sense, φ̂i (0, σ) cannot exceed φ̂i
(
ui, σ

)
. Thus, roughly speaking, loans that shrink

(raise) the gap between φ̂i
(
ui, σ

)
and φ̂i (0, σ) must raise (lower) the bank’s securitization

profits.

The term ∆φ̂i
(
ui, σ

)
= ∆E

[
min {mi, Yi}|ui, σ

]
measures the effect of the loan on the

bank’s expected payment to its security holders, conditional on the signals ui and σ. This effect

occurs entirely through the loan’s impact on the realized value Yi of the bank’s securitized loans.

First, the security defaults when its face value mi exceeds the value Yi of the underlying loans.

In this event, the loan raises the security payout by ∆Yi. Second, the loan lowers the chance of

default by raising the realized value of the loan portfolio Yi when this value lies slightly below

the face value of the security, mi. This effect is approximately equal to the product of two

terms: the loss mi − Yi from default and the probability that Yi is slightly below mi. Since

both terms are close to zero, this second effect is zero to first order. Hence, the only effect is

the first:

∆φ̂i
(
ui, σ

)
= E

[
1 (mi > Yi) ∆Yi|ui, σ

]
, (2.5)

where 1 (mi > Yi) equals one if mi > Yi (if the security defaults) and zero otherwise.

Finally, by (2.1), the increase in the value Yi of the underlying assets from adding the

borrower is a weighted sum of the macroeconomic factors ζRk that affect region R:

∆Yi = rηνLR` = rην

K∑
k=1

αRk`ζ
R
k . (2.6)

Substituting (2.5) and (2.6) into (2.4) and using Lemma 2.6, we find that the effect of securi-

tizing the additional borrower on the bank’s payoff is

∆Πi = rηνΩR
i`, (2.7)

where

ΩR
i` = E

(
ΩR
i` (σ)

)
, (2.8)
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ΩR
i` (σ) = E

[
πi
(
ui, σ

)
|σ
] K∑
k=1

αRk`
[
ΛR0
ik (σ)− δΛRik (σ)

]
,

ΛR0
ik (σ) = E

(
E
[
1 (mi > Yi) ζ

R
k

∣∣ui = 0;σ
]

φ̂i (0, σ)

∣∣∣∣∣σ
)

,

and

ΛRik (σ) = E

(
πi
(
ui, σ

)
E (πi (ui, σ)|σ)

E
[
1 (mi > Yi) ζ

R
k

∣∣ui, σ]
φ̂i (ui, σ)

∣∣∣∣∣σ
)
.

By (2.7), profits from securitizing the loan are the product of four terms. The first is the

gross interest rate r: ceteris paribus, it is more profitable to securitize loans that have a higher

face value. The second is η: it is more profitable to securitize the loans of borrowers with higher

credit scores. The third is ν: borrowers with high private types are also more profitable. The

final term is ΩR
i` which, by construction, must equal the change in securitization profits from

adding a loan for which the product rην of the first three terms equals one.

By (2.8), ΩR
i` is the expectation, over all public signals σ, of the change ΩR

i` (σ) in secu-

ritization profits from adding a loan for which the product rην = 1 and the public signal is

σ. ΩR
i` (σ), in turn, is the product of the bank’s conditional (on the public signal σ) expected

securitization profits E
[
πi
(
ui, σ

)
|σ
]

and the sum, over all factors k, of the borrower’s factor

loading αRk` times the scaled difference between two terms: ΛR0
ik (σ) and δΛRik (σ).

The term ΛR0
ik (σ) is the proportional increase in the lowest conditional expected security

payout, φ̂i (0, σ), that results from increasing the value Yi of the security’s underlying assets

by one dollar with probability ζRk .23 Thus,
∑K

k=1 α
R
k`Λ

R0
ik (σ) captures the additional loan’s

proportional effect on this worst-case security payout that is due to the loadings αRk` of the

borrower’s repayment probability on various macroeconomic factors ζRk . Likewise, ΛRik (σ) is a

weighted average over signal vectors ui of the proportional increase in the conditional expected

security payout φ̂i
(
ui, σ

)
that results from increasing the value Yi of the security’s underlying

assets by one dollar with probability ζRk . Thus,
∑K

k=1 α
R
k`Λ

R
ik (σ) captures the proportional

effect of the additional loan on this weighted average security payout that results from the

loadings of the borrower’s repayment probability on the various macroeconomic factors that

affect region R.

23In the numerator of ΛR0
ik (s), the default indicator variable 1 (mi > Yi) is present because the additional

borrower affects the security value only in the event of default.
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By Lemma 2.6, for any public signal σ, the bank’s securitization profits are increasing in

the expected security payoff conditional on the worst signal vector ui = 0 and decreasing in the

expected security payoff for a generic signal vector ui. For this reason, ΛR0
ik (σ) enters positively

in ΩR
i` (σ) while ΛRik (σ) enters negatively. The discount factor δ multiplying ΛRik (σ) captures

the bank’s preference for liquidity: the lower is δ, the stronger are the bank’s liquidity needs,

and thus the more likely it is that securitizing the additional loan will be worthwhile.

The above results allow us to derive a concise expression for the total expected gross return

to bank i ∈ {a, b} from lending to an agent with credit score η and private type ν who lives

in location ` in region R ∈ {A,B}, when securitization is an option. This expected return has

two parts. The first is the expected discounted loan repayment by the borrower, δrηνE
(
LR`
)
:

the discounted interest rate δr times the probability ηνE
(
LR`
)

that the loan will be repayed.

The second is the value of the bank’s option to securitize the loan. By (2.7), bank i earns an

additional rηνΩR
i` from securitizing the agent’s loan, which it will do if and only if ΩR

i` > 0. For

any real number c, let c+ denote the positive part of c: c+ = max {0, c}. The value of the

securitization option is rην
(
ΩR
i`

)+
, so the bank’s gross return from lending to the borrower is

rην
[
δE
(
LR`
)

+
(
ΩR
i`

)+]
. (2.9)

Bank i knows the private type ν of the borrower only if she lives in the bank’s home region.

This is a disadvantage of remote lending. However, there is also a potential advantage: the

bank does not have private information about remote shocks. Hence, it faces a lemons problem

in reselling local loans but not remote loans. In addition, the bank has a preference for liquidity:

δ < 1. For the last two reasons, it is always profitable to securitize a remote loan:

Lemma 2.7 Let i 6= j be the two banks. In any equilibrium, it is profitable for bank i to

securitize all of its remote loans: Ω
R(j)
i` > 0.

2.4.0.3 Main Results

We present results for region B. Identical results hold for region A upon replacing “a”

with “b” and vice versa. Let rB∗η` denote the deterring rate: the interest rate, offered by bank
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a, that makes bank b just willing not to lend to the agent with the highest private type (for

whom ν = νη`) among those with credit score η living in location ` in region B. By equation

(2.9), bank b’s gross expected return from lending to this borrower at the interest rate r is

rηνη`

[
δE
(
LB`
)

+
(
ΩB
b`

)+]
. Setting this equal to the bank’s unitary cost of capital and solving

for r, we obtain the deterring rate:

rB∗η` = (ηνη`)
−1
[
δE
(
LB`
)

+
(
ΩB
b`

)+]−1
> 0. (2.10)

Now consider the set of borrowers with credit score η in location ` in region B. No Cream

Skimming implies that if bank a competes for these borrowers, it prefers to lend to all of them:

to prevent bank b from skimming the best (highest-ν) borrowers in the group. This requires

bank a to bid an interest rate that is no higher than the deterring rate rB∗η` . In addition, bank

a cannot charge more than the gross project return ρ, which is the most any borrower will

pay. On the other hand, any interest rate below the lesser of ρ and rB∗η` permits bank a to

capture all of the borrowers in this group. Hence, if bank a competes for these borrowers, it

will offer the interest rate rBη` = min
{
ρ, rB∗η`

}
. By equation (2.9), Lemma 2.7, and the fact that

E (ν|η, `) = 1, bank a’s profits from lending a unit of capital to this group are

πBη` = min
{
ρ, rB∗η`

} [
δE
(
LB`
)

+ ΩB
a`

]
η − 1. (2.11)

Our first result, which does not assume Limit Irrelevance, is as follows.

Theorem 2.8 Consider the group of agents with credit score η in location ` in region B.

1. Suppose πBη` < 0. In this case,

(a) bank a does not compete for this group;

(b) if bank b’s estimate νη of an agent’s type θ exceeds
(
ρ
[
δE
(
LB`
)

+
(
ΩB
b`

)+])−1
, bank

b offers her a loan at an interest rate equal to the gross project return ρ, and the

agent accepts.24 Else bank b does not offer the agent a loan. Bank b securitizes all

borrowers in this group to whom it lends if ΩB
b` > 0 and none of them if ΩB

b` < 0.

24By definition, νη = E (θ|spriv, spub, `) (p. 32).
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2. Suppose πBη` > 0. In this case,

(a) bank a offers to lend to each agent in the group at the common interest rate rBη` =

min
{
ρ, rB∗η`

}
;

(b) bank b makes no offers to this group;

(c) all agents in the group accept bank a’s offer; and

(d) bank a securitizes all of them.

Consider the set of borrowers in a given location ` in region B. Theorem 2.8 characterizes

the outcome, in the loan market, of borrowers with a given credit score η in this set. It does not

show how this outcome varies by the credit score η. We now turn to this important question.

The key difficulty is that bank a’s profit πBη` from lending is not necessarily monotonic in the

agent’s credit score η. This profit is increasing in the deterring rate rB∗η` (equation (2.11)) which,

in turn, is decreasing in the supremum νη` of the agent’s possible private types ν (equation

(2.10)). However, we have not specified how the supremum νη` varies with the credit score η.

Limit Irrelevance pins this down in a particular way: νη` equals the inverse of the credit score

η.25 By (2.10), the deterring rate, which we now call simply rB∗` , is independent of the credit

score η:

rB∗` =
[
δE
(
LB`
)

+
(
ΩB
b`

)+]−1
. (2.12)

We now present our second result.

Theorem 2.9 Assume Limit Irrelevance. Define the threshold

ηB` =
1

min
{
ρ, rB∗`

} [
δE
(
LB`
)

+ ΩB
a`

] . (2.13)

1. If η < ηB` , then πBη` < 0: bank a does not compete for this group. If bank b’s estimate νη

of an agent’s type θ exceeds
(
ρ
[
δE
(
LB`
)

+
(
ΩB
b`

)+])−1
= rB∗` /ρ, bank b offers her a loan

at an interest rate equal to the gross project return ρ, and the agent accepts. Else bank b

does not offer the agent a loan. Bank b securitizes all borrowers in this group to whom it

lends if ΩB
b` > 0 and none of them if ΩB

b` < 0.

25This is because νη` = η−1 supspriv
E [θ|spub, spriv, `] = 1.
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2. If η > ηB` , then πBη` > 0: bank a offers all borrowers in this group the same interest rate

min
{
ρ, rB∗`

}
. Bank b does not compete and all agents accept bank a’s offer. Moreover,

bank a securitizes all loans to this group.

Proof: By Limit Irrelevance, νη` = 1/η, so rB∗η` = rB∗` . By equations (2.11) and (2.13),

πBη` = η/ηB` − 1. Hence, πBη` ≷ 0 as η ≷ ηB` . The rest follows from Theorem 2.8 and equation

(2.12). Q.E.D.

Under Limit Irrelevance, bank a lends to an agent in region B if and only if her credit score

η exceeds the location-dependent credit threshold ηB` . This threshold is decreasing in bank

a’s securitization profits, as captured by ΩB
a`, and weakly decreasing in bank b’s securitization

profits, as captured by
(
ΩB
b`

)+
. If bank a’s securitization profits are low relative to those of

bank b, it is harder for bank a to compete with bank b. Bank a responds by competing for

fewer borrowers in location `: it raises its threshold.26

By part 2 of Theorem 2.9 and equation (2.12)), if an agent’s credit score is above a’s

threshold, bank a offers the interest rate min

{
ρ,
[
δE
(
LB`
)

+
(
ΩB
b`

)+]−1
}

. This is weakly

decreasing in bank b’s securitization profits, as captured by
(
ΩB
b`

)+
.27 Intuitively, if bank b is

eager to securitize loans to the given location, then bank a must offer a low interest rate in

order to keep bank b out.

A key prediction of Theorem 2.9 is that a bank will use a credit score threshold in deciding

on remote loan applications. This feature survives a considerable weakening of Limit Irrele-

vance. As long as bank a’s profit πBη` equals zero at a unique value of η, a threshold policy

is optimal.28 By equations (2.10) and (2.11), a sufficient condition for this is that νη` - the

maximum proportional increase in the agent’s expected type θ that comes from learning her

private signal σpriv - be decreasing in η. This seems plausible; for instance, knowing that a loan

applicant comes from a good family would seem to raise her chances of repaying a loan by a

smaller proportion if her credit record is already quite strong.

26This occurs, in particular, if location ` in region B has low loadings on factors about which bank b will be
well informed when it decides how much of its security to sell.

27By part 2 of Theorem 2.9 and equation (2.12)), bank a offers the interest rate
28If it crosses zero, it must cross from below since πB0` = −1.
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2.5 Illustrations

We now discuss the implications of Theorem 2.9 for the effects of securitization, comparative

statics, and efficiency under Limit Irrelevance. We illustrate these results in a series of figures.

The figures - but not the discussion - rely on the following additional assumptions.

A1 Bank b would lend to some agents in the absence of securitization: its discounted return

δρE
(
LB`
)

from lending to the best agent (for whom ην = 1) exceeds the bank’s unitary

cost of capital. By equation (2.12), this implies that the deterring rate rB∗` is less than

the gross project return ρ, so bank a lends at the deterring rate. Hence, by equations

(2.12) and (2.13), bank a’s credit score threshold under securitization is

ηB` =
δE
(
LB`
)

+
(
ΩB
b`

)+
δE
(
LB`
)

+ ΩB
a`

. (2.14)

A2 Bank b benefits from securitization: ΩB
b` > 0.

A3 Bank a benefits more than bank b from securitization: ΩB
a` > ΩB

b`: Without this condition,

ηB` ≥ 1, so bank a will not lend in the location.

In Figure 2.1, each agent in the location corresponds to a point in the unit square.29 The

agent’s credit score η, which equals bank a’s estimate of her type θ, appears on the horizontal

axis. Bank b’s estimate ην of θ appears on the vertical axis.30 While bank a sees only an

agent’s horizontal coordinate, bank b sees both.

In the absence of securitization, agents in areas A0 and A3 borrow from bank b at the

interest rate ρ, while other agents do not get loans (Lemma 2.4). With securitization, agents

in areas A3 and A4 borrow from bank a at the deterring rate rB∗` < ρ, while those in areas A0

and A1 get loans from bank b at the interest rate ρ.

2.5.1 The Effects of Securitization

A comparison of Lemma 2.4 and Theorem 2.9 reveals the following effects of securitization,

which are discussed in section 2.1.
29The applicants are not uniformly distributed throughout the square.
30While the figure permits η and ην each to take any value in the unit interval, some of these values may have

zero probability.
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Figure 2.1 Effects of Securitization under Limit Irrelevance. A given location ` in region B is

depicted. The credit rating η appears on the horizontal axis while bank b’s estimate

ην of an applicant’s type θ is depicted on the vertical axis. The figure assumes that

δρE
(
SB`
)
> 1 and ΩB

a` > ΩB
b` > 0. Without securitization, applicants in regions A0

and A3 receive loans from bank b at the interest rate ρ. Those in regions A1, A2,

and A4 do not receive loans. With securitization, applicants in regions A3 and A4

receive loans from bank a at the interest rate rB∗η` < ρ. Applicants in regions A0

and A1 receive loans from bank b at the interest rate ρ, while applicants in region

A2 do not receive loans.
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1. Securitization Stimulates Lending. By connecting agents with liquid investors, se-

curitization expands the set of borrowers.31 In Figure 2.1, areas A1 and A4 are added.

2. Securitization Favors Remote Lending. Remote bank a lends to location ` only if

it can securitize its loans.

3. Remote Borrowers have Strong Observables but High Conditional Default

Rates. In Figure 2.1, the applicants who get remote loans are those whose credit scores

η exceed bank a’s threshold ηB` : they have strong observables. Now consider an otherwise

identical neighborhood `′ in which the bank a’s securitization profits ΩB
a`′ are higher than

in location `. This raises bank a’s threshold: ηB`′ > ηB` . The only applicants who are

affected are those whose credit scores η lie between the two thresholds. In location `,

these applicants all get remote loans. In location `′ they get local loans, but only if bank

b’s estimate ην of their type is at least
(
ρ
[
δE
(
LB`
)]

+
(
ΩB
b`

)+)−1
> 0. Thus, ceteris

paribus, a remote borrower with a given credit score η has an expected type ην that is

no higher, and sometimes strictly lower, than the expected type of a local borrower with

the same credit score.

4. Securitization Lets Borrowers with Strong Observables Get Cheap Remote

Loans. Securitization lowers the interest rate paid by agents with high credit scores

(above ηB` ) to min
{
ρ, rB∗`

}
while leaving unchanged the interest rate ρ paid by agents

with lower credit scores.

5. Securitization Raises Conditional and Unconditional Default Rates. Securitiza-

tion expands lending to a set of borrowers (in Figure 2.1, those in areas A1 and A4) whose

expected types ην are uniformly lower than those of agents who borrow without securiti-

zation (those in areas A0 and A3). This raises both conditional (on η) and unconditional

default rates.

6. Securitized Loans Have Higher Conditional Default Rates then Retained

Loans. For any given credit score η, securitized loans have higher mean default rates

31All effects described in sections 2.5.1 through 2.5.4 are intended in the weak sense: the set of borrowers
weakly increases, etc. In the figures, these effects are strict.
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than retained loans. More precisely, let us compare two locations ` and `′ in region B.

Assume bank b securitizes its loans to location `′ but not to location `: ΩB
b` < 0 < ΩB

b`′ . In

all other respects, the two locations are identical. The comparison is depicted in Figure

2.2. For credit scores below ηB` , retained loans consist of area A0 in location `, while

securitized loans consist of areas A0 and A1 in location `. For each credit score, the

securitized loans have a lower conditional expected type ην than the retained loans. For

credit scores above ηB` , all loans are securitized in both locations. Hence, for each credit

score η for which there are retained loans in one location and securitized loans in the

other, the latter group has a higher conditional default rate.

2.5.2 Higher Securitization Profits for the Local Bank

Suppose bank b’s securitization profits rise from ΩB
b` to Ω̃B

b`. Since it is now harder to deter

bank b from cream-skimming, bank a does so less often: it raises its credit score threshold from

ηB` to η̃B` =
δE(LB` )+(Ω̃Bb`)

+

δE(LB` )+ΩBa`
(equation (2.14)). Theorem 2.9 implies the following effects, which

are illustrated in Figure 2.3.

1. Relatively More Local Lending. Bank b lends more, while bank a lends less. In

Figure 2.3, Bank b picks up borrowers in areas A2 and A5. Bank a stops lending to areas

A4 through A6 and is left with only A7 and A8.

2. More Lending to Diamonds in the Rough. The set of borrowers grows to include

those with credit scores below a’s threshold ηB` , whose expected types lie between b’s

new and old thresholds. This is area A2 in Figure 2.3. They are diamonds in the rough:

while their credit scores lie below bank a’s threshold, their expected types are the highest

among those who previously did not borrow.

3. Welfare Transfer from Good to Great Borrowers (in terms of observables). As bank

a no longer competes for agents with credit scores between ηB` and η̃B` , their interest rate

rises from min
{
ρ, rB∗`

}
to ρ. However, those with scores above η̃B` see their interest rate

fall since the rate bank a must offer to deter bank b is now lower (equation (2.12)).
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Figure 2.2 Retained Loans Have Lower Expected Default Rates. Two locations ` and `′ in

region B are depicted. The credit rating η appears on the horizontal axis while

bank b’s estimate ην of an applicant’s type θ is depicted on the vertical axis.

The figure assumes that E
(
SB`
)

= E
(
SB`′
)
, δρE

(
SB`
)
> 1, ΩB

a` = ΩB
a`′ > 0, and

ΩB
b` < 0 < ΩB

b`′ . For credit scores below ηB` , retained loans consist of area A0 in

location `, while securitized loans consist of areas A0 and A1 in location `. For

credit scores above ηB` , all loans are securitized in both locations. Hence, for each

credit score η, retained loans (if there are any) have a higher expected type ην

than securitized loans.
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2.5.3 Higher Securitization Profits for the Remote Bank

Theorem 2.9 implies the following the effects of an increase in bank a’s securitization profits

from ΩB
a` to Ω̂B

a`. These are illustrated in Figure 2.4, where η̂B` denote bank a’s new, lower credit

score threshold.

1. Relatively More Remote Lending. Bank a lends more, while bank b lends less. In

Figure 2.4, a picks up borrowers in areas A3 through A5, while b stops lending to areas

A3 and A4 and is left with only A0 and A1.

2. Applicants with High Credit Scores Benefit from More Loans. The set of bor-

rowers grows to include those with credit scores between bank a’s old and new thresholds

(area A5 in the figure). Among agents who initially did not get loans, these borrowers

have the highest credit scores. These agents benefit since their interest rate, min
{
ρ, rB∗`

}
,

is lower than the project return ρ.

2.5.4 Efficiency Effects

We next turn to the efficiency effects of securitization. In order for loans to be allocated

efficiently within each location, a resident of location ` in region R must get a loan if and only

if her expected project return ρηνE
(
LR`
)

exceeds a location-specific threshold cR` . In order for

the allocation also to be efficient across locations and regions, this threshold must not depend

on the location ` or region R. This is true without securitization, where the threshold cR` equals

δ−1 (Lemma 2.4).

It is useful to restate the condition for within-location efficiency as follows: an agent gets

a loan if and only if her expected type ην exceeds some location-specific threshold c̃R` .32 This

holds without securitization, where only agents in areas A0 and A3 get loans. However, with

securitization it fails, since the threshold is zero if an agent’s credit score exceeds ηB` and

rB∗` /ρ > 0 otherwise.

This discussion reveals two types of inefficiencies that are caused by securitization.

32In particular, c̃R` equals cR`
[
ρE
(
SR`
)]−1

.
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1. Public Information Bias. Since bank a relies exclusively on public signals to screen

agents, there is an inefficient bias towards agents whose public information is strong. In

Figure 2.1, agents near the top of area A2, who are turned down by both banks, are of

higher quality than agents near the bottom of area A4, who get loans from bank a.

2. Securitization Profit Bias. Efficiency requires that a bank consider only an agent’s

creditworthiness. However, in equilibrium a bank also prefers agents who are more prof-

itable to securitize. For instance, we can reinterpret Figure 2.3 as comparing two locations

in region B, in which bank b’s securitization profits are ΩB
b` and the higher value Ω̃B

b`, re-

spectively. Agents in the top of A2 in the former location are turned down, while agents

in the bottom of the same area in the latter region receive funding. In Figure 2.4, agents

at the top of area A5 are turned down when bank a’s securitization profits are ΩB
a` while

agents at the bottom of the same area receive loans when these profits take the higher

value Ω̂B
a`. In both cases, efficiency requires the opposite.

2.6 Related Literature

While prior models have studied the interaction between a single bank’s securitization and

lending decisions, ours appears to be the first to study the effect of securitization on lending

competition. We now discuss the relations between our work and this prior research, as well as

related work on security design and on lending competition under adverse selection.

2.6.1 Lending with Securitization

Bubb and Kaufman [11] (BK) study a model with a single bank and a continuum of loan

applicants. The bank sees each applicant’s credit score. It can also engage in costly screening,

which reveals soft information about the applicant. Without securitization, the bank lends

to applicants with high scores and rejects those with weak ones. It screens applicants with

intermediate scores and lends to them if and only if their soft information is positive. BK

then introduce a monopsony loan buyer. The buyer commits to buying a smaller fraction of

loans to intermediate borrowers in order to ensure that the bank will still screen them. In
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contrast, our model has many small and unorganized security buyers, so such commitment is

impossible. Rather, a bank lends remotely in order to have less private information when it

issues its security. As a bank cannot discover a remote applicant’s soft information, remote

lending raises the default risk. In contrast, securitization does not raise defaults in BK.

Hartman-Glaser, Piskorski, and Tchistyi [29] study the optimal design of mortgage-backed

securities by a lender who can exert costly hidden effort to screen loan applicants. The model

takes place in continuous time. Loans default according to a Poisson process. The lender can

lower the arrival rate of defaults at a cost. The model is aspatial and features fixed loan terms

and a single bank. In contrast, ours is a spatial model with endogenous interest rates and two

competing banks. While they study moral hazard, our focus is adverse selection.

Heuson, Passmore, and Sparks [32] (HPS) study a model in which applicants have a con-

tinuum of publicly observable default probabilities. A bank chooses whether to lend to an

applicant and, if so, whether to securitize the loan. An investor then sets the minimum such

probability to accept a loan for securitization. In response, the bank retains the best loans, se-

curitizes intermediate loans, and doesn’t lend to the worst borrowers. This mirrors the behavior

of a bank towards its local applicants in our model. While HPS study the problem of a single

bank under symmetric information, we assume two banks who face asymmetric information at

both the lending and securitization stages.

Chemla and Hennessy [13] (CH) also study a model of lending with securitization. A bank

can exert costly effort to raise the chance that its loans will have a high return. There are three

types of investors. The first group are uninformed risk-averse hedgers for whom the bank’s

security is a utility-enhancing hedge against future endowment risk. CH offer the example of

future home buyers: when the economy booms, few borrowers default on their mortgages, so

the security has a high payoff; but the boom also raises house prices, so investors need more

money. The security thus hedges against housing market risk. There is also a wealthy, risk-

neutral speculator who sees a signal of the asset’s type and can exert costly effort to increase

the precision of this signal. Finally, there is a continuum of risk-neutral “market makers” with

deep pockets.

For some parameters, the model has a pooling equilibrium in which the bank always secu-
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ritizes all of its loans. It issues a senior tranche as well as an equity-like mezzanine tranche

that is attractive to the hedgers. The hedgers’ demand stimulates information acquisition by

the speculator, since he can profit from the hedgers’ ignorance. The resulting informed specu-

lation increases the correlation of the security price with its true value, which gives the bank

an ex ante incentive to screen. This incentive can actually be stronger than in the separating

equilibrium in which the bank issues more shares when quality is low. Thus, CH argue that

securitization without retention does not necessarily worsen the moral hazard problem, since

tranching can lead to informative prices that give the bank an incentive to screen.

Shleifer and Vishny [61] analyze a model in which banks have private information about

loan quality (which is either high or low) and must retain a fixed fraction of the loan if they

sell it. Loans are sold individually. Security prices are affected by investor sentiment. Since

they assume symmetric information with irrational investors, their model bears little relation

to ours.

2.6.2 Security Design

Our study is closely related to DeMarzo and Duffie [16] (DD). They study the problem of

a risk-neutral issuer who has a fixed portfolio of long term assets. The issuer designs a single

security, which consists of a portfolio of assets to securitize and a payoff function: a map from

the final value of this portfolio to the security’s payoff. The issuer then sees a private signal of

the portfolio’s value and chooses a proportion of the security to offer for sale to a continuum

of uninformed, risk-neutral investors who are more patient than the issuer. There is a unique

separating equilibrium. When the issuer’s signal is higher, it sells a lower proportion of the

security and the market responds with a higher price.

Signalling is costly since the issuer sells less of the security when the gains from trade are

greater. For this reason, the issuer’s goal at the design stage is to minimize the sensitivity of its

security’s payoff to its private information. DD show that within the class of monotone, limited-

liability securities, this sensitivity is minimized by debt.33 Intuitively, debt pays its fixed face

33A security is monotone and limit-liability if its payoff function ϕ : <+ → <+ is nondecreasing and satisfies
ϕ (y) ∈ [0, y] for each realization y of the final value of the portfolio of securitized assets.
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value when the value of its underlying portfolio exceeds this value. If the debt defaults, it pays

the value of its underlying portfolio, which is as close to its face value as limited liability will

allow. Hence, the payoff function of debt is as flat as possible within the class of monotone,

limited liability payoff functions.34

In DD, the issuer’s initial asset portfolio is taken as given. The theoretical contribution of

our study is to derive this portfolio as the endogenous result of lending competition. We assume

two regional banks who compete for borrowers. The outcome of this competition determines

each bank’s loan portfolio, which it then securitizes as in DD. Each bank has private information

about local applicants at the lending stage. This gives local banks an advantage in competing

for loans. Each bank also observes a private signal of its local macroeconomic conditions prior

to issuing its security. This creates a lemons problem that favors remote lending.

Since a bank’s security can contain a mixture of local and remote loans, a bank’s macroe-

conomic signal contains information about the value of the other bank’s security. Hence, the

quantity that a bank chooses to sell acts as a signal of the values of both banks’ securities.

Nevertheless, DD’s single-issuer result generalizes: there is a unique separating equilibrium, in

which each bank’s payoff is the same as in the single-issuer case. Moreover, each bank issues

debt. We use this result to derive rich implications for the composition of each bank’s loan

portfolio.

Like DD, we assume each bank issues at most one security. In contrast, DeMarzo [15] studies

the case of a risk-neutral issuer who designs one or more securities based on a finite, exogenous

set of assets. The issuer then sees signals of the final values of its assets and chooses how much

of each security to sell. DeMarzo shows that pooling the assets before designing the security

has a cost and a benefit for the issuer. The cost is information destruction: pooling prevents

the issuer from signalling positive information for some securities and negative information for

others. The benefit is diversification: if the assets’ final values conditional on the signals are not

perfectly correlated, then pooling them lowers the risk of security default. Whether pooling is

34Monotonicity is needed since the issuer’s signal is noisy. In particular, suppose the bank issues a security
that behaves like debt with one exception: its payoff falls slightly in particularly good states. Assume these
states have positive probability for intermediate signal values as well. Then this change might lead to a smaller
rise in the estimated security payoff as the issuer’s signal rises from low to intermediate values. Hence, this
security might be even less informationally sensitive than debt.
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optimal depends on whether the diversification benefit outweighs the information destruction

effect.

Permitting multiple securities would have two effects in our model. First, a bank’s profits

from securitizing its loans to a given location would depend on which of its various securities it

would optimally add the loans to. Second, in the issuance game between the two banks, each

bank would choose multiple quantities rather than a single quantity. It seems unlikely that

either of these changes would alter our basic results. For simplicity, therefore, we follow DD in

restricting each bank to a single security.

Another way banks generate multiple securities is to issue multiple tranches of a single loan

portfolio. A bank may also be able to delay designing its security until after it discovers its

private information. DeMarzo [15] shows that these practices are equivalent.35 While DD’s [16]

securitization profit function has a closed form solution, DeMarzo’s [15] profit function depends

on the solution to a differential equation. This makes it challenging to incorporate into our

setting. However, the two functions have some properties in common (DeMarzo [15, Lemmas

5 and 9]), so some of our findings might generalize. This might be an interesting question for

future research.

Adverse selection in security issuance was first analyzed by Myers and Majluf [49]. They

assume a firm must raise a fixed amount of capital and focus on equity issuance, while briefly

considering debt. Nachman and Noe [50] (NN) also assume a fixed amount of capital must

be raised but allow for a full set of securities. They give distributional conditions that are

sufficient for a firm to issue debt. In their work, the security is designed ex post, while DD

assume ex ante design. Axelson [2] reverses the usual informational assumptions: investors are

informed while the issuer is not. Like DD and NN, he finds that debt is optimal.

Biais and Mariotti [4] (BM) modify DD in two essential ways. They assume that security

buyers have market power and thus earn positive profits. Moreover, they use mechanism design

to analyze the optimal trading mechanism, while DD assume that it is a signalling game. BM

also find that the optimal security is debt. However, in BM’s optimal trading mechanism,

35More precisely, delaying security design until after the (one dimensional) information is revealed is equivalent
to issuing an unlimited number of tranches (each of which has a monotone payoff) before the information is
revealed.
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all issuer types sell 100% of their securities. This contrasts with DD, in which there is some

retention.

Boot and Thakor [6] analyze a model in which a firm has various assets that it wishes to

sell, and investors can exert costly effort to discover information about these assets’ values.

There are noise traders, so gathering information can be profitable. Splitting the firm’s assets

into two securities, one informationally sensitive and the other not, stimulates trade, which

gives investors an incentive to discover information about the assets’ values. This is profitable

for the issuer since it mitigates adverse selection. The results of Chemla and Hennessy [13],

discussed above, build on this insight.

Demange and Laroque [17] and Rahi [55] study models in which a risk-averse entrepreneur

with a noisy private signal of the value of his projects designs and sells securities. In these

papers, unlike DD and ours, the issuer decides how much to issue before observing her private

information. The private information only permits the issuer to earn trading profits afterwards.

2.6.3 Lending Competition with Adverse Selection

Our model is also related to prior research on lending competition with adverse selection

in the absence of securitization. Perhaps the closest is Hauswald and Marquez [30] (HM). HM

assume that a bank’s cost of gathering soft information is greater for more distant applicants.

This is also true in our model, where the cost is zero for local applicants and infinite for remote

ones. Because banks know more about local applicants, they lend at high interest rates to

quality local applicants and offer low interest rates to some remote applicants. In HM, the latter

effect occurs because other banks - fearing a winner’s curse less - compete more aggressively

for these remote applicants. In our model, it is because offering a lower interest rate prevents

cream-skimming by a remote applicant’s local bank. In both models, remote borrowers default

more since their lending banks have less information about their credit quality.

In an earlier model, Sharpe [58] assumes that a bank’s soft information arises endogenously

from its prior loans to applicants. Because of a winner’s curse, banks that lack this information

do not lend to mature applicants. Analogously, in our model all lending is local if banks cannot

securitize. Finally, in Broecker [8], each bank sees a noisy private signal of each loan applicant’s
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type. Since a bank attracts only those borrowers who are turned down by banks that offer lower

rates, a bank that charges a high rate tends to get low quality applicants. Similarly, remote

banks in our model charge low interest rates in order to avoid cream-skimming by better

informed local banks.

2.7 Conclusions

The model of DeMarzo and Duffie [16] assumes a single issuer who designs a single security.

The issuer then sees private information about this security’s value and chooses how much to

sell. In equilibrium, the issuer varies the amount that it sells in order to signal the security’s

value. This is costly for the issuer since it must sell less of the security when the gains from

trade are higher. In order to minimize these costs, the issuer designs a security that is not very

sensitive to its private information.

In DeMarzo and Duffie [16], the issuer’s initial portfolio of assets is exogenous. This is an

important limitation: in practice, a bank’s lending behavior may be influenced by its expected

profits from securitizing its resulting loan portfolio. We study this issue in a rich setting in

which regional banks first compete for borrowers and then design and issue securities based on

their resulting loan portfolios.

As in prior models, we find that securitization expands lending by connecting liquid investors

with loan applicants. However, we also find that securitization creates a bias towards remote

loans, which can be securitized without contributing to a bank’s lemons problem. Moreover,

since banks lack soft information about remote applicants, remote borrowers tend to have

stronger observables than local borrowers. In addition, banks must offer lower interest rates to

remote applicants in order to prevent cream skimming by the applicants’ local banks. Thus,

remote loans will have lower interest rates than local loans, and securitization strengthens the

negative relation between a borrower’s public information and the interest rates she pays.

Since banks lack soft information about remote applicants, they do not screen as well when

lending remotely. Hence securitization, which stimulates remote lending, raises borrowers’

conditional and unconditional default rates. Moreover, in cross section, securitized loans will

have higher default rates conditional on observables since banks lower lending standards more
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in local areas that are more profitable to securitize. As detailed in section 2.1, all of our

predictions are consistent with prior empirical research.

While securitization has the potential to raise social welfare by connecting liquid investors

with worthy loan applicants, this is tempered by two inefficiencies. The first is public informa-

tion bias: since the remote bank relies exclusively on observables, there is an inefficient bias

towards applicants with strong observables such as credit scores. This is inefficient as these

applicants are favored over creditworthy applicants with weak observables.

The second inefficiency is securitization profit bias. Efficiency requires that only the most

creditworthy applicants get loans. However, with securitization banks also prefer applicants

who enhance the value of their security. One reason can be that the bank is not well acquainted

with the applicant’s local macroeconomic environment. In this case, the applicant’s loan does

not add much to the lemons problem the bank will face in selling its security. Another is

that the applicant has a good chance of repaying her loan in bad macroeconomic states. By

raising the payout to investors when the security defaults, these borrowers raise the security’s

value, which translates into greater securitization profits. However, since all participants are

risk neutral, it is inefficient to favor these borrowers.
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Figure 2.3 Effect of Increase in Bank b’s Securitization Profits from ΩB
b` to Ω̃B

b`. The conditions

of Figure 2.1 are assumed to hold before and after the increase, which raises bank

a’s threshold from ηB` to η̃B` . Bank a, which initially lent to areas A4 through A8,

now only lends to areas A7 and A8 and charges a lower interest rate to this group.

Bank b adds areas A2, A4, and A5 to its initial borrower pool of A0 and A1.
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Figure 2.4 Effect of Increase in Bank a’s Securitization Profits from ΩB
a` to Ω̂B

a`. The conditions

of Figure 2.1 are assumed to hold before and after the increase, which lowers bank

a’s threshold from ηB` to η̂B` . Bank b ceases to lend to areas A3 and A4 and now

only lends to areas A0 and A1. Bank a adds areas A3 through A5, and A5 to its

initial borrower pool of A6 and A7. There is no change in the interest rates offered

by the two banks.
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CHAPTER 3. CREDIT TERMINATION AND TECHNOLOGY

BUBBLES

3.1 Introduction

This chapter studies the dynamic interaction between financial intermediaries (banks hence-

forth) and firms operated by entrepreneurs in a credit cycles model with technology shocks. In

this model, a technology shock creates a project with riskier output. The shock on the riskiness

of a project mimics a technological innovation. The new project arriving is more attractive to

entrepreneurs. But the riskiness of the new project is not observed by banks before lending.

After observing a higher default rate, banks deny future loans to entrepreneurs more often in

order to affect their choice of projects ex ante. The model is used to explain the boom-and-bust

of the investment mania in internet technologies, namely the dot-com bubble, in the late 1990s.

Technology shocks could worsen the entrepreneur’s incentive problem. More precisely, I as-

sume the set of feasible investment projects changes before and after a technological innovation.

Initially, each entrepreneur can invest in one of two projects: a “good” (or “poor”) project with

a high (respectively, low) expected output. As a standard assumption in a moral hazard model,

the entrepreneur needs to pay an additional cost if he chooses the good project. Incentive is

needed in order to entice him to invest in the good project. Then the technological innovation

gives rise to a third type of project (or a “new” project), which has the same mean output

as the poor project but a higher variance. Therefore, it is even more difficult to motivate an

entrepreneur to invest in the good project.

For example, before an innovation, suppose that an entrepreneur has two investment op-

portunities, either to produce food or a movie. Food production, the good project, has a high

expected output, while movie-production, the poor project, has a low expected output. Food



67

production is a boring investment to the entrepreneur, so an incentive is needed for him to

invest in this project instead of movie production. After a technology shock, the entrepreneur

has a new, even more glamorous option: to invest in a dot-com. This project has the same

mean output as movie production, but is even riskier.

Since this type of technology shocks is mean-preserving, there should be no fluctuations

without credit market frictions, and entrepreneurs will only choose the good project. But I

assume information asymmetry and banks offer loans conditional on their knowledge of the

state of the world. Initially, given the optimal loan contract, entrepreneurs should be indif-

ferent between the good and the poor project. Then, the technological innovation creates the

new project which is even riskier but more appealing to entrepreneurs (the residual claimant).

Biased investment in riskier new projects corresponds to technology bubbles. After knowing

that, banks would take actions in order to strengthen the incentive to choose the good project.

Banks will cut off the credit lines more often than before. There will be inefficient unem-

ployment of resources, which is essentially what happened at the end of the bubbles. Banks

will also transfer incentive rents to entrepreneurs which, due to the zero-profit condition for

banks, entail a lower market interest rate for depositors. This causes a decline in the supply of

deposits, so there are even fewer loans after the credit termination.

Taking the insight from dynamic contract theory, I assume that a bank, which cannot

directly observe an entrepreneur’s project choice, has two methods, each associated with a

different cost, to motivate the project choice: (i) by giving a (limited liability) rent to the

entrepreneur; or (ii) by cutting off the credit line when the entrepreneur defaults. In long-term

lending relationships, the distribution of credit histories or “financial capacity” (Gertler [25])

across firms will be an important determinant of aggregate economic activity. Due to low

output in the past, the entrepreneur’s continuation payoff is close to a threshold in which the

bank can no longer motivate him to choose a good project in the future. The credit termination

probability rises continuously from zero to one with the optimal rate determined by minimizing

the costs to induce the entrepreneur’s choice of project. But it also has some social costs, e.g.,

the economic activities are reduced sharply.

In traditional credit cycle models, shocks affect the mean output of project (e.g., Bernanke
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and Gertler [3]; Kiyotaki and Moore [39]). Differently in this model, banks cut off the credit lines

and restrict the flow of funds with some probability when the firms have a poor performance

in order to turn their attention back to the profitability of the projects. This will generate

fluctuations in an economy not only from shocks to the productivity, but also from technology

shocks to the variance of the output (the riskiness).

The chapter is structured as follows. I introduce the basic model in the next section. I

study the loan contracts and discuss an explicit solution for a special case with two projects

and two output levels in Section 3.3. I solve the equilibrium and discuss the comparative static

properties in Section 3.4. Finally, I discuss the dot-com bubble which should be considered as

one leading example of technology bubbles in the economy in Section 3.5.

3.2 The Model

Time is discrete and the horizon is infinite: t = 1, 2, . . .. The economy consists of a sequence

of generations, each lives two periods. A newborn agent either becomes an “entrepreneur” or

a “lender” with an exogenous probability η or respectively 1 − η. Since the number of births

and the number of deaths are equal in each period, the total measure of agents (entrepreneurs

and lenders) in this economy is invariant and normalized to one.

A lender is endowed with h > 0 units of labor time supplied inelastically in the first period

of her life. Each unit of labor time produces one unit of consumption good when she is young.

A lender cannot produce when she is old and she has no storage technology. However, she can

deposit her goods in a bank. A lender maximizes her life-time utility U
(
cyt , c

o
t+1

)
, where, for a

lender born at time t, cyt and cot+1 are the consumption when she is young and old.

In each period, an entrepreneur gets access to a set of projects M . For simplicity, suppose

that there are two types of projects in the set M ≡ {1, 2}. Each project produces a stochastic

output θ, which takes value from a set Θ ≡ {θ1, θ2} with θ1 < θ2, in each period of time. Given

a project m ∈ M , the output θ is distributed with a density πmi = Pθ (θi|m) for i = 1, 2 and

πm1 + πm2 = 1. Project 1 has a smaller probability of producing a high output θ2 than project

2, or 0 < π1
2 < π2

2 < 1. Denote ∆π = π2
2 − π1

2 the difference of producing a high output. I call

project 1 a “poor” project and project 2 a “good” project. Clearly, the distribution satisfies
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the monotone likelihood ratio property (MLRP).

Definition 3.1 The probability Pθ (θi|m), for m ∈ M , satisfies the MLRP: if m < m′, then

Pθ(θi|m)
Pθ(θi|m′) is non-increasing in θi.

Each project m ∈ M is carried out with two inputs: one unit of capital and an en-

trepreneurial cost. Entrepreneurs are risk-neutral. For an entrepreneur with a project m,

his period utility function at time t is additively separable between the consumption and the

entrepreneurial cost and takes the following form: H (ct|m) = ct − vm, where ct ≥ 0 denotes

the entrepreneur’s consumption and vm ≥ 0 measures the entrepreneurial cost for project m.

Normalize the entrepreneurial cost for the poor project to zero v1 = 0; and the cost for the

good project is v2 = v > 0. In addition, normalize the entrepreneur’s reservation utility to

zero in each period. Each entrepreneur is born with zero initial wealth. In order to finance his

project, the entrepreneur must borrow money from a bank in the credit market.

Banks arise as institutions of delegated monitoring (Diamond [20]). They gather deposits

from lenders and lend to entrepreneurs. While banks do not observe the entrepreneurs’ choice

of project, they observe the project’s output ex post. Since the output distribution depends on

the type of project, banks can infer entrepreneurs’ behavior from the realized output.

There exists a continuum of competitive small banks, each can issue one short-term contract,

and one monopoly bank that can issue both short-term and long-term contracts. The short-

term contract is standard and only lasts one period. On the other hand, if the long-term

contract is used, then, at the end of the first period, the bank have a choice to continue the

loan contract or to cut off the credit line and replace the entrepreneur with a new one. The

market shares for the small banks and the monopoly bank are 1 − α and α, respectively. In

addition, the share for the monopoly bank is small enough α < 1/2. Hence, after cutting off an

entrepreneur’s credit line, the monopoly bank is able to find a replacement without additional

cost. Each contract also specifies a payment plan conditional on the realized output in order

to motivate the entrepreneurs’ choice of project.

Finally, let θ
m

=
∑

i=1,2 π
m
i θi denote the expected output of project m ∈ M . Throughout

the chapter, I assume that it is never optimal to implement the poor project given a gross
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interest rate r paid to lenders.1 Precisely, the good project is socially efficient but the poor

project is not, θ
1
< r < θ

2 − (∆π)−1 π2
2v.

3.3 Supply and Demand of Loanable Funds

Terms of the loan contracts will be specified in this section. There are ongoing relationships

between entrepreneurs and banks. A bank with full bargaining power lends to an entrepreneur

and promises him a certain level of expected utility. At any given time t, the monopoly

bank offers a promised utility Xy
t to the young entrepreneurs, and Xo

t to the old to replace the

terminated entrepreneurs. After the monopoly bank’s offering, the small banks offer a promised

utility xyt to the young and xot to the old entrepreneurs.

3.3.1 Short-Term Loan Contract

Suppose a bank offers a short-term contract. Omit the time subscript without confusing.

The bank will, after announcing which project an entrepreneur should choose, specify a payment

plan {Bi}i=1,2, where Bi is the entrepreneur’s payment when the realized output is θi. Given

the payment plan, the entrepreneur’s payoff ci is θi −Bi. Both the bank and the entrepreneur

are protected by limited liability. That is, the entrepreneur shall not pay more than the realized

output Bi ≤ θi; and the bank’s liability is limited to its initial investment Bi ≥ 0. The latter

one simply makes the entrepreneur’s payoff ci be bounded above by θi.

Innes [35] has proved that, with the MLRP and a constraint that the payoff function is

non-decreasing in the output, the standard debt contract is optimal in a static model. So,

I shall also consider, in each period, the short-term optimal contract takes the form as the

standard debt contract: given the face value of the debt (or the gross interest rate charged by

the bank) R, the payment Bi = θi if θi < R and Bi = R if θi ≥ R.

Definition 3.2 A short-term loan contract is defined by {Bi}i=1,2 where, for any face value

R ≤ θ2, Bi = min {R, θi} for i = 1, 2.

1Although the gross interest rate r is endogenously determined by the supply and demand of loanable funds,
banks and lenders take it as given when they make decisions.



71

Now, let m ∈ M be the project suggested by the bank. Assume the bank promises the

entrepreneur x ∈ [0, w] to choose m. The promised utility x is greater than zero, otherwise the

entrepreneur can walk away; the upper bound w comes from the bank’s limited liability. The

bank’s expected profit from the short-term loan VS (x) is the expected payoff minus the gross

interest rate r,

VS (x) = max
{Bi}

∑
i=1,2

πmi (Bi − r) , (3.1)

subject to the individual rationality (IR) constraint (3.2) and the incentive compatibility (IC)

constraint (3.3),

(IR)
∑
i=1,2

πmi ci − vm = x, (3.2)

(IC) m ∈ arg max
m′∈M

∑
i=1,2

πm
′

i ci − vm′ . (3.3)

These two constraints in the incentive problem lead to a threshold utility w such that,

for any promised utility greater (or less) than the threshold, the good project is (or is not)

implementable.

Lemma 3.3 There is a threshold utility w = (∆π)−1 π1
2v such that:

1. for a given promised utility x ∈
(
w, π2

2θ2 − v
]
, the good project is implementable with the

optimal payment plan B∗1 = θ1 and B∗2 (x) = θ2 −
(
π2

2

)−1
(x+ v); and

2. for a given promised utility x ∈ [0, w), the poor project is implementable with the optimal

payment plan B∗1 = θ1 and B∗2 (x) = θ2 −
(
π1

2

)−1
x.

Substitute the optimal payment plans from Lemma 3.3 into (3.1). The bank’s profit per loan

is

VS(x) =

 θ
2 − v − r − x, if x ≥ w

θ
1 − r − x, if x < w

. (3.4)

3.3.2 Long-Term Loan Contract

Suppose a bank can offer a long-term contract. In general, the optimal contract may not

be standard debt contracts in a dynamic relationship. However, I restrict attention to those
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contracts which have a form similar to debt in each period since debt contracts are commonly

observed in practice. Following Stiglitz and Weiss [63], I characterize the long-term relationship

between the bank and the entrepreneur as a dynamic debt contract with termination.

Since it is optimal to set θ1 < R ≤ θ2, I claim that an entrepreneur defaults when the

realized output is θ1 and he cannot pay the face value of the debt. Define the payment status

as an indicator function ` (θi ≥ R), which is one if the entrepreneur pays the face value and

zero otherwise. Conditional on the payment status, the bank can choose the entrepreneur’s

credit record κ. Let the credit record κ take value from a set K ≡ {κ0, κ1}, where κ1 is for

lending and κ0 is for termination.

The credit termination condition is thus a distribution of credit record given the payment

status. Precisely, when the payment status in the first period is ` (θi ≥ R), the probability of

credit record κj is pij = Pκ (κj |` (θi ≥ R)). Since pi0 + pi1 = 1 for all i ∈ {1, 2}, to simplify the

notation, I shall write the probability of credit line termination pi0 as pi if the payment status

is ` (θi ≥ R). And define the credit line termination plan as {pi}i=1,2.

In the first period, the payment plan does not depend on the credit record which is deter-

mined by the bank at the end of the first period. Let Bi (and ci = θi−Bi) be the entrepreneur’s

first period payment (respectively, his payoff) when the realized output is θi in period one. For

any face value θ1 < R ≤ θ2 in the first period, I have Bi = min {R, θi} i = 1, 2. Following

Spear and Wang [62], I shall use the promised utility from the bank to the entrepreneur as the

state variable. At the end of period two, the bank will deliver the promised utility xij to the

entrepreneur conditional on the credit record κj when the realized output is θi in period one.

Definition 3.4 A long-term loan contract is defined by {pi, Bi, xij} when the first period output

is θi and the credit record is κj for i ∈ {1, 2} and j ∈ {0, 1}.

Given the suggested project is m, the following problem (3.5) determines the terms of

the optimal contract when the bank promises an expected utility exactly equal to X to the

entrepreneur at the first period of his life time. The bank’s profit per loan VL (X) from the long

run relationship is the expected profit from the first period plus that from the second period
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V (xij),

VL (X) = max
{pi,Bi,xij}

∑
i=1,2

πmi
∑
j=0,1

pij [(Bi − r) + V (xij)] , (3.5)

subject to the IR constraint (3.6) and the IC constraint (3.7):

(IR)
∑
i=1,2

πmi
∑
j=0,1

pij (ci + xij)− vm = X, (3.6)

(IC) m ∈ arg max
m′∈M

∑
i=1,2

πm
′

i

∑
j=0,1

pij (ci + xij)− vm′ . (3.7)

I shall solve the optimal long-run loan contract which implements the good project in both

periods. It is easy to see that, in the problem (3.5), once the promised utility X is given, the

terms of contract in the second period will not affect the first-period choice. So I can solve the

contract in the second period as a static loan contract.

First, let the bank’s value function in the second period be

V (x) = max {V0 (x) , V1 (x)} , (3.8)

where V1 (x) and V0 (x) are the bank’s value function conditional on the credit record κ1

(lending) and κ0 (termination), respectively. If the bank lends to the entrepreneur, the second-

period contract is equivalent to the static loan contract problem (3.1), V1 (x) = VS(x). If

the bank denies the future loan to the entrepreneur, it will pay the promised utility x to

the entrepreneur to end the relationship and look for a replacement in the market. From

the Lemma 3.3, to maximize the bank’s one-period profit, it promises at least w to the new

entrepreneur. Thus the expected profit is

V0 (x) = max
y
{VS (y) |y ≥ w} − x. (3.9)

The bank will find a replacement after it cuts off an entrepreneur’s credit line since there are

enough old entrepreneurs who have no investment histories and seek funding in the market.

From (3.4) and (3.9), the profit conditional on credit line termination is

V0 (x) = θ
2 − v − r − w − x. (3.10)

By (3.4), (3.8) and (3.10), the bank’s expected profit in the second period is

V (x) =

 θ
2 − v − r − x, if x > w

θ
2 − v − r − w − x, if x ≤ w

. (3.11)
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If x < w, termination dominates V1 (x) < V0 (x), but if x ≥ w, lending dominates V1 (x) >

V0 (x), respectively.

The following Proposition 3.5 from Spear and Wang [62] solves the optimal long-term loan

contract. They proved that when the agent’s promised utility is too low to support the desired

effort, termination occurs as an incentive device in an executive compensation model. The same

result holds here that credit line termination is a necessary punishing device if the contract

must make the entrepreneur sufficiently poor in the second period.

Proposition 3.5 The optimal long-term loan contract associated with a promise to deliver

expected utility equal to X ∈ [0, w] is:

1. if the first period output is low θ1, the bank cuts off the credit line with probability p∗1(X) =

min
{(

2− w−1X
)+
, 1
}

,2 and the loan plan is

{B∗1 , x∗10, x
∗
11} = {θ1, 0, w} ;

2. if the first period output is high θ2, the bank continues the credit line p∗2 = 0, and the loan

plan is

{B∗2 , x∗20, x
∗
21} ∈

 {B2, 0, x21} : B2 = R ∈ [θ1, θ2]

and x21 = R+X + (∆π)−1 (1− π1
2

)
v − θ2

 .

The bank’s optimal termination policy {p∗1 (X) , p∗2} in the terms of loan contract is summa-

rized in the Proposition 3.5. Intuitively, first, the bank will never terminate the entrepreneur’s

credit line if he has a high output. Second, when the entrepreneur’s output is low, the bank

will cut off the credit line if the cost of termination is not too high X ∈ [0, w]; the bank will cut

off the credit line with some positive probability if the termination cost is higher X ∈ [w, 2w];

and if it is too expensive to terminate X ∈ [2w,w], the bank will endure the relationship. In

other words, credit termination is a decreasing function of the entrepreneur’s initial promised

utility X.

2The function x+ ≡ max {x, 0}.
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3.3.3 Credit Market Equilibrium

I have shown that the optimal long-term loan contract is characterized by that the en-

trepreneur with bad outcome will potentially face credit line termination. Now I will define the

market equilibrium when banks are competing for both borrowers and depositors (lenders).

Following Stigliz and Weiss [63], I assume that the first period loans have seniority over the

later loans. That is, if the entrepreneur has outstanding obligations, he must repay them before

new loans from elsewhere are repaid. Hence, once the credit line is cut off, no banks will finance

the defaulting entrepreneur’s project. Due to the debt seniority assumption, any entrepreneur

who is involved in a long-term relationship cannot sign a new contract with other banks when

his credit is terminated. However, any entrepreneur who is in a short-term relationship can

sign a new contract with other banks that are looking for one-period investment in the second

period because his investment history is private information.

Whenever the bank promises Xo
t = xot = w = (∆π)−1 π1

2v, the old entrepreneur accepts

the contract. In the credit market, competition will bid up the promised utility so that small

banks have zero profit from the young entrepreneur VS (xyt ) = 0. Thus the promised utility by

small banks is xyt (r) = θ
2 − v − r. Recall the assumption r < θ

2 − (∆π)−1 π2
2v, which implies

w < xyt (r). So small banks have positive return from the old entrepreneur VS (xot ) > 0. In

order to have zero profit condition, I assume that, if they lend to the old entrepreneurs, the

small banks have a cost ζ = VS (xot ).
3

In equilibrium, the young entrepreneur should be indifferent between the short-term and

the long-term contracts. Assume that the old entrepreneur has a cost (1− ρ)w to search for a

bank and sign a new contract, where ρ ∈ (0, 1). The promised utility from the monopoly bank

should equal to the utility from the short-term loans Xy
t = xyt + ρw. For the long-term loan

contract, the promised utility is Xy
t (r) = θ

2 − v − r + ρw.

All entrepreneurs except those terminated require one unit of funds. To measure the demand

of investment funds, I can simply measure the entrepreneurs terminated in the second period.

Since the monopoly bank writes a large number of loan contracts with the entrepreneurs, the

3For example, due to the debt seniority, the entrepreneur who is involved in a long-term relationship and is
cut off credit lines may seek funding to pay the debt. The competitive small banks have to screen those firms.
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measure, by the law of large numbers, is the measure of entrepreneurs taking the long-term

contract 1
2αη, times the probability of termination π2

1p
∗
1 (Xy

t (r)), or

µ (r|w) =
1

2
αηπ2

1 min

{(
2− ρ− w−1

(
θ

2 − v − r
))+

, 1

}
. (3.12)

The measure µ (r|w) is weakly increasing in the threshold utility w.

Lenders’ consumption smoothing preference determines the supply of the loanable funds.

In each period t, taking the market gross interest rate rt as given, lenders solve the following

inter-temporal utility maximization problem,

U
(
cyt , c

o
t+1

)
= max

st
u (cyt ) + E

[
cot+1

]
,

subject to cyt + st = h and cot+1 = rtst. Here E [·] denotes the expectation. And st ∈ [0, h]

is the representative lender’s savings in the first period. The utility function u (·) takes the

usual concave form: u′ (·) > 0 and u′′ (·) < 0, where u′ (·) and u′′ (·) denote the first and second

order derivatives with respect to the consumption. Lenders are risk-neutral with respect to the

consumption when they are old, and the discount factor is one for simplicity. So lenders save

when they are young and consume the savings when they are old. Under the assumption that

an interior solution exists, 0 < st < h, the following first-order condition implicitly defines the

savings u′(h − st) = rt. From the first-order condition, I can also solve, in equilibrium, the

savings as a function of the market interest rate,

st = s (rt) = h−
(
u′
)−1

(rt) . (3.13)

Finally, to close the model, in equilibrium, the loanable funds market clearing condition

requires that the loans are equal to the savings. Intuitively, the young entrepreneurs are ex

ante identical and thus, without credit rationing, they will receive the bank loan. But the old

entrepreneurs may have different investment histories after signing the long-term contracts. If

the old entrepreneurs defaulted in the first period, their projects may be terminated at the

end of the first period. The total demand for investment funds is η − µ (rt|w) and the market

clearing condition is

1

2
(1− η) s (rt) = η − µ (rt|w) . (3.14)
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Definition 3.6 Given the termination policy {p∗i }i={1,2} from the banks’ optimal loan contracts

(Proposition 3.5), the credit market equilibrium is a pair of saving and gross interest rate

{s∗, r∗} solved from equations (3.12), (3.13) and (3.14).

3.4 Shocks and Technology Bubbles

In this section, I introduce a technology shock. The mania stage of a technology bubble

is on the off-equilibrium path where banks do not adjust loan contracts due to information

asymmetry. After more and more entrepreneurs default the loan repayment, banks will restrict

credit. That is, entrepreneurs with low output are terminated with a higher probability which

is related to the crash of a technology bubble.

3.4.1 Technology Shocks

The special feature of technology shocks is they will not change the productivity but the

riskiness of the economy. Importantly, I assume the state at time t is only known to the

entrepreneurs who operate the projects. Banks can infer the state at time t only from the

default rate of the economy at the beginning of time t+ 1. Let ωt, taking value from the finite

set Ω ≡ {ω1, ω2}, denote the state of the economy at time t. In both a normal state (ωt = ω1)

or a bubble state (ωt = ω2), the set of feasible investment projects is M{ωt}= {1, 2}. And

the project output takes value from {θ1 (ωt) , θ2 (ωt)} with distribution {πmi (ωt) , π
m
i (ωt)} for

m ∈M{ωt}.

Assume the good project is the same in both states. In the bubble state, project 1 is even

riskier. I call this project the “new” project. Specifically, assume the project 1 in both states

has the same salvage value after defaulting θ1 (ωt) = θ1 for ωt ∈ Ω, and the same expected

return ∑
i=1,2

π1
i (ω1) θi (ω1) =

∑
i=1,2

π1
i (ω2) θi (ω2) .

The expected output of the new project is mean preserving to the poor project. However, if the

entrepreneur chooses the new project, he has a lower probability π1
2 (ω2) < π1

2 (ω1) to produce

a even higher output θ2 (ω2) > θ2 (ω1) in the bubble state.
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Further, in order to be consistent with the information structure in the economy, I as-

sume banks do not know the state at time t from the realized output.4 To do this, I assume

banks cannot distinguish the good outcomes in the two states: θ2 (ω1) and θ2 (ω1). This is

a restrictive but reasonable assumption because, when the project succeeds, the debt is fully

repaid and banks get the same loan interest rate in both states ω1 and ω2. And, when the

entrepreneur defaults, the bank gets the same salvage value θ1 (ωt) = θ1 before and after the

the technology shock. However, when the entrepreneurs choose the new project in the bubble

state, the probability of default is higher than the probabilities when they choose the good

project π1
1 (ω2) > π2

1 (ω1), or the poor project π1
1 (ω2) > π1

1 (ω1) in the normal state. Therefore,

banks can infer the state by the default rate in the economy.

3.4.2 Technology Bubbles

Since the preference, average productivity, and population are identical in each period, the

mean preserving technology shocks will not produce fluctuations in the absence of credit market

frictions. However, with credit market frictions (moral hazard and limited liability), it is even

more difficult to induce the entrepreneur to choose the good project with the technology shocks.

A comparative static analysis shows how aggregate variables depend on the state. Fix,

initially, the economy in state ω1 with an equilibrium {s∗ (ω1) , r∗ (ω1)} until period t = T .

After the technology shock at t = T , the model economy changes to state ω2. Then in a later

period t′ ≥ T + 1, the banks infer the bubble from a high proportion of defaults, and they

restrict the credit to restore the new equilibrium {s∗ (ω2) , r∗ (ω2)}. By equations (3.12), (3.13)

and (3.14), I can solve equilibria in both states. I restrict on the case where

(2− ρ)−1
(
θ

2 − v − r
)
< w < (1− ρ)−1

(
θ

2 − v − r
)
.5

Proposition 3.7 gives the predictions of the model economy with the technology shock.

4Mirrlees [45] has shown that, if the support of distribution varies with different projects, the first-best can
be achieved when the support is observable.

5If w ≤ (2− ρ)−1
(
θ
2 − ψ − r

)
or w ≥ (1− ρ)−1

(
θ
2 − ψ − r

)
, then µ (x) equals 0 or 1

2
ηαπ2

1 respectively. In

these two scenarios, there is no change in the rate of credit termination. We rule out these two scenarios and
focus on the the more interesting case.
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Proposition 3.7 With the technology shock, the economy changes from state ω1 to state ω2.

The model predicts:

1. If the banks cannot response immediately to the technology shock, entrepreneurs will switch

to the glamorous new project.

2. After the shock is disclosed to banks, they restrict the credit to restore the good project.

But,

(a) there is an inefficient unemployment of resources after the shock; and

(b) the market interest rate and savings decrease, r∗ (ω2) < r∗ (ω1) and s∗ (ω2) < s∗ (ω1).

Intuitively, after the technology shock, the banks, due to the information structure, cannot

response to it immediately. However, the entrepreneurs observe it and choose the glamorous

new project since it is intrinsically appealing to them. I interpret that entrepreneurs switch to

the glamorous new project as a technology bubble which is on the off-equilibrium path. And

after the banks observe the high default rate and restrict the credit, the bubble bursts and

the good project is restored. In this model, firms are driven out of the credit market by the

increased rate of credit line termination. The market interest rate falls because, in order to

promise a higher utility to entrepreneurs, banks must lower the cost of the funds to keep a zero

profit given that entrepreneurs are ex ante identical.

3.5 Credit Termination and the Dot-Com Bubble - An Example

The dot-com bubble, covering roughly from 1998 to 2001, is one of the most biggest tech-

nology bubbles in terms of scope. During the booming period, although the U.S. stock market

measured by the S&P 500 index was in an up trend, the technology heavy NASDAQ Compos-

ite index was growing even faster. Previous literature focuses on the limits of arbitrage in the

stock market, e.g., the effect of short sale restriction (Ofek and Richardson [52]) and strategic

bubble riding of institutional investors (Brunnermeier and Nagel [9]).

This chapter studies the dot-com bubble from a different angle. Consistent with the model,

at the dot-com bubble period, the internet sector had nothing unusual that could explain
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Figure 3.1 Credit, Profit, and Default before and after the Dot-Com Bubble Period. Data

Source: Credit instruments are from Fed’s Flow of Funds (100 Billions $), and

corporate defaults are from Standard and Poor’s (Indexed, 1995=1).
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the booming. Economy-level and sector-level research on the relationship between technology

and productivity found little supporting evidence of productivity improvement (see Gordon

[28]). However, banks might misunderstand the new incremental technological changes due to

information asymmetry. Figure 3.1 records that, from 1998 to 2000, there was a large increase

in the firms’ net liabilities.

In the dot-com bubble period, entrepreneurs were attracted by online business ideas: online

stores, delivery services, banking, etc. In fact, there was no significant sign of profit increasing

during the dot-com bubble period (Figure 3.1). They took the risk and invested in the dot-com

sector because they might take all the shares of the market and gain profits if others defaulted.

Hence, they were looking for more funds to sustain these projects. The booming, peaked in

March 2000, lasted more than two years and made investors believe that it was a “new economy

paradigm”. Investors were convinced the productivity improvement in the future.

The default rate increased due to the higher proportion of low return (Figure 3.1). Bryn-

jolfeeon and Hitt [10] suggest a positive relationship between the information technology in-

vestment and productivity, but also a great deal of individual variation in firms’ success with

information technology. With the increasing default rate, banks realized the higher risk in the

dot-com sector. Hence the investment funds dried up. Observing this, investors reduced their

positions in technology stocks and the crash period followed.

3.6 Conclusion

Beliefs that some technological innovations (e.g., internal combustion engine, electric motor,

internet, green energy, etc.) change the productivity make the investors eager to catch up the

technological wave before they fully understand the innovations. Some of them did make

fundamental transformations in the economy, while others were just incremental technological

changes. In the latter case, investment manias may appear and cause inefficiency.

In this chapter, I argue that technology shocks may be amplified and thus lead to severe

economic fluctuations with credit market frictions. Bank loans are signals about where to

allocate the real resources in the economy. The misunderstanding of the investment opportunity

leads to a bubble because the stock market believes banks may have private good news about
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the new technology. The stock market may over-react to the signals. An interesting example

further supports the irrationality of investors is the overpricing of Palm-3Com discussed in

Lamont and Thaler [42].

I also study contingency loan contracts in which the bad outcome may lead to an end of

the lending relationships. Banks cannot observe the entrepreneurs’ investment behavior. So

credit termination is used as an incentive device to affect an entrepreneur’s choice of project

ex ante. Stiglitz and Weiss [63] pointed out “banks often deny future loans to defaulters rather

than raising the interest rate that a defaulter would have to pay”. This is connected to the

withdrawal of credit after the burst of the technology bubbles. Therefore, proper designs of

loan contracts and regulations are required to reduce the fluctuations and inefficiency.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 1

Proofs

Optimal Contracts

Proof of Lemma 1.1: First, conditional on the investment in period 1, the bank can choose

to monitor all borrowers or to monitor borrowers based on the first period outcome. If the

second period profit from the former method is less than that from the latter one,

δµh (pHR2 −D)− (µh + µl)m < δV 0
2 (R2;µ)− C (m,µ) , (A.1)

the bank will choose the latter one. The condition (A.1) is equivalent to

(µ̃h + µ̃l)m+ δµ̃l (pLR2 −D) > 0.

So when the monitoring cost is large enough m > m̂ ≡ δ (µ̃h + µ̃l)
−1 µ̃lD, it is more efficient to

monitor the borrowers based on the first period outcome.

Due to limited liability, the interest rate conditional on default is zero: R0∗
1 (0) = R0∗

2 (0) =

0. Any optimal contract
{
R0∗

1 , R
0∗
2

}
must satisfy the incentive compatibility (1.5) and the

individual rationality (1.4) constraints. The individual rationality constraint (1.4) is binding

to maximize the bank’s expected profit. Hence, I have

R2 = c1 −R1, where c1 ≡ 2θ − v0

pH
. (A.2)

That is, the bank must increase an equal unit of interest rate in period 2 to reduce the interest

rate in period 1.

To solve the bank’s problem and find the optimal contract, let us put (A.2) into the objective
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function (RL):

V 0
1 (R1;µ)− C (m,µ) + δV 0

2 (R2;µ)

= µhvH (R1) + µlvL (R1)− [µh (1− pH) + µl (1− pL)]m

+δ [µhvH (R2) + µ̃lvL (R2)]

= [µ̃h (1− δ) + µ̃l (1− δpL)]R1 + δ (µ̃h + µ̃lpL) c1

− [µh (1− pH) + µl (1− pL)]m− [µh + µl + δ (µh + µ̃l)]D.

The expected profit is thus the gain from loans minus the cost to monitor the borrowers and

the cost to collect funds. Since pL < 1 and δ < 1, I have

µ̃h (1− δ) + µ̃l (1− δpL) > 0.

Hence, it is optimal to set R0∗
1 = θ to maximize (RL). Thus I have R0∗

2 = θ−v0/pH from (A.2),

where R0∗
2 > 0 since v0 < p2

Hθ < pHθ.

Finally, I must check that the optimal contract
{
R0∗

1 , R
0∗
2

}
satisfies the incentive constraint

(1.5). This constraint, which holds as an inequality, gives us the following inequality between

R1 and R2:

R2 ≤ c2 −
pH − pL
pH − p2

L

R1, where c2 ≡
(

1 +
pH − pL
pH − p2

L

)
θ − b

pH − p2
L

. (A.3)

When the private benefit is not too large b ≤
(
p2
H − p2

L

)
v0/pH <

(
pH − p2

L

)
v0/pH , I have

R0∗
2 = θ − v0

pH
≤ θ − b(

pH − p2
L

) = c2 −
pH − pL
pH − p2

L

R0∗
1 .

Thus the optimal contract
{
R0∗

1 , R
0∗
2

}
satisfies the inequality (A.3). Q.E.D.

Proof of Lemma 1.2: The proof is similar to the previous Lemma 1.1. Due to limited liability,

the interest rate conditional on default is zero: R1∗
1 (0) = R1∗

2 (0) = 0. Any optimal contract{
R1∗

1 , R
1∗
2

}
must satisfy the incentive compatibility (1.9) and the individual rationality (1.8)

constraints. Moreover, the individual rationality constraint (1.8) is binding since the bank

wants to reduce the borrower’s payoff to maximize its expected profit. Hence, I have

R2 = c3 −
1

pH
R1, where c3 ≡

(
1 +

1

pH

)
θ − v0

p2
H

. (A.4)
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That is, in order to give the borrower the promised utility, the bank must increase 1/pH interest

rate in period 2 to reduce one unit of interest rate in period 1.

To solve the bank’s problem and give the optimal contract, let us put (A.4) into the objective

function (TL):

V 1
1 (R1;µ) + ρ (γ)V 1

2 (R2;µ)

= µhvH (R1) + µlvL (R1) + ρ (γ) [µ̃hvH (R2) + µ̃lvL (R2)]

=

[
µ̃h (1− ρ (γ)) + µ̃l

(
1− ρ (γ)

pL
pH

)]
R1

+ρ (γ) (µ̃hpH + µ̃lpL) c3 − [µh + µl + ρ (γ) (µ̃h + µ̃l)]D.

The expected profit is thus the gain from loans minus the cost of collecting funds. Since pH > pL

and ρ (γ) < 1, I have

µ̃h (1− ρ (γ)) + µ̃l

(
1− ρ (γ)

pL
pH

)
> 0.

Hence, it is optimal to set R1∗
1 = θ to maximize (TL). Thus I have R1∗

2 = θ−v0/p
2
H from (A.4).

Under the assumption on the promised utility v0 < p2
Hθ, I have R1∗

2 > 0 when R1∗
1 = θ.

Finally, I must check that the optimal contract
{
R1∗

1 , R
1∗
2

}
satisfies the incentive compat-

ibility constraint (1.9). This constraint, which holds as an inequality, gives us the following

inequality between R1 and R2:

R2 ≤ c4 −
1

pH + pL
R1, where c4 ≡

(
1 +

1

pH + pL

)
θ − b

p2
H − p2

L

. (A.5)

Under the assumption on the private benefit b ≤
(
p2
H − p2

L

)
v0/pH <

(
p2
H − p2

L

)
v0/p

2
H , I have

R1∗
2 = θ − v0

p2
H

≤ θ − b(
p2
H − p2

L

) = c4 −
1

pH + pL
R1∗

1 .

Thus the optimal contract
{
R1∗

1 , R
1∗
2

}
satisfies the inequality (A.5). Q.E.D.

Properties of the Profit Gain (B1-B3)

From equations (1.11) and (1.12), the bank’s profit from transactional lending is

U (1, λ, γ) = µhvH
(
R1∗

1

)
+ π1

l (λ) vL
(
R1∗

1

)
+ ρ (γ)

[
µ̃hvH

(
R1∗

2

)
+ π̃1

l (λ) vL
(
R1∗

2

)]
,



86

and the profit from relationship lending is

U (0, λ, γ) = µh
[
vH
(
R0∗

1

)
− (1− pH)m+ δvH

(
R0∗

2

)]
.

In addition, since the first period interest rates are the same R1∗
1 = R0∗

1 = θ, the first period

payoffs from the two technologies are the same vH
(
R1∗

1

)
= vH

(
R0∗

1

)
. Hence, the profit gain

ω (λ, γ) = U (1, λ, γ)− U (0, λ, γ) is

ω (λ, γ) = π1
l (λ) vL

(
R1∗

1

)
+ ρ (γ)

[
µ̃hvH

(
R1∗

2

)
+ π̃1

l (λ) vL
(
R1∗

2

)]
+µh

[
(1− pH)m− δvH

(
R0∗

2

)]
. (A.6)

First, given the definition of ρ (γ) in (1.6), the derivative of the profit gain (A.6) with respect

to the state of liquidity γ gives us

∂ω (λ, γ)

∂γ
=

 V 1
2

(
R1∗

2 ;π1 (λ)
)
, if γ ∈ (δ, 1)

0, otherwise
. (A.7)

I need to show the payoff in the second period is non-negative:

V 1
2

(
R1∗

2 ;π1 (λ)
)

= µ̃hvH
(
R1∗

2

)
+ π̃1

l (λ) vL
(
R1∗

2

)
≥ 0.

Since the measure of the type-l borrowers π̃1
l (λ) takes the maximum when the proportion λ is

0: π̃1
l (λ) = (λ`1 + `0)−1 µ̃l ≤ π̃1

l (0) = `−1
0 µ̃l and the payoff from the type-L project is negative

vL
(
R1∗

2

)
< 0, I have

µ̃hvH
(
R1∗

2

)
+ π̃1

l (λ) vL
(
R1∗

2

)
≥ µ̃hvH

(
R1∗

2

)
+ `−1

0 µ̃lvL
(
R1∗

2

)
.

Therefore, it is enough to show

0 < µ̃hvH
(
R1∗

2

)
+ `−1

0 µ̃lvL
(
R1∗

2

)
, or `1 <

V 1
2

(
R1∗

2 ;µ
)

µ̃hvH
(
R1∗

2

) . (A.8)

Since the payoffs from the type-L projects vL
(
R1∗

2

)
and vL

(
R1∗

1

)
are negative, the following

inequality holds

−δµ̃lvL
(
R1∗

2

)
− µlvL

(
R1∗

1

)
> 0,

which implies

(1− δ) µ̃hvH
(
R1∗

2

)
< (1− δ)V 1

2

(
R1∗

2 ;µ
)
−
[
µlvL

(
R1∗

1

)
+ µ̃lvL

(
R1∗

2

)]
,
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which further implies the following inequality

V 1
2

(
R1∗

2 ;µ
)

µ̃hvH
(
R1∗

2

) > (1− δ)V 1
2

(
R1∗

2 ;µ
)

(1− δ)V 1
2

(
R1∗

2 ;µ
)
−
[
µlvL

(
R1∗

1

)
+ µ̃lvL

(
R1∗

2

)] .
Moreover, by the definition (1.10), I have

̂̀
1 ≡

(1− δ)V 1
2

(
R1∗

2 ;µ
)

(1− δ)V 1
2

(
R1∗

2 ;µ
)
−
[
µlvL

(
R1∗

1

)
+ µ̃lvL

(
R1∗

2

)] .
Since I assume `1 ≤ ̂̀, the inequality (A.8) holds, hence the payoff in the second period is non-

negative. Therefore, the partial derivative is non-negative ∂ω (λ, γ) /∂γ ≥ 0 for all λ ∈ [0, 1].

This proves the state monotonicity (B1).

Second, take a derivative of the profit gain ω (λ, x) with respect to λ:

∂ω (λ, γ)

∂λ
= −

`1µlvL
(
R1∗

1

)
+ ρ (γ) `1µ̃lvL

(
R1∗

2

)
(λ`1 + `0)2 . (A.9)

Since both vL
(
R1∗

1

)
and vL

(
R1∗

2

)
are negative, the profit gain ω (λ, x) is increasing in the

proportion λ: ∂ω (λ, γ) /∂λ > 0 for any given state of liquidity γ ∈ R++. This proves the

strategic complementarities (B2).

Finally, I need to show the upper and lower dominance regions are feasible. Before that, I

need to check the interval (m,m) is non-empty. Recall the definition of the payoff

V 1
2

(
R1∗

2 ;π1 (0)
)

= µ̃hvH
(
R1∗

2

)
+ `−1

0 µ̃lvL
(
R1∗

2

)
= V 1

2

(
R1∗

2 ;µ
)

+ `−1
0 `1µ̃lvL

(
R1∗

2

)
.

Then, from the definition (1.10), I have the following equivalent inequalities

`1
`0

<
(1− δ)V 1

2

(
R1∗

2 ;µ
)

−µlvL
(
R1∗

1

)
− µ̃lvL

(
R1∗

2

)
⇐⇒ (1− δ)V 1

2

(
R1∗

2 ;µ
)
> −`−1

0 `1µlvL
(
R1∗

1

)
− `−1

0 `1µ̃lvL
(
R1∗

2

)
⇐⇒ −µlvL

(
R1∗

1

)
− δV 1

2

(
R1∗

2 ;µ
)
> −`−1

0 µlvL
(
R1∗

1

)
− V 1

2

(
R1∗

2 ;π1 (0)
)
.

Comparing with the definitions (1.14) and (1.15), I have the result (plus δµhvH
(
R0∗

2

)
and

divide by µh (1− pH)).

From strategic complementarities (B2), the profit gain is non-decreasing in the proportion

λ. When the proportion λ is 1, the profit gain takes the maximum: ω (1, γ) ≥ ω (λ, γ) for all
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λ ≤ 1. In addition, from equation (A.6), I have the following equation

ω (λ, γ)|λ=1,γ=δ =

 µlvL
(
R1∗

1

)
+ δV 1

2

(
R1∗

2 ;µ
)

+µh
[
(1− pH)m− δvH

(
R0∗

2

)]
 . (A.10)

Since the monitoring cost is low enough m < m, by the definition (1.15), I have

m <
δµhvH

(
R0∗

2

)
− µlvL

(
R1∗

1

)
− δV 1

2

(
R1∗

2 ;µ
)

µh (1− pH)
≡ m

⇐⇒ µlvL
(
R1∗

1

)
+ δV 1

2

(
R1∗

2 ;µ
)

+ µh
[
(1− pH)m− δvH

(
R0∗

2

)]
< 0.

Hence the profit gain is negative given the proportion λ = 1 and the state of liquidity γ = δ:

ω (λ, γ)|λ=1,γ=δ < 0. Then, there exists γ > δ such that ω
(
1, γ
)
< 0 since the profit gain

ω (λ, γ) is continuous. Hence, the profit gain is negative ω (1, γ) < 0 for all γ ∈
[
δ, γ
]

since

the profit gain is non-decreasing in γ by the state monotonicity (B1). So there exists a lower

dominance region
[
δ, γ
]

since ω (λ, γ) ≤ ω (1, γ) < 0. Thus the lower region exists.

Similarly, from the property (B2) again, when the proportion λ = 0, the profit gain takes

the minimum: ω (0, γ) ≤ ω (λ, γ) for all λ ≥ 0. In addition, from equation (A.6), I have the

following equation

ω (λ, γ)|λ=0,γ=1 =

 `−1
0 µlvL

(
R1∗

1

)
+ V 1

2

(
R1∗

2 ;π1 (0)
)

+µh
[
(1− pH)m− δvH

(
R0∗

2

)]
 . (A.11)

Since that the monitoring cost is large enough m > m, by the definition (1.14), I have

m >
δµhvH

(
R0∗

2

)
− `−1

0 µlvL
(
R1∗

1

)
− V 1

2

(
R1∗

2 ;π1 (0)
)

µh (1− pH)
≡ m

⇐⇒ `−1
0 µlvL

(
R1∗

1

)
+ V 1

2

(
R1∗

2 ;π1 (0)
)

+ µh
[
(1− pH)m− δvH

(
R0∗

2

)]
> 0.

Hence the profit gain is positive given the proportion λ = 0 and the state of liquidity γ = 1:

ω (λ, γ)|λ=0,γ=1 > 0. Then, there exists γ < 1 such that ω (0, γ) > 0 since the profit gain

ω (λ, γ) is continuous. Hence, I have the profit gain ω (0, γ) > 0 for all γ ∈ [γ, 1] since the profit

gain is non-decreasing in γ by the state monotonicity (B1). So there exists an upper dominance

region [γ, 1] since ω (λ, γ) ≥ ω (0, γ) > 0. Thus the upper region exists.

Unique Equilibrium

Proof of Theorem 1.5: Consider the bank that saw a private signal x. By Bayes’s Rule,

its posterior probability P σ (γ|x) over the state of liquidity γ at any point γ0 is proportional
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to the product of the density of private signal x conditional on γ0 and the prior density of the

state of liquidity γ at the point γ0:

P σ (γ0|x) =
φ
(

1
σ ln (x/γ0)

)
f (γ0)∫∞

γ=0 φ
(

1
σ ln (x/γ)

)
f (γ) dγ

. (A.12)

Hence, the expected profit gain for the bank that has observed a signal x and knows that all

other banks will offer relationship lending if they observe signals less than y is

ωσ (x, y) ≡
∫ ∞
γ=0

ω (λ, γ)P σ (γ|x) dγ (A.13)

=

∫∞
γ=0 ω

(
1− Φ

(
1
σ ln (y/γ)

)
, γ
)
φ
(

1
σ ln (x/γ)

)
f (γ) dγ∫∞

γ=0 φ
(

1
σ ln (x/γ)

)
f (γ) dγ

.

Moreover, from the definition (A.13), the expected profit gain ωσ (x, y) is continuous in x and

y, increasing in x and decreasing in y.

First, I want to show there must exist σ1 > 0 such that the expected profit gain is negative

ωσ (x, y) < 0 for all σ ≤ σ1, x ≤ x1 and y ≥ 0. By the existence of dominance regions (B3),

I can choose x1 < γ and a continuously differentiable function ω : R++ → R with ω′ (γ) = 0

and ω (γ) = −ε for all γ ≤ x1 such that

ω (λ, γ) ≤ ω (γ) ≤ −ε,

for any proportion λ ∈ [0, 1] and state of liquidity γ ≥ 0. Let ωσ (x) be the upper bound on

the expected profit gain ωσ (x, y) for all y ≥ 0:

ωσ (x) ≡
∫ ∞
γ=0

ω (γ)P σ (γ|x) dγ =

∫∞
γ=0 ω (γ)φ

(
1
σ ln (x/γ)

)
f (γ) dγ∫∞

γ=0 φ
(

1
σ ln (x/γ)

)
f (γ) dγ

.

By changing variable ln z = 1
σ ln (x/γ) (or γ = x/zσ), I have

ωσ (x) =

∫∞
ln z=−∞ ω (x/zσ)φ (ln z) f (x/zσ) z−σd ln z∫∞

ln z=−∞ φ (ln z) f (x/zσ) z−σd ln z
. (A.14)

Obviously, from (A.14), ωσ (x) is continuous in σ, and

dωσ (x)

dσ

∣∣∣∣
σ=0

=

∫∞
ln z=−∞

[
ω′(x/zσ) x

zσ
[− ln z]φ(ln z)f(x/zσ)z−σ+ω(x/zσ)

d[φ(ln z)f(x/zσ)z−σ]
dσ

]
d ln z∫∞

ln z=−∞ φ(ln z)f(x/zσ)z−σd ln z

−
[
∫∞
ln z=−∞ ω(x/zσ)φ(ln z)f(x/zσ)z−σd ln z]

[∫∞
ln z=−∞

d[φ(ln z)f(x/zσ)z−σ]
dσ

d ln z

]
[
∫∞
ln z=−∞ φ(ln z)f(x/zσ)z−σd ln z]

2

∣∣∣∣∣∣∣∣∣∣∣
σ=0

=

[
x

∫ ∞
ln z=−∞

[− ln z]φ (ln z) d ln z

]
ω′ (x) = 0,
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also ω0 (x) = ω (x) so ω0 (x) = −ε for all x ≤ x1. The argument shows that there must exist

σ1 > 0 such that ωσ (x) < 0 for all σ ≤ σ1, x ≤ x1 and y ≥ 0. Therefore, the expected

profit gain ωσ (x, y) is negative since ωσ (x) is the upper bound on ωσ (x, y). By a symmetric

argument, there exists σ1 > 0 such that the expected profit gain is positive ωσ (x, y) > 0 for all

σ ≤ σ1, x ≥ x1 and y ≥ 0.

Second, a strategy survives n rounds of iterated deletion of dominated strategies if and only

if

s (x) =

 1, if x > xn

0, if x < xn

,

where x0 = +∞ and x0 = 0. In addition, xn and xn are defined by

xn = max {x : ωσ (x, xn−1) = 0} ,

xn = min
{
x : ωσ

(
x, xn−1

)
= 0
}
.

If transactional lending (action 1) were to be a best response to a strategy surviving n rounds

of iterated deletion of dominated strategies, it must be a best response to the strategy with

threshold xn. That is, xn+1 is defined to be the lowest signal where this occurs. Similarly,

if relationship lending (action 0) were to be a best response to a strategy surviving n rounds

of iterated deletion of dominated strategies, it must be a best response to the strategy with

threshold xn. That is, xn+1 is defined to be the highest signal where this occurs. By strategic

complementarities (B2), xn and xn are decreasing and increasing sequences, respectively. Thus

xn → x and xn → x as n → ∞. The continuity of the expected profit gain ωσ (x, y) and the

construction of x and x imply that ωσ (x, x) = 0 and ωσ (x, x) = 0.

Finally, I want to show there is unique x = x∗ such that ω∗σ (x, x) ≡ ωσ (x∗, x∗) = 0. Let

Ψσ (λ|x, y) be the probability that the bank, that has observed signal x, assigns to proportion

less than or equal to λ of the other banks observing a signal greater than or equal to y. Given

the posterior (A.12), I have

Ψσ (λ|x, y) =

∫ y exp(−σΦ−1(1−λ))

γ=0
P σ (γ|x) dγ (A.15)

=

∫ y exp(−σΦ−1(1−λ))
γ=0 φ

(
1
σ ln (x/γ)

)
f (γ) dγ∫∞

γ=0 φ
(

1
σ ln (x/γ)

)
f (γ) dγ

.
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Thus the equation (A.13) can be written as

ωσ (x, y) =

∫ 1

λ=0
ω
(
λ, y exp

(
−σΦ−1 (1− λ)

))
Ψσ (dλ|x, y) . (A.16)

Again, by changing variable ln z = 1
σ ln (x/γ), the equation (A.15) can be written as

Ψσ (λ|x, y) =

∫∞
ln z= 1

σ
ln(x/y)+Φ−1(1−λ) φ (ln z) f (x/zσ) z−σd ln z∫∞

ln z=−∞ φ (ln z) f (x/zσ) z−σd ln z
.

For small σ, the shape of the prior will not matter and the posterior beliefs over the proportion

λ will depend only on 1
σ ln (x/y). Setting k = 1

σ ln (x/y), I have

lim
σ→0

Ψσ (λ|x, y) =

∫ ∞
ln z=k+Φ−1(1−λ)

φ (ln z) d ln z = 1− Φ
(
k + Φ−1 (1− λ)

)
.

Now, if x = y, then this becomes an identity function,

lim
σ→0

Ψσ (λ|x, x) = λ, (A.17)

It is the cumulative distribution function of the uniform density.

From equations (A.16) and (A.17), banks take the Laplacian action: Relationship lending

(action 0) is the chosen action at x if

lim
σ→0

∫ 1

λ=0
ω (λ, γ) Ψσ (dλ|x, x) =

∫ 1

λ=0
ω (λ, x) dλ < 0,

and transactional lending (action 1) is the chosen action if the opposite holds. By state mono-

tonicity (B1), the threshold x = x∗ is unique and will be solved from equation (1.18). Q.E.D.
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 2

Proofs

Proof of Lemma 2.1: Let η` = supspub η (spub|`), and η
`

= infspub η (spub|`). In addition, let

νspub,` = infspriv ν (spriv|spub, `), and νspub,` = supspriv ν (spriv|spub, `). Integrating by parts,

η (spub|`) =

∫
θ
θdF (θ|spub, `) =

−
∫
θ
θd (1− F (θ|spub, `)) =

∫
θ

(1− F (θ|spub, `)) dθ.

Hence, ∂
∂spub

η (spub|`) equals −
∫
θ

∂F(θ|spub,`)
∂spub

dθ which, by Public Signal Monotonicity, exists

and lies in
[∫
θ λ (θ) dθ,

∫
θ λ (θ) dθ

]
. In addition,

E (θ|spriv, spub, `) =

∫
θ
θdF (θ|spriv, spub, `) =

−
∫
θ
θd (1− F (θ|spriv, spub, `)) =

∫
θ

(1− F (θ|spriv, spub, `)) dθ.

Thus, ∂
∂spriv

E (θ|spriv, spub, `) = −
∫
θ

∂F(θ|spriv,spub,`)
∂spriv

dθ which, by Private Signal Monotonicity,

exists and lies in
[∫
θ µ (θ) dθ,

∫
θ µ (θ) dθ

]
. Since η ∈ (0, 1), the slope of ν (spriv|spub, `) lies in

<++. Q.E.D.

Proof of Lemma 2.2: The proof of Lemma 2.1 implies that (a) η (spub|`) has a differentiable

inverse function spub (η|`) of η, which is a bijection from
(
η
`
, η`

)
⊂ [0, 1] to (0, 1) whose slope

lies in <++ and (b) ν (spriv|spub, `) has a differentiable inverse function spriv (ν|spub, `) of ν,

which is a bijection from
(
νspub,`, νspub,`

)
⊂
[
0, η (spub|`)−1

]
to (0, 1) whose slope lies in <++.

We now extend the function spub (η|`) to all pairs (η, `) in (0, 1)× [0, 1] by defining it as one if

η > supspub η (spub|`) and zero if η < infspub η (spub|`). By Lemma 2.1,

G (η0, `0) = Pr (spub < spub (η0|`) and ` ≤ `0) =

∫ `0

`=0

∫ spub(η0|`)

spub=−∞
f (spub, `) dspubd`.
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Hence, g (η0, `0) = ∂2G(η0,`0)
∂η0∂`0

= f (spub (η0|`0) , `0)
∂spub(η0|`0)

∂η0
where f (spub (η0|`0) , `0) denotes

the marginal density f (spub, `) evaluated at (spub (η0|`0) , `0). Since (η0, `0) is feasible, we have

the following infspub η (spub|`0) < η0 < supspub η (spub|`0), whence spub (η0|`0) lies in (0, 1) by

Lemma 2.1. Thus, f (spub (η0|`0) , `0) ∈ <++ by assumption. Lemma 2.1 implies further that

∂spub(η0|`0)
∂η0

∈ <++. Thus, g (η0, `0) ∈ <++ as claimed. Q.E.D.

Proof of Lemma 2.3: First,

H (ν0|η0, `0) = Pr (ν (spriv|spub, `) ≤ ν0|spub = spub (η0|`0) , ` = `0)

= Pr (spriv ≤ spriv (ν0|spub, `) |spub = spub (η0|`0) , ` = `0)

= F (spriv (ν0|spub, `) |spub (η0|`0) , `0) .

Hence,

H (ν|η, `) = F (spriv (ν|spub, `) |spub (η|`) , `) ,

H ′ (ν|η, `) = F ′ (spriv (ν|spub, `) |spub (η|`) , `) s′priv (ν|spub, `) , and

H ′′ (ν|η, `) = F ′′ (spriv (ν|spub, `) |spub (η|`) , `)
[
s′priv (ν|spub, `)

]2
+F ′ (spriv (ν|spub, `) |spub (η|`) , `) s′′priv (ν|spub, `) .

Differentiating the identity ν (spriv (ν|spub, `) |spub, `) = ν with respect to ν,

1 = ν ′ (spriv (ν|spub, `) |spub, `) s
′
priv (ν|spub, `) and

0 = ν ′ (spriv (ν|spub, `) |spub, `) s
′′
priv (ν|spub, `)

+ν ′′ (spriv (ν|spub, `) |spub, `)
[
s′priv (ν|spub, `)

]2
so that

s′priv (ν|spub, `) =
[
ν ′ (spriv (ν|spub, `) |spub, `)

]−1
=
[
ν ′ (spriv|spub, `)

]−1
and

s′′priv (ν|spub, `) = −
ν ′′ (spriv|spub, `)

[ν ′ (spriv|spub, `)]
3 .

Accordingly,

H ′′ (ν|η, `) ν
H ′ (ν|η, `)

=

(
F ′′
[
s′priv

]2
+ F ′s′′priv

)
ν

F ′s′priv

=
F ′′

F ′ν ′
− ν ′′ν

[ν ′]2
.
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Q.E.D.

Proof of Lemma 2.4: Consider, for instance, bank a. If it competes for a borrower in region

B, it must make the first offer. It does not know the borrower’s private type ν. Since bank

b knows ν, bank b can tell which of bank a’s offers are profitable for bank a and which are

not. However, in the absence of securitization the two banks have common values: the value

of lending to a borrower is simply her discounted expected repayment less the common cost of

capital. Thus, bank b will slightly underbid bank a’s profitable offers and refrain from bidding

on the unprofitable ones. As a result, bank a will succeed in lending only to unprofitable

borrowers. Knowing this, bank a will not make offers to any agents who reside in region B in

period 1. But given this, in period 2 bank b can charge the maximum possible interest rate of ρ

and any of these agents will agree. It will do so if the resulting discounted expected repayment,

δρηνE
(
LR`
)
, exceeds its unitary cost of capital. Q.E.D.

Proof of Lemma 2.6: Equilibrium requires that bank a does not want to change its strategy

taking bank b’s strategy qb as given. Define

Pa (q, σ) =

∫
ub∈<N+

pa

(
q, qb

(
ub
)
, σ
)
dΨ
(
ub|σ

)
and

Φa (ua, σ) =

∫
ub∈<N+

φa

(
ua, ub, σ

)
dΨ
(
ub|σ

)
.

Integrating conditions 1 and 3 over bank b’s possible signal vectors ub, we find that, almost

surely, bank a’s optimal quantity q maximizes q [Pa (q, σ)− δΦa (ua, σ)] and Pa (qa (ua, σ) , σ)

equals Φa (ua, σ). These are the conditions for a separating equilibrium of the single-sender

game analyzed by DeMarzo and Duffie [16, p. 77]. By their Proposition 2 [16, p. 78], bank

a sells a quantity qa (ua, σ) =
[
φ̂a (0, σ) /φ̂a (ua, σ)

] 1
1−δ

and the expected market price when

bank a sells a quantity q is Pa (q, σ) = φ̂a (0, σ) /q1−δ. The quantity and expected price of

bank a’s security thus does not depend on bank b’s strategy since φ̂a (ua, σ) does not. Hence,

DeMarzo and Duffie’s equation (4) [16, p. 79] implies that in any separating equilibrium,

bank a’s securitization profits conditional on the signals ua and σ are given by π (ua, σ) =

(1− δ) φ̂a (0, σ)
1

1−δ φ̂a (ua, σ)−
δ

1−δ as claimed.
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It remains to show that bank a’s optimal security is debt. Following DeMarzo and Duffie [16,

pp. 88-89], let ϕa (·) be any monotone security. Since Ya is nondecreasing in each factor ζAk , for

each public signal σ the lowest possible realization of E (ϕa (Ya) |ua, σ) is E (ϕa (Ya) |ua = 0;σ).

Now consider a standard debt security min {ma, Ya}. By the dominated convergence theorem,

E (min {ma, Ya} |ua = 0;σ) is continuous in ma, so we may choose ma so that the following

holds E (min {ma, Ya} |ua = 0;σ) = E (ϕa (Ya) |ua = 0;σ). Let d (Ya) = ϕa (Ya)−min {ma, Ya}

and ψ (ua, σ) = E (d (Ya) |ua, σ); by construction, ψ (0, σ) = 0. Because ϕa (Ya) ≤ Ya, for

Ya ≤ ma we have d (Ya) = ϕa (Ya) − Ya ≤ 0. Moreover, for Ya ≥ ma, d (Ya) = ϕa (Ya) −ma,

which is nondecreasing in Ya. Hence, there is a y∗ ∈ [ma,∞)∪{∞} such that d (Ya) > 0 if and

only if Ya > y∗. Moreover, since the measure of agents is 2 and each is willing to pay at most

ρ, Ya is bounded by 2ρ. Let µ (y|ua, σ) be the conditional density of Ya at the realization y

given the signals ua and σ. Since the conditional (on ua and σ) distribution of ζa is mutually

absolutely continuous with respect to ua, the conditional density has a well defined Radon-

Nikodym derivative µ(y|ua,σ)
µ(y|0,σ) for each public signal σ. As noted by DeMarzo and Duffie [16,

p. 88, n. 30], the measure µ can be chosen so that the Radon-Nikodym derivative µ(y|ua,σ)
µ(y|0,σ) is

nondecreasing in y. Thus, for any signal vector ua,

ψ (ua, σ) = E (d (Ya) |ua, σ) =

∫ 2ρ

y=0
d (y)µ (y|ua, σ) =

∫ 2ρ

y=0
d (y)

µ (y|ua, σ)

µ (y|0, σ)
µ (y|0, σ) dy

≥
∫ 2ρ

y=0
d (y)

µ (y∗|ua, σ)

µ (y∗|0, σ)
µ (y|0, σ) dy =

µ (y∗|ua, σ)

µ (y∗|0, σ)

∫ 2ρ

y=0
d (y)µ (y|0, σ) dy = 0

Thus, E [ϕa (Ya) |ua, σ] = E [min {ma, Ya} |ua, σ] + ψ (ua, σ) ≥ E [min {ma, Ya} |ua, σ]. Hence,

by switching from the security ϕa (Ya) to the security min {ma, Ya}, the bank weakly lowers

φ̂a (ua, σ) (the expected payout of the security conditional on ua and σ) while not chang-

ing φ̂a (0, σ), thus weakly raising conditional profits π (ua, σ) and thus unconditional profits

E [π (ua, σ)]. This shows that the optimal security is debt. Q.E.D.

For the remainder, we need additional notation. Let zBη` = rBη`p
B
η` denote the product of the

interest rate charged to region B borrowers with credit score η in location ` and the proportion

of these loans that are securitized. This quantity, which must lie between zero and rBη`, can

be interpreted as the amount of loans that bank a securitizes, expressed in units of the face
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value rBη` of these loans. Given rBη`, choosing pBη` is clearly equivalent to choosing zBη`. With this

change of variables,

Y B
a

(
ζB
)

=

∫ 1

`=0

∫ 1

η=0
xBη`z

B
η`

[
ηLB`

∫ νBη`

ν=0
νdH (ν|η, `)

]
dG (η, `) . (B.1)

Bank a’s Lagrangean equals its expected payoff Πa plus constraint terms, which we write

in a manner analogous to the integrals that appear in Πa:

L = Πa +

∫ 1

`=0

∫ 1

η=0

(
aη`z

B
η` + bη`

(
rBη` − zBη`

))
η
(
1−H

(
νBη`|η, `

))
dG (η, `)

+

∫ 1

`=0

∫ 1

η=0

[
cη`r

A
η`η

∫ νη`

ν=νAη`

νdH (ν|η, `) + dη`r
A
η`η

∫ νAη`

ν=νAη`

νdH (ν|η, `)

]
dG (η, `)

where aη`, bη`, cη`, and dη` are Lagrange multipliers for the constraints zBη` ≥ 0, zBη` ≤ rBη`,

νAη` ≤ νη`, and νAη` ≤ νAη`, respectively. For technical reasons, we omit the constraint rBη` ≤ ρ

and verify later that it holds. Bank b’s Lagrangean, which is analogous, is omitted.

Proof of Lemma 2.7: W.l.o.g. let i = a and j = b. Since uA and ζB are independent

conditional on σ,

E
[
1 (ma > Ya) ζ

B
k

∣∣ua, σ] =

∫
ζB
ζBk

[∫
ζA

1
(
ma > Y B

a

(
ζB
)

+ Y A
a

(
ζA
))
dΓ
(
ζA|ua, σ

)]
dΓ
(
ζB|σ

)
,

where Γ
(
ζB|σ

)
is the distribution function of ζB conditional on σ. By stochastic dominance,

the interior integral is nonincreasing in ua, so the double integral is as well. But stochastic

dominance also implies φ̂a (0, σ) ≤ φ̂a (ua, σ). Hence ΛB0
ak (σ) ≥ ΛBak (σ) for all public signals σ,

which proves that ΩB
a` (σ) > 0 since δ < 1. Hence, ΩB

a` = E
(
ΩB
a` (σ)

)
> 0. Q.E.D.

Proof of Theorem 2.8: the proof consists of the following claims.

Lemma B.1 If bank a competes for region B borrowers with credit score η in location `, it

bids a strictly positive interest rate rBη`.

Lemma B.2 If bank a competes for customers with credit score η in location ` in region B,

then it includes all of them in its security: if xBη` = 1, then pBη` = 1.

Lemma B.3 Consider the group of agents with credit score η living in location ` in region B.

Given the interest rate rBη` offered by bank a, bank b responds as follows.
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1. It lends to all agents whose private type ν exceeds

νBη` = min
{
νη`, νη`r

B∗
η` /r

B
η`

}
. (B.2)

In particular, it strictly prefers (not) to lend when a borrower’s private type ν exceeds

(respectively, is less than) νη`r
B∗
η` /r

B
η`, and is indifferent when ν equals this expression.

2. If bank b lends to some region B borrowers in this group (i.e., if νBη` < νη`), then it

securitizes all of these borrowers if ΩB
b` > 0 and none of them if ΩB

b` < 0.

Lemma B.4 If bank a competes for region B borrowers with credit score η in location ` (if

xBη` = 1), it offers the interest rate rBη` = min
{
ρ, rB∗η`

}
and lends to all borrowers in this group.

If rB∗η` ≤ ρ, then bank b is just willing not to bid for the best borrower in this group: the borrower

whose private type ν is νη`. If rB∗η` > ρ, bank b strictly prefers not to bid for any borrowers in

the group.

Lemma B.5 Bank a competes for region B borrowers with credit score η in location ` (i.e., it

sets xBη` = 1) if and only if

rBη`
[
δE
(
LB`
)

+ ΩB
a`

]
η > 1. (B.3)

This concludes the proof of Theorem 2.8. Q.E.D.

Proof of Lemma B.1: Suppose otherwise: rBη` = 0. Since rBη` = 0, ∂XB
a /∂x

B
η` = 0 and

∂Y B
a /∂x

B
η` = 0 (since zBη` ≤ rBη`). Hence,

∂L
∂xBη`

= δE

(
∂XB

a

∂xBη`

)
− ∂CBa
∂xBη`

+ (1− δ)E

(
∂

∂xBη`

φ̂a (0, σ)
1

1−δ

φ̂a (ua, σ)
δ

1−δ

)
= −∂C

B
a

∂xBη`
< 0.

Thus, xBη` = 0. Q.E.D.

Proof of Lemma B.2: The first order condition for zBη` is

0 = E

 φ̂a (0, σ)
1

1−δ

φ̂a (ua, σ)
δ

1−δ

E
(

1 (ma > Ya)
∂Ya
∂zBη`

∣∣∣∣ua = 0;σ

)
φ̂a (0, σ)

− δ
E

(
1 (ma > Ya)

∂Ya
∂zBη`

∣∣∣∣ua, σ)
φ̂a (ua, σ)




+ (aη` − bη`) ηg (η, `)

∫ νBη`

ν=0
νdH (ν|η, `)
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However,

1

ηg (η, `)
∫ νBη`
ν=0 νdH (ν|η, `)

∂Ya

∂zBη`
= xBη`L

B
` = xBη`

K∑
k=1

αk`ζ
B
k

Hence,

bη` − aη` =

 0 if xBη` = 0

ΩB
a` if xBη` = 1

(B.4)

By Lemma 2.7, ΩB
a` > 0, whence bη` − aη` > 0 if xBη` = 1. But aη` and bη` are the Lagrange

multipliers for the constraints zBη` ≥ 0 and zBη` ≤ rBη`, respectively. Thus, by Lemma B.1,

either aη` or bη` must be zero. Together with (B.4), this implies that bη` = ΩB
a` > 0 = aη`, so

0 < zBη` = rBη`. Q.E.D.

Proof of Lemma B.3: The derivatives of the bank’s profits Πb and the Lagrangean L with

respect to νBη` are

∂Πb

∂νBη`
= rBη`ην

B
η`H

′ (νBη`|η, `) g (η, `) ΩB
b` (B.5)

and

∂L
∂νBη`

= rBη`ην
B
η`H

′ (νBη`|η, `) g (η, `)
[
ΩB
b` + dη` − cη`

]
. (B.6)

Since this must equal zero, it follows that

cη` − dη` = ΩB
b`. (B.7)

The derivatives of the bank’s profits Πb and the Lagrangean with respect to νBη` are

∂Πb

∂νBη`
=
(
1− δE

(
rBη`ην

B
η`L

B
`

)
− rBη`ηνBη`ΩB

b`

)
H ′
(
νBη`|η, `

)
g (η, `) (B.8)

and

∂L
∂νBη`

=
∂Πb

∂νBη`
− dη`rBη`ηνBη`H ′

(
νBη`|η, `

)
g (η, `) . (B.9)

First, suppose νBη` = νη`. Then νBη` = νη` as well, so ∂Πb
∂νBη`

≥ 0 and ∂Πb
∂νBη`

+ ∂Πb
∂νBη`

≥ 0. (The

latter condition means that it is not optimal for the bank to lower both νBη` and νBη` while keeping

them equal.) These two inequalities hold if and only if 1−δE
(
rBη`νη`ηL

B
`

)
−rBη`νη`η

(
ΩB
b`

)+ ≥ 0

which holds if and only if rB∗η` ≥ rBη` by (2.10). This confirms that (B.2) holds when νBη` = νη`.

Now suppose νBη` < νη`. Recall that cη` and dη` are the Lagrange multipliers for the

constraints νBη` ≤ νη` and νBη` ≤ νBη`, respectively. Only one of these can bind since νBη` < νη`.
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Hence, either cη` or dη` is zero. Thus, by (B.7), cη` =
(
ΩB
b`

)+
while dη` =

(
−ΩB

b`

)+
. Hence, bank

b securitizes all of its borrowers in the group (cη` > 0) if ΩB
b` > 0, and none of them (dη` > 0)

if ΩB
b` < 0, as claimed. Moreover, by (B.7), (B.8), and (B.9), 0 = 1 − δE

(
rBη`ην

B
η`L

B
`

)
−

rBη`ην
B
η`

(
ΩB
b`

)+
, which is equivalent to νBη` = νη`r

B∗
η` /r

B
η`. This shows that (B.2) holds when

νBη` < νη` as well. Hence, (B.2) always holds. Finally, since only bank b knows ν, it strictly

prefers (not) to lend to borrowers whose types ν exceed (respectively, are less than) νη`r
B∗
η` /r

B
η`.

Q.E.D.

Proof of Lemma B.4: The Lagrangean is not differentiable at the optimal interest rate rBη`.

Hence, to find this optimal rate, we must consider the part of the Lagrangean in which rBη` or

νBη` (which depends on rBη`) appears. It is

δE
(
XB
a

)
− CBa + (1− δ)E

(
φ̂a (0, σ)

1
1−δ

φ̂a (ua, σ)
δ

1−δ

)

+

∫ 1

`=0

∫ 1

η=0

∫ νBη`

ν=0

(
aη`z

B
η` + bη`

(
rBη` − zBη`

))
ηνdH (ν|η, `) dG (η, `) .

In addition, since the choice of rBη` does not affect terms that involve credit scores η′ 6= η and

locations `′ 6= `, the optimal rBη` is chosen to maximize

δE
(
LB`
)
η

∫ νBη`

ν=0
rBη`νdH (ν|η, `)−

∫ νBη`

ν=0
dH (ν|η, `)

+ (1− δ)E

(
φ̂a (0, σ)

1
1−δ

φ̂a (ua, σ)
δ

1−δ

)
+

∫ νBη`

ν=0

(
aη`z

B
η` + bη`

(
rBη` − zBη`

))
ηνdH (ν|η, `) .

Now, since ∂Ya
∂rBη`

= ∂
∂rBη`

∫ νBη`
ν=0 x

B
η`z

B
η`ηνdH (ν|η, `) g (η, `)LB` ,

∂

∂rBη`

(
(1− δ)E

(
φ̂a (0, σ)

1
1−δ

φ̂a (ua, σ)
δ

1−δ

))
=

∂

∂rBη`

(∫ νBη`

ν=0
zBη`ηνdH (ν|η, `)

)
g (η, `) ΩB

a`.

By Lemma B.2, aη` = 0 and bη` = ΩB
a` > 0. Hence, rBη` is chosen to maximize

c−1

∫ νBη`

ν=0

(
rBη`ν − c

)
dH (ν|η, `) d

= c−1I
(
rBη`
)

(B.10)

where c−1 = η
[
δE
(
LB`
)

+ ΩB
a`

]
is independent of rBη`. If rBη` < rB∗η` , by (B.2), νBη` equals νη` so

small changes in rBη` do not affect it. Hence, (B.10) is strictly increasing in rBη`, so the optimal

rBη` is at least min
{
ρ, rB∗η`

}
.
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If rB∗η` ≥ ρ, we are done. If rB∗η` < ρ, it suffices to show that the optimal rBη` is no greater

than rB∗η` . Let us write r = rBη`, r
∗ = rB∗η` , and H (ν) = H (ν|η, `) for brevity, and let S ⊂ [0, νη`]

be the support of ν for the given values of η and `. Consider any r > r∗. We will show that if

I (r) > 0, then I ′ (r) < 0. By (B.2), νBη` = νη`r
∗/r < νη`, so

I (r) =

∫ νη`r
∗/r

ν=0
(rν − c) dH (ν) =

∫
ν∈[0,νη`r∗/r]∩S

(rν − c) dH (ν) (B.11)

With the change of variables x = rν, I (r) = 1
r

∫
x∈[0,νη`r∗]∩S′ (x− c)H

′ (x
r

)
dx where S′ =

{x ∈ [0, r] : x/r ∈ S} is the support of x. Thus,

I ′ (r) = − 1

r2

(∫
x∈[0,νη`r∗]∩S′

(x− c)

[
H ′
(
x
r

)
+H ′′

(
x
r

)
x
r

H ′
(
x
r

) ]
H ′
(x
r

)
dx

)
.

Changing variables back,

I ′ (r) = −1

r

(∫
ν∈[0,νη`r∗/r]∩S

(rν − c)
[
H ′ (ν) +H ′′ (ν) ν

H ′ (ν)

]
dH (ν)

)
. (B.12)

For any functions ϕ0 (ν) and ϕ1 (ν), let E∗ (ϕ0) and Cov∗ (ϕ0, ϕ1) denote the expectation of

ϕ0 and covariance of ϕ0 and ϕ1, both conditional on ν ∈ [0, νη`r
∗/r] ∩ S. Then I ′ (r) =

−1
rE
∗ (xy)H (νη`r

∗/r), where x (ν) = rν − c and y (ν) = H′(ν)+H′′(ν)ν
H′(ν) . By definition of covari-

ance, Cov∗ (x, y) = E∗ (xy)−E∗ (x)E∗ (y). Rearranging, E∗ (xy) = Cov∗ (x, y)+E∗ (x)E∗ (y).

Since I (r) > 0, E∗ (x) > 0. By No Cream Skimming, E∗ (y) > 0 and Cov∗ (x, y) ≥ 0. This

proves that E∗ (xy) > 0, so I ′ (r) < 0 as claimed.

Finally, by Lemma B.3, νBη` = min
{
νη`, νη`r

B∗
η` /r

B
η`

}
. Substituting for rBη`, we have the

following νBη` = min
{
νη`, νη`r

B∗
η` /min

{
ρ, rB∗η`

}}
= νη`: bank b does not lend to any borrowers

in this group. Moreover, by Lemma B.3, bank b strictly prefers (not) to lend to borrowers whose

types ν exceed (respectively, are less than) νη`r
B∗
η` /r

B
η`. If rB∗η` ≤ ρ, then rBη` = min

{
ρ, rB∗η`

}
=

rB∗η` : bank b is just willing not to bid for the best borrower in this group: the borrower whose

private type ν is νη`. If rB∗η` > ρ, then rBη` = ρ < rB∗η` : bank b strictly prefers not to bid for any

borrowers in the group. Q.E.D.

Proof of Lemma B.5: If the bank competes for these borrowers, then (a) by Lemma B.2 it

securitizes every borrower who accepts (i.e., zBη` = rBη`) and (b) by Lemma B.3, it outbids bank

b for all borrowers in this group: νBη` = νη`. By differentiating the Lagrangean L with respect
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to xBη`, one can easily verify that competing for these borrowers (setting xBη` = 1) raises bank

a’s profits if and only if (B.3) holds. Q.E.D.
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 3

Proofs

Proof of Lemma 3.3: Consider the short-term contract {Bi}i=1,2. The optimal contract

requires the bank to punish the defaulting entrepreneur as severe as possible. Thus, due to

the limited liability, the payment is B∗1 = θ1 (and the entrepreneur’s payoff c∗1 = 0) when the

project fails.

If the contract implements a good project (m = 2). Hence, the IC constraint (3.3) implies

that the entrepreneur’s expected utility from the good project
(
1− π2

2

)
c∗1 + π2

2c
∗
2 − v is larger

than that form the poor one
(
1− π1

2

)
c∗1 + π1

2c
∗
2. By the definition c∗2 = θ2 −B∗2 , I have

θ2 −B∗2 ≥ (∆π)−1 v. (C.1)

The IR constraint (3.2) implies that

x = π2
2 (θ2 −B∗2)− v. (C.2)

Hence, from the IC (C.1) and IR (C.2) constraints, I have x ≥ (∆π)−1 π1
2v. But if the contract

implements a poor project (m = 1). Similarly, the IC constraint (3.3) implies that

θ2 −B∗2 ≤ (∆π)−1 v. (C.3)

The IR constraint (3.2) implies that

x = π1
2 (θ2 −B∗2) . (C.4)

Then, from the IC (C.3) and IR (C.4) constraints, I have x ≤ (∆π)−1 π1
2v.

The threshold utility w to implement the good project is w = (∆π)−1 π1
2v. Furthermore,

if x ≥ w, from the IR constraint (C.2), the entrepreneur’s optimal payoff is B∗2 (x) = θ2 −
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(
π2

2

)−1
(x+ v). Since B∗2 (x) ≥ 0, I have x ≤ π2

2θ2− v. Finally, if x < w, from the IR constraint

(C.4), the optimal payoff is B∗2 (x) = θ2−
(
π1

2

)−1
x. These are the payment arrangement in the

lemma. Q.E.D.

Proof of Proposition 3.5: I need the following lemma for the main result.

Lemma C.1 For i ∈ {1, 2}, if p∗i > 0, then it must hold that x∗i1 = w; if x∗i0 > w, then it must

hold that p∗i = 0.

Proof of Lemma C.1: Notice, since the lowest promised utility to implement the good project

is w by Lemma 3.3, the optimization problem (3.5) implies that

max
{pi,Bi,xij}

∑
i=1,2

πmi
∑
j=0,1

pij [(Bi − r) + V (xij)]

⇐⇒ max
{pi,Bi,xij}

∑
i=1,2

πmi {Bi + (1− pi) [V (xi1)− V (w)] + V (w)} − r.

But this is equivalent to the following problem,

max
{pi,xi1}

(1− pi) [V (xi1)− V (w)] (C.5)

subject to pi ∈ [0, 1] and xi1 ≥ w for i ∈ {1, 2}. Therefore, if p∗i > 0, it must be the case that

V (x∗i1) = V (w) since V ′ (x) < 0, or x∗i1 = w. If x∗i1 > w, then I have V (xi1) − V (w) > 0,

which implies p∗i1 = 1 and thus p∗i = 0. Q.E.D.

It is straightforward to establish two preliminary results. When the credit line is terminated,

the entrepreneur cannot refinance the project due to his credit history. It is optimal to set the

promised utility to zero if the credit line is cut off. So the expected utility to the entrepreneur

is x∗i0 = 0 for i = 1, 2 when the bank cuts off the credit line. And the optimal contract requires

the bank to punish the defaulters as severe as possible, and B∗1 = θ1 and c∗1 = 0 due to limited

liability.

For an optimal long-term loan contract which implements the good project, the IR (3.6)

and IC (3.7) constraints must hold,

(IR)
∑
i=1,2

π2
i

∑
j=0,1

pij (ci + xij)− v = X, (C.6)
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(IC)
∑
i=1,2

π2
i

∑
j=0,1

pij (ci + xij)− v ≥
∑
i=1,2

π1
i

∑
j=0,1

pij (ci + xij) . (C.7)

Recall that pi0 = pi, pi1 = 1 − pi, and ci = θi − Bi. By Lemma C.1, I have x∗21 = w

when p∗2 > 0. Then, in the second period, the entrepreneur is indifferent with the two projects.

However, for any ε > 0, if the bank sets x∗21 = w + ε, the entrepreneur will prefer the good

project and the bank can make more profits. It is a contradiction. Therefore, p∗2 = 0 solve

the optimization problem. Now, if p∗1 > 0, I have x∗11 = w by Lemma C.1. Then, given the

expected utility X, the IR (C.6) constraint could be written as

π2
1 (1− p∗1)w + π2

2 (θ2 −B∗2 + x∗21) = X + v. (C.8)

And the IC (C.7) constraint must be binding

(θ2 −B∗2 + x∗21)− (1− p∗1)w = (∆π)−1 v. (C.9)

From the two equations (C.8) and (C.9), I get

θ2 −B∗2 + x∗21 = (X − w) + (∆π)−1 v, (C.10)

p∗1 = 1− w−1
[
X + v − (∆π)−1 π2

2v
]

= 2− w−1X. (C.11)

Since p∗1 ∈ [0, 1], the bank’s optimal termination policy comes directly from the equation (C.11).

Finally, from the equation (C.10), I have the loan plan,

x∗21 −B∗2 = X + (∆π)−1 (1− π1
2

)
v − θ2.

Q.E.D.

Proof of Proposition 3.7: For part 1, I only consider old entrepreneurs. I compare the new

project and the poor project. Assume the interest rate for a loan is R, so the expected return

is π1
2 (ω2) (θ2 (ω2)−R) for the new project. Since π1

2 (ω2) < π1
2 (ω1), the bank’s expected return

decreases if the entrepreneur chooses the new project

(1− π1
2 (ω2))θ1 + π1

2 (ω2)R− r < (1− π1
2 (ω1))θ1 + π1

2 (ω1)R− r. (C.12)

From (C.12) and the new project and the poor project have the same expected return, the

entrepreneur’s expected return increases

π1
2 (ω2) (θ2 (ω2)−R) > π1

2 (ω1) (θ2 (ω1)−R) . (C.13)
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Moreover, given the optimal contracts, the entrepreneur is indifferent between the poor project

and the good project in state ω1. And thus he will prefer the new project over the good project.

For part 2a, by Proposition 3.7, banks need to give more incentive rents to entrepreneurs

to choose the good project in state ω2. And from Lemma 3.3 and π1
2 (ω2) < π1

2 (ω1), I have

w (ω2) > w (ω1), which implies

µ (r∗ (ω2) |w (ω2)) > µ (r∗ (ω1) |w (ω1)) .

Finally, for part 2b, assume there is only an infinitesimal change in the two states ω1 and ω2

so that the threshold w (ωt) changes continuously. Omit the time subscript without confusing.

Total differentiating equilibrium conditions (3.13) and (3.14) gives

u′′ (h− s) ds+ dr = 0,

(1− η) (w)2 ds+ ηαπ2
1wdr = −ηαπ2

1

(
θ

2 − v − r
)
dw.

That is  u′′ (h− s) 1

(1− η) (w)2 ηαπ2
1w


 ds

dw

dr
dw

 =

 0

−ηαπ2
1

(
θ

2 − v − r
)
 . (C.14)

And by the Cramer’s rule to (C.14), I have

ds

dw
= [det (A)]−1 ηαπ2

1

(
θ

2 − v − r
)
< 0,

dr

dw
= − [det (A)]−1 u′′ (h− s) ηαπ2

1

(
θ

2 − v − r
)
< 0,

where

A =

 u′′ (h− s) 1

(1− η) (w)2 ηαπ2
1w

 ,

with det (A) = u′′ (h− s) ηαπ2
1w − (1− η) (w)2 < 0 and u′′ (·) < 0. Q.E.D.
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